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Preface

This is the third edition of C++: The Complete Reference. In the years that have transpired
since the second edition, C++ has undergone many changes. Perhaps the most important
is that it is now a standardized language. In November of 1997, the ANSI/ISO
committee charged with the task of standardizing C++, passed out of committee an
International Standard for C++. This event marked the end of a very long, and at
times contentious, process. As a member of the ANSI/ISO C++ committee, I watched
the progress of the emerging standard, following each debate and argument. Near the
end, there was a world-wide, daily dialogue, conducted via e-mail, in which the pros
and cons of this or that issue were put forth, and finally resolved. While the process
was longer and more exhausting than anyone at first envisioned, the result was worth
the trouble. We now have a standard for what is, without question, the most important
programming language in the world.

During standardization, several new features were added to C++. Some are
relatively small. Others, like the STL (Standard Template Library) have ramifications
that will affect the course of programming for years to come. The net effect of the
additions was that the scope and range of the language were greatly expanded. For
example, because of the addition of the numerics library, C++ can be more conveniently
used for numeric processing. Of course, the information contained in this edition

XXix
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reflects the International Standard for C++ defined by the ANSI/ISO committee,
including its new features.

| what's New in the Third Edition

The third edition of C++: The Complete Reference is greatly expanded beyond its
predecessor. In fact, the length of the book has nearly doubled! The main reason for
this is that the third edition now includes comprehensive coverage of both the standard
function library and the standard class library. Neither of these were sufficiently well
defined when the second edition was being prepared to warrant inclusion. With the
standardization of C++ being complete, these topics can finally be added.

Aside from these major additions, the third edition also includes a substantial
amount of new material scattered throughout the book. Most is the result of features
that have been added to C++ since the previous edition was prepared. New or
expanded coverage includes the following topics: the Standard Template Library,
run-time type ID (RTTI), the new casting operators, new features of templates,
namespaces, new-style headers, and the modern-style I/O system. Also, some
fundamental changes to the way new and delete are implemented are described and
several new keywords are discussed.

Frankly, if you have not taken a close look at C++ for the past few years, you will
be surprised at how much it has grown and how many new features have been added.
It's not the same old C++ that you learned years ago.

| what's Inside

This books covers in detail all aspects of the C++ language, including its foundation: C.
The book is divided into these five parts:

The C Subset — The foundation of C++

The C++ language

The Standard Function Library

The Standard Class Library

Sample C++ applications

Part One provides a comprehensive discussion of the C subset of C++. As most
readers will know, C is the foundation upon which C++ was built. It is the C subset
that defines the bedrock features of C++, including such things as for loops and if
statements. It also defines the essential nature of C++'s block structure, pointers, and
functions. Since many readers are already familiar with and proficient in C, discussing
the C subset separately in Part One prevents the knowledgeable C programmer from
having to "wade through" reams of information he or she already knows. Instead, the
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experienced C programmer can simply turn to the sections of this book that cover the
C++-specific features.

Part Two discusses in detail the extensions and enhancements to C added by C++.
These include its object-oriented features such as classes, constructors, destructors, and
templates. Thus, Part Two covers those constructs that "make C++, C++."

Part Three describes the standard function library and Part Four examines the
standard class library, including the STL (Standard Template Library). Part Five shows
two practical examples of applying C++ and object-oriented programming.

___| A Book for All Programmers

This C++ reference is designed for all C++ programmers, regardless of their experience
level. It does assume, however, a reader able to create at least a simple program. If you
are just learning C++, this book will make an excellent companion to any C++ tutorial
and serve as a source of answers to your specific questions. Experienced C++ pros will
find the coverage of the many new features added by the International Standard
especially useful.

___| If You're Using Windows

If your computer uses Windows, then you have chosen the right language. C++ is
completely at home with Windows programming. However, none of the programs

in this book are Windows programs. Instead, they are console-based programs. The
reason for this is easy to understand: Windows programs are, by their nature, large and
complex. The overhead required to create even a minimal Windows skeletal program
is 50 to 70 lines of code. To write Windows programs that demonstrate the features of
C++ would require hundreds of lines of code each. Put simply, Windows is not an
appropriate environment in which to discuss the features of a programming language.
However, you can still use a Windows-based compiler to compile the programs in this
book because the compiler will automatically create a console session in which to
execute your program.

___ | Don't Forget: Code On The Web

Remember, the source code for all of the programs in this book is available
free-of-charge on the Web at http://www.osborne.com. Downloading this code
prevents you from having to type in the examples.
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C++: The Complete Reference

For Further Study

C++: The Complete Reference is your gateway into the "Herb Schildt" series of
programming books. Here is a partial list of Schildt's other books.

If you want to learn more about C++, then you will find these books especially
helpful.

C++ From the Ground Up
Teach Yourself C++
Expert C++

If you want to learn more about C, the foundation of C++, we recommend
Teach Yourself C

C: The Complete Reference

The Annotated ANSI C Standard

If you will be developing programs for the Web, you will want to read

Java: The Complete Reference

co-authored by Herbert Schildt and Patrick Naughton.
Finally, if you want to program for Windows, we recommend

Windows 98 Programming From the Ground Up
Windows NT 4 From the Ground Up
MFC Programming From the Ground Up

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.
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The Foundation of C++:
The C Subset

This book divides the description of the C++ language into
two parts. Part One discusses the C-like features of C++.
This is commonly referred to as the C subset of C++. Part Two
describes those features specific to C++. Together, they describe
the entire C++ language.

As you may know, C++ was built upon the foundation of C.
In fact, C++ includes the entire C language, and (with minor
exceptions) all C programs are also C++ programs. When C++
was invented, the C language was used as the starting point. To C
were added several new features and extensions designed to
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support object-oriented programming (OOP). However, the C-like aspects of
C++ were never abandoned, and the ANSI/ISO C standard is a base document for
the International Standard for C++. Thus, an understanding of C++ implies an
understanding of C.

In a book such as this Complete Reference, dividing the C++ language into two
pieces—the C foundation and the C++-specific features—achieves three major benefits:

1. The dividing line between C and C++ is clearly delineated.
2. Readers already familiar with C can easily find the C++-specific information.

3. It provides a convenient place in which to discuss those features of C++ that
relate mostly to the C subset.

Understanding the dividing line between C and C++ is important because both are
widely used languages and it is very likely that you will be called upon to write or
maintain both C and C++ code. When working on C code, you need to know where C
ends and C++ begins. Many C++ programmers will, from time to time, be required to
write code that is limited to the "C subset.” This will be especially true for embedded
systems programming and the maintenance of existing applications. Knowing the
difference between C and C++ is simply part of being a top-notch professional C++
programmer.

A clear understanding of C is also valuable when converting C code into C++. To
do this in a professional manner, a solid knowledge of C is required. For example,
without a thorough understanding of the C I/O system, it is not possible to efficiently
convert an [/O-intensive C program into C++.

Many readers already know C. Covering the C-like features of C++ in their own
section makes it easier for the experienced C programmer to quickly and easily find
information about C++ without having to wade through reams of information that he
or she already knows. Of course, throughout Part One, any minor differences between
C and C++ are noted. Also, separating the C foundation from the more advanced,
object-oriented features of C++ makes it possible to tightly focus on those advanced
features because all of the basics will have already been discussed.

Although C++ contains the entire C language, not all of the features provided by
the C language are commonly used when writing "C++-style" programs. For example,
the C I/O system is still available to the C++ programmer even though C++ defines its
own, object-oriented version. The preprocessor is another example. The preprocessor is
very important to C, but less so to C++. Discussing several of the "C-only" features in
Part One prevents them from cluttering up the remainder of the book.

The C subset described in Part One constitutes the core of C++ and the foundation
upon which C++'s object-oriented features are built. All the features described here
are part of C++ and available for your use.

| Part One of this book is adapted from my book C: The Complete Reference
(Osborne/McGraw-Hill). If you are particularly interested in C, you will find this
book helpful.
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that shaped it, and the legacy it inherits. Thus, the story of C++ begins with C.

This chapter presents an overview of the C programming language, its origins, its
uses, and its underlying philosophy. Since C++ is built upon C, this chapter provides
an important historical perspective on the roots of C++. Much of what makes C++
what it is had its genesis in the C language.

To understand C++ is to understand the forces that drove its creation, the ideas

___| The Origins of C

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 that used
the Unix operating system. C is the result of a development process that started with an
older language called BCPL. BCPL was developed by Martin Richards, and it
influenced a language called B, which was invented by Ken Thompson. B led to the
development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the Unix
version 5 operating system. It was first described in The C Programming Language by
Brian Kernighan and Dennis Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In the
summer of 1983 a committee was established to create an ANSI (American National
Standards Institute) standard that would define the C language once and for all. The
standardization process took six years (much longer than anyone reasonably expected).
The ANSI C standard was finally adopted in December 1989, with the first copies
becoming available in early 1990. The standard was also adopted by ISO (International
Standards Organization) and is now referred to as the ANSI/ISO C standard. For
simplicity, this book will use the term Standard C when referring to the ANSI/ISO C
standard. Today, all mainstream C/C++ compilers comply with Standard C. Standard
C is the foundation upon which C++ is built.

___| ¢ Is a Middle-Level Language

C is often called a middle-level computer language. This does not mean that C is less
powerful, harder to use, or less developed than a high-level language such as BASIC
or Pascal, nor does it imply that C has the cumbersome nature of assembly language
(and its associated troubles). Rather, C is thought of as a middle-level language because
it combines the best elements of high-level languages with the control and flexibilityof
assembly language. Table 1-1 shows how C fits into the spectrum of computer
languages.

As a middle-level language, C allows the manipulation of bits, bytes, and
addresses—the basic elements with which the computer functions. Despite this fact
C code is also very portable. Portability means that it is easy to adapt software written
for one type of computer or operating system to another. For example, if you can easily
convert a program written for DOS so that it runs under Windows, that program is
portable.
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Highest level Ada
Modula-2

Pascal
COBOL
FORTRAN
BASIC

Middle level Java

C++
C
FORTH

Lowest level Macro-assembler

Assembler

Table 1-1. C's Place in the World of Programming Languages

All high-level programming languages support the concept of data types. A data
type defines a set of values that a variable can store along with a set of operations that
can be performed on that variable. Common data types are integer, character, and real.
Although C has five basic built-in data types, it is not a strongly typed language, as are
Pascal and Ada. C permits almost all type conversions. For example, you may freely
intermix character and integer types in an expression.

Unlike a high-level language, C performs almost no run-time error checking. For
example, no check is performed to ensure that array boundaries are not overrun. These
types of checks are the responsibility of the programmer.

In the same vein, C does not demand strict type compatibility between a parameter
and an argument. As you may know from your other programming experience, a
high-level computer language will typically require that the type of an argument be
(more or less) exactly the same type as the parameter that will receive the argument.
However, such is not the case for C. Instead, C allows an argument to be of any type
as long as it can be reasonably converted into the type of the parameter. Further, C
provides all of the automatic conversions to accomplish this.
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C is special in that it allows the direct manipulation of bits, bytes, words, and
pointers. This makes it well suited for system-level programming, where these
operations are common.

Another important aspect of C is that it has only 32 keywords (27 from the
Kernighan and Ritchie de facto standard, and five added by the ANSI standardization
committee), which are the commands that make up the C language. High-level
languages typically have several times more keywords. As a comparison, consider
that most versions of BASIC have well over 100 keywords!

___| ¢ Is a Structured Language

In your previous programming experience, you may have heard the term block-
structured applied to a computer language. Although the term block-structured
language does not strictly apply to C, C is commonly referred to simply as a
structured language. It has many similarities to other structured languages, such
as ALGOL, Pascal, and Modula-2.

| The reason that C (and C++) is not, technically, a block-structured language is that

: block-structured languages permit procedures or functions to be declared inside
other procedures or functions. Since C does not allow the creation of functions
within functions, it cannot formally be called block-structured.

The distinguishing feature of a structured language is compartmentalization of code
and data. This is the ability of a language to section off and hide from the rest of the
program all information and instructions necessary to perform a specific task. One
way that you achieve compartmentalization is by using subroutines that employ local
(temporary) variables. By using local variables, you can write subroutines so that the
events that occur within them cause no side effects in other parts of the program. This
capability makes it very easy for programs to share sections of code. If you develop
compartmentalized functions, you only need to know what a function does, not how it
does it. Remember, excessive use of global variables (variables known throughout the
entire program) may allow bugs to creep into a program by allowing unwanted side
effects. (Anyone who has programmed in standard BASIC is well aware of this
problem.)

| The concept of compartmentalization is greatly expanded by C++. Specifically, in
0% C++, one part of your program may tightly control which other parts of your
program are allowed access.

A structured language allows you a variety of programming possibilities. It
directly supports several loop constructs, such as while, do-while, and for. In a
structured language, the use of goto is either prohibited or discouraged and is not the
common form of program control (as is the case in standard BASIC and traditional
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FORTRAN, for example). A structured language allows you to place statements
anywhere on a line and does not require a strict field concept (as some older
FORTRANSs do).

Here are some examples of structured and nonstructured languages:

Nonstructured Structured
FORTRAN Pascal
BASIC Ada
COBOL Java

C++

C

Modula-2

Structured languages tend to be modern. In fact, a mark of an old computer
language is that it is nonstructured. Today, few programmers would consider using
a nonstructured language for serious, new programs.

| New versions of many older languages have attempted to add structured elements.
BASIC is an example. However, the shortcomings of these languages can never be
fully mitigated because they were not designed with structured features from the

beginning.

C's main structural component is the function—C's stand-alone subroutine. In
C, functions are the building blocks in which all program activity occurs. They let
you define and code separately the separate tasks in a program, thus allowing your
programs to be modular. After you have created a function, you can rely on it to
work properly in various situations without creating side effects in other parts of
the program. Being able to create stand-alone functions is extremely critical in larger
projects where one programmer's code must not accidentally affect another's.

Another way to structure and compartmentalize code in C is through the use of
code blocks. A code block is a logically connected group of program statements that is
treated as a unit. In C, you create a code block by placing a sequence of statements
between opening and closing curly braces. In this example,

if (x <10) {
printf("Too low, try again.\n");
scanf("%d", &x);

}
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the two statements after the if and between the curly braces are both executed if x is
less than 10. These two statements together with the braces represent a code block.
They are a logical unit: One of the statements cannot execute without the other
executing also. Code blocks allow many algorithms to be implemented with clarity,
elegance, and efficiency. Moreover, they help the programmer better conceptualize
the true nature of the algorithm being implemented.

___| € Is a Programmer's Language

Surprisingly, not all computer programming languages are for programmers. Consider
the classic examples of nonprogrammer languages, COBOL and BASIC. COBOL was
designed not to better the programmer's lot, nor to improve the reliability of the code
produced, nor even to improve the speed with which code can be written. Rather,
COBOL was designed, in part, to enable nonprogrammers to read and presumably
(however unlikely) to understand the program. BASIC was created essentially to allow
nonprogrammers to program a computer to solve relatively simple problems.

In contrast, C was created, influenced, and field-tested by working programmers.
The end result is that C gives the programmer what the programmer wants: few
restrictions, few complaints, block structures, stand-alone functions, and a compact
set of keywords. By using C, you can nearly achieve the efficiency of assembly code
combined with the structure of ALGOL or Modula-2. It's no wonder that C and C++
are easily the most popular languages among topflight professional programmers.

The fact that you can often use C in place of assembly language is a major factor in
its popularity among programmers. Assembly language uses a symbolic representation
of the actual binary code that the computer executes directly. Each assembly-language
operation maps into a single task for the computer to perform. Although assembly
language gives programmers the potential to accomplish tasks with maximum
flexibility and efficiency, it is notoriously difficult to work with when developing and
debugging a program. Furthermore, since assembly language is unstructured, the final
program tends to be spaghetti code—a tangled mess of jumps, calls, and indexes. This
lack of structure makes assembly-language programs difficult to read, enhance, and
maintain. Perhaps more important, assembly-language routines are not portable
between machines with different central processing units (CPUs).

Initially, C was used for systems programming. A systems program forms a portion
of the operating system of the computer or its support utilities. For example, the
following are usually called systems programs:

B Operating systems
B Interpreters

m Editors
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Compilers

File utilities
m Performance enhancers
B Real-time executives

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die
out. Such has not been the case. First, not all programs require the application of the
object-oriented programming features provided by C++. For example, applications
such as embedded systems are still typically programmed in C. Second, much of the
world still runs on C code, and those programs will continue to be enhanced and
maintained. While C's greatest legacy is as the foundation for C++, it will continue to
be a vibrant, widely used language for many years to come.

___| The Form of a C Program

Table 1-2 lists the 32 keywords that, combined with the formal C syntax, form the C
programming language. Of these, 27 were defined by the original version of C. These
five were added by the ANSI C committee: enum, const, signed, void, and volatile.
All are, of course, part of the C++ language.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
Table 1-2. The 32 Keywords Defined by Standard C
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In addition, many compilers have added several keywords that better exploit their
operating environment. For example, several compilers include keywords to manage
the memory organization of the 8086 family of processors, to support inter-language
programming, and to access interrupts. Here is a list of some commonly used extended

keywords:
asm _cs _ds _es
_ss cdecl far huge
interrupt near pascal

Your compiler may also support other extensions that help it take better advantage
of its specific environment.

All C (and C++) keywords are lowercase. Also, uppercase and lowercase are
different: else is a keyword; ELSE is not. You may not use a keyword for any other
purpose in a program—that is, you may not use it as a variable or function name.

All C programs consist of one or more functions. The only function that must be
present is called main( ), which is the first function called when program execution
begins. In well-written C code, main() contains what is, in essence, an outline of what
the program does. The outline is composed of function calls. Although main() is not
a keyword, treat it as if it were. For example, don't try to use main( ) as the name of a
variable because you will probably confuse the compiler.

The general form of a C program is illustrated in Figure 1-1, where f1() through
fN() represent user-defined functions.

___| The Library and Linking

Technically speaking, you can create a useful, functional C or C++ program that
consists solely of the statements that you actually created. However, this is quite
rare because neither C nor C++ provides any keywords that perform such things as
input/output (I/O) operations, high-level mathematical computations, or character
handling. As a result, most programs include calls to various functions contained in
the standard library.

All C++ compilers come with a standard library of functions that perform most
commonly needed tasks. Standard C++ specifies a minimal set of functions that will be
supported by all compilers. However, your compiler will probably contain many other
functions. For example, the standard library does not define any graphics functions,
but your compiler will probably include some.

The C++ standard library can be divided into two halves: the standard function
library and the class library. The standard function library is inherited from the C
language. C++ supports the entire function library defined by Standard C. Thus, all
of the standard C functions are available for use in C++ programs that you write.
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global declarations

return-type main(parameter list)

{

statement sequence

}

return-type fl(parameter list)

{

statement sequence

}

return-type f2(parameter list)

{

statement sequence

}

return-type fN(parameter list)
{

statement sequence

}

Figure 1-1. The general form of a C program.

In addition to the standard function library, C++ also defines its own class library.
The class library provides object-oriented routines that your programs may use. It also
defines the Standard Template Library (STL), which offers off-the-shelf solutions to a
variety of programming problems. However, both the class library and the STL are
discussed later in this book. In Part One, only the standard function library is used,
since it is the only one that is also defined by C.

The implementors of your compiler have already written most of the general-
purpose functions that you will use. When you call a function that is not part of your
program, the compiler "remembers" its name. Later, the linker combines the code you

11
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wrote with the object code already found in the standard library. This process is called
linking. Some compilers have their own linker, while others use the standard linker
supplied by the operating system.

The functions in the library are in relocatable format. This means that the memory
addresses for the various machine-code instructions have not been absolutely
defined—only offset information has been kept. When your program links with the
functions in the standard library, these memory offsets are used to create the actual
addresses used. There are several technical manuals and books that explain this
process in more detail. However, you do not need any further explanation of the
relocation process to program in C++.

Many of the functions that you will need as you write programs are in the standard
library. They act as building blocks that you combine. If you write a function that you
will use again and again, you can place it into a library, too.

___| Separate Compilation

Most short programs are completely contained within one source file. However, as a
program'’s length grows, so does its compile time (and long compile times make for
short tempers). Hence, C/C++ allows a program to be contained in many files and lets
you compile each file separately. Once you have compiled all files, they are linked,
along with any library routines, to form the complete object code. The advantage of
separate compilation is that if you change the code of one file, you do not need to
recompile the entire program. On all but the simplest projects, this saves a substantial
amount of time. The user documentation to your C/C++ compiler will contain
instructions for compiling multifile programs.

___| Understanding the .C and .CPP File Extensions

The programs in Part One of this book are, of course, valid C++ programs and can be
compiled using any modern C++ compiler. They are also valid C programs and can be
compiled using a C compiler. Thus, if you are called upon to write C programs, the
ones shown in Part One qualify as examples. Traditionally, C programs use the file
extension .C, and C++ programs use the extension .CPP. A C++ compiler uses the file
extension to determine what type of program it is compiling. This is important because
the compiler assumes that any program using the .C extension is a C program and that
any file using .CPP is a C++ program. Unless explicitly noted otherwise, you may use
either extension for the programs in Part One. However, the programs in the rest of
this book will require .CPP.

One last point: Although C is a subset of C++, there are a few minor differences
between the two languages, and in a few cases, you may need to compile a C program
as a C program (using the .C extension). Any instances of this will be noted.
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language: the expression. As you will see, expressions in C/C++ are substantially

more general and more powerful than in most other computer languages.
Expressions are formed from these atomic elements: data and operators. Data may be
represented either by variables or by constants. Like most other computer languages,
C/C++ supports a number of different types of data. It also provides a wide variety of
operators.

This chapter examines the most fundamental element of the C (as well as the C++)

___| The Five Basic Data Types

There are five atomic data types in C: character, integer, floating-point, double
floating-point, and valueless (char, int, float, double, and void, respectively). As you
will see, all other data types in C are based upon one of these types. The size and range
of these data types may vary between processor types and compilers. However, in all
cases a character is 1 byte. The size of an integer is usually the same as the word length
of the execution environment of the program. For most 16-bit environments, such as
DOS or Windows 3.1, an integer is 16 bits. For most 32-bit environments, such as
Windows NT, an integer is 32 bits. However, you cannot make assumptions about

the size of an integer if you want your programs to be portable to the widest range of
environments. It is important to understand that both C and C++ only stipulate

the minimal range of each data type, not its size in bytes.

To the five basic data types defined by C, C++ adds two more: bool and wchar_t.
Note . ;
These are discussed in Part Two.

The exact format of floating-point values will depend upon how they are
implemented. Integers will generally correspond to the natural size of a word on the
host computer. Values of type char are generally used to hold values defined by the
ASCII character set. Values outside that range may be handled differently by different
compilers.

The range of float and double will depend upon the method used to represent
the floating-point numbers. Whatever the method, the range is quite large. Standard
C specifies that the minimum range for a floating-point value is 1E-37 to 1E+37. The
minimum number of digits of precision for each floating-point type is shown in
Table 2-1.

| Standard C++ does not specify a minimum size or range for the basic types. Instead,
it simply states that they must meet certain requirements. For example, Standard
C++ states that an int will “have the natural size suggested by the architecture of

the execution environment.” In all cases, this will meet or exceed

the minimum ranges specified by Standard C. Each C++ compiler specifies the size
and range of the basic types in the header <climits>.
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Type

char

unsigned char
signed char

int

unsigned int
signed int

short int
unsigned short int
signed short int

long int

signed long int
unsigned long int
float

double

long double

Typical Size in Bits

8

8

8

16 or 32
16 or 32
16 or 32
16

16

16

32

32
32
32
64
80

Minimal Range

-127 to 127

0 to 255

-127 to 127
32,767 to 32,767
0 to 65,535

same as int
32,767 to 32,767
0 to 65,535

same as short int

—2,147,483,647 to
2,147,483,647

same as long int

0 to 4,294,967,295

Six digits of precision
Ten digits of precision

Ten digits of precision

Table 2-1. All Data Types Defined by the ANSI/ISO C Standard

The type void either explicitly declares a function as returning no value or creates
generic pointers. Both of these uses are discussed in subsequent chapters.

___| Modifying the Basic Types

Except for type void, the basic data types may have various modifiers preceding them.
You use a modifier to alter the meaning of the base type to fit various situations more
precisely. The list of modifiers is shown here:

signed
unsigned
long
short

15
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You can apply the modifiers signed, short, long, and unsigned to integer base
types. You can apply unsigned and signed to characters. You may also apply long to
double. Table 2-1 shows all valid data type combinations, along with their minimal
ranges and approximate bit widths. (These values also apply to a typical C++
implementation.) Remember, the table shows the minimum range that these types will
have as specified by Standard C/C++, not their typical range. For example, on
computers that use two's complement arithmetic (which is nearly all), an integer will
have a range of at least 32,767 to -32,768.

The use of signed on integers is allowed, but redundant because the default integer
declaration assumes a signed number. The most important use of signed is to modify
char in implementations in which char is unsigned by default.

The difference between signed and unsigned integers is in the way that the high-
order bit of the integer is interpreted. If you specify a signed integer, the compiler
generates code that assumes that the high-order bit of an integer is to be used as a sign
flag. If the sign flag is 0, the number is positive; if it is 1, the number is negative.

In general, negative numbers are represented using the two’s complement approach,
which reverses all bits in the number (except the sign flag), adds 1 to this number, and
sets the sign flag to 1.

Signed integers are important for a great many algorithms, but they only have half
the absolute magnitude of their unsigned relatives. For example, here is 32,767:

Or111111111111111

If the high-order bit were set to 1, the number would be interpreted as —1. However,
if you declare this to be an unsigned int, the number becomes 65,535 when the high-
order bit is set to 1.

| 1dentifier Names

In C/C++, the names of variables, functions, labels, and various other user-defined

objects are called identifiers. These identifiers can vary from one to several characters.
The first character must be a letter or an underscore, and subsequent characters must
be either letters, digits, or underscores. Here are some correct and incorrect identifier

names:
Correct Incorrect
Count 1count
test23 hi'there

high_balance high...balance
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In C, identifiers may be of any length. However, not all characters will necessarily
be significant. If the identifier will be involved in an external link process, then at
least the first six characters will be significant. These identifiers, called external names,
include function names and global variables that are shared between files. If the
identifier is not used in an external link process, then at least the first 31 characters
will be significant. This type of identifier is called an internal name and includes the
names of local variables, for example. In C++, there is no limit to the length of an
identifier, and at least the first 1,024 characters are significant. This difference may
be important if you are converting a program from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count, Count,
and COUNT are three separate identifiers.

An identifier cannot be the same as a C or C++ keyword, and should not have the
same name as functions that are in the C or C++ library.

| variables

As you probably know, a variable is a named location in memory that is used to hold a
value that may be modified by the program. All variables must be declared before they
can be used. The general form of a declaration is

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of
one or more identifier names separated by commas. Here are some declarations:

intij,l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, in C/C++ the name of a variable has nothing to do with its type.

Where Variables Are Declared

Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables

Variables that are declared inside a function are called local variables. In some C/C++
literature, these variables are referred to as automatic variables. This book uses the more
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common term, local variable. Local variables may be referenced only by statements
that are inside the block in which the variables are declared. In other words, local
variables are not known outside their own code block. Remember, a block of code
begins with an opening curly brace and terminates with a closing curly brace.

Local variables exist only while the block of code in which they are declared is
executing. That is, a local variable is created upon entry into its block and destroyed
upon exit.

The most common code block in which local variables are declared is the function.
For example, consider the following two functions:

void funcl(void)

{

int x;

X =10;
}

void func2(void)

{

int x;

X =-199;
}

The integer variable x is declared twice, once in funcl() and once in func2(). The x in
func1() has no bearing on or relationship to the x in func2(). This is because each x is
only known to the code within the same block as the variable declaration.

The C language contains the keyword auto, which you can use to declare local
variables. However, since all nonglobal variables are, by default, assumed to be auto,
this keyword is virtually never used. Hence, the examples in this book will not use it.
(It has been said that auto was included in C to provide for source-level compatibility
with its predecessor B. Further, auto is supported in C++ to provide compatibility
with C.)

For reasons of convenience and tradition, most programmers declare all the
variables used by a function immediately after the function's opening curly brace
and before any other statements. However, you may declare local variables within any
code block. The block defined by a function is simply a special case. For example,

void f(void)

{
intt;
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scanf("%d%*c", &t);

if(t==1) {
char s[80]; /* this is created only upon
entry into this block */
printf("Enter name:");
gets(s);
[* do something ... */

}

Here, the local variable s is created upon entry into the if code block and destroyed
upon exit. Furthermore, s is known only within the if block and may not be referenced
elsewhere—even in other parts of the function that contains it.

One advantage of declaring a local variable within a conditional block is that
memory for the variable will only be allocated if needed. This is because local variables
do not come into existence until the block in which they are declared is entered. You
might need to worry about this when producing code for dedicated controllers (like a
garage door opener that responds to a digital security code) in which RAM is in short
supply, for example.

Declaring variables within the block of code that uses them also helps prevent
unwanted side effects. Since the variable does not exist outside the block in which it
is declared, it cannot be accidentally altered.

There is an important difference between C and C++ as to where you can declare
local variables. In C, you must declare all local variables at the start of the block in
which they are defined, prior to any "action” statements. For example, the following
function is in error if compiled by a C compiler.

[* This function is in error if compiled as
a C program, but perfectly acceptable if
compiled as a C++ program.

*/

void f(void)

{

inti;
i=10;

int j; /* this line will cause an error */

19
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j=20;

However, in C++, this function is perfectly valid because you can define local variables
at any point in your program. (The topic of C++ variable declaration is discussed in
depth in Part Two.)

Because local variables are created and destroyed with each entry and exit from
the block in which they are declared, their content is lost once the block is left. This is
especially important to remember when calling a function. When a function is called,
its local variables are created, and upon its return they are destroyed. This means that
local variables cannot retain their values between calls. (However, you can direct the
compiler to retain their values by using the static modifier.)

Unless otherwise specified, local variables are stored on the stack. The fact that
the stack is a dynamic and changing region of memory explains why local variables
cannot, in general, hold their values between function calls.

You can initialize a local variable to some known value. This value will be assigned
to the variable each time the block of code in which it is declared is entered. For example,
the following program prints the number 10 ten times:

#include <stdio.h>
void f(void);
int main(void)
{
inti;
for(i=0; i<10; i++) f();

return O;

}

void f(void)

{
intj = 10;
printf("%d ", j);

j++; [* this line has no lasting effect */

}
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Formal Parameters

If a function is to use arguments, it must declare variables that will accept the values
of the arguments. These variables are called the formal parameters of the function. They
behave like any other local variables inside the function. As shown in the following
program fragment, their declarations occur after the function name and inside
parentheses:

[* Return 1 if ¢ is part of string s; O otherwise */
intis_in(char *s, char c)
{
while(*s)
if(*s==c) return 1;
else s++;

return O;

}

The function is_in() has two parameters: s and c. This function returns 1 if the character
specified in c is contained within the string s; 0 if it is not.

You must specify the type of the formal parameters by declaring them as just shown.
Then you may use them inside the function as normal local variables. Keep in mind that,
as local variables, they are also dynamic and are destroyed upon exit from the function.

As with local variables, you may make assignments to a function's formal parameters
or use them in any allowable expression. Even though these variables receive the value of
the arguments passed to the function, you can use them like any other local variable.

Global Variables

Unlike local variables, global variables are known throughout the program and may be
used by any piece of code. Also, they will hold their value throughout the program's
execution. You create global variables by declaring them outside of any function. Any
expression may access them, regardless of what block of code that expression is in.

In the following program, the variable count has been declared outside of all
functions. Although its declaration occurs before the main() function, you could have
placed it anywhere before its first use as long as it was not in a function. However, it is
usually best to declare global variables at the top of the program.

#include <stdio.h>
int count; /* count is global */

void func1(void);
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void func2(void);

int main(void)

{
count = 100;
funcl();

return O;

}

void func1(void)

{

int temp;

temp = count;

func2();

printf("count is %d", count); /* will print 100 */
}

void func2(void)

{

int count;

for(count=1; count<10; count++)
putchar('.");

Look closely at this program. Notice that although neither main() nor funcl() has
declared the variable count, both may use it. func2(), however, has declared a local
variable called count. When func2() refers to count, it refers to only its local variable,
not the global one. If a global variable and a local variable have the same name, all
references to that variable name inside the code block in which the local variable is
declared will refer to that local variable and have no effect on the global variable.
This can be convenient, but forgetting it can cause your program to act strangely,
even though it looks correct.

Storage for global variables is in a fixed region of memory set aside for this purpose
by the compiler. Global variables are helpful when many functions in your program
use the same data. You should avoid using unnecessary global variables, however.
They take up memory the entire time your program is executing, not just when they are
needed. In addition, using a global where a local variable would do makes a function
less general because it relies on something that must be defined outside itself. Finally,
using a large number of global variables can lead to program errors because of unknown
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and unwanted side effects. A major problem in developing large programs is the
accidental changing of a variable's value because it was used elsewhere in the program.
This can happen in C/C++ if you use too many global variables in your programs.

Access Modifiers

There are two modifiers that control how variables may be accessed or modified. These
qualifiers are const and volatile. They must precede the type modifiers and the type
names that they qualify. These modifiers are also referred to as cv-qualifiers.

const

Variables of type const may not be changed by your program. (A const variable can be
given an initial value, however.) The compiler is free to place variables of this type into
read-only memory (ROM). For example,

const int a=10;

creates an integer variable called a with an initial value of 10 that your program may
not modify. However, you can use the variable a in other types of expressions. A const
variable will receive its value either from an explicit initialization or by some
hardware-dependent means.

The const qualifier can be used to protect the objects pointed to by the arguments
to a function from being modified by that function. That is, when a pointer is passed
to a function, that function can modify the actual variable pointed to by the pointer.
However, if the pointer is specified as const in the parameter declaration, the function
code won't be able to modify what it points to. For example, the sp_to_dash() function
in the following program prints a dash for each space in its string argument. That is,
the string "this is a test" will be printed as "this-is-a-test". The use of const in the
parameter declaration ensures that the code inside the function cannot modify the
object pointed to by the parameter.

#include <stdio.h>

void sp_to_dash(const char *str);
int main(void)

{

sp_to_dash("this is a test");

return O;

23
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void sp_to_dash(const char *str)
{
while(*str) {
if(*str=="") printf("%c", '-');
else printf("%c", *str);
str++;

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

[* This is wrong. */
void sp_to_dash(const char *str)

{
while(*str) {
if(*str=="") *str = '-'; /* can't do this; str is const */
printf("%c", *str);
str++;
}
}

Many functions in the standard library use const in their parameter declarations.
For example, the strlen() function has this prototype:

size_t strlen(const char *str);

Specifying str as const ensures that strlen() will not modify the string pointed to by str.
In general, when a standard library function has no need to modify an object pointed to
by a calling argument, it is declared as const.

You can also use const to verify that your program does not modify a variable.
Remember, a variable of type const can be modified by something outside your
program. For example, a hardware device may set its value. However, by declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

volatile

The modifier volatile tells the compiler that a variable's value may be changed in ways
not explicitly specified by the program. For example, a global variable's address may
be passed to the operating system's clock routine and used to hold the real time of the
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system. In this situation, the contents of the variable are altered without any explicit
assignment statements in the program. This is important because most C/C++
compilers automatically optimize certain expressions by assuming that a variable's
content is unchanging if it does not occur on the left side of an assignment statement;
thus, it might not be reexamined each time it is referenced. Also, some compilers
change the order of evaluation of an expression during the compilation process. The
volatile modifier prevents these changes.

You can use const and volatile together. For example, if 0x30 is assumed to be the
value of a port that is changed by external conditions only, the following declaration
would prevent any possibility of accidental side effects:

const volatile char *port = (const volatile char *) 0x30;

___| storage Class Specifiers

There are four storage class specifiers supported by C:

extern
static
register
auto

These specifiers tell the compiler how to store the subsequent variable. The general
form of a declaration that uses one is shown here.

storage_specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration.

C++ adds another storage-class specifier called mutable, which is described in
Note
Part Two.

extern

Because C/C++ allows separate modules of a large program to be separately compiled
and linked together, there must be some way of telling all the files about the global
variables required by the program. Although C technically allows you to define a
global variable more than once, it is not good practice (and may cause problems when
linking). More importantly, in C++, you may define a global variable only once. How,
then, do you inform all the files in your program about the global variables used by
the program?

The solution to the problem is found in the distinction between the declaration
and the definition of a variable. A declaration declares the name and type of a variable.
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File One File Two
intx,y; extern int x, y;
char ch; extern char ch;
int main(void) void func22(void)
{ {

/et x=y / 10;

} }
void funcl(void) void func23(void)
{ {

x =123; y =10;

} }

Figure 2-1. Using global variables in separately compiled modules

A definition causes storage to be allocated for the variable. In most cases, variable
declarations are also definitions. However, by preceding a variable name with the
extern specifier, you can declare a variable without defining it. Thus, in a multifile
program, you can declare all of your global variables in one file and use extern
declarations in the other, as in Figure 2-1.

In File Two, the global variable list was copied from File One and the extern
specifier was added to the declarations. The extern specifier tells the compiler that the
variable types and names that follow it have been defined elsewhere. In other words,
extern lets the compiler know what the types and names are for these global variables
without actually creating storage for them again. When the linker links the two
modules, all references to the external variables are resolved.

The extern keyword has this general form:

extern var-list;

There is another, optional use of extern that you may occasionally see. When you
use a global variable inside a function, you can declare it as extern, as shown here:

int first, last; /* global definition of first
and last */
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main(void)
{
extern int first; /* optional use of the
extern declaration */

Although extern variable declarations as shown in this example are allowed, they are
not necessary. If the compiler finds a variable that has not been declared within the
current block, the compiler checks if it matches any of the variables declared within
enclosing blocks. If it does not, the compiler then checks the global variables. If a match
is found, the compiler assumes that the global variable is being referenced.

In C++, the extern specifier has another use, which is described in Part Two.

static Variables

static variables are permanent variables within their own function or file. Unlike global
variables, they are not known outside their function or file, but they maintain their
values between calls. This feature makes them useful when you write generalized
functions and function libraries that other programmers may use. static has different
effects upon local variables and global variables.

static Local Variables
When you apply the static modifier to a local variable, the compiler creates permanent
storage for it, much as it creates storage for a global variable. The key difference
between a static local variable and a global variable is that the static local variable
remains known only to the block in which it is declared. In simple terms, a static
local variable is a local variable that retains its value between function calls.

static local variables are very important to the creation of stand-alone functions
because several types of routines must preserve a value between calls. If static variables
were not allowed, globals would have to be used, opening the door to possible side
effects. An example of a function that benefits from a static local variable is a number-
series generator that produces a new value based on the previous one. You could use
a global variable to hold this value. However, each time the function is used in a
program, you would have to declare that global variable and make sure that it did not
conflict with any other global variables already in place. The better solution is to declare
the variable that holds the generated number to be static, as in this program fragment:

int series(void)
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static int series_num;

series_num = series_num+23;
return series_num;

In this example, the variable series_num stays in existence between function calls,
instead of coming and going the way a normal local variable would. This means that
each call to series() can produce a new member in the series based on the preceding
number without declaring that variable globally.

You can give a static local variable an initialization value. This value is assigned
only once, at program start-up—not each time the block of code is entered, as with
normal local variables. For example, this version of series() initializes series_num
to 100:

int series(void)

{
static int series_num = 100;
series_num = series_num+23;
return series_num;

}

As the function now stands, the series will always begin with the value 123. While this
is acceptable for some applications, most series generators need to let the user specify
the starting point. One way to give series_num a user-specified value is to make it a
global variable and then let the user set its value. However, not defining series_num
as global was the point of making it static. This leads to the second use of static.

static Global Variables

Applying the specifier static to a global variable instructs the compiler to create a
global variable that is known only to the file in which you declared it. This means

that even though the variable is global, routines in other files may have no knowledge
of it or alter its contents directly, keeping it free from side effects. For the few situations
where a local static cannot do the job, you can create a small file that contains only the
functions that need the global static variable, separately compile that file, and use it
without fear of side effects.

To illustrate a global static, the series generator example from the previous section
is recoded so that a seed value initializes the series through a call to a second function
called series_start(). The entire file containing series(), series_start(), and series_num
is shown here:
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[* This must all be in one file - preferably by itself. */

static int series_num;
void series_start(int seed);
int series(void);

int series(void)

{
series_num = series_num+23;
return series_num;

}

[* initialize series_num */
void series_start(int seed)
{

series_num = seed;

}

Calling series_start() with some known integer value initializes the series generator.
After that, calls to series() generate the next element in the series.

To review: The names of local static variables are known only to the block of code
in which they are declared; the names of global static variables are known only to the
file in which they reside. If you place the series() and series_start() functions in a
library, you can use the functions but cannot reference the variable series_num, which
is hidden from the rest of the code in your program. In fact, you can even declare and
use another variable called series_num in your program (in another file, of course). In
essence, the static modifier permits variables that are known only to the functions that
need them, without unwanted side effects.

static variables enable you to hide portions of your program from other portions.
This can be a tremendous advantage when you are trying to manage a very large and
complex program.

In C++, the preceding use of static is still supported, but deprecated. This means
Note L
that it is not recommended for new code. Instead, you should use a namespace,

which is described in Part Two.

register Variables

The register storage specifier originally applied only to variables of type int, char, or
pointer types. However, in Standard C, register's definition has been broadened so that
it applies to any type of variable.

Originally, the register specifier requested that the compiler keep the value of a
variable in a register of the CPU rather than in memory, where normal variables are
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stored. This meant that operations on a register variable could occur much faster than
on a normal variable because the register variable was actually held in the CPU and
did not require a memory access to determine or modify its value.

Today, the definition of register has been greatly expanded and it now may be
applied to any type of variable. Standard C simply states "that access to the object be
as fast as possible." (Standard C++ states that register is a "hint to the implementation
that the object so declared will be heavily used.") In practice, characters and integers
are still stored in registers in the CPU. Larger objects like arrays obviously cannot be
stored in a register, but they may still receive preferential treatment by the compiler.
Depending upon the implementation of the C/C++ compiler and its operating
environment, register variables may be handled in any way deemed fit by the
compiler's implementor. In fact, it is technically permissible for a compiler to ignore
the register specifier altogether and treat variables modified by it as if they weren't,
but this is seldom done in practice.

You can only apply the register specifier to local variables and to the formal
parameters in a function. Global register variables are not allowed. Here is an example
that uses register variables. This function computes the result of M® for integers:

int int_pwr(register int m, register int e)

{

register int temp;
temp = 1;

for(; e; e--) temp = temp * m;
return temp;

}

In this example, e, m, and temp are declared as register variables because they
are all used within the loop. The fact that register variables are optimized for speed
makes them ideal for control of or use in loops. Generally, register variables are used
where they will do the most good, which are often places where many references will
be made to the same variable. This is important because you can declare any number
of variables as being of type register, but not all will receive the same access speed
optimization.

The number of register variables optimized for speed allowed within any one code
block is determined by both the environment and the specific implementation of
C/C++. You don't have to worry about declaring too many register variables because
the compiler automatically transforms register variables into nonregister variables
when the limit is reached. (This ensures portability of code across a broad line of
processors.)
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Usually at least two register variables of type char or int can actually be held in the
registers of the CPU. Because environments vary widely, consult your compiler's user
manual to determine if you can apply any other types of optimization options.

In C, you cannot find the address of a register variable using the & operator
(discussed later in this chapter). This makes sense because a register variable might be
stored in a register of the CPU, which is not usually addressable. But this restriction
does not apply to C++. However, taking the address of a register variable in C++ may
prevent it from being fully optimized.

Although the description of register has been broadened beyond its traditional
meaning, in practice it still generally has a significant effect only with integer and
character types. Thus, you should probably not count on substantial speed
improvements for other variable types.

____| variable Initializations

You can give variables a value as you declare them by placing an equal sign and a
value after the variable name. The general form of initialization is

type variable_name = value;
Some examples are

char ch ="a’;
int first = 0;
float balance = 123.23;

Global and static local variables are initialized only at the start of the program. Local
variables (excluding static local variables) are initialized each time the block in which
they are declared is entered. Local variables that are not initialized have unknown
values before the first assignment is made to them. Uninitialized global and static local
variables are automatically set to zero.

| constants

Constants refer to fixed values that the program may not alter. Constants can be of any
of the basic data types. The way each constant is represented depends upon its type.
Constants are also called literals.

Character constants are enclosed between single quotes. For example 'a' and '%' are
both character constants. Both C and C++ define wide characters (used mostly in
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non-English language environments), which are 16 bits long. To specify a wide
character constant, precede the character with an L. For example,

wchar_t wc;
wc = L'A’;

Here, wc is assigned the wide-character constant equivalent of A. The type of wide
characters is wchar_t. In C, this type is defined in a header file and is not a built-in
type. In C++, wchar_t is built in.

Integer constants are specified as numbers without fractional components. For
example, 10 and —100 are integer constants. Floating-point constants require the
decimal point followed by the number's fractional component. For example, 11.123
is a floating-point constant. C/C++ also allows you to use scientific notation for
floating-point numbers.

There are two floating-point types: float and double. There are also several
variations of the basic types that you can generate using the type modifiers. By default,
the compiler fits a numeric constant into the smallest compatible data type that will
hold it. Therefore, assuming 16-bit integers, 10 is int by default, but 103,000 is a long.
Even though the value 10 could fit into a character type, the compiler will not cross
type boundaries. The only exception to the smallest type rule are floating-point
constants, which are assumed to be doubles.

For most programs you will write, the compiler defaults are adequate. However,
you can specify precisely the type of numeric constant you want by using a suffix. For
floating-point types, if you follow the number with an F, the number is treated as a
float. If you follow it with an L, the number becomes a long double. For integer types,
the U suffix stands for unsigned and the L for long. Here are some examples:

Data type Constant examples
int 1123 21000 -234
long int 35000L —34L
unsigned int 10000U 987U 40000U
float 123.23F 4.34e-3F
double 123.23 1.0 -0.9876324
long double 1001.2L

Hexadecimal and Octal Constants

It is sometimes easier to use a number system based on 8 or 16 rather than 10 (our
standard decimal system). The number system based on 8 is called octal and uses the
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digits 0 through 7. In octal, the number 10 is the same as 8 in decimal. The base 16
number system is called hexadecimal and uses the digits 0 through 9 plus the letters

A through F, which stand for 10, 11, 12, 13, 14, and 15, respectively. For example, the
hexadecimal number 10 is 16 in decimal. Because these two number systems are

used frequently, C/C++ allows you to specify integer constants in hexadecimal or octal
instead of decimal. A hexadecimal constant must consist of a Ox followed by the
constant in hexadecimal form. An octal constant begins with a 0. Here are some
examples:

int hex = 0x80; /* 128 in decimal */
intoct=012; /*10in decimal */

String Constants

C/C++ supports one other type of constant: the string. A string is a set of characters
enclosed in double quotes. For example, "this is a test" is a string. You have seen
examples of strings in some of the printf() statements in the sample programs.
Although C allows you to define string constants, it does not formally have a string
data type. (C++ does define a string class, however.)

