
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780132673266
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780132673266
https://plusone.google.com/share?url=http://www.informit.com/title/9780132673266
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780132673266
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780132673266/Free-Sample-Chapter

C++ Without Fear
Second Edition

This page intentionally left blank

C++ Without Fear
Second Edition

A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particu-
lar to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Overland, Brian R.
C++ without fear : a beginner's guide that makes you feel smart /

Brian Overland.—2nd ed.
p. cm.

Includes index.
ISBN 978-0-13-267326-6 (pbk. : alk. paper)

1. C++ (Computer program language) I. Title.
QA76.73.C153O838 2011
005.13'3—dc22

2011004218

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-267326-6
ISBN-10: 0-13-267326-6
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
Third printing, August 2012

For Colin

This page intentionally left blank

vii

Preface xxiii

About This Book: How It’s Different xxiii

Onward to the Second Edition xxiv

“Where Do I Begin?” xxv

Icons, Icons, Who’s Got the Icons? xxv

What Is Not Covered? xxvi

Getting Started with C++: A Free Compiler xxvii

A Final Note: Have Fun! xxvii

Acknowledgments xxix

About the Author xxxi

Chapter 1 Your First C++ Programs 1

Thinking Like a Programmer 1
Computers Do Only What You Tell Them 1
Determine What the Program Will Do 1
Write the Equivalent C++ Statements 2
Interlude How “Smart” Are Computers, Really? 4
Some Nerdy Definitions—A Review 4

What’s Different About C++? 7

Building a C++ Program 8
Enter the Program Statements 8
Build the Program (Compile and Link) 8

Contents

Test the Program 9
Revise as Needed 9

Installing Your Own C++ Compiler 10
Example 1.1. Print a Message 11
If You’re Using the Dev-C++ Environment 12
If You’re Using Microsoft Visual Studio 12
How It Works 13
Exercises 15
Interlude What about the #include and using? 15

Advancing to the Next Print Line 16
Example 1.2. Print Multiple Lines 16
How It Works 17
Exercises 18
Interlude What Is a String? 18

Storing Data: C++ Variables 19

Introduction to Data Types 20
Interlude Why Double Precision, Not Single? 22
Example 1.3. Convert Temperatures 22
How It Works 24
Optimizing the Program 26
Exercises 28

A Word about Variable Names and Keywords 28
Exercise 29

Chapter 1 Summary 30

Chapter 2 Decisions, Decisions 33

But First, a Few Words about Data Types 33

Decision Making in Programs 34
Interlude What about Artificial Intelligence (AI)? 35
if and if-else 35
Interlude Why Two Operators (= and ==)? 38
Example 2.1. Odd or Even? 39
How It Works 40
Optimizing the Code 42
Exercise 42

Introducing Loops 43
Interlude Infinite Loopiness 46
Example 2.2. Print 1 to N 46

viii Contents

How It Works 47
Optimizing the Program 49
Exercises 49

True and False in C++ 50
Interlude The bool Data Type 51

The Increment Operator (++) 51

Statements vs. Expressions 52

Introducing Boolean (Short-Circuit) Logic 53
Interlude What Is “true”? 55
Example 2.3. Testing a Person’s Age 55
How It Works 56
Exercise 56

Introducing the Math Library 57
Example 2.4. Prime-Number Test 57
How It Works 59
Optimizing the Program 60
Exercise 60
Example 2.5. The Subtraction Game (NIM) 60
How It Works 63
Exercises 63

Chapter 2 Summary 64

Chapter 3 The Handy, All-Purpose “for” Statement 67

Loops Used for Counting 67

Introducing the “for” Loop 68

A Wealth of Examples 70
Interlude Does “for” Always Behave Like “while”? 71
Example 3.1. Printing 1 to N with “for” 72
How It Works 73
Exercises 73

Compound Statements (Blocks) with “for” 74

Declaring Loop Variables on the Fly 74
Example 3.2. Prime-Number Test with “for” 75
How It Works 77
Exercise 79

Comparative Languages 101: The Basic “For” Statement 79

Chapter 3 Summary 80

ixContents

Chapter 4 Functions: Many Are Called 83

The Concept of Function 83

The Basics of Using Functions 85
Step 1: Declare (Prototype) the Function 85
Step 2: Define the Function 85
Step 3: Call the Function 86
Example 4.1. The avg() Function 87
How It Works 88
Function Call a Function! 89
Exercises 90
Example 4.2. Prime-Number Function 90
How It Works 92
Exercises 93

Local and Global Variables 93
Interlude Why Global Variables at All? 95

Recursive Functions 95
Example 4.3. Prime Factorization 96
How It Works 98
Interlude Interlude for Math Junkies 100
Exercises 101
Example 4.4. Euclid’s Algorithm for GCF 101
How It Works 103
Interlude Who Was Euclid? 104
Exercises 105
Interlude Interlude for Math Junkies: Rest of the Proof 105
Example 4.5. Beautiful Recursion: Tower of Hanoi 106
How It Works 109
Exercises 110
Example 4.6. Random-Number Generator 110
How It Works 111
Exercises 113

Games and More Games 113

Chapter 4 Summary 115

Chapter 5 Arrays: All in a Row... 117

A First Look at C++ Arrays 117

Initializing Arrays 119

x Contents

Zero-Based Indexing 119
Interlude Why Use Zero-Based Indexes? 120
Example 5.1. Print Out Elements 121
How It Works 121
Exercises 122
Example 5.2. How Random Is Random? 123
How It Works 125
Exercises 127

Strings and Arrays of Strings 128
Example 5.3. Card Dealer #1 129
How It Works 131
Exercise 132
Example 5.4. Card Dealer #2 132
How It Works 134
Exercise 135
Example 5.5. Card Dealer #3 136
How It Works 138
Optimizing the Program 140
Exercise 141

A Word to the Wise 141

2-D Arrays: Into the Matrix 142

Chapter 5 Summary 143

Chapter 6 Pointers: Getting a Handle on Data 145

What the Heck Is a Pointer, Anyway? 145

The Concept of Pointer 146
Interlude What Do Addresses Look Like? 147

Declaring and Using Pointers 148
Example 6.1. Print Out Addresses 151
Example 6.2. The double_it Function 152
How It Works 153
Exercises 154

Swap: Another Function Using Pointers 155
Example 6.2. Array Sorter 156
How It Works 160
Exercises 161

Pointer Arithmetic 161

xiContents

Pointers and Array Processing 163
Example 6.3. Zero Out an Array 165
How It Works 166
Writing More Compact Code 166
Exercises 167

Chapter 6 Summary 168

Chapter 7 Strings: Analyzing the Text 169

Text Storage on the Computer 169
Interlude How Does the Computer Translate Programs? 170

It Don’t Mean a Thing If It Ain’t Got That String 171

String-Manipulation Functions 172
Example 7.1. Building Strings 174
How It Works 175
Exercises 176
Interlude What about Escape Sequences? 177

Reading String Input 178
Example 7.2. Get a Number 180
How It Works 181
Exercise 183
Example 7.3. Convert to Uppercase 183
How It Works 184
Exercises 185

Individual Characters vs. Strings 185
Example 7.4. Breaking Up Input with Strtok 186
How It Works 188
Exercises 188

The New C++ String Type 189
Include String-Class Support 189
Declare and Initialize Variables of Type string 189
Working with Variables of Type string 190
Input and Output 191
Example 7.5. Building Strings with the string Type 191
How It Works 192
Exercises 193

Other Operations on the string Type 193

Chapter 7 Summary 194

xii Contents

Chapter 8 Files: Electronic Storage 197

Introducing File-Stream Objects 197

How to Refer to Disk Files 199
Example 8.1. Write Text to a File 200
How It Works 201
Exercises 203
Example 8.2. Display a Text File 203
How It Works 204
Exercises 205

Text Files vs. “Binary” Files 206
Interlude Are “Binary Files” Really More Binary? 208

Introducing Binary Operations 208
Example 8.3. Random-Access Write 211
How It Works 213
Exercises 214
Example 8.4. Random-Access Read 214
How It Works 216
Exercises 217

Chapter 8 Summary 217

Chapter 9 Some Advanced Programming Techniques 221

Command-Line Arguments 221
Example 9.1. Display File from Command Line 223
How It Works 224
Improving the Program 225
Interlude The Virtue of Predefined Constants 226
Exercises 226

Function Overloading 227
Interlude Overloading and Object Orientation 228
Example 9.2. Printing Different Types of Arrays 228
How It Works 230
Exercise 230

The do-while Loop 230

The switch-case Statement 232

Multiple Modules 234

Exception Handling: I Take Exception to That! 237
Say Hello to Exceptions 237

xiiiContents

Handling Exceptions: A First Attempt 238
Introducing try-catch Exception Handling 238

Chapter 9 Summary 240

Chapter 10 New Features of C++0x 243

Overview of C++0x Features 243

The long long Type (not long long long) 244
Interlude Why a “Natural” Integer? 246
Working with 64-Bit Literals (Constants) 246
Accepting long long Input 247
Formatting long long Numbers 248
Example 10.1. Fibonacci: A 64-Bit Example 250
How It Works 253
Exercises 254
Localizing Numbers 254
Interlude Who Was Fibonacci? 255

Range-Based “for” (For Each) 256
Example 10.2. Setting an Array with Range-Based “for” 258
How It Works 260
Exercises 260

The auto and decltype Keywords 261

The nullptr Keyword 262

Strongly Typed Enumerations 263
enum Classes in C++0x 265
Extended enum Syntax: Controlling Storage 266
Example 10.3. Rock, Paper, Scissors Game 267
How It Works 269
A More Interesting Game 271
Exercises 272

Raw String Literals 273

Chapter 10 Summary 273

Chapter 11 Introducing Classes: The Fraction Class 277

Object Orientation: Quasi-Intelligent Data Types 277
Interlude OOP…Is It Worth It? 278

Point: A Simple Class 279
Interlude Interlude for C Programmers: Structures and Classes 281

xiv Contents

Private: Members Only (Protecting the Data) 281
Exmple 11.1. Testing the Point Class 284
How It Works 286
Exercises 286

Introducing the Fraction Class 286

Inline Functions 289

Find the Greatest Common Factor 291

Find the Lowest Common Denominator 292
Example 11.2. Fraction Support Functions 293
How It Works 294
Exercises 296
Example 11.3. Testing the Fraction Class 296
How It Works 299
Interlude A New Kind of #include? 299
Exercise 300
Example 11.4. Fraction Arithmetic: add and mult 300
How It Works 304
Exercises 305

Chapter 11 Summary 305

Chapter 12 Constructors: If You Build It… 307

Introducing Constructors 307

Multiple Constructors (Overloading) 309

C++0x Only: Initializing Members within a Class 309

The Default Constructor—and a Warning 310
Interlude Is C++ Out to Trick You with the Default Constructor? 312

C++0x Only: Delegating Constructors 313

C++0x Only: Consistent Initialization 314
Example 12.1. Point Class Constructors 315
How It Works 316
Exercises 317
Example 12.2. Fraction Class Constructors 317
How It Works 320
Exercises 320

Reference Variables and Arguments (&) 321

The Copy Constructor 323
Interlude The Copy Constructor and References 325

xvContents

Example 12.3. Fraction Class Copy Constructor 325
How It Works 328
Exercises 329

A Constructor from String to Fract 329

Chapter 12 Summary 331

Chapter 13 Operator Functions: Doing It with Class 333

Introducing Class Operator Functions 333

Operator Functions as Global Functions 336

Improve Efficiency with References 338
Example 13.1. Point Class Operators 340
How It Works 342
Exercises 343
Example 13.2. Fraction Class Operators 343
How It Works 346
Optimizing the Code 347
Exercises 348

Working with Other Types 348

The Class Assignment Function (=) 349

The Test-for-Equality Function (==) 350

A Class “Print” Function 351
Example 13.3. The Completed Fraction Class 352
How It Works 355
Exercises 356

C++0x Only: User-Defined Literals 357
Defining a Raw-String Literal 358
Defining a Cooked Literal 359

Chapter 13 Summary 360

Chapter 14 Dynamic Memory and the String Class 363

Dynamic Memory: The “new” Keyword 363

Objects and “new” 365

Allocating Multiple Data 366
Interlude Dealing with Problems in Memory Allocation 368
Example 14.1. Dynamic Memory in Action 368

xvi Contents

How It Works 369
Exercise 370

Introducing Class Destructors 370
Example 14.2. A Simple String Class 371
How It Works 373
Exercises 376

“Deep” Copying and the Copy Constructor 376

The “this” Keyword 378

Revisiting the Assignment Operator 379

Writing a Concatenation Function 380
Example 14.3. The Complete String Class 382
How It Works 385
Exercises 386

Chapter 14 Summary 387

Chapter 15 Two Complete OOP Examples 389

Introducing Linked Lists 389
Node Design 390
Implementing a Simple Linked List 391
An Alphabetical List 393
Example 15.1. Names in Alpha Order 395
How It Works 397
Dealing with Memory Leaks 399
C++ Only: Using Smart Pointers to Clean Up 400
Interlude Recursion vs. Iteration Compared 401
Exercises 402

Tower of Hanoi, Animated 402
Mystack Class Design 403
Using the Mystack Class 404
Example 15.2. Animated Tower 405
How It Works 408
Exercises 410

Chapter 15 Summary 411

Chapter 16 Easy Programming with STL 413

Introducing the List Template 413
Interlude Writing Templates in C++ 414

xviiContents

Creating and Using a List Class 415
Creating and Using Iterators 416
C++0x Only: For Each 418
Interlude Pointers vs. Iterators 418
Example 16.1. STL Ordered List 419
How It Works 420
A Continually Sorted List 421
Exercises 422

Designing an RPN Calculator 422
Interlude A Brief History of Polish Notation 424
Using a Stack for RPN 424
Introducing the Generalized STL Stack Class 427
Example 16.2. Reverse Polish Calculator 428
How It Works 429
Exercises 431

Correct Interpretation of Angle Brackets 432

Chapter 16 Summary 432

Chapter 17 Inheritance: What a Legacy 435

How to Subclass 435
Interlude Why “public” Base Classes? 437
Example 17.1. The FloatFraction Class 438
How It Works 439
Exercises 440

Problems with the FloatFraction Class 440

C++ Only: Inheriting Base-Class Constructors 441
Example 17.2. The Completed FloatFraction Class 442
How It Works 444
Exercises 445

Protected Members 445

Object Containment 447

Safe Inheritance Through Class Hierarchies 448

Chapter 17 Summary 451

Chapter 18 Polymorphism: Object Independence 453

A Different Approach to the FloatFraction Class 453

Virtual Functions to the Rescue! 454

xviii Contents

Interlude What Is the Virtual Penalty? 455
Example 18.1. The Revised FloatFraction Class 456
How It Works 459
Exercise 460

C++ Only: Requiring Explicit Overrides 460

“Pure Virtual” and Other Abstract Matters 461

Abstract Classes and Interfaces 462

Object Orientation and I/O 464
cout Is Endlessly Extensible 464
But cout Is Not Polymorphic 465
Example 18.2. True Polymorphism: The Printable Class 466
How It Works 468
Exercise 470

A Final Word (or Two) 470

A Final, Final Word 472

Chapter 18 Summary 472

Appendix A Operators 475

The Scope (::) Operator 478

The sizeof Operator 478

Old and New Style Type Casts 479

Integer vs. Floating-Point Division 480

Bitwise Operators (&, |, ^, ~, <<, and >>) 480

Conditional Operator 481

Assignment Operators 482

Join (,) Operator 482

Appendix B Data Types 483

Precision of Data Types 484

Data Types of Numeric Literals 485

String Literals and Escape Sequences 486

Two’s Complement Format for Signed Integers 487

xixContents

Appendix C Syntax Summary 491

Basic Expression Syntax 491

Basic Statement Syntax 492

Control Structures and Branch Statements 493
The if-else Statement 493
The while Statement 493
The do-while Statement 494
The for Statement 494
The switch-case Statement 495
The break Statement 496
The continue Statement 496
The goto Statement 497
The return Statement 497
The throw Statement 497

Variable Declarations 498

Function Declarations 500

Class Declarations 502

Enum Declarations 503

Appendix D Preprocessor Directives 505

The #define Directive 505

The ## Operator (Concatenation) 507

The defined Function 507

The #elif Directive 507

The #endif Directive 508

The #error Directive 508

The #if Directive 508

The #ifdef Directive 509

The #ifndef Directive 510

The #include Directive 510

The #line Directive 511

The #undef Directive 511

Predefined Constants 511

xx Contents

Appendix E ASCII Codes 513

Appendix F Standard Library Functions 517

String (C-String) Functions 517

Data-Conversion Functions 517

Single-Character Functions 517

Math Functions 520

Randomization Functions 521

Time Functions 521

Formats for the strftime Function 523

Appendix G I/O Stream Objects and Classes 525

Console Stream Objects 525

I/O Stream Manipulators 526

Input Stream Functions 528

Output Stream Functions 528

File I/O Functions 529

Appendix H STL Classes and Objects 531

The STL String Class 531

The <list> Template 533

The <stack> Template 535

Appendix I Glossary of Terms 537

Index 553

xxiContents

This page intentionally left blank

xxiii

Many years ago, when I had to learn C overnight to make a living as a program-
mer (this was before C++), I would have given half my salary to find a mentor, a
person would say, “Here are the potholes in the road...errors that you are sure to
make in learning C. And here’s how to steer around them.” Instead, I had to
sweat and groan through every error a person could make.

