

CONTENTS

PREFACE xxii

Part I BASICS 1

1 INTRODUCTION TO DATABASE SYSTEMS 3
1.1 Overview 4

1.2 A Historical Perspective 5

1.3 File Systems versus a DBMS 7

1.4 Advantages of a DBMS 8

1.5 Describing and Storing Data in a DBMS 9

1.5.1 The Relational Model 10

1.5.2 Levels of Abstraction in a DBMS 11

1.5.3 Data Independence 14

1.6 Queries in a DBMS 15

1.7 Transaction Management 15

1.7.1 Concurrent Execution of Transactions 16

1.7.2 Incomplete Transactions and System Crashes 17

1.7.3 Points to Note 18

1.8 Structure of a DBMS 18

1.9 People Who Deal with Databases 20

1.10 Points to Review 21

2 THE ENTITY-RELATIONSHIP MODEL 24
2.1 Overview of Database Design 24

2.1.1 Beyond the ER Model 25

2.2 Entities, Attributes, and Entity Sets 26

2.3 Relationships and Relationship Sets 27

2.4 Additional Features of the ER Model 30

2.4.1 Key Constraints 30

2.4.2 Participation Constraints 32

2.4.3 Weak Entities 33

2.4.4 Class Hierarchies 35

2.4.5 Aggregation 37

vii

viii Database Management Systems

2.5 Conceptual Database Design With the ER Model 38

2.5.1 Entity versus Attribute 39

2.5.2 Entity versus Relationship 40

2.5.3 Binary versus Ternary Relationships * 41

2.5.4 Aggregation versus Ternary Relationships * 43

2.6 Conceptual Design for Large Enterprises * 44

2.7 Points to Review 45

3 THE RELATIONAL MODEL 51
3.1 Introduction to the Relational Model 52

3.1.1 Creating and Modifying Relations Using SQL-92 55

3.2 Integrity Constraints over Relations 56

3.2.1 Key Constraints 57

3.2.2 Foreign Key Constraints 59

3.2.3 General Constraints 61

3.3 Enforcing Integrity Constraints 62

3.4 Querying Relational Data 64

3.5 Logical Database Design: ER to Relational 66

3.5.1 Entity Sets to Tables 67

3.5.2 Relationship Sets (without Constraints) to Tables 67

3.5.3 Translating Relationship Sets with Key Constraints 69

3.5.4 Translating Relationship Sets with Participation Constraints 71

3.5.5 Translating Weak Entity Sets 73

3.5.6 Translating Class Hierarchies 74

3.5.7 Translating ER Diagrams with Aggregation 75

3.5.8 ER to Relational: Additional Examples * 76

3.6 Introduction to Views 78

3.6.1 Views, Data Independence, Security 79

3.6.2 Updates on Views 79

3.7 Destroying/Altering Tables and Views 82

3.8 Points to Review 83

Part II RELATIONAL QUERIES 89

4 RELATIONAL ALGEBRA AND CALCULUS 91
4.1 Preliminaries 91

4.2 Relational Algebra 92

4.2.1 Selection and Projection 93

4.2.2 Set Operations 94

4.2.3 Renaming 96

4.2.4 Joins 97

4.2.5 Division 99

4.2.6 More Examples of Relational Algebra Queries 100

Contents ix

4.3 Relational Calculus 106

4.3.1 Tuple Relational Calculus 107

4.3.2 Domain Relational Calculus 111

4.4 Expressive Power of Algebra and Calculus * 114

4.5 Points to Review 115

5 SQL: QUERIES, PROGRAMMING, TRIGGERS 119
5.1 About the Examples 121

5.2 The Form of a Basic SQL Query 121

5.2.1 Examples of Basic SQL Queries 126

5.2.2 Expressions and Strings in the SELECT Command 127

5.3 UNION, INTERSECT, and EXCEPT 129

5.4 Nested Queries 132

5.4.1 Introduction to Nested Queries 132

5.4.2 Correlated Nested Queries 134

5.4.3 Set-Comparison Operators 135

5.4.4 More Examples of Nested Queries 136

5.5 Aggregate Operators 138

5.5.1 The GROUP BY and HAVING Clauses 140

5.5.2 More Examples of Aggregate Queries 143

5.6 Null Values * 147

5.6.1 Comparisons Using Null Values 147

5.6.2 Logical Connectives AND, OR, and NOT 148

5.6.3 Impact on SQL Constructs 148

5.6.4 Outer Joins 149

5.6.5 Disallowing Null Values 150

5.7 Embedded SQL * 150

5.7.1 Declaring Variables and Exceptions 151

5.7.2 Embedding SQL Statements 152

5.8 Cursors * 153

5.8.1 Basic Cursor Definition and Usage 153

5.8.2 Properties of Cursors 155

5.9 Dynamic SQL * 156

5.10 ODBC and JDBC * 157

5.10.1 Architecture 158

5.10.2 An Example Using JDBC 159

5.11 Complex Integrity Constraints in SQL-92 * 161

5.11.1 Constraints over a Single Table 161

5.11.2 Domain Constraints 162

5.11.3 Assertions: ICs over Several Tables 163

5.12 Triggers and Active Databases 164

5.12.1 Examples of Triggers in SQL 165

5.13 Designing Active Databases 166

5.13.1 Why Triggers Can Be Hard to Understand 167

x Database Management Systems

5.13.2 Constraints versus Triggers 167

5.13.3 Other Uses of Triggers 168

5.14 Points to Review 168

6 QUERY-BY-EXAMPLE (QBE) 177
6.1 Introduction 177

6.2 Basic QBE Queries 178

6.2.1 Other Features: Duplicates, Ordering Answers 179

6.3 Queries over Multiple Relations 180

6.4 Negation in the Relation-Name Column 181

6.5 Aggregates 181

6.6 The Conditions Box 183

6.6.1 And/Or Queries 184

6.7 Unnamed Columns 185

6.8 Updates 185

6.8.1 Restrictions on Update Commands 187

6.9 Division and Relational Completeness * 187

6.10 Points to Review 189

Part III DATA STORAGE AND INDEXING 193

7 STORING DATA: DISKS AND FILES 195
7.1 The Memory Hierarchy 196

7.1.1 Magnetic Disks 197

7.1.2 Performance Implications of Disk Structure 199

7.2 RAID 200

7.2.1 Data Striping 200

7.2.2 Redundancy 201

7.2.3 Levels of Redundancy 203

7.2.4 Choice of RAID Levels 206

7.3 Disk Space Management 207

7.3.1 Keeping Track of Free Blocks 207

7.3.2 Using OS File Systems to Manage Disk Space 207

7.4 Buffer Manager 208

7.4.1 Buffer Replacement Policies 211

7.4.2 Buffer Management in DBMS versus OS 212

7.5 Files and Indexes 214

7.5.1 Heap Files 214

7.5.2 Introduction to Indexes 216

7.6 Page Formats * 218

7.6.1 Fixed-Length Records 218

7.6.2 Variable-Length Records 219

7.7 Record Formats * 221

Contents xi

7.7.1 Fixed-Length Records 222

7.7.2 Variable-Length Records 222

7.8 Points to Review 224

8 FILE ORGANIZATIONS AND INDEXES 230
8.1 Cost Model 231

8.2 Comparison of Three File Organizations 232

8.2.1 Heap Files 232

8.2.2 Sorted Files 233

8.2.3 Hashed Files 235

8.2.4 Choosing a File Organization 236

8.3 Overview of Indexes 237

8.3.1 Alternatives for Data Entries in an Index 238

8.4 Properties of Indexes 239

8.4.1 Clustered versus Unclustered Indexes 239

8.4.2 Dense versus Sparse Indexes 241

8.4.3 Primary and Secondary Indexes 242

8.4.4 Indexes Using Composite Search Keys 243

8.5 Index Specification in SQL-92 244

8.6 Points to Review 244

9 TREE-STRUCTURED INDEXING 247
9.1 Indexed Sequential Access Method (ISAM) 248

9.2 B+ Trees: A Dynamic Index Structure 253

9.3 Format of a Node 254

9.4 Search 255

9.5 Insert 257

9.6 Delete * 260

9.7 Duplicates * 265

9.8 B+ Trees in Practice * 266

9.8.1 Key Compression 266

9.8.2 Bulk-Loading a B+ Tree 268

9.8.3 The Order Concept 271

9.8.4 The Effect of Inserts and Deletes on Rids 272

9.9 Points to Review 272

10 HASH-BASED INDEXING 278
10.1 Static Hashing 278

10.1.1 Notation and Conventions 280

10.2 Extendible Hashing * 280

10.3 Linear Hashing * 286

10.4 Extendible Hashing versus Linear Hashing * 291

10.5 Points to Review 292

xii Database Management Systems

Part IV QUERY EVALUATION 299

11 EXTERNAL SORTING 301
11.1 A Simple Two-Way Merge Sort 302

11.2 External Merge Sort 305

11.2.1 Minimizing the Number of Runs * 308

11.3 Minimizing I/O Cost versus Number of I/Os 309

11.3.1 Blocked I/O 310

11.3.2 Double Buffering 311

11.4 Using B+ Trees for Sorting 312

11.4.1 Clustered Index 312

11.4.2 Unclustered Index 313

11.5 Points to Review 315

12 EVALUATION OF RELATIONAL OPERATORS 319
12.1 Introduction to Query Processing 320

12.1.1 Access Paths 320

12.1.2 Preliminaries: Examples and Cost Calculations 321

12.2 The Selection Operation 321

12.2.1 No Index, Unsorted Data 322

12.2.2 No Index, Sorted Data 322

12.2.3 B+ Tree Index 323

12.2.4 Hash Index, Equality Selection 324

12.3 General Selection Conditions * 325

12.3.1 CNF and Index Matching 325

12.3.2 Evaluating Selections without Disjunction 326

12.3.3 Selections with Disjunction 327

12.4 The Projection Operation 329

12.4.1 Projection Based on Sorting 329

12.4.2 Projection Based on Hashing * 330

12.4.3 Sorting versus Hashing for Projections * 332

12.4.4 Use of Indexes for Projections * 333

12.5 The Join Operation 333

12.5.1 Nested Loops Join 334

12.5.2 Sort-Merge Join * 339

12.5.3 Hash Join * 343

12.5.4 General Join Conditions * 348

12.6 The Set Operations * 349

12.6.1 Sorting for Union and Difference 349

12.6.2 Hashing for Union and Difference 350

12.7 Aggregate Operations * 350

12.7.1 Implementing Aggregation by Using an Index 351

12.8 The Impact of Buffering * 352

Contents xiii

12.9 Points to Review 353

13 INTRODUCTION TO QUERY OPTIMIZATION 359
13.1 Overview of Relational Query Optimization 360

13.1.1 Query Evaluation Plans 361

13.1.2 Pipelined Evaluation 362

13.1.3 The Iterator Interface for Operators and Access Methods 363

13.1.4 The System R Optimizer 364

13.2 System Catalog in a Relational DBMS 365

13.2.1 Information Stored in the System Catalog 365

13.3 Alternative Plans: A Motivating Example 368

13.3.1 Pushing Selections 368

13.3.2 Using Indexes 370

13.4 Points to Review 373

14 A TYPICAL RELATIONAL QUERY OPTIMIZER 374
14.1 Translating SQL Queries into Algebra 375

14.1.1 Decomposition of a Query into Blocks 375

14.1.2 A Query Block as a Relational Algebra Expression 376

14.2 Estimating the Cost of a Plan 378

14.2.1 Estimating Result Sizes 378

14.3 Relational Algebra Equivalences 383

14.3.1 Selections 383

14.3.2 Projections 384

14.3.3 Cross-Products and Joins 384

14.3.4 Selects, Projects, and Joins 385

14.3.5 Other Equivalences 387

14.4 Enumeration of Alternative Plans 387

14.4.1 Single-Relation Queries 387

14.4.2 Multiple-Relation Queries 392

14.5 Nested Subqueries 399

14.6 Other Approaches to Query Optimization 402

14.7 Points to Review 403

Part V DATABASE DESIGN 415

15 SCHEMA REFINEMENT AND NORMAL FORMS 417
15.1 Introduction to Schema Refinement 418

15.1.1 Problems Caused by Redundancy 418

15.1.2 Use of Decompositions 420

15.1.3 Problems Related to Decomposition 421

15.2 Functional Dependencies 422

15.3 Examples Motivating Schema Refinement 423

xiv Database Management Systems

15.3.1 Constraints on an Entity Set 423

15.3.2 Constraints on a Relationship Set 424

15.3.3 Identifying Attributes of Entities 424

15.3.4 Identifying Entity Sets 426

15.4 Reasoning about Functional Dependencies 427

15.4.1 Closure of a Set of FDs 427

15.4.2 Attribute Closure 429

15.5 Normal Forms 430

15.5.1 Boyce-Codd Normal Form 430

15.5.2 Third Normal Form 432

15.6 Decompositions 434

15.6.1 Lossless-Join Decomposition 435

15.6.2 Dependency-Preserving Decomposition 436

15.7 Normalization 438

15.7.1 Decomposition into BCNF 438

15.7.2 Decomposition into 3NF * 440

15.8 Other Kinds of Dependencies * 444

15.8.1 Multivalued Dependencies 445

15.8.2 Fourth Normal Form 447

15.8.3 Join Dependencies 449

15.8.4 Fifth Normal Form 449

15.8.5 Inclusion Dependencies 449

15.9 Points to Review 450

16 PHYSICAL DATABASE DESIGN AND TUNING 457
16.1 Introduction to Physical Database Design 458

16.1.1 Database Workloads 458

16.1.2 Physical Design and Tuning Decisions 459

16.1.3 Need for Database Tuning 460

16.2 Guidelines for Index Selection 460

16.3 Basic Examples of Index Selection 463

16.4 Clustering and Indexing * 465

16.4.1 Co-clustering Two Relations 468

16.5 Indexes on Multiple-Attribute Search Keys * 470

16.6 Indexes that Enable Index-Only Plans * 471

16.7 Overview of Database Tuning 474

16.7.1 Tuning Indexes 474

16.7.2 Tuning the Conceptual Schema 475

16.7.3 Tuning Queries and Views 476

16.8 Choices in Tuning the Conceptual Schema * 477

16.8.1 Settling for a Weaker Normal Form 478

16.8.2 Denormalization 478

16.8.3 Choice of Decompositions 479

16.8.4 Vertical Decomposition 480

Contents xv

16.8.5 Horizontal Decomposition 481

16.9 Choices in Tuning Queries and Views * 482

16.10 Impact of Concurrency * 484

16.11 DBMS Benchmarking * 485

16.11.1 Well-Known DBMS Benchmarks 486

16.11.2 Using a Benchmark 486

16.12 Points to Review 487

17 SECURITY 497
17.1 Introduction to Database Security 497

17.2 Access Control 498

17.3 Discretionary Access Control 499

17.3.1 Grant and Revoke on Views and Integrity Constraints * 506

17.4 Mandatory Access Control * 508

17.4.1 Multilevel Relations and Polyinstantiation 510

17.4.2 Covert Channels, DoD Security Levels 511

17.5 Additional Issues Related to Security * 512

17.5.1 Role of the Database Administrator 512

17.5.2 Security in Statistical Databases 513

17.5.3 Encryption 514

17.6 Points to Review 517

Part VI TRANSACTION MANAGEMENT 521

18 TRANSACTION MANAGEMENT OVERVIEW 523
18.1 The Concept of a Transaction 523

18.1.1 Consistency and Isolation 525

18.1.2 Atomicity and Durability 525

18.2 Transactions and Schedules 526

18.3 Concurrent Execution of Transactions 527

18.3.1 Motivation for Concurrent Execution 527

18.3.2 Serializability 528

18.3.3 Some Anomalies Associated with Interleaved Execution 528

18.3.4 Schedules Involving Aborted Transactions 531

18.4 Lock-Based Concurrency Control 532

18.4.1 Strict Two-Phase Locking (Strict 2PL) 532

18.5 Introduction to Crash Recovery 533

18.5.1 Stealing Frames and Forcing Pages 535

18.5.2 Recovery-Related Steps during Normal Execution 536

18.5.3 Overview of ARIES 537

18.6 Points to Review 537

19 CONCURRENCY CONTROL 540

xvi Database Management Systems

19.1 Lock-Based Concurrency Control Revisited 540

19.1.1 2PL, Serializability, and Recoverability 540

19.1.2 View Serializability 543

19.2 Lock Management 543

19.2.1 Implementing Lock and Unlock Requests 544

19.2.2 Deadlocks 546

19.2.3 Performance of Lock-Based Concurrency Control 548

19.3 Specialized Locking Techniques 549

19.3.1 Dynamic Databases and the Phantom Problem 550

19.3.2 Concurrency Control in B+ Trees 551

19.3.3 Multiple-Granularity Locking 554

19.4 Transaction Support in SQL-92 * 555

19.4.1 Transaction Characteristics 556

19.4.2 Transactions and Constraints 558

19.5 Concurrency Control without Locking 559

19.5.1 Optimistic Concurrency Control 559

19.5.2 Timestamp-Based Concurrency Control 561

19.5.3 Multiversion Concurrency Control 563

19.6 Points to Review 564

20 CRASH RECOVERY 571
20.1 Introduction to ARIES 571

20.1.1 The Log 573

20.1.2 Other Recovery-Related Data Structures 576

20.1.3 The Write-Ahead Log Protocol 577

20.1.4 Checkpointing 578

20.2 Recovering from a System Crash 578

20.2.1 Analysis Phase 579

20.2.2 Redo Phase 581

20.2.3 Undo Phase 583

20.3 Media Recovery 586

20.4 Other Algorithms and Interaction with Concurrency Control 587

20.5 Points to Review 588

Part VII ADVANCED TOPICS 595

21 PARALLEL AND DISTRIBUTED DATABASES 597
21.1 Architectures for Parallel Databases 598

21.2 Parallel Query Evaluation 600

21.2.1 Data Partitioning 601

21.2.2 Parallelizing Sequential Operator Evaluation Code 601

21.3 Parallelizing Individual Operations 602

21.3.1 Bulk Loading and Scanning 602

Contents xvii

21.3.2 Sorting 602

21.3.3 Joins 603

21.4 Parallel Query Optimization 606

21.5 Introduction to Distributed Databases 607

21.5.1 Types of Distributed Databases 607

21.6 Distributed DBMS Architectures 608

21.6.1 Client-Server Systems 608

21.6.2 Collaborating Server Systems 609

21.6.3 Middleware Systems 609

21.7 Storing Data in a Distributed DBMS 610

21.7.1 Fragmentation 610

21.7.2 Replication 611

21.8 Distributed Catalog Management 611

21.8.1 Naming Objects 612

21.8.2 Catalog Structure 612

21.8.3 Distributed Data Independence 613

21.9 Distributed Query Processing 614

21.9.1 Nonjoin Queries in a Distributed DBMS 614

21.9.2 Joins in a Distributed DBMS 615

21.9.3 Cost-Based Query Optimization 619

21.10 Updating Distributed Data 619

21.10.1 Synchronous Replication 620

21.10.2 Asynchronous Replication 621

21.11 Introduction to Distributed Transactions 624

21.12 Distributed Concurrency Control 625

21.12.1 Distributed Deadlock 625

21.13 Distributed Recovery 627

21.13.1 Normal Execution and Commit Protocols 628

21.13.2 Restart after a Failure 629

21.13.3 Two-Phase Commit Revisited 630

21.13.4 Three-Phase Commit 632

21.14 Points to Review 632

22 INTERNET DATABASES 642
22.1 The World Wide Web 643

22.1.1 Introduction to HTML 643

22.1.2 Databases and the Web 645

22.2 Architecture 645

22.2.1 Application Servers and Server-Side Java 647

22.3 Beyond HTML 651

22.3.1 Introduction to XML 652

22.3.2 XML DTDs 654

22.3.3 Domain-Specific DTDs 657

22.3.4 XML-QL: Querying XML Data 659

xviii Database Management Systems

22.3.5 The Semistructured Data Model 661

22.3.6 Implementation Issues for Semistructured Data 663

22.4 Indexing for Text Search 663

22.4.1 Inverted Files 665

22.4.2 Signature Files 666

22.5 Ranked Keyword Searches on the Web 667

22.5.1 An Algorithm for Ranking Web Pages 668

22.6 Points to Review 671

23 DECISION SUPPORT 677
23.1 Introduction to Decision Support 678

23.2 Data Warehousing 679

23.2.1 Creating and Maintaining a Warehouse 680

23.3 OLAP 682

23.3.1 Multidimensional Data Model 682

23.3.2 OLAP Queries 685

23.3.3 Database Design for OLAP 689

23.4 Implementation Techniques for OLAP 690

23.4.1 Bitmap Indexes 691

23.4.2 Join Indexes 692

23.4.3 File Organizations 693

23.4.4 Additional OLAP Implementation Issues 693

23.5 Views and Decision Support 694

23.5.1 Views, OLAP, and Warehousing 694

23.5.2 Query Modification 695

23.5.3 View Materialization versus Computing on Demand 696

23.5.4 Issues in View Materialization 698

23.6 Finding Answers Quickly 699

23.6.1 Top N Queries 700

23.6.2 Online Aggregation 701

23.7 Points to Review 702

24 DATA MINING 707
24.1 Introduction to Data Mining 707

24.2 Counting Co-occurrences 708

24.2.1 Frequent Itemsets 709

24.2.2 Iceberg Queries 711

24.3 Mining for Rules 713

24.3.1 Association Rules 714

24.3.2 An Algorithm for Finding Association Rules 714

24.3.3 Association Rules and ISA Hierarchies 715

24.3.4 Generalized Association Rules 716

24.3.5 Sequential Patterns 717

Contents xix

24.3.6 The Use of Association Rules for Prediction 718

24.3.7 Bayesian Networks 719

24.3.8 Classification and Regression Rules 720

24.4 Tree-Structured Rules 722

24.4.1 Decision Trees 723

24.4.2 An Algorithm to Build Decision Trees 725

24.5 Clustering 726

24.5.1 A Clustering Algorithm 728

24.6 Similarity Search over Sequences 729

24.6.1 An Algorithm to Find Similar Sequences 730

24.7 Additional Data Mining Tasks 731

24.8 Points to Review 732

25 OBJECT-DATABASE SYSTEMS 736
25.1 Motivating Example 737

25.1.1 New Data Types 738

25.1.2 Manipulating the New Kinds of Data 739

25.2 User-Defined Abstract Data Types 742

25.2.1 Defining Methods of an ADT 743

25.3 Structured Types 744

25.3.1 Manipulating Data of Structured Types 745

25.4 Objects, Object Identity, and Reference Types 748

25.4.1 Notions of Equality 749

25.4.2 Dereferencing Reference Types 750

25.5 Inheritance 750

25.5.1 Defining Types with Inheritance 751

25.5.2 Binding of Methods 751

25.5.3 Collection Hierarchies, Type Extents, and Queries 752

25.6 Database Design for an ORDBMS 753

25.6.1 Structured Types and ADTs 753

25.6.2 Object Identity 756

25.6.3 Extending the ER Model 757

25.6.4 Using Nested Collections 758

25.7 New Challenges in Implementing an ORDBMS 759

25.7.1 Storage and Access Methods 760

25.7.2 Query Processing 761

25.7.3 Query Optimization 763

25.8 OODBMS 765

25.8.1 The ODMG Data Model and ODL 765

25.8.2 OQL 768

25.9 Comparing RDBMS with OODBMS and ORDBMS 769

25.9.1 RDBMS versus ORDBMS 769

25.9.2 OODBMS versus ORDBMS: Similarities 770

25.9.3 OODBMS versus ORDBMS: Differences 770

xx Database Management Systems

25.10 Points to Review 771

26 SPATIAL DATA MANAGEMENT 777
26.1 Types of Spatial Data and Queries 777

26.2 Applications Involving Spatial Data 779

26.3 Introduction to Spatial Indexes 781

26.3.1 Overview of Proposed Index Structures 782

26.4 Indexing Based on Space-Filling Curves 783

26.4.1 Region Quad Trees and Z-Ordering: Region Data 784

26.4.2 Spatial Queries Using Z-Ordering 785

26.5 Grid Files 786

26.5.1 Adapting Grid Files to Handle Regions 789

26.6 R Trees: Point and Region Data 789

26.6.1 Queries 790

26.6.2 Insert and Delete Operations 792

26.6.3 Concurrency Control 793

26.6.4 Generalized Search Trees 794

26.7 Issues in High-Dimensional Indexing 795

26.8 Points to Review 795

27 DEDUCTIVE DATABASES 799
27.1 Introduction to Recursive Queries 800

27.1.1 Datalog 801

27.2 Theoretical Foundations 803

27.2.1 Least Model Semantics 804

27.2.2 Safe Datalog Programs 805

27.2.3 The Fixpoint Operator 806

27.2.4 Least Model = Least Fixpoint 807

27.3 Recursive Queries with Negation 808

27.3.1 Range-Restriction and Negation 809

27.3.2 Stratification 809

27.3.3 Aggregate Operations 812

27.4 Efficient Evaluation of Recursive Queries 813

27.4.1 Fixpoint Evaluation without Repeated Inferences 814

27.4.2 Pushing Selections to Avoid Irrelevant Inferences 816

27.5 Points to Review 818

28 ADDITIONAL TOPICS 822
28.1 Advanced Transaction Processing 822

28.1.1 Transaction Processing Monitors 822

28.1.2 New Transaction Models 823

28.1.3 Real-Time DBMSs 824

28.2 Integrated Access to Multiple Data Sources 824

Contents xxi

28.3 Mobile Databases 825

28.4 Main Memory Databases 825

28.5 Multimedia Databases 826

28.6 Geographic Information Systems 827

28.7 Temporal and Sequence Databases 828

28.8 Information Visualization 829

28.9 Summary 829

A DATABASE DESIGN CASE STUDY: THE INTERNET
SHOP 831
A.1 Requirements Analysis 831

A.2 Conceptual Design 832

A.3 Logical Database Design 832

A.4 Schema Refinement 835

A.5 Physical Database Design 836

A.5.1 Tuning the Database 838

A.6 Security 838

A.7 Application Layers 840

B THE MINIBASE SOFTWARE 842
B.1 What’s Available 842

B.2 Overview of Minibase Assignments 843

B.2.1 Overview of Programming Projects 843

B.2.2 Overview of Nonprogramming Assignments 844

B.3 Acknowledgments 845

REFERENCES 847

SUBJECT INDEX 879

AUTHOR INDEX 896

PREFACE

The advantage of doing one’s praising for oneself is that one can lay it on so thick

and exactly in the right places.

—Samuel Butler

Database management systems have become ubiquitous as a fundamental tool for man-
aging information, and a course on the principles and practice of database systems is
now an integral part of computer science curricula. This book covers the fundamentals
of modern database management systems, in particular relational database systems.
It is intended as a text for an introductory database course for undergraduates, and
we have attempted to present the material in a clear, simple style.

A quantitative approach is used throughout and detailed examples abound. An exten-
sive set of exercises (for which solutions are available online to instructors) accompanies
each chapter and reinforces students’ ability to apply the concepts to real problems.
The book contains enough material to support a second course, ideally supplemented
by selected research papers. It can be used, with the accompanying software and SQL
programming assignments, in two distinct kinds of introductory courses:

1. A course that aims to present the principles of database systems, with a practical
focus but without any implementation assignments. The SQL programming as-
signments are a useful supplement for such a course. The supplementary Minibase
software can be used to create exercises and experiments with no programming.

2. A course that has a strong systems emphasis and assumes that students have
good programming skills in C and C++. In this case the software can be used
as the basis for projects in which students are asked to implement various parts
of a relational DBMS. Several central modules in the project software (e.g., heap
files, buffer manager, B+ trees, hash indexes, various join methods, concurrency
control, and recovery algorithms) are described in sufficient detail in the text to
enable students to implement them, given the (C++) class interfaces.

Many instructors will no doubt teach a course that falls between these two extremes.

xxii

Preface xxiii

Choice of Topics

The choice of material has been influenced by these considerations:

To concentrate on issues central to the design, tuning, and implementation of rela-
tional database applications. However, many of the issues discussed (e.g., buffering
and access methods) are not specific to relational systems, and additional topics
such as decision support and object-database systems are covered in later chapters.

To provide adequate coverage of implementation topics to support a concurrent
laboratory section or course project. For example, implementation of relational
operations has been covered in more detail than is necessary in a first course.
However, the variety of alternative implementation techniques permits a wide
choice of project assignments. An instructor who wishes to assign implementation
of sort-merge join might cover that topic in depth, whereas another might choose
to emphasize index nested loops join.

To provide in-depth coverage of the state of the art in currently available commer-
cial systems, rather than a broad coverage of several alternatives. For example,
we discuss the relational data model, B+ trees, SQL, System R style query op-
timization, lock-based concurrency control, the ARIES recovery algorithm, the
two-phase commit protocol, asynchronous replication in distributed databases,
and object-relational DBMSs in detail, with numerous illustrative examples. This
is made possible by omitting or briefly covering some related topics such as the
hierarchical and network models, B tree variants, Quel, semantic query optimiza-
tion, view serializability, the shadow-page recovery algorithm, and the three-phase
commit protocol.

The same preference for in-depth coverage of selected topics governed our choice
of topics for chapters on advanced material. Instead of covering a broad range of
topics briefly, we have chosen topics that we believe to be practically important
and at the cutting edge of current thinking in database systems, and we have
covered them in depth.

New in the Second Edition

Based on extensive user surveys and feedback, we have refined the book’s organization.
The major change is the early introduction of the ER model, together with a discussion
of conceptual database design. As in the first edition, we introduce SQL-92’s data
definition features together with the relational model (in Chapter 3), and whenever
appropriate, relational model concepts (e.g., definition of a relation, updates, views, ER
to relational mapping) are illustrated and discussed in the context of SQL. Of course,
we maintain a careful separation between the concepts and their SQL realization. The
material on data storage, file organization, and indexes has been moved back, and the

xxiv Database Management Systems

material on relational queries has been moved forward. Nonetheless, the two parts
(storage and organization vs. queries) can still be taught in either order based on the
instructor’s preferences.

In order to facilitate brief coverage in a first course, the second edition contains overview
chapters on transaction processing and query optimization. Most chapters have been
revised extensively, and additional explanations and figures have been added in many
places. For example, the chapters on query languages now contain a uniform numbering
of all queries to facilitate comparisons of the same query (in algebra, calculus, and
SQL), and the results of several queries are shown in figures. JDBC and ODBC
coverage has been added to the SQL query chapter and SQL:1999 features are discussed
both in this chapter and the chapter on object-relational databases. A discussion of
RAID has been added to Chapter 7. We have added a new database design case study,
illustrating the entire design cycle, as an appendix.

Two new pedagogical features have been introduced. First, ‘floating boxes’ provide ad-
ditional perspective and relate the concepts to real systems, while keeping the main dis-
cussion free of product-specific details. Second, each chapter concludes with a ‘Points
to Review’ section that summarizes the main ideas introduced in the chapter and
includes pointers to the sections where they are discussed.

For use in a second course, many advanced chapters from the first edition have been
extended or split into multiple chapters to provide thorough coverage of current top-
ics. In particular, new material has been added to the chapters on decision support,
deductive databases, and object databases. New chapters on Internet databases, data
mining, and spatial databases have been added, greatly expanding the coverage of
these topics.

The material can be divided into roughly seven parts, as indicated in Figure 0.1, which
also shows the dependencies between chapters. An arrow from Chapter I to Chapter J
means that I depends on material in J. The broken arrows indicate a weak dependency,
which can be ignored at the instructor’s discretion. It is recommended that Part I be
covered first, followed by Part II and Part III (in either order). Other than these three
parts, dependencies across parts are minimal.

Order of Presentation

The book’s modular organization offers instructors a variety of choices. For exam-
ple, some instructors will want to cover SQL and get students to use a relational
database, before discussing file organizations or indexing; they should cover Part II
before Part III. In fact, in a course that emphasizes concepts and SQL, many of the
implementation-oriented chapters might be skipped. On the other hand, instructors
assigning implementation projects based on file organizations may want to cover Part

Preface xxv

Introduction,

2
ER Model

Conceptual Design

1

QBE

5

4
Relational Algebra

and Calculus

6

7

8
Introduction to

File Organizations Hash Indexes

10

Tree Indexes

9

II III
I

Schema Refinement,V
16 17

Database
Security

Physical DB

Design, Tuning

15

Transaction MgmtVI
19 20

Concurrency

18

Overview Control

Crash
Recovery

13
Introduction to

11

External Sorting

14

Relational Optimizer
A TypicalIV

3
Relational Model

SQL DDL

VII

Parallel and

Distributed DBs

21

22

FDs, Normalization

Evaluation of

Relational Operators

12

Query Optimization

Data Storage

Internet

Databases

Decision

23 24
Object-Database

Systems

25

Databases

Spatial

26
Additional

Topics

2827

Mining
Data

Support

Deductive

Databases

SQL Queries, etc.

Figure 0.1 Chapter Organization and Dependencies

III early to space assignments. As another example, it is not necessary to cover all the
alternatives for a given operator (e.g., various techniques for joins) in Chapter 12 in
order to cover later related material (e.g., on optimization or tuning) adequately. The
database design case study in the appendix can be discussed concurrently with the
appropriate design chapters, or it can be discussed after all design topics have been
covered, as a review.

Several section headings contain an asterisk. This symbol does not necessarily indicate
a higher level of difficulty. Rather, omitting all asterisked sections leaves about the
right amount of material in Chapters 1–18, possibly omitting Chapters 6, 10, and 14,
for a broad introductory one-quarter or one-semester course (depending on the depth
at which the remaining material is discussed and the nature of the course assignments).

xxvi Database Management Systems

The book can be used in several kinds of introductory or second courses by choosing
topics appropriately, or in a two-course sequence by supplementing the material with
some advanced readings in the second course. Examples of appropriate introductory
courses include courses on file organizations and introduction to database management
systems, especially if the course focuses on relational database design or implementa-
tion. Advanced courses can be built around the later chapters, which contain detailed
bibliographies with ample pointers for further study.

Supplementary Material

Each chapter contains several exercises designed to test and expand the reader’s un-
derstanding of the material. Students can obtain solutions to odd-numbered chapter
exercises and a set of lecture slides for each chapter through the Web in Postscript and
Adobe PDF formats.

The following material is available online to instructors:

1. Lecture slides for all chapters in MS Powerpoint, Postscript, and PDF formats.

2. Solutions to all chapter exercises.

3. SQL queries and programming assignments with solutions. (This is new for the
second edition.)

4. Supplementary project software (Minibase) with sample assignments and solu-
tions, as described in Appendix B. The text itself does not refer to the project
software, however, and can be used independently in a course that presents the
principles of database management systems from a practical perspective, but with-
out a project component.

The supplementary material on SQL is new for the second edition. The remaining
material has been extensively revised from the first edition versions.

For More Information

The home page for this book is at URL:

http://www.cs.wisc.edu/˜dbbook

This page is frequently updated and contains a link to all known errors in the book, the
accompanying slides, and the supplements. Instructors should visit this site periodically
or register at this site to be notified of important changes by email.

Preface xxvii

Acknowledgments

This book grew out of lecture notes for CS564, the introductory (senior/graduate level)
database course at UW-Madison. David DeWitt developed this course and the Minirel
project, in which students wrote several well-chosen parts of a relational DBMS. My
thinking about this material was shaped by teaching CS564, and Minirel was the
inspiration for Minibase, which is more comprehensive (e.g., it has a query optimizer
and includes visualization software) but tries to retain the spirit of Minirel. Mike Carey
and I jointly designed much of Minibase. My lecture notes (and in turn this book)
were influenced by Mike’s lecture notes and by Yannis Ioannidis’s lecture slides.

Joe Hellerstein used the beta edition of the book at Berkeley and provided invaluable
feedback, assistance on slides, and hilarious quotes. Writing the chapter on object-
database systems with Joe was a lot of fun.

C. Mohan provided invaluable assistance, patiently answering a number of questions
about implementation techniques used in various commercial systems, in particular in-
dexing, concurrency control, and recovery algorithms. Moshe Zloof answered numerous
questions about QBE semantics and commercial systems based on QBE. Ron Fagin,
Krishna Kulkarni, Len Shapiro, Jim Melton, Dennis Shasha, and Dirk Van Gucht re-
viewed the book and provided detailed feedback, greatly improving the content and
presentation. Michael Goldweber at Beloit College, Matthew Haines at Wyoming,
Michael Kifer at SUNY StonyBrook, Jeff Naughton at Wisconsin, Praveen Seshadri at
Cornell, and Stan Zdonik at Brown also used the beta edition in their database courses
and offered feedback and bug reports. In particular, Michael Kifer pointed out an er-
ror in the (old) algorithm for computing a minimal cover and suggested covering some
SQL features in Chapter 2 to improve modularity. Gio Wiederhold’s bibliography,
converted to Latex format by S. Sudarshan, and Michael Ley’s online bibliography on
databases and logic programming were a great help while compiling the chapter bibli-
ographies. Shaun Flisakowski and Uri Shaft helped me frequently in my never-ending
battles with Latex.

I owe a special thanks to the many, many students who have contributed to the Mini-
base software. Emmanuel Ackaouy, Jim Pruyne, Lee Schumacher, and Michael Lee
worked with me when I developed the first version of Minibase (much of which was
subsequently discarded, but which influenced the next version). Emmanuel Ackaouy
and Bryan So were my TAs when I taught CS564 using this version and went well be-
yond the limits of a TAship in their efforts to refine the project. Paul Aoki struggled
with a version of Minibase and offered lots of useful comments as a TA at Berkeley. An
entire class of CS764 students (our graduate database course) developed much of the
current version of Minibase in a large class project that was led and coordinated by
Mike Carey and me. Amit Shukla and Michael Lee were my TAs when I first taught
CS564 using this version of Minibase and developed the software further.

xxviii Database Management Systems

Several students worked with me on independent projects, over a long period of time,
to develop Minibase components. These include visualization packages for the buffer
manager and B+ trees (Huseyin Bektas, Harry Stavropoulos, and Weiqing Huang); a
query optimizer and visualizer (Stephen Harris, Michael Lee, and Donko Donjerkovic);
an ER diagram tool based on the Opossum schema editor (Eben Haber); and a GUI-
based tool for normalization (Andrew Prock and Andy Therber). In addition, Bill
Kimmel worked to integrate and fix a large body of code (storage manager, buffer
manager, files and access methods, relational operators, and the query plan executor)
produced by the CS764 class project. Ranjani Ramamurty considerably extended
Bill’s work on cleaning up and integrating the various modules. Luke Blanshard, Uri
Shaft, and Shaun Flisakowski worked on putting together the release version of the
code and developed test suites and exercises based on the Minibase software. Krishna
Kunchithapadam tested the optimizer and developed part of the Minibase GUI.

Clearly, the Minibase software would not exist without the contributions of a great
many talented people. With this software available freely in the public domain, I hope
that more instructors will be able to teach a systems-oriented database course with a
blend of implementation and experimentation to complement the lecture material.

I’d like to thank the many students who helped in developing and checking the solu-
tions to the exercises and provided useful feedback on draft versions of the book. In
alphabetical order: X. Bao, S. Biao, M. Chakrabarti, C. Chan, W. Chen, N. Cheung,
D. Colwell, C. Fritz, V. Ganti, J. Gehrke, G. Glass, V. Gopalakrishnan, M. Higgins, T.
Jasmin, M. Krishnaprasad, Y. Lin, C. Liu, M. Lusignan, H. Modi, S. Narayanan, D.
Randolph, A. Ranganathan, J. Reminga, A. Therber, M. Thomas, Q. Wang, R. Wang,
Z. Wang, and J. Yuan. Arcady Grenader, James Harrington, and Martin Reames at
Wisconsin and Nina Tang at Berkeley provided especially detailed feedback.

Charlie Fischer, Avi Silberschatz, and Jeff Ullman gave me invaluable advice on work-
ing with a publisher. My editors at McGraw-Hill, Betsy Jones and Eric Munson,
obtained extensive reviews and guided this book in its early stages. Emily Gray and
Brad Kosirog were there whenever problems cropped up. At Wisconsin, Ginny Werner
really helped me to stay on top of things.

Finally, this book was a thief of time, and in many ways it was harder on my family
than on me. My sons expressed themselves forthrightly. From my (then) five-year-
old, Ketan: “Dad, stop working on that silly book. You don’t have any time for
me.” Two-year-old Vivek: “You working boook? No no no come play basketball me!”
All the seasons of their discontent were visited upon my wife, and Apu nonetheless
cheerfully kept the family going in its usual chaotic, happy way all the many evenings
and weekends I was wrapped up in this book. (Not to mention the days when I was
wrapped up in being a faculty member!) As in all things, I can trace my parents’ hand
in much of this; my father, with his love of learning, and my mother, with her love
of us, shaped me. My brother Kartik’s contributions to this book consisted chiefly of

Preface xxix

phone calls in which he kept me from working, but if I don’t acknowledge him, he’s
liable to be annoyed. I’d like to thank my family for being there and giving meaning
to everything I do. (There! I knew I’d find a legitimate reason to thank Kartik.)

Acknowledgments for the Second Edition

Emily Gray and Betsy Jones at McGraw-Hill obtained extensive reviews and provided
guidance and support as we prepared the second edition. Jonathan Goldstein helped
with the bibliography for spatial databases. The following reviewers provided valuable
feedback on content and organization: Liming Cai at Ohio University, Costas Tsat-
soulis at University of Kansas, Kwok-Bun Yue at University of Houston, Clear Lake,
William Grosky at Wayne State University, Sang H. Son at University of Virginia,
James M. Slack at Minnesota State University, Mankato, Herman Balsters at Uni-
versity of Twente, Netherlands, Karen C. Davis at University of Cincinnati, Joachim
Hammer at University of Florida, Fred Petry at Tulane University, Gregory Speegle
at Baylor University, Salih Yurttas at Texas A&M University, and David Chao at San
Francisco State University.

A number of people reported bugs in the first edition. In particular, we wish to thank
the following: Joseph Albert at Portland State University, Han-yin Chen at University
of Wisconsin, Lois Delcambre at Oregon Graduate Institute, Maggie Eich at South-
ern Methodist University, Raj Gopalan at Curtin University of Technology, Davood
Rafiei at University of Toronto, Michael Schrefl at University of South Australia, Alex
Thomasian at University of Connecticut, and Scott Vandenberg at Siena College.

A special thanks to the many people who answered a detailed survey about how com-
mercial systems support various features: At IBM, Mike Carey, Bruce Lindsay, C.
Mohan, and James Teng; at Informix, M. Muralikrishna and Michael Ubell; at Mi-
crosoft, David Campbell, Goetz Graefe, and Peter Spiro; at Oracle, Hakan Jacobsson,
Jonathan D. Klein, Muralidhar Krishnaprasad, and M. Ziauddin; and at Sybase, Marc
Chanliau, Lucien Dimino, Sangeeta Doraiswamy, Hanuma Kodavalla, Roger MacNicol,
and Tirumanjanam Rengarajan.

After reading about himself in the acknowledgment to the first edition, Ketan (now 8)
had a simple question: “How come you didn’t dedicate the book to us? Why mom?”
Ketan, I took care of this inexplicable oversight. Vivek (now 5) was more concerned
about the extent of his fame: “Daddy, is my name in evvy copy of your book? Do
they have it in evvy compooter science department in the world?” Vivek, I hope so.
Finally, this revision would not have made it without Apu’s and Keiko’s support.

PART I

BASICS

1 INTRODUCTION TO
DATABASE SYSTEMS

Has everyone noticed that all the letters of the word database are typed with the left

hand? Now the layout of the QWERTY typewriter keyboard was designed, among

other things, to facilitate the even use of both hands. It follows, therefore, that

writing about databases is not only unnatural, but a lot harder than it appears.

—Anonymous

Today, more than at any previous time, the success of an organization depends on
its ability to acquire accurate and timely data about its operations, to manage this
data effectively, and to use it to analyze and guide its activities. Phrases such as the
information superhighway have become ubiquitous, and information processing is a
rapidly growing multibillion dollar industry.

The amount of information available to us is literally exploding, and the value of data
as an organizational asset is widely recognized. Yet without the ability to manage this
vast amount of data, and to quickly find the information that is relevant to a given
question, as the amount of information increases, it tends to become a distraction
and a liability, rather than an asset. This paradox drives the need for increasingly
powerful and flexible data management systems. To get the most out of their large
and complex datasets, users must have tools that simplify the tasks of managing the
data and extracting useful information in a timely fashion. Otherwise, data can become
a liability, with the cost of acquiring it and managing it far exceeding the value that
is derived from it.

A database is a collection of data, typically describing the activities of one or more
related organizations. For example, a university database might contain information
about the following:

Entities such as students, faculty, courses, and classrooms.

Relationships between entities, such as students’ enrollment in courses, faculty
teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist in
maintaining and utilizing large collections of data, and the need for such systems, as
well as their use, is growing rapidly. The alternative to using a DBMS is to use ad

3

4 Chapter 1

hoc approaches that do not carry over from one application to another; for example,
to store the data in files and write application-specific code to manage it. The use of
a DBMS has several important advantages, as we will see in Section 1.4.

The area of database management systems is a microcosm of computer science in gen-
eral. The issues addressed and the techniques used span a wide spectrum, including
languages, object-orientation and other programming paradigms, compilation, oper-
ating systems, concurrent programming, data structures, algorithms, theory, parallel
and distributed systems, user interfaces, expert systems and artificial intelligence, sta-
tistical techniques, and dynamic programming. We will not be able to go into all these
aspects of database management in this book, but it should be clear that this is a rich
and vibrant discipline.

1.1 OVERVIEW

The goal of this book is to present an in-depth introduction to database management
systems, with an emphasis on how to organize information in a DBMS and to main-
tain it and retrieve it efficiently, that is, how to design a database and use a DBMS
effectively. Not surprisingly, many decisions about how to use a DBMS for a given
application depend on what capabilities the DBMS supports efficiently. Thus, to use a
DBMS well, it is necessary to also understand how a DBMS works. The approach taken
in this book is to emphasize how to use a DBMS, while covering DBMS implementation
and architecture in sufficient detail to understand how to design a database.

Many kinds of database management systems are in use, but this book concentrates on
relational systems, which are by far the dominant type of DBMS today. The following
questions are addressed in the core chapters of this book:

1. Database Design: How can a user describe a real-world enterprise (e.g., a uni-
versity) in terms of the data stored in a DBMS? What factors must be considered
in deciding how to organize the stored data? (Chapters 2, 3, 15, 16, and 17.)

2. Data Analysis: How can a user answer questions about the enterprise by posing
queries over the data in the DBMS? (Chapters 4, 5, 6, and 23.)

3. Concurrency and Robustness: How does a DBMS allow many users to access
data concurrently, and how does it protect the data in the event of system failures?
(Chapters 18, 19, and 20.)

4. Efficiency and Scalability: How does a DBMS store large datasets and answer
questions against this data efficiently? (Chapters 7, 8, 9, 10, 11, 12, 13, and 14.)

Later chapters cover important and rapidly evolving topics such as parallel and dis-
tributed database management, Internet databases, data warehousing and complex

Introduction to Database Systems 5

queries for decision support, data mining, object databases, spatial data management,
and rule-oriented DBMS extensions.

In the rest of this chapter, we introduce the issues listed above. In Section 1.2, we begin
with a brief history of the field and a discussion of the role of database management
in modern information systems. We then identify benefits of storing data in a DBMS
instead of a file system in Section 1.3, and discuss the advantages of using a DBMS
to manage data in Section 1.4. In Section 1.5 we consider how information about an
enterprise should be organized and stored in a DBMS. A user probably thinks about
this information in high-level terms corresponding to the entities in the organization
and their relationships, whereas the DBMS ultimately stores data in the form of (many,
many) bits. The gap between how users think of their data and how the data is
ultimately stored is bridged through several levels of abstraction supported by the
DBMS. Intuitively, a user can begin by describing the data in fairly high-level terms,
and then refine this description by considering additional storage and representation
details as needed.

In Section 1.6 we consider how users can retrieve data stored in a DBMS and the
need for techniques to efficiently compute answers to questions involving such data.
In Section 1.7 we provide an overview of how a DBMS supports concurrent access to
data by several users, and how it protects the data in the event of system failures.

We then briefly describe the internal structure of a DBMS in Section 1.8, and mention
various groups of people associated with the development and use of a DBMS in Section
1.9.

1.2 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a major
application focus. The first general-purpose DBMS was designed by Charles Bachman
at General Electric in the early 1960s and was called the Integrated Data Store. It
formed the basis for the network data model, which was standardized by the Conference
on Data Systems Languages (CODASYL) and strongly influenced database systems
through the 1960s. Bachman was the first recipient of ACM’s Turing Award (the
computer science equivalent of a Nobel prize) for work in the database area; he received
the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS) DBMS,
used even today in many major installations. IMS formed the basis for an alternative
data representation framework called the hierarchical data model. The SABRE system
for making airline reservations was jointly developed by American Airlines and IBM
around the same time, and it allowed several people to access the same data through

6 Chapter 1

a computer network. Interestingly, today the same SABRE system is used to power
popular Web-based travel services such as Travelocity!

In 1970, Edgar Codd, at IBM’s San Jose Research Laboratory, proposed a new data
representation framework called the relational data model. This proved to be a water-
shed in the development of database systems: it sparked rapid development of several
DBMSs based on the relational model, along with a rich body of theoretical results
that placed the field on a firm foundation. Codd won the 1981 Turing Award for his
seminal work. Database systems matured as an academic discipline, and the popu-
larity of relational DBMSs changed the commercial landscape. Their benefits were
widely recognized, and the use of DBMSs for managing corporate data became stan-
dard practice.

In the 1980s, the relational model consolidated its position as the dominant DBMS
paradigm, and database systems continued to gain widespread use. The SQL query
language for relational databases, developed as part of IBM’s System R project, is now
the standard query language. SQL was standardized in the late 1980s, and the current
standard, SQL-92, was adopted by the American National Standards Institute (ANSI)
and International Standards Organization (ISO). Arguably, the most widely used form
of concurrent programming is the concurrent execution of database programs (called
transactions). Users write programs as if they are to be run by themselves, and the
responsibility for running them concurrently is given to the DBMS. James Gray won
the 1999 Turing award for his contributions to the field of transaction management in
a DBMS.

In the late 1980s and the 1990s, advances have been made in many areas of database
systems. Considerable research has been carried out into more powerful query lan-
guages and richer data models, and there has been a big emphasis on supporting
complex analysis of data from all parts of an enterprise. Several vendors (e.g., IBM’s
DB2, Oracle 8, Informix UDS) have extended their systems with the ability to store
new data types such as images and text, and with the ability to ask more complex
queries. Specialized systems have been developed by numerous vendors for creating
data warehouses, consolidating data from several databases, and for carrying out spe-
cialized analysis.

An interesting phenomenon is the emergence of several enterprise resource planning
(ERP) and management resource planning (MRP) packages, which add a substantial
layer of application-oriented features on top of a DBMS. Widely used packages include
systems from Baan, Oracle, PeopleSoft, SAP, and Siebel. These packages identify a
set of common tasks (e.g., inventory management, human resources planning, finan-
cial analysis) encountered by a large number of organizations and provide a general
application layer to carry out these tasks. The data is stored in a relational DBMS,
and the application layer can be customized to different companies, leading to lower

Introduction to Database Systems 7

overall costs for the companies, compared to the cost of building the application layer
from scratch.

Most significantly, perhaps, DBMSs have entered the Internet Age. While the first
generation of Web sites stored their data exclusively in operating systems files, the
use of a DBMS to store data that is accessed through a Web browser is becoming
widespread. Queries are generated through Web-accessible forms and answers are
formatted using a markup language such as HTML, in order to be easily displayed
in a browser. All the database vendors are adding features to their DBMS aimed at
making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is brought
on-line, and made ever more accessible through computer networking. Today the field is
being driven by exciting visions such as multimedia databases, interactive video, digital
libraries, a host of scientific projects such as the human genome mapping effort and
NASA’s Earth Observation System project, and the desire of companies to consolidate
their decision-making processes and mine their data repositories for useful information
about their businesses. Commercially, database management systems represent one of
the largest and most vigorous market segments. Thus the study of database systems
could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A company
has a large collection (say, 500 GB1) of data on employees, departments, products,
sales, and so on. This data is accessed concurrently by several employees. Questions
about the data must be answered quickly, changes made to the data by different users
must be applied consistently, and access to certain parts of the data (e.g., salaries)
must be restricted.

We can try to deal with this data management problem by storing the data in a
collection of operating system files. This approach has many drawbacks, including the
following:

We probably do not have 500 GB of main memory to hold all the data. We must
therefore store data in a storage device such as a disk or tape and bring relevant
parts into main memory for processing as needed.

Even if we have 500 GB of main memory, on computer systems with 32-bit ad-
dressing, we cannot refer directly to more than about 4 GB of data! We have to
program some method of identifying all data items.

1A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes.

8 Chapter 1

We have to write special programs to answer each question that users may want
to ask about the data. These programs are likely to be complex because of the
large volume of data to be searched.

We must protect the data from inconsistent changes made by different users ac-
cessing the data concurrently. If programs that access the data are written with
such concurrent access in mind, this adds greatly to their complexity.

We must ensure that data is restored to a consistent state if the system crashes
while changes are being made.

Operating systems provide only a password mechanism for security. This is not
sufficiently flexible to enforce security policies in which different users have per-
mission to access different subsets of the data.

A DBMS is a piece of software that is designed to make the preceding tasks easier.
By storing data in a DBMS, rather than as a collection of operating system files, we
can use the DBMS’s features to manage the data in a robust and efficient manner.
As the volume of data and the number of users grow—hundreds of gigabytes of data
and thousands of users are common in current corporate databases—DBMS support
becomes indispensable.

1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possi-
ble from details of data representation and storage. The DBMS can provide an
abstract view of the data to insulate application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to
store and retrieve data efficiently. This feature is especially important if the data
is stored on external storage devices.

Data integrity and security: If data is always accessed through the DBMS, the
DBMS can enforce integrity constraints on the data. For example, before inserting
salary information for an employee, the DBMS can check that the department
budget is not exceeded. Also, the DBMS can enforce access controls that govern
what data is visible to different classes of users.

Data administration: When several users share the data, centralizing the ad-
ministration of data can offer significant improvements. Experienced professionals
who understand the nature of the data being managed, and how different groups
of users use it, can be responsible for organizing the data representation to min-
imize redundancy and for fine-tuning the storage of the data to make retrieval
efficient.

Introduction to Database Systems 9

Concurrent access and crash recovery: A DBMS schedules concurrent ac-
cesses to the data in such a manner that users can think of the data as being
accessed by only one user at a time. Further, the DBMS protects users from the
effects of system failures.

Reduced application development time: Clearly, the DBMS supports many
important functions that are common to many applications accessing data stored
in the DBMS. This, in conjunction with the high-level interface to the data, facil-
itates quick development of applications. Such applications are also likely to be
more robust than applications developed from scratch because many important
tasks are handled by the DBMS instead of being implemented by the application.

Given all these advantages, is there ever a reason not to use a DBMS? A DBMS is
a complex piece of software, optimized for certain kinds of workloads (e.g., answering
complex queries or handling many concurrent requests), and its performance may not
be adequate for certain specialized applications. Examples include applications with
tight real-time constraints or applications with just a few well-defined critical opera-
tions for which efficient custom code must be written. Another reason for not using a
DBMS is that an application may need to manipulate the data in ways not supported
by the query language. In such a situation, the abstract view of the data presented by
the DBMS does not match the application’s needs, and actually gets in the way. As an
example, relational databases do not support flexible analysis of text data (although
vendors are now extending their products in this direction). If specialized performance
or data manipulation requirements are central to an application, the application may
choose not to use a DBMS, especially if the added benefits of a DBMS (e.g., flexible
querying, security, concurrent access, and crash recovery) are not required. In most
situations calling for large-scale data management, however, DBMSs have become an
indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise, and the
data to be stored describes various aspects of this enterprise. For example, there are
students, faculty, and courses in a university, and the data in a university database
describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide many
low-level storage details. A DBMS allows a user to define the data to be stored in
terms of a data model. Most database management systems today are based on the
relational data model, which we will focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer to how
the DBMS stores data than to how a user thinks about the underlying enterprise. A
semantic data model is a more abstract, high-level data model that makes it easier

10 Chapter 1

for a user to come up with a good initial description of the data in an enterprise.
These models contain a wide variety of constructs that help describe a real application
scenario. A DBMS is not intended to support all these constructs directly; it is typically
built around a data model with just a few basic constructs, such as the relational model.
A database design in terms of a semantic model serves as a useful starting point and is
subsequently translated into a database design in terms of the data model the DBMS
actually supports.

A widely used semantic data model called the entity-relationship (ER) model allows
us to pictorially denote entities and the relationships among them. We cover the ER
model in Chapter 2.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The central
data description construct in this model is a relation, which can be thought of as a
set of records.

A description of data in terms of a data model is called a schema. In the relational
model, the schema for a relation specifies its name, the name of each field (or attribute
or column), and the type of each field. As an example, student information in a
university database may be stored in a relation with the following schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

The preceding schema says that each record in the Students relation has five fields,
with field names and types as indicated.2 An example instance of the Students relation
appears in Figure 1.1.

sid name login age gpa

53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 1.1 An Instance of the Students Relation

2Storing date of birth is preferable to storing age, since it does not change over time, unlike age.
We’ve used age for simplicity in our discussion.

Introduction to Database Systems 11

Each row in the Students relation is a record that describes a student. The description
is not complete—for example, the student’s height is not included—but is presumably
adequate for the intended applications in the university database. Every row follows
the schema of the Students relation. The schema can therefore be regarded as a
template for describing a student.

We can make the description of a collection of students more precise by specifying
integrity constraints, which are conditions that the records in a relation must satisfy.
For example, we could specify that every student has a unique sid value. Observe that
we cannot capture this information by simply adding another field to the Students
schema. Thus, the ability to specify uniqueness of the values in a field increases the
accuracy with which we can describe our data. The expressiveness of the constructs
available for specifying integrity constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems, including
IBM’s DB2, Informix, Oracle, Sybase, Microsoft’s Access, FoxBase, Paradox, Tandem,
and Teradata), other important data models include the hierarchical model (e.g., used
in IBM’s IMS DBMS), the network model (e.g., used in IDS and IDMS), the object-
oriented model (e.g., used in Objectstore and Versant), and the object-relational model
(e.g., used in DBMS products from IBM, Informix, ObjectStore, Oracle, Versant, and
others). While there are many databases that use the hierarchical and network models,
and systems based on the object-oriented and object-relational models are gaining
acceptance in the marketplace, the dominant model today is the relational model.

In this book, we will focus on the relational model because of its wide use and impor-
tance. Indeed, the object-relational model, which is gaining in popularity, is an effort
to combine the best features of the relational and object-oriented models, and a good
grasp of the relational model is necessary to understand object-relational concepts.
(We discuss the object-oriented and object-relational models in Chapter 25.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, as illustrated in Figure
1.2. The database description consists of a schema at each of these three levels of
abstraction: the conceptual, physical, and external schemas.

A data definition language (DDL) is used to define the external and conceptual
schemas. We will discuss the DDL facilities of the most widely used database language,
SQL, in Chapter 3. All DBMS vendors also support SQL commands to describe aspects
of the physical schema, but these commands are not part of the SQL-92 language

12 Chapter 1

DISK

External Schema 1 External Schema 2 External Schema 3

Conceptual Schema

Physical Schema

Figure 1.2 Levels of Abstraction in a DBMS

standard. Information about the conceptual, external, and physical schemas is stored
in the system catalogs (Section 13.2). We discuss the three levels of abstraction in
the rest of this section.

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the stored
data in terms of the data model of the DBMS. In a relational DBMS, the conceptual
schema describes all relations that are stored in the database. In our sample university
database, these relations contain information about entities, such as students and
faculty, and about relationships, such as students’ enrollment in courses. All student
entities can be described using records in a Students relation, as we saw earlier. In
fact, each collection of entities and each collection of relationships can be described as
a relation, leading to the following conceptual schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)
Courses(cid: string, cname: string, credits: integer)
Rooms(rno: integer, address: string, capacity: integer)
Enrolled(sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets In(cid: string, rno: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always obvi-
ous, and the process of arriving at a good conceptual schema is called conceptual
database design. We discuss conceptual database design in Chapters 2 and 15.

Introduction to Database Systems 13

Physical Schema

The physical schema specifies additional storage details. Essentially, the physical
schema summarizes how the relations described in the conceptual schema are actually
stored on secondary storage devices such as disks and tapes.

We must decide what file organizations to use to store the relations, and create auxiliary
data structures called indexes to speed up data retrieval operations. A sample physical
schema for the university database follows:

Store all relations as unsorted files of records. (A file in a DBMS is either a
collection of records or a collection of pages, rather than a string of characters as
in an operating system.)

Create indexes on the first column of the Students, Faculty, and Courses relations,
the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the data is
typically accessed. The process of arriving at a good physical schema is called physical
database design. We discuss physical database design in Chapter 16.

External Schema

External schemas, which usually are also in terms of the data model of the DBMS,
allow data access to be customized (and authorized) at the level of individual users
or groups of users. Any given database has exactly one conceptual schema and one
physical schema because it has just one set of stored relations, but it may have several
external schemas, each tailored to a particular group of users. Each external schema
consists of a collection of one or more views and relations from the conceptual schema.
A view is conceptually a relation, but the records in a view are not stored in the DBMS.
Rather, they are computed using a definition for the view, in terms of relations stored
in the DBMS. We discuss views in more detail in Chapter 3.

The external schema design is guided by end user requirements. For example, we might
want to allow students to find out the names of faculty members teaching courses, as
well as course enrollments. This can be done by defining the following view:

Courseinfo(cid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records in the
view. Even though the records in the view are not stored explicitly, they are computed
as needed. We did not include Courseinfo in the conceptual schema because we can
compute Courseinfo from the relations in the conceptual schema, and to store it in
addition would be redundant. Such redundancy, in addition to the wasted space, could

14 Chapter 1

lead to inconsistencies. For example, a tuple may be inserted into the Enrolled relation,
indicating that a particular student has enrolled in some course, without incrementing
the value in the enrollment field of the corresponding record of Courseinfo (if the latter
also is part of the conceptual schema and its tuples are stored in the DBMS).

1.5.3 Data Independence

A very important advantage of using a DBMS is that it offers data independence.
That is, application programs are insulated from changes in the way the data is struc-
tured and stored. Data independence is achieved through use of the three levels of
data abstraction; in particular, the conceptual schema and the external schema pro-
vide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated on demand
from the relations corresponding to the conceptual schema.3 If the underlying data is
reorganized, that is, the conceptual schema is changed, the definition of a view relation
can be modified so that the same relation is computed as before. For example, suppose
that the Faculty relation in our university database is replaced by the following two
relations:

Faculty public(fid: string, fname: string, office: integer)
Faculty private(fid: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a separate
relation and information about offices has been added. The Courseinfo view relation
can be redefined in terms of Faculty public and Faculty private, which together contain
all the information in Faculty, so that a user who queries Courseinfo will get the same
answers as before.

Thus users can be shielded from changes in the logical structure of the data, or changes
in the choice of relations to be stored. This property is called logical data indepen-
dence.

In turn, the conceptual schema insulates users from changes in the physical storage
of the data. This property is referred to as physical data independence. The
conceptual schema hides details such as how the data is actually laid out on disk, the
file structure, and the choice of indexes. As long as the conceptual schema remains the
same, we can change these storage details without altering applications. (Of course,
performance might be affected by such changes.)

3In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.

Introduction to Database Systems 15

1.6 QUERIES IN A DBMS

The ease with which information can be obtained from a database often determines
its value to a user. In contrast to older database systems, relational database systems
allow a rich class of questions to be posed easily; this feature has contributed greatly
to their popularity. Consider the sample university database in Section 1.5.2. Here are
examples of questions that a user might ask:

1. What is the name of the student with student id 123456?

2. What is the average salary of professors who teach the course with cid CS564?

3. How many students are enrolled in course CS564?

4. What fraction of students in course CS564 received a grade better than B?

5. Is any student with a GPA less than 3.0 enrolled in course CS564?

Such questions involving the data stored in a DBMS are called queries. A DBMS
provides a specialized language, called the query language, in which queries can be
posed. A very attractive feature of the relational model is that it supports powerful
query languages. Relational calculus is a formal query language based on mathemat-
ical logic, and queries in this language have an intuitive, precise meaning. Relational
algebra is another formal query language, based on a collection of operators for
manipulating relations, which is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We discuss
query optimization and evaluation in Chapters 12 and 13. Of course, the efficiency of
query evaluation is determined to a large extent by how the data is stored physically.
Indexes can be used to speed up many queries—in fact, a good choice of indexes for the
underlying relations can speed up each query in the preceding list. We discuss data
storage and indexing in Chapters 7, 8, 9, and 10.

A DBMS enables users to create, modify, and query data through a data manipula-
tion language (DML). Thus, the query language is only one part of the DML, which
also provides constructs to insert, delete, and modify data. We will discuss the DML
features of SQL in Chapter 5. The DML and DDL are collectively referred to as the
data sublanguage when embedded within a host language (e.g., C or COBOL).

1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any given
instant, it is possible (and likely) that several travel agents are looking up information
about available seats on various flights and making new seat reservations. When several
users access (and possibly modify) a database concurrently, the DBMS must order

16 Chapter 1

their requests carefully to avoid conflicts. For example, when one travel agent looks
up Flight 100 on some given day and finds an empty seat, another travel agent may
simultaneously be making a reservation for that seat, thereby making the information
seen by the first agent obsolete.

Another example of concurrent use is a bank’s database. While one user’s application
program is computing the total deposits, another application may transfer money
from an account that the first application has just ‘seen’ to an account that has not
yet been seen, thereby causing the total to appear larger than it should be. Clearly,
such anomalies should not be allowed to occur. However, disallowing concurrent access
can degrade performance.

Further, the DBMS must protect users from the effects of system failures by ensuring
that all data (and the status of active applications) is restored to a consistent state
when the system is restarted after a crash. For example, if a travel agent asks for a
reservation to be made, and the DBMS responds saying that the reservation has been
made, the reservation should not be lost if the system crashes. On the other hand, if
the DBMS has not yet responded to the request, but is in the process of making the
necessary changes to the data while the crash occurs, the partial changes should be
undone when the system comes back up.

A transaction is any one execution of a user program in a DBMS. (Executing the
same program several times will generate several transactions.) This is the basic unit
of change as seen by the DBMS: Partial transactions are not allowed, and the effect of
a group of transactions is equivalent to some serial execution of all transactions. We
briefly outline how these properties are guaranteed, deferring a detailed discussion to
later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so that each
user can safely ignore the fact that others are accessing the data concurrently. The im-
portance of this task cannot be underestimated because a database is typically shared
by a large number of users, who submit their requests to the DBMS independently, and
simply cannot be expected to deal with arbitrary changes being made concurrently by
other users. A DBMS allows users to think of their programs as if they were executing
in isolation, one after the other in some order chosen by the DBMS. For example, if
a program that deposits cash into an account is submitted to the DBMS at the same
time as another program that debits money from the same account, either of these
programs could be run first by the DBMS, but their steps will not be interleaved in
such a way that they interfere with each other.

Introduction to Database Systems 17

A locking protocol is a set of rules to be followed by each transaction (and enforced
by the DBMS), in order to ensure that even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in some
serial order. A lock is a mechanism used to control access to database objects. Two
kinds of locks are commonly supported by a DBMS: shared locks on an object can
be held by two different transactions at the same time, but an exclusive lock on an
object ensures that no other transactions hold any lock on this object.

Suppose that the following locking protocol is followed: Every transaction begins by
obtaining a shared lock on each data object that it needs to read and an exclusive
lock on each data object that it needs to modify, and then releases all its locks after
completing all actions. Consider two transactions T1 and T2 such that T1 wants to
modify a data object and T2 wants to read the same object. Intuitively, if T1’s request
for an exclusive lock on the object is granted first, T2 cannot proceed until T1 releases
this lock, because T2’s request for a shared lock will not be granted by the DBMS
until then. Thus, all of T1’s actions will be completed before any of T2’s actions are
initiated. We consider locking in more detail in Chapters 18 and 19.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of reasons,
e.g., a system crash. A DBMS must ensure that the changes made by such incomplete
transactions are removed from the database. For example, if the DBMS is in the
middle of transferring money from account A to account B, and has debited the first
account but not yet credited the second when the crash occurs, the money debited
from account A must be restored when the system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial prop-
erty of the log is that each write action must be recorded in the log (on disk) before
the corresponding change is reflected in the database itself—otherwise, if the system
crashes just after making the change in the database but before the change is recorded
in the log, the DBMS would be unable to detect and undo this change. This property
is called Write-Ahead Log or WAL. To ensure this property, the DBMS must be
able to selectively force a page in memory to disk.

The log is also used to ensure that the changes made by a successfully completed
transaction are not lost due to a system crash, as explained in Chapter 20. Bringing
the database to a consistent state after a system crash can be a slow process, since
the DBMS must ensure that the effects of all transactions that completed prior to the
crash are restored, and that the effects of incomplete transactions are undone. The
time required to recover from a crash can be reduced by periodically forcing some
information to disk; this periodic operation is called a checkpoint.

18 Chapter 1

1.7.3 Points to Note

In summary, there are three points to remember with respect to DBMS support for
concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared or
exclusive mode, respectively. Placing a lock on an object restricts its availability
to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force a collec-
tion of pages in main memory to disk. Operating system support for this operation
is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash. Of
course, this must be balanced against the fact that checkpointing too often slows
down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS based on
the relational data model.

Index Files

Data Files

System Catalog

Buffer Manager

Disk Space Manager

Files and Access Methods

Operator Evaluator Optimizer

ParserPlan Executor

DBMS

Engine
Evaluation
Query

SQL COMMANDS

Application Front EndsWeb Forms SQL Interface

Sophisticated users, application
programmers, DB administratorsUnsophisticated users (customers, travel agents, etc.)

shows interaction

DATABASE

shows command flow

shows references

Concurrency
Control

Transaction
Manager

Manager
Lock

Recovery

Manager

Figure 1.3 Architecture of a DBMS

Introduction to Database Systems 19

The DBMS accepts SQL commands generated from a variety of user interfaces, pro-
duces query evaluation plans, executes these plans against the database, and returns
the answers. (This is a simplification: SQL commands can be embedded in host-
language application programs, e.g., Java or COBOL programs. We ignore these issues
to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query optimizer, which
uses information about how the data is stored to produce an efficient execution plan
for evaluating the query. An execution plan is a blueprint for evaluating a query, and
is usually represented as a tree of relational operators (with annotations that contain
additional detailed information about which access methods to use, etc.). We discuss
query optimization in Chapter 13. Relational operators serve as the building blocks
for evaluating queries posed against the data. The implementation of these operators
is discussed in Chapter 12.

The code that implements relational operators sits on top of the file and access methods
layer. This layer includes a variety of software for supporting the concept of a file,
which, in a DBMS, is a collection of pages or a collection of records. This layer typically
supports a heap file, or file of unordered pages, as well as indexes. In addition to
keeping track of the pages in a file, this layer organizes the information within a page.
File and page level storage issues are considered in Chapter 7. File organizations and
indexes are considered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager, which
brings pages in from disk to main memory as needed in response to read requests.
Buffer management is discussed in Chapter 7.

The lowest layer of the DBMS software deals with management of space on disk, where
the data is stored. Higher layers allocate, deallocate, read, and write pages through
(routines provided by) this layer, called the disk space manager. This layer is
discussed in Chapter 7.

The DBMS supports concurrency and crash recovery by carefully scheduling user re-
quests and maintaining a log of all changes to the database. DBMS components associ-
ated with concurrency control and recovery include the transaction manager, which
ensures that transactions request and release locks according to a suitable locking pro-
tocol and schedules the execution transactions; the lock manager, which keeps track
of requests for locks and grants locks on database objects when they become available;
and the recovery manager, which is responsible for maintaining a log, and restoring
the system to a consistent state after a crash. The disk space manager, buffer manager,
and file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 18.