You must not confuse strings with characters. A single character constant is

non

enclosed in single quotes, as in 'a'. However, "a" is a string containing only one letter.

Backslash Character Constants

Enclosing character constants in single quotes works for most printing characters. A
few, however, such as the carriage return, are impossible to enter into a string from the
keyboard. For this reason, C/C++ include the special backslash character constants
shown in Table 2-2 so that you may easily enter these special characters as constants.
These are also referred to as escape sequences. You should use the backslash codes
instead of their ASCII equivalents to help ensure portability.

For example, the following program outputs a new line and a tab and then prints
the string This is a test.

#include <stdio.h>

int main(void)

{
printf("\n\tThis is a test.");

return O;

}
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Code Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\O Null

AR Backslash

\v Vertical tab

\a Alert

\? Question mark

\N Octal constant (where N is an octal constant)

\xN Hexadecimal constant (where N is a hexadecimal
constant)

Table 2-2. Backslash Codes

___| operators

C/C++ is very rich in built-in operators. In fact, it places more significance on
operators than do most other computer languages. There are four main classes
of operators: arithmetic, relational, logical, and bitwise. In addition, there are some
special operators for particular tasks.

The Assignment Operator

You can use the assignment operator within any valid expression. This is not the

case with most computer languages (including Pascal, BASIC, and FORTRAN), which
treat the assignment operator as a special case statement. The general form of the
assignment operator is

variable_name = expression;
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where an expression may be as simple as a single constant or as complex as you
require. C/C++ uses a single equal sign to indicate assignment (unlike Pascal or
Modula-2, which use the := construct). The target, or left part, of the assignment
must be a variable or a pointer, not a function or a constant.

Frequently in literature on C/C++ and in compiler error messages you will see
these two terms: lvalue and rvalue. Simply put, an lvalue is any object that can occur
on the left side of an assignment statement. For all practical purposes, "lvalue” means
"variable." The term rvalue refers to expressions on the right side of an assignment and
simply means the value of an expression.

Type Conversion in Assighments

When variables of one type are mixed with variables of another type, a type conversion
will occur. In an assignment statement, the type conversion rule is easy: The value of
the right side (expression side) of the assignment is converted to the type of the left
side (target variable), as illustrated here:

int x;
char ch;
float f;

void func(void)

{
ch=x; /[*linel*
x=f, [*line2*
f=ch; /[*line3*
f=x; [*line4d*

In line 1, the left high-order bits of the integer variable x are lopped off, leaving ch with
the lower 8 bits. If x were between 255 and 0, ch and x would have identical values.
Otherwise, the value of ch would reflect only the lower-order bits of x. In line 2, x will
receive the nonfractional part of f. In line 3, f will convert the 8-bit integer value stored
in ch to the same value in the floating-point format. This also happens in line 4, except
that f will convert an integer value into floating-point format.

When converting from integers to characters and long integers to integers, the
appropriate amount of high-order bits will be removed. In many 16-bit environments,
this means that 8 bits will be lost when going from an integer to a character and 16 bits
will be lost when going from a long integer to an integer. For 32-bit environments, 24
bits will be lost when converting from an integer to a character and 16 bits will be lost
when converting from an integer to a short integer.

Table 2-3 summarizes the assignment type conversions. Remember that the
conversion of an int to a float, or a float to a double, and so on, does not add any
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precision or accuracy. These kinds of conversions only change the form in which the
value is represented. In addition, some compilers always treat a char variable as
positive, no matter what value it has, when converting it to an int or float. Other
compilers treat char variable values greater than 127 as negative numbers when
converting. Generally speaking, you should use char variables for characters, and use
ints, short ints, or signed chars when needed to avoid possible portability problems.

To use Table 2-3 to make a conversion not shown, simply convert one type at a time
until you finish. For example, to convert from double to int, first convert from double
to float and then from float to int.

Multiple Assignments

C/C++ allows you to assign many variables the same value by using multiple
assignments in a single statement. For example, this program fragment assigns x, y,
and z the value 0:

X=y=z=0;

Target Type Expression Type Possible Info Loss
signed char char If value > 127, target is negative
char short int High-order 8 bits
char int (16 bits) High-order 8 bits
char int (32 bits) High-order 24 bits
char long int High-order 24 bits
short int int (16 bits) None
short int int (32 bits) High-order 16 bits
int (16 bits) long int High-order 16 bits
int (32 bits) long int None
int float Fractional part and possibly more
float double Precision, result rounded
double long double Precision, result rounded
Table 2-3. The Outcome of Common Type Conversions
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In professional programs, variables are frequently assigned common values using this
method.

Arithmetic Operators

Table 2-4 lists C/C++'s arithmetic operators. The operators +, —, ¥, and / work as they
do in most other computer languages. You can apply them to almost any built-in data
type. When you apply / to an integer or character, any remainder will be truncated.
For example, 5/2 will equal 2 in integer division.

The modulus operator % also works in C/C++ as it does in other languages,
yielding the remainder of an integer division. However, you cannot use it on
floating-point types. The following code fragment illustrates %:

intx,y;

X =5;
y=2

1

printf("%d ", x/y); /* will display 2 */
printf("%d ", x%y); /* will display 1, the remainder of
the integer division */

x=1;
y=2
printf("%d %d", x/y, x%y); /* will display 0 1 */
The last line prints a 0 and a 1 because 1/2 in integer division is 0 with a remainder of 1.
The unary minus multiplies its operand by —1. That is, any number preceded by a

minus sign switches its sign.

Increment and Decrement

C/C++ includes two useful operators not generally found in other computer
languages. These are the increment and decrement operators, ++ and — —. The operator
++ adds 1 to its operand, and — - subtracts one. In other words:

X =X+1;
is the same as
+4X

and
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X =Xx-1;
is the same as
X

Both the increment and decrement operators may either precede (prefix) or follow
(postfix) the operand. For example,

X = X+1;
can be written

++X;
or

X++:

There is, however, a difference between the prefix and postfix forms when you use
these operators in an expression. When an increment or decrement operator precedes
its operand, the increment or decrement operation is performed before obtaining the
value of the operand for use in the expression. If the operator follows its operand,

Operator Action

- Subtraction, also unary minus

+ Addition

* Multiplication
/ Division

Y% Modulus

- Decrement

++ Increment

Table 2-4. Arithmetic Operators
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the value of the operand is obtained before incrementing or decrementing it. For

instance,
x = 10;
y = ++X;

sets y to 11. However, if you write the code as

x = 10;
Y = X++,;

y is set to 10. Either way, x is set to 11; the difference is in when it happens.

Most C/C++ compilers produce very fast, efficient object code for increment and
decrement operations—code that is better than that generated by using the equivalent
assignment statement. For this reason, you should use the increment and decrement
operators when you can.

Here is the precedence of the arithmetic operators:

highest ++ ——
— (unary minus)
/%

lowest + -

Operators on the same level of precedence are evaluated by the compiler from left to
right. Of course, you can use parentheses to alter the order of evaluation. C/C++ treats
parentheses in the same way as virtually all other computer languages. Parentheses
force an operation, or set of operations, to have a higher level of precedence.

Relational and Logical Operators

In the term relational operator, relational refers to the relationships that values can
have with one another. In the term logical operator, logical refers to the ways these
relationships can be connected. Because the relational and logical operators often
work together, they are discussed together here.

The idea of true and false underlies the concepts of relational and logical operators.
In C, true is any value other than zero. False is zero. Expressions that use relational or
logical operators return O for false and 1 for true.

C++ fully supports the zero/non-zero concept of true and false. However, it also
defines the bool data type and the Boolean constants true and false. In C++, a 0 value
is automatically converted into false, and a non-zero value is automatically converted
into true. The reverse also applies: true converts to 1 and false converts to 0. In C++,
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the outcome of a relational or logical operation is true or false. But since this
automatically converts into 1 or 0, the distinction between C and C++ on this issue is
mostly academic.

Table 2-5 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1's and 0's.

p&&q pllg Ip

q
0 0
1 0
1 1
0 0

[ =)

= = O O B
O O ==

Both the relational and logical operators are lower in precedence than the
arithmetic operators. That is, an expression like 10 > 1+12 is evaluated as if it were
written 10 > (1+12). Of course, the result is false.

You can combine several operations together into one expression, as shown here:

10>5 && 1(10<9) | | 3<=4

Relational Operators

Operator Action

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal
== Equal

I= Not equal

Logical Operators

Operator Action
&& AND
|l OR

! NOT

Table 2-5. Relational and Logical Operators
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In this case, the result is true.

Although neither C nor C++ contain an exclusive OR (XOR) logical operator, you
can easily create a function that performs this task using the other logical operators.
The outcome of an XOR operation is true if and only if one operand (but not both) is
true. The following program contains the function xor( ), which returns the outcome of
an exclusive OR operation performed on its two arguments:

#include <stdio.h>
int xor(int a, int b);

int main(void)

{
printf("%d", xor(1, 0));
printf("%d", xor(1, 1));
printf("%d", xor(0, 1));
printf("%d", xor(0, 0));

return O;

}

[* Perform a logical XOR operation using the
two arguments. */
int xor(int a, int b)
{
return (a || b) && !(a && b);
}

The following table shows the relative precedence of the relational and logical
operators:

Highest !

Lowest [

As with arithmetic expressions, you can use parentheses to alter the natural order of
evaluation in a relational and/or logical expression. For example,
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V&&0110

is false. However, when you add parentheses to the same expression, as shown here,
the result is true:

'0&&0) 110
Remember, all relational and logical expressions produce either a true or false

result. Therefore, the following program fragment is not only correct, but will print
the number 1.

int x;

X =100;
printf("%d", x>10);

Bitwise Operators

Unlike many other languages, C/C++ supports a full complement of bitwise
operators. Since C was designed to take the place of assembly language for most
programming tasks, it needed to be able to support many operations that can be done
in assembler, including operations on bits. Bitwise operation refers to testing, setting, or
shifting the actual bits in a byte or word, which correspond to the char and int data
types and variants. You cannot use bitwise operations on float, double, long double,
void, bool, or other, more complex types. Table 2-6 lists the operators that apply to
bitwise operations. These operations are applied to the individual bits of the
operands.

Operator Action

& AND

| OR

A Exclusive OR (XOR)

~ One's complement (NOT)

Table 2-6. Bitwise Operators
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Operator Action
>> Shift right
<< Shift left

Table 2-6. Bitwise Operators (Continued)

The bitwise AND, OR, and NOT (one's complement) are governed by the same
truth table as their logical equivalents, except that they work bit by bit. The exclusive
OR has the truth table shown here:

p q p g
0 0 0
1 0 1
1 1 0
0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of the
operands is true; otherwise, it is false.
Bitwise operations most often find application in device drivers—such as modem
programs, disk file routines, and printer routines — because the bitwise operations
can be used to mask off certain bits, such as parity. (The parity bit confirms that the
rest of the bits in the byte are unchanged. It is usually the high-order bit in each byte.)
Think of the bitwise AND as a way to clear a bit. That is, any bit that is 0 in either
operand causes the corresponding bit in the outcome to be set to 0. For example, the
following function reads a character from the modem port and resets the parity bit to 0:

char get_char_from_modem(void)

{

char ch;

ch = read_modem(); /* get a character from the
modem port */
return(ch & 127);

}
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Parity is often indicated by the eighth bit, which is set to 0 by ANDing it with a
byte that has bits 1 through 7 set to 1 and bit 8 set to 0. The expression ch & 127 means
to AND together the bits in ch with the bits that make up the number 127. The net
result is that the eighth bit of ch is set to 0. In the following example, assume that ch
had received the character "A" and had the parity bit set:

Parity bit
11000001 ch containing an "A" with parity set
01111111 127 in binary
& bitwise AND
01000001 "A" without parity

The bitwise OR, as the reverse of AND, can be used to set a bit. Any bit that is set
to 1 in either operand causes the corresponding bit in the outcome to be set to 1. For
example, the following is 128 | 3:

10000000 128 in binary
00000011 3 in binary

i bitwise OR
10000011 result

An exclusive OR, usually abbreviated XOR, will set a bit on if and only if the bits
being compared are different. For example, 127 2120 is

01111111 127 in binary
01111000 120 in binary
n bitwise XOR
00000111 result

Remember, relational and logical operators always produce a result that is either
true or false, whereas the similar bitwise operations may produce any arbitrary value
in accordance with the specific operation. In other words, bitwise operations may
produce values other than 0 or 1, while logical operators will always evaluate to 0 or 1.

The bit-shift operators, >> and <<, move all bits in a variable to the right or left as
specified. The general form of the shift-right statement is
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variable >> number of bit positions
The general form of the shift-left statement is
variable << number of bit positions

As bits are shifted off one end, 0's are brought in the other end. (In the case of a
signed, negative integer, a right shift will cause a 1 to be brought in so that the sign bit
is preserved.) Remember, a shift is not a rotate. That is, the bits shifted off one end do
not come back around to the other. The bits shifted off are lost.

Bit-shift operations can be very useful when you are decoding input from an
external device, like a D/A converter, and reading status information. The bitwise shift
operators can also quickly multiply and divide integers. A shift right effectively divides
a number by 2 and a shift left multiplies it by 2, as shown in Table 2-7. The following
program illustrates the shift operators:

[* A bit shift example. */
#include <stdio.h>

int main(void)

{
unsigned int i;
int j;

i=1,;

[* left shifts */
for(j=0; j<4; j++) {
i=i<<1; /*left shiftiby 1, which
is same as a multiply by 2 */
printf("Left shift %d: %d\n", j, i);
}

[* right shifts */
for(j=0; j<4; j++) {
i=i>>1; /*right shifti by 1, which
is same as a division by 2 */
printf("Right shift %d: %d\n", j, i);
}

return O;
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unsigned char x; x as each statement value of x
executes
xX=7 00000111 7
X = x<<1; 00001110 14
X = x<<3; 01110000 112
X = X<<2; 11000000 192
X =x>>1; 01100000 96
X = X>>2; 00011000 24

*Each left shift multiplies by 2. Notice that information has been lost after x<<2 because
a bit was shifted off the end.

**Each right shift divides by 2. Notice that subsequent divisions do not bring back any
lost bits.

Table 2-7. Multiplication and Division with Shift Operators

The one's complement operator, ~, reverses the state of each bit in its operand. That
is, all 1's are set to 0, and all 0's are set to 1.

The bitwise operators are often used in cipher routines. If you want to make a disk
file appear unreadable, perform some bitwise manipulations on it. One of the simplest
methods is to complement each byte by using the one's complement to reverse each bit
in the byte, as is shown here:

Original byte 00101100
After 1st complement 11010011 > Same
After 2nd complement 00101100

Notice that a sequence of two complements in a row always produces the original
number. Thus, the first complement represents the coded version of that byte. The
second complement decodes the byte to its original value.

You could use the encode() function shown here to encode a character.

[* A simple cipher function. */
char encode(char ch)

{
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return(~ch); /* complement it */

}
Of course, a file encoded using encode() would be very easy to crack!

The ? Operator

C/C++ contains a very powerful and convenient operator that replaces certain
statements of the if-then-else form. The ternary operator ? takes the general form

Expl ? Exp2 : Exp3;

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated
and becomes the value of the expression. If Expl1 is false, Exp3 is evaluated and its
value becomes the value of the expression. For example, in

x = 10;
y =x>9? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value
200. The same code written using the if-else statement is

x = 10;

if(x>9) y = 100;
else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to the other
conditional statements.

The & and * Pointer Operators

A pointer is the memory address of some object. A pointer variable is a variable that is
specifically declared to hold a pointer to an object of its specified type. Knowing a
variable's address can be of great help in certain types of routines. However, pointers
have three main functions in C/C++. They can provide a fast means of referencing
array elements. They allow functions to modify their calling parameters. Lastly,

they support linked lists and other dynamic data structures. Chapter 5 is devoted
exclusively to pointers. However, this chapter briefly covers the two operators that
are used to manipulate pointers.
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The first pointer operator is &, a unary operator that returns the memory address of
its operand. (Remember, a unary operator only requires one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's
internal location of the variable. It has nothing to do with the value of count. You can
think of & as meaning "the address of." Therefore, the preceding assignment statement
means "m receives the address of count.”

To better understand this assignment, assume that the variable count is at memory
location 2000. Also assume that count has a value of 100. Then, after the previous
assignment, m will have the value 2000.

The second pointer operator is *, which is the complement of &. The * is a unary
operator that returns the value of the variable located at the address that follows it. For
example, if m contains the memory address of the variable count,

q="m;

places the value of count into q. Now q has the value 100 because 100 is stored at
location 2000, the memory address that was stored in m. Think of * as meaning
"at address." In this case, you could read the statement as "q receives the value at
address m."

Unfortunately, the multiplication symbol and the "at address" symbol are the
same, and the symbol for the bitwise AND and the "address of" symbol are the same.
These operators have no relationship to each other. Both & and * have a higher
precedence than all other arithmetic operators except the unary minus, with which
they share equal precedence.

Variables that will hold memory addresses (i.e., pointers), must be declared by
putting * in front of the variable name. This indicates to the compiler that it will hold a
pointer. For example, to declare ch as a pointer to a character, write

char *ch;

Here, ch is not a character but a pointer to a character—there is a big difference. The
type of data that a pointer points to, in this case char, is called the base type of the
pointer. However, the pointer variable itself is a variable that holds the address to an
object of the base type. Thus, a character pointer (or any pointer) is of sufficient size

to hold an address as defined by the architecture of the computer that it is running on.
However, remember that a pointer should only point to data that is of that pointer's
base type.
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You can mix both pointer and nonpointer variables in the same declaration
statement. For example,

int x, *y, count;

declares x and count as integer types and y as a pointer to an integer type.
The following program uses * and & operators to put the value 10 into a variable
called target. As expected, this program displays the value 10 on the screen.

#include <stdio.h>

int main(void)

{
int target, source;
int *m;

source = 10;
m = &source;
target = *m;

printf("%d", target);

return O;

The Compile-Time Operator sizeof

sizeof is a unary compile-time operator that returns the length, in bytes, of the variable
or parenthesized type-specifier that it precedes. For example, assuming that integers
are 4 bytes and doubles are 8 bytes,

double f;

printf("%d ", sizeof f);
printf("%d", sizeof(int));

will display 8 4.

Remember, to compute the size of a type, you must enclose the type name in
parentheses. This is not necessary for variable names, although there is no harm done
ifyoudoso.
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C/C++ defines (using typedef) a special type called size_t, which corresponds
loosely to an unsigned integer. Technically, the value returned by sizeof is of type
size_t. For all practical purposes, however, you can think of it (and use it) as if it were
an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the
built-in data types. For example, imagine a database program that needs to store six
integer values per record. If you want to port the database program to a variety of
computers, you must not assume the size of an integer, but must determine its actual
length using sizeof. This being the case, you could use the following routine to write a
record to a disk file:

[* Write 6 integers to a disk file. */
void put_rec(int rec[6], FILE *fp)
{

int len;

len = fwrite(rec, sizeof(int)*6, 1, fp);
if(len != 1) printf("Write Error");

Coded as shown, put_rec() compiles and runs correctly in any environment, including
those that use 16- and 32-bit integers.

One final point: sizeof is evaluated at compile time, and the value it produces is
treated as a constant within your program.

The Comma Operator

The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
becomes the value of the total comma-separated expression. For example,

X =(y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.
Essentially, the comma causes a sequence of operations. When you use it on the
right side of an assignment statement, the value assigned is the value of the last
expression of the comma-separated list.
The comma operator has somewhat the same meaning as the word "and" in normal
English as used in the phrase "do this and this and this."
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The Dot (.) and Arrow (—>) Operators

In C, the . (dot) and the —>(arrow) operators access individual elements of structures
and unions. Structures and unions are compound (also called aggregate) data types that
may be referenced under a single name (see Chapter 7). In C++, the dot and arrow
operators are also used to access the members of a class.

The dot operator is used when working with a structure or union directly. The
arrow operator is used when a pointer to a structure or union is used. For example,
given the fragment

struct employee

{

char name[80];

int age;

float wage;
}emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of
structure variable emp:

emp.wage = 123.23;
However, the same assignment using a pointer to emp would be

p->wage = 123.23;

The [ ] and ( ) Operators

Parentheses are operators that increase the precedence of the operations inside them.
Square brackets perform array indexing (arrays are discussed fully in Chapter 4).
Given an array, the expression within square brackets provides an index into that
array. For example,

#include <stdio.h>
char s[80];

int main(void)

{
s[3] = 'X;
printf("%c", s[3]);
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return O;

}

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of
array s, and then prints that element.

Precedence Summary

Table 2-8 lists the precedence of all operators defined by C. Note that all operators,
except the unary operators and ?, associate from left to right. The unary operators
(*, &, ) and ? associate from right to left.

Highest Ol1—>.
!~ ++ ——(type) * & sizeof
*/ %
-
<< >>
<<=>>=

&

A

Lowest p

Table 2-8. The Precedence of C Operators
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| C++ defines a few additional operators, which are discussed at length in Part Two.
| Expressions

Operators, constants, and variables are the constituents of expressions. An expression in
C/C++ is any valid combination of these elements. Because most expressions tend to
follow the general rules of algebra, they are often taken for granted. However, a few
aspects of expressions relate specifically to C and C++.

Order of Evaluation

Neither C nor C++ specifies the order in which the subexpressions of an expression are
evaluated. This leaves the compiler free to rearrange an expression to produce more
optimal code. However, it also means that your code should never rely upon the order
in which subexpressions are evaluated. For example, the expression

x = f1() + f2();

does not ensure that £f1() will be called before £2().

Type Conversion in Expressions

When constants and variables of different types are mixed in an expression, they are
all converted to the same type. The compiler converts all operands up to the type of
the largest operand, which is called type promotion. First, all char and short int values
are automatically elevated to int. (This process is called integral promotion.) Once this
step has been completed, all other conversions are done operation by operation, as
described in the following type conversion algorithm:

IF an operand is a long double

THEN the second is converted to long double
ELSE IF an operand is a double

THEN the second is converted to double

ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long

THEN the second is converted to long

ELSE IF an operand is unsigned int

THEN the second is converted to unsigned int
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char ch;
int i;
float £;
double d;
result=(ch/1) +  (fd) - (f+i);
| |
int double float

int double float

d01|1ble

Figure 2-2. A type conversion example

There is one additional special case: If one operand is long and the other is
unsigned int, and if the value of the unsigned int cannot be represented by a long,
both operands are converted to unsigned long.

Once these conversion rules have been applied, each pair of operands is of the
same type and the result of each operation is the same as the type of both operands.
For example, consider the type conversions that occur in Figure 2-2. First, the
character ch is converted to an integer. Then the outcome of ch/i is converted to a
double because f*d is double. The outcome of f+i is float, because f is a float. The

final result is double.

Casts

You can force an expression to be of a specific type by using a cast. The general form of
a cast is

(type) expression

where type is a valid data type. For example, to make sure that the expression x/2
evaluates to type float, write

(float) x/2
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Casts are technically operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

Although casts are not usually used a great deal in programming, they can be very
useful when needed. For example, suppose you wish to use an integer for loop control,
yet to perform computation on it requires a fractional part, as in the following
program:

#include <stdio.h>
int main(void) /* print i and i/2 with fractions */
{

inti;

for(i=1; i<=100; ++i)
printf("%d / 2 is: %f\n", i, (float) i /2);

return O;

Without the cast (float), only an integer division would have been performed. The cast
ensures that the fractional part of the answer is displayed.

Note | C++ adds four new casting operators, such as const_cast and static_cast. These
: operators are discussed in Part Two.

Spacing and Parentheses

You can add tabs and spaces to expressions to make them easier to read. For example,
the following two expressions are the same:

x=10/y~(127/x);

x=10/y ~(127/x);
Redundant or additional parentheses do not cause errors or slow down the execution
of an expression. You should use parentheses to clarify the exact order of evaluation,

both for yourself and for others. For example, which of the following two expressions
is easier to read?

X = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127,
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Shorthand Assignhments

There is a variation on the assignment statement, sometimes referred to as a shorthand
assignment, that simplifies the coding of a certain type of assignment operation. For
example,

X = X+10;
can be written as
X +=10;

The operator += tells the compiler to assign to x the value of x plus 10.
This shorthand works for all the binary operators (those that require two
operands). In general, statements like:

var = var operator expression
can be rewritten as

var operator = expression
For another example,

X = Xx-100;
is the same as

X -=100;

Shorthand notation is widely used in professionally written C/C++ programs; you
should become familiar with it.
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part of your program that can be executed. That is, a statement specifies an

T his chapter discusses the statement. In the most general sense, a statement is a
action. C and C++ categorize statements into these groups:

Selection
Iteration
Jump
Label
Expression
Block

Included in the selection statements are if and switch. (The term conditional
statement is often used in place of "selection statement.") The iteration statements are
while, for, and do-while. These are also commonly called loop statements. The jump
statements are break, continue, goto, and return. The label statements include the case
and default statements (discussed along with the switch statement) and the label
statement (discussed with goto). Expression statements are statements composed of a
valid expression. Block statements are simply blocks of code. (Remember, a block
begins with a { and ends with a }.) Block statements are also referred to as
compound statements.

| C++ adds two additional statement types: the try block (used by exception handling)
and the declaration statement. These are discussed in Part Two.

Since many statements rely upon the outcome of some conditional test, let's begin
by reviewing the concepts of true and false.

| True and False in C and C++

Many C/C++ statements rely upon a conditional expression that determines what
course of action is to be taken. A conditional expression evaluates to either a true or
false value. In C, a true value is any nonzero value, including negative numbers. A
false value is 0. This approach to true and false allows a wide range of routines to be
coded extremely efficiently.

C++ fully supports the zero/nonzero definition of true and false just described. But
C++ also defines a Boolean data type called bool, which can have only the values true
and false. As explained in Chapter 2, in C++, a 0 value is automatically converted into
false and a nonzero value is automatically converted into true. The reverse also
applies: true converts to 1 and false converts to 0. In C++, the expression that controls a
conditional statement is technically of type bool. But since any nonzero value converts
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to true and any zero value converts to false, there is no practical difference between C
and C++ on this point.

Selection Statements

C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.

The general form of the if statement is

if (expression) statement;
else statement;

where a statement may consist of a single statement, a block of statements, or nothing
(in the case of empty statements). The else clause is optional.

If expression evaluates to true (anything other than 0), the statement or block that
forms the target of if is executed; otherwise, the statement or block that is the target of
else will be executed, if it exists. Remember, only the code associated with if or the
code associated with else executes, never both.

In C, the conditional statement controlling if must produce a scalar result. A scalar
is either an integer, character, pointer, or floating-point type. In C++, it may also be of
type bool. It is rare to use a floating-point number to control a conditional statement
because this slows execution time considerably. (It takes several instructions to perform
a floating-point operation. It takes relatively few instructions to perform an integer or
character operation.)

The following program contains an example of if. The program plays a very simple
version of the "guess the magic number" game. It prints the message ** Right ** when
the player guesses the magic number. It generates the magic number using the
standard random number generator rand( ), which returns an arbitrary number
between 0 and RAND_MAX (which defines an integer value that is 32,767 or larger).
rand() requires the header file stdlib.h. (A C++ program may also use the new-style
header <cstdlib>.)

/* Magic number program #1. */
#include <stdio.h>
#include <stdlib.h>

int main(void)

{

int magic; /* magic number */
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Taking the magic number program further, the next version illustrates the use of
the else statement to print a message in response to the wrong number.

int guess; /* user's guess */
magic = rand(); /* generate the magic number */

printf("Guess the magic number: *);
scanf("%d", &guess);

if(guess == magic) printf("** Right **");

return O;

/* Magic number program #2. */
#include <stdio.h>
#include <stdlib.h>

int main(void)

{

int magic; /* magic number */
int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) printf("** Right **");
else printf("Wrong");

return O;

Nested ifs

A nested if is an if that is the target of another if or else. Nested ifs are very common
in programming. In a nested if, an else statement always refers to the nearest if
statement that is within the same block as the else and that is not already associated

with an else. For example,
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if(i)
{
if(j) statement 1;
if(k) statement 2; /* this if */
else statement 3; /* is associated with this else */

}

else statement 4; /* associated with if(i) */

As noted, the final else is not associated with if(j) because it is not in the same block.
Rather, the final else is associated with if(i). Also, the inner else is associated with if(k),
which is the nearest if.

Standard C specifies that at least 15 levels of nesting must be supported. In practice,
most compilers allow substantially more. More importantly, Standard C++ suggests
that at least 256 levels of nested ifs be allowed in a C++ program. However, nesting
beyond a few levels is seldom necessary, and excessive nesting can quickly confuse the
meaning of an algorithm.

You can use a nested if to further improve the magic number program by
providing the player with feedback about a wrong guess.

/* Magic number program #3. */
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int magic; /* magic number */
int guess; /* user's guess */

magic = rand(); /* get a random number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if (Quess == magic) {

printf("** Right **");

printf(* %d is the magic number\n", magic);
}
else {

printf("Wrong, ");

if(guess > magic) printf("too high\n");

else printf("too low\n");

}
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return O;

The if-else-if Ladder

A common programming construct is the if-else-if ladder, sometimes called the if-else-if
staircase because of its appearance. Its general form is

if (expression) statement;
else
if (expression) statement;
else
if (expression) statement;

else statement;

The conditions are evaluated from the top downward. As soon as a true condition is
found, the statement associated with it is executed and the rest of the ladder is
bypassed. If none of the conditions are true, the final else is executed. That is, if all
other conditional tests fail, the last else statement is performed. If the final else is not
present, no action takes place if all other conditions are false.

Although the indentation of the preceding if-else-if ladder is technically correct, it
can lead to overly deep indentation. For this reason, the if-else-if ladder is generally
indented like this:

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

else
statement;

Using an if-else-if ladder, the magic number program becomes

/* Magic number program #4. */
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#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int magic; /* magic number */
int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** );
printf("%d is the magic number", magic);
}
else if(guess > magic)
printf("Wrong, too high");
else printf("Wrong, too low");

return O;

The ? Alternative

You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;

However, the target of both if and else must be a single expression—not another
statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Expl ? Exp2 : Exp3

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined as follows: Exp1 is evaluated. If it is true,
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated and its value becomes the value of the expression. For example,
consider
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x =10;
y =x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than 9, y would have
received the value 200. The same code written with the if-else statement would be

x =10;
if(x>9) y = 100;
else y = 200;

The following program uses the ? operator to square an integer value entered by
the user. However, this program preserves the sign (10 squared is 100 and —10 squared
is —100).

#include <stdio.h>
int main(void)
{

intisqrd, i;

printf("Enter a number: ");
scanf("%d", &i);

isqrd =i>0 ? i*i : -(i*i);
printf("%d squared is %d", i, isqrd);

return O;

The use of the ? operator to replace if-else statements is not restricted to
assignments only. Remember, all functions (except those declared as void) may return
a value. Thus, you can use one or more function calls in a ? expression. When the
function's name is encountered, the function is executed so that its return value may be
determined. Therefore, you can execute one or more function calls using the ? operator
by placing the calls in the expressions that form the ?'s operands. Here is an example.

#include <stdio.h>

int f1(int n);
int f2(void);
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int main(void)

{
intt;

printf("Enter a number: ");
scanf("%d", &t);

[* print proper message */
t ? f1(t) + f2() : printf("zero entered.\n");

return O;

}

int f1(int n)

{
printf("%d ", n);
return O;

}

int f2(void)

{
printf("entered.\n");
return O;

Entering a 0 in this example calls the printf() function and displays the message zero
entered. If you enter any other number, both f1() and f2() execute. Note that the value
of the ? expression is discarded in this example. You don't need to assign it to anything.
A word of warning: Some C++ compilers rearrange the order of evaluation of an
expression in an attempt to optimize the object code. This could cause functions that
form the operands of the ? operator to execute in an unintended sequence.
Using the ? operator, you can rewrite the magic number program yet again.

/* Magic number program #5. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
int magic;
int guess;
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magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** );

printf("%d is the magic number", magic);
}

else
guess > magic ? printf("High") : printf("Low");

return O;

Here, the ? operator displays the proper message based on the outcome of the test
guess > magic.

The Conditional Expression

Sometimes newcomers to C/C++ are confused by the fact that you can use any valid
expression to control the if or the ? operator. That is, you are not restricted to
expressions involving the relational and logical operators (as is the case in languages
like BASIC or Pascal). The expression must simply evaluate to either a true or false
(zero or nonzero) value. For example, the following program reads two integers from
the keyboard and displays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

/* Divide the first number by the second. */
#include <stdio.h>

int main(void)

{

inta, b;

printf("Enter two numbers: ");
scanf("%d%d", &a, &b);

if(b) printf("%d\n", a/b);
else printf("Cannot divide by zero.\n");

return O;
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This approach works because if b is 0, the condition controlling the if is false and the
else executes. Otherwise, the condition is true (nonzero) and the division takes place.
One other point: Writing the if statement as shown here

if(b 1= 0) printf("%d\n", a/b);

is redundant, potentially inefficient, and is considered bad style. Since the value of b
alone is sufficient to control the if, there is no need to test it against 0.

switch

C/C++ has a built-in multiple-branch selection statement, called switch, which
successively tests the value of an expression against a list of integer or character
constants. When a match is found, the statements associated with that constant are
executed. The general form of the switch statement is

switch (expression) {

case constant1:
statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

default
statement sequence

The expression must evaluate to a character or integer value. Floating-point expressions,
for example, are not allowed. The value of expression is tested, in order, against the
values of the constants specified in the case statements. When a match is found, the
statement sequence associated with that case is executed until the break statement or
the end of the switch statement is reached. The default statement is executed if no
matches are found. The default is optional and, if it is not present, no action takes place
if all matches fail.

Standard C specifies that a switch can have at least 257 case statements. Standard
C++ recommends that at least 16,384 case statements be supported! In practice, you
will want to limit the number of case statements to a smaller amount for efficiency.
Although case is a label statement, it cannot exist by itself, outside of a switch.
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The break statement is one of C/C++'s jump statements. You can use it in loops as
well as in the switch statement (see the section "[teration Statements"). When break is
encountered in a switch, program execution "jumps" to the line of code following the
switch statement.

There are three important things to know about the switch statement:

B The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of relational or logical expression.

m No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants that
are the same.

m If character constants are used in the switch statement, they are automatically
converted to integers.

The switch statement is often used to process keyboard commands, such as menu
selection. As shown here, the function menu() displays a menu for a spelling-checker
program and calls the proper procedures:

void menu(void)

{

char ch;

printf("1. Check Spelling\n™);

printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf("Strike Any Other Key to Skip\n");
printf(*  Enter your choice: ");

ch = getchar(); /* read the selection from
the keyboard */

switch(ch) {
case '1"
check_spelling();
break;
case 2"
correct_errors();
break;
case '3"
display_errors();
break;
default :
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printf("No option selected");

Technically, the break statements inside the switch statement are optional. They
terminate the statement sequence associated with each constant. If the break statement
is omitted, execution will continue on into the next case's statements until either a
break or the end of the switch is reached. For example, the following function uses the
"drop through" nature of the cases to simplify the code for a device-driver input

handler:

/* Process a value */
void inp_handler(int i)

{
int flag;

flag = -1;

switch(i) {
case 1: /* These cases have common */
case 2: /[* statement sequences. */
case 3:
flag = 0;
break;
case 4:
flag = 1;
case 5:
error(flag);
break;
default:
process(i);

This example illustrates two aspects of switch. First, you can have case statements
that have no statement sequence associated with them. When this occurs, execution
simply drops through to the next case. In this example, the first three cases all execute

the same statements, which are

flag = 0;
break;
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Second, execution of one statement sequence continues into the next case if no
break statement is present. If i matches 4, flag is set to 1 and, because there is no break
statement at the end of that case, execution continues and the call to error(flag) is
executed. If i had matched 5, error(flag) would have been called with a flag value of -1
(rather than 1).

The fact that cases can run together when no break is present prevents the
unnecessary duplication of statements, resulting in more efficient code.

Nested switch Statements

You can have a switch as part of the statement sequence of an outer switch. Even if the
case constants of the inner and outer switch contain common values, no conflicts arise.
For example, the following code fragment is perfectly acceptable:

switch(x) {
case 1:
switch(y) {
case 0: printf("Divide by zero error.\n");
break;
case 1: process(x,y);
}
break;
case 2:

___| Iteration Statements

In C/C++, and all other modern programming languages, iteration statements (also
called loops) allow a set of instructions to be executed repeatedly until a certain
condition is reached. This condition may be predefined (as in the for loop), or
open-ended (as in the while and do-while loops).

The for Loop

The general design of the for loop is reflected in some form or another in all procedural
programming languages. However, in C/C++, it provides unexpected flexibility and
power.

The general form of the for statement is

for(initialization; condition; increment) statement;

The for loop allows many variations, but its most common form works like this. The
initialization is an assignment statement that is used to set the loop control variable. The
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condition is a relational expression that determines when the loop exits. The increment
defines how the loop control variable changes each time the loop is repeated. You must
separate these three major sections by semicolons. The for loop continues to execute as
long as the condition is true. Once the condition becomes false, program execution
resumes on the statement following the for.

In the following program, a for loop is used to print the numbers 1 through 100 on
the screen:

#include <stdio.h>

int main(void)
{

int x;
for(x=1; x <= 100; x++) printf("%d ", X);

return O;

}

In the loop, x is initially set to 1 and then compared with 100. Since x is less than 100,

printf() is called and the loop iterates. This causes x to be increased by 1 and again

tested to see if it is still less than or equal to 100. If it is, printf() is called. This process

repeats until x is greater than 100, at which point the loop terminates. In this example, x

is the loop control variable, which is changed and checked each time the loop repeats.
The following example is a for loop that iterates multiple statements:

for(x=100; x != 65; x -=5) {

Z = X*X;

printf("The square of %d, %f", X, z);
}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that
the loop is negative running: x is initialized to 100 and 5 is subtracted from it each time
the loop repeats.

In for loops, the conditional test is always performed at the top of the loop. This
means that the code inside the loop may not be executed at all if the condition is false
to begin with. For example, in

X = 10;
for(y=10; y!=x; ++y) printf("%d", y);
printf("%d", y); /* this is the only printf()
statement that will execute */
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the loop will never execute because x and y are equal when the loop is entered. Because
this causes the conditional expression to evaluate to false, neither the body of the loop
nor the increment portion of the loop executes. Hence, y still has the value 10, and the
only output produced by the fragment is the number 10 printed once on the screen.

for Loop Variations

The previous discussion described the most common form of the for loop. However,
several variations of the for are allowed that increase its power, flexibility, and
applicability to certain programming situations.

One of the most common variations uses the comma operator to allow two or more
variables to control the loop. (Remember, you use the comma operator to string
together a number of expressions in a "do this and this" fashion. See Chapter 2.) For
example, the variables x and y control the following loop, and both are initialized
inside the for statement:

for(x=0, y=0; x+y<10; ++x) {
y = getchar();
y =y -'0"; /* subtract the ASCII code for 0
fromy */

Commas separate the two initialization statements. Each time the loop repeats, x is
incremented and y's value is set by keyboard input. Both x and y must be at the correct
value for the loop to terminate. Even though y's value is set by keyboard input, y must
be initialized to 0 so that its value is defined before the first evaluation of the
conditional expression. (If y were not defined, it could by chance contain the value 10,
making the conditional test false and preventing the loop from executing.)

The converge() function, shown next, demonstrates multiple loop control variables
in action. The converge() function copies the contents of one string into another by
moving characters from both ends, converging in the middle.

/* Demonstrate multiple loop control variables. */
#include <stdio.h>
#include <string.h>

void converge(char *targ, char *src);
int main(void)

{
char target[80] = "XXXXXXXXXXXXXX XXX XXX XXX XX XXXX";



converge(target, "This is a test of converge().");
printf("Final string: %s\n", target);

return O;

}

[* This function copies one string into another.
It copies characters to both the ends,
converging at the middle. */

void converge(char *targ, char *src)

{

inti, j;

printf("%s\n", targ);

for(i=0, j=strlen(src); i<=j; i++, j--) {
targ[i] = srcfi];
targ(j] = srcfi];
printf("%s\n", targ);

Here is the output produced by the program.

) 9.0.0.9.0.9.9.0.9.9.9.9.9.9.9.9.0.9.9.9.9.9.0.99.9.9.9¢
1,9,9.9,9,0.9,9,9.9,9,9.9,9,9,.9.9.9.0.9.9,0.9.9,0.9,0,0.¢
ThXXXXXXXXXXXKXXKXXKXXKXXKXX.
THiIXXXXXXXXXXXXXXXXXXXXXXXX).
ThisXXXX XXX XXX XXX XXX XXXXXX().
This XXXXXXXXXXXXXXXXXXXXe().

This iIXXXXXXXXXXXXXXXXXXge().

This ISXXXXXXXXXXXXXXXXrge().

This is XXXXXXXXXXXXXXerge().

This is aXXXXXXXXXXXXverge().

This is a XXXXXXXXXXnverge().

This is a tXXXXXXXXonverge().

This is a teXXXXXXconverge().

This is a tesXXXX converge().

This is a testXXf converge().

This is a test of converge().

Final string: This is a test of converge().

Chapter 3:
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In converge( ), the for loop uses two loop control variables, i and j, to index the
string from opposite ends. As the loop iterates, i is increased and j is decreased. The
loop stops when i is greater than j, thus ensuring that all characters are copied.

The conditional expression does not have to involve testing the loop control
variable against some target value. In fact, the condition may be any relational or
logical statement. This means that you can test for several possible terminating
conditions.

For example, you could use the following function to log a user onto a remote
system. The user has three tries to enter the password. The loop terminates when the
three tries are used up or the user enters the correct password.

void sign_on(void)
{

char str[20];

int x;

for(x=0; x<3 && strcmp(str, "password"); ++x) {
printf("Enter password please:");
gets(str);

}

if(x==3) return;
/* else log user in ... */

This function uses stremp( ), the standard library function that compares two strings
and returns 0 if they match.

Remember, each of the three sections of the for loop may consist of any valid
expression. The expressions need not actually have anything to do with what the
sections are generally used for. With this in mind, consider the following example:

#include <stdio.h>

int sqrnum(int num);
int readnum(void);
int prompt(void);

int main(void)
{
intt;

for(prompt(); t=readnum(); prompt())
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sgrnum(t);

return O;

}

int prompt(void)

{
printf("Enter a number: ");
return O;

}

int readnum(void)

{
intt;

scanf("%d", &t);
return t;

}

int sgrnum(int num)

{
printf("%d\n", num*num);
return num*num;

Look closely at the for loop in main(). Notice that each part of the for loop is
composed of function calls that prompt the user and read a number entered from the
keyboard. If the number entered is 0, the loop terminates because the conditional
expression will be false. Otherwise, the number is squared. Thus, this for loop uses the
initialization and increment portions in a nontraditional but completely valid sense.
Another interesting trait of the for loop is that pieces of the loop definition need not
be there. In fact, there need not be an expression present for any of the sections—the
expressions are optional. For example, this loop will run until the user enters 123:

for(x=0; x!=123; ) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. This means that each
time the loop repeats, x is tested to see if it equals 123, but no further action takes place.
If you type 123 at the keyboard, however, the loop condition becomes false and the
loop terminates.
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The initialization of the loop control variable can occur outside the for statement.
This most frequently happens when the initial condition of the loop control variable
must be computed by some complex means as in this example:

gets(s); /* read a string into s */
if(*s) x = strlen(s); /* get the string's length */
else x = 10;

for( ; x<10; ) {
printf("%d", x);
+4X;

The initialization section has been left blank and x is initialized before the loop is
entered.

The Infinite Loop

Although you can use any loop statement to create an infinite loop, for is traditionally
used for this purpose. Since none of the three expressions that form the for loop are
required, you can make an endless loop by leaving the conditional expression empty:

for(; ;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. You may have an
initialization and increment expression, but C++ programmers more commonly use the
for(;;) construct to signify an infinite loop.

Actually, the for(;;) construct does not guarantee an infinite loop because a break
statement, encountered anywhere inside the body of a loop, causes immediate
termination. (break is discussed in detail later in this chapter.) Program control then
resumes at the code following the loop, as shown here:

ch =0
for(;;){
ch = getchar(); /* get a character */

if(ch=="A") break; /* exit the loop */
}

printf("you typed an A");

This loop will run until the user types an A at the keyboard.
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for Loops with No Bodies

A statement may be empty. This means that the body of the for loop (or any other loop)
may also be empty. You can use this fact to improve the efficiency of certain algorithms
and to create time delay loops.

Removing spaces from an input stream is a common programming task. For
example, a database program may allow a query such as "show all balances less than
400." The database needs to have each word fed to it separately, without leading
spaces. That is, the database input processor recognizes "show" but not " show". The
following loop shows one way to accomplish this. It advances past leading spaces in
the string pointed to by str.

for(; *str==""; str++) ;

As you can see, this loop has no body—and no need for one either.
Time delay loops are often used in programs. The following code shows how to
create one by using for:

for(t=0; t<SOME_VALUE; t++) ;

The while Loop

The second loop available in C/C++ is the while loop. Its general form is
while(condition) statement;

where statement is either an empty statement, a single statement, or a block of
statements. The condition may be any expression, and true is any nonzero value. The
loop iterates while the condition is true. When the condition becomes false, program
control passes to the line of code immediately following the loop.

The following example shows a keyboard input routine that simply loops until the
user types A:

char wait_for_char(void)

{

char ch;

ch ="0"; /*initialize ch */
while(ch !="A") ch = getchar();
return ch;

}



C++: The Complete Reference

First, ch is initialized to null. As a local variable, its value is not known when
wait_for_char() is executed. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute if the condition is false to begin with.
This feature may eliminate the need to perform a separate conditional test before the
loop. The pad() function provides a good illustration of this. It adds spaces to the end
of a string to fill the string to a predefined length. If the string is already at the desired
length, no spaces are added.

#include <stdio.h>
#include <string.h>

void pad(char *s, int length);

int main(void)

{
char str[80];

strepy(str, "this is a test");
pad(str, 40);
printf("%d", strlen(str));

return O;

}

/* Add spaces to the end of a string. */
void pad(char *s, int length)
{

intl;
| = strlen(s); /* find out how long it is */

while(I<length) {
s[l] =""; /* insert a space */
++;
}
s[l]="\0"; /* strings need to be
terminated in a null */
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The two arguments of pad() are s, a pointer to the string to lengthen, and length, the
number of characters that s should have. If the length of string s is already equal to or
greater than length, the code inside the while loop does not execute. If s is shorter than
length, pad() adds the required number of spaces. The strlen() function, part of the
standard library, returns the length of the string.

If several separate conditions need to terminate a while loop, a single variable
commonly forms the conditional expression. The value of this variable is set at various
points throughout the loop. In this example,

void funcl(void)

{

int working;
working = 1; /* i.e., true */

while(working) {
working = process1();
if(working)
working = process2();
if(working)
working = process3();
}
}

any of the three routines may return false and cause the loop to exit.
There need not be any statements in the body of the while loop. For example,

while((ch=getchar()) |="A") ;

will simply loop until the user types A. If you feel uncomfortable putting the
assignment inside the while conditional expression, remember that the equal sign is
just an operator that evaluates to the value of the right-hand operand.

