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TOPIC ----ESSENTIALS OF THERMODYNAMICS NEEDED FOR
LEARNING STATISTICAL MECHANICS

Ultimate goal of Statistical
Mechanics




Thus, Quantum mechanics and Statistical Mechanics together
form a complete, first principles, theoretical framework that

should be able to explain the physical properties of systems.

Why a fully deterministic approach thatis prescribed in classical
mechanics is insufficient to describe a system of an Avogadro
number of molecules ?

> Initially, it was assumed that one can use a detailed classical
mechanical approachto achievethis goal. Thatis, given a system of N

molecules with given intermolecular potential.

> In classical mechanics, the future evolution of the system is fully
determined once the initial conditions are provided. This evolution is

determined by equations of classical mechanics.

> Two alternate descriptions are provided by Newton’s equations of

motion and Hamilton’s equations of motion. The former is expressed in
av:
terms of velocities andforces andis givenby F; = m; % Where F

i is the force exertedon particle i, mi is the massand v is the velocily
of particlei.

> For systems with constraints, it may be more appropriate to start with
Hamilton’s equations of motion.

> Let us altemptto follow a classical mechanical approach to describe
a system of an Avogadro number of molecules.

> Note that we cannot solve Newiton’s or Hamilton’s equations exactly

evenfor a three-body system.



> Using computers we cansimulate motion (thatis, trajectory) of a certain
number, say a few thousand molecules. Secondly, even having
obtained trajectory of our system i.e the positions and velocities of all
the molecules we do not know what to do with such a huge amount of

data.

CONCLUSION: THE DETERMINISTIC APPROACH OF
CLASSICAL MECHANICS IS INADEQUATE TO
DESCRIBETHE MANY PARTICLE SYSTEM.

SOLUTION TO THE PROBLEM

> The statisticalmechanical approachbased on equations and concepts

of classical mechanics but which abandons the deterministic
approach. Instead, it uses a probabilistic approach.

> However, this franslation from the description based on particles to a
description based on probability distribution is highly non-trivial
(MEANINGFUL).

> In fact, this change of theoretical description from a direct,
deterministic, mechanical, particle based approach to a probability
density based approach is carried out by invoking two basic
assumptions or postulates which make the beginning of Statistical
Mechanics.

> These two postulates (the Ergodic hypothesis and the postulate of equal
a priori probability) allow us to go over to a probability based

description where one can make sensible assumptions and



approximations, obtain closedformresults which canbe directly tested
against experiments.

> At the first level, these assumptionsallow one to develop a description

for equilibrium properties without solving for particle trajectories.




Probability and Statistics

> Statistical Mechanics is formulated by using certain concepts of
probability theory, it is imperative that students acquire certain basic
knowledge of this theory.

> Probabilitytheoryin itself is a vast subject, but we for now require only
certain elementary knowledge to understand the formulation of

Statistical Mechanics.

> Why Probabilistic formulation needed?

o Statistical Mechanics deals with systems that consist of many degrees
of freedom.

e Letus consider1 cc of liquid water (that approximately weighs 1 g at
298K). It contains (6.023 x 1023)/18 = 3.34 x 1022 water molecules.

e We know that each water molecule has nine degrees of freedom.

e So, we needto consider approximately 3 x 1022 degrees of freedomfor
a detailed microscopic description of siructure (i.e., positions and
orientations of water molecules) and dynamics (i.e., time evolution).

o If we at all desire for such a description. Clearly such a description is

neither possible nor necessary, as we have already discussed earlier.

In Chemistry and Materials Science, the system sizes vary from nanoscale to
macroscale. Even in nanoscale, exceptfor extremely small sized system:s,
the systems of interest consist of millions of atoms and molecules.
e As also mentioned previously, we have no other option but to LEAVE a
deterministic approach (Newtonian approach) and employ a

probabilistic approach to make further progress.



e Such an approach was initiated by Maxwell and Boltzzmann.
Historically, the first probabilistic approachwas pioneered by Maxwell,
who derived the probability distribution function for the velocity.

e Subsequently, a more involved mathematical step towards a
probabilistic approach was taken by Boltzmann.

CONCLUSION
Thus, in Statistical Mechanics we make the transition from a deterministic

approach orlanguageto a probabilistic description. The latteris developed
in terms of Distribution functions. Our experimental observables are

averages over such distributions. The distributions themselves are often not

directly measured.
BASIC IDEA OF Distribution functions

e The basic ideabehind a distributionfunctionis thatour observable (say,
X) is intrinsically a random quantity. (Values of Random variable
depend on the outcomes of a random phenomenon).

e lis value at a given moment of time is determined by positions and
velocities of the constituent atoms and molecules of the system.

o If we couldfollowthe instantaneous value of X with time we would see
that its value fluctuates with time, around an average.

e As we shall see later, both the distribution function of instantaneous

values of X and correlations between fluctuations contain important

information aboutthe system.

We shall denote the probability distribution by P(X,1).