20 Chapter 1

1.9 PEOPLE WHO DEAL WITH DATABASES

Quite a variety of people are associated with the creation and use of databases. Obvi-
ously, there are database implementors, who build DBMS software, and end users
who wish to store and use data in a DBMS. Database implementors work for ven-
dors such as IBM or Oracle. End users come from a diverse and increasing number
of fields. As data grows in complexity and volume, and is increasingly recognized as
a major asset, the importance of maintaining it professionally in a DBMS is being
widely accepted. Many end users simply use applications written by database applica-
tion programmers (see below), and so require little technical knowledge about DBMS
software. Of course, sophisticated users who make more extensive use of a DBMS,
such as writing their own queries, require a deeper understanding of its features.

In addition to end users and implementors, two other classes of people are associated
with a DBMS: application programmers and database administrators (DBAs).

Database application programmers develop packages that facilitate data access
for end users, who are usually not computer professionals, using the host or data
languages and software tools that DBMS vendors provide. (Such tools include report
writers, spreadsheets, statistical packages, etc.) Application programs should ideally
access data through the external schema. It is possible to write applications that access
data at a lower level, but such applications would compromise data independence.

A personal database is typically maintained by the individual who owns it and uses it.
However, corporate or enterprise-wide databases are typically important enough and
complex enough that the task of designing and maintaining the database is entrusted
to a professional called the database administrator. The DBA is responsible for
many critical tasks:

Design of the conceptual and physical schemas: The DBA is responsible
for interacting with the users of the system to understand what data is to be
stored in the DBMS and how it is likely to be used. Based on this knowledge, the
DBA must design the conceptual schema (decide what relations to store) and the
physical schema (decide how to store them). The DBA may also design widely
used portions of the external schema, although users will probably augment this
schema by creating additional views.

Security and authorization: The DBA is responsible for ensuring that unau-
thorized data access is not permitted. In general, not everyone should be able
to access all the data. In a relational DBMS, users can be granted permission
to access only certain views and relations. For example, although you might al-
low students to find out course enrollments and who teaches a given course, you
would not want students to see faculty salaries or each others’ grade information.

Introduction to Database Systems 21

The DBA can enforce this policy by giving students permission to read only the
Courseinfo view.

Data availability and recovery from failures: The DBA must take steps
to ensure that if the system fails, users can continue to access as much of the
uncorrupted data as possible. The DBA must also work to restore the data to a
consistent state. The DBMS provides software support for these functions, but the
DBA is responsible for implementing procedures to back up the data periodically
and to maintain logs of system activity (to facilitate recovery from a crash).

Database tuning: The needs of users are likely to evolve with time. The DBA is
responsible for modifying the database, in particular the conceptual and physical
schemas, to ensure adequate performance as user requirements change.

1.10 POINTS TO REVIEW

A database management system (DBMS) is software that supports management
of large collections of data. A DBMS provides efficient data access, data in-
dependence, data integrity, security, quick application development, support for
concurrent access, and recovery from system failures. (Section 1.1)

Storing data in a DBMS versus storing it in operating system files has many
advantages. (Section 1.3)

Using a DBMS provides the user with data independence, efficient data access,
automatic data integrity, and security. (Section 1.4)

The structure of the data is described in terms of a data model and the description
is called a schema. The relational model is currently the most popular data model.
A DBMS distinguishes between external, conceptual, and physical schema and
thus allows a view of the data at three levels of abstraction. Physical and logical
data independence, which are made possible by these three levels of abstraction,
insulate the users of a DBMS from the way the data is structured and stored
inside a DBMS. (Section 1.5)

A query language and a data manipulation language enable high-level access and
modification of the data. (Section 1.6)

A transaction is a logical unit of access to a DBMS. The DBMS ensures that
either all or none of a transaction’s changes are applied to the database. For
performance reasons, the DBMS processes multiple transactions concurrently, but
ensures that the result is equivalent to running the transactions one after the other
in some order. The DBMS maintains a record of all changes to the data in the
system log, in order to undo partial transactions and recover from system crashes.
Checkpointing is a periodic operation that can reduce the time for recovery from
a crash. (Section 1.7)

22 Chapter 1

DBMS code is organized into several modules: the disk space manager, the buffer
manager, a layer that supports the abstractions of files and index structures, a
layer that implements relational operators, and a layer that optimizes queries and
produces an execution plan in terms of relational operators. (Section 1.8)

A database administrator (DBA) manages a DBMS for an enterprise. The DBA
designs schemas, provide security, restores the system after a failure, and period-
ically tunes the database to meet changing user needs. Application programmers
develop applications that use DBMS functionality to access and manipulate data,
and end users invoke these applications. (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in

operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?

Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.

How are these different schema layers related to the concepts of logical and physical data

independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never

interested in running his or her own queries, does the DBA still need to understand query

optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions

of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the

volume of data compels him to buy a database system. To save money, he wants to buy one

with the fewest possible features, and he plans to run it as a stand-alone application on his

PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of

the following DBMS features Scrooge should pay for; in each case also indicate why Scrooge

should (or should not) pay for that feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.

5. A query language.

Exercise 1.7 Which of the following plays an important role in representing information

about the real world in a database? Explain briefly.

1. The data definition language.

Introduction to Database Systems 23

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to

support some new functions on OS files (e.g., the ability to force some sequence of bytes to

disk), which layer(s) of the DBMS would you have to rewrite in order to take advantage of

these new functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions, instead of executing

transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?

What should a DBMS guarantee with respect to concurrent execution of several trans-

actions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try

to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [248]. The use of data models

for describing real-world data is discussed in [361], and [363] contains a taxonomy of data

models. The three levels of abstraction were introduced in [155, 623]. The network data

model is described in [155], and [680] discusses several commercial systems based on this

model. [634] contains a good annotated collection of systems-oriented papers on database

management.

Other texts covering database management systems include [169, 208, 289, 600, 499, 656, 669].

[169] provides a detailed discussion of the relational model from a conceptual standpoint and

is notable for its extensive annotated bibliography. [499] presents a performance-oriented per-

spective, with references to several commercial systems. [208] and [600] offer broad coverage of

database system concepts, including a discussion of the hierarchical and network data models.

[289] emphasizes the connection between database query languages and logic programming.

[669] emphasizes data models. Of these texts, [656] provides the most detailed discussion of

theoretical issues. Texts devoted to theoretical aspects include [38, 436, 3]. Handbook [653]

includes a section on databases that contains introductory survey articles on a number of

topics.

2 ENTITY-RELATIONSHIP MODEL

The great successful men of the world have used their imaginations. They think

ahead and create their mental picture, and then go to work materializing that

picture in all its details, filling in here, adding a little there, altering this bit and

that bit, but steadily building, steadily building.

—Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved in a
real-world enterprise in terms of objects and their relationships and is widely used to
develop an initial database design. In this chapter, we introduce the ER model and
discuss how its features allow us to model a wide range of data faithfully.

The ER model is important primarily for its role in database design. It provides useful
concepts that allow us to move from an informal description of what users want from
their database to a more detailed, and precise, description that can be implemented
in a DBMS. We begin with an overview of database design in Section 2.1 in order
to motivate our discussion of the ER model. Within the larger context of the overall
design process, the ER model is used in a phase called conceptual database design. We
then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5, we discuss
database design issues involving the ER model. We conclude with a brief discussion of
conceptual database design for large enterprises.

We note that many variations of ER diagrams are in use, and no widely accepted
standards prevail. The presentation in this chapter is representative of the family of
ER models and includes a selection of the most popular features.

2.1 OVERVIEW OF DATABASE DESIGN

The database design process can be divided into six steps. The ER model is most
relevant to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application
is to understand what data is to be stored in the database, what applications must be
built on top of it, and what operations are most frequent and subject to performance
requirements. In other words, we must find out what the users want from the database.

24

The Entity-Relationship Model 25

Database design tools: Design tools are available from RDBMS vendors as well
as third-party vendors. Sybase and Oracle, in particular, have comprehensive sets
design and analysis tools. See the following URL for details on Sybase’s tools:
http://www.sybase.com/products/application tools The following provides
details on Oracle’s tools: http://www.oracle.com/tools

This is usually an informal process that involves discussions with user groups, a study
of the current operating environment and how it is expected to change, analysis of
any available documentation on existing applications that are expected to be replaced
or complemented by the database, and so on. Several methodologies have been pro-
posed for organizing and presenting the information gathered in this step, and some
automated tools have been developed to support this process.

(2) Conceptual Database Design: The information gathered in the requirements
analysis step is used to develop a high-level description of the data to be stored in the
database, along with the constraints that are known to hold over this data. This step
is often carried out using the ER model, or a similar high-level data model, and is
discussed in the rest of this chapter.

(3) Logical Database Design: We must choose a DBMS to implement our database
design, and convert the conceptual database design into a database schema in the data
model of the chosen DBMS. We will only consider relational DBMSs, and therefore,
the task in the logical design step is to convert an ER schema into a relational database
schema. We discuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond the ER Model

ER modeling is sometimes regarded as a complete approach to designing a logical
database schema. This is incorrect because the ER diagram is just an approximate
description of the data, constructed through a very subjective evaluation of the infor-
mation collected during requirements analysis. A more careful analysis can often refine
the logical schema obtained at the end of Step 3. Once we have a good logical schema,
we must consider performance criteria and design the physical schema. Finally, we
must address security issues and ensure that users are able to access the data they
need, but not data that we wish to hide from them. The remaining three steps of
database design are briefly described below: 1

1This material can be omitted on a first reading of this chapter without loss of continuity.

26 Chapter 2

(4) Schema Refinement: The fourth step in database design is to analyze the
collection of relations in our relational database schema to identify potential problems,
and to refine it. In contrast to the requirements analysis and conceptual design steps,
which are essentially subjective, schema refinement can be guided by some elegant and
powerful theory. We discuss the theory of normalizing relations—restructuring them
to ensure some desirable properties—in Chapter 15.

(5) Physical Database Design: In this step we must consider typical expected
workloads that our database must support and further refine the database design to
ensure that it meets desired performance criteria. This step may simply involve build-
ing indexes on some tables and clustering some tables, or it may involve a substantial
redesign of parts of the database schema obtained from the earlier design steps. We
discuss physical design and database tuning in Chapter 16.

(6) Security Design: In this step, we identify different user groups and different
roles played by various users (e.g., the development team for a product, the customer
support representatives, the product manager). For each role and user group, we must
identify the parts of the database that they must be able to access and the parts of the
database that they should not be allowed to access, and take steps to ensure that they
can access only the necessary parts. A DBMS provides several mechanisms to assist
in this step, and we discuss this in Chapter 17.

In general, our division of the design process into steps should be seen as a classification
of the kinds of steps involved in design. Realistically, although we might begin with
the six step process outlined here, a complete database design will probably require
a subsequent tuning phase in which all six kinds of design steps are interleaved and
repeated until the design is satisfactory. Further, we have omitted the important steps
of implementing the database design, and designing and implementing the application
layers that run on top of the DBMS. In practice, of course, these additional steps can
lead to a rethinking of the basic database design.

The concepts and techniques that underlie a relational DBMS are clearly useful to
someone who wants to implement or maintain the internals of a database system.
However, it is important to recognize that serious users and DBAs must also know
how a DBMS works. A good understanding of database system internals is essential
for a user who wishes to take full advantage of a DBMS and design a good database;
this is especially true of physical design and database tuning.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other objects.
Examples include the following: the Green Dragonzord toy, the toy department, the
manager of the toy department, the home address of the manager of the toy depart-

The Entity-Relationship Model 27

ment. It is often useful to identify a collection of similar entities. Such a collection is
called an entity set. Note that entity sets need not be disjoint; the collection of toy
department employees and the collection of appliance department employees may both
contain employee John Doe (who happens to work in both departments). We could
also define an entity set called Employees that contains both the toy and appliance
department employee sets.

An entity is described using a set of attributes. All entities in a given entity set have
the same attributes; this is essentially what we mean by similar. (This statement is
an oversimplification, as we will see when we discuss inheritance hierarchies in Section
2.4.4, but it suffices for now and highlights the main idea.) Our choice of attributes
reflects the level of detail at which we wish to represent information about entities.
For example, the Employees entity set could use name, social security number (ssn),
and parking lot (lot) as attributes. In this case we will store the name, social secu-
rity number, and lot number for each employee. However, we will not store, say, an
employee’s address (or gender or age).

For each attribute associated with an entity set, we must identify a domain of possible
values. For example, the domain associated with the attribute name of Employees
might be the set of 20-character strings.2 As another example, if the company rates
employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated
domain consists of integers 1 through 10. Further, for each entity set, we choose a key.
A key is a minimal set of attributes whose values uniquely identify an entity in the
set. There could be more than one candidate key; if so, we designate one of them as
the primary key. For now we will assume that each entity set contains at least one
set of attributes that uniquely identifies an entity in the entity set; that is, the set of
attributes contains a key. We will revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure 2.1.
An entity set is represented by a rectangle, and an attribute is represented by an oval.
Each attribute in the primary key is underlined. The domain information could be
listed along with the attribute name, but we omit this to keep the figures compact.
The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we may
have the relationship that Attishoo works in the pharmacy department. As with
entities, we may wish to collect a set of similar relationships into a relationship set.

2To avoid confusion, we will assume that attribute names do not repeat across entity sets. This is
not a real limitation because we can always use the entity set name to resolve ambiguities if the same
attribute name is used in more than one entity set.

28 Chapter 2

Employees

ssn

name

lot

Figure 2.1 The Employees Entity Set

A relationship set can be thought of as a set of n-tuples:

{(e1, . . . , en) | e1 ∈ E1, . . . , en ∈ En}

Each n-tuple denotes a relationship involving n entities e1 through en, where entity ei

is in entity set Ei. In Figure 2.2 we show the relationship set Works In, in which each
relationship indicates a department in which an employee works. Note that several
relationship sets might involve the same entity sets. For example, we could also have
a Manages relationship set involving Employees and Departments.

dname

budgetdid

since

name

Works_In DepartmentsEmployees

ssn lot

Figure 2.2 The Works In Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes are used
to record information about the relationship, rather than about any one of the par-
ticipating entities; for example, we may wish to record that Attishoo works in the
pharmacy department as of January 1991. This information is captured in Figure 2.2
by adding an attribute, since, to Works In. A relationship must be uniquely identified
by the participating entities, without reference to the descriptive attributes. In the
Works In relationship set, for example, each Works In relationship must be uniquely
identified by the combination of employee ssn and department did. Thus, for a given
employee-department pair, we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an instance
can be thought of as a ‘snapshot’ of the relationship set at some instant in time. An
instance of the Works In relationship set is shown in Figure 2.3. Each Employees entity
is denoted by its ssn, and each Departments entity is denoted by its did, for simplicity.

The Entity-Relationship Model 29

The since value is shown beside each relationship. (The ‘many-to-many’ and ‘total
participation’ comments in the figure will be discussed later, when we discuss integrity
constraints.)

131-24-3650

231-31-5368

223-32-6316

123-22-3666

1/1/91

3/3/93

2/2/92

3/1/92

3/1/92

51

56

60

EMPLOYEES

Total participation

WORKS_IN

Many to Many

DEPARTMENTS

Total participation

Figure 2.3 An Instance of the Works In Relationship Set

As another example of an ER diagram, suppose that each department has offices in
several locations and we want to record the locations at which each employee works.
This relationship is ternary because we must record an association between an em-
ployee, a department, and a location. The ER diagram for this variant of Works In,
which we call Works In2, is shown in Figure 2.4.

dname

budgetdid

since

name

Employees

ssn lot

Locations

Departments

capacityaddress

Works_In2

Figure 2.4 A Ternary Relationship Set

The entity sets that participate in a relationship set need not be distinct; sometimes
a relationship might involve two entities in the same entity set. For example, consider
the Reports To relationship set that is shown in Figure 2.5. Since employees report
to other employees, every relationship in Reports To is of the form (emp1, emp2),

30 Chapter 2

where both emp1 and emp2 are entities in Employees. However, they play different
roles: emp1 reports to the managing employee emp2, which is reflected in the role
indicators supervisor and subordinate in Figure 2.5. If an entity set plays more than
one role, the role indicator concatenated with an attribute name from the entity set
gives us a unique name for each attribute in the relationship set. For example, the
Reports To relationship set has attributes corresponding to the ssn of the supervisor
and the ssn of the subordinate, and the names of these attributes are supervisor ssn
and subordinate ssn.

Reports_To

name

Employees

subordinatesupervisor

ssn lot

Figure 2.5 The Reports To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe some
subtle properties of the data. The expressiveness of the ER model is a big reason for
its widespread use.

2.4.1 Key Constraints

Consider the Works In relationship shown in Figure 2.2. An employee can work in
several departments, and a department can have several employees, as illustrated in
the Works In instance shown in Figure 2.3. Employee 231-31-5368 has worked in
Department 51 since 3/3/93 and in Department 56 since 2/2/92. Department 51 has
two employees.

Now consider another relationship set called Manages between the Employees and De-
partments entity sets such that each department has at most one manager, although a
single employee is allowed to manage more than one department. The restriction that
each department has at most one manager is an example of a key constraint, and
it implies that each Departments entity appears in at most one Manages relationship

The Entity-Relationship Model 31

in any allowable instance of Manages. This restriction is indicated in the ER diagram
of Figure 2.6 by using an arrow from Departments to Manages. Intuitively, the ar-
row states that given a Departments entity, we can uniquely determine the Manages
relationship in which it appears.

name dname

budgetdid

since

ManagesEmployees Departments

ssn lot

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this is also
a potential instance for the Works In relationship set, the instance of Works In shown
in Figure 2.3 violates the key constraint on Manages.

131-24-3650

231-31-5368

223-32-6316

123-22-3666

51

56

60

EMPLOYEES MANAGES DEPARTMENTS

Total participationOne to ManyPartial participation

3/3/93

2/2/92

3/1/92

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to indicate that
one employee can be associated with many departments (in the capacity of a manager),
whereas each department can be associated with at most one employee as its manager.
In contrast, the Works In relationship set, in which an employee is allowed to work in
several departments and a department is allowed to have several employees, is said to
be many-to-many.

32 Chapter 2

If we add the restriction that each employee can manage at most one department
to the Manages relationship set, which would be indicated by adding an arrow from
Employees to Manages in Figure 2.6, we have a one-to-one relationship set.

Key Constraints for Ternary Relationships

We can extend this convention—and the underlying key constraint concept—to rela-
tionship sets involving three or more entity sets: If an entity set E has a key constraint
in a relationship set R, each entity in an instance of E appears in at most one rela-
tionship in (a corresponding instance of) R. To indicate a key constraint on entity set
E in relationship set R, we draw an arrow from E to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each employee
works in at most one department, and at a single location. An instance of the
Works In3 relationship set is shown in Figure 2.9. Notice that each department can be
associated with several employees and locations, and each location can be associated
with several departments and employees; however, each employee is associated with a
single department and location.

dname

budgetdid

since

name

Employees

ssn lot

Locations

Departments

capacityaddress

Works_In3

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one manager.
A natural question to ask is whether every department has a manager. Let us say that
every department is required to have a manager. This requirement is an example of
a participation constraint; the participation of the entity set Departments in the
relationship set Manages is said to be total. A participation that is not total is said to
be partial. As an example, the participation of the entity set Employees in Manages
is partial, since not every employee gets to manage a department.

The Entity-Relationship Model 33

131-24-3650

231-31-5368

223-32-6316

123-22-3666

EMPLOYEES

51

56

60

Rome

Delhi

Paris

3/3/93

2/2/92

3/1/92

3/1/92

WORKS_IN3

Key constraint

DEPARTMENTS

LOCATIONS

Figure 2.9 An Instance of Works In3

Revisiting the Works In relationship set, it is natural to expect that each employee
works in at least one department and that each department has at least one employee.
This means that the participation of both Employees and Departments in Works In
is total. The ER diagram in Figure 2.10 shows both the Manages and Works In
relationship sets and all the given constraints. If the participation of an entity set
in a relationship set is total, the two are connected by a thick line; independently,
the presence of an arrow indicates a key constraint. The instances of Works In and
Manages shown in Figures 2.3 and 2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set include a
key. This assumption does not always hold. For example, suppose that employees can
purchase insurance policies to cover their dependents. We wish to record information
about policies, including who is covered by each policy, but this information is really
our only interest in the dependents of an employee. If an employee quits, any policy
owned by the employee is terminated and we want to delete all the relevant policy and
dependent information from the database.

We might choose to identify a dependent by name alone in this situation, since it is rea-
sonable to expect that the dependents of a given employee have different names. Thus
the attributes of the Dependents entity set might be pname and age. The attribute
pname does not identify a dependent uniquely. Recall that the key for Employees is

34 Chapter 2

name dname

budgetdid

since

Manages

name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

lot

Figure 2.10 Manages and Works In

ssn; thus we might have two employees called Smethurst, and each might have a son
called Joe.

Dependents is an example of a weak entity set. A weak entity can be identified
uniquely only by considering some of its attributes in conjunction with the primary
key of another entity, which is called the identifying owner.

The following restrictions must hold:

The owner entity set and the weak entity set must participate in a one-to-many
relationship set (one owner entity is associated with one or more weak entities,
but each weak entity has a single owner). This relationship set is called the
identifying relationship set of the weak entity set.

The weak entity set must have total participation in the identifying relationship
set.

For example, a Dependents entity can be identified uniquely only if we take the key
of the owning Employees entity and the pname of the Dependents entity. The set of
attributes of a weak entity set that uniquely identify a weak entity for a given owner
entity is called a partial key of the weak entity set. In our example pname is a partial
key for Dependents.

The Dependents weak entity set and its relationship to Employees is shown in Fig-
ure 2.11. The total participation of Dependents in Policy is indicated by linking them

The Entity-Relationship Model 35

with a dark line. The arrow from Dependents to Policy indicates that each Dependents
entity appears in at most one (indeed, exactly one, because of the participation con-
straint) Policy relationship. To underscore the fact that Dependents is a weak entity
and Policy is its identifying relationship, we draw both with dark lines. To indicate
that pname is a partial key for Dependents, we underline it using a broken line. This
means that there may well be two dependents with the same pname value.

name

agepname

DependentsEmployees

ssn

Policy

cost
lot

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses. For
example, we might want to talk about an Hourly Emps entity set and a Contract Emps
entity set to distinguish the basis on which they are paid. We might have attributes
hours worked and hourly wage defined for Hourly Emps and an attribute contractid
defined for Contract Emps.

We want the semantics that every entity in one of these sets is also an Employees entity,
and as such must have all of the attributes of Employees defined. Thus, the attributes
defined for an Hourly Emps entity are the attributes for Employees plus Hourly Emps.
We say that the attributes for the entity set Employees are inherited by the entity
set Hourly Emps, and that Hourly Emps ISA (read is a) Employees. In addition—
and in contrast to class hierarchies in programming languages such as C++—there is
a constraint on queries over instances of these entity sets: A query that asks for all
Employees entities must consider all Hourly Emps and Contract Emps entities as well.
Figure 2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For example,
we might identify a subset of employees as Senior Emps. We can modify Figure 2.12
to reflect this change by adding a second ISA node as a child of Employees and making
Senior Emps a child of this node. Each of these entity sets might be classified further,
creating a multilevel ISA hierarchy.

A class hierarchy can be viewed in one of two ways:

36 Chapter 2

name

ISA

ssn

EmployeeEmployees

Hourly_Emps Contract_Emps

lot

contractidhours_worked

hourly_wages

Figure 2.12 Class Hierarchy

Employees is specialized into subclasses. Specialization is the process of iden-
tifying subsets of an entity set (the superclass) that share some distinguishing
characteristic. Typically the superclass is defined first, the subclasses are defined
next, and subclass-specific attributes and relationship sets are then added.

Hourly Emps and Contract Emps are generalized by Employees. As another
example, two entity sets Motorboats and Cars may be generalized into an entity
set Motor Vehicles. Generalization consists of identifying some common charac-
teristics of a collection of entity sets and creating a new entity set that contains
entities possessing these common characteristics. Typically the subclasses are de-
fined first, the superclass is defined next, and any relationship sets that involve
the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely, overlap
and covering constraints. Overlap constraints determine whether two subclasses are
allowed to contain the same entity. For example, can Attishoo be both an Hourly Emps
entity and a Contract Emps entity? Intuitively, no. Can he be both a Contract Emps
entity and a Senior Emps entity? Intuitively, yes. We denote this by writing ‘Con-
tract Emps OVERLAPS Senior Emps.’ In the absence of such a statement, we assume
by default that entity sets are constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collectively
include all entities in the superclass. For example, does every Employees entity have
to belong to one of its subclasses? Intuitively, no. Does every Motor Vehicles entity
have to be either a Motorboats entity or a Cars entity? Intuitively, yes; a charac-
teristic property of generalization hierarchies is that every instance of a superclass is
an instance of a subclass. We denote this by writing ‘Motorboats AND Cars COVER

The Entity-Relationship Model 37

Motor Vehicles.’ In the absence of such a statement, we assume by default that there
is no covering constraint; we can have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or generaliza-
tion):

1. We might want to add descriptive attributes that make sense only for the entities
in a subclass. For example, hourly wages does not make sense for a Contract Emps
entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some relation-
ship. For example, we might wish to define the Manages relationship so that the
participating entity sets are Senior Emps and Departments, to ensure that only
senior employees can be managers. As another example, Motorboats and Cars
may have different descriptive attributes (say, tonnage and number of doors), but
as Motor Vehicles entities, they must be licensed. The licensing information can
be captured by a Licensed To relationship between Motor Vehicles and an entity
set called Owners.

2.4.5 Aggregation

As we have defined it thus far, a relationship set is an association between entity sets.
Sometimes we have to model a relationship between a collection of entities and rela-
tionships. Suppose that we have an entity set called Projects and that each Projects
entity is sponsored by one or more departments. The Sponsors relationship set cap-
tures this information. A department that sponsors a project might assign employees
to monitor the sponsorship. Intuitively, Monitors should be a relationship set that
associates a Sponsors relationship (rather than a Projects or Departments entity) with
an Employees entity. However, we have defined relationships to associate two or more
entities.

In order to define a relationship set such as Monitors, we introduce a new feature of the
ER model, called aggregation. Aggregation allows us to indicate that a relationship
set (identified through a dashed box) participates in another relationship set. This is
illustrated in Figure 2.13, with a dashed box around Sponsors (and its participating
entity sets) used to denote aggregation. This effectively allows us to treat Sponsors as
an entity set for purposes of defining the Monitors relationship set.

When should we use aggregation? Intuitively, we use it when we need to express a
relationship among relationships. But can’t we express relationships involving other
relationships without using aggregation? In our example, why not make Sponsors a
ternary relationship? The answer is that there are really two distinct relationships,
Sponsors and Monitors, each possibly with attributes of its own. For instance, the

38 Chapter 2

until

since

name

budgetdidpid

started_on

pbudget

dname

ssn

DepartmentsProjects Sponsors

Employees

Monitors

lot

Figure 2.13 Aggregation

Monitors relationship has an attribute until that records the date until when the em-
ployee is appointed as the sponsorship monitor. Compare this attribute with the
attribute since of Sponsors, which is the date when the sponsorship took effect. The
use of aggregation versus a ternary relationship may also be guided by certain integrity
constraints, as explained in Section 2.5.4.

2.5 CONCEPTUAL DATABASE DESIGN WITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

Should a concept be modeled as an entity or an attribute?

Should a concept be modeled as an entity or a relationship?

What are the relationship sets and their participating entity sets? Should we use
binary or ternary relationships?

Should we use aggregation?

We now discuss the issues involved in making these choices.

The Entity-Relationship Model 39

2. 1 Entit y versusAttri bute

While identifying the attributes of an entity set, it is sometimes not clear whether a
property should be modeled as an attribute or as an entity set (and related to the first
entity set using a relationship set). For example, consider adding address information
to the Employees entity set. One option is to use an attribute address. This option is
appropriate if we need to record only one address per employee, and it suffices to think
of an address as a string. An alternative is to create an entity set called Addresses
and to record associations between employees and addresses using a relationship (say,
Has Address). This more complex alternative is necessary in two situations:

We have to record more than one address for an employee.

We want to capture the structure of an address in our ER diagram. For example,
we might break down an address into city, state, country, and Zip code, in addition
to a string for street information. By representing an address as an entity with
these attributes, we can support queries such as “Find all employees with an
address in Madison, WI.”

For another example of when to model a concept as an entity set rather than as an
attribute, consider the relationship set (called Works In2) shown in Figure 2.14.

dname

budgetdid

name

DepartmentsEmployees

ssn lot

from to

Works_In2

Figure 2.14 The Works In2 Relationship Set

It differs from the Works In relationship set of Figure 2.2 only in that it has attributes
from and to, instead of since. Intuitively, it records the interval during which an
employee works for a department. Now suppose that it is possible for an employee to
work in a given department over more than one period.

This possibility is ruled out by the ER diagram’s semantics. The problem is that
we want to record several values for the descriptive attributes for each instance of
the Works In2 relationship. (This situation is analogous to wanting to record several
addresses for each employee.) We can address this problem by introducing an entity
set called, say, Duration, with attributes from and to, as shown in Figure 2.15.

.5

40 Chapter 2

dname

budgetdid

name

Departments

ssn lot

from to

Employees Works_In4

Duration

Figure 2.15 The Works In4 Relationship Set

In some versions of the ER model, attributes are allowed to take on sets as values.
Given this feature, we could make Duration an attribute of Works In, rather than an
entity set; associated with each Works In relationship, we would have a set of intervals.
This approach is perhaps more intuitive than modeling Duration as an entity set.
Nonetheless, when such set-valued attributes are translated into the relational model,
which does not support set-valued attributes, the resulting relational schema is very
similar to what we get by regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each depart-
ment manager is given a discretionary budget (dbudget), as shown in Figure 2.16, in
which we have also renamed the relationship set to Manages2.

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

Manages2

Figure 2.16 Entity versus Relationship

There is at most one employee managing a department, but a given employee could
manage several departments; we store the starting date and discretionary budget for
each manager-department pair. This approach is natural if we assume that a manager
receives a separate discretionary budget for each department that he or she manages.

The Entity-Relationship Model 41

But what if the discretionary budget is a sum that covers all departments managed by
that employee? In this case each Manages2 relationship that involves a given employee
will have the same value in the dbudget field. In general such redundancy could be
significant and could cause a variety of problems. (We discuss redundancy and its
attendant problems in Chapter 15.) Another problem with this design is that it is
misleading.

We can address these problems by associating dbudget with the appointment of the
employee as manager of a group of departments. In this approach, we model the
appointment as an entity set, say Mgr Appt, and use a ternary relationship, say Man-
ages3, to relate a manager, an appointment, and a department. The details of an
appointment (such as the discretionary budget) are not repeated for each department
that is included in the appointment now, although there is still one Manages3 relation-
ship instance per such department. Further, note that each department has at most
one manager, as before, because of the key constraint. This approach is illustrated in
Figure 2.17.

Employees

name dname

budgetdid

Departments

ssn lot

Mgr_Appts

Manages3

dbudget

apptnum

since

Figure 2.17 Entity Set versus Relationship

2.5.3 Binary versus Ternary Relationships *

Consider the ER diagram shown in Figure 2.18. It models a situation in which an
employee can own several policies, each policy can be owned by several employees, and
each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

A policy cannot be owned jointly by two or more employees.

Every policy must be owned by some employee.

42 Chapter 2

name

agepname

DependentsEmployees

ssn

Covers

policyid cost

lot

Policies

Figure 2.18 Policies as an Entity Set

Dependents is a weak entity set, and each dependent entity is uniquely identified by
taking pname in conjunction with the policyid of a policy entity (which, intuitively,
covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with respect
to Covers, but this constraint has the unintended side effect that a policy can cover only
one dependent. The second requirement suggests that we impose a total participation
constraint on Policies. This solution is acceptable if each policy covers at least one
dependent. The third requirement forces us to introduce an identifying relationship
that is binary (in our version of ER diagrams, although there are versions in which
this is not the case).

Even ignoring the third point above, the best way to model this situation is to use two
binary relationships, as shown in Figure 2.19.

This example really had two relationships involving Policies, and our attempt to use
a single ternary relationship (Figure 2.18) was inappropriate. There are situations,
however, where a relationship inherently associates more than two entities. We have
seen such an example in Figure 2.4 and also Figures 2.15 and 2.17.

As a good example of a ternary relationship, consider entity sets Parts, Suppliers, and
Departments, and a relationship set Contracts (with descriptive attribute qty) that
involves all of them. A contract specifies that a supplier will supply (some quantity of)
a part to a department. This relationship cannot be adequately captured by a collection
of binary relationships (without the use of aggregation). With binary relationships, we
can denote that a supplier ‘can supply’ certain parts, that a department ‘needs’ some

The Entity-Relationship Model 43

name

agepname

DependentsEmployees

ssn

policyid cost

Beneficiary

lot

Policies

Purchaser

Figure 2.19 Policy Revisited

parts, or that a department ‘deals with’ a certain supplier. No combination of these
relationships expresses the meaning of a contract adequately, for at least two reasons:

The facts that supplier S can supply part P, that department D needs part P, and
that D will buy from S do not necessarily imply that department D indeed buys
part P from supplier S!

We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships *

As we noted in Section 2.4.5, the choice between using aggregation or a ternary relation-
ship is mainly determined by the existence of a relationship that relates a relationship
set to an entity set (or second relationship set). The choice may also be guided by
certain integrity constraints that we want to express. For example, consider the ER
diagram shown in Figure 2.13. According to this diagram, a project can be sponsored
by any number of departments, a department can sponsor one or more projects, and
each sponsorship is monitored by one or more employees. If we don’t need to record
the until attribute of Monitors, then we might reasonably use a ternary relationship,
say, Sponsors2, as shown in Figure 2.20.

Consider the constraint that each sponsorship (of a project by a department) be mon-
itored by at most one employee. We cannot express this constraint in terms of the
Sponsors2 relationship set. On the other hand, we can easily express the constraint
by drawing an arrow from the aggregated relationship Sponsors to the relationship

44 Chapter 2

budgetdidpid

started_on

pbudget

dname

DepartmentsProjects Sponsors2

name

ssn

Employees

lot

Figure 2.20 Using a Ternary Relationship instead of Aggregation

Monitors in Figure 2.13. Thus, the presence of such a constraint serves as another
reason for using aggregation rather than a ternary relationship set.

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES *

We have thus far concentrated on the constructs available in the ER model for describ-
ing various application concepts and relationships. The process of conceptual design
consists of more than just describing small fragments of the application in terms of
ER diagrams. For a large enterprise, the design may require the efforts of more than
one designer and span data and application code used by a number of user groups.
Using a high-level, semantic data model such as ER diagrams for conceptual design in
such an environment offers the additional advantage that the high-level design can be
diagrammatically represented and is easily understood by the many people who must
provide input to the design process.

An important aspect of the design process is the methodology used to structure the
development of the overall design and to ensure that the design takes into account all
user requirements and is consistent. The usual approach is that the requirements of
various user groups are considered, any conflicting requirements are somehow resolved,
and a single set of global requirements is generated at the end of the requirements
analysis phase. Generating a single set of global requirements is a difficult task, but
it allows the conceptual design phase to proceed with the development of a logical
schema that spans all the data and applications throughout the enterprise.

The Entity-Relationship Model 45

An alternative approach is to develop separate conceptual schemas for different user
groups and to then integrate these conceptual schemas. To integrate multiple concep-
tual schemas, we must establish correspondences between entities, relationships, and
attributes, and we must resolve numerous kinds of conflicts (e.g., naming conflicts,
domain mismatches, differences in measurement units). This task is difficult in its
own right. In some situations schema integration cannot be avoided—for example,
when one organization merges with another, existing databases may have to be inte-
grated. Schema integration is also increasing in importance as users demand access to
heterogeneous data sources, often maintained by different organizations.

2.7 POINTS TO REVIEW

Database design has six steps: requirements analysis, conceptual database design,
logical database design, schema refinement, physical database design, and security
design. Conceptual design should produce a high-level description of the data,
and the entity-relationship (ER) data model provides a graphical approach to this
design phase. (Section 2.1)

In the ER model, a real-world object is represented as an entity. An entity set is a
collection of structurally identical entities. Entities are described using attributes.
Each entity set has a distinguished set of attributes called a key that can be used
to uniquely identify each entity. (Section 2.2)

A relationship is an association between two or more entities. A relationship set
is a collection of relationships that relate entities from the same entity sets. A
relationship can also have descriptive attributes. (Section 2.3)

A key constraint between an entity set S and a relationship set restricts instances
of the relationship set by requiring that each entity of S participate in at most one
relationship. A participation constraint between an entity set S and a relationship
set restricts instances of the relationship set by requiring that each entity of S
participate in at least one relationship. The identity and existence of a weak entity
depends on the identity and existence of another (owner) entity. Class hierarchies
organize structurally similar entities through inheritance into sub- and super-
classes. Aggregation conceptually transforms a relationship set into an entity set
such that the resulting construct can be related to other entity sets. (Section 2.4)

Development of an ER diagram involves important modeling decisions. A thor-
ough understanding of the problem being modeled is necessary to decide whether
to use an attribute or an entity set, an entity or a relationship set, a binary or
ternary relationship, or aggregation. (Section 2.5)

Conceptual design for large enterprises is especially challenging because data from
many sources, managed by many groups, is involved. (Section 2.6)

46 Chapter 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,

entity set, relationship set, one-to-many relationship, many-to-many relationship, participa-

tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role

indicator.

Exercise 2.2 A university database contains information about professors (identified by so-

cial security number, or SSN) and courses (identified by courseid). Professors teach courses;

each of the following situations concerns the Teaches relationship set. For each situation,

draw an ER diagram that describes it (assuming that no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be

recorded.

2. Professors can teach the same course in several semesters, and only the most recent

such offering needs to be recorded. (Assume this condition applies in all subsequent

questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be

taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it

is possible that no one professor in a team can teach the course. Model this situation,

introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending

date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or

Ph.D.).

Each project is managed by one professor (known as the project’s principal investigator).

Each project is worked on by one or more professors (known as the project’s co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the project’s

research assistants).

When graduate students work on a project, a professor must supervise their work on the

project. Graduate students can work on multiple projects, in which case they will have

a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they work

in, a time percentage is associated with their job.

The Entity-Relationship Model 47

Graduate students have one major department in which they are working on their degree.

Each graduate student has another, more senior graduate student (known as a student

advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only

the basic ER model here, that is, entities, relationships, and attributes. Be sure to indicate

any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified

by ssn, with salary and phone as attributes); departments (identified by dno, with dname and

budget as attributes); and children of employees (with name and age as attributes). Employees

work in departments; each department is managed by an employee; a child must be identified

uniquely by name when the parent (who is an employee; assume that only one parent works

for the company) is known. We are not interested in information about a child once the

parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform

on its albums (as well as other company data) in a database. The company has wisely chosen

to hire you as a database designer (at your usual consulting fee of $2,500/day).

Each musician that records at Notown has an SSN, a name, an address, and a phone

number. Poorly paid musicians often share the same address, and no address has more

than one phone.

Each instrument that is used in songs recorded at Notown has a name (e.g., guitar,

synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album that is recorded on the Notown label has a title, a copyright date, a format

(e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be played by

several musicians.

Each album has a number of songs on it, but no song may appear on more than one

album.

Each song is performed by one or more musicians, and a musician may perform a number

of songs.

Each album has exactly one musician who acts as its producer. A musician may produce

several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The

following information describes the situation that the Notown database must model. Be sure

to indicate all key and cardinality constraints and any assumptions that you make. Identify

any constraints that you are unable to capture in the ER diagram and briefly explain why

you could not express them.

48 Chapter 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane

County Airport officials about the poor organization at the airport. As a result, the officials

have decided that all information related to the airport should be organized using a DBMS,

and you’ve been hired to design the database. Your first task is to organize the informa-

tion about all the airplanes that are stationed and maintained at the airport. The relevant

information is as follows:

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is identified by

a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN, address,

phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her expertise may

overlap with that of other technicians. This information about technicians must also be

recorded.

Traffic controllers must have an annual medical examination. For each traffic controller,

you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store the

union membership number of each employee. You can assume that each employee is

uniquely identified by the social security number.

The airport has a number of tests that are used periodically to ensure that airplanes are

still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a

name, and a maximum possible score.

The FAA requires the airport to keep track of each time that a given airplane is tested

by a given technician using a given test. For each testing event, the information needed

is the date, the number of hours the technician spent doing the test, and the score that

the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes

of each entity and relationship set; also specify the key and participation constraints for

each relationship set. Specify any necessary overlap and covering constraints as well (in

English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician

who is an expert on that model. How would you express this constraint in the ER

diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life-

time supply of medicines if you design its database. Given the rising cost of health care, you

agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of

experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

The Entity-Relationship Model 49

For each drug, the trade name and formula must be recorded. Each drug is sold by

a given pharmaceutical company, and the trade name identifies a drug uniquely from

among the products of that company. If a pharmaceutical company is deleted, you need

not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold at

several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for

several patients, and a patient could obtain prescriptions from several doctors. Each

prescription has a date and a quantity associated with it. You can assume that if a

doctor prescribes the same drug for the same patient more than once, only the last such

prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical

company can contract with several pharmacies, and a pharmacy can contract with several

pharmaceutical companies. For each contract, you have to store a start date, an end date,

and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a supervisor

for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the above information. Identify any constraints that

are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma-

cies?

3. How would your design change if the design requirements change as follows: If a doctor

prescribes the same drug for the same patient more than once, several such prescriptions

may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on

databases because you love to cook data and you somehow confused ‘data base’ with ‘data

baste.’ Your old love is still there, however, so you set up a database company, ArtBase, that

builds a product for art galleries. The core of this product is a database with a schema that

captures all the information that galleries need to maintain. Galleries keep information about

artists, their names (which are unique), birthplaces, age, and style of art. For each piece

of artwork, the artist, the year it was made, its unique title, its type of art (e.g., painting,

lithograph, sculpture, photograph), and its price must be stored. Pieces of artwork are also

classified into groups of various kinds, for example, portraits, still lifes, works by Picasso, or

works of the 19th century; a given piece may belong to more than one group. Each group

is identified by a name (like those above) that describes the group. Finally, galleries keep

information about customers. For each customer, galleries keep their unique name, address,

total amount of dollars they have spent in the gallery (very important!), and the artists and

groups of art that each customer tends to like.

Draw the ER diagram for the database.

50 Chapter 2

BIBLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [52] (which also

contains a survey of commercial database design tools) and [641].

The ER model was proposed by Chen [145], and extensions have been proposed in a number of

subsequent papers. Generalization and aggregation were introduced in [604]. [330] and [514]

contain good surveys of semantic data models. Dynamic and temporal aspects of semantic

data models are discussed in [658].

[642] discusses a design methodology based on developing an ER diagram and then translating

to the relational model. Markowitz considers referential integrity in the context of ER to

relational mapping and discusses the support provided in some commercial systems (as of

that date) in [446, 447].

The entity-relationship conference proceedings contain numerous papers on conceptual design,

with an emphasis on the ER model, for example, [609].

View integration is discussed in several papers, including [84, 118, 153, 207, 465, 480, 479,

596, 608, 657]. [53] is a survey of several integration approaches.

3 THE RELATIONAL MODEL

TABLE: An arrangement of words, numbers, or signs, or combinations of them, as

in parallel columns, to exhibit a set of facts or relations in a definite, compact, and

comprehensive form; a synopsis or scheme.

—Webster’s Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time most database systems
were based on one of two older data models (the hierarchical model and the network
model); the relational model revolutionized the database field and largely supplanted
these earlier models. Prototype relational database management systems were devel-
oped in pioneering research projects at IBM and UC-Berkeley by the mid-70s, and
several vendors were offering relational database products shortly thereafter. Today,
the relational model is by far the dominant data model and is the foundation for the
leading DBMS products, including IBM’s DB2 family, Informix, Oracle, Sybase, Mi-
crosoft’s Access and SQLServer, FoxBase, and Paradox. Relational database systems
are ubiquitous in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant; a database is a collection of one or more
relations, where each relation is a table with rows and columns. This simple tabular
representation enables even novice users to understand the contents of a database,
and it permits the use of simple, high-level languages to query the data. The major
advantages of the relational model over the older data models are its simple data
representation and the ease with which even complex queries can be expressed.

This chapter introduces the relational model and covers the following issues:

How is data represented?

What kinds of integrity constraints can be expressed?

How can data be created and modified?

How can data be manipulated and queried?

How do we obtain a database design in the relational model?

How are logical and physical data independence achieved?

51

52 Chapter 3

SQL: It was the query language of the pioneering System-R relational DBMS
developed at IBM. Over the years, SQL has become the most widely used language
for creating, manipulating, and querying relational DBMSs. Since many vendors
offer SQL products, there is a need for a standard that defines ‘official SQL.’
The existence of a standard allows users to measure a given vendor’s version of
SQL for completeness. It also allows users to distinguish SQL features that are
specific to one product from those that are standard; an application that relies on
non-standard features is less portable.
The first SQL standard was developed in 1986 by the American National Stan-
dards Institute (ANSI), and was called SQL-86. There was a minor revision in
1989 called SQL-89, and a major revision in 1992 called SQL-92. The Interna-
tional Standards Organization (ISO) collaborated with ANSI to develop SQL-92.
Most commercial DBMSs currently support SQL-92. An exciting development is
the imminent approval of SQL:1999, a major extension of SQL-92. While the cov-
erage of SQL in this book is based upon SQL-92, we will cover the main extensions
of SQL:1999 as well.

While we concentrate on the underlying concepts, we also introduce the Data Def-
inition Language (DDL) features of SQL-92, the standard language for creating,
manipulating, and querying data in a relational DBMS. This allows us to ground the
discussion firmly in terms of real database systems.

We discuss the concept of a relation in Section 3.1 and show how to create relations
using the SQL language. An important component of a data model is the set of
constructs it provides for specifying conditions that must be satisfied by the data. Such
conditions, called integrity constraints (ICs), enable the DBMS to reject operations that
might corrupt the data. We present integrity constraints in the relational model in
Section 3.2, along with a discussion of SQL support for ICs. We discuss how a DBMS
enforces integrity constraints in Section 3.3. In Section 3.4 we turn to the mechanism
for accessing and retrieving data from the database, query languages, and introduce
the querying features of SQL, which we examine in greater detail in a later chapter.

We then discuss the step of converting an ER diagram into a relational database schema
in Section 3.5. Finally, we introduce views, or tables defined using queries, in Section
3.6. Views can be used to define the external schema for a database and thus provide
the support for logical data independence in the relational model.

3.1 INTRODUCTION TO THE RELATIONAL MODEL

The main construct for representing data in the relational model is a relation. A
relation consists of a relation schema and a relation instance. The relation instance

The Relational Model 53

is a table, and the relation schema describes the column heads for the table. We first
describe the relation schema and then the relation instance. The schema specifies the
relation’s name, the name of each field (or column, or attribute), and the domain
of each field. A domain is referred to in a relation schema by the domain name and
has a set of associated values.

We use the example of student information in a university database from Chapter 1
to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string. The set
of values associated with domain string is the set of all character strings.

We now turn to the instances of a relation. An instance of a relation is a set of
tuples, also called records, in which each tuple has the same number of fields as the
relation schema. A relation instance can be thought of as a table in which each tuple
is a row, and all rows have the same number of fields. (The term relation instance is
often abbreviated to just relation, when there is no confusion with other aspects of a
relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance S1 contains

53831

53832

53650

53688

53666

50000 3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

Dave

 sid age gpaloginname

TUPLES

(RECORDS, ROWS)

FIELDS (ATTRIBUTES, COLUMNS)

Field names

Figure 3.1 An Instance S1 of the Students Relation

six tuples and has, as we expect from the schema, five fields. Note that no two rows
are identical. This is a requirement of the relational model—each relation is defined
to be a set of unique tuples or rows.1 The order in which the rows are listed is not
important. Figure 3.2 shows the same relation instance. If the fields are named, as in

1In practice, commercial systems allow tables to have duplicate rows, but we will assume that a
relation is indeed a set of tuples unless otherwise noted.

54 Chapter 3

sid name login age gpa
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53666 Jones jones@cs 18 3.4
50000 Dave dave@cs 19 3.3

Figure 3.2 An Alternative Representation of Instance S1 of Students

our schema definitions and figures depicting relation instances, the order of fields does
not matter either. However, an alternative convention is to list fields in a specific order
and to refer to a field by its position. Thus sid is field 1 of Students, login is field 3,
and so on. If this convention is used, the order of fields is significant. Most database
systems use a combination of these conventions. For example, in SQL the named fields
convention is used in statements that retrieve tuples, and the ordered fields convention
is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation instance.
These domain constraints in the schema specify an important condition that we
want each instance of the relation to satisfy: The values that appear in a column must
be drawn from the domain associated with that column. Thus, the domain of a field
is essentially the type of that field, in programming language terms, and restricts the
values that can appear in the field.

More formally, let R(f1:D1, . . ., fn:Dn) be a relation schema, and for each fi, 1 ≤ i ≤ n,
let Domi be the set of values associated with the domain named Di. An instance of R
that satisfies the domain constraints in the schema is a set of tuples with n fields:

{ 〈f1 : d1, . . . , fn : dn〉 | d1 ∈ Dom1, . . . , dn ∈ Domn }
The angular brackets 〈. . .〉 identify the fields of a tuple. Using this notation, the first
Students tuple shown in Figure 3.1 is written as 〈sid: 50000, name: Dave, login:
dave@cs, age: 19, gpa: 3.3〉. The curly brackets {. . .} denote a set (of tuples, in this
definition). The vertical bar | should be read ‘such that,’ the symbol ∈ should be read
‘in,’ and the expression to the right of the vertical bar is a condition that must be
satisfied by the field values of each tuple in the set. Thus, an instance of R is defined
as a set of tuples. The fields of each tuple must correspond to the fields in the relation
schema.

Domain constraints are so fundamental in the relational model that we will henceforth
consider only relation instances that satisfy them; therefore, relation instance means
relation instance that satisfies the domain constraints in the relation schema.

The Relational Model 55

The degree, also called arity, of a relation is the number of fields. The cardinality
of a relation instance is the number of tuples in it. In Figure 3.1, the degree of the
relation (the number of columns) is five, and the cardinality of this instance is six.

A relational database is a collection of relations with distinct relation names. The
relational database schema is the collection of schemas for the relations in the
database. For example, in Chapter 1, we discussed a university database with rela-
tions called Students, Faculty, Courses, Rooms, Enrolled, Teaches, and Meets In. An
instance of a relational database is a collection of relation instances, one per rela-
tion schema in the database schema; of course, each relation instance must satisfy the
domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL-92

The SQL-92 language standard uses the word table to denote relation, and we will
often follow this convention when discussing SQL. The subset of SQL that supports
the creation, deletion, and modification of tables is called the Data Definition Lan-
guage (DDL). Further, while there is a command that lets users define new domains,
analogous to type definition commands in a programming language, we postpone a dis-
cussion of domain definition until Section 5.11. For now, we will just consider domains
that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table.2 To create the Students
relation, we can use the following statement:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL)

Tuples are inserted using the INSERT command. We can insert a single tuple into the
Students table as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list the values
in the appropriate order, but it is good style to be explicit about column names.

2SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.

56 Chapter 3

We can delete tuples using the DELETE command. We can delete all Students tuples
with name equal to Smith using the command:

DELETE
FROM Students S
WHERE S.name = ‘Smith’

We can modify the column values in an existing row using the UPDATE command. For
example, we can increment the age and decrement the gpa of the student with sid
53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa - 1
WHERE S.sid = 53688

These examples illustrate some important points. The WHERE clause is applied first
and determines which rows are to be modified. The SET clause then determines how
these rows are to be modified. If the column that is being modified is also used to
determine the new value, the value used in the expression on the right side of equals
(=) is the old value, that is, before the modification. To illustrate these points further,
consider the following variation of the previous query:

UPDATE Students S
SET S.gpa = S.gpa - 0.1
WHERE S.gpa >= 3.3

If this query is applied on the instance S1 of Students shown in Figure 3.1, we obtain
the instance shown in Figure 3.3.

sid name login age gpa
50000 Dave dave@cs 19 3.2
53666 Jones jones@cs 18 3.3
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.7
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.3 Students Instance S1 after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must therefore
help prevent the entry of incorrect information. An integrity constraint (IC) is a

The Relational Model 57

condition that is specified on a database schema, and restricts the data that can be
stored in an instance of the database. If a database instance satisfies all the integrity
constraints specified on the database schema, it is a legal instance. A DBMS enforces
integrity constraints, in that it permits only legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she specifies the ICs
that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows
changes to the data that violate the specified ICs. (In some situations, rather than
disallow the change, the DBMS might instead make some compensating changes
to the data to ensure that the database instance satisfies all ICs. In any case,
changes to the database are not allowed to create an instance that violates any
IC.)

Many kinds of integrity constraints can be specified in the relational model. We have
already seen one example of an integrity constraint in the domain constraints associated
with a relation schema (Section 3.1). In general, other kinds of constraints can be
specified as well; for example, no two students have the same sid value. In this section
we discuss the integrity constraints, other than domain constraints, that a DBA or
user can specify in the relational model.

3.2.1 Key Constraints

Consider the Students relation and the constraint that no two students have the same
student id. This IC is an example of a key constraint. A key constraint is a statement
that a certain minimal subset of the fields of a relation is a unique identifier for a tuple.
A set of fields that uniquely identifies a tuple according to a key constraint is called
a candidate key for the relation; we often abbreviate this to just key. In the case of
the Students relation, the (set of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There are two
parts to the definition:3

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs, including
the key constraint) cannot have identical values in all the fields of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

3The term key is rather overworked. In the context of access methods, we speak of search keys,
which are quite different.

58 Chapter 3

The first part of the definition means that in any legal instance, the values in the key
fields uniquely identify a tuple in the instance. When specifying a key constraint, the
DBA or user must be sure that this constraint will not prevent them from storing a
‘correct’ set of tuples. (A similar comment applies to the specification of other kinds
of ICs as well.) The notion of ‘correctness’ here depends upon the nature of the data
being stored. For example, several students may have the same name, although each
student has a unique student id. If the name field is declared to be a key, the DBMS
will not allow the Students relation to contain two tuples describing different students
with the same name!

The second part of the definition means, for example, that the set of fields {sid, name}
is not a key for Students, because this set properly contains the key {sid}. The set
{sid, name} is an example of a superkey, which is a set of fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that two
different rows always have different sid values; sid is a key and uniquely identifies a
tuple. However, this does not hold for nonkey fields. For example, the relation contains
two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since a relation is a set of tuples,
the set of all fields is always a superkey. If other constraints hold, some subset of the
fields may form a key, but if not, the set of all fields is a key.

A relation may have several candidate keys. For example, the login and age fields of
the Students relation may, taken together, also identify students uniquely. That is,
{login, age} is also a key. It may seem that login is a key, since no two rows in the
example instance have the same login value. However, the key must identify tuples
uniquely in all possible legal instances of the relation. By stating that {login, age} is
a key, the user is declaring that two students may have the same login or age, but not
both.

Out of all the available candidate keys, a database designer can identify a primary
key. Intuitively, a tuple can be referred to from elsewhere in the database by storing
the values of its primary key fields. For example, we can refer to a Students tuple by
storing its sid value. As a consequence of referring to student tuples in this manner,
tuples are frequently accessed by specifying their sid value. In principle, we can use
any key, not just the primary key, to refer to a tuple. However, using the primary key is
preferable because it is what the DBMS expects—this is the significance of designating
a particular candidate key as a primary key—and optimizes for. For example, the
DBMS may create an index with the primary key fields as the search key, to make
the retrieval of a tuple given its primary key value efficient. The idea of referring to a
tuple is developed further in the next section.

The Relational Model 59

Specifying Key Constraints in SQL-92

In SQL we can declare that a subset of the columns of a table constitute a key by
using the UNIQUE constraint. At most one of these ‘candidate’ keys can be declared
to be a primary key, using the PRIMARY KEY constraint. (SQL does not require that
such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid))

This definition says that sid is the primary key and that the combination of name and
age is also a key. The definition of the primary key also illustrates how we can name
a constraint by preceding it with CONSTRAINT constraint-name. If the constraint is
violated, the constraint name is returned and can be used to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information stored in
another relation. If one of the relations is modified, the other must be checked, and
perhaps modified, to keep the data consistent. An IC involving both relations must
be specified if a DBMS is to make such checks. The most common IC involving two
relations is a foreign key constraint.

Suppose that in addition to Students, we have a second relation:

Enrolled(sid: string, cid: string, grade: string)

To ensure that only bona fide students can enroll in courses, any value that appears in
the sid field of an instance of the Enrolled relation should also appear in the sid field
of some tuple in the Students relation. The sid field of Enrolled is called a foreign
key and refers to Students. The foreign key in the referencing relation (Enrolled, in
our example) must match the primary key of the referenced relation (Students), i.e.,
it must have the same number of columns and compatible data types, although the
column names can be different.

This constraint is illustrated in Figure 3.4. As the figure shows, there may well be
some students who are not referenced from Enrolled (e.g., the student with sid=50000).

60 Chapter 3

However, every sid value that appears in the instance of the Enrolled table appears in
the primary key column of a row in the Students table.

cid grade sid

53831

53832

53650

53688

53666

50000Carnatic101

Reggae203

Topology112

History105

53831

53832

53650

53666

3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

DaveC

B

A

B

Enrolled (Referencing relation) (Referenced relation)Students

Primary keyForeign key

 sid age gpaloginname

Figure 3.4 Referential Integrity

If we try to insert the tuple 〈55555, Art104, A〉 into E1, the IC is violated because
there is no tuple in S1 with the id 55555; the database system should reject such
an insertion. Similarly, if we delete the tuple 〈53666, Jones, jones@cs, 18, 3.4〉 from
S1, we violate the foreign key constraint because the tuple 〈53666, History105, B〉
in E1 contains sid value 53666, the sid of the deleted Students tuple. The DBMS
should disallow the deletion or, perhaps, also delete the Enrolled tuple that refers to
the deleted Students tuple. We discuss foreign key constraints and their impact on
updates in Section 3.3.

Finally, we note that a foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare this
column to be a foreign key referring to Students. Intuitively, every student could then
have a partner, and the partner field contains the partner’s sid. The observant reader
will no doubt ask, “What if a student does not (yet) have a partner?” This situation
is handled in SQL by using a special value called null. The use of null in a field of a
tuple means that value in that field is either unknown or not applicable (e.g., we do not
know the partner yet, or there is no partner). The appearance of null in a foreign key
field does not violate the foreign key constraint. However, null values are not allowed
to appear in a primary key field (because the primary key fields are used to identify a
tuple uniquely). We will discuss null values further in Chapter 5.

Specifying Foreign Key Constraints in SQL-92

Let us define Enrolled(sid: string, cid: string, grade: string):

CREATE TABLE Enrolled (sid CHAR(20),

The Relational Model 61

cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students)

The foreign key constraint states that every sid value in Enrolled must also appear in
Students, that is, sid in Enrolled is a foreign key referencing Students. Incidentally,
the primary key constraint states that a student has exactly one grade for each course
that he or she is enrolled in. If we want to record more than one grade per student
per course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fundamental
part of the relational data model and are given special attention in most commercial
systems. Sometimes, however, it is necessary to specify more general constraints.

For example, we may require that student ages be within a certain range of values;
given such an IC specification, the DBMS will reject inserts and updates that violate
the constraint. This is very useful in preventing data entry errors. If we specify that
all students must be at least 16 years old, the instance of Students shown in Figure
3.1 is illegal because two students are underage. If we disallow the insertion of these
two tuples, we have a legal instance, as shown in Figure 3.5.

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8

Figure 3.5 An Instance S2 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended domain
constraint, since we are essentially defining the set of permissible age values more strin-
gently than is possible by simply using a standard domain such as integer. In general,
however, constraints that go well beyond domain, key, or foreign key constraints can
be specified. For example, we could require that every student whose age is greater
than 18 must have a gpa greater than 3.

Current relational database systems support such general constraints in the form of
table constraints and assertions. Table constraints are associated with a single table
and are checked whenever that table is modified. In contrast, assertions involve several

62 Chapter 3

tables and are checked whenever any of these tables is modified. Both table constraints
and assertions can use the full power of SQL queries to specify the desired restriction.
We discuss SQL support for table constraints and assertions in Section 5.11 because a
full appreciation of their power requires a good grasp of SQL’s query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, ICs are specified when a relation is created and enforced when
a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE constraints
is straightforward: if an insert, delete, or update command causes a violation, it is
rejected. Potential IC violation is generally checked at the end of each SQL statement
execution, although it can be deferred until the end of the transaction executing the
statement, as we will see in Chapter 18.

Consider the instance S1 of Students shown in Figure 3.1. The following insertion
violates the primary key constraint because there is already a tuple with the sid 53688,
and it will be rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Mike’, ‘mike@ee’, 17, 3.4)

The following insertion violates the constraint that the primary key cannot contain
null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, ‘Mike’, ‘mike@ee’, 17, 3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a value in
a field that is not in the domain associated with that field, i.e., whenever we violate
a domain constraint. Deletion does not cause a violation of domain, primary key or
unique constraints. However, an update can cause violations, similar to an insertion:

UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

This update violates the primary key constraint because there is already a tuple with
sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes tries to
rectify a foreign key constraint violation instead of simply rejecting the change. We will

The Relational Model 63

discuss the referential integrity enforcement steps taken by the DBMS in terms
of our Enrolled and Students tables, with the foreign key constraint that Enrolled.sid
is a reference to (the primary key of) Students.

In addition to the instance S1 of Students, consider the instance of Enrolled shown
in Figure 3.4. Deletions of Enrolled tuples do not violate referential integrity, but
insertions of Enrolled tuples could. The following insertion is illegal because there is
no student with sid 51111:

INSERT
INTO Enrolled (cid, grade, sid)
VALUES (‘Hindi101’, ‘B’, 51111)

On the other hand, insertions of Students tuples do not violate referential integrity
although deletions could. Further, updates on either Enrolled or Students that change
the sid value could potentially violate referential integrity.

SQL-92 provides several alternative ways to handle foreign key violations. We must
consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a sid column value that
does not appear in any row of the Students table?

In this case the INSERT command is simply rejected.

2. What should we do if a Students row is deleted?

The options are:

Delete all Enrolled rows that refer to the deleted Students row.

Disallow the deletion of the Students row if an Enrolled row refers to it.

Set the sid column to the sid of some (existing) ‘default’ student, for every
Enrolled row that refers to the deleted Students row.

For every Enrolled row that refers to it, set the sid column to null. In our
example, this option conflicts with the fact that sid is part of the primary
key of Enrolled and therefore cannot be set to null. Thus, we are limited to
the first three options in our example, although this fourth option (setting
the foreign key to null) is available in the general case.

3. What should we do if the primary key value of a Students row is updated?

The options here are similar to the previous case.

SQL-92 allows us to choose any of the four options on DELETE and UPDATE. For exam-
ple, we can specify that when a Students row is deleted, all Enrolled rows that refer to
it are to be deleted as well, but that when the sid column of a Students row is modified,
this update is to be rejected if an Enrolled row refers to the modified Students row:

64 Chapter 3

CREATE TABLE Enrolled (sid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students

ON DELETE CASCADE
ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default option is
NO ACTION, which means that the action (DELETE or UPDATE) is to be rejected. Thus,
the ON UPDATE clause in our example could be omitted, with the same effect. The
CASCADE keyword says that if a Students row is deleted, all Enrolled rows that refer
to it are to be deleted as well. If the UPDATE clause specified CASCADE, and the sid
column of a Students row is updated, this update is also carried out in each Enrolled
row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a ‘default’ student by using
ON DELETE SET DEFAULT. The default student is specified as part of the definition of
the sid field in Enrolled; for example, sid CHAR(20) DEFAULT ‘53666’. Although the
specification of a default value is appropriate in some situations (e.g., a default parts
supplier if a particular supplier goes out of business), it is really not appropriate to
switch enrollments to a default student. The correct solution in this example is to also
delete all enrollment tuples for the deleted student (that is, CASCADE), or to reject the
update.

SQL also allows the use of null as the default value by specifying ON DELETE SET NULL.

3.4 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data, and the
answer consists of a new relation containing the result. For example, we might want
to find all students younger than 18 or all students enrolled in Reggae203. A query
language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS. We now
present some SQL examples that illustrate how easily relations can be queried. Con-
sider the instance of the Students relation shown in Figure 3.1. We can retrieve rows
corresponding to students who are younger than 18 with the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The Relational Model 65

The symbol * means that we retain all fields of selected tuples in the result. To
understand this query, think of S as a variable that takes on the value of each tuple
in Students, one tuple after the other. The condition S.age < 18 in the WHERE clause
specifies that we want to select only tuples in which the age field has a value less than
18. This query evaluates to the relation shown in Figure 3.6.

sid name login age gpa
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.6 Students with age < 18 on Instance S1

This example illustrates that the domain of a field restricts the operations that are
permitted on field values, in addition to restricting the values that can appear in the
field. The condition S.age < 18 involves an arithmetic comparison of an age value with
an integer and is permissible because the domain of age is the set of integers. On the
other hand, a condition such as S.age = S.sid does not make sense because it compares
an integer value with a string value, and this comparison is defined to fail in SQL; a
query containing this condition will produce no answer tuples.

In addition to selecting a subset of tuples, a query can extract a subset of the fields
of each selected tuple. We can compute the names and logins of students who are
younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the selection
to the instance S1 of Students (to get the relation shown in Figure 3.6), followed by
removing unwanted fields. Note that the order in which we perform these operations
does matter—if we remove unwanted fields first, we cannot check the condition S.age
< 18, which involves one of those fields.

We can also combine information in the Students and Enrolled relations. If we want to
obtain the names of all students who obtained an A and the id of the course in which
they got an A, we could write the following query:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.sid AND E.grade = ‘A’

66 Chapter 3

DISTINCT types in SQL: A comparison of two values drawn from different do-
mains should fail, even if the values are ‘compatible’ in the sense that both are
numeric or both are string values etc. For example, if salary and age are two dif-
ferent domains whose values are represented as integers, a comparison of a salary
value with an age value should fail. Unfortunately, SQL-92’s support for the con-
cept of domains does not go this far: We are forced to define salary and age as
integer types and the comparison S < A will succeed when S is bound to the
salary value 25 and A is bound to the age value 50. The latest version of the SQL
standard, called SQL:1999, addresses this problem, and allows us to define salary
and age as DISTINCT types even though their values are represented as integers.
Many systems, e.g., Informix UDS and IBM DB2, already support this feature.

name login
Madayan madayan@music
Guldu guldu@music

Figure 3.7 Names and Logins of Students under 18

This query can be understood as follows: “If there is a Students tuple S and an Enrolled
tuple E such that S.sid = E.sid (so that S describes the student who is enrolled in E)
and E.grade = ‘A’, then print the student’s name and the course id.” When evaluated
on the instances of Students and Enrolled in Figure 3.4, this query returns a single
tuple, 〈Smith, Topology112〉.

We will cover relational queries, and SQL in particular, in more detail in subsequent
chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO RELATIONAL

The ER model is convenient for representing an initial, high-level database design.
Given an ER diagram describing a database, there is a standard approach to generating
a relational database schema that closely approximates the ER design. (The translation
is approximate to the extent that we cannot capture all the constraints implicit in the
ER design using SQL-92, unless we use certain SQL-92 constraints that are costly to
check.) We now describe how to translate an ER diagram into a collection of tables
with associated constraints, i.e., a relational database schema.

The Relational Model 67

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute of the
entity set becomes an attribute of the table. Note that we know both the domain of
each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in Figure
3.8. A possible instance of the Employees entity set, containing three Employees

Employees

ssn

name

lot

Figure 3.8 The Employees Entity Set

entities, is shown in Figure 3.9 in a tabular format.

ssn name lot
123-22-3666 Attishoo 48
231-31-5368 Smiley 22
131-24-3650 Smethurst 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the domain
constraints and key information:

CREATE TABLE Employees (ssn CHAR(11),
name CHAR(30),
lot INTEGER,
PRIMARY KEY (ssn))

3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational model.
We begin by considering relationship sets without key and participation constraints,
and we discuss how to handle such constraints in subsequent sections. To represent
a relationship, we must be able to identify each participating entity and give values

68 Chapter 3

to the descriptive attributes of the relationship. Thus, the attributes of the relation
include:

The primary key attributes of each participating entity set, as foreign key fields.

The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are no key
constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works In2 relationship set shown in Figure 3.10. Each department has
offices in several locations and we want to record the locations at which each employee
works.

dname

budgetdid

since

name

Employees

ssn lot

Locations

Departments

capacityaddress

Works_In2

Figure 3.10 A Ternary Relationship Set

All the available information about the Works In2 table is captured by the following
SQL definition:

CREATE TABLE Works In2 (ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,
PRIMARY KEY (ssn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did, and ssn fields cannot take on null values. Because these
fields are part of the primary key for Works In2, a NOT NULL constraint is implicit
for each of these fields. This constraint ensures that these fields uniquely identify
a department, an employee, and a location in each tuple of Works In. We can also

The Relational Model 69

specify that a particular action is desired when a referenced Employees, Departments
or Locations tuple is deleted, as explained in the discussion of integrity constraints in
Section 3.2. In this chapter we assume that the default action is appropriate except
for situations in which the semantics of the ER diagram require some other action.

Finally, consider the Reports To relationship set shown in Figure 3.11. The role in-

Reports_To

name

Employees

subordinatesupervisor

ssn lot

Figure 3.11 The Reports To Relationship Set

dicators supervisor and subordinate are used to create meaningful field names in the
CREATE statement for the Reports To table:

CREATE TABLE Reports To (
supervisor ssn CHAR(11),
subordinate ssn CHAR(11),
PRIMARY KEY (supervisor ssn, subordinate ssn),
FOREIGN KEY (supervisor ssn) REFERENCES Employees(ssn),
FOREIGN KEY (subordinate ssn) REFERENCES Employees(ssn))

Observe that we need to explicitly name the referenced field of Employees because the
field name differs from the name(s) of the referring field(s).

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and some m of them are linked via arrows
in the ER diagram, the key for any one of these m entity sets constitutes a key for
the relation to which the relationship set is mapped. Thus we have m candidate keys,
and one of these should be designated as the primary key. The translation discussed
in Section 2.3 from relationship sets to a relation can be used in the presence of key
constraints, taking into account this point about keys.

70 Chapter 3

Consider the relationship set Manages shown in Figure 3.12. The table corresponding

name dname

budgetdid

since

ManagesEmployees Departments

ssn lot

Figure 3.12 Key Constraint on Manages

to Manages has the attributes ssn, did, since. However, because each department has
at most one manager, no two tuples can have the same did value but differ on the ssn
value. A consequence of this observation is that did is itself a key for Manages; indeed,
the set did, ssn is not a key (because it is not minimal). The Manages relation can be
defined using the following SQL statement:

CREATE TABLE Manages (ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

A second approach to translating a relationship set with key constraints is often su-
perior because it avoids creating a distinct table for the relationship set. The idea
is to include the information about the relationship set in the table corresponding to
the entity set with the key, taking advantage of the key constraint. In the Manages
example, because a department has at most one manager, we can add the key fields of
the Employees tuple denoting the manager and the since attribute to the Departments
tuple.

This approach eliminates the need for a separate Manages relation, and queries asking
for a department’s manager can be answered without combining information from two
relations. The only drawback to this approach is that space could be wasted if several
departments have no managers. In this case the added fields would have to be filled
with null values. The first translation (using a separate table for Manages) avoids this
inefficiency, but some important queries require us to combine information from two
relations, which can be a slow operation.

The following SQL statement, defining a Dept Mgr relation that captures the informa-
tion in both Departments and Manages, illustrates the second approach to translating
relationship sets with key constraints:

The Relational Model 71

CREATE TABLE Dept Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than two entity
sets. In general, if a relationship set involves n entity sets and some m of them are
linked via arrows in the ER diagram, the relation corresponding to any one of the m

sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after consid-
ering how to translate relationship sets with participation constraints into tables.