I’m not just talking about programmers who can write or writers who can
program. Each of those is rare enough. Much rarer still is the person who is pro-
grammer, writer, and teacher—someone who will steer you around the elemen-
tary gotchas and enthusiastically communicate the “whys” of the language,
including why this stuff is not just useful but, in its own way, kind of cool.

It’s hard to find such a person. But way back then, I swore this is the person I’d
become.

Later, at Microsoft, I started in tech support and testing and worked my way
into management. But my most important job (I felt) was explaining new tech-
nology. I was sometimes the second or third person in the world to see a new fea-
ture of a programming language, and my job was to turn a cryptic spec into
readable prose for the rest of the universe to understand. I took the goal of “make
this simple” as not just a job but a mission.

About This Book: How It’s Different
What’s different about this book is that I’m an advocate for you, the reader. I’m
on your side, not that of some committee. I’m aware of all the ways you are “sup-
posed” to program and why they are supposed to be better (and I do discuss
those issues), but I’m mostly concerned about telling you what works.

This book assumes you know nothing at all about programming—that you
basically know how to turn on a computer and use a mouse. For those of you
more knowledgeable, you’ll want to breeze through the first few chapters.

Preface

The creators of C and C++—Dennis Ritchie and Bjarne Stroustrup, respec-
tively—are geniuses, and I’m in awe of what they accomplished. But although C
and C++ are great languages, there are some features that beginners (and even
relatively advanced programmers) never find uses for, at least not for the first
few years. I’m not afraid to tell you that information up front: what language fea-
tures you can and should ignore. At the same time, I’m also eager to tell you
about the elegant features of C++ that can save you time and energy.

This is a book about practical examples. It’s also a book about having fun! The
great majority of examples in this book either are useful and practical or—by
using puzzles and games—are intrinsically entertaining.

So, have no fear! I won’t bludgeon you to death with overly used (and highly
abused) terms like data abstraction, which professors love but which forever
remain fuzzy to the rest of us. At the same time, there are some terms—object
orientation and polymorphism—that you will want to know, and I provide con-
crete, practical contexts for understanding and using them.

Onward to the Second Edition
The first edition has sold increasingly well over the years. I believe that’s a testa-
ment to the variety of learning paths it supplied: complete examples, exercises,
and generous use of conceptual art. The second edition builds on these strengths
in many ways:

◗ Coverage of new features in C++0x: This is the new specification for C++ that
will be standard by the time you have this book in your hands. Compiler vendors
either have brought their versions of C++ up to this standard or are in the
process of doing so. This book covers well over a dozen new features from this
specification in depth.

◗ Examples galore, featuring puzzles and games: By the end of Chapter 2, you’ll
learn how to enter a program, barely a page long, that not only is a complete
game but even has an optimal strategy for the computer. Just see whether you
can beat it! But this is only the beginning. This edition features puzzles and
games, much more so than the first edition.

◗ Generous use of conceptual art: The use of clarifying illustrations to address
abstract points was one of the biggest strengths of the first edition. This edition
has substantially more of these.

◗ Even more exercises: These encourage the reader to learn in the best way...by
taking apart an example that works, analyzing it, and figuring out how to modify
it to make it do your own thing.

xxiv Preface

◗ No-nonsense syntax diagrams: Programming and playing games is fun, but
sometimes you need straightforward information. The syntax diagrams in this
book, accompanied by loads of examples, clarify exactly how the language
works, statement by statement and keyword by keyword.

◗ Introduction to Standard Template Library (STL): Although I lacked the space
to do a complete STL manual, this edition (unlike the first) introduces you to the
wonders of this exciting feature of C++, showing how it can save you time and
energy and enable you to write powerful applications in a remarkably small
space.

◗ Expanded reference: The appendixes in the back are intended as a mini desk ref-
erence to use in writing C++ programs. This edition has significantly expanded
these appendixes.

◗ Essays, or “interludes” for the philosophically inclined: Throughout the book, I
detour into areas related to C++ but that impact the larger world, such as com-
puter science, history of programming, mathematics, philosophy, and artificial
intelligence. But these essays are set aside as sidebars so as not to interfere with
the flow of the subject. You can read them at your leisure.

“Where Do I Begin?”
As I mentioned, this book assumes you know nothing about programming. If
you can turn on a computer and use a menu system, keyboard, and mouse, you
can begin on page 1. If you already have some familiarity with programming,
you’ll want to go through the first two or three chapters quickly.

If you already know a lot about C or C++ and are mainly interested in the new
features of C++0x, you may want to go straight to Chapter 10, “New Features of
C++0x.”

And if you know C and are now starting to learn about object orientation
with the C++ language, you may want to start with Chapter 11, “Introducing
Classes: The Fraction Class.”

Icons, Icons, Who’s Got the Icons?
Building on the helpful icons used in the first edition, this edition provides even
more—as signposts on the pages to help you find what you need. Be sure to look
for these symbols.

xxvPreface

xxvi Preface

These sections take apart program examples and explain, line by line, how and
why the examples work. You don’t have to wade through long programming
examples. I do that for you! (Or rather, we go through the examples together.)

After each full programming example, I provide at least one exercise, and usually
several, that builds on the example in some way. These encourage you to alter
and extend the programming code you’ve just seen. This is the best way to learn.
The answers can be found on the book’s Web site (www.informit.com/title/
9780132673266).

These sections develop an example by showing how it can be improved, made
shorter, or made more efficient.

As with “Optimizing,” these sections take the example in new directions, helping
you learn by showing how the example can be varied or modified to do other
things.

This icon indicates a place where a keyword of the language is introduced and its
usage clearly defined.

C++0x � This icon is used to indicate sections that apply only to versions of C++
compliant with the new C++0x specification. Depending on the version of C++
you have, either these sections will apply to you or they won’t. If your version is
not C++0x-compliant, you’ll generally want to skip these sections.

What Is Not Covered?
Relatively little, as it turns out. The two features not covered at all are bit fields
and unions. Although these features are useful for some people, their application
tends to be highly specialized—limited to a few special situations—and not par-
ticularly useful to people first learning the language. Of course, I encourage you
to learn about them on your own later.

Another area in which I defer to other books is the topic of writing your own
template classes, which I touch on just briefly in Chapter 16. Without a doubt,
the ability to write new template classes is one of the most amazing features of
state-of-the-art C++, but it is a very advanced and complex topic. For me to
cover it adequately and exhaustively could easily have taken another 400 or 500
pages!

K
ey

wo
rd

H
ow

It Works

Ex
er

cis
e

Va
ria

tions

Op
ti

m

izing

www.informit.com/title/9780132673266
www.informit.com/title/9780132673266

Fortunately, although templates and the Standard Template Library (STL) are
advanced subjects, there are some good books on the subject—for example,
C++ Templates: The Complete Guide, by David Vandevoorde and Nicolai M.
Josuttis; STL Tutorial and Reference Guide: C++ Programming with the Standard
Template Library, Second Edition, by David R. Musser, Gillmer J. Derge, and Atul
Saini; and Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library, by Scott Meyers.

And remember that Chapter 16 does introduce you to using STL, which pro-
vides extremely useful, existing templates for you to take advantage of.

Getting Started with C++: A Free Compiler
Although this edition doesn’t come with a CD with a free compiler on it, that is
no longer necessary. You can download some excellent shareware (that is, free)
versions of C++ from the Internet that not only have a free compiler (that’s the
application that translates your programs into machine-readable form) but also
a very good development environment. And they install easily.

To download this free software, start by going to the book’s Web site:
www.informit.com/title/9780132673266.

As mentioned earlier, you will also find downloadable copies of all the full
program examples in the book, as well as answers to exercises.

A Final Note: Have Fun!
Once again, there is nothing to fear about C++. Yes, there are those nasty pot-
holes I started out discussing, but remember, I’m going to steer you around
them. Admittedly, C++ is not a language for the weak of heart; it assumes you
know exactly what you’re doing. But it doesn’t have to be intimidating. I hope
you use the practical examples and find the puzzles and games entertaining. This
is a book about learning and about taking a road to new knowledge, but more
than that, it’s a book about enjoying the ride.

xxviiPreface

www.informit.com/title/9780132673266

This page intentionally left blank

xxix

I am likely to leave many deserving people out this time, but a few names cry out
for special mention. The book’s editor, Peter Gordon, not only took the initiative
in arranging for the new edition but did a lovely job of nursing the book through
all its stages along with the author’s ego. His long-suffering right hand, Kim
Boedigheimer, was a better person than we all deserved, coming to the rescue
again and again and kindly aiding the author. I’d also like to extend a special
thanks to Kim Wimpsett and Anna Popick, who unexpectedly have been an
absolute delight to work with in getting the book through its final tense stages.

Closer to home in the Seattle area: I also want to make special mention to vet-
eran Microsoft programmers John R. Bennett and Matt Greig, who provided
superb insights about the latest directions of C++. Some of the more interesting
new sections in the book came about directly as a result of extended conversa-
tions with these experts.

Acknowledgments

This page intentionally left blank

xxxi

Brian Overland published his first article in a pro-
fessional math journal at age 14.

After graduating from Yale, he began working
on large commercial projects in C and Basic,
including an irrigation-control system used all
over the world. He also tutored students in math,
computer programming, and writing, as well as
lecturing to classes at Microsoft and at the com-
munity-college level. On the side, he found an out-
let for his lifelong love of writing by publishing
film and drama reviews in local newspapers. His
qualifications as an author of technical books are

nearly unique because they involve so much real programming and teaching
experience, as well as writing.

In his 10 years at Microsoft, he was a tester, author, programmer, and man-
ager. As a technical writer, he became an expert on advanced utilities, such as the
linker and assembler, and was the “go-to” guy for writing about new technology.
His biggest achievement was probably organizing the entire documentation set
for Visual Basic 1.0 and having a leading role in teaching the “object-based” way
of programming that was so new at the time. He was also a member of the Visual
C++ 1.0 team.

Since then, he has been involved with the formation of new start-up compa-
nies (sometimes as CEO). He is currently working on a novel.

About the Author

This page intentionally left blank

4

83

Functions:
Many Are
Called

The most fundamental building block in the programming toolkit is the func-
tion—often known as procedure or subroutine in other languages. A function is a
group of related statements that accomplish a specific task. Once you define a
function, you can execute it whenever you need to do so.

Understanding functions is a crucial step to programming in C++: Without
functions, it would be a practical impossibility to engage in serious programming
projects. Imagine how difficult it would be to write a word processor, for exam-
ple, without some means of dividing the labor. Functions make this possible.

The Concept of Function
If you’ve followed the book up until this point, you’ve already seen use of a func-
tion—the sqrt function, which takes a single number as input and returns a result.

double sqrt_of_n = sqrt(n);

This is not far removed from the mathematical concept of function. A func-
tion takes zero or more inputs—called arguments—and returns an output,
called a return value. Here’s another example. This function takes two inputs and
returns their average:

cout << avg(1.0, 4.0);

Once a function is written, you can call it any number of times. By calling a
function, you transfer execution of the program to the function-definition code,
which runs until it is finished or until it encounters a return statement; execu-
tion then is transferred back to the caller.

This may sound like a foreign language if you’re not used to it. It’s easy to see in
a conceptual diagram. In the following example, the program 1) runs normally

until it calls the function avg, passing the arguments a and b, and 2) as a result,
the program transfers execution to avg. (The values of a and b are passed to x
and y, respectively.)

The function runs until it encounters return, at which point: 3) execution
returns to the caller of the function, which in this case prints the value that was
returned. Then, 4) execution resumes normally inside main, and the program
continues until it ends.

Note that only main is guaranteed to be executed. Other functions run only as
called. But there are many ways a function can be called. For example, main can
call a function A, which in turn calls B and C, which in turn calls D.

84 Chapter 4 Functions: Many Are Called

void main() {
 double a = 1.2;
 double b = 2.7;
 cout << "Avg is" << avg(a,b);
 cout << endl;
 cout << endl;
 system("PAUSE");
}

double avg(double x, double y) {
 double v = (x + y)/2;
 return v;
}

1

2

void main() {
 double a = 1.2;
 double b = 2.7;
 cout << "Avg is" << avg(a,b);
 cout << endl;
 cout << endl;
 system("PAUSE");
}

double avg(double x, double y) {
 double v = (x + y)/2;
 return v;
}

4

3

The Basics of Using Functions
I recommend the following approach for creating and calling user-defined
 functions:

1 At the beginning of your program, declare the function.

2 Somewhere in your program, define the function.

3 Other functions can then call the function.

Step 1: Declare (Prototype) the Function
A function declaration (or prototype) provides type information only. It has this
syntax:

return_type function_name (argument_list);

The return_type is a data type indicating what kind of value the function
returns (what it passes back). If the function does not return a value, use void.

The argument_list is a list of zero or more argument names—separated by
commas if there are more than one—each preceded by the corresponding type.
(Technically, you don’t need the argument names in a prototype, but it is a good
programming practice.) For example, the following statement declares a function
named avg, which takes two arguments of type double and returns a double value.

double avg(double x, double y);

The argument_list may be empty, which indicates that it takes no arguments.

Step 2: Define the Function
The function definition tells what the function does. It uses this syntax:

return_type function_name (argument_list) {
statements

}

Most of this looks like a declaration. The only thing that’s different is that the
semicolon is replaced by zero or more statements between two braces ({}).The
braces are required no matter how few statements you have. For example:

double avg(double x, double y) {
return (x + y) / 2;

}

85The Basics of Using Functions

4

The return statement causes immediate exit, and it specifies that the function
returns the amount (x + y) / 2. Functions with no return value can still use the
return statement but only to exit early.

return;

Step 3: Call the Function
Once a function is declared and defined, it can be used—or rather, called—any
number of times, from any function. For example:

n = avg(9.5, 11.5);
n = avg(5, 25);
n = avg(27, 154.3);

A function call is an expression: As long as it returns a value other than void, it
can be used inside a larger expression. For example:

z = x + y + avg(a, b) + 25.3;

When the function is called, the values specified in the function call are
passed to the function arguments. Here’s how a call to the avg function works,
with sample values 9.5 and 11.5 as input. These are passed to the function, as
arguments. When the function returns, the value in this case is assigned to z.

Another call to the function might pass different values—in this case, 6 and
26. (Because these are integer values, they are implicitly converted, or promoted,
to type double.)

