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LEARNING STATISTICAL MECHANICS 

 

 

 

Discussion on statistical mechanics often begins 
with Thermodynamics--- WHY ?

Statistical Mechanics provides a
microscopic basis of
thermodynamics and meaning to
such terms as entropy and free
energy, which are otherwise
rather hard to understand

Thermodynamics by itself is not
useful because it does not have the
capacity to generate absolute
numbers needed to understand
experiments.

For example, the first two laws define all sorts of relations between
thermodynamic variables and functions (like entropy, free energy), but do
not tell you how to calculate them. This deficiency is partly removed in the
third law (which is the only “imperfect” thermodynamic law).

Ultimate goal of Statistical 
Mechanics

To describe thermodynamic behavior of
macroscopic observables in terms of
molecules and intermolecular potential.



Why  a fully deterministic approach  that is prescribed in classical 

mechanics is insufficient to describe a system of an Avogadro 

number of molecules ? 

➢ Initially, it was assumed that one can use a detailed classical 

mechanical approach to achieve this goal. That is, given a system of N 

molecules with given intermolecular potential.  

➢ In classical mechanics, the future evolution of the system is fully 

determined once the initial conditions are provided. This evolution is 

determined by equations of classical mechanics.  

➢ Two alternate descriptions are provided by Newton’s equations of 

motion and Hamilton’s equations of motion. The former is expressed in 

terms of velocities and forces and is given by  𝐅𝐢 = 𝐦𝐢
𝒅𝒚𝒊

𝒅𝒕
   Where F 

i is the force exerted on particle i, m i  is the mass and v i  is the velocity 

of particle i.  

➢ For systems with constraints, it may be more appropriate to start with 

Hamilton’s equations of motion. 

➢ Let us attempt to follow a classical mechanical approach to describe 

a system of an Avogadro number of molecules.  

➢ Note that we cannot solve Newton’s or Hamilton’s equations exactly 

even for a three-body system.  



➢ Using computers we can simulate motion (that is, trajectory) of a certain 

number, say a few thousand molecules. Secondly, even having 

obtained trajectory of our system i.e the positions and velocities of all 

the molecules we do not know what to do with such a huge amount of 

data.  

  

➢ The statistical mechanical approach based on equations and concepts 

of classical mechanics but which abandons the deterministic 

approach. Instead, it uses a probabilistic approach. 

➢ However, this translation from the description based on particles to a 

description based on probability distribution is highly non-trivial 

(MEANINGFUL). 

➢  In fact, this change of theoretical description from a direct, 

deterministic, mechanical, particle based approach to a probability 

density based approach is carried out by invoking two basic 

assumptions or postulates which make the beginning of Statistical 

Mechanics.  

➢ These two postulates (the Ergodic hypothesis and the postulate of equal 

a priori probability) allow us to go over to a probability based 

description where one can make sensible assumptions and 



approximations, obtain closed form results which can be directly tested 

against experiments.  

➢ At the first level, these assumptions allow one to develop a description 

for equilibrium properties without solving for particle trajectories. 

 

 



Probability and Statistics

➢ Statistical Mechanics is formulated by using certain concepts of 

probability theory, it is imperative that students acquire certain basic 

knowledge of this theory. 

➢  Probability theory in itself is a vast subject , but we for now require only 

certain elementary knowledge to understand the formulation of 

Statistical Mechanics.  

➢ Why Probabilistic formulation needed? 

• Statistical Mechanics deals with systems that consist of many degrees 

of freedom.  

• Let us consider 1 cc of liquid water (that approximately weighs 1 g at 

298K). It contains (6.023 × 1023)/18 = 3.34 × 1022 water molecules.  

• We know that each water molecule has nine degrees of freedom.  

• So, we need to consider approximately 3 × 1023 degrees of freedom for 

a detailed microscopic description of structure (i.e., positions and 

orientations of water molecules) and dynamics (i.e., time evolution). 

 If we at all desire for such a description. Clearly such a description is 

neither possible nor necessary, as we have already discussed earlier.

In Chemistry and Materials Science, the system sizes vary from nanoscale to 

macroscale. Even in nanoscale, except for extremely small sized systems, 

the systems of interest consist of millions of atoms and molecules.

• As also mentioned previously, we have no other option but to LEAVE a 

deterministic approach (Newtonian approach) and employ a 

probabilistic approach to make further progress.  



• Such an approach was initiated by Maxwell and Boltzmann. 

Historically, the first probabilistic approach was pioneered by Maxwell, 

who derived the probability distribution function for the velocity.  

 Subsequently, a more involved mathematical step towards a 

probabilistic approach was taken by Boltzmann. 

Thus, in Statistical Mechanics we make the transition from a deterministic 

approach or language to a probabilistic description. The latter is developed 

in terms of Distribution functions. Our experimental observables are 

averages over such distributions. The distributions themselves are often not 

directly measured.

BASIC IDEA OF Distribution functions

• The basic idea behind a distribution function is that our observable (say, 

X) is intrinsically a random quantity. (Values of Random variable 

depend on the outcomes of a random phenomenon).   

• Its value at a given moment of time is determined by positions and 

velocities of the constituent atoms and molecules of the system.  

• If we could follow the instantaneous value of X with time we would see 

that its value fluctuates with time, around an average.  

• As we shall see later, both the distribution function of instantaneous 

values of X and correlations between fluctuations contain important 

information about the system. 