3.5.4 Translating Relationship Sets with Participation Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets, Manages
and Works In.

name dname

budgetdid

since

Manages

name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

lot

Figure 3.13 Manages and Works In

72 Chapter 3

Every department is required to have a manager, due to the participation constraint,
and at most one manager, due to the key constraint. The following SQL statement
reflects the second translation approach discussed in Section 3.5.3, and uses the key
constraint:

CREATE TABLE Dept Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE NO ACTION)

It also captures the participation constraint that every department must have a man-
ager: Because ssn cannot take on null values, each tuple of Dept Mgr identifies a tuple
in Employees (who is the manager). The NO ACTION specification, which is the default
and need not be explicitly specified, ensures that an Employees tuple cannot be deleted
while it is pointed to by a Dept Mgr tuple. If we wish to delete such an Employees
tuple, we must first change the Dept Mgr tuple to have a new employee as manager.
(We could have specified CASCADE instead of NO ACTION, but deleting all information
about a department just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be captured using
the first translation approach discussed in Section 3.5.3. (Look at the definition of
Manages and think about what effect it would have if we added NOT NULL constraints
to the ssn and did fields. Hint: The constraint would prevent the firing of a manager,
but does not ensure that a manager is initially appointed for each department!) This
situation is a strong argument in favor of using the second approach for one-to-many
relationships such as Manages, especially when the entity set with the key constraint
also has a total participation constraint.

Unfortunately, there are many participation constraints that we cannot capture using
SQL-92, short of using table constraints or assertions. Table constraints and assertions
can be specified using the full power of the SQL query language (as discussed in
Section 5.11) and are very expressive, but also very expensive to check and enforce.
For example, we cannot enforce the participation constraints on the Works In relation
without using these general constraints. To see why, consider the Works In relation
obtained by translating the ER diagram into relations. It contains fields ssn and
did, which are foreign keys referring to Employees and Departments. To ensure total
participation of Departments in Works In, we have to guarantee that every did value in
Departments appears in a tuple of Works In. We could try to guarantee this condition
by declaring that did in Departments is a foreign key referring to Works In, but this
is not a valid foreign key constraint because did is not a candidate key for Works In.

The Relational Model 73

To ensure total participation of Departments in Works In using SQL-92, we need an
assertion. We have to guarantee that every did value in Departments appears in a
tuple of Works In; further, this tuple of Works In must also have non null values in
the fields that are foreign keys referencing other entity sets involved in the relationship
(in this example, the ssn field). We can ensure the second part of this constraint by
imposing the stronger requirement that ssn in Works In cannot contain null values.
(Ensuring that the participation of Employees in Works In is total is symmetric.)

Another constraint that requires assertions to express in SQL is the requirement that
each Employees entity (in the context of the Manages relationship set) must manage
at least one department.

In fact, the Manages relationship set exemplifies most of the participation constraints
that we can capture using key and foreign key constraints. Manages is a binary rela-
tionship set in which exactly one of the entity sets (Departments) has a key constraint,
and the total participation constraint is expressed on that entity set.

We can also capture participation constraints using key and foreign key constraints in
one other special situation: a relationship set in which all participating entity sets have
key constraints and total participation. The best translation approach in this case is
to map all the entities as well as the relationship into a single table; the details are
straightforward.

3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and has a
key constraint and total participation. The second translation approach discussed in
Section 3.5.3 is ideal in this case, but we must take into account the fact that the weak
entity has only a partial key. Also, when an owner entity is deleted, we want all owned
weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial key pname.
A Dependents entity can be identified uniquely only if we take the key of the owning
Employees entity and the pname of the Dependents entity, and the Dependents entity
must be deleted if the owning Employees entity is deleted.

We can capture the desired semantics with the following definition of the Dep Policy
relation:

CREATE TABLE Dep Policy (pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11),

74 Chapter 3

name

agepname

DependentsEmployees

ssn

Policy

cost
lot

Figure 3.14 The Dependents Weak Entity Set

PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

Observe that the primary key is 〈pname, ssn〉, since Dependents is a weak entity. This
constraint is a change with respect to the translation discussed in Section 3.5.3. We
have to ensure that every Dependents entity is associated with an Employees entity
(the owner), as per the total participation constraint on Dependents. That is, ssn
cannot be null. This is ensured because ssn is part of the primary key. The CASCADE
option ensures that information about an employee’s policy and dependents is deleted
if the corresponding Employees tuple is deleted.

3.5.6 Translating Class Hierarchies

We present the two basic approaches to handling ISA hierarchies by applying them to
the ER diagram shown in Figure 3.15:

name

ISA

ssn

EmployeeEmployees

Hourly_Emps Contract_Emps

lot

contractidhours_worked

hourly_wages

Figure 3.15 Class Hierarchy

The Relational Model 75

1. We can map each of the entity sets Employees, Hourly Emps, and Contract Emps
to a distinct relation. The Employees relation is created as in Section 2.2. We
discuss Hourly Emps here; Contract Emps is handled similarly. The relation for
Hourly Emps includes the hourly wages and hours worked attributes of Hourly Emps.
It also contains the key attributes of the superclass (ssn, in this example), which
serve as the primary key for Hourly Emps, as well as a foreign key referencing
the superclass (Employees). For each Hourly Emps entity, the value of the name
and lot attributes are stored in the corresponding row of the superclass (Employ-
ees). Note that if the superclass tuple is deleted, the delete must be cascaded to
Hourly Emps.

2. Alternatively, we can create just two relations, corresponding to Hourly Emps
and Contract Emps. The relation for Hourly Emps includes all the attributes
of Hourly Emps as well as all the attributes of Employees (i.e., ssn, name, lot,
hourly wages, hours worked).

The first approach is general and is always applicable. Queries in which we want to
examine all employees and do not care about the attributes specific to the subclasses
are handled easily using the Employees relation. However, queries in which we want
to examine, say, hourly employees, may require us to combine Hourly Emps (or Con-
tract Emps, as the case may be) with Employees to retrieve name and lot.

The second approach is not applicable if we have employees who are neither hourly
employees nor contract employees, since there is no way to store such employees. Also,
if an employee is both an Hourly Emps and a Contract Emps entity, then the name
and lot values are stored twice. This duplication can lead to some of the anomalies
that we discuss in Chapter 15. A query that needs to examine all employees must now
examine two relations. On the other hand, a query that needs to examine only hourly
employees can now do so by examining just one relation. The choice between these
approaches clearly depends on the semantics of the data and the frequency of common
operations.

In general, overlap and covering constraints can be expressed in SQL-92 only by using
assertions.

3.5.7 Translating ER Diagrams with Aggregation

Translating aggregation into the relational model is easy because there is no real dis-
tinction between entities and relationships in the relational model.

Consider the ER diagram shown in Figure 3.16. The Employees, Projects, and De-
partments entity sets and the Sponsors relationship set are mapped as described in
previous sections. For the Monitors relationship set, we create a relation with the
following attributes: the key attributes of Employees (ssn), the key attributes of Spon-

76 Chapter 3

until

since

name

budgetdidpid

started_on

pbudget

dname

ssn

DepartmentsProjects Sponsors

Employees

Monitors

lot

Figure 3.16 Aggregation

sors (did, pid), and the descriptive attributes of Monitors (until). This translation is
essentially the standard mapping for a relationship set, as described in Section 3.5.2.

There is a special case in which this translation can be refined further by dropping
the Sponsors relation. Consider the Sponsors relation. It has attributes pid, did, and
since, and in general we need it (in addition to Monitors) for two reasons:

1. We have to record the descriptive attributes (in our example, since) of the Sponsors
relationship.

2. Not every sponsorship has a monitor, and thus some 〈pid, did〉 pairs in the Spon-
sors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation in Mon-
itors, every possible instance of the Sponsors relation can be obtained by looking at
the 〈pid, did〉 columns of the Monitors relation. Thus, we need not store the Sponsors
relation in this case.

3.5.8 ER to Relational: Additional Examples *

Consider the ER diagram shown in Figure 3.17. We can translate this ER diagram
into the relational model as follows, taking advantage of the key constraints to combine
Purchaser information with Policies and Beneficiary information with Dependents:

The Relational Model 77

name

agepname

DependentsEmployees

ssn

policyid cost

Beneficiary

lot

Policies

Purchaser

Figure 3.17 Policy Revisited

CREATE TABLE Policies (policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

CREATE TABLE Dependents (pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies

ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of all policies owned by
the employee and all dependents who are beneficiaries of those policies. Further, each
dependent is required to have a covering policy—because policyid is part of the primary
key of Dependents, there is an implicit NOT NULL constraint. This model accurately
reflects the participation constraints in the ER diagram and the intended actions when
an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity sets. For
example, we assumed that policyid uniquely identifies a policy. Suppose that policyid
only distinguishes the policies owned by a given employee; that is, policyid is only a
partial key and Policies should be modeled as a weak entity set. This new assumption

78 Chapter 3

about policyid does not cause much to change in the preceding discussion. In fact,
the only changes are that the primary key of Policies becomes 〈policyid, ssn〉, and as
a consequence, the definition of Dependents changes—a field called ssn is added and
becomes part of both the primary key of Dependents and the foreign key referencing
Policies:

CREATE TABLE Dependents (pname CHAR(20),
ssn CHAR(11),
age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies

ON DELETE CASCADE)

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but are computed
as needed from a view definition. Consider the Students and Enrolled relations.
Suppose that we are often interested in finding the names and student identifiers of
students who got a grade of B in some course, together with the cid for the course.
We can define a view for this purpose. Using SQL-92 notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid

FROM Students S, Enrolled E
WHERE S.sid = E.sid AND E.grade = ‘B’

The view B-Students has three fields called name, sid, and course with the same
domains as the fields sname and sid in Students and cid in Enrolled. (If the optional
arguments name, sid, and course are omitted from the CREATE VIEW statement, the
column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in defining new
queries or views. Given the instances of Enrolled and Students shown in Figure 3.4, B-
Students contains the tuples shown in Figure 3.18. Conceptually, whenever B-Students
is used in a query, the view definition is first evaluated to obtain the corresponding
instance of B-Students, and then the rest of the query is evaluated treating B-Students
like any other relation referred to in the query. (We will discuss how queries on views
are evaluated in practice in Chapter 23.)

The Relational Model 79

name sid course
Jones 53666 History105
Guldu 53832 Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction that we discussed in Section 1.5.2. The physical
schema for a relational database describes how the relations in the conceptual schema
are stored, in terms of the file organizations and indexes used. The conceptual schema is
the collection of schemas of the relations stored in the database. While some relations
in the conceptual schema can also be exposed to applications, i.e., be part of the
external schema of the database, additional relations in the external schema can be
defined using the view mechanism. The view mechanism thus provides the support
for logical data independence in the relational model. That is, it can be used to define
relations in the external schema that mask changes in the conceptual schema of the
database from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema, and applications that expect to see the old
schema can now use this view.

Views are also valuable in the context of security: We can define views that give a
group of users access to just the information they are allowed to see. For example, we
can define a view that allows students to see other students’ name and age but not
their gpa, and allow all students to access this view, but not the underlying Students
table (see Chapter 17).

3.6.2 Updates on Views

The motivation behind the view mechanism is to tailor how users see the data. Users
should not have to worry about the view versus base table distinction. This goal is
indeed achieved in the case of queries on views; a view can be used just like any other
relation in defining a query. However, it is natural to want to specify updates on views
as well. Here, unfortunately, the distinction between a view and a base table must be
kept in mind.

The SQL-92 standard allows updates to be specified only on views that are defined
on a single base table using just selection and projection, with no use of aggregate
operations. Such views are called updatable views. This definition is oversimplified,
but it captures the spirit of the restrictions. An update on such a restricted view can

80 Chapter 3

always be implemented by updating the underlying base table in an unambiguous way.
Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa

FROM Students S
WHERE S.gpa > 3.0

We can implement a command to modify the gpa of a GoodStudents row by modifying
the corresponding row in Students. We can delete a GoodStudents row by deleting
the corresponding row from Students. (In general, if the view did not include a key
for the underlying table, several rows in the table could ‘correspond’ to a single row
in the view. This would be the case, for example, if we used S.sname instead of S.sid
in the definition of GoodStudents. A command that affects a row in the view would
then affect all corresponding rows in the underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using null values
in columns of Students that do not appear in GoodStudents (e.g., sname, login). Note
that primary key columns are not allowed to contain null values. Therefore, if we
attempt to insert rows through a view that does not contain the primary key of the
underlying table, the insertions will be rejected. For example, if GoodStudents con-
tained sname but not sid, we could not insert rows into Students through insertions
to GoodStudents.

An important observation is that an INSERT or UPDATE may change the underlying
base table so that the resulting (i.e., inserted or modified) row is not in the view! For
example, if we try to insert a row 〈51234, 2.8〉 into the view, this row can be (padded
with null values in the other fields of Students and then) added to the underlying
Students table, but it will not appear in the GoodStudents view because it does not
satisfy the view condition gpa > 3.0. The SQL-92 default action is to allow this
insertion, but we can disallow it by adding the clause WITH CHECK OPTION to the
definition of the view.

We caution the reader that when a view is defined in terms of another view, the inter-
action between these view definitions with respect to updates and the CHECK OPTION
clause can be complex; we will not go into the details.

Need to Restrict View Updates

While the SQL-92 rules on updatable views are more stringent than necessary, there
are some fundamental problems with updates specified on views, and there is good
reason to limit the class of views that can be updated. Consider the Students relation
and a new relation called Clubs:

The Relational Model 81

Clubs(cname: string, jyear: date, mname: string)

A tuple in Clubs denotes that the student called mname has been a member of the
club cname since the date jyear.4 Suppose that we are often interested in finding the
names and logins of students with a gpa greater than 3 who belong to at least one
club, along with the club name and the date they joined the club. We can define a
view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.login, C.cname, C.jyear

FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa > 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20. When

cname jyear mname
Sailing 1996 Dave
Hiking 1997 Smith
Rowing 1998 Smith

Figure 3.19 An Instance C of Clubs

sid name login age gpa
50000 Dave dave@cs 19 3.3
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8

Figure 3.20 An Instance S3 of Students

evaluated using the instances C and S3, ActiveStudents contains the rows shown in
Figure 3.21.

name login club since
Dave dave@cs Sailing 1996
Smith smith@ee Hiking 1997
Smith smith@ee Rowing 1998
Smith smith@math Hiking 1997
Smith smith@math Rowing 1998

Figure 3.21 Instance of ActiveStudents

Now suppose that we want to delete the row 〈Smith, smith@ee, Hiking, 1997〉 from Ac-
tiveStudents. How are we to do this? ActiveStudents rows are not stored explicitly but
are computed as needed from the Students and Clubs tables using the view definition.
So we must change either Students or Clubs (or both) in such a way that evaluating the

4We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.

82 Chapter 3

view definition on the modified instance does not produce the row 〈Smith, smith@ee,
Hiking, 1997.〉 This task can be accomplished in one of two ways: by either deleting
the row 〈53688, Smith, smith@ee, 18, 3.2〉 from Students or deleting the row 〈Hiking,
1997, Smith〉 from Clubs. But neither solution is satisfactory. Removing the Students
row has the effect of also deleting the row 〈Smith, smith@ee, Rowing, 1998〉 from the
view ActiveStudents. Removing the Clubs row has the effect of also deleting the row
〈Smith, smith@math, Hiking, 1997〉 from the view ActiveStudents. Neither of these
side effects is desirable. In fact, the only reasonable solution is to disallow such updates
on views.

There are views involving more than one base table that can, in principle, be safely
updated. The B-Students view that we introduced at the beginning of this section
is an example of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as in Figure
3.4). To insert a tuple, say 〈Dave, 50000, Reggae203〉 B-Students, we can simply insert
a tuple 〈Reggae203, B, 50000〉 into Enrolled since there is already a tuple for sid 50000
in Students. To insert 〈John, 55000, Reggae203〉, on the other hand, we have to insert
〈Reggae203, B, 55000〉 into Enrolled and also insert 〈55000, John, null, null, null〉
into Students. Observe how null values are used in fields of the inserted tuple whose
value is not available. Fortunately, the view schema contains the primary key fields
of both underlying base tables; otherwise, we would not be able to support insertions
into this view. To delete a tuple from the view B-Students, we can simply delete the
corresponding tuple from Enrolled.

Although this example illustrates that the SQL-92 rules on updatable views are un-
necessarily restrictive, it also brings out the complexity of handling view updates in
the general case. For practical reasons, the SQL-92 standard has chosen to allow only
updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e., delete
all the rows and remove the table definition information), we can use the DROP TABLE
command. For example, DROP TABLE Students RESTRICT destroys the Students table
unless some view or integrity constraint refers to Students; if so, the command fails.
If the keyword RESTRICT is replaced by CASCADE, Students is dropped and any ref-
erencing views or integrity constraints are (recursively) dropped as well; one of these
two keywords must always be specified. A view can be dropped using the DROP VIEW
command, which is just like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column called
maiden-name to Students, for example, we would use the following command:

The Relational Model 83

ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows are
padded with null values in this column. ALTER TABLE can also be used to delete
columns and to add or drop integrity constraints on a table; we will not discuss these
aspects of the command beyond remarking that dropping columns is treated very
similarly to dropping tables or views.

3.8 POINTS TO REVIEW

The main element of the relational model is a relation. A relation schema describes
the structure of a relation by specifying the relation name and the names of each
field. In addition, the relation schema includes domain constraints, which are
type restrictions on the fields of the relation. The number of fields is called the
degree of the relation. The relation instance is an actual table that contains a set
of tuples that adhere to the relation schema. The number of tuples is called the
cardinality of the relation. SQL-92 is a standard language for interacting with a
DBMS. Its data definition language (DDL) enables the creation (CREATE TABLE)
and modification (DELETE, UPDATE) of relations. (Section 3.1)

Integrity constraints are conditions on a database schema that every legal database
instance has to satisfy. Besides domain constraints, other important types of
ICs are key constraints (a minimal set of fields that uniquely identify a tuple)
and foreign key constraints (fields in one relation that refer to fields in another
relation). SQL-92 supports the specification of the above kinds of ICs, as well as
more general constraints called table constraints and assertions. (Section 3.2)

ICs are enforced whenever a relation is modified and the specified ICs might con-
flict with the modification. For foreign key constraint violations, SQL-92 provides
several alternatives to deal with the violation: NO ACTION, CASCADE, SET DEFAULT,
and SET NULL. (Section 3.3)

A relational database query is a question about the data. SQL supports a very
expressive query language. (Section 3.4)

There are standard translations of ER model constructs into SQL. Entity sets
are mapped into relations. Relationship sets without constraints are also mapped
into relations. When translating relationship sets with constraints, weak entity
sets, class hierarchies, and aggregation, the mapping is more complicated. (Sec-
tion 3.5)

A view is a relation whose instance is not explicitly stored but is computed as
needed. In addition to enabling logical data independence by defining the external
schema through views, views play an important role in restricting access to data for

84 Chapter 3

security reasons. Since views might be defined through complex queries, handling
updates specified on views is complicated, and SQL-92 has very stringent rules on
when a view is updatable. (Section 3.6)

SQL provides language constructs to modify the structure of tables (ALTER TABLE)
and to destroy tables and views (DROP TABLE). (Section 3.7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do-

main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide physical

and logical data independence? Explain.

Exercise 3.4 What is the difference between a candidate key and the primary key for a given

relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not a

candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is a

candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What

is referential integrity?

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,

and Meets In that were defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations that

is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are based on the

following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are

the options for enforcing this constraint when a user attempts to delete a Dept tuple?

The Relational Model 85

2. Write the SQL statements required to create the above relations, including appropriate

versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have a

manager.

4. Write an SQL statement to add ‘John Doe’ as an employee with eid = 101, age = 32

and salary = 15, 000.

5. Write an SQL statement to give every employee a 10% raise.

6. Write an SQL statement to delete the ‘Toy’ department. Given the referential integrity

constraints you chose for this schema, explain what happens when this statement is

executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples

in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of

the Manages relation (in Section 3.5.3) would not enforce the constraint that each department

must have a manager. What, if anything, is achieved by requiring that the ssn field of Manages

be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,

and C such that A has a key constraint and total participation and B has a key constraint;

these are the only constraints. A has attributes a1 and a2, with a1 being the key; B and

C are similar. R has no descriptive attributes. Write SQL statements that create tables

corresponding to this information so as to capture as many of the constraints as possible. If

you cannot capture some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2 where you designed an ER diagram

for a university database. Write SQL statements to create the corresponding relations and

capture as many of the constraints as possible. If you cannot capture some constraints, explain

why.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram that

you designed. Write SQL statements to create the corresponding relations and capture as

many of the constraints as possible. If you cannot capture some constraints, explain why.

Exercise 3.14 Consider the scenario from Exercise 2.4 where you designed an ER diagram

for a company database. Write SQL statements to create the corresponding relations and

capture as many of the constraints as possible. If you cannot capture some constraints,

explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec-

ommend that Notown use a relational database system to store company data. Show the

SQL statements for creating relations corresponding to the entity sets and relationship sets

in your design. Identify any constraints in the ER diagram that you are unable to capture in

the SQL statements and briefly explain why you could not express them.

86 Chapter 3

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and

show the SQL statements needed to create the relations, using only key and null constraints.

If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a

plane must be conducted by a technician who is an expert on that model. Can you modify

the SQL statements defining the relations obtained by mapping the ER diagram to check this

constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain of

pharmacies in Exercise 2.7. Define relations corresponding to the entity sets and relationship

sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia-

gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the

ER diagram, explain why.

PROJECT-BASED EXERCISES

Exercise 3.19 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,

and Meets In in Minibase.

Exercise 3.20 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and

Enrolled. Create reasonable instances of the other relations.

Exercise 3.21 What integrity constraints are enforced by Minibase?

Exercise 3.22 Run the SQL queries presented in this chapter.

BIBLIOGRAPHIC NOTES

The relational model was proposed in a seminal paper by Codd [156]. Childs [146] and Kuhns

[392] foreshadowed some of these developments. Gallaire and Minker’s book [254] contains

several papers on the use of logic in the context of relational databases. A system based on a

variation of the relational model in which the entire database is regarded abstractly as a single

relation, called the universal relation, is described in [655]. Extensions of the relational model

to incorporate null values, which indicate an unknown or missing field value, are discussed by

several authors; for example, [280, 335, 542, 662, 691].

Pioneering projects include System R [33, 129] at IBM San Jose Research Laboratory (now

IBM Almaden Research Center), Ingres [628] at the University of California at Berkeley,

PRTV [646] at the IBM UK Scientific Center in Peterlee, and QBE [702] at IBM T.J. Watson

Research Center.

A rich theory underpins the field of relational databases. Texts devoted to theoretical aspects

include those by Atzeni and DeAntonellis [38]; Maier [436]; and Abiteboul, Hull, and Vianu

[3]. [355] is an excellent survey article.

The Relational Model 87

Integrity constraints in relational databases have been discussed at length. [159] addresses se-

mantic extensions to the relational model, but also discusses integrity, in particular referential

integrity. [305] discusses semantic integrity constraints. [168] contains papers that address

various aspects of integrity constraints, including in particular a detailed discussion of refer-

ential integrity. A vast literature deals with enforcing integrity constraints. [41] compares the

cost of enforcing integrity constraints via compile-time, run-time, and post-execution checks.

[124] presents an SQL-based language for specifying integrity constraints and identifies con-

ditions under which integrity rules specified in this language can be violated. [624] discusses

the technique of integrity constraint checking by query modification. [149] discusses real-time

integrity constraints. Other papers on checking integrity constraints in databases include

[69, 103, 117, 449]. [593] considers the approach of verifying the correctness of programs that

access the database, instead of run-time checks. Note that this list of references is far from

complete; in fact, it does not include any of the many papers on checking recursively specified

integrity constraints. Some early papers in this widely studied area can be found in [254] and

[253].

For references on SQL, see the bibliographic notes for Chapter 5. This book does not discuss

specific products based on the relational model, but many fine books do discuss each of

the major commercial systems; for example, Chamberlin’s book on DB2 [128], Date and

McGoveran’s book on Sybase [172], and Koch and Loney’s book on Oracle [382].

Several papers consider the problem of translating updates specified on views into updates

on the underlying table [49, 174, 360, 405, 683]. [250] is a good survey on this topic. See

the bibliographic notes for Chapter 23 for references to work querying views and maintaining

materialized views.

[642] discusses a design methodology based on developing an ER diagram and then translating

to the relational model. Markowitz considers referential integrity in the context of ER to

relational mapping and discusses the support provided in some commercial systems (as of

that date) in [446, 447].

PART II

RELATIONAL QUERIES

4 RELATIONAL ALGEBRA
AND CALCULUS

Stand firm in your refusal to remain conscious during algebra. In real life, I assure

you, there is no such thing as algebra.

—Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational model.
Query languages are specialized languages for asking questions, or queries, that in-
volve the data in a database. After covering some preliminaries in Section 4.1, we
discuss relational algebra in Section 4.2. Queries in relational algebra are composed
using a collection of operators, and each query describes a step-by-step procedure for
computing the desired answer; that is, queries are specified in an operational manner.
In Section 4.3 we discuss relational calculus, in which a query describes the desired
answer without specifying how the answer is to be computed; this nonprocedural style
of querying is called declarative. We will usually refer to relational algebra and rela-
tional calculus as algebra and calculus, respectively. We compare the expressive power
of algebra and calculus in Section 4.4. These formal query languages have greatly
influenced commercial query languages such as SQL, which we will discuss in later
chapters.

4.1 PRELIMINARIES

We begin by clarifying some important points about relational queries. The inputs and
outputs of a query are relations. A query is evaluated using instances of each input
relation and it produces an instance of the output relation. In Section 3.4, we used
field names to refer to fields because this notation makes queries more readable. An
alternative is to always list the fields of a given relation in the same order and to refer
to fields by position rather than by field name.

In defining relational algebra and calculus, the alternative of referring to fields by
position is more convenient than referring to fields by name: Queries often involve the
computation of intermediate results, which are themselves relation instances, and if
we use field names to refer to fields, the definition of query language constructs must
specify the names of fields for all intermediate relation instances. This can be tedious
and is really a secondary issue because we can refer to fields by position anyway. On
the other hand, field names make queries more readable.

91

92 Chapter 4

Due to these considerations, we use the positional notation to formally define relational
algebra and calculus. We also introduce simple conventions that allow intermediate
relations to ‘inherit’ field names, for convenience.

We present a number of sample queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the field
name. Thus sid is the key for Sailors, bid is the key for Boats, and all three fields
together form the key for Reserves. Fields in an instance of one of these relations will
be referred to by name, or positionally, using the order in which they are listed above.

In several examples illustrating the relational algebra operators, we will use the in-
stances S1 and S2 (of Sailors) and R1 (of Reserves) shown in Figures 4.1, 4.2, and 4.3,
respectively.

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.1 Instance S1 of Sailors

sid sname rating age
28 yuppy 9 35.0
31 Lubber 8 55.5
44 guppy 5 35.0
58 Rusty 10 35.0

Figure 4.2 Instance S2 of Sailors

sid bid day
22 101 10/10/96
58 103 11/12/96

Figure 4.3 Instance R1 of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the re-
lational model. Queries in algebra are composed using a collection of operators. A
fundamental property is that every operator in the algebra accepts (one or two) rela-
tion instances as arguments and returns a relation instance as the result. This property
makes it easy to compose operators to form a complex query—a relational algebra
expression is recursively defined to be a relation, a unary algebra operator applied

Relational Algebra and Calculus 93

to a single expression, or a binary algebra operator applied to two expressions. We
describe the basic operators of the algebra (selection, projection, union, cross-product,
and difference), as well as some additional operators that can be defined in terms of
the basic operators but arise frequently enough to warrant special attention, in the
following sections.

Each relational query describes a step-by-step procedure for computing the desired
answer, based on the order in which operators are applied in the query. The procedural
nature of the algebra allows us to think of an algebra expression as a recipe, or a
plan, for evaluating a query, and relational systems in fact use algebra expressions to
represent query evaluation plans.

4.2.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project
columns (π). These operations allow us to manipulate data in a single relation. Con-
sider the instance of the Sailors relation shown in Figure 4.2, denoted as S2. We can
retrieve rows corresponding to expert sailors by using the σ operator. The expression

σrating>8(S2)

evaluates to the relation shown in Figure 4.4. The subscript rating>8 specifies the
selection criterion to be applied while retrieving tuples.

sid sname rating age
28 yuppy 9 35.0
58 Rusty 10 35.0

Figure 4.4 σrating>8(S2)

sname rating
yuppy 9
Lubber 8
guppy 5
Rusty 10

Figure 4.5 πsname,rating(S2)

The selection operator σ specifies the tuples to retain through a selection condition.
In general, the selection condition is a boolean combination (i.e., an expression using
the logical connectives ∧ and ∨) of terms that have the form attribute op constant or
attribute1 op attribute2, where op is one of the comparison operators <, <=, =, 6=, >=,
or >. The reference to an attribute can be by position (of the form .i or i) or by name
(of the form .name or name). The schema of the result of a selection is the schema of
the input relation instance.

The projection operator π allows us to extract columns from a relation; for example,
we can find out all sailor names and ratings by using π. The expression

πsname,rating(S2)

94 Chapter 4

evaluates to the relation shown in Figure 4.5. The subscript sname,rating specifies the
fields to be retained; the other fields are ‘projected out.’ The schema of the result of
a projection is determined by the fields that are projected in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression

πage(S2)

evaluates to the relation shown in Figure 4.6. The important point to note is that
although three sailors are aged 35, a single tuple with age=35.0 appears in the result
of the projection. This follows from the definition of a relation as a set of tuples. In
practice, real systems often omit the expensive step of eliminating duplicate tuples,
leading to relations that are multisets. However, our discussion of relational algebra
and calculus assumes that duplicate elimination is always done so that relations are
always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can substitute
an expression wherever a relation is expected. For example, we can compute the names
and ratings of highly rated sailors by combining two of the preceding queries. The
expression

πsname,rating(σrating>8(S2))

produces the result shown in Figure 4.7. It is obtained by applying the selection to S2
(to get the relation shown in Figure 4.4) and then applying the projection.

age
35.0
55.5

Figure 4.6 πage(S2)

sname rating
yuppy 9
Rusty 10

Figure 4.7 πsname,rating(σrating>8(S2))

4.2.2 Set Operations

The following standard operations on sets are also available in relational algebra: union
(∪), intersection (∩), set-difference (−), and cross-product (×).

Union: R∪S returns a relation instance containing all tuples that occur in either
relation instance R or relation instance S (or both). R and S must be union-
compatible, and the schema of the result is defined to be identical to the schema
of R.

Two relation instances are said to be union-compatible if the following condi-
tions hold:

– they have the same number of the fields, and

– corresponding fields, taken in order from left to right, have the same domains.

Relational Algebra and Calculus 95

Note that field names are not used in defining union-compatibility. For conve-
nience, we will assume that the fields of R ∪ S inherit names from R, if the fields
of R have names. (This assumption is implicit in defining the schema of R ∪ S to
be identical to the schema of R, as stated earlier.)

Intersection: R∩S returns a relation instance containing all tuples that occur in
both R and S. The relations R and S must be union-compatible, and the schema
of the result is defined to be identical to the schema of R.

Set-difference: R−S returns a relation instance containing all tuples that occur
in R but not in S. The relations R and S must be union-compatible, and the
schema of the result is defined to be identical to the schema of R.

Cross-product: R×S returns a relation instance whose schema contains all the
fields of R (in the same order as they appear in R) followed by all the fields of S

(in the same order as they appear in S). The result of R × S contains one tuple
〈r, s〉 (the concatenation of tuples r and s) for each pair of tuples r ∈ R, s ∈ S.
The cross-product opertion is sometimes called Cartesian product.

We will use the convention that the fields of R × S inherit names from the cor-
responding fields of R and S. It is possible for both R and S to contain one or
more fields having the same name; this situation creates a naming conflict. The
corresponding fields in R × S are unnamed and are referred to solely by position.

In the preceding definitions, note that each operator can be applied to relation instances
that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of S1 and S2
is shown in Figure 4.8. Fields are listed in order; field names are also inherited from
S1. S2 has the same field names, of course, since it is also an instance of Sailors. In
general, fields of S2 may have different names; recall that we require only domains to
match. Note that the result is a set of tuples. Tuples that appear in both S1 and S2
appear only once in S1 ∪ S2. Also, S1 ∪ R1 is not a valid operation because the two
relations are not union-compatible. The intersection of S1 and S2 is shown in Figure
4.9, and the set-difference S1 − S2 is shown in Figure 4.10.

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0
28 yuppy 9 35.0
44 guppy 5 35.0

Figure 4.8 S1 ∪ S2

96 Chapter 4

sid sname rating age
31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.9 S1 ∩ S2

sid sname rating age
22 Dustin 7 45.0

Figure 4.10 S1 − S2

The result of the cross-product S1 × R1 is shown in Figure 4.11. Because R1 and
S1 both have a field named sid, by our convention on field names, the corresponding
two fields in S1 × R1 are unnamed, and referred to solely by the position in which
they appear in Figure 4.11. The fields in S1 × R1 have the same domains as the
corresponding fields in R1 and S1. In Figure 4.11 sid is listed in parentheses to
emphasize that it is not an inherited field name; only the corresponding domain is
inherited.

(sid) sname rating age (sid) bid day
22 Dustin 7 45.0 22 101 10/10/96
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 22 101 10/10/96
31 Lubber 8 55.5 58 103 11/12/96
58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

Figure 4.11 S1 × R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result of
a relational algebra expression inherits field names from its argument (input) relation
instances in a natural way whenever possible. However, name conflicts can arise in
some cases; for example, in S1 × R1. It is therefore convenient to be able to give
names explicitly to the fields of a relation instance that is defined by a relational
algebra expression. In fact, it is often convenient to give the instance itself a name so
that we can break a large algebra expression into smaller pieces by giving names to
the results of subexpressions.

We introduce a renaming operator ρ for this purpose. The expression ρ(R(F), E)
takes an arbitrary relational algebra expression E and returns an instance of a (new)
relation called R. R contains the same tuples as the result of E, and has the same
schema as E, but some fields are renamed. The field names in relation R are the
same as in E, except for fields renamed in the renaming list F , which is a list of

Relational Algebra and Calculus 97

terms having the form oldname → newname or position → newname. For ρ to be
well-defined, references to fields (in the form of oldnames or positions in the renaming
list) may be unambiguous, and no two fields in the result must have the same name.
Sometimes we only want to rename fields or to (re)name the relation; we will therefore
treat both R and F as optional in the use of ρ. (Of course, it is meaningless to omit
both.)

For example, the expression ρ(C(1 → sid1, 5 → sid2), S1 × R1) returns a relation
that contains the tuples shown in Figure 4.11 and has the following schema: C(sid1:
integer, sname: string, rating: integer, age: real, sid2: integer, bid: integer,
day: dates).

It is customary to include some additional operators in the algebra, but they can all be
defined in terms of the operators that we have defined thus far. (In fact, the renaming
operator is only needed for syntactic convenience, and even the ∩ operator is redundant;
R ∩ S can be defined as R − (R − S).) We will consider these additional operators,
and their definition in terms of the basic operators, in the next two subsections.

4.2.4 Joins

The join operation is one of the most useful operations in relational algebra and is
the most commonly used way to combine information from two or more relations.
Although a join can be defined as a cross-product followed by selections and projections,
joins arise much more frequently in practice than plain cross-products. Further, the
result of a cross-product is typically much larger than the result of a join, and it
is very important to recognize joins and implement them without materializing the
underlying cross-product (by applying the selections and projections ‘on-the-fly’). For
these reasons, joins have received a lot of attention, and there are several variants of
the join operation.1

Condition Joins

The most general version of the join operation accepts a join condition c and a pair of
relation instances as arguments, and returns a relation instance. The join condition is
identical to a selection condition in form. The operation is defined as follows:

R ./c S = σc(R × S)

Thus ./ is defined to be a cross-product followed by a selection. Note that the condition
c can (and typically does) refer to attributes of both R and S. The reference to an

1There are several variants of joins that are not discussed in this chapter. An important class of
joins called outer joins is discussed in Chapter 5.

98 Chapter 4

attribute of a relation, say R, can be by position (of the form R.i) or by name (of the
form R.name).

As an example, the result of S1 ./S1.sid<R1.sid R1 is shown in Figure 4.12. Because sid
appears in both S1 and R1, the corresponding fields in the result of the cross-product
S1 × R1 (and therefore in the result of S1 ./S1.sid<R1.sid R1) are unnamed. Domains
are inherited from the corresponding fields of S1 and R1.

(sid) sname rating age (sid) bid day
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 58 103 11/12/96

Figure 4.12 S1 ./S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R ./ S is when the join condition con-
sists solely of equalities (connected by ∧) of the form R.name1 = S.name2, that is,
equalities between two fields in R and S. In this case, obviously, there is some redun-
dancy in retaining both attributes in the result. For join conditions that contain only
such equalities, the join operation is refined by doing an additional projection in which
S.name2 is dropped. The join operation with this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same names
and domains as in R) followed by the fields of S that do not appear in the join
conditions. If this set of fields in the result relation includes two fields that inherit the
same name from R and S, they are unnamed in the result relation.

We illustrate S1 ./R.sid=S.sid R1 in Figure 4.13. Notice that only one field called sid
appears in the result.

sid sname rating age bid day
22 Dustin 7 45.0 101 10/10/96
58 Rusty 10 35.0 103 11/12/96

Figure 4.13 S1 ./R.sid=S.sid R1

Relational Algebra and Calculus 99

Natural Join

A further special case of the join operation R ./ S is an equijoin in which equalities
are specified on all fields having the same name in R and S. In this case, we can
simply omit the join condition; the default is that the join condition is a collection of
equalities on all common fields. We call this special case a natural join, and it has the
nice property that the result is guaranteed not to have two fields with the same name.

The equijoin expression S1 ./R.sid=S.sid R1 is actually a natural join and can simply
be denoted as S1 ./ R1, since the only common field is sid. If the two relations have
no attributes in common, S1 ./ R1 is simply the cross-product.

4.2.5 Division

The division operator is useful for expressing certain kinds of queries, for example:
“Find the names of sailors who have reserved all boats.” Understanding how to use
the basic operators of the algebra to define division is a useful exercise. However,
the division operator does not have the same importance as the other operators—it
is not needed as often, and database systems do not try to exploit the semantics of
division by implementing it as a distinct operator (as, for example, is done with the
join operator).

We discuss division through an example. Consider two relation instances A and B in
which A has (exactly) two fields x and y and B has just one field y, with the same
domain as in A. We define the division operation A/B as the set of all x values (in
the form of unary tuples) such that for every y value in (a tuple of) B, there is a tuple
〈x,y〉 in A.

Another way to understand division is as follows. For each x value in (the first column
of) A, consider the set of y values that appear in (the second field of) tuples of A with
that x value. If this set contains (all y values in) B, the x value is in the result of A/B.

An analogy with integer division may also help to understand division. For integers A

and B, A/B is the largest integer Q such that Q ∗ B ≤ A. For relation instances A

and B, A/B is the largest relation instance Q such that Q × B ⊆ A.

Division is illustrated in Figure 4.14. It helps to think of A as a relation listing the
parts supplied by suppliers, and of the B relations as listing parts. A/Bi computes
suppliers who supply all parts listed in relation instance Bi.

Expressing A/B in terms of the basic algebra operators is an interesting exercise, and
the reader should try to do this before reading further. The basic idea is to compute
all x values in A that are not disqualified. An x value is disqualified if by attaching a

100 Chapter 4

sno pno

pno

pno

sno

sno

sno

s1 p1

p2

s1

p4

p1

p2

p2

p2

p4
p2

s2

s3

s1

s1

p3

s1

pno

s2

s2

s3

s4

s4

p2

p2

p4

p1

p4

s1

s4

s4

s1

A B1

B2

B3

A/B3

A/B2

A/B1

Figure 4.14 Examples Illustrating Division

y value from B, we obtain a tuple 〈x,y〉 that is not in A. We can compute disqualified
tuples using the algebra expression

πx((πx(A) × B) − A)

Thus we can define A/B as

πx(A) − πx((πx(A) × B) − A)

To understand the division operation in full generality, we have to consider the case
when both x and y are replaced by a set of attributes. The generalization is straightfor-
ward and is left as an exercise for the reader. We will discuss two additional examples
illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 More Examples of Relational Algebra Queries

We now present several examples to illustrate how to write queries in relational algebra.
We use the Sailors, Reserves, and Boats schema for all our examples in this section.
We will use parentheses as needed to make our algebra expressions unambiguous. Note
that all the example queries in this chapter are given a unique query number. The
query numbers are kept unique across both this chapter and the SQL query chapter
(Chapter 5). This numbering makes it easy to identify a query when it is revisited in
the context of relational calculus and SQL and to compare different ways of writing
the same query. (All references to a query can be found in the subject index.)

Relational Algebra and Calculus 101

In the rest of this chapter (and in Chapter 5), we illustrate queries using the instances
S3 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures 4.15, 4.16, and 4.17,
respectively.

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 4.15 An Instance S3 of Sailors

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 4.16 An Instance R2 of Reserves

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 4.17 An Instance B1 of Boats

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves) ./ Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the
natural join of this set with Sailors. This expression can be evaluated on instances
of Reserves and Sailors. Evaluated on the instances R2 and S3, it yields a relation
that contains just one field, called sname, and three tuples 〈Dustin〉, 〈Horatio〉, and
〈Lubber〉. (Observe that there are two sailors called Horatio, and only one of them has
reserved a red boat.)

We can break this query into smaller pieces using the renaming operator ρ:

ρ(Temp1, σbid=103Reserves)

102 Chapter 4

ρ(Temp2, T emp1 ./ Sailors)

πsname(Temp2)

Notice that because we are only using ρ to give names to intermediate relations, the
renaming list is optional and is omitted. Temp1 denotes an intermediate relation that
identifies reservations of boat 103. Temp2 is another intermediate relation, and it
denotes sailors who have made a reservation in the set Temp1. The instances of these
relations when evaluating this query on the instances R2 and S3 are illustrated in
Figures 4.18 and 4.19. Finally, we extract the sname column from Temp2.

sid bid day
22 103 10/8/98
31 103 11/6/98
74 103 9/8/98

Figure 4.18 Instance of Temp1

sid sname rating age bid day
22 Dustin 7 45.0 103 10/8/98
31 Lubber 8 55.5 103 11/6/98
74 Horatio 9 35.0 103 9/8/98

Figure 4.19 Instance of Temp2

The version of the query using ρ is essentially the same as the original query; the use
of ρ is just syntactic sugar. However, there are indeed several distinct ways to write a
query in relational algebra. Here is another way to write this query:

πsname(σbid=103(Reserves ./ Sailors))

In this version we first compute the natural join of Reserves and Sailors and then apply
the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational DBMS.
Queries are expressed by users in a language such as SQL. The DBMS translates an
SQL query into (an extended form of) relational algebra, and then looks for other
algebra expressions that will produce the same answers but are cheaper to evaluate. If
the user’s query is first translated into the expression

πsname(σbid=103(Reserves ./ Sailors))

a good query optimizer will find the equivalent expression

πsname((σbid=103Reserves) ./ Sailors)

Further, the optimizer will recognize that the second expression is likely to be less
expensive to compute because the sizes of intermediate relations are smaller, thanks
to the early use of selection.

(Q2) Find the names of sailors who have reserved a red boat.

πsname((σcolor=′red′Boats) ./ Reserves ./ Sailors)

Relational Algebra and Calculus 103

This query involves a series of two joins. First we choose (tuples describing) red boats.
Then we join this set with Reserves (natural join, with equality specified on the bid
column) to identify reservations of red boats. Next we join the resulting intermediate
relation with Sailors (natural join, with equality specified on the sid column) to retrieve
the names of sailors who have made reservations of red boats. Finally, we project the
sailors’ names. The answer, when evaluated on the instances B1, R2 and S3, contains
the names Dustin, Horatio, and Lubber.

An equivalent expression is:

πsname(πsid((πbidσcolor=′red′Boats) ./ Reserves) ./ Sailors)

The reader is invited to rewrite both of these queries by using ρ to make the interme-
diate relations explicit and to compare the schemas of the intermediate relations. The
second expression generates intermediate relations with fewer fields (and is therefore
likely to result in intermediate relation instances with fewer tuples, as well). A rela-
tional query optimizer would try to arrive at the second expression if it is given the
first.

(Q3) Find the colors of boats reserved by Lubber.

πcolor((σsname=′Lubber′Sailors) ./ Reserves ./ Boats)

This query is very similar to the query we used to compute sailors who reserved red
boats. On instances B1, R2, and S3, the query will return the colors gren and red.

(Q4) Find the names of sailors who have reserved at least one boat.

πsname(Sailors ./ Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples consist
of a Sailors tuple ‘attached to’ a Reserves tuple. A Sailors tuple appears in (some
tuple of) this intermediate relation only if at least one Reserves tuple has the same
sid value, that is, the sailor has made some reservation. The answer, when evaluated
on the instances B1, R2 and S3, contains the three tuples 〈Dustin〉, 〈Horatio〉, and
〈Lubber〉. Even though there are two sailors called Horatio who have reserved a boat,
the answer contains only one copy of the tuple 〈Horatio〉, because the answer is a
relation, i.e., a set of tuples, without any duplicates.

At this point it is worth remarking on how frequently the natural join operation is
used in our examples. This frequency is more than just a coincidence based on the
set of queries that we have chosen to discuss; the natural join is a very natural and
widely used operation. In particular, natural join is frequently used when joining two
tables on a foreign key field. In Query Q4, for example, the join equates the sid fields
of Sailors and Reserves, and the sid field of Reserves is a foreign key that refers to the
sid field of Sailors.

104 Chapter 4

(Q5) Find the names of sailors who have reserved a red or a green boat.

ρ(Tempboats, (σcolor=′red′Boats) ∪ (σcolor=′green′Boats))

πsname(Tempboats ./ Reserves ./ Sailors)

We identify the set of all boats that are either red or green (Tempboats, which contains
boats with the bids 102, 103, and 104 on instances B1, R2, and S3). Then we join with
Reserves to identify sids of sailors who have reserved one of these boats; this gives us
sids 22, 31, 64, and 74 over our example instances. Finally, we join (an intermediate
relation containing this set of sids) with Sailors to find the names of Sailors with these
sids. This gives us the names Dustin, Horatio, and Lubber on the instances B1, R2,
and S3. Another equivalent definition is the following:

ρ(Tempboats, (σcolor=′red′∨color=′green′Boats))

πsname(Tempboats ./ Reserves ./ Sailors)

Let us now consider a very similar query:

(Q6) Find the names of sailors who have reserved a red and a green boat. It is tempting
to try to do this by simply replacing ∪ by ∩ in the definition of Tempboats:

ρ(Tempboats2, (σcolor=′red′Boats) ∩ (σcolor=′green′Boats))

πsname(Tempboats2 ./ Reserves ./ Sailors)

However, this solution is incorrect—it instead tries to compute sailors who have re-
served a boat that is both red and green. (Since bid is a key for Boats, a boat can
be only one color; this query will always return an empty answer set.) The correct
approach is to find sailors who have reserved a red boat, then sailors who have reserved
a green boat, and then take the intersection of these two sets:

ρ(Tempred, πsid((σcolor=′red′Boats) ./ Reserves))

ρ(Tempgreen, πsid((σcolor=′green′Boats) ./ Reserves))

πsname((Tempred ∩ Tempgreen) ./ Sailors)

The two temporary relations compute the sids of sailors, and their intersection identifies
sailors who have reserved both red and green boats. On instances B1, R2, and S3, the
sids of sailors who have reserved a red boat are 22, 31, and 64. The sids of sailors who
have reserved a green boat are 22, 31, and 74. Thus, sailors 22 and 31 have reserved
both a red boat and a green boat; their names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors who have reserved
red or green boats (Query Q5); just replace ∩ by ∪:

ρ(Tempred, πsid((σcolor=′red′Boats) ./ Reserves))

ρ(Tempgreen, πsid((σcolor=′green′Boats) ./ Reserves))

πsname((Tempred ∪ Tempgreen) ./ Sailors)

Relational Algebra and Calculus 105

In the above formulations of Queries Q5 and Q6, the fact that sid (the field over which
we compute union or intersection) is a key for Sailors is very important. Consider the
following attempt to answer Query Q6:

ρ(Tempred, πsname((σcolor=′red′Boats) ./ Reserves ./ Sailors))

ρ(Tempgreen, πsname((σcolor=′green′Boats) ./ Reserves ./ Sailors))

Tempred ∩ Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with the
same name, such as Horatio in our example instances, may have reserved red and
green boats, respectively. In this case, the name Horatio will (incorrectly) be included
in the answer even though no one individual called Horatio has reserved a red boat
and a green boat. The cause of this error is that sname is being used to identify sailors
(while doing the intersection) in this version of the query, but sname is not a key.

(Q7) Find the names of sailors who have reserved at least two boats.

ρ(Reservations, πsid,sname,bid(Sailors ./ Reserves))

ρ(Reservationpairs(1 → sid1, 2 → sname1, 3 → bid1, 4 → sid2,

5 → sname2, 6 → bid2), Reservations × Reservations)

πsname1σ(sid1=sid2)∧(bid16=bid2)Reservationpairs

First we compute tuples of the form 〈sid,sname,bid〉, where sailor sid has made a
reservation for boat bid; this set of tuples is the temporary relation Reservations.
Next we find all pairs of Reservations tuples where the same sailor has made both
reservations and the boats involved are distinct. Here is the central idea: In order
to show that a sailor has reserved two boats, we must find two Reservations tuples
involving the same sailor but distinct boats. Over instances B1, R2, and S3, the
sailors with sids 22, 31, and 64 have each reserved at least two boats. Finally, we
project the names of such sailors to obtain the answer, containing the names Dustin,
Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying sailors,
and we need it to check that two Reservations tuples involve the same sailor. As noted
in the previous example, we can’t use sname for this purpose.

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

πsid(σage>20Sailors) −
πsid((σcolor=′red′Boats) ./ Reserves ./ Sailors)

This query illustrates the use of the set-difference operator. Again, we use the fact
that sid is the key for Sailors. We first identify sailors aged over 20 (over instances B1,
R2, and S3, sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then discard those who

106 Chapter 4

have reserved a red boat (sids 22, 31, and 64), to obtain the answer (sids 29, 32, 58, 74,
85, and 95). If we want to compute the names of such sailors, we must first compute
their sids (as shown above), and then join with Sailors and project the sname values.

(Q9) Find the names of sailors who have reserved all boats. The use of the word all
(or every) is a good indication that the division operation might be applicable:

ρ(Tempsids, (πsid,bidReserves)/(πbidBoats))

πsname(Tempsids ./ Sailors)

The intermediate relation Tempsids is defined using division, and computes the set of
sids of sailors who have reserved every boat (over instances B1, R2, and S3, this is just
sid 22). Notice how we define the two relations that the division operator (/) is applied
to—the first relation has the schema (sid,bid) and the second has the schema (bid).
Division then returns all sids such that there is a tuple 〈sid,bid〉 in the first relation for
each bid in the second. Joining Tempsids with Sailors is necessary to associate names
with the selected sids; for sailor 22, the name is Dustin.

(Q10) Find the names of sailors who have reserved all boats called Interlake.

ρ(Tempsids, (πsid,bidReserves)/(πbid(σbname=′Interlake′Boats)))

πsname(Tempsids ./ Sailors)

The only difference with respect to the previous query is that now we apply a selection
to Boats, to ensure that we compute only bids of boats named Interlake in defining the
second argument to the division operator. Over instances B1, R2, and S3, Tempsids
evaluates to sids 22 and 64, and the answer contains their names, Dustin and Horatio.

4.3 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra,
which is procedural, the calculus is nonprocedural, or declarative, in that it allows
us to describe the set of answers without being explicit about how they should be
computed. Relational calculus has had a big influence on the design of commercial
query languages such as SQL and, especially, Query-by-Example (QBE).

The variant of the calculus that we present in detail is called the tuple relational
calculus (TRC). Variables in TRC take on tuples as values. In another variant, called
the domain relational calculus (DRC), the variables range over field values. TRC has
had more of an influence on SQL, while DRC has strongly influenced QBE. We discuss
DRC in Section 4.3.2.2

2The material on DRC is referred to in the chapter on QBE; with the exception of this chapter,
the material on DRC and TRC can be omitted without loss of continuity.

Relational Algebra and Calculus 107

4.3.1 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation schema as
values. That is, every value assigned to a given tuple variable has the same number
and type of fields. A tuple relational calculus query has the form { T | p(T) }, where
T is a tuple variable and p(T) denotes a formula that describes T ; we will shortly
define formulas and queries rigorously. The result of this query is the set of all tuples
t for which the formula p(T) evaluates to true with T = t. The language for writing
formulas p(T) is thus at the heart of TRC and is essentially a simple subset of first-order
logic. As a simple example, consider the following query.

(Q11) Find all sailors with a rating above 7.

{S | S ∈ Sailors ∧ S.rating > 7}
When this query is evaluated on an instance of the Sailors relation, the tuple variable
S is instantiated successively with each tuple, and the test S.rating>7 is applied. The
answer contains those instances of S that pass this test. On instance S3 of Sailors, the
answer contains Sailors tuples with sid 31, 32, 58, 71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula. Let
Rel be a relation name, R and S be tuple variables, a an attribute of R, and b an
attribute of S. Let op denote an operator in the set {<, >, =,≤,≥, 6=}. An atomic
formula is one of the following:

R ∈ Rel

R.a op S.b

R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are them-
selves formulas, and p(R) denotes a formula in which the variable R appears:

any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃R(p(R)), where R is a tuple variable

∀R(p(R)), where R is a tuple variable

In the last two clauses above, the quantifiers ∃ and ∀ are said to bind the variable
R. A variable is said to be free in a formula or subformula (a formula contained in a

108 Chapter 4

larger formula) if the (sub)formula does not contain an occurrence of a quantifier that
binds it.3

We observe that every variable in a TRC formula appears in a subformula that is
atomic, and every relation schema specifies a domain for each field; this observation
ensures that each variable in a TRC formula has a well-defined domain from which
values for the variable are drawn. That is, each variable has a well-defined type, in the
programming language sense. Informally, an atomic formula R ∈ Rel gives R the type
of tuples in Rel, and comparisons such as R.a op S.b and R.a op constant induce type
restrictions on the field R.a. If a variable R does not appear in an atomic formula of
the form R ∈ Rel (i.e., it appears only in atomic formulas that are comparisons), we
will follow the convention that the type of R is a tuple whose fields include all (and
only) fields of R that appear in the formula.

We will not define types of variables formally, but the type of a variable should be clear
in most cases, and the important point to note is that comparisons of values having
different types should always fail. (In discussions of relational calculus, the simplifying
assumption is often made that there is a single domain of constants and that this is
the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T | p(T)}, where T is the only
free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples for a
given TRC query? The answer to a TRC query {T | p(T)}, as we noted earlier, is the
set of all tuples t for which the formula p(T) evaluates to true with variable T assigned
the tuple value t. To complete this definition, we must state which assignments of tuple
values to the free variables in a formula make the formula evaluate to true.

A query is evaluated on a given instance of the database. Let each free variable in a
formula F be bound to a tuple value. For the given assignment of tuples to variables,
with respect to the given database instance, F evaluates to (or simply ‘is’) true if one
of the following holds:

F is an atomic formula R ∈ Rel, and R is assigned a tuple in the instance of
relation Rel.

3We will make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such as nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.

Relational Algebra and Calculus 109

F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples
assigned to R and S have field values R.a and S.b that make the comparison true.

F is of the form ¬p, and p is not true; or of the form p∧ q, and both p and q are
true; or of the form p∨ q, and one of them is true, or of the form p ⇒ q and q is
true whenever4 p is true.

F is of the form ∃R(p(R)), and there is some assignment of tuples to the free
variables in p(R), including the variable R,5 that makes the formula p(R) true.

F is of the form ∀R(p(R)), and there is some assignment of tuples to the free
variables in p(R) that makes the formula p(R) true no matter what tuple is
assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances B1 of
Boats, R2 of Reserves, and S3 of Sailors shown in Figures 4.15, 4.16, and 4.17. We will
use parentheses as needed to make our formulas unambiguous. Often, a formula p(R)
includes a condition R ∈ Rel, and the meaning of the phrases some tuple R and for all
tuples R is intuitive. We will use the notation ∃R ∈ Rel(p(R)) for ∃R(R ∈ Rel∧p(R)).
Similarly, we use the notation ∀R ∈ Rel(p(R)) for ∀R(R ∈ Rel ⇒ p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.

{P | ∃S ∈ Sailors(S.rating > 7 ∧ P.name = S.sname ∧ P.age = S.age)}
This query illustrates a useful convention: P is considered to be a tuple variable with
exactly two fields, which are called name and age, because these are the only fields of
P that are mentioned and P does not range over any of the relations in the query;
that is, there is no subformula of the form P ∈ Relname. The result of this query is
a relation with two fields, name and age. The atomic formulas P.name = S.sname

and P.age = S.age give values to the fields of an answer tuple P . On instances B1,
R2, and S3, the answer is the set of tuples 〈Lubber, 55.5〉, 〈Andy, 25.5〉, 〈Rusty, 35.0〉,
〈Zorba, 16.0〉, and 〈Horatio, 35.0〉.

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

{P | ∃R ∈ Reserves ∃S ∈ Sailors

(R.sid = S.sid ∧ P.bid = R.bid ∧ P.day = R.day ∧ P.sname = S.sname)}
For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given a
pair of such tuples, we construct an answer tuple P with fields sname, bid, and day by

4Whenever should be read more precisely as ‘for all assignments of tuples to the free variables.’
5Note that some of the free variables in p(R) (e.g., the variable R itself) may be bound in F .

110 Chapter 4

copying the corresponding fields from these two tuples. This query illustrates how we
can combine values from different relations in each answer tuple. The answer to this
query on instances B1, R2, and S3 is shown in Figure 4.20.

sname bid day
Dustin 101 10/10/98
Dustin 102 10/10/98
Dustin 103 10/8/98
Dustin 104 10/7/98
Lubber 102 11/10/98
Lubber 103 11/6/98
Lubber 104 11/12/98
Horatio 101 9/5/98
Horatio 102 9/8/98
Horatio 103 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid∧R.bid = 103∧P.sname = S.sname)}
This query can be read as follows: “Retrieve all sailor tuples for which there exists a
tuple in Reserves, having the same value in the sid field, and with bid = 103.” That
is, for each sailor tuple, we look for a tuple in Reserves that shows that this sailor has
reserved boat 103. The answer tuple P contains just one field, sname.

(Q2) Find the names of sailors who have reserved a red boat.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid ∧ P.sname = S.sname

∧∃B ∈ Boats(B.bid = R.bid ∧ B.color =′red′))}
This query can be read as follows: “Retrieve all sailor tuples S for which there exist
tuples R in Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and
B.color =′red′.” Another way to write this query, which corresponds more closely to
this reading, is as follows:

{P | ∃S ∈ Sailors ∃R ∈ Reserves ∃B ∈ Boats

(R.sid = S.sid ∧ B.bid = R.bid ∧ B.color =′red′ ∧ P.sname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P | ∃S ∈ Sailors ∃R1 ∈ Reserves ∃R2 ∈ Reserves

(S.sid = R1.sid ∧ R1.sid = R2.sid ∧ R1.bid 6= R2.bid ∧ P.sname = S.sname)}

Relational Algebra and Calculus 111

Contrast this query with the algebra version and see how much simpler the calculus
version is. In part, this difference is due to the cumbersome renaming of fields in the
algebra version, but the calculus version really is simpler.

(Q9) Find the names of sailors who have reserved all boats.

{P | ∃S ∈ Sailors ∀B ∈ Boats

(∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid ∧ P.sname = S.sname))}
This query was expressed using the division operator in relational algebra. Notice
how easily it is expressed in the calculus. The calculus query directly reflects how we
might express the query in English: “Find sailors S such that for all boats B there is
a Reserves tuple showing that sailor S has reserved boat B.”

(Q14) Find sailors who have reserved all red boats.

{S | S ∈ Sailors ∧ ∀B ∈ Boats

(B.color =′red′ ⇒ (∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}
This query can be read as follows: For each candidate (sailor), if a boat is red, the
sailor must have reserved it. That is, for a candidate sailor, a boat being red must
imply the sailor having reserved it. Observe that since we can return an entire sailor
tuple as the answer instead of just the sailor’s name, we have avoided introducing a
new free variable (e.g., the variable P in the previous example) to hold the answer
values. On instances B1, R2, and S3, the answer contains the Sailors tuples with sids
22 and 31.

We can write this query without using implication, by observing that an expression of
the form p ⇒ q is logically equivalent to ¬p ∨ q:

{S | S ∈ Sailors ∧ ∀B ∈ Boats

(B.color 6=′red′ ∨ (∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}
This query should be read as follows: “Find sailors S such that for all boats B, either
the boat is not red or a Reserves tuple shows that sailor S has reserved boat B.”

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some
attribute (e.g., the variable can be assigned an integer if it appears in an attribute
whose domain is the set of integers). A DRC query has the form {〈x1, x2, . . . , xn〉 |
p(〈x1, x2, . . . , xn〉)}, where each xi is either a domain variable or a constant and
p(〈x1, x2, . . . , xn〉) denotes a DRC formula whose only free variables are the vari-
ables among the xi, 1 ≤ i ≤ n. The result of this query is the set of all tuples
〈x1, x2, . . . , xn〉 for which the formula evaluates to true.

112 Chapter 4

A DRC formula is defined in a manner that is very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables. Let op
denote an operator in the set {<, >, =,≤,≥, 6=} and let X and Y be domain variables.
An atomic formula in DRC is one of the following:

〈x1, x2, . . . , xn〉 ∈ Rel, where Rel is a relation with n attributes; each xi, 1 ≤ i ≤ n

is either a variable or a constant.

X op Y

X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and q are them-
selves formulas, and p(X) denotes a formula in which the variable X appears:

any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃X(p(X)), where X is a domain variable

∀X(p(X)), where X is a domain variable

The reader is invited to compare this definition with the definition of TRC formulas
and see how closely these two definitions correspond. We will not define the semantics
of DRC formulas formally; this is left as an exercise for the reader.

Examples of DRC Queries

We now illustrate DRC through several examples. The reader is invited to compare
these with the TRC versions.

(Q11) Find all sailors with a rating above 7.

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ T > 7}

This differs from the TRC version in giving each attribute a (variable) name. The
condition 〈I, N, T, A〉 ∈ Sailors ensures that the domain variables I, N , T , and A are
restricted to be fields of the same tuple. In comparison with the TRC query, we can
say T > 7 instead of S.rating > 7, but we must specify the tuple 〈I, N, T, A〉 in the
result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃Ir, Br, D(〈Ir, Br, D〉 ∈ Reserves ∧ Ir = I ∧ Br = 103))}

Relational Algebra and Calculus 113

Notice that only the sname field is retained in the answer and that only N is a free
variable. We use the notation ∃Ir, Br, D(. . .) as a shorthand for ∃Ir(∃Br(∃D(. . .))).
Very often, all the quantified variables appear in a single relation, as in this example.
An even more compact notation in this case is ∃〈Ir, Br, D〉 ∈ Reserves. With this
notation, which we will use henceforth, the above query would be as follows:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃〈Ir, Br, D〉 ∈ Reserves(Ir = I ∧ Br = 103))}

The comparison with the corresponding TRC formula should now be straightforward.
This query can also be written as follows; notice the repetition of variable I and the
use of the constant 103:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃D(〈I, 103, D〉 ∈ Reserves))}

(Q2) Find the names of sailors who have reserved a red boat.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃〈I, Br, D〉 ∈ Reserves ∧ ∃〈Br, BN,′red′〉 ∈ Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧
∃Br1, Br2, D1, D2(〈I, Br1, D1〉 ∈ Reserves ∧ 〈I, Br2, D2〉 ∈ Reserves ∧ Br1 6= Br2))}

Notice how the repeated use of variable I ensures that the same sailor has reserved
both the boats in question.

(Q9) Find the names of sailors who have reserved all boats.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧
∀B, BN, C(¬(〈B, BN, C〉 ∈ Boats) ∨
(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))))}

This query can be read as follows: “Find all values of N such that there is some tuple
〈I, N, T, A〉 in Sailors satisfying the following condition: for every 〈B, BN, C〉, either
this is not a tuple in Boats or there is some tuple 〈Ir, Br, D〉 in Reserves that proves
that Sailor I has reserved boat B.” The ∀ quantifier allows the domain variables B,
BN , and C to range over all values in their respective attribute domains, and the
pattern ‘¬(〈B, BN, C〉 ∈ Boats)∨’ is necessary to restrict attention to those values
that appear in tuples of Boats. This pattern is common in DRC formulas, and the
notation ∀〈B, BN, C〉 ∈ Boats can be used as a shorthand instead. This is similar to

114 Chapter 4

the notation introduced earlier for ∃. With this notation the query would be written
as follows:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B)))}

(Q14) Find sailors who have reserved all red boats.

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(C =′red′ ⇒ ∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}
Here, we find all sailors such that for every red boat there is a tuple in Reserves that
shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND CALCULUS *

We have presented two formal query languages for the relational model. Are they
equivalent in power? Can every query that can be expressed in relational algebra also
be expressed in relational calculus? The answer is yes, it can. Can every query that
can be expressed in relational calculus also be expressed in relational algebra? Before
we answer this question, we consider a major problem with the calculus as we have
presented it.

Consider the query {S | ¬(S ∈ Sailors)}. This query is syntactically correct. However,
it asks for all tuples S such that S is not in (the given instance of) Sailors. The set of
such S tuples is obviously infinite, in the context of infinite domains such as the set of
all integers. This simple example illustrates an unsafe query. It is desirable to restrict
relational calculus to disallow unsafe queries.

We now sketch how calculus queries are restricted to be safe. Consider a set I of
relation instances, with one instance per relation that appears in the query Q. Let
Dom(Q, I) be the set of all constants that appear in these relation instances I or in
the formulation of the query Q itself. Since we only allow finite instances I, Dom(Q, I)
is also finite.

For a calculus formula Q to be considered safe, at a minimum we want to ensure that
for any given I, the set of answers for Q contains only values that are in Dom(Q, I).
While this restriction is obviously required, it is not enough. Not only do we want the
set of answers to be composed of constants in Dom(Q, I), we wish to compute the set
of answers by only examining tuples that contain constants in Dom(Q, I)! This wish
leads to a subtle point associated with the use of quantifiers ∀ and ∃: Given a TRC
formula of the form ∃R(p(R)), we want to find all values for variable R that make this
formula true by checking only tuples that contain constants in Dom(Q, I). Similarly,

Relational Algebra and Calculus 115

given a TRC formula of the form ∀R(p(R)), we want to find any values for variable
R that make this formula false by checking only tuples that contain constants in
Dom(Q, I).

We therefore define a safe TRC formula Q to be a formula such that:

1. For any given I, the set of answers for Q contains only values that are in Dom(Q, I).

2. For each subexpression of the form ∃R(p(R)) in Q, if a tuple r (assigned to variable
R) makes the formula true, then r contains only constants in Dom(Q, I).

3. For each subexpression of the form ∀R(p(R)) in Q, if a tuple r (assigned to variable
R) contains a constant that is not in Dom(Q, I), then r must make the formula
true.

Note that this definition is not constructive, that is, it does not tell us how to check if
a query is safe.

The query Q = {S | ¬(S ∈ Sailors)} is unsafe by this definition. Dom(Q,I) is the
set of all values that appear in (an instance I of) Sailors. Consider the instance S1
shown in Figure 4.1. The answer to this query obviously includes values that do not
appear in Dom(Q, S1).

Returning to the question of expressiveness, we can show that every query that can be
expressed using a safe relational calculus query can also be expressed as a relational
algebra query. The expressive power of relational algebra is often used as a metric of
how powerful a relational database query language is. If a query language can express
all the queries that we can express in relational algebra, it is said to be relationally
complete. A practical query language is expected to be relationally complete; in ad-
dition, commercial query languages typically support features that allow us to express
some queries that cannot be expressed in relational algebra.

4.5 POINTS TO REVIEW

The inputs and outputs of a query are relations. A query takes instances of each
input relation and produces an instance of the output relation. (Section 4.1)

A relational algebra query describes a procedure for computing the output rela-
tion from the input relations by applying relational algebra operators. Internally,
database systems use some variant of relational algebra to represent query evalu-
ation plans. (Section 4.2)

Two basic relational algebra operators are selection (σ), to select subsets of a
relation, and projection (π), to select output fields. (Section 4.2.1)

116 Chapter 4

Relational algebra includes standard operations on sets such as union (∪), inter-
section (∩), set-difference (−), and cross-product (×). (Section 4.2.2)

Relations and fields can be renamed in relational algebra using the renaming
operator (ρ). (Section 4.2.3)

Another relational algebra operation that arises commonly in practice is the join
(./) —with important special cases of equijoin and natural join. (Section 4.2.4)

The division operation (/) is a convenient way to express that we only want tuples
where all possible value combinations—as described in another relation—exist.
(Section 4.2.5)

Instead of describing a query by how to compute the output relation, a relational
calculus query describes the tuples in the output relation. The language for spec-
ifying the output tuples is essentially a restricted subset of first-order predicate
logic. In tuple relational calculus, variables take on tuple values and in domain re-
lational calculus, variables take on field values, but the two versions of the calculus
are very similar. (Section 4.3)

All relational algebra queries can be expressed in relational calculus. If we restrict
ourselves to safe queries on the calculus, the converse also holds. An important cri-
terion for commercial query languages is that they should be relationally complete
in the sense that they can express all relational algebra queries. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why

is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains

N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in tuples) for

the result relation produced by each of the following relational algebra expressions. In each

case, state any assumptions about the schemas for R1 and R2 that are needed to make the

expression meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1), and

(7) R1/R2

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

Relational Algebra and Calculus 117

The key fields are underlined, and the domain of each field is listed after the field name.

Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the

key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write

the following queries in relational algebra, tuple relational calculus, and domain relational

calculus:

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some red part and some green part.

5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some part

than the supplier with the second sid.

10. Find the pids of parts that are supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either

does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous question. State

what the following queries compute:

1. πsname(πsid(σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)

2. πsname(πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers))

3. (πsname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩

(πsname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

4. (πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩

(πsid((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

5. πsname((πsid,sname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩

(πsid,sname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,

distance: integer, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

118 Chapter 4

Note that the Employees relation describes pilots and other kinds of employees as well; every

pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only

pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela-

tional calculus. Note that some of these queries may not be expressible in relational algebra

(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,

informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5

for additional queries over the airline schema.)

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.

4. Identify the flights that can be piloted by every pilot whose salary is more than $100,000.

(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising

range.)

5. Find the names of pilots who can operate some plane with a range greater than 3,000

miles but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of pilots who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is

required to depart from the city that is the destination of the previous flight; the first

flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction

on the number of intermediate flights. Your query must determine whether a sequence

of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,

can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important

to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [156], and he showed the equivalence of relational

algebra and TRC in [158]. Earlier, Kuhns [392] considered the use of logic to pose queries.

LaCroix and Pirotte discussed DRC in [397]. Klug generalized the algebra and calculus to

include aggregate operations in [378]. Extensions of the algebra and calculus to deal with

aggregate functions are also discussed in [503]. Merrett proposed an extended relational

algebra with quantifiers such as the number of, which go beyond just universal and existential

quantification [460]. Such generalized quantifiers are discussed at length in [42].

5 SQL: QUERIES, PROGRAMMING,
TRIGGERS

What men or gods are these? What maidens loth?

What mad pursuit? What struggle to escape?

What pipes and timbrels? What wild ecstasy?

—John Keats, Ode on a Grecian Urn

What is the average salary in the Toy department?

—Anonymous SQL user

Structured Query Language (SQL) is the most widely used commercial relational
database language. It was originally developed at IBM in the SEQUEL-XRM and
System-R projects (1974–1977). Almost immediately, other vendors introduced DBMS
products based on SQL, and it is now a de facto standard. SQL continues to evolve in
response to changing needs in the database area. Our presentation follows the current
ANSI/ISO standard for SQL, which is called SQL-92. We also discuss some important
extensions in the new standard, SQL:1999. While not all DBMS products support the
full SQL-92 standard yet, vendors are working toward this goal and most products
already support the core features. The SQL language has several aspects to it:

The Data Definition Language (DDL): This subset of SQL supports the
creation, deletion, and modification of definitions for tables and views. Integrity
constraints can be defined on tables, either when the table is created or later.
The DDL also provides commands for specifying access rights or privileges to
tables and views. Although the standard does not discuss indexes, commercial
implementations also provide commands for creating and deleting indexes. We
covered the DDL features of SQL in Chapter 3.