86 Chapter 4 Functions: Many Are Called

z = avg(9.5, 11.5);

double avg(double x, double y) {
 return (x + y) / 2;
}

(9.5 + 11.5) / 2
21.0 / 2

10.5z

Example 4.1. The avg() Function
This section shows a simple function call in the context of a complete program.
It demonstrates all three steps: declare a function, define it, and call it.

87The Basics of Using Functions

4

z = avg(6, 26);

double avg(double x, double y) {
 return (x + y) / 2;
}

(6.0 + 26.0) / 2
32.0 / 2

16.0z

avg.cpp

#include <iostream>
using namespace std;

// Function must be declared before being used.

double avg(double x, double y);

int main() {
double a = 0.0;
double b = 0.0;

cout << "Enter first number and press ENTER: ";
cin >> a;
cout << "Enter second number and press ENTER: ";
cin >> b;

// Call the function avg().
cout << "Average is: " << avg(a, b) << endl;

▼ continued on next page

88 Chapter 4 Functions: Many Are Called

How It Works
This code is a very simple program, but it demonstrates the three steps I outlined
earlier:

1 Declare (that is, prototype) the function at the beginning of the program.

2 Define the function somewhere in the program.

3 Call the function from within another function (in this case, main).

Although function declarations (prototypes) can be placed anywhere in a
program, you should almost always place them at the beginning. The general
rule is that functions must be declared before being called. (They do not, how-
ever, have to be defined before being called, which makes it possible for two
functions to call each other.)

double avg(double x, double y);

The function definition for the avg function is extremely simple, containing
only one statement. In general, though, function definitions can contain as
many statements as you want.

double avg(double x, double y) {
return (x + y)/2;

}

The main function calls avg as part of a larger expression. The computed
value (in this case, the average of the two inputs, a and b) is returned to this
statement in main, which then prints the result.

cout << "Average is: " << avg(a, b) << endl;

H
ow

It Works

avg.cpp, cont. system("PAUSE");
return 0;

}

// Average-number function definition
//
double avg(double x, double y) {

return (x + y)/2;
}

89The Basics of Using Functions

4

Function Call a Function!
A program can have any number of functions. For example, you could have two
functions in addition to main, as in the following version of the program. Lines
that are new or changed are in bold.

Va
ria

tion

avg2.cpp

#include <iostream>
using namespace std;

// Functions must be declared before being used.

void print_results(double a, double b);

double avg(double x, double y);

int main() {
double a = 0.0;
double b = 0.0;

cout << "Enter first number and press ENTER: ";
cin >> a;
cout << "Enter second number and press ENTER: ";
cin >> b;

// Call the function pr_results().

print_results(a, b);

system("PAUSE");
return 0;

}

// print_results function definition

//

void print_results(double a, double b) {

cout << "Average is: " << avg(a, b) << endl;

}

▼ continued on next page

90 Chapter 4 Functions: Many Are Called

avg2.cpp, cont. // Average-number function definition
//
double avg(double x, double y) {

return (x + y)/2;
}

This version is a little less efficient, but it illustrates an important principle:
You are not limited to only one or two functions. The program creates a flow of
control as follows:

main() → print_results() → avg()

EXERCISES

Exercise 4.1.1. Write a program that defines and tests a factorial function. The fac-
torial of a number is the product of all whole numbers from 1 to N. For example,
the factorial of 5 is 1 * 2 * 3 * 4 * 5 = 120. (Hint: Use a for loop as described in
Chapter 3.)

Exercise 4.1.2. Write a function named print_out that prints all the whole numbers
from 1 to N. Test the function by placing it in a program that passes a number n
to print_out, where this number is entered from the keyboard. The print_out
function should have type void; it does not return a value. The function can be
called with a simple statement:

print_out(n);

Example 4.2. Prime-Number Function
Chapter 2 included an example that was actually useful: determining whether a
specified number was a prime number. We can also write the prime-number test
as a function and call it repeatedly.

The following program uses the prime-number example from Chapters 2 and
3 but places the relevant C++ statements into their own function, is_prime.

Ex
er

cis
es

prime2.cpp

#include <iostream>
#include <cmath>
using namespace std;

91The Basics of Using Functions

4

prime2.cpp, cont. // Function must be declared before being used.
bool prime(int n);

int main() {
int i;

// Set up an infinite loop; break if user enters 0.
// Otherwise, evaluate n from prime-ness.

while (true) {
cout << "Enter num (0 = exit) and press ENTER: ";
cin >> i;
if (i == 0) // If user entered 0, EXIT

break;
if (prime(i)) // Call prime(i)

cout << i << " is prime" << endl;
else

cout << i << " is not prime" << endl;
}
system("PAUSE");
return 0;

}

// Prime-number function. Test divisors from
// 2 to sqrt of n. Return false if a divisor
// found; otherwise, return true.

bool prime(int n) {
int i;

for (i = 2; i <= sqrt(n); i++) {
if (n % i == 0) // If i divides n evenly,

return false; // n is not prime.
}
return true; // If no divisor found, n is prime.

}

How It Works
As always, the program adheres to the pattern of 1) declaring function type
information at the beginning of the program (prototyping the function), 2)
defining the function somewhere in the program, and 3) calling the function.

The prototype says that the prime function takes an integer argument and
returns a bool value, which will be either true or false. (Note: If you have a really
old compiler, you may have to use the int type instead of bool.)

bool prime(int n);

The function definition is a variation on the prime-number code from Chap-
ter 3, which used a for loop. If you compare the code here to Example 3.2 on
page 75, you’ll see only a few differences.

bool prime(int n) {
int i;

for (i = 2; i <= sqrt(n); i++) {
if (n % i == 0) // If i divides n evenly,

return false; // n is not prime.
}
return true; // If no divisor found, return

true.
}

Another difference is that instead of setting a Boolean variable, is_prime, this
version returns a Boolean result. The logic here is as follows:

For all whole numbers from 2 to the square root of n,

If n is evenly divisible by the loop variable (i),

Return the value false immediately.

Remember that the modulus operator (%) carries out division and returns
the remainder. If this remainder is 0, that means the second number divides the
second evenly—in other words, it is a divisor or factor of the second number.

The action of the return statement here is key. This statement returns imme-
diately—causing program execution to exit from the function and passing con-
trol back to main. There’s no need to use break to get out of the loop.

The loop in the main function calls the prime function. The use of a break
statement here provides an exit mechanism, so the loop isn’t really infinite. As
soon as the user enters 0, the loop terminates and the program ends. Here I’ve
put the exit lines in bold.

H
ow

It Works

92 Chapter 4 Functions: Many Are Called

93Local and Global Variables

4

while (true) {
cout << "Enter num (0 = exit) and press ENTER:

";
cin >> i;
if (i == 0) // If user entered 0, EXIT

break;

if (prime(i)) // Call prime(i)
cout << i << " is prime" << endl;

else
cout << i << " is not prime" << endl;

}

The rest of the loop calls the prime function and prints the result of the
prime-number test. Note that the prime function, in this case, returns a
true/false value, and so the call to prime(i) can be used as an if/else condition.

EXERCISES

Exercise 4.2.1. Optimize the prime-number function by calculating the square root
of n only once during each function call. Declare a local variable sqrt_of_n of
type double. (Hint: A variable is local if it is declared inside the function.) Then
use this variable in the loop condition.

Exercise 4.2.2. Rewrite main so that it tests all the numbers from 2 to 20 and prints
out the results, each on a separate line. (Hint: Use a for loop, with i running from
2 to 20.)

Exercise 4.2.3. Write a program that finds the first prime number greater than 1 bil-
lion (1,000,000,000).

Exercise 4.2.4. Write a program that lets the user enter any number n and then finds
the first prime number larger than n.

Local and Global Variables
Nearly every programming language has a concept of local variable. As long as
two functions mind their own data, as it were, they won’t interfere with each
other.

That’s definitely a factor in the previous example (Example 4.2). Both main
and prime have a local variable named i. If i were not local—that is, if it was
shared between functions—then consider what could happen.

Ex
er

cis
es

First, the main function executes prime as part of evaluating the if condition.
Let’s say that i has the value 24.

if (prime(i))
cout << i << " is prime" << endl;

else
cout << i << " is not prime" << endl;

The value 24 is passed to the prime function.

// Assume i is not declared here, but is global.

int prime(int n) {

for (i = 2; i <= sqrt((double) n); i++)
if (n % i == 0)

return false;

return true; // If no divisor found, n is
prime.
}

Look what this function does. It sets i to 2 and then tests it for divisibility
against the number passed, 24. This test passes—because 2 does divide into 24
evenly—and the function returns. But i is now equal to 2 instead of 24.

Upon returning, the program executes

cout << i << " is not prime" << endl;

which prints the following:

2 is not prime

This is not what was wanted, since we were testing the number 24!
So, to avoid this problem, declare variables local unless there is a good reason

not to do so. If you look back at Example 2.3, you’ll see that i is local; main and
prime each declare their own version of i.

Is there ever a good reason to not make a variable local? Yes, although if you
have a choice, it’s better to go local, because you want functions interfering with
each other as little as possible.

You can declare global—that is, nonlocal—variables by declaring them out-
side of any function definition. It’s usually best to put all global declarations near
the beginning of the program, before the first function. A variable is recognized
only from the point it is declared, to the end of the file.

For example, you could declare a global variation named status:

94 Chapter 4 Functions: Many Are Called

95Recursive Functions

4

#include <iostream>
#include <cmath>
using namespace std;

int status = 0;

void main () {
//

}

Now, the variable named status may be accessed by any function. Because this
variable is global, there is only one copy of it; if one function changes the value of
status, this reflects the value of status that other functions see.

Interlude
For reasons shown in the previous section, global variables can be danger-
ous. Habitual use of global variables can cause shocks to a program, because
changes performed by one function cause unexpected effects in another.

But if they are so dangerous, why use them at all?
Well, they are often necessary, or nearly so. Global variables are often the

best way to communicate information between functions; otherwise, you
might need a long series of argument lists that transfer all the program
information back and forth.

Beginning with Chapter 11, we’ll work with classes, which provide an
alternative, and generally superior, way for closely related functions to share
data with each other: Functions of the same class have access to private data
that no one else does.

Why Global Variables at All?

Recursive Functions
So far, I’ve only shown the use of main calling other functions defined in the
program, but in fact, any function can call any function. But can a function call
itself?

Yes. And as you’ll see, it’s less crazy than it sounds. The technique of a func-
tion calling itself is called recursion. The obvious problem is the same one for
infinite loops: If a function calls itself, when does it ever stop? The problem is
easily solved, however, by putting in some mechanism for stopping.

Remember the factorial function from Exercise 4.1.1 (page 90)? We can
rewrite this as a recursive function:

int factorial(int n) {
if (n <= 1)

return 1;
else

return n * factorial(n – 1); // RECURSION!
}

For any number greater than 1, the factorial function issues a call to itself but
with a lower number. Eventually, the function factorial(1) is called, and the cycle
stops.

There is a literal stack of calls made to the function, each with a different argu-
ment for n, and now they start returning. The stack is a special area of memory
maintained by the computer: It is a last-in-first-out (LIFO) mechanism that
keeps track of information for all pending function calls. This includes argu-
ments and local variables, if any.

You can picture how to call a factorial(4) this way.

Many functions that use a for statement can be rewritten so they use recur-
sion instead. But does it always make sense to use that approach?

No. The example here is not an ideal one, because it causes the program to
store all the values 1 through n on the stack, rather than totaling them up
directly in a loop. This approach is not efficient. The next section makes a better
use of recursion.

Example 4.3. Prime Factorization
The prime-number examples we’ve looked at so far are fine, but they have a lim-
itation. They tell you, for example, that a number such as 12,001 is not prime,

96 Chapter 4 Functions: Many Are Called

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

but they don’t tell anything more. Wouldn’t it be more useful to know what
numbers divide into 12,001?

It’d be more useful to generate the prime factorization for any requested num-
ber. This would show us exactly what prime numbers divide into that number.
For example, if the number 36 was input, we’d get this:

2, 2, 3, 3

If 99 was input, we’d get this:

3, 3, 11

And if a prime number was input, the result would be the number itself. For
example, if 17 was input, the output would be 17.

We have almost all the programming code to do this already. Only a few
changes need to be made to the prime-number code. To get prime-factorization,
first get the lowest divisor, and then factor the remaining quotient. To get all the
divisors for a number n, do this:

For all whole numbers from 2 to the square root of n,

If n is evenly divisible by the loop variable (i),

Print i followed by a comma, and

Rerun the function on n / i, and

Exit the current function

If no divisors found, print n itself

This logic is a recursive solution, which we can implement in C++ by having
the function get_divisors call itself.

97Recursive Functions

4

prime3.cpp

#include <iostream>
#include <cmath>
using namespace std;

void get_divisors(int n);

int main() {
int n = 0;

cout << "Enter a number and press ENTER: ";
cin >> n;

▼ continued on next page

98 Chapter 4 Functions: Many Are Called

prime3.cpp, cont. get_divisors(n);
cout << endl;
system("PAUSE");
return 0;

}

// Get divisors function
// This function prints all the divisors of n,
// by finding the lowest divisor, i, and then
// rerunning itself on n/i, the remaining quotient.

void get_divisors(int n) {
int i;
double sqrt_of_n = sqrt(n);

for (i = 2; i <= sqrt_of_n; i++)
if (n % i == 0) { // If i divides n evenly,

cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}

// If no divisor is found, then n is prime;
// Print n and make no further calls.

cout << n;
}

How It Works
As always, the program begins by declaring functions—in this case, there is one
function other than main. The new function is get_divisors.

Also, the beginning of the program includes iostream and cmath, because the
program uses cout, cin, and sqrt. You don’t need to declare sqrt directly, by the
way, because this is done for you in cmath.

#include <iostream>
#include <cmath>

void get_divisors(int n);

H
ow

It Works

The main function just gets a number from the user and calls get_divisors.

int main() {
int n = 0;

cout << "Enter a number and press ENTER: ";
cin >> n;

cout << endl;
system("PAUSE");
return 0;

}

The get_divisors function is the interesting part of this program. It has a void
return value, meaning that it doesn’t pass back a value. But it still uses the return
statement to exit early.

void get_divisors(int n) {
int i;
double sqrt_of_n = sqrt(n);

for (i = 2; i <= sqrt_of_n; i++)
if (n % i == 0) { // If i divides n evenly,

cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}

// If no divisor is found, then n is prime;
// Print n and make no further calls.

cout << n;
}

The heart of this function is a loop that tests numbers from 2 to the square
root of n (which has been calculated and placed in the variable sqrt_of_n).

for (i = 2; i <= sqrt_of_n; i++)
if (n % i == 0) { // If i divides n evenly,

cout << i << ", "; // Print i,
get_divisors(n / i); // Factor n/i,
return; // and exit.

}

99Recursive Functions

4

If the expression n % i == 0 is true, that means the loop variable i divides
evenly into n. In that case, the function does several things: It prints out the loop
variable, which is a divisor; calls itself recursively; and exits.

The function calls itself with the value n/i. Because the factor i is already
accounted for, the function needs to get the prime-number divisors for the
remaining factors of n, and these are contained in n/i.

If no divisors are found, that means the number being tested is prime. The
correct response is to print this number and stop.

cout << n;

For example, suppose that 30 is input. The function tests to see what the low-
est divisor of 30 is. The function prints the number 2 and then reruns itself on
the remaining quotient, 15 (because 30 divided by 2 is 15).

During the next call, the function finds the lowest divisor of 15. This is 3, so it
prints 3 and then reruns itself on the remaining quotient, 5 (because 15 divided
by 3 is 5).

Here’s a visual summary. Each call to get_divisors gets the lowest divisor and
then makes another call unless the number being tested is prime.

100 Chapter 4 Functions: Many Are Called

get_divisors(30)

print "2," get_divisors(15)

print "3," get_divisors(5)

print "5"

Interlude
A little reflection shows why the lowest divisor is always a prime number.
Suppose we test a positive whole number and that A is the lowest divisor but
is not a prime. Since A is not prime, it must have at least one divisor of its
own, B, that is not equal to either 1 or A.