•  We shall denote the probability distribution by P(X,t). 

 

 

 



RANDOM VARIABLE 

• A random variable (X) is the outcome of an experiment.  

• The same experiment repeated many times can give rise to (slightly) 

different values.  

• The values can be discrete or continuous. For example, when we throw 

a die, the random variable is the “number of spots” on the side facing 

upward. The possible realizations are the numbers between 1 and 6, 

each with a probability of 1/6. Similarly, in the tossing of an unbiased 

coin, we have two outcomes—head and tail—and the probability of 

each event is 1/2. We denote the random variable by X and the 

possible outcomes by x. 

•  In many cases, x can be continuous, meaning all the values in a range, 

say a ≤ x ≤ b.  

• An example of discrete distribution is the throwing of a die or coin 

• Example of a continuous distribution is the distance travelled by 

different persons within a given time interval.  

• Physical examples to emphasize the random, fluctuating nature of 

observables.  

o If we measure accurately the instantaneous pressure of a liquid in 

equilibrium with its vapor, we shall see that the pressure 

continuously fluctuates around an average value. The same holds 

for energy of a system kept at constant temperature, or the 

volume of a system kept at constant pressure. So, energy, 

pressure and volume are all random variables.  

o Another important example from the microscopic world is the 

number of nearest neighbors that a particle has within its first shell. 



For a one component system of spherical atoms, this number 

varies between 9 and 13. 

INFERENCE: In all the above examples, there exists an average, but the 

outcome can be different from the average and not predictable by an 

observer. One needs a probability distribution to describe the behaviors of 

the random variable. 

Sample space

➢ Sample space is the collection of all the outcomes of an experiment. 

For example, when a coin is tossed once, the total numbers of 

outcomes (which are 2 in this case, either head or tail) are different 

when the same coin is tossed more than once.  

➢ For example, if we toss the same coin twice, we have four possible 

outcomes: HH, HT, TH and TT (where H and T stand for head and tail, 

respectively).  

➢ If the coin is tossed n times the possible outcomes are 2n.  

➢ Another illustrative example could be bus routes. Suppose you want to 

go from A to B via an intermediate stop at C. There are m ways by which 

you can go from A to C and another n ways to reach B from C. So the 

total number of ways one can go from A to B is (m × n). Thus the sample 

space consists of mn number of elements.  

➢ Consider throwing a die. We have six outcomes, each of which is 

equally probable. If we now toss the die twice, we get 62 = 36 possible 

outcomes. Then the probability of finding three in the first toss and 

five in the second will be 1/36. But if we ask what is the probability of 

getting 3 in one and 5 in another toss separately, then the probability is 

2/36, as you have possibility to get three and five on both of the dice. 



 Thus in probability an event could be a series of actions, and we need to 

consider all possible outcomes. This total set of outcomes of an event 

constitutes the sample space. The sample place allows us to define a 

probability distribution as we discuss below. 

➢ To characterize a random variable one first needs to obtain information 

about all the possible outcomes of elementary events (or, realizations) 

of the random variable. 

➢  Then construct the probability of a given value as a possible outcome. 

➢  When all the possible realizations (outcomes), do not form a discrete 

set but a continuum in R. 

➢ Then we construct a continuous probability distribution function P(X) or 

a probability density function p(x). In the latter case we describe the 

probability of an outcome to have a value between x and x + dx as 

p(x)dx. 

The probability distribution is usually normalized. That is, it satisfies the 

following criteria 

 

 

 

 



Joint Probability Distribution 
 

➢ In many cases, outcomes of two events can be correlated. That is, the 

outcome of one event depends on the outcome of another. 

➢  In such cases, probability of simultaneous occurrence of two events, 

namely A and B, is expressed by a joint probability distribution. The 

number of events can be generalized to any number.  

➢ If two events A and B are completely uncorrelated, then the probability 

of the occurring of both will be simple multiplication of the probability 

of the occurring of those events individually. 

➢ Joint probability of two events A and B is written as P(AB). If both A and 

B are uncorrelated then joint probability of occurrence of A and B will 

be P(AB) = P(A)P(B)  

➢ Explanation of this can be given from the previous example of throwing 

a die twice. Here getting a three in one die is not at all affected by the 

event of getting a two in the other one.  

Conditional Probability 

➢ However, our primary interest lies in correlation and in correlated 

events. For example we call a dense liquid a strongly correlated system 

because position of one molecule affects the probability of finding 

another molecule next to it. The idea of correlation among different 

events leads to conditional probability. 

➢ Let us again consider two events A and B. We now ask the question: 

given that an event A has already occurred, what is the 

probability of the occurrence of B? More precisely, if we know the 

value of the outcome of one experimental result, how does it impact 

our a priori knowledge of the outcome of a second experiment? 



➢  The two experiments need not be the same.  

 

 

The presence of correlation between the two events is measured by 

conditional probability. Note that in the presence of correlation among two 

events, the volume of the sample space becomes less (than in the absence 

of any correlation), because the outcome of one experiment partly 

determines that of the other. Conditional probability is symbolized as P(B|A) 

which is defined as 

𝐏(𝐁 I 𝐀) =
𝐏(𝐁𝐀)

𝐏(𝐀)
 

 

If A and B are uncorrelated then conditional probability becomes the 

probability of the occurrence of B only as P(BA) and then can be factorized 

into a multiplication of P(A) and P(B). 