The Data Manipulation Language (DML): This subset of SQL allows users
to pose queries and to insert, delete, and modify rows. We covered DML com-
mands to insert, delete, and modify rows in Chapter 3.

Embedded and dynamic SQL: Embedded SQL features allow SQL code to be
called from a host language such as C or COBOL. Dynamic SQL features allow a
query to be constructed (and executed) at run-time.

Triggers: The new SQL:1999 standard includes support for triggers, which are
actions executed by the DBMS whenever changes to the database meet conditions
specified in the trigger.

119

120 Chapter 5

Security: SQL provides mechanisms to control users’ access to data objects such
as tables and views.

Transaction management: Various commands allow a user to explicitly control
aspects of how a transaction is to be executed.

Client-server execution and remote database access: These commands
control how a client application program can connect to an SQL database server,
or access data from a database over a network.

This chapter covers the query language features which are the core of SQL’s DML,
embedded and dynamic SQL, and triggers. We also briefly discuss some integrity
constraint specifications that rely upon the use of the query language features of SQL.
The ease of expressing queries in SQL has played a major role in the success of relational
database systems. Although this material can be read independently of the preceding
chapters, relational algebra and calculus (which we covered in Chapter 4) provide a
formal foundation for a large subset of the SQL query language. Much of the power
and elegance of SQL can be attributed to this foundation.

We will continue our presentation of SQL in Chapter 17, where we discuss aspects of
SQL that are related to security. We discuss SQL’s support for the transaction concept
in Chapter 18.

The rest of this chapter is organized as follows. We present basic SQL queries in Section
5.2 and introduce SQL’s set operators in Section 5.3. We discuss nested queries, in
which a relation referred to in the query is itself defined within the query, in Section
5.4. We cover aggregate operators, which allow us to write SQL queries that are not
expressible in relational algebra, in Section 5.5. We discuss null values, which are
special values used to indicate unknown or nonexistent field values, in Section 5.6. We
consider how SQL commands can be embedded in a host language in Section 5.7 and in
Section 5.8, where we discuss how relations can be accessed one tuple at a time through
the use of cursors. In Section 5.9 we describe how queries can be constructed at run-
time using dynamic SQL, and in Section 5.10, we discuss two standard interfaces to
a DBMS, called ODBC and JDBC. We discuss complex integrity constraints that can
be specified using the SQL DDL in Section 5.11, extending the SQL DDL discussion
from Chapter 3; the new constraint specifications allow us to fully utilize the query
language capabilities of SQL.

Finally, we discuss the concept of an active database in Sections 5.12 and 5.13. An ac-
tive database has a collection of triggers, which are specified by the DBA. A trigger
describes actions to be taken when certain situations arise. The DBMS monitors the
database, detects these situations, and invokes the trigger. Several current relational
DBMS products support some form of triggers, and the current draft of the SQL:1999
standard requires support for triggers.

SQL: Queries, Programming, Triggers 121

Levels of SQL-92: SQL is a continously evolving standard with the current
standard being SQL-92. When the standard is updated, DMBS vendors are usu-
ally not able to immediately conform to the new standard in their next product
releases because they also have to address issues such as performance improve-
ments and better system management. Therefore, three SQL-92 levels have been
defined: Entry SQL, Intermediate SQL, and Full SQL. Of these, Entry SQL is
closest to the previous standard, SQL-89, and therefore the easiest for a vendor
to support. Intermediate SQL includes about half of the new features of SQL-92.
Full SQL is the complete language.
The idea is to make it possible for vendors to achieve full compliance with the
standard in steps and for customers to get an idea of how complete a vendor’s
support for SQL-92 really is, at each of these steps. In reality, while IBM DB2,
Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support several
features from Intermediate and Full SQL—and many of these products support
features in the new SQL:1999 standard as well—they can claim full support only
for Entry SQL.

5.1 ABOUT THE EXAMPLES

We will present a number of sample queries using the following table definitions:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

We will give each query a unique number, continuing with the numbering scheme used
in Chapter 4. The first new query in this chapter has number Q15. Queries Q1 through
Q14 were introduced in Chapter 4.1 We illustrate queries using the instances S3 of
Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter 4, which we reproduce
in Figures 5.1, 5.2, and 5.3, respectively.

5.2 THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual evaluation strategy. A conceptual evaluation strategy is a way to
evaluate the query that is intended to be easy to understand, rather than efficient. A
DBMS would typically execute a query in a different and more efficient way.

1All references to a query can be found in the subject index for the book.

122 Chapter 5

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.1 An Instance S3 of Sailors

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 5.2 An Instance R2 of Reserves

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 5.3 An Instance B1 of Boats

The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

Such a query intuitively corresponds to a relational algebra expression involving selec-
tions, projections, and cross-products. Every query must have a SELECT clause, which
specifies columns to be retained in the result, and a FROM clause, which specifies a
cross-product of tables. The optional WHERE clause specifies selection conditions on
the tables mentioned in the FROM clause. Let us consider a simple query.

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair 〈sname, age〉. If two or more sailors
have the same name and age, the answer still contains just one pair with that name

SQL: Queries, Programming, Triggers 123

and age. This query is equivalent to applying the projection operator of relational
algebra.

If we omit the keyword DISTINCT, we would get a copy of the row 〈s,a〉 for each sailor
with name s and age a; the answer would be a multiset of rows. A multiset is similar
to a set in that it is an unordered collection of elements, but there could be several
copies of each element, and the number of copies is significant—two multisets could
have the same elements and yet be different because the number of copies is different
for some elements. For example, {a, b, b} and {b, a, b} denote the same multiset, and
differ from the multiset {a, a, b}.

The answer to this query with and without the keyword DISTINCT on instance S3
of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for
Horatio appears twice if DISTINCT is omitted; this is because there are two sailors
called Horatio and age 35.

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Art 25.5
Bob 63.5

Figure 5.4 Answer to Q15

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Horatio 35.0
Art 25.5
Bob 63.5

Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of relational
algebra.

(Q11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Incidentally,
when we want to retrieve all columns, as in this query, SQL provides a convenient

124 Chapter 5

shorthand: We can simply write SELECT *. This notation is useful for interactive
querying, but it is poor style for queries that are intended to be reused and maintained.

As these two examples illustrate, the SELECT clause is actually used to do projec-
tion, whereas selections in the relational algebra sense are expressed using the WHERE
clause! This mismatch between the naming of the selection and projection operators
in relational algebra and the syntax of SQL is an unfortunate historical accident.

We now consider the syntax of a basic SQL query in more detail.

The from-list in the FROM clause is a list of table names. A table name can be
followed by a range variable; a range variable is particularly useful when the
same table name appears more than once in the from-list.

The select-list is a list of (expressions involving) column names of tables named
in the from-list. Column names can be prefixed by a range variable.

The qualification in the WHERE clause is a boolean combination (i.e., an expres-
sion using the logical connectives AND, OR, and NOT) of conditions of the form
expression op expression, where op is one of the comparison operators {<, <=, =
, <>, >=, >}.2 An expression is a column name, a constant, or an (arithmetic or
string) expression.

The DISTINCT keyword is optional. It indicates that the table computed as an
answer to this query should not contain duplicates, that is, two copies of the same
row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL query,
they don’t tell us the meaning of a query. The answer to a query is itself a relation—

which is a multiset of rows in SQL!—whose contents can be understood by considering
the following conceptual evaluation strategy:

1. Compute the cross-product of the tables in the from-list.

2. Delete those rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

This straightforward conceptual evaluation strategy makes explicit the rows that must
be present in the answer to the query. However, it is likely to be quite inefficient. We
will consider how a DBMS actually evaluates queries in Chapters 12 and 13; for now,

2Expressions with NOT can always be replaced by equivalent expressions without NOT given the set
of comparison operators listed above.

SQL: Queries, Programming, Triggers 125

our purpose is simply to explain the meaning of a query. We illustrate the conceptual
evaluation strategy using the following query:

(Q1) Find the names of sailors who have reserved boat number 103.

It can be expressed in SQL as follows.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

Let us compute the answer to this query on the instances R3 of Reserves and S4 of
Sailors shown in Figures 5.6 and 5.7, since the computation on our usual example
instances (R2 and S3) would be unnecessarily tedious.

sid bid day
22 101 10/10/96
58 103 11/12/96

Figure 5.6 Instance R3 of Reserves

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Figure 5.7 Instance S4 of Sailors

The first step is to construct the cross-product S4×R3, which is shown in Figure 5.8.

sid sname rating age sid bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Figure 5.8 S4 × R3

The second step is to apply the qualification S.sid = R.sid AND R.bid=103. (Note that
the first part of this qualification requires a join operation.) This step eliminates all
but the last row from the instance shown in Figure 5.8. The third step is to eliminate
unwanted columns; only sname appears in the SELECT clause. This step leaves us with
the result shown in Figure 5.9, which is a table with a single column and, as it happens,
just one row.

126 Chapter 5

sname
rusty

Figure 5.9 Answer to Query Q1 on R3 and S4

5.2.1 Examples of Basic SQL Queries

We now present several example queries, many of which were expressed earlier in
relational algebra and calculus (Chapter 4). Our first example illustrates that the use
of range variables is optional, unless they are needed to resolve an ambiguity. Query
Q1, which we discussed in the previous section, can also be expressed as follows:

SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in both the
Sailors and Reserves tables. An equivalent way to write this query is:

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables. Range
variables need to be introduced explicitly only when the FROM clause contains more
than one occurrence of a relation.3 However, we recommend the explicit use of range
variables and full qualification of all occurrences of columns with a range variable
to improve the readability of your queries. We will follow this convention in all our
examples.

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

This query contains a join of two tables, followed by a selection on the color of boats.
We can think of B and R as rows in the corresponding tables that ‘prove’ that a sailor
with sid R.sid reserved a red boat B.bid. On our example instances R2 and S3 (Figures

3The table name cannot be used as an implicit range variable once a range variable is introduced
for the relation.

SQL: Queries, Programming, Triggers 127

5.1 and 5.2), the answer consists of the sids 22, 31, and 64. If we want the names of
sailors in the result, we must also consider the Sailors relation, since Reserves does not
contain this information, as the next example illustrates.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

This query contains a join of three tables followed by a selection on the color of boats.
The join with Sailors allows us to find the name of the sailor who, according to Reserves
tuple R, has reserved a red boat described by tuple B.

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = ‘Lubber’

This query is very similar to the previous one. Notice that in general there may be
more than one sailor called Lubber (since sname is not a key for Sailors); this query is
still correct in that it will return the colors of boats reserved by some Lubber, if there
are several sailors called Lubber.

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the sailor has
made some reservation. (If a sailor has not made a reservation, the second step in
the conceptual evaluation strategy would eliminate all rows in the cross-product that
involve this sailor.)

5.2.2 Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of columns. Each
item in a select-list can be of the form expression AS column name, where expression
is any arithmetic or string expression over column names (possibly prefixed by range
variables) and constants. It can also contain aggregates such as sum and count, which
we will discuss in Section 5.5. The SQL-92 standard also includes expressions over date

128 Chapter 5

Regular expressions in SQL: Reflecting the increased importance of text data,
SQL:1999 includes a more powerful version of the LIKE operator called SIMILAR.
This operator allows a rich set of regular expressions to be used as patterns while
searching text. The regular expressions are similar to those supported by the Unix
operating system for string searches, although the syntax is a little different.

and time values, which we will not discuss. Although not part of the SQL-92 standard,
many implementations also support the use of built-in functions such as sqrt, sin, and
mod.

(Q17) Compute increments for the ratings of persons who have sailed two different
boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = R1.sid AND S.sid = R2.sid

AND R1.day = R2.day AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expression1 = expression2.

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <, >, etc.) with
the ordering of strings determined alphabetically as usual. If we need to sort strings
by an order other than alphabetical (e.g., sort strings denoting month names in the
calendar order January, February, March, etc.), SQL-92 supports a general concept of
a collation, or sort order, for a character set. A collation allows the user to specify
which characters are ‘less than’ which others, and provides great flexibility in string
manipulation.

In addition, SQL provides support for pattern matching through the LIKE operator,
along with the use of the wild-card symbols % (which stands for zero or more arbitrary
characters) and (which stands for exactly one, arbitrary, character). Thus, ‘ AB%’
denotes a pattern that will match every string that contains at least three characters,
with the second and third characters being A and B respectively. Note that unlike the
other comparison operators, blanks can be significant for the LIKE operator (depending
on the collation for the underlying character set). Thus, ‘Jeff’ = ‘Jeff ’ could be true
while ‘Jeff’ LIKE ‘Jeff ’ is false. An example of the use of LIKE in a query is given
below.

SQL: Queries, Programming, Triggers 129

(Q18) Find the ages of sailors whose name begins and ends with B and has at least
three characters.

SELECT S.age
FROM Sailors S
WHERE S.sname LIKE ‘B %B’

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query form pre-
sented earlier. Since the answer to a query is a multiset of rows, it is natural to consider
the use of operations such as union, intersection, and difference. SQL supports these
operations under the names UNION, INTERSECT, and EXCEPT.4 SQL also provides other
set operations: IN (to check if an element is in a given set), op ANY, op ALL (to com-
pare a value with the elements in a given set, using comparison operator op), and
EXISTS (to check if a set is empty). IN and EXISTS can be prefixed by NOT, with the
obvious modification to their meaning. We cover UNION, INTERSECT, and EXCEPT in
this section, and the other operations in Section 5.4.

Consider the following query:

(Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND (B.color = ‘red’ OR B.color = ‘green’)

This query is easily expressed using the OR connective in the WHERE clause. However,
the following query, which is identical except for the use of ‘and’ rather than ‘or’ in
the English version, turns out to be much more difficult:

(Q6) Find the names of sailors who have reserved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy to
the English statements of the two queries, we would retrieve the names of sailors who
have reserved a boat that is both red and green. The integrity constraint that bid is a
key for Boats tells us that the same boat cannot have two colors, and so the variant

4Note that although the SQL-92 standard includes these operations, many systems currently sup-
port only UNION. Also, many systems recognize the keyword MINUS for EXCEPT.

130 Chapter 5

of the previous query with AND in place of OR will always return an empty answer set.
A correct statement of Query Q6 using AND is the following:

SELECT S.sname
FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2
WHERE S.sid = R1.sid AND R1.bid = B1.bid

AND S.sid = R2.sid AND R2.bid = B2.bid
AND B1.color=‘red’ AND B2.color = ‘green’

We can think of R1 and B1 as rows that prove that sailor S.sid has reserved a red boat.
R2 and B2 similarly prove that the same sailor has reserved a green boat. S.sname is
not included in the result unless five such rows S, R1, B1, R2, and B2 are found.

The previous query is difficult to understand (and also quite inefficient to execute,
as it turns out). In particular, the similarity to the previous OR query (Query Q5) is
completely lost. A better solution for these two queries is to use UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
UNION
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query says that we want the union of the set of sailors who have reserved red
boats and the set of sailors who have reserved green boats. In complete symmetry, the
AND query (Query Q6) can be rewritten as follows:

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
INTERSECT
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query actually contains a subtle bug—if there are two sailors such as Horatio in
our example instances B1, R2, and S3, one of whom has reserved a red boat and the
other has reserved a green boat, the name Horatio is returned even though no one
individual called Horatio has reserved both a red and a green boat. Thus, the query
actually computes sailor names such that some sailor with this name has reserved a

SQL: Queries, Programming, Triggers 131

red boat and some sailor with the same name (perhaps a different sailor) has reserved
a green boat.

As we observed in Chapter 4, the problem arises because we are using sname to identify
sailors, and sname is not a key for Sailors! If we select sid instead of sname in the
previous query, we would compute the set of sids of sailors who have reserved both red
and green boats. (To compute the names of such sailors requires a nested query; we
will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.

(Q19) Find the sids of all sailors who have reserved red boats but not green boats.

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
EXCEPT
SELECT S2.sid
FROM Sailors S2, Reserves R2, Boats B2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have reserved
green boats. Thus, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need to look
at the Sailors relation, and we can use the following simpler query:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
EXCEPT
SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’

Note that UNION, INTERSECT, and EXCEPT can be used on any two tables that are
union-compatible, that is, have the same number of columns and the columns, taken
in order, have the same types. For example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or have reserved boat 104.

SELECT S.sid
FROM Sailors S
WHERE S.rating = 10

132 Chapter 5

UNION
SELECT R.sid
FROM Reserves R
WHERE R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns 22
and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A final point
to note about UNION, INTERSECT, and EXCEPT follows. In contrast to the default that
duplicates are not eliminated unless DISTINCT is specified in the basic query form, the
default for UNION queries is that duplicates are eliminated! To retain duplicates, UNION
ALL must be used; if so, the number of copies of a row in the result is m + n, where
m and n are the numbers of times that the row appears in the two parts of the union.
Similarly, one version of INTERSECT retains duplicates—the number of copies of a row
in the result is min(m, n)—and one version of EXCEPT also retains duplicates—the
number of copies of a row in the result is m − n, where m corresponds to the first
relation.

5.4 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query is a query
that has another query embedded within it; the embedded query is called a subquery.
When writing a query, we sometimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table is a
subquery and appears as part of the main query. A subquery typically appears within
the WHERE clause of a query. Subqueries can sometimes appear in the FROM clause
or the HAVING clause (which we present in Section 5.5). This section discusses only
subqueries that appear in the WHERE clause. The treatment of subqueries appearing
elsewhere is quite similar. Examples of subqueries that appear in the FROM clause are
discussed in Section 5.5.1.

5.4.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier, using a
nested subquery:

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid = 103)

SQL: Queries, Programming, Triggers 133

The nested subquery computes the (multi)set of sids for sailors who have reserved boat
103 (the set contains 22, 31, and 74 on instances R2 and S3), and the top-level query
retrieves the names of sailors whose sid is in this set. The IN operator allows us to
test whether a value is in a given set of elements; an SQL query is used to generate
the set to be tested. Notice that it is very easy to modify this query to find all sailors
who have not reserved boat 103—we can just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a conceptual
evaluation strategy. In our example, the strategy consists of examining rows in Sailors,
and for each such row, evaluating the subquery over Reserves. In general, the concep-
tual evaluation strategy that we presented for defining the semantics of a query can be
extended to cover nested queries as follows: Construct the cross-product of the tables
in the FROM clause of the top-level query as before. For each row in the cross-product,
while testing the qualification in the WHERE clause, (re)compute the subquery.5 Of
course, the subquery might itself contain another nested subquery, in which case we
apply the same idea one more time, leading to an evaluation strategy with several
levels of nested loops.

As an example of a multiply-nested query, let us rewrite the following query.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’)

The innermost subquery finds the set of bids of red boats (102 and 104 on instance
B1). The subquery one level above finds the set of sids of sailors who have reserved
one of these boats. On instances B1, R2, and S3, this set of sids contains 22, 31, and
64. The top-level query finds the names of sailors whose sid is in this set of sids. For
the example instances, we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, we replace the outermost
occurrence of IN by NOT IN:

(Q21) Find the names of sailors who have not reserved a red boat.

5Since the inner subquery in our example does not depend on the ‘current’ row from the outer
query in any way, you might wonder why we have to recompute the subquery for each outer row. For
an answer, see Section 5.4.2.

134 Chapter 5

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’)

This query computes the names of sailors whose sid is not in the set 22, 31, and 64.

In contrast to Query Q21, we can modify the previous query (the nested version of
Q2) by replacing the inner occurrence (rather than the outer occurence) of IN with
NOT IN. This modified query would compute the names of sailors who have reserved
a boat that is not red, i.e., if they have a reservation, it is not for a red boat. Let us
consider how. In the inner query, we check that R.bid is not either 102 or 104 (the
bids of red boats). The outer query then finds the sids in Reserves tuples where the
bid is not 102 or 104. On instances B1, R2, and S3, the outer query computes the set
of sids 22, 31, 64, and 74. Finally, we find the names of sailors whose sid is in this set.

We can also modify the nested query Q2 by replacing both occurrences of IN with
NOT IN. This variant finds the names of sailors who have not reserved a boat that is
not red, i.e., who have only reserved red boats (if they’ve reserved any boats at all).
Proceeding as in the previous paragraph, on instances B1, R2, and S3, the outer query
computes the set of sids (in Sailors) other than 22, 31, 64, and 74. This is the set 29,
32, 58, 71, 85, and 95. We then find the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries that we have seen thus far, the inner subquery has been completely
independent of the outer query. In general the inner subquery could depend on the
row that is currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more:

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid = 103

AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It allows us to
test whether a set is nonempty. Thus, for each Sailor row S, we test whether the set

SQL: Queries, Programming, Triggers 135

of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor
S has reserved boat 103, and we retrieve the name. The subquery clearly depends on
the current row S and must be re-evaluated for each row in Sailors. The occurrence
of S in the subquery (in the form of the literal S.sid) is called a correlation, and such
queries are called correlated queries.

This query also illustrates the use of the special symbol * in situations where all we
want to do is to check that a qualifying row exists, and don’t really want to retrieve
any columns from the row. This is one of the two uses of * in the SELECT clause
that is good programming style; the other is as an argument of the COUNT aggregate
operation, which we will describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute the
names of sailors who have not reserved a red boat. Closely related to EXISTS is
the UNIQUE predicate. When we apply UNIQUE to a subquery, it returns true if no
row appears twice in the answer to the subquery, that is, there are no duplicates; in
particular, it returns true if the answer is empty. (And there is also a NOT UNIQUE
version.)

5.4.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE, along
with their negated versions. SQL also supports op ANY and op ALL, where op is one of
the arithmetic comparison operators {<, <=, =, <>, >=, >}. (SOME is also available,
but it is just a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname = ‘Horatio’)

If there are several sailors called Horatio, this query finds all sailors whose rating is
better than that of some sailor called Horatio. On instance S3, this computes the
sids 31, 32, 58, 71, and 74. What if there were no sailor called Horatio? In this case
the comparison S.rating > ANY . . . is defined to return false, and the above query
returns an empty answer set. To understand comparisons involving ANY, it is useful to
think of the comparison being carried out repeatedly. In the example above, S.rating
is successively compared with each rating value that is an answer to the nested query.
Intuitively, the subquery must return a row that makes the comparison true, in order
for S.rating > ANY . . . to return true.

136 Chapter 5

(Q23) Find sailors whose rating is better than every sailor called Horatio.

We can obtain all such queries with a simple modification to Query Q22: just replace
ANY with ALL in the WHERE clause of the outer query. On instance S3, we would get
the sids 58 and 71. If there were no sailor called Horatio, the comparison S.rating
> ALL . . . is defined to return true! The query would then return the names of all
sailors. Again, it is useful to think of the comparison being carried out repeatedly.
Intuitively, the comparison must be true for every returned row in order for S.rating
> ALL . . . to return true.

As another illustration of ALL, consider the following query:

(Q24) Find the sailors with the highest rating.

SELECT S.sid
FROM Sailors S
WHERE S.rating >= ALL (SELECT S2.rating

FROM Sailors S2)

The subquery computes the set of all rating values in Sailors. The outer WHERE con-
dition is satisfied only when S.rating is greater than or equal to each of these rating
values, i.e., when it is the largest rating value. In the instance S3, the condition is
only satisfied for rating 10, and the answer includes the sids of sailors with this rating,
i.e., 58 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries

Let us revisit a query that we considered earlier using the INTERSECT operator.

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid

AND B2.color = ‘green’)

This query can be understood as follows: “Find all sailors who have reserved a red
boat and, further, have sids that are included in the set of sids of sailors who have

SQL: Queries, Programming, Triggers 137

reserved a green boat.” This formulation of the query illustrates how queries involving
INTERSECT can be rewritten using IN, which is useful to know if your system does not
support INTERSECT. Queries using EXCEPT can be similarly rewritten by using NOT IN.
To find the sids of sailors who have reserved red boats but not green boats, we can
simply replace the keyword IN in the previous query by NOT IN.

As it turns out, writing this query (Q6) using INTERSECT is more complicated because
we have to use sids to identify sailors (while intersecting) and have to return sailor
names:

SELECT S3.sname
FROM Sailors S3
WHERE S3.sid IN ((SELECT R.sid

FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’)
INTERSECT
(SELECTR2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’))

Our next example illustrates how the division operation in relational algebra can be
expressed in SQL.

(Q9) Find the names of sailors who have reserved all boats.

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

FROM Boats B)
EXCEPT
(SELECTR.bid
FROM Reserves R
WHERE R.sid = S.sid))

Notice that this query is correlated—for each sailor S, we check to see that the set of
boats reserved by S includes all boats. An alternative way to do this query without
using EXCEPT follows:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R

138 Chapter 5

WHERE R.bid = B.bid
AND R.sid = S.sid))

Intuitively, for each sailor we check that there is no boat that has not been reserved
by this sailor.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some computation or
summarization. As we noted earlier in this chapter, SQL allows the use of arithmetic
expressions. We now consider a powerful class of constructs for computing aggregate
values such as MIN and SUM. These features represent a significant extension of rela-
tional algebra. SQL supports five aggregate operations, which can be applied on any
column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN or MAX
(although SQL-92 does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance S3, the average age is 37.4. Of course, the WHERE clause can be used to
restrict the sailors who are considered in computing the average age:

(Q26) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be used
instead of AVG in the above queries to find the age of the youngest (oldest) sailor.

SQL: Queries, Programming, Triggers 139

However, finding both the name and the age of the oldest sailor is more tricky, as the
next query illustrates.

(Q27) Find the name and age of the oldest sailor. Consider the following attempt to
answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the name
of the sailors having that age. However, this query is illegal in SQL—if the SELECT
clause uses an aggregate operation, then it must use only aggregate operations unless
the query contains a GROUP BY clause! (The intuition behind this restriction should
become clear when we discuss the GROUP BY clause in Section 5.5.1.) Thus, we cannot
use MAX (S.age) as well as S.sname in the SELECT clause. We have to use a nested
query to compute the desired answer to Q27:

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX (S2.age)

FROM Sailors S2)

Observe that we have used the result of an aggregate operation in the subquery as
an argument to a comparison operation. Strictly speaking, we are comparing an age
value with the result of the subquery, which is a relation. However, because of the use
of the aggregate operation, the subquery is guaranteed to return a single tuple with
a single field, and SQL converts such a relation to a field value for the sake of the
comparison. The following equivalent query for Q27 is legal in the SQL-92 standard
but is not supported in many systems:

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2) = S.age

We can count the number of sailors using COUNT. This example illustrates the use of *
as an argument to COUNT, which is useful when we want to count all rows.

(Q28) Count the number of sailors.

SELECT COUNT (*)
FROM Sailors S

We can think of * as shorthand for all the columns (in the cross-product of the from-
list in the FROM clause). Contrast this query with the following query, which computes
the number of distinct sailor names. (Remember that sname is not a key!)

140 Chapter 5

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTINCT S.sname)
FROM Sailors S

On instance S3, the answer to Q28 is 10, whereas the answer to Q29 is 9 (because
two sailors have the same name, Horatio). If DISTINCT is omitted, the answer to Q29
is 10, because the name Horatio is counted twice. Thus, without DISTINCT Q29 is
equivalent to Q28. However, the use of COUNT (*) is better querying style when it is
applicable.

Aggregate operations offer an alternative to the ANY and ALL constructs. For example,
consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a rating of
10.

SELECT S.sname
FROM Sailors S
WHERE S.age > (SELECT MAX (S2.age)

FROM Sailors S2
WHERE S2.rating = 10)

On instance S3, the oldest sailor with rating 10 is sailor 58, whose age is 35. The
names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL, this query
could alternatively be written as follows:

SELECT S.sname
FROM Sailors S
WHERE S.age > ALL (SELECT S2.age

FROM Sailors S2
WHERE S2.rating = 10)

However, the ALL query is more error prone—one could easily (and incorrectly!) use
ANY instead of ALL, and retrieve sailors who are older than some sailor with a rating
of 10. The use of ANY intuitively corresponds to the use of MIN, instead of MAX, in the
previous query.

5.5.1 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to all (qualifying) rows in a relation.
Often we want to apply aggregate operations to each of a number of groups of rows
in a relation, where the number of groups depends on the relation instance (i.e., is not
known in advance). For example, consider the following query.

SQL: Queries, Programming, Triggers 141

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to 10, we could write 10 queries of
the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

where i = 1, 2, . . . , 10. Writing 10 such queries is tedious. More importantly, we may
not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query form, namely,
the GROUP BY clause. In fact, the extension also includes an optional HAVING clause
that can be used to specify qualifications over groups (for example, we may only
be interested in rating levels > 6). The general form of an SQL query with these
extensions is:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

The select-list in the SELECT clause consists of (1) a list of column names and
(2) a list of terms having the form aggop (column-name) AS new-name. The
optional AS new-name term gives this column a name in the table that is the
result of the query. Any of the aggregation operators can be used for aggop.

Every column that appears in (1) must also appear in grouping-list. The reason
is that each row in the result of the query corresponds to one group, which is a
collection of rows that agree on the values of columns in grouping-list. If a column
appears in list (1), but not in grouping-list, it is not clear what value should be
assigned to it in an answer row.

The expressions appearing in the group-qualification in the HAVING clause must
have a single value per group. The intuition is that the HAVING clause determines

142 Chapter 5

whether an answer row is to be generated for a given group. Therefore, a col-
umn appearing in the group-qualification must appear as the argument to an
aggregation operator, or it must also appear in grouping-list.

If the GROUP BY clause is omitted, the entire table is regarded as a single group.

We will explain the semantics of such a query through an example. Consider the query:

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18
years old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

We will evaluate this query on instance S3 of Sailors, reproduced in Figure 5.10 for
convenience. The instance of Sailors on which this query is to be evaluated is shown
in Figure 5.10. Extending the conceptual evaluation strategy presented in Section 5.2,
we proceed as follows. The first step is to construct the cross-product of tables in the
from-list. Because the only relation in the from-list in Query Q32 is Sailors, the result
is just the instance shown in Figure 5.10.

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.10 Instance S3 of Sailors

The second step is to apply the qualification in the WHERE clause, S.age >= 18. This
step eliminates the row 〈71, zorba, 10, 16〉. The third step is to eliminate unwanted
columns. Only columns mentioned in the SELECT clause, the GROUP BY clause, or
the HAVING clause are necessary, which means we can eliminate sid and sname in our
example. The result is shown in Figure 5.11. The fourth step is to sort the table

SQL: Queries, Programming, Triggers 143

according to the GROUP BY clause to identify the groups. The result of this step is
shown in Figure 5.12.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
9 35.0
3 25.5
3 63.5

Figure 5.11 After Evaluation Step 3

rating age
1 33.0
3 25.5
3 63.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

Figure 5.12 After Evaluation Step 4

The fifth step is to apply the group-qualification in the HAVING clause, that is, the
condition COUNT (*) > 1. This step eliminates the groups with rating equal to 1, 9, and
10. Observe that the order in which the WHERE and GROUP BY clauses are considered
is significant: If the WHERE clause were not considered first, the group with rating=10
would have met the group-qualification in the HAVING clause. The sixth step is to
generate one answer row for each remaining group. The answer row corresponding
to a group consists of a subset of the grouping columns, plus one or more columns
generated by applying an aggregation operator. In our example, each answer row has
a rating column and a minage column, which is computed by applying MIN to the
values in the age column of the corresponding group. The result of this step is shown
in Figure 5.13.

rating minage
3 25.5
7 35.0
8 25.5

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT in the SELECT clause, duplicates are eliminated in an
additional, and final, step.

5.5.2 More Examples of Aggregate Queries

(Q33) For each red boat, find the number of reservations for this boat.

144 Chapter 5

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid

On instances B1 and R2, the answer to this query contains the two tuples 〈102, 3〉 and
〈104, 2〉.

It is interesting to observe that the following version of the above query is illegal:

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
GROUP BY B.bid
HAVING B.color = ‘red’

Even though the group-qualification B.color = ‘red’ is single-valued per group, since
the grouping attribute bid is a key for Boats (and therefore determines color), SQL
disallows this query. Only columns that appear in the GROUP BY clause can appear in
the HAVING clause, unless they appear as arguments to an aggregate operator in the
HAVING clause.

(Q34) Find the average age of sailors for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING COUNT (*) > 1

After identifying groups based on rating, we retain only groups with at least two sailors.
The answer to this query on instance S3 is shown in Figure 5.14.

rating avgage
3 44.5
7 40.0
8 40.5
10 25.5

Figure 5.14 Q34 Answer

rating avgage
3 45.5
7 40.0
8 40.5
10 35.0

Figure 5.15 Q35 Answer

rating avgage
3 45.5
7 40.0
8 40.5

Figure 5.16 Q36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING clause
can have a nested subquery, just like the WHERE clause. Note that we can use S.rating
inside the nested subquery in the HAVING clause because it has a single value for the
current group of sailors:

SQL: Queries, Programming, Triggers 145

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

(Q35) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

In this variant of Query Q34, we first remove tuples with age <= 18 and group the
remaining tuples by rating. For each group, the subquery in the HAVING clause com-
putes the number of tuples in Sailors (without applying the selection age <= 18) with
the same rating value as the current group. If a group has less than 2 sailors, it is
discarded. For each remaining group, we output the average age. The answer to this
query on instance S3 is shown in Figure 5.15. Notice that the answer is very similar
to the answer for Q34, with the only difference being that for the group with rating
10, we now ignore the sailor with age 16 while computing the average.

(Q36) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two such sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating AND S2.age >= 18)

The above formulation of the query reflects the fact that it is a variant of Q35. The
answer to Q36 on instance S3 is shown in Figure 5.16. It differs from the answer to
Q35 in that there is no tuple for rating 10, since there is only one tuple with rating 10
and age ≥ 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation shows:

146 Chapter 5

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is applied
before grouping is done; thus, only sailors with age > 18 are left when grouping is
done. It is instructive to consider yet another way of writing this query:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,

COUNT (*) AS ratingcount
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating) AS Temp

WHERE Temp.ratingcount > 1

This alternative brings out several interesting points. First, the FROM clause can also
contain a nested subquery according to the SQL-92 standard.6 Second, the HAVING
clause is not needed at all. Any query with a HAVING clause can be rewritten without
one, but many queries are simpler to express with the HAVING clause. Finally, when a
subquery appears in the FROM clause, using the AS keyword to give it a name is neces-
sary (since otherwise we could not express, for instance, the condition Temp.ratingcount
> 1).

(Q37) Find those ratings for which the average age of sailors is the minimum over all
ratings.

We use this query to illustrate that aggregate operations cannot be nested. One might
consider writing it as follows:

SELECT S.rating
FROM Sailors S
WHERE AVG (S.age) = (SELECT MIN (AVG (S2.age))

FROM Sailors S2
GROUP BY S2.rating)

A little thought shows that this query will not work even if the expression MIN (AVG
(S2.age)), which is illegal, were allowed. In the nested query, Sailors is partitioned
into groups by rating, and the average age is computed for each rating value. For each
group, applying MIN to this average age value for the group will return the same value!

6Not all systems currently support nested queries in the FROM clause.

SQL: Queries, Programming, Triggers 147

A correct version of the above query follows. It essentially computes a temporary table
containing the average age for each rating value and then finds the rating(s) for which
this average age is the minimum.

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage) FROM Temp)

The answer to this query on instance S3 is 〈10, 25.5〉.

As an exercise, the reader should consider whether the following query computes the
same answer, and if not, why:

SELECT Temp.rating, MIN (Temp.avgage)
FROM (SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

GROUP BY Temp.rating

5.6 NULL VALUES *

Thus far, we have assumed that column values in a row are always known. In practice
column values can be unknown. For example, when a sailor, say Dan, joins a yacht
club, he may not yet have a rating assigned. Since the definition for the Sailors table
has a rating column, what row should we insert for Dan? What is needed here is a
special value that denotes unknown. Suppose the Sailor table definition was modified
to also include a maiden-name column. However, only married women who take their
husband’s last name have a maiden name. For single women and for men, the maiden-
name column is inapplicable. Again, what value do we include in this column for the
row representing Dan?

SQL provides a special column value called null to use in such situations. We use
null when the column value is either unknown or inapplicable. Using our Sailor table
definition, we might enter the row 〈98, Dan, null, 39〉 to represent Dan. The presence
of null values complicates many issues, and we consider the impact of null values on
SQL in this section.

5.6.1 Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the row for Dan, is
this condition true or false? Since Dan’s rating is unknown, it is reasonable to say

148 Chapter 5

that this comparison should evaluate to the value unknown. In fact, this is the case
for the comparisons rating > 8 and rating < 8 as well. Perhaps less obviously, if we
compare two null values using <, >, =, and so on, the result is always unknown. For
example, if we have null in two distinct rows of the sailor relation, any comparison
returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a column
value is null; for example, we can say rating IS NULL, which would evaluate to true on
the row representing Dan. We can also say rating IS NOT NULL, which would evaluate
to false on the row for Dan.

5.6.2 Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and rating
= 8 AND age < 40? Considering the row for Dan again, because age < 40, the first
expression evaluates to true regardless of the value of rating, but what about the
second? We can only say unknown.

But this example raises an important point—once we have null values, we must define
the logical operators AND, OR, and NOT using a three-valued logic in which expressions
evaluate to true, false, or unknown. We extend the usual interpretations of AND,
OR, and NOT to cover the case when one of the arguments is unknown as follows. The
expression NOT unknown is defined to be unknown. OR of two arguments evaluates to
true if either argument evaluates to true, and to unknown if one argument evaluates
to false and the other evaluates to unknown. (If both arguments are false, of course,
it evaluates to false.) AND of two arguments evaluates to false if either argument
evaluates to false, and to unknown if one argument evaluates to unknown and the other
evaluates to true or unknown. (If both arguments are true, it evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQL, and the impact of null values must
be recognized. For example, the qualification in the WHERE clause eliminates rows (in
the cross-product of tables named in the FROM clause) for which the qualification does
not evaluate to true. Therefore, in the presence of null values, any row that evaluates
to false or to unknown is eliminated. Eliminating rows that evaluate to unknown has
a subtle but significant impact on queries, especially nested queries involving EXISTS
or UNIQUE.

Another issue in the presence of null values is the definition of when two rows in a
relation instance are regarded as duplicates. The SQL definition is that two rows are
duplicates if corresponding columns are either equal, or both contain null. Contrast

SQL: Queries, Programming, Triggers 149

this definition with the fact that if we compare two null values using =, the result is
unknown! In the context of duplicates, this comparison is implicitly treated as true,
which is an anomaly.

As expected, the arithmetic operations +,−, ∗, and / all return null if one of their
arguments is null. However, nulls can cause some unexpected behavior with aggre-
gate operations. COUNT(*) handles null values just like other values, that is, they get
counted. All the other aggregate operations (COUNT, SUM, AVG, MIN, MAX, and variations
using DISTINCT) simply discard null values—thus SUM cannot be understood as just
the addition of all values in the (multi)set of values that it is applied to; a preliminary
step of discarding all null values must also be accounted for. As a special case, if one of
these operators—other than COUNT—is applied to only null values, the result is again
null.

5.6.4 Outer Joins

Some interesting variants of the join operation that rely on null values, called outer
joins, are supported in SQL. Consider the join of two tables, say Sailors ./c Reserves.
Tuples of Sailors that do not match some row in Reserves according to the join condition
c do not appear in the result. In an outer join, on the other hand, Sailor rows without
a matching Reserves row appear exactly once in the result, with the result columns
inherited from Reserves assigned null values.

In fact, there are several variants of the outer join idea. In a left outer join, Sailor
rows without a matching Reserves row appear in the result, but not vice versa. In a
right outer join, Reserves rows without a matching Sailors row appear in the result,
but not vice versa. In a full outer join, both Sailors and Reserves rows without a
match appear in the result. (Of course, rows with a match always appear in the result,
for all these variants, just like the usual joins, sometimes called inner joins, presented
earlier in Chapter 4.)

SQL-92 allows the desired type of join to be specified in the FROM clause. For example,
the following query lists 〈sid,bid〉 pairs corresponding to sailors and boats they have
reserved:

SELECT Sailors.sid, Reserves.bid
FROM Sailors NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that the join condition is equality on all common at-
tributes (in this example, sid), and the WHERE clause is not required (unless we want
to specify additional, non-join conditions). On the instances of Sailors and Reserves
shown in Figure 5.6, this query computes the result shown in Figure 5.17.

150 Chapter 5

sid bid
22 101
31 null
58 103

Figure 5.17 Left Outer Join of Sailor1 and Reserves1

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field definition, for
example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not
allowed to take on null values. Thus, there is an implicit NOT NULL constraint for every
field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should consult
one of the many books devoted to SQL for a more detailed treatment of the topic.

5.7 EMBEDDED SQL *

We have looked at a wide range of SQL query constructs, treating SQL as an inde-
pendent language in its own right. A relational DBMS supports an interactive SQL
interface, and users can directly enter SQL commands. This simple approach is fine
as long as the task at hand can be accomplished entirely with SQL commands. In
practice we often encounter situations in which we need the greater flexibility of a
general-purpose programming language, in addition to the data manipulation facilities
provided by SQL. For example, we may want to integrate a database application with
a nice graphical user interface, or we may want to ask a query that cannot be expressed
in SQL. (See Chapter 27 for examples of such queries.)

To deal with such situations, the SQL standard defines how SQL commands can be
executed from within a program in a host language such as C or Java. The use of
SQL commands within a host language program is called embedded SQL. Details
of embedded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

Conceptually, embedding SQL commands in a host language program is straightfor-
ward. SQL statements (i.e., not declarations) can be used wherever a statement in the
host language is allowed (with a few restrictions). Of course, SQL statements must be
clearly marked so that a preprocessor can deal with them before invoking the compiler
for the host language. Also, any host language variables used to pass arguments into
an SQL command must be declared in SQL. In particular, some special host language

SQL: Queries, Programming, Triggers 151

variables must be declared in SQL (so that, for example, any error conditions arising
during SQL execution can be communicated back to the main application program in
the host language).

There are, however, two complications to bear in mind. First, the data types recognized
by SQL may not be recognized by the host language, and vice versa. This mismatch is
typically addressed by casting data values appropriately before passing them to or from
SQL commands. (SQL, like C and other programming languages, provides an operator
to cast values of one type into values of another type.) The second complication has
to do with the fact that SQL is set-oriented; commands operate on and produce
tables, which are sets (or multisets) of rows. Programming languages do not typically
have a data type that corresponds to sets or multisets of rows. Thus, although SQL
commands deal with tables, the interface to the host language is constrained to be
one row at a time. The cursor mechanism is introduced to deal with this problem; we
discuss cursors in Section 5.8.

In our discussion of embedded SQL, we assume that the host language is C for con-
creteness, because minor differences exist in how SQL statements are embedded in
different host languages.

5.7.1 Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-language
variables must be prefixed by a colon (:) in SQL statements and must be declared be-
tween the commands EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE
SECTION. The declarations are similar to how they would look in a C program and,
as usual in C, are separated by semicolons. For example, we can declare variables
c sname, c sid, c rating, and c age (with the initial c used as a naming convention to
emphasize that these are host language variables) as follows:

EXEC SQL BEGIN DECLARE SECTION
char c sname[20];
long c sid;
short c rating;
float c age;
EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various C types,
since we have just declared a collection of C variables whose values are intended to
be read (and possibly set) in an SQL run-time environment when an SQL statement
that refers to them is executed. The SQL-92 standard defines such a correspondence
between the host language types and SQL types for a number of host languages. In our
example c sname has the type CHARACTER(20) when referred to in an SQL statement,

152 Chapter 5

c sid has the type INTEGER, c rating has the type SMALLINT, and c age has the type
REAL.

An important point to consider is that SQL needs some way to report what went wrong
if an error condition arises when executing an SQL statement. The SQL-92 standard
recognizes two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an error condition
arises, without specifying further just what error a particular negative integer denotes.
SQLSTATE, introduced in the SQL-92 standard for the first time, associates predefined
values with several common error conditions, thereby introducing some uniformity to
how errors are reported. One of these two variables must be declared. The appropriate
C type for SQLCODE is long and the appropriate C type for SQLSTATE is char[6], that
is, a character string that is five characters long. (Recall the null-terminator in C
strings!) In this chapter, we will assume that SQLSTATE is declared.

5.7.2 Embedding SQL Statements

All SQL statements that are embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be pre-
fixed by EXEC SQL. An SQL statement can essentially appear in any place in the host
language program where a host language statement can appear.

As a simple example, the following embedded SQL statement inserts a row, whose
column values are based on the values of the host language variables contained in it,
into the Sailors relation:

EXEC SQL INSERT INTO Sailors VALUES (:c sname, :c sid, :c rating, :c age);

Observe that a semicolon terminates the command, as per the convention for termi-
nating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each embedded
SQL statement. SQL provides the WHENEVER command to simplify this tedious task:

EXEC SQL WHENEVER [SQLERROR | NOT FOUND] [CONTINUE | GOTO stmt]

The intent is that after each embedded SQL statement is executed, the value of
SQLSTATE should be checked. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably responsi-
ble for error/exception handling. Control is also transferred to stmt if NOT FOUND is
specified and the value of SQLSTATE is 02000, which denotes NO DATA.

SQL: Queries, Programming, Triggers 153

5.8 CURSORS *

A major problem in embedding SQL statements in a host language like C is that an
impedance mismatch occurs because SQL operates on sets of records, whereas languages
like C do not cleanly support a set-of-records abstraction. The solution is to essentially
provide a mechanism that allows us to retrieve rows one at a time from a relation.

This mechanism is called a cursor. We can declare a cursor on any relation or on any
SQL query (because every query returns a set of rows). Once a cursor is declared, we
can open it (which positions the cursor just before the first row); fetch the next row;
move the cursor (to the next row, to the row after the next n, to the first row, or to
the previous row, etc., by specifying additional parameters for the FETCH command);
or close the cursor. Thus, a cursor essentially allows us to retrieve the rows in a table
by positioning the cursor at a particular row and reading its contents.

5.8.1 Basic Cursor Definition and Usage

Cursors enable us to examine in the host language program a collection of rows com-
puted by an embedded SQL statement:

We usually need to open a cursor if the embedded statement is a SELECT (i.e., a
query). However, we can avoid opening a cursor if the answer contains a single
row, as we will see shortly.

INSERT, DELETE, and UPDATE statements typically don’t require a cursor, although
some variants of DELETE and UPDATE do use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value
to the host variable c sid, declared earlier, as follows:

EXEC SQL SELECT S.sname, S.age
INTO :c sname, :c age
FROM Sailors S
WHERE S.sid = :c sid;

The INTO clause allows us to assign the columns of the single answer row to the host
variables c sname and c age. Thus, we do not need a cursor to embed this query in
a host language program. But what about the following query, which computes the
names and ages of all sailors with a rating greater than the current value of the host
variable c minrating?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating

154 Chapter 5

This query returns a collection of rows, not just one row. When executed interactively,
the answers are printed on the screen. If we embed this query in a C program by
prefixing the command with EXEC SQL, how can the answers be bound to host language
variables? The INTO clause is not adequate because we must deal with several rows.
The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating;

This code can be included in a C program, and once it is executed, the cursor sinfo is
defined. Subsequently, we can open the cursor:

OPEN sinfo;

The value of c minrating in the SQL query associated with the cursor is the value of
this variable when we open the cursor. (The cursor declaration is processed at compile
time, and the OPEN command is executed at run-time.)

A cursor can be thought of as ‘pointing’ to a row in the collection of answers to the
query associated with it. When a cursor is opened, it is positioned just before the first
row. We can use the FETCH command to read the first row of cursor sinfo into host
language variables:

FETCH sinfo INTO :c sname, :c age;

When the FETCH statement is executed, the cursor is positioned to point at the next
row (which is the first row in the table when FETCH is executed for the first time after
opening the cursor) and the column values in the row are copied into the corresponding
host variables. By repeatedly executing this FETCH statement (say, in a while-loop in
the C program), we can read all the rows computed by the query, one row at a time.
Additional parameters to the FETCH command allow us to position a cursor in very
flexible ways, but we will not discuss them.

How do we know when we have looked at all the rows associated with the cursor?
By looking at the special variables SQLCODE or SQLSTATE, of course. SQLSTATE, for
example, is set to the value 02000, which denotes NO DATA, to indicate that there are
no more rows if the FETCH statement positions the cursor after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

SQL: Queries, Programming, Triggers 155

It can be opened again if needed, and the value of : c minrating in the SQL query
associated with the cursor would be the value of the host variable c minrating at that
time.

5.8.2 Properties of Cursors

The general form of a cursor declaration is:

DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR FOR
some query
[ORDER BY order-item-list]
[FOR READ ONLY | FOR UPDATE]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if it is a cursor
on a base relation or an updatable view, to be an updatable cursor (FOR UPDATE).
If it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned. For example, if sinfo is an
updatable cursor and is open, we can execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

This embedded SQL statement modifies the rating value of the row currently pointed
to by cursor sinfo; similarly, we can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor (see
below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that vari-
ants of the FETCH command can be used to position the cursor in very flexible ways;
otherwise, only the basic FETCH command, which retrieves the next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a
private copy of the collection of answer rows. Otherwise, and by default, other actions
of some transaction could modify these rows, creating unpredictable behavior. For
example, while we are fetching rows using the sinfo cursor, we might modify rating
values in Sailor rows by concurrently executing the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

156 Chapter 5

Consider a Sailor row such that: (1) it has not yet been fetched, and (2) its original
rating value would have met the condition in the WHERE clause of the query associated
with sinfo, but the new rating value does not. Do we fetch such a Sailor row? If
INSENSITIVE is specified, the behavior is as if all answers were computed and stored
when sinfo was opened; thus, the update command has no effect on the rows fetched
by sinfo if it is executed after sinfo is opened. If INSENSITIVE is not specified, the
behavior is implementation dependent in this situation.

Finally, in what order do FETCH commands retrieve rows? In general this order is
unspecified, but the optional ORDER BY clause can be used to specify a sort order.
Note that columns mentioned in the ORDER BY clause cannot be updated through the
cursor!

The order-item-list is a list of order-items; an order-item is a column name, op-
tionally followed by one of the keywords ASC or DESC. Every column mentioned in the
ORDER BY clause must also appear in the select-list of the query associated with the
cursor; otherwise it is not clear what columns we should sort on. The keywords ASC or
DESC that follow a column control whether the result should be sorted—with respect
to that column—in ascending or descending order; the default is ASC. This clause is
applied as the last step in evaluating the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure 5.13.
Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows have the
same minage value, these rows are sorted further in descending order by rating. The
cursor would fetch the rows in the order shown in Figure 5.18.

rating minage
8 25.5
3 25.5
7 35.0

Figure 5.18 Order in which Tuples Are Fetched

5.9 DYNAMIC SQL *

Consider an application such as a spreadsheet or a graphical front-end that needs to
access data from a DBMS. Such an application must accept commands from a user

SQL: Queries, Programming, Triggers 157

and, based on what the user needs, generate appropriate SQL statements to retrieve
the necessary data. In such situations, we may not be able to predict in advance just
what SQL statements need to be executed, even though there is (presumably) some
algorithm by which the application can construct the necessary SQL statements once
a user’s command is issued.

SQL provides some facilities to deal with such situations; these are referred to as
dynamic SQL. There are two main commands, PREPARE and EXECUTE, which we
illustrate through a simple example:

char c sqlstring[] = {”DELETE FROM Sailors WHERE rating>5”};
EXEC SQL PREPARE readytogo FROM :c sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c sqlstring and initializes its value to the
string representation of an SQL command. The second statement results in this string
being parsed and compiled as an SQL command, with the resulting executable bound
to the SQL variable readytogo. (Since readytogo is an SQL variable, just like a cursor
name, it is not prefixed by a colon.) The third statement executes the command.

Many situations require the use of dynamic SQL. However, note that the preparation of
a dynamic SQL command occurs at run-time and is a run-time overhead. Interactive
and embedded SQL commands can be prepared once at compile time and then re-
executed as often as desired. Consequently you should limit the use of dynamic SQL
to situations in which it is essential.

There are many more things to know about dynamic SQL—how can we pass parameters
from the host langugage program to the SQL statement being prepared, for example?—
but we will not discuss it further; readers interested in using dynamic SQL should
consult one of the many good books devoted to SQL.

5.10 ODBC AND JDBC *

Embedded SQL enables the integration of SQL with a general-purpose programming
language. As described in Section 5.7, a DBMS-specific preprocessor transforms the
embedded SQL statements into function calls in the host language. The details of
this translation vary across DBMS, and therefore even though the source code can
be compiled to work with different DBMSs, the final executable works only with one
specific DBMS.

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase Con-
nectivity, also enable the integration of SQL with a general-purpose programming
language. Both ODBC and JDBC expose database capabilities in a standardized way

158 Chapter 5

to the application programmer through an application programming interface
(API). In contrast to embedded SQL, ODBC and JDBC allow a single executable to
access different DBMSs without recompilation. Thus, while embedded SQL is DBMS-
independent only at the source code level, applications using ODBC or JDBC are
DBMS-independent at the source code level and at the level of the executable. In
addition, using ODBC or JDBC an application can access not only one DBMS, but
several different DBMSs simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introducing
an extra level of indirection. All direct interaction with a specific DBMS happens
through a DBMS specific driver. A driver is a software program that translates the
ODBC or JDBC calls into DBMS-specific calls. Since it is only known at run-time
which DBMSs the application is going to access, drivers are loaded dynamically on
demand. Existing drivers are registered with a driver manager, which manages the
set of existing drivers.

One interesting point to note is that a driver does not necessarily need to interact with
a DBMS that understands SQL. It is sufficient that the driver translates the SQL com-
mands from the application into equivalent commands that the DBMS understands.
Therefore, we will refer in the remainder of this section to a data storage subsystem
with which a driver interacts as a data source.

An application that interacts with a data source through ODBC or JDBC performs
the following steps. A data source is selected, the corresponding driver is dynamically
loaded, and a connection with the data source is established. There is no limit on the
number of open connections and an application can have several open connections to
different data sources. Each connection has transaction semantics; that is, changes
from one connection are only visible to other connections after the connection has
committed its changes. While a connection is open, transactions are executed by
submitting SQL statements, retrieving results, processing errors and finally committing
or rolling back. The application disconnects from the data source to terminate the
interaction.

5.10.1 Architecture

The architecture of ODBC/JDBC has four main components: the application, the
driver manager, several data source specific drivers, and the corresponding data sources.
Each component has different roles, as explained in the next paragraph.

The application initiates and terminates the connection with the data source. It sets
transaction boundaries, submits SQL statements, and retrieves the results—all through
a well-defined interface as specified by the ODBC/JDBC API. The primary goal of the
driver manager is to load ODBC/JDBC drivers and to pass ODBC/JDBC function

SQL: Queries, Programming, Triggers 159

calls from the application to the correct driver. The driver manager also handles
ODBC/JDBC initialization and information calls from the applications and can log
all function calls. In addition, the driver manager performs some rudimentary error
checking. The driver establishes the connection with the data source. In addition
to submitting requests and returning request results, the driver translates data, error
formats, and error codes from a form that is specific to the data source into the
ODBC/JDBC standard. The data source processes commands from the driver and
returns the results.

Depending on the relative location of the data source and the application, several
architectural scenarios are possible. For example, drivers in JDBC are classified into
four types depending on the architectural relationship between the application and the
data source:

1. Type I (bridges) This type of driver translates JDBC function calls into function
calls of another API that is not native to the DBMS. An example is an ODBC-
JDBC bridge. In this case the application loads only one driver, namely the
bridge.

2. Type II (direct translation to the native API) This driver translates JDBC
function calls directly into method invocations of the API of one specific data
source. The driver is dynamically linked, and is specific to the data source.

3. Type III (network bridges) The driver talks over a network to a middle-ware
server that translates the JDBC requests into DBMS-specific method invocations.
In this case, the driver on the client site (i.e., the network bridge) is not DBMS-
specific.

4. Type IV (direct translation over sockets) Instead of calling the DBMS API
directly, the driver communicates with the DBMS through Java sockets. In this
case the driver on the client side is DBMS-specific.

5.10.2 An Example Using JDBC

JDBC is a collection of Java classes and interfaces that enables database access from
programs written in the Java programming language. The classes and interfaces are
part of the java.sql package. In this section, we illustrate the individual steps that
are required to submit a database query to a data source and to retrieve the results.

In JDBC, data source drivers are managed by the Drivermanager class, which main-
tains a list of all currently loaded drivers. The Drivermanager class has methods
registerDriver, deregisterDriver, and getDrivers to enable dynamic addition
and deletion of drivers.

160 Chapter 5

The first step in connecting to a data source is to load the corresponding JDBC driver.
This is accomplished by using the Java mechanism for dynamically loading classes.
The static method forName in the Class class returns the Java class as specified in
the argument string and executes its static constructor. The static constructor of
the dynamically loaded class loads an instance of the Driver class, and this Driver
object registers itself with the DriverManager class.

A session with a DBMS is started through creation of a Connection object. A connec-
tion can specify the granularity of transactions. If autocommit is set for a connection,
then each SQL statement is considered to be its own transaction. If autocommit is off,
then a series of statements that compose a transaction can be committed using the
commit method of the Connection class. The Connection class has methods to set
the autocommit mode (setAutoCommit) and to retrieve the current autocommit mode
(getAutoCommit). A transaction can be aborted using the rollback method.

The following Java example code dynamically loads a data source driver and establishes
a connection:

Class.forName(“oracle/jdbc.driver.OracleDriver”);
Connection connection = DriverManager.getConnection(url,uid,password);

In considering the interaction of an application with a data source, the issues that
we encountered in the context of embedded SQL—e.g., passing information between
the application and the data source through shared variables—arise again. To deal
with such issues, JDBC provides special data types and specifies their relationship to
corresponding SQL data types. JDBC allows the creation of SQL statements that
refer to variables in the Java host program. Similar to the SQLSTATE variable, JDBC
throws an SQLException if an error occurs. The information includes SQLState, a
string describing the error. As in embedded SQL, JDBC provides the concept of a
cursor through the ResultSet class.

While a complete discussion of the actual implementation of these concepts is beyond
the scope of the discussion here, we complete this section by considering two illustrative
JDBC code fragments.

In our first example, we show how JDBC refers to Java variables inside an SQL state-
ment. During a session, all interactions with a data source are encapsulated into objects
that are created by the Connection object. SQL statements that refer to variables in
the host program are objects of the class PreparedStatement. Whereas in embedded
SQL the actual names of the host language variables appear in the SQL query text,
JDBC replaces each parameter with a “?” and then sets values of each parameter at
run-time through settype methods, where type is the type of the parameter. These
points are illustrated in the following Java program fragment, which inserts one row
into the Sailors relation:

SQL: Queries, Programming, Triggers 161

connection.setAutoCommit(false);
PreparedStatement pstmt =

connection.prepareStatement(“INSERT INTO Sailors VALUES ?,?,?,?”);
pstmt.setString(1, j name); pstmt.setInt(2, j id);
pstmt.setInt(3, j rating); pstmt.setInt(4, j age);
pstmt.execute();
pstmt.close();
connection.commit();

Our second example shows how the ResultSet class provides the functionality of a
cursor. After the SQL statement stmt is executed, result is positioned right before the
first row. The method next fetches the next row and enables reading of its values
through gettype methods, where type is the type of the field.

Statement stmt = connection.createStatement();
ResultSet res = stmt.executeQuery(“SELECT S.name, S.age FROM Sailors S”);
while (result.next()) {

String name = res.getString(1);
int age = res.getInt(2);
// process result row

}
stmt.close();

5.11 COMPLEX INTEGRITY CONSTRAINTS IN SQL-92 *

In this section we discuss the specification of complex integrity constraints in SQL-92,
utilizing the full power of SQL query constructs. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.11.1 Constraints over a Single Table

We can specify complex constraints over a single table using table constraints, which
have the form CHECK conditional-expression. For example, to ensure that rating must
be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

To enforce the constraint that Interlake boats cannot be reserved, we could use:

162 Chapter 5

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT noInterlakeRes
CHECK (‘Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)))

When a row is inserted into Reserves or an existing row is modified, the conditional
expression in the CHECK constraint is evaluated. If it evaluates to false, the command
is rejected.

5.11.2 Domain Constraints

A user can define a new domain using the CREATE DOMAIN statement, which makes use
of CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 0
CHECK (VALUE >= 1 AND VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value
must be of this type. Values in ratingval are further restricted by using a CHECK
constraint; in defining this constraint, we use the keyword VALUE to refer to a value
in the domain. By using this facility, we can constrain the values that belong to a
domain using the full power of SQL queries. Once a domain is defined, the name of
the domain can be used to restrict column values in a table; we can use the following
line in a schema declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a domain. If
the domain ratingval is used for a column in some relation, and no value is entered
for this column in an inserted tuple, the default value 0 associated with ratingval is
used. (If a default value is specified for the column as part of the table definition, this
takes precedence over the default value associated with the domain.) This feature can
be used to minimize data entry errors; common default values are automatically filled
in rather than being typed in.

SQL-92’s support for the concept of a domain is limited in an important respect.
For example, we can define two domains called Sailorid and Boatclass, each using

SQL: Queries, Programming, Triggers 163

INTEGER as a base type. The intent is to force a comparison of a Sailorid value with a
Boatclass value to always fail (since they are drawn from different domains); however,
since they both have the same base type, INTEGER, the comparison will succeed in SQL-
92. This problem is addressed through the introduction of distinct types in SQL:1999
(see Section 3.4).

5.11.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional expression
in the CHECK clause can refer to other tables. Table constraints are required to hold
only if the associated table is nonempty. Thus, when a constraint involves two or more
tables, the table constraint mechanism is sometimes cumbersome and not quite what
is desired. To cover such situations, SQL supports the creation of assertions, which
are constraints not associated with any one table.

As an example, suppose that we wish to enforce the constraint that the number of
boats plus the number of sailors should be less than 100. (This condition might be
required, say, to qualify as a ‘small’ sailing club.) We could try the following table
constraint:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10)
CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B)
< 100))

This solution suffers from two drawbacks. It is associated with Sailors, although it
involves Boats in a completely symmetric way. More important, if the Sailors table is
empty, this constraint is defined (as per the semantics of table constraints) to always
hold, even if we have more than 100 rows in Boats! We could extend this constraint
specification to check that Sailors is nonempty, but this approach becomes very cum-
bersome. The best solution is to create an assertion, as follows:

CREATE ASSERTION smallClub
CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B)
< 100)

164 Chapter 5

5.12 TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database, and is typically specified by the DBA. A database
that has a set of associated triggers is called an active database. A trigger description
contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its con-
dition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is executed
when the database is modified in a way that matches the event specification. An
insert, delete or update statement could activate a trigger, regardless of which user
or application invoked the activating statement; users may not even be aware that a
trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries are
less than $100,000) or a query. A query is interpreted as true if the answer set is
nonempty, and false if the query has no answers. If the condition part evaluates to
true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of the
trigger, refer to old and new values of tuples modified by the statement activating
the trigger, execute new queries, and make changes to the database. In fact, an
action can even execute a series of data-definition commands (e.g., create new tables,
change authorizations) and transaction-oriented commands (e.g., commit), or call host-
language procedures.

An important issue is when the action part of a trigger executes in relation to the
statement that activated the trigger. For example, a statement that inserts records
into the Students table may activate a trigger that is used to maintain statistics on how
many students younger than 18 are inserted at a time by a typical insert statement.
Depending on exactly what the trigger does, we may want its action to execute before
changes are made to the Students table, or after: a trigger that initializes a variable
used to count the number of qualifying insertions should be executed before, and a
trigger that executes once per qualifying inserted record and increments the variable
should be executed after each record is inserted (because we may want to examine the
values in the new record to determine the action).

SQL: Queries, Programming, Triggers 165

5.12.1 Examples of Triggers in SQL

The examples shown in Figure 5.19, written using Oracle 7 Server syntax for defining
triggers, illustrate the basic concepts behind triggers. (The SQL:1999 syntax for these
triggers is similar; we will see an example using SQL:1999 syntax shortly.) The trigger
called init count initializes a counter variable before every execution of an INSERT
statement that adds tuples to the Students relation. The trigger called incr count
increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */
DECLARE

count INTEGER;
BEGIN /* Action */

count := 0;
END

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */
WHEN (new.age < 18) /* Condition; ‘new’ is just-inserted tuple */
FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */
count := count + 1;

END

Figure 5.19 Examples Illustrating Triggers

One of the example triggers in Figure 5.19 executes before the activating statement,
and the other example executes after. A trigger can also be scheduled to execute
instead of the activating statement, or in deferred fashion, at the end of the transaction
containing the activating statement, or in asynchronous fashion, as part of a separate
transaction.

The example in Figure 5.19 illustrates another point about trigger execution: A user
must be able to specify whether a trigger is to be executed once per modified record
or once per activating statement. If the action depends on individual changed records,
for example, we have to examine the age field of the inserted Students record to decide
whether to increment the count, the triggering event should be defined to occur for
each modified record; the FOR EACH ROW clause is used to do this. Such a trigger is
called a row-level trigger. On the other hand, the init count trigger is executed just
once per INSERT statement, regardless of the number of records inserted, because we
have omitted the FOR EACH ROW phrase. Such a trigger is called a statement-level
trigger.

166 Chapter 5

In Figure 5.19, the keyword new refers to the newly inserted tuple. If an existing tuple
were modified, the keywords old and new could be used to refer to the values before
and after the modification. The SQL:1999 draft also allows the action part of a trigger
to refer to the set of changed records, rather than just one changed record at a time.
For example, it would be useful to be able to refer to the set of inserted Students
records in a trigger that executes once after the INSERT statement; we could count the
number of inserted records with age < 18 through an SQL query over this set. Such
a trigger is shown in Figure 5.20 and is an alternative to the triggers shown in Figure
5.19.

The definition in Figure 5.20 uses the syntax of the SQL:1999 draft, in order to il-
lustrate the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name (In-
sertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT clause
specifies a statement-level trigger and can be omitted because it is the default. This
definition does not have a WHEN clause; if such a clause is included, it follows the FOR
EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into Students,
and inserts a single tuple into a table that contains statistics on modifications to
database tables. The first two fields of the tuple contain constants (identifying the
modified table, Students, and the kind of modifying statement, an INSERT), and the
third field is the number of inserted Students tuples with age < 18. (The trigger in
Figure 5.19 only computes the count; an additional trigger is required to insert the
appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */
REFERENCING NEW TABLE AS InsertedTuples
FOR EACH STATEMENT

INSERT /* Action */
INTO StatisticsTable(ModifiedTable, ModificationType, Count)
SELECT ‘Students’, ‘Insert’, COUNT *
FROM InsertedTuples I
WHERE I.age < 18

Figure 5.20 Set-Oriented Trigger

5.13 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database, but they
must be used with caution. The effect of a collection of triggers can be very complex,

SQL: Queries, Programming, Triggers 167

and maintaining an active database can become very difficult. Often, a judicious use
of integrity constraints can replace the use of triggers.

5.13.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement that
modifies the database, it checks whether some trigger is activated by the statement. If
so, the DBMS processes the trigger by evaluating its condition part, and then (if the
condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes all of
them, in some arbitrary order. An important point is that the execution of the action
part of a trigger could in turn activate another trigger. In particular, the execution of
the action part of a trigger could again activate the same trigger; such triggers are called
recursive triggers. The potential for such chain activations, and the unpredictable
order in which a DBMS processes activated triggers, can make it difficult to understand
the effect of a collection of triggers.

5.13.2 Constraints versus Triggers

A common use of triggers is to maintain database consistency, and in such cases,
we should always consider whether using an integrity constraint (e.g., a foreign key
constraint) will achieve the same goals. The meaning of a constraint is not defined
operationally, unlike the effect of a trigger. This property makes a constraint easier
to understand, and also gives the DBMS more opportunities to optimize execution.
A constraint also prevents the data from being made inconsistent by any kind of
statement, whereas a trigger is activated by a specific kind of statement (e.g., an insert
or delete statement). Again, this restriction makes a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more flexible
ways, as the following examples illustrate.

Suppose that we have a table called Orders with fields itemid, quantity, customerid,
and unitprice. When a customer places an order, the first three field values are
filled in by the user (in this example, a sales clerk). The fourth field’s value can
be obtained from a table called Items, but it is important to include it in the
Orders table to have a complete record of the order, in case the price of the item
is subsequently changed. We can define a trigger to look up this value and include
it in the fourth field of a newly inserted record. In addition to reducing the number
of fields that the clerk has to type in, this trigger eliminates the possibility of an
entry error leading to an inconsistent price in the Orders table.

168 Chapter 5

Continuing with the above example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being charged
to a credit line issued by the company, we may want to check whether the total
cost of the purchase is within the current credit limit. We can use a trigger to do
the check; indeed, we can even use a CHECK constraint. Using a trigger, however,
allows us to implement more sophisticated policies for dealing with purchases that
exceed a credit limit. For instance, we may allow purchases that exceed the limit
by no more than 10% if the customer has dealt with the company for at least a
year, and add the customer to a table of candidates for credit limit increases.

5.13.3 Other Uses of Triggers

Many potential uses of triggers go beyond integrity maintenance. Triggers can alert
users to unusual events (as reflected in updates to the database). For example, we
may want to check whether a customer placing an order has made enough purchases
in the past month to qualify for an additional discount; if so, the sales clerk must be
informed so that he can tell the customer, and possibly generate additional sales! We
can relay this information by using a trigger that checks recent purchases and prints a
message if the customer qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks. For
example, each time a customer places an order, we can create a record with the cus-
tomer’s id and current credit limit, and insert this record in a customer history table.
Subsequent analysis of this table might suggest candidates for an increased credit limit
(e.g., customers who have never failed to pay a bill on time and who have come within
10% of their credit limit at least three times in the last month).

As the examples in Section 5.12 illustrate, we can use triggers to gather statistics on
table accesses and modifications. Some database systems even use triggers internally
as the basis for managing replicas of relations (Section 21.10.1). Our list of potential
uses of triggers is not exhaustive; for example, triggers have also been considered for
workflow management and enforcing business rules.

5.14 POINTS TO REVIEW

A basic SQL query has a SELECT, a FROM, and a WHERE clause. The query answer
is a multiset of tuples. Duplicates in the query result can be removed by using
DISTINCT in the SELECT clause. Relation names in the WHERE clause can be fol-
lowed by a range variable. The output can involve arithmetic or string expressions
over column names and constants and the output columns can be renamed using
AS. SQL provides string pattern matching capabilities through the LIKE operator.
(Section 5.2)

SQL: Queries, Programming, Triggers 169

SQL provides the following (multi)set operations: UNION, INTERSECT, and EXCEPT.
(Section 5.3)

Queries that have (sub-)queries are called nested queries. Nested queries allow us
to express conditions that refer to tuples that are results of a query themselves.
Nested queries are often correlated, i.e., the subquery contains variables that are
bound to values in the outer (main) query. In the WHERE clause of an SQL query,
complex expressions using nested queries can be formed using IN, EXISTS, UNIQUE,
ANY, and ALL. Using nested queries, we can express division in SQL. (Section 5.4)

SQL supports the aggregate operators COUNT, SUM, AVERAGE, MAX, and MIN. (Sec-
tion 5.5)

Grouping in SQL extends the basic query form by the GROUP BY and HAVING
clauses. (Section 5.5.1)

A special column value named null denotes unknown values. The treatment of
null values is based upon a three-valued logic involving true, false, and unknown.
(Section 5.6)

SQL commands can be executed from within a host language such as C. Concep-
tually, the main issue is that of data type mismatches between SQL and the host
language. (Section 5.7)

Typical programming languages do not have a data type that corresponds to a col-
lection of records (i.e., tables). Embedded SQL provides the cursor mechanism to
address this problem by allowing us to retrieve rows one at a time. (Section 5.8)

Dynamic SQL enables interaction with a DBMS from a host language without
having the SQL commands fixed at compile time in the source code. (Section 5.9)

ODBC and JDBC are application programming interfaces that introduce a layer of
indirection between the application and the DBMS. This layer enables abstraction
from the DBMS at the level of the executable. (Section 5.10)

The query capabilities of SQL can be used to specify a rich class of integrity con-
straints, including domain constraints, CHECK constraints, and assertions. (Sec-
tion 5.11)

A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database. A trigger has three parts. The event describes
the change that activates the trigger. The condition is a query that is run when-
ever the trigger is activated. The action is the procedure that is executed if the
trigger is activated and the condition is true. A row-level trigger is activated for
each modified record, a statement-level trigger is activated only once per INSERT
command. (Section 5.12)

170 Chapter 5

What triggers are activated in what order can be hard to understand because a
statement can activate more than one trigger and the action of one trigger can
activate other triggers. Triggers are more flexible than integrity constraints and
the potential uses of triggers go beyond maintaining database integrity. (Section
5.13)

EXERCISES

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per

student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the answers.