But if B divides evenly into A and A is a divisor of the target number, then
B must also be a divisor of the target number. Furthermore, B is less than A.
Therefore, the hypothesis that the lowest divisor is not prime results in a
contradiction.

Interlude for Math Junkies

EXERCISES

Exercise 4.3.1. Rewrite the main function for Example 4.3 so that it prints the
prompt message “Enter a number (0 = exit) and press ENTER.” The program
should call get_divisors to show the prime factorization and then prompt the
user again, until he or she enters 0. (Hint: If you need to, look at the code for
Example 4.2, on page 90.)

Exercise 4.3.2. Write a program that calculates triangle numbers by using a recur-
sive function. A triangle number is the sum of all whole numbers from 1 to N, in
which N is the number specified. For example, triangle(5) = 5 + 4 + 3 + 2 + 1.

Exercise 4.3.3. Modify Example 4.3 so that it uses a nonrecursive solution. You will
end up having to write more code. (Hint: To make the job easier, write two func-
tions: get_all_divisors and get_lowest_divisor. The main function should call
get_all_divisors, which in turn has a loop: get_all_divisors calls get_lowest_divisor
repeatedly, each time replacing n with n/i, where i is the divisor that was found. If
n itself is returned, then the number is prime, and the loop should stop.)

Example 4.4. Euclid’s Algorithm for GCF
In the early grades of school, we’re asked to figure out greatest common factors
(GCFs). For example, the greatest common factor of 15 and 25 is 5. Your teacher
probably lectured you about GCF until you didn’t want to hear about it any-
more.

Wouldn’t it be nice to have a computer figure this out for you? We’ll focus just
on GCF, because as I’ll show in Chapter 11, if you can figure out the CGF of two
numbers, you can easily compute the lowest common multiple (LCM).

The technique was worked out almost 2,500 years ago by a Greek mathemati-
cian named Euclid, and it’s one of the most famous in mathematics.

To get CGF: For whole two numbers A and B:

If B equals 0,

The answer is A.

Ex
er

cis
es

101Recursive Functions

4

This is easy to see by example. Any number divisible by 4 (a nonprime) is
also divisible by 2 (a prime). The prime factors will always be found first, as
long as you keep looking for the lowest divisor.

Interlude ▼ continued

102 Chapter 4 Functions: Many Are Called

Else

The answer is GCF(B, A%B)

You may remember remainder division (%) from earlier chapters. A%B
means this:

Divide A by B and produce the remainder.

For example, 5%2 equals 1, and 4%2 equals 0. A result of 0 means that B
divides A evenly.

If B does not equal 0, the algorithm replaces the arguments A, B with the
arguments B, A%B and calls itself recursively. This solution works for two reasons:

◗ The terminal case (B equals 0) is valid. The answer is A.

◗ The general case is valid: GCF(A, B) equals CGF(B, A%B), so the function calls
itself with new arguments B and A%B.

The terminal case, in which B equals 0, is valid assuming A is nonzero. You
can see that A divides evenly into both itself and 0, but nothing larger can divide
into A. (Note that 0 can be divided evenly by any whole number except itself.)
For example, 997 is the greatest common factor for the pair (997, 0). Nothing
larger divides evenly into both.

The general case is valid if the following is true:

The greatest common factor of the pair (B, A%B) is also the greatest com-
mon factor of the pair (A, B).

It turns out this is true, and because it is, the GCF problem is passed along
from the pair (A, B) to the pair (B, A%B). This is the general idea of recursion:
Pass the problem along to a simpler case involving smaller numbers.

It can be shown that the pair (B, A%B) involves numbers less than or equal to
the pair (A, B). Therefore, during each recursive call, the algorithm uses succes-
sively smaller numbers until B is zero.

I save the rest of the proof for an interlude at the end of this section. Here is a
complete program for computing greatest common factors:

gcf.cpp

#include <cstdlib>
#include <iostream>
using namespace std;

How It Works
All that main does in this case is to prompt for two input variables a and b, call
the greatest-common-factor function (gcf), and print results:

cout << "GCF = " << gcf(a, b) << endl;

As for the gcf function, it implements the algorithm discussed earlier:

int gcf(int a, int b) {
if (b == 0)

return a;
else

return gcf(b, a%b);
}

The algorithm keeps assigning the old value of B to A and the value A%B to B.
The new arguments are equal or less to the old. They get smaller until B equals 0.

H
ow

It Works

103Recursive Functions

4

gcf.cpp, cont. int gcf(int a, int b);

int main()
{

int a = 0, b = 0; // Inputs to GCF.

cout << "Enter a: ";
cin >> a;
cout << "Enter b: ";
cin >> b;
cout << "GCF = " << gcf(a, b) << endl;

system("PAUSE");
return 0;

}

int gcf(int a, int b) {
if (b == 0)

return a;
else

return gcf(b, a%b);
}

104 Chapter 4 Functions: Many Are Called

For example, if we start with A = 300 and B = 500, the first recursive call
switches their order. (This always happens if B is larger.) From that point
onward, each call to gcf involves smaller arguments until the terminal case is
reached:

VALUE OF A%B
VALUE OF A VALUE OF B (DIVIDE AND GET REMAINDER)

300 500 300

500 300 200

300 200 100

200 100 0

100 0 Terminal case: answer is 100

VALUE OF A%B
VALUE OF A VALUE OF B (DIVIDE AND GET REMAINDER)

35 25 10

25 10 5

10 5 0

5 0 Terminal case: answer is 5

When B is 0, the gcf function no longer computes A%B but instead produces
the answer.

If the initial value of A is larger than B, the algorithm produces an answer
even sooner. For example, suppose A = 35 and B = 25.

Interlude
Who was this Euclid guy? Wasn’t he the Greek who wrote about geometry?
(Something like “The shortest distance between two points is a straight
line”?)

Indeed he was. Euclid’s Elements is one of the most famous books in
Western civilization. For almost 2,500 years it was used as a standard text-
book in schools. In this work he demonstrated for the first time a tour de
force of deductive logic, proving all that was then known about geometry. In
fact, he invented the whole idea of proof. It is a great work that has had pro-
found influence on mathematicians and philosophers ever since.

Who Was Euclid?

EXERCISES

Exercise 4.4.1. Revise the program so that it prints out all the steps involved in the
algorithm. Here is a sample output:

GCF(500, 300) =>
GCF(300, 200) =>
GCF(200, 100) =>
GCF(100, 0) =>
100

Exercise 4.4.2. For experts: Revise the gcf function so that it uses an iterative (loop-
based) approach. Each cycle through the loop should stop if B is zero; otherwise,
it should set new values for A and B and then continue. You’ll need a temporary
variable—temp—to hold the old value of B for a couple of lines: temp=b,
b=a%b, and a=temp.

Ex
er

cis
es

105Recursive Functions

4

It was Euclid who (according to legend) said to King Ptolemy of Alexan-
dria, “Sire, there is no royal road to geometry.” In other words, you gotta
work for it.

Although its focus is on geometry, Euclid’s book has results in number
theory as well. The algorithm here is the most famous of these results. Euclid
expressed the problem geometrically, finding the biggest length commensu-
rable with two sides of a rectangle. He conceived the problem in terms of
rectangles, but we can use any two integers.

Interlude ▼ continued

Interlude
Earlier, I worked out some of a proof of Euclid’s algorithm. What remains is
to show that the greatest common factor of the pair (B, A%B) is also the
greatest common factor of the pair (A, B). This is true if we can show the
 following:

◗ If a number is a factor of both A and B, it is also a factor of A%B.

◗ If a number is a factor of both B and A%B, it is also a factor of A.

Interlude for Math Junkies: Rest of the Proof

▼ continued on next page

Example 4.5. Beautiful Recursion: Tower of Hanoi
Strictly speaking, the earlier examples don’t require recursion. With some effort,
they can be revised as iterative (loop-based) functions. But there is a problem
that illustrates recursion beautifully, solving a problem that would be very diffi-
cult to solve otherwise.

This is the Tower of Hanoi puzzle: You have three stacks of rings. Each ring is
smaller than the one it sits on. The challenge is to move all the rings from the
first stack to the third, subject to these constraints:

◗ You can move only one ring at a time.

◗ You can place a ring only on top of a larger ring, never a smaller.

106 Chapter 4 Functions: Many Are Called

If these are true, then all the common factors of one pair are common
factors of the other pair. In other words, the set of Common Factors (A, B) is
identical to the set of common factors (B, A%B). Since the two sets are iden-
tical, they have the greatest member—therefore, they share the greatest com-
mon factor.

Consider the remainder-division operator (%). It implies the following,
where m is a whole number:

A = mB + A%B

A%B is equal or less than A, so the general tendency of the algorithm is to
get progressively smaller numbers. Assume that n, a whole number, is a fac-
tor of both A and B (meaning it divides both evenly). In that case:

A = cn
B = dn

where c and d are whole numbers. Therefore:

cn = m(dn) + A%B
A%B = cn – mdn = n(c – md)

This demonstrates that if n is a factor of both A and B, it is also a factor of
A%B. By similar reasoning, we can show that if n is a factor of both B and
A%B, it is also a factor of A.

Because the common factors for the pair (A, B) are identical to the com-
mon factors for the pair (B, A%B), it follows that they share the greatest
common factor. Therefore, GCF(A, B) equals GCF(B, A%B). QED.

Interlude ▼ continued

It sounds easy, until you try it! Consider a stack four rings high: You start by
moving the top ring from the first stack, but where do you move it, and what do
you do after that?

To solve the problem, assume we already know how to move a group of N–1
rings. Then, to move N rings from a source stack to a destination stack, do the
following:

1 Move N–1 rings from the source stack to the (currently) unused, or “other,” stack.

2 Move a single ring from the source stack to the destination stack.

3 Move N–1 rings from the “other” stack to the destination stack.

This is easier to envision graphically. First, the algorithm moves N–1 rings
from the source stack to the “other” stack (“other” being the stack that is neither
source nor destination for the current move). In this case, N is 4 and N–1 is 3,
but these numbers will vary.

After this recursive move, at least one ring is left at the top of the source stack.
This top ring is then moved: This is a simple action, moving one ring from
source to destination.

Finally, we perform another recursive move, moving N–1 rings from “other”
(the stack that is currently neither source nor destination) to the destination.

107Recursive Functions

4

1. Move N–1 rings from source to “other.”

2. Move one ring from source to destination, directly.

What permits us to move N–1 rings in steps 1 and 3, when the constraints tell
us that we can move only one?

Remember the basic idea of recursion. Assume the problem has already been
solved for the case N–1, although this may require many steps. All we have to do
is tell the program how to solve the Nth case in terms of the N–1 case. The pro-
gram magically does the rest.

It’s important, also, to solve the terminal case, N = 1. But that’s trivial. Where
one ring is involved, we simply move the ring as desired.

The following program shows the C++ code that implements this algorithm:

108 Chapter 4 Functions: Many Are Called

3. Move N–1 rings from “other” to destination.

Source Other Destination

Source Destination

tower.cpp

#include <cstdlib>
#include <iostream>

using namespace std;
void move_rings(int n, int src, int dest, int other);

int main()
{
int n = 3; // Stack is 3 rings high

move_rings(n, 1, 3, 2); // Move stack 1 to stack 3
system("PAUSE");

How It Works
The program is brief considering what it does. In this example, I’ve set the stack
size to just three rings, although it can be any positive integer:

int n = 3; // Stack is 3 rings high

The call to the move_rings function says that three rings should be moved
from stack 1 to stack 3; these are determined by the second and third arguments,
respectively. The “other” stack, stack 2, will be used in intermediate steps.

move_rings(n, 1, 3, 2); // Move stack 1 to stack
3

This small example—moving only three rings—produces the following out-
put. You can verify the correctness of this solution by using three different coins,
all of different sizes.

Move from 1 to 3
Move from 1 to 2
Move from 3 to 2
Move from 1 to 3
Move from 2 to 1
Move from 2 to 3
Move from 1 to 3

Try setting n to 4, and you’ll get a list of moves more than twice as long.

H
ow

It Works

109Recursive Functions

4

tower.cpp, cont. return 0;
}

void move_rings(int n, int src, int dest, int other) {
if (n == 1) {
cout << "Move from " << src << " to " << dest

<< endl;
} else {
move_rings(n - 1, src, other, dest);
cout << "Move from " << src << " to " << dest

<< endl;
move_rings(n - 1, other, dest, src);

}
}

110 Chapter 4 Functions: Many Are Called

The core of the move_ring function is the following code, which implements
the general solution described earlier. Remember, this recursive approach
assumes the N–1 case has already been solved. The function therefore passes
along most of the problem to the N–1 case.

move_rings(n - 1, src, other, dest);
cout << "Move from " << src << " to " << dest

<< endl;
move_rings(n - 1, other, dest, src);

Notice how the functional role of the three stacks is continually switched
between source (where to move a group of rings from), destination (where the
group is going), and other (the intermediate stack, which is not used now but
will be at the next level).

EXERCISES

Exercise 4.5.1. Revise the program so that the user can enter any positive integer
value for n. Ideally, you should test the input to see whether it is greater than 0.

Exericse 4.5.2. Instead of printing the “Move” message directly on the screen, have
the move_ring function call yet another function, which you give the name
exec_move. The exec_move function should take a source and destination stack
number as its two arguments. Because this is a separate function, you can use as
many lines of code as you need to print a message. You can print a more infor-
mative message:

Move the top ring from stack 1 to stack 3.

Example 4.6. Random-Number Generator
OK, we’ve had enough fun with recursion. It’s time to move on to another,
highly practical example. This one generates random numbers—a function at
the heart of many game programs.

The test program here simulates any number of dice rolls. It does this by call-
ing a function, rand_0toN1, which takes an argument, n, and randomly returns
a number from 0 to n – 1. For example, if the user inputs the number 6, this pro-
gram simulates dice rolls:

3 4 6 2 5 3 1 1 6

Here is the program code:

Ex
er

cis
es

111Recursive Functions

4

dice.cpp

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;

int rand_0toN1(int n);

int main() {
int n, i;
int r;

srand(time(NULL)); // Set seed for random numbers.

cout << "Enter number of dice to roll: ";
cin >> n;

for (i = 1; i <= n; i++) {
r = rand_0toN1(6) + 1; // Get a number 1 to 6
cout << r << " "; // Print it

}
system("PAUSE");
return 0;

}

// Random 0-to-N1 Function.
// Generate a random integer from 0 to N–1, with each
// integer an equal probability.
//
int rand_0toN1(int n) {

return rand() % n;
}

How It Works
The beginning of the program has to include a number of files to support the
functions needed for random-number generation:

H
ow

It Works

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;

Make sure you include the last three here—cmath, cstdlib, and ctime—when-
ever you use random-number generation.

Random-number generation is a difficult problem in computing, because
computers follow deterministic rules—which, by definition, are nonrandom.
The solution is to generate what’s called a pseudorandom sequence by taking a
number and performing a series of complex transformations on it.

To do this, the program needs a number as random as possible to start off the
sequence. So, we’re back where we started, aren’t we?

Well, fortunately no. You can take the system time and use it as a seed: That is
the first number in the sequence.

srand(time(NULL));

NULL is a predefined value that means a data address set to nothing. You
don’t need to worry about it for now. The effect in this case is simply to get the
current time.

C++0x � The C++0x specification provides the nullptr keyword, which should be
used in preference to NULL if you have a C++0x-compliant compiler.

A program that uses random numbers should call srand first. System time
changes too quickly for a human to guess its exact value, and even a tiny differ-
ence in this number causes big changes in the resulting sequence. This is a prac-
tical application of what chaos theorists call the Butterfly Effect.