The do-while Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the
do-while loop checks its condition at the bottom of the loop. This means that a
do-while loop always executes at least once. The general form of the do-while loop is

dof
statement,
} while(condition);
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Although the curly braces are not necessary when only one statement is present, they
are usually used to avoid confusion (to you, not the compiler) with the while. The
do-while loop iterates until condition becomes false.

The following do-while loop will read numbers from the keyboard until it finds a
number less than or equal to 100.

do {
scanf("%d", &num);
} while(num > 100);

Perhaps the most common use of the do-while loop is in a menu selection function.
When the user enters a valid response, it is returned as the value of the function.
Invalid responses cause a reprompt. The following code shows an improved version of
the spelling-checker menu developed earlier in this chapter:

void menu(void)

{

char ch;

printf("1. Check Spelling\n™);
printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n™);
printf("  Enter your choice: ");

do {
ch = getchar(); /* read the selection from
the keyboard */
switch(ch) {
case 'l"
check_spelling();
break;
case 2"
correct_errors();
break;
case '3"
display_errors();
break;
}
} while(ch!="1' && ch!="2' && ch!="3");
}
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Here, the do-while loop is a good choice because you will always want a menu
function to execute at least once. After the options have been displayed, the program
will loop until a valid option is selected.

___ | Declaring Variables within Selection and
Iteration Statements

In C++ (but not C), it is possible to declare a variable within the conditional expression
of an if or switch, within the conditional expression of a while loop, or within the
initialization portion of a for loop. A variable declared in one of these places has its
scope limited to the block of code controlled by that statement. For example, a variable
declared within a for loop will be local to that loop.

Here is an example that declares a variable within the initialization portion of a
for loop:

/*iis local to for loop; j is known outside loop. */
int j;
for(inti = 0; i<10; i++)

j=iti;

/*i=10; // *** Error *** -- i not known here! */

Here, i is declared within the initialization portion of the for and is used to control the
loop. Outside the loop, i is unknown.

Since often a loop control variable in a for is needed only by that loop, the
declaration of the variable in the initialization portion of the for is becoming common
practice. Remember, however, that this is not supported by C.

| Whether a variable declared within the initialization portion of a for loop is local to
I that loop has changed over time. Originally, the variable was available after the for.
However, Standard C++ restricts the variable to the scope of the for loop.
If your compiler fully complies with Standard C++, then you can also declare a

variable within any conditional expression, such as those used by the if or a while. For
example, this fragment,

if(int x = 20) {
X=X-Y;
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if(x>10) y = 0;
}

declares x and assigns it the value 20. Since this is a true value, the target of the if
executes. Variables declared within a conditional statement have their scope limited
to the block of code controlled by that statement. Thus, in this case, x is not known
outside the if. Frankly, not all programmers believe that declaring variables within
conditional statements is good practice, and this technique will not be used in

this book.

Jump Statements

C/C++ has four statements that perform an unconditional branch: return, goto, break,
and continue. Of these, you may use return and goto anywhere in your program. You
may use the break and continue statements in conjunction with any of the loop
statements. As discussed earlier in this chapter, you can also use break with switch.

The return Statement

The return statement is used to return from a function. It is categorized as a jump
statement because it causes execution to return (jump back) to the point at which the
call to the function was made. A return may or may not have a value associated with it.
If return has a value associated with it, that value becomes the return value of the
function. In C, a non-void function does not technically have to return a value. If no
return value is specified, a garbage value is returned. However, in C++, a non-void
function must return a value. That is, in C++, if a function is specified as returning a
value, any return statement within it must have a value associated with it. (Even in C,
if a function is declared as returning a value, it is good practice to actually return one.)
The general form of the return statement is

return expression;

The expression is present only if the function is declared as returning a value. In this
case, the value of expression will become the return value of the function.

You can use as many return statements as you like within a function. However, the
function will stop executing as soon as it encounters the first return. The } that ends a
function also causes the function to return. It is the same as a return without any
specified value. If this occurs within a non-void function, then the return value of the
function is undefined.

A function declared as void may not contain a return statement that specifies a
value. Since a void function has no return value, it makes sense that no return
statement within a void function can return a value.
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See Chapter 6 for more information on return.

The goto Statement

Since C/C++ has a rich set of control structures and allows additional control using
break and continue, there is little need for goto. Most programmers' chief concern
about the goto is its tendency to render programs unreadable. Nevertheless, although
the goto statement fell out of favor some years ago, it occasionally has its uses. There
are no programming situations that require goto. Rather, it is a convenience, which, if
used wisely, can be a benefit in a narrow set of programming situations, such as
jumping out of a set of deeply nested loops. The goto is not used outside of this section.

The goto statement requires a label for operation. (A label is a valid identifier
followed by a colon.) Furthermore, the label must be in the same function as the goto
that uses it—you cannot jump between functions. The general form of the goto
statement is

goto label;

label:

where label is any valid label either before or after goto. For example, you could create
a loop from 1 to 100 using the goto and a label, as shown here:

Xx=1;
loop1:
X++;
if(x<100) goto loop1;

The break Statement

The break statement has two uses. You can use it to terminate a case in the switch
statement (covered in the section on switch earlier in this chapter). You can also use it
to force immediate termination of a loop, bypassing the normal loop conditional test.

When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop. For
example,

#include <stdio.h>

int main(void)
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intt;

for(t=0; t<100; t++) {
printf("%d ", t);
if(t==10) break;

}

return O;

prints the numbers 0 through 10 on the screen. Then the loop terminates because break
causes immediate exit from the loop, overriding the conditional test t<100.

Programmers often use the break statement in loops in which a special condition
can cause immediate termination. For example, here a keypress can stop the execution
of the look_up() function:

void look_up(char *name)
{
do {
/* look up names ... */
if(kbhit()) break;
} while(!found);
[* process match */

}

The kbhit( ) function returns 0 if you do not press a key. Otherwise, it returns a
nonzero value. Because of the wide differences between computing environments,
neither Standard C nor Standard C++ defines kbhit( ), but you will almost certainly
have it (or one with a slightly different name) supplied with your compiler.

A break causes an exit from only the innermost loop. For example,

for(t=0; t<100; ++t) {
count=1;
for(;;) {
printf("%d ", count);
count++;
if(count==10) break;
}
}
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prints the numbers 1 through 10 on the screen 100 times. Each time execution
encounters break, control is passed back to the outer for loop.

A break used in a switch statement will affect only that switch. It does not affect
any loop the switch happens to be in.

The exit( ) Function

Although exit() is not a program control statement, a short digression that discusses it
is in order at this time. Just as you can break out of a loop, you can break out of a
program by using the standard library function exit(). This function causes immediate
termination of the entire program, forcing a return to the operating system. In effect,
the exit( ) function acts as if it were breaking out of the entire program.

The general form of the exit() function is

void exit(int return_code);

The value of return_code is returned to the calling process, which is usually the
operating system. Zero is generally used as a return code to indicate normal program
termination. Other arguments are used to indicate some sort of error. You can also use
the macros EXIT_SUCCESS and EXIT_FAILURE for the return_code. The exit()
function requires the header stdlib.h. A C++ program may also use the new-style
header <cstdlib>.

Programmers frequently use exit() when a mandatory condition for program
execution is not satisfied. For example, imagine a virtual reality computer game that
requires a special graphics adapter. The main() function of this game might look
like this:

#include <stdlib.h>

int main(void)

{
if(virtual_graphics()) exit(1);
play();
*

o

where virtual_graphics() is a user-defined function that returns true if the
virtual-reality graphics adapter is present. If the adapter is not in the system,
virtual_graphics() returns false and the program terminates.

As another example, this version of menu() uses exit() to quit the program and
return to the operating system:
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void menu(void)

{

char ch;

printf("1. Check Spelling\n");
printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n™);
printf("4. Quit\n");

printf("  Enter your choice: ");

do {
ch = getchar(); /* read the selection from
the keyboard */
switch(ch) {
case 'l"
check_spelling();
break;
case 2"
correct_errors();
break;
case '3"
display_errors();
break;
case '4"
exit(0); /* return to OS */
}
} while(ch!="1' && ch!="2' && ch!="3");
}

The continue Statement

The continue statement works somewhat like the break statement. Instead of forcing
termination, however, continue forces the next iteration of the loop to take place,
skipping any code in between. For the for loop, continue causes the conditional test
and increment portions of the loop to execute. For the while and do-while loops,
program control passes to the conditional tests. For example, the following program
counts the number of spaces contained in the string entered by the user:

/* Count spaces */
#include <stdio.h>

int main(void)

{
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char s[80], *str;
int space;

printf("Enter a string: ");
gets(s);
str=s;

for(space=0; *str; str++) {
if(*str I="") continue;
space++;

}

printf("%d spaces\n", space);

return O;

Each character is tested to see if it is a space. If it is not, the continue statement forces
the for to iterate again. If the character is a space, space is incremented.

The following example shows how you can use continue to expedite the exit from a
loop by forcing the conditional test to be performed sooner:

void code(void)

{

char done, ch;

done =0;
while(!done) {
ch = getchar();
if(ch=="$") {
done = 1;
continue;
}
putchar(ch+1); /* shift the alphabet one
position higher */

This function codes a message by shifting all characters you type one letter higher. For
example, an A becomes a B. The function will terminate when you type a $. Aftera $
has been input, no further output will occur because the conditional test, brought into
effect by continue, will find done to be true and will cause the loop to exit.
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Expression Statements

Chapter 2 covered expressions thoroughly. However, a few special points are
mentioned here. Remember, an expression statement is simply a valid expression
followed by a semicolon, as in

func(); /* a function call */

a = b+c; /* an assignment statement */

b+f(); /* a valid, but strange statement */
[* an empty statement */

The first expression statement executes a function call. The second is an assignment.
The third expression, though strange, is still evaluated by the C++ compiler because
the function () may perform some necessary task. The final example shows that a
statement can be empty (sometimes called a null statement).

Block Statements

Block statements are simply groups of related statements that are treated as a unit. The
statements that make up a block are logically bound together. Block statements are also
called compound statements. A block is begun with a { and terminated by its matching }.
Programmers use block statements most commonly to create a multistatement target
for some other statement, such as if. However, you may place a block statement
anywhere you would put any other statement. For example, this is perfectly valid
(although unusual) C/C++ code:

#include <stdio.h>

int main(void)
{

inti;

{ I* a block statement */
i=120;
printf("%d", i);

}

return O;

}
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a common name. A specific element in an array is accessed by an index. In
C/C++, all arrays consist of contiguous memory locations. The lowest address
corresponds to the first element and the highest address to the last element.
Arrays may have from one to several dimensions. The most common array is the
null-terminated string, which is simply an array of characters terminated by a null.
Arrays and pointers are closely related; a discussion of one usually refers to the
other. This chapter focuses on arrays, while Chapter 5 looks closely at pointers. You
should read both to understand fully these important constructs.

ﬁ n array is a collection of variables of the same type that are referred to through

___| Single-Dimension Arrays

The general form for declaring a single-dimension array is
type var_name[sizel;

Like other variables, arrays must be explicitly declared so that the compiler may
allocate space for them in memory. Here, type declares the base type of the array, which
is the type of each element in the array, and size defines how many elements the array
will hold. For example, to declare a 100-element array called balance of type double,
use this statement:

double balance[100];

An element is accessed by indexing the array name. This is done by placing the
index of the element within square brackets after the name of the array. For example,

balance[3] = 12.23;

assigns element number 3 in balance the value 12.23.
In C/C++, all arrays have 0 as the index of their first element. Therefore, when
you write

char p[10];

you are declaring a character array that has ten elements, p[0] through p[9]. For
example, the following program loads an integer array with the numbers 0 through 99:

#include <stdio.h>

int main(void)
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int x[100]; /* this declares a 100-integer array */
intt;

/* load x with values 0 through 99 */
for(t=0; t<100; ++t) X[t] = t;

[* display contents of x */
for(t=0; t<100; ++t) printf("%d ", X[t]);

return O;

The amount of storage required to hold an array is directly related to its type and
size. For a single-dimension array, the total size in bytes is computed as shown here:

total bytes = sizeof(base type) x size of array

C/C++ has no bounds checking on arrays. You could overwrite either end of an
array and write into some other variable's data or even into the program's code. As the
programmer, it is your job to provide bounds checking where needed. For example,
this code will compile without error, but is incorrect because the for loop will cause the
array count to be overrun.

int count[10], i;

/* this causes count to be overrun */
for(i=0; i<100; i++) count[i] = i;

Single-dimension arrays are essentially lists of information of the same type that are
stored in contiguous memory locations in index order. For example, Figure 4-1 shows
how array a appears in memory if it starts at memory location 1000 and is declared as
shown here:

char a[7];

Element a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Address 1000 1001 1002 1003 1004 1005 1006

Figure 4-1. A seven-element character array beginning at location 1000
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Generating a Pointer to an Array

You can generate a pointer to the first element of an array by simply specifying the
array name, without any index. For example, given

int sample[10];

you can generate a pointer to the first element by using the name sample. Thus, the
following program fragment assigns p the address of the first element of sample:

int *p;
int sample[10];

p = sample;

You can also specify the address of the first element of an array using the &
operator. For example, sample and &sample[0] both produce the same results.
However, in professionally written C/C++ code, you will almost never see
&sample[0].

___| Passing Single-Dimension Arrays to Functions

In C/C++, you cannot pass an entire array as an argument to a function. You can,
however, pass to the function a pointer to an array by specifying the array's name
without an index. For example, the following program fragment passes the address of i
to funcl():

int main(void)

{
int i[10];

funcl(i);

If a function receives a single-dimension array, you may declare its formal

parameter in one of three ways: as a pointer, as a sized array, or as an unsized array.
For example, to receive i, a function called func1() can be declared as
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void funcl(int *x) /* pointer */

{

or

void funcl(int x[10]) /* sized array */

{

or finally as

void funcl(int x[]) /* unsized array */

{

All three declaration methods produce similar results because each tells the
compiler that an integer pointer is going to be received. The first declaration actually
uses a pointer. The second employs the standard array declaration. In the final version,
a modified version of an array declaration simply specifies that an array of type int of
some length is to be received. As you can see, the length of the array doesn't matter as
far as the function is concerned because C/C++ performs no bounds checking. In fact,
as far as the compiler is concerned,

void funcl(int x[32])
{

also works because the compiler generates code that instructs funcl() to receive a
pointer—it does not actually create a 32-element array.
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Null-Terminated Strings

By far the most common use of the one-dimensional array is as a character string.
C++ supports two types of strings. The first is the null-terminated string, which is a
null-terminated character array. (A null is zero.) Thus a null-terminated string contains
the characters that comprise the string followed by a null. This is the only type of string
defined by C, and it is still the most widely used. Sometimes null-terminated strings
are called C-strings. C++ also defines a string class, called string, which provides an
object-oriented approach to string handling. It is described later in this book. Here,
null-terminated strings are examined.

When declaring a character array that will hold a null-terminated string, you need
to declare it to be one character longer than the largest string that it is to hold. For
example, to declare an array str that can hold a 10-character string, you would write

char str[11];

This makes room for the null at the end of the string.

When you use a quoted string constant in your program, you are also creating a
null-terminated string. A string constant is a list of characters enclosed in double quotes.
For example,

"hello there"

You do not need to add the null to the end of string constants manually—the compiler
does this for you automatically.

C/C++ supports a wide range of functions that manipulate null-terminated strings.
The most common are

Name Function

strcpy(sl, s2) Copies s2 into s1.

strcat(s1, s2) Concatenates s2 onto the end of s1.

strlen(s1) Returns the length of s1.

stremp(s1, s2) Returns 0 if s1 and s2 are the same; less than 0 if s1<s2;
greater than 0 if s1>s2.

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1.

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1.

These functions use the standard header file string.h. (C++ programs can also use the
new-style header <cstring>.) The following program illustrates the use of these string
functions:
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#include <stdio.h>
#include <string.h>

int main(void)

{
char s1[80], s2[80];

gets(sl);
gets(s2);

printf("lengths: %d %d\n", strlen(s1), strlen(s2));
if(Istrcemp(sl, s2)) printf("The strings are equal\n");

strcat(sl, s2);
printf("%s\n", s1);

strepy(sl, "This is a test.\n");

printf(s1);

if(strchr("hello", 'e")) printf("e is in hello\n");
if(strstr("hi there", "hi")) printf("found hi");

return 0O;

}

If you run this program and enter the strings "hello" and "hello", the output is

lengths: 55

The strings are equal
hellohello

This is a test.

eisin hello

found hi

Remember, stremp() returns false if the strings are equal. Be sure to use the logical
operator ! to reverse the condition, as just shown, if you are testing for equality.

Although C++ now defines a string class, null-terminated strings are still widely
used in existing programs. They will probably stay in wide use because they offer a
high level of efficiency and afford the programmer detailed control of string
operations. However, for many simple string-handling chores, C++'s string class
provides a convenient alternative.
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Two-Dimensional Arrays

C/C++ supports multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array. A two-dimensional array is, essentially, an array of
one-dimensional arrays. To declare a two-dimensional integer array d of size 10,20, you
would write

int d[10][20];

Pay careful attention to the declaration. Some other computer languages use commas
to separate the array dimensions; C/C++, in contrast, places each dimension in its own
set of brackets.

Similarly, to access point 1,2 of array d, you would use

d[1][2]

The following example loads a two-dimensional array with the numbers 1 through 12
and prints them row by row.

#include <stdio.h>

int main(void)

{
int t, i, num[3][4];

for(t=0; t<3; ++t)
for(i=0; i<4; ++i)
num[t][i] = (t*4)+i+1;

[* now print them out */
for(t=0; t<3; ++t) {
for(i=0; i<4; ++i)
printf("%3d ", num[t][i]);
printf("\n");
}

return O;

}

In this example, num[0][0] has the value 1, num[0][1] the value 2, num[0][2] the value
3, and so on. The value of num[2][3] will be 12. You can visualize the num array as
shown here:
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num [t] [i]

.

Of 11 2] 3] 4

Two-dimensional arrays are stored in a row-column matrix, where the first index
indicates the row and the second indicates the column. This means that the rightmost
index changes faster than the leftmost when accessing the elements in the array in the
order in which they are actually stored in memory. See Figure 4-2 for a graphic
representation of a two-dimensional array in memory.

In the case of a two-dimensional array, the following formula yields the number of
bytes of memory needed to hold it:

bytes = size of 1st index x size of 2nd index x sizeof(base type)
Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would have
10x5x4

or 200 bytes allocated.

Given: char [4] [3]

Right index determines column

T

///mmml chol[1] | ch[o][2] |
Left

index — ‘ ch 11 [0] | ch 11111 | ch 1] [2] ‘

determines
rowe———>|ch21[0] | i@y | ch[2A2]

[chBlol | BNl | chBI|

Figure 4-2. A two-dimensional array in memory
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When a two-dimensional array is used as an argument to a function, only a
pointer to the first element is actually passed. However, the parameter receiving a
two-dimensional array must define at least the size of the rightmost dimension. (You
can specify the left dimension if you like, but it is not necessary.) The rightmost
dimension is needed because the compiler must know the length of each row if it is to
index the array correctly. For example, a function that receives a two-dimensional
integer array with dimensions 10,10 is declared like this:

void funcl(int x[][10])
{

The compiler needs to know the size of the right dimension in order to correctly
execute expressions such as

x[2][4]

inside the function. If the length of the rows is not known, the compiler cannot
determine where the third row begins.

The following short program uses a two-dimensional array to store the numeric
grade for each student in a teacher's classes. The program assumes that the teacher has
three classes and a maximum of 30 students per class. Notice the way the array grade is
accessed by each of the functions.

/* A simple student grades database. */
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

#define CLASSES 3
#define GRADES 30

int grade[CLASSES][GRADES];
void enter_grades(void);

int get_grade(int num);
void disp_grades(int g[[[GRADES]);
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int main(void)

{
char ch, str[80];

for(;;) {

do {
printf("(E)nter grades\n");
printf("(R)eport grades\n");
printf("(Q)uit\n™);
gets(str);
ch = toupper(*str);

} while(ch!='"E' && ch!='R' && ch!='Q");

switch(ch) {
case 'E"
enter_grades();
break;
case 'R"
disp_grades(grade);
break;
case 'Q"
exit(0);
}
}

return O;

}

[* Enter the student's grades. */
void enter_grades(void)

{

intt,i;

for(t=0; t<CLASSES; t++) {
printf("Class # %d:\n", t+1);
for(i=0; i<GRADES; ++i)
gradelt][i] = get_grade(i);
}
}

/* Read a grade. */
int get_grade(int num)

Arrays and Null-Terminated Strings
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char s[80];

printf("Enter grade for student # %d:\n", num+1);
gets(s);
return(atoi(s));

}

[* Display grades. */
void disp_grades(int g[J[GRADES])
{

intt, i

for(t=0; t<CLASSES; ++t) {
printf("Class # %d:\n", t+1);
for(i=0; i<GRADES; ++i)
printf("Student #%d is %d\n", i+1, g[t][i]);

Arrays of Strings

It is not uncommon in programming to use an array of strings. For example, the input
processor to a database may verify user commands against an array of valid
commands. To create an array of null-terminated strings, use a two-dimensional
character array. The size of the left index determines the number of strings and the size
of the right index specifies the maximum length of each string. The following code
declares an array of 30 strings, each with a maximum length of 79 characters

char str_array[30][80];

It is easy to access an individual string: You simply specify only the left index. For
example, the following statement calls gets() with the third string in str_array.

gets(str_array[2]);
The preceding statement is functionally equivalent to
gets(&str_array[2][0]);

but the first of the two forms is much more common in professionally written
C/C++ code.
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To better understand how string arrays work, study the following short program,
which uses a string array as the basis for a very simple text editor:

I* A very simple text editor. */
#include <stdio.h>

#define MAX 100
#define LEN 80

char texttMAX][LEN];

int main(void)

{

registerintt, i, j;
printf("Enter an empty line to quit.\n");

for(t=0; t<MAX; t++) {

printf("%d: ", t);

gets(text[t]);

if("*text[t]) break; /* quit on blank line */
}

for(i=0; i<t; i++) {
for(j=0; text[i][j]; j++) putchar(text[i][j]);
putchar(\n";

}

return O;

}

This program inputs lines of text until a blank line is entered. Then it redisplays each
line one character at a time.

___ | Multidimensional Arrays

C/C++ allows arrays of more than two dimensions. The exact limit, if any, is
determined by your compiler. The general form of a multidimensional array
declaration is

type name| Sizel][Size2][Size3]. . .[SizeN];
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Arrays of more than three dimensions are not often used because of the amount of
memory they require. For example, a four-dimensional character array with
dimensions 10,6,9,4 requires

10%6*9*4

or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes would be needed. If the
array held doubles (assuming 8 bytes per double), 17,280 bytes would be required. The
storage required increases exponentially with the number of dimensions. For example,
if a fifth dimension of size 10 was added to the preceding array, then 172, 800 bytes
would be required.

In multidimensional arrays, it takes the computer time to compute each index. This
means that accessing an element in a multidimensional array can be slower than
accessing an element in a single-dimension array.

When passing multidimensional arrays into functions, you must declare all but the
leftmost dimension. For example, if you declare array m as

int m[4][3][6][5];
a function, funcl(), that receives m, would look like this:

void func(int d[J[3][6][5])
{

} .

Of course, you can include the first dimension if you like.

___| Indexing Pointers

In C/C++, pointers and arrays are closely related. As you know, an array name
without an index is a pointer to the first element in the array. For example, consider the
following array.

char p[10];

The following statements are identical:
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p
&p[0]

Put another way,

p == &p[0]

evaluates to true because the address of the first element of an array is the same as the
address of the array.

As stated, an array name without an index generates a pointer. Conversely, a
pointer can be indexed as if it were declared to be an array. For example, consider this
program fragment:

int *p, i[10];

p=i

p[5] = 100; /* assign using index */

*(p+5) = 100; /* assign using pointer arithmetic */

Both assignment statements place the value 100 in the sixth element of i. The first
statement indexes p; the second uses pointer arithmetic. Either way, the result is the
same. (Chapter 5 discusses pointers and pointer arithmetic.)

This same concept also applies to arrays of two or more dimensions. For example,
assuming that a is a 10-by-10 integer array, these two statements are equivalent:

a
&a[0][0]

Furthermore, the 0,4 element of a may be referenced two ways: either by array
indexing, a[0][4], or by the pointer, *((int *)a+4). Similarly, element 1,2 is either a[1][2]
or *((int *)a+12). In general, for any two-dimensional array

a[j][k] is equivalent to *((base-type *)a+(j*row length)+k)

The cast of the pointer to the array into a pointer of its base type is necessary in order
for the pointer arithmetic to operate properly. Pointers are sometimes used to access
arrays because pointer arithmetic is often faster than array indexing.

A two-dimensional array can be reduced to a pointer to an array of one-
dimensional arrays. Therefore, using a separate pointer variable is one easy way
to use pointers to access elements within a row of a two-dimensional array. The
following function illustrates this technique. It will print the contents of the specified
row for the global integer array num:
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int num[10][10];

void pr_row(int j)

{
int*p, t;
p = (int *) &num(j][0]; /* get address of first
elementin row j */
for(t=0; t<10; ++t) printf("%d ", *(p+t));
}

You can generalize this routine by making the calling arguments be the row, the row
length, and a pointer to the first array element, as shown here:

void pr_row(int j, int row_dimension, int *p)

{
intt;

p =p + (j * row_dimension);

for(t=0; t<row_dimension; ++t)
printf("%d ", *(p+t));

void f(void)

{
int num[10][10];

pr_row(0, 10, (int *) num); /* print first row */

}

Arrays of greater than two dimensions may be reduced in a similar way. For
example, a three-dimensional array can be reduced to a pointer to a two-dimensional
array, which can be reduced to a pointer to a single-dimension array. Generally, an
n-dimensional array can be reduced to a pointer and an (-1)-dimensional array. This
new array can be reduced again with the same method. The process ends when a
single-dimension array is produced.
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___| Array Initialization

C/C++ allows the initialization of arrays at the time of their declaration. The general
form of array initialization is similar to that of other variables, as shown here:

type_specifier array_name[sizel]. . .[sizeN] = { value_list };

The value_list is a comma-separated list of values whose type is compatible with
type_specifier. The first value is placed in the first position of the array, the second value
in the second position, and so on. Note that a semicolon follows the }.

In the following example, a 10-element integer array is initialized with the numbers
1 through 10:

inti[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] will have the value 1 and i[9] will have the value 10.
Character arrays that hold strings allow a shorthand initialization that takes
the form:

char array_namel[size] = "string”;

For example, this code fragment initializes str to the phrase "I like C++".
char str[11] = "I like C++";

This is the same as writing

char str[11] ={I,"", I ", 'k, 'e',"*, 'C',
'+, 0,

Because null-terminated strings end with a null, you must make sure that the array you
declare is long enough to include the null. This is why str is 11 characters long even
though "I like C++" is only 10. When you use the string constant, the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized the same as single-dimension ones. For
example, the following initializes sqrs with the numbers 1 through 10 and their
squares.

int sqrs[10][2] = {
1,1,
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2,4,
3,9,

4, 16,
5, 25,
6, 36,
7,49,
8, 64,
9, 81,
10, 100

When initializing a multidimensional array, you may add braces around the
initializers for each dimension. This is called subaggregate grouping. For example, here is
another way to write the preceding declaration.

int sqrs[10][2] = {
{1, 1},
{2, 4},
{3. 9}
{4, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100}

h

When using subaggregate grouping, if you don't supply enough initializers for a
given group, the remaining members will be set to zero automatically.

Unsized Array Initializations

Imagine that you are using array initialization to build a table of error messages, as
shown here:

char e1[12] = "Read error\n";
char e2[13] = "Write error\n";
char e3[18] = "Cannot open file\n";

As you might guess, it is tedious to count the characters in each message manually
to determine the correct array dimension. Fortunately, you can let the compiler
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automatically calculate the dimensions of the arrays. If, in an array initialization
statement, the size of the array is not specified, the C/C++ compiler automatically
creates an array big enough to hold all the initializers present. This is called an unsized
array. Using this approach, the message table becomes

char el[] = "Read error\n";
char e2[] = "Write error\n";
char e3[] = "Cannot open file\n";

Given these initializations, this statement
printf("%s has length %d\n", e2, sizeof e2);
will print
Write error has length 13

Besides being less tedious, unsized array initialization allows you to change any of the
messages without fear of using incorrect array dimensions.

Unsized array initializations are not restricted to one-dimensional arrays. For
multidimensional arrays, you must specify all but the leftmost dimension. (The other
dimensions are needed to allow the compiler to index the array properly.) In this way,
you may build tables of varying lengths and the compiler automatically allocates
enough storage for them. For example, the declaration of sqrs as an unsized array is
shown here:

int sgrs[][2] = {
{1, 1},
{2, 4},
{3, 9},
{4, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100}

h

The advantage of this declaration over the sized version is that you may lengthen or
shorten the table without changing the array dimensions.
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___| A Tic-Tac-Toe Example

The longer example that follows illustrates many of the ways that you can manipulate
arrays with C/C++. This section develops a simple tic-tac-toe program.
Two-dimensional arrays are commonly used to simulate board game matrices.

The computer plays a very simple game. When it is the computer's turn, it uses
get_computer_move() to scan the matrix, looking for an unoccupied cell. When it finds
one, it puts an O there. If it cannot find an empty location, it reports a draw game and
exits. The get_player_move() function asks you where you want to place an X. The
upper-left corner is location 1,1; the lower-right corner is 3,3.

The matrix array is initialized to contain spaces. Each move made by the player or
the computer changes a space into either an X or an O. This makes it easy to display the
matrix on the screen.

Each time a move has been made, the program calls the check() function. This
function returns a space if there is no winner yet, an X if you have won, or an O if the
computer has won. It scans the rows, the columns, and then the diagonals, looking for
one that contains either all X's or all O's.

The disp_matrix() function displays the current state of the game. Notice how
initializing the matrix with spaces simplified this function.

The routines in this example all access the matrix array differently. Study them to
make sure that you understand each array operation.

/* A simple Tic Tac Toe game. */
#include <stdio.h>
#include <stdlib.h>

char matrix[3][3]; /* the tic tac toe matrix */

char check(void);

void init_matrix(void);

void get_player_move(void);
void get_computer_move(void);
void disp_matrix(void);

int main(void)
{

char done;

printf("This is the game of Tic Tac Toe.\n");
printf("You will be playing against the computer.\n");

done ="'
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init_matrix();
do{
disp_matrix();
get_player_move();
done = check(); /* see if winner */
if([done!="") break; /* winner!*/
get_computer_move();
done = check(); /* see if winner */
} while(done==""),
if(done=="X") printf(""You won\n");
else printf("l won!!!\n");
disp_matrix(); /* show final positions */

return O;

}

/* Initialize the matrix. */
void init_matrix(void)

{

inti, j;

for(i=0; i<3; i++)
for(j=0; j<3; j++) matrix[i][j]= "
}

[* Get a player's move. */
void get_player_move(void)
{

intx,y;

printf("Enter X,Y coordinates for your move: ");
scanf("%d%*c%d", &X, &Y);

X1 Y=

if(matrix[x][y]!=""){
printf("Invalid move, try again.\n");
get_player_move();

}

else matrix[x][y] = 'X";
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/* Get a move from the computer. */
void get_computer_move(void)
{
inti, j;
for(i=0; i<3; i++){
for(j=0; j<3; j++)
if(matrix[i][j]l=="") break;
if(matrix[i][j]=="") break;
}

if(*==9) {
printf("draw\n");
exit(0);
}
else
matrix[i][j] = 'O";
}

[* Display the matrix on the screen. */
void disp_matrix(void)
{

intt;

for(t=0; t<3; t++) {
printf(* %c | %c | %c ", matrix[t][0],
matrix[t][1], matrix [t][2]);
if(t1=2) printf("\n---|---|---\n");
}
printf("\n");
}

[* See if there is a winner. */
char check(void)

{

inti;

for(i=0; i<3; i++) [* check rows */
if(matrix[i][0]==matrix[i][1] &&
matrix[ij[0]==matrix[i][2]) return matrix[i][0];

for(i=0; i<3; i++) /* check columns */
if(matrix[O][i]==matrix[1][i] &&
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matrix[O][i]==matrix[2][i]) return matrix[O][i];

/* test diagonals */
if(matrix[0][0]==matrix[1][1] &&
matrix[1][1]==matrix[2][2])
return matrix[0][O];

if(matrix[0][2]==matrix[1][1] &&
matrix[1][1]==matrix[2][0])

return matrix[0][2];

return '’
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programming. There are three reasons for this: First, pointers provide the means

by which functions can modify their calling arguments. Second, pointers support
dynamic allocation. Third, pointers can improve the efficiency of certain routines. Also,
as you will see in Part Two, pointers take on additional roles in C++.

Pointers are one of the strongest but also one of the most dangerous features in
C/C++. For example, uninitialized pointers (or pointers containing invalid values) can
cause your system to crash. Perhaps worse, it is easy to use pointers incorrectly,
causing bugs that are very difficult to find.

Because of both their importance and their potential for abuse, this chapter
examines the subject of pointers in detail.

The correct understanding and use of pointers is critical to successful C/C++

| what Are Pointers?

A pointer is a variable that holds a memory address. This address is the location of
another object (typically another variable) in memory. For example, if one variable
contains the address of another variable, the first variable is said to point to the second.
Figure 5-1 illustrates this situation.

Memory Variable in
address memory
1000 1003

1001
1002
1003
1004
1005
1006
L]
L]
Memory
Figure 5-1. One variable points to another
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| Pointer Variables

If a variable is going to hold a pointer, it must be declared as such. A pointer
declaration consists of a base type, an ¥, and the variable name. The general
form for declaring a pointer variable is

type *name;

where type is the base type of the pointer and may be any valid type. The name of
the pointer variable is specified by name.

The base type of the pointer defines what type of variables the pointer can point to.
Technically, any type of pointer can point anywhere in memory. However, all pointer
arithmetic is done relative to its base type, so it is important to declare the pointer
correctly. (Pointer arithmetic is discussed later in this chapter.)

___| The Pointer Operators

The pointer operators were discussed in Chapter 2. We will take a closer look at them
here, beginning with a review of their basic operation. There are two special pointer
operators: * and &. The & is a unary operator that returns the memory address of its
operand. (Remember, a unary operator only requires one operand.)

For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's
internal location of the variable. It has nothing to do with the value of count. You can
think of & as returning "the address of." Therefore, the preceding assignment statement
means "m receives the address of count.”

To understand the above assignment better, assume that the variable count uses
memory location 2000 to store its value. Also assume that count has a value of 100.
Then, after the preceding assignment, m will have the value 2000.

The second pointer operator, *, is the complement of &. It is a unary operator that
returns the value located at the address that follows. For example, if m contains the
memory address of the variable count,

q="m;

places the value of count into q. Thus, q will have the value 100 because 100 is stored
at location 2000, which is the memory address that was stored in m. You can think of
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* as "at address." In this case, the preceding statement means "q receives the value at
address m."

Both & and * have a higher precedence than all other arithmetic operators except
the unary minus, with which they are equal.

You must make sure that your pointer variables always point to the correct type of
data. For example, when you declare a pointer to be of type int, the compiler assumes
that any address that it holds points to an integer variable—whether it actually does
or not. Because C allows you to assign any address to a pointer variable, the following
code fragment compiles with no error messages (or only warnings, depending upon
your compiler), but does not produce the desired result:

#include <stdio.h>

int main(void)

{
double x = 100.1, v;
int *p;

/* The next statement causes p (which is an
integer pointer) to point to a double. */
p=&x;

[* The next statement does not operate as
expected. */

y="p;

printf("%f", y); /* won't output 100.1 */
return O;

This will not assign the value of x to y. Because p is declared as an integer pointer, only
2 or 4 bytes of information will be transferred to y, not the 8 bytes that normally make
up a double.

| In C++, it is illegal to convert one type of pointer into another without the use of an

: explicit type cast. For this reason, the preceding program will not even compile if
you try to compile it as a C++ (rather than as a C) program. However, the type of
error described can still occur in C++ in a more roundabout manner.

___| Pointer Expressions

In general, expressions involving pointers conform to the same rules as other
expressions. This section examines a few special aspects of pointer expressions.
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Pointer Assighments

As with any variable, you may use a pointer on the right-hand side of an assignment
statement to assign its value to another pointer. For example,

#include <stdio.h>

int main(void)
{

int x;

int *pl, *p2;

pl = &x;
p2 = pl;

printf(" %p", p2); /* print the address of x, not x's value! */

return O;

}

Both p1 and p2 now point to x. The address of x is displayed by using the %p printf()
format specifier, which causes printf() to display an address in the format used by the
host computer.

Pointer Arithmetic

There are only two arithmetic operations that you may use on pointers: addition
and subtraction. To understand what occurs in pointer arithmetic, let p1 be an
integer pointer with a current value of 2000. Also, assume integers are 2 bytes long.
After the expression

pl++;

p1 contains 2002, not 2001. The reason for this is that each time p1 is incremented, it
will point to the next integer. The same is true of decrements. For example, assuming
that p1 has the value 2000, the expression

pl--;

causes p1 to have the value 1998.

Generalizing from the preceding example, the following rules govern pointer
arithmetic. Each time a pointer is incremented, it points to the memory location
of the next element of its base type. Each time it is decremented, it points to the
location of the previous element. When applied to character pointers, this will
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appear as "normal” arithmetic because characters are always 1 byte long. All other
pointers will increase or decrease by the length of the data type they point to. This
approach ensures that a pointer is always pointing to an appropriate element of its
base type. Figure 5-2 illustrates this concept.

You are not limited to the increment and decrement operators. For example, you
may add or subtract integers to or from pointers. The expression

pl=pl+12;

makes p1 point to the twelfth element of p1's type beyond the one it currently points to.
Besides addition and subtraction of a pointer and an integer, only one other

arithmetic operation is allowed: You may subtract one pointer from another in

order to find the number of objects of their base type that separate the two. All

other arithmetic operations are prohibited. Specifically, you may not multiply or

divide pointers; you may not add two pointers; you may not aypply the bitwise

operators to them; and you may not add or subtract type float or double to or

from pointers.

char »ch=3000;
int *i=3000;
ch 3000
- i
ch+1 3001
ch+2 3002
- i+1
ch+3 3003
ch+4 3004
- i+2
ch+5 3005
Memory i
Figure 5-2. All pointer arithmetic is relative to its base type (assume 2-byte
integers)
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Pointer Comparisons

You can compare two pointers in a relational expression. For instance, given two
pointers p and q, the following statement is perfectly valid:

if(p<q) printf("p points to lower memory than g\n");

Generally, pointer comparisons are used when two or more pointers point to
a common object, such as an array. As an example, a pair of stack routines are
developed that store and retrieve integer values. A stack is a list that uses first-in,
last-out accessing. It is often compared to a stack of plates on a table—the first
one set down is the last one to be used. Stacks are used frequently in compilers,
interpreters, spreadsheets, and other system-related software. To create a stack,
you need two functions: push() and pop(). The push() function places values on
the stack and pop() takes them off. These routines are shown here with a simple
main() function to drive them. The program puts the values you enter into the
stack. If you enter 0, a value is popped from the stack. To stop the program,
enter —1.

#include <stdio.h>
#include <stdlib.h>

#define SIZE 50

void push(int i);
int pop(void);

int *tos, *pl, stack[SIZE];

int main(void)
{

int value;

tos = stack; /* tos points to the top of stack */
pl = stack; /* initialize p1 */

do {

printf("Enter value: ");

scanf("%d", &value);

if(value!=0) push(value);

else printf("value on top is %d\n", pop());
} while(value!=-1);
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return O;

}

void push(int i)
{
pl++;
if(p1==(tos+SIZE)) {
printf("Stack Overflow.\n");
exit(1);
}
*pl =i
}

int pop(void)
{
if(p1==tos) {
printf("Stack Underflow.\n");
exit(1);
}
pl--;
return *(p1+1);
}

You can see that memory for the stack is provided by the array stack. The pointer
p1l is set to point to the first element in stack. The p1 variable accesses the stack. The
variable tos holds the memory address of the top of the stack. It is used to prevent
stack overflows and underflows. Once the stack has been initialized, push() and
pop() may be used. Both the push() and pop() functions perform a relational test
on the pointer p1 to detect limit errors. In push(), p1 is tested against the end of
stack by adding SIZE (the size of the stack) to tos. This prevents an overflow. In
pop(), pl is checked against tos to be sure that a stack underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the
statement would look like this:

return *pl +1;

which would return the value at location p1 plus one, not the value of the location p1+1.

___| Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this program
fragment:
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char str[80], *p1;
pl = str;

Here, p1 has been set to the address of the first array element in str. To access the fifth
element in str, you could write

str[4]
or
*(p1+4)

Both statements will return the fifth element. Remember, arrays start at 0. To access
the fifth element, you must use 4 to index str. You also add 4 to the pointer p1 to
access the fifth element because p1 currently points to the first element of str. (Recall
that an array name without an index returns the starting address of the array, which
is the address of the first element.)

The preceding example can be generalized. In essence, C/C++ provides
two methods of accessing array elements: pointer arithmetic and array indexing.
Although the standard array-indexing notation is sometimes easier to understand,
pointer arithmetic can be faster. Since speed is often a consideration in programming,
C/C++ programmers commonly use pointers to access array elements.

These two versions of putstr()—one with array indexing and one with pointers—
illustrate how you can use pointers in place of array indexing. The putstr() function
writes a string to the standard output device one character at a time.

/* Index s as an array. */
void putstr(char *s)

{

register int t;

for(t=0; s[t]; ++t) putchar(s[t]);
}

/* Access s as a pointer. */
void putstr(char *s)
{

while(*s) putchar(*s++);

}

Most professional C/C++ programmers would find the second version easier to
read and understand. In fact, the pointer version is the way routines of this sort
are commonly written in C/C++.
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Arrays of Pointers

Pointers may be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the
pointer array, write

X[2] = &var;
To find the value of var, write
*x[2]

If you want to pass an array of pointers into a function, you can use the same
method that you use to pass other arrays—simply call the function with the array name
without any indexes. For example, a function that can receive array x looks
like this:

void display_array(int *q[])

{
intt;

for(t=0; t<10; t++)
printf("%d ", *q[t]);

Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to
integers. Therefore you need to declare the parameter q as an array of integer pointers,
as just shown. You cannot declare q simply as an integer pointer because that is not
what it is.

Pointer arrays are often used to hold pointers to strings. You can create a function
that outputs an error message given its code number, as shown here:

void syntax_error(int num)
{
static char *err[] ={
"Cannot Open File\n",
"Read Error\n",
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"Write Error\n",
"Media Failure\n"

k

printf("%s", errflnumj);

}

The array err holds pointers to each string. As you can see, printf() inside
syntax_error() is called with a character pointer that points to one of the
various error messages indexed by the error number passed to the function.
For example, if num is passed a 2, the message Write Error is displayed.

As a point of interest, note that the command line argument argv is an
array of character pointers. (See Chapter 6.)

Multiple Indirection

You can have a pointer point to another pointer that points to the target value. This
situation is called multiple indirection, or pointers to pointers. Pointers to pointers can
be confusing. Figure 5-3 helps clarify the concept of multiple indirection. As you can
see, the value of a normal pointer is the address of the object that contains the value
desired. In the case of a pointer to a pointer, the first pointer contains the address of the
second pointer, which points to the object that contains the value desired.

Multiple indirection can be carried on to whatever extent rquired, but more than a
pointer to a pointer is rarely needed. In fact, excessive indirection is difficult to follow
and prone to conceptual errors.

Do not confuse multiple indirection with high-level data structures, such as linked
Note : : ;
lists, that use pointers. These are two fundamentally different concepts.

A variable that is a pointer to a pointer must be declared as such. You do this by
placing an additional asterisk in front of the variable name. For example, the following
declaration tells the compiler that newbalance is a pointer to a pointer of type float:

float **newbalance;

You should understand that newbalance is not a pointer to a floating-point number
but rather a pointer to a float pointer.

To access the target value indirectly pointed to by a pointer to a pointer, you must
apply the asterisk operator twice, as in this example:
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#include <stdio.h>

int main(void)

{
int X, *p, **q;
x =10;
p = &x;
q=4&p;

printf("%d", **q); /* print the value of x */

return O;

}

Here, p is declared as a pointer to an integer and q as a pointer to a pointer to an
integer. The call to printf() prints the number 10 on the screen.

| Initializing Pointers
After a local pointer is declared but before it has been assigned a value, it contains

an unknown value. (Global pointers are automatically initialized to null.) Should
you try to use the pointer before giving it a valid value, you will probably crash

Pointer Variable
address —m» value

Single Indirection

Pointer Pointer Variable
address —— address — value

Multiple Indirection

Figure 5-3. Single and multiple indirection
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your program—and possibly your computer's operating system as well—a very
nasty type of error!

There is an important convention that most C/C++ programmers follow when
working with pointers: A pointer that does not currently point to a valid memory
location is given the value null (which is zero). By convention, any pointer that is
null implies that it points to nothing and should not be used. However, just because
a pointer has a null value does not make it "safe." The use of null is simply a convention
that programmers follow. It is not a rule enforced by the C or C++ languages. For
example, if you use a null pointer on the left side of an assignment statement, you still
run the risk of crashing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null pointer to
make many of your pointer routines easier to code and more efficient. For example,
you could use a null pointer to mark the end of a pointer array. A routine that accesses
that array knows that it has reached the end when it encounters the null value. The
search() function shown here illustrates this type of approach.

/* look up a name */
int search(char *p[], char *name)

{

register int t;

for(t=0; p[t]; ++t)
if(!strcmp(p[t], name)) return t;

return -1; /* not found */

The for loop inside search() runs until either a match is found or a null pointer
is encountered. Assuming the end of the array is marked with a null, the condition
controlling the loop fails when it is reached.

C/C++ programmers commonly initialize strings. You saw an example of this in
the syntax_error() function in the section "Arrays of Pointers." Another variation on
the initialization theme is the following type of string declaration:

char *p = "hello world";

As you can see, the pointer p is not an array. The reason this sort of initialization
works is because of the way the compiler operates. All C/C++ compilers create
what is called a string table, which is used to store the string constants used by
the program. Therefore, the preceding declaration statement places the address
of hello world, as stored in the string table, into the pointer p. Throughout a
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program, p can be used like any other string. For example, the following program is
perfectly valid:

#include <stdio.h>
#include <string.h>

char *p = "hello world";

int main(void)
{

register int t;

[* print the string forward and backwards */

printf(p);
for(t=strlen(p)-1; t>-1; t--) printf("%c", p[t]);

return O;

In Standard C++, the type of a string literal is technically const char *. But C++
provides an automatic conversion to char *. Thus, the preceding program is still valid.
However, this automatic conversion is a deprecated feature, which means that you
should not rely upon it for new code. For new programs, you should assume that
string literals are constants and the declaration of p in the preceding program should
be written like this.

const char *p = "hello world";

___| Pointers to Functions

A particularly confusing yet powerful feature of C++ is the function pointer. Even
though a function is not a variable, it still has a physical location in memory that

can be assigned to a pointer. This address is the entry point of the function and it is
the address used when the function is called. Once a pointer points to a function, the
function can be called through that pointer. Function pointers also allow functions
to be passed as arguments to other functions.

