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Preface To The Fifth Editiop

The Goal of this enlarged edition of our book on Numerical Analysis remains
the same as for the previ ditions: to give a prehensive and state-of-the-art
treatment of all the important aspects of the subject. In this, we have made modifications
in all the first eight chapters and added extra problems at the end of each chapter. A new
chapter, Chapter 9, based on eigenval and*eig has been included. We have:
tried to cover all the basic and important proced to p igenvalues and
eigenvectors of a matrix. This chapter has been written especially on the request of users
of the subject in various engineering universities.

We gratefully thank the users and the reviewers of the previous editions who
provided valuable suggestions and ideas for the improvement of this ‘Book. Their
feedback is valuable in our efforts for continuous improving this book: “We"are also
thankful to our various teaching assistants both at BIIT and FUIMCS who checked the

fe and ises in many chap Tw

The authors would also like to thank Professor Akram Javed, Faculty of Science,
University of Engineering and Technology, Taxila, for his many useful comments. We
are thankful to Prof. Afiab Ahmad, Director, Institute of Manag and Comp

i Foundation University, Ipindi, for providing us the y
infrastructure to complete this project. Thank you all.

The Bhattis
Islamabad,






Preface To The Fourth Edition

The Fourth Edition of this book on numerical analysis is in your hands now. It is
geared specifically to the needs and background of our students. During this period, we
received several comments from the users. In reviewing their comments, we have made
modifications in some chapters of the book to sharpen the reader’s understanding of the

material pi d. The plan of p ion of all chapters has been that of step by step.
We start with an elementary method and then proceed to develop this or alternative, more

phisticated methods. The p ion just given is, of course, much over-simplified. In
practice, a bination of ional math ical analysis and numerical analysis is

likely to be used. Proofs of formulas are given where these are reasonably easy to follow
but have been omitted in the more difficult cases.

A major change has been made in p progr that imp the use of
numerical methods presented in the book for solving probl This edition i
computer programs written in C++. They have deliberately been kept as straightforward
as possible so that the reader should understand the precise function of every step in each
program. While the progr are intended primarily for educational-purposes, they can,
of course, be used for solving some simple practical problems. However, ior more
complex practical problems, they do not offer any gi garding the

deq or compl of any i ion herein. Therefore, the user should make use
of the 11 fty pack now available. Hopefully the reader will appreciate
this edition. We recommend them to learn and make more substantial use of their
computers. We have benefited much by sitting at the feet of the wise, and we hope that,
through this book, it may be possible to transmit a spark from their fire to all our readers.
Good luck!

We would like to thank the users and reviewers of the previous editions whose
comments and suggestions have enormously proved to be valuable in updating the
material of the book. However, comments and suggestions for further improvements to
the book and supportil ftware are wel and can be icated to us through
the publisher. The authors would also like to express their gratitude to Prof. Akram laved,
Dean, Faculty of Science, UET, Taxila, for his many useful comments received to
improve the quality of this book and particularly to Dr. Jamil Sarwar, Director, BIIT,
Rawalpindi, for providing y facilities to plish this reviewing i

In closing, we are also grateful to our families for their continued patience and
understanding during the review effort.

The Bhattis
Islamabad { : & -
May, 2002






Preface To The First Edition

The importance of Numerical Analysis to the scientists and engi is now
widely acknowledged. In the book world, there is no dearth of good books on numericai
analysis written by foreign authors but the majority of these books are not available in
this country. I have written this book to meet the long-felt need of indigenous students.

The main feature of the present text is to introduce numerical methods — covering
the syllabi of various universities, colleges and other institutes, where this subject is
being taught as a first course. In writing such an elementary book, I have inevitably been
confronted by the problem of selection of material, which covers to a great extent the
syllabi of the concerned insti } Ily, some will disagr with me over this choice
of selection. 1 respect their prerogative. However, I shall be relieved if it is felt that the
topics included do provide a reasonably solid background to the student’s training and
one from which he can easily proceed to further advanced courses in the subject.

The book is designed for a one-semester course in numerical analysis and
consists of eight chapters. Each chapter includes a large number of thoroughly explained
ples and probl of various plexity. These probl are very y and
the students should work them out carefully. Each questi has been designed to test the
student’s understanding of a particular formula. The answers of these problems are given
at the end of the book. Proofs of formulas are included only where these are reasonably
easy to follow, but the formulas are mentioned without proofs in the more difficult cases.
It has been tried to keep the exp i ightforward and practi \ly-oriented. The
minimum prerequisite for using this book is el y calculus (including some
_ exposure to series and partial derivatives), linear Algebra (determinant an matrices) and
differential equations. It is also assumed that the student has taken a programming course
in one of the computer languages. Fortran 77, which continues to be an excellent
‘computer language for a wide variety of mathematical problems, is used in this book.
Computer programs are given at appropriate places in the text. 4
No book emerges fully formed from an author’s forehead. 1 would like to
knowledge the inspiration and g 1 received from my coll and the
help of many students who worked with early versions of the manuscript and checked
i lutions and text ! y

The responsibility for any errors, omissions or lack of clarity naturally remains
with me. I would appreciate having any such omissi ights or n i
called to-my attention so that they can be implemented for improving the quality of this
book. 1 would also like to thank Mr. Ghulam Shabir Qureshi and Syed Akbar Shah for
their help in turning rough drafts into a beautifully prepared final manuscript.

xi



I'would like to express my gratitude to the National Book Council of Pakistam ffor
accepting the manuscript of this book under the Creative Writer’s Scheme. | also wish to
thank the fe who reviewed the ipt.

Above all, { wish to thank my family, without whose encouragement, patiemce
and sacrifice this book would not have been completed.

Saeed A. Bhatt
Islamabad
May, 1990
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Chapter 1

Error Analysis

1.1 INTRODUCTION TO NUMERICAL ANALYSIS

When a mathematical problem can be solved analytically, its solution may be
exact, but more frequently, there may not be a known method of obtaining its solution.
For example, it is rather difficult to solve the following integral analytically

=== -1stsL

aV1-x?

Many more such examples can be cited for which solutions by analytical means
are either impossible or may be so complex that they are quite unsuitable for practical
purposes. In this situation, the only way of obtaining an idea of the behaviour of a
solution is to approximate the problem in such a manner that the number representing the
solution can be produced. The process of obtaining a solution is to reduce the original
problem to a repetition of the same step or series of steps so that the computations
become automatic. Such a process is called a numerical method and the derivation and
analysis of such methods lie within the discipline of numerical analysis. Thus, the
subject of numencal analysis is ccncemed with the derivation, analysis and

hod: btaining reliable numerical answers to complex

:[c" dx

of for
nu!hemancal problems. In other words, numerical analysis is the subject concerned with
the construction, analysis, and use of algorithms for the numerical solution of
mathematical problems to given degree of numerical accuracy.

Numencal methods provide estimates that are very close to the exact analytical
ly, an errnr is introduced into the putation. It is impt o
understand that an error here does not mean a human error, such as a blunder or mistake
or oversight but rather a discrepancy between the exact and approximate (computed),’
values. Such errors are likely to arise in all methods described in this bock. In fact,
numerical analysis is a vehicle to study errors in computations. It is not a static discipline.
The continuous change in this field is to devise algorithms, which are both fast and
accurate. These algorithms may become obsolete and may be replaced by more powerful
algorithms as computer capability increases or as new techniques are developed. It is
necessary to point out from personal experience that the best test of whether one
understands a method is not to carry out a hand calculation (although this can be useful in
early stages of attempting to understand the logic), but to program the method in a
specific programming language, like BASIC, FORTRAN, PASCAL, C, C++ and JAVA
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and run it on a computer. We all know that computers are ideally suited to handle tediious
computations with high speed, accuracy and without ever making mistakes. Hence, the
use of numerical method for the analysis, simulation and design of scientific and
engineering processes and systems has been increasing ata rap|d me This course is

introduced to better prepare future scientists and engis in the
fundamentals of numerical hod: pecially their applicati lmmauons and
potentials. .
Although good p ing skills can enhance the study of numerical
analysns, actually wnung programs are not always necessary. Numerical analysis is so
p that are available. For ple, IMSL
(I ional Math ical and Statistical Lnbmry) . It has several routines for numerical

methods written in FORTRAN and C++. Some other packages are LAPACK (Linear
Algebra Package) written in FORTRAN 77, LINPACK, EISPACK, Mathematica,
Derive, Maple, MathCad, MathLab, MacSyma NUMERICOMP, etc. In addition a set of
books, Numerical Recipes, lists and discusses numerical analysis programs in a variety
of computer languages. However, one special feature of most of these programs is their
ability to carry out many operations with exact arithmetic; an interesting example is to
see the value of 7t displayed to 100 dp.

12 DEFINITION OF AN ERROR
The knowledge we have of the physical world is obtained by doing experiments

and making It is imp to und d how to express such data and
how to analyze and draw meaningful conclusnons from it. In doing this it is crucial to
d d that all of ph ities are subject to uncertainties. It is

never possible to measure anything exaclly Itis good, of course, to make the error as
small as possible but it is always there. And in order to draw valid conclusions the error
must be indicated and dealt with properly. Take the measurement of a person’s height as
an example. Assuming that his height has been determined to be 5’ 8”, how accurate is
our result?

Well, the height of a person depends on how straight he stands, whether he just
got up (most people are slightly taller when getting up from a long rest in horizontal
position), whether he has his shoes on, and how long his hair is and how it is made up.
These inaccuracies could all be called errors of definition. A quantity such as height is
not exactly defined wnlhou( specnfymg many other circumstances. Even if you could
P ly specify the ", your result would still have an error associated
with it. The scale you are using is of limited accuracy; when you read the scale, you may
have to estimate a fraction between the marks on the scale, etc. If the result of a

is to have ing it cannot consist of the measured value alone. An
indication of how accurate the result is must be included also. Indeed, typically more
effort is required tg d ine the error or inty in a than to perform
the measurement itself. Error, then, has to do with uncertainty in measurements that
nothing can be done about. If a is repeated, the values obtained will differ
and none of the results can be preferred over the others. Although it is not possible to do
anything about such error, it can be characterized. For instance, the repeated
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measurements may cluster tightly together or they may spread widely. This pattern can be
analyzed systematically.

All h . fully and ientifically performed are subject to
errors. Errors once d i results. Errors analysis is the
. study and evaluation of these errors; its main funcuons are to estimate the errors and

suggest ways to elimi or imize them. I ions of error prop ion are, of
_course, pan.icularly important in connection with iterative processes and computations
where each value d ds on its pred E les of such probl: are in linear
systems of equations, ordinary and partial differential equauons S.nce the study of errors
is central to numerical analysis, we shall discuss it at length.

An error in a numerical computation is the difference between the actual value of

a quantity and its iputed ( i ) value. If x rep the puted value of a
quantity, the actual value for which is x*, then the difference,
E=x*-x (1.1

is called the error of approximation.

13  SOURCES OF ERRORS

A numerical method for solving a given problem will, in general, involve an
error of one or several types. Although different sources initiate the-error, they all cause
the same effect: diversion from the exact answer. Some errors are small and may be
neglected, while others may be devastating if overlooked In all cases, error analysis must
the ional scheme,

P P

‘The main sources of error are as follow:
.

*  Gross errors,
¢ Round errors,
e Truncation errors.

1.3.1 Gross Errors

Although gross errors are not directly concerned with most of the numerical
methods discussed in this book, they can sometimes have great impact on the success of
modeling efforts. Thus, they always be kept in mind when applying numerical techmqnes
in context of real-world problems.

The gross errors are either caused by human mistakes or by the computer. Such
mistakes are trivial, with better or no effect on the accuracy of the calculation, or they
may be so serious as to render the calculated results quite wrong. A few examples of
these errors are as follows:

i) Misreading or misquoting the figures, particularly in the i of
adjacent digits, K
ii) Use of i h ical formula ( i to solve a particular

problem, and
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iii) Use of inaccurate data.

These errors are not very serious and can be avoided, if enough care is takem in
using proper numerical analysis techniques. We shall primarily concern ourselves with
the latter types of errors.

13.2 Rounding Errors

When a numerical method is actually run on a digital computer after transcriiption
to computer program form a kind of error called round-off error is introduced.

The error introduced by ding-off bers to a limited number of decimal
places is called the rounding error. In simple words, the error in the result that is caused
by rounding is called round-off error. For ple, it would be i icable to mention

the distance between two points on the earth as 15.2967 metres. It would be more
reasonable if it were to be round to the nearest whole number, i.e., 15 metres. Thus, the
error introduced by rounding is 0.2967 metres. Another example is the value of 7@ =
3.1415926353 and may be meaningfully rounded-off to 3.1416 or 3. 142.

Rounding-off errors play an important role in numerical analysis. In order to
obtain a smaller error as a result of rounding-off, we may apply the following rules when
performing manual calculations (these rules are not normally applied when performing

P

Suppose we are given a number and we want to round it to the first decimal
place. We discard all digits after the first decimal place and proceed as follows:

(a) If the first discarded digit is less than 5, the previous digit is unchanged. For
example, the number 56.44, when rounded to the first decimal place, then it
becomes 56.4.

°
(b) If the discarded digit is greater that 5, the previous digit is increased by 1. For
example, the number 56.46, when rounded to first decimal, it becomes 56.5.

(c) If the discarded digit is exactly 5, the previous digit is unchanged, if it is even
and is increased by 1, if it is odd. For example, the number 56.45, becomes
56.4 and 56.75 becomes 56.8.

However, the most commonly used rule (we are familiar with) for rounding-off
the numbers is: “if the discarded digit exceeds or equals 5, we add 1 to the last
retained digit”.

Analysis of the round-off error present in the final result of a numerical
computation, usually termed the accumulated rounded-off ervor, is difficult, particularly
when the algorithm used is of some complexity. Except in very simple cases, the
accumulated error is not simply the sum of the local round-off error, that is, errors
resulting from individual rounding or truncating operations. The local error at any stage
of the calculation is propagated throughout the remaining part of the computation. In
order to establish a round-off error bound, we must assume the worst possible outcome
for the result of each arithmetic operation and follow the preparation of all such errors

b hout the ini Iculati
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133 Truncation Errors

Truncation is defined as WMM(“ iterative
process) by notetwith {eycrictm, The SIQLANAIg (o (s 2opromasion s calied
Jhe_truncation errors, We shall devote considerable attention to truncation errors

rnssoclaled wn.h !he numerical methods discussed in this book. Because when different

are p we usually ider the tr ion errors first.

In analyzing errors arising from the truncation of series, several types of series
expansions can be considered. These include (but are not limited to) the following:

¢ Binomial expansion,
* Infinite geometric progression,

o Taylor/MacLaurin series.

In order to und: d better the properties of tr ion error, we turn to a

mathematical formulation that is used commonly in numerical analysis for expressing
functions in an approximate fashion - the Taylor series.

For example, the Taylor series expansion of f(x) about some chosen point x is
defined by

f(x)= f("n)*’(" _"cn)f'("»l+ (x _’60)’ f'(xo)"’ (x -a’:u)’ f'("a)

+...+@f“’(x,)+...+£’-‘%‘l"lf'(x,)+k_ . (12)

where R, is the remainder term (error caused by truncating terms) that is included to
account for all terms (n + 1) to infinity and is given by:

("(T:‘l)r—f""’ (@) )

where the subscript n connotes that this is the remainder for the nth-order approximation
and Z is some value of x that lies somewhere between xo and x, i.e., XoSZ<x.

1t is often convenient to simplify Taylor series by defining a step size h=x - xo
and expressing (1.2) and (1.3) as,

£(x) = f(x,)+hf’ (x,,)+—f'(x,,)+ f'(x,)+
£f‘"(x )+R . (L4)
ﬂ! 0 "

—f*(2) : l- (1.8)

( +l)l
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6 Numerical Analysis wvith C++

At this stage, it is sufficient to say that the remainder term provides an e:stimate |
of the maximum absolute error. We have devoted Section 1.7 to the computation of such
errors.

14  SOME DEFINITIONS

Before proceeding further, let us define the following terms:
Significant digits (figures),

e Precision and accuracy,

® Absolute, relative and percentage errors.

141 Significant Digits

In consndenng roundmg errors, it is necessary to be precnse in the ussage of
appro:urm(e digits. A significant digit i t

ave mesaning.
Whenever we use a number in a computation, we must have awareness that it can toe used
with confidence. To be signiﬁcam, the last digit contained should be accurate withiin half
a unit in the last decimal place. For iple, if an approxi number a is equal tto 1.23

and the value of o lies in-the interval 1.225 < o < 1.235, then « is said to havee three
significant digits.

In considering significant digits, the following rules are generally useed for
number written in the conventional form:

o a) iﬂding zeros are not significant.
b) Following zeros that appear after the decimal point are significant.
¢) Following zeros that appear before the decimal point may or may mot be
significant, as more information is required to decide.
d) The significant digits in a number do not depend on the position of the
decimal point in the number.
_ The above rules are illustrated by the following examples:
-i) The number .0002025 has only four significant digits. The leading zercos are
. not significant.
ii) The number .00202570 has six significant digits. The following zeros sshould
not be written unless it is significant. ‘

iii) The number 2025000 may have four, five, six or seven significant digits
ding upon the si The ional form of writing numiber is
somewhat amblguous in this instance.

iv) The number 12546 and .12546 both contain five significant digits.

i Note: The simplest way of reducing the number of significant digits im the
representation of a number is merely to ignore the d digits. This p d:

<&
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Error Analysis 7

known as chopping, was used by many early computers. A more common and better
procedure is rounding, which involves adding 5 to the first unwanted digit and then
hopping. For nple, 7t chopped to four decimal places, is 3.1415, but it is 3.1416
when rounded; the representation of 3.1416 is correct to five significant digits (5S). The
error involved in the reduction of the number of digits is called round-off error. Since 7t
is 3.14159..., we note that chopping has introduced much more round-off error than
rounding. Y ‘v

142 Precision and Accuracy
The ing of the terms: precision and y are often

jon is the number of digits in which a number is expressed or an answer given
irrespective of the correctness Of these digits. For example. li we are using a !our-!lgurc
loganwmc Table to peﬂorm calculations, our final answer will seldom be correct to four

figures because of the accumulation of round-off errors.

_ Accuracy, on the other hand, is the number of digits to which an answer is correct.
mﬂc-ly Can be quoted 1n either of e TOlowing ways:
i) to a given number of decimal places (: iated to dp ghout this
book), or,

ii) to a given number of significant figures (abbreviated to sf).

Suppose, the result of a calculation is obtained,as 65.5432, then the answer has a
precision of 4 dp. If we know that the last two digits are unreliable, then the result may be
rounded to 65.54 to achieve an accuracy of 2 dp or 4 sf. When statements about precision
are made, the units i d need to be exp d. Thus, the quantity 6.474 kg is
to 4 sf, but precise to the nearest .001 kg; also the quantity is precise to the nearest .01
metre, but accurate to 1 sf.

Numerical methods should be sufficiently accurate (or unbiased) to meet the

quil of a particular scientific problem and they also should be precise enough.
‘We now discuss the errors in performing numerical computations.

PN

143  Absolute, Relative and Percentage Errors (

The accuracy of any computation is always of great importance. There are two
common ways to express (measure) the size or error in a computed result by absolute
error and relative error. Let us define them one by one.

Absolute Error

‘We use the term absblute emf (abbreviated to AE) to denote the actual value of
a quantity less its rounded (approximate) value. If x and x* are respective by the rounded
and actual values of a quantity, then the absolute error is defined by, ¥

AE= |x*-x| s K160,
For example, if x* = 4.83 and x = 4.832, then,
AE = |4.83 -4.832| =002 3 .
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8 Numerical Analysis with C++
ey

Generally, if a number is correct to n dp, it has a rounding error:

AE < l><10"'.
2
—_—
Relative Error

Relative error (abbreviated to RE) is the ratio of the absolute error to the
absolute actual value of a quantity.

3 x*¥#0. st 0T}

Thus, RE= a2
T I

If the actual value is not known, the relative error is defined by,

i
[x]
—_—

As a measure of accuracy, relative error is more precise and meaningful than the
ausolute error, this is particularly so when the actual value is either very small or very
large. The size of AE depends on the units used, whereas RE is a dimensionless quantity.

RE= 3 x#0. «or (L.8)

From the above example, RE = % =.00041.

A decimal number correct to n significant-digits has:
RE< 5x10™.
Percentage Error
Relative error exp d in age is called the percentage error
(abbreviated by PE) and is defined by,
PE =100 xRE 4 i - (19)
From the above example, PE = 100 x .00041 = .041%.
It is also called probable error.

Inorderwinvestigatedueffectofmalminannthod,wcoﬁencompuum
error bound which is a limit on how large and small the error can be.

15  EFFECT OF ROUNDING ERRORS IN ARITHMETIC OPERATIONS

In this section, we shall derive formulas for AE, and RE, for each of the
perations of arithmetic, namely, additi A Thiniestsasdnd

division, etc. Idea of error bound will also be introduced.
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Eror Analysis 9

1.51 Error Accumulation in Addition
Let x, and x, be two approximate numbers and z be their sun. Then,

zZ= X1+ X2 ... (1.10)
Let ey, e, and e, be the errors in x,, X, and z respectively.
Thus, we may add (or subtract) the errors from respective number:
z-e,=(X1—€)+(x2-€) ¢
=(x1+x2) - (e1 +€2)
From (1.10", we have,
e;=¢e +e

Thus, the error simply add. So, the absolute error of twg.approximale numbers is
gien below: B

AE=|e|<|ei|+]e] o111y
The above proof can be extended to the sum of any given number of factors, i.e.,
AE=|e;|<|e|+]er| +... +|e] G b

Hence, the absolute error of the sum of n appmxxmalc numbers does not exceed
the sumof the absolute errors of the numbers.

The relative error is calculated using the following
) Absolute Error
~ Absolute sum of the given number

AE  °
[l
142 Error Accumulation in Subtraction
Let  z=xX—Xz, Wherex;>X,. o f114)
As before, z—e,=(x—€)—(x2—¢€)
=(x-x) - (e1—€2)
From (1.14), we have,
;=€ -€
AE=|e| < [er]+]ea] e (L15)
wiich is same as (1.11).

Hence, the absolute error of a difference between two numbers is the sum of the
alsolut: errors of the given numbers. Thls formula can alsobe exlended to any number of
fattors. Thus the formula for the addition of numbers and of numbers are the
sane. A

.. (1.13)
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“ / Numerical Analysis wiith C++

If the numbcrs 0.3062 - 0.25026 + 2.51392 are rounded, estimate the
maximum absolute and relative errors. Find also the range in which the true answer lies.
————————————

Solution Let x; = 0.3062, x, = 0.25026 and x; = 2.51392.
Thus, z = x; — X, + X3 = 2.56986.
—

Let e, e; and e; be the errors in x,, X, and xs, respectively. Thus, the absolute
errors in the respective numbers are as follows:

1 -4
e | £ —=x10
leil s 5

L Ar
€| £ —x10
lez| z

A
€3] S =x10
les| 5

AE = |e)|+]|ez| +]es]

1

< A0 Leiot s L10% = 06 x10*
2 2 2

Y

HE AR L 08810 oue g
z 2.56986

The result lies in the range z + AE ;

) 2.56986 0.6 x 10™*

or 2.56980 < z < 2.56992. 5

The answer may be rounded w ﬂlz to 2.57, which is correct to 3 sf (2 2).

153 Error A lation in Multiplicati
Suppose, we want to multiply two approxi b x; and x;.
G - (116)
Asbefore, z-e,=(x,~¢)(x2-€)
=X X2— X €2-X2€;+ € €

Smce e, and e, are small quantities, their product is still smaller and hence may
be neglected. Thus,

-

Z-6 = X1 X2-X162-X2€;
From (1.16), we have,
e E=xiea+xe (D
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_ Ero Analysis ; 11
Dividing (1.17) by z, we get

e
z

L]

RE= < +

°—" .. (118)
X2

%
Hence, the relative error modulus of the product of two numbers does not exceed
the jum of the relative error moduli of the given numbers.
Example 2 If the given numbers are rounded, estimate the relative and absolute
exas of the product, 4.0643 x .37487. Find also the range in which the product lies.
Solition Let x; =4.0643 and x, = .37487.
zZ=X; * Xa= 1.5236.

1 1 o
|q,|§5x10“; lc,|s;x10’

Relitive error, RE = Lt 5 b 35
X Xz
Lot Lxio®
L —2—+L._.__
. 4.0643  .37487
< 2564 x 107
Abolute Error, AE=RE X z y
—

=.2564 x 107 x 1.5263 = 39x 10™*.
—
Ths, the product leis in the range : z + AE
1.5263 £.39 x 107
or 1.523561 <z < 1.523639
or 1.524 correct to 4 sf (or 3 dp).
Exanple 3 The values of x, andx, have been estimated as follows:

X,=457+¢,and X, =848+ ¢,

where | e, | <35 and | e, |<.82. Find the range in which the product of
X, xmdxi lies.
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12
Solution

Numerical Analysis with C++

Upper Limit:
X, X, =(457+¢,)(848+¢,)
—
S@57+|e,|) (848 +|e,|)
< (4.57 +.35) (8.48 + .82)

< (4.92) (9.30) = 45.76.
Lower Limit: i

X, X, =@457+e¢ )(848+¢,)
—
5 2(4.57-|e,|) (848 -|e, )
>(4.57 -.35) (8.48 - .82)
> (4.22) (1.66) = 32.33.
So, the product lies in the range, 32.33 to 45.76.
1.54 Error Accumulation in Division -
Given two rounded numbers, X, and X, .

Then z= XL; x, 0. - (1.19)
XZ

"As before, z— €, = 21L_%
X6

i)

Expanding with the help of binomial theorem and ignoring the product of errors
being small, we have,
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Erpr Analysis 13

_X Gile KBy
Py e
Cale 4%
e ... (120)
X, X2
- Dividing (1.20) by z, we get,
IS BT
B
& _| X% X2
z it
X2
_ X2 |6 X .€
X \x o x]
F o g
X X2
e () e,
RE= [—%|<|2t|+ |2 +:€121) /
z X v /

Thus, lhe relative error of a quotient of two terms is equivalenl to the sum of the
relitive error moduli of the dividend and divisor.

< 4.0643 5 3
Example 4  Given the data, 37487 " the g q
a) the relative error,
b) the maximum absolute error, and
c) the range in which the ﬂuo(ient lies.
Soution . Let x, =4.0643 and x, = 37.487.
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a)

b)

e)

155

]

of —,
X

|e] s%xxo“
e, ] s%xlo"

pE e S S

e

X X2

Laot Lxo
g it S
4.0643  37.487
= 2564 x 107
——
AE = RExz
=.2564 x 10 x0.1084 = 0.0287x 107
—
The quotient lies in range, z+ AE
0.1084 +0.0287 x 107
or 0.1083972 to 0.1084028
—
or 0.108 correct to 3 dp.
—
Errors of Powers and Roots
Let z= x", where n is the power and denotes an integral or a fractional quantity.

o
As before, z-¢€, = (x-¢, )" = x'( _f.‘.J 3
b3

Expanding the right side by the binomial th and neglecting higher powers

we get X

z-e, = x'(l—ne—‘] .
x

=x"-ne x*'

Therefore, e, = ne, x™. (122

z
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Eror Analysis 15

Dividing (1.22) by z, we get

el -
4
L 6
X
RE = |2] < |n|. |2 .. (1.23)
X

Thus, the relative error modulus of a factor ralsed to a power is the product of lhc
medulus of power and the relative error of the factor.

Example 5 Given +/48.424 , determine the maximum absolute error, relative error
————— —
and the range in which the answer lies.

Solution Let x=48425; n= %
Let z= +/x = /48424 =6.959
Therefore, |e, | < %xlO'3 :

107 1
XK w— X
2 48425

N =

=.005 x 107
—
AE=REx z =0.005x 10™ x6.959 =.035x 107
——

The correct value of z lies in the range, z + AE, i.e.,

6959 +.032% 107,

Example 6 Evaluate ,/6.2343x ;:;Z: , and find the minimum transmitted error if

the given numbers are rounded.
———

Solution Let x,=62343, x, =.82137 and X, = 2.7268.

= 1.37035
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16 Numerical Analysis with C++
n=2ilel=lel $3x10 Jes|s xlO"
1 Lo+ Lxio® Lxio*
RE s ={2 ) SRR A
2 6.2343 82137 2.7268
R — — —
=.16222 x 107
AE=RExz=.16222x 10™x 137035 =2223x 10
So, the answer lies in the range z + AE
1370352223 % 10
or 1.37033 to 1.37037
Thus, the answer, correct to 3 sf, is 1.37.
1.5.6 Error in Function Evaluation
Let z=f(x):
As before, z+e, =f(x+e, ).
Using Taylor series expansion and neglecting higher powers of €, , being smaall,
we have,
Z+e, = f(x)+ ¢, f'(x)
or e, = e f'x)
Therefore, AE= |e, | <|e,f’(x)]. ... (1.24)
Dividing (1.24) by z, we get,
’
RE ot | ede L0 .. (125) !
z f(x) i
The formula can be extended to any given number of factors, for example, '
" z= : £ ¢ 310 RIS 5
l | e,—| +|e of +...+ €, &f l l
L g e— .
6 8, 8x,
&f

< Z .. (1.26)

it
'5x,
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Error Analysis T 17

Sf
where P are partial derivatives with respect tox,, fori=1,2,....n.
X;

Example 7 Estimate the absolute and relative errors if (i) f (x) = e* and

: (ii) f (x) = sin x, for x = 0. , where x is rounded.
—_—
Solution
% S e e
(i fx=e =¢ = 1.2643
PSS
f'(x)=e" =1.2643
le] < Lo
2
’
REZ |e, 1:x) < lxlo" L ST
f(x 2 12643 2
—

AE=RExf(x)= 1x10“ % 1.2643 = 0.00006
2 sy
(i) f(x)=sin (x) = sin (0.2345) = .0041 *
—
£/(x) = cos (x) = cos (0.2345) = .9999
|e]| < Lt
2

1 .9999

RE < —x107™* x —— =121.94x10™*
2 004]  e——

AE = RE x z = 121.94 x10™ x 0.0041 = 4.9995 x10*
‘—

Note: The given angle in the trig ic should be reported in radians. If the given
angle, say 0, is in degrees, it should be converted to radians as:
o 0
9 in degrees = — = —— = @ x0.0174 radians.
180 573

1.6  NUMERICAL CANCEV.LATION

Accuracy may result in loss when two nearly equal numbers are subtracted. For
example, the two numbers 9.4157233 and 9.4157227 are each accurate to 8 sf, yet their
difference (0.0000006) is accurate to only 1 sf. Thus, care should be taken to avoid such

ions where possible. This p is also called subtractive cancellation.

¥

Case 1: We take first an iple of evaluating roots of the q ic eq 3
ax? + bx + ¢ = 0, where a # 0. The roots are given by the formula:

-bt+yb%-4ac
R W seiirt———
2a
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18 Numerical Analysis with C++

If 4ac is very very small as compared with b’ the two quantities b and

Vb? -4ac will be nearly equal and one of the roots will be subject to a large error, thus
Iting in a iderable loss of signifi It may lead to uncertainty in deciding
whether the roots are real or complex. To avoid this situation we modify the formula in

the following way:

~b+b? —4ac
% 2a
smaller root will be computed without loss of significance, suing the following:

and the

If b > 0, the bigger root will be puted as, X, =

Cc
KB e
ax,

XXy =

s |o

Determining the smaller root by this method is far superior from the point of
view of numerical analysis.

We shall illustrate the method by means of the following example.

Example 8 Find the roots of the equation, x* — 40.12 x + 1.3 = 0, correct to 4 sf (;I'h_c
coefficients are exact).
—

Solution Let the roots be X, and x, . Using the us‘ual quadratic formula, the
roots are: X, = 40.087571, x, = 0.032429. The larger root X, is given to 8 sf, whereas
e ——————— —
the smaller root X, to 5 sf. Thus, there is a loss of 3 sf. The second root is comparatively
—

inaccurate. If the larger root, X, =40.09 to 4 sf, then the smaller root, X , == 0.03243
— ax,

to 4 sf. Thus, a comparable number of significant figures can be giwensieremr=for=me=

larger toot.

Another way to improve the quadratic formula is to calculate the roots with the
following formulas:

i) Xy = ——=————— and
S s
i) PR -
* b-vb’-4ac

In the cases when | b l'= Jb’ —4ac, we should proceed with caution to avoid
loss of precision due to catastrophic cancellation. If b > 0, then X, should be computed
with the formula (ii) and x, should be computed with formula (i). However, if b < 0,
thenx, should be computed using formula (i) and X, should be computed using
formula (ii).

Case 2: Another-'examplc to illustrate the avoidance of loss of significance is as follows:

o

o
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Eror Analysis 19

Esample 9 Compare the results of computing f(500) and g(500) using six digits and
roanding. The functions are as follows:

i) f(x)=x[~)x+ —«/x_]and
e

. avaalhar )
£(500) = 500( 500 +1 500 )

=500 [22.3830 - 22.3607 ]
=500 % 0.0223 = 11.1500
e

G o X
R i o 95

g(500) =

500
/500 +1++/500

300 =11.1748
~ aamam —
The function g(x) is algebraically equivalent to f(x) as shown below:

XAl +4x
fiinb ntooltl »

X
T Vx+1 +4x

The answer g(500) = 11.1748 involves less error and is the same as that obtained by
‘rownding the true answer 11.174753 ... to six digits.

1.7  EVALUATION OF FUNCTIONS BY SERIES EXPANSION AND
ESTIMATION OF ERRORS

This section deals with the problems of finding values of trigonometric,
logarithmic, exponential and other functions by means of series expansion and also
estmating errors, which arise when the series are truncated.

We confine O\ll’ attention to the 'hylnr series, which is considered to be the
lysis. The series is commonly used in deriving several

B

of
nunerical methods.
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Let f(x) be a function that is infinitely diffe iable on an interval I containing
the numbers xo and x. Then, for each positive integer n, the value of f(x) at x is given by:
(0= f(Xo)+(X—X.,)f'(xo)+(—x—x—°—)—f Pl K v) £7(x,)
LS
+A..+~(x%)f'(x“)+Rn(x.xn) (127
n!
where R (X, X,)is the is the inder term and is included to account for all terms
from (n + 1) to infinity.
]
R,(x.%,) = f(" £
= E‘Lf"‘“’(a ... (1.28)
(n+1)!
#3r some unknown number Z which lies between x and Xo.
For a convergent series, R, (X, X,) tends to zero as n — o, i.e.,
lim R, (x,%4)=0,
n—ee.
o X=%0)" Lo
It follows that f(x) = ) e b b . (1.29)
=0 n:

The right hand side of (1.29) is called a lelor series representation for fi(x). It
( Xo)

is a power of (x — xo) because the coeffi cwm.s are constant — that is, they do

not depend on x. The quantity Z in the remnndcr tcrm is unknown and is difficult to
calculate it: Nevertheless, we know the range. in which Z lies. If we approximate fi(x) in
(1.27) or (1.29) by the first n term of the series, then the maximum error introduced in
this series is given by the remainder term (1.28). Ct y, if the iired is
known before hand, then it would be possible to find the number of terms n such that the
finite series give the required accuracy.

MacLaurin’s Series
When xo = 0, in the Taylor series, we get MacLaurin's series and MacLaurin's
polynomials. From (1.27), we get,

2 3
£ =£(0, Xo)=f(0)+ f'(0)+—x; f'(0)+-’;—' 70

ot 219 ©)+R, () -+ (130)
n!

l
|
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whee R, (x) = & )’f"’*”(Z)and0<Z<x <AAD

Further examples of error analyses will be introduced in later chapters.

Exanple 10 - Obtain a second deﬁﬁ Elﬂomial approximation to the function

f(x)=w/x +1 , using Taylor series about xo = 0. Calculate the truncation error for x = 0.4.

Soltion

f(x)= (l+X)%; f(0)=1
f’(X)=l(l+x).%; f’(0)=l
2 2
fr = ~Yany 0= -+
4 4
> 3 3 ” 3
fTx)= E(I+X) AL f (0)=§

Fron (1.29), we have,

to)= £+ (x-x 70+ XXl Yt xp).

2
= £(0)+x £'0) + 2—£7(0)

b i 1
=l4 ==K
v 2 4
2
=l+1—x—'
2 8
remainder term,
—_—

b S
R(x) € ?f ©) =

0.4
Therefore, R(4) < = =0.0042.
——

Exsmple 11 MacLaurin's series for e* is given by,
A Fr x" ¢!
e zlex+—+—+...4

2! 3! n!
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where 0 < Z < x. Determine the number of terms of this series such that their sum giwes

the value of e* correct to 8 dp where x = 1.
—

Solution The remainder term is given by,
X"
R(x)< | —e’|,atZ=x.
n!
The maximum relative error,
At n 1 n
RE= Absolute error 7 Le' % AR
Actual value n! e’ n!
= o atx=1.
n!
For an accuracy of 8 da, we have to-add n terms such that
i '

RE= — < —x107®
) oaildy 4

or  n! = 2x10®=200000000
If we take n = 11, n! = 11! = 39916800 and for n = = t fis

clear from above that aboul erms o) series will be required to get an accuracy of

8dp.

1.

PROBLEMS

Find the absolute and relative errors in each of the following cases (all numbeirs
are rounded).

(a) 187.2+93.5
(b) 0.281x3.7148

(© 28315

’6.2342><.82137
d sttt sl ol
o 27.268

() 23(4.18-324)

1.3384-2.038

o. 4.577

@ Bl the following as ly as possibl ing all values to be
rounded.
i) 824+533

i) 124.53-124.52
i) 4.27x3.13
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b)

)

5.7)

)

©

1G]

iv) 9.48x0.513-6.72
v)  0.25x2.84/0.64
vi) 1.73-2.16+0.08 + 1.00-223-0.97 + 3.02

Ifx=10andy =25 d-up bers, find the i Biclute. exfor
involved in evaluating:

@ x+y; () =; © X+xy+y*
y

If two numbers x and y are in error by 1.0 and 0.5 respectively and the value of x
is 10 and that of y is 6, state the intervals within exact values of x, y, x -y and
x +y lie.
Two parameters u and v have been estimated as follows:

u=25+¢

v=45+e;

where ] €, |< 0.2 and |ez |< 0.4. Find bounds on the values of the product and
quotient of u and v.

The length and breadth of a rectangle are given by 2.52 cm and 1.78 -cm
respectively. Find the range in which its area lies, giving the answer to as many
dp as are meaningful.

Determine the largest relative error in a calculation of the ional area of
a wire from a measurement on its diameter D, where D = 0.825 + 0.002 cm.
i

Area= T—

( 2 )
Suppose 1.414 is considered to be an app of 42 . Find the absolute
and relative errors due to this choice. &
If u=0.1and v = 0.01 are ded b Iculate the i bsol
error in 4 ;

v
Determine the maximum relative error where p; is calculated from the relation:
p,uj = p,u; where n = 1.4. The maximum relative errors of u;, u; and p; are
0.75%, 0.75% and 2.0% respectively.
Obtain the range of values within which lies the exact value of

2.7654 + 3.8006 - l_S_.ﬂ‘ if all numbers are rounded off.
0.9876

Obtain correctly rounded off answers for each of the following (all quantities are
assumed rounded to the number of digits shown):

(i) cos 18°, (ii) sin 0.18, (iii) ¢* for x = 7.765, (iv) In x for x = 1.377.
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(®)

(c

<

13. (@)

(®)

Rearranging the series speeds up the convergence:
T 1 1 1

—— «()
8. 1x3- 5x7. 9%l

Write a

in C++ to compute 7t using this series instead.

Use the Taylor series;

Xt gl
CosX=1-— 4 — - — |
A G
to write a program to compute cos X, correct to 4 dp, (x being in radians). See
how many terms are required to achieve 4-figure agreement with the llibrary
function cos ().

For small x, show that

x2 x3
i) x+7+?+... is better than e* - 1.

5
ii) SR is better than x — sin x.
120 .

axl",,

iii)

2
-‘T+... is better than 1 - vI—x .

(SR

For value of v in Lheneighbwrhoodof%.showthaﬂ sin’(%— V) z is better

than 1 = sin v. .

Use Taylor’s th to esti the ion error in each of the following
approximation formulas, when the step size h is small:

N et
5 h

i i %
b) £7x) = f(x +h) 2:(:)+f(x h)

b — f(x + 2h) + 8f(x + h) — 8f(x — h) + (x - 2h)
f'(x)=
12h
Derive the Taylor series approximate

1yt
ln(l+x)=x—ixz +1x’-lx‘+...+ -(Lx
Ml 4 ‘n

©)

stating cleirly the form oﬁhe error term. How might it be bounded?
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Chapter 2

Finite Differences

2]  DIFFERENCE TABLE

Suppose we have a function f(x) which is tabulated over a range of values (called
tabular points) of the independent variable x. Let us denote the uniform difference
(censtant spacing or step-size) between any two successive values by h so that,

X, = Xp=h=X3—X%, =...=2X,— X,

or x;=Xqo+h

=X,+h =Xx,+2h
X,=Xo+ph
X,=Xo+nh

and f(x,)=f,=f(x,+ph)

In many 1 d with certain
quantities called finite differences are important. A finite difference is a rnalhemaucal
exression of the form f(x +b) - f (x + a). The p dure to np is
exlainzd below.

To build up the difference table, we first write down the values of X, ’s as well
asthe corresponding values of f, ’s as shown below:
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:
|
{
X; f, 1st 2nd 3rd ‘

%y fo

£, ~f,
X3 £y f; =2f, +f,

f,-f f, ~3f, +3f, ~f,
X5 £ =2 b +F

fy-f, f,=3f, +3f, -f,
X3 f5 fim2f+f;

fo=f,
e i

The first-order differences are obtained from the second column by subtracting
each value from the next below and placing the differences to the right but halfway
between the two values from which they have been obtained. In this way, the column
containing all the first-order differences is formed, but each difference column contains
one entry less than its predecessor column.

We are now in a position to produce a column of second-order differences from
the column of the first-order differences in a similar way. In computing differences, great
care should be exercised to avoid arithmetic errors in the subtractions — the fact that we
subtract the upper value from the lower causes a real source of confusion. The sign of the
differences is important and shows whether the function is increasing or decreasing in the
range of the values obtained.

There are several uses of a difference table; a few of which are as follows:

i) A difference table provides a convenient way for examining at a glance how

a particular function behaves. It is particularly applicable in determining the
behaviour of the derivatives of a given function.
ii) If there are some errors in the data, the differences will also contain errors.
By inspecting the difference table, often the error (or errors) can be detected
and corrected. 3

iii) It helps in filling missing values.

iv) It helps in extending the list of values.

The word finite refers to the finite-size of the interval (increment) used in the
table as opposed to the infinitesimal interval, which are met in infinitesimal calculus. For
this reason, the theory and appli of finite diff is i referred to as
Finite C: It plays an imp role in interpolation, numerical diff

ical integ numerical solutions of difference, ordinary and partial differential
equations and time series analysis.

A numerical example at this stage should help clarify some basic concepts for
constructing a difference table.
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Construct the difference table for the function f(x) = xforx=-2tox=4,
at the mterval of 1. [Usually written as x = — 2(1)4; the figure in brackets being the
constant increment.]

Solution The values of f; and the differences are shown in the table below:
X, fioad 1st 2nd 3rd 4th 5th
-2 16

-15
-1 1 14
ol -12
0 0 2 24
1 12 0
1 1 14 24
15 36 0
2 16 50 24
65 60
3 81 110
175
2 256

An examination of the difference table reveals that all fourth-order differences
are constant and thus the fifth and all higher-order differences would be zero, which is the
peculiar property of an exact polynomial (i.e., when all entries in the table are exact and
not rounded).

Some obvious results ,

a) The nth-diffe of an exact pol ial of degree n are constant.
b) The (n+ 1)st differences of that polynomial are zero.

¢) The above values are only true of polynomials when they are tabulated at equal
intervals.

If the ion does not an exact pol. ial, the above results will not

hold. In practice, we always deal with rounded numbers, where we seldom come across a
column with all its diffe zeros. The di of ded bers are irregul
and thus give rise to the irregular part of the table. In that case, the nth-order differences

due to the rounding errors oscillate between £ D

The reason for this is that when the tabulated values are rounded, each value has
an error usually lying in the range %. if we work in units of the last place. These errors

will build-up in the differences just as do mistakes, and eventually, if the true values have
convergent differences, they will become greater than the true differences. In the worst

case, the rounded-off errors will be alternately +% and —% and their contribution to any
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nth difference will be,

A L))

Construct the difference table for the function f(x) = Yx* + x +1 ,

rounded to 4 dp, for x = 10 (1)16.

x =X +x+1 st 2nd 3rd 4th

10 10.5375
9969

11 11.5326 5
9974 -2

12 12.5300 3 3
9977 1 ;

13 13.5275 4 -2
9981 -1

14 14.5258 3 “1
9984 -2

15 15.5242 1
9985

16 16.5227 _

Since the function is tabulated at 4 dp, each difference is also to 4 dp. Because of
this, the decimal point and the leading zeros may be omitted in the formation of a
difference table and they may then be written as integers. This makes the table easier to
construct and much neater too. For instance, the first entry in the column of fourth
differences is an abbreviation of 0.0003. The table shows that the fourth-order differences
oscillate and are all within the range +2*"' = + 8.

22  DETECTION AND CORRECTION OF ERRORS IN A DIFFERENCE
TABLE

Itis likely that an error (errors) may show up while constructing differences. We
observe a very peculiar kind of error propagation, which we shall illustrate in this section.
An error caused by reversing the order of a pair of digits in a number is commonly made
in copying down the number from the given data. It affects the other differences in the
table. We may denote the error in a single entry in the difference table by the symbol, €,
which can be negative, positive, small or large. Its effect on the differences spreads out
fan-wise as shown in the table below:
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This fan-wise (triangular patterns) propagation of € in the difference table grows
quickly and makes it possible in certain cases to locate an error and also to find its
numerical value, thus enabling us to rectify it with the help of tabular values. A glance at
the table reveals that the coefficients of € in the nth-order differences are binomial
coefficients of x, which occur in the expansion of (1 — x)". For example, the coefficients
_ in the third-order difference column are 1, -3, 3, -1, which occur in the expansion of
(1 - x)* in the increasing powers of x, i.e., 1 — 3x + 4x > - x *. The corresponding
coefficients for the fourth-order differences of (1 - x)* are 1, -4, 6, -4, 1. The binomial
coefficients in the fifth and sixth difference columns are 1, -5, 10, -10, 5, -1 and 1, -6,
15,20, 15, -6, 1, respectively. The table shows that the higher-order differences are very
sensitive to slight changes in any of the ordinates or lower-order differences. Relatively
smull input changes generate relatively large output changes. For the identification of
gross errors, the above picture should be kept in mind.

We illustrate the procedure by means of the following example.

M# 3 The following table contains an incorrect value of f(x). Locate the error,
suggest a possible cause and a suitable correction:

A, O R I AR (o N 10 S O G ST

f(x)l 3 74 135 226 3’3 531 739 1010 1341 1738
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Solution Difference Table

X f 1st 2nd 3rd 4th

1 37
37

2 74 2%
61 6

: 135 307 0
91

4 226

5 393 -36
-21
6 531 300 54
w33
7, 739
271
8 1010
331
9 1341
397
10 1738

In the above table, f(x) seems to represent an exact polynomial; thus all fourth-
order differences should be zero. The error seems to have appeared in the fourth-order
differences with coefficients: 1, - 4, 6, - 4, 1. The incorrect difference may be written as:

1(9), - 4(9), 6(9), - 4(9), 1(9)

This indicates that the error is 9. The next step is to locate the incorrect functional
value. This can be moving backward to the second column. It shows that the term in error
is 531 and the correct value is 531 — 9 = 522. The likely cause of the error may be due to
wrongly copying the digits. The result can be checked by correcting the wrongly-placed
entry and reconstructing the difference table. If the function is known analytically, it
would be preferable to recalculate it at x = 6, 50 that the correction can be made with
certainty rather just estimated.

In the above example, the functional values are exact and it was fairly easy to
locate and correct the error with certainty, but this is not always the case especially when
the values of f(x) have been rounded, since the errors will not then be exact multiples of
the binomial coefficients. In such a case, we can only make an estimate of the error.
Moreover, in a difference table in which there are two or more ewvﬂl
eventually overlap, making it more difficult to discover the errors. more care is
necessary to find out a reasonable pattern to locate the error(s) in such cases.
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A table in which two errors have been made is more difficult to analyze since the
bnomial coefficients overlap. The following pattern shows a possible example.

Solution Difference Table
f 1st 2nd 3rd 4th
0
0
0 e o O
0 —_— g
0 DIt SIS g, — —dg,
€ —» -3¢,
€ —_— -2g, — - 6g
-£, Rt et o )
0 ——— —» g, - 45,
0 Frotloot R, 8 Siey
0. == By ———he 48 1A 8
€5 el —3s;
€3 -2¢g, 6¢g,
-€, xass 38
0 et S
0
0

It may be possible to identify the error pattern in the third-order differences
column but the confusion in the fourth-order difference would probably be too great to
give an opportunity to detect the error. We, theref on the problems where
only one mistake is made.

Example 4 It is suspected that the following table ins an error. By differencing,
Tocate any probable error and correct it. Check by re-differencing if any correction is
made. The values of f(x) are rounded to 3 dp.
x| 700 e Db Dponi Dy 088 0] 04
f(x) 1 0.905 0.819 0.741 0677 0607 0.549 0497



Aamir Sharif
Line


34 ical Analysis with C+++

Solution Difference Table

X f (x) 1st 2nd 3rd 4th
0.1 0.905
- 86
0.2 0.819
6
0.3 0.741 ~26
-20
0.4 0.677 -6 38
18
0.5 0.607 —24
0.6 0.549
=527
0.7 0.497

Comparing the third-differences with the coefficients of x, we get

e

We may deduce that € = 6, i.e., 0.006 and thc corrected value of f(0.4) = 0.677 —

sure that it is c t value, we just estimated. However, it may prove to be a
reasonable estimate. ﬁ ﬁ entries are more in the data and the above mentioned options
fail to give a reasonable clue to pu:k-up the error, we should use of the fifth or sixth
difference column and then try again.

If there is no obvious pattern for locating an error in the difference table, we use
the following Tormula for ﬂnﬂ*n The error. PR T ?

Largest value in a column
Corresponding coefficient of & in that column

Error =

In this section, we have studied how to locate and correct a single error in &
difference table. If there are two or more errors in the entries, it is usually not easy to
separate their overlapping effects and thus locations and corrections of such errors
become extremely difficult. In some cases, irregular behaviour of the differences may be
caused not by errors but by irregularities in the functions.
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23 DIFFEREN OPERATION

To refer to specific entries in a difference table we use some operators, called
difference oErlﬁn. %n Operator 1s not a number DUt 1t s an operation, Which when
. "applied 10 a function changes it to some other function. The op hnique proves to
be a most useful tool when we wish to construct formulas for interpolation, numerical

differentiation, numerical integration, etc. One of the biggest advantages is that we can
fix the type of formula desired in advance and then proceed directly toward the goal.

The following op are ly used:

A Eorward-difference operator (usually read as delta)

V Backward-difference operator (usually read as del or ncbla)
e —————

8 Central difference gEralor (read as sigma)
Averaﬁc !mean: oErator (read as mu)

E Shift operator
—

Let us define these operators one by one. It must be emphasized that these
operators assume equally-spaced data points.

23.1 Forward Difference Operator
The forward difference operator A is defined by the following relation:
Af, =1, ~f,
where r is an integer, and Af, = Af(x, ).

Also, Af,,,=Af(x, +h) and Af ’1=Af(x, +%)
i

In words, when A operates on a function, we first shift r by r + 1 and then
subtract the original function from the shifted function. This produces the difference
function Af, .

Thus, Af, = f, —f,
Afy = f, —f;

Af, =if, ~f1 etc.

Af_, Afy, Af,, are called first-order forward differences. The differences of

the first-order diffe are called d-order differences and are computed as
follows:
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Thus, A’f, = A(Af,)

> A(fm =f.)

=Af, -Af,

=it =)0 1)

=1, =26, +1,
The higher-order differences are obtained in the same way.
Thus, A’f, = A(a%f,)

= AR VE S

=Af,,-2Af,, +Af,

el

= (s —fu2)-2(F..; -f,‘.)+ € -5)
= oy =3, + 3

[
B, = frog =~ 8y + 6F — 41, 41,
In general, nth-order differences are given by:
Vs oy i U iy 8
where A'f, # (Af,)",andn21.

The followmg difference table shows how the forward differences of all orders
can be formed

x { Af A Af A'f
Xo
X,
xz
X, fy A'f,
Af,
Xy f,
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We observe from the above table that differences with the same subscripts all lie
on a downward sloping diagonal.

While experi: ing with diffe we observe that if X" is a polynomial of
degree n, then AX" is a polynomial of degree (n — 1). In other words, differencing
bdehaves like differentiation in the sense of reducing the degree of a polynomial.

2 Thus, AX" = (x+1)" -
=nx"" +n(n-1)x"2+..

If the above process is continued for n times, the polynomial x" is reduced to
degree zero, i.c., constant. This is exactly what was shown by Example 1, that the nth-
order differences of a polynomial of degree n are constant and all higher-order
differences are zero.

Algorithm for Generating Differences Using Forward Scheme

In general, for a function tabulated at n points, the corresponding forward
difference table can be represented by a matrix of size (n— 1) * (n - 1). Note that only the
¢lements in the columns from 1 to n - i, where the row i= 1, 3, ..., n - 1, are of interest.

The algorithm to generate forward differences table may look like the following:

Steps
For J=1TO n-1by1DO

FOR I=1TOn-Jby1DO
IF (J = 1) THEN

SET Dy =F(Xy)-Diy
ELSE

SET  Dy=Diy -1 =Dy

PRINT “all differences, D"

This algorithm will compute the forward differences of all orders that can be
computed from the given function table. The data with equi-spaced abscissas are
initialized in the program.

Example 5§ Computerize the algorithm for g ing forward diffe Use the
following test data:
Xiloali® 14 i6 18 20

y I 5.64642 6.44218 7.17356 7.83327 8.41471
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Solution
Program No. 1: Difference Table

# include<iostream.h>
# include<stdio.h>
# include<conio.h>

void main(void)

clrser( );
float interval, array[20][20]={0.0};
inj no, col, x, y;

cout<<*IDIFFERENCE TABLE";

cout<<*\n\n\tENTER THE FIRST VALUE: ™; cin>>array[0][0];
cout<<"\nMENTER THE INTERVAL : "; cin>>interval;
cout<<'\nMENTER TOTAL NO. OF X : "; cin>>no;

for(int i=1; i<no; i++)
array[i][0)=array[i-1][0]+interval;

cout<<“\n\ntENTER FUNCTIONAL VALUES : \n";
for(i=0;i<no;i++)
{ 3 ;
cout<<UX(“<<i<<”) = “;cin>>array[i](1];

cout<<*\ntHOW MANY COLUMNS ARE REQUIRED : *; cin>>col;
for(i=1; i<=(col+2);i++)
array(j](i]=array[j+1][i-1]-array(j](i-1];

clrser( );
cout<<*WDIFFERENCE TABLE\n\n";
cout<<* X FX)™;

for(i=1;i<col;i++)
cout<<**  col

<<

cout<<*\n\n"";

for(i=0;i<no;i++)
cout<<““<<array[i][0]<<™\n\n";
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x=8; y=5;
for(i=1;i<=(col+1);i++)
{
gotoxy(x,y);
for(int j=0;j<=(no-);j++)

cout<array[j][i];
y+=2;
gotoxy(x,y);
}
x+=9; y=i+5;
}

DIFFERENCE TABLE

ENTER THE FIRST VALUE: 1.2
ENTER THE INTERVAL : 0.2
ENTER TOTAL NO.OF X : 5

ENTER FUNCTIONAL VALUES:
X(0) = 5.64642
X(1)= 644218
X(2) =17.17356
X(3)=17.83327
X(4) = 841471

HOW MANY COLUMNS ARE REQUIRED : 4

Computer Program
DIFFERENCE TABLE
X F(X) ¢ol 1 col 2 col 3 col 4
12 5.64642
0.79576
14 644218 v ~0.06438
: 0.73138 -0.07167
1.6 7.17356 -0.07167 0.00069
0.65971 ~0.00660
1.8 7.83327 -0.07827
0.58144

20 841471
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232 Backward Difference Operator .
The backward difference operator V is defined by the following relation:
CVE=f f,, :
Hence, we shift r backward by one st;p, the function becomes f,_; and subtract
this function from the original f, .
Thus, Vf, = f, -f,
Vio=f,~f
Vi, =1 ~1

The above differences are called first-order backward differences. In a similiar
manner, we can define backward differences of higher-orders. Thus, we obtain:

V3f, = v(v£,)
=v(f,-f,.)
=Vf, -Vf,_,
=, —f,.)-(f_ -f.,)
=f,-2f_, +f,.,

Similarly, Vf, = f, -3f,_, + 3l
In general, nth-order differences are given by:
Vi, = V*f, =V in2L
With the help of this operator, we can construct the table for backward

differences:

x f v f v2f V3f Ve

Xo 5
vf,

% £ N T
vf, v,

X f v Y_‘f“
vf, vf,

o fy ¥,
vf

GO g
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We observe from the above table differences with the same subscripts all lie on
anupward sloping diagonal. :

Algorithm to Generate Differences Using Backward Scheme

In general, for a function tabulated at n points, the corresponding backward
difference table can be represented by a matrix of size n X n. Note that only the elements
inthe columns from 1 to n — i, where the row i=2, 3, ..., n, are of interest.