The rest of main prompts for a number and then prints the quantity of ran-
dom numbers requested. A for loop makes repeated calls to rand_0toN1, a func-
tion that returns a random number from 0 to n – 1:

for (i = 1; i <= n; i++) {
r = rand_0toN1(6) + 1; // Get num from 1 to 6
cout << r << " "; // Print it out

}

Here is the function definition for the rand_0toN1 function:

int rand_0toN1(int n) {
return rand() % n;

}

112 Chapter 4 Functions: Many Are Called

113Games and More Games

4

This is one of the simplest functions we’ve seen yet! Calling rand produces a
number anywhere in the range of the int type, which, on 32-bit systems, can be
anywhere in the range of roughly plus or minus two billion. But we want much
smaller numbers.

The solution is to use your old friend, the remainder-division operator (%),
to divide by n and return the remainder. No matter how large the amount being
divided, the result must be a number from 0 to n–1, which is exactly what the
function is being asked to provide.

In this case, the function is called with the argument 6, so it returns a value
from 0 to 5. Adding 1 to the number gives a random value in the range 1 to 6,
which is what we want.

EXERCISES

Exercise 4.4.1. Write a random-number generator that returns a number from 1 to
N (rather than 0 to N–1), where N is the integer argument passed to it.

Exercise 4.4.2. Write a random-number generator that returns a random floating-
point number between 0.0 and 1.0. (Hint: Call rand, cast the result r to type double
by using static_cast<double>(r), and then divide by the highest value in the
int range, RAND_MAX.) Make sure you declare the function with the double
return type.

Games and More Games
Now that we know how to write functions and generate random numbers, it’s
possible to enhance some game programs.

The Subtraction Game example at the end of Chapter 2 can be improved.
Right now, when the user plays optimal strategy, the computer responds by
choosing 1. We can make this more interesting by randomizing the computer’s
response in these situations. The following program makes the necessary
changes, putting altered lines in bold:

Ex
er

cis
es

nim2.cpp

#include <iostream>
#include <cmath>

#include <ctime>

#include <cstdlib>

▼ continued on next page

114 Chapter 4 Functions: Many Are Called

nim2.cpp, cont. using namespace std;

int rand_0toN1(int n);

int main() {
int total, n;

srand(time(NULL)); // Set seed for random numbers.

cout << "Welcome to NIM. Pick a starting total: ";
cin >> total;
while (true) {

// Pick best response and print results.

if ((total % 3) == 2) {
total = total - 2;
cout << "I am subtracting 2." << endl;

} else if ((total % 3) == 1) {

total--;

cout << "I am subtracting 1." << endl;

} else {

n = 1 + rand_0toN1(2); // n = 1 or 2.

total = total - n;

cout << "I am subtracting ";

cout << n << "." << endl;

}

cout << "New total is " << total << endl;
if (total == 0) {

cout << "I win!" << endl;
break;

}
// Get user’s response; must be 1 or 2.

cout << "Enter num to subtract (1 or 2): ";
cin >> n;
while (n < 1 || n > 2) {

cout << "Input must be 1 or 2." << endl;
cout << "Re-enter: ";
cin >> n;

}

115Summary

4

Chapter 2 presented an exercise: Alter this program so that it permits any
number from 1 to N to be subtracted each time, where N is set at the beginning.
That problem is left as an exercise for this version as well. (You can even prompt
the end user for this value before the game starts. As always, the computer
should win whenever the user does not play perfect strategy.)

The last full example in Chapter 10 presents a game of Rock, Paper, Scissors
that can be programmed even with C++ compilers that are not fully C++0x
compliant. To use the example in Chapter 10 (Example 10.3) with weak, rather
than strong, enumerations, replace this line in Chapter 10:

enum class Choice { rock, paper, scissors };

with this:

enum Choice { rock, paper, scissors };

Also, remove the using statement:

using namespace Choice;

Chapter 4 Summary
Here are the main points of Chapter 4:

◗ In C++, you can use functions to define a specific task, just as you might use a
subroutine or procedure in another language. C++ uses the name function for
all such routines, whether they return a value or not.

nim2.cpp, cont. total = total - n;
cout << "New total is " << total << endl;
if (total == 0) {

cout << "You win!" << endl;
break;

}
}
system("PAUSE");
return 0;

}

int rand_0toN1(int n) {

return rand() % n;

}

◗ You need to declare all your functions (other than main) at the beginning of the
program so that C++ has the type information required. Function declarations,
also called prototypes, use this syntax:

type function_name (argument_list);

◗ You also need to define the function somewhere in the program, to tell what the
function does. Function definitions use this syntax:

type function_name (argument_list) {
statements

}

◗ A function runs until it ends or until the return statement is executed. A return
statement that passes a value back to the caller has this form:

return expression;

◗ A return statement can also be used in a void function (function with no return
value) just to exit early, in which case it has a simpler form:

return;

◗ Local variables are declared inside a function definition; global variables are
declared outside all function definitions, preferably before main. If a variable is
local, it is not shared with other functions; two functions can each have a vari-
able named i (for example) without interfering with each other.

◗ Global variables enable functions to share common data, but such sharing pro-
vides the possibility of one function interfering with another. It’s a good policy
not to make a variable global unless there’s a clear need to do so.

◗ The addition-assignment operator (+=) provides a concise way to add a value to
a variable. For example:

n += 50; // n = n + 50

◗ C++ functions can use recursion—meaning they call themselves. (A variation
on this is when two or more functions call each other.) This technique is valid as
long as there is a case that terminates the calls. For example:

int factorial(int n) {
if (n <= 1)

return 1;
else

return n * factorial(n – 1); // RECURSION!

116 Chapter 4 Functions: Many Are Called

553

Symbols
-> (access class member) operator, 391, 476
+= (add and assign) operator, 477
- (change sign of) operator, 333, 476
-- (decrement) operator

associativity, precedence, and syntax of,
476

safe use of, 55
using with loops, 52, 70

" " (double quotes)
distinguishing strings from individual

characters, 185
in #iinclude syntax, 510

>= (greater than or equal to) operator. See
Greater than or equal to (>=) operator

!= (inequality) operator, 47, 477
, (join) operator

associativity, precedence, and syntax of,
477

as delimiters in text, 187
uses of, 482

<<= (left shift and assign) operator, 477
<= (less than or equal to) operator, 47, 477
*= (multiply and assign) operator, 477
.* (pointer-to-member) operator, 476
->* (pointer-to-member) operator, 476
>>= (right shift and assign) operator, 477
-= (subtract and assign) operator, 477
- (subtraction) operator, 342–343, 476

. (access class member) operator, 476
/= (divide and assign) operator, 477
/ (divide) operator, 476
// (double slashes), in comment syntax, 23–24
:: (scope) operator, 476, 478
; (semicolon)

class or data declaration ending with, 280
compound statements and, 36
termination of function prototypes, 119
termination of statements, 52–53
use in program syntax, 14

\ (backslash), 177
| (bitwise OR) operator, 477, 480
|| (logical OR) operator, 477
+ (addition) operator. See Addition (+)

operator
++ (increment) operator. See Increment (++)

operator
= (assignment) operator. See Assignment

operator (=)
== (equality) operator. See Equality operator

(==)
& (address) operator, 160, 321, 476
&= (bitwise AND and assign) operator, 477
! (logical negation) operator

associativity, precedence, and syntax
of, 476

swap function and, 161
types of Boolean operators, 54

Index

&& (bitwise AND) operator. See AND (&&)
operator

(concatenation) operator, 507
%= (modular divide and assign) operator, 477
% (modulus or remainder) operator

associativity, precedence, and syntax of,
476

declaring, 335–336
prime number function and, 92
random number generation and, 113
using in Odd-or-Even program, 41–42

() (function call) operator, 476
* (indirection operator), 149, 166, 476
* (multiply) operator, 476
?: (conditional) operator, 481, 506
[] (access array element) operator, 476
^= (bitwise XOR and assign) operator, 477
^ (bitwise XOR) operator, 477, 480
{} (braces). See Braces ({})
~ (bitwise negation) operator, 476, 481
< > (angle brackets)

correct interpretation of, 432
#iinclude syntax, 299–300, 510–511

<< (bitwise left shift or stream op) operator,
476, 481

< (less than) operator. See Less than (<)
operator

>> (bitwise right shift or stream op) operator,
476. 481

> (greater than) operator, 47, 477
>> (stream input) operator, 180

Numbers
16-bit integers (short), 244–245
2-D arrays, 142–143
32-bit

addresses, 148
integers (long), 244–245

64-bit
addresses, 148

Fibonacci numbers as 64-bit example,
250–254

integers (llong long), 244–245
literals (constants), in C++Ox

specification, 246–247

A
Abstract classes

declaring an abstract Printable class, 465
defined, 537
as a pattern for subclasses, 463
specifying and enforcing a set of services

(as an interface), 463–464
stream classes demonstrating

extensibility of OOP, 464–466
virtual functions in, 462

Access array element ([]) operator, 476
Access class member (->) operator, 476
Access levels

defined, 537
public, protected, and private, 446

ACK (acknowledgement signal), 513–514
Add and assign (+=) operator, 477
add function

adding arithmetic functions to Fraction
class, 300–305

refining in Fraction class, 347–348
Addition (+) operator

adding to Point class, 342–343
associativity, precedence, and syntax of,

476
declaring, 334
overloading in Fraction class, 348–349
using with references, 338–339

Address operator (&), 160, 476
Addresses

32-bit and 64-bit, 148
arr constant, 161–163
comparing address expressions to each

other, 163

554 Index

CPUs determining location by, 145
defined, 537
doubling variable whose address is

passed via pointer, 152–155
pointers and, 146
printing, 151–152

Advanced programming. See Programming,
advanced

Aggregates, for initializing arrays, 119
AI (Artificial intelligence), 35
Algorithms, in data evaluation, 4
Alphabetical lists, 393–395
American National Standards Institute (ANSI)

data types supported by, 483
defined, 537

AND (&&) operator
associativity, precedence, and syntax of,

477
operating on integers of same width, 480
testing a person's age (example of

Boolean logic), 55–56
types of Boolean operators, 54

Angle brackets (< >)
correct interpretation of, 432
#iinclude syntax, 299–300, 510–511

ANSI (American National Standards Institute)
data types supported by, 483
defined, 537

Applications, defined, 5, 537
argc, command-line argument, 222, 224–225
Arguments

catch statements, 239
command-line, 221–222
compared with pointers, 321
declaring functions and, 83, 85, 500
defined, 538
operators, 335
pointers, 172
references, 322–323

argv, command-line argument, 222
Arithmetic functions, adding to Fraction class,

300–305

Arithmetic operators
pointers and, 162
precedence of, 54

arr constant, in addressing, 161–163
Arrays

2-D, 142–143
allocating array of any size, 368–370
boundary problems in indexing, 141
Card Dealer #1 (example), 129–132
Card Dealer #2 (example), 132–136
Card Dealer #3 (example), 136–140
as container for range-based for, 257
distinguishing strings from individual

characters, 185–186
initializing, 119
linked lists compared with, 389
overview of, 117
pointers used in processing, 163–164
print_array function (example), 228–230
printing out elements (example),

121–123
range-based "for" (for each) in setting,

258–261
sorting with swap function, 156–161
of strings, 128–129
strings as arrays based on cchar type, 171
summary, 143–144
testing randomness with, 123–127
uses of, 117–119
zero-based indexes and, 119–120

Artificial intelligence (AI), 35
ASCII code

char type and, 171–172
corresponding to characters, 169
defined, 538
distinguishing strings from individual

characters, 185–186
extended codes for DEC, HEX, and

CHAR, 515
reading string input, 178
special meanings of nonprintable

characters, 513

555Index

ASCII code (continued)
standard codes for DEC, HEX, and

CHAR, 514
strings and, 19
text files vs. "binary" files, 206

Assignment operator (=)
copy constructors compared with, 380
equality operator (==) compared with,

36, 38–39
in expression syntax, 491–492
overview of, 349–350
precedence of, 166
return *this statement as last statement

in, 379–380
in statements, 25–26

Associativity
defined, 538
in evaluation of expressions, 166–167
of operators, 475–477

atof function, 183
atoi function, 183, 206
atoll function, 247–248
auto keyword

uses of, 261–262
variable modifiers, 499
working with exotic types and, 243

Avg(), 87–88

B
Backslash (\), indicating special meaning, 177
Backward compatibility

with C language, 281
defined, 538
issues with C, 312–313

Base 10 numbers. See Decimal notation
(base 10)

Base 16 numbers. See Hexadecimal notation
(base 16)

Base 2 numbers. See Binary notation (base 2)
Base 8 (Octal notation), 485

Base classes
access levels, 437–438
constructors (C++Ox only), 441–442
defined, 538
inheriting from, 435
principle of passing something specific

(subclass) to something more general
(base class), 466

subclasses not inheriting constructors
from, 440

base(), output stream function, 528
base_check keyword, in explicit overrides

(C++Ox only), 460–461
Basic language

adding OOP extensions to, 279
purpose of high-level languages, 7
"for" statement in, 79

Bauer, F. L., 424
BEL (bell), 513–514
Binary files

operations on, 208–211
reading data from, 214–217
text files vs., 206–208
writing data to, 211–214

Binary notation (base 2)
Fibonacci and, 255
floating-point data type and, 33
hexadecimal and decimal equivalents, 147

Bits, 538
Bitwise left shift or stream op (<<) operator,

476
Bitwise negation (~) operator, 476, 481
Bitwise operators

associativity, precedence, and syntax of,
476

logical operators compared with, 55
operating on integers, 480
uses of, 481

Bitwise right shift or stream op (>>) operator,
476, 481

556 Index

Bitwise XOR and assign (^=) operator, 477
Bitwise XOR (^) operator, 477, 480
Blocks. See Compound statements (blocks)
Bonacci, Leonardo (Fibonacci), 255
bool data type

array of bool items, 138–139
C++ support for, 51
converting logical operators to, 55
prime number function and, 92–93

boolalpha, 527
Boolean algebra, 53
Boolean values (true/false)

C++ support for bbool data type, 50–51
defined, 539
introducing short-circuit logic, 53–55
relational operators returning true or

false values, 47
testing a person's age (example of

Boolean logic), 55–56
Boundary checking, arrays and, 141
Braces ({})

in iif-else statements, 37–38
in initialization, 314–315
in program syntax, 13

Branch statements. See also Control
structures, 493

break statements
interrupting loops, 46, 60
syntax of control structures, 496
transferring control out of loop or

function, 231
BS (backspace), 513–514
Bubble sort algorithm, 156–157
Bytes

defined, 539
one byte per character in ASCII code,

170

C
C language

.h files, 511

backward compatibility with, 281,
312–313

C++ built on, 279
purpose of high-level languages, 7

C++, brief history of, 7, 279
C++ compilers, See Compilers
C++Ox specification

64-bit literals (constants), 246–247
auto keyword, 261–262
base class constructors, 441–442
challenges of llong long type, 247–248
consistent initialization, 314–315
data types supported by, 483
decltype keyword, 262
defined, 539
delegating constructors, 313–314
enum classes, 265–266
extended enum syntax, 266–267
Fibonacci numbers as 64-bit example,

250–254
formatting llong long numbers, 248–249
initializing members within a class,

309–310
localizing numbers, 254–255
new version of ffor loops, 69–70
nullptr keyword, 112, 187, 262–263
overview of features in, 243–244
range-based "for" (for each), 256–261
raw string literals, 273
Rock, Paper, Scissors game, 267–272
strongly typed enumerations, 263–265
summary, 273–275
supporting llong long int, 34, 244–246
user-defined literals, 357–359

C-strings. See Strings (C-strings)
Callback, 539
Calling functions

arguments in, 227–228
avg() example, 87–88
as expression, 86–87
implementation of, 325

557Index

Calling functions (continued)
object member functions, 179
overview of, 83
prototypes and, 235

Card dealer array examples
Card Dealer #1, 129–132
Card Dealer #2, 132–136
Card Dealer #3, 136–140