You obtain the address of a function by using the function's name without any
parentheses or arguments. (This is similar to the way an array's address is obtained
when only the array name, without indexes, is used.) To see how this is done, study the
following program, paying close attention to the declarations:
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#include <stdio.h>
#include <string.h>

void check(char *a, char *b,
int (*cmp)(const char *, const char *));

int main(void)
{
char s1[80], s2[80];
int (*p)(const char *, const char *);

p = strcmp;

gets(sl);
gets(s2);

check(sl, s2, p);

return O;

}

void check(char *a, char *b,
int (*cmp)(const char *, const char *))
{
printf("Testing for equality.\n");
if(!(*cmp)(a, b)) printf("Equal");
else printf("Not Equal");
}

When the check() function is called, two character pointers and one function pointer
are passed as parameters. Inside the function check(), the arguments are declared as

character pointers and a function pointer. Notice how the function pointer is declared.

You must use a similar form when declaring other function pointers, although the
return type and parameters of the function may differ. The parentheses around the
*cmp are necessary for the compiler to interpret this statement correctly.

Inside check(), the expression

(*cmp)(a, b)

calls stremp( ), which is pointed to by cmp, with the arguments a and b. The
parentheses around *cmp are necessary. This is one way to call a function through
a pointer. A second, simpler syntax, as shown here, may also be used.
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cmp(a, b);

The reason that you will frequently see the first style is that it tips off anyone reading
your code that a function is being called through a pointer. (That is, that
cmp is a function pointer, not the name of a function.) Other than that, the two
expressions are equivalent.

Note that you can call check() by using stremp() directly, as shown here:

check(sl, s2, strcmp);

This eliminates the need for an additional pointer variable.

You may wonder why anyone would write a program in this way. Obviously,
nothing is gained and significant confusion is introduced in the previous example.
However, at times it is advantageous to pass functions as parameters or to create an
array of functions. For example, when a compiler or interpreter is written, the parser
(the part that evaluates expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform
I/0, or access system resources. Instead of having a large switch statement with all
of these functions listed in it, an array of function pointers can be created. In this
approach, the proper function is selected by its index. You can get the flavor of this
type of usage by studying the expanded version of the previous example. In this
program, check() can be made to check for either alphabetical equality or numeric
equality by simply calling it with a different comparison function.

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

void check(char *a, char *b,
int (*cmp)(const char *, const char *));
int numcmp(const char *a, const char *b);

int main(void)
{
char s1[80], s2[80];

gets(sl);
gets(s2);

if(isalpha(*s1))
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check(sl, s2, strcmp);
else
check(sl, s2, numcmp);

return O;

}

void check(char *a, char *b,
int (*cmp)(const char *, const char *))
{
printf("Testing for equality.\n");
if(!(*cmp)(a, b)) printf("Equal®);
else printf("Not Equal");
}

int numcmp(const char *a, const char *b)
{

if(atoi(a)==atoi(b)) return 0;

else return 1;

}

In this program, if you enter a letter, stremp() is passed to check( ). Otherwise,
numcemp( ) is used. Since check() calls the function that it is passed, it can use different
comparison functions in different cases.

C's Dynamic Allocation Functions

Pointers provide necessary support for C/C++'s dynamic allocation system. Dynamic
allocation is the means by which a program can obtain memory while it is running.

As you know, global variables are allocated storage at compile time. Local variables
use the stack. However, neither global nor local variables can be added during
program execution. Yet there will be times when the storage needs of a program
cannot be known ahead of time. For example, a word processor or a database should
take advantage of all the RAM in a system. However, because the amount of available
RAM varies between computers, such programs will not be able to do so using
normal variables. Instead, these and other programs must allocate memory as

they need it.

C++ actually supports two complete dynamic allocation systems: the one
defined by C and the one specific to C++. The system specific to C++ contains
several improvements over that used by C, and this approach is discussed in
Part Two. Here, C's dynamic allocation functions are described.
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Memory allocated by C's dynamic allocation functions is obtained from the
heap—the region of free memory that lies between your program and its permanent
storage area and the stack. Although the size of the heap is unknown, it generally
contains a fairly large amount of free memory.

The core of C's allocation system consists of the functions malloc() and free().
(Most compilers supply several other dynamic allocation functions, but these two
are the most important.) These functions work together using the free memory region
to establish and maintain a list of available storage. The malloc() function allocates
memory and the free() function releases it. That is, each time a malloc() memory
request is made, a portion of the remaining free memory is allocated. Each time a
free() memory release call is made, memory is returned to the system. Any program
that uses these functions should include the header file stdlib.h. (A C++ program may
also use the new-style header <cstdlib>.)

The malloc() function has this prototype:

void *malloc(size_t number_of_bytes);

Here, number_of bytes is the number of bytes of memory you wish to allocate. (The type
size_t is defined in stdlib.h as, more or less, an unsigned integer.) The malloc()
function returns a pointer of type void, which means that you can assign it to any type
of pointer. After a successful call, malloc() returns a pointer to the first byte
of the region of memory allocated from the heap. If there is not enough available
memory to satisfy the malloc() request, an allocation failure occurs and malloc()
returns a null.

The code fragment shown here allocates 1,000 bytes of contiguous memory:

char *p;
p = malloc(1000); /* get 1000 bytes */

After the assignment, p points to the start of 1,000 bytes of free memory.

In the preceding example, notice that no type cast is used to assign the return
value of malloc() to p. In C, a void * pointer is automatically converted to the type
of the pointer on the left side of an assignment. However, it is important to understand
that this automatic conversion does not occur in C++. In C++, an explicit type cast is
needed when a void * pointer is assigned to another type of pointer. Thus, in C++, the
preceding assignment must be written like this:

p = (char *) malloc(1000);

As a general rule, in C++ you must use a type cast when assigning (or otherwise
converting) one type of pointer to another. This is one of the few fundamental
differences between C and C++.
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The next example allocates space for 50 integers. Notice the use of sizeof to ensure
portability.

int *p;
p = (int *) malloc(50*sizeof(int));

Since the heap is not infinite, whenever you allocate memory, you must check
the value returned by malloc() to make sure that it is not null before using the pointer.
Using a null pointer will almost certainly crash your program. The proper way to
allocate memory and test for a valid pointer is illustrated in this code fragment:

p = (int *) malloc(100);

if('p) {
printf("Out of memory.\n");
exit(1);

}

Of course, you can substitute some other sort of error handler in place of the call to
exit(). Just make sure that you do not use the pointer p if it is null.

The free() function is the opposite of malloc() in that it returns previously
allocated memory to the system. Once the memory has been freed, it may be reused by
a subsequent call to malloc(). The function free() has this prototype:

void free(void *p);

Here, p is a pointer to memory that was previously allocated using malloc().
It is critical that you never call free() with an invalid argument; this will destroy
the free list.

___| Problems with Pointers

Nothing will get you into more trouble than a wild pointer! Pointers are a mixed
blessing. They give you tremendous power and are necessary for many programs.
At the same time, when a pointer accidentally contains a wrong value, it can be the
most difficult bug to find.

An erroneous pointer is difficult to find because the pointer itself is not the
problem. The problem is that each time you perform an operation using the bad
pointer, you are reading or writing to some unknown piece of memory. If you read
from it, the worst that can happen is that you get garbage. However, if you write to
it, you might be writing over other pieces of your code or data. This may not show
up until later in the execution of your program, and may lead you to look for the bug
in the wrong place. There may be little or no evidence to suggest that the pointer is
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the original cause of the problem. This type of bug causes programmers to lose sleep
time and time again.

Because pointer errors are such nightmares, you should do your best never to
generate one. To help you avoid them, a few of the more common errors are discussed
here. The classic example of a pointer error is the uninitialized pointer. Consider this
program.

[* This program is wrong. */
int main(void)
{

int X, *p;

x = 10;
*p:X;

return O;

This program assigns the value 10 to some unknown memory location. Here is why:
Since the pointer p has never been given a value, it contains an unknown value when
the assignment *p = x takes place. This causes the value of x to be written to some
unknown memory location. This type of problem often goes unnoticed when your
program is small because the odds are in favor of p containing a "safe" address—one
that is not in your code, data area, or operating system. However, as your program
grows, the probability increases of p pointing to something vital. Eventually, your
program stops working. The solution is to always make sure that a pointer is pointing
at something valid before it is used.

A second common error is caused by a simple misunderstanding of how to use a
pointer. Consider the following;:

[* This program is wrong. */
#include <stdio.h>

int main(void)

{

int x, *p;

x =10;
p=X
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printf("%d", *p);

return O;

The call to printf() does not print the value of x, which is 10, on the screen. It prints
some unknown value because the assignment

p=Xx

is wrong. That statement assigns the value 10 to the pointer p. However, p is supposed
to contain an address, not a value. To correct the program, write

p = &x;

Another error that sometimes occurs is caused by incorrect assumptions about
the placement of variables in memory. You can never know where your data will be
placed in memory, or if it will be placed there the same way again, or whether each
compiler will treat it in the same way. For these reasons, making any comparisons
between pointers that do not point to a common object may yield unexpected results.
For example,

char s[80], y[80];
char *p1, *p2;

pl=s;
p2=y;
if(pl < p2)...

is generally an invalid concept. (In very unusual situations, you might use something
like this to determine the relative position of the variables. But this would be rare.)

A related error results when you assume that two adjacent arrays may be indexed
as one by simply incrementing a pointer across the array boundaries. For example,

int first[10], second[10];
int*p, t;

p = first;
for(t=0; t<20; ++t) *p++ =1t;
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This is not a good way to initialize the arrays first and second with the numbers 0
through 19. Even though it may work on some compilers under certain circumstances,
it assumes that both arrays will be placed back to back in memory with first first. This
may not always be the case.

The next program illustrates a very dangerous type of bug. See if you can find it.

[* This program has a bug. */
#include <string.h>
#include <stdio.h>

int main(void)
{
char *p1,;
char s[80];

pl=s;
do {
gets(s); /* read a string */

[* print the decimal equivalent of each
character */
while(*p1) printf(" %d", *pl++);

} while(strcmp(s, "done"));

return O;

This program uses p1 to print the ASCII values associated with the characters
contained in s. The problem is that p1 is assigned the address of s only once. The
first time through the loop, p1 points to the first character in s. However, the second
time through, it continues where it left off because it is not reset to the start of s. This
next character may be part of the second string, another variable, or a piece of the
program! The proper way to write this program is

[* This program is now correct. */
#include <string.h>
#include <stdio.h>

int main(void)

{
char *p1;
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char s[80];
do {
pl=s;

gets(s); /* read a string */

[* print the decimal equivalent of each
character */
while(*p1) printf(" %d", *pl++);

} while(strcmp(s, "done"));

return O;

Here, each time the loop iterates, p1 is set to the start of the string. In general,
you should remember to reinitialize a pointer if it is to be reused.

The fact that handling pointers incorrectly can cause tricky bugs is no reason to
avoid using them. Just be careful, and make sure that you know where each pointer
is pointing before you use it.
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activity occurs. This chapter examines their C-like features, including passing

arguments, returning values, prototypes, and recursion. Part Two discusses
the C++-specific features of functions, such as function overloading and reference
parameters.

F unctions are the building blocks of C and C++ and the place where all program

The General Form of a Function

The general form of a function is

ret-type function-name(parameter list)
{

body of the function
}

The ret-type specifies the type of data that the function returns. A function may return
any type of data except an array. The parameter list is a comma-separated list of variable
names and their associated types that receive the values of the arguments when the
function is called. A function may be without parameters, in which case the parameter
list is empty. However, even if there are no parameters, the parentheses are still required.
In variable declarations, you can declare many variables to be of a common type
by using a comma-separated list of variable names. In contrast, all function parameters
must be declared individually, each including both the type and name. That is, the
parameter declaration list for a function takes this general form:

ftype varnamel, type varname?2, . . . , type varnameN)

For example, here are correct and incorrect function parameter declarations:

f(int i, int k, int j) /* correct */
f(inti, k, floatj) /* incorrect */

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece of code knows
about or has access to another piece of code or data.

Each function is a discrete block of code. A function's code is private to that function
and cannot be accessed by any statement in any other function except through a call to
that function. (For instance, you cannot use goto to jump into the middle of another
function.) The code that constitutes the body of a function is hidden from the rest of the
program and, unless it uses global variables or data, it can neither affect nor be affected
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by other parts of the program. Stated another way, the code and data that are defined
within one function cannot interact with the code or data defined in another function
because the two functions have a different scope.

Variables that are defined within a function are called local variables. A local
variable comes into existence when the function is entered and is destroyed upon
exit. That is, local variables cannot hold their value between function calls. The only
exception to this rule is when the variable is declared with the static storage class
specifier. This causes the compiler to treat the variable as if it were a global variable
for storage purposes, but limits its scope to within the function. (Chapter 2 covers
global and local variables in depth.)

In C (and C++) you cannot define a function within a function. This is why neither
C nor C++ are technically block-structured languages.

Function Arguments

If a function is to use arguments, it must declare variables that accept the values

of the arguments. These variables are called the formal parameters of the function.
They behave like other local variables inside the function and are created upon entry
into the function and destroyed upon exit. As shown in the following function, the
parameter declarations occur after the function name:

[* Return 1 if ¢ is part of string s; O otherwise. */
intis_in(char *s, char c)
{
while(*s)
if(*s==c) return 1;
else s++;
return O;

The function is_in() has two parameters: s and c. This function returns 1 if the
character c is part of the string s; otherwise, it returns 0.

As with local variables, you may make assignments to a function's formal
parameters or use them in an expression. Even though these variables perform
the special task of receiving the value of the arguments passed to the function,
you can use them as you do any other local variable.

Call by Value, Call by Reference

In a computer language, there are two ways that arguments can be passed to a
subroutine. The first is known as call by value. This method copies the value of an
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argument into the formal parameter of the subroutine. In this case, changes made to
the parameter have no effect on the argument.

Call by reference is the second way of passing arguments to a subroutine. In this
method, the address of an argument is copied into the parameter. Inside the subroutine,
the address is used to access the actual argument used in the call. This means that
changes made to the parameter affect the argument.

By default, C/C++ uses call by value to pass arguments. In general, this means that
code within a function cannot alter the arguments used to call the function. Consider
the following program:

#include <stdio.h>
int sgr(int x);

int main(void)

{
int t=10;

printf("%d %d", sqr(t), t);

return 0O;

}

int sgr(int x)
{
X = X*X;
return(x);

}

In this example, the value of the argument to sqr(), 10, is copied into the parameter

x. When the assignment x = x*x takes place, only the local variable x is modified. The

variable t, used to call sqr(), still has the value 10. Hence, the output is 100 10.
Remember that it is a copy of the value of the argument that is passed into the

function. What occurs inside the function has no effect on the variable used in the call.

Creating a Call by Reference

Even though C/C++ uses call by value for passing parameters, you can create a
call by reference by passing a pointer to an argument, instead of the argument itself.
Since the address of the argument is passed to the function, code within the function
can change the value of the argument outside the function.

Pointers are passed to functions just like any other value. Of course, you need
to declare the parameters as pointer types. For example, the function swap(),
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which exchanges the values of the two integer variables pointed to by its arguments,
shows how.

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */
* =*y; [*puty into x */
*y =temp; /* putxintoy */

}

swap( ) is able to exchange the values of the two variables pointed to by x and y
because their addresses (not their values) are passed. Thus, within the function,
the contents of the variables can be accessed using standard pointer operations, and
the contents of the variables used to call the function are swapped.

Remember that swap() (or any other function that uses pointer parameters) must
be called with the addresses of the arquments. The following program shows the correct
way to call swap():

void swap(int *x, int *y);

int main(void)

{

inti, j;

swap(&i, &j); /* pass the addresses of i and j */

return O;

}

In this example, the variable i is assigned the value 10 and j is assigned the value
20. Then swap() is called with the addresses of i and j. (The unary operator & is used
to produce the address of the variables.) Therefore, the addresses of i and j, not their
values, are passed into the function swap().

| C++ allows you to fully automate a call by reference through the use of reference
: parameters. This feature is described in Part Two.
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Calling Functions with Arrays

Arrays are covered in detail in Chapter 4. However, this section discusses passing
arrays as arguments to functions because it is an exception to the normal call-by-value
parameter passing.

When an array is used as a function argument, its address is passed to a function.
This is an exception to the call-by-value parameter passing convention. In this case, the
code inside the function is operating on, and potentially altering, the actual contents of
the array used to call the function. For example, consider the function print_upper(),
which prints its string argument in uppercase:

#include <stdio.h>
#include <ctype.h>

void print_upper(char *string);

int main(void)
{
char s[80];

gets(s);

print_upper(s);

printf("\ns is now uppercase: %s", s);
return O;

}

/* Print a string in uppercase. */
void print_upper(char *string)
{

register int t;

for(t=0; string[t]; ++t) {
string[t] = toupper(string|t]);
putchar(string[t]);
}
}

After the call to print_upper(), the contents of array s in main() will change to
uppercase. If this is not what you want, you could write the program like this:

#include <stdio.h>
#include <ctype.h>
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void print_upper(char *string);

int main(void)
{
char s[80];

gets(s);
print_upper(s);
printf("\ns is unchanged: %s", s);

return O;

}

void print_upper(char *string)
{

register int t;

for(t=0; string[t]; ++t)
putchar(toupper(string[t]));

In this version, the contents of array s remain unchanged because its values are not
altered inside print_upper().

The standard library function gets() is a classic example of passing arrays into
functions. Although the gets() in your standard library is more sophisticated, the
following simpler version, called xgets(), will give you an idea of how it works.

/* A simple version of the standard
gets() library function. */
char *xgets(char *s)
{
char ch, *p;
intt;
p =s; /* gets() returns a pointer to s */

for(t=0; t<80; ++t){
ch = getchar();

switch(ch) {
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case '\n":
s[t] = "\0'; /* terminate the string */
return p;
case '\b":
if(t>0) t--;
break;
default:
s[t] = ch;
}
}
s[79] = "\0’;
return p;

}

The xgets() function must be called with a character pointer. This, of course, can
be the name of a character array, which by definition is a character pointer. Upon entry,
xgets( ) establishes a for loop from 0 to 79. This prevents larger strings from being
entered at the keyboard. If more than 80 characters are entered, the function returns.
(The real gets() function does not have this restriction.) Because C/C++ has no built-in
bounds checking, you should make sure that any array used to call xgets() can accept
at least 80 characters. As you type characters on the keyboard, they are placed in the
string. If you type a backspace, the counter t is reduced by 1, effectively removing the
previous character from the array. When you press ENTER, a null is placed at the end
of the string, signaling its termination. Because the actual array used to call xgets() is
modified, upon return it contains the characters that you type.

___| arge and argv—Arguments to main( )

Sometimes it is useful to pass information into a program when you run it. Generally,
you pass information into the main() function via command line arguments. A
command line arqument is the information that follows the program's name on the
command line of the operating system. For example, when you compile a program,
you might type something like the following after the command prompt:

cc program_naime

where program_name is a command line argument that specifies the name of the
program you wish to compile.

There are two special built-in arguments, argv and argc, that are used to receive
command line arguments. The argc parameter holds the number of arguments on



Chapter 6: Functions

the command line and is an integer. It is always at least 1 because the name of the
program qualifies as the first argument. The argv parameter is a pointer to an array of
character pointers. Each element in this array points to a command line argument. All
command line arguments are strings—any numbers will have to be converted by the
program into the proper internal format. For example, this simple program prints
Hello and your name on the screen if you type it directly after the program name.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(])
{
if(argc!=2) {
printf("You forgot to type your name.\n");
exit(1);
}
printf("Hello %s", argv[1]);

return O;

If you called this program name and your name were Tom, you would type name Tom
to run the program. The output from the program would be Hello Tom.

In many environments, each command line argument must be separated by a space
or a tab. Commas, semicolons, and the like are not considered separators. For example,

run Spot, run
is made up of three strings, while
Herb,Rick,Fred

is a single string since commas are not generally legal separators.

Some environments allow you to enclose within double quotes a string containing
spaces. This causes the entire string to be treated as a single argument. Check your
operating system documentation for details on the definition of command line
parameters for your system.

You must declare argv properly. The most common method is

char *argv[];
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The empty brackets indicate that the array is of undetermined length. You can now
access the individual arguments by indexing argv. For example, argv[0] points to the
first string, which is always the program'’s name; argv[1] points to the first argument,
and so on.

Another short example using command line arguments is the program called
countdown, shown here. It counts down from a starting value (which is specified on
the command line) and beeps when it reaches 0. Notice that the first argument
containing the number is converted into an integer by the standard function atoi( ).If
the string "display" is the second command line argument, the countdown will also be
displayed on the screen.

/* Countdown program. */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

int main(int argc, char *argv(])

{

int disp, count;

if(argc<2) {
printf("You must enter the length of the count\n™);
printf("on the command line. Try again.\n");
exit(1);

}

if(argc==3 && !strcmp(argv[2], "display")) disp = 1;
else disp = 0;

for(count=atoi(argv[1]); count; --count)
if(disp) printf("%d\n", count);

putchar(\a'); /* this will ring the bell */
printf("Done");

return O;

Notice that if no command line arguments have been specified, an error message is
printed. A program with command line arguments often issues instructions if the
user attempts to run the program without entering the proper information.

To access an individual character in one of the command line arguments, add a
second index to argv. For example, the next program displays all of the arguments
with which it was called, one character at a time:
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#include <stdio.h>

int main(int argc, char *argv(])

{
intt, i
for(t=0; t<argc; ++t) {
i=0;
while(argv[t][i]) {
putchar(argv[t][i]):
++i;
}
printf("\n");
}
return O;
}

Remember, the first index accesses the string, and the second index accesses the
individual characters of the string.

Normally, you use argc and argv to get initial commands into your program. In
theory, you can have up to 32,767 arguments, but most operating systems do not allow
more than a few. You typically use these arguments to indicate a filename or an option.
Using command line arguments gives your program a professional appearance and
facilitates its use in batch files.

When a program does not require command line parameters, it is common
practice to explicitly declare main() as having no parameters. For C programs this is
accomplished by using the void keyword in its parameter list. (This is the approach
used by the programs in Part One of this book.) However, for C++ programs you
may simply specify an empty parameter list. In C++, the use of void to indicate an
empty parameter list is allowed, but redundant.

The names argc and argv are traditional but arbitrary. You may name these two
parameters to main() anything you like. Also, some compilers may support additional
arguments to main(), so be sure to check your user's manual.

The return Statement

The return statement itself is described in Chapter 3. As explained, it has two important
uses. First, it causes an immediate exit from the function that it is in. That is, it causes
program execution to return to the calling code. Second, it may be used to return a
value. This section examines how the return statement is used.

Returning from a Function

There are two ways that a function terminates execution and returns to the caller. The
first occurs when the last statement in the function has executed and, conceptually,
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the function's ending curly brace (}) is encountered. (Of course, the curly brace isn't
actually present in the object code, but you can think of it in this way.) For example, the
pr_reverse() function in this program simply prints the string "I like C++" backwards
on the screen and then returns.

#include <string.h>
#include <stdio.h>

void pr_reverse(char *s);

int main(void)

{

pr_reverse("l like C++");

return O;

}

void pr_reverse(char *s)

{

register int t;

for(t=strlen(s)-1; t>=0; t--) putchar(s[t]);
}

Once the string has been displayed, there is nothing left for pr_reverse() to do, so it
returns to the place from which it was called.

Actually, not many functions use this default method of terminating their
execution. Most functions rely on the return statement to stop execution either
because a value must be returned or to make a function's code simpler and more
efficient.

A function may contain several return statements. For example, the find_substr()
function in the following program returns the starting position of a substring within
a string, or returns -1 if no match is found.

#include <stdio.h>
int find_substr(char *s1, char *s2);

int main(void)
{
if(find_substr("C++ is fun", "is") 1= -1)
printf("substring is found");
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return O;

}

/* Return index of first match of s2 in s1. */
int find_substr(char *s1, char *s2)

{
register int t;
char *p, *p2;

for(t=0; s1[t]; t++) {
p = &s1lt];
p2 =s2;

while(*p2 && *p2==*p) {
p++;
p2++;
}
if(*p2) return t; /* 1st return */
}

return -1; /* 2nd return */

Returning Values

All functions, except those of type void, return a value. This value is specified by the
return statement. In C, if a non-void function does not explicitly return a value via a
return statement, then a garbage value is returned. In C++, a non-void function must
contain a return statement that returns a value. That is, in C++, if a function is specified
as returning a value, any return statement within it must have a value associated with
it. However, if execution reaches the end of a non-void function, then a garbage value
is returned. Although this condition is not a syntax error, it is still a fundamental error
and should be avoided.

As long as a function is not declared as void, you may use it as an operand in an
expression. Therefore, each of the following expressions is valid:

X = power(y);
if(max(x,y) > 100) printf("greater");
for(ch=getchar(); isdigit(ch); ) ... ;

As a general rule, a function cannot be the target of an assignment. A statement
such as
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swap(x,y) = 100; /* incorrect statement */

is wrong. The C/C++ compiler will flag it as an error and will not compile a program
that contains it. (As is discussed in Part Two, C++ allows some interesting exceptions
to this general rule, enabling some types of functions to occur on the left side of an
assignment.)

When you write programs, your functions generally will be of three types. The
first type is simply computational. These functions are specifically designed to
perform operations on their arguments and return a value based on that operation.

A computational function is a "pure" function. Examples are the standard library
functions sqrt() and sin(), which compute the square root and sine of their arguments.

The second type of function manipulates information and returns a value that
simply indicates the success or failure of that manipulation. An example is the library
function fclose( ), which is used to close a file. If the close operation is successful, the
function returns 0; if the operation is unsuccessful, it returns EOF.

The last type of function has no explicit return value. In essence, the function is
strictly procedural and produces no value. An example is exit(), which terminates a
program. All functions that do not return values should be declared as returning type
void. By declaring a function as void, you keep it from being used in an expression,
thus preventing accidental misuse.

Sometimes, functions that really don't produce an interesting result return
something anyway. For example, printf() returns the number of characters written.
Yet it would be unusual to find a program that actually checked this. In other words,
although all functions, except those of type void, return values, you don't have to use
the return value for anything. A common question concerning function return values
is, "Don't I have to assign this value to some variable since a value is being returned?"
The answer is no. If there is no assignment specified, the return value is simply
discarded. Consider the following program, which uses the function mul():

#include <stdio.h>
int mul(int a, int b);

int main(void)

{
intx,y, z;
x=10; y=20;
z = mul(x, y); [* 1%

printf("%d", mul(x,y)); /* 2 */
mul(x, y); [*3*
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return O;

}

int mul(int a, int b)
{

return a*b;

}

In line 1, the return value of mul() is assigned to z. In line 2, the return value is not
actually assigned, but it is used by the printf() function. Finally, in line 3, the return
value is lost because it is neither assigned to another variable nor used as part of an
expression.

Returning Pointers

Although functions that return pointers are handled just like any other type of
function, a few important concepts need to be discussed.

Pointers to variables are neither integers nor unsigned integers. They are the
memory addresses of a certain type of data. The reason for this distinction is because
pointer arithmetic is relative to the base type. For example, if an integer pointer is
incremented, it will contain a value that is 4 greater than its previous value (assuming
4-byte integers). In general, each time a pointer is incremented (or decremented), it
points to the next (or previous) item of its type. Since the length of different data types
may differ, the compiler must know what type of data the pointer is pointing to. For
this reason, a function that returns a pointer must declare explicitly what type of
pointer it is returning. For example, you should not use a return type of int * to return
a char * pointer!

To return a pointer, a function must be declared as having a pointer return type.
For example, this function returns a pointer to the first occurrence of the character ¢
in string s:

[* Return pointer of first occurrence of c in s. */
char *match(char c, char *s)
{

while(c!=*s && *s) s++;

return(s);

}

If no match is found, a pointer to the null terminator is returned. Here is a short
program that uses match():
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#include <stdio.h>
char *match(char c, char *s); /* prototype */

int main(void)
{
char s[80], *p, ch;

gets(s);
ch = getchar();
p = match(ch, s);

if(*p) /* there is a match */
printf("%s ", p);

else
printf("No match found.");

return O;

This program reads a string and then a character. If the character is in the string, the
program prints the string from the point of match. Otherwise, it prints No match found.

Functions of Type void

One of void's uses is to explicitly declare functions that do not return values. This
prevents their use in any expression and helps avert accidental misuse. For example,
the function print_vertical() prints its string argument vertically down the side of
the screen. Since it returns no value, it is declared as void.

void print_vertical(char *str)
{
while(*str)
printf("%c\n", *str++);

Here is an example that uses print_vertical().

#include <stdio.h>

void print_vertical(char *str); /* prototype */
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int main(int argc, char *argv(])

{

if(argc > 1) print_vertical(argv[1]);

return O;

}

void print_vertical(char *str)
{
while(*str)
printf("%c\n", *str++);

One last point: Early versions of C did not define the void keyword. Thus, in
early C programs, functions that did not return values simply defaulted to type int.
Therefore, don't be surprised to see many examples of this in older code.

What Does main( ) Return?

The main() function returns an integer to the calling process, which is generally the
operating system. Returning a value from main() is the equivalent of calling exit()
with the same value. If main() does not explicitly return a value, the value passed
to the calling process is technically undefined. In practice, most C/C++ compilers
automatically return 0, but do not rely on this if portability is a concern.

| Recursion

In C/C++, a function can call itself. A function is said to be recursive if a statement in
the body of the function calls itself. Recursion is the process of defining something in
terms of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(), which computes the factorial of
an integer. The factorial of a number n is the product of all the whole numbers between
1 and n. For example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative
equivalent are shown here:

/* recursive */
int factr(int n) {
int answer;

if(n==1) return(1);
answer = factr(n-1)*n; /* recursive call */
return(answer);
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}

/* non-recursive */
int fact(int n) {
int t, answer;

answer = 1;

for(t=1; t<=n; t++)
answer=answer*(t);

return(answer);

}

The nonrecursive version of fact() should be clear. It uses a loop that runs from 1 to
n and progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1. Otherwise, it returns the product
of factr(n—1)*n. To evaluate this expression, factr() is called with n—1. This happens
until n equals 1 and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a second, recursive call
with the argument of 1. This call returns 1, which is then multiplied by 2 (the original
n value). The answer is then 2. Try working through the computation of 3 factorial on
your own. (You might want to insert printf() statements into factr() to see the level of
each call and what the intermediate answers are.)

When a function calls itself, a new set of local variables and parameters are
allocated storage on the stack, and the function code is executed from the top with
these new variables. A recursive call does not make a new copy of the function. Only
the values being operated upon are new. As each recursive call returns, the old local
variables and parameters are removed from the stack and execution resumes at the
point of the function call inside the function. Recursive functions could be said to
"telescope” out and back.

Most recursive routines do not significantly reduce code size or improve memory
utilization. Also, the recursive versions of most routines may execute a bit slower than
their iterative equivalents because of the overhead of the repeated function calls. In
fact, many recursive calls to a function could cause a stack overrun. Because storage for
function parameters and local variables is on the stack and each new call creates a new
copy of these variables, the stack could be overrun. However, you probably will not
have to worry about this unless a recursive function runs wild.

The main advantage to recursive functions is that you can use them to create clearer
and simpler versions of several algorithms. For example, the quicksort algorithm is
difficult to implement in an iterative way. Also, some problems, especially ones related
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to artificial intelligence, lend themselves to recursive solutions. Finally, some people
seem to think recursively more easily than iteratively.

When writing recursive functions, you must have a conditional statement, such
as an if, somewhere to force the function to return without the recursive call being
executed. If you don't, the function will never return once you call it. Omitting the
conditional statement is a common error when writing recursive functions. Use
printf() liberally during program development so that you can watch what is going
on and abort execution if you see a mistake.

Function Prototypes

In C++ all functions must be declared before they are used. This is normally
accomplished using a function prototype. Function prototypes were not part of the
original C language. They were, however, added when C was standardized. While
prototypes are not technically required by Standard C, their use is strongly encouraged.
Prototypes have always been required by C++. In this book, all examples include full
function prototypes. Prototypes enable both C and C++ to provide stronger type
checking, somewhat like that provided by languages such as Pascal. When you use
prototypes, the compiler can find and report any illegal type conversions between the
type of arguments used to call a function and the type definition of its parameters. The
compiler will also catch differences between the number of arguments used to call a
function and the number of parameters in the function.

The general form of a function prototype is

type func_name(type parm_namel, type parm_name2,. . .,
type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to identify
any type mismatches by name when an error occurs, so it is a good idea to include
them.

The following program illustrates the value of function prototypes. It produces an
error message because it contains an attempt to call sqr_it() with an integer argument
instead of the integer pointer required. (It is illegal to convert an integer into a pointer.)

/* This program uses a function prototype to
enforce strong type checking. */

void sqr_it(int *i); /* prototype */

int main(void)

{
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int x;

x = 10;
sqr_it(x); /* type mismatch */

return O;

}

void sqr_it(int *i)
{

HER R

}

A function's definition can also serve as its prototype if the definition occurs prior
to the function's first use in the program. For example, this is a valid program.

#include <stdio.h>

[* This definition will also serve
as a prototype within this program. */
void f(int a, int b)
{
printf("%d ", a % b);
}

int main(void)
{
(10,3);

return O;

In this example, since f() is defined prior to its use in main( ), no separate
prototype is required. While it is possible for a function's definition to serve as its
prototype in small programs, it is seldom possible in large onesO especially when
several files are used. The programs in this book include a separate prototype for
each function because that is the way C/C++ code is normally written in practice.

The only function that does not require a prototype is main(), since it is the first
function called when your program begins.

Because of the need for compatibility with the original version of C, there is a
small but important difference between how C and C++ handle the prototyping of a
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function that has no parameters. In C++, an empty parameter list is simply indicated
in the prototype by the absence of any parameters. For example,

int f(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. For historical reasons,
an empty parameter list simply says that no parameter information is given. As far as the
compiler is concerned, the function could have several parameters or no parameters. In
C, when a function has no parameters, its prototype uses void inside the parameter list.
For example, here is f()'s prototype as it would appear in a C program.

float f(void);

This tells the compiler that the function has no parameters, and any call to that function
that has parameters is an error. In C++, the use of void inside an empty parameter list
is still allowed, but is redundant.

| In C++, f() and f(void) are equivalent.

Function prototypes help you trap bugs before they occur. In addition, they help
verify that your program is working correctly by not allowing functions to be called
with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax,
prototypes are technically optional in C. This is necessary to support pre-prototype
C code. If you are porting older C code to C++, you may need to add full function
prototypes before it will compile. Remember: Although prototypes are optional in C,
they are required by C++. This means that every function in a C++ program must be
fully prototyped.

Standard Library Function Prototypes

Any standard library function used by your program must be prototyped. To
accomplish this, you must include the appropriate header for each library function.
All necessary headers are provided by the C/C++ compiler. In C, all headers are files
that use the .H extension. In C++, headers may be either separate files or built into

the compiler itself. In either case, a header contains two main elements: any definitions
used by the library functions and the prototypes for the library functions. For example,
stdio.h is included in almost all programs in this part of the book because it contains
the prototype for printf(). The headers for the standard library are described in

Part Three.
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Declaring Variable-Length Parameter Lists

You can specify a function that has a variable number of parameters. The most
common example is printf(). To tell the compiler that an unknown number of
arguments may be passed to a function, you must end the declaration of its
parameters using three periods. For example, this prototype specifies that func()
will have at least two integer parameters and an unknown number (including 0)
of parameters after that.

int func(int a, int b, ...);

This form of declaration is also used by a function's definition.
Any function that uses a variable number of parameters must have at least one
actual parameter. For example, this is incorrect:

int func(...); /* illegal */

___| old-Style Versus Modern Function Parameter

Declarations

Early versions of C used a different parameter declaration method than does either
Standard C or Standard C++. This early approach is sometimes called the classic form.
This book uses a declaration approach called the modern form. Standard C supports
both forms, but strongly recommends the modern form. Standard C++ only supports
the modern parameter declaration method. However, you should know the old-style
form because many older C programs still use it.

The old-style function parameter declaration consists of two parts: a parameter
list, which goes inside the parentheses that follow the function name, and the actual
parameter declarations, which go between the closing parentheses and the function's
opening curly brace. The general form of the old-style parameter definition is

type func_name(parml, parm2, . . .parmN)
type parm1;
type parm2;

type parmN;
{

function code

}
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For example, this modern declaration:

float f(int &, int b, char ch)
{

¥
}

will look like this in its old-style form:

float f(a, b, ch)
int a, b;
char ch;

{
L
}

Notice that the old-style form allows the declaration of more than one parameter in a
list after the type name.

M| The old-style form of parameter declaration is designated as obsolete by the C
Remember | .
anguage and is not supported by C++.

| Implementation Issues

There are a few important things to remember about functions that affect their
efficiency and usability. These issues are the subject of this section.

Parameters and General-Purpose Functions

A general-purpose function is one that will be used in a variety of situations, perhaps

by many different programmers. Typically, you should not base general-purpose

functions on global data. All of the information a function needs should be passed

to it by its parameters. When this is not possible, you should use static variables.
Besides making your functions general purpose, parameters keep your code

readable and less susceptible to bugs resulting from side effects.

Efficiency

Functions are the building blocks of C/C++ and are crucial to all but the simplest
programs. However, in certain specialized applications, you may need to eliminate
a function and replace it with inline code. Inline code performs the same actions as a
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function, but without the overhead associated with a function call. For this reason,
inline code is often used instead of function calls when execution time is critical.
Inline code is faster than a function call for two reasons. First, a CALL instruction
takes time to execute. Second, if there are arguments to pass, these have to be placed
on the stack, which also takes time. For most applications, this very slight increase in
execution time is of no significance. But if it is, remember that each function call uses
time that would be saved if the function's code were placed in line. For example, the
following are two versions of a program that prints the square of the numbers from 1
to 10. The inline version runs faster than the other because the function call adds time.

in line function call

#include <stdio.h> #include <stdio.h>
int sgr(int a);

int main(void) int main(void)
{ {
int x; int x;
for(x=1; x<11; ++x) for(x=1; x<11; ++x)
printf("%d", X*x); printf("%d", sqr(x));
return O; return O;
} }
int sqr(int a)
{
return a*a;
}

| In C++, the concept of inline functions is expanded and formalized. In fact, inline

functions are an important component of the C++ language.
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The C language gives you five ways to create a custom data type:

1. The structure, which is a grouping of variables under one name and is called
a compound data type. (The terms aggregate or conglomerate are also commonly
used.)

2. The bit-field, which is a variation on the structure and allows easy access to
individual bits.

3. The union, which enables the same piece of memory to be defined as two or
more different types of variables.

4. The enumeration, which is a list of named integer constants.

5. The typedef keyword, which defines a new name for an existing type.

C++ supports all of the above and adds classes, which are described in Part Two.
The other methods of creating custom data types are described here.

Note | In C++, structures and unions have both object-oriented and non-object-oriented
: attributes. This chapter discusses only their C-like, non-object-oriented features.

Their object-oriented qualities are described later in this book.

| Structures

A structure is a collection of variables referenced under one name, providing a
convenient means of keeping related information together. A structure declaration
forms a template that may be used to create structure objects (that is, instances of

a structure). The variables that make up the structure are called members. (Structure
members are also commonly referred to as elements or fields.)

Generally, all of the members of a structure are logically related. For example, the
name and address information in a mailing list would normally be represented in a
structure. The following code fragment shows how to declare a structure that defines
the name and address fields. The keyword struct tells the compiler that a structure is
being declared.

struct addr
{
char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;
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Notice that the declaration is terminated by a semicolon. This is because a structure
declaration is a statement. The type name of the structure is addr. As such, addr
identifies this particular data structure and is its type specifier.

At this point, no variable has actually been created. Only the form of the data has been
defined. When you define a structure, you are defining a compound variable type, not
a variable. Not until you declare a variable of that type does one actually exist. In C, to
declare a variable (i.e., a physical object) of type addr, write

struct addr addr_info;

This declares a variable of type addr called addr_info. In C++, you may use this shorter
form.

addr addr_info;

As you can see, the keyword struct is not needed. In C++, once a structure

has been declared, you may declare variables of its type using only its type name,
without preceding it with the keyword struct. The reason for this difference is that

in C, a structure's name does not define a complete type name. In fact, Standard C
refers to a structure's name as a tag. In C, you must precede the tag with the keyword
struct when declaring variables. However, in C++, a structure's name is a complete
type name and may be used by itself to define variables. Keep in mind, however,
that it is still perfectly legal to use the C-style declaration in a C++ program. Since the
programs in Part One of this book are valid for both C and C++, they will use the C
declaration method. Just remember that C++ allows the shorter form.

When a structure variable (such as addr_info) is declared, the compiler auto-
matically allocates sufficient memory to accommodate all of its members. Figure 7-1
shows how addr_info appears in memory assuming 1-byte characters and 4-byte
long integers.

You may also declare one or more structure variables when you declare a structure.
For example,

struct addr {
char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;
} addr_info, binfo, cinfo;

defines a structure type called addr and declares variables addr_info, binfo, and cinfo
of that type.
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Name 30 bytes
Street 40 bytes
City 20 bytes

State 3 bytes

ZIP  4bytes

Figure 7-1. The addr_info structure in memory

If you only need one structure variable, the structure type name is not needed. That
means that

struct {
char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;
} addr_info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct struct-type-name {
type member-name;
type member-name;
type member-name;

} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.
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Accessing Structure Members

Individual members of a structure are accessed through the use of the . operator
(usually called the dot operator). For example, the following code assigns the ZIP
code 12345 to the zip field of the structure variable addr_info declared earlier:

addr_info.zip = 12345;

The structure variable name followed by a period and the member name references
that individual member. The general form for accessing a member of a structure is

structure-name.member-name

Therefore, to print the ZIP code on the screen, write
printf("%d", addr_info.zip);

This prints the ZIP code contained in the zip member of the structure variable
addr_info.

In the same fashion, the character array addr_info.name can be used to call
gets(), as shown here:

gets(addr_info.name);

This passes a character pointer to the start of name.

Since name is a character array, you can access the individual characters of
addr_info.name by indexing name. For example, you can print the contents of
addr_info.name one character at a time by using the following code:

register int t;

for(t=0; addr_info.namel[t]; ++t)
putchar(addr_info.namelt]);

Structure Assignments

The information contained in one structure may be assigned to another structure of the
same type using a single assignment statement. That is, you do not need to assign the
value of each member separately. The following program illustrates structure
assignments:

#include <stdio.h>

int main(void)



166

C++: The Complete Reference

struct {
int a;
int b;
Xy
x.a =10;
y = X; [* assign one structure to another */

printf("%d", y.a);

return O;

After the assignment, y.a will contain the value 10.

Arrays of Structures

Perhaps the most common usage of structures is in arrays of structures. To declare
an array of structures, you must first define a structure and then declare an array
variable of that type. For example, to declare a 100-element array of structures of
type addr, defined earlier, write

struct addr addr_info[100];

This creates 100 sets of variables that are organized as defined in the structure addr.
To access a specific structure, index the structure name. For example, to print the
ZIP code of structure 3, write

printf("%d", addr_info[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

Passing Structures to Functions

This section discusses passing structures and their members to functions.



Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 167

Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing
the value of that member to the function. Therefore, you are passing a simple
variable (unless, of course, that element is compound, such as an array). For
example, consider this structure:

struct fred
{
char x;
inty;
float z;
char s[10];
} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */
func2(mike.y); /* passes integer value of y */
func3(mike.z); /* passes float value of z */
func4(mike.s); /* passes address of string s */
func(mike.s[2]); /* passes character value of s[2] */

If you wish to pass the address of an individual structure member, put the & operator
before the structure name. For example, to pass the address of the members of the
structure mike, write

func(&mike.x); /* passes address of character x */
func2(&mike.y); /* passes address of integery */
func3(&mike.z); /* passes address of float z */
func4(mike.s); [* passes address of string s */
func(&mike.s[2]); /* passes address of character s[2] */

Remember that the & operator precedes the structure name, not the individual
member name. Note also that s already signifies an address, so no & is required.

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. Of course, this means that any changes
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made to the contents of the structure inside the function to which it is passed do not
affect the structure used as an argument.

When using a structure as a parameter, remember that the type of the argument
must match the type of the parameter. For example, in the following program both the
argument arg and the parameter parm are declared as the same type of structure.

#include <stdio.h>

[* Define a structure type. */
struct struct_type {

int a, b;

char ch;

H
void fl(struct struct_type parm);

int main(void)
{

struct struct_type arg;
arg.a = 1000;
fl(arg);

return O;

}

void fl(struct struct_type parm)
{

printf("%d", parm.a);
}

As this program illustrates, if you will be declaring parameters that are structures,
you must make the declaration of the structure type global so that all parts of your
program can use it. For example, had struct_type been declared inside main() (for
example), then it would not have been visible to £1().

As just stated, when passing structures, the type of the argument must match
the type of the parameter. It is not sufficient for them to simply be physically similar;
their type names must match. For example, the following version of the preceding
program is incorrect and will not compile because the type name of the argument
used to call £1() differs from the type name of its parameter.
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/* This program is incorrect and will not compile. */
#include <stdio.h>

[* Define a structure type. */
struct struct_type {

int a, b;

char ch;

b

/* Define a structure similar to struct_type,
but with a different name. */
struct struct_type2 {
int a, b;
char ch;

3
void f1(struct struct_type2 parm);

int main(void)

{

struct struct_type arg;
arg.a = 1000;
fl(arg); /* type mismatch */

return O;

}

void fl(struct struct_type2 parm)

{
printf("%d", parm.a);

}

___| Structure Pointers

C/C++ allows pointers to structures just as it allows pointers to any other type
of variable. However, there are some special aspects to structure pointers that
you should know.
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Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure
variable's name. For example, assuming the previously defined structure addr, the
following declares addr_pointer as a pointer to data of that type:

struct addr *addr_pointer;

Remember, in C++ it is not necessary to precede this declaration with the keyword
struct.

Using Structure Pointers

There are two primary uses for structure pointers: to pass a structure to a function
using call by reference, and to create linked lists and other dynamic data structures that
rely on dynamic allocation. This chapter covers the first use.

There is one major drawback to passing all but the simplest structures to functions:
the overhead needed to push the structure onto the stack when the function call is
executed. (Recall that arguments are passed to functions on the stack.) For simple
structures with few members, this overhead is not too great. If the structure contains
many members, however, or if some of its members are arrays, run-time performance
may degrade to unacceptable levels. The solution to this problem is to pass only a
pointer to the function.

When a pointer to a structure is passed to a function, only the address of the
structure is pushed on the stack. This makes for very fast function calls. A second
advantage, in some cases, is when a function needs to reference the actual structure
used as the argument, instead of a copy. By passing a pointer, the function can
modify the contents of the structure used in the call.

To find the address of a structure variable, place the & operator before the
structure's name. For example, given the following fragment:

struct bal {
float balance;
char name[80];
} person;

struct bal *p; /* declare a structure pointer */
then

p = &person;
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places the address of the structure person into the pointer p.
To access the members of a structure using a pointer to that structure, you must
use the —> operator. For example, this references the balance field:

p->balance

The —> is usually called the arrow operator, and consists of the minus sign followed
by a greater-than sign. The arrow is used in place of the dot operator when you are
accessing a structure member through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which
prints the hours, minutes, and seconds on your screen using a software timer.