The algorithm to g backward diffe table may look like the
folowing:
Steps
For J=1TO n-1by1DO
FOR I=J+1TOnbylDO
IF (J = 1) THEN
SET Dy =F(X))-F(XDyy, 1)
ELSE
SET Dy=Dy;-1 =Dpy s
PRINT “all differences, D"

233 Central Difference OErator

The central difference operator 3 is defined as:
.
of, = fMé - f'-§

f,

Thus, 8f | = f, = i et
Rk, B

‘Similarly, 5 f, = 8(31,) (

=8 f ;. -f
Giiv

= 6f"1- 8f |
2 9

= (fm —f’)-(f' _fv-l)

=f,,, =2f, +f

In general, nth-order differences are given by:
& f, =8 f"%- & f'_%
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The difference table for § is given below:

x f 8f 82 f S d 84 f

S fo
8f,
2
X, £, Bt
8f, 8 f,
2 2
X5 . i 8t 8'f,
8f, 8f,
POk 2
%, & 8t
8f,
2
xl f‘

We note that all differences with the same subjects lie on the same horizontal line
and all even-order differences have integer subscripts. The central difference notation is
preferable for many purposes but has the disadvantage of requiring fractional suffixes.

Itis to be kept in mind that whatever notation we use, there is only gne difference
table and hence each entry in the table has one of the three names, for instance,

fou —f, = Af, = Vf,,l=5f"1
2
Also, Af,= Vf, = 8f,
2
A fy= V2 f, = §%f,
A= V1 =51,
2
7. 4 f = v f,= 8¢ fo. etc.
234 Shift Operstor
The shift operator (also called the step operator) E is defined by,
Ef, = f,,
E™ f=f,
E'f,=E(f,) = Ef,+f.,

In general, E" f, = f,

ren®
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235 Mean Operator
The mean (or average) operator W is defined by,

1
pf, = E(f"% +f,_%)
Thoi, ottt e L 1)
s L= Tl [ T 5 m )
24  RELATIONSHIPS BETWEEN OPERATORS

Various ionships exist t p For ipl
Af, =1, —f,

Af, =Ef, -f, =E-D f,
o, A=E-1
o, E=E-A
Similarly, V£, = f, —f
=f -E'f,
o, V=1-E™

and E= (1-V)"

1 ok
= B, ~B

r r

8= £y~ f

1 Ly
= [E’ -E ’)f,
o gegtopt
1
Also, pf, = ;(f"* +f'_})

& %(B* +e3 f,)

5 -;-(z* + B"iJf,

ok
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Ll
or = 3 Ei+R 2

The relationships between various operators are given in the following table:

E A v 8

w2 o Un¥ l+18‘+81’1+£
2 4

A |E-1 A V(I—V)’l 51+5 ’1+81
2 4

Vo[ BB AQL+a)? v 2 :
( ) —8—+5 1+5—
A 2 =

S pi g AQL+A)? v(-v)3 2
2 i(EH—E'_;) [1+—A-)(1+A)‘§ (1-2)(1—V)Jz 1450
2 2 i) ki P

The above relationships can easily be proved and we leave this as an exercise to
the student to fill in the details of the above results.

PROBLEMS

) B Construct the difference tables for the following functions:
a) f(x)=x*~x -1, over the range, x = — 3(1)5.
b) f(x)=2x"+2x>+ 2x - 1, over the range, x =~ 1(1)7.
) f(x)=2x"+2x* - 3x + 4, over the range, x = - 1(.5)1.
d) f(x)=2"forx = 0(1)6. Will there ever be a column of constant differences in
this case?
(x) = sin x for x = 1.0(0.1)1.6.
) f(x) = 2x* + 3x + 1 for x = 0.1(0.1)0.5. What can you say about fourth-order
difference column? What is the reason for your observation?
8) f(x)=3x’ +4x" + 1 and f(x) = x’ for values x = 0(1)S. What do you conclude
from the third-order differences column of the difference tables based on the
above functions? i

<

<
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" 2.() Itis suspected that there is an error in one of the values of f(x) in the following
table:

b3 1.0 ) B p e K1) 25 3.0 35 4.0 4.5 5.0

fix) | 38 46 -59 -76. -92 -118 -140 -161 -180
Construct the differences-table, detect and correct the error.
() Consider the following table of values:
x o e 2t i o N ST 3 B TR T
f(x) 7 10,55V 88 abay, 21 RS D oSk MY SR IR

It is suspected that one of the values may have been recorded in error. Assuming
that the data follow a polynomial, determine which one, if any, of the functional
values is in error and what it should be?

(© Locate the error and estimate the correct value for the following table:

xailus 1 2 3 4 5 6 7 8

(x)lLOOOO 1.1002 1.2013 1.3045 14105 15210 1.6366 1.7586 1.8881

Construct the differences-table, detect and correct the error.

w

Locate and correct mistakes in each of the following tables:

X 1 2 3 4 5 6 7 8 9 10
f(x) e 12 21 34 51 70 97 126 159 ° 196
2(x) |.500 .520 .540 .560 .579 .589 .618 .637 .655 .674

/

Construct the differences-table, detect and correct the error. !

4 The table of values for two quadratic polynomials y(x) and 2(x) are givento 3 sf
as follows:

X 1.0 1.1 12 1.3 14 15 1.6
y(x) 1:000 - *5K13" =135 1.76 2.10 2.69 3.46
z(x) | 400 487 591 7.15 8.60 10.3 12.3

Locate and correct the errors (other than those attributed to rounding off) in each
table.
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Compute the missing entries in the following tables:

a.
f Af A A'f A
X
X
X -4
3 -1
9 -5 x
X X
) ¢ 0
X
X
b.
i Af A A'f At
X
X
x -3
2 X
g -3 3
X 3
X 0
X
X
c.
f Af Af A'f Af
X
X
1 Y 12
X X
X b3 24
) & i
X 108
X
241
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6.(a The following table of values contains an error. Locate the incorrect value and
find an estimate of correct value:

x| i 0 1 ) 3 4 5 6
| 15l 117 1S 235 423 661 967 134l

Reconstruct the difference tabic with the correct value. Comment on the nature of
the function f(x).

(b The table below contains an error. Locate the incorrect the error:
3.60 3.61 3.62 3.63 3.64 35 3.66 3.67 3.68
i(x) | -112046 120204 .128350 .136462 .144600 .152702 .60788 .168857 17690

(0 Use the difference table method to locate and correct the error in the following
table of values:

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09
f0| 1030 1070 11.04 1126 1130 1101 10.60 974 846 6.70

7.(z) * Form the difference table for the function given below. Find the values of a, b,
and ¢, so that A*f(a)= V*f(b)= §*f(c) = - 0.0428.

x| o 1 2 3 4 5 6
f0)| 3679 7358 9197 9810 993 9994 9999

(t) Tabulate the function f(x) = x(x = 1) (x - 2) for x = - 0.2(0.1)0.2, correct to 3 dp.
What do you say on the value of 8*f 7

(0 Prove that the sum of the numbers in any column of a difference table is equal to
the difference between the last and first numbers in the preceding column.

Set up a table showing the first and second differences for the following data to
check the arithmetical work:

0.0000, ~ 0.0104, - 0.0206, - 0.0307, - 0.0404, - 0.0496.

(€) (i) Construct the table for the following functional values:
il A 0 1 2 3 4
| 15 1 1 3 TR T R

If the origin Xo = 1, determine the values of Afy, V., “i’ Shf
V3 f,, Af, and 8*f,.
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(ii) Given the set of values:

% by 150 a0 ok U0 8s
y [ 1997 2151 247 2352 2465 2589

Construct the difference table and report the values of A s il Yio» & Yis
and A’y .

(e) Given the difference table:

f f(x) 2 1st . 2nd 3rd 4ith
zol -14 :
T S
0 0 T ‘0
—_ —_— %
2 14 08 oo i 0
wras g 8 (1) 9%
4 124 —_— 192
302
6

If the origin x, = 2, express using forward, backward and central differences iin
the entries, 110, 302 and 192.

8.(a) The values of y shown in the following table are alleged to be derived from a
fourth entries degree polynomial. Test this and correct the value, where
necessary.

RS Y T e e
f0)[0 2 20 90 272 605 1332 2450 4160 6642 10100 -
(b)  Suggest approp ion for the foll ing table of values:
LR TR A
f(x) | 2154 22240 22694 23513 24121 24662 25198 2.5713 2.6207

(¢)  The following table contains an error. Identify the error and estimate the correct
value of the function:

R R N T Y
T T Y g T TR T




: Finite Di 49

(d) Locate the incorrect entry in the following tables and estimate the correct value
of each function:
@)
X l 0 {00 (i b JGHAR S R S0 il 0.7 08 09 Lo
f(x)|—9.800 9061 -8341 -7.594 -6671 -5776 —-4.530 -2.945 -0.899 1.736 5100
(i)
x ' 0.1 02 03 0.4 0.5 0.6 0.7 0.8 .09
f(x) [0.905 0819 0741 0677 0607 0549 0497 0449 0407

(e) Locate the incorrect entry in the following table and find its correct value: 2
x 0 0.1 02093 04 ¢+ 05 0.6 0.7
f(x) | 0000 0012 0072 0252 0672 1.500 2952 5.922

e T SR e
8832 13932 21000 30492 42912

9 Prove the following relationships:

@ A=+E-5 (b)A=EV (©)8* =A-V=AV-VA
2 2

(d)E=1+u5+%— (e)u’=l+%- HE=1+8+E

(8 V=E'A (h)2ud=A+V (i)u5-%(A+V)

T il Kbpuw DLl
G E u+26 &k E?=p 26 (l)xr-Av

10(2) Find Ay,, A’y, and A’ y, in the following cases:
@ y,=n’
(i) y,=n’+3n?
@ y,= n’-n?4+17-1
(v y,=n(-)O-2)(-3)0-4)
() Prc;(veml ¥a= 3" (A + Bn) satisfies the equation,
Y-;&‘6Y-ol*9Y. =0
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<

If f{x) = sin(nx), prove that Af = —2f .

Iffix)= x*, compute the following:

A?

® ( )ftX) i £ ﬁ";

Obtain the following results:

10 A(f—"J (i) A(lj (ili) A (log £,)

% 8.

: Af,

) A(f, - 8,) = f,Ag, *+g,,Af, w4 = Wf_—
T r+l

Find A? x*. o

Find xA(XA — 1) x2.

Show that,

@) Af, = Vf, = 5f,,§ (i) &' f, = V* £, = 8°f, fi

(iii) If f(x) = x*, then A? f{x)=12x? +24x + 14 and A*f{x) =24
(iv) If f(x) = 2%, then Af(x) = f(x).

Show that

OV fi=Af, @)afi=V'E, () SVE= 41,
(iv) 8% fi= A f,|
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Chapter 3

Interpolation

3.1  INTRODUCTION
Suppose we are given a table based on certain values of x and the corresponding
vaues of a function f(x):
x [ 1 2 3 100
0 | 10 85 92 %8 125

The values in the lable can be obxamcd by an expenmem or generated if we

e nll.lfthevaueo

x lies outside the range, the process of estimatinﬁ the value
1s zalled extrapolation. f

Error of extrapolation increases as the point of interest goes farther from the data
pants. If a higher order interpolation is used for polation wnhoul h ical l:n
eriors may increase rapldly as the order of polynomial Appli
exrapolation may be seen in various sections of this book: for instance, see e the Newlon-
Cates open integration formulas, the Romberg’s integration method and the predictor-
carector methods.

In most of this chapter. we limit the mbcrpolanng function to be a polynomial.

polation has many appli in ion theory, numerical differentiation,

numerical integration, numerical soluuons of ordinary and partial differential equations,
and for making computer drawn curves to pass through specified points.

We are now going to describe several methods, in each case some kind of advice
isgiven as to the circumstances under which the method should be applied.
31.1 Choice of a Suitable Interpolation Formula

The following are considered in choosing a method for interpolating
pdynomials:

a)  Whether the given points X; are equally spaced.

b)  Whether the interpolation is desired towards the beginning, centre or end of
a difference table. .
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3.1.2  Checking the Interpolated Value

The next is the question of checking the interpol d value. A single interpolation
is not easy to check. One possibility is to repeat the interpolation using a different
formula, but this will be more than double the labour, since the first-interpolation is
usually done by the easiest formula. When possible a functional relati hip such as

s 1 A 4
e’= — is a better check. This still requires two-interpolations but since they involve

¢
different tables, the formula may be used for both.

313 I‘l‘ype of Interpolation Formulas for Equally-Spaced Data Points I

The following three types of interpolation formulas are used for equally-spaced
data points:

@ ﬁmmmﬂgmmmuwmm It uses differences near
beginning of the difference table.
(b) Newton’s backward difference interpolation formula. It uses differences near
Ticend of the difference table.
(c) Central difference interpolation foi These formulas employ differences
In the centre of the diflerence table. iEe following central difference formulas

are commonly used:

i)  Stirling’s formula

ii)  Bessel's formula

iii) Everett’s formula

iv)  Gauss forward and backward formulas

3.14 Type of Interpolation Formulas for Unequally-Spaced Data Points

The following formulas may be used for unequally-spaced data points:

i)  Newton’s divided difference interpolation formula;

ii)  Lagrange’s formula;

iii)  Aitken’s formula; and

iv)  Hermite’s formula ’

‘We shall describe only Lagrange and Aitken formulas, because they are suitable
for both, equally and unequally-spaced data points. The above formulas can also be

nployed for polation; h , the error may increase rapidly the farther we

extrapolate from the given values. With the widespread use of computers tabular
interpolation has lost much of its importance. The methods under the present category
have been widely used.

32 NEWTON’S FORWA!

The most basic formula for interpolation with equidistant points is Newton’s
forward difference interpolation (sometimes also called the Gregory-Newton)
formula.
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Given a set of n pairs of values:

(Xginflp IC&y e B0 (X5 o Eadk R B,
We shall derive this formula with the help of two difference operators, E and A.
The function to be estimated is written as:

f, = E’fy= (1+AY £, LHE)
Expndirg (1+A)", we have

b = {1epaspte- s +1plp-1p-2)8 +.
+Ep(p—l)(p—2)---(p—n+l)A“}fo

% 1 :
= fo +pAfy +p(p - 1A, + Zop(p— 1P - 2)A°F, +...

+—p(p 1Np-2)---(p—n+1)A" f, .(32)

("p'xo)

whee p = —2—— obtained from X = X, + ph.
h FEVD

Thecoefiicient of A"f,, will contain p” which is an nth degree polynomial.

the mq Shifting vhe ongm does not lﬁect th: result. but on lhe other hand it
may result in a simpler formulal which is less prone to error.

ii) This formula is usually applicable for 0 < p < 1. When working with differences,
ve can select any value of x in the table to be labeled as X, . This is mostly done
———

°) kzz 2] within the range.
Exsmple 1 a) Compute the difference table for the following set of data-points:

x | 00 25 50 L
f) | 0000 2763 5205 712 8427
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b) Use Newton’s forward difference formula to pass a fourth degree polynomial
through the above data.

¢) Use the above polynomial to interpolate for f (0.125 z

Solution a) The forward differences are computed as follows:

X f(x) A A? A A*
0.00 0000
2763
025 2763 -321
2442 214
0.50 .5205 535 157,
1907 =57
0.75 0 -593
1315
1.00 .8427

b h=x ~xn'=A25- 00 =25
X, = Xo+ph=0.125

=(X,—x;) _ (125-.00)
h 25

Since the calculated value of p lies in the range (0, 1), it makes the forward
difference formula applicable. The values to be used in formula (3.2) are underlined in
the above table. %

£ =1, +paf, + 20D  BO-UP-2) 5o , P-1p-2p-3) oy
s s G ® 3! " 4! %

=05

=.000 +px0.2763 + (922_") X = 00321 + @ "36"2 -p) x -0.0321

Jedeaisea) ool
6
=.2763p ~.0125p® +.0008p> —.0006p*
c) Inserting p=0.50 in the above polynomial, we get
f,=.2763 X .50 - .0125 x (.50)” + .0008 X (.50)" — .0006 x (.50)*

= .13815 -.00313 + .0001 - .00004 = 0.1351
—
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The students should be careful not to think of the answer 0.1351 as the correct
answer. It is an estimate of the correct answer based on the assumption that f(x) is a
fourth-degree polynomial.

Example 2 Use Newton's forward difference formula to interpolate the value for f(1.75)
from the following data: —

(0.5, 0.000), (1.0, 1.357), (1.5, 2.000), (2.0, 2.625), and (2.5, 4.000).

Solution The difference table is as follows:

f(x) A A2 A) Al
0.5 0.000
1375
1.0 1.357 =750
625 750
2 2.000 4 0
625 150
2.0 2.625 750
1375
25, 4.000

> B 1.75; Xo=0.5; X, = L.0;
=05

h=x -

(x,=%5) " (1:75-05)
p=—t—"= 7+ =25
h 0.5 —

As = 2.5) does not lie between 0 and I, we cannot usc the origin to be
g [.75-1)
0.5

Xo= 0.5. Let us shift the origin to 1.0. Then, p = = Liw; cannot use X, =1

as the origin because still p > 1. Let us shift the origin to Xo=15.p = ES—_IS) =
— — 0.5

932—5 =0.5. So, we can use X = 1.5 as the origin because the calculated value of p < 1.
0.5
The entries used in this case are underlined in the difference table. The reduced
form of Newton's formula is as follows: A
plp-1) A
2 =

£, -f:‘+pAi+
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Inserting the values in The above reduced formula, we get,
0.5(0.5-1)
2

f, = 2.000 + 0.5 x 0.625 +

A x 0.750

= 2.000+0.313-0.094 =2.219
—

h-mples Write a Newton's forward differemce
interpolation formula. Use the. followmg dnn for testing:
Xk i s 8 1 e
f(x) ' 23 93 259 569 1071 1813 2843

Estimate f (2.58).

Soluti B

< Fog p progr see
for this example is gi'en below:

4. However, the computer output

Compute Output:
X F (X) 1ST 2ND 3RD 4TH
—
+ 2,00 23.00
70.00
4.00 93.00 96.00
166.00 48.00
6.00 259.00. 144,00 00
310.00 48.00
8.00 569.00 192.00 .00
502.00 48.00
10.00 1071.00 240.00 .00
742.00 48.00 E
12.00 1813.00 288.00
! 1030.00
14.00 | 2843.00
ANSWER = 36.23

33  NEWTON’S BACKWARD DIFFERENCE INTERPOLATION FORMULA

We shall derive Newton’s backward difference formula using the difference
operators E and V.

We know that, f, = E*f, = (1-V)f, A
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Expanding (1— V), we obtain,

(2 frapws B2 PO+ U +2) gy, P+D)-(pn-1)c.],
it s 3! n! .

= f, +pVf, +1(22-"i)v1f°+ P(P”3, ikl 11 EIR

+“’“)"'| +“_1)V"f,,- . B4
n!

This is called Newton’s backward difference interpolation (also called the
Gregory-Newton) formula.
Remarks
i)  This formula is used toward the end of the dili>rence table but can also be

aJ I.a n {mex arts o! me usle B sulmm smg'n Luc ongin. This situation

Occurs whenever a table 1s being extended, for example, when the solution to a
differential equation is being obtained by a step-by-step method.

ii)  The formula is valid for 0 < p= x:
Example 4 (2) Using Newton’s backward difference formula, compute f (11.8) from the

following data:
S L 4 6 8 10 12 14
f) | 23 93 259 560 1071 1813 2843

(b)  Write a p program o impl Newton's backward difference
interpolation formula. '

Soution (a)  The backward differences are computed in the foﬂowing table:

x f(x) 1A v? v? v fed
2 23
70
4 93 96
’ 166 48
6 | 256 144 0
310
8 569 192 T 0
2 48
Ty 240 0
— 442 48
12 1813 288
1030
14 4843
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~

=11.
xE 1.8

(11.8-14)
2

Taking X, =14, p = = L1. As the calculated value is outside: its
——— —

acceptable range, we cannot accept the origin to be at X, = 14. The suitable origin may

be X, = 10, which gives p = M: £= 0.9. The entries used for the backwiard
— 2 2/ —

difference formula are underlined in the above difference table. Substituting these values
in formula (3.4), we get:

-

0.9(0.9+1) 0.9(0.9+1)0.9+2)
2 6

= 1071 + 0.9 x 502 + x 1924 x-4_8-

= 1071 +451.8 + 164.16 + 39.67 = 1727
—
(b) This program can be used for Newton's forward and backward interpolation
formulz. 1t is done via a main menu. Menu Choice 1 is for the forward differemce
formula, while Menu Choice 2 is for the backward difference formula.

Computer Program:

# include<iostream.h>
# include<conio.h>
# include<process.h>

float interval, x0, p, array [20]{20] = {0.0};

int no, col, x,y;

void difftable( )

{

cout<<*\DIFFERENETTABLE"; ’
cout<<'\n\n\MENTER THE FIRST VALUE : ”; cin>>array[0][0];
cout<<*\nMENTER THE INTERVAL cin>>interval;
cout<<"\nWENTER TOTAL NO. OF X : *; cin>>no;

for(int i=1; i<no; i++)

array[i][0]=array[i-1][0]+interval;
cout<<“\nMENTER FUNCTIONAL VALUES : \n";
for(i=0;i<nosi++) .

cout<< WX(“<<i<<") = “cin>>array[i][1];



Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line


Inerpolation . 59

out<<*“\"tHOW MANY COLUMNS ARE REQUIRED : ”; cin>>col;
for(i=2; i<=(col+2); i++)
{
for(int j=0; j<=(no-i); j++)

array[j](i}=array(j+1](i-1]-array(j}[i-1];
}
}

drser();
cout<<*\(\{DIFFERENCE TABLE\n";
cout<<* X X))
‘or(j=1l;i<=col;i++)
{
coutes” . ool - Te<i;

)
sout<<“\n";

for(i=0;i<no;i++)

{

coutc<”  “<<array[i][0]<<"\n\n";
}

=8; y=3;
for(i=1;i<=(col+1);i++)
{
gotoxy(x,y)
for(int j=0; j<=(no-i); j++) ’

cout<<array[j][i};
y+=2;
: gotoxy(x,y);
x+=9; y=i+3; 5
)
}

wvoic findx( )

float xp;
cout:;"\n\t XP FOR WHICH VALUE OF F(X) IS REQUIRED : " cin>>xp;
int {=0;

Ll
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while(((xp-array[i][0])/interval>1)&&(I<no))
Lo

i+

By
x0=i;
p=(xp-array[x0)[0])/interval;
}

void nford( )
{
findx();

cout<<“\n\ntanswer = ";

cout<<(array[x0][ I]+(p*array[x0][2]+(p*(p-1) /2 * array[x0)[3])

+P*(P-1)*(p-2) /6 * array[x0][41)+(p*(p-1)*(p-2)*(p-3) /24 * array[x0][5]);
) .

void nback( )
{

findx( );
cout<<‘\n\n\tanswer = ";
cout<<(array[x0](1]+(p*array[x0-1][2]+(p*(p+1) /2 * array([x0-2][3])
) +PH(P+1)*(p+2) /6 * array[x0-3][4])+(p*(p+1)*(p+2)*(p+3) /24 * array[x04][5]);

void main (void)
clrser ( ); difftable ( ); getch ( );

int choice;
while (1)
{
clrser ();
cout<<'\n\n\t\MAIN MENU"; i
cout<<“\n\n\\FORWARD DIFFERENCE INTERPOLATION FORMULA - A%
cout<<"\n\n\tBACKWARD DIFFERENCE INTERPOLATION FORMULA —- 2%
cout<<“\n\n\tTO EXIT i
cout<<"\n\n\ntENTER YOUR CHOICE : ";
cin>>choice;
switch(choice)
{

case 1:clrscr ( );nford( );getch( );break;
case 2:clrscr ( );nback( );getch( );break;
case 3:exit(0)
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P

: Computer Output

DIFFERENCE TABLE
ENTER THE FIRST VALUE : 2
ENTER THE INTERVAL : 2
ENTER TOTAL NO. OF X : 7
ENTER FUNCTIONAL VALUES:

X(0)=23

X(1)=93

X(2) =259

X(3) =569

X(4) = 1071

X(5) = 1813

X(6) =2843

HOW MANY COLUMNS ARE REQUIRED : 4

DIFFERENCE TABLE
§ F(X) col 1 col 2 col 3
2 23
70
4 93 96
. 166 48

6 259 144

310 48
8 569 192

502 48
10 1071 o 240

742 48
12 1813 288

1030

14 2843

col 4
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MAIN MENU

FORWARD DIFFERENCE INTERPOLATION FORMULA -1
BACKWARD DIFFERENCE INTERPOLATION FORMULA -- 2
TO EXIT 3
ENTER YOUR CHOIC: 1

XP, FOR WHIEH VALUE OF F(X) IS REQUIRED : 2.58
ANSWER = 36.233509

ENTER YOUR CHOICE : 2

XP, FOR WHICH VALUE OF F(X) IS REQUIRED : 11.8
ANSWER = 1726.63208

34  INTERPOLATION WITH CENTRAL DIFFERENCE FORMULAS

The two formulas by Newton are used occasionally and almost exclusively at the
beginning or at the end of a table. More important are formulas which make use of
central differences, a whole series of such formulas with slightly different properties can
be constructed. In this section, we shall mention without proofs some well-known central
difference formulas. The structure of all these formulas can easily be demonstrated by
sketching a difference scheme where different quantities are represented by points. If the
column to the let} stands for the function values, then we have the first differences and so
on.

341 ’s Interpolation Formula
Stirling's formula follows the path through the difference table given below:

O -
£ Ao
'L\ /'\/'“ /

© ¢ e L



Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Oval

Aamir Sharif
Oval

Aamir Sharif
Oval

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line

Aamir Sharif
Line


Irteryolation - 63

Itis2xpressed as follows:

T
/fp= fo+%p[8fﬁl+6fl]+%p’62f,,+2(p__)(a’ f,+5° fl}
2 2 . ! 2 2

1
2x3!

(3.5(a))

Itcan also be written in another form as:
1 1 1s
¥ 1= fo +pUBT, 450’ 51f0+§p(pz—l)p8’fo+zp (p*-1)8*f,

T M i L .

(3.5(b))

Exanple5 Use Stirling’s Interpolation formula to find f(1.62) from the following
(able; — —

e 14 16 18 20
fx) | 56464 644218 7.17356 7.83327 841471

Solution: The difference table for is as follows:

x f(x) 8 8? 8 8
12 5.6464
79576
14 6.44218 - 6438
73138 © =729
7.17356 -17161 69
Xy = 1.6 . 2167, e
65971 - 660
—
18 7.83327 -1827
58144
20 8.41471
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64 Numerical Analysis with C+-+

Taking x,=1.6, h= X, —x, =1.8-1.6 = 2—

—
_(L62-16) 002 e
RO —

Inserting the values in Stirling’s formula 3.5(a), we get,

f= 717356 4 x 0.1 (73138 +.65971) + x 0.1 x 0.1 x— 7167

—— A [ ——— — i
% o.x(o.lxo.l-l)X(__Ong_m(,w)
——

12
i 0.1x0.1(0.1x0.1-1) AT
24 —
= 7.17356 + 0.06955 - 0.00036 + 0.0001 1 — 0.00000
= 7.24286
—

342 Bessel's Interpolation Formula

Bessel’s formula follows the path through the difference table:

X, 5 /z 5 o
g \ \ /
of, : 5 f)
'\ \
% % 81, 8,

~/Beml't formula is expressed Y
fy= 1o +pb, +2521’2;|'2(a’r, +5'f,)+"—("%)$"'ﬂa’ f

+1))plp~1
24!
It can also be written in another form as:

fy = fo4p81, +plp- )8 ) +Slp-1p- §)ud’ 1,

i =254, +8%, )4 - I (E)

+ﬁ(p+l)9(p-l)(p-2)u6‘ ftr o Gom)
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3.43 Everett’s lnlerglntion Formula

Everett’s formula follows the path through the difference table:

ko PR GRS R S el
X, f, ——— 8f —— 8%,

Everett’s formula is expressed as follows:

qla®-1) * 4 ale* -1)(a? “4);‘ £yt
3! 5!

fp= qfy +

+pf Pl | S . ) S P XV
1 3| 1 1

Lo

344 Gaussian lnurwlation Formula

There are the following two such formulas:
.a) Gauss Forward Interpolation Formula
b) Gauss Backward Interpolation Formula
Let us discuss them one by one. 5

a) Gauss Forward Interpolation Formula

This formula follows the zigzag path as indicated in the difference table:

o O L T
i i :

X f

Bfé

 TOR

Gauss forward formula is expressed as follows:

f,= f°+pbf*+2$92—;l)6‘f,+ﬂp%xlp—-ﬂb’f*

+ 8o+ o (3.0/

+1)p(p=1)kp~2,
4!
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66 N ical Analysis with Ci+

b) Gauss Backward Interpolation Formula

This formula follows the zigzag path as indicated in the following difference
table:

Se 5, b |
/ \ / 2 \ / y |
fo 8, 8,

Gauss backward formula is expressed as follows:

Xo

+1 +1)p-1
fp=fo+p5f_%+——p(p2! Jsrs, + 2o+ o) 3)!(" )B’f_%

(oeibootlp-2) . %

Note that if we take the mean of Gauss forward and backward formulas, we get
Stirling’s interpolation formulas.

As mentioned earlier that for most purposes formulas using central differences
are to be preferred. However, some remarks about their use are in order. The two
Gaussian interpolation formulas are of interest almost exclusively from _theoretical
standpoint. Stirling’s formula is suitable for values of small values of p. for example,

1
—%s ps +-;. and Bessel's formula which is probably the most used of all interpolation

1

formulas, is suitable for values of p not too far from %. for example, —% <ps %

verett's formula which is simple and fast is perhaps the one which is most generally
seful and further because even differences are used together with the function values,

Given the following table of values:

o e R T R TR Y A
f(x) | 374607 438371 500000 .559193 615661 669131 719340

a) Construct the difference table including differences up to 4th order only.

b) Interpolate f(3.64) using the following formulas centred at x = 3.4:
(i) Stirling (ii) Bessel (iii) Everett and (iv) Gaussian forward and backward.
—
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Solution (a)  Difference Table

f (x) S 52 6) 5‘
22 .374607
) 63764
2.6 438371 -2135
61629 -301
3.0 .500000 -2436 12
59193 -289
Xo =34 559193 -2725 16
56468 -273
38 615661 ; -2998 10
53470 -263
42 669131 -3261
50209
4.6 719340

b)(i) Stirling’s Formula
| x,=364, x,=34, h=04 |

(xp—%o) _(3.64-34)
h 04

=06

Substituting values in formula (3.5(a)), we get,

x —.002725

f, =.559193 +g (059193 + .056468) + -6:.6

% 0.6(0.6x0.6-1)
12
L 06 %0.6(0.6x0.6-1)
24

(—.000289 - .000273)

x.000016

= .559193 + .034698 — 000491 + .000018 +.000000
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68 Numerical Analysis with C++

(i) Bessel’s Formula
Substituting values in formula (3.6(a)), we get,

f, = 559193+ 0.6 x 056468 + 25 —1)

0.6(0.6- 1)(046 - %)
LS

(-.002725 - .002998)

X -0,000273
+ 06+1)06(06-1)06-2) 0'6(‘:: =0005-23) 00016+ 00do10)

= .559193 +.033881 +.000343 + .000001 + .000000

(iii) Everett’s Formula

q=1-6=4 ‘
Substituting values in formula (3.7), we get,
f, =0.4x 559193 ""(""‘% x - 0.002725
i A4(4x4-1)(4%x.4-4) ) 16
20
+.6%0.615661 +M X -0.002998
i 0.6(0.6x.6-1)0.6x.6 — 4) A s

120
= .223677 +.000153 + .000000 + .369397 + .000192 + .000000

(iv) (a) Gauss Forward Formula

Substituting values in formula (3.8), we get,

6(0.6-1)
2

f, =.559193 + 0.6 x .056468 +- x - .002725

5 0.6(0.6+1)0.6-1) e

A (.6+1)x0.6(.6—l!0.6—2! e

24
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= .559193 + .033881 +.000327 + .000017 + .00000

(b) Gauss Backward Formula
Substituting values in formula (3.9), we get,

f, =.559193 + 0.6 x 059193 +i(0-'g—+l) x—.002725

H 0.6(0.6+ 61)(0.6— 1) s

b 0.6(6+1)(.6-1)0.6-2)
24

= 559193 + .035516 + .001308 + .000018 + .000000

= 0.593419

x.000016

——
35 LAGRANGE’S FORMULA

It was mentioned in the previous sections that difference table could be used for
inerpolation, but this was restricted to the case of function values at equidistant intervals.

To introduce the basic idea behind the Lagrange’s formula, consider the
fdlowing:

Given the data points X,, X,, ..., X, (may or may not be equidistant), the
problem is to find an nth degree polynomial f(x) using Lagrange's formula.
Lagrange’s formula can be derived by writing:

fx) = Al =X ) (X=X3) i (X =X5)
v +A,(x—xo)(x-x,)...(x—xu)

+ A,(x—xo)(x—x,)...(x—x_)
* A,'(x—xn)...(x—x,_,)(x—xi_,) i CX=%)

4 # AL (X=X (X=X,) ... (X=X,;) 1 (30)

where Ay, A,, ..., A, are unknown constants.
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Numerical Analysis with C++
If we substitute x = Xq in (3.10), we get.

f(Xo) = Ag(X, =X, )Gk X5 ) 0 T X
Aiim f(x,)
("n‘x:xxo‘xz)“'(xo_xu)

Similarly, substituting x = X, x = x,,

.. X=X, respectively in (3.10), we get,

l
VAL f(x,) '
Gl TR, ey ey
e f(x.)

{%; ‘xoxxz‘xl)“'("z =)

o f(x

" (x, = %o )X, —x,) -X,)

Substituting the values of A,, A,, ..., A, in (3.10), we get the following
formula due to Lagrange:

peh (X-X;)(X-Xz)'“(x‘xn) %
hohs % —X.)(Xo-xz)'“(xo _xn)f( )
(x—xo)(x—x,)m(x—x,,)
(xl =o)X, 'xz)"'(xl ‘xn)f(X])

(i dh )i o
uﬂm—mvrnm”

ik
(x -Xo)(x _xl) (xn_xn-l)

(x,) ‘..(3.11)\/

It is obvious that (3.11) is a polynomial of degree n and can be written as:
f(x) = Ly () f(xo) + L,(x) f(x,) + L, (x) f(x,) +

It can be concisely represented as:

fx) = gLi(X)f(x )

. %+ Lo )1(x,)

*
.. (3.11(a))
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of X=X, it
where L, (x) = ITi L
i\ X, —X;
30
j#i

Another form of this formula is:

fx) = Z[H[ XX, j}f(x‘) ...(3.;1(b)‘l\

i=0 j:? X~ X

The basic formula, apparently due to Waring, is associated with the name of
Lagrange. This is one of the more practical and simpler method to be used on computer;
but difficult for hand calculations if data points are more. Evaluation of error is also not
easy. It is meant for equispaced or unequispaced data.

Example 7 (a) Fit a polynomial using Lagrange's formula to the folicwing data:
(1,4), (3,7, (4,8) and (6, 11).
(b) Use the polynomial to estimate a value for x = 5.
(c) Write a computer program to impl Lagrange's formula.

Solution (a)  The data-points are:
X il 3 4 6
i | 4 &7 8 11

Inserting values in Lagrange’s formula, we get,

(x—ZXx—4Xx—6)X4L(x—lXx—4Xx—6)x4

1-31-4)Yi-6)  (-1)3-4)3-6)

(x—l x—3Xx—6) x-l)(x—3Xx—4

= 'l—:(&’ —13x? +54x—72)+%(x3 —11x? +34x - 24)

f(x)=

:
+:6§(x’ -10¢? +27x—18)+;—:)-(x’ —8x? +19x-12)

= L (x? - 21x? +103x + 36)
00
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®) The interpolated value at x = 5.is as follows: v

()= %(ns’ - 21x5? +103x5 + 36)

= Lyazs =9
30

(&)  Program No.3 LAGRANGE’S FORMULA

# include<iostream.h> 2
# include<iostream.h>

void main (Void)
{
float tabie| 10][2], xp,temp,ans=0.0;
int no, y=0,a=7,i,j;
cout<<“How Many ValuesOf X : ;
cin>>no;
cout<<“\nEnter The Values Of X and f(x)\n”;
cout<<\n\t  x | f(x)";
cout<<*\n\t: S

for(i=0;i<no;i++) // Input of X & Fx

{
gotoxy(11,a);
cin>>table[i][y];
gotoxy(21,a);
cin>>table[i][y+1];
at+t)

}

cout<<“\nEnter The Value Of X :
cin>>xp;

for(j=0;j<no;j++) " calculation of formula
{
temp=1;
for(i=0;i<no;i++)
f(it=j)
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temp*=((xp-table[i][0] / (table[j][0}-[i}[01));

ans+=temp*table[j][1];

}
cout<<"nANSWER = : <<ans; /loutput
}

Computer Output

How Many Valuesof X: 4

Enter the Values of x and f(x)

f(x)

—00 3 &

oA W

Enter The Valueof X : 5§

ANSWER 10192

3.6 hTERA’l‘IVE[NTERPOLATlONMETHOD I

Like Lagrange's method, this formula is also more suitable for computer
application and its use is also not limited to only uniformly spaced data. The iterative
interpolation process is based on the repeated application of simple (linear) interpolation
method. This method is due to Aitken. i

Consider the following data points (equally or unequally spaced):

_'Xl Xey X, X, X, X
vf(x)l f, fi £ £ £

In order to estimate the value of the function f corresponding to any value of x,
we proceed as follows:

Let  f, =f(x,)
f, =f(x,)
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f, =f(x,)

f, =f(x,)

also let f(x | X4, X,, ..., X,) denote the unique polynomial of degree n coinciding with
f(x) at X, X, .00y X,

x| x,)=1(x,)

RS 0 b oS
o) fix| x,, X)) = ———
et ) SRRy
N s S DR
—x,—xux—x, f, L

R X=X —-(x-x
= Gy xaf G- x)n)

1
X2 =X

L & £
f(x| Xq» X;) = 0 et

£ Seb GRS

= 1 =X AR etc.
—m{(" o)z =(x=x,)f,}, et

B 1 X=X, 4k xq, X
st o Eh mx—xI f((xllx'J xl)J
-3 1 2 0 X2 il
0o 1 A% f(xlxu'xl)
falxo,xl'x’)_(x,—x,)x—x, fx | X, X4
2 1 X=X, f(xlxn-xl)
and f(xlxo.x,.x,)_(x‘_XI)x_x‘ R
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denote polynomials of degree < 2 that pass through the four points (X4, fo), (X;, f,),

Xy ©o dal et £ O f2 ) and (X ). (x,, ). (x,, f,), respectively,
) R - S fx | xg, %5 %
whereasff(x | Xo, X;, X5, X3) = % ( l LA
X3 =Xy X=X, f(xlxo,x,,xg)
denotes olynomm o aegm S O ON

Continuing the above process, we can develop the interpolating polynomials to
an! ot

1 X — X3 f(xlxo'xwxv":a)
XX 5 Xy Kigh K s RVE Tt Ty g
e s | SN (e
x| ) 1 PO G 10 b o B R
R ks X Ry X5) B oty
gk (xs =x3)Ix = x5 F(x | X0 X,0 X5, X5

The following table illustrates the arrangement of the work needed to construct
00 | Ko X veg Ko

f(x |xq)
fix|x,) f(x|xq,%,)
fx|x;)  fx|X0sX2) (x| xq,%y,X3)

fxfx3) A PRgeXRs) X 1X g Xy Ky) FKIXgs X1 Xg 0 Ks)

fx[Xe)  fXIX01Xa ) f(x [XgyX)0Xe) FOX|XgX)1Xg0X)" o+

The tabular values are g d ise (or col ise). Since the current
value are generated from the previous values that is why this method is often called the
iterative interpolation method and also named as Neville’s formula, The rightmost
value In the table is the required value of interpolation.

Example 8 (a) Using Altken's iterative scheme, find the value of log 4.5 from the
following values: d —
o R Y
f(x) | 0.60206 062325 064345 066276

program to impl Aitken's method.

(b) Writea
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Solution (a) x=45

Aitken’s table is as follows:
Xo=4.0 X-Xg=.5  0.60206

X, =42 X=X =3 0.62325  0.65504
X, =44 x-x,=.1 0.64345  0.65380  0.65318
X;=4.6 X—xy=-1 066276 0.65264 0.65324

1
(7‘1 "xo)
et

" (42-40)

xxp B xp)
x-x, f(x]x,)

fix| xqs X;)=

5602
3 62325

_ (5x.62325 - 3x.60206)
b 02

_ (311625 -.180618)
= 02

=0.65504

1
sl T
0

x=x,  f(x|x,)

x-x,  f(x]x,)

g 405I usﬁj
o 1321725060206 _ ; <s3g0

04

1

)

iae 405\- 1 .66276]
i j.&x.eéz76+.lx.602062

06

- 133138 - 060206
06

x=x, f(x|x,)]
x=xy  f(x]x,)

=0.65264

0.65321
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1
f(x] Xgs Xpy X3 )= (——x_)

X=X, f(x|xu.x,))‘

T SR L

iR 3 65504
~ (#4-42)|-:1- 65380
_ (3%.65380-.1x.65504)
3§ 02

i L_‘?ﬁk%ﬁ;“) = 065318

X% ROl xgi%1)

1
(x| xg» X5 xQ:m
3 1

3 65504
-1 .65264

XXy i brul Xy

4 (.1957920—4.065504) e

X=X, f(xlxmx'lvxz)

1
(x| Xps Xps X349 X3) =
Te o M Mt ( XXy £(x| X1 %), %)

X3~ %)

£ ik 1 65318
Zo.zi -.1 65324
& :195324 - .065318
0.2
The rightmost entry in each row in the table gives,

=0.65321

(45| %o %) = 065504
248 Tha %00 X4) = 0.65318
(45| Xos Xyy X3y Xy) = 065321
Itis seen that log 4.5 = 065321, which is the anticipated answer.
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(b) Program No. 4 Aitken’s Method

# include<conio.h>
# include<iostream.h>
# include<complex.h>
# include<stdio.h>

void main ()
{
clrser( );
float x[10],f[10],r[10][10],diff[ 10],xp;
int ij,l,m,n,pk.y.z;
double term1,term2,term3;
cout<<"n\t\t\t Aitken Method\n\n";
cout<<"Enter the number of X data
cin>>n;
cout<<"Enter value of xp
cin>>xp;
for(i=0;i<n;i++)
{
cout<<"Enter value of X[“<<i<<"]\t"™;
cin>>x[i];
difffi] = xp - x[i];
}

cout<<"\n\n\nGiven the values of function\n\n\n";

for(i=0;i<=n-1;i++)
{
cout<<"Enter value of F(“<<i<<")\t";
cin>>fi]; d
)
for(i=0;i<=n-1;i++)
{i)[0] = f[i];
for(i=0;i<=n-1;i++)
{
for(j=0;j<n-1;j++)
{
terml = diff{i]*r(j+1](i];
term2 = diff{j+1)*r[i)(i];

term3 = x[j+1] - x[i];
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if(term3 1=0)
t{j+1][i+1] = (term1 — term2)/term3;

)
}
y=13;
clser();
gotoxy(3,5);
cout<<" Implementation of Aitken’s Method\n”
for(i=0ji<=n-1;i++) /Noop to print the value of x differences
{
y=i+13;
gotoxy(5,y);

iosflags(ios::fixed)<<setiosflags(ios::showpoint) precision(5)<<x[1];

gotoxy(15,y);
cout<<"\t"<<setiosflags(ios::fixed)<<setprecision(5)<<diffli];

p=0;
m=25; ,

k=13;
for(i=0;i<=n-1;i++)

k=i+13;
for(j=pij<=n-1;j++)
{

gotoxy(m,k);
iosfl fixed ision(5) (10)<<r(j](i);

k=k+1;
}
p=p+1;
m=m+11;
}
z=0;

for(y=0;y<n-1;y++)

z=2+1;
cout<<'\n\n\n\tAtXp="<<setw(15) iosflags(ios::fixed precision(3)<<xp”
function value is\t™ iosflags(ios::fixed) precision(5) (15)<<r(y)(z]);

getch();
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Computer Output

Aitken Method
Enter the number of X data : 4
Enter value of xp : 4.5
Enter value of X[0] 4.0
Enter value of X[1] 42
Enter value of X[2] 4.4
Enter value of X[3] 4.6

Given the values of function

Enter value of F[0] .60206
Enter value of F[1] 162325
Enter value of F[2] .64345
Enter value of F[3] 66276

Implementation of Aitken’s Method

4.00000 0.50000 0.60206

4.20000 0.30000 062325  0.65504

4.40000 0.10000 064345 065380  0.65318

4,60000  -0.10000 066276 0.65264  0.65324 0.65321
At Xp = 4.500 Function value is 0.65321

37  ERROR ESTIMATION IN INTERPOLATION

So far, we have studied several formulas for ion. The basic principle‘in
all these formulas is the approximation of a polynomill 80 that this polynomlll passes
through the set of points in a given table.

Thun-grln-n‘ latlon process Is Introduced by several

(a) The truncation error due to terminating the serles at the term in, say, the nth

differences.

(b) The round-off errors In the function values and resulting errors in the

differences causing oscillation In the differences.

(¢) The round-off errors in the individual terms of the formula and their sum.

(@)

Inaccuracy, usually due to rounding-off, in the given value of p.
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We can estimate errors in any of the interpolation formulas from the first
neglected term. However, we conclude this section by computing the error estimates in
Newton’s forward and backward difference formulas.

3.7.1 Error in Newton’s Forward Difference Formula

If the function y = f(x) is known explicitly, the remainder term in case of the
nth-order forward difference formula is as follows:

h o+l

(n+1)

E= plp-1)-+(p-n)f*" (z) . (3.18)

where xo <Z < X,.

If the function is specified by tabular values, the error is given by the following
relation:

E= M—l)&"f By o)

(n+1)

What can be done if the next term (i.e., (n+1)st) is not available? In this case, check if an
additional point is available on the other side, namely f_, . If it is available, A™'f_, can

be computed and used as an approximation for . g 8

Example9  Given f(x) = &*, for x = 0(0.1)0.5 correct to 4 dp.

i)  Make a difference table and interpolate f(.175) using Newton's forward
difference formula.

ii)  Calculate the actual value of ¢* for x = 175, Find the error in both the results.
iii)  Use the formula (3.12) and estimate the error,
iv)  What discretization size should be used if the entries are given to 6 dp?

Solution i) Difference Table

X f(x) = e* A A? A A
00 1,0000
1052
0.1 11052 110
1162 13
02 12214 123 -2
1285 u
03 13499 134 s
g 1419 16
04 14918 150
1569
0.5 1.6487
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xp=0.175; h=0.1; x,=0.1

G5 (0.175-0.1) S
Ot
Using Newton's forward difference formula (3.2), we get,
f, = 1.1052+0.75 x 1162 4 2775 1y o123
/. 0.75(0.75 —6 1}0.75-2) Gy
i 0.75(0.75 - 1)0.75 - 2)(0.75 - 3) T
24
= 1.1052 + 0.08715 - 0.0012 + 0.00004 — 0.00001

[}

1.1912
ii)  Truevalue, e*= ¢'” = 1.1912

Error = True value — Interpolated value

=1.1912-1.1912=0

i)  x,=01; p=075 h=0.1

Xs =0.5, f(x)=e*

The fifth derivative is £ (x) = e*.

The maximum value , f (x) = ¢* = 1.64872

B=2plp-0-200-3(p-4) 10

- 0.75(0.75-1%0.75 - 2)0.75 - 3)(0.75 - 4)
: 120
=0.0138411 x 0.00001 x 1,64872 = 0.0000002

x(1)° x1.64872

iv)  Tokeep the accuracy less than %xm“. h should be:

ki [P(P'l)(P l—a;‘);;n-a)(p—o" 1.641872]*
4 [o.oooooomzo]* _[ 000006 ]i
Tesgr2xi139] " | 28257412

= (212333x107 } =01163
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3.2 Error in Newton’s Backward Difference Formula

If the function y = f(x) is known explicitly, the remainder term in case of the
nth-order backward difference formula is as follows:

- +1)'p(p+1)(p+2) (p+n) £ 2) .. (3.14)

where X,<Z< X,.

If the function y = f(x) is not known but is specified only by tabular values, the
ermoris given by the following relation:

Es= MML)V”W (318

(n+1)!
Let us illustrate this method with an example.

Example 10 Given f(x) = sin x, compute the values of f(x) for x = 0. 1(0 1)0.8 correct _

to 4 dp.

a)  Construct the difference table and interpolate f(.75) using Newton's
backward difference formula. -

b)  Calculate the exact value of sin x for x = 0.75. Find the error in both the
results.

¢)  Use the formula (3.14) and estimate the error.
d)  What discretization size should be used if the entries are given to 6 dp.

Solution f(x) = sin x; n=0(0.1)0.8 radians.
a) Difference Table

X f(x) v s e ] v v
0.1 0.0998
— 989
02 0.1987 -21
— 968 FE—— g
03 0.2955 : %t A 1
S 030 _— 7 —>Lq
04 0.3894 -36 -1
¢ — 903 Ca' 98 - e I
0.5 0.4797 -54 -19
oY | GAY —_— 1 —_— 7
0.6 0.5646 -5 -12
— 796 B — |
X,=07 | 06442 -64
T 1A
0.8 0.7174
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x,=0.75; h=0.1; x,=0.7

X, =X _0.75-0.7
h 0.1
Using Newton's backward difference formula (3.4), we get,

=05

p=

f, = 0.6442 + 0.5 x 0.0796 +% x0.5 (0.5 + 1) x —0.0053
* % x 0.5 (0.5 + 1) (0.5 +2) x 0.0001

+ -2-1-4- x 0.5(0.5+ 1) (0.5 +2) (0.5 + 3) x —0.0019

= 0.6442 + 0.0398 - 0.00199 + 0.00003 - 0.000052
= 0.68199
() f(x)=Sinx
=8in 0.75 = 0.68164 b
Error = f, - f(x)
=0.68199 - 0.68164 = 0.0035

© f™x)=sinx
f¥(x) = cos x

Maximum, f (x) = f(0.1) = 0.9950

p(p+1Xp+2)(p+3 (p+4) £V )

(n+l)‘

“) xos(os+1)(os+2)(os+3)(05+4)x09950

x(o 5X1.5)(2.5)3.5)(4.5)x0.9950

120
= 0.00000245
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d) E= %xlO" = 0.0000005

From the error formula, we get,
1

Ex120 s
" [p(p+1xp+zxp+a)(p+4)xfw<x>]

S 0.0000005%120 $
0.5(1.5)(2.5)(3.5)(4.5)x 0.9950

= (0.000002041)¢ =0073

PROBLEMS -
1.(a) Show that a curve y = f(x), where f(x) is of the fourth degree, can be drawn
through the points given by:
b3 -1 0 1 2 3 4 b
(x) i | 13 3 1 34 148 408

Use Newton's forward difference formula to find y exactly when x = 1.2.
(b) Given the following data:
x -4 -2 0 2 4 6
fx) | 180 0 4 0 40 504
Use Newton’s forward difference formula to find f(lJS).
(c) Consider the following table of values:
T T
f(x) I 02304 02788 03222 0.3617 03979
Find £(0.36) using Newton’s forward difference formula.
(d) _ Prepare the difference table for the following data:

o b N
R TG R ST TR

Using Newton's forward difference formula, interpolate the value for f(-.05).
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(e) Prepare the difference table for the following data:

LA B ) 0.2 04 0.6 0.8
f] o012 o046 o0m 0.9 12

Find the value for f(0.1) using Newton’s forward difference formula.
(f)  Generate the difference table for the following data:

sl 50 22 24 26 238 3
f [ 0301 0342 0380 0415 0447 0477

Hence estimate f(2.15) using Newton's forward difference formula.

2.() Use Newton's backward difference
(1.45) from the following data:

% 1.0 1.1 1.2 13 14 15

fx) [ 20 21 23 27 35 45
(ii) Use Newton’s forward difference formula to find f(1.05) from the above data.
(iii) Consider the following data:
x =1 =075 <050 ~025 0 0.25
f(x) | -0.4401 0.0447 04311 06694 0.7652 0.7522

formula to estimate the value of

0.50 0.75 1
0.6714  0.5587 0.4401

(a) Use Newton’s forward difference interpolation formula to estimate f(~0.33).
(b) Use Newton’s back diff i lation formula to esti 1(0.62).

) The following table of values represents a polynomial of degree n < 3. It is given
thnlhcr_eismermrinoneofthe!ahuhrvllmuff(x)neartheendoftheuble.

x. o oL Vg ae o
10520007 211 228 385 2ba
(a) Locate the error and correct the value.

(b) Reconstruct the difference table and estimate (0.35) using Newton’s
backward difference formula.
3.(a) The values of a low degree polynomial are given in the table below. It is
suspected that there is a transposition error in one of the values. By differencing,
locate and correct the error and find 1(2.5):

R 3 4 5 6 7 8 9 10

f) [ 15 40 85 165 259 400 585 820 11il
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b)

4.()

(ii)

5.(a

b

©

One of the functional values in the following table contains an error:
x| 20 2.1 22 y 1< M 25, 36 2.7

f(x)]l.4l42 1.4491 14832 15160 1.5492 1.5811 ' 1.6125 1.6432

i) Detect and correct the erroneous term and then reconstruct the difference
with the corrected functional value.

i) Find £(2.05) using Newton's forward difference formula. ‘
i) Find f(2.65) using Newton’s backward difference formula.
Using Stirling’s interpolation formula, find f(3.25) from the following data:
0l 2 3 4 5
f(x) [ 00000 0.6931 '1.0986 13863 16094

The following table gives the value of p, of a polynomial of the fourth degree
for certain values of p, :

Rids 6 7 8 9
p, | 6195 SO 5630 5326 5006

Estimate the polynomial using Stirling’s formula when x =7.5.

Given the following table:
X f(x)
0.01 98.4342
0.02 48.4392
0.03 31.7775
0.04 23.4492

005 184542 3 e

Estimate the value of f(x) corresponding to x = 0.0341 using the following
formulas:

4
(i) Stirling (ii) Bessel (iii) Everett and (iv) Gauss forward and backward.
Consider the, following table of values:

xi platieni vl 20020 2l (526128 . 30
f(x) | 0495 0605 .0739 .0903 .1102 .1346 .1644 2009

Find the valués of f(2.35) and f(2.2) using all the central difference formulas you
have studied.

Use the following table of current i against deflection, 6:

on i a8 805 8 60 68
i [ 1268 1449 1639 1839 2052 2281
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to find i, when 8 = .536, from the Stirling and Everett formulas. Check the
answer using Newton’s forward difference formula.

(d) Consider the following data:
x l 1.0 11 12 13 1.4 1.5 1.6
f(x) ' 1.54308 1.66852 1.81066 1.97091 2.15090 2.35241 2.57746
Find the value of f(1.35) using:
(i) Stirling, (ii) Bessel, (iii) Everett, and (iv) Gauss both formulas. !
(e) Consider the following data: '
o 12 14 16 18 20
f(x) I 0.367879 0.301194 0.246597 0.201897 0.165299 0.135335
Find the vaiue of f(1.675) using: %
(i) Stirling, (ii) Bessel, (iii) Everett, and (iv) Gauss both formulas.
() Kinematic viscosity of water, v, is related to temperature in the following
manner:
TCH| 40 50 60 70 80
v | 166 7 TR v 1.06 093
Use a suitable interpolation formula to predict v at T = 62 °F.
(8) You measure the voltage drop v, across for a number of different values of
current i. The results are: 4
Tl 0230 075 1.25 175 2.25
v | -023  _o03 om0 1.88 6.00
Use a suitable interpolation formula to estimate the voltage drop for i =0.9.
6. (a) ﬁnd f(x) at x = 1, from the following table using Lagrange’s formula:
el 0 2 3
x| 6 10 12 19
Use a suitable interpolation formula to esti the voltage drop fori =0.9.
(b) Fit a polynomial to the following data:

(-4, 180), (~2,0), (0, 4), (1, 0), (3, 40) and (5, 504).
Use the polynomial to find a value for f(2.4).
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©)

(G}

()

®

®)

(h)

@

]

x :

Fit a polynomial for the function f(x) = —2—-, for x = 2, 4 and 8. Use this
X

polynomial to estimate f(6).

Given the following table of values:

i e el 53 !
y | 687 640 440 391
What is y(27)?

Use Lagrange's interpolation formula to obtain a polynomial of least degree that
assumes the following values: ;

Xl ke ige B g

PRR R e R

Use the polynomial obtained to estimate f(4.5). Chock the answer using
Newton’s backward difference formula.

The function y = f(x) is given in the points (7,3), (8, 1), (9, 1) and (10, 9). Find
the value of y for x = 9.5 using Lagrange’s interpolation formula.