Case
case-sensitivity in compiling code, 11
Convert to Uppercase program

(example), 183–185
switch case statements, 232–234

Casts
associativity, precedence, and syntax of

cast operator, 476
defined, 539
new vs. old style for, 479

catch keyword, in exception handling,
238–239

cctype, 185
Celsius, converting to/from Fahrenheit, 22–26
Central processing units. See CPUs (central

processing units)
cerr, 526
Change sign of (-) operator, 333, 476
char*

converting to long long integers, 247–248
format of string literals, 273, 486
for string variables, 128–129

char type. See also Strings (C-strings)
8 bit, 245
ASCII codes for, 514–515
description and range of, 484
new string class and, 363
strings based on, 171–172
syntax of, 186

Characters
accessing individual characters in new

string type, 193

conversion and testing functions in
standard library, 519

distinguishing strings from individual
characters, 185–186

manipulating individual characters in a
string, 183–184

cin
adding values to variables, 19–20
description of stream objects, 526
file streams as alternative to, 197
getline, 179–180
string type and, 191

class keyword, 279
Classes

abstract. See Abstract classes
arithmetic functions added to, 300–305
constructors for, 317–320
copy constructors for, 324–329
declaring, 279–280, 502–503
defined, 540
destructors, 370–371
encapsulation and, 236
enum class, 265–266
exception class, 240
finding GCF of, 291–292
finding LCM of, 292
Fraction class example. See Fraction class
hierarchies for safe inheritance, 448–451
inheritance. See Inheritance
initializing members within (C++Ox

only), 309–310
inline functions of, 289–291
lists. See List classes
naming, 266
objects in, 277–278
operators for Fraction class, 352–357
operators for Point class, 340–348
operators for (Print function), 351–352
Point class example. See Point class
polymorphism. See Polymorphism

558 Index

principle of passing something specific
(subclass) to something more general
(base class), 466

private members of, 281–284
range-based for contained in, 257
relationship with objects and members,

284
stack class, 425, 427–428
streams. See Streams
strings. See String class
structures and, 281
subclasses. See Subclasses
summary, 305–306
support functions of, 293–296
syntax of class keyword, 279
testing, 284–286, 296–300

clog, 526
close()

closing files, 199
description of file I/O functions, 529

cmath library
accessing, 57
functions in, 520
including, 181

Code
defined, 5, 540
packaging with data in classes, 277–278
as program instructions, 1

Code reuse
inheritance and, 435
object containment and, 447–448

Command-line
arguments, 221–222
displaying files from, 223–226

Commas (,). See Join (,) operator
Comments, use in programs, 23–24
Compilers

as applications, 5
building a C++ program, 8–9
defined, 5, 540
function of, 3

ignoring comments, 24
installing, 10
modules and, 235
overloading and, 228
translating statements into machine

code, 170–171
Component models, in systems approach to

programming, 472
Compound statements (blocks)

defined, 540
for executing a series of things, 36
if-else used with, 37–38
for loops used with, 74
replacing control structures with, 231
syntax of, 492
while loops used with, 43–45

Computers
ability to make judgments, 35
doing only what you tell them, 1
storing text on, 169–170

Concatenation
defined, 551
strcat and sstrncat functions for, 172–174
working with string type and, 193
writing function for string class, 380–382

Conditional (?:) operator, 477
Conditions

in ffor loops, 68–69
in wwhile loops, 43–45

Console input, see ccin
Console stream objects. See Streams
const keyword

in declaring copy constructors, 324
function modifiers, 501
preventing changes to arguments while

passing, 340
variable modifiers, 499

Constants
64-bit literals, 246–247
advantages of predefined, 225–226
all literals are constants, 485

559Index

Constants (continued)
automating assignment of symbolic,

264–265
defined, 540
end line constant, 16
list of predefined, 512

Constructors
for base classes (C++Ox only), 441–442
cannot be virtual, 455
consistent initialization of (C++Ox

only), 314–315
copy constructors, 323–325
copy constructors for Fraction class,

325–329
default constructors, 310–313
defined, 540
delegating (C++Ox only), 313–314, 452
for Fraction class, 317–320
initializing members within a class

(C++Ox only), 309–310
initializing objects from strings,

329–331
for linked lists, 390–391
multiple (overloading), 309
overview of, 307–309
for Point class, 315–317
reference variables and arguments and,

321–323
for String class, 374
subclasses not inheriting, 440
summary, 331–332

Containers
range-based for (for each), 257
templates creating, 413

continue statements, 496
Control structures

defined, 540
do while, 231–232
else. See eelse
for. See ffor
if. See iif statements

switch case statements, 232–234
syntax of, 493
types of, 230–231
while. See wwhile

Convert to Uppercase program (example),
183–185

Cooked literals, 359
Copy constructors

assignment operator compared with, 380
deep copying, 377
defined, 541
for Fraction class, 325–329
member functions automatically

supplied by compiler, 349
overview of, 323
references and, 325
shallow copying, 376–377
syntax of, 324

Counting, loops used for, 67–68
cout

console output object, 14
description of stream objects, 526
file streams as alternative to, 197
polymorphism and extensibility of,

464–466
print function interacting with, 351–352
string type and, 191
use of data objects in C++, 7–8

CPUs (central processing units)
addresses of locations, 145
defined, 541
translating statements into machine code

prior to execution, 170–171
CR (carriage return), 513–514
cstdlib, 181
ctemp variable, for holding Celsius values,

19–20, 24–25

D
Data

arrays, 117

560 Index

conversion functions in standard library,
518

defined, 5
linking data structures using addresses,

146
packaging with code in classes, 277–278
pointers for sending large amounts of, 146
programs and, 1
storing via variables, 19–20
string data, 19

Data declaration
classes, 502–503
enumerations, 503–504
functions, 500–501
semicolon terminating, 280
variables, 498–500

Data members. See Members
Data types

classes creating, 277
comparing integers with floating point

data, 33–34
description and range of, 484
initializing while declaring, 307
introduction to, 20–22
of numeric literals, 485–486
operations on, 333
polymorphism and, 228
precision of, 484

dec, 527
Decimal notation (base 10)

ASCII codes, 514–515
Fibonacci and, 255
hexadecimal and binary equivalents, 147
numeric format of literals, 485

Decision making
Boolean values (true/false), 50–51
if and iif-else, 35–38
increment operator (++) and, 51–52
loops in, 43–46
odd or even, 39–41
optimizing Odd-or-Even program, 42

overview of, 33
print 1 to N loop example, 46–49
in programs, 34–35
short-circuit logic, 53–55
Subtraction Game example (NIM),

60–63
summary, 64–65
testing a person's age, 55–56
testing for prime numbers, 57–60

Declaration
of classes, 502–503
of classes (Point class example), 279–280
defined, 541
of enumerations, 503–504
of operators, 334–336
of pointers, 148–150

Declaration, of functions
overview of, 500–501
termination of function prototypes, 119
user-defined, 85

Declaration, of variables
assigning values while initializing, 49
avg() example, 87–88
on the fly with ffor loops, 74–75
local and global variables and, 93–95
overview of, 498–500
prior to use, 20
for string type, 189–190

decltype keyword, 243, 262
Decrement operator (--)

associativity, precedence, and syntax of,
476

safe use of, 55
using with loops, 52, 70

Deep copying, 377
Default constructors

defined, 541
member functions automatically

supplied by compiler, 349
supplying constructors vs. accepting

default, 310–313

561Index

#ddefine directive
localizing numbers, 254–255
overview of, 505–506
placing predefined constants with,

225–226
defined function, preprocessor directives, 507
Defining functions

avg() example, 87–88
defined, 541
overview of, 85–86

DEL (delete), 513–514
Delegating constructors (C++Ox only),

313–314, 452
delete operator

associativity, precedence, and syntax of,
476

class destructors and, 370–371
pointers to objects and, 365–366
releasing allocated memory, 364–365,

367, 370
Delimiters, in text, 186
Deprecate

defined, 541
setting null pointers without nnullptr

keyword, 263
Dereference, 542
Derived classes. See also Subclasses, 279, 541
Destructors

class destructors, 370–371
defined, 542
in String class, 374
virtual, 455

Dev-C++, 12
Dijkstra, E. W., 424
Directives. See Preprocessor directives
Directories, referencing disk files in, 199–200
Displaying text files, 203–206
Divisors, lowest divisor as prime number,

100–101
do while statements

as loop, 230

statement and conditions, 232
syntax of, 231, 494

Double-precision types. See ddouble
Double quotes (" ")

distinguishing strings from individual
characters, 185

in #iinclude syntax, 510
double type

arrays and, 117–118
comparing integers with floating point

data, 33–34
converting strings to, 183
"cooked" literals and, 359
description and range of, 484
as floating-point data type, 21–22
precision of, 484
range compared with iint, 127
reading binary data, 209–210
storing literals in, 485
using with ctemp and ftemp variables,

24–25
Double_it function, doubling variable with,

152–155
Dynamic memory allocation

allocating memory blocks with, 366–367
for array of any size, 368–370
new keyword and, 363–364
problems with, 368

E
#eelif directive, 507–508
else statements

as control structure, 231
in iif-else statements, 37–38
syntax of, 493

Encapsulation
defined, 542
fout object and, 198
private/public distinction and, 236

End users. See Users
#eendif directive, 508

562 Index

endl stream manipulator
description of, 527
for end line constant, 16

ends stream manipulator, 527
Enumerations

automating assignment of symbolic
constants, 264–265

enum classes, 265–266
enum declarations, 503–504
extended eenum syntax, 266–267
Rock, Paper, Scissors game, 267–272
strongly typed, 244, 263–265

eof (end of file) function, file I/O functions,
205, 529

Equality operator (==)
associativity, precedence, and syntax of,

476
compared with assignment operator (=),

36, 38–39
in Fraction class, 355–356
ordered lists and, 419
overview of, 350–351
precedence of, 166
in String class, 374
types of relational operators, 47

#eerror directive, 508
Errors. See also Exception handling

syntax errors and program-logic errors,
9–10

types of, 237
Escape sequences, strings, 177–178, 486–487
Euclid, 101–105
exception class, 240
Exception handling

examples of exceptions, 237
exceptions as runtime errors, 237
exceptions defined, 542
in small program, 238
throw statements and, 497
try-catch-throw approach to, 238–240

Expressions
evaluating in RPN, 422–423
function calls as, 86–87
precedence and associativity in

evaluating, 166–167
single quote vs. double quotes in syntax

of, 186
statements compared with, 52–53
syntax of, 491–492

Extensibility, of OOP, 464–466
extern declaration

sharing variables and, 235
for variable modifiers, 499–500

F
F suffix, representing ffloat format, 486
Factorial function

overview of, 90
rewriting as recursive function, 96

Factorization, of prime numbers, 96–100
Fahrenheit, converting to/from Celsius, 22–26
False/true. See Boolean values (true/false)
FF (form feed), 513–514
Fibonacci numbers, 250–254
File-error exceptions, 240
File I/O functions, 529–530
File mode flags, 530
File stream objects

associating with disk files, 198
including, 197

Filenames
entering from command-line, 221
prompts for, 202, 223
referencing disk files, 200

Files
binary operations, 208–211
displaying from command line, 223–226
displaying text files, 203–206
file stream objects, 197–199
reading binary data from, 214–217

563Index

Files (continued)
referencing disk files, 199–200
storing data in, 197
summary, 217–219
text files vs. "binary" files, 206–208
writing binary data to, 211–214
writing text to, 200–203

fill() function, output streams, 528
fixed, 237–240
fixed stream manipulator, 527
Flags

file mode flags, 530
seek direction flags, 530

float data type. See also Floating-point data
description and range of, 484
F suffix, 486
for floating-point data, 21–22
precision of, 484

FloatFraction class
complete version of, 442–445
implementing and testing, 438–440
inheriting base-class constructors,

441–442
problems with, 440–441
protected members of, 445–446
as subclass of Fraction class, 436–437
virtual functions in, 454–455

Floating-point data
comparing integers with, 33–34
converting strings to, 183
data types for, 20–22
decimal point in, 485
defined, 542–543
division of, 480
making a value persistent and

recalculated as needed, 453, 459–460
range and precision of, 484
reading binary data, 209–210

Flow control, in loops. See also Control
structures, 37–38, 48

flush() function, streams, 528

flush stream manipulator, 527
Folders, referencing disk files in, 199–200
For each. See Range-based for (for each)
for loops

comparable statements in other
languages, 79–80

comparing with wwhile loops, 71–72
compound statements and, 74
counting with, 67–68
declaring variables on the fly, 74–75
examples, 70–71
overview of, 67
printing numbers from 1 to N with ffor

loop, 72–73
specifying initializer, condition, and

increment values, 68–69
summary, 80–81
swap function and, 157–161
testing for prime numbers, 75–79
testing randomness with arrays, 126–127
true/false values in, 80
using with arrays, 121–123

for statements
as control structure, 231
syntax of, 494–495

Fortran, 120
fout object, output streams and, 198–200
Fraction class

arithmetic functions added to, 300–305
complete version of, 352–357
constructors for, 317–320
copy constructor for, 325–329
finding GCF of, 291–292
finding LCM of, 292
initializing objects from strings, 329–331
inline functions of, 289–291
operators for, 343–348, 352–357
overview of, 286–289
support functions of, 293–296
testing, 296–300
this keyword used with, 378

564 Index

Friend functions, 337–338
fstream

for generic file stream, 198
including, 201

ftemp variable, for holding Fahrenheit values,
19, 24–25

Functions
arithmetic functions added to Fraction

class, 300–305
avg(), 87–88
C-strings, 517–518
calling, 86–87, 179
character conversion, 519
character-testing, 519
data-conversion, 518
declaring, 85, 500–501
defining, 85–86
Euclid's algorithm for GCFs, 101–106
friend functions, 337–338
GCF function added to Fraction class,

291–292
inline, 289–291
LCM function added to Fraction class,

292
local and global variables and, 93–95
math, 520
modules for placing in different files,

234–235
normalize added to Fraction class,

293–296
operator. See Operators
overloading, 227–230
overview of, 83–84
prime factorization, 96–100
prime number, 90–93
in programs, 89–90
random number generator, 110–113
randomized, 521
recursive, 95–96, 106–110
single-character, 519
strftime format, 523–524

string manipulation, 172–174
in Subtraction Game, 113–115
summary, 115–116
support functions of Fraction class,

296–300
time functions, 521–523
virtual. See Virtual functions
zero_out_array, 165–167

G
GCFs (greatest common factors)

adding GCF function to Fraction class,
291–292

defined, 543
Euclid's algorithm for, 101–103
how it works, 103–106

Get a Number program, string example,
180–183

get() function, stream input, 528
get_divisors function, 99–100
get_int function, 214
getline() function

description of, 528
reading string input, 179–180, 182
retrieving line of input with, 176
working with string type and, 192

get_number function, 230
Global functions

defining operators as, 334
in Fraction class, 355–356
operators as, 336–338

Global variables
declaring functions and, 93–95
defined, 543
initializing to zero, 119
necessity of, 95

go to statements, 497
Graphical-user interfaces (GUIs)

OOP and, 279
safe inheritance and, 448–451

Greater than (>) operator, 47, 477

565Index

Greater than or equal to (>=) operator
associativity, precedence, and syntax of, 477
types of relational operators, 47
using with ffor loops, 70

Greatest common factors. See GCFs (greatest
common factors)

GUIs (graphical-user interfaces)
OOP and, 279
safe inheritance and, 448–451

H
.h files, C language, 511
Header files

cstring and string in, 224
defined, 543
#iinclude and, 510

hex stream manipulator, 527
Hexadecimal notation (base 16)

ASCII codes, 514–515
in C++Ox specification, 485
decimal and binary equivalents, 147
storing numeric variables as, 145

High-level languages, comparing C++ with
other, 7–8

I
I/O (input/output)

console stream objects, 525–526
file I/O functions, 529–530
functions, 528
stream classes demonstrating

extensibility of OOP, 464–466
stream manipulators, 526–527

IDEs (integrated development environments)
defined, 543
entering program statements with, 8