/* Display a software timer. */
#include <stdio.h>

#define DELAY 128000

struct my_time {
int hours;
int minutes;
int seconds;

b

void display(struct my_time *t);
void update(struct my_time *t);
void delay(void);

int main(void)

{

struct my_time systime;

systime.hours = 0;
systime.minutes = 0;
systime.seconds = 0;

for(;;) {
update(&systime);
display(&systime);
}

return O;

171



172 C++: The Complete Reference

void update(struct my_time *t)
{
t->seconds++;
if(t->seconds==60) {
t->seconds = 0;
t->minutes++;

}

if(t->minutes==60) {
t->minutes = 0;
t->hours++;

}

if(t->hours==24) t->hours = 0;
delay();
}

void display(struct my_time *t)
{
printf("%02d:", t->hours);
printf("%02d:", t->minutes);
printf("%02d\n", t->seconds);
}

void delay(void)
{

longint t;

[* change this as needed */
for(t=1; t<DELAY; ++t) ;
}

The timing of this program is adjusted by changing the definition of DELAY.

As you can see, a global structure called my_time is defined but no variable is
declared. Inside main( ), the structure systime is declared and initialized to 00:00:00.
This means that systime is known directly only to the main() function.

The functions update() (which changes the time) and display() (which prints
the time) are passed the address of systime. In both functions, their arguments are
declared as a pointer to a my_time structure.

Inside update() and display( ), each member of systime is accessed via a pointer.
Because update( ) receives a pointer to the systime structure, it can update its value.
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For example, to set the hours back to 0 when 24:00:00 is reached, update() contains
this line of code:

if(t->hours==24) t->hours = 0;

This tells the compiler to take the address of t (which points to systime in main())
and to reset hours to zero.

Remember, use the dot operator to access structure elements when operating on
the structure itself. When you have a pointer to a structure, use the arrow operator.

Arrays and Structures Within Structures

A member of a structure may be either a simple or compound type. A simple
member is one that is of any of the built-in data types, such as integer or character.
You have already seen one type of compound element: the character arrays used in
addr. Other compound data types include one-dimensional and multidimensional
arrays of the other data types and structures.

A member of a structure that is an array is treated as you might expect from
the earlier examples. For example, consider this structure:

struct x {
int a[10][10]; /* 10 x 10 array of ints */
float b;

3%

To reference integer 3,7 in a of structure y, write

y-a[3][7]

When a structure is a member of another structure, it is called a nested structure.
For example, the structure address is nested inside emp in this example:

struct emp {
struct addr address; /* nested structure */
float wage;

} worker;

Here, structure emp has been defined as having two members. The first is a structure
of type addr, which contains an employee's address. The other is wage, which holds
the employee's wage. The following code fragment assigns 93456 to the zip element
of address.
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worker.address.zip = 93456;

As you can see, the members of each structure are referenced from outermost to
innermost. Standard C specifies that structures may be nested to at least 15 levels.
Standard C++ suggests that at least 256 levels of nesting be allowed.

| Bit-Fields

Unlike some other computer languages, C/C++ has a built-in feature called a bit-field
that allows you to access a single bit. Bit-fields can be useful for a number of reasons,
such as:

m If storage is limited, you can store several Boolean (true/false) variables in
one byte.

m Certain devices transmit status information encoded into one or more bits
within a byte.

m Certain encryption routines need to access the bits within a byte.

Although these tasks can be performed using the bitwise operators, a bit-field can
add more structure (and possibly efficiency) to your code.

To access individual bits, C/C++ uses a method based on the structure. In fact,
a bit-field is really just a special type of structure member that defines how long,
in bits, the field is to be. The general form of a bit-field definition is

struct struct-type-name {
type namel : length;
type name?2 : length;

type nameN : length;
} variable_list;

Here, type is the type of the bit-field and length is the number of bits in the field.

A bit-field must be declared as an integral or enumeration type. Bit-fields of length

1 should be declared as unsigned, because a single bit cannot have a sign.
Bit-fields are frequently used when analyzing input from a hardware device.

For example, the status port of a serial communications adapter might return a

status byte organized like this:
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Bit Meaning When Set

Change in clear-to-send line
Change in data-set-ready
Trailing edge detected
Change in receive line
Clear-to-send
Data-set-ready

Telephone ringing

N O G & WO N —» O

Received signal
You can represent the information in a status byte using the following bit-field:

struct status_type {
unsigned delta_cts: 1;
unsigned delta_dsr: 1;
unsigned tr_edge: 1;
unsigned delta_rec: 1;
unsigned cts: 1;
unsigned dsr: 1;
unsigned ring:  1;
unsigned rec_line: 1;

} status;

You might use a routine similar to that shown here to enable a program to determine
when it can send or receive data.

status = get_port_status();
if(status.cts) printf(“clear to send");
if(status.dsr) printf("data ready");

To assign a value to a bit-field, simply use the form you would use for any other type
of structure element. For example, this code fragment clears the ring field:

status.ring = 0;

As you can see from this example, each bit-field is accessed with the dot operator.
However, if the structure is referenced through a pointer, you must use the —> operator.
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You do not have to name each bit-field. This makes it easy to reach the bit you
want, bypassing unused ones. For example, if you only care about the cts and dsr
bits, you could declare the status_type structure like this:

struct status_type {
unsigned :  4;
unsigned cts: 1;
unsigned dsr: 1;
} status;

Also, notice that the bits after dsr do not need to be specified if they are not used.
It is valid to mix normal structure members with bit-fields. For example,

struct emp {
struct addr address;
float pay;
unsigned lay_off:  1; /* lay off or active */
unsigned hourly:  1; /* hourly pay or wage */
unsigned deductions: 3; /* IRS deductions */

k

defines an employee record that uses only 1 byte to hold three pieces of information:
the employee's status, whether the employee is salaried, and the number of deductions.
Without the bit-field, this information would have taken 3 bytes.

Bit-fields have certain restrictions. You cannot take the address of a bit-field. Bit-
fields cannot be arrayed. They cannot be declared as static. You cannot know, from
machine to machine, whether the fields will run from right to left or from left to right;
this implies that any code using bit-fields may have some machine dependencies.
Other restrictions may be imposed by various specific implementations, so check the
user manual for your compiler.

Unions

A union is a memory location that is shared by two or more different variables,
generally of different types, at different times. Declaring a union is similar to
declaring a structure. Its general form is

union union-type-name {
type member-name;
type member-name;
type member-name;
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} union-variables;
For example:

union u_type {
inti;
char ch;

This declaration does not create any variables. You may declare a variable either
by placing its name at the end of the declaration or by using a separate declaration
statement. In C, to declare a union variable called cnvt of type u_type using the
definition just given, write

union u_type cnvt;

When declaring union variables in C++, you need use only the type name—
you don't need to precede it with the keyword union. For example, this is how
cnvt is declared in C++:

u_type cnvt;

In C++, preceding this declaration with the keyword union is allowed, but redundant.
In C++, the name of a union defines a complete type name. In C, a union name is its
tag and it must be preceded by the keyword union. (This is similar to the situation
with structures described earlier.) However, since the programs in this chapter are
valid for both C and C++, the C-style declaration form will be used.

In cnvt, both integer i and character ch share the same memory location. Of
course, i occupies 2 bytes (assuming 2-byte integers) and ch uses only 1. Figure 7-2
shows how i and ch share the same address. At any point in your program, you can
refer to the data stored in a cnvt as either an integer or a character.

When a union variable is declared, the compiler automatically allocates enough
storage to hold the largest member of the union. For example (assuming 2-byte
integers), cnvt is 2 bytes long so that it can hold i, even though ch requires only
1 byte.
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Byte 0 Byte 1

Figure 7-2. How i and ch utilize the union cnvt (assume 2-byte integers)

To access a member of a union, use the same syntax that you would use for
structures: the dot and arrow operators. If you are operating on the union directly,
use the dot operator. If the union is accessed through a pointer, use the arrow
operator. For example, to assign the integer 10 to element i of cnvt, write

cnvt.i = 10;
In the next example, a pointer to cnvt is passed to a function:

void funcl(union u_type *un)
{
un->i = 10; /* assign 10 to cnvt using
function */

Using a union can aid in the production of machine-independent (portable)
code. Because the compiler keeps track of the actual sizes of the union members,
no unnecessary machine dependencies are produced. That is, you need not worry
about the size of an int, long, float, or whatever.

Unions are used frequently when specialized type conversions are needed
because you can refer to the data held in the union in fundamentally different
ways. For example, you may use a union to manipulate the bytes that comprise a
double in order to alter its precision or to perform some unusual type of rounding.
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To get an idea of the usefulness of a union when nonstandard type conversions
are needed, consider the problem of writing a short integer to a disk file. The C/C++
standard library defines no function specifically designed to write a short integer to
a file. While you can write any type of data to a file using fwrite( ), using fwrite()
incurs excessive overhead for such a simple operation. However, using a union you
can easily create a function called putw( ), which writes the binary representation of
a short integer to a file one byte at a time. (This example assumes that short integers
are 2 bytes long.) To see how, first create a union consisting of one short integer and
a 2-byte character array:

union pw {
short int i;
char ch[2];

g
Now, you can use pw to create the version of putw() shown in the following program.

#include <stdio.h>

union pw {
short int i;
char ch[2];

h
int putw(short int num, FILE *fp);

int main(void)

{
FILE *fp;

fp = fopen("test.tmp”, "wb+");

putw(1000, fp); /* write the value 1000 as an integer */
fclose(fp);

return O;

}

int putw(short int num, FILE *fp)
{

union pw word;
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word.i = num;

putc(word.ch[0], fp); /* write first half */
return putc(word.ch[1], fp); /* write second half */

}

Although putw() is called with a short integer, it can still use the standard function
putc() to write each byte in the integer to a disk file one byte at a time.

| C++ supports a special type of union called an anonymous union which is
: discussed in Part Two of this book.

| Enumerations

An enumeration is a set of named integer constants that specify all the legal values
a variable of that type may have. Enumerations are common in everyday life. For
example, an enumeration of the coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined much like structures; the keyword enum signals the start
of an enumeration type. The general form for enumerations is

enum enum-type-name { enumeration list } variable_list;

Here, both the type name and the variable list are optional. (But at least one must
be present.) The following code fragment defines an enumeration called coin:

enum coin { penny, nickel, dime, quarter,
half_dollar, dollar};

The enumeration type name can be used to declare variables of its type. In C,
the following declares money to be a variable of type coin.

enum coin money;
In C++, the variable money may be declared using this shorter form:

coin money;
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In C++, an enumeration name specifies a complete type. In C, an enumeration name is
its tag and it requires the keyword enum to complete it. (This is similar to the situation
as it applies to structures and unions, described earlier.)

Given these declarations, the following types of statements are perfectly valid:

money = dime;
if(money==quarter) printf("Money is a quarter.\n");

The key point to understand about an enumeration is that each of the symbols
stands for an integer value. As such, they may be used anywhere that an integer may
be used. Each symbol is given a value one greater than the symbol that precedes it.
The value of the first enumeration symbol is 0. Therefore,

printf("%d %d", penny, dime);

displays 0 2 on the screen.
You can specify the value of one or more of the symbols by using an initializer.
Do this by following the symbol with an equal sign and an integer value. Symbols
that appear after initializers are assigned values greater than the previous initialization
value. For example, the following code assigns the value of 100 to quarter:

enum coin { penny, nickel, dime, quarter=100,
half_dollar, dollar};

Now, the values of these symbols are

penny 0
nickel 1
dime 2
quarter 100
half dollar 101
dollar 102

One common but erroneous assumption about enumerations is that the symbols
can be input and output directly. This is not the case. For example, the following code
fragment will not perform as desired:
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[* this will not work */
money = dollar;
printf("%s", money);

Remember, dollar is simply a name for an integer; it is not a string. For the same
reason, you cannot use this code to achieve the desired results:

[* this code is wrong */
strcpy(money, "dime");

That is, a string that contains the name of a symbol is not automatically converted to
that symbol.

Actually, creating code to input and output enumeration symbols is quite tedious
(unless you are willing to settle for their integer values). For example, you need the
following code to display, in words, the kind of coins that money contains:

switch(money) {
case penny: printf("penny");

break;

case nickel: printf("nickel");
break;

case dime: printf("dime");
break;

case quarter: printf("quarter");
break;

case half_dollar: printf("half_dollar");
break;

case dollar: printf("dollar");

Sometimes you can declare an array of strings and use the enumeration value as an
index to translate that value into its corresponding string. For example, this code also
outputs the proper string:

char name[][12]={
"penny",
"nickel",
"dime",
"quarter",
"half_dollar",
"dollar"
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k

printf("%s", name[money]);

Of course, this only works if no symbol is initialized, because the string array must
be indexed starting at 0.

Since enumeration values must be converted manually to their human-readable
string values for I/O operations, they are most useful in routines that do not make
such conversions. An enumeration is often used to define a compiler's symbol table,
for example. Enumerations are also used to help prove the validity of a program by
providing a compile-time redundancy check confirming that a variable is assigned
only valid values.

Using sizeof to Ensure Portability

You have seen that structures and unions can be used to create variables of different
sizes, and that the actual size of these variables may change from machine to machine.
The sizeof operator computes the size of any variable or type and can help eliminate
machine-dependent code from your programs. This operator is especially useful where
structures or unions are concerned.

For the following discussion, assume an implementation, common to many
C/C++ compilers, that has the sizes for data types shown here:

Type Size in Bytes
char

int 4
double

Therefore, the following code will print the numbers 1, 4, and 8 on the screen:

char ch;

inti;

double f;

printf("%d", sizeof(ch));

printf("%d", sizeof(i));
printf("%d", sizeof(f));

The size of a structure is equal to or greater than the sum of the sizes of its members.
For example,
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struct s {
char ch;
inti;
double f;
} s var;

Here, sizeof(s_var) is at least 13 (8 + 4 + 1). However, the size of s_var might be
greater because the compiler is allowed to pad a structure in order to achieve word
or paragraph alignment. (A paragraph is 16 bytes.) Since the size of a structure may
be greater than the sum of the sizes of its members, you should always use sizeof
when you need to know the size of a structure.

Since sizeof is a compile-time operator, all the information necessary to compute
the size of any variable is known at compile time. This is especially meaningful for
unions, because the size of a union is always equal to the size of its largest member.
For example, consider

union u {
char ch;
inti;
double f;

}u_var;

Here, the sizeof(u_var) is 8. At run time, it does not matter what u_var is actually
holding. All that matters is the size of its largest member, because any union must
be as large as its largest element.

__ | typedef

You can define new data type names by using the keyword typedef. You are not
actually creating a new data type, but rather defining a new name for an existing
type. This process can help make machine-dependent programs more portable. If
you define your own type name for each machine-dependent data type used by your
program, then only the typedef statements have to be changed when compiling for a
new environment. typedef also can aid in self-documenting your code by allowing
descriptive names for the standard data types. The general form of the typedef
statement is
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typedef type newname;

where type is any valid data type and newname is the new name for this type. The
new name you define is in addition to, not a replacement for, the existing type name.
For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name for float.
Next, you could create a float variable using balance:

balance over_due;

Here, over_due is a floating-point variable of type balance, which is another word
for float.
Now that balance has been defined, it can be used in another typedef. For example,

typedef balance overdraft;

tells the compiler to recognize overdraft as another name for balance, which is another
name for float.

Using typedef can make your code easier to read and easier to port to a new
machine, but you are not creating a new physical type.
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is the object-oriented I/O system defined by C++. This and the next chapter

discuss the C-like I/O system. (Part Two examines C++ 1/0.) While you will
probably want to use the C++ I/0O system for most new projects, C-style I/0O is still
quite common, and knowledge of its features is fundamental to a complete
understanding of C++.

In C, input and output are accomplished through library functions. There are both
console and file I/O functions. Technically, there is little distinction between console
I/0 and file I/O, but conceptually they are in very different worlds. This chapter
examines in detail the console I/O functions. The next chapter presents the file I/O
system and describes how the two systems relate.

With one exception, this chapter covers only console I/O functions defined by
Standard C++. Standard C++ does not define any functions that perform various
screen control operations (such as cursor positioning) or that display graphics,
because these operations vary widely between machines. Nor does it define any
functions that write to a window or dialog box under Windows. Instead, the console
170 functions perform only TTY-based output. However, most compilers include in
their libraries screen control and graphics functions that apply to the specific
environment in which the compiler is designed to run. And, of course, you may use
C++ to write Windows programs, but keep in mind that the C++ language does not
directly define functions that perform these tasks.

The Standard C I/O functions all use the header file stdio.h. C++ programs can
also use the new-style header <cstdio>.

This chapter refers to the console I/O functions as performing input from the
keyboard and output to the screen. However, these functions actually have the
standard input and standard output of the system as the target and/or source of
their I/O operations. Furthermore, standard input and standard output may be
redirected to other devices. These concepts are covered in Chapter 9.

C ++ supports two complete I/O systems. The first it inherits from C. The second

___| An Important Application Note

Part One of this book uses the C-like I/O system because it is the only style of I/O
that is defined for the C subset of C++. As explained, C++ also defines its own
object-oriented 1/0O system. For most C++ applications, you will want to use the
C++-specific I/O system, not the C I/O system described in this chapter. However,
an understanding of C-based 1/0 is important for the following reasons:

B At some point in your career you may be called upon to write code that is
restricted to the C subset. In this case, you will need to use the C-like I/O
functions.

m For the foreseeable future, C and C++ will coexist. Also, many programs will be
hybrids of both C and C++ code. Further, it will be common for C programs to
be "upgraded" into C++ programs. Thus, knowledge of both the C and the C++
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I/0 system will be necessary. For example, in order to change the C-style I/O
functions into their C++ object-oriented equivalents, you will need to know
how both the C and C++ I/O systems operate.

B An understanding of the basic principles behind the C-like I/O system is
crucial to an understanding of the C++ object-oriented I/O system. (Both
share the same general concepts.)

B In certain situations (for example, in very short programs), it may be easier to

use C's non-object-oriented approach to I/O than it is to use the object-oriented
I/0 defined by C++.

In addition, there is an unwritten rule that any C++ programmer must also be a C
programmer. If you don't know how to use the C I/O system, you will be limiting your
professional horizons.

___| Reading and Writing Characters

The simplest of the console I/O functions are getchar( ), which reads a character from
the keyboard, and putchar(), which prints a character to the screen. The getchar()
function waits until a key is pressed and then returns its value. The key pressed is also
automatically echoed to the screen. The putchar() function writes a character to the
screen at the current cursor position. The prototypes for getchar() and putchar() are
shown here:

int getchar(void);
int putchar(int c);

As its prototype shows, the getchar() function is declared as returning an integer.
However, you can assign this value to a char variable, as is usually done, because the
character is contained in the low-order byte. (The high-order byte is normally zero.)
getchar() returns EOF if an error occurs.

In the case of putchar(), even though it is declared as taking an integer parameter,
you will generally call it using a character argument. Only the low-order byte of its
parameter is actually output to the screen. The putchar() function returns the character
written, or EOF if an error occurs. (The EOF macro is defined in stdio.h and is
generally equal to —1.)

The following program illustrates getchar() and putchar(). It inputs characters
from the keyboard and displays them in reverse caselJ that is, it prints uppercase as
lowercase and lowercase as uppercase. To stop the program, enter a period.

#include <stdio.h>
#include <ctype.h>
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int main(void)

{

char ch;
printf("Enter some text (type a period to quit).\n");
do {

ch = getchar();

if(islower(ch)) ch = toupper(ch);
else ch = tolower(ch);

putchar(ch);
} while (ch 1="");

return O;

A Problem with getchar( )

There are some potential problems with getchar( ). Normally, getchar() is implemented
in such a way that it buffers input until ENTER is pressed. This is called line-buffered input;
you have to press ENTER before anything you typed is actually sent to your program.
Also, since getchar() inputs only one character each time it is called, line-buffering may
leave one or more characters waiting in the input queue, which is annoying in interactive
environments. Even though Standard C/C++ specify that getchar() can be implemented
as an interactive function, it seldom is. Therefore, if the preceding program did not
behave as you expected, you now know why.

Alternatives to getchar( )

getchar() might not be implemented by your compiler in such a way that it is useful in
an interactive environment. If this is the case, you might want to use a different function
to read characters from the keyboard. Standard C++ does not define any function that is
guaranteed to provide interactive input, but virtually all C++ compilers do. Although
these functions are not defined by Standard C++, they are commonly used since
getchar() does not fill the needs of most programmers.

Two of the most common alternative functions, getch() and getche(), have these
prototypes:

int getch(void);
int getche(void);
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For most compilers, the prototypes for these functions are found in the header file
conio.h. For some compilers, these functions have a leading underscore. For example,
in Microsoft's Visual C++, they are called _getch() and _getche().

The getch() function waits for a keypress, after which it returns immediately.
It does not echo the character to the screen. The getche() function is the same as
getch(), but the key is echoed. You will frequently see getche() or getch() used
instead of getchar() when a character needs to be read from the keyboard in an
interactive program. However, if your compiler does not support these alternative
functions, or if getchar() is implemented as an interactive function by your compiler,
you should substitute getchar() when necessary.

For example, the previous program is shown here using getch() instead of getchar():

#include <stdio.h>
#include <conio.h>
#include <ctype.h>

int main(void)

{

char ch;

printf("Enter some text (type a period to quit).\n");
do {
ch = getch();

if(islower(ch)) ch = toupper(ch);
else ch = tolower(ch);

putchar(ch);
} while (ch 1="");

return O;

}

When you run this version of the program, each time you press a key, it is
immediately transmitted to the program and displayed in reverse case. Input is
no longer line-buffered. While the code in this book will not make further use of
getch() or getche(), they may be useful in the programs that you write.

| At the time of this writing, when using Microsoft’s Visual C++ compiler,
’ _getche( ) and _getch( ) are not compatible with the standard C/C++
input functions, such as scanf() or gets(). Instead, you must use special

versions of the standard functions, such as cscanf( ) or cgets(). You will
need to examine the Visual C++ documentation for details.
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Reading and Writing Strings

The next step up in console I/0O, in terms of complexity and power, are the functions
gets() and puts(). They enable you to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and
places them at the address pointed to by its argument. You may type characters at
the keyboard until you press ENTER. The carriage return does not become part of the
string; instead, a null terminator is placed at the end and gets() returns. In fact, you
cannot use gets() to return a carriage return (although getchar() can do so). You can
correct typing mistakes by using the backspace key before pressing ENTER. The
prototype for gets() is

char *gets(char *str);

where str is a character array that receives the characters input by the user. gets() also
returns str. The following program reads a string into the array str and prints its length:

#include <stdio.h>
#include <string.h>

int main(void)

{
char str[80];

gets(str);
printf("Length is %d", strlen(str));

return O;

}

You need to be careful when using gets() because it performs no boundary checks on
the array that is receiving input. Thus, it is possible for the user to enter more characters
than the array can hold. While gets() is fine for sample programs and simple utilities
that only you will use, you will want to avoid its use in commercial code. One alternative
is the fgets() function described in the next chapter, which allows you to prevent an
array overrun.

The puts() function writes its string argument to the screen followed by a newline.
Its prototype is:

int puts(const char *str);
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to puts() requires far less overhead than the same call to printf() because puts() can
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only output a string of charactersJ it cannot output numbers or do format

conversions. Therefore, puts() takes up less space and runs faster than printf(). For
this reason, the puts() function is often used when it is important to have highly
optimized code. The puts() function returns EOF if an error occurs. Otherwise, it
returns a nonnegative value. However, when writing to the console, you can usually
assume that no error will occur, so the return value of puts() is seldom monitored.

The following statement displays hello:

puts("hello");

Table 8-1 summarizes the basic console I/O functions.

The following program, a simple computerized dictionary, demonstrates several of
the basic console I/O functions. It prompts the user to enter a word and then checks

to see if the word matches one in its built-in database. If a match is found,

the program prints the word's meaning. Pay special attention to the indirection used
in this program. If you have any trouble understanding it, remember that the dic
array is an array of pointers to strings. Notice that the list must be terminated by

two nulls.

Function Operation

getchar() Reads a character from the keyboard;
waits for carriage return.

getche() Reads a character with echo; does not
wait for carriage return; not defined by
Standard C/C++, but a common extension.

getch() Reads a character without echo; does not
wait for carriage return; not defined by
Standard C/C++, but a common extension.

putchar() Writes a character to the screen.

gets() Reads a string from the keyboard.

puts() Writes a string to the screen.

Table 8-1. The Basic |/0 Functions
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[* A simple dictionary. */
#include <stdio.h>
#include <string.h>
#include <ctype.h>

[* list of words and meanings */

char *dic[][40] ={
"atlas", "A volume of maps.",
"car", "A motorized vehicle.",
"telephone”, "A communication device.",
"airplane", "A flying machine.",
"M null terminate the list */

k

int main(void)

{
char word[80], ch;
char **p;

do {
puts("\nEnter word: ");
scanf("%s", word);

p = (char **)dic;

/* find matching word and print its meaning */
do {
if(!strcmp(*p, word)) {
puts("Meaning:");
puts(*(p+1));
break;
}
if(!strcmp(*p, word)) break;
p =p + 2; /* advance through the list */
} while(*p);
if("*p) puts("Word not in dictionary.");
printf("Another? (y/n): ");
scanf(" %c%*c", &ch);
} while(toupper(ch) !='N";

return O;
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___| Formatted Console 1/0

The functions printf() and scanf() perform formatted output and input0 that is, they
can read and write data in various formats that are under your control. The printf()
function writes data to the console. The scanf() function, its complement, reads data
from the keyboard. Both functions can operate on any of the built-in data types,
including characters, strings, and numbers.

___| printf( )

The prototype for printf() is
int printf(const char *control_string, ...);

The printf() function returns the number of characters written or a negative value if an
error occurs.

The control_string consists of two types of items. The first type is composed of
characters that will be printed on the screen. The second type contains format specifiers
that define the way the subsequent arguments are displayed. A format specifier begins
with a percent sign and is followed by the format code. There must be exactly the same
number of arguments as there are format specifiers, and the format specifiers and the
arguments are matched in order from left to right. For example, this printf() call

printf("l like %c%s", 'C', "++ very much!");
displays
| like C++ very much!

The printf() function accepts a wide variety of format specifiers, as shown in

Table 8-2.
Code Format
%c¢ Character
%d Signed decimal integers

Table 8-2. printf( ) Format Specifiers




196 C++: The Complete Reference

Code Format

Y%i Signed decimal integers

Y%oe Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

Y%f Decimal floating point

%g Uses %e or %f, whichever is shorter

%G Uses %E or %F, whichever is shorter

%0 Unsigned octal

Y%s String of characters

Y%u Unsigned decimal integers

Y%ox Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer

%n The associated argument must be a pointer to
an integer. This specifier causes the number of
characters written so far to be put into that integer.

% % Prints a % sign

Table 8-2. printf( ) Format Specifiers (continued)

Printing Characters

To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers

You may use either %d or %i to indicate a signed decimal number. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned value, use %u.

The %f format specifier displays numbers in floating point.
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The %e and %E specifiers tell printf() to display a double argument in scientific
notation. Numbers represented in scientific notation take this general form:

x.dddddE+/-yy

If you want to display the letter "E" in uppercase, use the %E format; otherwise use %e.

You can tell printf() to use either %f or %e by using the %g or %G format specifiers.
This causes printf() to select the format specifier that produces the shortest output.
Where applicable, use %G if you want "E" shown in uppercase; otherwise, use %g. The
following program demonstrates the effect of the %g format specifier:

#include <stdio.h>

int main(void)
{
double f;

for(f=1.0; f<1.0e+10; f=f*10)
printf("%g ", f);

return O;

It produces the following output.
110 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

You can display unsigned integers in octal or hexadecimal format using %o and
%Xx, respectively. Since the hexadecimal number system uses the letters A through F to
represent the numbers 10 through 15, you can display these letters in either upper- or
lowercase. For uppercase, use the %X format specifier; for lowercase, use %x, as shown
here:

#include <stdio.h>

int main(void)

{

unsigned num;

for(num=0; num<255; num++) {
printf("%o0 ", num);
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printf("%x ", num);
printf("%X\n", num);
}

return O;

}

Displaying an Address

If you wish to display an address, use %p. This format specifier causes printf() to
display a machine address in a format compatible with the type of addressing used
by the computer. The next program displays the address of sample:

#include <stdio.h>
int sample;

int main(void)

{
printf("%p", &sample);

return O;

}

The %n Specifier

The %n format specifier is different from the others. Instead of telling printf() to

display something, it causes printf( ) to load the variable pointed to by its corresponding
argument with a value equal to the number of characters that have been output. In other
words, the value that corresponds to the %n format specifier must be a pointer to a
variable. After the call to printf() has returned, this variable will hold the number of
characters output, up to the point at which the %n was encountered. Examine this
program to understand this somewhat unusual format code.

#include <stdio.h>

int main(void)

{

int count;

printf("this%n is a test\n", &count);
printf("%d", count);

return O;

}
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This program displays this is a test followed by the number 4. The %n format specifier
is used primarily to enable your program to perform dynamic formatting.

Format Modifiers

Many format specifiers may take modifiers that alter their meaning slightly. For
example, you can specify a minimum field width, the number of decimal places,
and left justification. The format modifier goes between the percent sign and the
format code. These modifiers are discussed next.

The Minimum Field Width Specifier

An integer placed between the % sign and the format code acts as a minimum field width
specifier. This pads the output with spaces to ensure that it reaches a certain minimum
length. If the string or number is longer than that minimum, it will still be printed in
full. The default padding is done with spaces. If you wish to pad with 0's, place a 0
before the field width specifier. For example, %05d will pad a number of less than five
digits with 0's so that its total length is five. The following program demonstrates the
minimum field width specifier:

#include <stdio.h>

int main(void)

{
double item;
item = 10.12304;
printf("%f\n", item);
printf("%10f\n", item);
printf("%012f\n", item);
return O;

}

This program produces the following output:

10.123040
10.123040
00010.123040

The minimum field width modifier is most commonly used to produce tables in which
the columns line up. For example, the next program produces a table of squares and
cubes for the numbers between 1 and 19:
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#include <stdio.h>
int main(void)
{
inti;
/* display a table of squares and cubes */
for(i=1; i<20; i++)
printf("%8d %8d %8d\n", i, i*i, i*i*i);

return O;

A sample of its output is shown here:

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744
15 225 3375
16 256 4096
17 289 4913
18 324 5832
19 361 6859

The Precision Specifier

The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the
type of data it is applied to.

When you apply the precision specifier to floating-point data using the %f, %e,
or %E specifiers, it determines the number of decimal places displayed. For example,
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%10.4f displays a number at least ten characters wide with four decimal places. If you
don't specify the precision, a default of six is used.

When the precision specifier is applied to %g or %G, it specifies the number of
significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For
example, %5.7s displays a string at least five and not exceeding seven characters long.
If the string is longer than the maximum field width, the end characters will be
truncated.

When applied to integer types, the precision specifier determines the minimum
number of digits that will appear for each number. Leading zeros are added to achieve
the required number of digits.

The following program illustrates the precision specifier:

#include <stdio.h>

int main(void)

{
printf("%.4f\n", 123.1234567);

printf("%3.8d\n", 1000);
printf("%210.15s\n", "This is a simple test.");

return O;

}

It produces the following output:

123.1235
00001000
This is a simpl

Justifying Output

By default, all output is right-justified. That is, if the field width is larger than the data
printed, the data will be placed on the right edge of the field. You can force output to
be left-justified by placing a minus sign directly after the %. For example, %-10.2f left-
justifies a floating-point number with two decimal places in a 10-character field.

The following program illustrates left justification:

#include <stdio.h>

int main(void)

{
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printf("right-justified:%8d\n", 100);
printf("left-justified:%-8d\n", 100);

return O;

}

Handling Other Data Types

There are two format modifiers that allow printf() to display short and long integers.
These modifiers may be applied to the d, i, 0, u, and x type specifiers. The 1 (ell) modifier
tells printf() that a long data type follows. For example, %ld means that a long int is to
be displayed. The h modifier instructs printf() to display a short integer. For instance,
%hu indicates that the data is of type short unsigned int.

The L modifier may prefix the floating-point specifiers e, f, and g, and indicates that
a long double follows.

The * and # Modifiers

The printf() function supports two additional modifiers to some of its format
specifiers: * and #.

Preceding g, G, £, E, or e specifiers with a # ensures that there will be a decimal
point even if there are no decimal digits. If you precede the x or X format specifier with
a #, the hexadecimal number will be printed with a 0x prefix. Preceding the o specifier
with # causes the number to be printed with a leading zero. You cannot
apply # to any other format specifiers.

Instead of constants, the minimum field width and precision specifiers may be
provided by arguments to printf(). To accomplish this, use an * as a placeholder.
When the format string is scanned, printf() will match the * to an argument in the
order in which they occur. For example, in Figure 8-1, the minimum field width is 10,
the precision is 4, and the value to be displayed is 123.3.

The following program illustrates both # and *:

#include <stdio.h>

int main(void)

{
printf("%x %#x\n", 10, 10);
printf("%*.*f", 10, 4, 1234.34);

return O;

}
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R

printf("%*.*f", 10, 4, 123.3);

I

Figure 8-1. How the * is matched to its value

| scanf()

scanf() is the general-purpose console input routine. It can read all the built-in
data types and automatically convert numbers into the proper internal format. It is
much like the reverse of printf(). The prototype for scanf() is

int scanf(const char *control_string, ...);

The scanf() function returns the number of data items successfully assigned a
value. If an error occurs, scanf( ) returns EOF. The control_string determines how
values are read into the variables pointed to in the argument list.

The control string consists of three classifications of characters:

B Format specifiers
B White-space characters
B Non-white-space characters

Let's take a look at each of these now.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list. Let's look
at some examples.

Inputting Numbers

To read an integer, use either the %d or %i specifier. To read a floating-point number
represented in either standard or scientific notation, use %e, %f, or %g.

You can use scanf( ) to read integers in either octal or hexadecimal form by using
the %o and %Xx format commands, respectively. The %x may be in either upper- or
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#include <stdio.h>

int main(void)
{

inti, j;

scanf("%o0%x", &i, &));
printf("%o0 %x", i, j);
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lowercase. Either way, you may enter the letters "A" through "F" in either case when
entering hexadecimal numbers. The following program reads an octal and hexadecimal
number:

return 0;
}
Code Meaning
Y%c Read a single character.
%d Read a decimal integer.
%i Read an integer in either decimal, octal, or
hexadecimal format.
Y%e Read a floating-point number.
%f Read a floating-point number.
%g Read a floating-point number.
%o Read an octal number.
Y%s Read a string.
Yox Read a hexadecimal number.
%p Read a pointer.
%n Receives an integer value equal to the number
of characters read so far.
Y%u Read an unsigned decimal integer.
%l ] Scan for a set of characters.
%% Read a percent sign.
Table 8-3. scanf( ) Format Specifiers
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The scanf() function stops reading a number when the first nonnumeric character is
encountered.

Inputting Unsigned Integers

To input an unsigned integer, use the %u format specifier. For example,

unsigned num;
scanf("%u", &num);

reads an unsigned number and puts its value into num.

Reading Individual Characters Using scanf( )

As explained earlier in this chapter, you can read individual characters using
getchar() or a derivative function. You can also use scanf() for this purpose if
you use the %c format specifier. However, like most implementations of getchar(),
scanf() will generally line-buffer input when the %c specifier is used. This makes
it somewhat troublesome in an interactive environment.

Although spaces, tabs, and newlines are used as field separators when reading
other types of data, when reading a single character, white-space characters are read
like any other character. For example, with an input stream of "x y," this code fragment

scanf("%c%c%c", &a, &b, &c);

returns with the character x in a, a space in b, and the character y in c.

Reading Strings
The scanf( ) function can be used to read a string from the input stream using the %s
format specifier. Using %s causes scanf() to read characters until it encounters a
white-space character. The characters that are read are put into the character array
pointed to by the corresponding argument and the result is null terminated. As it
applies to scanf(), a white-space character is either a space, a newline, a tab, a vertical
tab, or a form feed. Unlike gets(), which reads a string until a carriage return is typed,
scanf( ) reads a string until the first white space is entered. This means that you cannot
use scanf() to read a string like "this is a test" because the first space terminates the

reading process. To see the effect of the %s specifier, try this program using the string
"hello there".

#include <stdio.h>

int main(void)
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char str[80];
printf("Enter a string: ");
scanf("%s", str);

printf("Here's your string: %s", str);

return O;

The program responds with only the "hello" portion of the string.

Inputting an Address

To input a memory address, use the %p format specifier. This specifier causes scanf()
to read an address in the format defined by the architecture of the CPU. For example,
this program inputs an address and then displays what is at that memory address:

#include <stdio.h>

int main(void)

{
char *p;
printf("Enter an address: ");
scanf("%p", &p);
printf("Value at location %p is %c\n", p, *p);
return O;
}

The %n Specifier

The %n specifier instructs scanf() to assign the number of characters read from the
input stream at the point at which the %n was encountered to the variable pointed
to by the corresponding argument.

Using a Scanset

The scanf() function supports a general-purpose format specifier called a scanset.

A scanset defines a set of characters. When scanf( ) processes a scanset, it will input
characters as long as those characters are part of the set defined by the scanset. The
characters read will be assigned to the character array that is pointed to by the scanset's
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corresponding argument. You define a scanset by putting the characters to scan for
inside square brackets. The beginning square bracket must be prefixed by a percent
sign. For example, the following scanset tells scanf() to read only the characters X, Y,
and Z.

%[XYZ]

When you use a scanset, scanf( ) continues to read characters, putting them into the
corresponding character array until it encounters a character that is not in the scanset.
Upon return from scanf( ), this array will contain a null-terminated string that consists
of the characters that have been read. To see how this works, try this program:

#include <stdio.h>

int main(void)
{
inti;
char str[80], str2[80];

scanf("%d%l[abcdefg]%s", &i, str, str2);
printf("%d %s %s", i, str, str2);

return O;

Enter 123abcdtye followed by ENTER. The program will then display 123 abcd tye.
Because the "t" is not part of the scanset, scanf() stops reading characters into str
when it encounters the "t." The remaining characters are put into str2.

You can specify an inverted set if the first character in the set is a . The A instructs
scanf( ) to accept any character that is not defined by the scanset.

In most implementations you can specify a range using a hyphen. For example, this
tells scanf() to accept the characters A through Z:

%W[A-Z]

One important point to remember is that the scanset is case sensitive. If you want
to scan for both upper- and lowercase letters, you must specify them individually.

Discarding Unwanted White Space

A white-space character in the control string causes scanf() to skip over one or more
leading white-space characters in the input stream. A white-space character is either a
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space, a tab, vertical tab, form feed, or a newline. In essence, one white-space character
in the control string causes scanf() to read, but not store, any number (including zero)
of white-space characters up to the first non-white-space character.

Non-White-Space Characters in the Control String

A non-white-space character in the control string causes scanf() to read and discard
matching characters in the input stream. For example, "%d,%d" causes scanf() to read
an integer, read and discard a comma, and then read another integer. If the specified
character is not found, scanf() terminates. If you wish to read and discard a percent
sign, use %% in the control string.

You Must Pass scanf( ) Addresses

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers to the variables used as
arguments. Recall that this is one way of creating a call by reference, and it allows
a function to alter the contents of an argument. For example, to read an integer into
the variable count, you would use the following scanf() call:

scanf("%d", &count);

Strings will be read into character arrays, and the array name, without any index, is
the address of the first element of the array. So, to read a string into the character array
str, you would use

scanf("%s", str);

In this case, str is already a pointer and need not be preceded by the & operator.

Format Modifiers

As with printf(), scanf() allows a number of its format specifiers to be modified.

The format specifiers can include a maximum field length modifier. This is an
integer, placed between the % and the format specifier, that limits the number of
characters read for that field. For example, to read no more than 20 characters into
str, write

scanf("%20s", str);

If the input stream is greater than 20 characters, a subsequent call to input begins
where this call leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ
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as the response to the scanf() call in this example, only the first 20 characters, or up

to the "T," are placed into str because of the maximum field width specifier. This means
that the remaining characters, UVWXYZ, have not yet been used. If another scanf()
call is made, such as

scanf("%s", str);

the letters UVWXYZ are placed into str. Input for a field may terminate before the
maximum field length is reached if a white space is encountered. In this case, scanf()
moves on to the next field.

To read a long integer, put an 1 (ell) in front of the format specifier. To read a short
integer, put an h in front of the format specifier. These modifiers can be used with the
d, i, 0, u, and x format codes.

By default, the f, e, and g specifiers instruct scanf() to assign data to a float. If you
put an 1 (ell) in front of one of these specifiers, scanf() assigns the data to a double.
Using an L tells scanf( ) that the variable receiving the data is a long double.

Suppressing Input
You can tell scanf() to read a field but not assign it to any variable by preceding that
field's format code with an *. For example, given

scanf("%d%*c%d", &X, &Y);

you could enter the coordinate pair 10,10. The comma would be correctly read, but not
assigned to anything. Assignment suppression is especially useful when you need to
process only a part of what is being entered.
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two complete I/O systems: the one inherited from C and the object-oriented

system defined by C++. This chapter covers the C file system. (The C++ file
system is discussed in Part Two.) While most new code will use the C++ file system,
knowledge of the C file system is still important for the reasons given in the preceding
chapter.

T his chapter describes the C file system. As explained in Chapter 8, C++ supports

___| € Versus C++ File 1/0

There is sometimes confusion over how C's file system relates to C++. First, C++
supports the entire Standard C file system. Thus, if you will be porting older C code
to C++, you will not have to change all of your I/O routines right away. Second, C++
defines its own, object-oriented I/O system, which includes both I/O functions and
1/0 operators. The C++ I/O system completely duplicates the functionality of the C
I/0 system and renders the C file system redundant. While you will usually want to
use the C++ 1/0 system, you are free to use the C file system if you like. Of course,
most C++ programmers elect to use the C++ I/O system for reasons that are made
clear in Part Two of this book.

| streams and Files

Before beginning our discussion of the C file system, it is necessary to know the
difference between the terms streams and files. The C I/O system supplies a consistent
interface to the programmer independent of the actual device being accessed. That

is, the C I/O system provides a level of abstraction between the programmer and the
device. This abstraction is called a stream and the actual device is called a file. It is
important to understand how streams and files interact.

| The concept of streams and files is also important to the C++ I/O system discussed
: in Part Two.

___| streams

The C file system is designed to work with a wide variety of devices, including
terminals, disk drives, and tape drives. Even though each device is very different, the
buffered file system transforms each into a logical device called a stream. All streams
behave similarly. Because streams are largely device independent, the same function
that can write to a disk file can also be used to write to another type of device, such as
the console. There are two types of streams: text and binary.
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Text Streams

A text stream is a sequence of characters. Standard C allows (but does not require) a
text stream to be organized into lines terminated by a newline character. However,
the newline character is optional on the last line. (Actually, most C/C++ compilers do
not terminate text streams with newline characters.) In a text stream, certain character
translations may occur as required by the host environment. For example, a newline
may be converted to a carriage return/linefeed pair. Therefore, there may not be a
one-to-one relationship between the characters that are written (or read) and those

on the external device. Also, because of possible translations, the number of characters
written (or read) may not be the same as those on the external device.

Binary Streams

A binary stream is a sequence of bytes that have a one-to-one correspondence to those
in the external device[ that is, no character translations occur. Also, the number of
bytes written (or read) is the same as the number on the external device. However,

an implementation-defined number of null bytes may be appended to a binary stream.
These null bytes might be used to pad the information so that it fills a sector on a disk,
for example.

| Files

In C/C++, a file may be anything from a disk file to a terminal or printer. You associate
a stream with a specific file by performing an open operation. Once a file is open,
information may be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can support random
access while some printers cannot. This brings up an important point about the C1/0
system: All streams are the same but all files are not.

If the file can support position requests, opening that file also initializes the file
position indicator to the start of the file. As each character is read from or written to
the file, the position indicator is incremented, ensuring progression through the file.

You disassociate a file from a specific stream with a close operation. If you close
a file opened for output, the contents, if any, of its associated stream are written to
the external device. This process is generally referred to as flushing the stream, and
guarantees that no information is accidentally left in the disk buffer. All files are
closed automatically when your program terminates normally, either by main()
returning to the operating system or by a call to exit(). Files are not closed when a
program terminates abnormally, such as when it crashes or when it calls abort().

Each stream that is associated with a file has a file control structure of type FILE.
Never modify this file control block.

213
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If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a
consistent interface. You need only think in terms of streams and use only one file
system to accomplish all I/O operations. The I/O system automatically converts the
raw input or output from each device into an easily managed stream.

___| File System Basics

The C file system is composed of several interrelated functions. The most common of
these are shown in Table 9-1. They require the header stdio.h. C++ programs may also
use the new-style header <cstdio>.

Name Function
fopen( ) Opens a file.
fclose() Closes a file.
putc() Writes a character to a file.
fputc() Same as putc().
getc() Reads a character from a file.
fgetc() Same as getc().
fgets() Reads a string from a file.
fputs() Writes a string to a file.
fseek() Seeks to a specified byte in a file.
ftell( ) Returns the current file position.
fprintf( ) Is to a file what printf() is to the console.
fscanf( ) Is to a file what scanf() is to the console.
feof( ) Returns true if end-of-file is reached.
ferror( ) Returns true if an error has occurred.
rewind() Resets the file position indicator to the
beginning of the file.
remove( ) Erases a file.
fflush() Flushes a file.
Table 9-1. Commonly Used C File-System Functions
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The header file stdio.h and <cstdio> header provide the prototypes for the I/O
functions and define these three types: size_t, fpos_t, and FILE. The size_t type is some
variety of unsigned integer, as is fpos_t. The FILE type is discussed in the next section.

Also defined in stdio.h and <cstdio> are several macros. The ones relevant to this
chapter are NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_END.
The NULL macro defines a null pointer. The EOF macro is generally defined as -1
and is the value returned when an input function tries to read past the end of the file.
FOPEN_MAX defines an integer value that determines the number of files that may
be open at any one time. The other macros are used with fseek( ), which is the function
that performs random access on a file.

The File Pointer

The file pointer is the common thread that unites the C I/O system. A file pointer is a
pointer to a structure of type FILE. It points to information that defines various things
about the file, including its name, status, and the current position of the file. In essence,
the file pointer identifies a specific file and is used by the associated stream to direct the
operation of the I/O functions. In order to read or write files, your program needs to use
file pointers. To obtain a file pointer variable, use a statement like this:

FILE *fp;

Opening a File
The fopen() function opens a stream for use and links a file with that stream. Then
it returns the file pointer associated with that file. Most often (and for the rest of this
discussion), the file is a disk file. The fopen() function has this prototype:

FILE *fopen(const char *filename, const char *mode);

where filename is a pointer to a string of characters that make up a valid filename and
may include a path specification. The string pointed to by mode determines how the file
will be opened. Table 9-2 shows the legal values for mode. Strings like "r+b" may also be
represented as "rb+."