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in a course

taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students

enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the same

time.

5. Find the names of faculty members who teach in every room in which some class is

taught.

6. Find the names of faculty members for whom the combined enrollment of the courses

that they teach is less than five.

7. Print the Level and the average age of students for that Level, for each Level.

8. Print the Level and the average age of students for that Level, for all Levels except JR.

9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

11. For each age value that appears in Students, find the level value that appears most often.

For example, if there are more FR level students aged 18 than SR, JR, or SO students

aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

SQL: Queries, Programming, Triggers 171

The Catalog relation lists the prices charged for parts by Suppliers. Write the following

queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of that

part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; every

pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the

following queries in SQL. (Additional queries using the same schema are listed in the exercises

for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them earn more than

80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the maximum

cruisingrange of the aircraft that he (or she) is certified for.

3. Find the names of pilots whose salary is less than the price of the cheapest route from

Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1,000 miles, find the name of the aircraft and the

average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

6. Find the aids of all aircraft that can be used on routes from Los Angeles to Chicago.

7. Identify the flights that can be piloted by every pilot who makes more than $100,000.

(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising

range.)

8. Print the enames of pilots who can operate planes with cruisingrange greater than 3,000

miles, but are not certified on any Boeing aircraft.

172 Chapter 5

sid sname rating age

18 jones 3 30.0

41 jonah 6 56.0

22 ahab 7 44.0

63 moby null 15.0

Figure 5.21 An Instance of Sailors

9. A customer wants to travel from Madison to New York with no more than two changes

of flight. List the choice of departure times from Madison if the customer wants to arrive

in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average salary of

all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average salary

for pilots.

Exercise 5.4 Consider the following relational schema. An employee can work in more than

one department; the pct time field of the Works relation shows the percentage of time that a

given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware department

and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where the

part-time and full-time employees add up to at least that many full-time employees),

print the did together with the number of employees that work in that department.

3. Print the name of each employee whose salary exceeds the budget of all of the depart-

ments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets greater

than $1,000,000.

5. Find the enames of managers who manage the departments with the largest budget.

6. If a manager manages more than one department, he or she controls the sum of all the

budgets for those departments. Find the managerids of managers who control more than

$5,000,000.

7. Find the managerids of managers who control the largest amount.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.21.

1. Write SQL queries to compute the average rating, using AVG; the sum of the ratings,

using SUM; and the number of ratings, using COUNT.

SQL: Queries, Programming, Triggers 173

2. If you divide the sum computed above by the count, would the result be the same as

the average? How would your answer change if the above steps were carried out with

respect to the age field instead of rating?

3. Consider the following query: Find the names of sailors with a higher rating than all

sailors with age < 21. The following two SQL queries attempt to obtain the answer

to this question. Do they both compute the result? If not, explain why. Under what

conditions would they compute the same result?

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT *

FROM Sailors S2

WHERE S2.age < 21

AND S.rating <= S2.rating)
SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.age < 21)

4. Consider the instance of Sailors shown in Figure 5.21. Let us define instance S1 of Sailors

to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the

given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions.

1. Explain the term impedance mismatch in the context of embedding SQL commands in a

host language such as C.

2. How can the value of a host language variable be passed to an embedded SQL command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL, that is, interactive

use of SQL commands is not enough, and some host language capabilities are needed.

6. Write a C program with embedded SQL commands to address your example in the

previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation of

sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard deviation

of the average age of all sailors.

174 Chapter 5

9. Explain how you would write a C program to compute the transitive closure of a graph,

represented as an SQL relation Edges(from, to), using embedded SQL commands. (You

don’t have to write the program; just explain the main points to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and scrol-

lability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers

sorted by age. Which fields of Sailors can such a cursor not update? Why?

12. Give an example of a situation that calls for dynamic SQL, that is, even embedded SQL

is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that

follow:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at least

$10,000.

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30. Compare

this assertion with the equivalent table constraint. Explain which is better.

4. Write SQL statements to delete all information about employees whose salaries exceed

that of the manager of one or more departments that they work in. Be sure to ensure

that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per

student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create the above relations, including appropriate

versions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the

primary and foreign key constraint; if so, explain how it is implied. If the constraint

cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,

deletes, and updates on specific relations) must be monitored to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment

of 30 students.

SQL: Queries, Programming, Triggers 175

(b) At least one class meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called Math101.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest

meets at value) meets should not be the same as the room in which the latest

scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice the

number of faculty members in the department with the fewest faculty members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single update).

(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater than the

number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with deptid=33

is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast

triggers with other integrity constraints supported by SQL.

Exercise 5.10 Consider the following relational schema. An employee can work in more

than one department; the pct time field of the Works relation shows the percentage of time

that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser-

tions) or SQL:1999 triggers to ensure each of the following requirements, considered indepen-

dently.

1. Employees must make a minimum salary of $1,000.

2. Every manager must be also be an employee.

3. The total percentage of all appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she manages.

5. Whenever an employee is given a raise, the manager’s salary must be increased to be at

least as much.

6. Whenever an employee is given a raise, the manager’s salary must be increased to be

at least as much. Further, whenever an employee is given a raise, the department’s

budget must be increased to be greater than the sum of salaries of all employees in the

department.

176 Chapter 5

PROJECT-BASED EXERCISES

Exercise 5.11 Identify the subset of SQL-92 queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES

The original version of SQL was developed as the query language for IBM’s System R project,

and its early development can be traced in [90, 130]. SQL has since become the most widely

used relational query language, and its development is now subject to an international stan-

dardization process.

A very readable and comprehensive treatment of SQL-92 is presented by Melton and Simon

in [455]; we refer readers to this book and to [170] for a more detailed treatment. Date offers

an insightful critique of SQL in [167]. Although some of the problems have been addressed

in SQL-92, others remain. A formal semantics for a large subset of SQL queries is presented

in [489]. SQL-92 is the current International Standards Organization (ISO) and American

National Standards Institute (ANSI) standard. Melton is the editor of the ANSI document on

the SQL-92 standard, document X3.135-1992. The corresponding ISO document is ISO/IEC

9075:1992. A successor, called SQL:1999, builds on SQL-92 and includes procedural language

extensions, user-defined types, row ids, a call-level interface, multimedia data types, recursive

queries, and other enhancements; SQL:1999 is close to ratification (as of June 1999). Drafts

of the SQL:1999 (previously called SQL3) deliberations are available at the following URL:

ftp://jerry.ece.umassd.edu/isowg3/

The SQL:1999 standard is discussed in [200].

Information on ODBC can be found on Microsoft’s web page (www.microsoft.com/data/odbc),

and information on JDBC can be found on the JavaSoft web page (java.sun.com/products/jdbc).

There exist many books on ODBC, for example, Sander’s ODBC Developer’s Guide [567] and

the Microsoft ODBC SDK [463]. Books on JDBC include works by Hamilton et al. [304],

Reese [541], and White et al. [678].

[679] contains a collection of papers that cover the active database field. [695] includes a

good in-depth introduction to active rules, covering semantics, applications and design issues.

[213] discusses SQL extensions for specifying integrity constraint checks through triggers.

[104] also discusses a procedural mechanism, called an alerter, for monitoring a database.

[154] is a recent paper that suggests how triggers might be incorporated into SQL extensions.

Influential active database prototypes include Ariel [309], HiPAC [448], ODE [14], Postgres

[632], RDL [601], and Sentinel [29]. [126] compares various architectures for active database

systems.

[28] considers conditions under which a collection of active rules has the same behavior,

independent of evaluation order. Semantics of active databases is also studied in [244] and

[693]. Designing and managing complex rule systems is discussed in [50, 190]. [121] discusses

rule management using Chimera, a data model and language for active database systems.

6 QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating
and modifying) relational data. It is different from SQL, and from most other database
query languages, in having a graphical user interface that allows users to write queries
by creating example tables on the screen. A user needs minimal information to get
started and the whole language contains relatively few concepts. QBE is especially
suited for queries that are not too complex and can be expressed in terms of a few
tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number
of other companies sell QBE-like interfaces, including Paradox. Some systems, such as
Microsoft Access, offer partial support for form-based queries and reflect the influence
of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as
a more intuitive user-interface for simpler queries and the full power of SQL available
for more complex queries. An appreciation of the features of QBE offers insight into
the more general, and widely used, paradigm of tabular query interfaces for relational
databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE
version that it supports (Version 2, Release 4). This chapter explains how a tabular
interface can provide the expressive power of relational calculus (and more) in a user-
friendly form. The reader should concentrate on the connection between QBE and
domain relational calculus (DRC), and the role of various important constructs (e.g.,
the conditions box), rather than on QBE-specific details. We note that every QBE
query can be expressed in SQL; in fact, QMF supports a command called CONVERT
that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

177

178 Chapter 6

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations
in Section 6.3. We consider queries with set-difference in Section 6.4 and queries
with aggregation in Section 6.5. We discuss how to specify complex constraints in
Section 6.6. We show how additional computed fields can be included in the answer in
Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider
relational completeness of QBE and illustrate some of the subtleties of QBE queries
with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating example tables. QBE uses domain variables, as in
the DRC, to create example tables. The domain of a variable is determined by the
column in which it appears, and variable symbols are prefixed with underscore () to
distinguish them from constants. Constants, including strings, appear unquoted, in
contrast to SQL. The fields that should appear in the answer are specified by using
the command P., which stands for print. The fields containing this command are
analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

Sailors sid sname rating age
P. N P. A

A variable that appears only once can be omitted; QBE supplies a unique new name
internally. Thus the previous query could also be written by omitting the variables
N and A, leaving just P. in the sname and age columns. The query corresponds to
the following DRC query, obtained from the QBE query by introducing existentially
quantified domain variables for each field.

{〈N, A〉 | ∃I, T (〈I, N, T, A〉 ∈ Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,
queries containing features such as aggregate operators cannot be expressed in DRC.)
We will present DRC versions of several QBE queries. Although we will not define the
translation from QBE to DRC formally, the idea should be clear from the examples;

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age
P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age
P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}
We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve
sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is
the same as 6= 10. As we will see shortly, ¬ under the relation name denotes (a limited
form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

Sailors sid sname rating age
P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.

180 Chapter 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

Sailors sid sname rating age
Id P. S

Reserves sid bid day
Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:2

Sailors sid sname rating age
Id P. S > 25

Reserves sid bid day
Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age
Id > 25

Reserves sid bid day
Id B ‘8/24/96’

Boats bid bname color
B Interlake P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age
Id P. N

Reserves sid bid day
Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}
2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.

Query-by-Example (QBE) 181

Notice how the only free variable (N) is handled and how Id and B are repeated, as
in the QBE query.

6.4 NEGATION IN THE RELATION-NAME COLUMN

We can print the names of sailors who do not have a reservation by using the ¬
command in the relation name column:

Sailors sid sname rating age
Id P. S

Reserves sid bid day
¬ Id

This query can be read as follows: “Print the sname field of Sailors tuples such that
there is no tuple in Reserves with the same value in the sid field.” Note the importance
of sid being a key for Sailors. In the relational model, keys are the only available means
for unique identification (of sailors, in this case). (Consider how the meaning of this
query would change if the Reserves schema contained sname—which is not a key!—
rather than sid, and we used a common variable in this column to effect the join.)

All variables in a negative row (i.e., a row that is preceded by ¬) must also appear
in positive rows (i.e., rows not preceded by ¬). Intuitively, variables in positive rows
can be instantiated in many ways, based on the tuples in the input instances of the
relations, and each negative row involves a simple check to see if the corresponding
relation contains a tuple with certain given field values.

The use of ¬ in the relation-name column gives us a limited form of the set-difference
operator of relational algebra. For example, we can easily modify the previous query
to find sailors who are not (both) younger than 30 and rated higher than 4:

Sailors sid sname rating age
Id P. S

Sailors sid sname rating age
¬ Id > 4 < 30

This mechanism is not as general as set-difference, because there is no way to control
the order in which occurrences of ¬ are considered if a query contains more than one
occurrence of ¬. To capture full set-difference, views can be used. (The issue of QBE’s
relational completeness, and in particular the ordering problem, is discussed further in
Section 6.9.)

6.5 AGGREGATES

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and SUM.
By default, these aggregate operators do not eliminate duplicates, with the exception

182 Chapter 6

of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants
AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)
Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

sid sname rating age
22 dustin 7 45.0
58 rusty 10 35.0
44 horatio 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

Sailors sid sname rating age
A P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age
only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print
average ages by rating, we could use:

Sailors sid sname rating age
G.P. A P.AVG. A

To print the answers in sorted order by rating, we could use G.P.AO or G.P.DO. instead.
When an aggregate operation is used in conjunction with P., or there is a use of the
G. operator, every column to be printed must specify either an aggregate operation or
the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than
one column, the result is similar to placing each of these column names in the GROUP
BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples
in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the
conditions box feature.

Query-by-Example (QBE) 183

6.6 THE CONDITIONS BOX

Simple conditions can be expressed directly in columns of the example tables. For
more complex conditions QBE provides a feature called a conditions box.

Conditions boxes are used to do the following:

Express a condition involving two or more columns, such as R/ A > 0.2.

Express a condition involving an aggregate operation on a group, for example,
AVG. A > 30. Notice that this use of a conditions box is similar to the HAVING
clause in SQL. The following query prints those ratings for which the average age
is more than 30:

Sailors sid sname rating age
G.P. A

Conditions

AVG. A > 30

As another example, the following query prints the sids of sailors who have reserved
all boats for which there is some reservation:

Sailors sid sname rating age
P.G. Id

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

For each Id value (notice the G. operator), we count all B1 values to get the
number of (distinct) bid values reserved by sailor Id. We compare this count
against the count of all B2 values, which is simply the total number of (distinct)
bid values in the Reserves relation (i.e., the number of boats with reservations).
If these counts are equal, the sailor has reserved all boats for which there is some
reservation. Incidentally, the following query, intended to print the names of such
sailors, is incorrect:

Sailors sid sname rating age
P.G. Id P.

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

184 Chapter 6

The problem is that in conjunction with G., only columns with either G. or an
aggregate operation can be printed. This limitation is a direct consequence of the
SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically
implemented by translating queries into SQL. If P.G. replaces P. in the sname
column, the query is legal, and we then group by both sid and sname, which
results in the same groups as before because sid is a key for Sailors.

Express conditions involving the AND and OR operators. We can print the names
of sailors who are younger than 20 or older than 30 as follows:

Sailors sid sname rating age
P. A

Conditions

A < 20 OR 30 < A

We can print the names of sailors who are both younger than 20 and older than
30 by simply replacing the condition with A < 20 AND 30 < A; of course, the
set of such sailors is always empty! We can print the names of sailors who are
either older than 20 or have a rating equal to 8 by using the condition 20 < A OR
R = 8, and placing the variable R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE
without using a conditions box. We can print the names of sailors who are younger
than 30 or older than 20 by simply creating two example rows:

Sailors sid sname rating age
P. < 30
P. > 20

To translate a QBE query with several rows containing P., we create subformulas for
each row with a P. and connect the subformulas through ∨. If a row containing P. is
linked to other rows through shared variables (which is not the case in this example),
the subformula contains a term for each linked row, all connected using ∧. Notice how
the answer variable N , which must be a free variable, is handled:

{〈N〉 | ∃I1, N1, T1, A1, I2, N2, T2, A2(

〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∨〈I2, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use
the same variable in the key fields of both rows:

Query-by-Example (QBE) 185

Sailors sid sname rating age
Id P. < 30
Id > 20

The DRC formula for this query contains a term for each linked row, and these terms
are connected using ∧:

{〈N〉 | ∃I1, N1, T1, A1, N2, T2, A2

(〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∧〈I1, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}
Compare this DRC query with the DRC version of the previous query to see how
closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we
can create unnamed columns for display.3 As an example—admittedly, a silly one!—we
could print the name of each sailor along with the ratio rating/age as follows:

Sailors sid sname rating age
P. R A P. R / A

All our examples thus far have included P. commands in exactly one table. This is a
QBE restriction. If we want to display fields from more than one table, we have to use
unnamed columns. To print the names of sailors along with the dates on which they
have a boat reserved, we could use the following:

Sailors sid sname rating age
Id P. P. D

Reserves sid bid day
Id D

Note that unnamed columns should not be used for expressing conditions such as
D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands
I., D., and U., respectively. We can insert a new tuple into the Sailors relation as
follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and
so on. We do not discuss these features but assume that they are available.

186 Chapter 6

Sailors sid sname rating age
I. 74 Janice 7 41

We can insert several tuples, computed essentially through a query, into the Sailors
relation as follows:

Sailors sid sname rating age
I. Id N A

Students sid name login age
Id N A

Conditions

A > 18 OR N LIKE ‘C%’

We insert one tuple for each student older than 18 or with a name that begins with C.
(QBE’s LIKE operator is similar to the SQL version.) The rating field of every inserted
tuple contains a null value. The following query is very similar to the previous query,
but differs in a subtle way:

Sailors sid sname rating age
I. Id1 N1 A1
I. Id2 N2 A2

Students sid name login age
Id1 N1 A1 > 18
Id2 N2 LIKE ‘C%’ A2

The difference is that a student older than 18 with a name that begins with ‘C’ is
now inserted twice into Sailors. (The second insertion will be rejected by the integrity
constraint enforcement mechanism because sid is a key for Sailors. However, if this
integrity constraint is not declared, we would find two copies of such a student in the
Sailors relation.)

We can delete all tuples with rating > 5 from the Sailors relation as follows:

Sailors sid sname rating age
D. > 5

We can delete all reservations for sailors with rating < 4 by using:

Query-by-Example (QBE) 187

Sailors sid sname rating age
Id < 4

Reserves sid bid day
D. Id

We can update the age of the sailor with sid 74 to be 42 years by using:

Sailors sid sname rating age
74 U.42

The fact that sid is the key is significant here; we cannot update the key field, but we
can use it to identify the tuple to be modified (in other fields). We can also change
the age of sailor 74 from 41 to 42 by incrementing the age value:

Sailors sid sname rating age
74 U. A+1

6.8.1 Restrictions on Update Commands

There are some restrictions on the use of the I., D., and U. commands. First, we
cannot mix these operators in a single example table (or combine them with P.).
Second, we cannot specify I., D., or U. in an example table that contains G. Third,
we cannot insert, update, or modify tuples based on values in fields of other tuples in
the same table. Thus, the following update is incorrect:

Sailors sid sname rating age
john U. A+1
joe A

This update seeks to change John’s age based on Joe’s age. Since sname is not a key,
the meaning of such a query is ambiguous—should we update every John’s age, and
if so, based on which Joe’s age? QBE avoids such anomalies using a rather broad
restriction. For example, if sname were a key, this would be a reasonable request, even
though it is disallowed.

6.9 DIVISION AND RELATIONAL COMPLETENESS *

In Section 6.6 we saw how division can be expressed in QBE using COUNT. It is instruc-
tive to consider how division can be expressed in QBE without the use of aggregate
operators. If we don’t use aggregate operators, we cannot express division in QBE
without using the update commands to create a temporary relation or view. However,

188 Chapter 6

taking the update commands into account, QBE is relationally complete, even without
the aggregate operators. Although we will not prove these claims, the example that
we discuss below should bring out the underlying intuition.

We use the following query in our discussion of division:

Find sailors who have reserved all boats.

In Chapter 4 we saw that this query can be expressed in DRC as:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

The ∀ quantifier is not available in QBE, so let us rewrite the above without ∀:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈B, BN, C〉 ∈ Boats

(¬∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

This calculus query can be read as follows: “Find Sailors tuples (with sid I) for which
there is no Boats tuple (with bid B) such that no Reserves tuple indicates that sailor
I has reserved boat B.” We might try to write this query in QBE as follows:

Sailors sid sname rating age
Id P. S

Boats bid bname color
¬ B

Reserves sid bid day
¬ Id B

This query is illegal because the variable B does not appear in any positive row.
Going beyond this technical objection, this QBE query is ambiguous with respect to
the ordering of the two uses of ¬. It could denote either the calculus query that we
want to express or the following calculus query, which is not what we want:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈Ir, Br, D〉 ∈ Reserves

(¬∃〈B, BN, C〉 ∈ Boats(I = Ir ∧ Br = B))}

There is no mechanism in QBE to control the order in which the ¬ operations in
a query are applied. (Incidentally, the above query finds all Sailors who have made
reservations only for boats that exist in the Boats relation.)

One way to achieve such control is to break the query into several parts by using
temporary relations or views. As we saw in Chapter 4, we can accomplish division in

Query-by-Example (QBE) 189

two logical steps: first, identify disqualified candidates, and then remove this set from
the set of all candidates. In the query at hand, we have to first identify the set of sids
(called, say, BadSids) of sailors who have not reserved some boat (i.e., for each such
sailor, we can find a boat not reserved by that sailor), and then we have to remove
BadSids from the set of sids of all sailors. This process will identify the set of sailors
who’ve reserved all boats. The view BadSids can be defined as follows:

Sailors sid sname rating age
Id

Reserves sid bid day
¬ Id B

Boats bid bname color
B

BadSids sid
I. Id

Given the view BadSids, it is a simple matter to find sailors whose sids are not in this
view.

The ideas in this example can be extended to show that QBE is relationally complete.

6.10 POINTS TO REVIEW

QBE is a user-friendly query language with a graphical interface. The interface
depicts each relation in tabular form. (Section 6.1)

Queries are posed by placing constants and variables into individual columns and
thereby creating an example tuple of the query result. Simple conventions are
used to express selections, projections, sorting, and duplicate elimination. (Sec-
tion 6.2)

Joins are accomplished in QBE by using the same variable in multiple locations.
(Section 6.3)

QBE provides a limited form of set difference through the use of ¬ in the relation-
name column. (Section 6.4)

Aggregation (AVG., COUNT., MAX., MIN., and SUM.) and grouping (G.) can be
expressed by adding prefixes. (Section 6.5)

The condition box provides a place for more complex query conditions, although
queries involving AND or OR can be expressed without using the condition box.
(Section 6.6)

New, unnamed fields can be created to display information beyond fields retrieved
from a relation. (Section 6.7)

190 Chapter 6

QBE provides support for insertion, deletion and updates of tuples. (Section 6.8)

Using a temporary relation, division can be expressed in QBE without using ag-
gregation. QBE is relationally complete, taking into account its querying and
view creation features. (Section 6.9)

EXERCISES

Exercise 6.1 Consider the following relational schema. An employee can work in more than

one department.

Emp(eid: integer, ename: string, salary: real)

Works(eid: integer, did: integer)

Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish them

from your constants.

1. Print the names of all employees who work on the 10th floor and make less than $50,000.

2. Print the names of all managers who manage three or more departments on the same

floor.

3. Print the names of all managers who manage 10 or more departments on the same floor.

4. Give every employee who works in the toy department a 10 percent raise.

5. Print the names of the departments that employee Santa works in.

6. Print the names and salaries of employees who work in both the toy department and the

candy department.

7. Print the names of employees who earn a salary that is either less than $10,000 or more

than $100,000.

8. Print all of the attributes for employees who work in some department that employee

Santa also works in.

9. Fire Santa.

10. Print the names of employees who make more than $20,000 and work in either the video

department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahedron

works.

12. Print the name of each employee who earns more than the manager of the department

that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith and

who is neither the highest-paid nor the lowest-paid employee in the department.

Exercise 6.2 Write the following queries in QBE, based on this schema:

Query-by-Example (QBE) 191

Suppliers(sid: integer, sname: string, city: string)

Parts(pid: integer, pname: string, color: string)

Orders(sid: integer, pid: integer, quantity: integer)

1. For each supplier from whom all of the following things have been ordered in quantities

of at least 150, print the name and city of the supplier: a blue gear, a red crankshaft,

and a yellow bumper.

2. Print the names of the purple parts that have been ordered from suppliers located in

Madison, Milwaukee, or Waukesha.

3. Print the names and cities of suppliers who have an order for more than 150 units of a

yellow or purple part.

4. Print the pids of parts that have been ordered from a supplier named American but have

also been ordered from some supplier with a different name in a quantity that is greater

than the American order by at least 100 units.

5. Print the names of the suppliers located in Madison. Could there be any duplicates in

the answer?

6. Print all available information about suppliers that supply green parts.

7. For each order of a red part, print the quantity and the name of the part.

8. Print the names of the parts that come in both blue and green. (Assume that no two

distinct parts can have the same name and color.)

9. Print (in ascending order alphabetically) the names of parts supplied both by a Madison

supplier and by a Berkeley supplier.

10. Print the names of parts supplied by a Madison supplier, but not supplied by any Berkeley

supplier. Could there be any duplicates in the answer?

11. Print the total number of orders.

12. Print the largest quantity per order for each sid such that the minimum quantity per

order for that supplier is greater than 100.

13. Print the average quantity per order of red parts.

14. Can you write this query in QBE? If so, how?

Print the sids of suppliers from whom every part has been ordered.

Exercise 6.3 Answer the following questions:

1. Describe the various uses for unnamed columns in QBE.

2. Describe the various uses for a conditions box in QBE.

3. What is unusual about the treatment of duplicates in QBE?

4. Is QBE based upon relational algebra, tuple relational calculus, or domain relational

calculus? Explain briefly.

5. Is QBE relationally complete? Explain briefly.

6. What restrictions does QBE place on update commands?

192 Chapter 6

PROJECT-BASED EXERCISES

Exercise 6.4 Minibase’s version of QBE, called MiniQBE, tries to preserve the spirit of

QBE but cheats occasionally. Try the queries shown in this chapter and in the exercises,

and identify the ways in which MiniQBE differs from QBE. For each QBE query you try in

MiniQBE, examine the SQL query that it is translated into by MiniQBE.

BIBLIOGRAPHIC NOTES

The QBE project was led by Moshe Zloof [702] and resulted in the first visual database query

language, whose influence is seen today in products such as Borland’s Paradox and, to a

lesser extent, Microsoft’s Access. QBE was also one of the first relational query languages

to support the computation of transitive closure, through a special operator, anticipating

much subsequent research into extensions of relational query languages to support recursive

queries. A successor called Office-by-Example [701] sought to extend the QBE visual interac-

tion paradigm to applications such as electronic mail integrated with database access. Klug

presented a version of QBE that dealt with aggregate queries in [377].

PART III

DATA STORAGE AND INDEXING

7 STORING DATA: DISKS & FILES

A memory is what is left when something happens and does not completely unhap-

pen.

—Edward DeBono

This chapter initiates a study of the internals of an RDBMS. In terms of the DBMS
architecture presented in Section 1.8, it covers the disk space manager, the buffer
manager, and the layer that supports the abstraction of a file of records. Later chapters
cover auxiliary structures to speed retrieval of desired subsets of the data, and the
implementation of a relational query language.

Data in a DBMS is stored on storage devices such as disks and tapes; we concentrate
on disks and cover tapes briefly. The disk space manager is responsible for keeping
track of available disk space. The file manager, which provides the abstraction of a file
of records to higher levels of DBMS code, issues requests to the disk space manager
to obtain and relinquish space on disk. The file management layer requests and frees
disk space in units of a page; the size of a page is a DBMS parameter, and typical
values are 4 KB or 8 KB. The file management layer is responsible for keeping track
of the pages in a file and for arranging records within pages.

When a record is needed for processing, it must be fetched from disk to main memory.
The page on which the record resides is determined by the file manager. Sometimes, the
file manager uses auxiliary data structures to quickly identify the page that contains
a desired record. After identifying the required page, the file manager issues a request
for the page to a layer of DBMS code called the buffer manager. The buffer manager
fetches a requested page from disk into a region of main memory called the buffer pool
and tells the file manager the location of the requested page.

We cover the above points in detail in this chapter. Section 7.1 introduces disks and
tapes. Section 7.2 describes RAID disk systems. Section 7.3 discusses how a DBMS
manages disk space, and Section 7.4 explains how a DBMS fetches data from disk into
main memory. Section 7.5 discusses how a collection of pages is organized into a file
and how auxiliary data structures can be built to speed up retrieval of records from a
file. Section 7.6 covers different ways to arrange a collection of records on a page, and
Section 7.7 covers alternative formats for storing individual records.

195

196 Chapter 7

7.1 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, as shown in Figure 7.1. At
the top, we have primary storage, which consists of cache and main memory, and
provides very fast access to data. Then comes secondary storage, which consists of
slower devices such as magnetic disks. Tertiary storage is the slowest class of storage
devices; for example, optical disks and tapes. Currently, the cost of a given amount of

Data satisfying request

Request for data

CPU

CACHE

MAIN MEMORY

MAGNETIC DISK

TAPE

Primary storage

Secondary storage

Tertiary storage

Figure 7.1 The Memory Hierarchy

main memory is about 100 times the cost of the same amount of disk space, and tapes
are even less expensive than disks. Slower storage devices such as tapes and disks play
an important role in database systems because the amount of data is typically very
large. Since buying enough main memory to store all data is prohibitively expensive, we
must store data on tapes and disks and build database systems that can retrieve data
from lower levels of the memory hierarchy into main memory as needed for processing.

There are reasons other than cost for storing data on secondary and tertiary storage.
On systems with 32-bit addressing, only 232 bytes can be directly referenced in main
memory; the number of data objects may exceed this number! Further, data must
be maintained across program executions. This requires storage devices that retain
information when the computer is restarted (after a shutdown or a crash); we call
such storage nonvolatile. Primary storage is usually volatile (although it is possible
to make it nonvolatile by adding a battery backup feature), whereas secondary and
tertiary storage is nonvolatile.

Tapes are relatively inexpensive and can store very large amounts of data. They are
a good choice for archival storage, that is, when we need to maintain data for a long
period but do not expect to access it very often. A Quantum DLT 4000 drive is a
typical tape device; it stores 20 GB of data and can store about twice as much by
compressing the data. It records data on 128 tape tracks, which can be thought of as a

Storing Data: Disks and Files 197

linear sequence of adjacent bytes, and supports a sustained transfer rate of 1.5 MB/sec
with uncompressed data (typically 3.0 MB/sec with compressed data). A single DLT
4000 tape drive can be used to access up to seven tapes in a stacked configuration, for
a maximum compressed data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must
essentially step through all the data in order and cannot directly access a given location
on tape. For example, to access the last byte on a tape, we would have to wind
through the entire tape first. This makes tapes unsuitable for storing operational data,
or data that is frequently accessed. Tapes are mostly used to back up operational data
periodically.

7.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used for
database applications. A DBMS provides seamless access to data on disk; applications
need not worry about whether data is in main memory or disk. To understand how
disks work, consider Figure 7.2, which shows the structure of a disk in simplified form.

Disk arm Disk head Spindle

Rotation

Platter

Tracks

Cylinder

Sectors

Arm movement

Block

Figure 7.2 Structure of a Disk

Data is stored on disk in units called disk blocks. A disk block is a contiguous
sequence of bytes and is the unit in which data is written to a disk and read from a
disk. Blocks are arranged in concentric rings called tracks, on one or more platters.
Tracks can be recorded on one or both surfaces of a platter; we refer to platters as

198 Chapter 7

single-sided or double-sided accordingly. The set of all tracks with the same diameter is
called a cylinder, because the space occupied by these tracks is shaped like a cylinder;
a cylinder contains one track per platter surface. Each track is divided into arcs called
sectors, whose size is a characteristic of the disk and cannot be changed. The size of
a disk block can be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when one head
is positioned over a block, the other heads are in identical positions with respect to
their platters. To read or write a block, a disk head must be positioned on top of the
block. As the size of a platter decreases, seek times also decrease since we have to
move a disk head a smaller distance. Typical platter diameters are 3.5 inches and 5.25
inches.

Current systems typically allow at most one disk head to read or write at any one time.
All the disk heads cannot read or write in parallel—this technique would increase data
transfer rates by a factor equal to the number of disk heads, and considerably speed
up sequential scans. The reason they cannot is that it is very difficult to ensure that
all the heads are perfectly aligned on the corresponding tracks. Current approaches
are both expensive and more prone to faults as compared to disks with a single active
head. In practice very few commercial products support this capability, and then only
in a limited way; for example, two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements commands
to read or write a sector by moving the arm assembly and transferring data to and
from the disk surfaces. A checksum is computed for when data is written to a sector
and stored with the sector. The checksum is computed again when the data on the
sector is read back. If the sector is corrupted or the read is faulty for some reason,
it is very unlikely that the checksum computed when the sector is read matches the
checksum computed when the sector was written. The controller computes checksums
and if it detects an error, it tries to read the sector again. (Of course, it signals a
failure if the sector is corrupted and read fails repeatedly.)

While direct access to any desired location in main memory takes approximately the
same time, determining the time to access a location on disk is more complicated. The
time to access a disk block has several components. Seek time is the time taken to
move the disk heads to the track on which a desired block is located. Rotational
delay is the waiting time for the desired block to rotate under the disk head; it is
the time required for half a rotation on average and is usually less than seek time.
Transfer time is the time to actually read or write the data in the block once the
head is positioned, that is, the time for the disk to rotate over the block.

Storing Data: Disks and Files 199

An example of a current disk: The IBM Deskstar 14GPX. The IBM
Deskstar 14GPX is a 3.5 inch, 14.4 GB hard disk with an average seek time of 9.1
milliseconds (msec) and an average rotational delay of 4.17 msec. However, the
time to seek from one track to the next is just 2.2 msec, the maximum seek time
is 15.5 msec. The disk has five double-sided platters that spin at 7,200 rotations
per minute. Each platter holds 3.35 GB of data, with a density of 2.6 gigabit per
square inch. The data transfer rate is about 13 MB per second. To put these
numbers in perspective, observe that a disk access takes about 10 msecs, whereas
accessing a main memory location typically takes less than 60 nanoseconds!

7.1.2 Performance Implications of Disk Structure

1. Data must be in memory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a single
item on a block is needed, the entire block is transferred. Reading or writing a
disk block is called an I/O (for input/output) operation.

3. The time to read or write a block varies, depending on the location of the data:
access time = seek time + rotational delay + transfer time

These observations imply that the time taken for database operations is affected sig-
nificantly by how data is stored on disks. The time for moving blocks to or from disk
usually dominates the time taken for database operations. To minimize this time, it
is necessary to locate data records strategically on disk, because of the geometry and
mechanics of disks. In essence, if two records are frequently used together, we should
place them close together. The ‘closest’ that two records can be on a disk is to be on
the same block. In decreasing order of closeness, they could be on the same track, the
same cylinder, or an adjacent cylinder.

Two records on the same block are obviously as close together as possible, because they
are read or written as part of the same block. As the platter spins, other blocks on
the track being read or written rotate under the active head. In current disk designs,
all the data on a track can be read or written in one revolution. After a track is read
or written, another disk head becomes active, and another track in the same cylinder
is read or written. This process continues until all tracks in the current cylinder are
read or written, and then the arm assembly moves (in or out) to an adjacent cylinder.
Thus, we have a natural notion of ‘closeness’ for blocks, which we can extend to a
notion of next and previous blocks.

Exploiting this notion of next by arranging records so that they are read or written
sequentially is very important for reducing the time spent in disk I/Os. Sequential
access minimizes seek time and rotational delay and is much faster than random access.

200 Chapter 7

(This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader
is urged to work through them.)

7.2 RAID

Disks are potential bottlenecks for system performance and storage system reliability.
Even though disk performance has been improving continuously, microprocessor per-
formance has advanced much more rapidly. The performance of microprocessors has
improved at about 50 percent or more per year, but disk access times have improved
at a rate of about 10 percent per year and disk transfer rates at a rate of about 20
percent per year. In addition, since disks contain mechanical elements, they have much
higher failure rates than electronic parts of a computer system. If a disk fails, all the
data stored on it is lost.

A disk array is an arrangement of several disks, organized so as to increase perfor-
mance and improve reliability of the resulting storage system. Performance is increased
through data striping. Data striping distributes data over several disks to give the
impression of having a single large, very fast disk. Reliability is improved through
redundancy. Instead of having a single copy of the data, redundant information is
maintained. The redundant information is carefully organized so that in case of a
disk failure, it can be used to reconstruct the contents of the failed disk. Disk arrays
that implement a combination of data striping and redundancy are called redundant
arrays of independent disks, or in short, RAID.1 Several RAID organizations, re-
ferred to as RAID levels, have been proposed. Each RAID level represents a different
trade-off between reliability and performance.

In the remainder of this section, we will first discuss data striping and redundancy and
then introduce the RAID levels that have become industry standards.

7.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk. If the
user issues an I/O request, we first identify the set of physical disk blocks that store
the data requested. These disk blocks may reside on a single disk in the array or may
be distributed over several disks in the array. Then the set of blocks is retrieved from
the disk(s) involved. Thus, how we distribute the data over the disks in the array
influences how many disks are involved when an I/O request is processed.

1Historically, the I in RAID stood for inexpensive, as a large number of small disks was much more
economical than a single very large disk. Today, such very large disks are not even manufactured—a
sign of the impact of RAID.

Storing Data: Disks and Files 201

Redundancy schemes: Alternatives to the parity scheme include schemes based
on Hamming codes and Reed-Solomon codes. In addition to recovery from
single disk failures, Hamming codes can identify which disk has failed. Reed-
Solomon codes can recover from up to two simultaneous disk failures. A detailed
discussion of these schemes is beyond the scope of our discussion here; the bibli-
ography provides pointers for the interested reader.

In data striping, the data is segmented into equal-size partitions that are distributed
over multiple disks. The size of a partition is called the striping unit. The partitions
are usually distributed using a round robin algorithm: If the disk array consists of D

disks, then partition i is written onto disk i mod D.

As an example, consider a striping unit of a bit. Since any D successive data bits are
spread over all D data disks in the array, all I/O requests involve all disks in the array.
Since the smallest unit of transfer from a disk is a block, each I/O request involves
transfer of at least D blocks. Since we can read the D blocks from the D disks in
parallel, the transfer rate of each request is D times the transfer rate of a single disk;
each request uses the aggregated bandwidth of all disks in the array. But the disk
access time of the array is basically the access time of a single disk since all disk heads
have to move for all requests. Therefore, for a disk array with a striping unit of a single
bit, the number of requests per time unit that the array can process and the average
response time for each individual request are similar to that of a single disk.

As another example, consider a striping unit of a disk block. In this case, I/O requests
of the size of a disk block are processed by one disk in the array. If there are many I/O
requests of the size of a disk block and the requested blocks reside on different disks,
we can process all requests in parallel and thus reduce the average response time of an
I/O request. Since we distributed the striping partitions round-robin, large requests
of the size of many contiguous blocks involve all disks. We can process the request by
all disks in parallel and thus increase the transfer rate to the aggregated bandwidth of
all D disks.

7.2.2 Redundancy

While having more disks increases storage system performance, it also lowers overall
storage system reliability. Assume that the mean-time-to-failure, or MTTF, of
a single disk is 50, 000 hours (about 5.7 years). Then, the MTTF of an array of
100 disks is only 50, 000/100 = 500 hours or about 21 days, assuming that failures
occur independently and that the failure probability of a disk does not change over
time. (Actually, disks have a higher failure probability early and late in their lifetimes.
Early failures are often due to undetected manufacturing defects; late failures occur

202 Chapter 7

since the disk wears out. Failures do not occur independently either: consider a fire
in the building, an earthquake, or purchase of a set of disks that come from a ‘bad’
manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information. If a
disk failure occurs, the redundant information is used to reconstruct the data on the
failed disk. Redundancy can immensely increase the MTTF of a disk array. When
incorporating redundancy into a disk array design, we have to make two choices. First,
we have to decide where to store the redundant information. We can either store the
redundant information on a small number of check disks or we can distribute the
redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant information.
Most disk arrays store parity information: In the parity scheme, an extra check disk
contains information that can be used to recover from failure of any one disk in the
array. Assume that we have a disk array with D disks and consider the first bit on
each data disk. Suppose that i of the D data bits are one. The first bit on the check
disk is set to one if i is odd, otherwise it is set to zero. This bit on the check disk is
called the parity of the data bits. The check disk contains parity information for each
set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number of bits
that are one on the D − 1 nonfailed disks; let this number be j. If j is odd and the
parity bit is one, or if j is even and the parity bit is zero, then the value of the bit on
the failed disk must have been zero. Otherwise, the value of the bit on the failed disk
must have been one. Thus, with parity we can recover from failure of any one disk.
Reconstruction of the lost information involves reading all data disks and the check
disk.

For example, with an additional 10 disks with redundant information, the MTTF of
our example storage system with 100 data disks can be increased to more than 250
years! What is more important, a large MTTF implies a small failure probability
during the actual usage time of the storage system, which is usually much smaller
than the reported lifetime or the MTTF. (Who actually uses 10-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where a
reliability group consists of a set of data disks and a set of check disks. A common
redundancy scheme (see box) is applied to each group. The number of check disks
depends on the RAID level chosen. In the remainder of this section, we assume for
ease of explanation that there is only one reliability group. The reader should keep
in mind that actual RAID implementations consist of several reliability groups, and
that the number of groups plays a role in the overall reliability of the resulting storage
system.

Storing Data: Disks and Files 203

7.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample data that
would just fit on four disks. That is, without any RAID technology our storage system
would consist of exactly four data disks. Depending on the RAID level chosen, the
number of additional disks varies from zero to four.

Level 0: Nonredundant

A RAID Level 0 system uses data striping to increase the maximum bandwidth avail-
able. No redundant information is maintained. While being the solution with the
lowest cost, reliability is a problem, since the MTTF decreases linearly with the num-
ber of disk drives in the array. RAID Level 0 has the best write performance of all
RAID levels, because absence of redundant information implies that no redundant in-
formation needs to be updated! Interestingly, RAID Level 0 does not have the best
read performance of all RAID levels, since systems with redundancy have a choice of
scheduling disk accesses as explained in the next section.

In our example, the RAID Level 0 solution consists of only four data disks. Independent
of the number of data disks, the effective space utilization for a RAID Level 0 system
is always 100 percent.

Level 1: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having one copy of
the data, two identical copies of the data on two different disks are maintained. This
type of redundancy is often called mirroring. Every write of a disk block involves a
write on both disks. These writes may not be performed simultaneously, since a global
system failure (e.g., due to a power outage) could occur while writing the blocks and
then leave both copies in an inconsistent state. Therefore, we always write a block on
one disk first and then write the other copy on the mirror disk. Since two copies of
each block exist on different disks, we can distribute reads between the two disks and
allow parallel reads of different disk blocks that conceptually reside on the same disk.
A read of a block can be scheduled to the disk that has the smaller expected access
time. RAID Level 1 does not stripe the data over different disks, thus the transfer rate
for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for a RAID
Level 1 implementation. The effective space utilization is 50 percent, independent of
the number of data disks.

204 Chapter 7

Level 0+1: Striping and Mirroring

RAID Level 0+1—sometimes also referred to as RAID level 10—combines striping and
mirroring. Thus, as in RAID Level 1, read requests of the size of a disk block can be
scheduled both to a disk or its mirror image. In addition, read requests of the size of
several contiguous blocks benefit from the aggregated bandwidth of all disks. The cost
for writes is analogous to RAID Level 1.

As in RAID Level 1, our example with four data disks requires four check disks and
the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2 the striping unit is a single bit. The redundancy scheme used is
Hamming code. In our example with four data disks, only three check disks are needed.
In general, the number of check disks grows logarithmically with the number of data
disks.

Striping at the bit level has the implication that in a disk array with D data disks,
the smallest unit of transfer for a read is a set of D blocks. Thus, Level 2 is good for
workloads with many large requests since for each request the aggregated bandwidth
of all data disks is used. But RAID Level 2 is bad for small requests of the size of
an individual block for the same reason. (See the example in Section 7.2.1.) A write
of a block involves reading D blocks into main memory, modifying D + C blocks and
writing D + C blocks to disk, where C is the number of check disks. This sequence of
steps is called a read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks are needed.
Thus, in our example the effective space utilization is about 57 percent. The effective
space utilization increases with the number of data disks. For example, in a setup
with 10 data disks, four check disks are needed and the effective space utilization is 71
percent. In a setup with 25 data disks, five check disks are required and the effective
space utilization grows to 83 percent.

Level 3: Bit-Interleaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost upon
RAID Level 1, it keeps more redundant information than is necessary. Hamming code,
as used in RAID Level 2, has the advantage of being able to identify which disk has
failed. But disk controllers can easily detect which disk has failed. Thus, the check
disks do not need to contain information to identify the failed disk. Information to
recover the lost data is sufficient. Instead of using several disks to store Hamming code,

Storing Data: Disks and Files 205

RAID Level 3 has a single check disk with parity information. Thus, the reliability
overhead for RAID Level 3 is a single disk, the lowest overhead possible.

The performance characteristics of RAID Level 2 and RAID Level 3 are very similar.
RAID Level 3 can also process only one I/O at a time, the minimum transfer unit is
D blocks, and a write requires a read-modify-write cycle.

Level 4: Block-Interleaved Parity

RAID Level 4 has a striping unit of a disk block, instead of a single bit as in RAID
Level 3. Block-level striping has the advantage that read requests of the size of a disk
block can be served entirely by the disk where the requested block resides. Large read
requests of several disk blocks can still utilize the aggregated bandwidth of the D disks.

The write of a single block still requires a read-modify-write cycle, but only one data
disk and the check disk are involved. The parity on the check disk can be updated
without reading all D disk blocks, because the new parity can be obtained by noticing
the differences between the old data block and the new data block and then applying
the difference to the parity block on the check disk:

NewParity = (OldData XOR NewData) XOR OldParity

The read-modify-write cycle involves reading of the old data block and the old parity
block, modifying the two blocks, and writing them back to disk, resulting in four disk
accesses per write. Since the check disk is involved in each write, it can easily become
the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single check
disk. Thus, in our example, the effective space utilization is 80 percent. The effective
space utilization increases with the number of data disks, since always only one check
disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5 improves upon Level 4 by distributing the parity blocks uniformly over
all disks, instead of storing them on a single check disk. This distribution has two
advantages. First, several write requests can potentially be processed in parallel, since
the bottleneck of a unique check disk has been eliminated. Second, read requests have
a higher level of parallelism. Since the data is distributed over all disks, read requests
involve all disks, whereas in systems with a dedicated check disk the check disk never
participates in reads.

206 Chapter 7

A RAID Level 5 system has the best performance of all RAID levels with redundancy
for small and large read and large write requests. Small writes still require a read-
modify-write cycle and are thus less efficient than in RAID Level 1.

In our example, the corresponding RAID Level 5 system has 5 disks overall and thus
the effective space utilization is the same as in RAID levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure of a
single disk is not sufficient in very large disk arrays. First, in large disk arrays, a
second disk might fail before replacement of an already failed disk could take place.
In addition, the probability of a disk failure during recovery of a failed disk is not
negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from up to two
simultaneous disk failures. RAID Level 6 requires (conceptually) two check disks, but
it also uniformly distributes redundant information at the block level as in RAID Level
5. Thus, the performance characteristics for small and large read requests and for large
write requests are analogous to RAID Level 5. For small writes, the read-modify-write
procedure involves six instead of four disks as compared to RAID Level 5, since two
blocks with redundant information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six disks
are required. Thus, in our example, the effective space utilization is 66 percent.

7.2.4 Choice of RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance at
the lowest cost. RAID Level 0+1 is superior to RAID Level 1. The main application
areas for RAID Level 0+1 systems are small storage subsystems where the cost of
mirroring is moderate. Sometimes RAID Level 0+1 is used for applications that have
a high percentage of writes in their workload, since RAID Level 0+1 provides the best
write performance. RAID levels 2 and 4 are always inferior to RAID levels 3 and 5,
respectively. RAID Level 3 is appropriate for workloads consisting mainly of large
transfer requests of several contiguous blocks. The performance of a RAID Level 3
system is bad for workloads with many small requests of a single disk block. RAID
Level 5 is a good general-purpose solution. It provides high performance for large
requests as well as for small requests. RAID Level 6 is appropriate if a higher level of
reliability is required.

Storing Data: Disks and Files 207

7.3 DISK SPACE MANAGEMENT

The lowest level of software in the DBMS architecture discussed in Section 1.8, called
the disk space manager, manages space on disk. Abstractly, the disk space manager
supports the concept of a page as a unit of data, and provides commands to allocate
or deallocate a page and read or write a page. The size of a page is chosen to be the
size of a disk block and pages are stored as disk blocks so that reading or writing a
page can be done in one disk I/O.

It is often useful to allocate a sequence of pages as a contiguous sequence of blocks to
hold data that is frequently accessed in sequential order. This capability is essential
for exploiting the advantages of sequentially accessing disk blocks, which we discussed
earlier in this chapter. Such a capability, if desired, must be provided by the disk space
manager to higher-level layers of the DBMS.

Thus, the disk space manager hides details of the underlying hardware (and possibly
the operating system) and allows higher levels of the software to think of the data as
a collection of pages.

7.3.1 Keeping Track of Free Blocks

A database grows and shrinks as records are inserted and deleted over time. The
disk space manager keeps track of which disk blocks are in use, in addition to keeping
track of which pages are on which disk blocks. Although it is likely that blocks are
initially allocated sequentially on disk, subsequent allocations and deallocations could
in general create ‘holes.’

One way to keep track of block usage is to maintain a list of free blocks. As blocks are
deallocated (by the higher-level software that requests and uses these blocks), we can
add them to the free list for future use. A pointer to the first block on the free block
list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which indicates
whether a block is in use or not. A bitmap also allows very fast identification and
allocation of contiguous areas on disk. This is difficult to accomplish with a linked list
approach.

7.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system supports
the abstraction of a file as a sequence of bytes. The OS manages space on the disk
and translates requests such as “Read byte i of file f” into corresponding low-level

208 Chapter 7

instructions: “Read block m of track t of cylinder c of disk d.” A database disk space
manager could be built using OS files. For example, the entire database could reside
in one or more OS files for which a number of blocks are allocated (by the OS) and
initialized. The disk space manager is then responsible for managing the space in these
OS files.

Many database systems do not rely on the OS file system and instead do their own
disk management, either from scratch or by extending OS facilities. The reasons
are practical as well as technical. One practical reason is that a DBMS vendor who
wishes to support several OS platforms cannot assume features specific to any OS,
for portability, and would therefore try to make the DBMS code as self-contained as
possible. A technical reason is that on a 32-bit system, the largest file size is 4 GB,
whereas a DBMS may want to access a single file larger than that. A related problem is
that typical OS files cannot span disk devices, which is often desirable or even necessary
in a DBMS. Additional technical reasons why a DBMS does not rely on the OS file
system are outlined in Section 7.4.2.

7.4 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Suppose
that the database contains 1,000,000 pages, but only 1,000 pages of main memory are
available for holding data. Consider a query that requires a scan of the entire file.
Because all the data cannot be brought into main memory at one time, the DBMS
must bring pages into main memory as they are needed and, in the process, decide
what existing page in main memory to replace to make space for the new page. The
policy used to decide which page to replace is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer manager is
the software layer that is responsible for bringing pages from disk to main memory as
needed. The buffer manager manages the available main memory by partitioning it
into a collection of pages, which we collectively refer to as the buffer pool. The main
memory pages in the buffer pool are called frames; it is convenient to think of them
as slots that can hold a page (that usually resides on disk or other secondary storage
media).

Higher levels of the DBMS code can be written without worrying about whether data
pages are in memory or not; they ask the buffer manager for the page, and it is brought
into a frame in the buffer pool if it is not already there. Of course, the higher-level
code that requests a page must also release the page when it is no longer needed, by
informing the buffer manager, so that the frame containing the page can be reused.
The higher-level code must also inform the buffer manager if it modifies the requested
page; the buffer manager then makes sure that the change is propagated to the copy
of the page on disk. Buffer management is illustrated in Figure 7.3.

Storing Data: Disks and Files 209

If a requested page is not in the
pool and the pool is full, the
buffer manager’s replacement
policy controls which existing
page is replaced.

BUFFER POOL

disk page

MAIN MEMORY

DISK

Page requests from higher-level code

DB

free frame

Figure 7.3 The Buffer Pool

In addition to the buffer pool itself, the buffer manager maintains some bookkeeping
information, and two variables for each frame in the pool: pin count and dirty. The
number of times that the page currently in a given frame has been requested but
not released—the number of current users of the page—is recorded in the pin count
variable for that frame. The boolean variable dirty indicates whether the page has
been modified since it was brought into the buffer pool from disk.

Initially, the pin count for every frame is set to 0, and the dirty bits are turned off.
When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page, and if so
increments the pin count of that frame. If the page is not in the pool, the buffer
manager brings it in as follows:

(a) Chooses a frame for replacement, using the replacement policy, and incre-
ments its pin count.

(b) If the dirty bit for the replacement frame is on, writes the page it contains
to disk (that is, the disk copy of the page is overwritten with the contents of
the frame).

(c) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested page
to the requestor.

210 Chapter 7

Incrementing pin count is often called pinning the requested page in its frame. When
the code that calls the buffer manager and requests the page subsequently calls the
buffer manager and releases the page, the pin count of the frame containing the re-
quested page is decremented. This is called unpinning the page. If the requestor has
modified the page, it also informs the buffer manager of this at the time that it unpins
the page, and the dirty bit for the frame is set. The buffer manager will not read
another page into a frame until its pin count becomes 0, that is, until all requestors of
the page have unpinned it.

If a requested page is not in the buffer pool, and if a free frame is not available in the
buffer pool, a frame with pin count 0 is chosen for replacement. If there are many such
frames, a frame is chosen according to the buffer manager’s replacement policy. We
discuss various replacement policies in Section 7.4.1.

When a page is eventually chosen for replacement, if the dirty bit is not set, it means
that the page has not been modified since being brought into main memory. Thus,
there is no need to write the page back to disk; the copy on disk is identical to the copy
in the frame, and the frame can simply be overwritten by the newly requested page.
Otherwise, the modifications to the page must be propagated to the copy on disk.
(The crash recovery protocol may impose further restrictions, as we saw in Section 1.7.
For example, in the Write-Ahead Log (WAL) protocol, special log records are used to
describe the changes made to a page. The log records pertaining to the page that is to
be replaced may well be in the buffer; if so, the protocol requires that they be written
to disk before the page is written to disk.)

If there is no page in the buffer pool with pin count 0 and a page that is not in the
pool is requested, the buffer manager must wait until some page is released before
responding to the page request. In practice, the transaction requesting the page may
simply be aborted in this situation! So pages should be released—by the code that
calls the buffer manager to request the page—as soon as possible.

A good question to ask at this point is “What if a page is requested by several different
transactions?” That is, what if the page is requested by programs executing indepen-
dently on behalf of different users? There is the potential for such programs to make
conflicting changes to the page. The locking protocol (enforced by higher-level DBMS
code, in particular the transaction manager) ensures that each transaction obtains a
shared or exclusive lock before requesting a page to read or modify. Two different
transactions cannot hold an exclusive lock on the same page at the same time; this is
how conflicting changes are prevented. The buffer manager simply assumes that the
appropriate lock has been obtained before a page is requested.

Storing Data: Disks and Files 211

7.4.1 Buffer Replacement Policies

The policy that is used to choose an unpinned page for replacement can affect the time
taken for database operations considerably. Many alternative policies exist, and each
is suitable in different situations.

The best-known replacement policy is least recently used (LRU). This can be im-
plemented in the buffer manager using a queue of pointers to frames with pin count 0.
A frame is added to the end of the queue when it becomes a candidate for replacement
(that is, when the pin count goes to 0). The page chosen for replacement is the one in
the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less overhead.
The idea is to choose a page for replacement using a current variable that takes on
values 1 through N , where N is the number of buffer frames, in circular order. We
can think of the frames being arranged in a circle, like a clock’s face, and current as a
clock hand moving across the face. In order to approximate LRU behavior, each frame
also has an associated referenced bit, which is turned on when the page pin count goes
to 0.

The current frame is considered for replacement. If the frame is not chosen for replace-
ment, current is incremented and the next frame is considered; this process is repeated
until some frame is chosen. If the current frame has pin count greater than 0, then it
is not a candidate for replacement and current is incremented. If the current frame
has the referenced bit turned on, the clock algorithm turns the referenced bit off and
increments current—this way, a recently referenced page is less likely to be replaced.
If the current frame has pin count 0 and its referenced bit is off, then the page in it is
chosen for replacement. If all frames are pinned in some sweep of the clock hand (that
is, the value of current is incremented until it repeats), this means that no page in the
buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a
database system, particularly if many user requests require sequential scans of the
data. Consider the following illustrative situation. Suppose the buffer pool has 10
frames, and the file to be scanned has 10 or fewer pages. Assuming, for simplicity,
that there are no competing requests for pages, only the first scan of the file does any
I/O. Page requests in subsequent scans will always find the desired page in the buffer
pool. On the other hand, suppose that the file to be scanned has 11 pages (which is
one more than the number of available pages in the buffer pool). Using LRU, every
scan of the file will result in reading every page of the file! In this situation, called
sequential flooding, LRU is the worst possible replacement strategy.

212 Chapter 7

Buffer management in practice: IBM DB2 and Sybase ASE allow buffers to
be partitioned into named pools. Each database, table, or index can be bound
to one of these pools. Each pool can be configured to use either LRU or clock
replacement in ASE; DB2 uses a variant of clock replacement, with the initial clock
value based on the nature of the page (e.g., index nonleaves get a higher starting
clock value, which delays their replacement). Interestingly, a buffer pool client in
DB2 can explicitly indicate that it hates a page, making the page the next choice
for replacement. As a special case, DB2 applies MRU for the pages fetched in some
utility operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix
and Oracle 7 both maintain a single global buffer pool using LRU; Microsoft SQL
Server has a single pool using clock replacement. In Oracle 8, tables can be bound
to one of two pools; one has high priority, and the system attempts to keep pages
in this pool in memory.
Beyond setting a maximum number of pins for a given transaction, there are
typically no features for controlling buffer pool usage on a per-transaction basis.
Microsoft SQL Server, however, supports a reservation of buffer pages by queries
that require large amounts of memory (e.g., queries involving sorting or hashing).

Other replacement policies include first in first out (FIFO) and most recently
used (MRU), which also entail overhead similar to LRU, and random, among others.
The details of these policies should be evident from their names and the preceding
discussion of LRU and clock.

7.4.2 Buffer Management in DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and buffer
management in database management systems. In both cases the goal is to provide
access to more data than will fit in main memory, and the basic idea is to bring in
pages from disk to main memory as needed, replacing pages that are no longer needed
in main memory. Why can’t we build a DBMS using the virtual memory capability of
an OS? A DBMS can often predict the order in which pages will be accessed, or page
reference patterns, much more accurately than is typical in an OS environment, and
it is desirable to utilize this property. Further, a DBMS needs more control over when
a page is written to disk than an OS typically provides.

A DBMS can often predict reference patterns because most page references are gener-
ated by higher-level operations (such as sequential scans or particular implementations
of various relational algebra operators) with a known pattern of page accesses. This
ability to predict reference patterns allows for a better choice of pages to replace and
makes the idea of specialized buffer replacement policies more attractive in the DBMS
environment.

Storing Data: Disks and Files 213

Prefetching: In IBM DB2, both sequential and list prefetch (prefetching a list
of pages) are supported. In general, the prefetch size is 32 4KB pages, but this
can be set by the user. For some sequential type database utilities (e.g., COPY,
RUNSTATS), DB2 will prefetch upto 64 4KB pages. For a smaller buffer pool
(i.e., less than 1000 buffers), the prefetch quantity is adjusted downward to 16 or
8 pages. Prefetch size can be configured by the user; for certain environments, it
may be best to prefetch 1000 pages at a time! Sybase ASE supports asynchronous
prefetching of upto 256 pages, and uses this capability to reduce latency during
indexed access to a table in a range scan. Oracle 8 uses prefetching for sequential
scan, retrieving large objects, and for certain index scans. Microsoft SQL Server
supports prefetching for sequential scan and for scans along the leaf level of a B+
tree index and the prefetch size can be adjusted as a scan progresses. SQL Server
also uses asynchronous prefetching extensively. Informix supports prefetching with
a user-defined prefetch size.

Even more important, being able to predict reference patterns enables the use of a
simple and very effective strategy called prefetching of pages. The buffer manager
can anticipate the next several page requests and fetch the corresponding pages into
memory before the pages are requested. This strategy has two benefits. First, the
pages are available in the buffer pool when they are requested. Second, reading in a
contiguous block of pages is much faster than reading the same pages at different times
in response to distinct requests. (Review the discussion of disk geometry to appreciate
why this is so.) If the pages to be prefetched are not contiguous, recognizing that
several pages need to be fetched can nonetheless lead to faster I/O because an order
of retrieval can be chosen for these pages that minimizes seek times and rotational
delays.

Incidentally, note that the I/O can typically be done concurrently with CPU computa-
tion. Once the prefetch request is issued to the disk, the disk is responsible for reading
the requested pages into memory pages and the CPU can continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to ensure
that the copy of the page on disk is updated with the copy in memory. As a related
point, a DBMS must be able to ensure that certain pages in the buffer pool are written
to disk before certain other pages are written, in order to implement the WAL protocol
for crash recovery, as we saw in Section 1.7. Virtual memory implementations in
operating systems cannot be relied upon to provide such control over when pages are
written to disk; the OS command to write a page to disk may be implemented by
essentially recording the write request, and deferring the actual modification of the
disk copy. If the system crashes in the interim, the effects can be catastrophic for a
DBMS. (Crash recovery is discussed further in Chapter 20.)

214 Chapter 7

7.5 FILES AND INDEXES

We now turn our attention from the way pages are stored on disk and brought into
main memory to the way pages are used to store records and organized into logical
collections or files. Higher levels of the DBMS code treat a page as effectively being
a collection of records, ignoring the representation and storage details. In fact, the
concept of a collection of records is not limited to the contents of a single page; a file
of records is a collection of records that may reside on several pages. In this section,
we consider how a collection of pages can be organized as a file. We discuss how the
space on a page can be organized to store a collection of records in Sections 7.6 and
7.7.

Each record has a unique identifier called a record id, or rid for short. As we will see
in Section 7.6, we can identify the page containing a record by using the record’s rid.
The basic file structure that we consider, called a heap file, stores records in random
order and supports retrieval of all records or retrieval of a particular record specified
by its rid. Sometimes we want to retrieve records by specifying some condition on
the fields of desired records, for example, “Find all employee records with age 35.” To
speed up such selections, we can build auxiliary data structures that allow us to quickly
find the rids of employee records that satisfy the given selection condition. Such an
auxiliary structure is called an index; we introduce indexes in Section 7.5.2.

7.5.1 Heap Files

The simplest file structure is an unordered file or heap file. The data in the pages of
a heap file is not ordered in any way, and the only guarantee is that one can retrieve
all records in the file by repeated requests for the next record. Every record in the file
has a unique rid, and every page in a file is of the same size.

Supported operations on a heap file include create and destroy files, insert a record,
delete a record with a given rid, get a record with a given rid, and scan all records in
the file. To get or delete a record with a given rid, note that we must be able to find
the id of the page containing the record, given the id of the record.

We must keep track of the pages in each heap file in order to support scans, and
we must keep track of pages that contain free space in order to implement insertion
efficiently. We discuss two alternative ways to maintain this information. In each
of these alternatives, pages must hold two pointers (which are page ids) for file-level
bookkeeping in addition to the data.

Storing Data: Disks and Files 215

Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The DBMS
can remember where the first page is located by maintaining a table containing pairs
of 〈heap file name, page 1 addr〉 in a known location on disk. We call the first page
of the file the header page.

An important task is to maintain information about empty slots created by deleting a
record from the heap file. This task has two distinct parts: how to keep track of free
space within a page and how to keep track of pages that have some free space. We
consider the first part in Section 7.6. The second part can be addressed by maintaining
a doubly linked list of pages with free space and a doubly linked list of full pages;
together, these lists contain all pages in the heap file. This organization is illustrated
in Figure 7.4; note that each pointer is really a page id.

Header
page

Data Data

Data Data

page page

page page

with free space
Linked list of pages

full pages
Linked list of

Figure 7.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space manager
and then added to the list of pages in the file (probably as a page with free space,
because it is unlikely that the new record will take up all the space on the page). If a
page is to be deleted from the heap file, it is removed from the list and the disk space
manager is told to deallocate it. (Note that the scheme can easily be generalized to
allocate or deallocate a sequence of several pages and maintain a doubly linked list of
these page sequences.)

One disadvantage of this scheme is that virtually all pages in a file will be on the free
list if records are of variable length, because it is likely that every page has at least a
few free bytes. To insert a typical record, we must retrieve and examine several pages
on the free list before we find one with enough free space. The directory-based heap
file organization that we discuss next addresses this problem.

216 Chapter 7

Directory of Pages

An alternative to a linked list of pages is to maintain a directory of pages. The
DBMS must remember where the first directory page of each heap file is located. The
directory is itself a collection of pages and is shown as a linked list in Figure 7.5. (Other
organizations are possible for the directory itself, of course.)

Data

page N

Data

page 1

page 2

Data

Header page

DIRECTORY

Figure 7.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file. As the
heap file grows or shrinks, the number of entries in the directory—and possibly the
number of pages in the directory itself—grows or shrinks correspondingly. Note that
since each directory entry is quite small in comparison to a typical page, the size of
the directory is likely to be very small in comparison to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether the
corresponding page has any free space, or a count per entry, indicating the amount of
free space on the page. If the file contains variable-length records, we can examine the
free space count for an entry to determine if the record will fit on the page pointed to
by the entry. Since several entries fit on a directory page, we can efficiently search for
a data page with enough space to hold a record that is to be inserted.

7.5.2 Introduction to Indexes

Sometimes we want to find all records that have a given value in a particular field. If
we can find the rids of all such records, we can locate the page containing each record
from the record’s rid; however, the heap file organization does not help us to find the

Storing Data: Disks and Files 217

rids of such records. An index is an auxiliary data structure that is intended to help
us find rids of records that meet a selection condition.

Consider how you locate a desired book in a library. You can search a collection of
index cards, sorted on author name or book title, to find the call number for the book.
Because books are stored according to call numbers, the call number enables you to
walk to the shelf that contains the book you need. Observe that an index on author
name cannot be used to locate a book by title, and vice versa; each index speeds up
certain kinds of searches, but not all. This is illustrated in Figure 7.6.

Where is

Where are
books by Asimov?

by Asimov

Foundation Nemesis

by Asimov

Index by Title

Index by Author

Foundation?

Figure 7.6 Indexes in a Library

The same ideas apply when we want to support efficient retrieval of a desired subset of
the data in a file. From an implementation standpoint, an index is just another kind
of file, containing records that direct traffic on requests for data records. Every index
has an associated search key, which is a collection of one or more fields of the file of
records for which we are building the index; any subset of the fields can be a search
key. We sometimes refer to the file of records as the indexed file.

An index is designed to speed up equality or range selections on the search key. For
example, if we wanted to build an index to improve the efficiency of queries about
employees of a given age, we could build an index on the age attribute of the employee
dataset. The records stored in an index file, which we refer to as entries to avoid
confusion with data records, allow us to find data records with a given search key
value. In our example the index might contain 〈age, rid 〉 pairs, where rid identifies a
data record.

The pages in the index file are organized in some way that allows us to quickly locate
those entries in the index that have a given search key value. For example, we have to
find entries with age ≥ 30 (and then follow the rids in the retrieved entries) in order to
find employee records for employees who are older than 30. Organization techniques,
or data structures, for index files are called access methods, and several are known,

218 Chapter 7

Rids in commercial systems: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all implement record ids as a page id and slot number.
Sybase ASE uses the following page organization, which is typical: Pages contain
a header followed by the rows and a slot array. The header contains the page
identity, its allocation state, page free space state, and a timestamp. The slot
array is simply a mapping of slot number to page offset.
Oracle 8 and SQL Server use logical record ids rather than page id and slot number
in one special case: If a table has a clustered index, then records in the table are
identified using the key value for the clustered index. This has the advantage that
secondary indexes don’t have to be reorganized if records are moved across pages.

including B+ trees (Chapter 9) and hash-based structures (Chapter 10). B+ tree index
files and hash-based index files are built using the page allocation and manipulation
facilities provided by the disk space manager, just like heap files.

7.6 PAGE FORMATS *

The page abstraction is appropriate when dealing with I/O issues, but higher levels
of the DBMS see data as a collection of records. In this section, we consider how a
collection of records can be arranged on a page. We can think of a page as a collection
of slots, each of which contains a record. A record is identified by using the pair
〈page id, slot number〉; this is the record id (rid). (We remark that an alternative way
to identify records is to assign each record a unique integer as its rid and to maintain
a table that lists the page and slot of the corresponding record for each rid. Due to
the overhead of maintaining this table, the approach of using 〈page id, slot number〉
as an rid is more common.)

We now consider some alternative approaches to managing slots on a page. The main
considerations are how these approaches support operations such as searching, insert-
ing, or deleting records on a page.

7.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots are
uniform and can be arranged consecutively within a page. At any instant, some slots
are occupied by records, and others are unoccupied. When a record is inserted into
the page, we must locate an empty slot and place the record there. The main issues
are how we keep track of empty slots and how we locate all records on a page. The
alternatives hinge on how we handle the deletion of a record.

Storing Data: Disks and Files 219

The first alternative is to store records in the first N slots (where N is the number
of records on the page); whenever a record is deleted, we move the last record on the
page into the vacated slot. This format allows us to locate the ith record on a page by
a simple offset calculation, and all empty slots appear together at the end of the page.
However, this approach does not work if there are external references to the record
that is moved (because the rid contains the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per slot,
to keep track of free slot information. Locating records on the page requires scanning
the bit array to find slots whose bit is on; when a record is deleted, its bit is turned
off. The two alternatives for storing fixed-length records are illustrated in Figure 7.7.
Note that in addition to the information about records on the page, a page usually
contains additional file-level information (e.g., the id of the next page in the file). The
figure does not show this additional information.

Slot 1
Slot 2

Slot N

Slot M

1

M

23M

Free
Space

Page

Header

01 1

Slot 3
Slot 2
Slot 1

Packed

Number of slotsNumber of records

N

Unpacked, Bitmap

Figure 7.7 Alternative Page Organizations for Fixed-Length Records

The slotted page organization described for variable-length records in Section 7.6.2 can
also be used for fixed-length records. It becomes attractive if we need to move records
around on a page for reasons other than keeping track of space freed by deletions. A
typical example is that we want to keep the records on a page sorted (according to the
value in some field).

7.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed collection
of slots. The problem is that when a new record is to be inserted, we have to find an
empty slot of just the right length—if we use a slot that is too big, we waste space,
and obviously we cannot use a slot that is smaller than the record length. Therefore,
when a record is inserted, we must allocate just the right amount of space for it, and
when a record is deleted, we must move records to fill the hole created by the deletion,

220 Chapter 7

in order to ensure that all the free space on the page is contiguous. Thus, the ability
to move records on a page becomes very important.

The most flexible organization for variable-length records is to maintain a directory
of slots for each page, with a 〈record offset, record length〉 pair per slot. The first
component (record offset) is a ‘pointer’ to the record, as shown in Figure 7.8; it is the
offset in bytes from the start of the data area on the page to the start of the record.
Deletion is readily accomplished by setting the record offset to -1. Records can be
moved around on the page because the rid, which is the page number and slot number
(that is, position in the directory), does not change when the record is moved; only
the record offset stored in the slot changes.