#iif directive, 508–509
if-else statements

syntax of, 3, 493
testing a value against a series of target

values, 233

use with compound statements, 36–38
if statements

as control structure, 231
syntax of, 35
true/false values in, 80
use with compound statements, 36–38

#iifdef directive, 510
ifstream

file-input streams, 198
including, 201
turning off file-error exceptions, 240

Implementation, defined, 543
#iinclude directive

cctype, 185
cstring, 175
for function declarations, 235
iostream and fstream, 201
list templates, 415
overview of, 510–511
string type, 189
supporting specific parts of standard

library, 15
syntax options, 299–300
using at beginning of Visual Studio

programs, 13
Increment (++) operator

associativity, precedence, and syntax of,
476

precedence of, 166
reducing keystrokes with, 67
using with loops, 44–45, 51–52, 68–70

Incrementing
in ffor loops, 68–69
in wwhile loop, 44–45

Indexes
boundary problems in, 141
comparing pointer references with, 163
data by numbers (arrays), 117–118
defined, 543
one-based, 120
zero-based, 119–120

566 Index

Indirection
defined, 543
indirection-member operator (->), 391
indirection operator (*), 149, 166

Inequality (!=) operator
associativity, precedence, and syntax of,

477
types of relational operators, 47

Infinite loops
defined, 544
for exiting files, 205
overview of, 46

Infix (Standard) notation, 423
Inheritance

of base class constructors (C++Ox only),
441–442

defined, 544
in FloatFraction class, 442–445
hierarchies for safe, 448–451
implementing and testing in

FloatFraction class, 438–440
interfaces implemented via, 462
object containment and, 447–448
overview of, 435
problems in FloatFraction class, 440–441
protected members and, 445–446
public keyword for qualifying base

classes, 437–438
subclassing, 435–437
summary, 451–452
virtual functions and, 461

Initialization. See also Constructors
of arrays, 119
assigning variable values during, 49
consistency of, 314–315
of Fraction objects from strings, 329–331
initializer values in ffor loops, 68–69
of types while declaring, 307

Inline functions
addition (+) operator as, 340
cannot be virtual, 455

constructors as, 308
defined, 544
of Fraction class, 289–291
function modifiers, 501

Input stream functions. See also I/O
(input/output), 528

insert function, member functions, 421
Instance/instantiation

abstract classes cannot be used for,
462–463

defined, 544
int data type. See also Integer data

comparing pointer values with iint
variables, 151–152

converting strings to, 183
"cooked" literals and, 359
description and range of, 484
natural integer type, 245–246
pointer to, 148
range compared with ddouble, 127
reading binary data, 209–210
storing numbers with, 485
swapping values of two iint variables,

155–156
syntax of, 34

Integer data
address expressions and, 162
char type and, 171
comparing with floating point data,

33–34
converting strings to, 183
data types, 20–21
defined, 544
division of, 480
get_int function, 214
reading binary data, 209–210
short, long, and long long, 244–245
signed and unsigned, 245
suffixes in representation of, 486
two's complement format for signed

integers, 487–489

567Index

Interfaces
abstract classes for specifying and

enforcing a set of services, 463–464
defined, 544
implementing through class inheritance,

462
relationship between GUIs and OOP, 279
safe inheritance in GUIs, 448–451

ios::app, file mode flags, 530
ios::ate, file mode flags, 530
ios::beg, seek direction flags, 530
ios::binary, file mode flags, 213, 530
ios::cur, seek direction flags, 530
ios::end, seek direction flags, 530
ios::in, file mode flags, 216, 530
ios::out, file mode flags, 213, 530
ios::trunc, file mode flags, 530
is_open(), description of file I/O functions, 529
Iteration. See also Loops

applied to Fibonacci numbers, 250
creating iterators for List template,

416–418, 534
defined, 544
iterative approach to linked list, 400
pointers compared with iterators, 418
recursion compared with, 401–402

Iterators, 416-418, 534

J
join (,) operator

associativity, precedence, and syntax of,
477

as delimiters in text, 187
uses of, 482

K
Keywords

defined, 545
program syntax and, 3
use by high-level languages, 7
variable names and, 29

L
L suffix, representing llong int format, 486
Last-in-first-out. See LIFO (last-in-first-out)
Late binding, resolving address of virtual

functions at runtime, 472
LCM (lowest common multiple)

adding LCM function to Fraction class,
292

computing from greatest common
factors (GCFs), 101

defined, 545
Left shift and assign (<<=) operator, 477
left stream manipulator, 527
Less than (<) operator

associativity, precedence, and syntax of,
477

ordered lists and, 419
types of relational operators, 47

Less than or equal to (<=) operator, 47, 477
LF (linefeed), 513–514
Libraries, C++

math library, 57
standard library, 15
STL (Standard Template Library). See

STL (Standard Template Library)
LIFO (last-in-first-out)

defined, 545
function calls, 96
stacks, 425

#lline directive, 511
Linked lists

alphabetical, 393–395
implementing, 391–393
list template for, 413
memory leaks in, 399–400
node design for, 390–391
overview of, 389
printing out names in alpha order, 395–399
smart pointers for cleaning up (C++Ox

only), 400–401
summary, 411–412

568 Index

Linkers, building a C++ program, 8–9
List classes (<list>)

creating, 415–416
in STL, 533–534
syntax of, 415

List template
continual sorting, 421–422
creating iterators for, 416–418
creating List class for, 415–416
overview of, 413–414
range-based for (for each) used in place

of iterators, 418
writing ordered list program, 419–421

Lists, as container for range-based for, 257
Literals

64-bit literals (constants), 246–247
cooked literals, 359
data types of, 485–486
defined, 545
overview of, 357
raw string literals, 244, 273, 358
user-defined, 330–331, 464

LL suffix, representing llong long format, 486
Local variables

declaring functions and, 93–95
defined, 545

Localizing numbers, 254–255
Logical (Boolean) operators

determining what is true, 55
precedence of, 54
testing a person's age (example of

Boolean logic), 55–56
type of, 53–54

Logical negation (!) operator
associativity, precedence, and syntax of,

476
swap function and, 161
types of Boolean operators, 54

long double int, 484
long int

32-bit, 244–245

description and range of, 484
l suffix for, 486

long long int
64-bit, 244–245
challenges of, 247–248
C++Ox specification supporting, 34,

244–246
description and range of, 484
formatting llong long numbers, 248–249
lL suffix for, 486
overview of, 243
syntax of, 245

Loops
2-D arrays and, 142–143
in Card Dealer #3, 139
counting with, 67–68, 545
defined, 545
do_while, 230–232
for. See ffor loops
increment operator (++) used in, 51–52
infinite, 46, 205
in prime factorization, 99–100
print 1 to N example, 46–49
testing randomness with, 126–127
using sstrtok function with, 188
using swap function for sorting, 157–161
using with arrays, 117, 121–123
while loops, 43–45

Lowest common multiple. See LCM (lowest
common multiple)

Lukasiewicz, Jan, 424
Lvalue, 545

M
Machine code

array indexing and, 120
defined, 5, 545–546
high-level languages and, 7
native language of computer (1s and 0s), 3
translating statements into, 170–171

Magic numbers, minimizing appearance of, 254

569Index

main function
defined, 546
prompting for filenames, 202

Main memory (RAM)
defined, 546
nonpersistence of, 197

Math library (cmath)
accessing, 57
functions in, 520
including, 181

Matrix, 2-D arrays and, 142–143
MAX_PATH, setting for filename length, 202
Member functions

constructors as, 307
declaring for Point class, 282–283
defined, 546
destructors as, 370
of Fraction class, 287
friend functions and, 337–338
inlining, 290–291
in List classes (<list>), 534
operators as, 333–334
overriding, 453–454
push_back, 415
push_front, 416
returning existing objects vs. returning

new objects, 382
sort, 421
in Stack classes (<stack>), 536
in string class (<string>), 532–533
syntax of, 283

Members
assigning values to class data fields, 280
defined, 541, 546
initializing within a class (C++Ox only),

309–310
private, 281–284
protected, 445–446
public, 279
relationship with objects and classes, 284
restricting access to, 287
structures and, 281

Memory
allocating blocks of, 366–367
defined, 546
dynamic allocation. See Dynamic

memory allocation
RAM (random access memory), 197

Memory leaks
in linked lists, 399–400
overview of, 368

Microsoft Visual Studio, 12–13
Minus (-) operator. See Change sign of (-)

operator
Modules

advantages of multiple, 235–236
defined, 546
overview of, 234
source files as, 241

Modulus or remainder operator (%)
associativity, precedence, and syntax of, 476
declaring, 335–336
prime number function and, 92
random number generation and, 113
using in Odd-or-Even program, 41–42

mult function
adding arithmetic functions to Fraction

class, 300–305
refining in Fraction class, 347–348

Multi-dimensional arrays, 142–143
Multiple constructors (overloading), 309
Multiple modules, 234–236
Multiply and assign (*=) operator, 477
Multiply (*) operator, 476
MyStack class, Tower of Hanoi example

creating, 403–404
using, 404–405

N
NAK (no acknowledgment), 513–514
Namespaces, sstd namespace, 414
Nesting

defined, 546
nested loops, 160

570 Index

new operator
allocating memory blocks with, 366–367
associativity, precedence, and syntax of,

476
creating node with, 391
dealing with problems in memory

allocation, 368
dynamic memory allocation and,

363–364
example allocating array of any size,

369–370
pointers to objects and, 365–366
syntax of, 315

Newline character
for advancing to next print line, 16–18
defined, 546

NIM (Subtraction Game)
decision making example, 60–63
function for enhancing, 113–115

noboolalpha stream manipulator, 527
Nodes, designing for linked lists, 390–391
Normalize function

adding support functions to Fraction
class, 293–296

overriding, 453–454, 457, 459–460
set function calling, 350

noshowbase stream manipulator, 527
noshowpoint stream manipulator, 527
NOT (!) operator. See Logical negation (!)

operator
nounitbuf stream manipulator, 527
nouppercase stream manipulator, 527
Null-terminated strings, 189
NULL values

NUL character code, 513–514
random number generator and, 112
use with sstrtok() function, 187
use with ttime() function, 112

nullptr keyword
in C++Ox specification, 112, 187

linked lists and, 390–391
setting null pointers with, 244
uses of, 262–263

num
protected members of FloatFraction

class, 445–446
variable names and, 28

Numbers
base 10. See Decimal notation (base 10)
base 16. See Hexadecimal notation (base

16)
base 2. See Binary notation (base 2)
converting numeric values into text

characters, 169–170
counting, 67–68
Fibonacci numbers, 250–254
function for prime factorization, 96–100
function for prime numbers, 90–93
Get a Number program (example),

180–183
get_number function, 181
localizing, 254–255
lowest divisor as prime number, 100–101
numeric data types, 20–21
numeric expressions in single quotes,

186
printing from 1 to N with ffor loop,

72–73
printing from 1 to N with wwhile loop,

46–49
random number generator, 110–113
storing, 485
testing for prime numbers with ffor

loops, 75–79
testing for prime numbers with wwhile

loops, 57–60

O
Object containment, as alternative to

inheritance, 447–448

571Index

Object independence. See Polymorphism
Objects

built-in behaviors, 453
class destructors, 370–371
in classes, 277–278
console stream objects, 525–526
defined, 178–179, 546
as individual data items within classes, 277
initializing from strings, 329–331
pointers to, 365–366
quasi-intelligence of, 278
relationship with classes and members,

284
this keyword as pointer to current object,

378
oct stream manipulator, 527
Octal notation (base 8), 485
Odd-or-Even program, 39–42
Offsets, arrays as measure of, 119–120
ofstream (file-output), 198–200
One-based indexing, 120, 547
OOP (object-oriented programming)

advantages of, 278
classes in, 277
comparing C++ with C, 7
defined, 547
history of, 278–279
linked list example. See Linked lists
multiple modules and, 236
object independence. See Polymorphism
overloading and, 228
stream classes demonstrating

extensibility of, 464–466
system orientation of, 472
Tower of Hanoi animation example. See

Tower of Hanoi, animated
using objects without knowing type or

what function it calls, 470–471
open(), file I/O function, 529
Operand, 547

operator+ function, writing for String class,
381–386

Operators. See also by individual type
associativity, precedence, and syntax of,

476–477
declaring, 334–336
defined, 547
for Fraction class, 343–348, 352–357
as global functions, 336–338
overloading, 228, 348–349
for Point class, 340–343
print function for class, 351–352
in Random-Access Write example, 213
references used with, 338–340
summary, 360–362
syntax of, 333
user-defined literals (C++Ox only),

357–359
Optimization, of programs, 26–27
OR (||) operator

in Subtraction Game example (NIM), 63
types of Boolean operators, 54

Ordered list program, 419–421
ostream class, 351–352
Output stream functions. See also I/O

(input/output), 528
Overloading

constructors, 309
defined, 547
functions, 227–228
object orientation and, 228
operators, 335, 348–349
print_array function (example), 228–230

override keyword, 461
Overriding

member functions, 453–454
normalize function, 453–454, 457,

459–460
requiring explicit (C++Ox only),

460–461

572 Index

P
Pascal

adding OOP extensions to, 279
purpose of high-level languages, 7

Pathnames, in referencing disk files, 200
peek(), stream input function, 528
Performance penalty, in use of virtual

functions, 455–456
Persistent memory

defined, 547
nonpersistence of RAM, 197
polymorphism and, 459–460

Placeholders, program syntax and, 3
Point class

constructors for, 315–317
copy constructors for, 324
declaring, 279–280
operators for, 340–343
private members of, 281–284
testing, 284–286

Pointer arithmetic, 162
Pointer indirection (*), 149, 166
Pointer-to-member (->*) operator, 476
Pointer-to-member (.*) operator, 476
Pointers

array processing and, 163–164
assigning values to pointer variables,

161–163
comparing pointer values, 151–152
concept of, 146
declaring and using, 148–150
defined, 547
delete, 364–365
double_it function and, 152–155
iterators compared with, 418
linked lists and, 391–393
new, 364
null, see nnullptr keyword
to objects, 365–366
overview of, 145–146
recasting, 209

smart pointers (C++Ox only), 400–401
string manipulation functions and, 172
summary of rules regarding, 168
swap function and, 155–156
swap function for sorting arrays,

156–161
this keyword, 378
zero_out_array function, 165–167

Polish Notation. See also RPN (Reverse Polish
Notation), 424

Polymorphism
abstract classes, 462–464
benefits of OOP, 278
defined, 548
incomplete type information and, 228
making a floating point value persistent

and recalculating as needed, 459–460
overriding member functions and,

453–454
Printable class example, 466–470
pure virtual functions, 461–462
requiring explicit overrides (C++Ox

only), 460–461
revised FloatFraction class using virtual

functions, 456–458
stream classes demonstrating

extensibility of OOP, 464–466
summary, 472–473
system orientation of OOP and, 472
trade offs in use of virtual function calls,

455–456
using object without knowing type or

what function it calls, 470–471
virtual functions in FloatFraction class,

454–455
Precedence

defined, 548
in evaluation of expressions, 166–167
of operators, 54, 476

Precision of data types, 484
precision(), output stream function, 528

573Index

Predefined constants
advantages of, 226
list of, 512
use of, 225

Preprocessor directives
((concatenation) operator, 507
#ddefine. See #ddefine directive
defined function, 507
definition of, 542
#eelif, 507–508
#eendif, 508
#eerror, 508
#iif, 508–509
#iifdef, 510
#iinclude. See #iinclude
#lline, 511
overview of, 505
#uundef, 511

Prime factorization function, 96–100
Prime numbers

function for, 90–93
lowest divisor as, 100–101
testing for with ffor loops, 75–79
testing for with wwhile loops, 57–60