Use Lagrange’s formula to estimate f(2.0) and f(4.5) from the following data:

i) rer 29 a9 48
f(x) | 0.6250 03448 02703 0.2083

Given the following data:
L R
O AT A

)

Find £(7) using Lagrangé’s formula. i
Let f(x) = 82—: Fit a polynomial for the function when x = 0(1)5. Estimate the
value of £(1.5).
Given the points:
(x;.£,): (0, 1) (1,.765 198), (2, .223891), (3, - .260052).

(a) Find the Lagrange’s i lati jal p, (x) for the given data set.

P

Use the polynomill to approximate f(1.5).

() Find the Newton's interpolation polynomial py (x) for the given data set.
Use the polynomial in (a) above to app i (1.5).
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(k)  Given the points:
(x;,£,):0, 1), (.25, .9689), (.5, .8776), (.75, - .5403).
(a) Find the Lagrange’s interpolation polynomial P (x) for the given data set.
Use the polynomial obtained to approximate f(.6).
(b) Find the Newton's interpolation polynomial p, (x) for the given data set.
Use the polynomial obtained in (a) above to approximate f(.6).
() FindtheL ge’s interpolation pol. ial to fit the following data:
xilio 1 2 3
fx)| 0 17183 63891 19.0855
Use the polynomial to es'.i.mnu_ its value at x = 1.5.
(m) Applying Lagrange’s formula, find a cubic polynomial which approximate the
followiing values:
y(1)= -3,y(3) =9, y(4) =30 and y(6) = 132.
Find also the value of y(4.5).
7.(a) Esti the interpolation pol i forf(x):x’+sinm(hrough(0.0).(l.l)
and (2, 4), using Newton’s forward difference formula at x = 0.5,
(b) What is the exact error when x = 0.5?
(c) What is the maximum error in (a) above?
(d) Find the largest value of h that will ensure 4 dp accuracy in the value of f(x),
ing quadratic interpolation is used.
8. Consider the following table of values:
T e 2 3 4 i
f(x) | 1.0000 14142 17320 2.0000 22361
' (@) Use Newton's forward difference formula to estimate f(1.5). Using third-
order interpolati i also the i error.
(b)  If we are known that f(x) = v/X_, what is the error in this case? Find also
the maximum error.
(c) Find the largest value of h that will give 6 dp accuracy in the value of x,
ing third-order i ion is used.
9.(a) Use Aitken’s formula to esti f(0.2) as ly as possible from the
following rounded values of f(x):

x | .7520 25386 33565 42078 50946
f) | 84147 86742 89121 91276 93208
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Use Aitken’s formula to estimate f(1.4) correct to 4 dp from the following data:

X | 1.20 1.25 1.30 1.35 1.45 1.50
f(x) | 0.1823 02231 0.2624 03365 03716 0.4055

Use Aitken’s formula to estimate f(5) correct to 2 dp from the following data:

Xitshi ol 4 7 9
x| 2 18777 /122 504

Use Aitken’s method to evaluate log 3.63 from the following table:

Xkl ais0 3.60 3.70 3.80
logx | 12527632 128093 130833 133500

. Calculate the values of the function

Consider the function, f(x) =———
) = e

correct to 4 dp, for x = 0.2(0.2)1.0. Estimate the value of f(0.55) using Aitken’s
method.

Consider the following table of values:
R e 0.1 03 0.5 07 . 09"
f(x) | .7196 .8075 .8812 .9385 9716 9975

i) Use Newton's forward difference interpolation formula to estimate £(0.25)
using upto fourth-order differences.

ii)  Find the maximum error.
Consider the following table:
S 4 6 8 1
fx) | 19951 39646 58813 72210 -.94608
i)  Find the value of f(0.3) using Lagrange and Aitken's formula.

i)  Use Newton's forward difference formula to estimate f(0.3) using upto
third-order differences. Find the maximum error.

Consider the following part of a difference table:
X fx) 8 5? 8 5
6 1296 ; 7
ey 39600 — 1344
8 4096 e 3104 — 384
. 5904 s 108
10 10000 ;

Compute f(9) using Stirling's formula for interpolation.
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(b) Given the following part of a difference table:
x% b iSmix) 3 8’ 5 8*
25 | 0422618 s -3216 el 28
77382 —_— 590
30 | 0.500000 (G - 3806 U P
Estimate f(26.5) using Bessel’s formula for interpolation.
12. Using table values of Q.5(d) above, do the following:
(a) Estimate the value of f(1.425) using Newton’s backward difference formula
with fourth-order differences.
(b) Compute the maximum error.
18; Using tabular values of Q.5(e) above, do the following:

(a) Use Newton's backward difference formula to estimate f(1.90) with fourth-
order differences.

(b) Compute the maximum error if the tabular values are based on the function
f(x)=e™*.

(c) Compute the largest value of h that will give 7 dp accuracy in the value of x,
assuming the same order of interpolation as used in (a) above.
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Chapter 4

Numerical Differentiation

41 INTRODUCTION

Numerical differentiation is useful in estimating the derivatives of a function
f(x) when either f(x) is very complicated and is difficult to differentiate easily, or, it is not
Kknown as explicit expression in x, but the values of the function are given in a tabular
form. We use numerical differentiation only when there is no better alternative method
available to compute derivatives analytically or when the analytical solution is rather
complicated. Generally, it is considered that numesical differentiation is basically an
unstable process which means that small values of h can lead to greatly magnified errors
in the final result. In fact, we may not always expect reasonable results even when the
original data are known to be accurate. In actual practice this operation is avoided
altogether if possible because it tends to enhance the effects of rounding errors present in
the tabular values. This is particularly true when the f(x, ) values are themselves subject
to more error, as they would probably be if determined experimentally. If derivative
values are computed in such cases, particularly when the results are to be used in
subsequent calculations, it is usually better to consider curve fitting, using least-squares
technique and differentiate the formula for the curve.

In this chapter, we shall derive some formulas for estimating derivatives. In spite
of some inherent sk ing! ical iation is useful to derive formiulas for
solving integrals, ordinary and partial differential equations. Standard examples of
numerical differentiation often use known functions so that the pp!
can be compared with the exact answer.

42  DERIVATION OF DIFFERENTIATION FORMULAS

Formulas for numerical differentiation may easily be obtained by differentiating
Interpolation polynomials.

In order to derlve a differentiation formula, we differentiate a sultable
interpolation formula with respect to p.

We shall write, x = X+ ph. Differentiating this w.r.t.p., we get,
dx

—m h

dp
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PG @D
dp h

Also, f, =f(x)=f(x,+ ph) ... (42)

Differentiating (4.2) w.r.t.x., we get, ¢

dE
—L = —f(x,+ph
dx dx (oot
L (Note the step.)
dp dp
14
= — —f(X,+ ph
hdp Sibac)
1df,
" hodp

o s %
Denoting T by f, , we get,
P

d
gty . (43)
P hdp

43  RELATIONSHIP BETWEEN OPERATORS E AND D

Before proceeding further, let us define one more operator D, called the
differential operator,

Df, = f*(x,)=f/
Taylor series may also be written in the following manner:

h? b’
far+)=f@+hf’ (r)+ -2—lf'(r)+ if'(r) ¥4,
R e
of | fiym f,+hf, + F" + EI-f" Wit

h!

t]
e 1
3'D +

hI
= f,+hDf, +-iTD’ f, +
h? h’
Ef, =(t+hD+-—=D’ + —D’ + .)f,
21 31
= e™f,

or, simply, E= e o (44)
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44  DERIVATIVES USING NEWTON’S FORWARD DIFFERENCE
INTERPOLATION FORMULA

(a Elementary Approach (Using Interpolation Formula)
First-order Derivative
Newton'’s forward difference formula (3.2) is written as follows:
1 1
f, = f, +pAf, +E(p2 —p) A%, + E(p3 ~3p® +2p) A,

+-L (o —6p® +11p —6p)A*f, +--
24
Differentiating this formula with respect to p, we get,
daf 1 1
—L= Af +—(2p-1)A*f, +=(3p® -6 p +2)A’f,
dp°2(p)°6(p P)n

+-le(4p’ —18p? +22p—6)A'f, + ...

. df
Since, f; = % d—" , we get the first derivative as follows:
P

f = HM‘, +%(2p-l)A‘fo »f%(spz ~6p+2)A%,
3

+é(2p’-9p’+llp-—3)A‘f°+~~-} .. (45)
Higher-order Derivatives :
The method can be extended to find the higher-order derivatives. Differentiating
(4.5) w.r.t.p., we get,
=188
" hdp

= h—l,{A’fo +%(6p—6)A’fo +$(6p’ ~18p+ 1A%, +}

= hi,{A‘f, +(p-1)a%, +%(6p1 ~18p+11)A%, +} oot (46)
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dfy
Similarly, £7 = - =2
h dp
= # INA +%(ip2 -S)A‘f‘7 +} ST
The same procedure can be repeated to late the derivatives of any order.
Special Cases
Formulas for derivatives when
@ p=0
S 1 1 1
fi= E{Af,, —EA’f,, +5A’t‘o —:A‘f, +}

fo = h’ {A’f, -A'fy+ —A‘f,, }
b2y 3
i =;,—{A’f,,—;A‘f,,—---}

@ p=3

1 1 1
fl = —{ Afy —— Ay +—A'fy — -
1 h{ 0~ 52 n+uAf., }

: 7

f% o {A’f, ——A’f, +?A-A‘f,, }
a

fi» F{A’f., Y pel

(b)  Derivatives Using Difference Operators

First-order Derivative
We can also derive the above formulas using difference operators.
Since, e™ =E = 1 + A, taking logarithm of both sides, we get,

hD = log (1 + A).
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Expanding the right hand side, we get,

2 3 4
AN A
2 3 4
2 3 4
D= l A—A—+A—_A_+
h 2
1 AZ AJ Al
or, Df, = —{A——+4———+ 2
i h{ 251 g o !
Since, Df, = f;, we can write the above as follows:
PR | 1 )§ 1
fy = ;{Afo —EAlfo +§A3fo —IA‘fo +} ... (4.8)
Higher-order Derivatives

f7 = Df, xDf,

4 ofl AR R
S £ :
h’{ I o ?
- %{A’f‘, -, +:—;—A‘f° + } . (49)

fg = Df, xDf, xDf,

h—',{A’f,, —%A‘fo + } ) ... (4.10)

The rest of th: formuln in dus chapter will be derived using the elementary
h (i.e., using interp

PP

It must be ized that ical differentiation is subject to bl
mulllhmslduhobcndedthlllllﬂme las involve divisi ofl ibination of
differences (which are prone to loss of significance Ilati pecially if h

hlmnll)bylpoudvepowuofh.Comequmv.ly.ifwewmtwmduceﬂwmnd-oﬁ
emwethwldnullmvdueofh.lnhhflnrgseﬂmnuyoocurlnnumeriul
dlffmﬁudon.hndondhwpolynomlﬂ Approthdou. nothn-nemcheck is
always advisable. There are jals, which use more
sophisticated procedures such as least-squares or minl-mu. and other alternatives
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However, the best

ing other basis functions (for le, tri ic fu

poh:y is probably to use numerical dnffmumon only when it cannot be avoided!

R

le 1 (a) Use the followi ng table of values,
A R o (AT
0 | 2086 24043 27637 31072 34350
to compute, £(.25),  “(:25) and f “(.25).

(b) Write a comp gram to impl the method for computing the
* first two derivatives.

Solution (a) X,=.25 h=05, x, =0.0

_Bo-x) _ (25-00) kg

kS
h
Difference Table .
X f(x) A A* D At
X, =00 | 20286

3757 !

0.5 2.4043 - 163
3594 ° 4

1.0 2.7637 =159 -2
3435 2

18 3.1072 - 157
3278

2.0 3.4350 &

Substituting values of p and the required differences in (4.5), we get,
£(25)= 5 = 15{3757 o -;-(2xo.s -1)(-.0163)+ %bx 5% —6x.5+2)x.0004
+ %(zx.ss -9x.5% +11x.5- s)x—.ooz}
= -15-{.3757 ~.000 -.0000 -.0000} = 0.7514
Subsﬁ(u;ting values of p and the required differences in (4.6), we get,

f (zs)=f'=—5‘—{ 0163+(5-1)x, 0004+—(6x 5%.5-18X.5+11)x— oooz}

)
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- L{.om -.0002 -.0001}
25
= L x(-.0166) = - 0.0664
25
Similarly, substituting values of p and the required differences in (4.7), we get,

£7(25) =17 = %{.ooa%(zx‘s-s)x—‘oooz}

1
= ——{,0004 + (~ = o
st{ +(-.0002)} = 0.0048

It is worthwhile to remember that the derivatives at non-tabular points can be
obtained by extrapolation.

(b) Computer Program No. 5: Numerical Differences

# include<iostream.h>
# include<conio.h>

class NewForwDiff
{
public:
NewForwDiff( );
void input( );
void result( );
void get_1st_der( );
void get_2nd_der( );

: int degree,values,actual _ degree;
float delta[10],xp,p,x[10],fx[10],h;

private:

}

NewForwDiff::NewForwDiff( )
{
clser();
cout<<"“\nMtFROM NEWTON'S FORWARD DIFFERENCE FORMULA\n\n";
P=-2
for(int i=0; i<10; i++)
delta[i}=x[i]=fx[i]=0.0;
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void NewForwDiff::input( )
{
cout<<“How many values you want for x7\t";
cin>>values;
cout<<“Upto what power of Delta:\t";
cin>>degree;
/I degree=degree>4 ||degree<1 ? 4 : degree;
cout<<“\n Value of Xp:\t";
cin>>xp;
for(int i=0;i!=values;i++)
{
cout<<‘“\nEnter X“<<i+1<<”\";
cin>>x[i];
cout<<“Enter F(“<<i+l<<"):\t";
cin>>fx[i];

)

void NewForwDiff::result( )
‘ r
clser();
cout<<‘“\nX\t";
for(int i=0;i'=values;i++)
cout<<‘ M <<x[i];
cout<<endl;
cout<<*AnF(x)\t";
fot(l=0,ll—'vllllu.l++)
cout<<\t"<<fx[i];
cout<endl;
h=x[1]-x[0];
for(int j=O;temp= —1;j<values && (p<0 || p>1); lelnp=j j++)
p=Cepx])/;

coul<<'\nV;lue of P is \t“<<p<<"\n"
1, j=values; actual_degr degree& &j>1,actual_
degree++, _|-)

{
cout<<‘An\nDelta power “<<actual_degree<<":\t";
& for(int k=0;k<j-1;k++)
{

fx[k]=fx[k+1]-fx[k];
cout<<fx[k]<<\t";
}
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 delta[actual_degree-1]=fx[temp];
cout<<delta[actual_degree-1];
) 9
get_lst_der( );
get_2nd_der();
}

: veid NewForwDiff::get_1st_der( );
{ 3
float parray(}={1,2*p-1,3*p*p-6p+2,4*p*p+18*p*p+22*p-6},
div[}={1,2,6,24},
ans=0;

for(int i=0;i<actual_degree;i++)
ans+=delta[i]*parray[i)/div[i];
cout<<*\n\n\nf ’(“<<xp<<”):\t"<<ans/h;

void NewForwDiff::get_2nd_der( );

float parray[}={1,p-1,6%p*p-18*p+11},
div[]={1,1,12},
ans=0;
for(int i=1;i<actual_degree;i++)
ans+=deltafi]*parray[i-1)/div[i-1];

cout<<*\n\n\nf “(“<<xp<<"):\t"<<ans/(h*h);

}
void main (void)
{




102 Numerical Analysis with C++

Computer Output
FROM NEWTON’S FORWARD DIFFERENCE FORMULA

How many values you want for X? §
Upto what power of Delta: 4

Value of Xp: .25

Enter X1: 0
Enter F(1): 2.0286

Enter X2: 5
Enter F(2): 2.4043

Enter X3: 1
Enter F(3): 2.7637

Enter X4: ) -
Enter F(4): 3.1072

Enter X5: 2
Enter F(5): 3.435

X 0 0.5 ok i 3 2
F(X) +2.0286 2.4043 2.7637 3.1072 3.435
Value of Fis : 0.5
Delta Power 1: 03757 0.3594 0.3435 0.3278 0.375
Delta Power 2: -00163 -0.0159 -0.0157 0.0163

Delta Power 3: 00004  0.0002 0.0004
. DeltaPowerd:  -00002 - 0.0002
£ (0.25): 07512

£7(0.25): - 0.066232
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45 |DERIVATIVES USING NEWTON’S BACKWARD DIFFERENCE I

Diffi iating Newton’s back d difference formula (3.3) w.r.t.p., we have,
First-order
daf
e
h dp
%{Vfo ;_(2p+1)v’f, +%(3p1 +6p+2)_\7’f.,
+é(2p3+9p2+llp¥3)V‘fo+~-~} ... (411)
Second-order
df’
fr=——L
dp

Similarly, other higher-order derivatives can be obtained.

Special Cases Formulas for d.erivatives when

i p=0 i
g il JE s et Ry Ja
fo o Vf,,+-2-V f°+3v fo +ZV fo +eor ... (4.13)
T v? 3 4 {
7= = V3, + V3, + 2v fo + e (414)

- 1

@ p= 2
1] = %{vfﬁv’fﬁgﬁr,»f%v‘f, + } o (415)
2
f,; = %{V’f°+%A’fo+§V'f,+ } ... (4.16)
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I Example 2 (a) the deflection f(x) measured at various distances x from one end of a
antilever is given in the following table:

O Q2 G4 W08V OB ) . 10

f(x)I 0.0000 00456  0.1278° 03494 04027 0.4825

Evaluate f ‘(0. ol based on Newton's backward difference
interpolation formula.
(b) Write a comp gram to impl the method for computing the

first two derivatives.
Solution (a) The difference table is as follows:

x fx) . \2 i v? v

0.0 0.0000
455

02| 0.0456
823

04| 01278
2216

06| 03494
533
Xo=08| 04027 R
—

10| 04825

@  x, =08 x,=085 h=02.

(x,—xo) .83 .
Bkl ("_‘zl;“ﬁ eL

= 25
Subsxiuﬁn; values of p and the required differences in (4.11), we get,
£/(.85) = (le{.osau %(o.zsx 2+1)x(-.01683)
+ %(3x.zs’ +6%.25+2)x(~.3076)
+é(2x.25’ +9%.25% +11x.25 +3)x(—.4101)}

= '{0.0533-0.1252—0.1391-0.2170}
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(ii) =1; p=0,
Substituting valués of p and the required differences in (4.14), we g:l,

fg = -0.—21—{0.0265 +0.1948 + EXO.SOZS}

=L x06819
04 :

(b) Computer Program No. 6: Numerical Differentiation

# include<iostream.h>
# include<conio.h>

class NewBackDiff
{
public:

NewBackDiff( );
void input( );

void result( );

void get_1st_der( );
void get_2nd_der();

int degree,values,actual_ degree;
float nebla[10],xp,p.x[10],fx[$0],h;

NewBackDiff::NewBackDiff( )
{ : )

clser();

cout<<“\nANEWTON’S BACKWARD DIFFERENCE FORMULA\n\n";
1 Sia 0

;2'. i
for(int i=0; i<10; i++)
nebla[il=x[i}=fx[i]=0.0;
} .

void NewBackDiff::input( )
cout<<*How many values you want for XN

cin>>values;
cout<<“Upto what power of Delta: "
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cin>>degtee;
/I degreetdegree>4 || degree<1 ? 4 : degree;
cout<<“\n value of Xpi\t”;
cin>>xp;
for(int i=0;i!=values;i++)
{

cout<<‘\nEnter X‘<<i+l<<™\t”;
cin>>x[i];
cout<<“Enter F(“<<i+l<<™):\t";
cin>>fx[i];

)

void NewBackDiff::result( )
{
siser( );
cout<<‘\nX\t”;
for(int i=0;i!=values;i++)
cout<<‘\t"<<x[i];

cout<<endl;

cout<<“\nF(x)\t";

for(i=0;il=values;i++)
cout<<‘\t"<<fx[i];

cout<<endl;

h=x[1]-x[0];

for(int j=values-1,temp= =1;j>=0&&(p<0 || p>1); temp=j,j--)
P=(xp-x[j1)/h;

cout<<*\nValue of P is :\t"<<p<<™\n”;
fi d 1, j=values; actual_d d &&j>1,actual_

degree++, j-)

cout<<*\n\ power * 1_d 50 3]
for(int k=0;k<j-1;k++)
{

fx[k)=fx[k+1]-fx[k]);

cout<<fx[k]<<\t";
)
nehla[lcxual_degree-l]=fx[temp—utulLdew];

get_lst_der( );
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get_2nd_der();
)

void NewBackDiff::get_1st_der( );
{
float parray[]={1,2*p+1,3*p*p+6*p+2,2*p*p*p+9*p*p+11p+3},
div[]={12,6,12},
ans=0;

for(int i=0;i<actual_degree;i++)
ans+=nebla[i]*parray(i}/div[i];
cout<<“\n\n\n\nf ‘(“<<xp<<”):\t"<<ans/h;

void NewBackDiff::get_2nd_der( );

float parray[]={1,p+1,6*p*p+18*p+11},
div[]={1,1,12},
ans=0;

for(int i=1;i<actual_degree;i++)
ans+=nebla[i]*parray[i-1)/div[i-1];
cout<<"\n\n\n\nf “(*<<xp<<"):\t"<<ans/(h*h);
}
void main (void)
{
NewBackDiff obj;
obj.input( );
obj.result();
geteh( );

Computer Output g ;
FROM NEWTON’S BACKWARD DIFFERENCE FORMULA

How many values you want for X? 6
Upto what power of Nebla: 4

Valueof Xp: .85
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Enter X1: 0
Enter F(1): 0
Enter X2: )
Enter F(2): 0455
Enter X3: 4
Enter F(3): .1278
Enter X4: 6
Enter F(4): .3494
Enter X5: 8
Enter F(5): 4027
Enter X6: 1
Enter F(6): 4825
X 0 0.2 04 0.6 0.8 1
FX) 0 0.0455 0.1278 0.3494 0.4027 0.4825
Value of Pis: 0.25
Nebla Power 1: 0.0455 0.0823 0.2216 0.0533 0.0798
Nebla Power 2: 0.0368 0.1393 -0.1683 0.0265
Nebla Power 3: 0.1025 -0.3076 '0.1948
Nebla Power 4: -0.4101 0.5024
f’(0.85): —2.393843
£7(0.85): —27.383205
4.6

FO!

DERIVATIVES USING CENTRAL DIFFERENCE INTERPOLATION
RMULAS

The formulas derived in Sections 4.4 and 4.5 are not very accurate. A relatively
hlgl\er accuracy can be u:hieved if we u:e one of the central difference formulas.
the b

1 diffe

s more

intupohdon formula at the centre of the dm-pcinu are used.

if the derivatives of an
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46.1 icling’: tion Formula
Considering Stirling’s formula (3.5(b)) in a bit different form:

1 1 1
f,=fo +pudfo +5p’ 8’ fo+a(p3 ~p)udf, +§(p‘—p1)5' i

The derivatives are computed as follows:

df
f;=l__’
h dp
1
;{ £, +pdify+ (3p ~1)p8’f, + (2p —p)8f, +- } oo (417)
il s j
= 87, +ppd fo+—(6p ~1)8%, + .. (418)
Special Cases
Substituting p = 0 in (4.17) and (4.18) respectively, we get,
1 1 1
£/ = =dudf, —— 8, +—pdfy —- ... (4
o h{" fo ris o+30!‘5fn (191),
rrwik date o Lgsr s Late 420
(s [Ty o"’%' e .- (420
Exsmple3 The following table gives the coordinates of points ona ccnnirfl Elgomial
curve: !

/
U B N e
y | 0710 1175 181l 2666, 3801 3801 3801

Calculate the radius of curvature p using the following formula:

2)is
b “(z? . at the point x = 0.6.!
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Solution: Difference Table

x y 3 ( 82) 8 m 5°
00| 0710 ot \J
465
02| 1175 171
636 48
04| 1811 219 13
855 61 :
Xo=06| 2666 ey RO — T
uss 76 2
08| 3.801 356 e 17 =
1491 93
10| 5292 449
1940 .
201 135

Xx,=06; h=02; x, =06

(x, = %) _ (06-06)
p=——=2—" =0
h 0.2
Substituting the required values in (4.19), we get,

1o < L [(0855+1135) 1(0016+0076), 1 vo02+0.0on
Y0 2 6 4 30 2

= L (0995 -0011+0.000)
02

1

Substituting the required values in (4.20), we have
1

1
fy = —10280-=xo0.
/s 01,{028 lzxols}

= L x027875 = 6.969
0.04
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g [l+(f‘;)1)l.5

fg
_(1+@9)?)’
6.969
462 Derivatives Using Bessel’s Interpolation Formula,
Bessel’s interpolation formula:
1
f=fo+poty + EEZ0 Be=Y(ger, , 1 ) oo )(p Y.
2.21
N CL2Y).. i) L) PR T
5 R
The above formula can be written in the following simplified form:
1
fy = fo+pbf, afz(pz p)(%f, +6,)+ (p -3p +%p)5’

+%(p‘ —2p% —p?+2p)(6* £, +8°f,) + -

The derivatives are computed as follows:

a
o

f,

<
= -
o
o

+l(zp—1)(5’f° +8%, )"’%(31’1 -3p +'i')8’ fj’.

"
=
§|"‘ o

(2p —3pt—p+1)(8* f, +84£,) + - } R 1T

-
=%
]
s‘.l,_
ale
o

.hl,{%(a'r. +6'f,)+%(2p-l)6’f* +El‘-(67’ - 6p-1)(8*t, +a‘r.)+---}

o (422)
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Example4 Consider the following table of values:

Rlcoat L ingl ol 06 o 08 R0 02
f(x) | 00000 00096 0089 03456 09216 20000 38016 65856

Compute the values of fand f; obtained from Bessel’s formula with x = 0.63.

Solution: Difference Table
x (x) F 52 s 5
0.0 | 0.0000
— 9 .
0.2 0.0096 s 304
— 800 L L 1086
04| 0.0896 = 5 ‘1760 — 384
2 _ 2_560 — 1440
X, =06 03456 w0 3000 e asd
A ey 18
0.8 0.9216 — 5024 27 1384
e (1.} oy 2008
10| 2.0000 R ) AN, 17
ety 18010 2592
12| 3.8016 — 9824
il 127840
14| 6.5856

X,=0.63; X, =0.60; h=02

g (_x,;_xo) o o.esotzo.so e
o fy = 1'(063)= rlz{o.mm{-(zxo.ls -1)(0.3200+0.5024)
+3ax0.15 -3x015+§)(01624)
+ 4y (2x0.15° -3x0.15% +2)(0.0384 +0.0384)}
= é{o.mo-o.nso*o.szz4+é(ope7s -o.zzso)(o.nsu)

+ 7 (0.0068 - 0.06750 - 0.15 + 2) (0.0768)}




= 0—12{0.5760 ~0.1439-0.00479 + 0.0062}

=L 04335 = 2.1676
02

e e :
b= TA0008) = s 2(03200+05024) 2(z><0 15-1)(0.1824)
+ 45 (2x0.15 - 6x0.15-1)(0.0384 + 0.0384)}

= —l—{lonszu -0.35%0.1824 + 5(0‘1350 -0.9000 - 1)(0.0768)]
=

=0l {0.4112-0.0638 - 0.0057} = 7.2600

4.63 || Derivatives Using Everett’s Interpolation Formula

Everett’s formula is expressed as follows:

f,=qf, +%q(q' —l)Slf‘, «1—1—715q(q2 —l)(qz —4)8‘ fo+oo
+pf, +%p(P’ -1)8%f, +$P(P’ -1)(p? - 4)8 £, 4+
Substituting (1 - p) for q in the above, we get,
f,=(-0)fo +-pt-p) ~1}8%%, + o0-p)o-p) 1) -afot s,
+.+pf, +-(p’ —p)s’f, +—-(p’ -p? +4p)5‘ fy 40
= (1-p)f, + ( p’ +3p? - 2p)8%f, +'56( p* +5p* ~5p* ~5p* +6p)8*
+o04pf, +E(p’ -p)&’f, +-l?6(p’ -Sp’ +4p)6‘ f,+
Differentiating with respect to p, we can get the respective derivatives:
{ = -:; —d-f : :
-%{—f, +%(—3p’ +6p-2)8%f, +l—'23(-5p‘ +20p* - 15p* =10p+6)5* f,

+---+f|4+%(3p’ -1)8%, +$(5p‘ ~15p? +4)8* £, +} o (423)
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_L l_ 2 L_ 3 ¢ NS X 4
- {6( 6p+6)8 f°+m( 20p® +60p —30p ~10)3* ,

1 i60)8% +-L (200° —300)5* £, 4-.-
+5(6p)8 f,+m(20p 30p)8* f, + }

=l2{(1 )6 zfo——2(2p o —3p+1)5‘fo

o '-+p62f,+é(2p’—3p)8‘f,+»-~} .. (424)

4.64 Derivatives Using Gauss Interpolation Formula ‘\

Let us consider the Gauss forward and backward formulas one by one.

a) From Gauss Forward Difference Formula
1 1
f,=1, +p6f% +E(p’ —p)&’f, +g(p’ —p)&’ f%

+%(p‘ -2p’-p? «9-2p)8‘f0 +

Differentiating with respect to p, we can get the respective derivatives:

=_{ (2p 1)8%, + (3p -1)6’& +—(4p -6p? - 2p+2)8%f, + }

= %{of* +%(2p—l)5’f,, +%(3p' -1)o’f* +-i15-(2p’ ~3p% = p+1)84, +}

0 (4.25)
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From Gauss Backward Difference Interpolation Formula

b= fot B, +%(p’ +p)8%f, +%(p’ -p)sif,

v
p P
3, l 2 4
f0+p8fl+ﬁ(6p —6p—1)8* £y 4+
2

f‘,+p8"fl+-l—li(6p2~6p-—l)5' fu+.~} .. (4.26)
(]

1 4 3 2 4
$p*=2p ~p? + 2p)o*f. & e
24(P P —P P) 0

Differentiating with respect to p, we can get the respective derivatives:

geddice
hdp
1 1
=;{ £y —(2p+l)§ fos (3p -1)s ’fl+——(4p —6p? —2p+2)8°f, +- }
=%{ 2p+1)5 e 6(3.; -8, +—(2p ~3p —p+1)5*f, + }
.. (427)
A
<L {87, +p8% | +-(6p® - 6p-1)5° 1, 4.28
R? o tP _}*'12 P P it .. (4.28)
I Example 5 Consider the following table of values obtained from the function, I
1
f(x)= —:
g 1+x?
x| 044 046 048 050 052 0s4 056

f(x)|0.83780 0.82535 0.81274 0.80000 0.78715 0.77423 076127
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a) Obtain the first two derivatives, f’(0.5) andf”(0.5), based on Stirling, Bessel,
Everett and Gauss forward and backward formulas.

b) Compute the values of the derivatives using analytical method. Compare the two
results and comment on your observation.

Solution: Difference Table

x f(x) ) 5° 5 8¢
- 044 | 0.83780
T 1248 §
046 | 0.82535 T L ;
T 1261 — 3
048 | 081274 — -13 oy
— 1274 =
Xo =050 [ 0.80000 — -1l — 2
Coan et b)) 4
052 | 0.78715 bt —_— -1
— 1292 Ty
054 | 077423 — 4
—» 129
056 | 0.76127

a)  x,=05 x,=05 h=002

(xs=%o) _ (05-05)
h 0.02

=0

@) Using relation (4.19) due to Stirling:
11 1
fo=—4=| 8f, +8f, |-—| 8f , +8°f, |+--
g h{Z[ 3 %) 12( 3 %) }

= L{% (~0.01274-0.01285)

g (o.ooooz+o.oooo4)}

poiks
12

L{- 0.012795 - 0.000005}
0.02 :
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Substituting values in (4.20), we get:
» 1 i
fo = F{s’f., —-1—2-8‘f,,}

1 1
= ————{-0.00011~—x0.00002
o.uzxo.oz{ 12 }

= —1——{— 0.00011-0.0000017}
0.0004

=L 000011167 2792
0.0004

(i) Using relations (4.21) and (4.22) due to Bessel withp = 0, we get:

SN 1 1 1
f; =F{5f% —2(8’f|,+5‘f,)+65’ fy +E(a‘ f,+84F,) + }

L{— 0.01285 -l(—0.000I 1-0.00007) + Lo 00004
0.02 4

1 "
+ 35 (+0:00002 - 0.6 f

0—32{— 0.01285 + 0.000045 + 0.0000033 + 0.0000008}

L x—o0.0m80
002

= -0.64

N

= f,-{%(s’ro +87%, )+%6’f% -%(&‘f‘, +5',)+ }

Lt 1 1
=L 1L 500011-0.00007) + = x0.00004  =—(0.00002 ~ 0.00001
o‘ozxo.oz{z( It 2" )}

'Y

= —'—{- 0.00009 — 0.00002 — 000000042}
0.0004 "

! 000011042
0004 :

= -0.27604.
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Using relations (4.23) and (4.24) due to E\;ereu. with p =0, we get: I

o 1 3 1 1
fg = ;{—f‘, -352f0+% 841, +f, +ga’f, +56‘ f,}

L 080000-—x—000011+—x000002+078715——x—000007
002 20 6
+%x—0.00001} 3

= ﬁ{— 0.80000 +0.000037 + 0.000001 +0.78715 +0.000012 — 0.00000033}

1
~ 0.02x0.02

{— 0.00011 —éx0.0000Z}

=1 _{000011-0.0000017}
0.0004

|

(iv) Using relations (4.25) and (4.26) due to Gauss forward with p = 0, we get:

1 1 1 1
15 mdianeocibarn o Latpio Latyl o
2 h{ S e i Rt }

L1 001285 - Lx-0.00011- L x0.0004 + L x0.00002
002 3 6 2

B )

%{— 0.01285 +0.000055 — 0.0000067 + 0.0000017}

L 001280
0.02
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= ——l——-{- O.OOOII—LXO.OOOOZ
0.02x0.02 12

= —L_{-0.00011-0.0000017}
0.0004

= . x-0.0001117
0.0004

(v) Using relations (4.27) and (4.28) due to Gauss Forward with p =0, we get:

o

’
0

1 1 1 1
= —8f | =8, -8, +— 8yt
h{ R R e R R

= L 001274+ L% —0.00011- £x0.0002 + - x0.00002
.02 2 6 "
= L{—o.oxzu-o.m B .. ~0.0000017}
0.02

= —l-x- 0.012797
0.02

AT 1
= }.—‘{w" -Es‘f.,}

=—l——{—o.ooou-—’—xo.ooooz}
0.02x002 2

= —-’—{—o.ooou—o.ooooon}
0.0004

= ) x-0.0001117
0.0004
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(b) Analytical Solution

1 a7
flx) = e =(1+)(’)l

f'(x) = —l><2x(l+xz)_z = —2:((1-&»){’)-z
e e
LSS [+©057°] ~ Ts625 954
700 = —2(1+x2)7 +8x2(1+x2)”
e b 8x(0.5)" :
&=} lisosP - - !
=0 2
= —
15625 = 1953125

= —1.28 +1.024 = - 0.256
—

The analytical solution for the first derivative is the same but the second
derivative is not correct. It may be due to the rounded numbers used in the data and hence
the second derivative failed to produce the reliable answer.

PROBLEMS

1. (a) (i) How are formulas for the derivatives of a function obtained from interpol
formulae?

(i) Why is the accuracy of the usual numerical differentiation process not
y i if the interval is reduced?

(iii) When should numerical differentiation be used?

(iv) What are the sh ings of numerical diffe

(b) Given the following table of values:

FONR e Ve 1 R Y PR X e TR
fix) | 997 1218 1488 1817 2220 27.11

Calculate the following derivatives based on Newton’s forward differepce
interpolation formula:

f5, f7, £/(2.4) and £*(2.4).



Aamir Sharif
Rectangle


Numerical Di iati 121

2. @)

©)

4.(a)

b)

5.(a)

Evaluate the first derivative of the function based on Newton's forward
difference formula using the following table of values at the point x:

x f(x)
X, | 0.84805
x_, | 085m17 :
x, | 0.86603
5 0.87462
x, | 088295

The above table is a part of a table of sin x at 1° intervals and x = 60°. Check by
analytical consideration the result. What is the error? Take 1° = 0.01745 radians.

Find the value of f ’(0.15) based on the forward dif*~-ence interpolation formula
using the following data:
x | 01 02 a3 0 08 08
f(x) | 0.425 0.475 0400 0450 0525 0.575

If y=1f(x) is a cubic polynomial given by:
Redldid 2 T & 8
y ] 2.105 2.808 3.614 4.604 5.857 7.451 9467 11.985

Find y'(4.75) and y”(4.75) based on Newton’s backward difference formula.
A function is represe_nled by the following table:
.5 g PR ah & e 18120
y | 0000 0112 -0016 0336 0992 2000

Find, correct to 3 dp, the values of y, y’ and y”, when x = 1.45, based on
Stirling’s formula for interpolation.

Obtain the first and second derivatives at x = 7 of the function tabulated below:
x | s 6 u 8 9 10
| 1 304 686 109 1624 2306

Use derivatives computed from the Smlmg s formula.

Evaluate f’(0.25) and f ”(0.25) based on Bessel's interpolation formula from the
following tabular values:
x | 00 0.1 02 03 04 0.5
f(x) | 1.1445 10983 10575 10210 09881 09582
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(b) Using derivatives from Bessel’s interpolation formula, calculate f ‘(0.8), f “(0.8),
£7(0.85) and f “(0.85) from the following table: 3
X f(x) 3 8% 5’ 8
0.7 0.87342 653 15
7621 106
0.8 0.94963 759 19
8380 125
0.9 1.03343 884 25
6.(a) Starting from Everett’s interpolation formula, derive the expressions for the first
two derivatives. Estimate from the following table, the values of f, £ f; ,and f :
when x = 1.45.
) 12 14 16 18 20
f(x) I 5.600 -0.112 -0.016 0.336 0.992 2.000
(b) Given the following values of J(x), estimate using Everett’s formula, the values
of J(x), J(x) and J”(x) at x = 1.055:
e L 9 10 11 2 13
J(x) ] 368842 405950 440051 477092 498289 .522023
(c) Consider the following table of values of f(x) = tan x:
X f(x)
1.36 4.67344
1.38 5.17744
1.40 5.79788
1.42° | 6.58112
1.44 7.60183
Use Everett’s formula to compute f ‘(1.4). Compute also the exact value and the
error thus created.
T Consider the following tables:
@ i 1 2 +3
i [ fo [ 1 0 =1 7
Calculate f(1.5), f(1.5) and f “(1.5), using Lagrange's interpolation
formula. 3 <
0 U TG (RN 0.5 Bk s

|f(x)=Jx—| 00000 07071  1.0000. 1.2247
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9.)

(O]

Calculate f(.55), f ’(.55) and f “(.55), using Lagrange's interpolabtionb
formula. Find also the error in each case.

(c) Letf(x)=2"sinx. Comput? £’(1.05) and f”(1.05), using Lagrange's
interpolation formula:
xl e 1.04 1.06 1.10
f(x) ’ 1.6829 1.7733 1.8188 1.9103 it

Considering a uniform beam of 1 m long simply supported at both ends, the
bending moment is given by the following relation:
»_ M(x)

i f
where y(x) is the deflection, M(x) is the bending moment and E1 is the flexural
rigidity. 4
Calculate the bending moment at each grid-point including the two end points,
assuming that the deflection distribution is among the following:

x@inm) | 00 02 0.4 0.6 0.8 1.0
y(x) (in cm) l 0.0 778 10.68 8.37 3.97 0.0

Assume, E1 = 1.2 x 10" Nm’.

Estimate the values of the bending moment, using the following formulas:
i)  Forward difference for x, = 0.25.

ii)  Backward difference for x, =0.90. - y

iii)  Central difference (all formulas) for X, = 0.55.

Consider the following table of values:
x | 10 1.2 14 1.6 1.8
f(x){ 27183 33201 4.0552 4.9530 6.0496
Using Stirling's formula, find f ‘(1.4) and f “(1.4).
The following table gives the distance traveled d from rest by a car at various
times t:
o T et T T el O R R
d ] 000 007 053 160 361 661 1062 1562

40 45 50
2154 2809 35
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What was the acceleration of the car, when t = 0, 2.4 and 4.6? Work as far as 4"

differences.
10. (a) The distance D = D(t) traveled by an object is given in the table below:
Xel 9 10 11 12

D(t) | 17.453 21.460. - 25.752 30.301  35.084
(i)  Find the velocity v(10) by Stirling’s formula.

g
(ii) Compare your answer with D(t) = =70+ 7t + 70e ',

(b) From the table below, calculate f(0.4), f “(0.4) and f /(0.4):

x 1(x) ) (o 5 8
03 0.17835 104 —~18
3 1477 255
04 0.19312 359 -23
1836 232
0.5 0.21148 591 -30

Use derivatives based on Stirling’s formula.
11. Consider the following table of values:
X l 0.0 0.2 04 06 08 1.0 12 14 1.6
(x)- | 1.000 1.102 1207 1.330 1486 1.689 1.955 2301 2.727

(a) i) Estimate the first two derivatives based on Newton's forward difference
formula when x,=0.2.

ii) Estimate the first two derivatives based on Newton's backward differen-e
formula when x, = 1.6.

(b) i) Estimate the first two derivatives based on each of the following formulas
taking x, = 0.6:
@) Sﬂrlln;. (ll) Bessel, (iii) Bvemt.md (iv) Gauss forwlrd lnd btckwnrd

ii) Bldmmtha!lmtwo ivatives based on N 's back ‘dlﬂmm
formula when x, = 1.6.

(¢) Consider the following table based on the function f(x) = J;' to 5 dp:

x| 400 o108 1000 1S 120001280 ©130Y
f(x)l 1.00000 1.02470 1.04881 1.07238 1.09545 1.11803 1.14018
i)  Estimate the values of f’(1.00) and f“(1.00) using Newton's forward
difference formula.
ii)  Estimate the values of f’(1.30)and f"(l. 30) using Newton's backward
difference formula.
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Chapter S

Numerical Integration

51 INTRODUCTION

Integration is the process of measuring the area under a function plotted on a
graph. Why would we want to do so? Among the most common examples are finding the

velocity of a body from accel fi and displ of a body from velocity
data. Throughout the engineering fields, there are (what sometimes seems like) countless
applications for integral calculus. i the evaluation of expressions involving

these integrals can become daunting, if not indeterminate. For this reason, a wide variety
of numerical methods have been developed to find the integral.

The purpose of this chapter is to develop the basic principles of numerical
integration, which are used to obtain approximate results for some definite integrals. We
restrict ourselves to define integrals of the form:

1= [(fexdx S

where a'and b are finite and f(x) is a continuous function of x for a < x < b. Some
examples of definite integrals are,

2x
J:xdx. ﬁx"ldx, EH—:’:‘—,;. rl:).(’ dx, etc.

’

The indefini grals are among the of ordinary dif
equations discussed in Chapter 6, The value of Iis interpreted as an area bounded by the
curve y = f(x), the x-axis, and the two ordinates at x =a and x =b; Irepresents a
number which is interpreted as an area, The numerical integration is often referred to as
quadrature (also mechanical quadrature) which simply means working out an area.

The use of ical integration b y when either the function f(x)
cannot be integrated analytically or the analytical solution of the integral presents such
difficulties that it is faster to find a numerical solution or when the values of functions are
available only in a tabular form but no jon is available about the function itself.

There are several methods available in the literature for numerical integration,
but the most commonly used methods may be classified into the following two groups:

(a) Newton-Cotes formuilas that employ functional values at equally-spaced datas,
points, and 5 3
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(b) The Gaussian quadrature formulas that employ functional values at equally‘
spaced data-points determined by certain properties of orth 1 pol

We shall mostly confine ourselves to the Newton-Cotes formulas, which can be
derived by integrating one of the interpolation formulas.

‘We now approach the object of numerical integration: the goal is to approximate
the definite integral of f(x) over the interval [a, b] by evaluating f(x) at a definite number
of sample points.

Since integration is the inverse of differentiation, we use the following relation
for evaluating integrals:

j"xa fdx = h[*1, dp Jigsa)

Integration formulas are used to derive the predictor-corrector formulas for
solving differential equations (see Chapter 6).

52  DERIVATION OF INTEGRATION FORMULA BASED ON NEWTON’S
FORWARD DIFFERENCES

Integrating Newton's forward difference formula (3.2), we get:

j';o fwdx= h[*f, dp
=h I:[f“ +pAf, + %(pz —p)Af, +%(p’ -3p +2p)A'f,

l 1 3 2 l 4 2
h{pf,, +5P'f, +—2-[L—%-]A‘f, +—[%——p’ +Rz_ 2%,

3 6
L(p° 6t 1P gy
+24[S i 4 3 3p* |A*f, + e (5.3)
From (5.3), we can derive several other well-k fi las. For pl

imposing the limits (0, 1), we get the formula due to Laplace:
n 1
j:o fx)dx = j:o f(x)dx

= hff,dp
1 1 1 19
.h{f° 34f- uA’f,-EA’f, 72°A‘f° } i (84)
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53  THE NEWTON-COTES FORMULAS

The Newton-Cotes formulas can be derived from the relations (5.3) and (5.4).
The following formulas are worth studying:

(a) Trapezoidal rule

(b) Simpson’s %rd rule
4 -
(c) Simpson's Eth rule

(d) Boole’s rule
(e) Weddle’s rule.

The above formulas are simple and some of them are widely used in practice.
The use of a particular formula depends upon the nature of the problem to be tackled and
also to some extent upon the accuracy desired in the final answers. These rules basically
replace f(x) to approximate polynomials, which are then integrated analytically. If the
degree of a polynomial is too high, errors due to round-off and local irregularities can
cause problems. That is why it is only the lower-degree Newton-Cotes formulas that are
often used.

Let us describe the above mentioned formulas one by one,

53.1 Trapezoidal Rule
Truncating (5.3) after the first-order differences, we get,

2 U
Io= j:; f(x)dx = h[pr,, +p7Afo:L

For fitting a straight line, we use the limits (0, 1), in other words, the integration
is over one interval (or two ordinates or two terms):

f(x)
y=f(x)

f(a) f(b)

v
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L= f‘x:’ f(x) dx

2 U
= h[pfo T%Af,,l e
1
= h[f,, +§Afo]
1
= h[fo+—(f,—fo)]
2
h
= E[f,,+f,] ...(59)
This is called the trapezoidal (or trapezium) rule. B X, and X,, the

function f(x) is approximated as straight line and the area under the curve representing
f(x) is considered to be the area under the straight line.

If n intervals are used, the formula (5.5) is ded as follows to calculate total
area between Xo=xand x = X,.

¥

s ]:o f(x) dx
= Jo fodne [P e+ [ 0008

h h h
= ;[f,, +f]+ ;[r, ]+ 4 —2-[f__, +f,]




=%[fo+2(f,+fz+f,+. A+ )+f,]

ol
= E[(ff,+f")+22fi] ...(5:6)
2 i=1
The above formula is the trapezoidal rule for n intervals. It is also called
ple-segn or posite trapezoidal rule. Note that all functional values except
the first and the last are multiplied by 2. The total area under the curve can, therefore, be
. approximated by the sum of areas of n trapezia.

Trapezoidal rule is not so accurate, but it is simple and moreover can be used for
any number of intervals. Approximations to the i Is can be imp d to some extent
making the step size h, smaller and smaller (in other words, by increasing the number of
intervals). One of the most difficult problems in quadrature is to decide how large n
should be taken to achieve the desired accuracy. It is sufficient to say at this point that the
error tends to be zero as n tends to infinity.

532 Simpson’s %rd rule

If we truncate the expression in (5.3) after the second-order differences and
impose limits (0, 2), we have,

E = rx: f(x) dx

ol g )l
h pf,,+7Af,, +5|:—3———2—]A fo

0

h[zf° + 208, + % A’f,,]

h[Zf‘, +2(F, —fo)+ %(f, —2f, +f, )]

Bty +41,+1.] 6D

The above relation is called Simpson’s —:lird rule or simply Simpson’s rule. If n

intervals (should be even in numbers) are to be used, we have the following general
expression for composite Simpson’s rule:

5= ]"xo (x) dx

a j:: f(x) dx +fx: f(x) dx +f‘x: ) dx + ... + rx:_zf(x)dx
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= g—[f,,+4f, aff,]ar%[f2 +4f, +f4]+2-[f, +4f + £ + ...

& %[f,_, +4f _ +f,]

= %[(fo )+ 4, + 5+ 4o+, )+ 2(6, +6, + 4.+, ,)]

a-l a2
=% (fo+£,)+4XF,+23°f, .. (58)
| <

It is obvious from (5.8) that with the exception of the first and the last functional
values, all odd functional values are multiplied by 4 and all even functional values are
multiplied by 2. The formula is used only when n is even. Simpson’s rule gives a more
accurate result than the trapezoidal rule and is easier to program and manipulate as well.

533 Combination of Trapezoidal and Simpson’s Rules

Since Simpson’s %rd rule is used when n is even, but if, in some cases, the

number of intervals n is odd, we can still find the solution.

For example, we have the following data:

X f(x)
0 Y
4 £
2 £,
3 ; A
4 .
5 £,
6 £
7 £

If we use the values against the points x =0 to x = 6 (i.e. n = 6) in Simpson’s
%rd rule, we get the solution.
Iy = l::-[(fo )+ 4(f, +£, +£,)+2(f, +£,)]
Ve add to this the result obtained using trapezoidal rule for x =6 tox = 7.

|
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h
& s E[fs i fv]

Result = Ig + I, which is the integral over the entire range.
Consequently, we can also select the first interval to integrate by the Trapezoidal
1
rule and the remainder by Simpson’s 5 rd rule. However, this criterion seems to work for

choosing the end for applying the Trapezoidai rule. There may be a little difference in the
tworesults we obtain but the former is slightly better.

534 Simpson’s %th Rule

If we truncate the expression in (5.3) after the third-order differences and impose
the limits (0, 3), we have,

= f:: £(x)dx

=J:fpdp

= [pfo + %p’Afo + %(%3 - %)Azfu + %(%“ -p’+ pz)A’f‘,:])
Simplifying and rearranging terms, we get,
T = 3, +36, +£,)41,] e (59)
This is called Simpson’s %th rule.
Extending the formula (5.9) upto n intervals, we get,

I = %[fn +3(f, +£,)+ 26, +3(F, +£,)+2f, +3(F, +£,)+

+3(f,, +f,,)+f,] .. (5.10)
The above formull does not yleld more accurate result than the simple Simpson’s
rule. One useful ap ion is the of a tabulated function with an odd number

of panels by doing the first (or the last) three with the % th rule and the rest with the %rd
rule. There may be a little difference, although the former is slightly better.
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535 Boole’s Rule

If we truncate the expression in (5.3) after fourth-order differences and impose
the limits (0, 4), we have,

1 j:: f(x) dx

= I: f, dp

2h

=4—5{7fo+32f,+12f,+32f,+7f,} ... (5.11) |
This is called the Boole’s rule. !

536 Weddle’s Rule

If we truncate the expression in (5.3) after sixth differences and impose the limits
(0, 6), we have,

Iy

n

j’:: fx) dx

j:f, dp

=%{f,#Sf,+f,+6f,+f.+5f,+f‘) e (5.12)

This is called the Weddle’s rule.

In order to illustrate the above methods, we consider the following simple
example.

ple 1 The ing table rep the values of sine function:

Fiokido V0T Cvipa s ili0h, oM 0. 08
f) | 00000 00%98 01987 02955 03894 04794 05646

Compute j:‘ (x) dx based on,

(a) Trapezoidal rule, (b) Simpson’s %rd rule, (c) Simpson’s %th rule;

(d) Boole’s rule, and (e) Weddle's rule.
Solution  As the number of functional values is seven, the number of intervals, n = 6,
e e ———————————
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@) Trapezoidal Rule

I = h[fa +2(F, + £, + 6, +6, +6)+f]

(=]

.1

{0.0000+2(0.0998 + 0.1987 + 0.2955 + 0.3894 + 0.4794) +0.5646}

x 3.4902 =0.1745

N]o ~|

() Simpson’s ; rd Rule

= h[f A, + £, +1,)+ 26, +£,)+f,]

w]|

{0 0000 +4(0.0998 + 0.2955 + 0.4794) + 2(0.1987 +0.3894) + 0.5646}

ulc m|O

x 52396 = 0.1747
() Simpson’s %th Rule
3h .
I = —-{f,, +3(f, +,)+2f, +3(f, +£,)+f}

= 3x—-{o 0000 +3(0.0998 +0.1987) + 2x 0.2955 + 3(0.3894 +0.4794)
+0.5646}
0.1 ‘
= 3% X 46575 = 0.1747
(d Boole’s Rule
I= %{7«, )+ 32(F, +f, +£5)+12(F, +£,)}

= 2x—{7(ooooo+o 5646) + 32(0.0998 + 0.2955 +0.4794)

+12(0.1987 +0.3894)}

= 2—'52[3.9522 +27.9904 +7.0572]

= 0 % 38.9998 = 0.1733
45
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(e) Weddle’s Rule

I, = 3x %[(o.oooo»r 0.5646) + 5(0.0998 +0.4794) + (0.1987 + 0.3894)
+6x0.2955)

= %[0.5646 +2.8960 +0.5881+1.7730]

=03, 58017 = 01747
10 i

e 2 Given the following integral:
IZ ell

o 1+x?

Use Simpson’s . rd rule to evaluate the integral with n = 8.

Solution n=8, a=0,b=2

ML R e
n 8

Table of Values:
A 2x
fa-t
1+x

X,=0 f,=1.0000
Xo=025 | f,=15500
%, =050 . | f, =2.1746
X,=075 | f, =2.8683
X;=100 | f, =3.6945
X=125 | f; =4.7542
xs=150 | fg =6.1802
Xe=175 | f, =128132
X,=200 |'f, =109197
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Using Simpson’s % rd Rule:
I, = h[(f +6 )+ 4, +6, + 55 +£,)+2(F, +£,+£,)]

= 222[(0.0000 +10.9197) + 4(1.5500 + 2.8683 + 4.7542 + 11.8132)

3
025
3

+2(2.1746 +3.6945 + 6.02)]

= 232—5 [11.9197 + 83.9428 + 24.0986]

54 ESTIMATION OF ERRORS IN SOME NEWTON-COTES FORMULAS

In this section, we explain ways of analysing errors in the Trapezoidal and
Simp:on rules:

LetFx)= [f(x)dx S (8i13)

oth
Then 1= j"xn £(x) dx
=F(x, +h)-F(x,) e (5.14)

5.4.1 Error in Trapezoidal Rule
From (5.5), we have,

1 = 210+ fx, +)]
The error E; in the Trapezoidal rule can be defined by the following relation:
E;=1-1;
= [Fx, +h)-F(x, ]—%[f(x,,)+f(x, +h)] - (515)

Expn;lding terms F(x,+h)and . f(x, +h)in (5.15) by Taylor series and
setting,
F(x,)= f(xy)

F'(xo)= fx,), etc., we get,
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E, |:(x°)+hF'(x )+ (x°)+-~~—F(xo)]
—%[f(xa)u(x,)m'(xn)+h_2’ff(x,)+...]
§ h[f(x,)+gf'(xo)+h?’f'(xo)+...]
—%[2f(x,)+hf’(xu)+h—;f'(xo)+...]
Ay - e

The above error is the error in a single step and is galled the local error. When
using Trapezoidal rule over n intervals, the error is as follows:

- 3 i
B, - n2h t(2) < (517(a)
(b a)h £(2) . (5.17()

where aSZ<b, and h=

(b-a)
"

The above error is called the global exror, which s the total error.

In order to obtain the upper bound, choose Z in (a, b) such that £*(Z) is the
t in magnitude; similarly lower bound can be obtained choosing Z in (a, b) such that
: ) is the smallest in magnitude. It follows from (5.17) that the emor in the

Trapezoidal rule is of the order h? and is conventionally written as “error 0(h?)". Its
significance lies in the fact that as h—0, the error falls quadratically with h.

54.2 Error in Simpson’s % rd Rule
The error in Simpson'’s rule is derived in the following manner:
+2h
Let 1= [""f(x)dx
=F(a + 2h) - F(a) ... (5.18)
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From (5.7), we have

= %[f(a) +4f(a+h)+f(a+2h)]
The Error in Simpson’s rule can be defined by,
B, =1-1I
E, = [Fa + 2h) ~F@)] - %[f(a)+4f(n +h)+f@a+2)] . 5.19)
Expanding terms f(a + h), f(a + 2h) and F(a + 2h) in (5.19), we get,
2 3 4
= [F(a) + 20F (@) +—(2;? F'(a) +—(2:') F"(a)+ ——(2:? F® (a)
‘ ] 3
+(—25I]')—F"’ (@)+--—F@ ] - %[f(a) +4{ f(a) + hf (2)
h! : o hJ hl 3 ' i
+if (a)+§l'-"(a) +j4—!1=*"’ (a)+---} +{f(a) + 2hf (a)

2 3 4
+—(2h) f'(a)+——(2h') f'(a)+——(2h3 £0 @)+ ]

[zm-‘(a)+(2h)’1='(a)+—1='(a)+ F""(a)+ h SEY (a) +++]
——f(a)-—f(n) —f’(a)——f'(a) f “(a) - f ™ @)]

—~--——f(a)———f‘(a)——f'(a) f'(a) f“*’(a)
... (5.20)
Let F(a) = f(a)
F(a) =f(a)
F"(a) = (), and so on.