N

1

16 2420

Record with rid = (i,1)

offset of record from

length = 24

2N

FREE SPACE

PAGE iDATA AREA

rid = (i,2)

rid = (i,N)

start of data area

Pointer to start
of free space

Number of entries
in slot directorySLOT DIRECTORY

Figure 7.8 Page Organization for Variable-Length Records

The space available for new records must be managed carefully because the page is not
preformatted into slots. One way to manage free space is to maintain a pointer (that
is, offset from the start of the data area on the page) that indicates the start of the
free space area. When a new record is too large to fit into the remaining free space,
we have to move records on the page to reclaim the space freed by records that have
been deleted earlier. The idea is to ensure that after reorganization, all records appear
contiguously, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot always be
removed from the slot directory, because slot numbers are used to identify records—by
deleting a slot, we change (decrement) the slot number of subsequent slots in the slot
directory, and thereby change the rid of records pointed to by subsequent slots. The

Storing Data: Disks and Files 221

only way to remove slots from the slot directory is to remove the last slot if the record
that it points to is deleted. However, when a record is inserted, the slot directory
should be scanned for an element that currently does not point to any record, and this
slot should be used for the new record. A new slot is added to the slot directory only
if all existing slots point to records. If inserts are much more common than deletes (as
is typically the case), the number of entries in the slot directory is likely to be very
close to the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move them around
frequently; for example, when we want to maintain them in some sorted order. Indeed,
when all records are the same length, instead of storing this common length information
in the slot for each record, we can store it once in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we discuss in
Chapter 9), we may not care about changing the rid of a record. In this case the slot
directory can be compacted after every record deletion; this strategy guarantees that
the number of entries in the slot directory is the same as the number of records on the
page. If we do not care about modifying rids, we can also sort records on a page in an
efficient manner by simply moving slot entries rather than actual records, which are
likely to be much larger than slot entries.

A simple variation on the slotted organization is to maintain only record offsets in
the slots. For variable-length records, the length is then stored with the record (say,
in the first bytes). This variation makes the slot directory structure for pages with
fixed-length records be the same as for pages with variable-length records.

7.7 RECORD FORMATS *

In this section we discuss how to organize fields within a record. While choosing a way
to organize the fields of a record, we must take into account whether the fields of the
record are of fixed or variable length and consider the cost of various operations on the
record, including retrieval and modification of fields.

Before discussing record formats, we note that in addition to storing individual records,
information that is common to all records of a given record type (such as the number
of fields and field types) is stored in the system catalog, which can be thought of as
a description of the contents of a database, maintained by the DBMS (Section 13.2).
This avoids repeated storage of the same information with each record of a given type.

222 Chapter 7

Record formats in commercial systems: In IBM DB2, fixed length fields are
at fixed offsets from the beginning of the record. Variable length fields have offset
and length in the fixed offset part of the record, and the fields themselves follow
the fixed length part of the record. Informix, Microsoft SQL Server, and Sybase
ASE use the same organization with minor variations. In Oracle 8, records are
structured as if all fields are potentially variable length; a record is a sequence of
length–data pairs, with a special length value used to denote a null value.

7.7.1 Fixed-Length Records

In a fixed-length record, each field has a fixed length (that is, the value in this field
is of the same length in all records), and the number of fields is also fixed. The fields
of such a record can be stored consecutively, and, given the address of the record, the
address of a particular field can be calculated using information about the lengths of
preceding fields, which is available in the system catalog. This record organization is
illustrated in Figure 7.9.

F1 F2 F3 F4

L1 L2 L3 L4

Base address (B) Address = B+L1+L2

Li = Length of
 field i

Fi = Field i

Figure 7.9 Organization of Records with Fixed-Length Fields

7.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number of fields.
If the number of fields is fixed, a record is of variable length only because some of its
fields are of variable length.

One possible organization is to store fields consecutively, separated by delimiters (which
are special characters that do not appear in the data itself). This organization requires
a scan of the record in order to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use as an array
of integer offsets—the ith integer in this array is the starting address of the ith field
value relative to the start of the record. Note that we also store an offset to the end of
the record; this offset is needed to recognize where the last field ends. Both alternatives
are illustrated in Figure 7.10.

Storing Data: Disks and Files 223

$ $ $ $F1 F2 F3 F4 Fi = Field i

Fields delimited by special symbol $

F1 F3 F4

Array of field offsets

F2

Figure 7.10 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array, we
get direct access to any field. We also get a clean way to deal with null values. A
null value is a special value used to denote that the value for a field is unavailable or
inapplicable. If a field contains a null value, the pointer to the end of the field is set
to be the same as the pointer to the beginning of the field. That is, no space is used
for representing the null value, and a comparison of the pointers to the beginning and
the end of the field is used to determine that the value in the field is null.

Variable-length record formats can obviously be used to store fixed-length records as
well; sometimes, the extra overhead is justified by the added flexibility, because issues
such as supporting null values and adding fields to a record type arise with fixed-length
records as well.

Having variable-length fields in a record can raise some subtle issues, especially when
a record is modified.

Modifying a field may cause it to grow, which requires us to shift all subsequent
fields to make space for the modification in all three record formats presented
above.

A record that is modified may no longer fit into the space remaining on its page.
If so, it may have to be moved to another page. If rids, which are used to ‘point’
to a record, include the page number (see Section 7.6), moving a record to another
page causes a problem. We may have to leave a ‘forwarding address’ on this page
identifying the new location of the record. And to ensure that space is always
available for this forwarding address, we would have to allocate some minimum
space for each record, regardless of its length.

A record may grow so large that it no longer fits on any one page. We have to
deal with this condition by breaking a record into smaller records. The smaller

224 Chapter 7

Large records in real systems: In Sybase ASE, a record can be at most 1962
bytes. This limit is set by the 2 KB log page size, since records are not allowed to
be larger than a page. The exceptions to this rule are BLOBs and CLOBs, which
consist of a set of bidirectionally linked pages. IBM DB2 and Microsoft SQL
Server also do not allow records to span pages, although large objects are allowed
to span pages and are handled separately from other data types. In DB2, record
size is limited only by the page size; in SQL Server, a record can be at most 8 KB,
excluding LOBs. Informix and Oracle 8 allow records to span pages. Informix
allows records to be at most 32 KB, while Oracle has no maximum record size;
large records are organized as a singly directed list.

records could be chained together—part of each smaller record is a pointer to the
next record in the chain—to enable retrieval of the entire original record.

7.8 POINTS TO REVIEW

Memory in a computer system is arranged into primary storage (cache and main
memory), secondary storage (magnetic disks), and tertiary storage (optical disks
and tapes). Storage devices that store data persistently are called nonvolatile.
(Section 7.1)

Disks provide inexpensive, nonvolatile storage. The unit of transfer from disk
into main memory is called a block or page. Blocks are arranged on tracks on
several platters. The time to access a page depends on its location on disk. The
access time has three components: the time to move the disk arm to the de-
sired track (seek time), the time to wait for the desired block to rotate under the
disk head (rotational delay), and the time to transfer the data (transfer time).
(Section 7.1.1)

Careful placement of pages on the disk to exploit the geometry of a disk can
minimize the seek time and rotational delay when pages are read sequentially.
(Section 7.1.2)

A disk array is an arrangement of several disks that are attached to a computer.
Performance of a disk array can be increased through data striping and reliability
can be increased through redundancy. Different RAID organizations called RAID
levels represent different trade-offs between reliability and performance. (Sec-
tion 7.2)

In a DBMS, the disk space manager manages space on disk by keeping track of
free and used disk blocks. It also provides the abstraction of the data being a
collection of disk pages. DBMSs rarely use OS files for performance, functionality,
and portability reasons. (Section 7.3)

Storing Data: Disks and Files 225

In a DBMS, all page requests are centrally processed by the buffer manager. The
buffer manager transfers pages between the disk and a special area of main memory
called the buffer pool, which is divided into page-sized chunks called frames. For
each page in the buffer pool, the buffer manager maintains a pin count, which
indicates the number of users of the current page, and a dirty flag, which indicates
whether the page has been modified. A requested page is kept in the buffer pool
until it is released (unpinned) by all users. Subsequently, a page is written back to
disk (if it has been modified while in the buffer pool) when the frame containing
it is chosen for replacement. (Section 7.4)

The choice of frame to replace is based on the buffer manager’s replacement policy,
for example LRU or clock. Repeated scans of a file can cause sequential flooding
if LRU is used. (Section 7.4.1)

A DBMS buffer manager can often predict the access pattern for disk pages. It
takes advantage of such opportunities by issuing requests to the disk to prefetch
several pages at a time. This technique minimizes disk arm movement and reduces
I/O time. A DBMS also needs to be able to force a page to disk to ensure crash
recovery. (Section 7.4.2)

Database pages are organized into files, and higher-level DBMS code views the
data as a collection of records. (Section 7.5)

The simplest file structure is a heap file, which is an unordered collection of records.
Heap files are either organized as a linked list of data pages or as a list of directory
pages that refer to the actual pages with data. (Section 7.5.1)

Indexes are auxiliary structures that support efficient retrieval of records based on
the values of a search key. (Section 7.5.2)

A page contains a collection of slots, each of which identifies a record. Slotted
pages allow a record to be moved around on a page without altering the record
identifier or rid, a 〈page id, slot number〉 pair. Efficient page organizations exist
for either fixed-length records (bitmap of free slots) or variable-length records (slot
directory). (Section 7.6)

For fixed-length records, the fields can be stored consecutively and the address
of a field can be easily calculated. Variable-length records can be stored with
an array of offsets at the beginning of the record or the individual can be fields
separated by a delimiter symbol. The organization with an array of offsets offers
direct access to fields (which can be important if records are long and contain
many fields) and support for null values. (Section 7.7)

226 Chapter 7

EXERCISES

Exercise 7.1 What is the most important difference between a disk and a tape?

Exercise 7.2 Explain the terms seek time, rotational delay, and transfer time.

Exercise 7.3 Both disks and main memory support direct access to any desired location

(page). On average, main memory accesses are faster, of course. What is the other important

difference (from the perspective of the time required to access a desired page)?

Exercise 7.4 If you have a large file that is frequently scanned sequentially, explain how you

would store the pages in the file on a disk.

Exercise 7.5 Consider a disk with a sector size of 512 bytes, 2,000 tracks per surface, 50

sectors per track, 5 double-sided platters, average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is

the capacity of the disk?

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2,048? 51,200?

4. If the disk platters rotate at 5,400 rpm (revolutions per minute), what is the maximum

rotational delay?

5. Assuming that one track of data can be transferred per revolution, what is the transfer

rate?

Exercise 7.6 Consider again the disk specifications from Exercise 7.5 and suppose that a

block size of 1,024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes

each is to be stored on such a disk and that no record is allowed to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially

on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what is the

page stored on block 1 of track 1 on the next disk surface? How would your answer

change if the disk were capable of reading/writing from all heads in parallel?

5. What is the time required to read a file containing 100,000 records of 100 bytes each

sequentially? Again, how would your answer change if the disk were capable of read-

ing/writing from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each

in some random order? Note that in order to read a record, the block containing the

record has to be fetched from disk. Assume that each block request incurs the average

seek time and rotational delay.

Exercise 7.7 Explain what the buffer manager must do to process a read request for a page.

What happens if the requested page is in the pool but not pinned?

Storing Data: Disks and Files 227

Exercise 7.8 When does a buffer manager write a page to disk?

Exercise 7.9 What does it mean to say that a page is pinned in the buffer pool? Who is

responsible for pinning pages? Who is responsible for unpinning pages?

Exercise 7.10 When a page in the buffer pool is modified, how does the DBMS ensure that

this change is propagated to disk? (Explain the role of the buffer manager as well as the

modifier of the page.)

Exercise 7.11 What happens if there is a page request when all pages in the buffer pool are

dirty?

Exercise 7.12 What is sequential flooding of the buffer pool?

Exercise 7.13 Name an important capability of a DBMS buffer manager that is not sup-

ported by a typical operating system’s buffer manager.

Exercise 7.14 Explain the term prefetching. Why is it important?

Exercise 7.15 Modern disks often have their own main memory caches, typically about one

MB, and use this to do prefetching of pages. The rationale for this technique is the empirical

observation that if a disk page is requested by some (not necessarily database!) application,

80 percent of the time the next page is requested as well. So the disk gambles by reading

ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled

by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently, each

scanning a different file.

3. Can the above problem be addressed by the DBMS buffer manager doing its own prefetch-

ing? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which

is used to cache pages from a different file. Does this technique help, with respect to the

above problem? Given this technique, does it matter whether the DBMS buffer manager

also does prefetching?

Exercise 7.16 Describe two possible record formats. What are the trade-offs between them?

Exercise 7.17 Describe two possible page formats. What are the trade-offs between them?

Exercise 7.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a maximum

number of slots) and to allocate the directory array when the page is created. Discuss

the pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according

to the value in some field) without moving records and without changing the record ids.

228 Chapter 7

Exercise 7.19 Consider the two internal organizations for heap files (using lists of pages and

a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you choose

if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations?

Exercise 7.20 Consider a list-based organization of the pages in a heap file in which two

lists are maintained: a list of all pages in the file and a list of all pages with free space. In

contrast, the list-based organization discussed in the text maintains a list of full pages and a

list of pages with free space.

1. What are the trade-offs, if any? Is one of them clearly superior?

2. For each of these organizations, describe a page format that can be used to implement

it.

Exercise 7.21 Modern disk drives store more sectors on the outer tracks than the inner

tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher

on the outer tracks. The seek time and rotational delay are unchanged. Considering this in-

formation, explain good strategies for placing files with the following kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the index).

4. Sequential scans of a small file.

PROJECT-BASED EXERCISES

Exercise 7.22 Study the public interfaces for the disk space manager, the buffer manager,

and the heap file layer in Minibase.

1. Are heap files with variable-length records supported?

2. What page format is used in Minibase heap files?

3. What happens if you insert a record whose length is greater than the page size?

4. How is free space handled in Minibase?

5. Note to Instructors: See Appendix B for additional project-based exercises.

BIBLIOGRAPHIC NOTES

Salzberg [564] and Wiederhold [681] discuss secondary storage devices and file organizations

in detail.

Storing Data: Disks and Files 229

RAID was originally proposed by Patterson, Gibson, and Katz [512]. The article by Chen

et al. provides an excellent survey of RAID [144] . Books about RAID include Gibson’s

dissertation [269] and the publications from the RAID Advisory Board [527].

The design and implementation of storage managers is discussed in [54, 113, 413, 629, 184].

With the exception of [184], these systems emphasize extensibility, and the papers contain

much of interest from that standpoint as well. Other papers that cover storage management

issues in the context of significant implemented prototype systems are [415] and [513]. The

Dali storage manager, which is optimized for main memory databases, is described in [345].

Three techniques for implementing long fields are compared in [83].

Stonebraker discusses operating systems issues in the context of databases in [626]. Several

buffer management policies for database systems are compared in [150]. Buffer management

is also studied in [101, 142, 223, 198].

8 FILE ORGANIZATIONS & INDEXES

If you don’t find it in the index, look very carefully through the entire catalog.

—Sears, Roebuck, and Co., Consumers’ Guide, 1897

A file organization is a way of arranging the records in a file when the file is stored
on disk. A file of records is likely to be accessed and modified in a variety of ways,
and different ways of arranging the records enable different operations over the file
to be carried out efficiently. For example, if we want to retrieve employee records in
alphabetical order, sorting the file by name is a good file organization. On the other
hand, if we want to retrieve all employees whose salary is in a given range, sorting
employee records by name is not a good file organization. A DBMS supports several
file organization techniques, and an important task of a DBA is to choose a good
organization for each file, based on its expected pattern of use.

We begin this chapter with a discussion in Section 8.1 of the cost model that we
use in this book. In Section 8.2, we present a simplified analysis of three basic file
organizations: files of randomly ordered records (i.e., heap files), files sorted on some
field, and files that are hashed on some fields. Our objective is to emphasize the
importance of choosing an appropriate file organization.

Each file organization makes certain operations efficient, but often we are interested in
supporting more than one operation. For example, sorting a file of employee records on
the name field makes it easy to retrieve employees in alphabetical order, but we may
also want to retrieve all employees who are 55 years old; for this, we would have to scan
the entire file. To deal with such situations, a DBMS builds an index, as we described
in Section 7.5.2. An index on a file is designed to speed up operations that are not
efficiently supported by the basic organization of records in that file. Later chapters
cover several specific index data structures; in this chapter we focus on properties of
indexes that do not depend on the specific index data structure used.

Section 8.3 introduces indexing as a general technique that can speed up retrieval of
records with given values in the search field. Section 8.4 discusses some important
properties of indexes, and Section 8.5 discusses DBMS commands to create an index.

230

File Organizations and Indexes 231

8.1 COST MODEL

In this section we introduce a cost model that allows us to estimate the cost (in terms
of execution time) of different database operations. We will use the following notation
and assumptions in our analysis. There are B data pages with R records per page.
The average time to read or write a disk page is D, and the average time to process
a record (e.g., to compare a field value to a selection constant) is C. In the hashed
file organization, we will use a function, called a hash function, to map a record into a
range of numbers; the time required to apply the hash function to a record is H.

Typical values today are D = 15 milliseconds, C and H = 100 nanoseconds; we there-
fore expect the cost of I/O to dominate. This conclusion is supported by current
hardware trends, in which CPU speeds are steadily rising, whereas disk speeds are not
increasing at a similar pace. On the other hand, as main memory sizes increase, a
much larger fraction of the needed pages are likely to fit in memory, leading to fewer
I/O requests.

We therefore use the number of disk page I/Os as our cost metric in this book.

We emphasize that real systems must consider other aspects of cost, such as CPU
costs (and transmission costs in a distributed database). However, our goal is
primarily to present the underlying algorithms and to illustrate how costs can
be estimated. Therefore, for simplicity, we have chosen to concentrate on only
the I/O component of cost. Given the fact that I/O is often (even typically) the
dominant component of the cost of database operations, considering I/O costs
gives us a good first approximation to the true costs.

Even with our decision to focus on I/O costs, an accurate model would be too
complex for our purposes of conveying the essential ideas in a simple way. We have
therefore chosen to use a simplistic model in which we just count the number of
pages that are read from or written to disk as a measure of I/O. We have ignored
the important issue of blocked access—typically, disk systems allow us to read
a block of contiguous pages in a single I/O request. The cost is equal to the time
required to seek the first page in the block and to transfer all pages in the block.
Such blocked access can be much cheaper than issuing one I/O request per page
in the block, especially if these requests do not follow consecutively: We would
have an additional seek cost for each page in the block.

This discussion of the cost metric we have chosen must be kept in mind when we
discuss the cost of various algorithms in this chapter and in later chapters. We discuss
the implications of the cost model whenever our simplifying assumptions are likely to
affect the conclusions drawn from our analysis in an important way.

232 Chapter 8

8.2 COMPARISON OF THREE FILE ORGANIZATIONS

We now compare the costs of some simple operations for three basic file organizations:
files of randomly ordered records, or heap files; files sorted on a sequence of fields; and
files that are hashed on a sequence of fields. For sorted and hashed files, the sequence of
fields (e.g., salary, age) on which the file is sorted or hashed is called the search key.
Note that the search key for an index can be any sequence of one or more fields; it need
not uniquely identify records. We observe that there is an unfortunate overloading of
the term key in the database literature. A primary key or candidate key (fields that
uniquely identify a record; see Chapter 3) is unrelated to the concept of a search key.

Our goal is to emphasize how important the choice of an appropriate file organization
can be. The operations that we consider are described below.

Scan: Fetch all records in the file. The pages in the file must be fetched from
disk into the buffer pool. There is also a CPU overhead per record for locating
the record on the page (in the pool).

Search with equality selection: Fetch all records that satisfy an equality selec-
tion, for example, “Find the Students record for the student with sid 23.” Pages
that contain qualifying records must be fetched from disk, and qualifying records
must be located within retrieved pages.

Search with range selection: Fetch all records that satisfy a range selection,
for example, “Find all Students records with name alphabetically after ‘Smith.’ ”

Insert: Insert a given record into the file. We must identify the page in the file
into which the new record must be inserted, fetch that page from disk, modify it
to include the new record, and then write back the modified page. Depending on
the file organization, we may have to fetch, modify, and write back other pages as
well.

Delete: Delete a record that is specified using its rid. We must identify the
page that contains the record, fetch it from disk, modify it, and write it back.
Depending on the file organization, we may have to fetch, modify, and write back
other pages as well.

8.2.1 Heap Files

Scan: The cost is B(D + RC) because we must retrieve each of B pages taking time
D per page, and for each page, process R records taking time C per record.

Search with equality selection: Suppose that we know in advance that exactly one
record matches the desired equality selection, that is, the selection is specified on a
candidate key. On average, we must scan half the file, assuming that the record exists

File Organizations and Indexes 233

and the distribution of values in the search field is uniform. For each retrieved data
page, we must check all records on the page to see if it is the desired record. The cost
is 0.5B(D + RC). If there is no record that satisfies the selection, however, we must
scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., “Find students aged 18”), we
always have to scan the entire file because several records with age = 18 could be
dispersed all over the file, and we have no idea how many such records exist.

Search with range selection: The entire file must be scanned because qualifying
records could appear anywhere in the file, and we do not know how many qualifying
records exist. The cost is B(D + RC).

Insert: We assume that records are always inserted at the end of the file. We must
fetch the last page in the file, add the record, and write the page back. The cost is
2D + C.

Delete: We must find the record, remove the record from the page, and write the
modified page back. We assume that no attempt is made to compact the file to reclaim
the free space created by deletions, for simplicity.1 The cost is the cost of searching
plus C + D.

We assume that the record to be deleted is specified using the record id. Since the
page id can easily be obtained from the record id, we can directly read in the page.
The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition on some
fields, the cost of searching is given in our discussion of equality and range selections.
The cost of deletion is also affected by the number of qualifying records, since all pages
containing such records must be modified.

8.2.2 Sorted Files

Scan: The cost is B(D + RC) because all pages must be examined. Note that this
case is no better or worse than the case of unordered files. However, the order in which
records are retrieved corresponds to the sort order.

Search with equality selection: We assume that the equality selection is specified
on the field by which the file is sorted; if not, the cost is identical to that for a heap

1In practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot, as discussed in Chapter 7. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison of heap files, sorted files, and hashed
files.

234 Chapter 8

file. We can locate the first page containing the desired record or records, should any
qualifying records exist, with a binary search in log2B steps. (This analysis assumes
that the pages in the sorted file are stored sequentially, and we can retrieve the ith page
on the file directly in one disk I/O. This assumption is not valid if, for example, the
sorted file is implemented as a heap file using the linked-list organization, with pages
in the appropriate sorted order.) Each step requires a disk I/O and two comparisons.
Once the page is known, the first qualifying record can again be located by a binary
search of the page at a cost of Clog2R. The cost is Dlog2B + Clog2R, which is a
significant improvement over searching heap files.

If there are several qualifying records (e.g., “Find all students aged 18”), they are
guaranteed to be adjacent to each other due to the sorting on age, and so the cost of
retrieving all such records is the cost of locating the first such record (Dlog2B+Clog2R)
plus the cost of reading all the qualifying records in sequential order. Typically, all
qualifying records fit on a single page. If there are no qualifying records, this is es-
tablished by the search for the first qualifying record, which finds the page that would
have contained a qualifying record, had one existed, and searches that page.

Search with range selection: Again assuming that the range selection is on the
sort field, the first record that satisfies the selection is located as it is for search with
equality. Subsequently, data pages are sequentially retrieved until a record is found
that does not satisfy the range selection; this is similar to an equality search with many
qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that satisfy the
search. The cost of the search includes the cost of fetching the first page containing
qualifying, or matching, records. For small range selections, all qualifying records
appear on this page. For larger range selections, we have to fetch additional pages
containing matching records.

Insert: To insert a record while preserving the sort order, we must first find the
correct position in the file, add the record, and then fetch and rewrite all subsequent
pages (because all the old records will be shifted by one slot, assuming that the file
has no empty slots). On average, we can assume that the inserted record belongs in
the middle of the file. Thus, we must read the latter half of the file and then write
it back after adding the new record. The cost is therefore the cost of searching to
find the position of the new record plus 2 ∗ (0.5B(D + RC)), that is, search cost plus
B(D + RC).

Delete: We must search for the record, remove the record from the page, and write
the modified page back. We must also read and write all subsequent pages because all

File Organizations and Indexes 235

records that follow the deleted record must be moved up to compact the free space.2

The cost is the same as for an insert, that is, search cost plus B(D + RC). Given the
rid of the record to delete, we can fetch the page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost of
deletion depends on the number of qualifying records. If the condition is specified on
the sort field, qualifying records are guaranteed to be contiguous due to the sorting,
and the first qualifying record can be located using binary search.

8.2.3 Hashed Files

A simple hashed file organization enables us to locate records with a given search key
value quickly, for example, “Find the Students record for Joe,” if the file is hashed on
the name field.

The pages in a hashed file are grouped into buckets. Given a bucket number, the
hashed file structure allows us to find the primary page for that bucket. The bucket
to which a record belongs can be determined by applying a special function called
a hash function, to the search field(s). On inserts, a record is inserted into the
appropriate bucket, with additional ‘overflow’ pages allocated if the primary page for
the bucket becomes full. The overflow pages for each bucket are maintained in a linked
list. To search for a record with a given search key value, we simply apply the hash
function to identify the bucket to which such records belong and look at all pages in
that bucket.

This organization is called a static hashed file, and its main drawback is that long
chains of overflow pages can develop. This can affect performance because all pages in
a bucket have to be searched. Dynamic hash structures that address this problem are
known, and we discuss them in Chapter 10; for the analysis in this chapter, we will
simply assume that there are no overflow pages.

Scan: In a hashed file, pages are kept at about 80 percent occupancy (to leave some
space for future insertions and minimize overflow pages as the file expands). This is
achieved by adding a new page to a bucket when each existing page is 80 percent full,
when records are initially organized into a hashed file structure. Thus, the number
of pages, and the cost of scanning all the data pages, is about 1.25 times the cost of
scanning an unordered file, that is, 1.25B(D + RC).

Search with equality selection: This operation is supported very efficiently if the
selection is on the search key for the hashed file. (Otherwise, the entire file must

2Unlike a heap file, there is no inexpensive way to manage free space, so we account for the cost
of compacting a file when a record is deleted.

236 Chapter 8

be scanned.) The cost of identifying the page that contains qualifying records is H;
assuming that this bucket consists of just one page (i.e., no overflow pages), retrieving
it costs D. The cost is H + D + 0.5RC if we assume that we find the record after
scanning half the records on the page. This is even lower than the cost for sorted files.
If there are several qualifying records, or none, we still have to retrieve just one page,
but we must scan the entire page.

Note that the hash function associated with a hashed file maps a record to a bucket
based on the values in all the search key fields; if the value for any one of these fields is
not specified, we cannot tell which bucket the record belongs to. Thus, if the selection
is not an equality condition on all the search key fields, we have to scan the entire file.

Search with range selection: The hash structure offers no help; even if the range
selection is on the search key, the entire file must be scanned. The cost is 1.25B(D +
RC).

Insert: The appropriate page must be located, modified, and then written back. The
cost is the cost of search plus C + D.

Delete: We must search for the record, remove it from the page, and write the modified
page back. The cost is again the cost of search plus C + D (for writing the modified
page).

If records to be deleted are specified using an equality condition on the search key, all
qualifying records are guaranteed to be in the same bucket, which can be identified by
applying the hash function.

8.2.4 Choosing a File Organization

Figure 8.1 compares I/O costs for the three file organizations. A heap file has good
storage efficiency and supports fast scan, insertion, and deletion of records. However,
it is slow for searches.

File Scan Equality Range Insert Delete

Type Search Search

Heap BD 0.5BD BD 2D Search + D

Sorted BD Dlog2B Dlog2B+#
matches

Search + BD Search + BD

Hashed 1.25BD D 1.25BD 2D Search + D

Figure 8.1 A Comparison of I/O Costs

File Organizations and Indexes 237

A sorted file also offers good storage efficiency, but insertion and deletion of records is
slow. It is quite fast for searches, and it is the best structure for range selections. It is
worth noting that in a real DBMS, a file is almost never kept fully sorted. A structure
called a B+ tree, which we will discuss in Chapter 9, offers all the advantages of a
sorted file and supports inserts and deletes efficiently. (There is a space overhead for
these benefits, relative to a sorted file, but the trade-off is well worth it.)

Files are sometimes kept ‘almost sorted’ in that they are originally sorted, with some
free space left on each page to accommodate future insertions, but once this space is
used, overflow pages are used to handle insertions. The cost of insertion and deletion
is similar to a heap file, but the degree of sorting deteriorates as the file grows.

A hashed file does not utilize space quite as well as a sorted file, but insertions and
deletions are fast, and equality selections are very fast. However, the structure offers
no support for range selections, and full file scans are a little slower; the lower space
utilization means that files contain more pages.

In summary, Figure 8.1 demonstrates that no one file organization is uniformly superior
in all situations. An unordered file is best if only full file scans are desired. A hashed
file is best if the most common operation is an equality selection. A sorted file is best
if range selections are desired. The organizations that we have studied here can be
improved on—the problems of overflow pages in static hashing can be overcome by
using dynamic hashing structures, and the high cost of inserts and deletes in a sorted
file can be overcome by using tree-structured indexes—but the main observation, that
the choice of an appropriate file organization depends on how the file is commonly
used, remains valid.

8.3 OVERVIEW OF INDEXES

As we noted earlier, an index on a file is an auxiliary structure designed to speed up
operations that are not efficiently supported by the basic organization of records in
that file.

An index can be viewed as a collection of data entries, with an efficient way to locate
all data entries with search key value k. Each such data entry, which we denote as
k∗, contains enough information to enable us to retrieve (one or more) data records
with search key value k. (Note that a data entry is, in general, different from a data
record!) Figure 8.2 shows an index with search key sal that contains 〈sal, rid〉 pairs as
data entries. The rid component of a data entry in this index is a pointer to a record
with search key value sal.

Two important questions to consider are:

238 Chapter 8

h(age) = 01

h(age)=10

h(age)=00
Jones, 40, 6003

Tracy, 44, 5004

Basu, 33, 4003

Cass, 50, 5004

Daniels, 22, 6003

Bristow, 29, 2007

Smith, 44, 3000

Ashby, 25, 3000

6003

6003

2007

4003

3000

3000

5004

5004 h2

h(sal)=11

h(sal)=00

age sal

File hashed on age
File of <sal, rid> pairs

hashed on sal

h1

Figure 8.2 File Hashed on age, with Index on sal

How are data entries organized in order to support efficient retrieval of data entries
with a given search key value?

Exactly what is stored as a data entry?

One way to organize data entries is to hash data entries on the search key. In this
approach, we essentially treat the collection of data entries as a file of records, hashed
on the search key. This is how the index on sal shown in Figure 8.2 is organized. The
hash function h for this example is quite simple; it converts the search key value to its
binary representation and uses the two least significant bits as the bucket identifier.
Another way to organize data entries is to build a data structure that directs a search
for data entries. Several index data structures are known that allow us to efficiently find
data entries with a given search key value. We will study tree-based index structures
in Chapter 9 and hash-based index structures in Chapter 10.

We consider what is stored in a data entry in the following section.

8.3.1 Alternatives for Data Entries in an Index

A data entry k∗ allows us to retrieve one or more data records with key value k. We
need to consider three main alternatives:

1. A data entry k∗ is an actual data record (with search key value k).

2. A data entry is a 〈k, rid 〉 pair, where rid is the record id of a data record with
search key value k.

3. A data entry is a 〈k, rid-list 〉 pair, where rid-list is a list of record ids of data
records with search key value k.

File Organizations and Indexes 239

Observe that if an index uses Alternative (1), there is no need to store the data records
separately, in addition to the contents of the index. We can think of such an index
as a special file organization that can be used instead of a sorted file or a heap file
organization. Figure 8.2 illustrates Alternatives (1) and (2). The file of employee
records is hashed on age; we can think of this as an index structure in which a hash
function is applied to the age value to locate the bucket for a record and Alternative
(1) is used for data entries. The index on sal also uses hashing to locate data entries,
which are now 〈sal, rid of employee record〉 pairs; that is, Alternative (2) is used for
data entries.

Alternatives (2) and (3), which contain data entries that point to data records, are
independent of the file organization that is used for the indexed file (i.e., the file
that contains the data records). Alternative (3) offers better space utilization than
Alternative (2), but data entries are variable in length, depending on the number of
data records with a given search key value.

If we want to build more than one index on a collection of data records, for example,
we want to build indexes on both the age and the sal fields as illustrated in Figure 8.2,
at most one of the indexes should use Alternative (1) because we want to avoid storing
data records multiple times.

We note that different index data structures used to speed up searches for data entries
with a given search key can be combined with any of the three alternatives for data
entries.

8.4 PROPERTIES OF INDEXES

In this section, we discuss some important properties of an index that affect the effi-
ciency of searches using the index.

8.4.1 Clustered versus Unclustered Indexes

When a file is organized so that the ordering of data records is the same as or close
to the ordering of data entries in some index, we say that the index is clustered.
An index that uses Alternative (1) is clustered, by definition. An index that uses
Alternative (2) or Alternative (3) can be a clustered index only if the data records are
sorted on the search key field. Otherwise, the order of the data records is random,
defined purely by their physical order, and there is no reasonable way to arrange the
data entries in the index in the same order. (Indexes based on hashing do not store
data entries in sorted order by search key, so a hash index is clustered only if it uses
Alternative (1).)

240 Chapter 8

Indexes that maintain data entries in sorted order by search key use a collection of
index entries, organized into a tree structure, to guide searches for data entries, which
are stored at the leaf level of the tree in sorted order. Clustered and unclustered tree
indexes are illustrated in Figures 8.3 and 8.4; we discuss tree-structured indexes further
in Chapter 9. For simplicity, in Figure 8.3 we assume that the underlying file of data
records is fully sorted.

Index entries

Data entries

(Direct search for

Index file

Data file
Data

records

data entries)

Figure 8.3 Clustered Tree Index Using Alternative (2)

Index entries

Data entries

(Direct search for

Index file

Data file
Data

records

data entries)

Figure 8.4 Unclustered Tree Index Using Alternative (2)

In practice, data records are rarely maintained in fully sorted order, unless data records
are stored in an index using Alternative (1), because of the high overhead of moving
data records around to preserve the sort order as records are inserted and deleted.
Typically, the records are sorted initially and each page is left with some free space to
absorb future insertions. If the free space on a page is subsequently used up (by records

File Organizations and Indexes 241

inserted after the initial sorting step), further insertions to this page are handled using a
linked list of overflow pages. Thus, after a while, the order of records only approximates
the intended sorted order, and the file must be reorganized (i.e., sorted afresh) to
ensure good performance.

Thus, clustered indexes are relatively expensive to maintain when the file is updated.
Another reason clustered indexes are expensive to maintain is that data entries may
have to be moved across pages, and if records are identified by a combination of page
id and slot, as is often the case, all places in the database that point to a moved
record (typically, entries in other indexes for the same collection of records) must also
be updated to point to the new location; these additional updates can be very time-
consuming.

A data file can be clustered on at most one search key, which means that we can have
at most one clustered index on a data file. An index that is not clustered is called an
unclustered index; we can have several unclustered indexes on a data file. Suppose
that Students records are sorted by age; an index on age that stores data entries in
sorted order by age is a clustered index. If in addition we have an index on the gpa
field, the latter must be an unclustered index.

The cost of using an index to answer a range search query can vary tremendously
based on whether the index is clustered. If the index is clustered, the rids in qualifying
data entries point to a contiguous collection of records, as Figure 8.3 illustrates, and
we need to retrieve only a few data pages. If the index is unclustered, each qualifying
data entry could contain a rid that points to a distinct data page, leading to as many
data page I/Os as the number of data entries that match the range selection! This
point is discussed further in Chapters 11 and 16.

8.4.2 Dense versus Sparse Indexes

An index is said to be dense if it contains (at least) one data entry for every search
key value that appears in a record in the indexed file.3 A sparse index contains one
entry for each page of records in the data file. Alternative (1) for data entries always
leads to a dense index. Alternative (2) can be used to build either dense or sparse
indexes. Alternative (3) is typically only used to build a dense index.

We illustrate sparse and dense indexes in Figure 8.5. A data file of records with three
fields (name, age, and sal) is shown with two simple indexes on it, both of which use
Alternative (2) for data entry format. The first index is a sparse, clustered index on
name. Notice how the order of data entries in the index corresponds to the order of

3We say ‘at least’ because several data entries could have the same search key value if there are
duplicates and we use Alternative (2).

242 Chapter 8

records in the data file. There is one data entry per page of data records. The second
index is a dense, unclustered index on the age field. Notice that the order of data
entries in the index differs from the order of data records. There is one data entry in
the index per record in the data file (because we use Alternative (2)).

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

DATA
on

Sparse index

name

Dense index
on

age

Figure 8.5 Sparse versus Dense Indexes

We cannot build a sparse index that is not clustered. Thus, we can have at most one
sparse index. A sparse index is typically much smaller than a dense index. On the
other hand, some very useful optimization techniques rely on an index being dense
(Chapter 16).

A data file is said to be inverted on a field if there is a dense secondary index on this
field. A fully inverted file is one in which there is a dense secondary index on each
field that does not appear in the primary key.4

8.4.3 Primary and Secondary Indexes

An index on a set of fields that includes the primary key is called a primary index.
An index that is not a primary index is called a secondary index. (The terms primary
index and secondary index are sometimes used with a different meaning: An index that
uses Alternative (1) is called a primary index, and one that uses Alternatives (2) or
(3) is called a secondary index. We will be consistent with the definitions presented
earlier, but the reader should be aware of this lack of standard terminology in the
literature.)

4This terminology arises from the observation that these index structures allow us to take the value
in a non key field and get the values in key fields, which is the inverse of the more intuitive case in
which we use the values of the key fields to locate the record.

File Organizations and Indexes 243

Two data entries are said to be duplicates if they have the same value for the search
key field associated with the index. A primary index is guaranteed not to contain
duplicates, but an index on other (collections of) fields can contain duplicates. Thus,
in general, a secondary index contains duplicates. If we know that no duplicates exist,
that is, we know that the search key contains some candidate key, we call the index a
unique index.

8.4.4 Indexes Using Composite Search Keys

The search key for an index can contain several fields; such keys are called composite
search keys or concatenated keys. As an example, consider a collection of employee
records, with fields name, age, and sal, stored in sorted order by name. Figure 8.6
illustrates the difference between a composite index with key 〈age, sal〉, a composite
index with key 〈sal, age〉, an index with key age, and an index with key sal. All indexes
shown in the figure use Alternative (2) for data entries.

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

bob

cal

joe

sue 13

12

11

12 10

80

20

75

age salname

<sal, age>

<age, sal> <age>

<sal>

Index

IndexIndex

Index

Data

Figure 8.6 Composite Key Indexes

If the search key is composite, an equality query is one in which each field in the
search key is bound to a constant. For example, we can ask to retrieve all data entries
with age = 20 and sal = 10. The hashed file organization supports only equality
queries, since a hash function identifies the bucket containing desired records only if a
value is specified for each field in the search key.

A range query is one in which not all fields in the search key are bound to constants.
For example, we can ask to retrieve all data entries with age = 20; this query implies
that any value is acceptable for the sal field. As another example of a range query, we
can ask to retrieve all data entries with age < 30 and sal > 40.

244 Chapter 8

8.5 INDEX SPECIFICATION IN SQL-92

The SQL-92 standard does not include any statement for creating or dropping index
structures. In fact, the standard does not even require SQL implementations to support
indexes! In practice, of course, every commercial relational DBMS supports one or
more kinds of indexes. The following command to create a B+ tree index—we discuss
B+ tree indexes in Chapter 9—is illustrative:

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE = BTREE,

KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using the
concatenation of the age and gpa columns as the key. Thus, key values are pairs of
the form 〈age, gpa〉, and there is a distinct entry for each such pair. Once the index is
created, it is automatically maintained by the DBMS adding/removing data entries in
response to inserts/deletes of records on the Students relation.

8.6 POINTS TO REVIEW

A file organization is a way of arranging records in a file. In our discussion of
different file organizations, we use a simple cost model that uses the number of
disk page I/Os as the cost metric. (Section 8.1)

We compare three basic file organizations (heap files, sorted files, and hashed files)
using the following operations: scan, equality search, range search, insert, and
delete. The choice of file organization can have a significant impact on perfor-
mance. (Section 8.2)

An index is a data structure that speeds up certain operations on a file. The
operations involve a search key, which is a set of record fields (in most cases a
single field). The elements of an index are called data entries. Data entries can
be actual data records, 〈search-key, rid〉 pairs, or 〈search-key, rid-list〉 pairs. A
given file of data records can have several indexes, each with a different search
key. (Section 8.3)

In a clustered index, the order of records in the file matches the order of data
entries in the index. An index is called dense if there is at least one data entry per
search key that appears in the file; otherwise the index is called sparse. An index
is called a primary index if the search key includes the primary key; otherwise it
is called a secondary index. If a search key contains several fields it is called a
composite key. (Section 8.4)

SQL-92 does not include statements for management of index structures, and so
there some variation in index-related commands across different DBMSs. (Sec-
tion 8.5)

File Organizations and Indexes 245

EXERCISES

Exercise 8.1 What are the main conclusions that you can draw from the discussion of the

three file organizations?

Exercise 8.2 Consider a delete specified using an equality condition. What is the cost if no

record qualifies? What is the cost if the condition is not on a key?

Exercise 8.3 Which of the three basic file organizations would you choose for a file where

the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans where the order of records does not matter.

3. Search for a record based on a particular field value.

Exercise 8.4 Explain the difference between each of the following:

1. Primary versus secondary indexes.

2. Dense versus sparse indexes.

3. Clustered versus unclustered indexes.

If you were about to create an index on a relation, what considerations would guide your

choice with respect to each pair of properties listed above?

Exercise 8.5 Consider a relation stored as a randomly ordered file for which the only index

is an unclustered index on a field called sal. If you want to retrieve all records with sal > 20,

is using the index always the best alternative? Explain.

Exercise 8.6 If an index contains data records as ‘data entries’, is it clustered or unclustered?

Dense or sparse?

Exercise 8.7 Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as discussed

in Section 8.3.1. Are they all suitable for secondary indexes? Explain.

Exercise 8.8 Consider the instance of the Students relation shown in Figure 8.7, sorted by

age: For the purposes of this question, assume that these tuples are stored in a sorted file in

the order shown; the first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and

so on. Each page can store up to three data records. You can use 〈page-id, slot〉 to identify a

tuple.

List the data entries in each of the following indexes. If the order of entries is significant, say

so and explain why. If such an index cannot be constructed, say so and explain why.

1. A dense index on age using Alternative (1).

2. A dense index on age using Alternative (2).

3. A dense index on age using Alternative (3).

4. A sparse index on age using Alternative (1).

246 Chapter 8

sid name login age gpa

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 19 3.2

53650 Smith smith@math 19 3.8

Figure 8.7 An Instance of the Students Relation, Sorted by age

5. A sparse index on age using Alternative (2).

6. A sparse index on age using Alternative (3).

7. A dense index on gpa using Alternative (1).

8. A dense index on gpa using Alternative (2).

9. A dense index on gpa using Alternative (3).

10. A sparse index on gpa using Alternative (1).

11. A sparse index on gpa using Alternative (2).

12. A sparse index on gpa using Alternative (3).

PROJECT-BASED EXERCISES

Exercise 8.9 Answer the following questions:

1. What indexing techniques are supported in Minibase?

2. What alternatives for data entries are supported?

3. Are clustered indexes supported? Are sparse indexes supported?

BIBLIOGRAPHIC NOTES

Several books discuss file organizations in detail [25, 266, 381, 461, 564, 606, 680].

9 TREE-STRUCTURED INDEXING

I think that I shall never see

A billboard lovely as a tree.

Perhaps unless the billboards fall

I’ll never see a tree at all.

—Ogden Nash, Song of the Open Road

We now consider two index data structures, called ISAM and B+ trees, based on tree
organizations. These structures provide efficient support for range searches, including
sorted file scans as a special case. Unlike sorted files, these index structures support
efficient insertion and deletion. They also provide support for equality selections,
although they are not as efficient in this case as hash-based indexes, which are discussed
in Chapter 10.

An ISAM1 tree is a static index structure that is effective when the file is not frequently
updated, but it is unsuitable for files that grow and shrink a lot. We discuss ISAM
in Section 9.1. The B+ tree is a dynamic structure that adjusts to changes in the file
gracefully. It is the most widely used index structure because it adjusts well to changes
and supports both equality and range queries. We introduce B+ trees in Section 9.2.
We cover B+ trees in detail in the remaining sections. Section 9.3 describes the format
of a tree node. Section 9.4 considers how to search for records by using a B+ tree
index. Section 9.5 presents the algorithm for inserting records into a B+ tree, and
Section 9.6 presents the deletion algorithm. Section 9.7 discusses how duplicates are
handled. We conclude with a discussion of some practical issues concerning B+ trees
in Section 9.8.

Notation: In the ISAM and B+ tree structures, leaf pages contain data entries,
according to the terminology introduced in Chapter 8. For convenience, we will denote
a data entry with search key value k as k∗. Non-leaf pages contain index entries of
the form 〈search key value, page id〉 and are used to direct the search for a desired data
entry (which is stored in some leaf). We will often simply use entry where the context
makes the nature of the entry (index or data) clear.

1ISAM stands for Indexed Sequential Access Method.

247

248 Chapter 9

9.1 INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

To understand the motivation for the ISAM technique, it is useful to begin with a
simple sorted file. Consider a file of Students records sorted by gpa. To answer a range
selection such as “Find all students with a gpa higher than 3.0,” we must identify the
first such student by doing a binary search of the file and then scan the file from that
point on. If the file is large, the initial binary search can be quite expensive; can we
improve upon this method?

One idea is to create a second file with one record per page in the original (data) file, of
the form 〈first key on page, pointer to page〉, again sorted by the key attribute (which
is gpa in our example). The format of a page in the second index file is illustrated in
Figure 9.1.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Figure 9.1 Format of an Index Page

We refer to pairs of the form 〈key, pointer〉 as entries. Notice that each index page
contains one pointer more than the number of keys—each key serves as a separator for
the contents of the pages pointed to by the pointers to its left and right. This structure
is illustrated in Figure 9.2.

k2 kNk1

Data file

Index file

Page 3Page 2Page 1 Page N

Figure 9.2 One-Level Index Structure

We can do a binary search of the index file to identify the page containing the first
key (gpa) value that satisfies the range selection (in our example, the first student
with gpa over 3.0) and follow the pointer to the page containing the first data record
with that key value. We can then scan the data file sequentially from that point on
to retrieve other qualifying records. This example uses the index to find the first
data page containing a Students record with gpa greater than 3.0, and the data file is
scanned from that point on to retrieve other such Students records.

Tree-Structured Indexing 249

Because the size of an entry in the index file (key value and page id) is likely to be
much smaller than the size of a page, and only one such entry exists per page of the
data file, the index file is likely to be much smaller than the data file; thus, a binary
search of the index file is much faster than a binary search of the data file. However,
a binary search of the index file could still be fairly expensive, and the index file is
typically still large enough to make inserts and deletes expensive.

The potential large size of the index file motivates the ISAM idea: Why not apply
the previous step of building an auxiliary file on the index file and so on recursively
until the final auxiliary file fits on one page? This repeated construction of a one-level
index leads to a tree structure that is illustrated in Figure 9.3. The data entries of the
ISAM index are in the leaf pages of the tree and additional overflow pages that are
chained to some leaf page. In addition, some systems carefully organize the layout of
pages so that page boundaries correspond closely to the physical characteristics of the
underlying storage device. The ISAM structure is completely static (except for the
overflow pages, of which it is hoped, there will be few) and facilitates such low-level
optimizations.

pages

pages
Primary pages

Leaf

Non-leaf

Overflow page

Figure 9.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This corre-
sponds to an index that uses Alternative (1) for data entries, in terms of the alternatives
described in Chapter 8; we can create an index with Alternative (2) by storing the data
records in a separate file and storing 〈key, rid〉 pairs in the leaf pages of the ISAM
index. When the file is created, all leaf pages are allocated sequentially and sorted on
the search key value. (If Alternatives (2) or (3) are used, the data records are created
and sorted before allocating the leaf pages of the ISAM index.) The non-leaf level
pages are then allocated. If there are several inserts to the file subsequently, so that
more entries are inserted into a leaf than will fit onto a single page, additional pages
are needed because the index structure is static. These additional pages are allocated
from an overflow area. The allocation of pages is illustrated in Figure 9.4.

250 Chapter 9

Overflow Pages

Index Pages

Data Pages

Figure 9.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are all quite straightforward.
For an equality selection search, we start at the root node and determine which subtree
to search by comparing the value in the search field of the given record with the key
values in the node. (The search algorithm is identical to that for a B+ tree; we present
this algorithm in more detail later.) For a range query, the starting point in the data
(or leaf) level is determined similarly, and data pages are then retrieved sequentially.
For inserts and deletes, the appropriate page is determined as for a search, and the
record is inserted or deleted with overflow pages added if necessary.

The following example illustrates the ISAM index structure. Consider the tree shown
in Figure 9.5. All searches begin at the root. For example, to locate a record with the
key value 27, we start at the root and follow the left pointer, since 27 < 40. We then
follow the middle pointer, since 20 <= 27 < 33. For a range search, we find the first
qualifying data entry as for an equality selection and then retrieve primary leaf pages
sequentially (also retrieving overflow pages as needed by following pointers from the
primary pages). The primary leaf pages are assumed to be allocated sequentially—this
assumption is reasonable because the number of such pages is known when the tree is
created and does not change subsequently under inserts and deletes—and so no ‘next
leaf page’ pointers are needed.

We assume that each leaf page can contain two entries. If we now insert a record with
key value 23, the entry 23* belongs in the second data page, which already contains
20* and 27* and has no more space. We deal with this situation by adding an overflow
page and putting 23* in the overflow page. Chains of overflow pages can easily develop.
For instance, inserting 48*, 41*, and 42* leads to an overflow chain of two pages. The
tree of Figure 9.5 with all these insertions is shown in Figure 9.6.

The deletion of an entry k∗ is handled by simply removing the entry. If this entry is
on an overflow page and the overflow page becomes empty, the page can be removed.
If the entry is on a primary page and deletion makes the primary page empty, the
simplest approach is to simply leave the empty primary page as it is; it serves as a

Tree-Structured Indexing 251

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Figure 9.5 Sample ISAM Tree

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

23* 48* 41*

42*

Non-leaf

pages

Primary

leaf

pages

Overflow

pages

Root

Figure 9.6 ISAM Tree after Inserts

252 Chapter 9

placeholder for future insertions (and possibly non-empty overflow pages, because we
do not move records from the overflow pages to the primary page when deletions on
the primary page create space). Thus, the number of primary leaf pages is fixed at file
creation time. Notice that deleting entries could lead to a situation in which key values
that appear in the index levels do not appear in the leaves! Since index levels are used
only to direct a search to the correct leaf page, this situation is not a problem. The
tree of Figure 9.6 is shown in Figure 9.7 after deletion of the entries 42*, 51*, and 97*.
Note that after deleting 51*, the key value 51 continues to appear in the index level.
A subsequent search for 51* would go to the correct leaf page and determine that the
entry is not in the tree.

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Figure 9.7 ISAM Tree after Deletes

The non-leaf pages direct a search to the correct leaf page. The number of disk I/Os
is equal to the number of levels of the tree and is equal to logF N , where N is the
number of primary leaf pages and the fan-out F is the number of children per index
page. This number is considerably less than the number of disk I/Os for binary search,
which is log2N ; in fact, it is reduced further by pinning the root page in memory. The
cost of access via a one-level index is log2(N/F). If we consider a file with 1,000,000
records, 10 records per leaf page, and 100 entries per index page, the cost (in page
I/Os) of a file scan is 100,000, a binary search of the sorted data file is 17, a binary
search of a one-level index is 10, and the ISAM file (assuming no overflow) is 3.

Note that once the ISAM file is created, inserts and deletes affect only the contents of
leaf pages. A consequence of this design is that long overflow chains could develop if a
number of inserts are made to the same leaf. These chains can significantly affect the
time to retrieve a record because the overflow chain has to be searched as well when
the search gets to this leaf. (Although data in the overflow chain can be kept sorted,

Tree-Structured Indexing 253

it usually is not, in order to make inserts fast.) To alleviate this problem, the tree
is initially created so that about 20 percent of each page is free. However, once the
free space is filled in with inserted records, unless space is freed again through deletes,
overflow chains can be eliminated only by a complete reorganization of the file.

The fact that only leaf pages are modified also has an important advantage with respect
to concurrent access. When a page is accessed, it is typically ‘locked’ by the requestor
to ensure that it is not concurrently modified by other users of the page. To modify
a page, it must be locked in ‘exclusive’ mode, which is permitted only when no one
else holds a lock on the page. Locking can lead to queues of users (transactions, to be
more precise) waiting to get access to a page. Queues can be a significant performance
bottleneck, especially for heavily accessed pages near the root of an index structure. In
the ISAM structure, since we know that index-level pages are never modified, we can
safely omit the locking step. Not locking index-level pages is an important advantage
of ISAM over a dynamic structure like a B+ tree. If the data distribution and size is
relatively static, which means overflow chains are rare, ISAM might be preferable to
B+ trees due to this advantage.

9.2 B+ TREES: A DYNAMIC INDEX STRUCTURE

A static structure such as the ISAM index suffers from the problem that long overflow
chains can develop as the file grows, leading to poor performance. This problem
motivated the development of more flexible, dynamic structures that adjust gracefully
to inserts and deletes. The B+ tree search structure, which is widely used, is a
balanced tree in which the internal nodes direct the search and the leaf nodes contain
the data entries. Since the tree structure grows and shrinks dynamically, it is not
feasible to allocate the leaf pages sequentially as in ISAM, where the set of primary
leaf pages was static. In order to retrieve all leaf pages efficiently, we have to link
them using page pointers. By organizing them into a doubly linked list, we can easily
traverse the sequence of leaf pages (sometimes called the sequence set) in either
direction. This structure is illustrated in Figure 9.8.

The following are some of the main characteristics of a B+ tree:

Operations (insert, delete) on the tree keep it balanced.

A minimum occupancy of 50 percent is guaranteed for each node except the root if
the deletion algorithm discussed in Section 9.6 is implemented. However, deletion
is often implemented by simply locating the data entry and removing it, without
adjusting the tree as needed to guarantee the 50 percent occupancy, because files
typically grow rather than shrink.

Searching for a record requires just a traversal from the root to the appropriate
leaf. We will refer to the length of a path from the root to a leaf—any leaf, because

254 Chapter 9

Index entries

Data entries

("Sequence set")

(Direct search)

Index
file

Figure 9.8 Structure of a B+ Tree

the tree is balanced—as the height of the tree. For example, a tree with only a
leaf level and a single index level, such as the tree shown in Figure 9.10, has height
1. Because of high fan-out, the height of a B+ tree is rarely more than 3 or 4.

We will study B+ trees in which every node contains m entries, where d ≤ m ≤ 2d.
The value d is a parameter of the B+ tree, called the order of the tree, and is a measure
of the capacity of a tree node. The root node is the only exception to this requirement
on the number of entries; for the root it is simply required that 1 ≤ m ≤ 2d.

If a file of records is updated frequently and sorted access is important, maintaining
a B+ tree index with data records stored as data entries is almost always superior
to maintaining a sorted file. For the space overhead of storing the index entries, we
obtain all the advantages of a sorted file plus efficient insertion and deletion algorithms.
B+ trees typically maintain 67 percent space occupancy. B+ trees are usually also
preferable to ISAM indexing because inserts are handled gracefully without overflow
chains. However, if the dataset size and distribution remain fairly static, overflow
chains may not be a major problem. In this case, two factors favor ISAM: the leaf
pages are allocated in sequence (making scans over a large range more efficient than in
a B+ tree, in which pages are likely to get out of sequence on disk over time, even if
they were in sequence after bulk-loading), and the locking overhead of ISAM is lower
than that for B+ trees. As a general rule, however, B+ trees are likely to perform
better than ISAM.

9.3 FORMAT OF A NODE

The format of a node is the same as for ISAM and is shown in Figure 9.1. Non-leaf
nodes with m index entries contain m + 1 pointers to children. Pointer Pi points to
a subtree in which all key values K are such that Ki ≤ K < Ki+1. As special cases,
P0 points to a tree in which all key values are less than K1, and Pm points to a tree

Tree-Structured Indexing 255

in which all key values are greater than or equal to Km. For leaf nodes, entries are
denoted as k∗, as usual. Just as in ISAM, leaf nodes (and only leaf nodes!) contain
data entries. In the common case that Alternative (2) or (3) is used, leaf entries are
〈K,I(K) 〉 pairs, just like non-leaf entries. Regardless of the alternative chosen for leaf
entries, the leaf pages are chained together in a doubly linked list. Thus, the leaves
form a sequence, which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be achieved
using the record formats presented in Section 7.7; after all, each key–pointer pair can
be thought of as a record. If the field being indexed is of fixed length, these index
entries will be of fixed length; otherwise, we have variable-length records. In either
case the B+ tree can itself be viewed as a file of records. If the leaf pages do not
contain the actual data records, then the B+ tree is indeed a file of records that is
distinct from the file that contains the data. If the leaf pages contain data records,
then a file contains the B+ tree as well as the data.

9.4 SEARCH

The algorithm for search finds the leaf node in which a given data entry belongs. A
pseudocode sketch of the algorithm is given in Figure 9.9. We use the notation *ptr
to denote the value pointed to by a pointer variable ptr and & (value) to denote the
address of value. Note that finding i in tree search requires us to search within the
node, which can be done with either a linear search or a binary search (e.g., depending
on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we will assume
that there are no duplicates. That is, no two data entries are allowed to have the same
key value. Of course, duplicates arise whenever the search key does not contain a
candidate key and must be dealt with in practice. We consider how duplicates can be
handled in Section 9.7.

Consider the sample B+ tree shown in Figure 9.10. This B+ tree is of order d=2.
That is, each node contains between 2 and 4 entries. Each non-leaf entry is a 〈key
value, nodepointer〉 pair; at the leaf level, the entries are data records that we denote
by k∗. To search for entry 5*, we follow the left-most child pointer, since 5 < 13. To
search for the entries 14* or 15*, we follow the second pointer, since 13 ≤ 14 < 17, and
13 ≤ 15 < 17. (We don’t find 15* on the appropriate leaf, and we can conclude that
it is not present in the tree.) To find 24*, we follow the fourth child pointer, since 24
≤ 24 < 30.

256 Chapter 9

func find (search key value K) returns nodepointer
// Given a search key value, finds its leaf node
return tree search(root, K); // searches from root
endfunc

func tree search (nodepointer, search key value K) returns nodepointer
// Searches tree for entry
if *nodepointer is a leaf, return nodepointer;
else,

if K < K1 then return tree search(P0, K);
else,

if K ≥ Km then return tree search(Pm, K); // m = # entries
else,

find i such that Ki ≤ K < Ki+1;
return tree search(Pi, K)

endfunc

Figure 9.9 Algorithm for Search

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Figure 9.10 Example of a B+ Tree, Order d=2

Tree-Structured Indexing 257

9.5 INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs, and
inserts it there. Pseudocode for the B+ tree insertion algorithm is given in Figure
9.11. The basic idea behind the algorithm is that we recursively insert the entry by
calling the insert algorithm on the appropriate child node. Usually, this procedure
results in going down to the leaf node where the entry belongs, placing the entry there,
and returning all the way back to the root node. Occasionally a node is full and it
must be split. When the node is split, an entry pointing to the node created by the
split must be inserted into its parent; this entry is pointed to by the pointer variable
newchildentry. If the (old) root is split, a new root node is created and the height of
the tree increases by one.

To illustrate insertion, let us continue with the sample tree shown in Figure 9.10. If
we insert entry 8*, it belongs in the left-most leaf, which is already full. This insertion
causes a split of the leaf page; the split pages are shown in Figure 9.12. The tree must
now be adjusted to take the new leaf page into account, so we insert an entry consisting
of the pair 〈5, pointer to new page〉 into the parent node. Notice how the key 5, which
discriminates between the split leaf page and its newly created sibling, is ‘copied up.’
We cannot just ‘push up’ 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to split a
non-leaf node when it is full, containing 2d keys and 2d + 1 pointers, and we have to
add another index entry to account for a child split. We now have 2d + 1 keys and
2d+2 pointers, yielding two minimally full non-leaf nodes, each containing d keys and
d+1 pointers, and an extra key, which we choose to be the ‘middle’ key. This key and
a pointer to the second non-leaf node constitute an index entry that must be inserted
into the parent of the split non-leaf node. The middle key is thus ‘pushed up’ the tree,
in contrast to the case for a split of a leaf page.

The split pages in our example are shown in Figure 9.13. The index entry pointing to
the new non-leaf node is the pair 〈17, pointer to new index-level page〉; notice that the
key value 17 is ‘pushed up’ the tree, in contrast to the splitting key value 5 in the leaf
split, which was ‘copied up.’

The difference in handling leaf-level and index-level splits arises from the B+ tree re-
quirement that all data entries k∗ must reside in the leaves. This requirement prevents
us from ‘pushing up’ 5 and leads to the slight redundancy of having some key values
appearing in the leaf level as well as in some index level. However, range queries can
be efficiently answered by just retrieving the sequence of leaf pages; the redundancy
is a small price to pay for efficiency. In dealing with the index levels, we have more
flexibility, and we ‘push up’ 17 to avoid having two copies of 17 in the index levels.

258 Chapter 9

proc insert (nodepointer, entry, newchildentry)
// Inserts entry into subtree with root ‘*nodepointer’; degree is d;
// ‘newchildentry’ is null initially, and null upon return unless child is split

if *nodepointer is a non-leaf node, say N ,
find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree
insert(Pi, entry, newchildentry); // recursively, insert entry
if newchildentry is null, return; // usual case; didn’t split child
else, // we split child, must insert *newchildentry in N

if N has space, // usual case
put *newchildentry on it, set newchildentry to null, return;

else, // note difference wrt splitting of leaf page!
split N : // 2d + 1 key values and 2d + 2 nodepointers
first d key values and d + 1 nodepointers stay,
last d keys and d + 1 pointers move to new node, N2;
// *newchildentry set to guide searches between N and N2
newchildentry = & (〈smallest key value on N2, pointer to N2〉);
if N is the root, // root node was just split

create new node with 〈pointer to N , *newchildentry〉;
make the tree’s root-node pointer point to the new node;

return;

if *nodepointer is a leaf node, say L,
if L has space, // usual case
put entry on it, set newchildentry to null, and return;
else, // once in a while, the leaf is full

split L: first d entries stay, rest move to brand new node L2;
newchildentry = & (〈smallest key value on L2, pointer to L2〉);
set sibling pointers in L and L2;
return;

endproc

Figure 9.11 Algorithm for Insertion into B+ Tree of Order d

Tree-Structured Indexing 259

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is ‘copied up’ and
continues to appear in the leaf.)

Figure 9.12 Split Leaf Pages during Insert of Entry 8*

5 24 30

17

13

Entry to be inserted in parent node.

(Note that 17 is ‘pushed up’ and
and appears once in the index. Contrast
this with a leaf split.)

Figure 9.13 Split Index Pages during Insert of Entry 8*

Now, since the split node was the old root, we need to create a new root node to hold
the entry that distinguishes the two split index pages. The tree after completing the
insertion of the entry 8* is shown in Figure 9.14.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Figure 9.14 B+ Tree after Inserting Entry 8*

One variation of the insert algorithm tries to redistribute entries of a node N with a
sibling before splitting the node; this improves average occupancy. The sibling of a
node N, in this context, is a node that is immediately to the left or right of N and has
the same parent as N.

To illustrate redistribution, reconsider insertion of entry 8* into the tree shown in
Figure 9.10. The entry belongs in the left-most leaf, which is full. However, the (only)

260 Chapter 9

sibling of this leaf node contains only two entries and can thus accommodate more
entries. We can therefore handle the insertion of 8* with a redistribution. Note how
the entry in the parent node that points to the second leaf has a new key value; we
‘copy up’ the new low key value on the second leaf. This process is illustrated in Figure
9.15.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*8*

8

Figure 9.15 B+ Tree after Inserting Entry 8* Using Redistribution

To determine whether redistribution is possible, we have to retrieve the sibling. If the
sibling happens to be full, we have to split the node anyway. On average, checking
whether redistribution is possible increases I/O for index node splits, especially if we
check both siblings. (Checking whether redistribution is possible may reduce I/O if
the redistribution succeeds whereas a split propagates up the tree, but this case is very
infrequent.) If the file is growing, average occupancy will probably not be affected
much even if we do not redistribute. Taking these considerations into account, not
redistributing entries at non-leaf levels usually pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor in order to
adjust the previous and next-neighbor pointers with respect to the newly created leaf
node. Therefore, a limited form of redistribution makes sense: If a leaf node is full,
fetch a neighbor node; if it has space, and has the same parent, redistribute entries.
Otherwise (neighbor has different parent, i.e., is not a sibling, or is also full) split the
leaf node and adjust the previous and next-neighbor pointers in the split node, the
newly created neighbor, and the old neighbor.

9.6 DELETE *

The algorithm for deletion takes an entry, finds the leaf node where it belongs, and
deletes it. Pseudocode for the B+ tree deletion algorithm is given in Figure 9.16. The
basic idea behind the algorithm is that we recursively delete the entry by calling the
delete algorithm on the appropriate child node. We usually go down to the leaf node
where the entry belongs, remove the entry from there, and return all the way back
to the root node. Occasionally a node is at minimum occupancy before the deletion,
and the deletion causes it to go below the occupancy threshold. When this happens,

Tree-Structured Indexing 261

we must either redistribute entries from an adjacent sibling or merge the node with
a sibling to maintain minimum occupancy. If entries are redistributed between two
nodes, their parent node must be updated to reflect this; the key value in the index
entry pointing to the second node must be changed to be the lowest search key in the
second node. If two nodes are merged, their parent must be updated to reflect this
by deleting the index entry for the second node; this index entry is pointed to by the
pointer variable oldchildentry when the delete call returns to the parent node. If the
last entry in the root node is deleted in this manner because one of its children was
deleted, the height of the tree decreases by one.

To illustrate deletion, let us consider the sample tree shown in Figure 9.14. To delete
entry 19*, we simply remove it from the leaf page on which it appears, and we are
done because the leaf still contains two entries. If we subsequently delete 20*, however,
the leaf contains only one entry after the deletion. The (only) sibling of the leaf node
that contained 20* has three entries, and we can therefore deal with the situation by
redistribution; we move entry 24* to the leaf page that contained 20* and ‘copy up’
the new splitting key (27, which is the new low key value of the leaf from which we
borrowed 24*) into the parent. This process is illustrated in Figure 9.17.

Suppose that we now delete entry 24*. The affected leaf contains only one entry
(22*) after the deletion, and the (only) sibling contains just two entries (27* and 29*).
Therefore, we cannot redistribute entries. However, these two leaf nodes together
contain only three entries and can be merged. While merging, we can ‘toss’ the entry
(〈27, pointer to second leaf page〉) in the parent, which pointed to the second leaf page,
because the second leaf page is empty after the merge and can be discarded. The right
subtree of Figure 9.17 after this step in the deletion of entry 24* is shown in Figure
9.18.

Deleting the entry 〈27, pointer to second leaf page〉 has created a non-leaf-level page
with just one entry, which is below the minimum of d=2. To fix this problem, we must
either redistribute or merge. In either case we must fetch a sibling. The only sibling
of this node contains just two entries (with key values 5 and 13), and so redistribution
is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite of the
situation when we have to split a non-leaf node. We have to split a non-leaf node when
it contains 2d keys and 2d + 1 pointers, and we have to add another key–pointer pair.
Since we resort to merging two non-leaf nodes only when we cannot redistribute entries
between them, the two nodes must be minimally full; that is, each must contain d keys
and d+1 pointers prior to the deletion. After merging the two nodes and removing the
key–pointer pair to be deleted, we have 2d−1 keys and 2d+1 pointers: Intuitively, the
left-most pointer on the second merged node lacks a key value. To see what key value
must be combined with this pointer to create a complete index entry, consider the
parent of the two nodes being merged. The index entry pointing to one of the merged

262 Chapter 9

proc delete (parentpointer, nodepointer, entry, oldchildentry)
// Deletes entry from subtree with root ‘*nodepointer’; degree is d;
// ‘oldchildentry’ null initially, and null upon return unless child deleted
if *nodepointer is a non-leaf node, say N ,

find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree
delete(nodepointer, Pi, entry, oldchildentry); // recursive delete
if oldchildentry is null, return; // usual case: child not deleted
else, // we discarded child node (see discussion)

remove *oldchildentry from N , // next, check minimum occupancy
if N has entries to spare, // usual case

set oldchildentry to null, return; // delete doesn’t go further
else, // note difference wrt merging of leaf pages!

get a sibling S of N : // parentpointer arg used to find S

if S has extra entries,
redistribute evenly between N and S through parent;
set oldchildentry to null, return;

else, merge N and S // call node on rhs M

oldchildentry = & (current entry in parent for M);
pull splitting key from parent down into node on left;
move all entries from M to node on left;
discard empty node M , return;

if *nodepointer is a leaf node, say L,
if L has entries to spare, // usual case

remove entry, set oldchildentry to null, and return;
else, // once in a while, the leaf becomes underfull

get a sibling S of L; // parentpointer used to find S

if S has extra entries,
redistribute evenly between L and S;
find entry in parent for node on right; // call it M

replace key value in parent entry by new low-key value in M ;
set oldchildentry to null, return;

else, merge L and S // call node on rhs M

oldchildentry = & (current entry in parent for M);
move all entries from M to node on left;
discard empty node M , adjust sibling pointers, return;

endproc

Figure 9.16 Algorithm for Deletion from B+ Tree of Order d

Tree-Structured Indexing 263

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Figure 9.17 B+ Tree after Deleting Entries 19* and 20*

30

22* 27* 29* 33* 34* 38* 39*

Figure 9.18 Partial B+ Tree during Deletion of Entry 24*

nodes must be deleted from the parent because the node is about to be discarded.
The key value in this index entry is precisely the key value we need to complete the
new merged node: The entries in the first node being merged, followed by the splitting
key value that is ‘pulled down’ from the parent, followed by the entries in the second
non-leaf node gives us a total of 2d keys and 2d + 1 pointers, which is a full non-leaf
node. Notice how the splitting key value in the parent is ‘pulled down,’ in contrast to
the case of merging two leaf nodes.

Consider the merging of two non-leaf nodes in our example. Together, the non-leaf
node and the sibling to be merged contain only three entries, and they have a total
of five pointers to leaf nodes. To merge the two nodes, we also need to ‘pull down’
the index entry in their parent that currently discriminates between these nodes. This
index entry has key value 17, and so we create a new entry 〈17, left-most child pointer
in sibling〉. Now we have a total of four entries and five child pointers, which can fit on
one page in a tree of order d=2. Notice that pulling down the splitting key 17 means
that it will no longer appear in the parent node following the merge. After we merge
the affected non-leaf node and its sibling by putting all the entries on one page and
discarding the empty sibling page, the new node is the only child of the old root, which
can therefore be discarded. The tree after completing all these steps in the deletion of
entry 24* is shown in Figure 9.19.

264 Chapter 9

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root 30135 17

Figure 9.19 B+ Tree after Deleting Entry 24*

The previous examples illustrated redistribution of entries across leaves and merging of
both leaf-level and non-leaf-level pages. The remaining case is that of redistribution of
entries between non-leaf-level pages. To understand this case, consider the intermediate
right subtree shown in Figure 9.18. We would arrive at the same intermediate right
subtree if we try to delete 24* from a tree similar to the one shown in Figure 9.17 but
with the left subtree and root key value as shown in Figure 9.20. The tree in Figure
9.20 illustrates an intermediate stage during the deletion of 24*. (Try to construct the
initial tree.)

Root

14* 16*

135

17* 18* 20*

17 20

22

33* 34* 38* 39*

30

22* 27* 29*21*7*5* 8*3*2*

Figure 9.20 A B+ Tree during a Deletion

In contrast to the case when we deleted 24* from the tree of Figure 9.17, the non-leaf
level node containing key value 30 now has a sibling that can spare entries (the entries
with key values 17 and 20). We move these entries2 over from the sibling. Notice that
in doing so, we essentially ‘push’ them through the splitting entry in their parent node
(the root), which takes care of the fact that 17 becomes the new low key value on the
right and therefore must replace the old splitting key in the root (the key value 22).
The tree with all these changes is shown in Figure 9.21.

In concluding our discussion of deletion, we note that we retrieve only one sibling of
a node. If this node has spare entries, we use redistribution; otherwise, we merge.
If the node has a second sibling, it may be worth retrieving that sibling as well to

2It is sufficient to move over just the entry with key value 20, but we are moving over two entries
to illustrate what happens when several entries are redistributed.