Print function, as class operator, 351–352
Printable class example, true polymorphism

in, 466–470
Print_array function, example of function

overloading, 228–230
Printing

advancing to next print line (newline),
16–18

array elements, 121–123
building ability to print into objects, 465
multiple line programs, 16–18
names in alpha order, 395–399
numbers from 1 to N with ffor loop,

72–73
numbers from 1 to N with wwhile loop,

46–49
printing a message (example), 11–14

private keyword
access levels in C++, 446
in class declaration, 502

Private members
access levels in C++, 446
of Fraction class, 287
friend functions and, 337–338
of Point class, 281–284

Private/public distinction, encapsulation and,
236

Procedures. See Functions
Processors. See CPUs (central processing

units)
Program-logic errors

exception handling, 237
testing for, 9–10

Programming
computer do only what you tell them, 1
determining what a program will do, 1–2
exercises, 15
printing a message (example), 11–14
writing C++ statements, 2–3

Programming, advanced
advantages of predefined constants, 226
command-line arguments, 221–222
displaying files from command line,

223–226
do_while loops, 230–232
exception handling, 237–240
multiple modules, 234–236
overloading functions, 227–228
overview of, 221
print_array function (example), 228–230
summary, 240–242
switch case statements, 232–234

Programs
building a C++ program, 8–10
comments in, 23–24
compared with applications and code, 5
decision making in, 34–35
defined, 6, 548

574 Index

determining what a program will do, 1–2
as list of things for computer to do, 1
optimization of, 26–27
printing multiple line programs, 16–18

Projects, Microsoft Visual Studio, 12–13
protected keyword

in class declaration, 502
overriding functions and, 455

Protected members, of FloatFraction class,
445–446

Prototypes
avg() example, 87–88
calling functions and, 235
declaring functions, 85
declaring global functions, 336
defined, 548
ending with semicolon, 119
of Fraction class, 288–289
syntax of, 501

Pseudocode, 3
Pseudorandom sequences, 112
public keyword

access levels in C++, 446
in class declaration, 502
specifying access level for base classes,

437–438
Public members

access levels in C++, 446
declaring classes and, 280
of Fraction class, 287
of structures, 281

Public/private distinction, encapsulation and,
236

Pure virtual functions. See also Virtual
functions, 461–462, 548

push function, 433
push_back member function, 415
push_front member function, 416
put(), output stream function, 528
putback(), input stream function, 528

Q
Quotation marks (" ")

distinguishing strings from individual
characters, 185

in #iinclude syntax, 510

R
RAM (random access memory)

defined, 546
nonpersistence of, 197

rand function
in Card Dealer #2, 134
for random number generation, 112–113
testing randomness with arrays, 123–127

Random access
Random-Access Read example, 214–217
Random-Access Write example, 211–214

Random access memory (RAM)
defined, 546
nonpersistence of, 197

Random number generator, 110–113
Randomized functions, in standard library,

521
Randomness, testing with arrays, 123–127
Range-based for (for each)

defined, 243
overview of, 256–258
setting array using, 258–261
using with List template, 418

Ranges of data types, 484
Rational number class. See Fraction class
Raw string literals

in C++Ox specification, 273
defining, 358
overview of, 244

read()
description of input stream functions,

528
input and output of binary data and, 210

readfile commands, 224

575Index

Reading
binary data from files, 214–217
string input, 178–180

Records, finding by number, 213–214
Recursion

applying to Fibonacci numbers, 250
defined, 548
function calling itself, 95–96
iteration compared with, 401–402
prime factorization, 96–100
Tower of Hanoi puzzle, 106–110, 408

References
copy constructors and, 325
defined, 548–549
operators used with, 338–340
reference arguments, 322–323
reference variables, 321–322

register variable modifier, 499–500
reinterpret_cast operator, 209
Relational operators

Boolean operators, 50
precedence of, 54
returning true or false values, 47

return statements
returning values with, 18
syntax of control structures, 497
transferring control out of loop or

function, 231
Return *this statement, 379–380
Return values

compared with pointers, 321
declaring functions, 85
defining functions, 85–86
from functions, 83

Reusable code
inheritance and, 435
object containment and, 447–448

Reverse Polish Notation. See RPN (Reverse
Polish Notation)

right shift and assign (>>=) operator, 477
right stream manipulator, 527

Rock, Paper, Scissors game, 115, 267–272
RPN (Reverse Polish Notation)

designing calculator for, 422–424
history of Polish Notation, 424
RPN program, 428–432
using stack for, 424–426
using STL stack for, 427–428

Runtime errors, 237

S
Scaling, pointers and, 162
scientific, description of stream manipulators,

527
Scientific notation, 485
Scope

associativity, precedence, and syntax of,
476

defined, 549
uses of Scope (::) operator, 478

Seek direction flags, file I/O functions, 530
seekg(), file I/O function, 529
seekp(), file I/O function, 529
seekp function, for moving file pointer, 214,

216
Set function, normalize function called by, 350
Shallow copying, 376–377
shared_ptr keyword, for smart pointers,

400–401
short

16-bit integers (short), 244–245
description and range of, 484

Short-circuit logic, logical (Boolean) operators
and, 54–55

showbase stream manipulator, 527
showpoint stream manipulator, 527
showpos stream manipulator, 527
signed char, 484
signed int

overview of, 247
two's complement format for, 487–489
types of integer data, 245

576 Index

Signed numbers, representation of, 487-489
Single-character functions, in standard library,

519
Single-precision types. See ffloat
Single quotes (' '), distinguishing strings from

individual characters, 185
sizeof operator

associativity, precedence, and syntax of,
476

returning size of specified type, variable,
or array, 211

uses of, 478–479
Smart pointers (C++Ox only), 400–401
sort

as power member function, 421
sorting lists, 421–422

Source code
compiling as machine code, 5
defined, 6
storing as text file, 170

Source files
defined, 549
modules and, 235, 241

Space penalty, in use of virtual functions,
455–456

Spaces, as delimiters in text, 187
Spaghetti code, 497
sqrt function

in math library, 57
testing for prime numbers with ffor

loops, 75–79
testing for prime numbers with wwhile

loops, 57–60
Square roots, Get a Number program

(example), 180–183
Stack classes (<stack>), in STL, 425, 427–428,

535–536
Stacks

defined, 549
of function calls, 96

Standard (infix) notation, 423
Standard library

character conversion functions, 519
character-testing functions, 519
data-conversion functions, 518
math functions, 520
overview of, 15
randomized functions, 521
single-character functions, 519
str functions, 175
strftime function, formats of, 523–524
strtok (string token) function, 186–188
time functions, 521–523

Statements. See also by individual type
compound. See Compound statements

(blocks)
defined, 6, 549
entering program statements, 8
expressions compared with, 52–53
functions grouping related, 83
replacing control structures with

statement blocks, 231
switch case statements, 232–234
syntax of, 492
translating into machine code, 170–171
writing C++ statements, 2–3

static
function modifiers, 501
variable modifiers, 499–500

Static storage class, 549
Static_cast conversion, 265–266
std namespace, 414
STL (Standard Template Library)

continual sorting of list, 421–422
creating iterators for list, 416–418
creating List class, 415–416
defined, 549
List classes (<list>), 533–534
list template, 413–414
object-orientation of, 279

577Index

STL (Standard Template Library) (continued)
overview of, 413
range-based for (for each) used in place

of iterators, 418
Reverse Polish Notation (RPN)

calculator, 422–424
RPN program, 428–432
stack classes (<stack>), 425, 427–428,

535–536
string (C-strings) functions, 517–518
string class (<string>), 531–533
substream (substr) class, 248–249
summary, 432–433
writing ordered list program, 419–421
writing templates, 414–415

Storage
controlling using enum classes, 266–267
of data in files, 197
Storage classes, 550

strcat function, concatenation of stings,
172–173

strcmp function, comparing strings, 375
strcpy

building strings, 176
copying strings, 172–173

Stream classes
demonstrating extensibility of OOP,

464–466
Printable class example, 466–470

Stream input operator (>>), 180
Streams

console input. See ccin
console output. See ccout
console stream objects, 525–526
file I/O functions, 529–530
input stream functions, 528
manipulators, 526–527
output stream functions, 528
substream (substr) class, 248–249

Strftime function, in standard library, 523–524

String class (C-strings)
complete version of, 382–386
deep copying, 377
shallow copying, 376–377
summary, 387–388
writing concatenation function for,

380–382
writing own, 371–376

String class (<string>), 189–191, 531–533
String concatenation

defined, 551
strcat and sstrncat functions for, 172–174
working with string type and, 193
writing concatenation function for string

class, 380–382
String literals

defined, 550
format and escape sequences, 486–487
raw string literals, 244, 273

String objects, as container for range-based
for, 257

Strings (C-strings)
arrays in Card Dealer #1, 129–132
arrays of, 128–129
based on cchar type, 171–172
building, 174–177
building with STL string type, 191–193
comparing (sstrcmp), 375
Convert to Uppercase program

(example), 183–185
defined, 539, 550
distinguished from individual characters,

185–186
escape sequences, 177–178
format and escape sequences, 486–487
functions for manipulating, 172–174
functions in standard library, 517
Get a Number program (example),

180–183
including, 175, 181

578 Index

initializing Fraction objects from, 329–331
overview of, 169
reading string input, 178–180
storing text on computers, 169–170
string literals and string variables, 128
strtok function for breaking up input,

186–188
summary, 194–195
of text, 18–19
text string data, 20–21

Strings (<string>)
building strings with, 191–193
declaring variables of, 189–190
input and output and, 191
new in C++, 189
new STL string class, 189–191
other operations on, 193–194
other operations on STL string type,

193–194
working with variables of, 190–191

strlen function, returning string length, 172
strncat function, concatenation of strings,

172, 174
strncpy function, copying strings, 172, 174
Strongly typed enumerations, 244, 263–265
Strousup, Bjarne, 243, 279
strtok (string token) function

for breaking up text input, 186–188
returning null pointer, 330
setting using nnullptr keyword, 263

struct keyword
declaring structures, 281
issues with, 312–313

Structures, classes compared with, 281
Subclasses. See also Inheritance

abstract classes and, 463–464
declaring, 279
defined, 550
how to subclass, 435–437
not inheriting constructors from base

class, 440

principle of passing something specific
(subclass) to something more general
(base class), 466

virtual functions and, 455
Subroutines. See Functions
substream (substr) class, 248–249
Subtraction (-) operator

adding to Point class, 342–343
associativity, precedence, and syntax of,

476
Subtraction Game (NIM)

decision making example, 60–63
function for enhancing, 113–115

Suffixes
operators, 358–359
in representation of integer values, 486

Swap function
overloading, 227–228
sorting arrays with, 156–161
swapping values of two iint variables,

155–156
switch-case statements

in advanced programming, 232–234
syntax of, 495–496

Symbols
automating assignment of symbolic

constants, 264–265
defined, 550
enum classes and, 266, 503
literals compared with, 485

Syntax
errors, 9–10, 237
summary of, 491-504

Systems
OOP and, 472
polymorphism and, 465

T
tellg() function, file I/O, 529
tellp() function, file I/O, 529
temp variable, 155–156

579Index

Temperature, converting Celsius to/from
Fahrenheit, 22–26

Templates. See also STL (Standard Template
Library)
defined, 550
as generalized classes, 413
writing own, 414–415

Testing
Fraction class, 296–300
Point class, 284–286
for prime numbers, 57–60
programs, 9–10
randomness with arrays, 123–127

Text
delimiters in, 186
displaying text files, 203–206
storing on computers, 169–170
strings of, 18–19
strtok function for breaking up input,

186–188
text files vs. binary files, 206–208
text files vs. "binary" files, 206–208
writing to files, 200–203

Text editors
displaying text files, 203–206
entering program statements with, 8
viewing file contents, 201

Text string data. See Strings (C-strings)
this keyword

as pointer to current object, 378
return *this statement as last statement

in assignment operator function,
379–380

throw statements
exception handling and, 239–240
syntax of control structures, 497

Time functions, in standard library, 521–523
Tokens, substrings, 186
tolower (c) function, 184–185
toupper (c) function, 184–185

Tower of Hanoi, animated version
building, 405–411
creating MyStack class, 403–404
overview of, 402–403
summary, 411–412
using MyStack class, 404–405

Tower of Hanoi, basic version, 106–110
Trigonometric functions, 520
True/false. See Boolean values (true/false)
try keyword, exception handling and, 238–240
Two's complement

defined, 551
format for signed integers, 487–489
integers and, 33

Type casts. See Casts
Type checking, in OOP, 471
Types. See Data types

U
U suffix, representing uunsigned int format,

486
ULL suffix, representing uunsigned long long

format, 486
#uundef directive, 511
Unicode, 170
unitbuf, stream manipulator, 527
unsigned char, 484
unsigned int

description and range of, 484
overview of, 247
types of integer data, 245
u suffix, 486

unsigned long, 484
unsigned long long, 484, 486
unsigned short, 484
uppercase, stream manipulator, 527
User-defined functions, 85
User-defined literals (C++Ox only), 357–359,

464
Users, defined, 6, 542

580 Index

using statement
accessing objects with, 16
working with string type and, 192

V
Variables

assigning values to pointer variables,
161–163

content vs. address of, 151–152
declaring, 498–500
declaring on the fly, 74–75
declaring prior to use, 20
declaring with aauto keyword, 261–262
defined, 551
doubling with double_it function,

152–155
local and global variables, 93–95
naming rules and conventions, 28–29
sharing, 235
storing data with, 19–20
string variables, 128, 189–191
swapping values of two iint variables,

155–156
Virtual functions

in abstract classes, 462–463
declaring member functions that might

be overridden vvirtual, 454–455
defined, 551
late binding, 472
pure virtual functions, 461–462
restrictions on use of, 455
revised FloatFraction class using, 456–458
trade offs in use of, 455–456

virtual keyword, as function modifiers,
454–455, 501

Visual Basic, 7

volatile, variable modifier, 499–500
vtable pointer, for calling virtual functions, 456

W
wcerr, stream object, 526
wchar_t, 484
wcin, stream object, 526
wclog, stream object, 526
wcout, stream object, 526
while loops

in Card Dealer #3, 140
iterative approach to linked list, 400
for loops compared with, 71–72
overview of, 43
print 1 to N loop example, 46–49
pseudo code for printing numbers from

1 to N, 43–45
syntax of, 69
true/false values in, 80
using sstrtok function with, 188

while statements, as control structure, 231,
493–494

width() function, stream output, 528
Word processors, 201
write() function

description of output stream functions, 528
input and output of binary data and, 210

Writing
binary data to files, 211–214
text to files, 200–203

Z
Zero-based indexes

arrays and, 119–120
defined, 551

Zero_out_array function, 165–16

581Index

	Contents
	Preface
	About This Book: How It’s Different
	Onward to the Second Edition
	“Where Do I Begin?”
	Icons, Icons, Who’s Got the Icons?
	What Is Not Covered?
	Getting Started with C++: A Free Compiler
	A Final Note: Have Fun!

	Acknowledgments
	About the Author
	Chapter 4 Functions: Many Are Called
	The Concept of Function
	The Basics of Using Functions
	Step 1: Declare (Prototype) the Function
	Step 2: Define the Function
	Step 3: Call the Function
	Example 4.1. The avg() Function
	How It Works
	Function Call a Function!
	Exercises
	Example 4.2. Prime-Number Function
	How It Works
	Exercises

	Local and Global Variables
	Interlude: Why Global Variables at All?

	Recursive Functions
	Example 4.3. Prime Factorization
	How It Works
	Interlude: Interlude for Math Junkies
	Exercises
	Example 4.4. Euclid’s Algorithm for GCF
	How It Works
	Interlude: Who Was Euclid?
	Exercises
	Interlude: Interlude for Math Junkies: Rest of the Proof
	Example 4.5. Beautiful Recursion: Tower of Hanoi
	How It Works
	Exercises
	Example 4.6. Random-Number Generator
	How It Works
	Exercises

	Games and More Games
	Chapter 4 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