Simplifying (5.20), we get,
= 2hf(a)+2h*f(a) + —f‘(a) + -—-f‘ta) G f"" (a) — 2hf(a)

-2h’f(a)—-?-f'(a)——3—f'(a)——le‘"’(a)

h’ ™
e 002
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The error in (5.21) is called the local error. If we integrate over n intervals, we
get the global error and is as follows,

- 3 i
-l ?T:‘f""’ @ ... (5.22(a))
“(b=ah* ¢ -
Eg=——— ™z - (52200
s = =0 @ (5:22(6)
where a<Z<b.

The error in Simpson’s ird rule of the order of h*, ie., “OCh*)”. This is
equivalent to saying that for h (small enough), the error is proportional to h*.

Example 3  [Evaluate szx—dx. using
1

(a) Trapezoidal and Simpson’s érd rules, taking h = 0.25 in each case. Write

computer programs in each case also.

(b) Calculate exact value to 4 dp. Compare the results obtained in (a) above with
the exact value.

(c) Compute the error bounds in each case.
Solution . Tabular Values:

A £(x) =v/x_
1.0000

1.00

125 1.1180

1.50 1.2247

175 1.3229

2.00 1.4142
(a) Trapezoidal Rule
I = [VX &
s 3

- %[(fo +f4)+2(fl +f, +f:)]

= 0'—225-[(1.00004» 1.4142) + 2(1.1180 +1.2247 +1.3229)]

= %xg.nsa = 1.2182
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() Simpson’s %rd Rule

%[(f +)+4(6, +£,)+26,]
0

2 [(1 10000+ 1.4142) + 4(1.1180 +1.3229) + 2x1.2247]

= %[2.4142 +9.7636 + 2.4494)

= %x 14.6272 = 12189

Computer Program No 7: Trapezoidal Rule

#include<iostream.h>
#include<conio.h>
# include<math.h>

float returnval;

float f(float x);
{
returnval = 0;
returnval = sqrt (x);
cout<<*\n\tX: “<<x<<M\tf(x) : << returnval”;
return returnval;

}

void main ()
{
float low, up, interval, sum=0, steplen;

clrser ();

cout<<‘\nMENTER THE LOWER LIMIT : ; cin>>low;
cout<<'\nMENTER THE UPPER LIMIT
cout<<*\nMENTER THE INTERVAL : *
steplen = (up — low / interval;

sum = f(low) + f(up);

cout<<‘\n\nWTHE STEPLENGTH IS : "; >>steplen;
cout<<'\nWTHE SUM IS : ; “<<sum<<"\n";
for(int i=1; i< interval; i++)

cin>>interval;
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{
sum +=2 * f(low + i*steplen);
cout<<“USUM : "<<sum;
}
sum =(sum*steplen) / 2.0;
cout<<‘“\n\n\tFINAL RESULT BY TRAPEZOIDAL RULE IS :
}

Computer Output

ENTER THE LOWER LIMIT : 1
ENTER THE UPPER LIMIT : 2
ENTER THE INTERVAL : 4

X:1 f(x): 1
X:2 f(x): 1.414214

THE STEPLENGTHIS : 0.25
THESUMIS: 2414214

X:1.25 f(x): 1.118034 SUM : 4.650282
X048 f(x) : 1.224745 SUM : 7.099771
X: 1.75 f(x) : 1.322876 SUM : 9.745522

FINAL RESULT BY TRAPEZOIDAL RULEIS : 1.21819

Computer Program No 8: Trapezoidal Rule

"sum;

Note: This program takes given functional values as input to solve the problem.

# include<iostream.h>
# include<conio.h>

void trapezoidal ( );
{
clrser();
cout<<*\t\t\t\tTrapezoidal Rule Input\n\n";
double *x, *fx, interval,start,end;
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intn;

cout<<“Enter total number of elements : "; '
cin>>n;

cout<<“Enter interval between the elements : ™

cin>>interval; g

cout<<“Enter the first value of x : ™;

cin>>start; %

x = new double[n];

fx = new double[n};

for(int i=0; i<n; i++)

{
x[i] = start;
start = start + interval;
cout<<“Enter fx “<<i<<™ 7}

cit!»fx(i];
)
cout<<*“\n\n\n\t\tTable of Values \n\n";
cout<<*“\nX X

for(i=0; i<n; i++)

cout<<“\n“<<x[i]<<"\W\t";
cout<<fx[i];

}

float h = interval;
double result=0,sum=0;

if(n>1)

cout<<*\n\n\nlt = h/2 [(fO+f “<<n-1<<") + 2 ("
for(i=1;i<n-1;i++)
{
cout<<"f"<<i;
- if(i<n-2)
cout<<“+";

)
cout<<*)]\n\n"
result = fx[0] + fx[n-1];

for(i=1;i<n-1;i++)
sum = sum + fx[i];
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sum = sum*2;
result = result + sum;
result = h/2 * result;
cout<<*\nlt = “<<h<<"/2 [(“<<fx[0]<<"+"<<fx[n-1]<<”) + 2 ("}
for(i=1;i<n-1;i++)
{
cout<<fx[i];
if(i<n-2)
cout<<“+"";
}
cout<<*)]";
cout<< “\n\n\nResult is : <<result”
}

else

cout<<"\n\n\t\t\tY ou must have more than one elements™;

}
void main( )
{

clser();

trapezoidal ();

getch()
)

Computer Output

Enter total number of elements : 5

Enter interval between the elements : 0.25
Enter first value of x : 1

Enter fx0: 1

Enter fx1: 1.1180

Enter fx2 : 1.2247

Enter fx3 : 1.3229

Enter fx4 : 1.4142

Table of Values

X fx

1 1

1.25 1.1180
1.50 1.2247
175 1.3229
2 14142
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o= W2 [(f0+£4) + (F1 + £2 + £3)]
1,=0.25/2 [(1 + 1.4142) + 2(1.1180 + 1.2247 + 1.3229)]

Result is :1.2182

Program No. 9: Simpson’s %rd Rule

Note: The input functional values are generated using the given function.

# include<iostream.h>
# include<conio.h>
# include<math.h>

float returnval;

float f(float x);
{
returnval = 0;
returnval = sqrt (x);
cout<< \n\tX: “<<x<<At\tf(x) : << returnval’’;
return returnval;

}

void main ( );
{
float low, up, interval, sum=0, steplen, multi=4;

clrser ();
cout<<*\nMENTER THE LOWER LIMIT : ; cin>>low;
cout<<"\nW\ENTER THE UPPER LIMIT : "; cin>>up;
cout<<*\nA{ENTER THE INTERVAL : ”; cin>>interval;
steplen = (up — low / interval;
sum = f(low) + f(up);
cout<<*\n\nWTHE STEPLENGTH IS : ; >>steplen;
cout<<*\nTHE SUM IS : "; “<<sum<<"\n";
for(int i=1; i<interval; i++)
{

sum += multy * f(low + i*steplen);

multy =6 - multi;

cout<<*\tsum : "<<sum;

)
sum =(sum*steplen) / 3.0
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cout<<“\n\n\MFINAL RESULT BY SIMPSON'’S RULE IS : "sum;
}

Computer Output

ENTER THE LOWER LIMIT : 1
ENTER THE UPPER LIMIT : 2
ENTER THE INTERVAL : 4

X% f(x): 1
X:2 f(x): 1.414214

THE STEPLENGTH IS : 0.25
THESUMIS : 2414214

X: 1.25 f(x) : 1.118034 SUM : 6.88635
X0 f(x) : 1.224745 SUM : 9.335839
Xv1.75 f(x) : 1.322876 SUM : 14.627342

FINAL RESULT BY SIMPSON'S RULEIS : 1.21819

Program No. 9: Simpson’s %rd Rule
Note: The program takes the given functional values as input.

# include<iostream.h>
#include<conio.h>

void Simpson ( );
{

clrser( ); 5

double *x, *fx, interval,start,end;

int n;

cout<<"\t\t\t\tInput of Simpson Rule";

cout<<"\n\n\nEnter total number of elements (should be even) : ”;
cin>>n; ,

cout<<"“Enter interval between the elements : ";

cin>>interval;
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cout<<“Enter the first value of x : ”;
cin>>start;

x = new double[n];
fx = new double[n];
for(int i=0; i<n; i++)

x[i] = start;

start = start + interval;
cout<<“Enter fx “<<i<<™ ™
cin>>fx[i];

}

cout<<"\n\n\t\t\tTable of Values\n\n 2
cout<<*\nX "
for(i=0; i<n; i++)
s
cout<<‘“\n“<<x[i]<<\t\t";
cout<<fx[i];

double h = interval;
double result=0,sum=0;
if(n>1)
{
cout<<*“\n\nls = h/3 [(fO+f “<<n-1<<") +4 (%}
for(i=1;i<n-1;i=i+2)
{
coute<f"<<i;
if(i<n-3)

cout<<+";
}
cout<<*) +2( "
for(i=2;i<=n-2;i=i+2)
{

cout<<"f"<<i;

}
cout<<")]”
float sum 1=0;
result = fx[0] + fx[n-1]; .
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for(i=1;i<n-1:i=i+2)
sum = sum + fx[i];
sum = sum*4;

for(i=2;i<=n-2;i=i+2)

suml = suml + fx[i];
suml = suml1*2;
result = result + sum + suml;
result = h/3 * result;

cout<<*\nls = “<<h<<"/3 [(“<<fx[0]<<"+"<<fx[n-1]<<”) + 4 (";
for(i=1;i<n-1;i=i+2)
{
cout<<fx[i];
if(i<n-3)
cout<<“‘+";

cout<<) +2 (4

for(i=2;;i<=n-2;i=i+2)

{

cout<<fx[i];
if(i<n-3)
cout<<'+";

}

cout<< “))";

cout<< “\n\n\nResult is ; "<<result;

}
else

cout<<"\n\n\n\t\t\tYou must have more than two elements”;

}

void main( )

{
clser( );
Simpson( );
geteh()

}
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Computer Output

Enter total number of elements : 5

Enter interval between the elements : 0.25
Enter first value of x : 1

Enter fx0: 1

Enter fx1: 1.1180

Enter fx2 : 1.2247

Enter fx3 : 1.3229

Enter fx4 : 1.4142

Table of Values

X fx

1 1

1.25 1.1180
1.50 1.2247
175 1.3229
2 1.4142

I, = V3 [(fO+f4) + 4 (f1 + f3) + 2 f2]
L =0.25/3 [(1 + 1.4142) + 4(1.1180 + 1.3229 ) + 2 * 1.2247]

Result is :1.2189

(b)  Exact value of the integral:

er_dx =1.2190

This value is closerto the one obtained from Simpson’s rule.

(¢) () Error Using Trapezoidal Rule

= (b n)h

E, = = (17)

1
f(x) = x?
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R

fx) = —x?

x) o
f1x) = ——lx_%
4

i -3
max 12)= @)

A
=—() 2 = -0.
2D 025

: LR 5 DR |
min f12Z)= 7(2) 2 = -0.0884

Minimum error is, E (22 L x(.25)% x —0.0884

= -Ex(.zs)’ x—0.0884 = 0.0005

-@2-=1

x(.25)* x-0.25
12

Maximum error is, E =

= -l—'z-x(.zs)2 x-0.25 =0.0013

Hence, the error bound is : 0.0005 < E; <0.0013
(ii)  Error Using Simpson’s %nl Rule

f7x) = %x—;

. S
f(w) = X 2
it |

> = 5y,
min £9(2) = ﬁ(l) 2209375

max f™(Z) = _—15(2) 2 = -0.0829
Minimum error is, E ,, = _—(bl_z-ifﬂ" @

Pt . 4
= Z@oDXC) 0829 0.000004

7 /
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Maximum error is, E,, = (;0 1)x(25) x-0.9375 =0.000041

Hence, the error bound is : 0.000004 < Eg < 0.000041

55 AUTOMATIC SUBDIVISION OF INTERVALS

The most difficult problem in numerical integration lies in choosing the right
number of intervals. It may not be sensible to start solving the problem with a large
number of intervals and then hope for the best. It will not only result in inconvenience but
also in the wastage of computer time. In many cases, accuracy can be improved by the
sub-division of intervals rather than by using high-order Newton-Cotes formulas.

In this section, we shall show how to tackle this problem in a systematic and
efficient manner. Two methods concerning subdivision of intervals will be discussed
which are as follows:

o Repeated use of Trapezoidal rule
¢ Romberg’s integration method

55.1 Repeated Use of Trapezoidal Rule
Suppose, we wish to evaluate the integral,

= [0 dx

Let I be an imation to I, obtained by using Trapezoidal rule with n

intervals. One possible method to decide how large n should be so that I, approximates I

to the desired accuracy would be to evaluate I, I,, I,, ... until the two successive
estimates agree close enough to the desired accuracy. This can be done by halving h and
comparing the two results I, and I,,. We can continue halving h, and calculating I,,
I,y Laas - This will, in dwary converge to the true value I and the process is estimated
when two ive agree to the required 'y, but this would be very
labourious.

The procedure is as follows (with h=b - a):

i) Let T, = L(f@)+f(®)); then I,= hT,,

i)  Let T,=T + (n»%);then I,=%T :

i)  Let T,=T, + [f(a+%)+f(a+l'1)];thcn I= % ;I8
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iv) Let T, =T, + [f(a+£)+f(a+ﬂ'»)+f(a+5—h)+f(n+ll1)]; then
8 8 8 8
I,=%T,.nndsoon‘ X

Because of the relatively large error of Trapezoidal rule, it can hardly be
considered as an efficient approach. If we look for an accuracy of 0.00000001, the
method goes as far as n = 2048, and it takes a lot of computer time to obtain the result.

Example 4 Write a to impl the Trapezoidal rule with
automatic interval halving. Use the followmg test data;

Fe-' dx ; accuracy, E = 0.000001
1

Computer Program No. 10: Repeated Use of Trapezoidal Rule

# include<iostream.h>
# include<conio.h>
# include<math.h>

double f(double x);
{
return (exp (-x/2.0));
}

void main ()

double i=0, i1, a, b, e, h, t;

intk,n=1;

cout<<"\nWINTEGRATION USING REPEATED RULE”;
cout<<“\n\n\ENTER THE LOWER LIMIT A : ”;
cin>>a;

cout<<“\n\\ENTER THE UPPER LIMIT B : ;

cin>>b;

cout<<“\n\\ENTER THE ACCURACY E: ™;

cin>>e;

h=b-a;

t = (f(a) + f(b))/2.0;

il=t*h/n;

cout<<*\n\n\tNO. OF INTERVALSMESTIMATE OF I\n\n";
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}

while (fabs*il-i) > e)
{
cout<< \t“<<n<<" M\t '<<il<<endl;
n=n*2;
i=il;

for(k=1;k<n;K+=2

{
t=t+f(a+k\8h/n);

)
il=t*i/n;

cout<<“\t"<<n<< W\t '<<il<<endl;
cout<<“\ntAFTER“<<n<<” INTERVALS VALUE OF INTEGRAL IS : "<<il;
getch ();

Computer Output

INTEGRATION USING REPEATED RULE
ENTER THELOWER LIMIT A : 1

ENTER THE UPPER LIMIT B : 2

ENTER THE ACCURACY E : 0.000001

NO.

1

OF INTERVALS ESTIMATION OF I

0.487205
0.479786
0.477924
0.477485
0.477341
0.477312
0.477305
0.477303
0.77303

AFTER 256 INTERVALS VALUE OF INTEGRAL IS : 0.77303
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552 IRombeE lnt_cﬁration I

Although the Trapezoidal rule is the easnesl Newton-Co!cs formula to apply, it

lacks the degree of y ly req g ion is a method that
has wide ion because it imp the imation fairly rapidly. Romberg
integration is mostly designed for cases where l.he function to be mtegmcd is known.
Thls is because k ledge of the function permits the eval quired for the initial
Ip of the Tr: pezoidal rule.
Let f(x) be known either explicitly or as a tabulation of equi paced data:
L l Xo Xy X2 Xa
(x) | £, 5 £ o

The first step in Romberg’s method is to define a series of sums: Lianks,
I, ..., where

(fo +fn); h'= M, where n = 1.

[I,, +f(. H(, B )]
~-[Iu+f(~+s)+f(-+3h)+f(-+T)+f( ]

From these sums, various other values T,,, T,,, T,,, ..., are computed using the
following relations:
T, =h'lL,

W
T, = 7I|z

el

T I

T, = —I,,,and so on.

Note: h is the difference between consecutive values of x, but h” is the difference
between the upper and lower limits of the integral.
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Romerg’s table is as follows:

Integration Sums Calculation of Approximations
III Tll i

I, Ty

T~
/'
e
7 Tys /
e
/'

Tu

ey
Bt
Rl it
A

I T,

With the values of T,,, T,,, ..., we compute the first-order Romberg integration
as follows:

1
T,=T, "'3(le L)
1
Ty=T; "’E(Tu =i,.)
1
Ty =T, +5(Tu =)
'We now compute the second-order Romberg integration:
1
Ty =i, +l—5-(T,_, -Ty)
1
Ty =Ty +E(Tu ~Tp)
Calculation of third-order Romberg integration:
7 1
Ty =10 +§(T" ~Ty,), etc.
General formula to calculate various values in the table is,
1
Tm.xol = Akn +4‘__lh-;|m +le(] - (5.37)
The procedure continues until the difference between two successive values on
the diagonal agree to the desired accuracy. In each column, the bottom number is

hopefully the most accurate number. Trapezoidal and Simpson’s rules are sometimes
inadeq for probl ts where high efficiency and low errors are needed.
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Romberg method is one technique that is designed to obviate these shortcomings. It has
been reported in literature that the error in column k of the Romberg table diminishes by

1
about a factor of 41‘—” as one progresses down its rows. The algorithm is clear, although

the justification is quite hard.

Finally, onc might feel that accuracy of these integration formulas can be
increased using higher-order formulas until sufficient accuracy is obtained. However,
there are two reasons why this strategy might fail; namely, that the function may not be

ds ly approxi d by a pol: ial, in which case the truncation error becomes
large, or, that the formulas may be subject to excessive rounding error. One
interesting experience about the usage of formulas with an even number of strips is that
they not only give zero error for polynomials upto degree n but also for polynomials of
degree n + 1. In view of this extra 'y an order fi las would normally be
used. However, the ption to this is the Trapezoidal rule, which is valuable because of
its simplicity. The other point of significance is that the error depends on a derivative of
the function to be integrated.

To summarize there is clearly a major gain in efficiency in using methods which
are higher order than the Trapezoidal rule, such as Simpson’s rule and especially
Romberg integration. All in all, Romberg integration is a powerful but quite simple
method, which we recommend for general use. For a given number of intervals, it is
much more accurate than the Trapezoidal rule, and quite a bit more accurate than
Simpson’s rule, but does not need any more function evaluations.

Example 5 (a) Using Romberg integration method, evaluate the integral:

2.
‘[ég.htn=8‘
X
(b) Writea p program to impl the above p

Solution (a)  Tabulated values are as follows:

26-1

h= =02

Since, a=1, b=2.6 and n = 8, the functional values are calculated as below:

b3 l 1.0 12 14 16 18 20 22 24 26
f(x) | 1000 0833 0714 0625 0556 0.500 0455 0.417 0.385

Calculations of I,,, I, I;; and I,,.
(fo +1,)

I, =

S S

(1.00 + 0.385) = 0.6925
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=2.6-1=1.6[since n=1]

T, = h' I, = 1.6 X0.6925 = 1.1080

I, = [1,, +f(a+h?)]

= [1,, +f,] = 0.6925 + 0.556 =1.2485

T, =21, = 18,1 2485 - 0.9988
LT
[I,z +f@ ) (a +—-)]
i []u +f, +f6]
=1.2485+0.714 + 9.45§ =2:4)715 of
Ty = L1, = 28224175 09670
g

i [I,,+f(a+ )H(n——)ﬂ( +3h )+f(
= [y +f, +£, +f; +1f,]
=2.4175 + 0.833 + 0.625 + 0.500 + 0.417 =4.7925

Ty = 21, = 2oxar925 - 09585

8
Calculating other values in the table:
Tp =T, + 3(Tu =T,)

= 0.9988 +3 (0.9988 ~ 1.1080)
=0.9988 - 0.0364 = 0.9624
1
Ty =T, +§(T|: =Ty)

= 0.9670 +-:l; (0.9670 - 0.9988)
=0.9670 - 0.0106 = 0.9564

¥
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1
Ty =T, +§(T|4 _Tu)

= 0.9585 +%(0.9585 -0.9670)
= 0.9557

'}
Ty=Ty +E(Tn'Tzz)

= 0.9564 +%(0.9564 -0.9624)
=0.9564 - 0.0004 = 0.9560

1
=Ty +E(Tu =Tx)

2

= 0.9557 +-llg(0.9557 —-0.9564) = 0.9557
1
Tu=T +E5(T:u =)
= 0.9557 *6—13 (0.9557 - 0.9560)

=0.9557 - 0.0000 = 0.9557

Displaying these values in tabular form, we have,

Interval | Trapezoidal Romberg Values
Sums First-Order Second-Order Third-Ord:

IF 1.1080 ]
0.9624

2 0.9988 0.9560

; 0.9564 09557

4 0.9670 0.9557
0.9557

8 09585

Senoethatthefinal esult, 0.9557, is accurale upio 4 dp,

It is often useful to have predetermined a specific value for n and instead modify
the algorithm slightly to allow the procedure to continue until a value of n is found that

satisfied | T, , = T,_, .., | < €, for a given tolerance €.
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Computer Program No. 11
# include<iostream.h>

# include<conio.h>

# include<math.h>

float f(float x);

return (1/x);

)

void main ()

{

: Romberg Integration

float a, b, h, t[12][12]={0}. i=0;

int j, k, p, no;

cout<<*\nM\INTEGRATION USING ROMBERG METHOD”,
cout<<"\n\nMENETER THE LOWER LIMIT A : ”;

cin<< a;

cout<<“\nMENETER THE UPPER LIMIT B : ;

cin<< b;

cout<<“\ntENETER N : ™;

cin<< no;
h = (b-a);

t[0)[0] = (f(a) + f(b))/2; - ’ 111

t[0][1] = h * t[0][0};
k=1; i=0;
while (k<no)
{
i+
k=k*2;
t[i][0] = t[i-1][0];

/T11

for (p=1;p<k;p+=2)

t(i][0] = t[i}[0) +f(a + p * WK);

tliJ[1] = bk * t[i)[0];

for(j=2;j<=i+2;j++)

for(k=0;k<i+2-jik++)

{
: K0 = ke 1] (j=1 )+t lk+1]05=1] =t[KIG=1D) / (pow(d4] =1) =1
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cout<<"\n\nMTHE BEST ESTIMATE IS : <<[0](j-2]";
}

Computer Output

INTEGRATION USING ROMBERG’S METHOD
ENTER THE LOWER LIMIT A : 1

ENTER THE UPPER LIMIT B : 2.6

ENTERN: 8

THE BEST ESTIMATE IS : 0.955517

PROBLEMS

1.(a) The values of a certain function f(x) are given in the following table:
g 000 NG R0 P s P 2 Y 0 A
f(x) I 1 1.649 2718 4.482 7.389 12.18 20.09 33.12 45.60

By using Trapezoidal and Simpson’s %rd rules, compute the integral:

[ fxdx..
0
(b) Given the following table:
Nl o0 AregRe i e T e

(x) |0.9848 1 0.9848 0.9397 0.8660 0.7660 0.6428 0.5000 0.3420

Evaluate r f(x) dx using Trapezoidal and Simpson’s %rd rules.
-1

(¢) Use Trapezoidal and Simpson's rules to estimate the numbers of squere feet of
land in given lots when x and y are measured in feet:
@)
x|0 10 20 30 40 S0 60 70 80 90 100 110 120

y |7 8 84 76 67 68 6 72 68 56 42 4 0
(i)
x| o 10 200 300 400 500 600 700 800 90 1000
o I T T R Y R T T
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2 (2) Evaluate the integral e'/'— correct to 3 dp, using (i) Trapezoidal rule and
(ii) Simpson’s rule from the values given below:

Xl 1 ) 3 4
1 - 27185 - 41132 - 56522 - 7.3891

e

Using a suitable substitution to evaluate the integral, determine which of these
numerical answers is nearer to the exact value.
1
dx " 1 h
(t) Compute I2+ - by Simpson’s —grd rule with n = 8. Evaluate the function
X
o

lytically and on the in each case.

(9) Evaluate the integral Il x%edx using Simpson’s %rd rule withn=8.
&

1
3 Evaluate Ildeusing Trapezoidal and Simpson rules. Take n = 8. Compare
X
o

your results with the exact answer. Compute the error bounds in both cases.
4.(ii The function f(x) is well-defined by the following table and is well-behaved in
the given domain:
e S 204 2.05 2.06 2.07 208 2.09
ix) I 10.13916 10.26167 10.34737 10.45643 10.56905 10.68531 10.80547

a) The value given for f(2.07) is in error by 3 x 10°°. Find the correct valuesand
show why this is likely to be correct.

209
b) Compute the integral If(x)dx from the values given above in 4(i) using
203
Trapezoidal and Simpson rules.

3
(ii) Evaluate I +/sin x dx by Simpson’s -;—rd rule, using 6 intervals.
o

k-3
2

(iii) Evaluate Isindx using the Trapezoidal and Simpson’s %rd rules. Find the
o

exact solution and the error involved. Take n = 6.

(iv) A pin moves along a straight guide so that its velocity v(cm/s) when it is a
distance x(cm) from the beginning of the guide at time t(s) is given in the table
below:

U008 00 182l 2830k 38 « 4D
viem's) [0 400 7.94 1168 1497 1739 1825 1608 0.00
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total di: lled by

Apply to Simpson’s %rd rule to find the app
the pin between t=0tot=4.

(v) (a) Evaluate the integral:
3 2

X
[t
) 1+x
Using Trapezoidal and Simpson’s %rd rules, with n = 10. Round your answers

to4 dp.
(b) Evaluate this integral mathematically and compare it with the results already
obtained. Which is a better solution?

5.(a) Use Simpson’s and Trapezoidal rules to evaluate the following integral to an
accuracy of 0.0001 with h= % s
1= [t _dx

o 1+x?

the integral analytically and find the errors in both cases.
(b) Let 107 be the largest error which can be tolerated when

J! tog(1+x)ax
0

is evaluated by the methods in (a) above. Calculate the number of sub-divisions

required to obtain this 'y in using the Trapezoidal and Simpson’s rules.
(c) Let5x 107 be the largest error which can be tolerated when
Iz xe™ dx
0

is evaluated by Trapezoidal and Simpson’s rules. Calculate the number of sub-
divisions required to obtain this accuracy in both methods.

[Hint: ™V (x)=(x-4)¢e™]
(d) (i) Use Trapezoidal and Simpson’s rules to estimate the integral:
[! In(x* +1)dx withn=8.
A ¥

Round your answer to 4 dp.

(ii) Compute the error bound in both cases.

(iii) Let 0.001 be the largest error which can be tolerated when the integal in (i)
above is evaluated. Calculate the number of subdivisions required to meet this
accuracy in using Trapezoidal and Simpson’s rules.
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(e

6. (a)

(®)

©)

If the composite Trapezoidal rule is to be used to evaluate I' e"z dx with an
0

1 Uy
error of at most ;x 10™*, how many points should be required?

The table below represents a function y = f(x):
xiif 0 1 2 3 4
y I 1.000 1.027 1.110 1255 = 1.485

The distance of the centroid x from the axis Oy is given by the equation:

j:xy dx

Find x. to 3 dp using Simpson’s %rd rule to perform the necessary integration.

The root mean square (RMS) value of a function y = f(x) in the range x=a to
x = b is given by the expression:

RMS = j";”_z—a dx

Using Simpson’s %rd rule with 9 ordinates to evaluate the RMS value of the
function:
f(x) = (l+x)% intherange x = 1 tox = 3:

x |1.00 1.25 1.50° 175 200" 225 2350 278 00

y |2.8284 3.3750 3.9928 4.5804 5.1962 5.8590 6.5479 7.2818 8.0000

A solid of revolution is formed by rotating about the x-axis; the area between the
x-axis, the lines x = 0 and x = 1, and a curve through the points with the
following ordinates:

x | 00 025 o050 075 100

y |282¢ 09826 0958 09089 08415

Estimate the volume, V = 1t I' y? dx using Simpson’s %rd rule and giving the
0

answer to 3 dp.
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(d) The arc length of the curve y = f(x) over the interval a < x < b is given by the
following formula:
Length = ]f,/u[f’(x)]2 dx
Find the arc length for f(x) = 0.1 x(30 - x), for 0 < x <30, using Trapezoidal and
Simpson rules withn = 12.
(¢) The length of the curve given by y = f(x),a<x <bis
I= J:' 1+ [fx)F dx
Calculate the length of the parabolic arc: y?=ax;2<x<4
using Simpson’s -:l;rd rule. withn =8.
(f) The solid of revolution obtained by rotating the region under the curve y = f(x), *
a< x< b, about the x-axis has surface area given by,
Aréa =an I"f(x) \/1 +[f(x)f dx
a
Find the area of the function f(x) = x*, 0 € x < 1, using Trapezoidal and
. Simpson rules. Take n = 10.
7.(a) Given the following function tabulated at evenly-spaced intervals:
X 0 e1 2 3 4 5 6
f(x) 0 05687 0.7909 0.5743 0.1350 —0.1852 -0.1802
7. 8 9
0.0811 0.2917 0.3031
5 Evaluate L’ f(x)dx using some suitable methods.
(b) Given the following d&fa at equally-spaced intervals:
X; | 0 01 02 03 04 05 06 07 08 09 10 11
X l 0" 81 682 55 42 33\ 35 X3 :48x 53 5139
The data are felt to be relatively error-free. Evaluate the integral as zccurately as
possible.
8.(a) Evaluate L' edx 106 dp, using Romberg’s method. Take n =8.




Nunerical Integration 163

®)

©

9.(a)

®)

1L

Evaluate J:(l +x? )-‘ dx to 6 dp, using Romberg’s method. Take n = 8.

Calculate I:f(x) dx , for the following table using Romberg’s method:
X 0.0 0.1 0.2 0.3 0.4 0.5
f(x) [1.000000 0.990050 0.960789 0.913831 0.852144  0.778801

0.6 0.7 0.8
0.697676 0.612626 0.527292

Calculate f-:;—f.— using Romberg’s method. Taking n = 8.
X

1.5
Calculate Ie"‘z dx , for the following table using Romberg’s method:
1

R 1125 1.250 1375 L5
f(x) I 0.3678794 0.2820629 0.2096113  0.1509774  0.1053992
Solve the following i Is using Rombx ;'s integration method correct to
4dp:
2 '
a) I ; Taken=8
1
2
b) ; Taken=8
B

c) Ixe"dx:'hken=8
]
08 3

@ [e™ dx; Taken=38
0

€) f Inxcosxdx; Taken=8

il the i Is, correct to 6 dp, using Romberg’s integration
method. Compare lheae results with their exact answers. What can you say about
this comparison?

a) Eseodx;'l'aken=8
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b) Esinxdx; Taken=8

c) E(x’+2x’—l)dx;n=8

12. the following i correct to 8 dp, using Romberg’s integration
method.
a) L’stxdx withn=4.
1+x

b) E\M-x’ dx; withn=8.
c) J:V4—xzdx;withn=4.

e | 3
d) Lxl+0.ldx'w“hn=4'

e) J;' X cos3x dx ; Taken=6.
13.(a) Find approximation of
_E e dx
using the Trapezoidal rule with (i) one (ii) two and (iii) four panels of equal
width.

(b) Find approximation of
L‘ x*dx
using (i) the Trapezoidal rule,

(ii) Simpson’s rule

in each case with two, four and eight panels of equal width. By using the exact
result, calculate and compare each of the errors and check with theoretical order

of convergence as h — 0.
(c) (i) It is required to use the T
=
fsin’xdx
to 4 dp accuracy. Use the error bound formula to recommend a panel size 4.

(ii) Find the Trapezium rule to integrate with h = 7/4 and compare with the exact
value. Does this result contradict your part (i) result.

rule to

P P
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Chapter 6

Ordinary Differential Equations

6.1 INTRODUCTION

A differential equation is an ion involving functions and their derivatives.
Thus, an equation of the form,
, oy
=— = f(x, (6
Y e s i) ©.1)
subject to an initial condition that y = y, at x = X, is called a differential equation.
Here, y is called the dependent variable and x is the independ i A soluti
of a differential equation is a relationship b the dependent and independ
iables that satisfies the original differential equation. For ple, y = 3x+ x is the

solutionof y' =6x + 1.

Since most physical laws of biology, busi hemistry, ecology, i
etc., are expressed in terms of differential equations, the need to solve such equations
occurs quite often. The predator-prey problem has become a classic example of
differential equations. In this chapter, we shall describe several methods to solve
differential equations.

611 Classification of Differential Equations

If there is only one independent variable x, the equation is called an ordinary
differential equation (abbreviated as ODE). The equation,

y’ =3 x4+ sin x; subject to y(0) = 2 is an ODE.

If more than one independent variable exists, the derivatives must be partial and
the equation is called the partial differential equation (abbreviated as PDE). The
equation,

Sy By

8%t 8% x
is a PDE with two independent variables x and t and with dependent variable y. This
book deals only with solutions of ODEs.
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6.1.2 Categories of ODEs
(a) Due to Order

The ODEs can be categorised according to their order. The order of an ODE is
defined as an integer equal to the maximum number of times the dependent variable is
differentiated. Thus, y’ =x + yz is of order 1, since the highest derivative that appears is
of first order, whereas x (y")* +y’+ x = 0, is of order 2, despite the power 3 on the second
derivative. Restricting ourselves for the time being to the case in which there is only one
dependent variable y, the most general nth-order ODE can be written:

By’ ..y®)=0 .. (62)
The nth-order dif ial ion (6.2) can be replaced by an equivalent system

of n first-order equations as below:

”

Yi=Yi Ya=Y ¥5=y
We will first focus our discussion on the solution of first-order differential
equations.

(b) Linear and Non-linear ODEs
The equation (6.2) is said to be linear, if F is a linear function of the variables y,
y's .- ¥, in a linear ODE~terms such as x*, x*, y, etc., may be present. If it
contains terms such as yy’, y’ y”, etc., the ODE is called non-linear. The following
ODEs are non-linear:
y y =x+1;

Yy =2(xy-1)
y" =2y’ +x, et

(© Boundary Conditions

We may also classify the problems in differential equ-tions. according to the
nature of boundary conditions. If all the required values are given simply at one point, the
" mathematical problem is called an initial value prnblem (also called starting problem
or marching pi as the isad d in steps).

An initial value problem consists of two parts, the dlﬂ'erennnl equation
y'(x) = f(x, y), which gives the relationship between y(x) and y’ ’(x) and the initial

condition y(X,) = y,.

If the conditions are given at two or more distinct points, the problem is known
as a boundary value (or sometimes jury) problem. The solutions of initial-value
problems are easily obtained by using direct methods, whereas the solutions of boundary-
value problems are, in general, determined iteratively.

!
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A typical boundary-value problem might be of the form,

d? y oy
dx? d
¥y = yo,yL) =y,
This problem could describe the steady state temperature distribution in a one-
di ional heat transfer problem with temp Yo atx=0and y, at x = L. These

are called the boundary conditions whether or not the points x = 0 and x = L represent
actual typical boundaries. The problem is a boundary value problem if conditions are
specified at two or more different values of the independent variable, thus, .

——+cy =h(x);

4
q )‘, +ay =f(x);
X

dy S ddy
¥0)= Yo (KJ: Wos (F °= Voi YL) =Y,

is a boundary-value problem. In this book, we will discuss only the initial-value
problems. This does not imply that initial-value problems are more important i more
frequently encountered in practice than boundary value problems.
Different methods need to be used to solve boundary-value problems, for
le, the shooting method, multiple shooting or global methods like finite differences
or collocatlon

62 METHODS TO SOLVE ODEs
There are a variety of methods to solve ODESs, for instance,
a)  Analytical methods
b)  Graphical methods
¢)  Numerical methods

If a problem can be solved analytically, it is usunlly considered tQ be the most
accurate solution. Most of the ODEs encountered in ptax.‘uce enher cannot be solved by
analytical methods or they have too labori b of large
number of m(zgmls mvolved Therefore, we look for some other methods to obtain

The methods may give very useful insight into the nature of the
solutions of ODEs, but they suffer from several serious disadvantages, a few of them are
as follows:

i) Accuracy is limited by the draughtsman’s technique;
ii)  The judgment is subjective;
iii)  The error is difficult to compute.
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In the absence of any elementary methods, we attempt to solve ODEs
numerically. N

63  NUMERICAL METHOD TO SOLVE ODEs

By a numerical method for solving the initial value problem (6.1) is meant a
procedure for finding approximate values, Yo+ ¥1s Y2+ s ¥a. of the exact y(x) at the
points: i

Xov Ko i Ravibeimy

The first step is to estimate y, , from the initial conditions, and yj= f(x, s¥o)
from (6.1). After finding y,, we determine y, and so on. In general, methods that
require only a knowledge of y, to determine v,,, are called starting (or single-step)
methods. On the other hand, we make use of «  at more than one previous points, say,
Ya+Ya-1» Ya-2o - to determine y .. such r hods are called continuing (or multi-
step) methods.

The success in using an appropriate numerical-method depends primarily on the
skill and insight of the practitioner. One should be very careful in using numerical
methods, because they can have inherent difficulties of their own. In the first place, there
is the question of convergence, i.e., as the difference h between the successive points,
Xg» Xys X3, ...y X, , approaches zero, do the values of the numerical solutions, y,, Y2
«s Ya» approach the exact solution of the differential equation?

This is generally not a practical concern, since all standard numerical techniques
are convergent, when applied to virtually any differential equation. This does not mean
that in practice, the ical solution will always approach the exact solution to the
differential equation as h—0, since round-off error will inevitably be present in any real
computation.

There is also a serious question of estimating error, which arises generally from
the following causes:

i)  The formulas used in ical methods are only approxi

which introduce truncation error (also called discretization error).

i) It is possible to carry only a limited number of digits in any computation,

which gives rise to rounding error.

iii) Any error that an approxi scheme introd at an early step will be

carried along in the computation process till later steps. It is due to the

. propagation error. v

£ 1

Type of Numerical Methods

Since the numerical solution of ODEs is of considerable importance to many
fields of science and engineering, this topic has always received much attention. Many
methods have been developed for the solution of such equations.
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Numerical methods, generally, fall into the following three classes:

a) A class of methods which prod pressions for y, in terms of functions
of x, from which values of y, can be ined by direct substitution. Under
this, the following methods will be described:

. Picard’s method
e Taylor series method

b)

Another class of methods finds the numerical values of the change in y, due
to a given increment in x. Under this, the following methods will be
described:

e Euler’s method and its variations
¢ Runge-Kutta methods
Predictor-Corrector Methods
They make use of two formulas; one is called a predictor, which first
predicts a value for y,,; and then the second is called a corrector to

i

C

improve upon Y,,, . Under this, the following methods will be discussed:

e Milne-Simpson method
e Adams-Bashforth method
e Adams-Moulton method
Let us begin our discussion of the above methods one by one.

64 PICARD’S METHOD
The ODE (6.1) can be rewritten as:
o yo j:n f(x, y) dx e (63)
A solution is obtained in the form of a power series in x to represent y, over a

givea range of values of x. Thus, the numerical valuuofyeanbegmmedbydn'ect
substitution of the desired values of x.

_ For the first approximation, we substitute the initial values of y in f(x, y) and
dencte itby y© = y, . Then, we have, '

+h .
YV =y + rx: f(x, y®) dx

1f we replace the value of y by y® in the above relation, we get .the second
approximation,
Doy ]:;' x,y) dx



170 ical Analysis with C++

For the third approximation, we have,

(A T ’ﬂfx, @y dx
Yin Sl j; *,y%)

In general, y* = yo+ [1*77 f(x,y ") dx . (64)
¥ 0
The process is continued till | y®™ — y®| is less than or equal to the pre-assigned
y or till the required number of approximations is reached. To get a reasonable
accuracy, it is advisable to use more than four approximations. This method is sometimes
also called the successive approximation method.

Picard’s method is of considerable theoretical interest for solving ODEs. It is also

helpful sometimes to generate starting values, which are required in the use of predicator-

hods. It is fully employed only when f(x, y) can be integrated, but

breaks down when further integration becomes difficult to perform. We thus look for

some other methods. Moreover, Picard’s method does not have much practical value for
computer solution.

The following example illustrates the practical details of Picard’s method.

Example 1(a) Use Picard’s method to solve y' = x + y?, subject to the initial
condition ;

Y=Y, at Xo=0.

(b) Tabulate the values of y corresponding to x = 0(0.1)0.5 correct to 5 dp.
(c) Determine roughly over what range this solution will hold to 5 dp if
terminated at x®.
Solution (a)  Picard’s Met_bod
Initial Approximation
y© = y,=0.
First Approximation

y9= Yo"'j:o fx, y©) dx
=0+ [ [+ ™)
0

2
=0+j:°[x+0]dx =XT
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Second Approximation
Y@ =y, + J;:o f(x, y©)dx

=o+f‘xo[x+("—;]z]dx
ik ;;o[

Second Approximation
Yo = yo+rx f(x, y®)dx
0

37 R
=0+r X + R N
Xo %A
[ 4

4 20 400
2 ] 6 n
e B AR ... (6.5)
2 20 160 4400

(b))  Determination of Values for y
We rewrite the expression (6.5) in the nested polynomial form, which is faster
and more efficient computationally:

! b 0 iy & )
y——-2—[1+ T (l T(E+§JD ... (6.6)

Substituting the values of x = 0(0.1)0.5 in (6.6), we get,
xapad Qi ga oAl 0 bR 0s
| 0.0000 0.0050 0.02002 0.04512 0.08052 0.12659

()  Truncating (6.5) at x® gives rise to the following error:

n
x__slxm"
4400 2
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X S%XlO"XMOO
i
% s(zxxo"xuoo] =071

So, the range of values forx: 0<x<0.71.

6.5A TAYLOR SERIES METHOD

The Taylor series method is of great general applicability and it is the standard to
which we compare the accuracy of various other numerical methods for solving an initial
value problem. It can be devised to have any specified degree of accuracy.

We attempt to develop the relation between y and x, by finding the coefficients
of the Taylor series in which we expand y about the point x = X,:

y= Yo*‘(x X )y (x 2Xn) yo+ (X 3"0) y 49 +(X—n’:n) ygz) (67

where Yo, Yo, s yu are derivatives, and can be calculated from (6.1)
y'=f(x,y) ... (6.8)
Yo=1(Xq. o)
Differentiating (6.8) partially gives

5 ] J
= —f(x, y)+—f(x,y) -
y e (xy)+‘,3y (xy)-y

5 5
= 2 f(x,y)+—F(x,¥) - f(x,
TR Y)+8yf(x y) - f(xy)

=f,(x.y)
Yo = fl(xov)'o)
Similarly,

S -8 p
9 =5—xfn(x-)')+rf:("d)‘y

B ) gty) - 1lcy)

f(y)

= (%0, Yo)
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Substituting the expressions for yg, yg, Yg. .. and x — X,=h in (6.7), we
rewrite the series as:

h? h’ h"
¥y = Yo +hf(xy, Yo)“'?ﬂ(xo»)’n)"';fi(xo’%)"‘"'*’an(xov)'o) -+ (6.9)
An upper bound for the approximate error in the Taylor series is given by:
= ——y"(Z); where x,<Z< x,.
(n+1)!y ( ) 0 n

_The Taylor series method (like Picard’s method) can be easily applied to a higher
order equation. For example, if we are given: y”= %2 4 y’; y(0)=1, y'(O) = 2,

We can find the derivative-terms in the Taylor series as follows:

* y(0)and y'(O) are given by initial conditions.

e y"(0) comes from itution into the diff ial equation from y(0) and
y'©). ;

e y”(0) and higher derivatives are found by differentiating the equation, for
the previous order of derivatives and ituting previously d
values.

Taylor series method can be very effective, but its main disadvantages lie in the
calculation of higher-order derivatives, which are sometimes complex and difficult to
compute. This method breaks down if it is not possible to compute derivatives any
further. The Taylor series method is often used to provide sumng values of y reqmred in
the predictor-corrector methods. This method is not very !
However, .it is normal to use a series only to find a few values of x, near x‘7 and then to

continue the solution by one of the step-by-step methods given later.

Example 2 (a) Find an expression for y including first six derivatives in the series, given
that y’ = 0.1(x* + y?), subject to the initial condition y(0) = 1.

(b) Determine roughly over what range this solution W|ll hold to 4 dp if
terminated at x°

(c) Terminate the series at x* and then evaluate the series for x = 0(0.2)1.0. :
Solution (2) Given y’ =0.1(x* + y*)I; y,=1, X, =0
Yo =f(Xo+¥,)=0.1(0+1)=0.1
Differentiating the given ODE with respect to x, we have,
y =013x* +2yy’)
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Yo = fl(xo-)'o)
=0.13X; +2Y¥, )
=0.1(3x0+2x1x0.1)=0.02
Y7 =01(6x +2yy” +2(y'))
Yo =0.1(6X, +2Y, Yo +2Yo)")
=0.1(6x0+2x 1x0.02+2(0.1)*)
=0.1(0 + 0.04 + 0.2) = 0.006
Similarly, ‘
y§? =0.6024
yy =0.12120
y§? =0.08472
Also, h=x=X,=x.
Substituting respective values in the Taylor series (6.9), we get,
Y=Y +hy;+§y;+h—;y;'+%y8“’+;%yé" +%y3’“
el
24 120 720
=1.0+0.1x +0.01x* +0.001 x* +0.0251 x* +0.00101 x* +0.00012 x*
...(6.10)
(b) If the series (6.10) is terminated at x*, x must be small enough, so that

0.02

=1.o+o.1x+-—2—x‘ +

0.00012x° < Zixlo“

RS 10 X = 041667
2 2

1
x < (0.41667)% =G.86
Thus, the fifth degree polynomial represented by the first six terms of (6.10)
gives y correct to 4 dp over the range: 0<x <0.86.

(©) To tabulate y when x = 0(0.2)1.0, we use the truncated series in the nested
polynomial form:

. y=1+0.1x+0.01x*+0.001x> +0.0251x*
=14x(0.1 4 x (0.01 +x (0.001 +0.0251 x )))
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Thus, the values of y are calculated below:

x | 00 0.2 04 0.6 0.8 1.0
y | 10000 10204 10423 4.0671 10972 L1361

66  EULER’S METHOD AND ITS VARIATIONS

There are many ways to derive Euler’s method, but the simplest is by using
Taylor series. If we truncate the expression (6.9) after the first derivative term, we get

You = Ya +hy,
=y, +hf(x,, y,); where h=x-X,. e o)
This is called Euler’s method. It works iteratively and does not require the
computation of higher-order derivatives.

The maximum truncation error per step in Euler's method is given by the
following relation:

2
=h2—y'(Z); XoSZ<Xy+h for some Z. sswi(0812)

This shows that the local truncation error in Euler’s method is O(hZ), ie.,
proportional to the square of the step-size. This implies that halving the step-size will
reduce the truncation at each step by a factor of 4. Global error at any point in the
computation is the difference between the computed value of the solution and the exact
solution. Thus, the global error for the total lation of error from the start
of the computational process.

Euler's method is so inaccurate that it is virtually rarely used in practice.
However, because of its simplicity, it is convenient to use it as an introduction to
numerical techniques for solving ODEs.

To reduce the inherent error in the simple Euler’s method, two variations are

used:
The first variation,
h h
You = ¥, +hE [x,+-2—. y.+;f(x,, y.)] ... (6.13)
is called the modified Euler’s method.
The second variation,

Yo = Va9 )# 105y #h, , +h G0y )] o 614

is called the improved Euler’s method (also called Heun’s method). Both methods
give a definite improvement In accuracy, and are special cases of the second-order
Runge-Kutta method to be studled in section 6.7. The local truncation error for the
improved Euler's method Is proportional to the cube of the step-size. A major drawback
of Buler's methods as mentioned earller Is that the orders of accuracy are low. This
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dxsadvamage is two-fold: to maintain a high-accuracy, very small h is essential. It
increases computational-time and causes round-off errors.

Example 3 Solve the differential equation, y” = x +y, subject to the initial condition
¥(0) = 1, on the interval [0, 0.5], using Euler’s method. Write a computer program to
implement the above method. Also estimate the global error if the exact solution of the

differential equation is y =2e*~ (x + 1). Take h = 0.1.
Solution Assume k, = f(x,, Ya) =X, hy
Given: x,=0, ¥, =1,and x=0(0.1)0.5

B Xy Ya k=x,+y, Yo = Yot hk,
09 1.0 0+1.0=10 1+01x10=1.1

1 b . 11 J+l1=12 1.1+01%x12=122
2.5 122 142 1.362

3 1.362 1.662 1.5282

4 4 1.5282 1.9282 1.72102

b 1.72102

Y(0.5)=2¢%~ (0.5 + 1) = 1.79744 and y(0.5):= 1.77102
Global error = [Y(0.5) - y(0.5) | < | 1.79744 — 1.72102 | = 0.0764

Program No. 12: Euler’s Method

# include<iostream.h>
#include<conio.h>
# include<math.h>

float f(float x, float y)
{

return (X +y);

}

void main ()
{

float x, y, xup, h, n, ynew;

cout<<"\n\tSIMPLE EULER'S METHOD";
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7

cout<<"\n\nMENTER VALUE OF X Doy
cout<<"\nMENTER VALUEOF Y : ";cin>>y;_
cout<<*\n\tENTER UPPER LIMIT OF X : ”; cin >> Xup;

cout<<"\n\tENTER THE INTERVAL rein 3>h;
n = (xup-x)/h;

cout<<“\n\X\WYn\\tY(n+1)";

COULL AN\t \n"}

for(int i=0;i<=n;i++)

-
ynew =y +h * f(x,y);
cout<<"In\t'<<x<<"\t“<<y<<"\\t"<<ynew;
y = ynew;
X = x+h;

}

Computer Output

SIMPLE EULER'S METHOD

ENTER THE VALUEOFX :0.0
ENTER THE VALUEOFY : 1.0
ENTER UPPER LIMIT OF X :0.5
ENTER THE INTERVAL 101

X Yn Y(n+l)
00 1.0 1.1

0.1 L1 1.22
02 122 1.362
03 1.362 1.5282

04 1.5282 172102
0.5 172102 1.943122

ethod,

RUNGE-KUTTA METHODS
The Runn-!(um methodl area {un!ly of methods derived from the Taylor series
The P

of these hods is beyondthauopodm
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elementary book, because their derivations involve
and may be found in only a few advanced texts on the sub_pect See the b:bllography given
at the end of this book.

In this section, we shall discuss the second-order Runge-Kutta method to
demonstrate the essential ideas.

Botiads 1

Let us write the Taylor series with first three terms:

2
You = Yok hy;+;—y:+0(h’) ' .. (6.15)
A
R e g UL o A6.16
y,+hf+ [Bx 'EyJ (6.16)

Since, Y’ = [:y} = (fx.y), =1,

s [dxif(x.y)l= Zi’ +f :;
Let us now define the two parameters k, and k, as follows:

k, =hf(x,,y,)=hf, AL (% 1)

k, =hf(x,+oh,y,+Bk,)

and form

Yen = Yot W K+ Wo Ky .. (6.18)

Two values of o are worth mentioning because setting &t -l gives the modified

Euler's method and o = 1 gives the improved Euler's method. Bxpmding (6.17).and
substituting in (6.18) gives the following relation:

Yen = Y+ (W, +W ) hf, + w,h’[u:—fk-t-ﬂf —'-] ... (6.19)

Comparing the coefficients of powers of h in (6.16) and (6.19), we get,

Witw, =1
1
-— . (6.20
wia = (6.20)
. (6.20)

1
W,B-z
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There are three equlﬁm;s with four unknowns. With these choices, we observe
that B = a, w,=2im and w,=1 -zla.. Substituting the values of w, and w, in
(6.18), we get,

Yeur =Yt l—lu) k,+iak, Sfo21)
2 2
b
-

Substituting these values in (6.18) or (6.21), we get one of the several second-

order Runge-Kutta formulas of the form:
1
Yo = Yerosliaka) o .. (622)

If we set o.= 1, we obtain W, = W, =

»

where k, =hf(x,,y,), and k,:hf[x, +%, Ye +%j|

Other higher-order Runge-Kutta methods can be developed in much the same
way as the second-order Runge-Kutta method. However, we shall mention here some of
the higher-order Runge-Kutta methods.

A third-order Runge-Kutta method is given below; ¥
Yo = y.+%(k‘+4k,+k,) LR Y (6,29)
where k, =hf(x,.y,)
h k
k,=h g
2 fl:x,,+2 y,+2]
ky=hf(x, +h, y, -k, +2k;)

Since the term containing h* in the Tayler series is ignored, the error is said to
] ; ,,
be of order h*. Another variation of the third-order Runge-Kutta method is as follows:

1 R
Yeur = Yat ;(2k,+3k,+4k,) ... (6.24)
where k, =hf(x,,y,)

h k
k,=hf[x, e +7'-:|

3h 3k
k,=hf[x. Aru +T’-]
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None of the above methods are widely used. A well-known fourth-order Runge
Kutta method often referred to as the classic formula is as follows:

y",=yn+%(k,+2kz+2k,+k‘.) ... (6.25)
where k, =hf(x,,y,)

h k
k,=hfl:x‘I i ! +2—':l

2 4
k,=hf(x, +h, y, +k,)

k,=hf[x, +£, Yo +k—’]

In this method, the per-step-error is of the order h®. The classic Runge-Kutta
method is the most popular. It is a good choice for common purpose because it is quite.
accurate, stable, self-starting and easy to computerise. The main disadvantages are the
requirement that the function f(x, y) has to be evaluated for different values of x and yin
every step. This repeated evaluation of functional-values takes much p time as

pared to other methods of y. M , local error estimates are
;

somewhat difficult to obtain.

Most authorities proclaim that it is not necessary to use a higher-order method,
because the increased accuracy is offset by extra computational effort. If more accuracy
is desired, then a smaller step-size is recommended. It has been suggested in literature
that in using the fourth-order method, the step-size used may be based upon the
relationship:

When this quantity exceeds a few hundreds for a given h, then h should be decreased so
as to obtain a better result with less truncation error. In general, the step-size can be large
when the solution is slowly varying but should be small when rapidly varying. However,
it has been reported in li that if the step-size in this method is reduced by a factor

of Zl' we can expect that the overall final global error will be reduced by a factor of %

All Runge-Kutta methods can be shown to be convergent, i.e.,
Lim(y; - y(x;)) = 0.

Another criterion for selecting an algorithm for the solution of a differential
equation with given initial conditions is instability. Stability is a somewhat ambiguous
term and appears in the literature with a variety of qualifying adjectives (inherent, partial,
relative, weak, strong, absolute, etc.). In general, a solution is said to be unstable if errors
introduced at some stage in the calculati (for ple, from er initial
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or local tr ion or round-off errors) are propagated without bound

g q

Example 4 Given the ODE,y' o subject to initial condition y(0) = 1. Use
Y

+x
the classic Runge-Kutta method to solve the problem in the range 0 < x < 0.5, taking h =
0.1. Write also a p program to impl this method.
Solution Given x,=0, yo=1 and h=0.1
First approximation
Yo ~Xo
k, =hf(x,, =h
1 ( o )'n) [yo "'XQ ]
o0
(1+0)

k, =hf(xu +2£, Yo +%J = hf (0.5, 1.05)

01 {105-005) _ 0.tx1 _

i 0.0909
(1054005 11 :

K =hf(x° +2£. Yo +52-’-J = hf (0.5, 1.0455)

o (1.0455 - 0.05) & 0.1x9955 - 00909
(1.0455+0.05 1.0955

K, =hf(xo+h, yo+k;)= hf (0.1, 1.0909)

(1.0909-0.1)
(1.0909+0.1

=0.1 =0.0832

k =—{k+2(k,+k;)+ k,}

{0.1 + 2(0.0909 + 0.0909) + 0.0832} = 0.0911

A= O

Yo~ %5 =K
=10+0.0911=1.0911
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Other values h=0.1, x_,,= X,+h

BomN Yy ky 'k, Ky ky Yot =Yath
0010 1.0 0.0909 0.0909 00832 1.0911=y,=y,+k
1 .1 10911 00832 00766 00766 00708 11678

2 2 11678 00708 00656 00655 00609 12335

3 3 12335 00609 00566 00566 00527 12902

4 4 12902 0.0527 00491 0.0490 00456 13393

b e, COR B <
Computer Program No 13: Runge-Kutta Method
# include<iostream.h>

# include<conio.h>
# include<math.h>

float function(float x0, float y0)

{
float regult;

result=(y0-x0)/(y0+x0);

return results;

)

void main(void)

{
float k1,k2,k3,k4.k,h,x0,y0,yn;

int n, i, row, col;

clrser();

cout<<*\ntCLASSIC RUNGE-KUTTA METHOD";

cout<<*\nMENTER THE VALUE OF X0: ™;

cin>>x0;

cout<<\nMENTER THE VALUE OF Y0: ™

cin>>y0;

cout<<*“\ntENTER THE VALUE OF h: ";

cin>>h;

cout<<"\nMENTER THE VALUE OF n: ";

cin>>n;

cout<<\nn xn yn k1l k2 k3 k4 y(n+l)=y(n)+k";

cout<<*\n

:
.
2
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row=12;
col=0;
for(i=0;i<n+1; i++)

kl=h*function(x0,y0);
k2=h*function(x0+h/2,y0+k1/2);
k3=h*function(x0+h/2,y0+k2/2);
kd=h*function(x0+h,y0+k3);
k=(k1+2*k2+2*k3+k4)/6;
yn=y0+k;

gotoxy(col, row);

cout<<i;

gotoxy(col+4, row);
cout<<x0;

gotoxy(col+8, row);
cout<<y0;

gotoxy(col+17, row);
cout<<kl;
gotoxy(col+26,row);
cout<<k2;
gotoxy(col+35,row);
cout<<k3;

gotoxy(col+44, row);
cout<<k4;

gotoxy(col+56, row);
cout<<yn;

you=k;
x04=h;
row+=2;

}

Computer Output
CLASSIC RUNGE-KUTTA METHOD

ENTER THE VALUE OF X0: 0
ENTER THE VALUE OF YO0: 1
ENTER THE VALUE OFh :0.1
ENTER THE VALUE OF n :5
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nl i Xh Yn K1 K2 K3 K4 Y(n+1)=Y(n)+k
0 0 1 0.1 090909  0.090871 0.083206 1.091128
1 01 1091128 0.083209 0076612 0.076552 0.070753  1.167843
2 02 1167843 0.070757 0065594 0.065532 0.060871  1.233490
3 03 123349 0.060874 0056628 0.05657 0.052664 1290145
4 04 1290145 0.052667 0.049051 0.048999 0.045627 1.339211
5 05 1.339211 0.045629 0042469 0.042422 0.039444 1381681

6.8 PREDICTOR-CORRECTOR METHODS
The hods di: d in the previ ions are called single-step method:

because they use only the inf ion from one previous point to p ve
point that is only the initial point (Xg.¥,) is used to compute (X,, y,) and in general

Y, isrequired to compute y . .