RANDOM VARIABLE

e Arandomvariable (X)is the outcome of an experiment.

e The same experimentrepeated many times can give rise to (slightly)
differentvalues.

e The valuescanbe discrete or continuous. Forexample, whenwe throw
a die, the random variable is the “number of spots” on the side facing
upward. The possible realizations are the numbers between 1 and 6,
each with a probability of 1/6. Similarly, in the tossing of an unbiased
coin, we have two outcomes—head and tail—and the probability of
each eventis 1/2. We denote the random variable by X and the
possible outcomes by x.

e Inmanycases, x can be continuous, meaning allthe valuesin arange,
saya <x <b.

e An example of discrete distribution is the throwing of a die or coin

e Example of a continuous distribution is the distance travelled by
different persons within a given time interval.

e Physical examples to emphasize the random, fluctuating nature of
observables.

o If we measure accurately the instantaneous pressure of a liquid in
equilibrium with its vapor, we shall see that the pressure
continuously fluctuates around an average value. The same holds
for energy of a system kept at constant temperature, or the
volume of a system kept at constant pressure. So, energy,
pressure and volume are allrandom variables.

o Another important example from the microscopic world is the

number of nearest neighbors that a particle has within its first shell.



For a one component system of spherical atoms, this number
varies between 9 and 13.
INFERENCE: In all the above examples, there exists an average, but the
outcome can be different from the average and not predictable by an
observer. One needs a probability distribution to describe the behaviors of

the random variable.

Sample space

> Sample space is the collection of all the outcomes of an experiment.
For example, when a coin is tossed once, the total numbers of
outcomes (which are 2 in this case, either head or tail) are different
whenthe same coinis tossed morethan once.

> For example, if we toss the same coin twice, we have four possible
outcomes: HH, HT, TH and TT (where H and T stand for head and tail,
respectively).

> If the coinis tossed n times the possible outcomes are 2n.

> Anotherillustrative example couldbe bus routes. Suppose you want to
go from Ato B via anintermediate stop at C. There are m ways by which
you can go from A to C and another n ways to reach B from C. So the

total number of ways one cango fromAto Bis (m x n). Thus the sample
space consists of MN number of elements.

> Consider throwing a die. We have six outcomes, each of which is

equally probable. If we nowtoss the die twice, we get 62 = 36 possible

outcomes. Then the probability of finding three in the first toss and

five in the second will be 1/36. But if we ask what is the probability of

getting 3 in one and 5 in anothertoss separately, then the probability is

2/36, as you have possibility to get three and five on both of the dice.



» Thusin probability an eventcould be a series of actions, and we need to
consider all possible outcomes. This total set of outcomes of an event
constitutes the sample space. The sample place allows us to define a

probability distribution as we discuss below.
PROBABILITY DISTRIBUTION

> To characterize arandom variable one first needs to obtain information
aboutall the possible outcomes of elementary events (or, realizations)
of the random variable.
> Then constructthe probability of a given value as a possible outcome.
> When all the possible realizations (outcomes), do not form a discrete
setbut a continuuminR.
> Thenwe constructa continuous probability distribution function P(X) or
a probability density function p(x). In the latter case we describe the
probability of an outcome to have a value between x and x + dx as
p(x)dx.
The probability distribution is usually normalized. That is, it satisfies the

following criteria

f dxP(x) =1



Joint Probability Distribution

> In many cases, outcomes oftwo events can be correlated. Thatis, the
outcome of one eventdepends on the outcome of another.

> In such cases, probability of simultaneous occurrence of two events,
namely A and B, is expressed by a joint probability distribution. The
number of events can be generalized to any number.

> Iftwo events A and B are completely uncorrelated, thenthe probability
of the occurring of both will be simple multiplication of the probability
of the occurring of those events individually.

> Joint probability of two events A and B is written as P(AB). If both A and
B are uncorrelated then joint probability of occumrence of A and B will
be P(AB) = P(A)P(B)

> Explanation of this can be given from the previous example of throwing
a die twice. Here getting a three in one die is not at all affected by the
event of getting a two in the other one.

Conditional Probability

> However, our primary interest lies in correlation and in correlated
events. Forexample we call a dense liquid a strongly comrrelated system
because position of one molecule affects the probability of finding
another molecule next to it. The idea of correlation among different
eventsleadsto conditional probability.

> Let us again consider two events A and B. We now ask the question:
given that an event A has already occurred, what is the
probability of the occurrence of B¢ More precisely, if we know the

value of the outcome of one experimental result, how does it impact

our a prioriknowledge of the outcome of a second experiment?



- The two experiments need not be the same.

» For example, suppose we know that the age of a girl is 12 years. We
want fo infer her height. Another example is the following.
» Suppose RafaelNadalwon seven ofthe last 11 tennis matches against
Roger Federer. What could be the possible outcome ofthe next maich?
The presence of correlation between the two events is measured by
conditional probability. Note that in the presence of correlation among two
events, the volume of the sample space becomesless (thanin the absence
of any correlation), because the outcome of one experiment partly
determines that of the other. Conditional probability is symbolized as P(B | A)
whichis defined as

P(BA)
P(BIA) = PR

If A and B are uncorrelated then conditional probability becomes the
probability of the occurrence of B only as P(BA) and then can be factorized

info a multiplication of P(A) and P(B).