Mode Meaning

r Open a text file for reading.
w Create a text file for writing.
a Append to a text file.

Table 9-2. The Legal Values for Mode
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Mode Meaning

rb Open a binary file for reading.

wb Create a binary file for writing.

ab Append to a binary file.

r+ Open a text file for read /write.

w+ Create a text file for read /write.

a+ Append or create a text file for
read /write.

r+b Open a binary file for read /write.

w+b Create a binary file for read /write.

a+b Append or create a binary file for
read /write.

Table 9-2. The Legal Values for Mode (continued)

As stated, the fopen() function returns a file pointer. Your program should
never alter the value of this pointer. If an error occurs when it is trying to open
the file, fopen() returns a null pointer.

The following code uses fopen() to open a file named TEST for output.

FILE *fp;
fp = fopen("test"”, "w");
While technically correct, you will usually see the preceding code written like this:

FILE *fp;

if ((fp = fopen(“"test","w"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}
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This method will detect any error in opening a file, such as a write-protected or a full
disk, before your program attempts to write to it. In general, you will always want to
confirm that fopen() succeeded before attempting any other operations on the file.

Although most of the file modes are self-explanatory, a few comments are in
order. If, when opening a file for read-only operations, the file does not exist, fopen()
will fail. When opening a file using append mode, if the file does not exist, it will be
created. Further, when a file is opened for append, all new data written to the file will
be written to the end of the file. The original contents will remain unchanged. If, when
a file is opened for writing, the file does not exist, it will be created. If it does exist, the
contents of the original file will be destroyed and a new file created. The difference
between modes r+ and w+ is that r+ will not create a file if it does not exist; however,
w+ will. Further, if the file already exists, opening it with w+ destroys its contents;
opening it with r+ does not.

As Table 9-2 shows, a file may be opened in either text or binary mode. In most
implementations, in text mode, carriage return/linefeed sequences are translated to
newline characters on input. On output, the reverse occurs: newlines are translated
to carriage return/linefeeds. No such translations occur on binary files.

The number of files that may be open at any one time is specified by FOPEN_MAX.
This value will usually be at least 8, but you must check your compiler manual for its
exact value.

Closing a File

The fclose() function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in the disk buffer to the file and does a formal operating-
system-level close on the file. Failure to close a stream invites all kinds of trouble,
including lost data, destroyed files, and possible intermittent errors in your program.
fclose() also frees the file control block associated with the stream, making it available
for reuse. There is an operating-system limit to the number of open files you may have
at any one time, so you may have to close one file before opening another.

The fclose() function has this prototype:

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero signifies
a successful close operation. The function returns EOF if an error occurs. You can use the
standard function ferror() (discussed shortly) to determine and report any problems.
Generally, fclose() will fail only when a disk has been prematurely removed from the
drive or there is no more space on the disk.
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Writing a Character

The CI/0 system defines two equivalent functions that output a character: pute() and
fputc(). (Actually, putc() is usually implemented as a macro.) There are two identical
functions simply to preserve compatibility with older versions of C. This book uses
putc(), but you can use fputc() if you like.

The putc() function writes characters to a file that was previously opened for
writing using the fopen() function. The prototype of this function is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character to be output.
The file pointer tells putc() which file to write to. For historical reasons, ch is defined
as an int but only the low-order byte is written.

If a putc() operation is successful, it returns the character written. Otherwise, it
returns EOF.

Reading a Character

There are also two equivalent functions that input a character: getc() and fgetc(). Both
are defined to preserve compatibility with older versions of C. This book uses getc()
(which is usually implemented as a macro), but you can use fgetc() if you like.

The getc() function reads characters from a file opened in read mode by fopen().
The prototype of getc() is

int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). getc() returns an integer,
but the character is contained in the low-order byte. Unless an error occurs, the high-
order byte is zero.

The getc() function returns an EOF when the end of the file has been reached.
Therefore, to read to the end of a text file, you could use the following code:

do {
ch = getc(fp);
} while(ch!=EOF);

However, getc() also returns EOF if an error occurs. You can use ferror() to determine
precisely what has occurred.

Using fopen( ), getc( ), putc( ), and fclose( )

The functions fopen(), getc(), putc(), and fclose() constitute the minimal set of file
routines. The following program, KTOD, is a simple example of using putc(), fopen(),
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and fclose(). It reads characters from the keyboard and writes them to a disk file until
the user types a dollar sign. The filename is specified from the command line. For
example, if you call this program KTOD, typing KTOD TEST allows you to enter lines
of text into the file called TEST.

[* KTOD: A key to disk program. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{

}

FILE *fp;
char ch;

if(argc!=2) {
printf("You forgot to enter the filename.\n");
exit(1);

}

if((fp=fopen(argv[1], "w"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}

do {
ch = getchar();
putc(ch, fp);

} while (ch 1="$");

fclose(fp);

return O;

The complementary program DTOS reads any text file and displays the contents on
the screen.

[* DTOS: A program that reads files and displays them

on the screen. */

#include <stdio.h>
#include <stdlib.h>
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int main(int argc, char *argv[])
{

FILE *fp;

char ch;

if(argc!=2) {
printf("You forgot to enter the filename.\n");
exit(1);

}

if((fp=fopen(argv[1], "r"))==NULL) {
printf("*Cannot open file.\n");
exit(1);

}

ch = getc(fp); /* read one character */

while (ch!=EOF) {
putchar(ch); /* print on screen */
ch = getc(fp);

}

fclose(fp);

return O;

To try these two programs, first use KTOD to create a text file. Then read its
contents using DTOS.

Using feof( )

As just described, getc() returns EOF when the end of the file has been encountered.
However, testing the value returned by getc() may not be the best way to determine
when you have arrived at the end of a file. First, the file system can operate on both
text and binary files. When a file is opened for binary input, an integer value that will
test equal to EOF may be read. This would cause the input routine to indicate an
end-of-file condition even though the physical end of the file had not been reached.
Second, getc() returns EOF when it fails and when it reaches the end of the file. Using
only the return value of getc(), it is impossible to know which occurred. To solve these
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problems, the C file system includes the function feof(), which determines when the
end of the file has been encountered. The feof() function has this prototype:

int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0.
Therefore, the following routine reads a binary file until the end of the file is
encountered:

while(!feof(fp)) ch = getc(fp);

Of course, you can apply this method to text files as well as binary files.
The following program, which copies text or binary files, contains an example of
feof(). The files are opened in binary mode and feof() checks for the end of the file.

/* Copy a file. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *in, *out;

char ch;

if(argc!=3) {
printf("You forgot to enter a filename.\n");
exit(1);

}

if((in=fopen(argv[1], "rb"))==NULL) {
printf("Cannot open source file.\n");
exit(1);

}

if((out=fopen(argv[2], "wb")) == NULL) {
printf("Cannot open destination file.\n");
exit(1);

}

/* This code actually copies the file. */
while(!feof(in)) {
ch = getc(in);
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if('feof(in)) putc(ch, out);
}

fclose(in);
fclose(out);

return O;

Working with Strings: fputs( ) and fgets( )

In addition to getc() and putc(), the C file system supports the related functions
fgets() and fputs(), which read and write character strings from and to a disk file.
These functions work just like putc() and getc(), but instead of reading or writing a
single character, they read or write strings. They have the following prototypes:

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The fputs() function writes the string pointed to by str to the specified stream. It
returns EOF if an error occurs.

The fgets() function reads a string from the specified stream until either a newline
character is read or length -1 characters have been read. If a newline is read, it will be part
of the string (unlike the gets( ) function). The resultant string will be null terminated. The
function returns str if successful and a null pointer if an error occurs.

The following program demonstrates fputs(). It reads strings from the keyboard
and writes them to the file called TEST. To terminate the program, enter a blank line.
Since gets() does not store the newline character, one is added before each string is
written to the file so that the file can be read more easily.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
char str[80];
FILE *fp;

if((fp = fopen("TEST", "w"))==NULL) {
printf("Cannot open file.\n");
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exit(1);
}

do {
printf("Enter a string (CR to quit):\n");
gets(str);
strcat(str, "\n"); /* add a newline */
fputs(str, fp);

} while(*str!="\n");

return O;

rewind( )

The rewind() function resets the file position indicator to the beginning of the file
specified as its argument. That is, it "rewinds" the file. Its prototype is

void rewind(FILE *fp);

where fp is a valid file pointer.

To see an example of rewind( ), you can modify the program from the previous
section so that it displays the contents of the file just created. To accomplish this, the
program rewinds the file after input is complete and then uses fgets() to read back
the file. Notice that the file must now be opened in read /write mode using "w+" for
the mode parameter.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
char str[80];
FILE *fp;

if(fp = fopen("TEST", "w+"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}
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do {
printf("Enter a string (CR to quit):\n");
gets(str);
strcat(str, "\n"); /* add a newline */
fputs(str, fp);

} while(*str!="\n");

/* now, read and display the file */
rewind(fp); /* reset file position indicator to
start of the file. */
while(!feof(fp)) {
fgets(str, 79, fp);
printf(str);
}

return O;

ferror( )

The ferror() function determines whether a file operation has produced an error. The
ferror() function has this prototype:

int ferror(FILE *fp);

where fp is a valid file pointer. It returns true if an error has occurred during the last
file operation; otherwise, it returns false. Because each file operation sets the error
condition, ferror() should be called immediately after each file operation; otherwise,
an error may be lost.

The following program illustrates ferror() by removing tabs from a file and
substituting the appropriate number of spaces. The tab size is defined by TAB_SIZE.
Notice how ferror() is called after each file operation. To use the program, specify the
names of the input and output files on the command line.

/* The program substitutes spaces for tabs
in a text file and supplies error checking. */

#include <stdio.h>
#include <stdlib.h>

#define TAB_SIZE 8



#define IN O
#define OUT 1

void err(int e);

int main(int argc, char *argv[])

{

FILE *in, *out;
int tab, i;
char ch;

if(argc!=3) {
printf("usage: detab <in> <out>\n");
exit(1);

}

if((in = fopen(argv[1], "rb"))==NULL) {
printf("Cannot open %s.\n", argv[1]);
exit(1);

}

if((out = fopen(argv[2], "wb"))==NULL) {
printf("Cannot open %s.\n", argv[1]);
exit(1);

}

tab = 0;

do {
ch = getc(in);
if(ferror(in)) err(IN);

[* if tab found, output appropriate number of spaces */
if(ch=="t") {
for(i=tab; i<8; i++) {
putc(' ', out);
if(ferror(out)) err(OUT);
}
tab =0;
}
else {
putc(ch, out);
if(ferror(out)) err(OUT);

Chapter 9:
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tab++;
if(tab==TAB_SIZE) tab = 0;
ifch=="\n' || ch=="\r") tab = 0O;
}
} while(!feof(in));
fclose(in);
fclose(out);

return O;

}

void err(int e)

{
if(e==IN) printf("Error on input.\n");
else printf("Error on output.\n");
exit(1);

}

Erasing Files

The remove() function erases the specified file. Its prototype is
int remove(const char *filename);

It returns zero if successful; otherwise, it returns a nonzero value.

The following program erases the file specified on the command line. However, it
first gives you a chance to change your mind. A utility like this might be useful to new
computer users.

/* Double check before erasing. */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv[])

{
char str[80];

if(argc!=2) {
printf("usage: xerase <filename>\n");
exit(1);
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}

printf("Erase %s? (Y/N): ", argv[1]);
gets(str);

if(toupper(*str)=="Y")
if(remove(argv[1])) {
printf("Cannot erase file.\n");
exit(1);
}

return O;

Flushing a Stream

If you wish to flush the contents of an output stream, use the fflush() function, whose
prototype is shown here:

int fflush(FILE *fp);

This function writes the contents of any buffered data to the file associated with fp.
If you call fflush() with fp being null, all files opened for output are flushed.
The fflush() function returns 0 if successful; otherwise, it returns EOF.

| fread( ) and fwrite( )

To read and write data types that are longer than one byte, the C file system provides
two functions: fread() and fwrite(). These functions allow the reading and writing
of blocks of any type of data. Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from
the file. For fwrite(), buffer is a pointer to the information that will be written to the
file. The value of count determines how many items are read or written, with each
item being num_bytes bytes in length. (Remember, the type size_t is defined as some
type of unsigned integer.) Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns
the number of items written. This value will equal count unless an error occurs.
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Using fread( ) and fwrite( )

As long as the file has been opened for binary data, fread() and fwrite() can read
and write any type of information. For example, the following program writes and
then reads back a double, an int, and a long to and from a disk file. Notice how it
uses sizeof to determine the length of each data type.

/* Write some non-character data to a disk file
and read it back. */

#include <stdio.h>

#include <stdlib.h>

int main(void)
{
FILE *fp;
double d =12.23;
inti=101;
long | = 123023L,;

if((fp=fopen("test”, "wb+"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}

fwrite(&d, sizeof(double), 1, fp);
fwrite(&i, sizeof(int), 1, fp);
fwrite(&l, sizeof(long), 1, fp);
rewind(fp);

fread(&d, sizeof(double), 1, fp);
fread(&i, sizeof(int), 1, fp);
fread(&l, sizeof(long), 1, fp);
printf("%f %d %Id", d, i, I);
fclose(fp);

return O;

}

As this program illustrates, the buffer can be (and often is) merely the memory used to
hold a variable. In this simple program, the return values of fread() and fwrite() are
ignored. In the real world, however, you should check their return values for errors.
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One of the most useful applications of fread() and fwrite() involves reading and
writing user-defined data types, especially structures. For example, given this
structure:

struct struct_type {
float balance;
char name[80];
} cust;

the following statement writes the contents of cust to the file pointed to by fp.
fwrite(&cust, sizeof(struct struct_type), 1, fp);

| fseek( ) and Random-Access 1/0

You can perform random-access read and write operations using the C I/O system with
the help of fseek(), which sets the file position indicator. Its prototype is shown here:

int fseek(FILE *fp, long numbytes, int origin);

Here, fp is a file pointer returned by a call to fopen(). numbytes is the number of bytes
from origin that will become the new current position, and origin is one of the following

macros:
Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK_CUR
End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK_SET. To
seek from the current position, use SEEK_CUR; and to seek from the end of the file,
use SEEK_END. The fseek( ) function returns 0 when successful and a nonzero value if
an error occurs.

The following program illustrates fseek(). It seeks to and displays the specified
byte in the specified file. Specify the filename and then the byte to seek to on the
command line.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(])
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FILE *fp;

if(argc!=3) {
printf("Usage: SEEK filename byte\n");
exit(1);

}

if((fp = fopen(argv[1], "rb"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}

if(fseek(fp, atol(argv[2]), SEEK_SET)) {
printf("Seek error.\n");
exit(1);

}

printf("Byte at %Id is %c.\n", atol(argv[2]), getc(fp));
fclose(fp);

return O;

You can use fseek() to seek in multiples of any type of data by simply multiplying
the size of the data by the number of the item you want to reach. For example, assume
that you have a mailing list that consists of structures of type list_type. To seek to the
tenth address in the file that holds the addresses, use this statement:

fseek(fp, 9*sizeof(struct list_type), SEEK_SET);
You can determine the current location of a file using ftell( ). Its prototype is
long ftell(FILE *fp);

It returns the location of the current position of the file associated with fp. If a failure
occurs, it returns —1.

In general, you will want to use random access only on binary files. The reason
for this is simple. Because text files may have character translations performed on
them, there may not be a direct correspondence between what is in the file and the
byte to which it would appear that you want to seek. The only time you should use
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fseek() with a text file is when seeking to a position previously determined by ftell(),
using SEEK_SET as the origin.

Remember one important point: Even a file that contains only text can be opened
as a binary file, if you like. There is no inherent restriction about random access on files
containing text. The restriction applies only to files opened as text files.

___| fprintf( ) and fscanf( )

In addition to the basic I/O functions already discussed, the C I/O system includes
fprintf() and fscanf(). These functions behave exactly like printf() and scanf() except
that they operate with files. The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *control_string,. . .);
int fscanf(FILE *fp, const char *control_string,. . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct
their I/O operations to the file pointed to by fp.

As an example, the following program reads a string and an integer from the
keyboard and writes them to a disk file called TEST. The program then reads the file
and displays the information on the screen. After running this program, examine the
TEST file. As you will see, it contains human-readable text.

/* fscanf() - fprintf() example */
#include <stdio.h>

#include <io.h>

#include <stdlib.h>

int main(void)
{
FILE *fp;
char s[80];
intt;

if((fp=fopen("test”, "w")) == NULL) {
printf("Cannot open file.\n");
exit(1);

}

printf("Enter a string and a number: ");
fscanf(stdin, "%s%d", s, &t); /* read from keyboard */
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fprintf(fp, "%s %d", s, t); /* write to file */
fclose(fp);

if((fp=fopen("test”,"r")) == NULL) {
printf("*Cannot open file.\n");
exit(1);

}

fscanf(fp, "%s%d", s, &t); /* read from file */
fprintf(stdout, "%s %d", s, t); /* print on screen */

return O;

A word of warning: Although fprintf() and fscanf() often are the easiest way to
write and read assorted data to disk files, they are not always the most efficient.
Because formatted ASCII data is being written as it would appear on the screen
(instead of in binary), extra overhead is incurred with each call. So, if speed or file size
is a concern, you should probably use fread() and fwrite().

| The Standard Streams

As it relates to the C file system, when a program starts execution, three streams are
opened automatically. They are stdin (standard input), stdout (standard output), and
stderr (standard error). Normally, these streams refer to the console, but they may be
redirected by the operating system to some other device in environments that support
redirectable I/O. (Redirectable I/O is supported by Windows, DOS, Unix, and OS/2,
for example.)

Because the standard streams are file pointers, they may be used by the C1/0O
system to perform I/O operations on the console. For example, putchar() could be
defined like this:

int putchar(char c)

{

return putc(c, stdout);

}

In general, stdin is used to read from the console, and stdout and stderr are used to
write to the console.
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You may use stdin, stdout, and stderr as file pointers in any function that uses a
variable of type FILE *. For example, you could use fgets() to input a string from the
console using a call like this:

char str[255];
fgets(str, 80, stdin);

In fact, using fgets() in this manner can be quite useful. As mentioned earlier in this
chapter, when using gets() it is possible to overrun the array that is being used to
receive the characters entered by the user because gets() provides no bounds checking.
When used with stdin, the fgets() function offers a useful alternative because it can
limit the number of characters read and thus prevent array overruns. The only trouble
is that fgets() does not remove the newline character and gets() does, so you will have
to manually remove it, as shown in the following program.

#include <stdio.h>
#include <string.h>

int main(void)
{
char str[80];
inti;
printf("Enter a string: ");

fgets(str, 10, stdin);

[* remove newline, if present */
i = strlen(str)-1;
if(stri]=="n") str[i] = "\0';

printf("This is your string: %s", str);

return O;

Keep in mind that stdin, stdout, and stderr are not variables in the normal sense
and may not be assigned a value using fopen(). Also, just as these file pointers are
created automatically at the start of your program, they are closed automatically at the
end; you should not try to close them.
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The Console 1/0 Connection

Recall from Chapter 8 that there is little distinction between console I/O and file I/O.
The console I/O functions described in Chapter 8 actually direct their I/O operations to
either stdin or stdout. In essence, the console I/O functions are simply special versions
of their parallel file functions. The reason they exist is as a convenience to you, the
programmer.

As described in the previous section, you can perform console I/O using any of the
file system functions. However, what might surprise you is that you can perform disk
file I/ O using console I/O functions, such as printf()! This is because all of the console
170 functions operate on stdin and stdout. In environments that allow redirection of
I/0, this means that stdin and stdout could refer to a device other than the keyboard
and screen. For example, consider this program:

#include <stdio.h>

int main(void)

{
char str[80];

printf("Enter a string: ");
gets(str);
printf(str);

return O;

}

Assume that this program is called TEST. If you execute TEST normally, it displays
its prompt on the screen, reads a string from the keyboard, and displays that string on
the display. However, in an environment that supports I/O redirection, either stdin,
stdout, or both could be redirected to a file. For example, in a DOS or Windows
environment, executing TEST like this:

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST like
this:

TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
When a program terminates, any redirected streams are reset to their default status.
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Using freopen( ) to Redirect the Standard Streams

You can redirect the standard streams by using the freopen() function. This function
associates an existing stream with a new file. Thus, you can use it to associate a
standard stream with a new file. Its prototype is

FILE *freopen(const char *filename, const char *mode, FILE *stream);

where filename is a pointer to the filename you wish associated with the stream
pointed to by stream. The file is opened using the value of mode, which may have
the same values as those used with fopen(). freopen() returns stream if successful
or NULL on failure.

The following program uses freopen() to redirect stdout to a file called OUTPUT:

#include <stdio.h>

int main(void)

{
char str[80];

freopen("OUTPUT", "w", stdout);

printf("Enter a string: ");
gets(str);
printf(str);

return O;

}

In general, redirecting the standard streams by using freopen() is useful in special
situations, such as debugging. However, performing disk I/O using redirected stdin
and stdout is not as efficient as using functions like fread() or fwrite().
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C/C++ program. These are called preprocessor directives, and although not
actually part of the C or C++ language per se, they expand the scope of the
programming environment. This chapter also examines comments.

You can include various instructions to the compiler in the source code of a

___| The Preprocessor

Before beginning, it is important to put the preprocessor in historical perspective.
As it relates to C++, the preprocessor is largely a holdover from C. Moreover, the
C++ preprocessor is virtually identical to the one defined by C. The main difference
between C and C++ in this regard is the degree to which each relies upon the
preprocessor. In C, each preprocessor directive is necessary. In C++, some features
have been rendered redundant by newer and better C++ language elements. In fact,
one of the long-term design goals of C++ is the elimination of the preprocessor
altogether. But for now and well into the foreseeable future, the preprocessor will
still be widely used.

The preprocessor contains the following directives:

#define #elif #else #endif
#error #if #ifdef #ifndef
#include #line #pragma #undef

As you can seg, all preprocessor directives begin with a # sign. In addition, each
preprocessing directive must be on its own line. For example,

#include <stdio.h> #include <stdlib.h>

will not work.

| #define

The #define directive defines an identifier and a character sequence (i.e., a set of
characters) that will be substituted for the identifier each time it is encountered in the
source file. The identifier is referred to as a macro name and the replacement process as
macro replacement. The general form of the directive is

#define macro-name char-sequence
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Notice that there is no semicolon in this statement. There may be any number of spaces
between the identifier and the character sequence, but once the character sequence
begins, it is terminated only by a newline.

For example, if you wish to use the word LEFT for the value 1 and the word
RIGHT for the value 0, you could declare these two #define directives:

#define LEFT 1
#define RIGHT O

This causes the compiler to substitute a 1 or a 0 each time LEFT or RIGHT is
encountered in your source file. For example, the following prints 0 1 2 on the screen:

printf("%d %d %d", RIGHT, LEFT, LEFT+1);

Once a macro name has been defined, it may be used as part of the definition of other
macro names. For example, this code defines the values of ONE, TWO, and THREE:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

Macro substitution is simply the replacement of an identifier by the character

sequence associated with it. Therefore, if you wish to define a standard error message,
you might write something like this:

#define E_MS "standard error on input\n”
¥
printf(E_MS);

The compiler will actually substitute the string "standard error on input\n" when the
identifier E_MS is encountered. To the compiler, the printf() statement will actually
appear to be

printf("standard error on input\n");
No text substitutions occur if the identifier is within a quoted string. For example,

#define XYZ this is a test

printf("XYZ");

239
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does not print this is a test, but rather XYZ.
If the character sequence is longer than one line, you may continue it on the next by
placing a backslash at the end of the line, as shown here:

#define LONG_STRING "this is a very long \
string that is used as an example"

C/C++ programmers commonly use uppercase letters for defined identifiers. This
convention helps anyone reading the program know at a glance that a macro
replacement will take place. Also, it is usually best to put all #defines at the start of the
file or in a separate header file rather than sprinkling them throughout the program.

Macros are most frequently used to define names for "magic numbers" that occur in
a program. For example, you may have a program that defines an array and has
several routines that access that array. Instead of "hard-coding" the array's size with a
constant, you can define the size using a #define statement and then use that macro
name whenever the array size is needed. In this way, if you need to change the size of
the array, you will only need to change the #define statement and then recompile your
program. For example,

#define MAX_SIZE 100

¥

float balance[MAX_SIZE];

[* .0

for(i=0; i<MAX_SIZE; i++) printf("%f", balanceli]);
.

for(i=0; i<kMAX_SIZE; i++) x =+ balance]i;

Since MAX_SIZE defines the size of the array balance, if the size of balance needs to
be changed in the future, you need only change the definition of MAX_SIZE. All
subsequent references to it will be automatically updated when you recompile

your program.

C++ provides a better way of defining constants, which uses the const keyword.
Note A S
This is described in Part Two.

Defining Function-like Macros

The #define directive has another powerful feature: the macro name can have
arguments. Each time the macro name is encountered, the arguments used in its
definition are replaced by the actual arguments found in the program. This form of a
macro is called a function-like macro. For example,
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#include <stdio.h>

#define ABS(a) (a)<0? -(a) : (a)

int main(void)

{ printf("abs of -1 and 1: %d %d", ABS(-1), ABS(1));

return O;

When this program is compiled, a in the macro definition will be substituted with
the values -1 and 1. The parentheses that enclose a ensure proper substitution in all
cases. For example, if the parentheses around a were removed, this expression

ABS(10-20)
would be converted to

10-20<0 ? -10-20 : 10-20
after macro replacement and would yield the wrong result.

The use of a function-like macro in place of real functions has one major benefit: It
increases the execution speed of the code because there is no function call overhead.

However, if the size of the function-like macro is very large, this increased speed may
be paid for with an increase in the size of the program because of duplicated code.

| Although parameterized macros are a valuable feature, C++ has a better way of

creating inline code, which uses the inline keyword.

| #error

The #error directive forces the compiler to stop compilation. It is used primarily for
debugging. The general form of the #error directive is

#error error-niessage

The error-message is not between double quotes. When the #error directive is
encountered, the error message is displayed, possibly along with other information
defined by the compiler.
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#include

The #include directive instructs the compiler to read another source file in addition to
the one that contains the #include directive. The name of the additional source file
must be enclosed between double quotes or angle brackets. For example,

#include "stdio.h"
#include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library
functions.

Include files can have #include directives in them. This is referred to as nested
includes. The number of levels of nesting allowed varies between compilers. However,
Standard C stipulates that at least eight nested inclusions will be available. Standard
C++ recommends that at least 256 levels of nesting be supported.

Whether the filename is enclosed by quotes or by angle brackets determines
how the search for the specified file is conducted. If the filename is enclosed in angle
brackets, the file is searched for in a manner defined by the creator of the compiler.
Often, this means searching some special directory set aside for include files. If the
filename is enclosed in quotes, the file is looked for in another implementation-defined
manner. For many compilers, this means searching the current working directory. If
the file is not found, the search is repeated as if the filename had been enclosed in angle
brackets.

Typically, most programmers use angle brackets to include the standard header
files. The use of quotes is generally reserved for including files specifically related to
the program at hand. However, there is no hard and fast rule that demands this usage.

In addition to files, a C++ program can use the #include directive to include a C++
header. C++ defines a set of standard headers that provide the information necessary
to the various C++ libraries. A header is a standard identifier that might, but need not,
map to a filename. Thus, a header is simply an abstraction that guarantees that the
appropriate information required by your program is included. Various issues
associated with headers are described in Part Two.

___| conditional Compilation Directives

There are several directives that allow you to selectively compile portions of your
program's source code. This process is called conditional compilation and is used widely
by commercial software houses that provide and maintain many customized versions
of one program.
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#if, #else, #elif, and #endif

Perhaps the most commonly used conditional compilation directives are the #if, #else,
#elif, and #endif. These directives allow you to conditionally include portions of code
based upon the outcome of a constant expression.

The general form of #if is

#if constant-expression
statement sequence
#endif

If the constant expression following #if is true, the code that is between it and
#endif is compiled. Otherwise, the intervening code is skipped. The #endif directive
marks the end of an #if block. For example,

[* Simple #if example. */
#include <stdio.h>

#define MAX 100

int main(void)
{
#if MAX>99
printf("Compiled for array greater than 99.\n");
#endif

return O;

}

This program displays the message on the screen because MAX is greater than 99.
This example illustrates an important point. The expression that follows the #if is
evaluated at compile time. Therefore, it must contain only previously defined
identifiers and constants—no variables may be used.

The #else directive works much like the else that is part of the C++ language: it
establishes an alternative if #if fails. The previous example can be expanded as
shown here:

[* Simple #if/#else example. */
#include <stdio.h>
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#define MAX 10

int main(void)
{
#if MAX>99
printf("Compiled for array greater than 99.\n");
telse
printf("Compiled for small array.\n");
#endif

return O;

In this case, MAX is defined to be less than 99, so the #if portion of the code is not
compiled. The #else alternative is compiled, however, and the message Compiled for
small array is displayed.

Notice that #else is used to mark both the end of the #if block and the beginning of
the #else block. This is necessary because there can only be one #endif associated with
any #if.

The #elif directive means "else if" and establishes an if-else-if chain for multiple
compilation options. #elif is followed by a constant expression. If the expression is
true, that block of code is compiled and no other #elif expressions are tested.
Otherwise, the next block in the series is checked. The general form for #elif is

#if expression
statement sequence
#elif expression 1
statement sequence
#elif expression 2
statement sequence
#elif expression 3
Statement sequence
#elif expression 4

#elif expression N
statement sequence
#endif



Chapter 10: The Preprocessor and Comments

For example, the following fragment uses the value of ACTIVE_COUNTRY to
define the currency sign:

#define US 0
#define ENGLAND 1
#define FRANCE 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY == US
char currency[] = "dollar";

#elif ACTIVE_COUNTRY == ENGLAND
char currency[] = "pound";

telse
char currency[] = "franc";

#endif

Standard C states that #ifs and #elifs may be nested at least eight levels. Standard
C++ suggests that at least 256 levels of nesting be allowed. When nested, each #endif,
#else, or #elif associates with the nearest #if or #elif. For example, the following is
perfectly valid:

#if MAX>100
#if SERIAL_VERSION
int port=198;
#elif
int port=200;
#endif
#else
char out_buffer[100];
#endif

#ifdef and #ifndef

Another method of conditional compilation uses the directives #ifdef and #ifndef,
which mean "if defined" and "if not defined," respectively. The general form of #ifdef is

#ifdef macro-name
statement sequence
#endif
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If macro-name has been previously defined in a #define statement, the block of code
will be compiled.
The general form of #ifndef is

#ifndef macro-name
statement sequence
#endif

If macro-name is currently undefined by a #define statement, the block of code is
compiled.
Both #ifdef and #ifndef may use an #else or #elif statement. For example,

#include <stdio.h>
#define TED 10

int main(void)
{
#ifdef TED
printf("Hi Ted\n");
#else
printf("Hi anyone\n");
#endif
#ifndef RALPH
printf("RALPH not defined\n");
#endif

return O;

}

will print Hi Ted and RALPH not defined. However, if TED were not defined, Hi
anyone would be displayed, followed by RALPH not defined.

You may nest #ifdefs and #ifndefs to at least eight levels in Standard C. Standard
C++ suggests that at least 256 levels of nesting be supported.

| #undef

The #undef directive removes a previously defined definition of the macro name that
follows it. That is, it "undefines" a macro. The general form for #undef is

#undef macro-name
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For example,

#define LEN 100
#define WIDTH 100

char array[LEN][WIDTH]J;

#undef LEN
#undef WIDTH
[* at this point both LEN and WIDTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are encountered.
#undef is used principally to allow macro names to be localized to only those
sections of code that need them.

___ | Using defined

In addition to #ifdef, there is a second way to determine if a macro name is defined.
You can use the #if directive in conjunction with the defined compile-time operator.
The defined operator has this general form:

defined macro-name

If macro-name is currently defined, then the expression is true. Otherwise, it is false. For
example, to determine if the macro MYFILE is defined, you can use either of these two
preprocessing commands:

#if defined MYFILE
or
#ifdef MYFILE

You may also precede defined with the ! to reverse the condition. For example, the
following fragment is compiled only if DEBUG is not defined.

#if ldefined DEBUG
printf("Final version\n");
#endif
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One reason for using defined is that it allows the existence of a macro name to be
determined by a #elif statement.

___| #line

The #line directive changes the contents of _ _LINE_ _and _ _FILE__, which are
predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line
number of the currently compiled line of code. The _ _FILE_ _ identifier is a string that
contains the name of the source file being compiled. The general form for #line is

#line number "filename"

where number is any positive integer and becomes the new value of _ _LINE_ _, and
the optional filename is any valid file identifier, which becomes the new value of
_ _FILE_ _. #line is primarily used for debugging and special applications.

For example, the following code specifies that the line count will begin with 100.
The printf() statement displays the number 102 because it is the third line in the
program after the #line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */
int main(void) /* line 100 */
{ /* line 101 */

printf("%d\n",__LINE_ ); /* line 102 */

return O;

}

___ | #pragma

#pragma is an implementation-defined directive that allows various instructions to
be given to the compiler. For example, a compiler may have an option that supports
program execution tracing. A trace option would then be specified by a #pragma
statement. You must check the compiler's documentation for details and options.

___| The # and ## Preprocessor Operators

There are two preprocessor operators: # and ##. These operators are used with the
#define statement.
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The # operator, which is generally called the stringize operator, turns the argument
it precedes into a quoted string. For example, consider this program.

#include <stdio.h>
#define mkstr(s) #s
int main(void)

{

printf(mkstr(l like C++));

return O;

The preprocessor turns the line
printf(mkstr(l like C++));
into
printf("l like C++");
The ## operator, called the pasting operator, concatenates two tokens. For example,
#include <stdio.h>

#define concat(a, b) a##b

int main(void)
{
int xy = 10;
printf("%d", concat(x, y));

return O;

The preprocessor transforms

printf("%d", concat(x, y));
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into
printf("%d", xy);

If these operators seem strange to you, keep in mind that they are not needed or
used in most programs. They exist primarily to allow the preprocessor to handle some
special cases.

___| Predefined Macro Names

C++ specifies six built-in predefined macro names. They are

__LINE__
__FILE__
__DATE_ _
__TIME__
__STDC_ _
_ _cplusplus

The C language defines the first five of these. Each will be described here, in turn.

The _ _LINE__and _ _FILE_ _ macros were described in the discussion of #line.
Briefly, they contain the current line number and filename of the program when it is
being compiled.

The _ _DATE_ _ macro contains a string of the form month/day/year that is the date
of the translation of the source file into object code.

The _ _TIME_ _ macro contains the time at which the program was compiled. The
time is represented in a string having the form hour:minute:second.

The meaning of _ _STDC_ _ is implementation-defined. Generally, if __STDC_ _is
defined, the compiler will accept only standard C/C++ code that does not contain any
nonstandard extensions.

A compiler conforming to Standard C++ will define_ _cplusplus as a value
containing at least six digits. Nonconforming compilers will use a value with five or
less digits.

___| c-Style Comments

A C-style comment begins with the character pair /* and ends with */. There must be no
spaces between the asterisk and the slash. The compiler ignores any text between the
beginning and ending comment symbols. For example, this program prints only hello
on the screen:
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#include <stdio.h>

int main(void)
{
printf("hello");
[* printf("there"); */

return O;

A C-style comment is commonly called a multiline comment because the text of the
comment may extend over two or more lines. For example,

/* thisis a
multi-line
comment */

Comments may be placed anywhere in a program, as long as they do not appear in
the middle of a keyword or identifier. For example, this comment is valid:

X = 10+ /* add the numbers */5;
while
swi/*this will not work*/tch(c) { ...

is incorrect because a keyword cannot contain a comment. However, you should not
generally place comments in the middle of expressions because it obscures their
meaning.

C-style comments may not be nested. That is, one comment may not contain
another comment. For example, this code fragment causes a compile-time error:

/* this is an outer comment

X =yla;

/* this is an inner comment - and causes an error */
*/

At the time of this writing, Standard C defines only the style of comments just
described. However, C++ supports two types of comments. The first is the C-style,
multiline comment. The second is the single-line comment. Single-line comments begin
with a // and end at the end of the line. For example,

251
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/l this is a single-line comment

Although Standard C does not currently define the single-line comment, most C
compilers will accept it and it will probably be formally incorporated into Standard C
within the next year or two. We will look more closely at single-line comments in
Part Two.

You should include comments whenever they are needed to explain the operation
of the code. All but the most obvious functions should have a comment at the top that
states what the function does, how it is called, and what it returns.
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Part One examined the C subset of C++. Part Two describes
those features of the language specific to C++. That is, it
discusses those features of C++ that it does not have in common
with C. Because many of the C++ features are designed to
support object-oriented programming (OOP), Part Two also
provides a discussion of its theory and merits. We will begin
with an overview of C++.
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an object-oriented programming language, and its object-oriented features are

highly interrelated. In several instances, this interrelatedness makes it difficult
to describe one feature of C++ without implicitly involving several others. The
object-oriented features of C++ are, in many places, so intertwined that discussion of
one feature implies prior knowledge of one or more other ones. To address this
problem, this chapter presents a quick overview of the most important aspects of
C++, including its history, its key features, and the difference between traditional
and Standard C++. The remaining chapters examine C++ in detail.

This chapter provides an overview of the key concepts embodied in C++. C++ is

___| The Origins of C++

C++ began as an expanded version of C. The C++ extensions were first invented
by Bjarne Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He
initially called the new language "C with Classes.” However, in 1983 the name was
changed to C++.

Although C was one of the most liked and widely used professional programming
languages in the world, the invention of C++ was necessitated by one major program-
ming factor: increasing complexity. Over the years, computer programs have become
larger and more complex. Even though C is an excellent programming language, it has
its limits. In C, once a program exceeds from 25,000 to 100,000 lines of code, it becomes
so complex that it is difficult to grasp as a totality. The purpose of C++ is to allow this
barrier to be broken. The essence of C++ is to allow the programmer to comprehend
and manage larger, more complex programs.

Most additions made by Stroustrup to C support object-oriented programming,
sometimes referred to as OOP. (See the next section for a brief explanation of object-
oriented programming.) Stroustrup states that some of C++'s object-oriented features
were inspired by another object-oriented language called Simula67. Therefore, C++
represents the blending of two powerful programming methods.

Since C++ was first invented, it has undergone three major revisions, with each
adding to and altering the language. The first revision was in 1985 and the second in
1990. The third occurred during the standardization of C++. Several years ago, work
began on a standard for C++. Toward that end, a joint ANSI (American National
Standards Institute) and ISO (International Standards Organization) standardization
committee was formed. The first draft of the proposed standard was created on
January 25, 1994. In that draft, the ANSI/ISO C++ committee (of which I am a member)
kept the features first defined by Stroustrup and added some new ones as well. But in
general, this initial draft reflected the state of C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred
that caused the language to be greatly expanded: the creation of the Standard Template
Library (STL) by Alexander Stepanov. The STL is a set of generic routines that you can
use to manipulate data. It is both powerful and elegant, but also quite large. Subsequent
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to the first draft, the committee voted to include the STL in the specification for C++. The
addition of the STL expanded the scope of C++ well beyond its original definition. While
important, the inclusion of the STL, among other things, slowed the standardization

of C++.

It is fair to say that the standardization of C++ took far longer than anyone had
expected when it began. In the process, many new features were added to the language
and many small changes were made. In fact, the version of C++ defined by the C++
committee is much larger and more complex than Stroustrup's original design.
However, the standard is now complete. The final draft was passed out of committee
on November 14, 1997. A standard for C++ is now a reality.

The material in this book describes Standard C++, including all of its newest
features. This is the version of C++ created by the ANSI/ISO standardization
committee, and it is the one that is currently accepted by all major compilers.

___| What Is Object-Oriented Programming?

Since object-oriented programming (OOP) drove the creation of C++, it is necessary to
understand its foundational principles. OOP is a powerful way to approach the job of
programming. Programming methodologies have changed dramatically since the
invention of the computer, primarily to accommodate the increasing complexity of
programs. For example, when computers were first invented, programming was done
by toggling in the binary machine instructions using the computer's front panel. As
long as programs were just a few hundred instructions long, this approach worked. As
programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs, using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages were
introduced that gave the programmer more tools with which to handle complexity.
The first widespread language was, of course, FORTRAN. Although FORTRAN was a
very impressive first step, it is hardly a language that encourages clear, easy-to-
understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by
languages such as C and Pascal. The use of structured languages made it possible to write
moderately complex programs fairly easily. Structured languages are characterized by
their support for stand-alone subroutines, local variables, rich control constructs, and
their lack of reliance upon the GOTO. Although structured languages are a powerful tool,
even they reach their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques
and tools were created to allow the programmer to deal with increasingly greater
complexity. Each step of the way, the new approach took the best elements of the
previous methods and moved forward. Prior to the invention of OOP, many projects
were nearing (or exceeding) the point where the structured approach no longer
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worked. Object-oriented methods were created to help programmers break through
these barriers.

Object-oriented programming took the best ideas of structured programming
and combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in
one of two ways: around its code (what is happening) or around its data (who is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as "code acting on data." For
example, a program written in a structured language such as C is defined by its
functions, any of which may operate on any type of data used by the program.

Object-oriented programs work the other way around. They are organized
around data, with the key principle being "data controlling access to code." In an
object-oriented language, you define the data and the routines that are permitted
to act on that data. Thus, a data type defines precisely what sort of operations can
be applied to that data.

To support the principles of object-oriented programming, all OOP languages
have three traits in common: encapsulation, polymorphism, and inheritance. Let's
examine each.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. In an object-oriented
language, code and data may be combined in such a way that a self-contained "black
box" is created. When code and data are linked together in this fashion, an object is
created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is,
private code or data may not be accessed by a piece of the program that exists outside
the object. When code or data is public, other parts of your program may access it even
though it is defined within an object. Typically, the public parts of an object are used to
provide a controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may
seem strange that an object that links both code and data can be thought of as a
variable. However, in object-oriented programming, this is precisely the case. Each
time you define a new type of object, you are creating a new data type. Each specific
instance of this data type is a compound variable.

Polymorphism

Object-oriented programming languages support polymorphism, which is characterized
by the phrase "one interface, multiple methods." In simple terms, polymorphism is the
attribute that allows one interface to control access to a general class of actions. The
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specific action selected is determined by the exact nature of the situation. A real-world
example of polymorphism is a thermostat. No matter what type of furnace your house
has (gas, oil, electric, etc.), the thermostat works the same way. In this case, the
thermostat (which is the interface) is the same no matter what type of furnace (method)
you have. For example, if you want a 70-degree temperature, you set the thermostat to
70 degrees. It doesn't matter what type of furnace actually provides the heat.

This same principle can also apply to programming. For example, you might
have a program that defines three different types of stacks. One stack is used for
integer values, one for character values, and one for floating-point values. Because
of polymorphism, you can define one set of names, push() and pop(), that can be used
for all three stacks. In your program you will create three specific versions of these
functions, one for each type of stack, but names of the functions will be the same. The
compiler will automatically select the right function based upon the data being stored.
Thus, the interface to a stack—the functions push() and pop()—are the same no
matter which type of stack is being used. The individual versions of these functions
define the specific implementations (methods) for each type of data.

Polymorphism helps reduce complexity by allowing the same interface to be used
to access a general class of actions. It is the compiler's job to select the specific action
(i.e., method) as it applies to each situation. You, the programmer, don't need to do
this selection manually. You need only remember and utilize the general interface.

The first object-oriented programming languages were interpreters, so poly-
morphism was, of course, supported at run time. However, C++ is a compiled
language. Therefore, in C++, both run-time and compile-time polymorphism
are supported.

Inheritance

Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If you think
about it, most knowledge is made manageable by hierarchical classifications. For
example, a Red Delicious apple is part of the classification apple, which in turn is part
of the fruit class, which is under the larger class food. Without the use of classifications,
each object would have to define explicitly all of its characteristics. However, through
the use of classifications, an object need only define those qualities that make it unique
within its class. It is the inheritance mechanism that makes it possible for one object to
be a specific instance of a more general case. As you will see, inheritance is an
important aspect of object-oriented programming.

| some C++ Fundamentals

In Part One, the C subset of C++ was described and C programs were used to
demonstrate those features. From this point forward, all examples will be "C++
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programs.” That is, they will be making use of features unique to C++. For ease of
discussion, we will refer to these C++-specific features simply as "C++ features” from
now on.

If you come from a C background, or if you have been studying the C subset
programs in Part One, be aware that C++ programs differ from C programs in some
important respects. Most of the differences have to do with taking advantage of C++'s
object-oriented capabilities. But C++ programs differ from C programs in other ways,
including how 1/0 is performed and what headers are included. Also, most C++
programs share a set of common traits that clearly identify them as C++ programs.
Before moving on to C++'s object-oriented constructs, an understanding of the
fundamental elements of a C++ program is required.

This section describes several issues relating to nearly all C++ programs. Along the
way, some important differences with C and earlier versions of C++ are pointed out.

A Sample C++ Program

Let's start with the short sample C++ program shown here.

#include <iostream>
using namespace std;

int main()

{

inti;

cout << "This is output.\n"; // this is a single line comment
/* you can still use C style comments */

/[ input a number using >>

cout << "Enter a number: ";

cin >>i;

/l now, output a number using <<

cout << i <<"squared is " << i*i << "\n";

return O;

As you can see, this program looks much different from the C subset programs
found in Part One. A line-by-line commentary will be useful. To begin, the header
<iostream> is included. This header supports C++-style I/O operations. (<iostream>
is to C++ what stdio.h is to C.) Notice one other thing: there is no .h extension to the
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name iostream. The reason is that <iostream> is one of the new-style headers defined
by Standard C++. New-style headers do not use the .h extension.
The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a recent addition

to C++. A namespace creates a declarative region in which various program elements
can be placed. Namespaces help in the organization of large programs. The using
statement informs the compiler that you want to use the std namespace. This is the
namespace in which the entire Standard C++ library is declared. By using the std
namespace you simplify access to the standard library. The programs in Part One,
which use only the C subset, don't need a namespace statement because the C library
functions are also available in the default, global namespace.

N Since both new-style headers and namespaces are recent additions to C++, you may
ote , : .

encounter older code that does not use them. Also, if you are using an older compiler,

it may not support them. Instructions for using an older compiler are found later in

this chapter.

Now examine the following line.
int main()

Notice that the parameter list in main() is empty. In C++, this indicates that main()
has no parameters. This differs from C. In C, a function that has no parameters must
use void in its parameter list, as shown here:

int main(void)

This was the way main() was declared in the programs in Part One. However, in
C++, the use of void is redundant and unnecessary. As a general rule, in C++ when
a function takes no parameters, its parameter list is simply empty; the use of void is
not required.

The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment
First, the statement

cout << "This is output.\n";
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causes This is output. to be displayed on the screen, followed by a carriage return-
linefeed combination. In C++, the << has an expanded role. It is still the left shift
operator, but when it is used as shown in this example, it is also an output operator. The
word cout is an identifier that is linked to the screen. (Actually, like C, C++ supports
I/0 redirection, but for the sake of discussion, assume that cout refers to the screen.)
You can use cout and the << to output any of the built-in data types, as well as strings
of characters.