The predictor-corrector methods, which are also called multi-step methods, are
not self-starting. They require four initial points, (Xg,¥o ) (Xy5 ¥1) (X;, ¥,) and
(X3,Y,), in order to generate the point (X,, y,).

The basic principle behind the multi-step method is to utilize past-values of y to
construct a polynomial that approximates the derivatives of the function f(x, y) and to
extrapolate this into the next interval. The degree of the polynomial depends on the
number of past points concerned. If we use two past points, the approximating
polynomial will be of fist-order. If we use three past points, the approximating
polynomial will be a quadratic and if we use four past points, the approximating
polynomial will be cubic. The more points we use, the higher is the order of the
approximating polynomial and the better is the accuracy.

Suppose that integration has already progressed some way and that a table is
formed giving the values of y as: Yo» Yi» Y2+ ¥3» .., and thus the corresponding
derivatives are:

Xo Yo fo
X Y f,
X Y2 f,
Xy Y3 f;
X4 Ya f,

In order to compute y,, the following two types of formulas are used:

i) A predictor formula which is used to predict (determine an estimate) the
value y, in terms of the values of y's and f's already computed. This
formula is used once in an iteration.
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ii) A corrector formula which is used to find y, in terms of the values of y's
already known, together with the newly predicted value. This formula is
repeated as many times as necessary to obtain the required level of
accuracy, i.e., until the two successive corrected values in an iteration are
same or in agreement to the required number of decimal places.

In these methods, the accuracy is controlled by the corrector formula, whereas
the predictor formula simply helps to provide an initial approximation. Both formulas
usually depend on values of the function already obtained for prior points. There are
several predictor-corrector methods but we shall discuss those methods, which are easy to
develop and are commonly used. They are as follows:

¢ Milne-Simpson method
¢ Adams-Bashforth method and its special cases
e Adams-Moulton (or Modified Adams) method

Advantages of the predictor-corrector methods

These methods are widely used for solving ODEs because of the following
reasons:

a) They are faster computationally.

b) The difference between the predi and values provi a
measure of the error being made at each step and hence can be used to
control the step-size employed in the integration.

Only one or perhaps two evaluations of the derivatives need to be computed
at each step (as compared with the four for the classic Runge-Kutta method)
and on higher-order systems this can save considerable computing effort.

C

Disadvantages of the predictor-eor.mtor methods

Some disad ges are that these methods are lex to program and are not
self-starting. The three main sources of trouble in these methods for lmegml]ng ODEs are
as follows:

a) Truncation errors that arise from.the finite approximations for the

derivatives.

b) Propagation errors (instability) that arise from solutions of the approxtmalc
difference- equations that do not pond to solutions of the
equations.

¢) Amplification of round-off errors due to certain combinations of coefficients
in finite difference formulas.

Let us now derive the above i p
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6.8.1 Milne-Simpson Predictor-Corrector Method

a) berlvnﬁon of Predictor Formula due to Milne

We derive this formula using Newton’s forward difference interpolation
formula (3.2) neglecting differences beyond third-order and integration f, between the

Jimits (0, 4):
f,= f, +pAf, +%(p’ ~p)f, +%(p’ —3p? + 2pI, +.y e (6:26)

Hence,

f‘x: f(x, y)dx = hj‘:f, dp

= hI: [fo +pAf, +_%(Pl —P)Azfo _+_%(P3 _3pz +2p)A3f,]dp

P P _p e Ml ;
7 o _T_TAf°+g T—p +p’ |&f,

5
[f +8Af, +—A’f +§A’f:|
4h

- [3f, +6f, +58%, + 201, ] .. (627)

We now express the above relation into simplé functions.
Since, Afy=f —f,

A= f, - 2f, +f,

Nfg=f,-3f, +3f, -1,
Substituting these functional values in (6.27), we get,

* fx, y)dx = BBE, +6(F, ~F,)+5(E, —2f, +6,)+ 2, - 3, +3f, ~f,)]
Xo - i

= %'1[2\'. -f, +2f,]

Thus, Milne's predictor formula is as follows:
Yo =Nai¥ J:: f(x, y) dx

e 4Th[2f, “p 8de] . (628)
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More generally,

Yon = Via+ %[2&_, —f,, +2f,] ... (629
forn=0,1,2,...

b  Derivation of Corrector Formula due to Simpson

Simpson’s corrector formula can be derived by integrating (6.26) between the

limits (0, 2):

Hl

f‘x’ f(x, y)dx = hszPdp
P’ P 2 1(p* 3 2 |A3 :
—Af —| - |A*, +=| =—-p’ +p° [Af,
e G S e |
[zf +24f, + Af]
=h|:2f° +2(, —fo)+§(f, -af, +fo)]

= %[fo +4f, +1,]
Hence, Simpson’s rule which is used as a corrector formula is as follows:

Y2=VYo+ ,c’ #(x, y) dx
0

= y,+%{f°+4f,+f,]

or, y,=Y:¥ %[l’, +af, +1,] ... (6.30)
More generally,
h
Yoo = Yot g0 +41, 0] - (631)
forn=0,1,2,....

The need for a corrector fom\ull nrlm because the predictor alone is numerically
it gives spuri g exponentially. Milne's predictor uses four

previous values of y, hence extra mnln; formulu are needed to find y,, y, and y,
when y, is given. The starting problem ls a weal of predi hods in
general; nevertheless they are serious competitors to Runge-Kutta methods.
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Starting Values

Since the predictor-corrector formula is not self-starting, we require three
additional values of y to start the process. While solving numerical examples manually or
on the computer, it is advisable to repeat (or iterate) the corrector formula more than
once. In this way, we can get a more accurate value of y. We may iterate to improve the
value obtained from the corrector or step-size may be reduced to obtain a more accurate
value with one or more applications of the corrector. However, the predictor formula is
used only once.

If starting values are not given, they can be computed by either of the ways:

(i)  Using Picard or Taylor series method to generate a series expansion and

then using this series to compute y,, y,,and y,; or
(ii) Using a self-starting method like Euler's or Runge-Kutta methods. As

.already mentioned, the most widely used starting methods are those due to-*

Runge-Kutta.
Stopping Criteria

In a predictor-corrector method, the stopping of iterations may be
either by comparing the difference between two successive values of y’s to some pre-
assigned accuracy or by pre-determining the number of iterations or combining both of
them.

Truncation error due to predictor formula,

E= %h’y"’(Z); where x, .<Z< X.... ... (6.29(a))

Truncation error due to predictor formula,
E=$h’y"’(2); where x, s <Z'< X, ... (6.31(a)
Example 5  Use of classic Runge-Kutta method to solve the differential equation,

y’ =x~y with initial values (0, 1), gives the following tabular values:
X 0.0 0.1 0.2 0.3
y 1.0000 09097 0.8375 0.7816
Using Milne-Simpson predictor-corrector formula, find y(.4) correct to 4 dp. If
!e :‘:‘ ;" +x =1 is the analytical solution of the equation, what can you say about your

Solution The values of x, y and f are given below:
X y f=x-y
0 1,0000= y, | -1.0000= f,
1 0.9097 = y, -0.8097 = f,
2 | 08375=y, | -06375=f,
3 07816=y, | -04816=f,
4 | 07407=y, | -03407=f,
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Using predictor formula (6.28), we get,

4h
Y(4) = yo+ —3—[2:’, ~f, +2f,]
4x.1
=100+ (2x ~0.8097 +0.6375 + 2% < 04816)

= 1.0000 +%( ~1.6194 + 0.6375 - 0.9632)
= 1.0000 - 0.2593 = 0.7407
Using predictor formula (6.30), we get,
Y4 = y,+ %[f, +4f,+1,]
=0.8375 +% (- 0.6375 + 4x — 0.4816 — 0.3407)

=0.8375 +% X-0.9046 = 0.7407

Both the predicted and corrected values agree to 4 dp.
Exactanswer, y(.4)=2e™ +.4 - 1=0.7406.
Obviously, the exact answer and the numerical result both agree to 3 dp.

6.8.2 Adams-Bashforth Predictor-Corrector Method

a)  Derivation of Predictor Formula due to Adams

This formula is derived using Newton's backward difference formula. Integrating
(3.3) and using limits (0, 1), we get,

J;:o f(x,y) dx = hj'o f, dp
=h '[f. +pVi, +%(p’ +p)V2, +%(p‘ +3p? +2p)V'f,
0
l 4 3 2 4
+-2-z(p +24p’ +11p +6p)v fo +:++|dp
h{pf, + Eur, 4424 Bl)ory, o LBy o 2 o
§ige Oeglte Caai v IehidlY f
1

24(L+6p +—p +3p ]V‘f +or ]
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e Vf,, —v=f e Snip 28l gup
8 720

Predictor formula is as follows:

3= Yo+ [ oy

1 & o8 SR LA ]
h| f, +—Vf, +-—Vf += Vf +=—V*f, +--| ... (6.32
Y1=Yot [ 2 ot 720 ( )
More generally,
5 3 251
+h{f, +— Vf +=V, +=Vf, + ==V, +--| ...(633
Yo = Ya [ > o 8 720" ® ] (6.33)
forn=0,1,2, ...
b) Derivation of Corrector Formula due to Bashforth :
The corrector formula is derived as follows: :
f, = B
=(1-v)°"-

Expanding by Binomial Theorem, we get,

[+ G-17 2ol + oG-IV
+Lplp-1p+ o+ 2 1,

=f, +(P_1)Vf| ""%(P’ 'P)vlfl *’%(P) -p)V’f,

1
+§(P‘-Zp’-p’-p)\7‘ fi+
As before,
j:‘o fx,y)dx = hj: f, dp

=h I;[f, +(p-1)vF, +-;-(p’ -p)V3, +%(p’ -V,

+-2l-‘-(p‘ -2p' - p? -2p)V4, +~-]dp
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spbp - ept Doa Al Gie sl i I fe
2 1 Tig 2 720

Corrector formula is as follows:
Yi= Yo+ r' f(x, y) dx

=yl ——Vf “doze Lo g L3S
y°+[ 2z T2 720 )

More generally,

Yo = Yot hl:fnu —%Vfﬂ,, sznﬂ : S V2f 4

i _]
24 720

...(6.36)

12

foran=04:% ...

Truncation error for the predictor formula,

251 v
o “—h*y"(@); x, S Z<x,,

Truncation error for the predictor formula,

E=-—7 Ry D) XS 28 Xin

) Special Case
Truncating predictor formula (6.32) after Vf,, we get,

f;:, f(x,y)dx = h[f,, +%w,}
- h[f. +%(f. ot )]
- 2Dt -1,

h
Y1 = Yo+ 5B 1]
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More generally,
h
Yar = Yot 5B -] ...(637)

for n=0,1,2,....

Truncating corrector formula (6.35) after Vf, , we get,
' 1 1
f:o f(x, v)dx = h[f, —-EVf,]
=hlf, _l fi _fo)
2
h
i 'i[fo + fx]

h

Yir= Yok E[fo +f1]
More generally,

h

Yo = Yot 5lfa +1,0] .-(6.38)
forn=0,1,2,....
Example 6 Given the ODE, y’ =1 + 2xy, with (0, 0).
(a) Show that the series expansion of y in power of x as far as x°,
y = x+£x’ +ix’ .
£ 15

(b) Tabulate y and x to 4 dp for x = 0(0.1)0.3 and apply Adams-Bashforth
method to compute y(0.4).

Solution Given y’ =1+2xy, x=0,y=0.
(a) Using three approximations, Picard’s method generates the required series:

3 15

=X l+x’[1+-‘-x’]]
o )

y= Al vy d oy
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]

®)

Substituting values of x in the above series, we get,

x ¥ f=1+2xy \% v2 V3 v

0.0 |.0000=y, 1.0000=f_,

201 ;
0.1 |.1007=y_, 10201=f_, 420
621 49
02 | 2054=y, 10822=f, 469 42
1090 91

03 | 3186=y, L1912=f,

04 | 453=y  13562=f,

1652

04 | aas5=y ' 13564=f,

Using predictor formuia (6.32), we get,

n

1 5 3
Vi = Yot h{f,,afgwo +E\7’fn +§V’fo}

=.3186+0.1 {1.1912+%x.1090+%x.0409+§x.0049}

=.3186+0.1{1.1912 + .0545 + .01954 + .00184}
.3186+ 0.1 x 1.2671 = 0.4453
Using corrector formula (6.35), we get,

vy h[f,—-z—Vf -—l-V’f -—-V’f,— 2ov‘f e ]

19
3186+0.1{1.3564 - x.1650 - - x.0560 - - x.0049 ~ -2 x 0042
& { 2 12 % 720 }

=.3186+ 0.1 x 1.2686 = 0.4455
Using corrector formula once again, we get,
1 9

3186+0, e -1 x 0562~ x.0003 - %
v = sa+ox{1sm 3%/1652- 0862 - —-x.009 mxoou}

=.3186+0.1 x 1.2686
= 0.4455
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Using corrector formula twice, the answer correct to 4 dp is, y(.4) = 0.4455
If we are interested to extend the solution to x = 0.5 and 0.6, we get

¥(0.5) = 0.5923 and y(0.6) = 0.7671.

6.83 Adams-Moulton Method

Adams-Moulton formula (also called the modified Adams method) is as
follows:

Predictor

Truncating (6.33) after the third differences and expressing in terms of functional
values, we get,

You = Vot %[ssg —59f, , +37f,, ~9f,,] ...(6.39)
forn=0,1,2.3,....

Corrector

Truncating (6.36) after the third differences and expressing in terms of functional
values, we get,

i %[9&,, F19F, - 5f,, +1,.,] ...(6.40)
Local truncation error in predictor,
E= :Ts(l)h’y"’(l); where x, < ZS x,,, ...(6.41)

Overall, the Adams-Moulton method seems to exhibit the best features and is
recommended. Milne-Simpson method is fairly accurate but it has some instabilities.
Small errors introduced earlier become relatively large errors over a large number of
steps. So, some multi-step las are not computationally satisfactory b of rapid
error growth due to the phenomenon of numerical instability; further consideration of
which is beyond the scope of this book.

The efficiency of predictor-corrector methods is one of the primary reasons for
their current popularity. Thus, it is good to add something more here regarding the use of
these methods. Some sources d that the formulas should be iterated
only once, regardless of whether or not any 8 iterion {s satisfied. H y
this can ionally be dang particularly if the step-size is fairly coarse. In others
opinion, the best approach is usually to iterate the corrector as many times as necessary to
meet a ble convergence criterion, although it is also usually-desirable to set some
upper limit on the number of iterations. This number might be approximately three for
efficiency and more for ensured accuracy. If this limit is exceeded, the result can either
be flagged or the program terminated if desired.

Example7  Reconsider Example 4 of this chapter. Solve it using' Adams-Moulton

formula for y(0.4). Assume that the starting values given below are computed using the
classic Runge Kutta method:
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xtll e 1 2 3
y | 10000 10911 11678 1233

Y —X

Solution Given y’ = 3 X0=0, yo=1.
y y+x y Yo

x y w e X

y+x

00 | 1.0000=y, 10000=f_,
01 [ 10911=y, 08321=f,

02 | 1.1678=y, 07076=f,
03 | 12335=y, 06087=f,

04 | 12898=y, 0.5266= f,, Predicted value

1.2902=y, 05267 = f,, Corrected value

Using predictor formula (6.39), we get,
Vo= Yot %{ssfo _59f, +37F, -9 ,}
=1.2335 +% {55 x 0.6087 - 59 x 0.7076 + 37 x 0.8321 — 9 x 1.0000}
=1.2335 +% {33.4785 — 41.7484 + 30.7877 — 9.0000 }

=1.2335 +% x 13.5178 = 1.2898

Using corrector formula (6.40), we get,

h
¥i =¥t a{gfl +19f, - 5f, +f,}
=1.2335 +% {9x0.5266 + 19 x 0.6087 - 5 x 0.7076 + 0.8321 }

=1.2335 +92'Il % 13.5988 = 1.2902
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Using corrector formula once more, we get,

y, = 12335 *% {9 %0.5267 + 19 x 0.6087 — 5 x 0.7067 + 0.8321}

=1.2335 +°?‘41 {4.7403 + 11.5653 - 3.538 + 0.8321}

=1.2335 +% X 13.5997 = 1.2902

Using corrector formula twice, answer correct to 4 dp, y(0.4) = 1.2902.

Example 8 If y' =1+ 2xy and y = 0, when x = 0. Write a computer program to
calculate the values of y correct to 6 dp for x = 0(0.1)0.3, using the classical Runge-Kutta
method and, then solve the differential equation for x = 0.4 by (i) Milne-Simpson
“method, (ii) Adams-Bashforth method and (iii) Adams-Moulton method.

Solution
Program No. 14: Predictor-Corrector Methods -
Given the data: x =0,y =0,h=0.1, y’ = 1 + 2xy

# include<iostream.h>
M include<conio.h>
# include<process.h>

float ray[50](50];
int dg=4, It;

float func(float a, float b)
{
float temp;
temp=1+2*a*b;
return temp;
}

void initial (float x[ ], float y[ ], float f [ ])
{
intp, g;
for (p=0; p<50; p++)
{
x[pl=0;
ylp1=0;
flp1=0;
for (q=0; g<50; q++)
ray [pllq]=0;
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)
}

entry (float x[ ], float y[ ], float &h, float &xp)
{

clrser ();

cout<<"\nt\IMPLEMENTATION OF PREDICTOR-CORRECTOR METHODS”;
cout<<*\n\tINITIAL VALUEOF X : ";

cin>>x[0];

cout<<\n\tINITIAL VALUEOF Y : ";

cin>>y[0];

cout<< “\ntSTEP LENGTHH. : "

cin>>h;

cout<<*\ntVALUE OF X FOR WHICH\n\tY IS TO BE PREDICTED : ”;
cin>>xp;

}

void calc(int n, float h, float x[ ], float y[ ], float ] ])
{
int i;
float yn,k1,k2,k3,k4,k;
for(i=0; i<=n; i++)
{
k1=h*func(x[i], y[i];
k2=h*func(x[i]+h/2,y[i]+k 1/2);
k3=h*func(x[i]+h/2,y[i]+k2/2);
kd=h*func(x[i]+h,y[i]+k3);
k=(k1+2*(k2+k3)+k4)/6;
yn=ylil+k;
fli}=func(x[i],y[i]);
x[i+1]=x[i]+h;
yli+1]=yn;

}
void table(int m, float xp)

int a,b,c,ij;

c=m;

b=5;

dg=4;

clrser( );

cout<<*\WDIFFERENCE TABLE”;
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cout<< “\n\M\tY\t F(X)WDIFFERENCES";
for(i=1;i<m;i++)
{
a=l;
gotoxy(a,b);
cout<<ray[i][1];
gotoxy(a+= 11,b);
cout<<ray[i][2];
gotoxy(a+= 12,b);
cout<<ray[i][3];
b+=2;
}
a+=10;
for(i=4:i<=dg+3;i++)
{
b=i+l;
for(j=1; j<c-1; j++)

gotoxy(a,b);
cout<<ray[j] (i];
b+=2;
}
a+=11;
e
)
gotoxy(5,30);
cout<< “RESULTANT - VALUE = "<<ray[m]([2];
getch();
}

void msimp(int n, float h, float x[ ], float y[ ], float xp,float f [ ])

{
float yc, yp;
int i;
clser();
cout<< ‘“\n\tMILNE-SIMPSON METHOD";
cout<<"n\XUY\\\F(X)™;
for (i=0; i<=n;i++)
{
cout<< \n\t"<<x[i]<< \t"<<y[i]<< W\ "<<f [i];
}
yln+1)=y[n-3]+4*h/3*(2*f [n-2]-f [n-1]+2*f [n]);
yp=yln+1]; d
yln+1]=y[n-1]+h/3*(f [n-1)+4*f [n]+f [n+1]);



Ordinary Di: i i 199

ye=y[n+1];
while(yc!=yp)
{
yP=Y¢;
f [n+1]=func(x[n+1],y[n+1]);
yIn+1]=y[n-1]+/3*(f [n-1]+4*f [n]+f[n+1]) ‘
ye=y[n+1];

}
cout<<'\n\n\tTHE PREDICTED & CORRECTED VALUE OF Y(*<<xp+h<<") is "<<yc;
}

void setting(int m, int n)
{
int i, j, count=0, v=n;
dg=4;
for(j=4:j<=dg+3;j++)
{
for(i= l;i<=m-j+ 3;i++)
{
count++;
if(count<v)
ray[i[j)=ray[i+1][i-1]-ray(i] (j-1);
else
ray[i] [jl=ray(i+1](j-1)-ray(v](j-1};

count=0;
veg
}
) ¥ -

void bash(int n,float h,float x[ ],float y[ ],float xp,float f [ ])
{
int t=0;
float yc,yp;
setting(n,n);
for( t=1;t<=n;t++)

{ ?
ray[t)[1)=x[t-1];
ray[t)[2)=y[t-1];
ray[t][3]=f [t-1];

)

t=0;
ray[n+l](1)=xp;
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ray[n+1](2)=ray[n][2]+h*(ray[n][3]+0.5*ray[n-1][4]+0.416667*ray[n-2](5]

+0.375*ray([n-3](6];

yp=ray[n+1][2];

ray[n+1](3)=func(xp,ray[n+1][2]);

setting(n+1,n);

ray[n+2](1)=xp;

ye=ray[n+2](2]=ray[n][2]+h*(ray[n+1][3)-0.5*ray[n}{4]-0.083333*ray[n-1](5]
-0.041667*ray[n-2}[6]-0.026389*ray[n-3](7]);

ray[n+2][3]=func(xp,yc);

setting(n+2,n);

t=n+3;

while(yc!=yp)
{

YP=Ye;
ye=ray(t][2]=ray[n][2]+h*(ray[t-1][3]-0.5*ray[t-2][4]-0.083333*ray(t-3](5)
-0.041667*ray[t-4](6]-0.026389*ray([t-5} [7]);
ray[t][3]=func(xp,yc);
ray[t][1]=xp;
t++;
}
table(t-1,xp );
}

void amoulton(int n, float h, float x[ ],float y[ ,float xp,float f [ ])
{
float yc, yp;
inti;
clrser();
cout<<“\nMADAMS-MOULTON METHOD";
cout<<"“\n\MXMY\\\F(X)™;
for(i=0;i<=n;i++)
{
cout<<"\n\t “<<x[iJ<<t “<<y[i]<<"\\<<f [i];

)
y(+1)=y(n]+h/24*(55*f(n]-59*f [n-1 ]+37*f [n-2]-9*f[n-3]);
yp=yln+1];
y[n+1]=y[n]+h/24*(9*f [n+1]+19*f [n]-5*f [n-1)+f [n-2]);
ye=y[n+1];
while(yc!=yp)
{
yp=ye;
f [n+1]=func(x[n+1],y(n+1]);
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)

yln+1)=y(n-1]+h/3*(f [n-1]+4*f [n)+f [n+1]);
ye=y[n+1];

cout<<'\n\n\THE PREDICTED & CORRECTED VALUE OF Y(“<<xp+h<<") is "<<yc;

{
{

void main(void)

int n,choice;

char opt;

float x[50],y[50];f [50],h,xp;
cout<<‘\n\W\PREDICTOR-CORRECTOR METHODS";
cout<<'AnMTHIS PROGRAM SOLVES Y’ = 1 + 2XY";
while(l)

{
initial(x,y,f);
clrser( );
cout<<“\n\nMMMENU";
cout<<*“\n\n\tMILNE-SIMPSON METHOD---
cout<<*“\n\ntADAMS-BASHFORTH METHOD---------
cout<<‘“\n\ntADAMS-MOULTON METHOD------—---3";
cout<<*\n\n\EXIT:- 4",
cout<<‘“\n\n\tYOUR CHOICE";
cin>>choice;

if(choice!=4)
{
entry(x,y,h,xp);
xp=xp-h;
n=(xp-x[0))/h+0.5;
cale(n,h,x,y,0);

switch(choice)
{
case 1:msimp(n,h,x,y,xp,f);getch( );break;
case 2:bash(n,h,x,y,xp+h,f);getch( );break;
case 3:amoulton(n,h,x,y,xp,f);getch( ); break;
case 4:exit(0);

default:cout<<*\nMENTER CORRECT CHOICE."; getch( );
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Computer Output

MENU

MILNE-SIMPSON. METHOD----------ee-1
ADAMS-BASHFORTH METHOD: 2
ADAMS-MOULTON METHOD-----—-------3
EXIT- 4
YOUR CHOICE :

IMPLEMENTATION OF PREDICTOR-CORRECTOR METHODS
INITIAL VALUE OF X : 0

INITIAL VALUEOF Y : 0
STEPLENGTH H : 0.1

VALUE OF X FOR WHICH ¢
Y IS TO BE PREDICTED : 04

MILNE-SIMPSON METHOD
% Y F(X)

0 0 1

0.1 0.100669  1.020134
02 . 0205419  1.082168
03 0318665 1191199

THE PREDICTED & CORRECTED VALUE OF Y(0.4) IS 0.445532

ADAMS-MOULTON METHOD
X . ¢ FX)

0 0 1

0.1 0.100669 1.020134
0.2 0.205419 1.082168
03 0.318665 1.191199

THE PREDICTED & CORRECTED VALUE OF Y(0.4) IS 0.445532
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69 SOLUTION OF SIMULTANEOUS AND HIGHER-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

In the previous sections, various methods to solve the first-order ODEs are
discussed. In practice, we often have to solve a set of simull first-order dif
equations.  Such equati occur . frequently . in  obtaini luti of higher-order
differential equations as part of the solution process We can solve the present problems,
using one of the methods discussed so far. However, we will describe the use of Runge-
Kutta methods, which are well-suited for the solution of such equations; manually as well
as on computers.

6.9.1 Solution of First-Order Simult; Differential Ex
Let us consider the solution of two simull ous first-order diffe ial equations
of the form: v
Y =f(x,y) ... (6.42)

Z' =gy, 2)
with the initial conditions y = y, and z= z, when x = X, are given.

Using the classic Runge-Kutta method, we get,

You= y,,+6 K, +2(k, +k;)+k,]

Zyn=2Z, +%[ll +2(lz+l1)+£4]

where e
k,=hf(x,, y,, z,) £, =hg(X,, ¥i: 2,)
L gt il ey (M ek
k_hf[x +2.y_ z+2] l,-hg[x_+z.y_+2.z,,+2 f
h ks /] h k ¢
ky= hf[x, t23 Y 4= > b —21] 4= hg[x,-b;, y,+—21, z,,+-21]
Ke=hf[X,+hy,+k;, 2,4£;] Ly=hg[x,+h y,+ky, 2,44,]

If the number of equations is more than two, the method is modified accordingly.

69.2 Solution of Nth-Order Differential Equations

An nth-order differential equation can be solved by transforming the given
equation for a set of n simultaneous first-order differential equations and applying Runge-
Kutta formula as discussed above.
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Consider the: second-order differential equation,
Yy =f(x,y, y') ... (643)
subject to the initial conditions: y = y,, ¥’ = y, at x = X,.

Let z = y’. then (6.43) can be transformed into two first-order differential
equations. Differentiating, we get,

’

2’y Xy 2)

... (6.44)
Yisz
The equations in (6.44) can be viewed as,
Y=z
2’ =f(x,y,2)

and can be solved as a pair of first-order equations.

Example 9 (a) Use the classic Runge-Kutta method to solve the following system of
equations for x = 0(0.1)0.5.

y =x+yz
z' = y*+ 2?
subject to the initial conditions, y = z = 1.0 when x = 0.
(b) Write also the corﬁpuwr program for the purpose.
Solution (a)  Givenh=0.1, yo= 1.0, = 1.0, x,=0.0.

Values of y and z are required for x = 0(0.1)0.5.
The sequence of computations is given below:

k, =hf(x,y,2) = 0.1[ X+ ¥, * Zo)
-0.](6+lxl)-0:l

/A =hg(x,y,2)=0.1] x2 +22 |
=0I(1x1+1x1)=0.2

k, = hf[x+%. y+£2'-. z+£2|-]
=0.1{(0 + 0.05) + (1 +0.05) (1 +0.1)] =0.1205
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2 2
=0.1[(0+0.05)* + (1 +0.1)’] = 02313

L= hg[x+£, y+ﬁ, z+[—2']

k=l x+ 2 yake 50 le
2Ny 2

=0.1 (O+0.5)+(l+w)x(l+w) =0.1233
2 2
sk ¢
£y=hg|x+—, y+—2, z+-%
2 g[ o g 2]

2 5 2
=0A,[(,+&1.;ﬁ] o1422) } CihG

k, =hf(x+h,y +k,, z+£;)
=0.1[0.1 + (1.1233) x (1.2369)] = 0.1489
£, =hg(x+h, y+k,, z+£;)
=0.1[(1.1233)* + (1.2369)*] = 0.2792

k= %(k,+2k, +2k; + k)

= %[0.2+2(0.1205+0.1233)+041489] = 0.1228
¢ = %(4,+24, U R L)

= -61-[0.2-0 2(0.2313 +0.2369) + 0.2792] = 0.2359

Y1 = Yotk
=10+0.1228 = 1.1228
z, =2+ L
= 1,0 +0.2359 = 1,2359

The other values can be calculated in a similar manner and are given in the
following table:
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x X z
0.0 1.0000 1.0000
0.1 1.1228 1.2359
0.2 1.3069 1.5778
03 1.5961 2.1217

04 2.1021 3.1208
0.5 3.2249 5.5258

Program No. 15: Runge-Kutta Method for N Equations

#include<iostream.h>
#include<conio.h>
#include<math.h>

float function_f(float x0, float y0, float z0)
{
float result;
result=x0+y0*z0;
return result;
|
float function-g(float x0, float y0, float z0)
{

float result;
result=(y0*y0)+(z0*z0);
return result;
)
void main(void)
{

float k1,k2,k3,k4 k;

float 11,12,13,14,1;

float h,x0,y0,20;

int nji; :

cout<< \"tRUNGE-KUTTA METHOD FOR HIGHER ORDER DIFFERENTIAL
EQUATIONS";

cout<<*“\n\tEnter the value of X0: ";

cin>>x0;

cout<<'\n\tEnter the value of YO : "
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cin>>y0;

cout<<‘\n\tEnter the value of Z0: ™;
cin>>z0; »
cout<<'\n\tEnter the value of h : ;
cin>Sh;

cout<<"\n\Enter the value of n: ”;
cin>>n;

cout<<*\tn\t xn\t yn\t\t zn’;

for(i=0;i<n+1 ;i++)

cout<<"\n\t"<<i;
cout<<“\t"<<x0;
cout<<*\t"<<y0;
cout<<"\t"<<z0;

kl=h*function_f(x0,y0,20);
11=h*function_g(x0,y0,20);
k2=h*function_f(x0+h/2,y0+k1/2,20+11/2);
12=h*function_g(x0+h/2,y0+k1/2,20+11/2);
k3=h*function_f(x0+h/2,y0+k2/2,20+12/2);
13=h*function_g(x0+h/2,y0+k2/2,20+12/2);
k4=h*function_f(x0+h,y0+k3,20+13);
l4=h*function_g(x0+h,y0+k3,20+13);
k=(k1+2*(k2+k3)+k4)/6;
I=(11+2*(12+13)+14)/6;

X0+=h;

yo+=k;

20+=1;
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Computer Output
RUNGE-KUTTA METHOD FOR HIGHER ORDER DIFFERENTIAL EQUATIONS

Enter The Value Of X0: 0.0
Enter The Value Of YO : 1.0
Enter The Value Of Z0: 1.0

" Enter The Value Of h: 0.1

Enter The Value Of n: 5

x Y z
0.0 1 1
0.1 1.122751  1.235902
0.2 1.306859  1.577818
0.3 1.596055 2.121701
04 2.102132  3.120769
0.5 3.224887 5.5258

v A W N~ OB

PROBLEMS
1.(a) Show by successive approximation method or otherwise that the differential
equation,
y=1+xy+x?y?
subject to y(0) = 0,'is
R e R
=X += X’ +— —
y x+3 +l’x +105x +
(b) , Prove that the differential equation,
y’ = y?=2; subject to y(0) =1, has a series
solution of the form about the initial point;
1 2
l=x=x*==x*+=x'+..,
IR )
2 Given the following differential equation,
y = xy=1), .
subject to the initial condition y(0) = 2.0.
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(b)

c)

5.

(a) Derive the Taylor series expansion as far as the third derivative. Evaluate the

series for y(0.2), correct to 4 dp.

(b) Find the true answer if the solution of the differential equation is,

y=e?+1

Compute the error between the true and numerical solutions.

(c) Find the maximum truncation error to 4 dp.

(d) How small must the step-size be to ensure 4 dp accuracy per step?

Explain how an approximate solution of a differential equation may be obtained
by, (i) the Taylor series, and (ii) Picard’s methods.

Stating briefly the advantages and disadvantages of each method.

Explain why one of the methods is inapplicable to the equation,

3
Y =y+o=
/sin x
for which y(0) = 1 and employ the other method to evaluate y(0.1) and y(1.2)
correct to 4 dp.
Explain why one of the methods is not applicable to the eq

; &
Y =yx? y0)=1

Use the other method to evaluate y(1.5).
Consider the initial value problem,

(a)
(b)

()

. @

Yy =x-y; y0)=1

Derive the Taylor series formula as far as third derivatives for the above
problem.

With h = 0.1, use the result to an approxi lution to ensure

4 dp on the initial conditions (0, 1).
Estimate the maximum truncation error per step. How small must the step-
size be in order to ensure 6 dp accuracy per step?

If the analytical solution to the given problem is y = 2e™ + x ~ 1,
calculate y(0.1). What can you say when compared with the result obtained
in (b) above,

Consider the initial value problem, v’ = x* +x+y, y(0) = I,

0}

(i)

Use Picard's method to find the solution in the form of a series, including
upto four approximations,

Use the series obtained above to tabulate for x = 0(0.1)1,
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(b)

©

@@

(i)
6. (a)

(b)

()
7. (a)

(b

(iii) If the exact solution of the given differential equation is,
Y=4e*- (x* +3x +3), compute Y(1)
Obtain the global error [Y(1) - y(1)|.

(i)  Derive the Taylor series expansion formula of order 5 using the differential
equation given in (a) above.

(ii) Determine roughly over what range this solution will hold to 4 dp if
terminated at x *. Using the terminated series, tabulate y for x = 0(0.1)1.0.

(iii) Since the exact solution is known, obtain the global error.
Consider the initial value problem, H

Y =xy: y0) =y 0 =1
Show by Taylor series method that

1 1
y=1l+x +—x> +—x*+ —x*
6 12 80

Obtain the values of y and y” for x = — 0.2(02)0.6, correct to 5 dp.
Find the numerical solution of the_ problem,
Y =y+2x-1 y0)=1,

over-the interval [0, 1] using Taylor series methods of orders 1, 2, 3, and 4, with
h=0.1.

Find also the exact solution of the given differential equation.
Using Euler’s method, solve the differential equation,

y’ = x*~y, over the interval [0, 0.2] with y(0) = 1 and h = 0.05.
If the exact solution is,

ym <o #x® =242
Compare t!'ne solution obtained in (a) above with the exact solution,
Find the local and global errors.
Use the simple Euler’s method to solve for y(0.1) from:

y' =x +y +xy, with y(0) = 1; with h = 0,01.
Estimate how small h would need to be to obtain 4 dp accuracy.
Determine y at x = 0(0.2)0.6 by the classic Runge-Kutta method, givem that,

’ 1
- ——, y(0) = 2.
¥ e ¥
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(c)

(C)

(e)

12.a

Perform two iterations of second-order Runge-Kutta method for the solution of
the equation:

y = xy+y?* y(1)=2, withh=0.
Find the values of y(2.1) and y(2.2) as a solution of the differential equation:

,

¥'=x?+y% y2)=3

Take h=0.

Repeat the problem under (d) above for y(0) = 1 for x = 0.4. Take h = 0.2

Ky =x*4+ Xy, subject to y(0) = 1, find a series expansion using Picard’s (or

Taylor series) method for y in as far as x°. Calculate the values of Y, correct to
4 dp for x =0(0.1)0.3.

Using Milne-Simpson predictor-corrector method formula, find y(0.4) correct to
4 dp.

If y'=x+y?andy= 1 when x =0, use the classical Runge-Kutta method to
calculate the values of y correct to 4 dp for x = 0(0.2)0.6.

Solve the differential equation by Milne-Simpson predictor-corrector method for
y whenx = 0.8

If y =1+y? and y(0) = 0, use the classical Runge-Kutta method to calculate
values of y correct to 4 dp for x = 0(0.2)0.6.

Solve the differential equation by Milne-Simpson predictor-corrector method for
y when x = 0.8 and 1.0. .

The differeritial equation y* = x — 0.1y? is to be solved with the initial value
y = I when x = 0. Assuming that the following starting values have been
obtained:

X l -0 = o 2
y | 104068 101513 099507  1.00013

Find the value of y correct to 5 dp at x = 0.3 using Adams-Bashforth formula.

Solve the following simul; i using Runge-Kutta method of
order 4,

X' =y-t

Y =x+1

with the initial conditions x =0, and y = 1, when t = 0.
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Complete the following table considering the answers correct to 4 dp:

t 0 5 2 3 4
x | 0.0000
y | 1.0000

(b) Consider the second-order differential equation,
y’ =xy +x?
with y(0) = 1, y'(0) = 2 and h = 0.2. Write down the equivalent system of two
first-order differential equations. Determine y(0.2) and z =0.2.
13. (a) The differential equation,
y =2x(y-1),y0) =0,
has initial values as follows:
y f
0 0
-0.01005 -0.20201
-0.04081 -041632

-Q09417 - 0.65650
-@N7351 -0.93881

Use Ad Bashforth method to compute y(0.5). Compare your answer with the
exact answer: — 0.28403.

= o|x

(b) The differential equation y* + y*~ x* =0 with the boundary condition y = 0
when x = 0 is satisfied by the value of x and y in the following table:
x l -04 -0.2 02 0.4
y | 0.02131  0.00267 -0.00267 -0.02131

Use Adams-Bashforth formula to obtain correct to 4 dp, the value of y when
x=0.6.

14. (a) Given the differential equation,
y +y+2x=0, withy(0)= - 1.
The starting values, correct to 7 dp, have been obtained using some method:
P 02 03
¥ I -09145122 -0.8561923  -0.824547
Use the Ad: Aoulton method to compute the solutions for x = 0.4 and 0.5.
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(b) For the differential equation,

(©)

(d)

(e

15.

Yy =x*+y% y0)=0,

using x = 0(0.2)0.6, compute three new values correct to 4 dp by the Runge-
Kutta method.- Then extend the solution for x = 0.8 and 1.0 using the Adams-
Moulton method.

Given the differential equation y’= x — 2y, with y(0) = 0.75. Assume that the
other starting values are given as:
X 2 4 .6

y | 52092 139933 35119
Use the Adams-Moulton method to find the value of y at x = 0.8.
Consider the initial value problem:
Yy =x-y+2 y(0)=0

(i) Use Taylor series method or Picard’s method to find the values of y,
correct to 6 dp, for x = 0(0.1)0.3.

(ii) Compute the values of y for x = 0.4 and x = 0.5 using Adams-Bashforth
method. .

(iii) Check the answers obtained in (b) above using Adams-Moulton method.
Given the differential equation:
y’ =2y/x; withy(1)=0
The following starting values are computeri using Runge-Kutta of fourth order:
K 125 1.50 175
y | 2w 3.13 450 6.13
Estimate y(2) using the Milne-Simpson’s predictor-corrector method.
Given the following two differential equations:

x =2x+3y
Yy =2x+y
with initial conditions x(0) = — 2.7 and y(0) = 2.8.

(a)  Solve the system of equations using the Runge-Kutta method for
t=0(0.05)0.20.

(b) If the analytical solution is given as,
69 .3 u

)= ——e™ + —e" and
V)= = )
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69 _ 1 )
syt ey 7
find the exact solutions for x(t) and y(t) for the given interval.
(c) Find also the local and global errors. Comment on your results.
4 16. Consider the system of two first-order differential equations:
/ X'= x42y
y =3x+2y
withx=6andy =4, whent=0.
(a) Use the Runge-Kutta method to solve the above problem over the range of values
0(.02).2.
(b) Compare the numerical solution with the true solutions:
x(t)= 4e* + 2¢™" and
x(t)= 6e* —2e
T Given y'= % — 1 with the initial condition y(1) = 2.
a)  Find the series expansion us.ing Taylor series or Picard’s method. Tabulate
the vatues of y corresponding to x = 1(0.02)1.08 working to 5 dp.
b) (i) Use Ad Bashforth predi formula to find the value of
y(1.10).
(ii) If the exact solution of the differential equation is Y = x(2 — In x), find
Y(1.10). Comment on these two results.
¢)  Check your answer as obtained in b(i) above with Adams-Moulton method.
d)  Use the computer program to extend the values of y for x = 1.10(0.02)1.20.
18. Consider the second-order initial value problem:

X" (1) +4x" (1) + 5x(t) =0
with the initial conditions: x(0) =3 and x’(0) = - 5.
a) Write down the equivalent system of two first-order equations.

b) Use the Runge-Kutta method to solve the reformulated problem in (a) above
over the range of values 0(0.1)0.5.

c) Compare the numerical solution with the true solution:
x(1) =3¢ cos(t) + e ' sin(t)
Display your output in the following format:
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[ Xi Xn(t) Error = [Xn — Xa(t)|
0.0 3.000000 | 3. 000000 | 0.000000
0.1
0.2
5.0

19. () Given the following system of equations:

(b)

(©

@, =6x-3z-5
dx

E =(x-y+5/3
dx
with x,=0, yo=2and z,= -1,h=0.1.

Solve the equations for x = 0.5 and 1 respectively using Runge-Kutta method.
Convert the following second-order equation to two first-order equations:

2
LY o2 3y - xte2,h=01
dx dx
Convert the following second-order equation to two first-order equations:
iy iy
—s ty—+y = 2x
ax Y

withy(1)=1and y'(1)=1.
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Chapter 7

Non-Linear Equations

7.1  INTRODUCTION

This chapter is concerned with the most commonly used methods for solving
equations of the form,

f(x)=0 e L)

where f(x) is a given function. The roots of (7.1), which are the requircd answers, are
those values of x for which f(x) is true.

For example, if f(x) = X + 4x + 4, the equation X* +4x +4 =0 has two roots,
—2 and 2. The roots of an equation are also called the zeros of the equation.

The function f(x) can be linear or non-linear.
A linear function is of the form:
- f(x)=ax+b,
where a and b are constants. In this case, the solution of f(x) = 0, is simple and is given

byax+b=0,o0r,x= :—E.providedaso.
a

A non-linear function may be one of the following types:

(a) f(x) may be an alg function (or a pol ial of degree n)
expressible in the form: 4

f=a,x"+a,, x +a,,x" +..+a,
)

If n 2 5, the solution cannot be obtained easily by some direct methods, and
we have to use some other methods.

() f(x) can be a dental function. A dental function is one
which invol ige i p ial, logarithmic functi etc.
Some lés of dental functions are as follows:

tanx -x+1=0,

logx +e* - 1=0,etc.
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An algebraic equation of degree n has n (real and/or complex) roots, while a
transcendental equation may have no root, a finite, or an infinité number of (real and/or
complex) roots. It is obvious that many non-linear equations cannot be solved easily by
analytical or direct methods and hence there is a need to use numerical methods for
finding their roots.

7.2  METHODS TO SOLVE NON-LINEAR EQUATIONS

The numerical techniques designed to find roots are powerful, although each has
its own limitations and pitfalls. Therefore, students should learn pros and cons of each
method, pamcularly its difficulties and become familiar with the methods through
practice using computer.

In this book, we shall consider the following methods for finding the real roots of
algebraic and transcendental equations:

i)  Simple iterative method
ii)  Newten Ruphson method
iii)  Bisection method

iv)  Secant method

v)  Rule of false position

If f(x) is a polynomial in x with real coefficients, it may have both real and
complex roots. Of the various methods available for finding all roots, the following two
are worth mentioning:

i)  Synthetic division method
_ i)  Bairstow’s method

The interested reader is referred to some specialized books (given in the
bibliography at the end of this book) for the description of Bairstow’s method.

Let us discuss the above methods one by one.

73  SIMPLE ITERATIVE METHOD

A fund: in p science is i It means that a process
is repeated until an answer is achxevcd An iterative procedure may be def ned as the trial
and error method in which the subsequent trials are selected by a for

finding the root to a desired accuracy, based on some initial approxxmauon (or
approximations) to the real root of (7.1). As already mentioned, finding the roots of an
equation is equivalent to finding the value of x for which f(x) = 0.

Let us proceed to find a real root, say a, of (7.1).
To start with, we need an initial approximation, say X,, to o . In the simple
iterative procedure, one of the ways is to rewrite (7.1) in the following form:
x=®(x) o (1.2)
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Substituting the value of X, for a in the right hand side of (7.2), we proceed as
follows:

X, = D(x,)
x, = D(x,)
Xy = d(x,)
X = @(X,); n20. s AB3)

What can we learn from this seq of bers? If the bers tend to a limit,

then we say that something has been achieved:
Lt = & (o)
noa

Hence, x = o satisfies the equation (7.2). This does not mean that we necessarily
have found the root, but under the given conditions we cannot improve approximations
using this process. This procedure of finding successive approximations to an initial
approximation is called an iterative procedure, each use of this procedure is called an
iteration and each approximation achieved is called an iterate.

7.3.1 Termination of an Iterative Procedure

An iterative procedure may converge or diverge. If the divergence occurs, the
procedure should be terminated because there may not be any solution to the problem.

We may restart the p dure by changing the initial approxi if y.
In case of convergence, one of the following criteria for g p tati
may be used:

a) Continue the computations for a fixed number of iterations, say n, and then
terminate the process. This is to safeguard against slow convergence. The
final value of X, may then be accepted as the valuc of the root.

b) Continue the computations till ab difference b two
values X, and X, is less than a pre-assigned accuracy, say €, i.e.,

[x, =%, | <€, where € >0.

) A better criterion for stopping the process is to use the following:

-’E-I-iilﬂ- <€, provided x,#0,and € >0.
n
In considering, whether an iteration converges or not, it may be necessary to

ignore the first few iterations since the procedure may appear to diverge initially, even
though it ultimately may converge.
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An iterative procedure to find the root of an equation consists of three parts:

a)  aninitial guess for the solution,

b)  an algorithm for improving the approximate solution, and

c)  acriterion for stopping the computations.
7.3.2 Flowchart for a Simple Iterative Procedure

If X,,€ and n are the initial guess, pre-assigned accuracy and the number of
iterations respectively, then a flowchart to find the root X, using a simple iterative
procedure is as follows:

z Print i and x, 7 i

i ! : i Stop )
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7.3.3 Graphical Representation of Convergence

After inventing an iterative procedure, it is necessary to test it for convergence.
This will be shown by the following graphs drawn for y = x and y = ® (x) where ® (x)

1
,etc.

represents a flan‘nction of the forms: cosx, logx,

a) Graph for Fast Convergence

The point of intersection of y = x and y = @ (x) gives a solution which is the
desired root o.. With an initial guess X, on the curve y = ® (x), we move horizontally to
the line y = x. The next approximation X, is equal to @ (0). Moving vertically to thc
curve y = @ (x) gives y = @ (X, ) so that the subsequent horizontal move to the line y=x
will give x,. The continuation of this process gives the sequence of approximation X,,
X3, X4, ... and hence shows whether or not the method converges.

" y=6(x)

- EREIER,
Elem=emmmanes

X2 X)

The ubove,;nph shows a very rapid convergence because a better lpproximldnn
is coming closer to the true root o , This is called staircase convergence.
b) Graph for Slow Convergence

The following graph shows that there is convergence but it is 'mlull. This
behaviour is called spider web convergence,
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i e i AL ¥ =9(x)

Oxixy o X X X

©) Divergent Behaviour

The following graph shows that there is no convergence as at each iteration, the
approximate root is going away from the true root o. .

y y=9() yomx

RE-=-=-=-=-
g e

Xy X2

734 Localization (Approximation) of Roots

The choice in the selection of an initial guess may lead to a convergent or
divergent situation, There does not exist a universally accepted hard and fast rule to select
a suitable initial guess (or guesses), If it is not given in the problem, some idea about the

N
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starting value is necessary. An initial guess may be found by using the context in which
the problem first arose. The use of a graphical method can be appropriate for the purpose.
We draw roughly the graph of f(x) and then see how many roots the equation has. These
roots can then be read off and used as initial approximations to solve the problem at hand.

Example 1 Investigate graphically the roots of the equation, cosx — x = 0.
Solution  Rearranging the equation: x = cosx

Plot: y = x; y = cosx

y=x
y

i

1

1

! 2 3n/4

: X

B T

y = cosx

The point of intersection of the curve and straight line gives the root of the
equation. It is clear from the graph that the equation has only one root, which is about

o =% = 0.786. It may be possible that the solution lies between 0.7 and 0.8.

Example 2 Investigate the root of the equnion,bx —sin’ x = 0 graphically.

Soluti R ; :

the given eq;
Plot: y=x; y=sin’x
Graph is as follows:
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y = ¢(x)

PR

0 X

The point of intersection of the straight line and the curve is obviously at x = 0.
Therefore, the required root is x. = 0.

Example 3 Investigate the root of the equation, 3 sinx = x +-l- graphically
X
Solution Plot: y=x +l; y =3 sinx
x

Graph is as follows:

/

V.

” \ y = 3sinx
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It is clear from the graph that the root o lies at the point of intersection of the two
curves and it is to the left of x = 1. Hence, itTs safe to take the approximate root X,=0.8.
7.35 Convergence

The following three questions concerning convergence arise:

a)  Does the sequence of iterates X,, X,, X,, ... , always converge to some

number o ?

b)  Ifit does, will o be a root of the equation x = ® (x) ?

c)  How shall we choose X, so that the sequence of iterates X,, X,, ..., X,

converges to the root o ?

Let us briefly answer the above questions.

a) The answer for the first question is no. For example, let us consider the equation:
x=10"+1.

If x, =0,then x, = 10° +1=2 and subsequently,

X, =10 +1=101
X3 =10 +1, etc.

It shows that as n increases, X, also increases without limit. Hence, the sequence
Xy, X35 X3, ... does not always converge.

b) The second question is easy to answer.

Let us reconsider X,,,= ®(x,), which gives the relation between nth and
(n+1)th iterates. As n increases the left hand side tends to the root o, and if @ is
continuous, the right hand side tends to @ (c). Hence, in the limit, we have o = ® ()
which shows that o is a root of (7.3). It means that the sequence converges to the true
root.
<) The answer to the third question is ined in the following th (stated

without proof):

Theorem: Let x = o be a root of f(x) = 0 and let I be an interval containing the
point x =c. . Let ®(x) and P ‘(x) be continuous in I, where & (x) is defined by the
equation x = @ (x) which is equivalent to f(x) = 0.

Then, if |®"(x)| < 1 for all x in I, the sequence of iterates X, X, ..., X,
converges to the root o, provided that the initial app ion X, is chosen in I. Thus
the error decreases.
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As |d>'(x)| increases toward 1, the rate of convergence decreases. Gradudlly,
we do get divergence in the interval where | d>'(x)| > 1. Thus, the error grows. If
| @'(x)| = 1, the error remains constant.
Example 4 Find a root correct to 4 dp of the equation, X d4x2-1= 0 Suppose that
the actual root lies in the interval (0, 1).
Solution (i)  Let us first find whether or not the iterative method is applicable.

Let us rewrite f(x) =0in the formx = d’(x )

From x*+x? = 1, we get,

x(xi+1)=l; x2=;

%

or Xx=

so that @ (x) = . There may be many other choices for <D(x).

X
@'(x) = -%(l +x)3
Since, | O'(x)l <1 forall x £ 1, the iterative method is applicable.

(i)  Assume that x,=0.75. We, therefore, set up the scheme:

Xon= P(Xx,)=

1+x,

Putting n =0, we get,

e S R
Jex,  Aieors
x,-vl:_x,--m--mm
Xy = 71.37,- . W =0.7549
x,-m‘z.--m--onm

The root, correct to 4 dp, is x = 0.7549,
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Example 5 Find the root of the equation 2x — cosx - 3 = 0 correct to 3 dp. Check
also if the simple iterative method is applicable. Take Xo= % Write a computer
program to implement the method.

Solution (2) * *Rewritinig f(x) = 0'in the form x = ®(x), we get,

x= l(c:osx +3)
2
sothat ®(x) = %(cosx +3)
7 hris
@'(x) = - —sinx
2
| @'(x)| <1.
Hence, the iterative method can be applied. We, therefore, set up the formula:
1
Xpa=®(x,) = S Ccosrat3).

Putting n =0, we get,
X, = ®D(x,)

1 1 4
—(cosxo+3)= —(cos —+3) = 1.5
2( X0+ 3) 2( 3 )

X, %(cos 15+3) =1.535

1
Xy = ;(cos 1.535+3) =1.518
X, = %(cos 1518 +3)= 1.527
Xg= %(cos 1.527 +3)=1.522
Xe = %(cos 1522 +3)=1.524

X, = %(cos 1524 +3)=1.523

s %(co« 1523 +3)= 1524

Hence, the required root x = 1.524, which is correct to 3 dp.
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Program No. 16: Simple Iterative Method

#include<iostream.h>
#include<math.h>
#include<conio.h>
#include<process.h>

# define f(x) 0.5*(cos(x)+3)

intn;
float e,xQux1;

void main(void)
{
int i,n,flag=1;
float x2;
char ch:

cout<<'"\n\nASIMPLE ITERATIVE METHOD"; .
cout<<*\n\n\tEnter The Value Of XO\t";
cin>>x0;
cout<<*\n\n\tEnter The Value Of N\t";
cin>>n;
cout<<"\n\n\tEnter The Value Of E\t";
cin>>e;
x1 =f(x0);
for(i=0;i<n && flag;i++)
{

x2=x1-x0;

if (x2<0)

x2=x2*(-1);
if(x2<e)
flag=0;
else
{
x0=x1;
x1=f(x0);
}

}
if(flag==1)

{

cout<<*\n\n\tNo convergence”;
getch();
)
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else

{
cout<<*\n\nAfter\t"<<i<<*\tlterations,Root Is\t"<<x1;
getch();

}

Computer Output

SIMPLE ITERATIVE METHOD
Enter The Value Of XO 1.5

Enter The Value Of N 30

Enter The Value Of E 0.0005

Afeer 11 Iterations, Root is 1.523604

136 Th ical Study of C gence

Let us now d convergence ically. Let X, be an approximation
to the real root a. Therefore, €, = X, — @ is the error in the approximation. So,

X, = €, 4+ a.
From (7.3), X,,,= ®(x,)
o, e,,+a=o(e,+a)
Expanding @ (e, + ) in the Taylor series, we get,
e, +ta=®(a)+e, 0’(0)4%5: d;'(a)qr %e: D" (a)+ ...
Since o is a root of the equation x = @ (x), therefore, o = ®(a).