Tree-Structured Indexing 265

Root

14* 16*

135

33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*

17

3020 22

7*5* 8*2* 3*

Figure 9.21 B+ Tree after Deletion

check for the possibility of redistribution. Chances are high that redistribution will
be possible, and unlike merging, redistribution is guaranteed to propagate no further
than the parent node. Also, the pages have more space on them, which reduces the
likelihood of a split on subsequent insertions. (Remember, files typically grow, not
shrink!) However, the number of times that this case arises (node becomes less than
half-full and first sibling can’t spare an entry) is not very high, so it is not essential to
implement this refinement of the basic algorithm that we have presented.

9.7 DUPLICATES *

The search, insertion, and deletion algorithms that we have presented ignore the issue
of duplicate keys, that is, several data entries with the same key value. We now
discuss how duplicates can be handled.

The basic search algorithm assumes that all entries with a given key value reside on
a single leaf page. One way to satisfy this assumption is to use overflow pages to
deal with duplicates. (In ISAM, of course, we have overflow pages in any case, and
duplicates are easily handled.)

Typically, however, we use an alternative approach for duplicates. We handle them
just like any other entries and several leaf pages may contain entries with a given key
value. To retrieve all data entries with a given key value, we must search for the left-
most data entry with the given key value and then possibly retrieve more than one
leaf page (using the leaf sequence pointers). Modifying the search algorithm to find
the left-most data entry in an index with duplicates is an interesting exercise (in fact,
it is Exercise 9.11).

One problem with this approach is that when a record is deleted, if we use Alternative
(2) for data entries, finding the corresponding data entry to delete in the B+ tree index
could be inefficient because we may have to check several duplicate entries 〈key, rid〉
with the same key value. This problem can be addressed by considering the rid value
in the data entry to be part of the search key, for purposes of positioning the data

266 Chapter 9

Duplicate handling in commercial systems: In a clustered index in Sybase
ASE, the data rows are maintained in sorted order on the page and in the collection
of data pages. The data pages are bidirectionally linked in sort order. Rows with
duplicate keys are inserted into (or deleted from) the ordered set of rows. This
may result in overflow pages of rows with duplicate keys being inserted into the
page chain or empty overflow pages removed from the page chain. Insertion or
deletion of a duplicate key does not affect the higher index levels unless a split
or merge of a non-overflow page occurs. In IBM DB2, Oracle 8, and Microsoft
SQL Server, duplicates are handled by adding a row id if necessary to eliminate
duplicate key values.

entry in the tree. This solution effectively turns the index into a unique index (i.e., no
duplicates). Remember that a search key can be any sequence of fields—in this variant,
the rid of the data record is essentially treated as another field while constructing the
search key.

Alternative (3) for data entries leads to a natural solution for duplicates, but if we have
a large number of duplicates, a single data entry could span multiple pages. And of
course, when a data record is deleted, finding the rid to delete from the corresponding
data entry can be inefficient. The solution to this problem is similar to the one discussed
above for Alternative (2): We can maintain the list of rids within each data entry in
sorted order (say, by page number and then slot number if a rid consists of a page id
and a slot id).

9.8 B+ TREES IN PRACTICE *

In this section we discuss several important pragmatic issues.

9.8.1 Key Compression

The height of a B+ tree depends on the number of data entries and the size of index
entries. The size of index entries determines the number of index entries that will
fit on a page and, therefore, the fan-out of the tree. Since the height of the tree is
proportional to logfan−out(# of data entries), and the number of disk I/Os to retrieve
a data entry is equal to the height (unless some pages are found in the buffer pool) it
is clearly important to maximize the fan-out, to minimize the height.

An index entry contains a search key value and a page pointer. Thus the size primarily
depends on the size of the search key value. If search key values are very long (for
instance, the name Devarakonda Venkataramana Sathyanarayana Seshasayee Yella-

Tree-Structured Indexing 267

B+ Trees in Real Systems: IBM DB2, Informix, Microsoft SQL Server, Oracle
8, and Sybase ASE all support clustered and unclustered B+ tree indexes, with
some differences in how they handle deletions and duplicate key values. In Sybase
ASE, depending on the concurrency control scheme being used for the index, the
deleted row is removed (with merging if the page occupancy goes below threshold)
or simply marked as deleted; a garbage collection scheme is used to recover space
in the latter case. In Oracle 8, deletions are handled by marking the row as
deleted. To reclaim the space occupied by deleted records, we can rebuild the
index online (i.e., while users continue to use the index) or coalesce underfull
pages (which does not reduce tree height). Coalesce is in-place, rebuild creates a
copy. Informix handles deletions by marking simply marking records as deleted.
DB2 and SQL Server remove deleted records and merge pages when occupancy
goes below threshold.
Oracle 8 also allows records from multiple relations to be co-clustered on the same
page. The co-clustering can be based on a B+ tree search key or static hashing
and upto 32 relns can be stored together.

manchali Murthy), not many index entries will fit on a page; fan-out is low, and the
height of the tree is large.

On the other hand, search key values in index entries are used only to direct traffic
to the appropriate leaf. When we want to locate data entries with a given search key
value, we compare this search key value with the search key values of index entries
(on a path from the root to the desired leaf). During the comparison at an index-level
node, we want to identify two index entries with search key values k1 and k2 such that
the desired search key value k falls between k1 and k2. To accomplish this, we do not
need to store search key values in their entirety in index entries.

For example, suppose that we have two adjacent index entries in a node, with search
key values ‘David Smith’ and ‘Devarakonda . . . ’ To discriminate between these two
values, it is sufficient to store the abbreviated forms ‘Da’ and ‘De.’ More generally, the
meaning of the entry ‘David Smith’ in the B+ tree is that every value in the subtree
pointed to by the pointer to the left of ‘David Smith’ is less than ‘David Smith,’ and
every value in the subtree pointed to by the pointer to the right of ‘David Smith’ is
(greater than or equal to ‘David Smith’ and) less than ‘Devarakonda . . . ’

To ensure that this semantics for an entry is preserved, while compressing the entry
with key ‘David Smith,’ we must examine the largest key value in the subtree to the
left of ‘David Smith’ and the smallest key value in the subtree to the right of ‘David
Smith,’ not just the index entries (‘Daniel Lee’ and ‘Devarakonda . . . ’) that are its
neighbors. This point is illustrated in Figure 9.22; the value ‘Davey Jones’ is greater
than ‘Dav,’ and thus, ‘David Smith’ can only be abbreviated to ‘Davi,’ not to ‘Dav.’

268 Chapter 9

Dante Wu Darius Rex Davey Jones

Daniel Lee Devarakonda ...David Smith

Figure 9.22 Example Illustrating Prefix Key Compression

This technique is called prefix key compression, or simply key compression, and
is supported in many commercial implementations of B+ trees. It can substantially
increase the fan-out of a tree. We will not discuss the details of the insertion and
deletion algorithms in the presence of key compression.

9.8.2 Bulk-Loading a B+ Tree

Entries are added to a B+ tree in two ways. First, we may have an existing collection
of data records with a B+ tree index on it; whenever a record is added to the collection,
a corresponding entry must be added to the B+ tree as well. (Of course, a similar
comment applies to deletions.) Second, we may have a collection of data records for
which we want to create a B+ tree index on some key field(s). In this situation, we
can start with an empty tree and insert an entry for each data record, one at a time,
using the standard insertion algorithm. However, this approach is likely to be quite
expensive because each entry requires us to start from the root and go down to the
appropriate leaf page. Even though the index-level pages are likely to stay in the buffer
pool between successive requests, the overhead is still considerable.

For this reason many systems provide a bulk-loading utility for creating a B+ tree index
on an existing collection of data records. The first step is to sort the data entries k∗
to be inserted into the (to be created) B+ tree according to the search key k. (If the
entries are key–pointer pairs, sorting them does not mean sorting the data records that
are pointed to, of course.) We will use a running example to illustrate the bulk-loading
algorithm. We will assume that each data page can hold only two entries, and that
each index page can hold two entries and an additional pointer (i.e., the B+ tree is
assumed to be of order d=1).

After the data entries have been sorted, we allocate an empty page to serve as the
root and insert a pointer to the first page of (sorted) entries into it. We illustrate this
process in Figure 9.23, using a sample set of nine sorted pages of data entries.

Tree-Structured Indexing 269

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Sorted pages of data entries not yet in B+ tree
Root

Figure 9.23 Initial Step in B+ Tree Bulk-Loading

We then add one entry to the root page for each page of the sorted data entries. The
new entry consists of 〈low key value on page, pointer to page〉. We proceed until the
root page is full; see Figure 9.24.

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6 10Root Data entry pages not yet in B+ tree

Figure 9.24 Root Page Fills up in B+ Tree Bulk-Loading

To insert the entry for the next page of data entries, we must split the root and create
a new root page. We show this step in Figure 9.25.

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages not yet in B+ tree6

10

12

Figure 9.25 Page Split during B+ Tree Bulk-Loading

270 Chapter 9

We have redistributed the entries evenly between the two children of the root, in
anticipation of the fact that the B+ tree is likely to grow. Although it is difficult (!)
to illustrate these options when at most two entries fit on a page, we could also have
just left all the entries on the old page or filled up some desired fraction of that page
(say, 80 percent). These alternatives are simple variants of the basic idea.

To continue with the bulk-loading example, entries for the leaf pages are always inserted
into the right-most index page just above the leaf level. When the right-most index
page above the leaf level fills up, it is split. This action may cause a split of the
right-most index page one step closer to the root, as illustrated in Figures 9.26 and
9.27.

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

Figure 9.26 Before Adding Entry for Leaf Page Containing 38*

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

Figure 9.27 After Adding Entry for Leaf Page Containing 38*

Tree-Structured Indexing 271

Note that splits occur only on the right-most path from the root to the leaf level. We
leave the completion of the bulk-loading example as a simple exercise.

Let us consider the cost of creating an index on an existing collection of records. This
operation consists of three steps: (1) creating the data entries to insert in the index,
(2) sorting the data entries, and (3) building the index from the sorted entries. The
first step involves scanning the records and writing out the corresponding data entries;
the cost is (R + E) I/Os, where R is the number of pages containing records and E is
the number of pages containing data entries. Sorting is discussed in Chapter 11; you
will see that the index entries can be generated in sorted order at a cost of about 3E
I/Os. These entries can then be inserted into the index as they are generated, using
the bulk-loading algorithm discussed in this section. The cost of the third step, that
is, inserting the entries into the index, is then just the cost of writing out all index
pages.

9.8.3 The Order Concept

We have presented B+ trees using the parameter d to denote minimum occupancy. It is
worth noting that the concept of order (i.e., the parameter d), while useful for teaching
B+ tree concepts, must usually be relaxed in practice and replaced by a physical space
criterion; for example, that nodes must be kept at least half-full.

One reason for this is that leaf nodes and non-leaf nodes can usually hold different
numbers of entries. Recall that B+ tree nodes are disk pages and that non-leaf nodes
contain only search keys and node pointers, while leaf nodes can contain the actual
data records. Obviously, the size of a data record is likely to be quite a bit larger than
the size of a search entry, so many more search entries than records will fit on a disk
page.

A second reason for relaxing the order concept is that the search key may contain a
character string field (e.g., the name field of Students) whose size varies from record
to record; such a search key leads to variable-size data entries and index entries, and
the number of entries that will fit on a disk page becomes variable.

Finally, even if the index is built on a fixed-size field, several records may still have the
same search key value (e.g., several Students records may have the same gpa or name
value). This situation can also lead to variable-size leaf entries (if we use Alternative
(3) for data entries). Because of all of these complications, the concept of order is
typically replaced by a simple physical criterion (e.g., merge if possible when more
than half of the space in the node is unused).

272 Chapter 9

9.8.4 The Effect of Inserts and Deletes on Rids

If the leaf pages contain data records—that is, the B+ tree is a clustered index—then
operations such as splits, merges, and redistributions can change rids. Recall that a
typical representation for a rid is some combination of (physical) page number and slot
number. This scheme allows us to move records within a page if an appropriate page
format is chosen, but not across pages, as is the case with operations such as splits. So
unless rids are chosen to be independent of page numbers, an operation such as split
or merge in a clustered B+ tree may require compensating updates to other indexes
on the same data.

A similar comment holds for any dynamic clustered index, regardless of whether it
is tree-based or hash-based. Of course, the problem does not arise with nonclustered
indexes because only index entries are moved around.

9.9 POINTS TO REVIEW

Tree-structured indexes are ideal for range selections, and also support equality se-
lections quite efficiently. ISAM is a static tree-structured index in which only leaf
pages are modified by inserts and deletes. If a leaf page is full, an overflow page
is added. Unless the size of the dataset and the data distribution remain approx-
imately the same, overflow chains could become long and degrade performance.
(Section 9.1)

A B+ tree is a dynamic, height-balanced index structure that adapts gracefully
to changing data characteristics. Each node except the root has between d and
2d entries. The number d is called the order of the tree. (Section 9.2)

Each non-leaf node with m index entries has m+1 children pointers. The leaf nodes
contain data entries. Leaf pages are chained in a doubly linked list. (Section 9.3)

An equality search requires traversal from the root to the corresponding leaf node
of the tree. (Section 9.4)

During insertion, nodes that are full are split to avoid overflow pages. Thus, an
insertion might increase the height of the tree. (Section 9.5)

During deletion, a node might go below the minimum occupancy threshold. In
this case, we can either redistribute entries from adjacent siblings, or we can merge
the node with a sibling node. A deletion might decrease the height of the tree.
(Section 9.6)

Duplicate search keys require slight modifications to the basic B+ tree operations.
(Section 9.7)

Tree-Structured Indexing 273

Root
50

8 18 32 40

1* 2* 5* 6* 8* 10* 18* 27* 32* 39* 41* 45*

73

52* 58* 73* 80* 91* 99*

85

Figure 9.28 Tree for Exercise 9.1

In key compression, search key values in index nodes are shortened to ensure a high
fan-out. A new B+ tree index can be efficiently constructed for a set of records
using a bulk-loading procedure. In practice, the concept of order is replaced by a
physical space criterion. (Section 9.8)

EXERCISES

Exercise 9.1 Consider the B+ tree index of order d = 2 shown in Figure 9.28.

1. Show the tree that would result from inserting a data entry with key 9 into this tree.

2. Show the B+ tree that would result from inserting a data entry with key 3 into the

original tree. How many page reads and page writes will the insertion require?

3. Show the B+ tree that would result from deleting the data entry with key 8 from the

original tree, assuming that the left sibling is checked for possible redistribution.

4. Show the B+ tree that would result from deleting the data entry with key 8 from the

original tree, assuming that the right sibling is checked for possible redistribution.

5. Show the B+ tree that would result from starting with the original tree, inserting a data

entry with key 46 and then deleting the data entry with key 52.

6. Show the B+ tree that would result from deleting the data entry with key 91 from the

original tree.

7. Show the B+ tree that would result from starting with the original tree, inserting a data

entry with key 59, and then deleting the data entry with key 91.

8. Show the B+ tree that would result from successively deleting the data entries with keys

32, 39, 41, 45, and 73 from the original tree.

Exercise 9.2 Consider the B+ tree index shown in Figure 9.29, which uses Alternative (1)

for data entries. Each intermediate node can hold up to five pointers and four key values.

Each leaf can hold up to four records, and leaf nodes are doubly linked as usual, although

these links are not shown in the figure.

Answer the following questions.

1. Name all the tree nodes that must be fetched to answer the following query: “Get all

records with search key greater than 38.”

274 Chapter 9

10 20 30 80

35 42 50 65 90 98

A B C

30* 31*

36* 38*

42* 43*

51* 52* 56* 60*

68* 69* 70* 79*

81* 82*

94* 95* 96* 97*

98* 99* 105*

L1

L2

L3

L4

L5

L6

L7

L8

I1

I2 I3

100*

Figure 9.29 Tree for Exercise 9.2

2. Insert a record with search key 109 into the tree.

3. Delete the record with search key 81 from the (original) tree.

4. Name a search key value such that inserting it into the (original) tree would cause an

increase in the height of the tree.

5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you infer

about the contents and the shape of these trees?

6. How would your answers to the above questions change if this were an ISAM index?

7. Suppose that this is an ISAM index. What is the minimum number of insertions needed

to create a chain of three overflow pages?

Exercise 9.3 Answer the following questions.

1. What is the minimum space utilization for a B+ tree index?

2. What is the minimum space utilization for an ISAM index?

3. If your database system supported both a static and a dynamic tree index (say, ISAM and

B+ trees), would you ever consider using the static index in preference to the dynamic

index?

Exercise 9.4 Suppose that a page can contain at most four data values and that all data

values are integers. Using only B+ trees of order 2, give examples of each of the following:

1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your

structure before and after the insertion.

2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show your

structure before and after the deletion.

Tree-Structured Indexing 275

5*

Root
13 17 24 30

2* 3* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Figure 9.30 Tree for Exercise 9.5

3. A B+ tree in which the deletion of the value 25 causes a merge of two nodes, but without

altering the height of the tree.

4. An ISAM structure with four buckets, none of which has an overflow page. Further,

every bucket has space for exactly one more entry. Show your structure before and after

inserting two additional values, chosen so that an overflow page is created.

Exercise 9.5 Consider the B+ tree shown in Figure 9.30.

1. Identify a list of five data entries such that:

(a) Inserting the entries in the order shown and then deleting them in the opposite

order (e.g., insert a, insert b, delete b, delete a) results in the original tree.

(b) Inserting the entries in the order shown and then deleting them in the opposite

order (e.g., insert a, insert b, delete b, delete a) results in a different tree.

2. What is the minimum number of insertions of data entries with distinct keys that will

cause the height of the (original) tree to change from its current value (of 1) to 3?

3. Would the minimum number of insertions that will cause the original tree to increase to

height 3 change if you were allowed to insert duplicates (multiple data entries with the

same key), assuming that overflow pages are not used for handling duplicates?

Exercise 9.6 Answer Exercise 9.5 assuming that the tree is an ISAM tree! (Some of the

examples asked for may not exist—if so, explain briefly.)

Exercise 9.7 Suppose that you have a sorted file, and you want to construct a dense primary

B+ tree index on this file.

1. One way to accomplish this task is to scan the file, record by record, inserting each

one using the B+ tree insertion procedure. What performance and storage utilization

problems are there with this approach?

2. Explain how the bulk-loading algorithm described in the text improves upon the above

scheme.

Exercise 9.8 Assume that you have just built a dense B+ tree index using Alternative (2) on

a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte string,

and it is a candidate key. Pointers (i.e., record ids and page ids) are (at most) 10-byte values.

The size of one disk page is 1,000 bytes. The index was built in a bottom-up fashion using

the bulk-loading algorithm, and the nodes at each level were filled up as much as possible.

276 Chapter 9

1. How many levels does the resulting tree have?

2. For each level of the tree, how many nodes are at that level?

3. How many levels would the resulting tree have if key compression is used and it reduces

the average size of each key in an entry to 10 bytes?

4. How many levels would the resulting tree have without key compression, but with all

pages 70 percent full?

Exercise 9.9 The algorithms for insertion and deletion into a B+ tree are presented as

recursive algorithms. In the code for insert, for instance, there is a call made at the parent of

a node N to insert into (the subtree rooted at) node N, and when this call returns, the current

node is the parent of N. Thus, we do not maintain any ‘parent pointers’ in nodes of B+ tree.

Such pointers are not part of the B+ tree structure for a good reason, as this exercise will

demonstrate. An alternative approach that uses parent pointers—again, remember that such

pointers are not part of the standard B+ tree structure!—in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the entry and

split if necessary, with splits propagated to parents if necessary (using the parent

pointers to find the parents).

Consider this (unsatisfactory) alternative approach:

1. Suppose that an internal node N is split into nodes N and N2. What can you say about

the parent pointers in the children of the original node N?

2. Suggest two ways of dealing with the inconsistent parent pointers in the children of node

N.

3. For each of the above suggestions, identify a potential (major) disadvantage.

4. What conclusions can you draw from this exercise?

Exercise 9.10 Consider the instance of the Students relation shown in Figure 9.31. Show a

B+ tree of order 2 in each of these cases, assuming that duplicates are handled using overflow

pages. Clearly indicate what the data entries are (i.e., do not use the ‘k∗’ convention).

1. A dense B+ tree index on age using Alternative (1) for data entries.

2. A sparse B+ tree index on age using Alternative (1) for data entries.

3. A dense B+ tree index on gpa using Alternative (2) for data entries. For the purposes of

this question, assume that these tuples are stored in a sorted file in the order shown in

the figure: the first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and so

on. Each page can store up to three data records. You can use 〈page-id, slot〉 to identify

a tuple.

Exercise 9.11 Suppose that duplicates are handled using the approach without overflow

pages discussed in Section 9.7. Describe an algorithm to search for the left-most occurrence

of a data entry with search key value K.

Exercise 9.12 Answer Exercise 9.10 assuming that duplicates are handled without using

overflow pages, using the alternative approach suggested in Section 9.7.

Tree-Structured Indexing 277

sid name login age gpa

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 3.8

53666 Jones jones@cs 18 3.4

53901 Jones jones@toy 18 3.4

53902 Jones jones@physics 18 3.4

53903 Jones jones@english 18 3.4

53904 Jones jones@genetics 18 3.4

53905 Jones jones@astro 18 3.4

53906 Jones jones@chem 18 3.4

53902 Jones jones@sanitation 18 3.8

53688 Smith smith@ee 19 3.2

53650 Smith smith@math 19 3.8

54001 Smith smith@ee 19 3.5

54005 Smith smith@cs 19 3.8

54009 Smith smith@astro 19 2.2

Figure 9.31 An Instance of the Students Relation

PROJECT-BASED EXERCISES

Exercise 9.13 Compare the public interfaces for heap files, B+ tree indexes, and linear

hashed indexes. What are the similarities and differences? Explain why these similarities and

differences exist.

Exercise 9.14 This exercise involves using Minibase to explore the earlier (non-project)

exercises further.

1. Create the trees shown in earlier exercises and visualize them using the B+ tree visualizer

in Minibase.

2. Verify your answers to exercises that require insertion and deletion of data entries by

doing the insertions and deletions in Minibase and looking at the resulting trees using

the visualizer.

Exercise 9.15 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix B.) Implement B+ trees on top of the lower-level code in Minibase.

BIBLIOGRAPHIC NOTES

The original version of the B+ tree was presented by Bayer and McCreight [56]. The B+

tree is described in [381] and [163]. B tree indexes for skewed data distributions are studied

in [222]. The VSAM indexing structure is described in [671]. Various tree structures for

supporting range queries are surveyed in [66]. An early paper on multiattribute search keys

is [433].

References for concurrent access to B trees are in the bibliography for Chapter 19.

10 HASH-BASED INDEXING

Not chaos-like, together crushed and bruised,

But, as the world harmoniously confused:

Where order in variety we see.

—Alexander Pope, Windsor Forest

In this chapter we consider file organizations that are excellent for equality selections.
The basic idea is to use a hashing function, which maps values in a search field into a
range of bucket numbers to find the page on which a desired data entry belongs. We
use a simple scheme called Static Hashing to introduce the idea. This scheme, like
ISAM, suffers from the problem of long overflow chains, which can affect performance.
Two solutions to the problem are presented. The Extendible Hashing scheme uses a
directory to support inserts and deletes efficiently without any overflow pages. The
Linear Hashing scheme uses a clever policy for creating new buckets and supports
inserts and deletes efficiently without the use of a directory. Although overflow pages
are used, the length of overflow chains is rarely more than two.

Hash-based indexing techniques cannot support range searches, unfortunately. Tree-
based indexing techniques, discussed in Chapter 9, can support range searches effi-
ciently and are almost as good as hash-based indexing for equality selections. Thus,
many commercial systems choose to support only tree-based indexes. Nonetheless,
hashing techniques prove to be very useful in implementing relational operations such
as joins, as we will see in Chapter 12. In particular, the Index Nested Loops join
method generates many equality selection queries, and the difference in cost between
a hash-based index and a tree-based index can become significant in this context.

The rest of this chapter is organized as follows. Section 10.1 presents Static Hashing.
Like ISAM, its drawback is that performance degrades as the data grows and shrinks.
We discuss a dynamic hashing technique called Extendible Hashing in Section 10.2
and another dynamic technique, called Linear Hashing, in Section 10.3. We compare
Extendible and Linear Hashing in Section 10.4.

10.1 STATIC HASHING

The Static Hashing scheme is illustrated in Figure 10.1. The pages containing the
data can be viewed as a collection of buckets, with one primary page and possibly

278

Hash-Based Indexing 279

additional overflow pages per bucket. A file consists of buckets 0 through N − 1,
with one primary page per bucket initially. Buckets contain data entries, which can
be any of the three alternatives discussed in Chapter 8.

h
key

Primary bucket pages Overflow pages

1

0

N-1

h(key) mod N

Figure 10.1 Static Hashing

To search for a data entry, we apply a hash function h to identify the bucket to
which it belongs and then search this bucket. To speed the search of a bucket, we can
maintain data entries in sorted order by search key value; in this chapter, we do not
sort entries, and the order of entries within a bucket has no significance. In order to
insert a data entry, we use the hash function to identify the correct bucket and then
put the data entry there. If there is no space for this data entry, we allocate a new
overflow page, put the data entry on this page, and add the page to the overflow
chain of the bucket. To delete a data entry, we use the hashing function to identify
the correct bucket, locate the data entry by searching the bucket, and then remove it.
If this data entry is the last in an overflow page, the overflow page is removed from
the overflow chain of the bucket and added to a list of free pages.

The hash function is an important component of the hashing approach. It must dis-
tribute values in the domain of the search field uniformly over the collection of buck-
ets. If we have N buckets, numbered 0 through N − 1, a hash function h of the
form h(value) = (a ∗ value + b) works well in practice. (The bucket identified is
h(value) mod N .) The constants a and b can be chosen to ‘tune’ the hash function.

Since the number of buckets in a Static Hashing file is known when the file is created,
the primary pages can be stored on successive disk pages. Thus, a search ideally
requires just one disk I/O, and insert and delete operations require two I/Os (read
and write the page), although the cost could be higher in the presence of overflow
pages. As the file grows, long overflow chains can develop. Since searching a bucket
requires us to search (in general) all pages in its overflow chain, it is easy to see how
performance can deteriorate. By initially keeping pages 80 percent full, we can avoid
overflow pages if the file doesn’t grow too much, but in general the only way to get rid
of overflow chains is to create a new file with more buckets.

280 Chapter 10

The main problem with Static Hashing is that the number of buckets is fixed. If a
file shrinks greatly, a lot of space is wasted; more importantly, if a file grows a lot,
long overflow chains develop, resulting in poor performance. One alternative is to
periodically ‘rehash’ the file to restore the ideal situation (no overflow chains, about 80
percent occupancy). However, rehashing takes time and the index cannot be used while
rehashing is in progress. Another alternative is to use dynamic hashing techniques
such as Extendible and Linear Hashing, which deal with inserts and deletes gracefully.
We consider these techniques in the rest of this chapter.

10.1.1 Notation and Conventions

In the rest of this chapter, we use the following conventions. The first step in searching
for, inserting, or deleting a data entry k∗ (with search key k) is always to apply a hash
function h to the search field, and we will denote this operation as h(k). The value
h(k) identifies a bucket. We will often denote the data entry k∗ by using the hash
value, as h(k)∗. Note that two different keys can have the same hash value.

10.2 EXTENDIBLE HASHING *

To understand Extendible Hashing, let us begin by considering a Static Hashing file.
If we have to insert a new data entry into a full bucket, we need to add an overflow
page. If we don’t want to add overflow pages, one solution is to reorganize the file at
this point by doubling the number of buckets and redistributing the entries across the
new set of buckets. This solution suffers from one major defect—the entire file has to
be read, and twice as many pages have to be written, to achieve the reorganization.
This problem, however, can be overcome by a simple idea: use a directory of pointers
to buckets, and double the size of the number of buckets by doubling just the directory
and splitting only the bucket that overflowed.

To understand the idea, consider the sample file shown in Figure 10.2. The directory
consists of an array of size 4, with each element being a pointer to a bucket. (The
global depth and local depth fields will be discussed shortly; ignore them for now.) To
locate a data entry, we apply a hash function to the search field and take the last two
bits of its binary representation to get a number between 0 and 3. The pointer in this
array position gives us the desired bucket; we assume that each bucket can hold four
data entries. Thus, to locate a data entry with hash value 5 (binary 101), we look at
directory element 01 and follow the pointer to the data page (bucket B in the figure).

To insert a data entry, we search to find the appropriate bucket. For example, to insert
a data entry with hash value 13 (denoted as 13*), we would examine directory element
01 and go to the page containing data entries 1*, 5*, and 21*. Since the page has space
for an additional data entry, we are done after we insert the entry (Figure 10.3).

Hash-Based Indexing 281

00

01

10

11

2

2

2

2

2

with h(r)=32

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

Data entry r

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Figure 10.2 Example of an Extendible Hashed File

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5* 13*

Figure 10.3 After Inserting Entry r with h(r)=13

282 Chapter 10

Next, let us consider insertion of a data entry into a full bucket. The essence of the
Extendible Hashing idea lies in how we deal with this case. Consider the insertion of
data entry 20* (binary 10100). Looking at directory element 00, we are led to bucket
A, which is already full. We must first split the bucket by allocating a new bucket1

and redistributing the contents (including the new entry to be inserted) across the old
bucket and its ‘split image.’ To redistribute entries across the old bucket and its split
image, we consider the last three bits of h(r); the last two bits are 00, indicating a
data entry that belongs to one of these two buckets, and the third bit discriminates
between these buckets. The redistribution of entries is illustrated in Figure 10.4.

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12* 20* Bucket A2 (split image of bucket A)

Figure 10.4 While Inserting Entry r with h(r)=20

Notice a problem that we must now resolve—we need three bits to discriminate between
two of our data pages (A and A2), but the directory has only enough slots to store
all two-bit patterns. The solution is to double the directory. Elements that differ only
in the third bit from the end are said to ‘correspond’: corresponding elements of the
directory point to the same bucket with the exception of the elements corresponding
to the split bucket. In our example, bucket 0 was split; so, new directory element 000
points to one of the split versions and new element 100 points to the other. The sample
file after completing all steps in the insertion of 20* is shown in Figure 10.5.

Thus, doubling the file requires allocating a new bucket page, writing both this page
and the old bucket page that is being split, and doubling the directory array. The

1Since there are no overflow pages in Extendible Hashing, a bucket can be thought of as a single
page.

Hash-Based Indexing 283

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20*12*

19*

Bucket A2 (split image of bucket A)

Figure 10.5 After Inserting Entry r with h(r)=20

directory is likely to be much smaller than the file itself because each element is just
a page-id, and can be doubled by simply copying it over (and adjusting the elements
for the split buckets). The cost of doubling is now quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the result
of applying a hash function h as a binary number and to interpret the last d bits,
where d depends on the size of the directory, as an offset into the directory. In our
example d is originally 2 because we only have four buckets; after the split, d becomes
3 because we now have eight buckets. A corollary is that when distributing entries
across a bucket and its split image, we should do so on the basis of the dth bit. (Note
how entries are redistributed in our example; see Figure 10.5.) The number d is called
the global depth of the hashed file and is kept as part of the header of the file. It is
used every time we need to locate a data entry.

An important point that arises is whether splitting a bucket necessitates a directory
doubling. Consider our example, as shown in Figure 10.5. If we now insert 9*, it
belongs in bucket B; this bucket is already full. We can deal with this situation by
splitting the bucket and using directory elements 001 and 101 to point to the bucket
and its split image, as shown in Figure 10.6.

Thus, a bucket split does not necessarily require a directory doubling. However, if
either bucket A or A2 grows full and an insert then forces a bucket split, we are forced
to double the directory again.

284 Chapter 10

2

2

LOCAL DEPTH

GLOBAL DEPTH

000

001

010

011

100

101

110

111

3

3

3

3

3DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

32* 16*

9*1*

10*

7* 19*15*

4* 12* 20*

5* 21* 13*

Bucket A2

Bucket B2

(split image of bucket A)

(split image of bucket B)

Figure 10.6 After Inserting Entry r with h(r)=9

In order to differentiate between these cases, and determine whether a directory dou-
bling is needed, we maintain a local depth for each bucket. If a bucket whose local
depth is equal to the global depth is split, the directory must be doubled. Going back
to the example, when we inserted 9* into the index shown in Figure 10.5, it belonged
to bucket B with local depth 2, whereas the global depth was 3. Even though the
bucket was split, the directory did not have to be doubled. Buckets A and A2, on the
other hand, have local depth equal to the global depth and, if they grow full and are
split, the directory must then be doubled.

Initially, all local depths are equal to the global depth (which is the number of bits
needed to express the total number of buckets). We increment the global depth by 1
each time the directory doubles, of course. Also, whenever a bucket is split (whether
or not the split leads to a directory doubling), we increment by 1 the local depth of
the split bucket and assign this same (incremented) local depth to its (newly created)
split image. Intuitively, if a bucket has local depth l, the hash values of data entries
in it agree upon the last l bits; further, no data entry in any other bucket of the file
has a hash value with the same last l bits. A total of 2d−l directory elements point to
a bucket with local depth l; if d = l, exactly one directory element is pointing to the
bucket, and splitting such a bucket requires directory doubling.

Hash-Based Indexing 285

A final point to note is that we can also use the first d bits (the most significant bits)
instead of the last d (least significant bits), but in practice the last d bits are used. The
reason is that a directory can then be doubled simply by copying it.

In summary, a data entry can be located by computing its hash value, taking the last
d bits, and looking in the bucket pointed to by this directory element. For inserts,
the data entry is placed in the bucket to which it belongs and the bucket is split if
necessary to make space. A bucket split leads to an increase in the local depth, and
if the local depth becomes greater than the global depth as a result, to a directory
doubling (and an increase in the global depth) as well.

For deletes, the data entry is located and removed. If the delete leaves the bucket
empty, it can be merged with its split image, although this step is often omitted in
practice. Merging buckets decreases the local depth. If each directory element points to
the same bucket as its split image (i.e., 0 and 2d−1 point to the same bucket, namely
A; 1 and 2d−1 + 1 point to the same bucket, namely B, which may or may not be
identical to A; etc.), we can halve the directory and reduce the global depth, although
this step is not necessary for correctness.

The insertion examples can be worked out backwards as examples of deletion. (Start
with the structure shown after an insertion and delete the inserted element. In each
case the original structure should be the result.)

If the directory fits in memory, an equality selection can be answered in a single disk
access, as for Static Hashing (in the absence of overflow pages), but otherwise, two
disk I/Os are needed. As a typical example, a 100 MB file with 100 bytes per data
entry and a page size of 4 KB contains 1,000,000 data entries and only about 25,000
elements in the directory. (Each page/bucket contains roughly 40 data entries, and
we have one directory element per bucket.) Thus, although equality selections can be
twice as slow as for Static Hashing files, chances are high that the directory will fit in
memory and performance is the same as for Static Hashing files.

On the other hand, the directory grows in spurts and can become large for skewed data
distributions (where our assumption that data pages contain roughly equal numbers of
data entries is not valid). In the context of hashed files, a skewed data distribution
is one in which the distribution of hash values of search field values (rather than the
distribution of search field values themselves) is skewed (very ‘bursty’ or nonuniform).
Even if the distribution of search values is skewed, the choice of a good hashing function
typically yields a fairly uniform distribution of hash values; skew is therefore not a
problem in practice.

Further, collisions, or data entries with the same hash value, cause a problem and
must be handled specially: when more data entries than will fit on a page have the
same hash value, we need overflow pages.

286 Chapter 10

10.3 LINEAR HASHING *

Linear Hashing is a dynamic hashing technique, like Extendible Hashing, adjusting
gracefully to inserts and deletes. In contrast to Extendible Hashing, it does not require
a directory, deals naturally with collisions, and offers a lot of flexibility with respect
to the timing of bucket splits (allowing us to trade off slightly greater overflow chains
for higher average space utilization). If the data distribution is very skewed, however,
overflow chains could cause Linear Hashing performance to be worse than that of
Extendible Hashing.

The scheme utilizes a family of hash functions h0, h1, h2, . . ., with the property that
each function’s range is twice that of its predecessor. That is, if hi maps a data entry
into one of M buckets, hi+1 maps a data entry into one of 2M buckets. Such a family is
typically obtained by choosing a hash function h and an initial number N of buckets,2

and defining hi(value) = h(value) mod (2iN). If N is chosen to be a power of 2, then
we apply h and look at the last di bits; d0 is the number of bits needed to represent
N , and di = d0 + i. Typically we choose h to be a function that maps a data entry to
some integer. Suppose that we set the initial number N of buckets to be 32. In this
case d0 is 5, and h0 is therefore h mod 32, that is, a number in the range 0 to 31. The
value of d1 is d0 + 1 = 6, and h1 is h mod (2 ∗ 32), that is, a number in the range 0 to
63. h2 yields a number in the range 0 to 127, and so on.

The idea is best understood in terms of rounds of splitting. During round number
Level, only hash functions hLevel and hLevel+1 are in use. The buckets in the file at the
beginning of the round are split, one by one from the first to the last bucket, thereby
doubling the number of buckets. At any given point within a round, therefore, we have
buckets that have been split, buckets that are yet to be split, and buckets created by
splits in this round, as illustrated in Figure 10.7.

Consider how we search for a data entry with a given search key value. We apply
hash function hLevel, and if this leads us to one of the unsplit buckets, we simply look
there. If it leads us to one of the split buckets, the entry may be there or it may have
been moved to the new bucket created earlier in this round by splitting this bucket; to
determine which of these two buckets contains the entry, we apply hLevel+1.

Unlike Extendible Hashing, when an insert triggers a split, the bucket into which the
data entry is inserted is not necessarily the bucket that is split. An overflow page is
added to store the newly inserted data entry (which triggered the split), as in Static
Hashing. However, since the bucket to split is chosen in round-robin fashion, eventually
all buckets are split, thereby redistributing the data entries in overflow chains before
the chains get to be more than one or two pages long.

2Note that 0 to N − 1 is not the range of h!

Hash-Based Indexing 287

Levelh

of other buckets) in this round
created (through splitting
‘split image’ buckets:

)(

)(

Buckets split in this round:

If Level

Level+1h

h

to decide if entry is in

split image bucket.

is in this range, must use

search key value

search key value
Buckets that existed at the

Bucket to be split

beginning of this round:

this is the range of

Next

Figure 10.7 Buckets during a Round in Linear Hashing

We now describe Linear Hashing in more detail. A counter Level is used to indicate the
current round number and is initialized to 0. The bucket to split is denoted by Next and
is initially bucket 0 (the first bucket). We denote the number of buckets in the file at
the beginning of round Level by NLevel. We can easily verify that NLevel = N ∗2Level.
Let the number of buckets at the beginning of round 0, denoted by N0, be N . We
show a small linear hashed file in Figure 10.8. Each bucket can hold four data entries,
and the file initially contains four buckets, as shown in the figure.

1 0hh

Level=0, N=4

00

01

10

11

000

001

010

011

The actual contents
of the linear hashed file

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18* 10* 30*

31* 35* 11*7*

for illustration only
This information is

Figure 10.8 Example of a Linear Hashed File

We have considerable flexibility in how to trigger a split, thanks to the use of overflow
pages. We can split whenever a new overflow page is added, or we can impose additional

288 Chapter 10

conditions based on conditions such as space utilization. For our examples, a split is
‘triggered’ when inserting a new data entry causes the creation of an overflow page.

Whenever a split is triggered the Next bucket is split, and hash function hLevel+1

redistributes entries between this bucket (say bucket number b) and its split image;
the split image is therefore bucket number b + NLevel. After splitting a bucket, the
value of Next is incremented by 1. In the example file, insertion of data entry 43*
triggers a split. The file after completing the insertion is shown in Figure 10.9.

1 0hh

00

01

10

11

000

001

010

011

00100

Next=1

PRIMARY

PAGES
OVERFLOW

PAGES

Level=0

32*

9* 5*25*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

43*

Figure 10.9 After Inserting Record r with h(r)=43

At any time in the middle of a round Level, all buckets above bucket Next have been
split, and the file contains buckets that are their split images, as illustrated in Figure
10.7. Buckets Next through NLevel have not yet been split. If we use hLevel on a data
entry and obtain a number b in the range Next through NLevel, the data entry belongs
to bucket b. For example, h0(18) is 2 (binary 10); since this value is between the
current values of Next (= 1) and N1 (= 4), this bucket has not been split. However, if
we obtain a number b in the range 0 through Next, the data entry may be in this bucket
or in its split image (which is bucket number b + NLevel); we have to use hLevel+1 to
determine which of these two buckets the data entry belongs to. In other words, we
have to look at one more bit of the data entry’s hash value. For example, h0(32) and
h0(44) are both 0 (binary 00). Since Next is currently equal to 1, which indicates a
bucket that has been split, we have to apply h1. We have h1(32) = 0 (binary 000)
and h1(44) = 4 (binary 100). Thus, 32 belongs in bucket A and 44 belongs in its split
image, bucket A2.

Hash-Based Indexing 289

Not all insertions trigger a split, of course. If we insert 37* into the file shown in
Figure 10.9, the appropriate bucket has space for the new data entry. The file after
the insertion is shown in Figure 10.10.

1 0hh

00

01

10

11

000

001

010

011

00100

Next=1

PRIMARY

PAGES
OVERFLOW

PAGES

Level=0

32*

9* 5*25*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

43*

37*

Figure 10.10 After Inserting Record r with h(r)=37

Sometimes the bucket pointed to by Next (the current candidate for splitting) is full,
and a new data entry should be inserted in this bucket. In this case a split is triggered,
of course, but we do not need a new overflow bucket. This situation is illustrated by
inserting 29* into the file shown in Figure 10.10. The result is shown in Figure 10.11.

When Next is equal to NLevel−1 and a split is triggered, we split the last of the buckets
that were present in the file at the beginning of round Level. The number of buckets
after the split is twice the number at the beginning of the round, and we start a new
round with Level incremented by 1 and Next reset to 0. Incrementing Level amounts
to doubling the effective range into which keys are hashed. Consider the example file
in Figure 10.12, which was obtained from the file of Figure 10.11 by inserting 22*, 66*,
and 34*. (The reader is encouraged to try to work out the details of these insertions.)
Inserting 50* causes a split that leads to incrementing Level, as discussed above; the
file after this insertion is shown in Figure 10.13.

In summary, an equality selection costs just one disk I/O unless the bucket has overflow
pages; in practice, the cost on average is about 1.2 disk accesses for reasonably uniform
data distributions. (The cost can be considerably worse—linear in the number of data
entries in the file—if the distribution is very skewed. The space utilization is also very
poor with skewed data distributions.) Inserts require reading and writing a single page,
unless a split is triggered.

290 Chapter 10

1 0hh

00

01

10

11

000

001

010

011

00100

Next=2

01101

Level=0

PRIMARY

PAGES
OVERFLOW

PAGES

32*

9* 25*

14* 18* 10* 30*

35* 7* 11*31*

44* 36*

43*

5* 37* 29*

Figure 10.11 After Inserting Record r with h(r)=29

1 0hh

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY

PAGES
OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44* 36*

37* 29*

30* 22*

Figure 10.12 After Inserting Records with h(r)=22, 66, and 34

Hash-Based Indexing 291

1 0hh

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

37*

Figure 10.13 After Inserting Record r with h(r)=50

We will not discuss deletion in detail, but it is essentially the inverse of insertion. If
the last bucket in the file is empty, it can be removed and Next can be decremented.
(If Next is 0 and the last bucket becomes empty, Next is made to point to bucket
(M/2) − 1, where M is the current number of buckets, Level is decremented, and
the empty bucket is removed.) If we wish, we can combine the last bucket with its
split image even when it is not empty, using some criterion to trigger this merging, in
essentially the same way. The criterion is typically based on the occupancy of the file,
and merging can be done to improve space utilization.

10.4 EXTENDIBLE HASHING VERSUS LINEAR HASHING *

To understand the relationship between Linear Hashing and Extendible Hashing, imag-
ine that we also have a directory in Linear Hashing with elements 0 to N −1. The first
split is at bucket 0, and so we add directory element N . In principle, we may imagine
that the entire directory has been doubled at this point; however, because element 1
is the same as element N + 1, element 2 is the same as element N + 2, and so on, we
can avoid the actual copying for the rest of the directory. The second split occurs at
bucket 1; now directory element N + 1 becomes significant and is added. At the end
of the round, all the original N buckets are split, and the directory is doubled in size
(because all elements point to distinct buckets).

292 Chapter 10

We observe that the choice of hashing functions is actually very similar to what goes on
in Extendible Hashing—in effect, moving from hi to hi+1 in Linear Hashing corresponds
to doubling the directory in Extendible Hashing. Both operations double the effective
range into which key values are hashed; but whereas the directory is doubled in a
single step of Extendible Hashing, moving from hi to hi+1, along with a corresponding
doubling in the number of buckets, occurs gradually over the course of a round in Linear
Hashing. The new idea behind Linear Hashing is that a directory can be avoided by
a clever choice of the bucket to split. On the other hand, by always splitting the
appropriate bucket, Extendible Hashing may lead to a reduced number of splits and
higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible and
Linear Hashing. However, the directory structure can be avoided for Linear Hashing
(but not for Extendible Hashing) by allocating primary bucket pages consecutively,
which would allow us to locate the page for bucket i by a simple offset calculation.
For uniform distributions, this implementation of Linear Hashing has a lower average
cost for equality selections (because the directory level is eliminated). For skewed
distributions, this implementation could result in any empty or nearly empty buckets,
each of which is allocated at least one page, leading to poor performance relative to
Extendible Hashing, which is likely to have higher bucket occupancy.

A different implementation of Linear Hashing, in which a directory is actually main-
tained, offers the flexibility of not allocating one page per bucket; null directory el-
ements can be used as in Extendible Hashing. However, this implementation intro-
duces the overhead of a directory level and could prove costly for large, uniformly
distributed files. (Also, although this implementation alleviates the potential problem
of low bucket occupancy by not allocating pages for empty buckets, it is not a complete
solution because we can still have many pages with very few entries.)

10.5 POINTS TO REVIEW

Hash-based indexes are designed for equality queries. A hashing function is ap-
plied to a search field value and returns a bucket number. The bucket number
corresponds to a page on disk that contains all possibly relevant records. A Static
Hashing index has a fixed number of primary buckets. During insertion, if the
primary bucket for a data entry is full, an overflow page is allocated and linked to
the primary bucket. The list of overflow pages at a bucket is called its overflow
chain. Static Hashing can answer equality queries with a single disk I/O, in the
absence of overflow chains. As the file grows, however, Static Hashing suffers from
long overflow chains and performance deteriorates. (Section 10.1)

Extendible Hashing is a dynamic index structure that extends Static Hashing by
introducing a level of indirection in the form of a directory. Usually the size of

Hash-Based Indexing 293

the directory is 2d for some d, which is called the global depth of the index. The
correct directory entry is found by looking at the first d bits of the result of the
hashing function. The directory entry points to the page on disk with the actual
data entries. If a page is full and a new data entry falls into that page, data
entries from the full page are redistributed according to the first l bits of the
hashed values. The value l is called the local depth of the page. The directory can
get large if the data distribution is skewed. Collisions, which are data entries with
the same hash value, have to be handled specially. (Section 10.2)

Linear Hashing avoids a directory by splitting the buckets in a round-robin fashion.
Linear Hashing proceeds in rounds. At the beginning of each round there is an
initial set of buckets. Insertions can trigger bucket splits, but buckets are split
sequentially in order. Overflow pages are required, but overflow chains are unlikely
to be long because each bucket will be split at some point. During each round,
two hash functions hLevel and hLevel+1 are in use where hLevel is used to locate
buckets that are not yet split and hLevel+1 is used to locate buckets that already
split. When all initial buckets have split, the current round ends and the next
round starts. (Section 10.3)

Extendible and Linear Hashing are closely related. Linear Hashing avoids a direc-
tory structure by having a predefined order of buckets to split. The disadvantage
of Linear Hashing relative to Extendible Hashing is that space utilization could be
lower, especially for skewed distributions, because the bucket splits are not con-
centrated where the data density is highest, as they are in Extendible Hashing. A
directory-based implementation of Linear Hashing can improve space occupancy,
but it is still likely to be inferior to Extendible Hashing in extreme cases. (Sec-
tion 10.4)

EXERCISES

Exercise 10.1 Consider the Extendible Hashing index shown in Figure 10.14. Answer the

following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that

there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far. What can

you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 68.

5. Show the original index after inserting entries with hash values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that the

full deletion algorithm is used.)

7. Show the original index after deleting the entry with hash value 10. Is a merge triggered

by this deletion? If not, explain why. (Assume that the full deletion algorithm is used.)

294 Chapter 10

2

2

2

1 5 21

10

15 7

16

4 12 20

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

64

51

36

Figure 10.14 Figure for Exercise 10.1

h(0)h(1)

00

01

10

11

000

001

010

011

00100

Next=1

PRIMARY

PAGES
OVERFLOW

PAGES

Level=0

32 8 24

9 25 17

10 301814

31 35 7 11

3644

41

Figure 10.15 Figure for Exercise 10.2

Exercise 10.2 Consider the Linear Hashing index shown in Figure 10.15. Assume that we

split whenever an overflow page is created. Answer the following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that

there have been no deletions from this index so far?

Hash-Based Indexing 295

3. Suppose you know that there have been no deletions from this index so far. What can

you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 4.

5. Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44. (Assume

that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket with

two overflow pages. Use as few entries as possible to accomplish this. What is the

maximum number of entries that can be inserted into this bucket before a split occurs

that reduces the length of this overflow chain?

Exercise 10.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

2. After an insertion that causes the directory size to double, how many buckets have

exactly one directory entry pointing to them? If an entry is then deleted from one of

these buckets, what happens to the directory size? Explain your answers briefly.

3. Does Extendible Hashing guarantee at most one disk access to retrieve a record with a

given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a very

skewed (non-uniform) way, what can you say about the size of the directory? What can

you say about the space utilization in data pages (i.e., non-directory pages)?

5. Does doubling the directory require us to examine all buckets with local depth equal to

global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?

Exercise 10.4 Answer the following questions about Linear Hashing.

1. How does Linear Hashing provide an average-case search cost of only slightly more than

one disk I/O, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with a given

key value?

3. If a Linear Hashing index using Alternative (1) for data entries contains N records, with

P records per page and an average storage utilization of 80 percent, what is the worst-

case cost for an equality search? Under what conditions would this cost be the actual

search cost?

4. If the hash function distributes data entries over the space of bucket numbers in a very

skewed (non-uniform) way, what can you say about the space utilization in data pages?

Exercise 10.5 Give an example of when you would use each element (A or B) for each of

the following ‘A versus B’ pairs:

1. A hashed index using Alternative (1) versus heap file organization.

2. Extendible Hashing versus Linear Hashing.

296 Chapter 10

3. Static Hashing versus Linear Hashing.

4. Static Hashing versus ISAM.

5. Linear Hashing versus B+ trees.

Exercise 10.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data entries,

such that the Linear Hashing index has more pages.

2. A Linear Hashing index and an Extendible Hashing index with the same data entries,

such that the Extendible Hashing index has more pages.

Exercise 10.7 Consider a relation R(a, b, c, d) containing 1,000,000 records, where each

page of the relation holds 10 records. R is organized as a heap file with dense secondary

indexes, and the records in R are randomly ordered. Assume that attribute a is a candidate

key for R, with values lying in the range 0 to 999,999. For each of the following queries, name

the approach that would most likely require the fewest I/Os for processing the query. The

approaches to consider follow:

Scanning through the whole heap file for R.

Using a B+ tree index on attribute R.a.

Using a hash index on attribute R.a.

The queries are:

1. Find all R tuples.

2. Find all R tuples such that a < 50.

3. Find all R tuples such that a = 50.

4. Find all R tuples such that a > 50 and a < 100.

Exercise 10.8 How would your answers to Exercise 10.7 change if attribute a is not a can-

didate key for R? How would they change if we assume that records in R are sorted on

a?

Exercise 10.9 Consider the snapshot of the Linear Hashing index shown in Figure 10.16.

Assume that a bucket split occurs whenever an overflow page is created.

1. What is the maximum number of data entries that can be inserted (given the best possible

distribution of keys) before you have to split a bucket? Explain very briefly.

2. Show the file after inserting a single record whose insertion causes a bucket split.

3. (a) What is the minimum number of record insertions that will cause a split of all four

buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown after this

series of record insertions?

Exercise 10.10 Consider the data entries in the Linear Hashing index for Exercise 10.9.

Hash-Based Indexing 297

44

9 25 5

10

31 7

PRIMARY
PAGES

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

h h 01

64

315

Figure 10.16 Figure for Exercise 10.9

1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 10.9 with respect to this index.

Exercise 10.11 In answering the following questions, assume that the full deletion algorithm

is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of an Extendible Hashing index in which deleting an entry reduces the

global depth.

2. Give an example of a Linear Hashing index in which deleting an entry causes Next to

be decremented but leaves Level unchanged. Show the file before and after the entry is

deleted.

3. Give an example of a Linear Hashing index in which deleting an entry causes Level to

be decremented. Show the file before and after the entry is deleted.

4. Give an example of an Extendible Hashing index and a list of entries e1, e2, e3 such that

inserting the entries in order leads to three splits and deleting them in the reverse order

yields the original index. If such an example does not exist, explain.

5. Give an example of a Linear Hashing index and a list of entries e1, e2, e3 such that

inserting the entries in order leads to three splits and deleting them in the reverse order

yields the original index. If such an example does not exist, explain.

PROJECT-BASED EXERCISES

Exercise 10.12 (Note to instructors: Additional details must be provided if this question is

assigned. See Appendix B.) Implement Linear Hashing or Extendible Hashing in Minibase.

298 Chapter 10

BIBLIOGRAPHIC NOTES

Hashing is discussed in detail in [381]. Extendible Hashing is proposed in [218]. Litwin

proposed Linear Hashing in [418]. A generalization of Linear Hashing for distributed envi-

ronments is described in [422].

There has been extensive research into hash-based indexing techniques. Larson describes two

variations of Linear Hashing in [406] and [407]. Ramakrishna presents an analysis of hashing

techniques in [529]. Hash functions that do not produce bucket overflows are studied in [530].

Order-preserving hashing techniques are discussed in [419] and [263]. Partitioned-hashing, in

which each field is hashed to obtain some bits of the bucket address, extends hashing for the

case of queries in which equality conditions are specified only for some of the key fields. This

approach was proposed by Rivest [547] and is discussed in [656]; a further development is

described in [537].

PART IV

QUERY EVALUATION

11 EXTERNAL SORTING

Good order is the foundation of all things.

—Edmund Burke

Sorting a collection of records on some (search) key is a very useful operation. The key
can be a single attribute or an ordered list of attributes, of course. Sorting is required
in a variety of situations, including the following important ones:

Users may want answers in some order; for example, by increasing age (Section
5.2).

Sorting records is the first step in bulk loading a tree index (Section 9.8.2).

Sorting is useful for eliminating duplicate copies in a collection of records (Chapter
12).

A widely used algorithm for performing a very important relational algebra oper-
ation, called join, requires a sorting step (Section 12.5.2).

Although main memory sizes are increasing, as usage of database systems increases,
increasingly larger datasets are becoming common as well. When the data to be sorted
is too large to fit into available main memory, we need to use an external sorting
algorithm. Such algorithms seek to minimize the cost of disk accesses.

We introduce the idea of external sorting by considering a very simple algorithm in
Section 11.1; using repeated passes over the data, even very large datasets can be sorted
with a small amount of memory. This algorithm is generalized to develop a realistic
external sorting algorithm in Section 11.2. Three important refinements are discussed.
The first, discussed in Section 11.2.1, enables us to reduce the number of passes. The
next two refinements, covered in Section 11.3, require us to consider a more detailed
model of I/O costs than the number of page I/Os. Section 11.3.1 discusses the effect
of blocked I/O, that is, reading and writing several pages at a time; and Section 11.3.2
considers how to use a technique called double buffering to minimize the time spent
waiting for an I/O operation to complete. Section 11.4 discusses the use of B+ trees
for sorting.

With the exception of Section 11.3, we consider only I/O costs, which we approximate
by counting the number of pages read or written, as per the cost model discussed in

301

302 Chapter 11

Sorting in commercial RDBMSs: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all use external merge sort. Sybase ASE uses a memory
partition called the procedure cache for sorting. This is a main memory region that
is used for compilation and execution, as well as for caching the plans for recently
executed stored procedures; it is not part of the buffer pool. IBM, Informix,
and Oracle also use a separate area of main memory to do sorting. In contrast,
Microsoft and Sybase IQ use buffer pool frames for sorting. None of these systems
uses the optimization that produces runs larger than available memory, in part
because it is difficult to implement it efficiently in the presence of variable length
records. In all systems, the I/O is asynchronous and uses prefetching. Microsoft
and Sybase ASE use merge sort as the in-memory sorting algorithm; IBM and
Sybase IQ use radix sorting. Oracle uses insertion sort for in-memory sorting.

Chapter 8. Our goal is to use a simple cost model to convey the main ideas, rather
than to provide a detailed analysis.

11.1 A SIMPLE TWO-WAY MERGE SORT

We begin by presenting a simple algorithm to illustrate the idea behind external sorting.
This algorithm utilizes only three pages of main memory, and it is presented only for
pedagogical purposes. In practice, many more pages of memory will be available,
and we want our sorting algorithm to use the additional memory effectively; such an
algorithm is presented in Section 11.2. When sorting a file, several sorted subfiles are
typically generated in intermediate steps. In this chapter, we will refer to each sorted
subfile as a run.

Even if the entire file does not fit into the available main memory, we can sort it by
breaking it into smaller subfiles, sorting these subfiles, and then merging them using a
minimal amount of main memory at any given time. In the first pass the pages in the
file are read in one at a time. After a page is read in, the records on it are sorted and
the sorted page (a sorted run one page long) is written out. Quicksort or any other
in-memory sorting technique can be used to sort the records on a page. In subsequent
passes pairs of runs from the output of the previous pass are read in and merged to
produce runs that are twice as long. This algorithm is shown in Figure 11.1.

If the number of pages in the input file is 2k, for some k, then:

Pass 0 produces 2k sorted runs of one page each,
Pass 1 produces 2k−1 sorted runs of two pages each,
Pass 2 produces 2k−2 sorted runs of four pages each,

External Sorting 303

proc 2-way extsort (file)
// Given a file on disk, sorts it using three buffer pages
// Produce runs that are one page long: Pass 0
Read each page into memory, sort it, write it out.
// Merge pairs of runs to produce longer runs until only
// one run (containing all records of input file) is left
While the number of runs at end of previous pass is > 1:

// Pass i = 1, 2, ...
While there are runs to be merged from previous pass:

Choose next two runs (from previous pass).
Read each run into an input buffer; page at a time.
Merge the runs and write to the output buffer;
force output buffer to disk one page at a time.

endproc

Figure 11.1 Two-Way Merge Sort

and so on, until
Pass k produces one sorted run of 2k pages.

In each pass we read every page in the file, process it, and write it out. Thus we have
two disk I/Os per page, per pass. The number of passes is dlog2Ne + 1, where N is
the number of pages in the file. The overall cost is 2N(dlog2Ne + 1) I/Os.

The algorithm is illustrated on an example input file containing seven pages in Figure
11.2. The sort takes four passes, and in each pass we read and write seven pages, for a
total of 56 I/Os. This result agrees with the preceding analysis because 2∗7(dlog27e+
1) = 56. The dark pages in the figure illustrate what would happen on a file of eight
pages; the number of passes remains at four (dlog28e+1 = 4), but we read and write
an additional page in each pass for a total of 64 I/Os. (Try to work out what would
happen on a file with, say, five pages.)

This algorithm requires just three buffer pages in main memory, as Figure 11.3 illus-
trates. This observation raises an important point: Even if we have more buffer space
available, this simple algorithm does not utilize it effectively. The external merge sort
algorithm that we discuss next addresses this problem.

304 Chapter 11

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

9

Figure 11.2 Two-Way Merge Sort of a Seven-Page File

DiskDisk Main memory buffers

OUTPUT

INPUT 2

INPUT 1

Figure 11.3 Two-Way Merge Sort with Three Buffer Pages

External Sorting 305

11.2 EXTERNAL MERGE SORT

Suppose that B buffer pages are available in memory and that we need to sort a large
file with N pages. How can we improve upon the two-way merge sort presented in the
previous section? The intuition behind the generalized algorithm that we now present
is to retain the basic structure of making multiple passes while trying to minimize the
number of passes. There are two important modifications to the two-way merge sort
algorithm:

1. In Pass 0, read in B pages at a time and sort internally to produce dN/Be runs
of B pages each (except for the last run, which may contain fewer pages). This
modification is illustrated in Figure 11.4, using the input file from Figure 11.2 and
a buffer pool with four pages.

2. In passes i=1,2, ... , use B − 1 buffer pages for input, and use the remaining page
for output; thus you do a (B−1)-way merge in each pass. The utilization of buffer
pages in the merging passes is illustrated in Figure 11.5.

6,2

8,79,4

3,4

2,3

4,4

6,7

8,9

1,2

3,5

6

5,6

2

3,1

3,4

9,4

6,2

8,7

Input file

1st output run

2nd output run
Buffer pool with B=4 pages

Figure 11.4 External Merge Sort with B Buffer Pages: Pass 0

The first refinement reduces the number of runs produced by Pass 0 to N1 = dN/Be,
versus N for the two-way merge.1 The second refinement is even more important. By
doing a (B − 1)-way merge, the number of passes is reduced dramatically—including
the initial pass, it becomes dlogB−1N1e+ 1 versus dlog2Ne+ 1 for the two-way merge
algorithm presented earlier. Because B is typically quite large, the savings can be
substantial. The external merge sort algorithm is shown is Figure 11.6.

1Note that the technique used for sorting data in buffer pages is orthogonal to external sorting.
You could use, say, Quicksort for sorting data in buffer pages.

306 Chapter 11

Disk Disk
B main memory buffers

INPUT 2

INPUT 1

INPUT B-1

OUTPUT

Figure 11.5 External Merge Sort with B Buffer Pages: Pass i > 0

proc extsort (file)
// Given a file on disk, sorts it using three buffer pages
// Produce runs that are B pages long: Pass 0
Read B pages into memory, sort them, write out a run.
// Merge B − 1 runs at a time to produce longer runs until only
// one run (containing all records of input file) is left
While the number of runs at end of previous pass is > 1:

// Pass i = 1, 2, ...
While there are runs to be merged from previous pass:

Choose next B − 1 runs (from previous pass).
Read each run into an input buffer; page at a time.
Merge the runs and write to the output buffer;
force output buffer to disk one page at a time.

endproc

Figure 11.6 External Merge Sort

External Sorting 307

As an example, suppose that we have five buffer pages available, and want to sort a
file with 108 pages.

Pass 0 produces d108/5e = 22 sorted runs of five pages each, except for the
last run, which is only three pages long.
Pass 1 does a four-way merge to produce d22/4e = six sorted runs of 20
pages each, except for the last run, which is only eight pages long.
Pass 2 produces d6/4e = two sorted runs; one with 80 pages and one with
28 pages.
Pass 3 merges the two runs produced in Pass 2 to produce the sorted file.

In each pass we read and write 108 pages; thus the total cost is 2∗108∗4 = 864 I/Os.
Applying our formula, we have N1 = d108/5e = 22 and cost = 2∗N∗(dlogB−1N1e+1)
= 2 ∗ 108 ∗ (dlog422e + 1) = 864, as expected.

To emphasize the potential gains in using all available buffers, in Figure 11.7 we show
the number of passes, computed using our formula, for several values of N and B. To
obtain the cost, the number of passes should be multiplied by 2N . In practice, one
would expect to have more than 257 buffers, but this table illustrates the importance
of a high fan-in during merging.

N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Figure 11.7 Number of Passes of External Merge Sort

Of course, the CPU cost of a multiway merge can be greater than that for a two-way
merge, but in general the I/O costs tend to dominate. In doing a (B − 1)-way merge,
we have to repeatedly pick the ‘lowest’ record in the B − 1 runs being merged and
write it to the output buffer. This operation can be implemented simply by examining
the first (remaining) element in each of the B − 1 input buffers. In practice, for large
values of B, more sophisticated techniques can be used, although we will not discuss
them here. Further, as we will see shortly, there are other ways to utilize buffer pages
in order to reduce I/O costs; these techniques involve allocating additional pages to
each input (and output) run, thereby making the number of runs merged in each pass
considerably smaller than the number of buffer pages B.

308 Chapter 11

11.2.1 Minimizing the Number of Runs *

In Pass 0 we read in B pages at a time and sort them internally to produce dN/Be
runs of B pages each (except for the last run, which may contain fewer pages). With
a more aggressive implementation, called replacement sort, we can write out runs
of approximately 2 ∗ B internally sorted pages on average.

This improvement is achieved as follows. We begin by reading in pages of the file of
tuples to be sorted, say R, until the buffer is full, reserving (say) one page for use as
an input buffer and (say) one page for use as an output buffer. We will refer to the
B − 2 pages of R tuples that are not in the input or output buffer as the current set.
Suppose that the file is to be sorted in ascending order on some search key k. Tuples
are appended to the output in ascending order by k value.

The idea is to repeatedly pick the tuple in the current set with the smallest k value
that is still greater than the largest k value in the output buffer and append it to the
output buffer. For the output buffer to remain sorted, the chosen tuple must satisfy
the condition that its k value be greater than or equal to the largest k value currently
in the output buffer; of all tuples in the current set that satisfy this condition, we pick
the one with the smallest k value, and append it to the output buffer. Moving this
tuple to the output buffer creates some space in the current set, which we use to add
the next input tuple to the current set. (We assume for simplicity that all tuples are
the same size.) This process is illustrated in Figure 11.8. The tuple in the current set
that is going to be appended to the output next is highlighted, as is the most recently
appended output tuple.

INPUT OUTPUT

5

3

4

12

2

8

10

CURRENT SET

Figure 11.8 Generating Longer Runs

When all tuples in the input buffer have been consumed in this manner, the next page
of the file is read in. Of course, the output buffer is written out when it is full, thereby
extending the current run (which is gradually built up on disk).

The important question is this: When do we have to terminate the current run and
start a new run? As long as some tuple t in the current set has a bigger k value than
the most recently appended output tuple, we can append t to the output buffer, and

External Sorting 309

the current run can be extended.2 In Figure 11.8, although a tuple (k = 2) in the
current set has a smaller k value than the largest output tuple (k = 5), the current run
can be extended because the current set also has a tuple (k = 8) that is larger than
the largest output tuple.

When every tuple in the current set is smaller than the largest tuple in the output
buffer, the output buffer is written out and becomes the last page in the current run.
We then start a new run and continue the cycle of writing tuples from the input buffer
to the current set to the output buffer. It is known that this algorithm produces runs
that are about 2 ∗ B pages long, on average.

This refinement has not been implemented in commercial database systems because
managing the main memory available for sorting becomes difficult with replacement
sort, especially in the presence of variable length records. Recent work on this issue,
however, shows promise and it could lead to the use of replacement sort in commercial
systems.

11.3 MINIMIZING I/O COST VERSUS NUMBER OF I/OS

We have thus far used the number of page I/Os as a cost metric. This metric is only an
approximation to true I/O costs because it ignores the effect of blocked I/O—issuing a
single request to read (or write) several consecutive pages can be much cheaper than
reading (or writing) the same number of pages through independent I/O requests,
as discussed in Chapter 8. This difference turns out to have some very important
consequences for our external sorting algorithm.

Further, the time taken to perform I/O is only part of the time taken by the algorithm;
we must consider CPU costs as well. Even if the time taken to do I/O accounts for most
of the total time, the time taken for processing records is nontrivial and is definitely
worth reducing. In particular, we can use a technique called double buffering to keep
the CPU busy while an I/O operation is in progress.

In this section we consider how the external sorting algorithm can be refined using
blocked I/O and double buffering. The motivation for these optimizations requires us
to look beyond the number of I/Os as a cost metric. These optimizations can also be
applied to other I/O intensive operations such as joins, which we will study in Chapter
12.

2If B is large, the CPU cost of finding such a tuple t can be significant unless appropriate in-
memory data structures are used to organize the tuples in the buffer pool. We will not discuss this
issue further.

310 Chapter 11

11.3.1 Blocked I/O

If the number of page I/Os is taken to be the cost metric, the goal is clearly to minimize
the number of passes in the sorting algorithm because each page in the file is read and
written in each pass. It therefore makes sense to maximize the fan-in during merging
by allocating just one buffer pool page per run (which is to be merged) and one buffer
page for the output of the merge. Thus we can merge B − 1 runs, where B is the
number of pages in the buffer pool. If we take into account the effect of blocked access,
which reduces the average cost to read or write a single page, we are led to consider
whether it might be better to read and write in units of more than one page.

Suppose that we decide to read and write in units, which we call buffer blocks, of b

pages. We must now set aside one buffer block per input run and one buffer block for
the output of the merge, which means that we can merge at most bB−b

b c runs in each
pass. For example, if we have 10 buffer pages, we can either merge nine runs at a time
with one-page input and output buffer blocks, or we can merge four runs at a time with
two-page input and output buffer blocks. If we choose larger buffer blocks, however,
the number of passes increases, while we continue to read and write every page in the
file in each pass! In the example each merging pass reduces the number of runs by a
factor of 4, rather than a factor of 9. Therefore, the number of page I/Os increases.
This is the price we pay for decreasing the per-page I/O cost and is a trade-off that
we must take into account when designing an external sorting algorithm.

In practice, however, current main memory sizes are large enough that all but the
largest files can be sorted in just two passes, even using blocked I/O. Suppose that we
have B buffer pages and choose to use a blocking factor of b pages. That is, we read
and write b pages at a time, and our input and output buffer blocks are all b pages
long. The first pass produces about N2 = dN/2Be sorted runs, each of length 2B
pages, if we use the optimization described in Section 11.2.1, and about N1 = dN/Be
sorted runs, each of length B pages, otherwise. For the purposes of this section, we
will assume that the optimization is used.

In subsequent passes we can merge F = bB/bc − 1 runs at a time. The number of
passes is therefore 1 + dlogF N2e, and in each pass we read and write all pages in the
file. Figure 11.9 shows the number of passes needed to sort files of various sizes N ,
given B buffer pages, using a blocking factor b of 32 pages. It is quite reasonable to
expect 5,000 pages to be available for sorting purposes; with 4 KB pages, 5,000 pages
is only 20 MB. (With 50,000 buffer pages, we can do 1,561-way merges, with 10,000
buffer pages, we can do 311-way merges, with 5,000 buffer pages, we can do 155-way
merges, and with 1,000 buffer pages, we can do 30-way merges.)

To compute the I/O cost, we need to calculate the number of 32-page blocks read or
written and multiply this number by the cost of doing a 32-page block I/O. To find the

External Sorting 311

N B=1,000 B=5,000 B=10,000 B=50,000
100 1 1 1 1
1,000 1 1 1 1
10,000 2 2 1 1
100,000 3 2 2 2
1,000,000 3 2 2 2
10,000,000 4 3 3 2
100,000,000 5 3 3 2
1,000,000,000 5 4 3 3

Figure 11.9 Number of Passes of External Merge Sort with Block Size b = 32

number of block I/Os, we can find the total number of page I/Os (number of passes
multiplied by the number of pages in the file) and divide by the block size, 32. The
cost of a 32-page block I/O is the seek time and rotational delay for the first page,
plus transfer time for all 32 pages, as discussed in Chapter 8. The reader is invited to
calculate the total I/O cost of sorting files of the sizes mentioned in Figure 11.9 with
5,000 buffer pages, for different block sizes (say, b = 1, 32, and 64) to get a feel for the
benefits of using blocked I/O.

11.3.2 Double Buffering

Consider what happens in the external sorting algorithm when all the tuples in an
input block have been consumed: An I/O request is issued for the next block of tuples
in the corresponding input run, and the execution is forced to suspend until the I/O is
complete. That is, for the duration of the time taken for reading in one block, the CPU
remains idle (assuming that no other jobs are running). The overall time taken by an
algorithm can be increased considerably because the CPU is repeatedly forced to wait
for an I/O operation to complete. This effect becomes more and more important as
CPU speeds increase relative to I/O speeds, which is a long-standing trend in relative
speeds. It is therefore desirable to keep the CPU busy while an I/O request is being
carried out, that is, to overlap CPU and I/O processing. Current hardware supports
such overlapped computation, and it is therefore desirable to design algorithms to take
advantage of this capability.