Note that you can still use printf() or any other of C's I/O functions in a C++
program. However, most programmers feel that using << is more in the spirit of C++.
Further, while using printf() to output a string is virtually equivalent to using << in
this case, the C++ I/O system can be expanded to perform operations on objects that
you define (something that you cannot do using printf()).

What follows the output expression is a C++ single-line comment. As mentioned in
Chapter 10, C++ defines two types of comments. First, you may use a C-like comment,
which works the same in C++ as in C. You can also define a single-line comment by
using //; whatever follows such a comment is ignored by the compiler until the end of
the line is reached. In general, C++ programmers use C-like comments when a multiline
comment is being created and use C++ single-line comments when only a single-line
remark is needed.

Next, the program prompts the user for a number. The number is read from the
keyboard with this statement:

cin >>i;

In C++, the >> operator still retains its right shift meaning. However, when used as
shown, it also is C++'s input operator. This statement causes i to be given a value read
from the keyboard. The identifier cin refers to the standard input device, which is
usually the keyboard. In general, you can use cin >> to input a variable of any of the
basic data types plus strings.

| The line of code just described is not misprinted. Specifically, there is not supposed to
0t¢ be an & in front of the i. When inputting information using a C-based function like

scanf( ), you have to explicitly pass a pointer to the variable that will receive the
information. This means preceding the variable name with the "address of” operator,
&. However, because of the way the >> operator is implemented in C++, you do not
need (in fact, must not use) the &. The reason for this is explained in Chapter 13.

Although it is not illustrated by the example, you are free to use any of the
C-based input functions, such as scanf(), instead of using >>. However, as with
cout, most programmers feel that cin >> is more in the spirit of C++.

Another interesting line in the program is shown here:

cout << i << "squared is " << i*i <<"\n";
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Assuming that i has the value 10, this statement causes the phrase 10 squared is 100
to be displayed, followed by a carriage return-linefeed. As this line illustrates, you can
run together several << output operations.

The program ends with this statement:

return O;

This causes zero to be returned to the calling process (which is usually the operating
system). This works the same in C++ as it does in C. Returning zero indicates that the
program terminated normally. Abnormal program termination should be signaled by
returning a nonzero value. You may also use the values EXIT_SUCCESS and EXIT_
FAILURE if you like.

A Closer Look at the 1/0 Operators

As stated, when used for I/0O, the << and >> operators are capable of handling any
of C++'s built-in data types. For example, this program inputs a float, a double, and
a string and then outputs them:

#include <iostream>
using namespace std;

int main()

{
float f;
char str[80];
double d;

cout << "Enter two floating point numbers: ";
cin >>f>>d;

cout << "Enter a string: ";
cin >> str;

cout<<f<<""<<d<<""<<str;

return O;

}

When you run this program, try entering This is a test. when prompted for the
string. When the program redisplays the information you entered, only the word "This"
will be displayed. The rest of the string is not shown because the >> operator stops
reading input when the first white-space character is encountered. Thus, "is a test" is
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never read by the program. This program also illustrates that you can string together
several input operations in a single statement.

The C++ I/0 operators recognize the entire set of backslash character constants
described in Chapter 2. For example, it is perfectly acceptable to write

cout << "A\tB\tC";

This statement outputs the letters A, B, and C, separated by tabs.

Declaring Local Variables

If you come from a C background, you need to be aware of an important difference
between C and C++ regarding when local variables can be declared. In C, you must
declare all local variables used within a block at the start of that block. You cannot
declare a variable in a block after an "action" statement has occurred. For example, in C,
this fragment is incorrect:

/* Incorrect in C. OK in C++. */
int f()
{

inti;

i=10;

int j; /* won't compile as a C program */
j=1*2;

return j;

}

Because the assignment intervenes between the declaration of i and that of j, compiling
this code as a C program will cause an error. However, when compiling it as a C++
program, this fragment is perfectly acceptable. In C++ you may declare local variables
at any point within a block—not just at the beginning.

Here is another example. This version of the program from the preceding section
declares each variable just before it is needed.

#include <iostream>
using namespace std;

int main()

{
float f;
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double d;
cout << "Enter two floating point numbers: ";
cin >>f>>d;

cout << "Enter a string: ";
char str[80]; // str declared here, just before 1st use
cin >> str;

cout<<f<<""<<d<<""<<str;

return O;

Whether you declare all variables at the start of a block or at the point of first use is
completely up to you. Since much of the philosophy behind C++ is the encapsulation of
code and data, it makes sense that you can declare variables close to where they are used
instead of just at the beginning of the block. In the preceding example, the declarations
are separated simply for illustration, but it is easy to imagine more complex examples in
which this feature of C++ is more valuable.

Declaring variables close to where they are used can help you avoid accidental side
effects. However, the greatest benefit of declaring variables at the point of first use is
gained in large functions. Frankly, in short functions (like many of the examples in this
book), there is little reason not to simply declare variables at the start of a function. For
this reason, this book will declare variables at the point of first use only when it seems
warranted by the size or complexity of a function.

There is some debate as to the general wisdom of localizing the declaration of
variables. Opponents suggest that sprinkling declarations throughout a block makes
it harder, not easier, for someone reading the code to find quickly the declarations
of all variables used in that block, making the program harder to maintain. For this
reason, some C++ programmers do not make significant use of this feature. This book
will not take a stand either way on this issue. However, when applied properly,
especially in large functions, declaring variables at the point of their first use can
help you create bug-free programs more easily.

No Default to int

There has been a fairly recent change to C++ that may affect older C++ code as well as
C code being ported to C++. The C language and the original specification for C++
state that when no explicit type is specified in a declaration, type int is assumed.
However, the "default-to-int" rule was dropped from C++ a couple of years ago, during
standardization. The next standard for the C language is also expected to drop this
rule, but it is still currently in effect and is used by a large amount of existing code. The
"default-to-int" rule is also applied in much older C++ code.
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The most common use of the "default-to-int" rule is with function return types. It
was common practice to not specify int explicitly when a function returned an integer
result. For example, in C and older C++ code the following function is valid.

func(int i)

{

return i*i;

}

In Standard C++, this function must have the return type of int specified, as shown here.

int func(int i)
{
return i*i;

}

As a practical matter, nearly all C++ compilers still support the "default-to-int" rule for
compatibility with older code. However, you should not use this feature for new code
because it is no longer allowed.

The bool Data Type

C++ defines a built-in Boolean type called bool. At the time of this writing, Standard C
does not. Objects of type bool can store only the values true or false, which are keywords
defined by C++. As explained in Part One, automatic conversions take place which allow
bool values to be converted to integers, and vice versa. Specifically, any non-zero value
is converted to true and zero is converted to false. The reverse also occurs; true is
converted to 1 and false is converted to zero. Thus, the fundamental concept of zero
being false and non-zero being true is still fully entrenched in the C++ language.

Old-Style vs. Modern C++

As explained, C++ underwent a rather extensive evolutionary process during its
development and standardization. As a result, there are really two versions of C++.
The first is the traditional version that is based upon Bjarne Stroustrup's original
designs. This is the version of C++ that has been used by programmers for the past
decade. The second is the new, Standard C++ that was created by Stroustrup and
the ANSI/ISO standardization committee. While these two versions of C++ are
very similar at their core, Standard C++ contains several enhancements not found
in traditional C++. Thus, Standard C++ is essentially a superset of traditional C++.
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This book describes Standard C++. This is the version of C++ defined by the
ANSI/ISO standardization committee and the one implemented by all modern C++
compilers. The code in this book reflects the contemporary coding style and practices
as encouraged by Standard C++. However, if you are using an older compiler, it
may not accept all of the programs in this book. Here's why. During the process of
standardization, the ANSI/ISO committee added many new features to the language.
As these features were defined, they were implemented by compiler developers. Of
course, there is always a lag time between when a new feature is added to the language
and when it is available in commercial compilers. Since features were added to C++
over a period of years, an older compiler might not support one or more of them. This
is important because two recent additions to the C++ language affect every program
that you will write—even the simplest. If you are using an older compiler that does not
accept these new features, don't worry. There is an easy work-around, which is
described here.

The key differences between old-style and modern code involve two features:
new-style headers and the namespace statement. To understand the differences, we
will begin by looking at two versions of a minimal, do-nothing C++ program. The
first version shown here reflects the way C++ programs were written using old-style
coding.

/*
An old-style C++ program.
*

#include <iostream.h>

int main()
{

return O;

}

Pay special attention to the #include statement. It includes the file iostream.h, not the
header <iostream>. Also notice that no namespace statement is present.
Here is the second version of the skeleton, which uses the modern style.

/*
A modern-style C++ program that uses
the new-style headers and a namespace.
*/
#include <iostream>
using namespace std;
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int main()

{

return 0O;

}

This version uses the new-style header and specifies a namespace. Both of these
features were mentioned in passing earlier. Let's look closely at them now.

The New C++ Headers

As you know, when you use a library function in a program, you must include its
header file. This is done using the #include statement. For example, in C, to include the
header file for the I/O functions, you include stdio.h with a statement like this:

#include <stdio.h>

Here, stdio.h is the name of the file used by the I/O functions, and the preceding
statement causes that file to be included in your program. The key point is that this
#include statement includes a file.

When C++ was first invented and for several years after that, it used the same
style of headers as did C. That is, it used header files. In fact, Standard C++ still supports
C-style headers for header files that you create and for backward compatibility.
However, Standard C++ created a new kind of header that is used by the Standard
C++ library. The new-style headers do not specify filenames. Instead, they simply
specify standard identifiers that may be mapped to files by the compiler, although
they need not be. The new-style C++ headers are an abstraction that simply guarantee
that the appropriate prototypes and definitions required by the C++ library have
been declared.

Since the new-style headers are not filenames, they do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example, here
are some of the new-style headers supported by Standard C++.

<iostream>  <fstream> <vector> <string>

The new-style headers are included using the #include statement. The only difference
is that the new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard
C-style header files associated with that library. That is, header files such as stdio.h
or ctype.h are still available. However, Standard C++ also defines new-style headers
that you can use in place of these header files. The C++ versions of the C standard

headers simply add a "c" prefix to the filename and drop the .h. For example, the C++
new-style header for math.h is <cmath>. The one for string.h is <cstring>. Although it
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is currently permissible to include a C-style header file when using C library functions,
this approach is deprecated by Standard C++ (that is, it is not recommended). For this
reason, from this point forward, this book will use new-style C++ headers in all
#include statements. If your compiler does not support new-style headers for the C
function library, then simply substitute the old-style, C-like headers.

Since the new-style header is a recent addition to C++, you will still find many,
many older programs that don't use it. These programs employ C-style headers, in
which a filename is specified. As the old-style skeletal program shows, the traditional
way to include the I/O header is as shown here.

#include <iostream.h>

This causes the file iostream.h to be included in your program. In general, an old-style
header file will use the same name as its corresponding new-style header with
a.h appended.

As of this writing, all C++ compilers support the old-style headers. However, the
old-style headers have been declared obsolete and their use in new programs is not
recommended. This is why they are not used in this book.

M| While still common in existing C++ code, old-style headers are obsolete.
Remember

Namespaces

When you include a new-style header in your program, the contents of that header

are contained in the std namespace. A namespace is simply a declarative region. The
purpose of a namespace is to localize the names of identifiers to avoid name collisions.
Elements declared in one namespace are separate from elements declared in another.
Originally, the names of the C++ library functions, etc., were simply put into the global
namespace (as they are in C). However, with the advent of the new-style headers, the
contents of these headers were placed in the std namespace. We will look closely at
namespaces later in this book. For now, you won't need to worry about them because
the statement

using namespace std;

brings the std namespace into visibility (i.e., it puts std into the global namespace).
After this statement has been compiled, there is no difference between working with an
old-style header and a new-style one.

One other point: for the sake of compatibility, when a C++ program includes a C
header, such as stdio.h, its contents are put into the global namespace. This allows a
C++ compiler to compile C-subset programs.
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Working with an Old Compiler

As explained, both namespaces and the new-style headers are fairly recent additions
to the C++ language, added during standardization. While all new C++ compilers
support these features, older compilers may not. When this is the case, your compiler
will report one or more errors when it tries to compile the first two lines of the sample
programs in this book. If this is the case, there is an easy work-around: simply use an
old-style header and delete the namespace statement. That is, just replace

#include <iostream>
using namespace std;

with
#include <iostream.h>

This change transforms a modern program into an old-style one. Since the old-style
header reads all of its contents into the global namespace, there is no need for a
namespace statement.

One other point: for now and for the next few years, you will see many C++
programs that use the old-style headers and do not include a using statement. Your
C++ compiler will be able to compile them just fine. However, for new programs, you
should use the modern style because it is the only style of program that complies with
the C++ Standard. While old-style programs will continue to be supported for many
years, they are technically noncompliant.

___| Introducing C++ Classes

This section introduces C++'s most important feature: the class. In C++, to create an
object, you first must define its general form by using the keyword class. A class is
similar syntactically to a structure. Here is an example. The following class defines a
type called stack, which will be used to create a stack:

#define SIZE 100

/I This creates the class stack.
class stack {

int stck[SIZE];

int tos;
public:

void init();
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void push(int i);
int pop();
h

A class may contain private as well as public parts. By default, all items defined in
a class are private. For example, the variables stck and tos are private. This means that
they cannot be accessed by any function that is not a member of the class. This is one
way that encapsulation is achieved—access to certain items of data may be tightly
controlled by keeping them private. Although it is not shown in this example, you can
also define private functions, which then may be called only by other members of the
class.

To make parts of a class public (that is, accessible to other parts of your program),
you must declare them after the public keyword. All variables or functions defined
after public can be accessed by all other functions in the program. Essentially, the rest
of your program accesses an object through its public functions. Although you can
have public variables, good practice dictates that you should try to limit their use.
Instead, you should make all data private and control access to it through public
functions. One other point: Notice that the public keyword is followed by a colon.

The functions init( ), push(), and pop() are called member functions because they
are part of the class stack. The variables stck and tos are called member variables (or data
members). Remember, an object forms a bond between code and data. Only member
functions have access to the private members of their class. Thus, only init(), push(),
and pop() may access stck and tos.

Once you have defined a class, you can create an object of that type by using the
class name. In essence, the class name becomes a new data type specifier. For example,
this creates an object called mystack of type stack:

stack mystack;

When you declare an object of a class, you are creating an instance of that class. In this
case, mystack is an instance of stack. You may also create objects when the class is
defined by putting their names after the closing curly brace, in exactly the same way as
you would with a structure.

To review: In C++, class creates a new data type that may be used to create objects
of that type. Therefore, an object is an instance of a class in just the same way that some
other variable is an instance of the int data type, for example. Put differently, a class is
a logical abstraction, while an object is real. (That is, an object exists inside the memory
of the computer.)

The general form of a simple class declaration is

class class-name {
private data and functions
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public:
public data and functions
} object name list;

Of course, the object name list may be empty.

Inside the declaration of stack, member functions were identified using their
prototypes. In C++, all functions must be prototyped. Prototypes are not optional.

The prototype for a member function within a class definition serves as that function's
prototype in general.

When it comes time to actually code a function that is the member of a class, you
must tell the compiler which class the function belongs to by qualifying its name with
the name of the class of which it is a member. For example, here is one way to code the
push() function:

void stack::push(int i)
{
if(tos==SIZE) {
cout << "Stack is full.\n";
return;
}
stck[tos] = i;
tos++;

The :: is called the scope resolution operator. Essentially, it tells the compiler that this
version of push() belongs to the stack class or, put differently, that this push() is in
stack's scope. In C++, several different classes can use the same function name. The
compiler knows which function belongs to which class because of the scope resolution
operator.

When you refer to a member of a class from a piece of code that is not part of the
class, you must always do so in conjunction with an object of that class. To do so, use
the object's name, followed by the dot operator, followed by the name of the member.
This rule applies whether you are accessing a data member or a function member. For
example, this calls init( ) for object stackl.

stack stackl, stack2;

stackl.init();

This fragment creates two objects, stackl and stack2, and initializes stack1.
Understand that stackl and stack2 are two separate objects. This means, for example,
that initializing stack1 does not cause stack2 to be initialized as well. The only
relationship stackl has with stack2 is that they are objects of the same type.
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Within a class, one member function can call another member function or refer to a
data member directly, without using the dot operator. It is only when a member is
referred to by code that does not belong to the class that the object name and the dot
operator must be used.

The program shown here puts together all the pieces and missing details and
illustrates the stack class:

#include <iostream>
using namespace std;

#define SIZE 100

/I This creates the class stack.
class stack {
int stck[SIZE];
int tos;
public:
void init();
void push(int i);
int pop();
K

void stack::init()
{
tos = 0;

}

void stack::push(int i)
{
if(tos==SIZE) {
cout << "Stack is full.\n";
return;
}
stck[tos] = i;
tos++;

}

int stack::pop()
{
if(tos==0) {
cout << "Stack underflow.\n";
return O;

}

tos--;
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return stck[tos];

}

int main()

{

stack stackl, stack2; // create two stack objects

stackl.init();
stack2.init();

stackl.push(1);
stack2.push(2);

stackl.push(3);
stack2.push(4);

cout << stackl.pop() <<"";
cout << stackl.pop() <<"";
cout << stack2.pop() << " ";
cout << stack2.pop() << "\n";

return O;

The output from this program is shown here.
3142

One last point: Recall that the private members of an object are accessible only by
functions that are members of that object. For example, a statement like

stackl.tos = 0; // Error, tos is private.

could not be in the main() function of the previous program because tos is private.

Function Overloading

One way that C++ achieves polymorphism is through the use of function overloading.
In C++, two or more functions can share the same name as long as their parameter
declarations are different. In this situation, the functions that share the same name are
said to be overloaded, and the process is referred to as function overloading.
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To see why function overloading is important, first consider three functions defined
by the C subset: abs(), labs(), and fabs(). The abs() function returns the absolute
value of an integer, labs( ) returns the absolute value of a long, and fabs() returns the
absolute value of a double. Although these functions perform almost identical actions,
in C three slightly different names must be used to represent these essentially similar
tasks. This makes the situation more complex, conceptually, than it actually is. Even
though the underlying concept of each function is the same, the programmer has to
remember three things, not just one. However, in C++, you can use just one name for
all three functions, as this program illustrates:

#include <iostream>
using namespace std;

/l abs is overloaded three ways
int abs(int i);

double abs(double d);

long abs(long I);

int main()

{

cout << abs(-10) << "\n";
cout << abs(-11.0) << "\n";
cout << abs(-9L) << "\n";

return O;

}

int abs(int i)
{

cout << "Using integer abs()\n";

return i<0 ? -i: i;

}

double abs(double d)
{

cout << "Using double abs()\n";

return d<0.0 ? -d : d;
}
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long abs(long I)
{

cout << "Using long abs()\n";

return 1<0 ? -1 : I;

The output from this program is shown here.

Using integer abs()
10

Using double abs()
11

Using long abs()

9

This program creates three similar but different functions called abs( ), each of
which returns the absolute value of its argument. The compiler knows which function
to call in each situation because of the type of the argument. The value of overloaded
functions is that they allow related sets of functions to be accessed with a common
name. Thus, the name abs() represents the general action that is being performed. It is
left to the compiler to choose the right specific method for a particular circumstance. You
need only remember the general action being performed. Due to polymorphism, three
things to remember have been reduced to one. This example is fairly trivial, but if you
expand the concept, you can see how polymorphism can help you manage very
complex programs.

In general, to overload a function, simply declare different versions of it. The
compiler takes care of the rest. You must observe one important restriction when
overloading a function: the type and/or number of the parameters of each overloaded
function must differ. It is not sufficient for two functions to differ only in their return
types. They must differ in the types or number of their parameters. (Return types do
not provide sufficient information in all cases for the compiler to decide which function
to use.) Of course, overloaded functions may differ in their return types, too.

Here is another example that uses overloaded functions:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
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void stradd(char *s1, char *s2);
void stradd(char *s1, int i);

int main()

{
char str[80];

strepy(str, "Hello );
stradd(str, "there");
cout << str << "\n";

stradd(str, 100);
cout << str << "\n";

return 0O;

}

/I concatenate two strings
void stradd(char *s1, char *s2)
{

strcat(s1, s2);
}

/I concatenate a string with a "stringized" integer
void stradd(char *s1, int i)

{
char temp[80];

sprintf(temp, "%d", i);
strcat(s1, temp);

}

In this program, the function stradd() is overloaded. One version concatenates
two strings (just like strcat() does). The other version "stringizes" an integer and then
appends that to a string. Here, overloading is used to create one interface that appends
either a string or an integer to another string.

You can use the same name to overload unrelated functions, but you should not.
For example, you could use the name sqr() to create functions that return the
square of an int and the square root of a double. However, these two operations are
fundamentally different; applying function overloading in this manner defeats its
purpose (and, in fact, is considered bad programming style). In practice, you should
overload only closely related operations.
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Operator Overloading

Polymorphism is also achieved in C++ through operator overloading. As you know, in
C++, it is possible to use the << and >> operators to perform console I/O operations.
They can perform these extra operations because in the <iostream> header, these
operators are overloaded. When an operator is overloaded, it takes on an additional
meaning relative to a certain class. However, it still retains all of its old meanings.

In general, you can overload most of C++'s operators by defining what they mean
relative to a specific class. For example, think back to the stack class developed earlier
in this chapter. It is possible to overload the + operator relative to objects of type stack
so that it appends the contents of one stack to the contents of another. However, the +
still retains its original meaning relative to other types of data.

Because operator overloading is, in practice, somewhat more complex than function
overloading, examples are deferred until Chapter 14.

Inheritance

As stated earlier in this chapter, inheritance is one of the major traits of an object-
oriented programming language. In C++, inheritance is supported by allowing one
class to incorporate another class into its declaration. Inheritance allows a hierarchy
of classes to be built, moving from most general to most specific. The process involves
first defining a base class, which defines those qualities common to all objects to be
derived from the base. The base class represents the most general description. The
classes derived from the base are usually referred to as derived classes. A derived class
includes all features of the generic base class and then adds qualities specific to the
derived class. To demonstrate how this works, the next example creates classes that
categorize different types of buildings.

To begin, the building class is declared, as shown here. It will serve as the base for
two derived classes.

class building {
int rooms;
int floors;
int area;

public:
void set_rooms(int num);
int get_rooms();
void set_floors(int num);
int get_floors();
void set_area(int num);
int get_area();
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Because (for the sake of this example) all buildings have three common
features—one or more rooms, one or more floors, and a total area—the building
class embodies these components into its declaration. The member functions beginning
with set set the values of the private data. The functions starting with
get return those values.

You can now use this broad definition of a building to create derived classes that
describe specific types of buildings. For example, here is a derived class called house:

/I house is derived from building
class house : public building {
int bedrooms;
int baths;
public:
void set_bedrooms(int num);
int get_bedrooms();
void set_baths(int num);
int get_baths();
h

Notice how building is inherited. The general form for inheritance is

class derived-class : access base-class {
// body of new class
}

Here, access is optional. However, if present, it must be public, private, or protected.
(These options are further examined in Chapter 12.) For now, all inherited classes

will use public. Using public means that all of the public members of the base class
will become public members of the derived class. Therefore, the public members of the
class building become public members of the derived class house and are available

to the member functions of house just as if they had been declared inside house.
However, house's member functions do not have access to the private elements of
building. This is an important point. Even though house inherits building, it has
access only to the public members of building. In this way, inheritance does not
circumvent the principles of encapsulation necessary to OOP.

A derived class has direct access to both its own members and the public members of
Remember
the base class.

Here is a program illustrating inheritance. It creates two derived classes of building
using inheritance; one is house, the other, school.
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#include <iostream>
using namespace std;

class building {
int rooms;
int floors;
int area;

public:
void set_rooms(int num);
int get_rooms();
void set_floors(int num);
int get_floors();
void set_area(int num);
int get_area();

k

/I house is derived from building
class house : public building {
int bedrooms;
int baths;
public:
void set_bedrooms(int num);
int get_bedrooms();
void set_baths(int num);
int get_baths();
h

/I school is also derived from building
class school : public building {

int classrooms;

int offices;
public:

void set_classrooms(int num);

int get_classrooms();

void set_offices(int num);

int get_offices();

k

void building::set_rooms(int num)

{

rooms = num;

}



void building::set_floors(int num)

{

floors = num;

}

void building::set_area(int num)
{

area = num;

}

int building::get_rooms()

{

return rooms;

}

int building::get_floors()
{

return floors;

}

int building::get_area()
{

return area,

}

void house::set_bedrooms(int num)

{

bedrooms = num;

}

void house::set_baths(int num)

{

baths = num;

}

int house::get_bedrooms()

{

return bedrooms;

}

int house::get_baths()
{

Chapter 11:
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return baths;

}

void school::set_classrooms(int num)
{
classrooms = num;

}

void school::set_offices(int num)
{
offices = num;

}

int school::get_classrooms()
{

return classrooms;

}

int school::get_offices()
{

return offices;

}

int main()

{
house h;
school s;

h.set_rooms(12);
h.set_floors(3);
h.set_area(4500);
h.set_bedrooms(5);
h.set_baths(3);

cout << "house has " << h.get_bedrooms();
cout << " bedrooms\n";

s.set_rooms(200);
s.set_classrooms(180);
s.set_offices(5);
s.set_area(25000);



Chapter 11: An Overview of C+ +

cout << "school has " << s.get_classrooms();
cout << " classrooms\n";
cout << "lts area is " << s.get_area();

return O;

The output produced by this program is shown here.

house has 5 bedrooms
school has 180 classrooms
Its area is 25000

As this program shows, the major advantage of inheritance is that you can create a
general classification that can be incorporated into more specific ones. In this way, each
object can precisely represent its own subclass.

When writing about C++, the terms base and derived are generally used to describe
the inheritance relationship. However, the terms parent and child are also used. You
may also see the terms superclass and subclass.

Aside from providing the advantages of hierarchical classification, inheritance
also provides support for run-time polymorphism through the mechanism of virtual
functions. (Refer to Chapter 16 for details.)

Constructors and Destructors

It is very common for some part of an object to require initialization before it can
be used. For example, think back to the stack class developed earlier in this chapter.
Before the stack could be used, tos had to be set to zero. This was performed by
using the function init( ). Because the requirement for initialization is so common, C++
allows objects to initialize themselves when they are created. This automatic
initialization is performed through the use of a constructor function.

A constructor function is a special function that is a member of a class and has
the same name as that class. For example, here is how the stack class looks when
converted to use a constructor function for initialization:

/I This creates the class stack.
class stack {

int stck[SIZE];

int tos;
public:
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stack(); // constructor
void push(int i);
int pop();

h

Notice that the constructor stack() has no return type specified. In C++, constructor
functions cannot return values and, thus, have no return type.
The stack() function is coded like this:

/I stack's constructor function
stack::stack()
{

tos = 0;

cout << "Stack Initialized\n";

Keep in mind that the message Stack Initialized is output as a way to illustrate the
constructor. In actual practice, most constructor functions will not output or input
anything. They will simply perform various initializations.

An object's constructor is automatically called when the object is created. This
means that it is called when the object's declaration is executed. If you are accustomed
to thinking of a declaration statement as being passive, this is not the case for C++. In
C++, a declaration statement is a statement that is executed. This distinction is not just
academic. The code executed to construct an object may be quite significant. An object's
constructor is called once for global or static local objects. For local objects, the
constructor is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many circumstances, an
object will need to perform some action or actions when it is destroyed. Local objects
are created when their block is entered, and destroyed when the block is left. Global
objects are destroyed when the program terminates. When an object is destroyed, its
destructor (if it has one) is automatically called. There are many reasons why a
destructor function may be needed. For example, an object may need to deallocate
memory that it had previously allocated or it may need to close a file that it had
opened. In C++, it is the destructor function that handles deactivation events. The
destructor has the same name as the constructor, but it is preceded by a ~. For example,
here is the stack class and its constructor and destructor functions. (Keep in mind that
the stack class does not require a destructor; the one shown here is just for illustration.)

/I This creates the class stack.
class stack {

int stck[SIZE];

int tos;
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public:
stack(); // constructor
~stack(); // destructor
void push(int i);
int pop();

h

/I stack's constructor function
stack::stack()
{

tos = 0;

cout << "Stack Initialized\n";

}

/I stack's destructor function
stack::~stack()

{

cout << "Stack Destroyed\n";

}

Notice that, like constructor functions, destructor functions do not have return values.
To see how constructors and destructors work, here is a new version of the stack
program examined earlier in this chapter. Observe that init() is no longer needed.

// Using a constructor and destructor.
#include <iostream>
using namespace std;

#define SIZE 100

/I This creates the class stack.
class stack {
int stck[SIZE];
int tos;
public:
stack(); // constructor
~stack(); // destructor
void push(int i);
int pop();
I8

/I stack's constructor function
stack::stack()
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{

}

tos = 0;
cout << "Stack Initialized\n";

/I stack's destructor function
stack::~stack()

{
}

cout << "Stack Destroyed\n";

void stack::push(int i)

{

}

if(tos==SIZE) {
cout << "Stack is full.\n";
return;

}

stck[tos] = i;

tos++;

int stack::pop()

{

}

if(tos==0) {
cout << "Stack underflow.\n";
return O;

}

tos--;

return stck[tos];

int main()

{

stack a, b; // create two stack objects

a.push(l);
b.push(2);

a.push(3);
b.push(4);

cout << a.pop() <<"";
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cout << a.pop() <<"";
cout << b.pop() << " ";
cout << b.pop() << "\n";

return O;

This program displays the following:

Stack Initialized
Stack Initialized
3142

Stack Destroyed
Stack Destroyed

___| The C++ Keywords

There are 63 keywords currently defined for Standard C++. These are shown in Table
11-1. Together with the formal C++ syntax, they form the C++ programming language.
Also, early versions of C++ defined the overload keyword, but it is obsolete. Keep in
mind that C++ is a case-sensitive language and it requires that all keywords be in

lowercase.
asm auto bool break
case catch char class
const const_cast continue default
delete do double dynamic_cast
else enum explicit export
extern false float for
friend goto if inline
int long mutable namespace
new operator private protected

Table 11-1. The C++ keywords
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return
static
template
try
union

void

public register reinterpret_cast
short signed sizeof
static_cast struct switch
this throw true
typedef typeid typename
unsigned using virtual
volatile wchar_t while

Table 11-1. The C++ keywords (continued)

___| The General Form of a C++ Program

Although individual styles will differ, most C++ programs will have this general form:

#includes

base-class declarations

derived class declarations
nonmember function prototypes
int main()

{
}

nonmember function definitions

/]

In most large projects, all class declarations will be put into a header file and included
with each module. But the general organization of a program remains the same.
The remaining chapters in this section examine in greater detail the features

discussed in this chapter, as well as all other aspects of C++.




®
Chapter 12

Classes and Objects




290

C++: The Complete Reference

to define the nature of an object, and it is C++'s basic unit of encapsulation. This

In C++, the class forms the basis for object-oriented programming. The class is used
chapter examines classes and objects in detail.

Classes

Classes are created using the keyword class. A class declaration defines a new type
that links code and data. This new type is then used to declare objects of that class.
Thus, a class is a logical abstraction, but an object has physical existence. In other
words, an object is an instance of a class.

A class declaration is similar syntactically to a structure. In Chapter 11, a simplified
general form of a class declaration was shown. Here is the entire general form of a class
declaration that does not inherit any other class.

class class-name {

private data and functions
access-specifier:

data and functions
access-specifier:

data and functions
/]
access-specifier:

data and functions
} object-list;

The object-list is optional. If present, it declares objects of the class. Here,
access-specifier is one of these three C++ keywords:

public
private

protected

By default, functions and data declared within a class are private to that
class and may be accessed only by other members of the class. The public
access specifier allows functions or data to be accessible to other parts of your
program. The protected access specifier is needed only when inheritance is
involved (see Chapter 15). Once an access specifier has been used, it remains
in effect until either another access specifier is encountered or the end of the
class declaration is reached.



Chapter 12: Classes and Objects 291

You may change access specifications as often as you like within a class declaration.
For example, you may switch to public for some declarations and then switch back to
private again. The class declaration in the following example illustrates this feature:

#include <iostream>
#include <cstring>
using namespace std;

class employee {
char name[80]; // private by default
public:
void putname(char *n); // these are public
void getname(char *n);
private:
double wage; // now, private again
public:
void putwage(double w); // back to public
double getwage();

k

void employee::putname(char *n)

{

strcpy(name, n);

}

void employee::getname(char *n)
{

strcpy(n, name);

}

void employee::putwage(double w)

{

wage = w;

}

double employee::getwage()
{

return wage;

}

int main()

{

employee ted;
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char name[80];

ted.putname("Ted Jones");
ted.putwage(75000);

ted.getname(name);
cout << name << " makes $";
cout << ted.getwage() << " per year.";

return O;

Here, employee is a simple class that is used to store an employee's name and
wage. Notice that the public access specifier is used twice.

Although you may use the access specifiers as often as you like within a class
declaration, the only advantage of doing so is that by visually grouping various parts
of a class, you may make it easier for someone else reading the program to understand
it. However, to the compiler, using multiple access specifiers makes no difference.
Actually, most programmers find it easier to have only one private, protected, and
public section within each class. For example, most programmers would code the
employee class as shown here, with all private elements grouped together and all
public elements grouped together:

class employee {
char name[80];
double wage;

public:
void putname(char *n);
void getname(char *n);
void putwage(double w);
double getwage();

h

Functions that are declared within a class are called member functions. Member
functions may access any element of the class of which they are a part. This includes all
private elements. Variables that are elements of a class are called member variables or
data members. Collectively, any element of a class can be referred to as a member
of that class.

There are a few restrictions that apply to class members. A non-static member
variable cannot have an initializer. No member can be an object of the class that is
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being declared. (Although a member can be a pointer to the class that is being
declared.) No member can be declared as auto, extern, or register.

In general, you should make all data members of a class private to that class. This is
part of the way that encapsulation is achieved. However, there may be situations in
which you will need to make one or more variables public. (For example, a heavily
used variable may need to be accessible globally in order to achieve faster run times.)
When a variable is public, it may be accessed directly by any other part of your
program. The syntax for accessing a public data member is the same as for calling a
member function: Specify the object's name, the dot operator, and the variable name.
This simple program illustrates the use of a public variable:

#include <iostream>
using namespace std;

class myclass {
public:
inti, j, k; // accessible to entire program

k

int main()

{

myclass a, b;

a.i=100; // access to i, j, and k is OK
a.j=4;
ak=a.i*a,j

b.k = 12; // remember, a.k and b.k are different
cout<<a.k<<""<<bhlk;

return 0O;

| structures and Classes Are Related

Structures are part of the C subset and were inherited from the C language. As you
have seen, a class is syntactically similar to a struct. But the relationship between a
class and a struct is closer than you may at first think. In C++, the role of the structure
was expanded, making it an alternative way to specify a class. In fact, the only
difference between a class and a struct is that by default all members are public in a
struct and private in a class. In all other respects, structures and classes are equivalent.
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That is, in C++, a structure defines a class type. For example, consider this short program,
which uses a structure to declare a class that controls access to a string:

/I Using a structure to define a class.
#include <iostream>

#include <cstring>

using namespace std;

struct mystr {
void buildstr(char *s); // public
void showstr();
private: // now go private
char str[255];

b

void mystr::buildstr(char *s)

{
if(!*s) *str = "\O'; // initialize string
else strcat(str, s);

}

void mystr::showstr()

{

cout << str << "\n";

}
int main()
{

mystr s;

s.buildstr("™); // init
s.buildstr("Hello ");
s.buildstr("there!");

s.showstr();

return O;

This program displays the string Hello there!.
The class mystr could be rewritten by using class as shown here:

class mystr {
char str[255];
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public:
void buildstr(char *s); // public
void showstr();

H

You might wonder why C++ contains the two virtually equivalent keywords struct
and class. This seeming redundancy is justified for several reasons. First, there is no
fundamental reason not to increase the capabilities of a structure. In C, structures
already provide a means of grouping data. Therefore, it is a small step to allow them to
include member functions. Second, because structures and classes are related, it may be
easier to port existing C programs to C++. Finally, although struct and class are
virtually equivalent today, providing two different keywords allows the definition of a
class to be free to evolve. In order for C++ to remain compatible with C, the definition
of struct must always be tied to its C definition.

Although you can use a struct where you use a class, most programmers don't.
Usually it is best to use a class when you want a class, and a struct when you want a
C-like structure. This is the style that this book will follow. Sometimes the acronym
POD is used to describe a C-style structure—one that does not contain member
functions, constructors, or destructors. It stands for Plain Old Data. (Actually, the term
POD is a bit more narrowly defined in the Standard C++ specification, but means
essentially the same thing.)

| In C++, a structure declaration defines a class type.
| Unions and Classes Are Related

Like a structure, a union may also be used to define a class. In C++, unions may
contain both member functions and variables. They may also include constructor

and destructor functions. A union in C++ retains all of its C-like features, the most
important being that all data elements share the same location in memory. Like the
structure, union members are public by default and are fully compatible with C. In the
next example, a union is used to swap the bytes that make up an unsigned short
integer. (This example assumes that short integers are 2 bytes long.)

#include <iostream>
using namespace std;

union swap_byte {
void swap();
void set_byte(unsigned short i);
void show_word();
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unsigned short u;
unsigned char c[2];

k

void swap_byte::swap()

{

unsigned char t;

t =c[O];
c[0] = c[1];
c[1] =t;

}

void swap_byte::show_word()
{
cout << u;

}

void swap_byte::set_byte(unsigned short i)
{
u=i;

}

int main()

{
swap_byte b;

b.set_byte(49034);
b.swap();
b.show_word();

return O;

Like a structure, a union declaration in C++ defines a special type of class. This
means that the principle of encapsulation is preserved.

There are several restrictions that must be observed when you use C++ unions.
First, a union cannot inherit any other classes of any type. Further, a union cannot be a
base class. A union cannot have virtual member functions. (Virtual functions are
discussed in Chapter 17.) No static variables can be members of a union. A reference
member cannot be used. A union cannot have as a member any object that overloads
the = operator. Finally, no object can be a member of a union if the object has an
explicit constructor or destructor function.
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As with struct, the term POD is also commonly applied to unions that do not
contain member functions, constructors, or destructors.

Anonymous Unions

There is a special type of union in C++ called an anonymous union. An anonymous
union does not include a type name, and no objects of the union can be declared.
Instead, an anonymous union tells the compiler that its member variables are to
share the same location. However, the variables themselves are referred to directly,
without the normal dot operator syntax. For example, consider this program:

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
/I define anonymous union
union {
long |;
double d;
char s[4];
b

/I now, reference union elements directly
| = 100000;

cout<<|<<""

d =123.2342;

cout<<d<<""

strepy(s, "hi");

cout << s;

return O;

}

As you can see, the elements of the union are referenced as if they had been
declared as normal local variables. In fact, relative to your program, that is exactly how
you will use them. Further, even though they are defined within a union declaration,
they are at the same scope level as any other local variable within the same block. This
implies that the names of the members of an anonymous union must not conflict with
other identifiers known within the same scope.

All restrictions involving unions apply to anonymous ones, with these additions.
First, the only elements contained within an anonymous union must be data. No
member functions are allowed. Anonymous unions cannot contain private or protected
elements. Finally, global anonymous unions must be specified as static.
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| Friend Functions

It is possible to grant a nonmember function access to the private members of a class

by using a friend. A friend function has access to all private and protected members
of the class for which it is a friend. To declare a friend function, include its prototype
within the class, preceding it with the keyword friend. Consider this program:

#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
friend int sum(myclass x);
void set_ab(int i, int j);

k

void myclass::set_ab(int i, int j)

{

a=i
b=j

}

/I Note: sum() is not a member function of any class.
int sum(myclass x)

{

/* Because sum() is a friend of myclass, it can
directly access a and b. */

return x.a + x.b;

}

int main()

{
myclass n;
n.set_ab(3, 4);

cout << sum(n);

return O;
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In this example, the sum() function is not a member of myclass. However, it still
has full access to its private members. Also, notice that sum() is called without the use
of the dot operator. Because it is not a member function, it does not need to be (indeed,
it may not be) qualified with an object's name.

Although there is nothing gained by making sum( ) a friend rather than a member
function of myclass, there are some circumstances in which friend functions are quite
valuable. First, friends can be useful when you are overloading certain types of operators
(see Chapter 14). Second, friend functions make the creation of some types of I/O
functions easier (see Chapter 18). The third reason that friend functions may be desirable
is that in some cases, two or more classes may contain members that are interrelated
relative to other parts of your program. Let's examine this third usage now.

To begin, imagine two different classes, each of which displays a pop-up message
on the screen when error conditions occur. Other parts of your program may wish
to know if a pop-up message is currently being displayed before writing to the screen
so that no message is accidentally overwritten. Although you can create member
functions in each class that return a value indicating whether a message is active,
this means additional overhead when the condition is checked (that is, two function
calls, not just one). If the condition needs to be checked frequently, this additional
overhead may not be acceptable. However, using a function that is a friend of each
class, it is possible to check the status of each object by calling only this one function.
Thus, in situations like this, a friend function allows you to generate more efficient
code. The following program illustrates this concept:

#include <iostream>
using namespace std;

constint IDLE = 0;
const int INUSE = 1;

class C2; /I forward declaration

class C1{
int status; // IDLE if off, INUSE if on screen
...
public:
void set_status(int state);
friend int idle(C1 a, C2 b);
h

class C2 {
int status; // IDLE if off, INUSE if on screen
...
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public:
void set_status(int state);
friend int idle(C1 a, C2 b);

h
void C1::set_status(int state)
{
status = state;
}
void C2::set_status(int state)
{
status = state;
}

intidle(C1 a, C2 b)
{

if(a.status || b.status) return 0O;
else return 1;

}
int main()
{
Clx;
C2y;

x.set_status(IDLE);
y.set_status(IDLE);

if(idle(x, y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

x.set_status(INUSE);

if(idle(x, y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

return O;

Notice that this program uses a forward declaration (also called a forward reference) for
the class C2. This is necessary because the declaration of idle() inside C1 refers
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to C2 before it is declared. To create a forward declaration to a class, simply use the
form shown in this program.

A friend of one class may be a member of another. For example, here is the
preceding program rewritten so that idle() is a member of C1:

#include <iostream>
using namespace std;

constint IDLE = 0;
const int INUSE = 1;

class C2; /I forward declaration

class C1{
int status; // IDLE if off, INUSE if on screen
...
public:
void set_status(int state);
int idle(C2 b); // now a member of C1

k

class C2 {
int status; // IDLE if off, INUSE if on screen
...
public:
void set_status(int state);
friend int C1::idle(C2 b);

h
void C1::set_status(int state)
{
status = state;
}
void C2::set_status(int state)
{
status = state;
}

// idle() is member of C1, but friend of C2
int C1::idle(C2 b)
{
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if(status || b.status) return O;
else return 1;

}

int main()
{
Clx;
C2y;

x.set_status(IDLE);
y.set_status(IDLE);

if(x.idle(y)) cout << "Screen can be used.\n";
else cout << "In use.\n";
x.set_status(INUSE);

if(x.idle(y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

return O;

Because idle() is a member of C1, it can access the status variable of objects of type
C1 directly. Thus, only objects of type C2 need be passed to idle().

There are two important restrictions that apply to friend functions. First, a derived
class does not inherit friend functions. Second, friend functions may not have a
storage-class specifier. That is, they may not be declared as static or extern.

| Friend Classes

It is possible for one class to be a friend of another class. When this is the case, the
friend class and all of its member functions have access to the private members defined
within the other class. For example,

// Using a friend class.
#include <iostream>
using namespace std;

class TwoValues {
int a;
int b;
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public:
TwoValues(inti, intj) {a=i;b=j;}
friend class Min;

h
class Min {
public:
int min(TwoValues x);
h
int Min::min(TwoValues x)
{
return x.a <x.b ? x.a: x.b;
}
int main()
{
TwoValues ob(10, 20);
Min m;

cout << m.min(ob);

return O;

In this example, class Min has access to the private variables a and b declared within
the TwoValues class.

It is critical to understand that when one class is a friend of another, it only has
access to names defined within the other class. It does not inherit the other class.
Specifically, the members of the first class do not become members of the friend class.

Friend classes are seldom used. They are supported to allow certain special case
situations to be handled.

Inline Functions

There is an important feature in C++, called an inline function, that is commonly used
with classes. Since the rest of this chapter (and the rest of the book) will make heavy
use of it, inline functions are examined here.

In C++, you can create short functions that are not actually called; rather, their code
is expanded in line at the point of each invocation. This process is similar to using a
function-like macro. To cause a function to be expanded in line rather than called,
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precede its definition with the inline keyword. For example, in this program, the
function max() is expanded in line instead of called:

#include <iostream>
using namespace std;

inline int max(int a, int b)
{
return a>b ? a : b;

}

int main()
{
cout << max(10, 20);
cout << " " << max(99, 88);

return O;

As far as the compiler is concerned, the preceding program is equivalent to this one:

#include <iostream>
using namespace std;

int main()

{

cout << (10>20 ? 10 : 20);
cout <<"" << (99>88 ? 99 : 88);

return O;

The reason that inline functions are an important addition to C++ is that they allow
you to create very efficient code. Since classes typically require several frequently
executed interface functions (which provide access to private data), the efficiency of
these functions is of critical concern. As you probably know, each time a function is
called, a significant amount of overhead is generated by the calling and return
mechanism. Typically, arguments are pushed onto the stack and various registers are
saved when a function is called, and then restored when the function returns. The
trouble is that these instructions take time. However, when a function is expanded in
line, none of those operations occur. Although expanding function calls in line can
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produce faster run times, it can also result in larger code size because of duplicated
code. For this reason, it is best to inline only very small functions. Further, it is also a
good idea to inline only those functions that will have significant impact on the
performance of your program.

Like the register specifier, inline is actually just a request, not a command, to the
compiler. The compiler can choose to ignore it. Also, some compilers may not inline all
types of functions. For example, it is common for a compiler not to inline a recursive
function. You will need to check your compiler's user manual for any restrictions to
inline. Remember, if a function cannot be inlined, it will simply be called as a normal
function.

Inline functions may be class member functions. For example, this is a perfectly
valid C++ program:

#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
void init(int i, int j);
void show();

k

/l Create an inline function.
inline void myclass::init(int i, int j)

/I Create another inline function.
inline void myclass::show()

{

cout<<a<<"" <<b<<"\n";

}

int main()

{

myclass x;

X.init(10, 20);
x.show();

return O;
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Defining Inline Functions Within a Class

It is possible to define short functions completely within a class declaration. When a
function is defined inside a class declaration, it is automatically made into an inline
function (if possible). It is not necessary (but not an error) to precede its declaration
with the inline keyword. For example, the preceding program is rewritten here with
the definitions of init() and show() contained within the declaration of myclass:

#include <iostream>
using namespace std;

class myclass {
int a, b;
public:
[/l automatic inline
void init(int i, int j) { a=i; b=j; }
void show() { cout<<a<<""<<b<<"\n";}

k

int main()

{

myclass x;

X.init(10, 20);
x.show();

return O;

Notice the format of the function code within myclass. Because inline functions are
short, this style of coding within a class is fairly typical. However, you are free
to use any format you like. For example, this is a perfectly valid way to rewrite the
myeclass declaration:

#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
/I automatic inline
void init(int i, int j)
{

a=i
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b=j
}

void show()
{
cout<<a<<""<<b<<"\n"
}
h

Technically, the inlining of the show( ) function is of limited value because (in
general) the amount of time the I/O statement will take far exceeds the overhead
of a function call. However, it is extremely common to see all short member functions
defined inside their class in C++ programs. (In fact, it is rare to see short member
functions defined outside their class declarations in professionally written C++ code.)
Constructor and destructor functions may also be inlined, either by default, if
defined within their class, or explicitly.