€=, 0'(a)+%e: ¢'(a)+%e: (o i) IR R o 17 L

We shall now consider the result (7.4) in some detail.
Case 1 When 0'(0.) # 0 (Simple or First-order Iteration)
If ®'(a)# 0, neglecting squares and higher powers of ¢, in (7.4), we have,

=6, 0’((1)
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If follows that if ] <l>'(a)|< 1, then the sequence X, X,, X,, ... will tend to be
a. Since, we do not, in general, know that what the value of a is, we usually replace o
in the above condition by X, and hence, the practical criterion for simple iteration to lead

to a root is |¢'(xo)i < 1. Note also that since e, ,, = €, ®’(x, ), the closer ®'(x,) is to
zero the more quickly the sequence X, X,, X,, ... will converge. This is a sufficient but
not a necessary condition for convergence.
Case 2 When ®’(a) =0 but ®"(a)# 0, (Second-order Iteration)
If <l>'(a) # 0, neglecting cubes and higher powers of € in (7.4), we get;
1
Con = 5 ®*(a)e;

It means that each error in this case is proportional to the square of the previous
one. It shows that convergence in the second-order iteration is normally very rapid.

Case 3 When®'(a) = ®”(a) =0 but ®"(a)# 0, (Third-order Iteration)

If ®(a) = ®"(a) = 0, then e,,= %df'(a) 2 and there is a very rapid

convergence. However, this advantage tends to be offset by the fact that higher the order
of the iterative process the more complicated 0()() tends to be, so that time saved by the

speed of convergence is lost again in evaluating ‘b(x) at each stage.

74  ACCELERATION OF CONVERGENCE
The slow rate of convergence of a first-order iterative-process can be accelerated,
by using Aitken’s A’-process, which is described below:

Let Xx,,, X, and X,,, be three successive approximations to the desired root
x=a of the equation x = ®(x).
For any first-order process, we can write: €., =<1>'(a) e,=ke, allTea)
where €, = a-x;,
€ =a-X;
e, =a-X,,
Setting n = 0 and 1 respectively in the relation (7.5) and simplifying, we get:
o-x; =k(a-x,,) - (1)
a-x;,=k(a-x;) : s (1B 2)
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Subtracting (7.5.2) from (7.5.1), we obtain,
= K(X; - X;)

or k=

Substituting k in (7.5.1), we obtain,
a-x, = ﬁ"——x‘(a—x,_,)
X =X

Simplifying, we obtain,

2
Xiaikist 2%
PR i Xit ~Xi
Xiu = 2% + Xy
2
XiuKiy = Xi+ X ~Xiy $2K%i + 2K Xe
Xig = 2%, X
(Note the above step)
2 2
XjXi = 2XiRpas + Xt = (K01 = 2%,X; + X1)
Xin = 2% X
(x;,, —x;)? g
=X ——;'—)— it (716)
Xiap = 2X; + X

Let us define Ax; and A X;_, by the relations:
Ax; = Xpy—
A xpp = AlAxiy)

=A(x=%iy)

=A x;-A X,

Xy = %) = (%=%i)
=X = 2X; X

Substituting in (7.6), we get,

2

0=xy - (Aj“) ; foralli 2 0. k)
A Xy

which explains the term A?-process. It should be noted that Aitken’s method cannot be

applied to second- or higher-order iterative processes. It can only be used to accelenle

the convergence of any sequence that is linearly convergence.
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e 7 . Three ive approximations to a root of equation x*~ x*~x+1=0,
obtained by a linearly convergent iterative process, are: x,= 0.6, x; = 0.5435 and x, =
0.5582. Use Aitken's delta procedure to obtain a better approximation.

Solution Difference Table
A A?
%y = 0.6000
- 565
x, = 05435 721
147

X, 0.5582

Putting i = 1 in Aitken’s delta process (7.7), we get the accelerated root as,

a=x,- (A:_')
A% x,
2
=0ssg2- 2T g5
0.0712

It means that we have jumped ahead about two iterations, using Aitkeri's process.

Example 8 Find the root of the equation 2x = eosx + 3 correct to 3 dp, using Aitken’s
delta process. Take x = 1.5. i

R ing the equation: x = %(cosx + 3) and then calculating three of
its roots, we get:

A A2
W = 1.5

35
% = 1.535 -52

-17
Xz = 1.518

Substituting the required values in (7.7), we get,
(-0.017)*
(-0.052)
= 1.518 + 0.006
=1.524
The process can be iterated up to the desired degree of accuracy.

a=1518-
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7.5 NEWTON-RAPHSON METHOD

The Newton-Raphson (or simply Newton’s) method is one of the most powerful
and well-known method, used for finding a root of f(x) = 0. There are many ways to
derive Newton-Raphson method. The simplest way to derive this formula is by using the
first two terms in the Taylor series expansion of the form,

(X g) = (X)) + (Xp=X) £ (X,)

Setting f(x ,,,) = 0 gives,
f(x,) + (X,0-%,) flx,) =0

Thus, on simplification, we get,

f(x,)
=X, - 2=, forn=0,1, .. sov (B
XX, ) for n =0, (7:8)

7.5.1 Geometrical Interpretation

The geometrical interpretation of Newton-Raphson method is quite simple and is
given in the following figure:

A
o | y=1(x)
Tangent line
f(xo)
0 a X Xo 4

The root @ is given by the poml of intersection of the curve y = f(x) and the x-
axis. If an i dure is being designed to i real root o, one simple
approach can be to replace the curve by a straight Ime the intersection of which with the
x-axis can easily be found. Starting with an arbitrary initial approximation X, we then

calculate a sequence of iterates, X;, X;, X3, ...

Now the question is how to select the direction of the straight line. In Newton-
Rnphson method, the direction of the straight line is that of the tangent to the curve at the
given point. That is why this method is also known as Newton's method of tangents.

Let an initial guess be x,. Move vertically a tangent line from that point to the
curve. The point X, where the tangent line crosses the x-axis will be the new iterate, i.e.,
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the improvement over X . The point X, is then used as the next starting point. We repeat
this process several times until our solution is sufficiently accurate.

7.52  Order of Newton-Raphson Method
Now we shall establish the relationship between €, and e . We know that
e, =a-X,.
The Taylor series expansion about X, gives:
1 ”
f(a—x,)=f(x,,)+(u—xn)f'(x,,)+;(a—x..)2 £1x,)
Setting the above relation equal to 0, we get,
/ 1 ”
f(X..)+(a—x,,)f(xn)+5(a—xn)z f1x,) =0
Dividing both sides by f{x,) we get,

TG A )
e RN

It follows that

=0

f(x,) e (x )
- 2= (a- - B
) (a=x,)+ (a X,) o) 7.9

From (7.8) and (7.9), we get,
£
£ (x,)

Xou = Xy =(@=X,) + —(u i

Setting X,,,—a =¢,, and X, —a =€, we get,

115
e ==
o+l 2 f( ) l
iR ng o ;i ;
ince — ) is a constant quantity (say k), we can write,
€, =ke} ... (110)

It is obvious from (7.10) that the error at (n + l)st step is proportional to the
square of t'- error of the nth step. Hence, we say that Newton-Raphson method has
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quadratic convergence order. In practical terms, this means that the number of accurate
significant figures is approximately doubled with each iteration. For example, if we start
with one correct digit for an approximation, then after one iteration we should have two
correct digits; after three iterations, eight correct digits. So, if proper care has been
observed, we need to use Newton-Raphson process only three or four times.

Several problems may arise using Newton-Raphson method:

i) X, must often be chosen very close to a root for convergence to the result.

i)  f{(x) must not be very easy to compute. This is a major difficulty in this
method.

i) If [f’(x)| is very small compared to ]f(x)|, there could be slow

convergence or even divergence.

Despite some of the difficulties ioned above, Newton-Raph method is
still the most popular method for finding a root of the equation. The attracnon of this
method is that it converges very rapidly.

To illustrate Newton-Raphson procedure, consider the following examples.
These examples do not involve any specific stopping criteria.

Example 9 (a) Find the real root of f(x) = x* - 2x —2, correct to 3 dp, using Newton-
Raphson method.

(b) Write a computer program to implement the method.
Solution (a) Let x, =2
f(x)= x* -2x -2
f(xy)=1Q2)= -2
f'(x)= 2x-2
f(xy)=f'(2)=2
Using Newton-Raphson method:
f(x,)
i ((x )
Putting n =0, we get,
109)
(%)
(-2)

o L

Xon

X; = Xo=
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f(x,) = X;-2x,-2

=9-6-2=1
£(%) =282
=2x3-2=4
Xy = Xy~ f,(xl)
f(x,)
=3- s 2.75
’ 4
The subsequent iterates are as follows:
n :
0 |20
1 |30
A o 4 )
3 2032}
4 27320
. 21321

Hence, x = 2.7321 is the root correct to 3 dp.

Program No. 17: Newton-Raphson Method

#include<conio.h>
#include<iostream.h>
#include<math.h>

# define f(x) (pow(x,2) -2*x -2)
# define fi(y) (2*y-2)

void main ()

{
int i,flag=1;

cout<<'\n\nANEWTON RAPHSON METHOD: ";

cout<<"\n\n\tENTER THE VALUE OF X0: "}
cin>>x0;

cout<<"\nMENTER THE VALUE OF N : "}
cin>>n;

couf<<'\nMENTER THE VALUE OFE: ";
cin>>e;
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for (i=0;i<n && flag;i++)
{ k
f = f(x0);
fd = fl (x0);
x1= x0-f/fd;
x2 = x1-x0;
if (x2<0)
X2=x2*(-1);
if (x2<e)
flag=0;
else
x0=x1;
}
if(flag==1)
{

cout<<“\n\n\n\n\\NO CONVERGENCE\n"";
getch ();

else

{
cout<<*“\n\n\ntAFTER “<<i<<"ITERATIONS, THE ROOT IS : "x1
getch ();

}

Computer Output
NEWTON RAPHSON METHOD:
ENTER THE VALUE OF X0: 2.0

ENTER THE VALUE OF N : 20
ENTER THE VALUE OF E : 0.0005

AFTER 7 ITERATIONS, THE ROOT IS : 2.732051

7.5.3 Special Cases of Newton-Raphson Method
a) Determination of Square and Cube Roots

Let us compute the square root of a number, say a (a > 0), by Newton-Raphson
method. In other words, we shall obtain a recurrence to evaluate va .
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Consider, x = \/a_ 3

f(x)= x* -a
f(x,)= X2 -a
fx) = 2x
fix,)=2x,

Using Newton-Raphson method:

X = Xg = w
f'(x,)

n
I

_ [(x2+a)
5 S8

xh

=%[xn+i];forn=0, 152 . (111)

The above formula is widely used, as the basis for evaluating square roots on all
digital comp as well as on calcul; which include square root capability.

Similarly, we can determine the cube root of a number, using the following
formula: o

xm=§(2x,+%]; forn=0,1,2,... LA LA

b)  Determination of pth root of a Number

Letx = a®, where a >0 and p is any positive integer.

xP —a

KXot = Xy =

e+ 23" . (7.13)
P
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) Determination of Recip 1 of a Numb
Given a number a (a > 0), we would like to find its reciprocal.

Let x= L.lhen f(x)= —l-,andf(x)= _—21
a X X

f(x,)= —I——a
xI\
7 S
f =—
x,) 2

Applying Newton-Raphson method (7.8), we get,

% f(x,)
B+l n f’(xn)

e
e
G L ... (1.14)

=x,(2-ax,); forn=0,1,2....
In the same-way, we can find the formula for 71_— which is as follows:
a

ik =%xn(3—ax3) L)

Example 10 Use the iterative formula for \/a_ to evaluate JZS_ correct to 6 dp, taking
. agvE
Solution Given: X,=1, a=3. .
Putting n = 0 in the formula (7.11), we get,
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=175
a
Kay b
X
3 e
175
)
X))
3 l[l.muh— 'A—~)=l,732051
2 1.732143

True value of Ja_ = 1.732050¢ ‘i he numerical solution and the true value agree
to 6 dp.

Example 11 (1) By applying Newton-Raphson method to the function f(x) = 1 -i.
x
devise an iterative p ocedure for evaluating /5 .

(b) If the initial approximation is 2, calculaic a/? correct to 2 dp.

(c) Show that if X, is in error by a small quaniity, €, , then the next approzimation
X4 I8 in error by about 0.67¢2 .

Solution (a) f(x)=1~ ;!‘T

5

] i
o -IO
f'(x) F

5 10
f(x,) -;?

Applying Newton-Raphson method, we get,
Xoot ® Xp = M
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X3 -5x
Xon =X, = nlO i
_lox, -x3 +5x,
% 10
15x, -x2)
Ko = 10

(b) Let x,= 2. Putting n = 0 in the above formula; we get,
i (15x,-5x2)
; 10
_ (2x15-8)
ST
i !le, -x:!
10
W, 3
o 115)(2.2 2.2 !32'2352

10
‘Writing subsequent iterates in the tabular form;

=22

s
>

O U BN - O
"
o
3

A [xg=x| < -;- 10" we may accept X, = 2.2373 as the required root,

whichis very close to /5 = 2.24,
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() If e, istheerrorin x,, we have,

X, =a+e,
=45 +e,

Using the iterative formula derived in part (a) 2bove, we get,

o !le,, —x’,!

Xon = 10

_1s(5+e,)-(V5+e,)

10

_10Y5-3y5¢e2 el

10
Ignoring higher powers of e? being small, we get,

_ 105-345¢?
£ 10

Thus, e,,, =0.67¢?.

7.6 THE BISECTION METHOD

The bisection method (also called the binary-search method) is probably the
most primitive procedure for finding a real root of (7.1) and is described as follows:

It requires two starting values X, and X, for the solution such that f(x,, ) f( X, )<0.
Then, the equation (7.1) has at least one real root in the interval (x,,x,). We shall
illustrate bisection method graphically by the ing figure in which x,, X,, ...

denote successive midpoints:

fx))
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The basic procedure for the bisection method relies on repeated application of the
following: i
Xo +X,

1. Find X,, the new iterate, using X, = and evaluate f(X,). .
2. If f(x,) =0, then X, is a root of f(x).
3. If f(x,)#0, two things are possible:

a) If f(x,)f(x,) <0, we compute t:he new iterate X, as

Xo +X
Xy= 0 2

and evaluate f(x, ).

b) If f(x,)f(x,) <0, we compute the new iterate X, as

X, +Xx
p 0 —‘2—’ and evaluate f(x,).

The process is then repeated with new points until it is felt that the root is
determined with sufficient accuracy. We note, however, that this method uses little
information about the function, but only its sign. In other words, the heart of bisection
method is the assumption that an interval x; <X <x, has been found, such that

f(x,)f(x,) < 0 and the method undertakes to decrease the size of the interval.

This method is very simple, very slow to converge, always works for real roots
when there is an odd number of roots in an interval [a, b], but the convergence is
guaranteed. For this reason, this method is often used for solving non-linear equations.
This method is particularly useful when we have to find the roots using a computer
program. Most commercial root finding routines use a combination of the Newton-
Raphson and the bisecti hods. If one fails to converge, the routines switch to the
other method to obtain a new estimate of the root. In some cases to avoid the pitfalls of
Newton-Raphson method is to use this bination. We can use bi ion to obtain an
estimate of the root and then use Newton-Raphson method to find a more exact solution.
Bisection method is also known as the half-interval method and the Bolzano method.

It is necessary to know that this method does not work for double roots.

Example 12 (a) Use the bisection method to find, correct to 4 dp, the root between 0.4
and 0.6 of the equation sinx =5x + 2 =0.

(b) Write a computer program to impl the method.
Solution (a) Let f(x) = sinx -5x +2=0
X, =04, x, =06

f(x) = f(0.4) = 5in(0.4) - 5% 0.4 + 2 = 0.3894
f(x,) = f(0.6) = 5in(0.6) - 5 0.6 + 2 = - 0.4354
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Applying the bisection algorithm:
f(x,) f(x,)=0.3894 x-0.4354 = -0.1695<0

Xo+X, _ 04+06 -05
i e WO,

2
f(x,) =s5in(0.5)-5x 0.5 +2 = -0.0206

So, X, =

=045

Since, f(x,) f(X,) <0, x, = "“2"’

f(X,) =sin(0.5)-5 X 0.45 + 2 = 0.1850
X, =0475, f(x,) =0.0823
Xs =0.4875, f(x) = 0.0309

We continue in this manner until the required accuracy is achieved.

b) Program No. 18: BISECTION METHOD

#include<iostream.h>
#include<math.h>
#include<conio.h>

- #define f(x) (sin(x) -5*x +2)

float e,x1,x2;

void main(void)
{

int i,x1,x2;
float x3,f,f1 ,f2,f3,temp;
cout<< “\n\n\tBISECTION METHOD \n";
cout<<*\n\tEnter The Value Of X1:™;
cin>>x1;
cout<<‘\n\tEnter The Value Of X2 : ",
cin>>x2;
cout<<*\n\tEnter The Value Of E : ;
cin>>e;

1 x1=f(x1);
for(i=0;i<50 && flag;i++)
{

temp=x2-x1;
if(temp<0)
temp*= (-1
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if(temp<e)
{
flag=0;
break;
}
fl=f(x1);
2=f(x2);
3=f1*f2;
X3=(x1+x2)/2;
3=f(x3);
if(f3==0)

{ .
cout<<"\n\nMAFTER “<<i<<” ITERATIONS, ROOT IS "<<x3;
break;

}

f=f1*f3;
if(f<0)

X2=x3;

else

{
f=£2*f3;
if(f<0)

x1=x3;
}
}
if(flag==1) ¥
cout<<*“\n\n\tSOLUTION DOES NOT EXIST";

clse
cout<<"\n\nAFTER “<<i<<” ITERATIONS, ROOT IS "<<xl;

geteh(); |
}

Computer Output

BISECTION METHOD

Enter The Value Of X1 : 0.4
Enter The Value Of X2 : 0.6
Enter The Value Of E : 0.0005

AFTER 9 ITERATIONS, ROOT IS 0.494922
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7.7  THE SECANT METHOD

The secant method is a modified form of Newton-Raphson method. If in
Newton-Raphson method, we replace the derivative f{x,) By the following difference
ratio, i.e.,

flx,)

_ fGa) - f(xa)
X0 " Xpa
where x, and X, _, are two approximations of the root, we get.
)
f(x,) = f(x,1)
_ xaf (Xa) =%, f0x,y) = F(x,) (X, - X,)
3 f(x,) - f(x,.) .
_ Xaaf(xa) =X, fx,0)
S )
provided f(x ) #f(x, ;).

Xon = X,

2o (1:16)

The secant method requires two starting values X, and X, ; values of f(x,) and

f(x, ) are calculated which give two paints on the curve. The new point X, is obtained
using (7.16). We can continue this process to get better estimates of the root. So, in this
formula, we do not need f{x,).

Geometric Interpretation

Geometrically, the secant method corresponds to drawing secants rather than
tangents to obtain various approximations to the root o ; hence the name.

Y s Eay =dTx).
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To obtain X,, we find the intersection between the secant through the points
(X, f(Xo)) and (x, f(X,)) and the x-axis.

It is experienced that the secant method converges rather quickly. Then: is a
possibility of divergence if the two roots lie on the same side or the curve. The order of

§l+~/5_!

convergence of secant method is equal to = 1.61803, which shows that this

method has the order of convergence slightly inferior to that of Newton-Raphson method.
In this method, f(x) is not required to change signs between the estimates.

Example 14 (a) Find the root of 2 cos hx sin x = 1, using the secant method, with an
-accuracy of 4 dp. Take 0.4 and 0.5 as the two starting values.

(b) Reconsider Example 12 and write computer program using secant
method.

Solution (a)  Let x,=04 and x, =0.5
f(x) =2 coshxsinx -1
f(Xo)=2coshx, sinxy —1
=2x1.081x0.3894 - 1 = - 0.1580
f(x,)=2coshx, sinx, —1
=2x1.1276 04794 - 1 = - 0.0811
Putting n = 1 in the secant formula, we get,
xof (x,) = x,f(x,)
f(x,) — f(x,)
0.4x0.0811-0.5%-0.1580
T TOORII= 038D,
_ 0.03244-0979

= ——— =0.4661
0.2391

X, =

f(x,)=2coshx, sinx, -1
=2x1.1106x0.4494 - 1 = —0.0018
&5 xf (%) - x,f(x,)
P o)~ f(x,)
€ 0.5%-0.0018 - 0.4661x0.0811
-0.0018-0.0811

_ 0.009-0.0378
~0.0828

= 0.4668
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f(X;)=2coshx, sinx; -1 = -0.00009

St x,f(x4) = x,f(x,)
f )~ f(x,)
i 0.4661x —0.00009 - 0.4668 x ~0.0018

=0.00009 +0.0018

i - 0.000042 + 0.00048
-0.00171

= 0.4667

The root, correct to 3 dp, is 0.467. 4

(b) Program No. 19:  Secant Method

# include<iostream.h>
#include<math.h>

# include<conio.h>

# define f(x) (sin(x) -5*x+2)

intn;

float e,x0,x1;

void main(void)

{
int i, flag;
float x2,f1 ,f0,x3,temp,denom;
char ch;

cout<< \n\n\tSLCANT METHOD";
cout<<'\n\nMENTER THE VALUE OF X0: ";
cin>>x0; ¥
cout<<“\n\ntENTER THE VALUE OF X1:”;
cin>>x1;
cout<<"\n\ntENTER THE VALUE OF N : ™;
cin>>n;
cout<<'\n\nMENTER T'!E VALUE OFE: ™;
cin>>e;
for(i=0;i<n && flag;i++)
{
0=£(x0); fl=f(x1);
denom=f1-f0; temp=denom;

if(temp=<0)
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temp=temp*(-1 );
if(temp<e)
{
cout<<‘“\n\ntDENOMINATOR TOO SMALL";
flag=0; break;

}
X2=((x0*f1)-(x1*f0))/denom;
x3=x2-x1;
if(x3<0)

x3=x3%(-1);
if(x3<e)

cout<<*“\n\n\tAFTER “<<i<<"” ITERATIONS, ROOT IS : "<<x2;
flag=0;
}
x0=x1;
x1=x2;
)
if(flag=1)
cout<<*\n\ntNO CONVERGENCE";
getch();
}

Computer Output

SECANT METHOD

ENTER THE VALUE OF X0: 0.4

ENTER THE VALUE OF X1 : 0.6

ENTER THE VALUE OF N : 20

ENTER THE VALUE OF E : 0.0005

AFTER 2 ITERATIONS, ROOT IS : 0.495008

7.8  METHOD OF FALSE POSITION AND ITS MODIFIED FORM

A simple modification of the secant method produces a method which usually
converges. The new method is called regula falsi (false position) and also linear
interpolation.

It needs two initial approximations x, and X, so :hat f(x,) f(x,) <0, i.e., the
two functions must have opposite signs. The value of x, is found as the intersection
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between the chord joining f(X,) and f(x,) and the x-axis. It is illustrated graphically
below:

'

The formula for the regula falsi is as follows:
%,y = 2l )2, [0,) )
fx) = f(x,5)

provided f(x, ) f(x,,)<0.

The regula falsi method is the same as the secant method, except that the
condition f(x,) f(x,,) <0 should meet at each step.

Convergence may be more rapid than by the bisection method, but there is no
assurance that this will always be the case. The number of iterations required for
satisfactory convergence will depend on the shape of the graph of the function in the
interval that has been found to contain a root.

The fact that the replacement of the curve by a straight-line gives a false position
of the root, is the origin of the name method of false position or in Latin, regula falsi. The
main weakness in (7.17) is that it is slow.

One pitfall of this method is stagnation of an end point.

It means that one end of successive intervals does not move from the original end
point, so that the approximations for the root denoted by X,, X3, X, ... converge tothe
exact root a from one side only. Stagnation is not desirable because it slows down
convergence, particularly when the initial interval is very large or when the function
deviates significantly from a straight line in the interval. The difficulty is avonded by the
modified false position method, which is explained below:
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The Modified False Position Method

In this method, the f(x) value of a stagnant end point is halved, if that point has
repeated twice or more. The end point that repeats is called a stagnant point. The
exception to this rule is that for i = 2, the f(x) value at one end is divided by 2
immediately, if it does not move.

The algorithm is illustrated in the figure below:

The effect of halving the y value is that the solution of the linear interpolation
becomes closer to the true root a .

Example 16 (2) Use the method of false position for finding the root correct to 4 dp
between 0.4 and 0.6 of the equation sinx = 5x — 2.
(b) Write also the comp program to imp the method.
Solution (a) f(x) =sinx -5x+2; X, =04, x, = 0.6
f(Xy) =5in(0.4)-5x0.4 +2 = 0.389 «
f(x,)=5in(0.6)-5x0.6 +2 = -0435

Since f(x,)f(x,)<0, therefore,

xof (x;) = x,f(x0)
e
£(x,) = £(x,)
. 04x-0435-0.6x0.389
-0.435-0.389

f(x;) =5in 0.494 - 5% 0.494 + 2 = 0.0042

=0.494
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Since f(x,) f(x,) <0, therefore,
PR x,f(x,)=x,f(x;)
o s 3 )0 )
_ 0.6x0.0042 - 0.494x-0.435
0.0042 - (-0.435)

= 0.4950

f(x,) = 0.00003
Since f(x, ) f(x;) <0, therefore,
- x,f (x5) - x5f(x,)
L) - fxy)
_ 0.6x0.00003 - 0.4950%0.435
0.00003 — (-0.435)
- Q0018 L dnlo
0.43503
Therefore, the root is 0.4949.

(b) Program No. 20:  Rule of False Position

# include<iostream.h>

# include<math.h>

# include<conio.h>

# include<processing.h>

# define f(x) (sin(x) -5*x+2)

int n;
float e,x0,x1;

void main(void)

{
int i,flag=1;
float x2,f1 ,f0,x3,temp,denom,x4.f,f2;
char ch;

cout<<'\n\n\iRegula Falsi Method";
cout<<'\n\n\ tEnter The Value Of X0\t";
cin>>x0;

cout<<"\n\n\ tEnter The Value Of X1:";
cin>>x1;

cout<<"\n\n\ tEnter The Value Of N: "
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cin>>n;
cout<<*\n\n\ tEnter The Value OfE : ";
cin>>e;

for(i=0;i<n && flag;i++)
{
fO=f(x0);
fl=f(x1);
denom=f1-f0;
temp=denom;
if(temp=<0)
temp=temp*(-1 );
if(temp<e)
{
cout<<"\n\n\ tDenominator Too Small”;
flag=0;
break;

}
f=f0*f1;
if(f>0)
{
cout<<"\n\n\tThere is no root”;
flag=0;
break;

)
x2=((x0*f1)-(x 1*f0))/denom;
f2=f(x2);
f=f2%f1;
x3=x2-x1;
if(x3<0)
X3=x3%(-1);
if(x3<e)
{
cout<<"\n\n\tAfter\f “<<i<<"\tlterations, Root Is\t"<<x2;
geteh();
flag=0;

}

if(f<0)

x0=x2;
else

X1=x2;
X4mx 1-x0;
if(x4<0)

X4mxd ¥(-1);
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if(xd<e)

{ e
cout<<*“\n\nNo Convergence'’;
getch();
flag=0;

}

)
if(flag=1)

cout<<“\n\n\tValue of root : "<<x2;
getch();
)

Computer Output

Regula Falsi Method

Enter The Value Of X0 04
Enter The Value Of X1 0.6
Enter The Value Of N 10
Enter The Value Of E 0.0005

Value Of Root : 0.495008

79  DETERMINATION OF MULTIPLE ROOTS

Root-finding methods are widely known to have problems with multiple and
nearly multiple, i.e., close roots. A multiple root corresponds to a point where a function
is tangential to the x-axis. For example, a double root results from,

fx)= x> -5x* +7x-3
=(x=3)(x-Dx-1)

Graphically, this corresponds to the curve touching the x-axis tangentially at the
double root (See figures below):

Double root at x: Xo x* X,
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Twoclose roots: Xo x* X2 X,

Mathematically,
i) If f(x,) =0, then (x - X,) is a factor of f(x) and conversely, and
iy ¥ flx- X0 )* is a factor, then x is a zero of multiplicity k.

It has been pointed out in the literature that for single roots the rate of
convergence of Newton-Raphson method is dratic, but for multiple roots it is linear;
unless the method is modified. Thus, a slight modifi in Newton-Raphson method
can be made to handle this situation when the multiplicity is known. Instead of the usual
procedure, several methods have been suggested and we first mention the following
formula:

(0.7
Xan = X, —f'(T,!)— .. (7.18)

where m is the multiplicity of the root. Thus, this modification can restore quadratic
convergence. Obviously, this may be an unsatisfactory formulation because in actual
| practice we do not usually know the multiplicity of the root in advance. We might guess
at the value for m and see whether we get quadratic convergence. In theory, one might
estimate m from the successive iterates, but the labour seems of a questionable value, so
e difficulty remains. However, if m is known before the above formula can accelerate
ewton’s method. i

Another formula due to Newton-Raphson has been suggested to deal with

ultiple roots:
C ) TRS)
R o i) 1) il
Halley's method is another way to deal with multiple roots:
Lottty
KXo = X, t(x,) [‘ 1[“,‘.)]: J
=x, -_"_(".Qﬂn)__ ‘ o (7.19(b))

2fftx,)f -f(x,)-£1x,)
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The term in brackets is the modification of the Newton-Raphson method.
Halley's method yields cubic convergence at simple zeros of f(x). In these formulas,
multiplicity has been removed.

These formulas are more attractive for speeding up rate of convergence and
improving accuracy of the roots. Theoretically, drawbacks to these methods are the
additional ca! ‘ulation of f%x) and the more laborious procedure of calculating iterates.
In fact, the presence of a multiple root can cause severe round-off problems

710 ZEROS OF POLYNOMIALS

Polynomial equati are f ly used in practice and a vast literature is
available to find their roots. The methods discussed so far in this chapter are used to find
a zero of a polynomial, but the present section is devoted to find all zeros of a
polynomial. We shall confine our treatment only to polynomials with real coefficients;
thus, we propose to find real linear and real quadratic factors. If the complex zeros are
required they are easily found from the real quadratic factors by using quadratic formula
for the zeros.

A polynomial of degree n is a function of the form,
p(x)=a,x" +a, x"" +..+ax+a, ...(7.20)
where the coefficients a, are real constants and a, #0.

This method is merely the Newton-Raphson method applied to the polynomial
equation with the synthetic division method.

7.10.1 Evaluation of a Polynomial (Birga-Vieta Method)

We use the nested polynomial (synthetic division) scheme, which is more
efficient and faster, because it takes only n additions and n multiplications to evaluate an
nth-degree polynomial. It is also known as Hormer's scheme.

The polynomial (7.20) is rewritten in the form:

p(x) = (((a,x+2a, ) x+a,,)X+..+ a,)x+a, o (T20)

1 q

value of x is evaluated from the i bracket

When we perform hand calculations using Horner's method, we first construct
the synthetic division table:

and a p

Input x B R i iy a, a,
gB. . RD e vikly xb, xb;
TR S b, by =p(x)
Output (remainder term)
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=a,

by - a,, +xb,

b,,=a,,+xb,

b,=a,+b,,, ; k=n-1Ln-2,..,10

b, =a, + xb,

by =a, + xb,

.. (7.22)

If input is & and it is not a root of the polynomial, the remainder term due to the
synthetic division is the value of p(x) for x = . When p(x) is of degree n and is divided
by (x — @), we obtain, after one synthetic division,

Pa(X) =(x-0)p,, (X)+r1

«:(T128)

where p,_, is the quotient and r is the remainder term which is a constant. The above

process of division is called deflation. If o is an actual root of p,, (x), then the remainder

is zero.
Thus, p,(x) =(x-a)p,(x) (.28
7.10.2 Evaluation of Derivatives of Polynomials
Continuing the synthetic division once more, we get,
Input x YN R T a, a, a,
xb,  .xb, xb; xb, «xb,
b, b, b, b, b, by = p(x)
Reki ke XCy  XCy
AR e A c; ¢,= Remainder

=p'(x)
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The value of the derivative, p(x), of a polynomial, for x = o is equal to the
inder obtained in the first synthetic division. Continuing the process, it is possible to
compute higher-order derivatives. .

Differentiating (7.23) w.r.t.x, we have,
Pu(x) = (x =) pry (X) +1-p, () +0
= (X = @) Pl (X) + Pyt (%) ... (7.25)

When x = @, p,(x) = p,,(x), whichis a polynomial of degree (n — 1). Since we have
computed p(x) and p’(x) at a, using Horner's method, we can now use Newton-Raphson
method to evaluate a root of this polynomial.

A problem with applying Newton-Raphson method to polynomials conczrns the
possibility of the polynomial having complex roots even when all the coefficientsare real
numbers. If the initial approximation using Newton-Raphson method is a real number, all
subsequent approximations will also be real numbers. One way to overcome this
difficulty is to begin with a non-real initial approximation and do all the computations
using complex arithmetic.

Example9  Consider the polynomial, x* + x* —10x +8.
(a) . Evaluate p(0.5) and p’(0.5).
) Starting with initial approximation x, = 0.5 for the real root of ths above

polynomial, use Horner's scheme and Newt Raphson method to compute all
its roots, correct to 3 dp.

lution (a) Evaluation of the polynomial and its derivative at x = 0.5.
First Iteration:
Input g -10 8 'g—— coefficients of the pelynomial
Xo=0.5 0.5 0.75 ~-4.625

1 15 9253375 =p(x,)

0.5 1.0
1 2.0 =825 = p'(x,)

p(xo)=3.375; p'(xo)= -825
accuracy, e = 0,0005
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(b Computation of roots using Newton-Raphson method:

X, =X, _pfx‘,)
p'(xo)

R AYSG
-825

| x,— x| =|0.909-05]| ¢e.

Continue the process

Second Iteration:
x,=0909 | 1 1 -10 8
0909 1735 -7513
1 1909 -8.265 0:437 =p(x,)
0.909 2.563
1 2818 [-5703 =px))
plx,) = 0.487
p'(x,)= - 5.703
X
Xy = X, _l;f(_xl,))
=0.909 - .48 =0.
-5.703
| x,=x,|=]0.994-0909| £ e.
Continue the process
Third Iteration:
x,=0994 |1 1 S105 g
- 0994 1982 -7.970
1 1994  -8.018 | 0.030 =p(x 3y
0994 2970
1 2988 |-5048 = plx 3)

p(x,) =0.0307
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pl(x,)= -5.048

Xy = X _______pfx,)

p'(x,)
= 0.994 - 000 =0.2999
5048
[ x —x,|=|o.9999—0.994|¢e.
Continue the process
Fourth Iteration:
x,=0994 |1 1 -10 8
0.9999  1.9997 —-7.9994
1 1.9999 -8.0003 | 0.0005 =p(x;)
0.9999 2.9995
1 2.9998 (-5.0008 = p'(x,)

p(x,)=0.0005
p'(x;)= -5.0008

X, =x _____pfx,)

p'lx;)
= 0.9999 - —— 0.0005 =0.9999
-5.0008

| x4 = x5| =] 0.9999-0.9999 | < 0.0005 .

-
A i ly, the above

(x-1)(x* +2x-8)=0
Factorising, we get:
(x-1)(x+4) (x-2)=0

Thus, the possible roots are 1, 2, and - 4.

0.9999) (x?* + 1.9999x — 8.0003) = 0
may be rewritten as:
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2.7a)

®)

©)

3.(a)

(b)

PROBLEMS

Use graphical method to find the approximate root of the following equations:
@x*-x+1=0, (b)x*+3x-1=0, (c)e*-3x=0

The cubic equation x* = 2x = 5 = 0 has ‘one real root that is nearto x'= 2, The
equation can be rewritten in the following manner:

: (i) x= (x? +5)§

@ x=%(x3—5) (i) x=
Choose the form which satisfies the condition |(D |< 1 and find the root
correct to 4 dp.

The cubic equation x> = 3x—20=0, has one real root that is near to X, =0.3.
The equation can be rewritten in.the following manner:

(iii)x=1’3+— @) x= (3x +20)}

Choose the form which satisfies the condition |d> ‘ < I and find the root

@ x=l(x’—2o) a2
g

correct to 4 dp. Which of them gives rise to very rapid convergence?

Given the following variations of the equation, x* + x*-80=0,

@ x=Bo-x*} i) x=80-x* (m)x-JHx

Which of them gives rise to a convergent sequence? Find the real root of the
equation correct to 4 dp. Take X, =3.

To locate the root of e — cosx = 0 that is near to 1.29, using iteration, we could
rewrite the equation as,

(i) x=cos™ (e" ) (ii) x = - log cosx = log secx
(iii) x = x — 0.01(e™* - cosx)

Which of these three forms (if any) would yield a convergence iteration scheme?
‘Which would converge the fastest?

Starting with X, = 6, perform ten iterations using each of the recurrence
relations

M) Xy =455, 4 (i) X,y = 2"; __45 ;

which of (i) and (ii) has the higher rate of convergence?
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(c)

@

(e)

Determine which of the following iterative functions, d)(x), can be used to

locate the zeros of the equation x* +2x -1 =0 on the'interval l:l. i] :

42
A B e o (1-2x) T . o)l
gralnt) s i) s v (1-2x)3
3 =
™) x=02(x* +2x-1)  (vi) %2’"

2

(i) Starting at X, = 0, use the simple iterative method to find the first five
approximations for the solution of x“~x +0.12 =0,

(i) Starting at x, = 1, use the simple iterative method to find the first five
approximations for the solution of x>~ x Jx -4 =0.

-3x

(iii) Compute a solution, correct to 6 dp, of e™**~cot x =0 by Newton’s method

starting at X, = 1.
(iv) Compute a solution, correct to 6 dp, of x*>—x sinx =0 by Newton’s method
starting at X, = 1.

(v) Find a rearrange of the equation e* - 3x — 1 =0, which will converge to the
unique positive root when the simple iterative method is applied. Takex,=2.

The cubic equation 2x’ +3x* ~=3x-5=0 has a root near x = 1.25.
Show that the equation can be rearranged into any of the following three forms
suitable for the simple (fixed-point) iterative method:

& {(5—3x—3x*)}§
i =7
2
&% (5+32)/ (22+3))2
i (2x* +3x*-5)
3

Use simple iterative method on the rearranged equation (i) with an initial guess
of X, = 1.2 in order to find the root to 4 dp.

(i)  x

Repeat part (b) for the rearrangement (ii) using X, = 1.2 . Which method
converges faster? Why?

Try a few iterations using rearrangement(iii). What goes wrong?
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4

5.(a)

(b)

©

Use Newton-Raphson method to obtain a root of each of the following equations
correct to 3 dp:

(a) x’-2x+2=0; with X,=0.2
) x*-3x-3=0; with x =2

© x*-x-1=0; with X, =0.5
(d) sinx-5x+2=0; with X, =0.4
(e) cosx~x =0; with X, =0.74
(6] e*-x =0; with X, =0
@) e*-3x? =0; with x, =1
(h) sinx-x+1=0; with x, = 1.5
(i) tanx - 0.5x = 0; with X, =4.0
G) x2=e"; with X, =-1
(k) x*+x? =80; with X, =3
) x sinx = 1; with x, = 1.11
(m) xlinx = 3; with X =2
m - x*-2x%+x-3; with X, =4

By applying Newton-Raphson method to the function defined by f(x) =1 —g.
X

develop an iterative formula for calculating V10 . Hence, .using 2 as an initial
pp tov10 , V10 correct to 2 dp. Show that if X, the nth
approximation to V10 , has a small error €, , then the correct approximation

‘e,,, has an error of magnitude about 0.5¢? .

1 1
Use the following iterative formula for — to find —— to 4 dp:
Va V5

Xin =%x,(3—le).

Show that the curve f(x) = x*— 2x — 1 crosses the x-axis between x = 1 and

x = 2. Use a recurrence relation of the'form.

f(x,)

gy

where (i) m= 5 and (ii) m = f‘(x) = 3x*~ 2, to find the value of the root to 3 dp.
Take X, =2 in both cases.

Xou = Xp=



264 Numerical Analysis with C++
(d) Given f(x) = x> - a, use Newton's method to establish the recurrence relation,
1 a
Xon = E[Zx, +;IT]
for the cubic root of a number a. With a = 9 and X, = 3, perform the iterations
6 times to find the cubic root of 9.
6.(a) Starting with X, = 8, perform 10 iterations using the following iterative formula:
20
Xoiim 9 x
Use Aitken’s iterative method with X,, Xg and X,, to improve the rate of
convergence.
(b) Use Aitken’s iterative method to find the root of e*= 5x near to X = 03.
Compare the result with iteration X, = —;—e' starting with x,=0.3.
T Use bisection method to find correct to 4 dp, the solutions of the following
equations:
¥ 1 2 X n
(a) sin x — —x =0; in the interval | —, @ |.
2 2
®  x*-90x+10=0; x,=2X,=4
©  9x*+4x? +5x-8 =0; X, =5, X, =5.
@  8x*+8x-5=0; Xo=03, X, =0.6
(e) xsinx—1=0; X,=0, X, =20
8. Use secant method to find, correct to 4 dp, the solutions of the following
equations:
(a) x>-9x+1=0; Xo=3,and X, =4
(b) sinx-5x+2=0; Xo=04,2and x, =0.5
© x>-5 =0; Xo=0,and X, =3.0
@ x’=x-2 Xo=2.6and X, =-2.4
(e)  x*-323x? -5.54x+9.84=0; Xg=09and X, = 1.0
9. Use Regula Falsi method to find, correct to 4 dp, the solutions of the following

equations:

@ x°=x+1l;  Xo=l, X =12
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10.(a)

(b

11.(a)

®)

©)

12.(a)

()

() x’-9x+1=0;X,=20, X, =4.0
© 2x*+7x-1=0; Xo=0, X, =1
d) e*-2=0; Xo=0, %, =1
(&) Find V7 ;x,=0, x, =1
(f) xsinx-1=0; x,=0, x, =2
Let x,=0.5and x,= 0.8 be the initial approximations to a root of the equation

Xx- %sin X = % = 0. Compute the next three approximations correct to 5 dp to

the root using the following iterative methods:
i)  Linear iteration
ii)  Newton-Raphson method
iii)  Secant method
iv)  Bisection method and
v)  Regula falsi method

Consider the equation 230x*+ 18x* + 9x*~22x -9 =0 has two real roots,
one in [-1, 0] and the other in the interval [0, 1]. Attempt to approximate these
roots to within 107 using (i) Method of false position, (ii) Secant method and (iii)
Newton’s method. Use the end points of each interval as the initial
approximations in (i) and (ii); the mid as the initial approximation in (iii).

Find the value of the polynomial 5x*~ 2x* + x — 1 and its derivative at the
point X, =2, using the inder th and the sy ic division process.

Find the value of the polynomial, 4 x* — 2x + 5x — 3 at the point x = —2 by the
rested multiplication method.

Find the value of the polynomial 3x*~ x* + 2x?+ x — 7 and its first two
derivatives at x = -2.

Consider the polynomial,

px)= x*-6x*+8x> +8x* +4x-40
Starting with initial approximation X,= 3, I p(3) and p'(3). Using
Horner’s scheme with Newton-Raph method, p the next two

approximations correct to 2 dp.

Find the real roots of the polynomial equation x*- 5x’ + 5x+ 5x = 7=0,
correct to 4 dp, given that the equation has roots near 3 and -1.



266

Numerical Analysis with C++

13.(a)

(®)

©)

@

14.(a)

®)

Show that the polynomial, p(x) =x*~ 3x* — 7x* + 15x + 18, has a root of
multiplicity 2 at x = 3. Find the iterates and the values of p(x) and p’(x) at each
iterate.

Given the function, f(x) = x*-3x + 2. If m=2and X, = 1.5, find the roots x,,
X, and X, using Newton-Raphson formula (7.18).

Use formula (7 .19(a)) and find the roots X,, X, and X, of f(x)= x® +4x’-
10.Let x,=15.
(i) Perform three iterations of Newton's method to obtain the double root of

x? = 2x%- 0.75x + 2.25 = 0 which is close to 1, such that iterations
converge quadratically,

(ii) Compare your results with Newton's method without modification which
converges linearly.

Start with f(x) = x*—a and find Halley's iterative formula for computing \/a_ A

Taking a=5, and X, =2, compute X,, X, and X;.

Start with f(x) = x>~ 3x + 2 and use Halley's formula to compute X,, X, and

X;.Let x,=-24. .
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: Chapter 8

Linear Systems of Equations -

8.1  BASIC CONCEPTS

Consider a set of m simul linear algebraic equati in n unknown, X,,

Ko ooy e
Ajy Xy g, Ry F g Xy boay X, =B
Ay X, + 85X+ 83X+ -+ 8, X, =D,

By Xy 8Ky + By Xg+ oo+ &y, X, =Dy oo K81
B B P B Xyt By Xyt ot B X, = b,

In a more compact notation, the above equations can be rewritten as:
ta”x‘ = bifori=1,2,...,m
=l

Three type of quantities occur here:

(a) The unknowns, X;, X5, ..., X,.

(b) The coefficients a,, wherei=1,2,...,m
and j=1,2,..,n

(a) The right hand sides, b,, by, ..., b,,.

Equations (8.1) can also be written in the matrix notation, as,
Ax =b .. (82)
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8 8 Ay Xy b,
| Ok a,, X, b,
Byt By eov 8 X b
et A - ety i
Am qAm A Xn b,

A is a rectangular matrix having m rows and n columns, x and b are column
vectors.

Problems of this type occur in almost all disciplines. Our aim is to develop
methods, which can solve such problems and are easily implemented on a digital
computer.

82  METHODS TO SOLVE A SYSTEM OF LINEAR EQUATIONS

Various methods have been devised to solve systems of linear equations. This
shows that no single method is best suited to all situations. These methods should be
judged on the basis of their speed and accuracy. Speed is of importance in solving large
systems because of the large volume of computations involved and accuracy is necessary
because of the round off errors involved in performing these computations.

The methods for solving systems of linear equations can be classified as:
i)  Direct methods
ii)  Indirect (iterative) methods

By a direct method, we mean a method which calculates the required sclu ‘on
without any initial or intermediate approximations in a finite number of steps. Amongst
the direct methods, we will describe the following:

a)  Cramer's rule and its modified form
b)  Gaussian elimination method and its variations

¢)  Triangular decomposition method

d)  Solution of tridi | system of eq
An lndlmt method starts with an mltul sequence of approxlmnuom and
ds by g a of further app which y gives the

soluuon as accurately u desired. The most commonly used methods in this cntegory are:
a)  Jacobi's method
b)  Gauss-Seidel method

“Even when a direct method does exist, an iterative method may be preferable because it is
more efficient or more stable.
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83  CRAMER’S RULE AND ITS MODIFIED FORM
According to Cramer’s rule, the system (8.2) can be solved using,

_ de(a)
det(A)

where the determinant det(A,) is exactly the same as det(A), except the rth column of
det(A), has been replaced by the column of constants b,, b,, ..

X

r

BN

Bl 8
Let us illustrate this method using the following example.
Example 1 Solve the following system of equations:
Tx,+6x,+3x, =19
3X,+2x,— x3=17
X, +4x,+ 2x;=-2

Solution  From the given system of equations, we obtain,

e % 19
A=143.2. -1{; x=|%3]l: b=]7
1 452 X, =2
750053
det(A)=det |3 2 -
42

SBIRI SIS

=7(4+4)-6(6+1)+3(12-2)
=7%x8-6x7+3x10
=56-42+30 = 44

19 6 3
det(A))=det | [ 7 2 -1 |=176

-1 4 2

7619 3

det(A))=det [ (3 7 ~1Il [=-88
1 =2 2
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7 6 19
det(Aj)=det |3 2 7| =44
L 4 -
det(A,) 176
== 4
det(A) 44
o dct(A,)=i=_2
det(A) 44
det(A,) 44

The solution of the equations:
X, =4,X,=-2,%,=1
Alternative Method
Pre-multiplying both sides of (8.2) by the inverse of matrix A (i.e, A™), we get,

ATAx =A"b
Tex =A"b
X =A"b ... (84)
where A™ = ;:‘: ': and adj(A) is the adjoint of the matrix A. Cramer’s rule, ¢’

course, is identical to the formula (8.4).

The adjoint (or adjugate) of a square matrix A is the transpose of the matrix
obtained by replacing each element of A by its cofactor. It is written as,

sjar= [a,]" = |a, )
Example 2 Given the following system of equations:
X+ X;=- X, =10
X, =2X,+ 3x;=-4
X+ X;+ 2%, =10

a) Find the determinant, adjoint and inverse of A.
b) Solve also the system of equations
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Solution
o X, 10
A=|1 -2 3 s Xx=[X,|; b=|-4
Lt Vo) X 10
: PRGN
a) det(A)=det|]l -2 3||=-16
| ISR 1SRE ¢

Minor M,; of a,, =det ':

: -

Cofactor A,, of a, = (~1)"'M,, =-7

-

Cofactor A, of a,, = (-1)"’M,, = 1

Minor M, of a,, =det [

Similarly, other cofactors are computed and written as below:
A;=3
A, =-3; A,=5; Ay =-1
Ay=1; A,=-7; Ay=-5

b et SO ) oty - S |
adj(A)= (-3 5 -1|= 1 5§ -7
1.« =5 3 .~-1 ~§

[-7 -3 1
A"-Ej%é;»--—l P aeiEy
det(A 16. 3

T

e}
16 16 16
-1 =5 7
] o g A
16 16 16
-3 1

16 16 16
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b)  Solution of Equations

Using the formula, x = A™' b, we get,

7 3 -—_l

4 6 16 16 \0ili i

X, | = il d ol x|[-4|=]|5
1616 16

X3 e g 10 1
16 16 16

On simplification, we get,
X, =3, x,=5Xx,=1
Some remarks on the above methods:

If the number of equations in a problem is small (i.e., three or four), we may use
Cramer’s rule safely, but if the problem involves more equations and unknowns, we have
to be careful. Suppose a problem has n equations and the same number of unknowns and,
if we have to use determinants, then [(n*~ 1)n! +n] multiplications are required to solve
the system of equations by Cramer’s rule. For large n, n % x n! isa good estimate of the
number of multiplications.

We regard determinants as a useful tool in developing theory, but in practical,
solving numerical analysis, we should disregard them. Some other methods, which are
better than Cramer’s rule, should be used. They do not require computation of
d i and cof: These methods are di d in the subseq! ions and
can be used for any number of equations.

84  GAUSSIAN ELIMINATION METHODS
The Gaussian elimination method reduces a system of linear equations to a
simpler form. The method works in two stages:
o Forward stage

This stage is d with the manipulation of equations in order to eliminate
some unk from the equati 1

and produce an upper triangular system.
» Backward (or Back substitution) stage

This stage is concerned with the actual solution of the equations and uses the
back substitution process on the reduced upper triangular system.

We shall describe this method by considering the following system of four
equations, for the sake of convenience and simplicity:
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a, X, +ap X, +a;X;+a,X, =b
, A Xyt 8y Xy 2y Xy Ay X, =b
gy Xph By Xg ¥ B3y Xy 23 %, - = by s0 (83
By X+ An Xyt Ay Xy tay, X, =b

Let us describe these stages.

Forvard Stage
Stepl Operations on the equation
The first equation in (8.5) is called the pivotal equation and the coefficient of
x, iscalled the pivot.
2)  Divide the pivotal equation by its pivot a,, . This gives a new equation with 1 as
the coefficient of X, :

X, + alx; + a8 x, +all x, =bf"

For convenience, the coefficients calculated in the first step are denoted by a
superscript (1), those calculated in the second step are denoted by a superscript
(2), and so on.

b)  Eliminate X, from the remaining equations:

i) X, from the second equation can be eliminated by adding to it —a,, times
the new first equation. This gives a new second equation in which X, is
eliminated:

0+ ad x, + al) x, +af) x, = by’

ii) X, from the third equation can be eliminated by adding to it —a,, times
the new first equation. This gives a new third equation in which X, is
eliminated:

0+af) x, + afy x, +af) x, = bf’
iif)  Similarly, the new fourth equation in which x, is eliminated is obtained,
0+af x,+ al x,+al) x, = b
iv) In general, the new ith equation is obtained by adding to it —a;, times
the new first equation. So, X, is eliminated:
0+ x, + 8 x, +af x, = b{"™
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After the completion of first step, the new set of equations with X, eliminated
(except the pivot equation) is written below:

» ) ) D)
ap X + a3y X;+ay X, = by
all x, +/al x, #allx = b : ... (86)

) m

afl x, + aQ) x, +all x, = by

Step 2
The first equation in the new set of equations in (8.6) is the new pivet equation
with a,, as its pivot.
a)  Divide the new pivot equation by its pivot. This gives a new first equation in the
set with 1 as the coefficient of x,:
RS LB T SR
b)  Eliminate X, from the remaining equations:
i) X, from the second equation of (8.6) can be eliminated by addingto it —a,
times the current first equation: This gives a new second equation in which
X, is eliminated:
0+a® x, +al x, = by
i) Similarly, X, from the third equation is eliminated which is as below:
0+a@ x, +a% x, =bP

After the completion of second step, the set of new equations with x , sliminated
(except the pivotal equation) is written below:
a@x, +a@ x, = bP
W (BT
al x,+a@ x, = b

Step 3
The first equation in (8.7) is the pivotal equation and lg‘ is its pivot:

)  Divide the pivot equation by its pivot. This gives the new first equation in (8.8)
with 1 as the coefficient of x,:

x5 0l 57 = bY
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b)  Eliminate x, from the remaining Qﬁation:

all x, =40

...(8.8)
Divide the final equation (8.8) by its pivot, we get,
X, =b®
Rewriting all pivotal equations together, we have the following set:
X, + a8l x,+ aly x, +al x, = bf®
X, + AR XGFRD X mib D ... (8.9)

Rycrasi = h0
X =b0
.

So, the equations under (8.9) have been reduced to an upper triangular matrix. ;
Backvard (Back Substitution) Stage

The values of X,, X;, X, and X, can be obtained from (8.9) by back
substitution. A

Let us illustrate the method by means of an example.

Example 3 Solve the following system of equations using Gaussian elimination process:

®x < Ax, ~3%, + . Px, €13 . 1)
8x,~ 3x,~ 8x, +17x, =66 ... (ii)
12x,- 12x,b— 16x, + 29x, = -2.1 . (i)
-8x,% 33x,-25x, +36x, =104 ... (iv) -
Write also the computer program to impl the method.
Solution
Forward Stage v
Step 1 Dividing equation (i) by 4, we get, Y
Xy— X;= 0.75x5 +1.75x, = 0.325 A9 2

Multiplying equation (i)’ by 8 and subtracting from (ii), we ge‘.t.
5x,—-2x,+3x, =4

S
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Multiplying equation (i)’ by 12 and subtracting from (iii), we get
0-7x;+8x, =-6 & R (o
Multiplying equation (i)" by 8 and sut ing from (iv), we get
25x,-31x,+50x, =13 e 1)

After the completion of Step-1, the new set of equations (except equation (i)),
with X, eliminated is as

Sx; — 2x3 #3x, =4 s I
0 -7x, + 8x, =-6 . (i)
25x,-31x,+50x, =13 e (1)

Step 2 Dividing equation (i)’ by 5, we get, :
X, - 04x,+06x, =08 e oV
Multiplying equation (ii)” by 25 and subtracting from (iv)’, we get,
= 21x;+35x, =-17 e (V)
After tile completion of Step-2, the new set of equations (except equation @ii)"),
with X, and X, eliminated as:

-1x;48x%, = ~6 AR
= 2 xeh 35k, =il s VY
Step 3 Dividing equation (iii)’ by 7, we get,
—x;+1.143x, = -0.857 ..o (i)
Multiplying equation (iii)” by 21 and subtracting from equation (iv)", we get,

10.997x, =10.997 )
(- AR LAy Lagiv)is
10.997
Rewriting the pivot equations, we get,
X, = X, - 0.75x, + 1.75x, = 0.325 stk
x,—- 04x; + 06x, =08 v )
- x, +1.143x, = -0.857 ... (i)

X, =1 o V)™
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Backward Substitution
Substituting the value of x, in (iii)”, we get,
X; =0.857+1.143=2
Substituting the values of X, and X, in (ii)", we, get,
X, -04x2+06x1=0.8
X, =08+08-06 =1
Substituting the values of Xx,, X, and x, in (i)', we get,
X, =1-075%2+1.75x1=0.325
X, =0.325+1+150-1.75 = 1075
The solution is as follows:
X, =1.075, x, =1, X, =2and x, =1
Solution in Tabular Form:
(a) Forward Step

Action X, X, X, Xy b Nu‘::?ifn(;f
ry = e 7 3 |0
8 | -8 17 66 |
12 iaghe o ey 29[ 94 |
B aa 235 36 104 | Giv)
/4 1 5 GV [T A o T
(i) - 8G)’ 0 5 %2 3 4 |aiy
(i) = 126)’ 0 0 27 8 -6 |Gy
(iv) - 8(i)" 0 25 -31 50 13 (iv)
5 3 3 4 |y
0 o 8 - |Gy
25 231 50 13 |av
Gy /s 1 204 0.6 08 | Gi)
0 - 8 -6 |Gy
(iv)’ - 25ii)" 0 221 35 27 fGwy
] 3 6 | Giiy
22i 35 -7 |aw”
Gy /-7 1 T1143 | 0857 | (Gi)”
()™ +21 (iii)” 0 10.997 | 10997 | (iv)”
10.997 | 10997 | Gv)”
(v)"710.997 1 T
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b) ; Backward Slllbstituﬂon
X, - X~ 0.75x, +1.75x, = 0325
X, - 04x; + 06x, =08
x, — 1.143x, = 0.857
X, =1
Solving by backward substitution, we get,

x, = 1.075,

X, = 1.0000
X3 =2.000

x, = 1.000

Program No. 21: Gaussian Elimination Method

# include<iostream.h>
# include<conio.h>

float temp,arr[10][6},answer[ 6];

int noofeq; %
void readata( )
{
short i,j,k=8,1=20;

gotoxy(24, 1);
cout<<“GAUSSIAN ELIMINATION METHOD";
gotoxy(24,2);
cout<<’
' cout<<"\ntHOW MANY EQUATIONS: *;
cin>>noofeq;
cout<<*“\ntENTER DATA FOR EQUATIONS";
coutt<<"\n\ H
for(i=0;i<=noofeq-1;i++)
for(j=0;j<=noofeqj++)
{

gotoxy(Lk);

cin>>arr(i](j];

I+=8;

if(j=noofeq)
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{
k++;
1=20;
}
}
}
void priansuIl( )
£
intiJ=1;
cout<<*“\ntFINAL RESULT e
coutt<:
for(i=noofeq-1;i>=0;i--)
{
cout<<“UX"“<<j++<<":\t"<<answer[i]<<end 1;

}

}
void main( )
{
intijkl=l,p=1; .
clrser();
readata( );
for(i=1;i<=noofeq;i++)
{ ¥
for(j=i-1j<=noofeq\j++)
arr{noofeq+i-1] [jl=arr(i-1](j] / arr{i-1] [i-1];
for(j=i\i<noofeq\i++) »
{ 4
temp=arr[j][i-1];
for(k=i-1;k<=noofeq;k++)
arr(j](k]- =arr[noofeq+i-1][k]*temp;
}

bisb i
temp=0; k=1;
answer[0]=arr[2*noofeq-1][noofeq];
for(j=2*noofeq-1;j>noofeq\j--)

{

for(k=1;k<=p;k++)

temp- r[k-1)*arr[j-1][noofeq-k];
J=arrj-1)(noofeq]-temp;

temp=0;

)
print_result( );
}

an\ \n"-
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Computer Output

GAUSSIAN ELIMINATION METHOD

HOW MANY EQUATIONS: 4

ENTER DATA FOR EQUATIONS
4 -4 =3 7 13
8 -3 -8 17 6.6
12 -12 =16 29 =219
-8 33 -25 36 10.4

FINAL RESULT

Xl v 1075

X2k

P )

X4: 1

8.4.1 Pivot Strategy

There are two difficulties in using the simple Gaussian elimination method. They
are as follows: 3

i)  One of the pivot elements may be zero.

ii)  If any pivot element is very small (very close to zero) division by this
element tends to magnify the round-off error.

These difficulties can easily be avoided. It is not necessary to use the first
available equation as the pivotal equation. It is quite safe to interchange the row having
zero pivot with any other row which does not have a zero element in that positon. This
raises the question of whether there is any preference as to which row is exchanged with
the one having zero pivot. Greater accuracy can be achieved if the pivot has the greatest
‘magnitude. In other words, the row with a zero pivot should be exchanged withany row,
which has the largest (in absolute value) element in the same column.

The above procedure will not only elimi zero pivots, but will also incrzase
overall computing accuracy.

In practice, we select the pivots by either of the following two ways:
* Partial pivoting
e Complete pivoting
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8.4.2 Partial Pivoting Scheme
In this scheme, we eliminate the unknowns in order starting with X, but at each
stage, we select the pivotal equation as the one with the largest pivot (in absolute value)
of the unknowns being eliminated. The reason for this is that, when calculations are
performed using finite-digit arithmetic, as would be the case for. calculator or, even
computer-generated solutions, a pivot that is small compared to the entries below it in the
same column can lead to substantial round-off error. Generally, partial pivoting scheme
improves the accuracy of the solution.
Let us solve the previous example using partial pivoting scheme.
Example4  Solve the following system of equations using partial pivoting technique:
4x,~' 4x;-3x;+ Tx,'=13
8x,— 3x,-8x, + 17x, =6.6
12x, - 12x, - 16x,+ 29x, = -2.1
-8x,+ 33x, - 25x;+ 36x, =10
Solution Forward Stage
Let us rewrite equations in the following form:

Action X | X, X, X4 b No.

4] -4] -3 7 13 )

8| -3 -8 17 6.6 (ii)
12| -12| -16 29 -21 (iii)
-8] 33| -25 36 10.4 (iv)

i) - 4(iii)’ 0 2332| -2.668| 20 @)
ii) - 8(iii)’ 5 2664 | -2.336| 8.0 (i)’
iii) /12 1] =1} -1333 2.417 | -0.175 (iii)’
iv) + 8(iii)’ -35.664 | 55336 | 9.0 (iv)’

2664| -2336| 8.0 (i)’
-35.664 | 55.336| 9.0 (iv)

2332 -2668| 20 (02
i)’ = 5(@iv)” 4 9.799 | -13.401 | 6.2 (ii)”
iv)' /125 1| -1427| 2213 | 036 (iv)”
2332| -2668| 2.0 (04
9.799 | -13.401| 6.2 (ii)”
(i)’ =2.332(ii)"” 0.523 | 0.524 @i
(i)’ 19.799 3 -1.368 | 0.633 (i)
(i) ”/0.523 1 1 )"

25
0 2332| -2.668| 20 (08
5

25
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Rewriting pivot equation (iii)’, (iv)”, (ii)” and (i)", we get,

X, = X,~133x; +2417x, =-0.175 RER 6114
X, - 1427 x; +2.213x, =0.36 1)
x,-1.368x, =0.633 PO ¢ o
R O e
Back Substitution

Substituting the value of x, from (i)” in (ii)”’, we get,
X;-1368x1 = 0633
X; =0.633 + 1.368= 2.0

Substituting the values of x; and X in (iv)”, we get,
X, -1427x2+2213x1 = 0.36
X, =036+ 2.854 -2.213 1.0

Substituting the values of X,, X, and x, in (iii)’, we get,
Xy~ 1.0.-— 1.333x2.0+2417x1 = -0.175
X; ==0.175 + 1.0 + 2.666 — 2.417 = 1.074
The solution is,
X, =1.074, x; = 1.0, x,=2.0and x, =1

8.43 Complete Pivoting Scheme

In complete pivoting scheme, we select the equation with the largest coefficient
(in absolute value) as the pivot equation; it can be anywhere in the body of the table.

Let us solve the p le using the complete pivoting strategy.
Enmple‘ 5 Solve the following system of ions using complete pivoting strategy:
AR = g e g e BB
{p R B ) SRSy ST L b B )
v PR b TSNS ||} Mol & ke

3

-8x, A3y ir, 2BNLLY R, W
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Solution Forward Stage
Action X, X5 Xy X b No.
4 -4] 23 17 13 )
8 -3| -8.|17]. 66 (i)
12 -12] <16 |29] -21 (i)
-8 33| 25 [36] 104 (iv)
i) = 7Givy 5.554 -10.419| 1.858 -0.723 [0F
i) = 17(iv)* 11.774 -18.589 | 3.798 1.687 @iy’
jii)) — 29(iv)’ 18438 -38.593 | 4.126 -10.481 | (i)’
iv)/ 36 0222 0917 -0694| 1| 0289 (iv)
5.554 -10.419| 1858 -0.723 Gy
11.774 -18.589 | 3.798 1.687 (i)’
18.438 -38.593 | 4.126 -10.481 | (i)’
i)’ + 10.419(ii)” 0.574) 0.743 2.111 0%
i)’ + 18.589¢iii)” |  2.888 1.809 6.734 (ii)”
iii)’ /-38.593 -0.478 1| -0.107 0.272 (ii)”
0.574) 0.743 2.111 (0%
2.888 1.809 6.734 (ii)”
i)” ~0.574(i)"” 0.384 0.771 @
ii)” / 12.888 1 0.626 2.335 (ii)”
i) /0384 1 2.0 (049

Back Substitution
Rewriting pivot equations (iv)’, (iii)”, (i) and (i)™, we get,

-0222x, * 0917x, - 0694x; * x, = 0289
-0487x, + b 2y S = 0272
X1 + 0.626x, = 2335

5 -0

Substituting the value of x, in (ii)”, we get,
X, +0.626x2 = = 2335
X, =2.335-1252= 1.083
Substituting the values of x, and x, in (iii)", we get,
-0487 x 1,083 + x, =0.107x2 = 0272
X, =0.272+0.214 +0.518 =1

vy
(iii)”
Giy”
o™
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Substituting the values of X,, X, and X, in (iv)’, we get,
~0.222x1.083+0.917x1-0.694 X2+ x, = 0.289
X, =0289-0917+0240+1.388 =1

The solution is,
x, =1.083, x, =10, x,=2.0and x, =1

"85  TRIANGULAR DECOMPOSITION (FACTORIZATION) METHOD

This method is based on the fact, that a non-singular square matrix A can be
replaced by the product of lower and upper triangular matrices. That is why this process
is also known as LU-decomposition method.

Consider the following linear system of equations,
a, X +a,%X,+a;X; = b
8y X, +ayX,+ 23Xy =b,
a5 X+ 2y X, + 853Xy = by

which can be written in the form,

Ax=b < ... (8.10)
Then, A takes the form,
A=LU .. (8.11)
A VR

whereL=|1,, 1 0
]!I l!l 1

Uy Uy Uy
andU= |0 u; Uy
00 g

L is a lower-triangular mnrlx (thn has 1's along the diagonal) and U is an upper-

fangular matrix (with n ). Hence, (8.10) becomes:
LUx=b . (8.12)
This method can be used both for solving a system of equations and computing
the Inverse of the given matrix,

8.5.1 Solution of Systems of Equations

fwesetUx =y, . (8.13)
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then (8.12) may be rewritten as:
Ly=b ... (8.14)
which is equivalent to the system,
(a1 s | TR b,
ly 1 0}y, |=]b,
Iy 1y 1 Ys b,
On simplification, we get,
Y = b,
lyy, + Y, =b,
Iy yi+lpy,+y; =Db,
Solve the above for y,, y, and y, using forward substitution.

Now, we compute the values of x’s as:

Ux=y
Uy U Uy |1X b,
Uy Uy [|X,[=|b,
Uy JLXs by
On multiplying, we get,

Uy Xt U Xp + U X3 =y,
UpX; + UpnX;= Yy,
Uy X3 = Y,

which can be solved for X, X, and x, by backward substitution.

8.5.2 Inverse of a Matrix A using L and U 3
In order to compute the inverse of A using L and U, .the following steps are used:
i) A=LU
) A'=(LU)' =ut.L!
iii) Multiplying both sides of (ii) by U
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Scheme for Computing L and U

We shall now describe the scheme for computing the matrices L and U and
illustrate the procedure with a matrix of order 3. From (8.11), we get,

170 0]|u, u, uy, 8y 8, a;
I, 1 0|0 u, uy|=(ay a, ay
by g W00 0 Uss 8y a3, ay

Multiplying the matrices on the left-hand side and equating the corresponding
elements of both sides, we get, e

u,; =a, U, =2, Uy = 8y
Iy - uy =2y Ly . uyy =2y,
or, or,
1 Ay _ 2y e a; _ ay
2 T TN S
Tl v Wi -8y
lyuy, +uy=ay Ly uy, =2y
or, or,
By -8 a a
PO e L 1 ol 3
a, Uy 3y,
Ly up+uy =2y
or, or,
8.8,
Doy ® Bg7 it
an
Iy v+l up =2y, Iy utly Uy =ay,
1 a, .a \
R ) S Y
2 32 Uyy = 8yy= 1y o Uy = Dygie Uy
u, P g @By =y o My
The above is a sy ic procedure to compute the el of Land U. We can
easily generalize the scheme.

Let us illustrate the procedure by means of the following example.
Example 6 (a) Solve the following system of equations,
VLR R § TOR S
2%, ¥ 3x, o+ iy =S
2%, % Xy e Axyom 93

using the decomposition method.
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455 =1
(b) Invert A= |23 1
2 e g

using the decomposition method.

c) Using A™', solve the system of equations given in (a) above. Compare the two
results. i
Solution (a) Solution of Equations using L and U.

‘We know that LU = A.

R B e e 45 =2
L S O R ) 0 T ORI T L L e L |
I, s o Taob e wiledlins @
Multiplying, we get:
L] up, Lt 4 5 -2
Lyuy Dup+uy, Ly uyy+uy ) T B
Lyuy Dy tly uy Iy ug+ly ugtuy, s
Computing coefﬁc}ents. we get,
uy, =4 U =5 U = -2
Iy, =2 Ly u+uy =3 Iy ups+uy =1
IR ey Ely B
or, Iy O ®%3 Uy =2
Lu,=2 Iyuptlyu, =4 1yu+l, uytuy, =4
|l L /
o, 'n iy o4 a Iy =3 Uy =~1
It follows that A = LU "
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(®)

Since Ly = b, we have

100y 5.6
11 0fly.|={13
1 3 1)Llys 85

Multiplying the matrices on the left-hand side, we get,

y, =56
.ly-r =13
PR4 b ot

ok

E Yy +3y,+Yy; =95
Solving the above system, we get,

y,=56, y,= 1.6 and y; =112
Using Ux =y, we get,

4.0 -2]0x 56
04 2||x|=]|-15
00 -2]|x, 112

Multiplying the matrices on the left-hand side, we get,

4x, + 5x, - 2x3 = 56
1
—z-xI + 2%y = -15
- X3 = 112
Solving the above system of equations by backward substitution, we get,
Xy= =112, X,= 41.8 and X, = -56.5
The matrices L and U have already been computed in (a) above.

 Now,LL' =1

S R
Let L'mlll 1 0

W Iy
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[0 N VI SR R ¥40: 0
Therefore, |4 1 0[|13, 1 0 (=|0 10
131 el R 074071

Multiplying both matrices and comparing like terms, we get:

1 0 0 17050
L+1, 1 o|=f{010
L4315 +15 3+15, 1 001

+1,=00 1 =-4
L4315 a0y, =1
3415, =0; 15, = -3

Sub;tituting valuesin L™, we get,

1.0 0
Eixled vl
1=3
Also, UA™ = L™
4.8 bl e s 8 T 1 |
L, ay 8y ay [=[-%1 1
00 =1 UES At & 1 -3

Multiplying and comparing coefficients, we get
ay=-1; ay=3; ay = -1
ay =3 ay = =10; ay=4
ay=-4; a,=14; l;,--'l;l

Substituting values in A™, we get,
-4 14 -4
A”'=| 3 -10 4
-1 =3 =1

ket ~ B -
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The system of equations can be solved using: x =A"b

o -4 14 -47[ 56] [-565
x[=1'3 210" 4flfal =t a8
o0 [0 (SR S 8 1] R § )

The solution is as follows:
X, =-56.5, x,= 41.8 and x; =-11.2

Both results are the same.

8.6  TRIANGULAR DECOMPOSITION FOR SYMMETRIC MATRICES

When the given matrix A is real symmetric and positive definite, then we may
decompose A as:

ALY :
A=) = () (0)
= () ... (8.15)

In this case, we have to perform only one inversion of a triangular matrix and one
multiplication. This method is due to Choleski and is also known as the square-root
method. It is possible that this method may give a zero or imaginary diagonal element 1;
even though the matrix A is real. This is the major disadvantage of Choleski’s method.
Positive Definite Matrix

A real matrix A is said to be positive definite if x"Ax > 0, for all non-zero
vector X.

e RO
Thematrix A= | 1 2 =1 | is positive definite because
Q=1 1
RO L 38 1 %
xTAx=[x, x,x,){ 1 2 ~-1][x,
0 -1 1]f[x,

= X] o+ 2x3 4 x] +2%, X, - 2%, X,
= (% +x,) + (xy=%,)

The right-hand side of the above relation will be positive for all values of X, X,
and X,. Hence, the matrix A is positive definite.
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If the matrix A is not positive definite, there are two possibilities:

i) at some stage, 1, = 0, if this happens the method fails, for example.

A-OI'I-O
g3 110 bl

ii) at some stage, 1 <0, and this results in imaginary numbers .,

Let us illustrate Choleski’s method by means of an example.

1 2486
Example 7 a) Given the matrix, A=| 2 5 15,
6 15 46

Find A~ using Choleski's method
b) Using A~ computed in (a) above, solve the following system of equations:

Ky 202X, e GRS

> R e > N e b S R 1

6x, + 15x, + 46x; = 19
Ly @5 0
Solution a) LetA=|1, 1, 0
l)l ln IJJ

=
=
g

1 Iy 1y l;llJl 3
PR IR S A W i 8 S L [ B
PRI £ DR R L 0. 1> 40
Computing elements, we get,
=1 =1
Ly ly =2 I =2

L1y =6; Iy =6
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I+15 =5; I =1
Lyl + 151 =15 I, =3
B2 +1% + 13 =46; lyyi=il
i )
So, L= 10
62311

»

2
i 80 -0
-3 by D G

L 1, L

53 gl |
10010y, 020 1 8:0
Sonl 2.0 PR L 0 =10 10
R T T i K 1y 001
Multiplying the above ices and ing the
we get, b
L'=[-210

=3 0.1
A= () 6)

Pa=2"210 gD 0
w1001 =34}+2 71 0
[ R s bl i o b 1 3§

DO
=1=2 10°-3
Oc=3"41

of the matrix L™,
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Solution of equations: x=A™.b

X, 5-20]M3 35
x.|={-2 10 -3|[|15|=]| 67
33 0-3 "1|[19] |=26

The solution is as follows:
x,=35, X,= 67 and X, = ~26

8.7 'SOLUTION OF TRIDIAGONAL SYSTEMS OF EQUATIONS

A system of equations is said to be tridiagonal, if and only if all elements of
matrix A are zero except a;, ay, and A0 wherei=12,...,nandj=12,...,n-1.

The following system,

4x, # X, = 1
X o+ 3%, 47X, = 0
b SEET R b TRR N 8 L R |

Xy iy Ky oo= i Kgl= 0

Kyi= 2%5 = 1

is tridiagonal.
Tridiagonal matrices occur frequently in a variety of applications:
i) In the solution of certain partial diffe'remial equations.
ii) ‘l; approximation theory, i.e., where cubic spline functions are used to fit
ta.

Diagonal Dominance
An n X n matrix A is said to be diagonally dominant if and only if,
Jag] = )E_‘,ai‘ iforalli=12,...,n.
5
The matrix A is said to be strictly diagonally dominant if,
lag| > Say s foralli=12,...,n.

]
The system,
4x, + 2x, + 2x,

n
—

p RIS TR b SUSC RS T )

"
o

X, + X, +  2X,
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is di Ily i whereas the following system,
1
X, - ;x, - -4-)(3 = 7
1
_:x‘ - X, + Xy - ;x, = 10
1 1
-;x, + Xy - Ix‘ = 15
1 1.
- :x, - :x, + X, = 8
‘iun'ictlydilgonnllydominml.
Computational Procedure
A computational procedure to solve tridi | system is explained below:
When the system of equati is tridi ] arid di 1) its

solution exists and is unique. This procedure has been found to be very efﬁc:en for use
on a digital computer because it uses less memory.

The following steps are used to implement the procedure:

i) Generate the quantities: W, W, ..., W,
and 005, .. d
ii) From w, =a,
1
dj=a e j=12,..,n-1
% f izl
wy=a;;—a;;,d;; =12, ..0,

iii)  Next generate the quantities: z,, Z,, Z;...., Z,
From 2z, = L
»y
z,=£|1‘_—.‘::"l—}"); J= 3 ol
iv) Finally, generate the solution:
Xys Xz, .oy X, from
X, =2,
Xy =2y~ Xy dy;  k=n-1,n-2,..,1L
The working of this method is illustrated below:
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Example8  Solve the following tridi | system of
-2x, + X,
Xy e 2%+ Xy
Xy .= 2Ry . 4. X,

Xy = 2%, + X4
X, - 2Xg
Solution
8, =8y, =8y =08, =085 =-2
i3 ® g W e ik
b=1b,= by =... £0
W, =a, =-2
d=l"= l
: w, 2
W, =8,-23,.d
=—2—lx—l=-§-
2 2
d,=‘—”=—3
W, 2 .
Similarly, w, = ——; d. sz
W Wy Si% 7
5 4
=—yd, = -
i St 5
it .
s 5
b,
ML L
w, 2
z,= bz"ull)
Wi
0-1x~-=
( 3 )_ 1
2 3

© © © © =
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The solution is as follows:
x, = -0.8333
X, = - 0.6667

X, = -0.5000

X, = -03333
X5 = —0.1667

Program No. 22:

# include<conio.h>
# include<stdio.h>
# include<iostream.h>

Tridiagonal System of Equation

float a[10][10], w[10],d[10],zeta[10],x[10],b[10];

void main( )

int n,i,j,k,l,m, ver=10,hor=9;

clrscr();

cout<<“\n\n\\TRIDIAGONAL SYSTEM OF EQUATIONS™;

cout<<"\n\

cout<<"\n\n\tSIZE OF MATRIX: ";

3
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cin>>n; =
Ilcoefficients of A
cout<<'\nMENTER THE VALVES: ";
for(i =1;i<n;i++)

j=it+l;
Jgotoxy(hor.vcr); cin>>a[i][i]; hor+=6;
gotoxy(hor, ver); cin>>a[i](j]; ver++; hor=9+6*(i-1)»
gotoxy(hor,ver); cin>>a[j][i]; hor+=6;
}
gotoxy(hor,ver); cin>a[i][i];
/Ivalues of B
hor+=4; ver=10;
for(j=1;j<=n;j++)
{
gotoxy(hor,ver);
cout<<"= "}
cin>>b[j];
Ver++;
)
/lcalculation of w, d & zeta
wll]=a[1][1];
zeta[ 1]=b[t}/w[ 1];
for(j=1; j<=n-1;j++)
{
k=j+1;
dijl=alj)kV/wlil:
wik]=a[k][k]-a[k][j]*d[j];
zeta[k]=(b[k]-a[k](j]}zeta[j])/w(k];
}

/lcalculation of x
*  x[n]=zeta[n];
for(l=1; 1<=n-1; 1++)
{
m=n-1;
x[m]=zeta[m]-x[m+1]*d[m];

/lprinting values of x on screen
for(m=1;m<=n;m++)

cout<<*\n\tX “<<m<<” = "<<x[m];

getch();

297"
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Computer Output

TRIDIAGONAL SYSTEM OF EQUATIONS

NO. OF EQUATIONS: 5

ENTER THE VALUES:
Ll il
fenia g é
1/ %50 1 i)
1 D3atems e
el Rt
X1=-0833333
X2 =— 0.666667
X3=-05
X4 =-0333333
X5 =-0.166667

838 ITERATIVE METHODS

The direct methods we have discussed so far are not suitable when tte number of
equations in a system is too large, or when the coefficient matrix 1s sparse (i.e, when
most of the elements in a matrix are zero). Iterati hods are larly suitable for
computer purposes and are efficient in terms of computer storage and time requirsments.
These methods arc mostly used to solve linear systems arising in numerical soluions of
partial differential equations. Linear systems wnh as many as 100,000 variables often
arise in the solution of partial di The coefficient matix fa these
systems is sparse, i.e., the non-zero entries form a pattern. An iterative proczss provides
an efficient method for solving these large systems.

Some of the advantages of iterative methods are as follows:

a) Fewer multiplications are required for large systems.

b) They have less round-off errors than elimination methods.

<) They are self-correcting if an error is made.

d) They use less computer memory when programmed.

e) They are quicker and easier to use when the coefficient matrix is sparse.

We ider here two classical iterative method:

i) Jacobi's method.

ii) Gauss-Seidel method
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Before we discuss the iterative methods for a system of equations, let us study
the general concept of these methods:

Let Ax=b.
Assume that the equations are scaled so that a; = 1.

(where i=1,2,...,n).

X, R Sy OB Kl R B
a, X, + X, + vt SRR e T
LR T i e R T N .. (8.16)
a, X, + apX; i+ i X, =
The equations (8.16) can be rewritten as follows:
X om by an el e R
X; = by < “ayixy =i~ Ay X,
X, = b= ayR = e X8y e X (817)
Ko =By el A N n B X {

We start with some initial ions to the unk jables. Substi
these npymxmtiom intotbenght-hmd side of (8.17), we get new lpproumdom The
new app are then i mtolherlghthandudoaf(slﬂ We get a
second set of and is repeated until values of
each of the vmblumuuffclendycm

iterati hods will not ge for all sets of equations, nor for all

ponlble rearrangements of the equations, When !lw equations can be ordered so that each
diagonal entry is larger in magnitude than the sum of the magnitudes of the other
coefficients in that row, the iteration will converge for any initial guess. The speed with
which the iterati ge is obviously related to the degree ofdomlunee of the
diagonal terms.

8.8.1 Jacobi’s Method

Jacobi's method is valid only if all the a;’s are non-zero or if the nqw.lom‘cm
be suitably rearranged to make this so. This can always be done if A is invertible. Faster

gence can be achieved if we nge the rows so that the diagonal elements have
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magnitudes as large as possible relative to the magnitudes of other coefficients in the
same row. If this is not done sometimes Jacobi’s method may not converge.

To solve the system of equations by Jacobi’s method, the following steps are

used:
a) Choose initial guesses:
x® = x? =...= x” =0if no better initial guesses are available.
b) Set r=0
c) Foreach i=1,2,...,n, compute
1 n
X =—I b =Y ax ... (8.18)
ay o
Assumingall a; #0; i=1,2,....m; r20.
d) If solution vector x® is sufficiently accurate, then go to the last step. If il
is not sufficiently accurate, then add 1 to r and go to Step c.
e) Termination of the process:
The following two possible stopping criteria are used:
i) Use a fixed number of iterations.
ii) Use pre-assigned accuracy € as: [x“*" —x"’| <e.
We can combine both of them as well.
Jacobi's method is also k.nown as the nm.hod of simultaneous displacements
because each of the equations is \ d, by using the most recent set of
x-values available. ;

Example9  Solve the followlng lynem of equations u:mg Jacobi's method:
3 4%, - Xy = X3 = 05

& O RR Y e R gt 13

- X + 4x; - x, =10

Sl R L e 118

Use x0 = xQ = x{ = x{ =0.

Write also the computer program to implement the method.

Solution Dividing each equation by the coefficients of its diagonal term, we get the
following:




Linear Systems of

301

Xy
- 0.25x,
- 025x,
- 025x,

£
ik

025x,

X2
X3

- 025x,

- 0.25x,
- '025x,
- 025x,

* Xy

Rewriting the above equations as follows:

X, =
X, =
X; =

Xy, =

0.125
0.325
0.25
0.45

+
3
i
+

0.25(X,+X)
0.25(x, +x,)
0.25(x,+X,)
0.25(x,+X;)

X =0.125+025(x0 +x7)

xE =0325+0.25(x +x)

x§*" =025+025 (k O+ x‘,”)

x§* =045+025 (x‘{’ +x§

Setting r = 0, we get,

x® =0.125 +025(x? +xP)

x{ =0325 +025(x? +x{)
x{" =025+ O.Zs(x,"”ﬁ-x“"’)

x{ =045+ 025 (x® +xP)

Substituting the values of x® = x©

x{" =0.125
x§ =0.325
x{? =0.25
x$) =045
: Second approximation:

% 20125 +025(x{ +x{")
=0.125 + 0,25 (0,325 + 0.25) = 0,2688

©

0.125
0.325
0.25
0.45

=xP = x? =0, we get,
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x@ =0325+025(x +x )
=0.325 +0.25 (0.125 + 0.25) = 04688

xP =025+ O.ZS(x}" +x{?)
=0.25 +0.25 (0.125 + 0.45) = 0.3938

x© =045+025(x¢ +x) :
=045 +0.25 (0,325 +0.25) = 0.5938

The process is repeated several times and the results are represented in the
following table:

Iterations X, X, A X Xy
0 0 0 0 0
1 0.125 . '0.325 0.25 0.45
2 0.2688  0.4688 0.3938 0.5938
3 0.3406  0.4506 0.4656 0.6656
s 0.4103 0.6103 0.5353 0.7353
9 04114 06114 0.5364 0.7364

10 04120 0.6120 0.5370  0.7370
True answer | 0.4125  0.6125 0.5375 0.7375

It is obvious from the above results that the new values are better than the values
d in the previous iterati

Program No. 23: Jacobi’s Method

# include<iostream.h>

# include<conio.h>

# include<stdio.h>

# define size 8

static float temp,data[size][size],x[10),x] [10];
short no_eqitr;

void main(void)
{
short i,j,k=8, 1=20,counts=1;

clrser( );
gotoxy(24,1);cout<<"JACOBI METHOD";
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gotoxy(17,2);

cout<< \n"";
cout<<"\nHOW MANY EQUATIONS : ”;

cin >>no_eq;

cout<<"\nENTER DATA FOR EQUATIONS";
cout<<“\ i

for(i=0;i<no_eq-l;i++)
for(j=0;j<=no_eq;j++)
{

gotoxy(Lk);
cin>>data[i][j);
1+8;
If(j==no_eq)
{
k++;
1+20;
}

}
cout<<*\nHOW MANY ITERATIONS YOU WANT TO DO: ™;
cin >>itr;
for(i=0;i<=no_eq-I; i++)
{
temp=datal[i][i];
for(j=0;j<=no_eq;j++)
data[i][j)/=temp;
x ) 5 -
cout<<'\n\nITERATIONS : ' RESULT\n\n";
while(count<=itr) k s

for(l=0;i<—no_eq-l;i++)_v b_ 3

x1(i)- =data[i][no_eq];
for(j=no_eq-1;j>=0;j--)

if(}-})
x1(i)- =dataliJ1#xGl;
y ;
)
coute<" © "<<count; -
for(k=0;k<=no_eq-1;k++) *
7 )
x[Kl=x1[K];
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printf(* %9.4f * x[k]);
}
cout<<'\n";
count++;
}
getch();
}
Computer Output A
JACOBI METHOD

B i

HOW MANY EQUATIONS : 4

ENTER DATA FOR EQUATIONS
4 -1 =1 0 0.5
-1 4 0 -1 13
-1 0 4 -1 1
0 -1 - el 1.8

HOW MANY ITERATIONS YOU WANT TODO: 12

ITERATIONS RESULTS

1 0.1250 03250 02500 04500
2 02688 04688 0.3938 05938
3 0.3406 0.5406 0.4656 0.6656
4 0.3766 05766 05016 0.7016
5 0.3945 05945 05195 07195
6 0.4035 06035 0.5285 0.7285
7 0.4080 0.6080 05330 07330
8 04103 0.6103 0.5353 ‘073853
9 04114 06114 05364 07364
10 04119 06119 0.5369 0.7369
1 04122 0.6122 05372 07372

04124 0.6124 0.5374 0.7374

—
o~



Linear Systems of i 305

882 Gauss-Seidel Méthod

Jacobi’s method is modified so that new approximations to the unknown are used
as soon as they are available.

Formula (8.18) for x{"*" is then modified as follows:

SR R I L ar B R S R R 1))
i-1 )
or, x" = b, - Zaﬁx}"”— Za,’,xi" ... (820
= jeinl

Gauss-Seidel method will always converge if Jacobi’s method converges and will
do so more rapidly. If Jacobi’s method diverges, so does Gauss-Seidel. Since the most
recently computed values of x are used in the subsequent iterations, this makes the
method more realistic and converges faster. This is generally the case but is not always
true. In fact, there are linear systems for which Jacobi’s method converges and the Gauss-
Seidel method does not and conversely. On the whole, we can say that Gauss-Seidel
method converges faster than Jacobi’s method. 5

*  As already mentioned that the solutions are quickly reached if a,,, a,,, ..., a,,
are numerically larger compared with other coefficients. If necessary, the equations are
rearranged so that the bigger coefficients are on the main diagonal.

The following steps are used to solve the system of equations by Gauss-Seidel
method.

a) Choose the initial guess
b) Set r=0
c) For each i= 1,2, ..., n, compute
i -
X = —l—[b, =D - Znuxj"] . (8:21)
ay i jeint

d) If the solution vector
i) x“* is sufficiently accurate, go to step (¢),

ii) Otherwise, add 1 to rand go to Step (c).
e) Stop the process. Stopping criteria are the same as mentioned under Jacobi's
method.

Example 10  Solve the previous example using Gauss-Seidel method.
Solution Initial approximation: x{” = x{" = x{ = x{" =0,
The equations are now rewritten as follows:
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x¢™ 20325 +025(x " +x?)
X4 =025 +0.25(x 0 + x2)

¢ =045 +0.25(xg™ + x¢™)
Setting r = 0 and substituting the required values in the right-hand ;ide, we get,
x{? =0.125 +0.25 (x‘,°’_ + x?’)
=0.125+0.25 (0 + 0)=0.125
x® =0325+0.25(x +x?)
=0.325 +0.25 (0.125 + 0) = 0.3563
x =0.25+0.25 (xf" + xﬁm)
=0.25 +0.25 (0.125 + 0) = 0.2813
x{ =045+025(x +x{)
=0.45 +0.25 (0.3563 + 0.2813) = 0.6094

The subsequent iterations are given as below:

Iterations X, X, X3 55
0 0 0 0 0
3 0.125 03563 0.2813  0.6094
2 0.2844 0.5484 0.4734  0.7055
8 03805 0.5965 0.5215 0.7295
7 04124 06124 05374 0.7375
8 04125 06125 05374 07375

True answer 04125 06125 05375 0.7375

This example shows that Gauss-Seidel method is faster and gives more «ccunte
results than the previous method.

Program No. 24; Gauss-Seidel Method

# include<conio.h>
# include<stdio.h>
# include<iostream.h>

int noofeqiteration;
float temp,arr(8](8],x[10);
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void main(void)
{
int ij, k=8, count=1,noofeq,iteration,xpos=10,ypos=8;
float temp,arr[8][8],x[10];

clrser();
cout<< “\n\ntGAUSS-SEIDEL METHOD""
cout<<"\n\
cout<<*\n\tNo Of Equations: ";
cin>>noofig;
cout<<*\n\tPlease Enter Data Of Equations :\n";
for(i=0;i<= noofeq-1;i++)
{
xpos=10; ypos+=2;
for(j=0;j<=noofeq;j++ )
{

Otoxy(Xpos,ypos);
cin>>arr[i][j];
Xpos+=8;
}
)
cout<<"\n\tHow Many Iterations: ";
cin>>iteration; ¥
for(i=0;i<=noofeq-l;i++)
{
temp=arr[i][i];
for(j=0;j<=noofeq;j++ )
arr[i][j}/=temp;

cout<<“\n\nITERATIONS\MRESULTS\n\n";

while(count<=iterations)
{
for(i=0;i<=noofeq-L;i++)
{

x[i]=arr[i][noofeq];
for(j=noofeq;j>=0;j~;
{
if(i==j)j—;
x[il==[i](j1*x(j};
}

}

cout<<count;
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i=0;

for(k=0;k<=noofeq-1;k++)

}

printf(* %9.4f " x[k];

count<<‘n";
count++;
)
getch();
}

Computer Output

GUASS-SEIDEL METHOD

No Of Equations: 4

Please Enter Data Of Equations:
4 -1 -1 0 0.5
-1 4 0 -1 13
-1 0 4 -1 1.0
0 -1 -1 4 18

How Many Iterations : 9
ITERATIONS

0.1250
0.2844
0.3805
0.4045
0.4105
0.4120
04124
0.4125
0.4125

V0NN AW N -

RESULTS
03562 02812 0.6094
0.5484 04734 0.7055
0.5965 0.5215 0.7295
0.6085 0.5335 0.7355
06115 0.5365 0.7370
06122 0.5372 0.7374
0.6124 0.5374 0.7375
0.6125 0.5379 0.7375
06125 05357 0.7375
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Example 11 Given the following non-linear system of equations:
4% y: o+ z .= 1
X AN 4 2} = 18
2.4

X Yy 4 .42, .= .15

Solve this system of equations using Gauss-Seidel method.
Solution
Certain linear systems of equation can be solved easily by Gauss-Seidel method.
After a simple generalization, this method can also be used for solving some non-linear
systems.
A solution to the pmblem at hand can be obtained by using Gauss-Seidel by
ing the system in diagonally form:

Thus,
x= %(ll—y’—z)

y = %(lB—x—z')

z

%(15- y- x’)
Let the initial guess be x@ = y@ = z® =1,
Iterative Form:
XD o l(”_ y(n’ —z"’l)
4

o 1 2
Yo = :(ls—x""’ g )
200 _ l(ls—y"*" _xam’)
4
Putting n =0, we get
l(l 2
o _ by _Zm)
X 7 %

yO = %(lB-x‘" o z(vn’)

s %(15_ y® _x(n’)
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Substituting the vaiues in the above form, we get

After 67 iterations, we get the answer as:

e

X0 = %[11-(1)’ =1] =225

Yo = %{1s~ 225-()*] =3.6875

2® = %[15—3.6875—(2.25)’] =1.5625

x = 1000112 ~ 1.

U
y = 1999962 ~ 2.

z = 2.999953 ~ 3.

It must be emphasized that we had no guarantee that this iteration would
converge despite the diagonal dominance of the system, since a general theory for the

of is not yet
' PROBLEMS
g% Solve the following systems of equations using Cramer’s rule:
a) > L Xo: SRS e S
3x, - X, + 2%y = 4
4x, +  2x, + X3 = -8
b) 4x, - X, + Xy'm 3
2%, - 5x, - X, = 2
Xi i 2o g v GRS
) 6x, - 2x; + b YRl S
Xi *: 85x; ~ 2% = 6
2x, - X, + Xy = 4
d) X, = Ix; + 4x, 9
X o+ 9x = 6x5 = 1
-3x, + 8 Xy 4o 8%y =76
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e) 03a + 052b + c = =001
05a + b i+ 19¢c = 0.67
0la + 03b + 05c -0.44
f) X + y - z = 1
2x + y + 2z = 3
3x ="y % z = =2
& Given the matrix,
O |
A= & 1 -1
1 1 1

a)  Compute adj(A) and then find A™'.

b)  Hence or otherwise, solve the following system of equations;

Xy AV 2xe i Xy = 3
3%, + X, - X3 =.-11
Ry s Al el T g o )

3.(a) Find the inverse of the matrix,

1 -1 1
A= 3. 7= 0
| e et

Hence or otherwise solve the system of equations:

X - ) i TS A A
3%~ IR 8z =6
X 3y A

(b) Find the inverse of the foliowing matrices:

-3 =8 ong 48004 004
IR [ B L R
0 - Pige Sal il Bi/ e i
2 L 5080 e S
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3 8 15 0 4 1 2
il) 2 6 11 iv) 3 1 2 0
2 10 19 1 2 3 -1
Ul U1 38 / 2 5 1 3
e 3 Solve the g systems of eq using simple Gaussian elimination,
partial pi lete pivoting methods. At each stage clearly indicate the

a) (i)

(i)

b)

©)

)

Xy -

4x,
3x,

0.5x,
0.2x,
0.4x,

Xy

Loy
2x,

3x,

Xy
2x,
2x,
3x,

2x,
3x,
-x
2x,

L
2x,
3x,

-x

X2
2x,

A3

0.4x,
20.1x,
0.3x,

X2
X
4x,

X3

X2

2x,
g
8x,
9x,
2x,
5x,

Xy

X
X3
2x,

P
+

'+ e ®

+ 4+ o+

+ + o+

2x,
%y

3x,

+ 0.2x,
+ 04x,
+ 06x,

X3
X3
3x,
X3

Xy
X3
L

X3

4x,
15x,
17x,
143,

X3
Xs
3xy

+ o+ o+

*

0.7
03
0.2

X4
X4
5x,

X4

Xy
Xy
Xs

5x,

10x,

35x,
21x,

3x,
X4
2x,

X4

pivots and muluphm ;ou have used. Give reasons for any interchange you
made.

-2
-2

E T S

716
-8.1
9.4
14.1
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8

h)

X, +
2x,
4x, +

-3x, +

X .+
2%+
3x, -
4x, -

%l i
5%y +

=3x, +
6x, -
10x, -

-6x, +
3%, +
6x, -
2x, +

=3x, " =

-y *
4x, +
Sx; .+

-1

8.3

REG

4 2
3718

-6 4
6 -2

12 -8

2x, + X,
+  4x,
2x, + 2x,
X, + 3x,
X, + X3
3x, +  Txg
2x, + 5x,
5x, - 2x,
2x, - 12x,
4x, + 1x4
IXg + 9%,
12x, - 8x;
Tx, + 3x4
X; = Xy
X, + 4x,
9x, - 2x4
10x, - 6x,
12x, - 9x;
X, = 34x,
18x,
26x, - 19x%,
)
< M ¢ X,
| g X,
e X5
Al X4
9 £ X,
1 -18 X,
2 4 X3
6 10 X

+ o+ o+ o+

=Y

4x,
3x,
X4

2x,

X4
Xs
3x,
3x,

8x,
2x,
5x,
3x,

5x,
4x,
11x,
4x,

4x,
15x,

4x,
25x,

+ + 4+ o+ o+

29
=2
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8 Find the inverse of the following matrices using triangular decomposition
method:
1 2 3 50 107 36
a) A= 4 2 1 b) . B= 25 54 20
% 1 1 31166 \28

c) Solve the following system of equations,
4x, + 3x, - Xy = =2
=2x, - 4x, '+ 5x, = .20
Rio s 2x0 Sk Bk 0T

using the triangular decomposition method.

d) Sclve the following system of equations using triangular decomposition
method:
X 0+ 2x, + 3x; = 14
2R % Sx, #  2xy .= 18
3x; + X, + Sx3.= 20
€) Solve the following system of equations using triang; d
method:
2x, + X, + 4x, = 12
8x; - 3x, + '2x; =" 20 |
4x, + 1x, - X3 = 33
f) Solve the following system of equations using triangular decomposition
method:
X + 3x, + 8x, = 4
X, + 4%, + 3x3 =" -2
X+ Bk 4 AKXy = 1

6.(a) Find the inverse of the given matrix using Choleski’s method,
i 68
A= | 6 10 17
4 17..25
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Hence, solve the following system of equations:

A% 6%y % By = 06
(3 SRR Sk 1L SRR b o SEREL
8% «b 17Xy 4. 25xy = T

(b)  Find the inverse of the following matrix using Choleski's method,

4. .2 1
A= 2 5 -2
1 -2 7

Hence or otherwise solve the system of equations:

L2 . s X3 = 15
2x, + R SERIRARY B SO Bl |
Ripim onn 2%a 0 T LB RS

7.(a) Using Choleski’s method, find the inverse of A:

. T 6 £:tS
A= T 0 8 7
6 8.0 110+ 00
o 7 9 10

Hence or otherwise solve the following system of equations:

Sa + Th 4 a0k k8 23
Ta 4 .10 + 8o 4 Tdim .32
6a + 8b + 10c + 9d = ‘33
S5a + Tb + 9¢ + 104 = 33

(b)  Find the inverse of the following matrix using Choleski's method:

1 2
y B
A= % 0
1 -2
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(c) Using d np method for sy ic , find the inverse of the
following matrix:
1o iRl
2 3
e o5 L
2 3 4
p
3 - S
(d) Find the Choleski’s decomposition of matrix:
2 -1 :0 0
A=| -1 2 -1 0
0 -1 2 -1
0 0 -1 2

Find also the inverse of the matrix.

| method:

8. Find the following systems of eqt using
a) L TR T = 1
-% + 2% - % = 0
-%x, 4+ 2% - x; = 0
=Xy 2%y = 1
B e &9
SRR DRy e Ry &2
SRy hgn kg m Ry, ®ya 3
-Xy + 2x, = 4
©) 2%, - X s
-x 4+ 2% = % = '1
-x; 4+ 2% - x, = |
‘- %0+ A, - % o= 1
=%, + 2% - X¢ = 1
-Xg o+ 2Xg | |
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£4 1 X -27)
Yy N x5 =15
e Tl g x4 i
R s | X =15
d T A Xy -15
e %4 -15
1 il X, -15
b BRT G | %4 g
T gy b i
1 -41 2 -15)
e) Let A be the 50 x 50 tridiagonal matrix:
L |
-1 5 -l
P e |
i e DRt
. -1 5

9.

)

b

Consider the problem Ax =b for 50 different vectors b of the form:
[1,2,-,49,50]", [2,3,--,50,1]", [3,4,-,50,1,2]", ...

Solve this problem using the computer.
Solve the following systems of equations using Jacobi's method:

10x + y + z = 24

-% + 20y + z = 21

-X = 2y + 100z = 300
Take starting values as (0, 0, 0).

8x, - 3x; + 2x;, = 20

v E i T PR T

6x, + 3Ix, + 12x;, = 36

Take the initial guess as (0, 0, 0).
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<) 5 x;
-2x,

- X

+
+

X3+
8x, -
X, +

Tadke x, = x, = X, =0.

a9 10x,
Xy
2x,

o
o5
*

&yt
10x, -
22x, "+

8x,
2x;
10x,

= 10
11

= 16
22
= 5l

e) Consider the following systems of equations:

i) 5x,
4x,

i) oo

X
7x,

iii) X
2x
20x

o

+

3x, =
2x, =

X, -
Sx, -

i &l

2y +
8y +
y. +

10z
z
2z

=089
= -4
= 4

Can Jacobi's method be used to solve them? Why?

f) 10x, - Xp ko 2%y = 6
L3 SYRIE N 6 6 SR Xy + 3x, = 25
2x, - x, + 10x; - x, = -1l
3x, - 4x; + 8x, = 15

Take X, = X, = Xy = x, =0,
8) 10x, + Xy = 2% = 6
X o+ 10x, - Xy + 3x, = 25
-2x, = Ry 4 Bxy = ox, m =1l
3x; - Xy + Sx, = =1l

Take X, = X, = x, = x, =0,

10.  Solve the following systems of eq using G

initial guess as: (0,0, 0,0, 0, 0)

Seidel's method taking the
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a) 11.84x, + 9.15x, + 215x; = 6.88
426x, + 1536x, - 289x; = -861
630x,” - 58x, + 385x, = 1295
b) b o ety > CRTE X3 0
2 1
2%, X e K 1
1 3 2 3 3
6x, - 2x, + 2x4 =2
<) 16x, + 2x, - 4x; + X, = 15
Xpo o 10Xy - A5Ky 3. = 1
3%+ x, + 15x; + 2x, = -40
P R SR ) St | L S T N e |
d) x, + 10x, + X; 10
2%, 4020+ Xy 10
3x, + 10x; + 3x¢ 0
1050 S SR 5
2x, + 2x5 + 20x, 3
Xy + 10x, + X 5
e) -16x;, + 2x, * X =30
12x, + Xy = %y 9 <
T
2x, + 1%y + 2x; 16
X, + x, - 15x; -
11 Using an iterative method solve the following nonlii systems of eq
S %
200
a) —t—+= gy
p A e
L +£ +L = -18
XA
4
i+ 2 e = 28
XiOyie
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$22 178 213
=4S -— = 3074
X
3.8 11 491
ZE s = 3460
X y z
4. 5 .4
AT 0B 6
X y z
x——y’+iz: =.0.1
10 100
1
y+1x2-——xz=05
10 10
4 1
+—y+—xy=12
10 10
Sgsic kA Ry Xy = 89
x{ - 6%, + .2x3 Maui=s 7.3
% = Xy 4 4xy i =+1729
2 e v 1x, = 347
L T R NS 11
R e 18
x? 4+ y + 4z 15
Assume all initial values to be 1.
12.(a) Solve the following system of equations,
a) 0%, xax, o F X3 = =17
X, = 2% = 6% = 14
- I AN < = 4

using Jacobi’s and Gauss-Seidel methods. Which one is faster?

Use x;= x,= x,=0.
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(b) Solve the following systems of equations using Jacobi's and Seidel methods.

Lot x{?=xP = x0 =0

i)

iii)

iv)

v)

vi)

9x,
- x
2x,

25x,
2x,

2

10x,
Xy

X

8x,
4x,
6x,

14x,
2x,
3%,

- 2x,
X
X3

;7%

X2
10x,
2x,

2x,
10x,
2x;

|
10x,
X3

3x;
1x,
3x,

3x,
5x,

2x,
2x,
11x,

X3
Xs

4x,

X3
X3
10x,

2x,4
Xy
12x,

Xy
13x,
Txy

X3 =
X, =

X, =

©c ©o o
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13. Use the np progt to solve the g system of
iterative method:

X; 10x, '+ x; = 10
2%+ 20Xy = X 10
3x, + '30x; ‘+ xg. = 0
10x, + X i Rg/ w8
2x, - 2x5 + 20x, 5

X3 + 10x, - Xs = 0

Take xP = 2P = x'=

x@=xP=xP = 0.

by an
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Chapter 9

Eigenvalues and Eigenvectors

9.1 INTRODUCTION

In this chapter, we study some basics of computiné eigenvalues and
ige . They play a promi role in the study of differential equations and in
many applications in ing and physical sci

Let A be a square matrix, [a;],,, . We sh2!" ‘nvestigate the problem of finding, .

A, and non-trivial vector X,,, (A vector is non-trivial if its all components are not equal
. to zero), such that,

| Ax= Ax 0
} or (Ax- Ax)=0
| or (A-ADx=0 (1))
i It is known that a solution x (# 0) exists provided
j, det (A- 1) =0 ... (iii)
| More explicitly, B
2,
2
Ry =0 e (iV)
a, -\

If we are to expand the above determinant, we obtain an nth degree polynbmial
inA: i

det (A= AD=(-1)" A" +a, A" +a, A" 442, h+a,




-
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The above polynomial called the characteristic polynominl 'of A. Each value of A which
satisfies (iv), yields a system of h of equation (ii). Thus the
problem, of finding the values of A for which (ii) possesses non-trivial solutions is the
same as finding the roots of the characteristic polynomial:

(1" A" +a, A" +a, A" 448, A+a, =0 ()
Here, (v) is called the ch ic equation (also i called the
secular equation) whose roots are A, A,, ..., A, and are called the eigenvalues (or
latent roots) of A and x is called the eigenvector (or latent vector) of A corresponding
to A . These roots can be distinct (i.e., A, # A, # ... # A, ), or complex or repeated. In
the case of multiple roots, say a p-fold root A ;» the problem is more involved.

9.2 METHODS TO SOLVE EIGENVALUE PROBLEMS

3 The eigenvalue problem reduces to the problem of finding the roots of the
characteristic equation, det (A — A I) = 0. This can be done directly by expanding the
determinant in power of A if A is of order 3 X 3 or less. As the size of the given matrix
grows; this method rapidly becomes inefficient and time-consuming. However, for
particular cases, for instance, for sparse matrices, it may still be quite useful.

If the given matrix is a real symmetric matrix, all its roots are real and Newton’s
method may be used to find the roots of the characteristic equation (See Secticn 255). If
the given matrix is real but not symmetric, there may be complex roots of the
chnmtenstncequatlon lfl=a+|bls-root,thenl—a—|h is also a root of the

and p g to these two complex roots is the n-al quadratic

factor A2—2a}+a’+b? =0, Itis y therefore to first seek quadratic factor, if
the given matrix is real and non-symmetric.

To solve eigenvall bl d inati of ei | and the

wrnspondlng elgenvectors) Ims grown into an extensive speclll area of numerical
d for this purpose are numerous and it is not possible to
describe them one by one or even summarize them comprehensively in this book. To
keep our study to a reasonable length, we restrict our attention to the following three
methods:

e General method

* Leverrier-Faddeev method

e Power method

Let us describe the above methods one buy one.

9.2.1 General Method
Thisisa ﬁﬁple method and we illustrate it by the following two examgles:



Eigenvalues and Eigenvectors

matrix:

det (A -AT)=det

Expanding the determinant:

i
det(A-AD=@2-1)

=Q2-DRA+A*+2]40+[~2-2-2]

|
[ =2 4A+202 442032V -2 —4-2

P LS ¢

-A+A=0
or AP-A=0
o MA’-1)=0

A, =0,%,=1and A,

So the eigenvalues are

Example 1 Find the eigenvalues and the cor

Solution  Characteristic Polynomial

325
ding eig s of the following
2 1 -1
0 -2 -2
1 1 0
2
2-2 1 =1
0 Y -2
1 1 ‘)‘J
egidcn R | 1 -1
-0 +1
i g G N )

Roots of the Characteristic Equation

=-1

0,1,-1.

The set of all eigenvalues of matrix A, usually denoted by the symbol o(A), is

called the spectrum of A.
: The ej

18

ponding to the above

may now be
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X
@)~ When A, =0, eigenvector, x¥ = |y

z
20 el
~(A-AD=|0 =2 -2
e R )
J2. .1 -1]1|* 0
(A-Alx=|0 -2 -2||y|=|0
b B Z 0
Solving:
2% e 0
- 2y =22 ;™ 0
. sy Y o y = 0

Thus, from the last two equations, we get
t Sbs Ao
X
x® =[-x
% 4
Since eigenvalues are of arbitrary length, we are free to choose one component. So, we
may choose any non-zero value of x.
Let us use x = 1 and we get
1
When A, =0, x®=|-1|=[i -1 1]"
1

x
(i)  When A, =1, eigenvector, x® =y
z

N
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4 1 e e |
S~ (A-AI)=]0 -3 -2
: IR V!
R s 0
A-Ax=[0 -3 -2||y|=]o0
el B 1 0
Solving:
X + y - Z =0
- 3y -2z =50
X + y - zh w0
These equations yield:
| ik
\ ¥ 3
X=-y+2z
2
=+=z+z2= =2
3
iy
=z
K
§ hvdt =|-=z
2 a
z 8
Letting z = 1, we get
2.
3 Ay
2 S =2
= m= —— | - —
When A, =0, x 3 [3 3 ]
1
x

(iif)

z
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<A

=k

f(A=AD)=l0 -1 -2

g

83

(A-AIXx=|0 -1 -2

y=-2z
X=-y-12
=+2z2-z=12
S
xP =1-2z
z

Letting z = 1, we get

When &, =-1, x® =|-2|=[t -2 1J°

Answers:

-
1
»N
N
nmonon

1

1

1

=0

1

When A, =0, x® =1 -1 1]7

When A, =0, x® =[§

When A,=-1, x® =1
Example 2 Find the eigenval

=2

3
-3
and

x]’
1"

their

following matrix:

200
A=|2 2 1
13
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Ch . Polv sy

5, T
det(A-AI)=det|| 2 2-1 1
R S

=(2")‘)[2;l 211]_0[? 21;.]+°[? le]
=@-M)[2-A} -1]1-0+0
=Q-N[4+A =41 -1]

=@2-A)[A-4r+3]

= A +6A7- 111 +6

Characteristic Polynomial

| A’ —6AT+11A-6 =0

Factorizing to get eigenvalues:
| A-HA-2)(A-3)=0
| . A=1,2,3
i x
‘ 0] When A, = 1, eigenvector, X = [y
\
7 z
| 1 0 o][x} [o
21 1f|ly]|=]|o0
i B 0
Solving: 7
L

2x+y+z = 0
x+y+z = 0

Thus, x =0, z= -y

b3 0
xO=lyl=]y
z o

Letting y =1, we get



x® =] 1
i

When A, =1, x® =0 1 -1]°

x
(i) Whend,=2; x®=|y
z
D 0 0f|Xx 0
20 1|{y]=|o
LN O b 0
2x+z = 0
x+y = 0
X=-y; Ory =-Xx
z=-2x
x
x® =] —x |; let x=1
-2x b,
1
=|-1
~2

When A,=2, x®=[ -1 -2]"
X
(i)  When A, =3; x®,=|y
z
-1 0 .0][x] [o
2 =1 rliyl=}o
1 1 -1flz] |[o

Numerical Analysis with C ++
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-x ‘= .0
2x —-y+z = 0
x+y+z = 0
x=0
z=y
0
x® =ly|; put y=1
¥
0
=14
1

When A, =3,x®=[0 1 1]

Answers:
When A, =1, x®=[0o 1 -1]”
When %,=2, x®=[0 -1 -2]"

When A, =3,x®?=[0 1 1] /

Some Remarks
Itisi to ber that following points in using this method:

a) Eigenvalues and eigenvectors can be real as well as complex valued.

b) The di ion of the ei ing to an eig is less than

or equal to the multiplicity of that eigenvalue.

¢) The method used above is suitable for 2 x 2 and 3 x 3 matrices. Eigenvalues
i of larger ices are often puted using some other

and eig
techniques described in the later sections.
d) However, this method is not suitable for computer.

922 Leverrier-Faddeev Method

The Leverrier-Faddeev method is used to find all eigenvalues and the
corresponding eigenvectors. It is a more efficient method as compared to previously

discussed and it can be easily computerized.
It uses the trace and proceeds as follows:
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n
Let A, = A (where A is the given matrix). Also, P, = trace (A) = Za,ﬁ

=l
Let A; =A(A,-PI); P, =%trace(A,)

Let A, =A(A,-P,1); P, =§ trace (A, )

);
Let A, =A(A,~Pl) P=— trace (A, )
The numbers P,, P,, ..., P, are required coefficients in the characteristic
equation. Then, A" =P, A" =P, A" 7 ... P, =0.
Solveitfor A,, Ay, Ay, ces Ay

Check:  From the last step, A, —P,1=0

Before  solving a numerical p we will introd the following
terminology: -
e Trace and determinant of a matrix

o Inverse of a matrix
e Spectral radius
(a) Trace and Determinant of a Matrix

The sum of diagonal elements of a square matrix is called the trace of the matrix
and equals the sum of its eigenvalues.