Parameterized Constructors

It is possible to pass arguments to constructor functions. Typically, these arguments
help initialize an object when it is created. To create a parameterized constructor,
simply add parameters to it the way you would to any other function. When you
define the constructor's body, use the parameters to initialize the object. For example,
here is a simple class that includes a parameterized constructor:

#include <iostream>
using namespace std;

class myclass {
int a, b;
public:
myclass(int i, int j) {a=i; b=j;}
void show() {cout << a <<"" << b;}
K
int main()
{
myclass ob(3, 5);

ob.show();

return O;
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Notice that in the definition of myclass( ), the parameters i and j are used to give initial
values to a and b.

The program illustrates the most common way to specify arguments when you
declare an object that uses a parameterized constructor function. Specifically, this
statement

myclass ob(3, 4);

causes an object called ob to be created and passes the arguments 3 and 4 to the i and j
parameters of myclass(). You may also pass arguments using this type of declaration
statement:

myclass ob = myclass(3, 4);

However, the first method is the one generally used, and this is the approach taken
by most of the examples in this book. Actually, there is a small technical difference
between the two types of declarations that relates to copy constructors. (Copy
constructors are discussed in Chapter 14.)

Here is another example that uses a parameterized constructor function. It creates a
class that stores information about library books.

#include <iostream>
#include <cstring>
using namespace std;

constint IN = 1;
const int CHECKED_OUT = 0;

class book {
char author[40];
char title[40];
int status;
public:
book(char *n, char *t, int s);
int get_status() {return status;}
void set_status(int s) {status = s;}
void show();

k

book::book(char *n, char *t, int s)

{
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strepy(author, n);
strepy(title, t);
status =s;

}

void book::show()

{
cout << title << " by " << author;
cout<<"is";
if(status==IN) cout << "in.\n";
else cout << "out.\n";

}

int main()
{
book b1("Twain", "Tom Sawyer", IN);
book b2("Melville", "Moby Dick", CHECKED_OUT);

b1.show();
b2.show();

return O;

Parameterized constructor functions are very useful because they allow you to
avoid having to make an additional function call simply to initialize one or more
variables in an object. Each function call you can avoid makes your program more
efficient. Also, notice that the short get_status() and set_status() functions are defined
in line, within the book class. This is a common practice when writing C++ programs.

Constructors with One Parameter: A Special Case

If a constructor only has one parameter, there is a third way to pass an initial value to
that constructor. For example, consider the following short program.

#include <iostream>
using namespace std;

class X {
int a;
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public:
X(@intj) {a=j;}
int geta() { return a; }

k

int main()

{
X ob=299;// passes 9910 j

cout << ob.geta(); // outputs 99

return O;

Here, the constructor for X takes one parameter. Pay special attention to how ob

is declared in main(). In this form of initialization, 99 is automatically passed to the j
parameter in the X() constructor. That is, the declaration statement is handled by the
compiler as if it were written like this:

X ob = X(99);

In general, any time you have a constructor that requires only one argument, you
can use either ob(i) or ob = i to initialize an object. The reason for this is that whenever
you create a constructor that takes one argument, you are also implicitly creating a
conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that have
exactly one parameter.

| static Class Members

Both function and data members of a class can be made static. This section explains the
consequences of each.

Static Data Members

When you precede a member variable's declaration with static, you are telling the
compiler that only one copy of that variable will exist and that all objects of the class
will share that variable. Unlike regular data members, individual copies of a static
member variable are not made for each object. No matter how many objects of a class
are created, only one copy of a static data member exists. Thus, all objects of that class
use that same variable. All static variables are initialized to zero before the first object
is created.



Chapter 12: Classes and Objects 311

When you declare a static data member within a class, you are not defining it. (That
is, you are not allocating storage for it.) Instead, you must provide a global definition
for it elsewhere, outside the class. This is done by redeclaring the static variable using
the scope resolution operator to identify the class to which it belongs. This causes
storage for the variable to be allocated. (Remember, a class declaration is simply a
logical construct that does not have physical reality.)

To understand the usage and effect of a static data member, consider this program:

#include <iostream>
using namespace std;

class shared {
static int a;
int b;
public:
void set(int i, int j) {a=i; b=j;}
void show();

b
int shared::a; // define a

void shared::show()
{
cout << "This is static a: " << a;
cout << "\nThis is non-static b: " << b;

cout << "\n";
}
int main()
{

shared x, y;

x.set(1, 1); // setato 1
x.show();

y.set(2, 2); // change ato 2
y.show();

x.show(); /* Here, a has been changed for both x and y
because a is shared by both objects. */

return O;
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This program displays the following output when run.

This is static a: 1
This is non-static b: 1
This is static a: 2
This is non-static b: 2
This is static a: 2
This is non-static b: 1

Notice that the integer a is declared both inside shared and outside of it. As
mentioned earlier, this is necessary because the declaration of a inside shared does
not allocate storage.

Note | As a convenience, older versions of C++ did not require the second declaration of a
. static member variable. However, this convenience gave rise to serious
inconsistencies and it was eliminated several years ago. However, you may still find

older C++ code that does not redeclare static member variables. In these cases, you
will need to add the required definitions.

A static member variable exists before any object of its class is created. For example,
in the following short program, a is both public and static. Thus it may
be directly accessed in main( ). Further, since a exists before an object of shared is
created, a can be given a value at any time. As this program illustrates, the value of
a is unchanged by the creation of object x. For this reason, both output statements
display the same value: 99.

#include <iostream>
using namespace std;

class shared {
public:
static int a;

b

int shared::a; // define a

int main()

{
/I initialize a before creating any objects
shared::a = 99;

cout << "This is initial value of a: " << shared::a;
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cout << "\n";
shared x;
cout << "This is x.a: " << X.q;

return O;

Notice how ais referred to through the use of the class name and the scope resolution
operator. In general, to refer to a static member independently of an object, you must
qualify it by using the name of the class of which it is a member.

One use of a static member variable is to provide access control to some shared
resource used by all objects of a class. For example, you might create several objects,
each of which needs to write to a specific disk file. Clearly, however, only one object
can be allowed to write to the file at a time. In this case, you will want to declare a
static variable that indicates when the file is in use and when it is free. Each object then
interrogates this variable before writing to the file. The following program shows how
you might use a static variable of this type to control access to a scarce resource:

#include <iostream>
using namespace std;

class cl {
static int resource;
public:
int get_resource();
void free_resource() {resource = 0;}

k
int cl::resource; // define resource

int cl::get_resource()
{
if(resource) return 0; // resource already in use
else {
resource = 1;
return 1; // resource allocated to this object
}
}
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int main()

{
cl obl, ob2;

if(obl.get_resource()) cout << "obl has resource\n”;
if(lob2.get_resource()) cout << "ob2 denied resource\n";
obl.free_resource(); // let someone else use it

if(ob2.get_resource())
cout << "ob2 can now use resource\n";

return O;

Another interesting use of a static member variable is to keep track of the number
of objects of a particular class type that are in existence. For example,

#include <iostream>
using namespace std;

class Counter {

public:
static int count;
Counter() { count++; }
~Counter() { count--; }

h

int Counter::count;
void f();

int main(void)

{
Counter o1;
cout << "Objects in existence: ";
cout << Counter::count << "\n";

Counter 02;
cout << "Objects in existence: ";
cout << Counter::count << "\n";
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f();
cout << "Objects in existence: ";
cout << Counter::count << "\n";

return O;

}

void f()
{
Counter temp;
cout << "Objects in existence: ";
cout << Counter::count << "\n";
/I temp is destroyed when f() returns

This program produces the following output.

Objects in existence: 1
Objects in existence: 2
Objects in existence: 3
Objects in existence: 2

As you can see, the static member variable count is incremented whenever an object is
created and decremented when an object is destroyed. This way, it keeps track of how
many objects of type Counter are currently in existence.

By using static member variables, you should be able to virtually eliminate any
need for global variables. The trouble with global variables relative to OOP is that they
almost always violate the principle of encapsulation.

Static Member Functions

Member functions may also be declared as static. There are several restrictions placed
on static member functions. They may only directly refer to other static members of the
class. (Of course, global functions and data may be accessed by static member
functions.) A static member function does not have a this pointer. (See Chapter 13
for information on this.) There cannot be a static and a non-static version of the same
function. A static member function may not be virtual. Finally, they cannot be declared
as const or volatile.

Following is a slightly reworked version of the shared-resource program from the
previous section. Notice that get_resource( ) is now declared as static. As the program
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illustrates, get_resource() may be called either by itself, independent of any object, by
using the class name and the scope resolution operator, or in connection with an object.

#include <iostream>
using namespace std;

class cl {
static int resource;
public:
static int get_resource();
void free_resource() { resource = 0; }

k
int cl::resource; // define resource

int cl::get_resource()

{
if(resource) return 0; // resource already in use
else {
resource = 1;
return 1; // resource allocated to this object
}
}
int main()
{
cl obl, ob2;

/* get_resource() is static so may be called independent
of any object. */

if(cl::get_resource()) cout << "ob1l has resource\n”;

if(!cl::get_resource()) cout << "ob2 denied resource\n”;

obl.free_resource();

if(ob2.get_resource()) // can still call using object syntax
cout << "ob2 can now use resource\n";

return O;
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Actually, static member functions have limited applications, but one good use
for them is to "preinitialize" private static data before any object is actually created. For
example, this is a perfectly valid C++ program:

#include <iostream>
using namespace std;

class static_type {
static int i;

public:
static void init(int x) {i = x;}
void show() {cout << i;}

h
int static_type::i; // define i

int main()

{
/I init static data before object creation
static_type::init(100);

static_type x;
x.show(); // displays 100

return O;

| when Constructors and Destructors Are
Executed

As a general rule, an object's constructor is called when the object comes into existence,
and an object's destructor is called when the object is destroyed. Precisely when these
events occur is discussed here.

A local object's constructor function is executed when the object's declaration
statement is encountered. The destructor functions for local objects are executed
in the reverse order of the constructor functions.

Global objects have their constructor functions execute before main( ) begins
execution. Global constructors are executed in order of their declaration, within
the same file. You cannot know the order of execution of global constructors spread
among several files. Global destructors execute in reverse order after main( ) has
terminated.
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This program illustrates when constructors and destructors are executed:

#include <iostream>
using namespace std;

class myclass {

public:
int who;
myclass(int id);
~myclass();

} glob_ob1(1), glob_ob2(2);

myclass::myclass(int id)

{
cout << "Initializing " << id << "\n";
who = id;

}

myclass::~myclass()

{

cout << "Destructing " << who << "\n";

}

int main()

{

myclass local_ob1(3);
cout << "This will not be first line displayed.\n";
myclass local_ob2(4);

return O;

It displays this output:

Initializing 1

Initializing 2

Initializing 3

This will not be first line displayed.
Initializing 4

Destructing 4
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Destructing 3
Destructing 2
Destructing 1

One thing: Because of differences between compilers and execution environments, you
may or may not see the last two lines of output.

___| The Scope Resolution Operator

As you know, the :: operator links a class name with a member name in order to

tell the compiler what class the member belongs to. However, the scope resolution
operator has another related use: it can allow access to a name in an enclosing scope
that is "hidden" by a local declaration of the same name. For example, consider this
fragment:

inti; // global i
void f()
{

inti; // local i

i =10; /[ uses local i

}

As the comment suggests, the assignment i = 10 refers to the local i. But what if
function f() needs to access the global version of i? It may do so by preceding the i
with the :: operator, as shown here.

inti; // global i
void f()
{

inti; // local i

i = 10; // now refers to global i
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Nested Classes

It is possible to define one class within another. Doing so creates a nested class. Since
a class declaration does, in fact, define a scope, a nested class is valid only within the
scope of the enclosing class. Frankly, nested classes are seldom used. Because of
C++'s flexible and powerful inheritance mechanism, the need for nested classes is
virtually nonexistent.

Local Classes

A class may be defined within a function. For example, this is a valid C++ program:

#include <iostream>
using namespace std;

void f();

int main()

{
f0;
/I myclass not known here
return O;

}

void f()
{
class myclass {
inti;
public:
void put_i(int n) {i=n; }
int get_i() { return i; }
} ob;

ob.put_i(10);
cout << ob.get_i();

When a class is declared within a function, it is known only to that function and
unknown outside of it.

Several restrictions apply to local classes. First, all member functions must be
defined within the class declaration. The local class may not use or access local
variables of the function in which it is declared (except that a local class has access
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to static local variables declared within the function or those declared as extern). It may
access type names and enumerators defined by the enclosing function, however. No
static variables may be declared inside a local class. Because of these restrictions, local
classes are not common in C++ programming.

Passing Objects to Functions

Objects may be passed to functions in just the same way that any other type of

variable can. Objects are passed to functions through the use of the standard call-by-
value mechanism. This means that a copy of an object is made when it is passed to

a function. However, the fact that a copy is created means, in essence, that another
object is created. This raises the question of whether the object's constructor function is
executed when the copy is made and whether the destructor function is executed when
the copy is destroyed. The answer to these two questions may surprise you. To begin,
here is an example:

/I Passing an object to a function.
#include <iostream>
using namespace std;

class myclass {
inti;

public:
myclass(int n);
~myclass();
void set_i(int n) {i=n; }
int get_i() { return i; }

I3
myclass::myclass(int n)
{
i=n;
cout << "Constructing " << i << "\n";
}
myclass::~myclass()
{
cout << "Destroying " <<i<<"\n";
}

void f(myclass ob);
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int main()

{

myclass o(1);

f(0);
cout << "This is i in main: ";
cout << o.get_i() <<"\n";

return 0O;

}

void f(myclass ob)

{
ob.set_i(2);

cout << "This is local i: " << ob.get_i();
cout << "\n";

This program produces this output:

Constructing 1
This is local i: 2
Destroying 2

This is i in main: 1
Destroying 1

Notice that two calls to the destructor function are executed, but only one call is
made to the constructor function. As the output illustrates, the constructor function
is not called when the copy of o (in main()) is passed to ob (within f()). The reason
that the constructor function is not called when the copy of the object is made is easy to
understand. When you pass an object to a function, you want the current state of that
object. If the constructor is called when the copy is created, initialization will occur,
possibly changing the object. Thus, the constructor function cannot be executed when
the copy of an object is generated in a function call.

Although the constructor function is not called when an object is passed to a
function, it is necessary to call the destructor when the copy is destroyed. (The copy
is destroyed like any other local variable, when the function terminates.) Remember,
a new copy of the object has been created when the copy is made. This means that
the copy could be performing operations that will require a destructor function to
be called when the copy is destroyed. For example, it is perfectly valid for the copy to
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allocate memory that must be freed when it is destroyed. For this reason, the destructor
function must be executed when the copy is destroyed.

To summarize: When a copy of an object is generated because it is passed to a
function, the object's constructor function is not called. However, when the copy of the
object inside the function is destroyed, its destructor function is called.

By default, when a copy of an object is made, a bitwise copy occurs. This means
that the new object is an exact duplicate of the original. The fact that an exact copy is
made can, at times, be a source of trouble. Even though objects are passed to functions
by means of the normal call-by-value parameter passing mechanism, which, in theory,
protects and insulates the calling argument, it is still possible for a side effect to occur
that may affect, or even damage, the object used as an argument. For example, if an
object used as an argument allocates memory and frees that memory when it is
destroyed, then its local copy inside the function will free the same memory when its
destructor is called. This will leave the original object damaged and effectively useless.
As explained in Chapter 14, it is possible to prevent this type of problem by defining
the copy operation relative to your own classes by creating a special type of constructor
called a copy constructor.

Returning Objects

A function may return an object to the caller. For example, this is a valid C++ program:

/l Returning objects from a function.
#include <iostream>
using namespace std;

class myclass {
inti;
public:
void set_i(int n) {i=n; }
int get_i() { return i; }
h

myclass f(); // return object of type myclass
int main()
{

myclass o;

o =f();
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cout << o.get_i() << "\n";

return O;

}

myclass f()

{

myclass X;

x.set_i(1);
return Xx;

}

When an object is returned by a function, a temporary object is automatically
created that holds the return value. It is this object that is actually returned by the
function. After the value has been returned, this object is destroyed. The destruction of
this temporary object may cause unexpected side effects in some situations. For
example, if the object returned by the function has a destructor that frees dynamically
allocated memory, that memory will be freed even though the object that is receiving
the return value is still using it. There are ways to overcome this problem that involve

overloading the assignment operator (see Chapter 15) and defining a copy constructor
(see Chapter 14).

Object Assignment

Assuming that both objects are of the same type, you can assign one object to another.
This causes the data of the object on the right side to be copied into the data of the
object on the left. For example, this program displays 99:

/I Assigning objects.
#include <iostream>
using namespace std;

class myclass {
inti;
public:
void set_i(int n) {i=n; }
int get_i() { return i; }
h
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int main()

{

myclass ob1l, ob2;

obl.set_i(99);
ob2 = ob1; // assign data from ob1 to ob2

cout << "This is 0b2's i: " << ob2.get_i();

return O;

By default, all data from one object is assigned to the other by use of a bit-by-bit
copy. However, it is possible to overload the assignment operator and define some
other assignment procedure (see Chapter 15).
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types. Here, they are discussed relative to objects. This chapter also looks at a
feature related to the pointer called a reference. The chapter concludes with an
examination of C++'s dynamic allocation operators.

In Part One, pointers and arrays were examined as they relate to C++'s built-in

___| Arrays of Objects

In C++, it is possible to have arrays of objects. The syntax for declaring and using an
object array is exactly the same as it is for any other type of array. For example, this
program uses a three-element array of objects:

#include <iostream>
using namespace std;

class cl {
inti;
public:
void set_i(int j) { i=j; }
int get_i() { return i; }
h

int main()
{
cl ob[3];
inti;

for(i=0; i<3; i++) ob[i].set_i(i+1);

for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";

return O;

This program displays the numbers 1, 2, and 3 on the screen.

If a class defines a parameterized constructor, you may initialize each object in an
array by specifying an initialization list, just like you do for other types of arrays.
However, the exact form of the initialization list will be decided by the number of
parameters required by the object's constructor function. For objects whose
constructors have only one parameter, you can simply specify a list of initial values,
using the normal array-initialization syntax. As each element in the array is created, a
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value from the list is passed to the constructor's parameter. For example, here is a
slightly different version of the preceding program that uses an initialization:

#include <iostream>
using namespace std;

class cl {
int i;

public:
cl(int j) { i=j; } // constructor
int get_i() { return i; }

J2

int main()

{
cl ob[3] = {1, 2, 3}; // initializers
inti;

for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";

return O;

As before, this program displays the numbers 1, 2, and 3 on the screen.
Actually, the initialization syntax shown in the preceding program is shorthand for
this longer form:

cl ob[3] = { cl(2), cl(2), cI(3) };

Here, the constructor for cl is invoked explicitly. Of course, the short form used in the
program is more common. The short form works because of the automatic conversion
that applies to constructors taking only one argument (see Chapter 12). Thus, the short
form can only be used to initialize object arrays whose constructors only require one
argument.

If an object's constructor requires two or more arguments, you will have to use the
longer initialization form. For example,

#include <iostream>
using namespace std;
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class cl {
int h;
inti;
public:
cl(int j, int k) { h=j; i=k; } // constructor with 2 parameters
int get_i() {return i;}
int get_h() {return h;}
J2

int main()
{
cl ob[3] ={
cl(1, 2), // initialize
cl(3, 4),
cl(5, 6)
h

inti;

for(i=0; i<3; i++) {
cout << obl[i].get_h();
cout<<", "™
cout << ob[i].get_i() << "\n";

}

return O;

Here, cl's constructor has two parameters and, therefore, requires two arguments. This
means that the shorthand initialization format cannot be used and the long form,
shown in the example, must be employed.

Creating Initialized vs. Uninitialized Arrays

A special case situation occurs if you intend to create both initialized and uninitialized
arrays of objects. Consider the following class.

class cl {
inti;

public:
cl(int j) {i=j; }
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int get_i() { return i; }
h

Here, the constructor function defined by cl requires one parameter. This implies that
any array declared of this type must be initialized. That is, it precludes this array
declaration:

cl a[9]; // error, constructor requires initializers

The reason that this statement isn't valid (as cl is currently defined) is that it implies
that cl has a parameterless constructor because no initializers are specified. However,
as it stands, cl does not have a parameterless constructor. Because there is no valid
constructor that corresponds to this declaration, the compiler will report an error. To
solve this problem, you need to overload the constructor function, adding one that
takes no parameters. In this way, arrays that are initialized and those that are not are
both allowed.

class cl {
inti;

public:
cl() {i=0; } // called for non-initialized arrays
cl(int j) { i=]; } // called for initialized arrays
int get_i() { return i; }

h

Given this class, both of the following statements are permissible:
cl al[3] = {3, 5, 6}; // initialized

cl a2[34]; // uninitialized

___| Pointers to Objects

Just as you can have pointers to other types of variables, you can have pointers to
objects. When accessing members of a class given a pointer to an object, use the arrow
(—>) operator instead of the dot operator. The next program illustrates how to access an
object given a pointer to it:

#include <iostream>
using namespace std;
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class cl {

inti;
public:

cl(intj) {i=j; }

int get_i() { return i; }
h

int main()

{
cl ob(88), *p;

p = &ob; // get address of ob
cout << p->get_i(); // use -> to call get_i()

return O;

As you know, when a pointer is incremented, it points to the next element of its
type. For example, an integer pointer will point to the next integer. In general, all
pointer arithmetic is relative to the base type of the pointer. (That is, it is relative to the
type of data that the pointer is declared as pointing to.) The same is true of pointers to
objects. For example, this program uses a pointer to access all three elements of array
ob after being assigned ob's starting address:

#include <iostream>
using namespace std;

class cl {

inti;
public:

cl() {i=0; }

cliintj) {i=j; }

int get_i() { return i; }
h

int main()

{
clob[3] ={1, 2, 3};
cl*p;
inti;
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p = ob; // get start of array
for(i=0; i<3; i++) {
cout << p->get_i() <<"\n";
p++; // point to next object

}

return O;

You can assign the address of a public member of an object to a pointer and then
access that member by using the pointer. For example, this is a valid C++ program that
displays the number 1 on the screen:

#include <iostream>
using namespace std;

class cl {
public:

inti;

cl(intj) {i=j; }
h

int main()

{
cl ob(1);
int *p;
p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return O;

}

Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant
that i is a member of ob in this situation.

___| Type Checking C++ Pointers

There is one important thing to understand about pointers in C++: You may assign one
pointer to another only if the two pointer types are compatible. For example, given:
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int *pi;
float *pf;

in C++, the following assignment is illegal:
pi = pf; // error -- type mismatch

Of course, you can override any type incompatibilities using a cast, but doing so
bypasses C++'s type-checking mechanism.

C++'s stronger type checking where pointers are involved differs from C, in which
you may assign any value to any pointer.

| The this Pointer

When a member function is called, it is automatically passed an implicit argument that
is a pointer to the invoking object (that is, the object on which the function is called).
This pointer is called this. To understand this, first consider a program that creates a
class called pwr that computes the result of a number raised to some power:

#include <iostream>
using namespace std;

class pwr {
double b;
inte;
double val;
public:
pwr(double base, int exp);
double get_pwr() { return val; }

k

pwr::pwr(double base, int exp)
{
b = base;
e = exp;
val = 1;
if(exp==0) return;
for( ; exp>0; exp--) val = val * b;
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int main()

{
pwr x(4.0, 2), y(2.5, 1), z(5.7, 0);

cout << x.get_pwr() <<" ",
cout <<y.get pwr() <<"";

cout << z.get_pwr() << "\n";

return 0O;

Within a member function, the members of a class can be accessed directly, without
any object or class qualification. Thus, inside pwr(), the statement

b = base;

means that the copy of b associated with the invoking object will be assigned the value
contained in base. However, the same statement can also be written like this:

this->b = base;

The this pointer points to the object that invoked pwr(). Thus, this —>b refers to that
object's copy of b. For example, if pwr() had been invoked by x (as in x(4.0, 2)), then
this in the preceding statement would have been pointing to x. Writing the statement
without using this is really just shorthand.

Here is the entire pwr() function written using the this pointer:

pwr::pwr(double base, int exp)

{
this->b = base;
this->e = exp;
this->val = 1;

if(exp==0) return;
for('; exp>0; exp--)
this->val = this->val * this->b;

Actually, no C++ programmer would write pwr() as just shown because nothing is
gained, and the standard form is easier. However, the this pointer is very important
when operators are overloaded and whenever a member function must utilize a
pointer to the object that invoked it.
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Remember that the this pointer is automatically passed to all member functions.
Therefore, get_pwr() could also be rewritten as shown here:

double get_pwr() { return this->val; }

In this case, if get_pwr() is invoked like this:

y.get_pwr();

then this will point to object y.

Two final points about this. First, friend functions are not members of a class and,
therefore, are not passed a this pointer. Second, static member functions do not have a
this pointer.

Pointers to Derived Types

In general, a pointer of one type cannot point to an object of a different type. However,
there is an important exception to this rule that relates only to derived classes. To
begin, assume two classes called B and D. Further, assume that D is derived from the
base class B. In this situation, a pointer of type B * may also point to an object of type
D. More generally, a base class pointer can also be used as a pointer to an object of any
class derived from that base.

Although a base class pointer can be used to point to a derived object, the opposite
is not true. A pointer of type D * may not point to an object of type B. Further, although
you can use a base pointer to point to a derived object, you can access only the
members of the derived type that were imported from the base. That is, you won't be
able to access any members added by the derived class. (You can cast a base pointer
into a derived pointer and gain full access to the entire derived class, however.)

Here is a short program that illustrates the use of a base pointer to access
derived objects.

#include <iostream>
using namespace std;

class base {
inti;

public:
void set_i(int num) { i=num; }
int get_i() { return i; }

h
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class derived: public base {
int j;

public:
void set_j(int num) { j=num; }
int get_j() { return j; }

h

int main()

{
base *bp;
derived d;

bp = &d; // base pointer points to derived object

/I access derived object using base pointer

bp->set_i(10);

cout << bp->get_i() <<"";

/* The following won't work. You can't access element of
a derived class using a base class pointer.

bp->set_j(88); // error
cout << bp->get_j(); // error

*/
return O;

As you can see, a base pointer is used to access an object of a derived class.

Although you must be careful, it is possible to cast a base pointer into a pointer of
the derived type to access a member of the derived class through the base pointer. For
example, this is valid C++ code:

/I access now allowed because of cast
((derived *)bp)->set_j(88);
cout << ((derived *)bp)->get_j();

It is important to remember that pointer arithmetic is relative to the base type of
the pointer. For this reason, when a base pointer is pointing to a derived object,
incrementing the pointer does not cause it to point to the next object of the derived
type. Instead, it will point to what it thinks is the next object of the base type. This, of
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course, usually spells trouble. For example, this program, while syntactically correct,
contains this error.

/I This program contains an error.
#include <iostream>
using namespace std;

class base {
inti;

public:
void set_i(int num) { i=num; }
int get_i() { return i; }

h

class derived: public base {
int j;

public:
void set_j(int num) {j=num;}
int get_j() {return j;}

h

int main()

{
base *bp;
derived d[2];

bp =d;

d[0].set_i(1);
d[1].set_i(2);

cout << bp->get_i() <<"";
bp++; // relative to base, not derived
cout << bp->get_i(); // garbage value displayed

return O;

}

The use of base pointers to derived types is most useful when creating run-time
polymorphism through the mechanism of virtual functions (see Chapter 17).
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| Pointers to Class Members

C++ allows you to generate a special type of pointer that "points" generically to a
member of a class, not to a specific instance of that member in an object. This sort of
pointer is called a pointer to a class member or a pointer-to-member, for short. A pointer to
a member is not the same as a normal C++ pointer. Instead, a pointer to a member
provides only an offset into an object of the member's class at which that member can
be found. Since member pointers are not true pointers, the . and -> cannot be applied to
them. To access a member of a class given a pointer to it, you must use the special
pointer-to-member operators .* and —>*. Their job is to allow you to access a member of
a class given a pointer to that member.

Here is an example:

#include <iostream>
using namespace std;

class cl{
public:
cl(int i) { val=i; }
int val;
int double_val() { return val+val; }

k

int main()

{
int cl::*data; // data member pointer
int (cl::*func)(); // function member pointer
cl ob1(1), ob2(2); // create objects

data = &cl::val; // get offset of val
func = &cl::double_val; // get offset of double_val()

cout << "Here are values: ";
cout << obl.*data << " " << ob2.*data << "\n";

cout << "Here they are doubled: ";
cout << (obl1.*func)() << " ";

cout << (ob2.*func)() << "\n";

return O;



340

C++: The Complete Reference

In main(), this program creates two member pointers: data and func. Note
carefully the syntax of each declaration. When declaring pointers to members, you
must specify the class and use the scope resolution operator. The program also creates
objects of cl called ob1 and ob2. As the program illustrates, member pointers may
point to either functions or data. Next, the program obtains the addresses of val and
double_val(). As stated earlier, these "addresses" are really just offsets into an object of
type cl, at which point val and double_val() will be found. Next, to display the values
of each object's val, each is accessed through data. Finally, the program uses func to
call the double_val() function. The extra parentheses are necessary in order to
correctly associate the .* operator.

When you are accessing a member of an object by using an object or a reference
(discussed later in this chapter), you must use the .* operator. However, if you are
using a pointer to the object, you need to use the —>* operator, as illustrated in this
version of the preceding program:

#include <iostream>
using namespace std;

class cl {
public:
cl(int i) { val=i; }
int val;
int double_val() { return val+val; }

J

int main()
{
int cl::*data; // data member pointer
int (cl::*func)(); // function member pointer
cl ob1(1), ob2(2); // create objects
cl *pl, *p2;

pl = &ob1; // access objects through a pointer
p2 = &ob2;

data = &cl::val; // get offset of val
func = &cl::double_val; // get offset of double_val()

cout << "Here are values: ";
cout << pl->*data << " " << p2->*data << "\n";

cout << "Here they are doubled: ";
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|

cout << (p1->*func)() <<"";
cout << (p2->*func)() << "\n";

return O;

In this version, p1 and p2 are pointers to objects of type cl. Therefore, the —>* operator
is used to access val and double_val().

Remember, pointers to members are different from pointers to specific instances of
elements of an object. Consider this fragment (assume that cl is declared as shown in
the preceding programs):

int cl::*d;
int *p;
clo;

p = &o.val // this is address of a specific val

d = &cl::val // this is offset of generic val

Here, p is a pointer to an integer inside a specific object. However, d is simply an offset
that indicates where val will be found in any object of type cl.

In general, pointer-to-member operators are applied in special-case situations. They
are not typically used in day-to-day programming.

References

C++ contains a feature that is related to the pointer called a reference. A reference is
essentially an implicit pointer. There are three ways that a reference can be used: as a
function parameter, as a function return value, or as a stand-alone reference. Each is
examined here.

Reference Parameters

Probably the most important use for a reference is to allow you to create functions that
automatically use call-by-reference parameter passing. As explained in Chapter 6,
arguments can be passed to functions in one of two ways: using call-by-value or
call-by-reference. When using call-by-value, a copy of the argument is passed to the
function. Call-by-reference passes the address of the argument to the function. By
default, C++ uses call-by-value, but it provides two ways to achieve call-by-reference
parameter passing. First, you can explicitly pass a pointer to the argument. Second, you
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can use a reference parameter. For most circumstances the best way is to use a
reference parameter.

To fully understand what a reference parameter is and why it is valuable, we will
begin by reviewing how a call-by-reference can be generated using a pointer
parameter. The following program manually creates a call-by-reference parameter
using a pointer in the function called neg( ), which reverses the sign of the integer
variable pointed to by its argument.

/I Manually create a call-by-reference using a pointer.
#include <iostream>
using namespace std;

void neg(int *i);

int main()

{

int x;

x =10;
cout << x << " negated is ";

neg(&x);
cout << x << "\n";

return O;

}

void neg(int *i)
{

* =

}

In this program, neg() takes as a parameter a pointer to the integer whose sign it
will reverse. Therefore, neg() must be explicitly called with the address of x. Further,
inside neg() the * operator must be used to access the variable pointed to by i. This is
how you generate a "manual” call-by-reference in C++, and it is the only way to obtain
a call-by-reference using the C subset. Fortunately, in C++ you can automate this
feature by using a reference parameter.

To create a reference parameter, precede the parameter's name with an &. For
example, here is how to declare neg() with i declared as a reference parameter:

void neg(int &i);
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For all practical purposes, this causes i to become another name for whatever argument
neg() is called with. Any operations that are applied to i actually affect the calling
argument. In technical terms, i is an implicit pointer that automatically refers to the
argument used in the call to neg(). Once i has been made into a reference, it is no
longer necessary (or even legal) to apply the * operator. Instead, each time i is used, it
is implicitly a reference to the argument and any changes made to i affect the
argument. Further, when calling neg( ), it is no longer necessary (or legal) to precede
the argument's name with the & operator. Instead, the compiler does this
automatically. Here is the reference version of the preceding program:

/I Use a reference parameter.
#include <iostream>
using namespace std;

void neg(int &i); // i now a reference

int main()

{

int x;

X =10;
cout << x << " negated is ";

neg(x); // no longer need the & operator
cout << x << "\n";

return O;

}

void neg(int &i)
{

i=-i;//1is now a reference, don't need *

}

To review: When you create a reference parameter, it automatically refers to (implicitly
points to) the argument used to call the function. Therefore, in the preceding program,
the statement

1

actually operates on x, not on a copy of x. There is no need to apply the & operator to
an argument. Also, inside the function, the reference parameter is used directly
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without the need to apply the * operator. In general, when you assign a value to a
reference, you are actually assigning that value to the variable that the reference
points to.

Inside the function, it is not possible to change what the reference parameter is
pointing to. That is, a statement like

i++:

inside neg() increments the value of the variable used in the call. It does not cause i to
point to some new location.

Here is another example. This program uses reference parameters to swap the
values of the variables it is called with. The swap() function is the classic example of
call-by-reference parameter passing.

#include <iostream>
using namespace std;

void swap(int &i, int &j);
int main()

{

inta, b, c, d;

o 0 T o
1 I

I
rONRE

cout<<"aand b:"<<a<<""<<b<<"\n"
swap(a, b); // no & operator needed
cout<<"aandb:"<<a<<""<<b<<"\n"

cout<<'"candd:"<<c<<""<<d<<"\n"
swap(c, d);
cout<<'"candd:"<<c<<""<<d<<"\n"

return 0O;

}

void swap(int &i, int &j)

{
intt;
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t=1i; // no * operator needed
i=]j
=t

}

This program displays the following:

aandb:12
aandb:21
candd: 34
candd:43

Passing References to Objects

In Chapter 12 it was explained that when an object is passed as an argument to a
function, a copy of that object is made. When the function terminates, the copy's
destructor is called. If for some reason you do not want the destructor function to be
called, simply pass the object by reference. (Later in this book you will see examples
where this is the case.) When you pass by reference, no copy of the object is made. This
means that no object used as a parameter is destroyed when the function terminates,
and the parameter's destructor is not called. For example, try this program:

#include <iostream>
using namespace std;

class cl {
int id;

public:
inti;
cl(int i);
~cl();

void neg(cl &o) { 0.i = -0.i; } // no temporary created
cl::cl(int num)
cout << "Constructing " << num << "\n";

id = num;

}

cl::~cl()
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{

cout << "Destructing " << id << "\n";

}

int main()

{
clo(1);

0.i=10;
0.neg(o);

cout << 0.i << "\n";

return O;

Here is the output of this program:

Constructing 1
-10
Destructing 1

As you can see, only one call is made to cl's destructor function. Had o been passed
by value, a second object would have been created inside neg(), and the destructor
would have been called a second time when that object was destroyed at the time
neg() terminated.

As the code inside neg() illustrates, when you access a member of a class through a
reference, you use the dot operator. The arrow operator is reserved for use with
pointers only.

When passing parameters by reference, remember that changes to the object inside
the function affect the calling object.

One other point: Passing all but the smallest objects by reference is faster than
passing them by value. Arguments are usually passed on the stack. Thus, large objects
take a considerable number of CPU cycles to push onto and pop from the stack.

Returning References

A function may return a reference. This has the rather startling effect of allowing a
function to be used on the left side of an assignment statement! For example, consider
this simple program:
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#include <iostream>
using namespace std;

char &replace(int i); // return a reference
char s[80] = "Hello There";

int main()

{
replace(5) = 'X'; /] assign X to space after Hello
cout <<'s;

return O;

}

char &replace(int i)
{
return sfi];

}

This program replaces the space between Hello and There with an X. That is, the
program displays HelloXthere. Take a look at how this is accomplished. First, replace()
is declared as returning a reference to a character. As replace() is coded, it returns a
reference to the element of s that is specified by its argument i. The reference returned
by replace() is then used in main() to assign to that element the character X.

One thing to beware of when returning references is that the object being referred
to does not go out of scope after the function terminates.

Independent References

By far the most common uses for references are to pass an argument using
call-by-reference and to act as a return value from a function. However, you can
declare a reference that is simply a variable. This type of reference is called an
independent reference.

When you create an independent reference, all you are creating is another name for
an object variable. All independent references must be initialized when they are
created. The reason for this is easy to understand. Aside from initialization, you cannot
change what object a reference variable points to. Therefore, it must be initialized when
it is declared. (In C++, initialization is a wholly separate operation from assignment.)

The following program illustrates an independent reference:
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#include <iostream>
using namespace std;

int main()

{
int a;
int &ref = a; // independent reference

a=10;
cout << a<<""<<ref <<"\n";

ref = 100;
cout << a<<""<<ref <<"\n";

intb = 19;
ref = b; // this puts b's value into a
cout << a<<""<<ref<<"\n"

ref--; // this decrements a
/I it does not affect what ref refers to

cout << a<<""<<ref <<"\n";

return O;

The program displays this output:

1010
100 100
1919
18 18

Actually, independent references are of little real value because each one is,
literally, just another name for another variable. Having two names to describe the
same object is likely to confuse, not organize, your program.

References to Derived Types

Similar to the situation as described for pointers earlier, a base class reference can be
used to refer to an object of a derived class. The most common application of this is
found in function parameters. A base class reference parameter can receive objects of
the base class as well as any other type derived from that base.
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Restrictions to References

There are a number of restrictions that apply to references. You cannot reference
another reference. Put differently, you cannot obtain the address of a reference. You
cannot create arrays of references. You cannot create a pointer to a reference. You
cannot reference a bit-field.

A reference variable must be initialized when it is declared unless it is a member of
a class, a function parameter, or a return value. Null references are prohibited.

___ | A Matter of Style

When declaring pointer and reference variables, some C++ programmers use a unique
coding style that associates the * or the & with the type name and not the variable. For
example, here are two functionally equivalent declarations:

int& p; // & associated with type
int &p; // & associated with variable

Associating the * or & with the type name reflects the desire of some programmers
for C++ to contain a separate pointer type. However, the trouble with associating the &
or * with the type name rather than the variable is that, according to the formal C++
syntax, neither the & nor the * is distributive over a list of variables. Thus, misleading
declarations are easily created. For example, the following declaration creates one, not
two, integer pointers.

int* a, b;

Here, b is declared as an integer (not an integer pointer) because, as specified by the
C++ syntax, when used in a declaration, the * (or &) is linked to the individual variable
that it precedes, not to the type that it follows. The trouble with this declaration is that
the visual message suggests that both a and b are pointer types, even though, in fact,
only a is a pointer. This visual confusion not only misleads novice C++ programmers,
but occasionally old pros, too.

It is important to understand that, as far as the C++ compiler is concerned, it
doesn't matter whether you write int *p or int* p. Thus, if you prefer to associate the *
or & with the type rather than the variable, feel free to do so. However, to avoid
confusion, this book will continue to associate the * and the & with the variables that
they modify rather than their types.

___| c++'s Dynamic Allocation Operators

C++ provides two dynamic allocation operators: new and delete. These operators are
used to allocate and free memory at run time. Dynamic allocation is an important part
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of almost all real-world programs. As explained in Part One, C++ also supports
dynamic memory allocation functions, called malloc() and free(). These are included
for the sake of compatibility with C. However, for C++ code, you should use the new
and delete operators because they have several advantages.

The new operator allocates memory and returns a pointer to the start of it. The
delete operator frees memory previously allocated using new. The general forms of
new and delete are shown here:

p_var = new type;
delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is large enough
to hold an item of type type.

Since the heap is finite, it can become exhausted. If there is insufficient available
memory to fill an allocation request, then new will fail and a bad_alloc exception will be
generated. This exception is defined in the header <new>. Your program should handle
this exception and take appropriate action if a failure occurs. (Exception handling is
described in Chapter 19.) If this exception is not handled by your program, then your
program will be terminated.

The actions of new on failure as just described are specified by Standard C++. The
trouble is that not all compilers, especially older ones, will have implemented new in
compliance with Standard C++. When C++ was first invented, new returned null on
failure. Later, this was changed such that new caused an exception on failure. Finally, it
was decided that a new failure will generate an exception by default, but that a null
pointer could be returned instead, as an option. Thus, new has been implemented
differently, at different times, by compiler manufacturers. Although all compilers will
eventually implement new in compliance with Standard C++, currently the only way
to know the precise action of new on failure is to check your compiler's documentation.

Since Standard C++ specifies that new generates an exception on failure, this is the
way the code in this book is written. If your compiler handles an allocation failure
differently, you will need to make the appropriate changes.

Here is a program that allocates memory to hold an integer:

#include <iostream>
#include <new>
using namespace std;

int main()
{
int *p;

try {
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p = new int; // allocate space for an int
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}
*p = 100;

cout << "At" << p << "™
cout << "is the value " << *p << "\n";

delete p;

return O;

This program assigns to p an address in the heap that is large enough to hold an
integer. It then assigns that memory the value 100 and displays the contents of the
memory on the screen. Finally, it frees the dynamically allocated memory. Remember,
if your compiler implements new such that it returns null on failure, you must change
the preceding program appropriately.

The delete operator must be used only with a valid pointer previously allocated by
using new. Using any other type of pointer with delete is undefined and will almost
certainly cause serious problems, such as a system crash.

Although new and delete perform functions similar to malloc() and free(), they
have several advantages. First, new automatically allocates enough memory to hold an
object of the specified type. You do not need to use the sizeof operator. Because the size
is computed automatically, it eliminates any possibility for error in this regard. Second,
new automatically returns a pointer of the specified type. You don't need to use an
explicit type cast as you do when allocating memory by using malloc(). Finally, both
new and delete can be overloaded, allowing you to create customized allocation systems.

Although there is no formal rule that states this, it is best not to mix new and delete
with malloc() and free() in the same program. There is no guarantee that they are
mutually compatible.

Initializing Allocated Memory

You can initialize allocated memory to some known value by putting an initializer after
the type name in the new statement. Here is the general form of new when an
initialization is included:

p_var = new var_type (initializer);
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Of course, the type of the initializer must be compatible with the type of data for which
memory is being allocated.
This program gives the allocated integer an initial value of 87:

#include <iostream>
#include <new>
using namespace std;

int main()

{
int *p;
try {
p = new int (87); // initialize to 87
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";
return 1,

}

cout << "At" << p << "™
cout << "is the value " << *p << "\n";

delete p;

return O;

Allocating Arrays

You can allocate arrays using new by using this general form:
p_var = new array_type [size];

Here, size specifies the number of elements in the array.
To free an array, use this form of delete:

delete [ ] p_var;

Here, the [ ] informs delete that an array is being released.
For example, the next program allocates a 10-element integer array.
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#include <iostream>
#include <new>
using namespace std;

int main()

{

int *p, i;

try {

p = new int [10]; // allocate 10 integer array
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1,

}

for(i=0; i<10; i++)
plil =i

for(i=0; i<10; i++)
cout << pfij << "™

delete [] p; // release the array

return O;

Notice the delete statement. As just mentioned, when an array allocated by new is
released, delete must be made aware that an array is being freed by using the [ ]. (As
you will see in the next section, this is especially important when you are allocating
arrays of objects.)

One restriction applies to allocating arrays: They may not be given initial values.
That is, you may not specify an initializer when allocating arrays.

Allocating Objects

You can allocate objects dynamically by using new. When you do this, an object is
created and a pointer is returned to it. The dynamically created object acts just like any
other object. When it is created, its constructor function (if it has one) is called. When
the object is freed, its destructor function is executed.

Here is a short program that creates a class called balance that links a person's
name with his or her account balance. Inside main(), an object of type balance is
created dynamically.
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#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name[80];

public:
void set(double n, char *s) {
cur_bal = n;
strcpy(name, s);
}
void get_bal(double &n, char *s) {
n = cur_bal;
strcpy(s, name);
}
h
int main()
{
balance *p;
char s[80];
double n;
try {

p = new balance;

} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
return 1,

}
p->set(12387.87, "Ralph Wilson");
p->get_bal(n, s);

cout << s << "s balance is: " << n;
cout << "\n";

delete p;
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return O;

Because p contains a pointer to an object, the arrow operator is used to access members
of the object.

As stated, dynamically allocated objects may have constructors and destructors.
Also, the constructor functions can be parameterized. Examine this version of the
previous program:

#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name[80];
public:
balance(double n, char *s) {
cur_bal = n;
strcpy(name, s);
}
~balance() {
cout << "Destructing ";
cout << name << "\n";
}
void get_bal(double &n, char *s) {
n = cur_bal;
strepy(s, name);
}
h

int main()

{
balance *p;
char s[80];
double n;

/I this version uses an initializer

try {
p = new balance (12387.87, "Ralph Wilson");
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} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
return 1,

}

p->get_bal(n, s);

cout << s <<
cout << "\n";

s balance is: " << n;

delete p;

return O;

The parameters to the object's constructor function are specified after the type
name, just as in other sorts of initializations.

You can allocate arrays of objects, but there is one catch. Since no array allocated by
new can have an initializer, you must make sure that if the class contains constructor
functions, one will be parameterless. If you don't, the C++ compiler will not find a
matching constructor when you attempt to allocate the array and will not compile your
program.

In this version of the preceding program, an array of balance objects is allocated,
and the parameterless constructor is called.

#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name[80];
public:
balance(double n, char *s) {
cur_bal = n;
strcpy(name, s);
}
balance() {} // parameterless constructor
~balance() {
cout << "Destructing ";
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k

cout << name << "\n";

}

void set(double n, char *s) {
cur_bal =n;
strcpy(name, s);

}

void get_bal(double &n, char *s) {
n = cur_bal;
strepy(s, name);

}

int main()

{

balance *p;