‘LetA= [a;;],, be an nth order non-singular square matrix, then the trace of Ais

tr(A) = Z“ﬁ ; sum of the diagonal elements.
iwl

Also tr(A) -2%, ;sumof A’s.
=)

Determinant of the matrix A:
det (A) =y, Ags Rgsiis &y
= i];]] %

It means that the product of the eigenvalues of a square matrix is equal to
the determinant of that matrix.
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(b) Inverse
This method can also be used for finding the inverse of A which is given by:

AT = ‘Pl—[An-l =P, I]

(c) Spectral Radius

The spectral radius of a square matrix A is the largest absolute eigenvalue. It is
denoted by 8(A).

3(A) =max |A;|; 1<i<n.
Example 3 (2) Determine the eigenvalues for the following matrix:
328

A= 02
23

2
4

(b) Find also the inverse, trace, determinant and spectral radius of A.
. Solution

3
() Let A =(2
4

A, =A(A,-R]
| 324|324 100
| =|2 02| [|202][-6f010
423 423 001
324][-3 2 4 112 4
=|2 022 -6 3|=|2 8 2
4 23| 4 2 -af |4 20
P=1u(A)
22 2

=%[1|+s+11] =%<x30 oy
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e i S o —
| S *
. o —~ o
| i = —
& ; -~ o o
S R T w
o T
™~ o o
272 " —_—
1 =+ e
o oo —_— x =
i o © o - = &
e e o -y A& NN
SR I o =0 1 ] 1
a L = o ER T
mNam Tam oow ~ 4+ R i 53 | ol 3
0 PR - =< By ,
L. o anoa owo % ° = i e -
< S T I o e e ~[a* T=Tw
E mae maw woo & & ; 3
=5 i a = By S o ® ) W ] =
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i ) cowo F = 2~
& 4 I ° lll_, o
ar < @oo 1 + + 2
a2 Sl S 04
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Ei and Eig

B -

-

Trace of A :

tr(A) = Z":xi

= _1-1+48=6
Determinant of A :
det (A) = é"i
= -1x-1x8=8
Spectral radius of A :
8(2)=8

1t is the simplest iterative procedure for determining the largest (or principal)

\
|
|
‘ 923 Power Method
\
‘: eigenvalue and the corresponding eigenvector of a matrix, It is easy to apply and is

~ probably the most widely used method. The eigenvalue having the greatest absolute value

" is called the dominant eigenvalue. This method is used because in many applications
only the dominant eigenvalue of a matrix Is needed. Power method fails if there is no
dominant eigenvalue.

Assume elgenvalues of an n X n matrix are arranged to be
M2 [Ag1 2 [y 200 2[A, | 20
The process proceeds as follows:
. Let x be any non-zero vector and define a sequence of vectors,
,‘w' x(i). x(‘)' i x®
by the recursive relation:
X0 m A x®
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Thenas r— s, x?— (multiple of) q. Itis important to know that for finding
the roots of a polynomial equation of degree 2 4 is not a simple task, it has to be carried
out using iterative methods.

Proof Express X" in terms of eigenvectors:

xP = ¢,q"+a,q?+..+0a,q® Linear independence.

Then, x? = A[0,q"+0a,q? +..4+0,q® ] (since Aq= Aq)

= 4, q”+%,0,9% +..+),a, q®
x® =A[%0¢,9" +2, 0, 9P +..+0,0, Q™)

= 0,7 q¥ +a,22q? +..+a,A2 q®

x0 = g A q® +a, A q? 4. +a Al g®
So, if r is large enough, 'X{"!)) |x;“|, and so, x? ~ a, A;” q.

In practice, we usually scale down at each iteration by dividing x© by its largest
element:

ie ye = Ax®
Thenas r— e, x?— q“ andratioof y** to x¥— 4, .

This iterative method will converge if the largest eigenvalue is real and is not a
multiple root. Convergence is most rapid when the ratio of the largest eigenvlue to the

next largest eigenvalue is large.
Computing the smallest eigenvalue of a matrix
" The eigenvalue of'smallest magnitude-of a matrix is the same as the inverse
iprocal) of the domi igenvalue of the inverse of the matrix. Since most
lications of ei lues need the ei lue of smallest magnitude, the inverse matrix

is often solved for its dominant eigenvalue, This Is why the dominant eigenvalue Is so
. important,

In order to find the smallest eigenvalue of a matrix, we apply the principle that
the reciprocals of eigenvalues of a matrix are the elgenvalues of the inverse of the matrix.
That is, If A is an eigenvalue of A, then

A1) 1
X'F
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the smallest eigenvalue of A.

Therefore, taking the inverse of A and then using the iteration we have just described will
give the largest eigenvalue of the inverse of A. The reciprocal of this value will then be

Let us now illustrate this method by the following two examples.

Example4  Given the following squaré matrix: *
5.0
0 -10
1ot
Find its d ig and its ponding. eig using power
method. Try the initial guess as: x =[l 1 l]T.
Solution
Given y©* = A x®
Letr=1, then y® = Ax®
‘ ; 6 1 5. 0170 6
| x"’=Ey"’=% -1 [=|-.167 y@=Ax"=l0 -1 of1]=] -1
. 6 1 ping ety
estvnluc
i’ : | 2 N D | sk
x"’-z y‘”-; -167 = [-.0278 | y®=AxP=|g -1 ¢ 167 = —167
6 1 fih s
— -
; ; W &bk o S 6t
‘x“’-z y“’-; =.0278 (=(~.0046 | [ y¥=Ax@=|g -1 0 .ozu = - oz1
| 6 7 108
ey -
‘ . i 6 1 4 LA i
xP=z y®ul | 0046 |=| 0008 y¥=Ax¥a=l0 -1 o .om = .om
¢ . 6 1 1 0.8
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6 1 k10 0k 1 6
x0=L yo- L 008 |=l - 0001| | y*=Ax®={0 -1 0} -.0008 = -.0008
6 1 1:4:01:+8; 1 6
1 i 6 1 8010 1 6
x"’=—6- y"’=g 0001 (=0 y?=Ax®=|0 -1 0||-.0001|=|.0001
6 1 ; S B 1 6
i i 6 1 8.0 bk 6
e Ym0 i ) y®=Ax"=[0 -1 0]|0|=| 0
6 1 10 5H1
At this stage, x® = x?
Thus, A, =6
1
q@=|0
L
True answer: A, =6; A, =4; Ay==1
Corresponding eigenvectors :
1
For A, =6, , q“=(0|,
X 1
-1
For A, w4, q®=|0|,
1
0
For Ay m =1, ¥ =1
o 0
Example §: Use power method to ine the domi igenvalue and its
jponding eige of the following matrix:
10 -1
Am|]l 2 1
2 2 3
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Usex®=f 1 1]".

Write computer program to impl power method.
Solution:  Let y® =Ax® and x® =[1 1 1]"
. 1 0 1 0 -1]1 0
x"’-;y"’-; 4(=1].57 y?=Ax" =11 2 1{|1[=]|4
1 1 I A ]
. sift 10 -1][o -1
xOu_—_y®a” [91s @ =1 2 1 [|57]|=214
218’ T y
4.14 272 add 4
-24
=| .52
1
y [F124] [-oss 1 0 -1][-24] [-1.24
x“’-m 1.80 |=| .51 y9=Ax®=|1 2 1 || .52 |=| 1.80
3.56 1 2 2:19 1 3.56
, [1e8] [ ~1.48
x“"’=m 1.52 [=| .50 y"? =| 1.52
308 1 3.04
| [F149] [-o49 ~1.49
x = i =| 0. {(D] /]
02| 5! 50 y® = 151
3.02 1 3.02
x19 = x(D /
a0 =3
-0.49

q® = 0.50
1
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=.50
True answer: A, =3; q® =| .50
1

This program has been taken from the following website:

http://www.net.pk/mtshome/app ical Anal

Compnu'r Program Power Method

#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <string.h>

void read_n(int&,ifstream&);

void read_array(double**, int, ifstream&);
void write_array(double**, int);

void deallocate_arrary(double**,int);

void mult(double**, double*, double*,int);
double fun(double*,int);

double vectornorm(double*,int);

void main( )

{
int n,i,k,M;
double** array;
double* x;
double* y;
double r,vn,tol,rold;

M=1000;

tol=0.0;

ifstream arrayin;
arrayin.open(“array.dat”);
read_n(n,arrayin);
x=new double[n];

y=new double[n];

~2[0]=-1.0;
x[1]=1.0;



Eigenvalues and Eigenvectors

x[2)=1.0;

for(i=0;i<n;i++)
yli}=0.0;

/lallocate array

array=new double*[n];

for (i=0;i<n;i++)

{

}

array[i] = new double[n];

read_ my(n&ay, n, arrayin);
arrayin.close( );

/larray now read into file
cout<<"Original Matrix:"<<endl;
write_array(array,n);

'. while(k<M && fabs(rold-r)>tol)
‘ {
cout<<“k= “<<k<<” x="<<x[0]<<” “<<x[1]<<” “<<x[2]<<"r="
<<r<<endl;
mult(array,x,y,n);
rold=r;
r=fun(y,n)/fun(x,n);
vn=vectornorm(y,n); 2
for(i=0i<n;i++)x[i)=y{i]/vn;
kt+; }
) s
cout<<k= “<<k<<” x="<<x[0]<<” “<x[1]<<” “<<x[2]<<"r="
<<r<<endl; &
deallocate_array(array,n);
delete x,y;
cout<<"Press ENTER to end”<<endl;
cin.get( );
return 0;
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void read_n(int &n, ifstream & arrayin)

{
char temp;
Ilread in number of rows
n=int(arrayin.get( ) )-int(‘0");
temp=arrayin.get(); //get next character

while(temp != * * &&temp !=‘\n’)

n=n*10+int(temp)-int(‘0");
temp=arrayin.get();

).

void read_array(double** array, int n, ifstream &arrayin)
{

double tempd,div;

bool divflag;

char temp;

int ij;

IIread in array from file

for(i=0;i<n;i++)

for(j=03j<n;j++)
{

div=1;
divflag=false;
tempd=0.0;
if(larrayin.eof( ) ) temp=arrayin.get( ); //get next character
while(temp != ¢ * && temp != ‘\n’ && tarrayin.eof( ) )
{
if (temp=="-")
{
div*=-1;
temp=arrayin.get();
if (tem==*.")
{
temp=arrayin.get( );
divflag=true; -

else
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! if (divflag==true)
 div=div¥10.0;
(med:(empd'10+im(lemp)-im(‘0');
if(larrayin.eof() )

: temp=arrayin.get( );

}

}
array[i](j]=tempd/div;

}
while(!arrayin.eof( ) && temp != “\n’)
{
temp=arrayin.get( );
}
}

/array[i](j] is now the ith row jth column element of the array retrun;
)

void deallocate_array(double** array, int n)
// deallocate array
int i;
for (i=0;i<n;i++)

deleat[ ] array[i];

}
deleat[ ] array;
}

void write_array(double** array,int n)

int ij;
for(i=0;i<n;i++)
for(=0g<ng+)

cout<<array([i][jl<<

cout<<endl;
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return;
}

void mult(double** A,double* x,double* y,int n)

for (int i=0;i<n;i++)

{
yli}=0;
for (int j=0;j<n;j++)
{
ylil=ylil+Al[1*x(];
: &
return;

)

. double fun(double* x,int n)
{

lleout<<x[0]<< “ “<<[1]<<” "<<x[2]<<endl;
return x[1];

}

double vectornorm(double* x,int n)

{ %
double answer=x[0];
for(int i=1;i<n;i++)

if(abs(x[i])>=abs(answer))
{

answer=x[i];
)
}

return answer;

93  MATRIX DEFLATION
There are different methods for finding subsequent eigenvalues of a matriz, we
will discuss only one of these, i.. the deflation method which is a straightforward
approach.
: Suppose we have applied the power method to a matrix A and have obtained its
largest eigenvalue A, and ponding eig q®. We now require to find the
eigenvalue X, to do so, A, must be removed by a process called deflation. Deflition
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may be defined as the process of finding a matrix A, of order (n - 1), whose eigenvalues
are identical with those of A, except A,.

This process can thus be inued until all the eigenvalues of A have been
computed.
Theorem Let q be an eig: of A ponding to an eigenvalue A and let v
be an eig of AT ponding eig pwhenuaek,prévethnthq=0.

Proof We know that
A q='\q - multiplying both sides by v" .
Hence, vIAq =1 v'q k)
Also, ATv= W v; Transpose
(ATV)T =(uv)
viA=pvT ... Multiplying both sides by q
viAq=puv'q ‘ ... (i)
Comparing (i) and (ii), we get
Avig=pviq
Since A #p, (A-p) vTq=0

Although we have used deflation to find subseq ig g
pairs, there is a point where rounding error reduces the accuracy below acceptable limits.
To avoid this difficulty, other methods, like Jacobi’s method, are preferred when we need
to many or all eigenvalues of a given matrix.

\
|
‘l o viig=0
Y
>
|

9.3.1 Hotelling’s Deflation
Hotelling’s deflation is based on the result that the matrix,

A=A O v

(where v is the eig of AT ponding to eig ;) has
eigenvalues: 0, 4,, A, ..., A, provided q, v are scaled
eigenvectors:  q@, q@, q©, ..., q@ sothat v . g =1
Proof

Let q© be the eig ponding to an eigenvalue 4.
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Then, postmultiplying by q®
A, q° =Aq®-%,q" - q° ot
=Aq® -2,q@ - Yor q®
Two cases will be discussed.

(a) When i=1:
A qV=Aq® -1, q® =0

(Since yO© q® =1and Aq® =1,q")

Thus, ¥ is an eig of A, corresponding to eigenvalue 0.

(b) When i#1,sothat A; #X,.
Then AI q(i) P l’i qm =0

(since by theorem v(‘)T qm =0)

Thus, q° is an eig of A, corresponding to eigenvalue A;.
Steps to deflate a matrix

In summary, the process of matrix deflation in any of its forms consists of the
following steps:
«(i) Find A,, the dominant eigenvalue of A by the power method and X, the

corresponding eigenvector.

(i) Deflate the matrix A to get a new matrix with dominant eigenvalue I

(iii)  Find this domi igenvalue and the ponding eigen . Then find
the corresponding eigenvector of A.

(iv)  Repeat steps (ii) & (iii), using the last deflated matrix at each step, unil as
\ many eigenvalues and eigenvectors of A are to be found.
Example 6  Apply Hotelling’s deflation method to deflate the matrix:
1:0 =1
A=|1 2 1
223

Given the dominant eigenvalue A, =3.
Solution  To apply Hotelling’s Deflation, we require v, eigenvector of (%2
1 .2
AT=|0 2 2
sl dei 3



Eigenvalues and Eigenvectors 1 347

Hence, AT v! = v®; (AT-AI)Vv® =0,

ATVRL AN 20

: B 4 10,0
0 2 -21=3al0- 30 v® =0
-1 13 001
[ x
Let v\ =
-2x + Y4 2% =00 e kt)
S0y G i ... (i)
S N = 0 .. (i)
From (jii), y=x f
1 1
From (ii), z = =y = —X
(i), z 2}’ 2
X 1
v - lx =x|1
R e Y
2 2
Bk
T 1 2
VT g® w det x[l 1 E] é, =l
1

-dﬂex)-l

A %l-l;x-'ﬁ
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So, we take v = x

WO v

=L 2 1"

D=

Thus, A, =A-1,q® v®"

al=2: 43, =1 Defisted mitix
B

We apply the power method on A, to find the other eigenvalues Ay, le.,
AymA -hq®vOT,
932 Hotelling’s Deflation for Symmetric Matrices

If A Is symmetric, A= A and v = q, Thus provided q* s scaled so that
q" q = 1, the matrix glven by Hotelling's deflation s

A =A-}q"%q"
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Example 7 Deflate A when the largest eigenvalue is A =1,

2 -4 2
As|-4 2 -2
2 =2 =1

Solution  Leteigenvector ¢ =[x y 2]T

(AT-A1) q® =0

2 -4 2 1.0 0 X

-4 2 -2|-7l01 0 y|=0

2 -2 -1 001 z
i b QUSRI (TR S e | (@
—Ax — Sy RonliLig ... (i)
X = 2y - 8z = 0 wo (i)

Add (i) and (ii) :
-9x-9y =0; y= ~x

Substitute in (iii) :
4x-8z =0 1
X =2z
X 2z 2
qV =|y|=|-2z]|=2z]|-2
z z 1

Q" q¥ = 2?@+d41) =1

1
92’ w1, z-;

1 2
qVmz(-2|==(-2
1 1
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So, A, =A-1,q® q"’.r

2
g2 32 2 241
=|-4 b2 S ~2 =
2 -afr)- 3 -2 ]
2 -2 -1 1
i ,
i cd: 2
2 —4i 2 9 49 9
4 2
=|-4 ) R 75 i SRR
2 -2|-7 e 5
%22l 2 - |
9 949
10 84
9 9
o [ e Vs
9 9 9
AR )
9 9 9
IfAis ic, Hotelling’s deflation gives a ic matrix.

94  PROPERTIES OF EIGENVALUES AND EIGENVECTORS

It might be a good idea to highlight briefly some important propertics of
eigenvalues and eigenvectors.

‘We mention here the following:

o The absolute value of a determinant (|detAl) is the product of the absclute values
of the eigenvalues of matrix A.

o Am0lsaneigenvalue of A if A is a singular (noninvertible) matrix,

o IfAlsa nxn trlangular matrix (upper triangular or lower {angular) or diigonal
matrix, the elgenvalues of A are the diagonal entries of A,

«  The matrix A and its transpose have same eigenval

o Bigenvalues of a sy ric matrix are orthogonal, but osly for dstinct
elgenvalues.

o The domi or principal elg of a matrix is an tigenvector

ponding to the elgenvalue of largest mag itude (for real numters, largest

sbsolute value) of that matrix.

o Fora transition matrix, the dominant elgenvalue is always 1.
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© The smallest eigenvalue of a matrix A is the same as the inverse (reciprocal) of
~ the largest eigenvalue of A™, i.e. of inverse of A.
~ o If we know an ig its 8 can be
is also possible; i.e., given an eig  its
calculated.
Example 8 Consider the following upper triangular matrix:

12343

np Theremsepmcess
ponding eigs can be

R R I

;s 4
0 4
004
0 0

Find its eigenvalues and spectral radius:
Solution

aet (A) = det

oo o o -
oo ownwN
©O 0O WwWWww
[SIE N S NN
[T IR

=A-DA-2)A-3)A-4HA-5=0
Eigenvalues are: A, =1; A, =2; Ay, =3; A, =4; Ay=5.
Spectral radius, 8(A) = 5.

95  GERSHGORIN’S THEOREM

Inu)epmvxmsecum:.wehavesmdledmm hods to i
and their ponding eig Now.westudyGendlgoth’s'l‘heorem

Statement

All the eigenvalues A’s of the matrix A lie within the union of the circular disc
specified by the following inequalities:

Ik')'nISZI'HI
i

whereeachk=1,2,...,n.
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Let A be any eigenvalue of A, with corresponding eigenvector:
T
x= [x,,xz,x,,...,x_]
then we can write Ax=2Ax
n
or Zah-xl = Ax, i)
i g

for k=1,2,...,n.
or equivalently,

Zaijj =(A-a,)x, L2
= ¢
Jok
Since x is an eigenvector, it is . Suppose its kth p is the largest
in absolute value: .
| %, | = max {1x1[} o |

Let us divide both sides of (2) by X, , (x, #0):

ok
Yay—t=i-a, ) (b
B

ek

1f we now take the absolute value of both sides of (4), we get
" gl |
[A-ay|=|> ay—> ~o(5)
I
ek

Bymangl&mequdxty(|xy]s|x| |y 1), the RH.S. of (5) satisfies the
inequality:

Zah if sZIa,ul || ‘Il + 405

I X
M from (3), it is app that
k ’ISI j=1,2, .0

x|
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z":a,“:—’ szn:lahl-ls z‘,:aki R v j
el K =t il
ek Juk Juk

Comparing (5) and (7), we get

A=y | =3 ay 0
i1

=k

| A-ay | is called disc, and

I ay | is radius.

Let us apply the above theorem to obtain as much information as possible about
l the eigenvalues of matrices.
‘ Examination of Equation (8)
|

For each k, the set of A which satisfies (8) is a disc with center at a,, and radius
1, , where

| B i 'a,dl e (9)
=

- The term disc means a circle and its interior. Here the disc is in the complex plane (set of
! all complex numbers). The disc here means the Gerschgorin’s disc. Thus, if we denote

- each of these ndisc by D, :

% D, = f:|A-ay|<n )i k=1,2,.0n  ...(10)
l

- then each (and therefore every) eigenvalue of A must lie in the union S of these discs:

s=UD, Hae(11)
k=1 §
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Look at the following figure:

~  Overlapping discs represent complex eigenvalues
~  Isolated discs represent exactly different real eigenvalues.

Example9  Given the following matrix:

=20 =1
A={0. 2 1
| G |

(a) Compute the eigenvalues of A.
(b) Use the Gerschgorin’s theorem to obtain bounds on the magnitude of
eigenvalues of the above matrix. .

Solution
(a) The eigenvalues are computed and are as follows:
A =2
A,=—;~(—3+J§)
)
(b) Bounds
The Gerschgorin’s discs are:
D, = {A:|a+2|s1} A+2=13A=-1
D, = f:|a-2|sth A-2=12=3
D, = {A:|a+1]|s1}; A+1=1:2=0.
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It is clear that A lies between— 1 and 3, i.e.— 1 SA<3.

Figure:

Dl
T ./T\, (a)
)'I

From the diagram it is clear that the dlSC I A+2]|<1 isisolated from the other
contained in that disc. M , since p g occur in pairs, we can assert
that lone eigenvalue is real.

Example 10  Given the matrix:

108,52
A=|2 -3 -1

\ 0 agic
: Using the Gerschgorin’s theorem, find the range in which the eigenvalues lie.
Solution Finding discs
. Row-wise:
D, =|A-1|<|6]+|2] =8
D, =|A+3|<|2|+|-1| =3
D, =|A-1|<|4|=4
A=1+8 =9
A=3-3 =0
A=4+1 =5
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Figure

D, =|A+1]|=3

Centre
A=+1; A= =3; Ay=1
We can deduce that 0 <A <9
Eigenvalues of the transpose of a matrix A are the same as those of A.

PROBLEMS

1.(a) (i) Whatare eigenvalues and eigenvectors of a matrix?
(ii) What is the characteristic polynomial of a matrix?
(iii) What is the spectrum of a matrix?
(iv) How can we determine if a matrix is singular by looking at its

eigenvalues?
(v) Whatis an eigenvalue’s multiplicity?
(vi) How can we the eigenvalues of a tri lar matrix?
(vii) What are the eigenvalues and eig of the i ofa
matrix?

(viii) What can we say about the eigenvalues of a symmetric matrix?

(ix) What does Gerschgorin’s theorem tell us about the eigenvlaues of
a matrix?
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(b) Name the various methods you have studied for computing eigenvalues
and eigenvectors.

(c)  Suppose that we have given two matrices, A and B. Their set of
eigenvalues are:

B Aaa gLy
i) B:021,-1

Identify the dominant eigenvlaue of each.

2. Compute the eigenvalues and eigenvectors of each of the following matrices
using the general method:
el el figho 9
(@) £l ®) 2900
-12 -2 8| ° _2 0 4
[8i =10 fisigs ag
© deoat e d) R
lo -1 3 L1 -4 10
228 [0 2 -10
(e) S Sy ) =3 L -3
i 208 L1 -5 1
[-2 6 24 faoio20 . 4
® 0 (=3 10 (h) -20 4 -10
T [-30 6 -13
& o 1O e et
(i) 610 [0) 45 i %8
-1 -2 -1 -4 -4 -1
2% [-17 .18 =6
() 29" 2 ) -18 19 -6
T e 99 =2
0 0 -1 [2.3 4
(m) )4, 88 e - (n) |
00 1 0 0 -2
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s Raio A g
71 e g
QUG & e ® G
| e
=100 5
9 -12 -2 6 -4
@ “2 8 4 @ 0 -3 10
| At bl ) GG e

3.(a) Explain Leverrier-Faddeev method to find the eigenvalue and eigenvector.
Mention one disadvantage of this method under which it fails.

(b) Given the following matrices, compute their eigenvalues, eigy and
inverses:
k8- 12 [12 6 -6
(i) g, TR | (i) 6 122
L1 -2 -1 -6 2 16
o g Al [1 2 -8
(i) [-4 8 1 (@iv) L2 2 =D
-1 -2 0 L1 -4 10
[0 2 -10 e e
) =31 -3 (vi) 3 -1 3
Fit=s 1 13
4.(a) Describe power method to the largest eigenvalue and its di
eigenvector.
® C Sy igenvalues and ponding eig f 2sch of
the following matrices (Use your initial vectors if not given):
7 6 -3 { e )
[6)) -12 a9 24 (ii) 120 1
-6 -12 16 T
1.5 .0 1
(i) -05 05 -0.5
-05 0 0

Use x®=fi 1 1]"
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Jifithione 3 &g 0l
@ (o013 ) TRARE R
i T g e
[10 =2 4 L B
i) |[-20 4 -10 i) |-4 10 1
-30 6 -13 -1 -2 2
Use x®=[1 1 1"
[6 4 -2 -2 2 -1
(viii) |4 12 -4 (ix) 755850y
-2 -4 13 L4 -4.-2
[5 -2 -4 3926
) e Wl Gl | (xi) -1 121
-4 2 5 ) 42
1 -3 2 -10 0
(i) [4 4 -1 (xiii)) |2 1 -2
|62 5 0.0 s
Use xP=[t 1 1]" Use x=[0 0 1]”
5.(a) Whatis the purpose of deflation?
(b) The following matrix:
o 2 -8
-2 1 -2
it 9
hul-—!nm igenval md{u ponding eigen!
=l Ls S}F u»manmmmwwummfm
muluundelpvectm
(© Gventhebllowmxmmx.
8w 4
-3 6 2
3 -3 1

() Use the power methed to calculate the largest cigenvalue of the matrix.
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(ii)  Use the deflation method to calculate the second largest eigenvalie of this

matrix.
(d) Given the matrix:
251 2
} i o )
2 0 -4
Starting from the initial guess:

x® =t o o
and its corresponding eig

@
using power

Find the largest eig
method.
(ii) Repeat the method with
=i "
(iii) Deflate the matrix A.
Given the matrix:
32 2
-1 1 4
s e THES. |
Starting with the initial guess:

U (BT |
and its corresponding eig

(O]

(0]
usingpowsr

find the largest eig
method.
(i) Use the method of defl. to p
(f) Consider the matrix:
S8 il
-4 71

-1 -2 -1
Use the power method to calculate the largest eigenvalue. Take theinitial

other eig

0]

vector, x? = [l 1 I]T.
(ii)  Use the method of deflation to find the ining eigel
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6. Find the spectral radii of the following matrices:

e
[0} R e
A
T A
D) i pedt ot
; - i |

0
@) [0 2 o
o

* o aRicd
g T3
! S R
iv _—— = ==
@) 3 576
R
| 3 6
R
W) A= 10
i g ey

324
(vi) A=[2 0 2
2.3

T Given the following matrix:

[-2 6 -24] :
A=|0 -3 10
|1 -4 13|

Using Gerchgorin’s theorem, find the range of eigenvalues.

8. Find the eigenvalues and spectral radii of the following triangular matrices:

r

4 -7 2]
. 0 e 6
O lee ails
[0 %00 1
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5
-
2
£
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|

Sr =26

5

1.2 3 4
02345
LB e G
00023
00001

(i)

(iii)
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Index

A

Absolute error, 6, 7

Acceleration of convergence, 230
Accumulated error, 4

Accuracy, 7

Adams-Bashforth method, 189
Adams-Moulton method, 194
Adjoint matrix, 270

Aitken’s delta process, 230

Aitken’s method for interpolation, 73
Algebraic equations, 217

Analytical methods, 167

Analytical solution, 120, 167
Automatic subdivision of intervals, 149

Backward substitution, 272
Backward difference operator, 40
Bairstow’s method, 218

Bessel’s interpolation formula, 64
Birga-Vieta, 256

Binary search, 242

Bisection method, 218, 242
Boundary conditions, 166
Boundary value problem, 166
Boole’s rule, 132

L

Central difference formulas, 52
~ Bessel’s formula, 52, 64
— Everett’s formula, 52, 65
— Gauss forward formula, 52, 65
~ Gauss backward formula, 52, 65
~ Stirling’s formula, 52, 62
Central difference operator, 41
Characteristic equation, 324
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Characteristic polynomial, 324

Choleski’s method, 290

Chopping, 7

Complete pivoting, 280, 282

Continuing methods, 168

Convergence of the iterative scheme, 221, 225
Cramer’s rule, 268, 269

Cube root, 237

-D

Deflation, 257, 344 ¥
Derivatives, 93
Determinant, 269,332
Determination of square root, 327
Differentiation, 93
Differences, 27

Difference operations, 35
Difference pperators, 35
Difference table, 27
Differential equations, 165
Differential operators, 94
Direct methods, 268
Discretization error, 168
Divergent behaviour, 221
Dominant egenvalue, 325

E
Egenvalues, 324
324

Elimination methods, 272
Errors, 2
Error accumulation in addition, 9
Error accumulation in subtraction, 9
Error accumulation in multiplication, 10
Error accumulation in division, 12
Errors of powers and roots, 14
Error in function evaluation, 16
Error Analysis, 3
Error correction & detection, 30
Error estimation in interpolation, 80
Euler’s method, 175

- improved, 175

- modified, 175
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Everett’s interpolation formula, 65
Exact polynomial, 29
Extrapolation, 51

F

False position, 249

Finite, 28

Finite calculus, 28

Finite differences, 27

Forward difference operator, 35
Forward stage, 273

G

Gaussian elimination, 268, 272
Gaussian interpolation formulas, 65
Gaussian quadrature formulas, 126
Gauss-Seidel method, 268. 298, 305
Gerschgorin’s theorem, 351

Global error, 136, 175

Graphical methods, 167
Gregary-Newton forward formula, 52
Gregary-Newton backward formula, 57
Gross error, 3

H

Halley’s formula, 266
Heun’s method, 175
Hermite formula, 52
Higher-order derivatives, 95
Higher-order ODEs, 166

- Horner's scheme, 258

' Hotelling’s deflation, 345, 348

Indirect methods, 268
Initial value problem, 166
Instability, 180
Integration, 125
Interpolation, 51

Inverse, 333

Inverse of a matrix, 285
Iteration, 218
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Iterate, 219
Iterative methods, 75, 298
Iterative interpolation method, 73

J

Jacobi’s iterative method, 268, 298, 299
Jury problem, 166

L

Lagrange formula, 69

Laplace, 126

Latent vector, 324
Leverrier-Faddev method, 324, 331
Linear equations, 166, 217

Local truncation error, 4, 138, 175
Localization of roots, 222

LU decomposition, 284

M

MacLaurin’s series, 20

Matrix deflation, 257

Marching problem, 166

Mean operator, 43

Mechanical quadrature, 125

Milne-Simpson predigtor-corrector, 169, 186
Multiple roots, 254 * .

Multi-step methods, 168, 184

N

Nested polynomial, 171

Neville’s formula, 75

Newton’s backward difference formula, 56
Newton-Cotes formulas, 125

Newton's divided difference formula, 52
Newton's forward difference formula, 52
Newton-Raphson methad, 218, 233
Non-linear equations, 166, 217
Numerical analysis, 1

Numerical cancellation, 17

Numerical differentiation, 93

Numerical integration, 125

" erical methods, 1, 167
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Numerical recipes, 2

o

One-step methods, 184

Order of convergence, 234

Order of equations, 166

Ordinary differential equations, 165

P

Partial differential equations, 165

Partial pivoting, 280, 281

Percentage error, 6, 7

Picard’s method, 169

Pivot, 273

Pivotal strategy, 280

Polynomial, 51

Polynomial evaluation, 256

Power method, 324, 335

Precision, 6, 7

Predictor-Corrector methods, 169, 184
— Milne-Simpson method, 186
— Adams-Bashforth method, 189
— Adams-Moulton method, 194

Probable error, 8

Propagation error, 168

Positive definite matrix, 290

Q N

Quadrature, 125

R

Reciprocal of a number, 239
Regula f.lu mmhod. 218

Relati ’ 43
Relative mr. 6,7

Repeated use of trapezoidal rule, 149
Remainder term, §

Romberg integration, 152

Root, 226

Rounding errors, 3, 4, 168
Runge-Kutta methods, 177
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S

Secant method, 218, 246

Shift operator, 42

Significant digits, 6

Simpson’s 1/3"-rule, 129

Simpson’s 3/8"-rule, 131

Simple iterative procedure, 218
Single-step method, 168, 184
Simultaneous differential equations, 203
Spectral radius, 333

Spectrum, 325

Spider web convergence, 221

Sources of errors, 3

Stagnation, 250

Starting methods, 166

Staircase convergence, 221

Stirling’s interpolation formula, 62
Subtractive cancellation, 17
Successive approximation method, 170
Synthetic division, 218

b 4

Taylor series method, 5, 19, 172

Trace, 332

Transcendental functions, 217
Trapezoidal rule, 127

Triangular decomposition, 268, 284, 290
Tridiagonal matrix, 268, 293

Truncation error, 3, 5§

U

Unstable process, 93, 180
Upper triangular matrix, 275
w

Web convergence, 221
Weddle's rule, 132

z

Zeros of polynomials, 256
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Answers

Note: We have provided the answers of almost all problems. The reader in many cases
may expect to obtain results which differ slightly from the answers given here, depending
on the y required and pi i hniques or facilities employed.

Chapter 1
1.(a) AE=0.1; RE = 0.000356
(b) AE=7.7696 x 10~ ; RE = 7.4431 x 10~
() AE=0.0478x 107;RE=0.009x 107
(d AE=7.029%10";RE=0016x 10~
(e) AE=0.070006; RE = 0.03238
() AE=0.23x10"
(g) Do yourself.
2% (a) 0.1 (b) 0.028 (c) 2.0475
2. 9Sx<1L; 5.5<y<65; 25Sx-y<5.5 145Sx+y<17.5

4.(a) 9.43 <uv<13.23; 0.465 <u/v <0.655
(b) 4.464 <z <4.507; Meaningful answer is 4.5 cm.
(c) RE=048%
5.(a) AE=0.17675; RE=0.125
®) 10; 1
(c) RE=4.1%
(d) -8.804to-8.801

6. (i) 1.5453 x 10°; 1625 x 107°; (i) 0.0049; 0.0275; (iii) 1.178; 0.5 x 10;
(iv) 3.63x 107™; 1.135 x 10~
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% (a) -1.184 to -1.123; (b) —3.%6 to -3.908; Meaningful answer is —3.9 correct
to 1 dp; (c) Meaningful answer is 17.0;, (d) 0.0141 to 0.0142; Meaningful
answer for a is 0.014 correct to 3 dp
8.(a) i) 0.0582 ii) 0.0182 iii) 0.0100 iv) 0.00100 v) - 111.0999
1 1
() 1) ln(li——) ii) cos 2x iil) ————
x Vx4l +x
a3
iv) 1-cosx = LGS
1+cosx
v) tanx - sin x =tan x (1 - cos x)
= tan (2 sin? (x/2)) = 2 tan x Sin® (x/2)
. x1 x‘
9 f=1-— + —; f(1.5)=0.086
(a) : 394 (1.5)
2
®) f=x- "T; (1.2) = 0.18; 0.0027
(c) i) Numberofterm=7 ii)1.359 x
§ X g8 2t Xt
d —_— ettt
@ D x+ ot 3 T axa T axat
i R xlﬁ 7
=— i) 7t
ii) R(x) @+ @D iii) 7 terms
10.) 1-2x + 3234 09534 2.73x107
2 8 16
o 1 2041 l -6 _ -7
®) 1) 2n“x <2x10 =5x%x10 .
when x = 1, n > 500000 and when x=—;-.n=|5
11.  “double SolExp(double x)
{
double expo, term;
inti=1;

expo=term+ 1;
while (fabs(term) > = le - 6)
{
term=term*x/i;
expo=expo+term
i+

}




return expo;
i) y

12. (a) double solPi=1
unsigned i, n=100;
float sign = 1;
for (i=1; i<n; i++)
{

sign = - sign;

solPi +=sign/2*i+1);
}
solPi*=4;
double solPi = 0;
unsigned i, n=100;
for (i=1; i<n; i++)

solPi +=1.0/(4*i-3)/ (4*j-1); |

solPi*=8;
(¢) Do yourself

©

<

Chapter 2

1.(d) No, since the function is not a polynomial.
(f) It is zero and the third-order difference column is constant. Hence, the function
represents an exact polynomial of degree three.
2/(a) 5" entry is in error. Correct value, f(3) =— 96.
(b) 6" entry is in error. Correct value, f(6) = 112.
(¢) 4" entry is in error. Correct value, f(4) = 1.4108.
3.) 6™ entry is in error, Correct value, f(6) = 72.
() 6" entry is in error. Correct value, z(6) = 0.598.

4. y(1.3)=165and 2(1.3)=72

“5.(8) f=-1,6,9 7and5.
® £=0,5,7,6and5.
© f=1,1,13,73and 241.

6.(a) Ermor=-0.18, f(2)=2.35 - (-0.18) = 2.53
() 1(3.63) = 0.144518.
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(c) f£(0.5)=11.10.
7.(a@) a=1,b=5andc=3.
) 8§‘f=0.
() 0.0003
@@ Af, =16, Vf, =0, 8f, =66, 8 f, =50, A’ f, = 60, V*f, = 36, and
2
8 fy=24.
(€)' 110=A f,=Vf;=8f;
g 2
H30= N ) = VE, = 8]
2
192= A*f, = V2 £, = 8°f,
8.(a) 650  (b) 24101  (c) 20 (d) (i) (0.4) = =6.774; (i) f(0.4) = 0.671
(e) 0.678; (0.7) =5.292
10.(a) ()2n+1,2,0 (ii)3n*+9n+4;6n+126 (ii)3n*+n+17;6n+4;6
@(iv)5n(n-1)(n-2)(n-3);20n(n-1)(n-2);60n (n-1).
(@ @)6(x~1) (i) 6(x + D/(x +2)°

® 12x* -24x+14
(8 2x(x+1)

Chapter 3
1. (a)f(1.23)=1.37 (b)f(1.75)=5.9 (c)0.3049 (d)4.69 (e) 028
2 (i) f(1.45) = 4.14 (ii) f(1.05) = 2.04 (iii) 0.6101, 0.5984

3: () f(2.5)=254

(b)i) f(2.3)=1.5166 ii) f(2.05) = 1.4318 iii) f(2.65) = 1.6282
4. (i) 1.1775 (ii) 5.4803
3. (a) (i) 27.3548 (i) 27.6578  (iii) 27.6396  (iv) 27.3555, 27.3540

(b) Same answer from all formulas; 0.1048
(c) 1.782 (d) 2.199 (e) 0.1495 (f) 1.186 (g) 0.129
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6. (2) 10.5 (b) 8.4 (e) 14 (d) 49.46 (e) 89

(f)3.625 (g) 0.5104, 0.2252 (h) 10.86

@) fx)= %[x’—7x2— 14x]

=f(1.5) = 4.3125
) 09375
m)y=x-3x?+5x-5
y (4.5) = 46.875

% (a) 25 (b) 1.25 (c) 1.9402  (d) 0.031
8. (@) 12221  (b) E=1.12x107;  (c)h=0.0866
9. (a) 0.85 (b) 0.385 () 14 (d)1.2892  (e) 0.14104
10.  (a) 0.8642;5.713x 10°° (b) 0.28
11 (a) 6561 (b) 0.446198
12 (a) 21992 (b) -5.67 x10™
13, (a) 0.149586 (b) -0.00001 (c) 0.07
Chapter 4
i3 (b) fy =9.87; fg =10.90; f’(2.4) = 11.05; f*(2.4) = 11.37
2 (a) 0.4997; analytical answer is 0.5; Error = 0.00029 (b)-95.0 '
3 ¥/(4.75) = 1.331; y"(4.75) = 0.326
4. (a) 0.046; 1.408 and 6.70 (b) 345and 112
4 (a) - 0.3647 and 0.3900

(b) £7(0.8) = 0.79814; f"(0.8) =0.75720

£(0.85) = 0.83748; f (0.85) = 0.81692

6. (a) 0.045; 0.8095 and 6.7 (b) 0.46192, 0.39136 and 0.1425

(c) 34.5405, 34.6155, 0.075
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2 (a) -1.0625; -1.375; 4.5
(b) 0.7494; 0.8053 and -1.5185; Error = 0.0078, ~0.131 and 0.9055
(c) 1.796027
8. () -237x10° (ii) 2.63x 10°
(iii) ~1.044 x 10°; 094 x 10°; —0.902 x 10°; ~1.024 x 10°;
-1.821x 10°.
9. (a) 4.0560,4.0535  (b) 1.08,4.04,0.04
10.  (a) 4425 (b) 0.16159, 0.361, 2.435
11..  (a)(i)0.506,0.0521  (ii) 2.309, 1.6105
(b) (i) 0.685,0.827  (ii) 0.685, 0.824 (iii) 0.686, 0.827
(iv) 0.685, 0.827, 0.685, 0.827
Chapter 5§
) (@ I =5246and I =52.12; (b) I; =6.3627, I =6.3789
© @) 1, =7635, I =7730 (i) 1 = 89250, I = 89500
A (a) 16.678 and 16.699. The true answer is 16.778, which is nearer to Simpmn'l
L rd rule
3
4
(b) I =0.43521; T I(ﬁ ] =0.43521. Both results are very close.
% 0.694 and 0.693; exact answer = 0.693
—0.0002604 > E; > —0.000326
~0.00000203 > Eq > - 0.0000651
4. (i) (2) 1056902 (b) 0.62792,0.62797 (ii) 0.681 (iii) 0.9943, 1.0000, 0.006
(iv) 46.5,46.49 (v) I; =1.11006, I = 1.11058, 1= 1.11073
5 (a) 1g =0.7854; I, =0.7848; Analytical answer = 0.7854

(b) Number of subdivisions in Trapezoidal rule are 1443 and in Simpson’s rule
are 26.
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(c) Ix:nﬁnity in Trapezoidal rule and 118 in Simpson’s rule.
(d) (i) Ig =0.2639, I; =0.2652; (ii) Eg = 0.0000326 and E =- 002642
(iii) 13 and 4

(e) 59
6. (a) 2.136 (b) 5.49 (c) 4.64 (d) 48.77, 56.724, 56.528

(e) Ig =232 (f) I; =0.5797, Area = 3.643 and I = 0.5672, Area = 3.564
7. (@) I; =02974, I = 1.9736; Ig+1; =2.277

(b) I =45, I =53.8; I;+1; =538
8. (a) 1.462657 (b) 0.785396 (c) 0.657669 |
9. (a) 0.8285 (b) 0.4570 (c) 0.6012 (d) 0.28G: (e) 0.109364
10. (a) 0.6012 (b) 0.4570 (c) 504.6933 (d) 0.657669  (e) —0.0207 :
5 (a) 0.8813; Exact = 0.881374 (b) 0.999886; Exact = 1.000000

(c) 39.225; 36.375
12 (c) 202
13. (a) (i) 0.6839397 (ii) 0.7313703 (iii) 0.7429841

(¢) (i) 0.785398 (i) ;
Chapter 6

:

e "T 202 (b) 2.0202,00002 () 002 (d) 0.1414
- 3 (b) Taylor series method cannot "be used. Picard’s method with three

approximations:
y=1+6x"+4x" w% gl
y(0.1) = 3.0289; y(1.2) = 15.3547
(c) Taylor series method cannot be used because y’ is infinite at x = 0.
With three approximations Picard’s method gives,
£ 43
y=1+2x%+2x +;x2

y(1.5) = 8.899; y(1.2) = 15.3547
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@ y=1-x+ x’—-:I; x*, where h = x.
(b) y=0.9097 (c) E=0.00000833; h<0.05 (d) 0.9097
(a) (i) —l+x(l+x(1+x(z+x(-1—+x(—i-+—l—x)))))

: 3 6 40 360

T ) ) i 10
y | 107 1107 12456 .0 3Eel

(iii) Y(1) = 3.8751; Error = 0.012

2 1 1 1
b) () y=l+x+x2+=x> +—x‘+ —x* + —x°
g AT Enie0 | 150

(i) 0x<027

e i) i 2
y | 1 L1107 12456

(i) Error = [Y(1) - y(1)] =0.0398

4 4 S e Sy Bl e
@© y=l+x +6x +12x +180x
x ¥ ¥ =Xy,
-02 0.79880 | -0.15976
0 1.00000 0
0.2 1.20147 0.24029
0.4 1.41283 0.56513
0.6 1.64712 0.98827

(d) Exact solution, y=2e*-2x-1

(a) X y Exact
0 1 1
0.05 9513 9513
0.1 .9052 9052
0.15 8619 8618
0.2 .8214 8213
O PR L AT
1.0 2.000
(B¢ 2.781
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(C)] x y
20 3.000
2.1 4.919
22 10.680
@ x ¥
0 1.00000
0.2 0.00267
0.4 0.02136
8. =1+ —+x +x—+x ——
y x'( 5 ( ( (15 oY L)
% y f
0 1.000 0.0000
& 10053 | 0.1105
2 1.0229 | 0.2446
3 1.0552 | 0.4066

—_

Corrector, y(0.4) = 1.1053

Predictor, y, =5.9614
Corrector, y, =6.9267

Further values using corrector do not settle down; they go on increasing.

x y f=1+y*

0 0 1.0000

0.2 0.2027 1.0411

04 0.4228 1.1788

06 | 0.6842 | 1.4681
Predictor 08 1.0239 | 2.0484
Corrector 0.8 10302 | 3.0615
Predictor 1.0 15394 | 3.3697
Corrector 1.0 1.5609

¥(0.3) = 1.01499
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0

0.1 0.2

0.3

X

0.0000 0.097 0.2199

0.3447

y

1.0000 1.0266 0.9987

: ®) yY=zZ=xz+ y*:
Initial conditions: y(0)=1; z(0) =2 with h=0.2

¥(0.2) = 1.4289; 2(0.2) = 2.3394

(a) y(.1)=1.1142, h =.0029

0.9955

(b) X ¥
25720033
452211758
6 22493
(e) 42748 (f) -0.70347
(e) y(0.8) = 8.00
t y
05 13457
10 21.8278
100  47.8597
200  49.7349
(a) y(.5)= —0.28326, Error= —0.00077
(b) y(.6) = 0.02919
()
x y
4 -8109652
5 -.8195905
(b)
x 0 B bR 008
0 0004 0064 0325 10 .2574
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Answers
18.
ty Xa Yo
0.00 —2.7000000  2.8000000
0.05 ~2.5521092 - 2.6742493
0.10 —2.4078422  2.5570240
0.15 —2.2662276  2.4484383
0.20 —2.1261657 2.3487177
19. (a)
x y z
0.5 1.31959 -0.39347
1.0 1.10364 0.36788
d
®) ﬁ =z=f,(x,y,2)
Sz Soun +3y+x*+2
dx
= f,(x,y,2)
with y (x,)=1
z(x4)=2
h=0.1

d >
(©) d—i =z=f,(x,y,2)

d—zu zZ+2x-
ax p £ -}

= L2
with y, =y(1)=1
zy=2z(1)=1

Chapter 7
LRy (b) ~1.62and 0.3 (c) 0.6and 1.5
2. @(@and (i) Donotsatisfy  (iii) 2.0945
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(b) (i) and (ii) Do not satisfy  (iii) and (iv) Converge to root 3.0983
. (iv) is faster
(c) (i)and (iii) Converge to root 2.0983; (i) is faster

3 (a) (i) and (iii); (iii) is faster
(b) (ii) The root is 4.

(c) Convergence occurs in (i), (v), and (vi); (vi) is the faster with root 0.4534
after two iterations. .

@ () f(x)=In(1+32)

x5 = 1.90547
(i) x,; =1.2612

X3 = 1.2612
(iii)Much faster; x, = 1.2612
(iv) xg = —5.381

X, = —74.422

No convergence

4. - (a) -1.7693 (b)2.1038 (c) -0.7781  (d) 0.4950 (e) 0.7391
(f) 0.5671 (g) 091 (h) 1.9346 (i)4.2748 (k) 2.91
() -6.44 (n) 2.17456

5 (a) 3.16 (6)04472  (c) 1.618  (d) 2.080084
6. (a) 5016;50575  (b) 0.2592; 02591
7. (a) 18960 (29429 () 06766  (d) 050 (¢) 111416
8. (a) 29428  (b)04950  (c) L7100  (d) -1.5214  (e) 12351
9. (3 L1347 (b)29428  (c) 01419  (d) 0.6953  (e) 264575
10. (i) 0.50197  (ii)0.65162  (iii) 0.65044 (iv) 0.6875  (v) 0.65161
1. (@) p@)=65p@)=137  (b)p(-2)=67
() p (~2) = 55; p'(-2) = ~115; p"(~2) = 160

12 (2) p(3)=17,p'(3) =25, x, =2




Answers

(b) 3.1048, —1.0399, 1.4689 +0.1062 i and 1.4689 — 0.1062 i
(a) 3,3,-1and—2  (b)1.0333,1.0002;1.0001 ~ (c) 1.37
@ @) x, = 15714, x, = 15009, x, = 1.5

(if) x, = 1.5467, x, = 15492, x, =1.5248

xn(xﬁ +33)
3x2 +a

15x, +x2 A
5+3x2

@) f(x,)= i (X)) =

X, =2.2353, x,=2.2361, x,=2.2361

2+42x, +2x2+x2

®) f(x,,)= e i ; x, =-2.0130, x,=2.0000, x;=-2.000
Chapter 8
L@, x,==1,%x,=~3, x3=2
()  x, = 0.6574, x,= 0.264, x, = 0.636
(€) x, = 1353, x,= 2412, x, = 3.706
wd) x;=4,%x,=1, x;=2
(6) a=-149, b=-295 c= 198
f) x=-025 y=2and z= 0.75
[ 05 025 075
2@ Rial Titg et
|-0.5 025 1.25
() x,=-=2,%x,=0, x;=5
15 0 -05
3. A7=[05 -025 025
L0 -025 075

X = =2, y=325 2=825
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[-20 -76 -236 108
A5 g2 ol v
-20 -16 -.76 .28
80 -0.16 484 -152

®) ()

1 g =2 0
b s S .
287 67 -630 65
|~416 97 93 -94

(ii)

[25 -41 16 -6
-16 27 -11 4
16 -27 13 -5
-6 10 -5 2

(i)

il s - ~0i88 008 - 075

-1.667 -125 0917 1417
2333 15 -0833 -183
| 2667 -1417 1417 -1917

(iv)

LSOO = %, X3 g %

@ x;= 757, x,= -728, x,=-112
®) x,=-.5x,=15 x;=1, X, =-2
© x;=15 x,=.5 xy=-125, x;=.25
@ x,=02 x,=05, x;=-02, x; = 04
@ x,=3x%x,=-1, x;=0, x, =2
® x=3x,=-1, x;=4, x,=2
® x=Lx=1 x3=1 x;=1
() x;=3,x,=2 xy=1, x,=5
O x=5x=4 x=Tx=1

@ x=0x;=1 xy==I, x;=2 x5= -2




Answers

&) x, =-7.233, Xp= 1133, x; = 2.433, X, =45

M x;=3x,=1, X3==2, x,=1

e
5.0 A'=|-3 -2 11
2
-186 129 196
® B'=| 95 -66 -100
~24: 47 25

©)
@ x,=1,x,=2, X;=3

=3,x,= -4, X3 =2

€ x,=3x,=2, X3 =1

O x,= 475 x,= 225, x, =075

0609 0219 -0.344
6. A™=[0219 -0563 0313
-0344 0313 -0063

X = 234, x,= 069, x, =-0.94

038 -019 -0.11
® A”'=|-019 032 o012
=011 012 -019

X, = 091, x,= 178, x, = 1.55

68 -41 -17 10
=41 25 10 =6
=17 ‘10 5 -3
10 ~6 -3 2

7.(a) A=

a=b=c=d=1.
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135 -6 2 -15
E i YRR S
o O 1 IR

S 1.8% e =3l

®)

8.() X =X=X3=x,=1

® x =4, x,=17, x; =8, x4 =6

© x;=3 x,=5 %,=6 X, =6, xg =5, Xg=3

(d) 8.7058, 7.8230, 7.5864, 7.5224, 74913, 7.4618, 7.3558, 6.9616, 54904
9.(a) x=20, y=10, 2= 3.0

®) x=30,y=2 z=10

‘€)X, =2013, x,=0957, x;= 1.039

(@) No. Since the ices are not diagonall i i ging the rows will
not produce a diagonally dominant matrix.

® x=1 X,=2, xy=-1, x, =1

@ % =0075, x,=29625, x, = - L1675, x,==3975 ~ *

10a) x, =0.8544, x,= -0.6001, x; = 1.0491
® x =132, x,=0.139, x, = -3484, x, =407
©) x,=0433, x,=0911, x4 =0.460, x, =-0.058, x5 =-0.115, X¢= 0.244
© x, =2.048, x,=0921, 3= 1118, x, =031
11.(a) x=-0011, y=0.035, z=-0014
® x=027, y=024, z2=-055 7 -

(€) x=0.660, y=0441, z= 1.093
@ 0.8890, -0.8126, 2.1419, 2.6497

12.(a) In 10 iterations, Jacobi’s method gives the answer as: X, = -2, x,=1and
Xy ==23

)@  x, =8166, x,=19408, x = 1.7956
(i) x, =20882, x,=47534, x, = 8.2896
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(iii) x, =0.999995 = 1, x,=1999995~2, x, = 3.999995=3
@(v) x, =2.999871=3, x,=0000065=2, x;= 1000048 = 1
13. x,=0433, x,=0911, x, =0460, x, =-0.058, x5 =-0.115, x,=0.244

Chapter 9

5 (a) and (b) Both work.
(c) i) 8, ii) no, dominant eigenvalue.

2. A =4 x®=[1 2]
A, =2 x®=[02 3 5]"
Ay =1 x®=[t 2 4]

®) Ay=0; A, =3 Ay =6
W=f 2]
x®=[t 2 -2]"
x®=[21 2]

© M=L A =3 Ay =4

@ A =0 =2 3 1]
Ay =4; =211
A =9 x®=f o -1

© =2 ®=f 15 o5

SRR L
Ay =—4; x®=[0 -3 1"
® A=2 xP=[2 3 1]
A =4 x@=[-211]
Ay =10; x®=0 o -1



Ay=-1; ®=fi -2 1"
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@ M=-1;  x"a[6 5 )
Ay =2 x? m[-3" 2 )]
Ay=T; x@=[-2 1 1)

® A, =0 x®=[1 5 0]
Ay=—1; =0 2 1"
Ay =2 x®=[t o -2J°

@ A,=0 x®=f 6 13]"
Aimma x®2ly 200"
Ay =3; xP=[2 3 -2

@ A=k A, =-3A,=-3

® A =8 =21 2
Ay=-1; x®=f0 2 -1
Ay=-1; x@=f1 0o -1)7

M A=-2A=1A=1

m A=0; A, =2,=1

M A=2 A, =3 Ay =-1

© A=5 x=[4 3 2 1]
A=2; KPaifaivg 1o )"
A,=3; =22 2.4
ho=4 ®0:all 2 3

® =0 xOaft -1 9"
h=1; Pals -2 3°




. Answess

@ A =5 4,=10; X; =10

3.(v) X =0 = 3 4"
A, =4; x@=[-2 1 1"
Ay =9; x@=[t 0 -1]°

™ W=-2% x®=f2 3

Ay =4 x@=f2 1 1)
Ay =10; x@=ft o -1
W) h=2 2P wftins s)

A =—4 x® = -3 4]
A =-4 =2 -3 47

(vii) A = ~1; =6 5 1]

n=2 @ xf-3 2 1]
8 Y x"’-[—z 1 l]r
4.(a) Book work
®G0O A=4" xP=[-3 4 2"

Gi) A = 20.124; x® = [0.062 1.000 0.002]"
@iy A =1; x® =t -05 -05]"
v) A = 3.236 x" = o667 1 0.745]"

o) A= -3414 x® =[-0707 1 -0707]"

M) A=2 xV=fl 0 -2
(vii) A =8
ix) A =18 Mafl 2 <27

x A=6 W=l 3 -2
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i) A =10; = -1 -9
(i) A = 7 x®=[o 2 30]
(xiv) A = 5; x?=[ o 1"

5.(a) Bok work.
(® A,=3and A, =8

© O©7 @3 : |
O < U N |
)RR Y N ) 2,0

6. () dA)=2 (i) &A)=12 (iii) 8(A)=2
(iv) 8(A)=0.80 ) 8A)=4 (iii) 8(A) =8
T |A+2|<30 is the last estimate.

8. M=5 A =3 Ay =2;8(A)=5
Gi) M=4 A, =3; A =1 §A)=4
@) My=1; Ay =2
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