In the context of external sorting, we can achieve this overlap by allocating extra pages
to each input buffer. Suppose that a block size of b = 32 is chosen. The idea is to
allocate an additional 32-page block to every input (and the output) buffer. Now,
when all the tuples in a 32-page block have been consumed, the CPU can process
the next 32 pages of the run by switching to the second, ‘double,’ block for this run.
Meanwhile, an I/O request is issued to fill the empty block. Thus, assuming that the

312 Chapter 11

time to consume a block is greater than the time to read in a block, the CPU is never
idle! On the other hand, the number of pages allocated to a buffer is doubled (for a
given block size, which means the total I/O cost stays the same). This technique is
called double buffering, and it can considerably reduce the total time taken to sort
a file. The use of buffer pages is illustrated in Figure 11.10.

Disk Disk
INPUT k

INPUT 2’

INPUT 2

INPUT 1’

INPUT 1

OUTPUT

OUTPUT’

INPUT k’

b
block size

Figure 11.10 Double Buffering

Note that although double buffering can considerably reduce the response time for a
given query, it may not have a significant impact on throughput, because the CPU can
be kept busy by working on other queries while waiting for one query’s I/O operation
to complete.

11.4 USING B+ TREES FOR SORTING

Suppose that we have a B+ tree index on the (search) key to be used for sorting a file
of records. Instead of using an external sorting algorithm, we could use the B+ tree
index to retrieve the records in search key order by traversing the sequence set (i.e.,
the sequence of leaf pages). Whether this is a good strategy depends on the nature of
the index.

11.4.1 Clustered Index

If the B+ tree index is clustered, then the traversal of the sequence set is very efficient.
The search key order corresponds to the order in which the data records are stored,
and for each page of data records that we retrieve, we can read all the records on it in
sequence. This correspondence between search key ordering and data record ordering
is illustrated in Figure 11.11, with the assumption that data entries are 〈key, rid〉 pairs
(i.e., Alternative (2) is used for data entries).

External Sorting 313

Index entries

Data entries

(Direct search for

Index file

Data file
Data

records

data entries)

Figure 11.11 Clustered B+ Tree for Sorting

The cost of using the clustered B+ tree index to retrieve the data records in search key
order is the cost to traverse the tree from root to the left-most leaf (which is usually
less than four I/Os) plus the cost of retrieving the pages in the sequence set, plus the
cost of retrieving the (say N) pages containing the data records. Note that no data
page is retrieved twice, thanks to the ordering of data entries being the same as the
ordering of data records. The number of pages in the sequence set is likely to be much
smaller than the number of data pages because data entries are likely to be smaller
than typical data records. Thus, the strategy of using a clustered B+ tree index to
retrieve the records in sorted order is a good one and should be used whenever such
an index is available.

What if Alternative (1) is used for data entries? Then the leaf pages would contain the
actual data records, and retrieving the pages in the sequence set (a total of N pages)
would be the only cost. (Note that the space utilization is about 67 percent in a B+
tree; thus, the number of leaf pages is greater than the number of pages needed to hold
the data records in a sorted file, where, in principle, 100 percent space utilization can
be achieved.) In this case the choice of the B+ tree for sorting is excellent!

11.4.2 Unclustered Index

What if the B+ tree index on the key to be used for sorting is unclustered? This is
illustrated in Figure 11.12, with the assumption that data entries are 〈key, rid〉.

In this case each rid in a leaf page could point to a different data page. Should this
happen, the cost (in disk I/Os) of retrieving all data records could equal the number

314 Chapter 11

Index entries

Data entries

(Direct search for

Index file

Data file
Data

records

data entries)

Figure 11.12 Unclustered B+ Tree for Sorting

of data records. That is, the worst-case cost is equal to the number of data records
because fetching each record could require a disk I/O. This cost is in addition to the
cost of retrieving leaf pages of the B+ tree to get the data entries (which point to the
data records).

If p is the average number of records per data page and there are N data pages, the
number of data records is p ∗N . If we take f to be the ratio of the size of a data entry
to the size of a data record, we can approximate the number of leaf pages in the tree
by f ∗N . The total cost of retrieving records in sorted order using an unclustered B+
tree is therefore (f + p) ∗ N . Since f is usually 0.1 or smaller and p is typically much
larger than 10, p ∗ N is a good approximation.

In practice, the cost may be somewhat less because some rids in a leaf page will lead
to the same data page, and further, some pages will be found in the buffer pool,
thereby avoiding an I/O. Nonetheless, the usefulness of an unclustered B+ tree index
for sorted retrieval is highly dependent on the extent to which the order of data entries
corresponds—and this is just a matter of chance—to the physical ordering of data
records.

We illustrate the cost of sorting a file of records using external sorting and unclustered
B+ tree indexes in Figure 11.13. The costs shown for the unclustered index are worst-
case numbers and are based on the approximate formula p ∗ N . For comparison, note
that the cost for a clustered index is approximately equal to N , the number of pages
of data records.

External Sorting 315

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

Figure 11.13 Cost of External Sorting (B=1,000, b=32) versus Unclustered Index

Keep in mind that p is likely to be closer to 100 and that B is likely to be higher
than 1,000 in practice. The ratio of the cost of sorting versus the cost of using an
unclustered index is likely to be even lower than is indicated by Figure 11.13 because
the I/O for sorting is in 32-page buffer blocks, whereas the I/O for the unclustered
indexes is one page at a time. The value of p is determined by the page size and the
size of a data record; for p to be 10, with 4 KB pages, the average data record size
must be about 400 bytes. In practice, p is likely to be greater than 10.

For even modest file sizes, therefore, sorting by using an unclustered index is clearly
inferior to external sorting. Indeed, even if we want to retrieve only about 10 to 20
percent of the data records, for example, in response to a range query such as “Find all
sailors whose rating is greater than 7,” sorting the file may prove to be more efficient
than using an unclustered index!

11.5 POINTS TO REVIEW

An external sorting algorithm sorts a file of arbitrary length using only a limited
amount of main memory. The two-way merge sort algorithm is an external sorting
algorithm that uses only three buffer pages at any time. Initially, we break the
file into small sorted files called runs of the size of one page. The algorithm then
proceeds in passes. In each pass, runs are paired and merged into sorted runs
twice the size of the input runs. In the last pass, the merge of two runs results in
a sorted instance of the file. The number of passes is dlog2Ne+ 1, where N is the
number of pages in the file. (Section 11.1)

The external merge sort algorithm improves upon the two-way merge sort if there
are B > 3 buffer pages available for sorting. The algorithm writes initial runs of B

pages each instead of only one page. In addition, the algorithm merges B−1 runs
instead of two runs during the merge step. The number of passes is reduced to
dlogB−1N1e+1, where N1 = dN/Be. The average length of the initial runs can
be increased to 2∗B pages, reducing N1 to N1 = dN/(2∗B)e. (Section 11.2)

316 Chapter 11

In blocked I/O we read or write several consecutive pages (called a buffer block)
through a single request. Blocked I/O is usually much cheaper than reading or
writing the same number of pages through independent I/O requests. Thus, in
external merge sort, instead of merging B − 1 runs, usually only bB−b

b c runs are
merged during each pass, where b is the buffer block size. In practice, all but the
largest files can be sorted in just two passes, even using blocked I/O. In double
buffering, each buffer is duplicated. While the CPU processes tuples in one buffer,
an I/O request for the other buffer is issued. (Section 11.3)

If the file to be sorted has a clustered B+ tree index with a search key equal to
the fields to be sorted by, then we can simply scan the sequence set and retrieve
the records in sorted order. This technique is clearly superior to using an external
sorting algorithm. If the index is unclustered, an external sorting algorithm will
almost certainly be cheaper than using the index. (Section 11.4)

EXERCISES

Exercise 11.1 Suppose that you have a file with 10,000 pages and that you have three buffer

pages. Answer the following questions for each of these scenarios, assuming that our most

general external sorting algorithm is used:

(a) A file with 10,000 pages and three available buffer pages.

(b) A file with 20,000 pages and five available buffer pages.

(c) A file with 2,000,000 pages and 17 available buffer pages.

1. How many runs will you produce in the first pass?

2. How many passes will it take to sort the file completely?

3. What is the total I/O cost of sorting the file?

4. How many buffer pages do you need to sort the file completely in just two passes?

Exercise 11.2 Answer Exercise 11.1 assuming that a two-way external sort is used.

Exercise 11.3 Suppose that you just finished inserting several records into a heap file, and

now you want to sort those records. Assume that the DBMS uses external sort and makes

efficient use of the available buffer space when it sorts a file. Here is some potentially useful

information about the newly loaded file and the DBMS software that is available to operate

on it:

The number of records in the file is 4,500. The sort key for the file is four bytes

long. You can assume that rids are eight bytes long and page ids are four bytes

long. Each record is a total of 48 bytes long. The page size is 512 bytes. Each page

has 12 bytes of control information on it. Four buffer pages are available.

1. How many sorted subfiles will there be after the initial pass of the sort, and how long

will each subfile be?

External Sorting 317

2. How many passes (including the initial pass considered above) will be required to sort

this file?

3. What will be the total I/O cost for sorting this file?

4. What is the largest file, in terms of the number of records, that you can sort with just

four buffer pages in two passes? How would your answer change if you had 257 buffer

pages?

5. Suppose that you have a B+ tree index with the search key being the same as the desired

sort key. Find the cost of using the index to retrieve the records in sorted order for each

of the following cases:

The index uses Alternative (1) for data entries.

The index uses Alternative (2) and is not clustered. (You can compute the worst-

case cost in this case.)

How would the costs of using the index change if the file is the largest that you

can sort in two passes of external sort with 257 buffer pages? Give your answer for

both clustered and unclustered indexes.

Exercise 11.4 Consider a disk with an average seek time of 10ms, average rotational delay

of 5ms, and a transfer time of 1ms for a 4K page. Assume that the cost of reading/writing

a page is the sum of these values (i.e., 16ms) unless a sequence of pages is read/written. In

this case the cost is the average seek time plus the average rotational delay (to find the first

page in the sequence) plus 1ms per page (to transfer data). You are given 320 buffer pages

and asked to sort a file with 10,000,000 pages.

1. Why is it a bad idea to use the 320 pages to support virtual memory, that is, to ‘new’

10,000,000*4K bytes of memory, and to use an in-memory sorting algorithm such as

Quicksort?

2. Assume that you begin by creating sorted runs of 320 pages each in the first pass.

Evaluate the cost of the following approaches for the subsequent merging passes:

(a) Do 319-way merges.

(b) Create 256 ‘input’ buffers of 1 page each, create an ‘output’ buffer of 64 pages, and

do 256-way merges.

(c) Create 16 ‘input’ buffers of 16 pages each, create an ‘output’ buffer of 64 pages,

and do 16-way merges.

(d) Create eight ‘input’ buffers of 32 pages each, create an ‘output’ buffer of 64 pages,

and do eight-way merges.

(e) Create four ‘input’ buffers of 64 pages each, create an ‘output’ buffer of 64 pages,

and do four-way merges.

Exercise 11.5 Consider the refinement to the external sort algorithm that produces runs of

length 2B on average, where B is the number of buffer pages. This refinement was described

in Section 11.2.1 under the assumption that all records are the same size. Explain why this

assumption is required and extend the idea to cover the case of variable length records.

318 Chapter 11

PROJECT-BASED EXERCISES

Exercise 11.6 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix B.) Implement external sorting in Minibase.

BIBLIOGRAPHIC NOTES

Knuth’s text [381] is the classic reference for sorting algorithms. Memory management for

replacement sort is discussed in [408]. A number of papers discuss parallel external sorting

algorithms, including [55, 58, 188, 429, 495, 563].

12 EVALUATION OF RELATIONAL
OPERATORS

Now, here, you see, it takes all the running you can do, to keep in the same place.

If you want to get somewhere else, you must run at least twice as fast as that!

—Lewis Carroll, Through the Looking Glass

The relational operators serve as the building blocks for query evaluation. Queries,
written in a language such as SQL, are presented to a query optimizer, which uses
information about how the data is stored (available in the system catalogs) to produce
an efficient execution plan for evaluating the query. Finding a good execution plan
for a query consists of more than just choosing an implementation for each of the
relational operators that appear in the query. For example, the order in which operators
are applied can influence the cost. Issues in finding a good plan that go beyond
implementation of individual operators are discussed in Chapter 13.

This chapter considers the implementation of individual relational operators. Section
12.1 provides an introduction to query processing, highlighting some common themes
that recur throughout this chapter, and discusses how tuples are retrieved from rela-
tions while evaluating various relational operators. We present implementation alter-
natives for the selection operator in Sections 12.2 and 12.3. It is instructive to see the
variety of alternatives, and the wide variation in performance of these alternatives, for
even such a simple operator. In Section 12.4 we consider the other unary operator in
relational algebra, namely, projection.

We then discuss the implementation of binary operators, beginning with joins in Sec-
tion 12.5. Joins are among the most expensive operators in a relational database
system, and their implementation has a big impact on performance. After discussing
the join operator, we consider implementation of the binary operators cross-product,
intersection, union, and set-difference in Section 12.6. We discuss the implementation
of grouping and aggregate operators, which are extensions of relational algebra, in Sec-
tion 12.7. We conclude with a discussion of how buffer management affects operator
evaluation costs in Section 12.8.

The discussion of each operator is largely independent of the discussion of other oper-
ators. Several alternative implementation techniques are presented for each operator;
the reader who wishes to cover this material in less depth can skip some of these
alternatives without loss of continuity.

319

320 Chapter 12

12.1 INTRODUCTION TO QUERY PROCESSING

One virtue of a relational DBMS is that queries are composed of a few basic operators,
and the implementation of these operators can (and should!) be carefully optimized
for good performance. There are several alternative algorithms for implementing each
relational operator, and for most operators there is no universally superior technique.
Which algorithm is best depends on several factors, including the sizes of the relations
involved, existing indexes and sort orders, the size of the available buffer pool, and the
buffer replacement policy.

The algorithms for various relational operators actually have a lot in common. As this
chapter will demonstrate, a few simple techniques are used to develop algorithms for
each operator:

Iteration: Examine all tuples in input relations iteratively. Sometimes, instead
of examining tuples, we can examine index data entries (which are smaller) that
contain all necessary fields.

Indexing: If a selection or join condition is specified, use an index to examine
just the tuples that satisfy the condition.

Partitioning: By partitioning tuples on a sort key, we can often decompose an
operation into a less expensive collection of operations on partitions. Sorting and
hashing are two commonly used partitioning techniques.

12.1.1 Access Paths

All the algorithms discussed in this chapter have to retrieve tuples from one or more
input relations. There is typically more than one way to retrieve tuples from a relation
because of the availability of indexes and the (possible) presence of a selection condition
in the query that restricts the subset of the relation we need. (The selection condition
can come from a selection operator or from a join.) The alternative ways to retrieve
tuples from a relation are called access paths.

An access path is either (1) a file scan or (2) an index plus a matching selection
condition. Intuitively, an index matches a selection condition if the index can be used
to retrieve just the tuples that satisfy the condition. Consider a simple selection of the
form attr op value, where op is one of the comparison operators <, ≤, =, 6=, ≥, or
>. An index matches such a selection if the index search key is attr and either (1) the
index is a tree index or (2) the index is a hash index and op is equality. We consider
when more complex selection conditions match an index in Section 12.3.

The selectivity of an access path is the number of pages retrieved (index pages plus
data pages) if we use this access path to retrieve all desired tuples. If a relation contains

Evaluation of Relational Operators 321

an index that matches a given selection, there are at least two access paths, namely,
the index and a scan of the data file. The most selective access path is the one that
retrieves the fewest pages; using the most selective access path minimizes the cost of
data retrieval.

12.1.2 Preliminaries: Examples and Cost Calculations

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

This schema is a variant of the one that we used in Chapter 5; we have added a string
field rname to Reserves. Intuitively, this field is the name of the person who has made
the reservation (and may be different from the name of the sailor sid for whom the
reservation was made; a reservation may be made by a person who is not a sailor
on behalf of a sailor). The addition of this field gives us more flexibility in choosing
illustrative examples. We will assume that each tuple of Reserves is 40 bytes long,
that a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.
Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can
hold 80 Sailors tuples, and that we have 500 pages of such tuples.

Two points must be kept in mind to understand our discussion of costs:

As discussed in Chapter 8, we consider only I/O costs and measure I/O cost in
terms of the number of page I/Os. We also use big-O notation to express the
complexity of an algorithm in terms of an input parameter and assume that the
reader is familiar with this notation. For example, the cost of a file scan is O(M),
where M is the size of the file.

We discuss several alternate algorithms for each operation. Since each alternative
incurs the same cost in writing out the result, should this be necessary, we will
uniformly ignore this cost in comparing alternatives.

12.2 THE SELECTION OPERATION

In this section we describe various algorithms to evaluate the selection operator. To
motivate the discussion, consider the selection query shown in Figure 12.1, which has
the selection condition rname=‘Joe’.

We can evaluate this query by scanning the entire relation, checking the condition on
each tuple, and adding the tuple to the result if the condition is satisfied. The cost of
this approach is 1,000 I/Os, since Reserves contains 1,000 pages. If there are only a

322 Chapter 12

SELECT *
FROM Reserves R
WHERE R.rname=‘Joe’

Figure 12.1 Simple Selection Query

few tuples with rname=‘Joe’, this approach is expensive because it does not utilize the
selection to reduce the number of tuples retrieved in any way. How can we improve
on this approach? The key is to utilize information in the selection condition and to
use an index if a suitable index is available. For example, a B+ tree index on rname
could be used to answer this query considerably faster, but an index on bid would not
be useful.

In the rest of this section we consider various situations with respect to the file orga-
nization used for the relation and the availability of indexes and discuss appropriate
algorithms for the selection operation. We discuss only simple selection operations of
the form σR.attr op value(R) until Section 12.3, where we consider general selections.
In terms of the general techniques listed in Section 12.1, the algorithms for selection
use either iteration or indexing.

12.2.1 No Index, Unsorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr and R

is not sorted on R.attr, we have to scan the entire relation. Thus, the most selective
access path is a file scan. For each tuple, we must test the condition R.attr op value

and add the tuple to the result if the condition is satisfied.

The cost of this approach is M I/Os, where M is the number of pages in R. In the
example selection from Reserves (Figure 12.1), the cost is 1,000 I/Os.

12.2.2 No Index, Sorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr, but R

is physically sorted on R.attr, we can utilize the sort order by doing a binary search
to locate the first tuple that satisfies the selection condition. Further, we can then
retrieve all tuples that satisfy the selection condition by starting at this location and
scanning R until the selection condition is no longer satisfied. The access method in
this case is a sorted-file scan with selection condition σR.attr op value(R).

For example, suppose that the selection condition is R.attr1 > 5, and that R is sorted
on attr1 in ascending order. After a binary search to locate the position in R corre-
sponding to 5, we simply scan all remaining records.

Evaluation of Relational Operators 323

The cost of the binary search is O(log2M). In addition, we have the cost of the scan to
retrieve qualifying tuples. The cost of the scan depends on the number of such tuples
and can vary from zero to M . In our selection from Reserves (Figure 12.1), the cost
of the binary search is log21, 000 ≈ 10 I/Os.

In practice, it is unlikely that a relation will be kept sorted if the DBMS supports
Alternative (1) for index data entries, that is, allows data records to be stored as index
data entries. If the ordering of data records is important, a better way to maintain it
is through a B+ tree index that uses Alternative (1).

12.2.3 B+ Tree Index

If a clustered B+ tree index is available on R.attr, the best strategy for selection
conditions σR.attr op value(R) in which op is not equality is to use the index. This
strategy is also a good access path for equality selections, although a hash index on
R.attr would be a little better. If the B+ tree index is not clustered, the cost of using
the index depends on the number of tuples that satisfy the selection, as discussed
below.

We can use the index as follows: We search the tree to find the first index entry that
points to a qualifying tuple of R. Then we scan the leaf pages of the index to retrieve
all entries in which the key value satisfies the selection condition. For each of these
entries, we retrieve the corresponding tuple of R. (For concreteness in this discussion,
we will assume that data entries use Alternatives (2) or (3); if Alternative (1) is used,
the data entry contains the actual tuple and there is no additional cost—beyond the
cost of retrieving data entries—for retrieving tuples.)

The cost of identifying the starting leaf page for the scan is typically two or three
I/Os. The cost of scanning the leaf level page for qualifying data entries depends on
the number of such entries. The cost of retrieving qualifying tuples from R depends
on two factors:

The number of qualifying tuples.

Whether the index is clustered. (Clustered and unclustered B+ tree indexes are
illustrated in Figures 11.11 and 11.12. The figures should give the reader a feel
for the impact of clustering, regardless of the type of index involved.)

If the index is clustered, the cost of retrieving qualifying tuples is probably just one
page I/O (since it is likely that all such tuples are contained in a single page). If the
index is not clustered, each index entry could point to a qualifying tuple on a different
page, and the cost of retrieving qualifying tuples in a straightforward way could be one
page I/O per qualifying tuple (unless we get lucky with buffering). We can significantly
reduce the number of I/Os to retrieve qualifying tuples from R by first sorting the rids

324 Chapter 12

(in the index’s data entries) by their page-id component. This sort ensures that when
we bring in a page of R, all qualifying tuples on this page are retrieved one after the
other. The cost of retrieving qualifying tuples is now the number of pages of R that
contain qualifying tuples.

Consider a selection of the form rname < ‘C%’ on the Reserves relation. Assuming
that names are uniformly distributed with respect to the initial letter, for simplicity,
we estimate that roughly 10 percent of Reserves tuples are in the result. This is a total
of 10,000 tuples, or 100 pages. If we have a clustered B+ tree index on the rname field
of Reserves, we can retrieve the qualifying tuples with 100 I/Os (plus a few I/Os to
traverse from the root to the appropriate leaf page to start the scan). However, if the
index is unclustered, we could have up to 10,000 I/Os in the worst case, since each
tuple could cause us to read a page. If we sort the rids of Reserves tuples by the page
number and then retrieve pages of Reserves, we will avoid retrieving the same page
multiple times; nonetheless, the tuples to be retrieved are likely to be scattered across
many more than 100 pages. Therefore, the use of an unclustered index for a range
selection could be expensive; it might be cheaper to simply scan the entire relation
(which is 1,000 pages in our example).

12.2.4 Hash Index, Equality Selection

If a hash index is available on R.attr and op is equality, the best way to implement the
selection σR.attr op value(R) is obviously to use the index to retrieve qualifying tuples.

The cost includes a few (typically one or two) I/Os to retrieve the appropriate bucket
page in the index, plus the cost of retrieving qualifying tuples from R. The cost of
retrieving qualifying tuples from R depends on the number of such tuples and on
whether the index is clustered. Since op is equality, there is exactly one qualifying
tuple if R.attr is a (candidate) key for the relation. Otherwise, we could have several
tuples with the same value in this attribute.

Consider the selection in Figure 12.1. Suppose that there is an unclustered hash index
on the rname attribute, that we have 10 buffer pages, and that there are 100 reserva-
tions made by people named Joe. The cost of retrieving the index page containing the
rids of such reservations is one or two I/Os. The cost of retrieving the 100 Reserves
tuples can vary between 1 and 100, depending on how these records are distributed
across pages of Reserves and the order in which we retrieve these records. If these 100
records are contained in, say, some five pages of Reserves, we have just five additional
I/Os if we sort the rids by their page component. Otherwise, it is possible that we
bring in one of these five pages, then look at some of the other pages, and find that the
first page has been paged out when we need it again. (Remember that several users
and DBMS operations share the buffer pool.) This situation could cause us to retrieve
the same page several times.

Evaluation of Relational Operators 325

12.3 GENERAL SELECTION CONDITIONS *

In our discussion of the selection operation thus far, we have considered selection
conditions of the form σR.attr op value(R). In general a selection condition is a boolean
combination (i.e., an expression using the logical connectives ∧ and ∨) of terms that
have the form attribute op constant or attribute1 op attribute2. For example, if the
WHERE clause in the query shown in Figure 12.1 contained the condition R.rname=‘Joe’
AND R.bid=r, the equivalent algebra expression would be σR.rname=′Joe′∧R.bid=r(R).

In Section 12.3.1 we introduce a standard form for general selection conditions and
define when an index matches such a condition. We consider algorithms for applying
selection conditions without disjunction in Section 12.3.2 and then discuss conditions
with disjunction in Section 12.3.3.

12.3.1 CNF and Index Matching

To process a selection operation with a general selection condition, we first express the
condition in conjunctive normal form (CNF), that is, as a collection of conjuncts
that are connected through the use of the ∧ operator. Each conjunct consists of one
or more terms (of the form described above) connected by ∨.1 Conjuncts that contain
∨ are said to be disjunctive, or to contain disjunction.

As an example, suppose that we have a selection on Reserves with the condition (day
< 8/9/94 ∧ rname = ‘Joe’) ∨ bid=5 ∨ sid=3. We can rewrite this in conjunctive
normal form as (day < 8/9/94 ∨ bid=5 ∨ sid=3) ∧ (rname = ‘Joe’ ∨ bid=5 ∨ sid=3).

We now turn to the issue of when a general selection condition, represented in CNF,
matches an index. The following examples provide some intuition:

If we have a hash index on the search key 〈rname,bid,sid〉, we can use the index to
retrieve just the tuples that satisfy the condition rname=‘Joe’ ∧ bid=5 ∧ sid=3.
The index matches the entire condition rname=‘Joe’ ∧ bid=5 ∧ sid=3. On the
other hand, if the selection condition is rname=‘Joe’ ∧ bid=5, or some condition
on date, this index does not match. That is, it cannot be used to retrieve just the
tuples that satisfy these conditions.

In contrast, if the index were a B+ tree, it would match both rname=‘Joe’ ∧
bid=5 ∧ sid=3 and rname=‘Joe’ ∧ bid=5. However, it would not match bid=5 ∧
sid=3 (since tuples are sorted primarily by rname).

If we have an index (hash or tree) on the search key 〈bid,sid〉 and the selection
condition rname=‘Joe’ ∧ bid=5 ∧ sid=3, we can use the index to retrieve tuples

1Every selection condition can be expressed in CNF. We refer the reader to any standard text on
mathematical logic for the details.

326 Chapter 12

that satisfy bid=5 ∧ sid=3, but the additional condition on rname must then be
applied to each retrieved tuple and will eliminate some of the retrieved tuples from
the result. In this case the index only matches a part of the selection condition
(the part bid=5 ∧ sid=3).

If we have an index on the search key 〈bid, sid〉 and we also have a B+ tree index
on day, the selection condition day < 8/9/94 ∧ bid=5 ∧ sid=3 offers us a choice.
Both indexes match (part of) the selection condition, and we can use either to
retrieve Reserves tuples. Whichever index we use, the conjuncts in the selection
condition that are not matched by the index (e.g., bid=5 ∧ sid=3 if we use the
B+ tree index on day) must be checked for each retrieved tuple.

Generalizing the intuition behind these examples, the following rules define when an
index matches a selection condition that is in CNF:

A hash index matches a selection condition containing no disjunctions if there is
a term of the form attribute=value for each attribute in the index’s search key.

A tree index matches a selection condition containing no disjunctions if there is
a term of the form attribute op value for each attribute in a prefix of the index’s
search key. (〈a〉 and 〈a, b〉 are prefixes of key 〈a, b, c〉, but 〈a, c〉 and 〈b, c〉 are not.)
Note that op can be any comparison; it is not restricted to be equality as it is for
matching selections on a hash index.

The above definition does not address when an index matches a selection with dis-
junctions; we discuss this briefly in Section 12.3.3. As we observed in the examples,
an index could match some subset of the conjuncts in a selection condition (in CNF),
even though it does not match the entire condition. We will refer to the conjuncts that
the index matches as the primary conjuncts in the selection.

The selectivity of an access path obviously depends on the selectivity of the primary
conjuncts in the selection condition (with respect to the index involved).

12.3.2 Evaluating Selections without Disjunction

When the selection does not contain disjunction, that is, it is a conjunction of terms,
we have two evaluation options to consider:

We can retrieve tuples using a file scan or a single index that matches some
conjuncts (and which we estimate to be the most selective access path) and apply
all nonprimary conjuncts in the selection to each retrieved tuple. This approach is
very similar to how we use indexes for simple selection conditions, and we will not
discuss it further. (We emphasize that the number of tuples retrieved depends
on the selectivity of the primary conjuncts in the selection, and the remaining
conjuncts only serve to reduce the cardinality of the result of the selection.)

Evaluation of Relational Operators 327

Intersecting rid sets: Oracle 8 uses several techniques to do rid set intersection
for selections with AND. One is to AND bitmaps. Another is to do a hash join
of indexes. For example, given sal < 5 ∧ price > 30 and indexes on sal and
price, we can join the indexes on the rid column, considering only entries that
satisfy the given selection conditions. Microsoft SQL Server implements rid set
intersection through index joins. IBM DB2 implements intersection of rid sets
using Bloom filters (which are discussed in Section 21.9.2). Sybase ASE does
not do rid set intersection for AND selections; Sybase ASIQ does it using bitmap
operations. Informix also does rid set intersection.

We can try to utilize several indexes. We examine this approach in the rest of this
section.

If several indexes containing data entries with rids (i.e., Alternatives (2) or (3)) match
conjuncts in the selection, we can use these indexes to compute sets of rids of candidate
tuples. We can then intersect these sets of rids, typically by first sorting them, and
then retrieve those records whose rids are in the intersection. If additional conjuncts
are present in the selection, we can then apply these conjuncts to discard some of the
candidate tuples from the result.

As an example, given the condition day < 8/9/94 ∧ bid=5 ∧ sid=3, we can retrieve the
rids of records that meet the condition day < 8/9/94 by using a B+ tree index on day,
retrieve the rids of records that meet the condition sid=3 by using a hash index on sid,
and intersect these two sets of rids. (If we sort these sets by the page id component
to do the intersection, a side benefit is that the rids in the intersection are obtained in
sorted order by the pages that contain the corresponding tuples, which ensures that
we do not fetch the same page twice while retrieving tuples using their rids.) We can
now retrieve the necessary pages of Reserves to retrieve tuples, and check bid=5 to
obtain tuples that meet the condition day < 8/9/94 ∧ bid=5 ∧ sid=3.

12.3.3 Selections with Disjunction

Now let us consider the case that one of the conjuncts in the selection condition is a
disjunction of terms. If even one of these terms requires a file scan because suitable
indexes or sort orders are unavailable, testing this conjunct by itself (i.e., without
taking advantage of other conjuncts) requires a file scan. For example, suppose that
the only available indexes are a hash index on rname and a hash index on sid, and
that the selection condition contains just the (disjunctive) conjunct (day < 8/9/94 ∨
rname=‘Joe’). We can retrieve tuples satisfying the condition rname=‘Joe’ by using
the index on rname. However, day < 8/9/94 requires a file scan. So we might as well

328 Chapter 12

Disjunctions: Microsoft SQL Server considers the use of unions and bitmaps
for dealing with disjunctive conditions. Oracle 8 considers four ways to handle
disjunctive conditions: (1) Convert the query into a union of queries without
OR. (2) If the conditions involve the same attribute, e.g., sal < 5 ∨ sal > 30,
use a nested query with an IN list and an index on the attribute to retrieve
tuples matching a value in the list. (3) Use bitmap operations, e.g., evaluate
sal < 5 ∨ sal > 30 by generating bitmaps for the values 5 and 30 and OR the
bitmaps to find the tuples that satisfy one of the conditions. (We discuss bitmaps
in Chapter 23.) (4) Simply apply the disjunctive condition as a filter on the
set of retrieved tuples. Sybase ASE considers the use of unions for dealing with
disjunctive queries and Sybase ASIQ uses bitmap operations.

do a file scan and check the condition rname=‘Joe’ for each retrieved tuple. Thus, the
most selective access path in this example is a file scan.

On the other hand, if the selection condition is (day < 8/9/94 ∨ rname=‘Joe’) ∧
sid=3, the index on sid matches the conjunct sid=3. We can use this index to find
qualifying tuples and apply day < 8/9/94 ∨ rname=‘Joe’ to just these tuples. The
best access path in this example is the index on sid with the primary conjunct sid=3.

Finally, if every term in a disjunction has a matching index, we can retrieve candidate
tuples using the indexes and then take the union. For example, if the selection condition
is the conjunct (day < 8/9/94 ∨ rname=‘Joe’) and we have B+ tree indexes on day
and rname, we can retrieve all tuples such that day < 8/9/94 using the index on
day, retrieve all tuples such that rname=‘Joe’ using the index on rname, and then
take the union of the retrieved tuples. If all the matching indexes use Alternative (2)
or (3) for data entries, a better approach is to take the union of rids and sort them
before retrieving the qualifying data records. Thus, in the example, we can find rids
of tuples such that day < 8/9/94 using the index on day, find rids of tuples such that
rname=‘Joe’ using the index on rname, take the union of these sets of rids and sort
them by page number, and then retrieve the actual tuples from Reserves. This strategy
can be thought of as a (complex) access path that matches the selection condition (day
< 8/9/94 ∨ rname=‘Joe’).

Most current systems do not handle selection conditions with disjunction efficiently,
and concentrate on optimizing selections without disjunction.

Evaluation of Relational Operators 329

12.4 THE PROJECTION OPERATION

Consider the query shown in Figure 12.2. The optimizer translates this query into the
relational algebra expression πsid,bidReserves. In general the projection operator is of
the form πattr1,attr2,...,attrm(R).

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Figure 12.2 Simple Projection Query

To implement projection, we have to do the following:

1. Remove unwanted attributes (i.e., those not specified in the projection).

2. Eliminate any duplicate tuples that are produced.

The second step is the difficult one. There are two basic algorithms, one based on
sorting and one based on hashing. In terms of the general techniques listed in Section
12.1, both algorithms are instances of partitioning. While the technique of using an
index to identify a subset of useful tuples is not applicable for projection, the sorting
or hashing algorithms can be applied to data entries in an index, instead of to data
records, under certain conditions described in Section 12.4.4.

12.4.1 Projection Based on Sorting

The algorithm based on sorting has the following steps (at least conceptually):

1. Scan R and produce a set of tuples that contain only the desired attributes.

2. Sort this set of tuples using the combination of all its attributes as the key for
sorting.

3. Scan the sorted result, comparing adjacent tuples, and discard duplicates.

If we use temporary relations at each step, the first step costs M I/Os to scan R, where
M is the number of pages of R, and T I/Os to write the temporary relation, where T

is the number of pages of the temporary; T is O(M). (The exact value of T depends
on the number of fields that are retained and the sizes of these fields.) The second step
costs O(T logT) (which is also O(MlogM), of course). The final step costs T . The
total cost is O(MlogM). The first and third steps are straightforward and relatively
inexpensive. (As noted in the chapter on sorting, the cost of sorting grows linearly
with dataset size in practice, given typical dataset sizes and main memory sizes.)

330 Chapter 12

Consider the projection on Reserves shown in Figure 12.2. We can scan Reserves at
a cost of 1,000 I/Os. If we assume that each tuple in the temporary relation created
in the first step is 10 bytes long, the cost of writing this temporary relation is 250
I/Os. Suppose that we have 20 buffer pages. We can sort the temporary relation in
two passes at a cost of 2 ∗ 2 ∗ 250 = 1, 000 I/Os. The scan required in the third step
costs an additional 250 I/Os. The total cost is 2,500 I/Os.

This approach can be improved on by modifying the sorting algorithm to do projection
with duplicate elimination. Recall the structure of the external sorting algorithm that
we presented in Chapter 11. The very first pass (Pass 0) involves a scan of the records
that are to be sorted to produce the initial set of (internally) sorted runs. Subsequently
one or more passes merge runs. Two important modifications to the sorting algorithm
adapt it for projection:

We can project out unwanted attributes during the first pass (Pass 0) of sorting. If
B buffer pages are available, we can read in B pages of R and write out (T/M)∗B

internally sorted pages of the temporary relation. In fact, with a more aggressive
implementation, we can write out approximately 2 ∗ B internally sorted pages
of the temporary relation on average. (The idea is similar to the refinement of
external sorting that is discussed in Section 11.2.1.)

We can eliminate duplicates during the merging passes. In fact, this modification
will reduce the cost of the merging passes since fewer tuples are written out in
each pass. (Most of the duplicates will be eliminated in the very first merging
pass.)

Let us consider our example again. In the first pass we scan Reserves, at a cost of
1,000 I/Os and write out 250 pages. With 20 buffer pages, the 250 pages are written
out as seven internally sorted runs, each (except the last) about 40 pages long. In the
second pass we read the runs, at a cost of 250 I/Os, and merge them. The total cost is
1,500 I/Os, which is much lower than the cost of the first approach used to implement
projection.

12.4.2 Projection Based on Hashing *

If we have a fairly large number (say, B) of buffer pages relative to the number of pages
of R, a hash-based approach is worth considering. There are two phases: partitioning
and duplicate elimination.

In the partitioning phase we have one input buffer page and B − 1 output buffer pages.
The relation R is read into the input buffer page, one page at a time. The input page is
processed as follows: For each tuple, we project out the unwanted attributes and then
apply a hash function h to the combination of all remaining attributes. The function
h is chosen so that tuples are distributed uniformly to one of B − 1 partitions; there is

Evaluation of Relational Operators 331

one output page per partition. After the projection the tuple is written to the output
buffer page that it is hashed to by h.

At the end of the partitioning phase, we have B − 1 partitions, each of which contains
a collection of tuples that share a common hash value (computed by applying h to all
fields), and have only the desired fields. The partitioning phase is illustrated in Figure
12.3.

INPUT

OUTPUT 1

hash
function

h

B-1

2

B main memory buffersDisk

Original relation Partitions

Disk

B-1

2

1

Figure 12.3 Partitioning Phase of Hash-Based Projection

Two tuples that belong to different partitions are guaranteed not to be duplicates
because they have different hash values. Thus, if two tuples are duplicates, they are in
the same partition. In the duplicate elimination phase, we read in the B− 1 partitions
one at a time to eliminate duplicates. The basic idea is to build an in-memory hash
table as we process tuples in order to detect duplicates.

For each partition produced in the first phase:

1. Read in the partition one page at a time. Hash each tuple by applying hash
function h2 (6= h!) to the combination of all fields and then insert it into an
in-memory hash table. If a new tuple hashes to the same value as some existing
tuple, compare the two to check whether the new tuple is a duplicate. Discard
duplicates as they are detected.

2. After the entire partition has been read in, write the tuples in the hash table
(which is free of duplicates) to the result file. Then clear the in-memory hash
table to prepare for the next partition.

Note that h2 is intended to distribute the tuples in a partition across many buckets, in
order to minimize collisions (two tuples having the same h2 values). Since all tuples
in a given partition have the same h value, h2 cannot be the same as h!

This hash-based projection strategy will not work well if the size of the hash table for a
partition (produced in the partitioning phase) is greater than the number of available

332 Chapter 12

buffer pages B. One way to handle this partition overflow problem is to recursively
apply the hash-based projection technique to eliminate the duplicates in each partition
that overflows. That is, we divide an overflowing partition into subpartitions, then read
each subpartition into memory to eliminate duplicates.

If we assume that h distributes the tuples with perfect uniformity and that the number
of pages of tuples after the projection (but before duplicate elimination) is T , each
partition contains T

B−1 pages. (Note that the number of partitions is B − 1 because
one of the buffer pages is used to read in the relation during the partitioning phase.)
The size of a partition is therefore T

B−1 , and the size of a hash table for a partition is
T

B−1 ∗ f ; where f is a fudge factor used to capture the (small) increase in size between
the partition and a hash table for the partition. The number of buffer pages B must
be greater than the partition size T

B−1 ∗ f , in order to avoid partition overflow. This
observation implies that we require approximately B >

√
f ∗ T buffer pages.

Now let us consider the cost of hash-based projection. In the partitioning phase, we
read R, at a cost of M I/Os. We also write out the projected tuples, a total of T

pages, where T is some fraction of M , depending on the fields that are projected out.
The cost of this phase is therefore M +T I/Os; the cost of hashing is a CPU cost, and
we do not take it into account. In the duplicate elimination phase, we have to read in
every partition. The total number of pages in all partitions is T . We also write out the
in-memory hash table for each partition after duplicate elimination; this hash table is
part of the result of the projection, and we ignore the cost of writing out result tuples,
as usual. Thus, the total cost of both phases is M +2T . In our projection on Reserves
(Figure 12.2), this cost is 1, 000 + 2 ∗ 250 = 1, 500 I/Os.

12.4.3 Sorting versus Hashing for Projections *

The sorting-based approach is superior to hashing if we have many duplicates or if the
distribution of (hash) values is very nonuniform. In this case, some partitions could
be much larger than average, and a hash table for such a partition would not fit in
memory during the duplicate elimination phase. Also, a useful side effect of using the
sorting-based approach is that the result is sorted. Further, since external sorting is
required for a variety of reasons, most database systems have a sorting utility, which
can be used to implement projection relatively easily. For these reasons, sorting is the
standard approach for projection. And perhaps due to a simplistic use of the sorting
utility, unwanted attribute removal and duplicate elimination are separate steps in
many systems (i.e., the basic sorting algorithm is often used without the refinements
that we outlined).

We observe that if we have B >
√

T buffer pages, where T is the size of the projected
relation before duplicate elimination, both approaches have the same I/O cost. Sorting
takes two passes. In the first pass we read M pages of the original relation and write

Evaluation of Relational Operators 333

Projection in commercial systems: Informix uses hashing. IBM DB2, Oracle
8, and Sybase ASE use sorting. Microsoft SQL Server and Sybase ASIQ implement
both hash-based and sort-based algorithms.

out T pages. In the second pass we read the T pages and output the result of the
projection. Using hashing, in the partitioning phase we read M pages and write T

pages’ worth of partitions. In the second phase, we read T pages and output the
result of the projection. Thus, considerations such as CPU costs, desirability of sorted
order in the result, and skew in the distribution of values drive the choice of projection
method.

12.4.4 Use of Indexes for Projections *

Neither the hashing nor the sorting approach utilizes any existing indexes. An existing
index is useful if the key includes all the attributes that we wish to retain in the
projection. In this case, we can simply retrieve the key values from the index—without
ever accessing the actual relation—and apply our projection techniques to this (much
smaller) set of pages. This technique is called an index-only scan. If we have an
ordered (i.e., a tree) index whose search key includes the wanted attributes as a prefix,
we can do even better: Just retrieve the data entries in order, discarding unwanted
fields, and compare adjacent entries to check for duplicates. The index-only scan
technique is discussed further in Section 14.4.1.

12.5 THE JOIN OPERATION

Consider the following query:

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

This query can be expressed in relational algebra using the join operation: R ./ S.
The join operation is one of the most useful operations in relational algebra and is the
primary means of combining information from two or more relations.

Although a join can be defined as a cross-product followed by selections and projections,
joins arise much more frequently in practice than plain cross-products. Further, the
result of a cross-product is typically much larger than the result of a join, so it is very
important to recognize joins and implement them without materializing the underlying
cross-product. Joins have therefore received a lot of attention.

334 Chapter 12

Joins in commercial systems: Sybase ASE supports index nested loop and
sort-merge join. Sybase ASIQ supports page-oriented nested loop, index nested
loop, simple hash, and sort merge join, in addition to join indexes (which we
discuss in Chapter 23). Oracle 8 supports page-oriented nested loops join, sort-
merge join, and a variant of hybrid hash join. IBM DB2 supports block nested
loop, sort-merge, and hybrid hash join. Microsoft SQL Server supports block
nested loops, index nested loops, sort-merge, hash join, and a technique called
hash teams. Informix supports block nested loops, index nested loops, and hybrid
hash join.

We will consider several alternative techniques for implementing joins. We begin by
discussing two algorithms (simple nested loops and block nested loops) that essentially
enumerate all tuples in the cross-product and discard tuples that do not meet the join
conditions. These algorithms are instances of the simple iteration technique mentioned
in Section 12.1.

The remaining join algorithms avoid enumerating the cross-product. They are in-
stances of the indexing and partitioning techniques mentioned in Section 12.1. Intu-
itively, if the join condition consists of equalities, tuples in the two relations can be
thought of as belonging to partitions such that only tuples in the same partition can
join with each other; the tuples in a partition contain the same values in the join
columns. Index nested loops join scans one of the relations and, for each tuple in it,
uses an index on the (join columns of the) second relation to locate tuples in the same
partition. Thus, only a subset of the second relation is compared with a given tuple
of the first relation, and the entire cross-product is not enumerated. The last two
algorithms (sort-merge join and hash join) also take advantage of join conditions to
partition tuples in the relations to be joined and compare only tuples in the same par-
tition while computing the join, but they do not rely on a pre-existing index. Instead,
they either sort or hash the relations to be joined to achieve the partitioning.

We discuss the join of two relations R and S, with the join condition Ri = Sj , using
positional notation. (If we have more complex join conditions, the basic idea behind
each algorithm remains essentially the same. We discuss the details in Section 12.5.4.)
We assume that there are M pages in R with pR tuples per page, and N pages in S

with pS tuples per page. We will use R and S in our presentation of the algorithms,
and the Reserves and Sailors relations for specific examples.

12.5.1 Nested Loops Join

The simplest join algorithm is a tuple-at-a-time nested loops evaluation.

Evaluation of Relational Operators 335

foreach tuple r ∈ R do

foreach tuple s ∈ S do

if ri==sj then add 〈r, s〉 to result

Figure 12.4 Simple Nested Loops Join

We scan the outer relation R, and for each tuple r ∈ R, we scan the entire inner
relation S. The cost of scanning R is M I/Os. We scan S a total of pR ∗M times, and
each scan costs N I/Os. Thus, the total cost is M + pR ∗ M ∗ N .

Suppose that we choose R to be Reserves and S to be Sailors. The value of M is then
1,000, pR is 100, and N is 500. The cost of simple nested loops join is 1, 000 + 100 ∗
1, 000 ∗ 500 page I/Os (plus the cost of writing out the result; we remind the reader
again that we will uniformly ignore this component of the cost). The cost is staggering:
1, 000 + (5 ∗ 107) I/Os. Note that each I/O costs about 10ms on current hardware,
which means that this join will take about 140 hours!

A simple refinement is to do this join page-at-a-time: For each page of R, we can
retrieve each page of S and write out tuples 〈r, s〉 for all qualifying tuples r ∈ R-
page and s ∈ S-page. This way, the cost is M to scan R, as before. However, S is
scanned only M times, and so the total cost is M + M ∗ N . Thus, the page-at-a-time
refinement gives us an improvement of a factor of pR. In the example join of the
Reserves and Sailors relations, the cost is reduced to 1, 000 + 1, 000 ∗ 500 = 501, 000
I/Os and would take about 1.4 hours. This dramatic improvement underscores the
importance of page-oriented operations for minimizing disk I/O.

From these cost formulas a straightforward observation is that we should choose the
outer relation R to be the smaller of the two relations (R ./ B = B ./ R, as long
as we keep track of field names). This choice does not change the costs significantly,
however. If we choose the smaller relation, Sailors, as the outer relation, the cost of the
page-at-a-time algorithm is 500+500∗1, 000 = 500, 500 I/Os, which is only marginally
better than the cost of page-oriented simple nested loops join with Reserves as the
outer relation.

Block Nested Loops Join

The simple nested loops join algorithm does not effectively utilize buffer pages. Suppose
that we have enough memory to hold the smaller relation, say R, with at least two
extra buffer pages left over. We can read in the smaller relation and use one of the
extra buffer pages to scan the larger relation S. For each tuple s ∈ S, we check R and
output a tuple 〈r, s〉 for qualifying tuples s (i.e., ri = sj). The second extra buffer page

336 Chapter 12

is used as an output buffer. Each relation is scanned just once, for a total I/O cost of
M + N , which is optimal.

If enough memory is available, an important refinement is to build an in-memory hash
table for the smaller relation R. The I/O cost is still M + N , but the CPU cost is
typically much lower with the hash table refinement.

What if we do not have enough memory to hold the entire smaller relation? We can
generalize the preceding idea by breaking the relation R into blocks that can fit into
the available buffer pages and scanning all of S for each block of R. R is the outer
relation, since it is scanned only once, and S is the inner relation, since it is scanned
multiple times. If we have B buffer pages, we can read in B − 2 pages of the outer
relation R and scan the inner relation S using one of the two remaining pages. We can
write out tuples 〈r, s〉, where r ∈ R-block and s ∈ S-page and ri = sj , using the last
buffer page for output.

An efficient way to find matching pairs of tuples (i.e., tuples satisfying the join
condition ri = sj) is to build a main-memory hash table for the block of R. Because a
hash table for a set of tuples takes a little more space than just the tuples themselves,
building a hash table involves a trade-off: the effective block size of R, in terms of
the number of tuples per block, is reduced. Building a hash table is well worth the
effort. The block nested loops algorithm is described in Figure 12.5. Buffer usage in
this algorithm is illustrated in Figure 12.6.

foreach block of B − 2 pages of R do

foreach page of S do {
for all matching in-memory tuples r ∈ R-block and s ∈ S-page,
add 〈r, s〉 to result

}

Figure 12.5 Block Nested Loops Join

The cost of this strategy is M I/Os for reading in R (which is scanned only once).
S is scanned a total of d M

B−2e times—ignoring the extra space required per page due
to the in-memory hash table—and each scan costs N I/Os. The total cost is thus
M + N ∗ d M

B−2e.

Consider the join of the Reserves and Sailors relations. Let us choose Reserves to be
the outer relation R and assume that we have enough buffers to hold an in-memory
hash table for 100 pages of Reserves (with at least two additional buffers, of course).
We have to scan Reserves, at a cost of 1,000 I/Os. For each 100-page block of Reserves,
we have to scan Sailors. Thus we perform 10 scans of Sailors, each costing 500 I/Os.
The total cost is 1, 000 + 10 ∗ 500 = 6, 000 I/Os. If we had only enough buffers to hold

Evaluation of Relational Operators 337

B main memory buffers

l
(k < B-1 pages)

Input buffer Output buffer
(to scan all of S)

Hash table for block R

Join resultRelations R and S

DiskDisk

Figure 12.6 Buffer Usage in Block Nested Loops Join

90 pages of Reserves, we would have to scan Sailors d1, 000/90e = 12 times, and the
total cost would be 1, 000 + 12 ∗ 500 = 7, 000 I/Os.

Suppose we choose Sailors to be the outer relation R instead. Scanning Sailors costs
500 I/Os. We would scan Reserves d500/100e = 5 times. The total cost is 500 + 5 ∗
1, 000 = 5, 500 I/Os. If instead we have only enough buffers for 90 pages of Sailors,
we would scan Reserves a total of d500/90e = 6 times. The total cost in this case is
500+6∗1, 000 = 6, 500 I/Os. We note that the block nested loops join algorithm takes
a little over a minute on our running example, assuming 10ms per I/O as before.

Impact of Blocked Access

If we consider the effect of blocked access to several pages, there is a fundamental
change in the way we allocate buffers for block nested loops. Rather than using just
one buffer page for the inner relation, the best approach is to split the buffer pool
evenly between the two relations. This allocation results in more passes over the inner
relation, leading to more page fetches. However, the time spent on seeking for pages
is dramatically reduced.

The technique of double buffering (discussed in Chapter 11 in the context of sorting)
can also be used, but we will not discuss it further.

Index Nested Loops Join

If there is an index on one of the relations on the join attribute(s), we can take ad-
vantage of the index by making the indexed relation be the inner relation. Suppose
that we have a suitable index on S; Figure 12.7 describes the index nested loops join
algorithm.

338 Chapter 12

foreach tuple r ∈ R do

foreach tuple s ∈ S where ri == sj

add 〈r, s〉 to result

Figure 12.7 Index Nested Loops Join

For each tuple r ∈ R, we use the index to retrieve matching tuples of S. Intuitively, we
compare r only with tuples of S that are in the same partition, in that they have the
same value in the join column. Unlike the other nested loops join algorithms, therefore,
the index nested loops join algorithm does not enumerate the cross-product of R and
S. The cost of scanning R is M , as before. The cost of retrieving matching S tuples
depends on the kind of index and the number of matching tuples; for each R tuple,
the cost is as follows:

1. If the index on S is a B+ tree index, the cost to find the appropriate leaf is
typically 2 to 4 I/Os. If the index is a hash index, the cost to find the appropriate
bucket is 1 or 2 I/Os.

2. Once we find the appropriate leaf or bucket, the cost of retrieving matching S

tuples depends on whether the index is clustered. If it is, the cost per outer tuple
r ∈ R is typically just one more I/O. If it is not clustered, the cost could be one
I/O per matching S-tuple (since each of these could be on a different page in the
worst case).

As an example, suppose that we have a hash-based index using Alternative (2) on
the sid attribute of Sailors and that it takes about 1.2 I/Os on average2 to retrieve
the appropriate page of the index. Since sid is a key for Sailors, we have at most
one matching tuple. Indeed, sid in Reserves is a foreign key referring to Sailors, and
therefore we have exactly one matching Sailors tuple for each Reserves tuple. Let us
consider the cost of scanning Reserves and using the index to retrieve the matching
Sailors tuple for each Reserves tuple. The cost of scanning Reserves is 1,000. There
are 100 ∗ 1, 000 tuples in Reserves. For each of these tuples, retrieving the index
page containing the rid of the matching Sailors tuple costs 1.2 I/Os (on average); in
addition, we have to retrieve the Sailors page containing the qualifying tuple. Thus
we have 100, 000 ∗ (1 + 1.2) I/Os to retrieve matching Sailors tuples. The total cost is
221,000 I/Os.

As another example, suppose that we have a hash-based index using Alternative (2) on
the sid attribute of Reserves. Now we can scan Sailors (500 I/Os) and for each tuple,
use the index to retrieve matching Reserves tuples. We have a total of 80 ∗ 500 Sailors
tuples, and each tuple could match with either zero or more Reserves tuples; a sailor

2This is a typical cost for hash-based indexes.

Evaluation of Relational Operators 339

may have no reservations, or have several. For each Sailors tuple, we can retrieve the
index page containing the rids of matching Reserves tuples (assuming that we have at
most one such index page, which is a reasonable guess) in 1.2 I/Os on average. The
total cost thus far is 500 + 40, 000 ∗ 1.2 = 48, 500 I/Os.

In addition, we have the cost of retrieving matching Reserves tuples. Since we have
100,000 reservations for 40,000 Sailors, assuming a uniform distribution we can estimate
that each Sailors tuple matches with 2.5 Reserves tuples on average. If the index on
Reserves is clustered, and these matching tuples are typically on the same page of
Reserves for a given sailor, the cost of retrieving them is just one I/O per Sailor tuple,
which adds up to 40,000 extra I/Os. If the index is not clustered, each matching
Reserves tuple may well be on a different page, leading to a total of 2.5 ∗ 40, 000 I/Os
for retrieving qualifying tuples. Thus, the total cost can vary from 48, 500 + 40, 000 =
88, 500 to 48, 500+100, 000 = 148, 500 I/Os. Assuming 10ms per I/O, this would take
about 15 to 25 minutes.

Thus, even with an unclustered index, if the number of matching inner tuples for each
outer tuple is small (on average), the cost of the index nested loops join algorithm is
likely to be much less than the cost of a simple nested loops join. The cost difference
can be so great that some systems build an index on the inner relation at run-time if
one does not already exist and do an index nested loops join using the newly created
index.

12.5.2 Sort-Merge Join *

The basic idea behind the sort-merge join algorithm is to sort both relations on the
join attribute and to then look for qualifying tuples r ∈ R and s ∈ S by essentially
merging the two relations. The sorting step groups all tuples with the same value in the
join column together and thus makes it easy to identify partitions, or groups of tuples
with the same value in the join column. We exploit this partitioning by comparing the
R tuples in a partition with only the S tuples in the same partition (rather than with
all S tuples), thereby avoiding enumeration of the cross-product of R and S. (This
partition-based approach works only for equality join conditions.)

The external sorting algorithm discussed in Chapter 11 can be used to do the sorting,
and of course, if a relation is already sorted on the join attribute, we need not sort it
again. We now consider the merging step in detail: We scan the relations R and S,
looking for qualifying tuples (i.e., tuples Tr in R and Ts in S such that Tri = Tsj).
The two scans start at the first tuple in each relation. We advance the scan of R as
long as the current R tuple is less than the current S tuple (with respect to the values
in the join attribute). Similarly, we then advance the scan of S as long as the current
S tuple is less than the current R tuple. We alternate between such advances until we
find an R tuple Tr and a S tuple Ts with Tri = Tsj .

340 Chapter 12

When we find tuples Tr and Ts such that Tri = Tsj , we need to output the joined
tuple. In fact, we could have several R tuples and several S tuples with the same value
in the join attributes as the current tuples Tr and Ts. We refer to these tuples as
the current R partition and the current S partition. For each tuple r in the current R

partition, we scan all tuples s in the current S partition and output the joined tuple
〈r, s〉. We then resume scanning R and S, beginning with the first tuples that follow
the partitions of tuples that we just processed.

The sort-merge join algorithm is shown in Figure 12.8. We assign only tuple values to
the variables Tr, Ts, and Gs and use the special value eof to denote that there are no
more tuples in the relation being scanned. Subscripts identify fields, for example, Tri

denotes the ith field of tuple Tr. If Tr has the value eof , any comparison involving
Tri is defined to evaluate to false.

We illustrate sort-merge join on the Sailors and Reserves instances shown in Figures
12.9 and 12.10, with the join condition being equality on the sid attributes.

These two relations are already sorted on sid, and the merging phase of the sort-merge
join algorithm begins with the scans positioned at the first tuple of each relation
instance. We advance the scan of Sailors, since its sid value, now 22, is less than the
sid value of Reserves, which is now 28. The second Sailors tuple has sid = 28, which is
equal to the sid value of the current Reserves tuple. Therefore, we now output a result
tuple for each pair of tuples, one from Sailors and one from Reserves, in the current
partition (i.e., with sid = 28). Since we have just one Sailors tuple with sid = 28, and
two such Reserves tuples, we write two result tuples. After this step, we position the
scan of Sailors at the first tuple after the partition with sid = 28, which has sid = 31.
Similarly, we position the scan of Reserves at the first tuple with sid = 31. Since these
two tuples have the same sid values, we have found the next matching partition, and
we must write out the result tuples generated from this partition (there are three such
tuples). After this, the Sailors scan is positioned at the tuple with sid = 36, and the
Reserves scan is positioned at the tuple with sid = 58. The rest of the merge phase
proceeds similarly.

In general, we have to scan a partition of tuples in the second relation as often as the
number of tuples in the corresponding partition in the first relation. The first relation
in the example, Sailors, has just one tuple in each partition. (This is not happenstance,
but a consequence of the fact that sid is a key—this example is a key–foreign key join.)
In contrast, suppose that the join condition is changed to be sname=rname. Now, both
relations contain more than one tuple in the partition with sname=rname=‘lubber’.
The tuples with rname=‘lubber’ in Reserves have to be scanned for each Sailors tuple
with sname=‘lubber’.

Evaluation of Relational Operators 341

proc smjoin(R, S, ‘Ri = S′
j)

if R not sorted on attribute i, sort it;
if S not sorted on attribute j, sort it;

Tr = first tuple in R; // ranges over R

Ts = first tuple in S; // ranges over S

Gs = first tuple in S; // start of current S-partition

while Tr 6= eof and Gs 6= eof do {

while Tri < Gsj do

Tr = next tuple in R after Tr; // continue scan of R

while Tri > Gsj do

Gs = next tuple in S after Gs // continue scan of S

Ts = Gs; // Needed in case Tri 6= Gsj

while Tri == Gsj do { // process current R partition
Ts = Gs; // reset S partition scan
while Tsj == Tri do { // process current R tuple

add 〈Tr, Ts〉 to result; // output joined tuples
Ts = next tuple in S after Ts;} // advance S partition scan

Tr = next tuple in R after Tr; // advance scan of R

} // done with current R partition

Gs = Ts; // initialize search for next S partition

}

Figure 12.8 Sort-Merge Join

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
36 lubber 6 36.0
44 guppy 5 35.0
58 rusty 10 35.0

Figure 12.9 An Instance of Sailors

sid bid day rname
28 103 12/04/96 guppy
28 103 11/03/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Figure 12.10 An Instance of Reserves

342 Chapter 12

Cost of Sort-Merge Join

The cost of sorting R is O(MlogM) and the cost of sorting S is O(NlogN). The
cost of the merging phase is M + N if no S partition is scanned multiple times (or
the necessary pages are found in the buffer after the first pass). This approach is
especially attractive if at least one relation is already sorted on the join attribute or
has a clustered index on the join attribute.

Consider the join of the relations Reserves and Sailors. Assuming that we have 100
buffer pages (roughly the same number that we assumed were available in our discussion
of block nested loops join), we can sort Reserves in just two passes. The first pass
produces 10 internally sorted runs of 100 pages each. The second pass merges these
10 runs to produce the sorted relation. Because we read and write Reserves in each
pass, the sorting cost is 2 ∗ 2 ∗ 1, 000 = 4, 000 I/Os. Similarly, we can sort Sailors in
two passes, at a cost of 2 ∗ 2 ∗ 500 = 2, 000 I/Os. In addition, the second phase of the
sort-merge join algorithm requires an additional scan of both relations. Thus the total
cost is 4, 000 + 2, 000 + 1, 000 + 500 = 7, 500 I/Os, which is similar to the cost of the
block nested loops algorithm.

Suppose that we have only 35 buffer pages. We can still sort both Reserves and Sailors
in two passes, and the cost of the sort-merge join algorithm remains at 7,500 I/Os.
However, the cost of the block nested loops join algorithm is more than 15,000 I/Os.
On the other hand, if we have 300 buffer pages, the cost of the sort-merge join remains
at 7,500 I/Os, whereas the cost of the block nested loops join drops to 2,500 I/Os. (We
leave it to the reader to verify these numbers.)

We note that multiple scans of a partition of the second relation are potentially ex-
pensive. In our example, if the number of Reserves tuples in a repeatedly scanned
partition is small (say, just a few pages), the likelihood of finding the entire partition
in the buffer pool on repeated scans is very high, and the I/O cost remains essentially
the same as for a single scan. However, if there are many pages of Reserves tuples
in a given partition, the first page of such a partition may no longer be in the buffer
pool when we request it a second time (after first scanning all pages in the partition;
remember that each page is unpinned as the scan moves past it). In this case, the
I/O cost could be as high as the number of pages in the Reserves partition times the
number of tuples in the corresponding Sailors partition!

In the worst-case scenario, the merging phase could require us to read all of the second
relation for each tuple in the first relation, and the number of I/Os is O(M ∗N) I/Os!
(This scenario occurs when all tuples in both relations contain the same value in the
join attribute; it is extremely unlikely.)

Evaluation of Relational Operators 343

In practice the I/O cost of the merge phase is typically just a single scan of each
relation. A single scan can be guaranteed if at least one of the relations involved has
no duplicates in the join attribute; this is the case, fortunately, for key–foreign key
joins, which are very common.

A Refinement

We have assumed that the two relations are sorted first and then merged in a distinct
pass. It is possible to improve the sort-merge join algorithm by combining the merging
phase of sorting with the merging phase of the join. First we produce sorted runs
of size B for both R and S. If B >

√
L, where L is the size of the larger relation,

the number of runs per relation is less than
√

L. Suppose that the number of buffers
available for the merging phase is at least 2

√
L, that is, more than the total number

of runs for R and S. We allocate one buffer page for each run of R and one for each
run of S. We then merge the runs of R (to generate the sorted version of R), merge
the runs of S, and merge the resulting R and S streams as they are generated; we
apply the join condition as we merge the R and S streams and discard tuples in the
cross-product that do not meet the join condition.

Unfortunately, this idea increases the number of buffers required to 2
√

L. However,
by using the technique discussed in Section 11.2.1 we can produce sorted runs of size
approximately 2 ∗ B for both R and S. Consequently we have fewer than

√
L/2 runs

of each relation, given the assumption that B >
√

L. Thus, the total number of runs
is less than

√
L, that is, less than B, and we can combine the merging phases with no

need for additional buffers.

This approach allows us to perform a sort-merge join at the cost of reading and writing
R and S in the first pass and of reading R and S in the second pass. The total cost is
thus 3 ∗ (M + N). In our example the cost goes down from 7,500 to 4,500 I/Os.

Blocked Access and Double-Buffering

The blocked I/O and double-buffering optimizations, discussed in Chapter 11 in the
context of sorting, can be used to speed up the merging pass, as well as the sorting of
the relations to be joined; we will not discuss these refinements.

12.5.3 Hash Join *

The hash join algorithm, like the sort-merge join algorithm, identifies partitions in
R and S in a partitioning phase, and in a subsequent probing phase compares
tuples in an R partition only with tuples in the corresponding S partition for testing
equality join conditions. Unlike sort-merge join, hash join uses hashing to identify

344 Chapter 12

partitions, rather than sorting. The partitioning (also called building) phase of hash
join is similar to the partitioning in hash-based projection and is illustrated in Figure
12.3. The probing (sometimes called matching) phase is illustrated in Figure 12.11.

(k < B-1 pages)

Input buffer Output buffer

hash
function

h2

h2 Hash table for partition Ri

(To scan Si)

B main memory buffers

Join result

DiskDisk

Partitions of R and S

Figure 12.11 Probing Phase of Hash Join

The idea is to hash both relations on the join attribute, using the same hash function
h. If we hash each relation (hopefully uniformly) into k partitions, we are assured
that R tuples in partition i can join only with S tuples in the same partition i. This
observation can be used to good effect: We can read in a (complete) partition of the
smaller relation R and scan just the corresponding partition of S for matches. We never
need to consider these R and S tuples again. Thus, once R and S are partitioned, we
can perform the join by reading in R and S just once, provided that enough memory
is available to hold all the tuples in any given partition of R.

In practice we build an in-memory hash table for the R partition, using a hash function
h2 that is different from h (since h2 is intended to distribute tuples in a partition based
on h!), in order to reduce CPU costs. We need enough memory to hold this hash table,
which is a little larger than the R partition itself.

The hash join algorithm is presented in Figure 12.12. (There are several variants
on this idea; the version that we present is called Grace hash join in the literature.)
Consider the cost of the hash join algorithm. In the partitioning phase we have to
scan both R and S once and write them both out once. The cost of this phase is
therefore 2(M + N). In the second phase we scan each partition once, assuming no
partition overflows, at a cost of M + N I/Os. The total cost is therefore 3(M + N),
given our assumption that each partition fits into memory in the second phase. On
our example join of Reserves and Sailors, the total cost is 3 ∗ (500 + 1, 000) = 4, 500
I/Os, and assuming 10ms per I/O, hash join takes under a minute. Compare this with
simple nested loops join, which took about 140 hours—this difference underscores the
importance of using a good join algorithm.

Evaluation of Relational Operators 345

// Partition R into k partitions
foreach tuple r ∈ R do

read r and add it to buffer page h(ri); // flushed as page fills

// Partition S into k partitions
foreach tuple s ∈ S do

read s and add it to buffer page h(sj); // flushed as page fills

// Probing Phase
for l = 1, . . . , k do {

// Build in-memory hash table for Rl, using h2
foreach tuple r ∈ partition Rl do

read r and insert into hash table using h2(ri) ;

// Scan Sl and probe for matching Rl tuples
foreach tuple s ∈ partition Sl do {

read s and probe table using h2(sj);
for matching R tuples r, output 〈r, s〉 };

clear hash table to prepare for next partition;
}

Figure 12.12 Hash Join

Memory Requirements and Overflow Handling

To increase the chances of a given partition fitting into available memory in the probing
phase, we must minimize the size of a partition by maximizing the number of partitions.
In the partitioning phase, to partition R (similarly, S) into k partitions, we need at
least k output buffers and one input buffer. Thus, given B buffer pages, the maximum
number of partitions is k = B − 1. Assuming that partitions are equal in size, this
means that the size of each R partition is M

B−1 (as usual, M is the number of pages
of R). The number of pages in the (in-memory) hash table built during the probing
phase for a partition is thus f∗M

B−1 , where f is a fudge factor used to capture the (small)
increase in size between the partition and a hash table for the partition.

During the probing phase, in addition to the hash table for the R partition, we require
a buffer page for scanning the S partition, and an output buffer. Therefore, we require
B > f∗M

B−1 + 2. We need approximately B >
√

f ∗ M for the hash join algorithm to
perform well.

346 Chapter 12

Since the partitions of R are likely to be close in size, but not identical, the largest
partition will be somewhat larger than M

B−1 , and the number of buffer pages required
is a little more than B >

√
f ∗ M . There is also the risk that if the hash function

h does not partition R uniformly, the hash table for one or more R partitions may
not fit in memory during the probing phase. This situation can significantly degrade
performance.

As we observed in the context of hash-based projection, one way to handle this partition
overflow problem is to recursively apply the hash join technique to the join of the
overflowing R partition with the corresponding S partition. That is, we first divide
the R and S partitions into subpartitions. Then we join the subpartitions pairwise.
All subpartitions of R will probably fit into memory; if not, we apply the hash join
technique recursively.

Utilizing Extra Memory: Hybrid Hash Join

The minimum amount of memory required for hash join is B >
√

f ∗ M . If more
memory is available, a variant of hash join called hybrid hash join offers better
performance. Suppose that B > f ∗ (M/k), for some integer k. This means that if we
divide R into k partitions of size M/k, an in-memory hash table can be built for each
partition. To partition R (similarly, S) into k partitions, we need k output buffers and
one input buffer, that is, k + 1 pages. This leaves us with B − (k + 1) extra pages
during the partitioning phase.

Suppose that B − (k + 1) > f ∗ (M/k). That is, we have enough extra memory during
the partitioning phase to hold an in-memory hash table for a partition of R. The idea
behind hybrid hash join is to build an in-memory hash table for the first partition of R

during the partitioning phase, which means that we don’t write this partition to disk.
Similarly, while partitioning S, rather than write out the tuples in the first partition
of S, we can directly probe the in-memory table for the first R partition and write out
the results. At the end of the partitioning phase, we have completed the join of the
first partitions of R and S, in addition to partitioning the two relations; in the probing
phase, we join the remaining partitions as in hash join.

The savings realized through hybrid hash join is that we avoid writing the first par-
titions of R and S to disk during the partitioning phase and reading them in again
during the probing phase. Consider our example, with 500 pages in the smaller relation
R and 1,000 pages in S.3 If we have B = 300 pages, we can easily build an in-memory
hash table for the first R partition while partitioning R into two partitions. During the
partitioning phase of R, we scan R and write out one partition; the cost is 500 + 250

3It is unfortunate that in our running example, the smaller relation, which we have denoted by
the variable R in our discussion of hash join, is in fact the Sailors relation, which is more naturally
denoted by S!

Evaluation of Relational Operators 347

if we assume that the partitions are of equal size. We then scan S and write out one
partition; the cost is 1, 000 + 500. In the probing phase, we scan the second partition
of R and of S; the cost is 250 + 500. The total cost is 750 + 1, 500 + 750 = 3, 000. In
contrast, the cost of hash join is 4, 500.

If we have enough memory to hold an in-memory hash table for all of R, the savings are
even greater. For example, if B > f ∗N +2, that is, k = 1, we can build an in-memory
hash table for all of R. This means that we only read R once, to build this hash table,
and read S once, to probe the R hash table. The cost is 500 + 1, 000 = 1, 500.

Hash Join versus Block Nested Loops Join

While presenting the block nested loops join algorithm, we briefly discussed the idea of
building an in-memory hash table for the inner relation. We now compare this (more
CPU-efficient) version of block nested loops join with hybrid hash join.

If a hash table for the entire smaller relation fits in memory, the two algorithms are
identical. If both relations are large relative to the available buffer size, we require
several passes over one of the relations in block nested loops join; hash join is a more
effective application of hashing techniques in this case. The I/O that is saved in this
case by using the hash join algorithm in comparison to a block nested loops join is
illustrated in Figure 12.13. In the latter, we read in all of S for each block of R; the I/O
cost corresponds to the whole rectangle. In the hash join algorithm, for each block of
R, we read only the corresponding block of S; the I/O cost corresponds to the shaded
areas in the figure. This difference in I/O due to scans of S is highlighted in the figure.

R1

R4

S1 S2 S4 S5S3

R2

R3

R5

Figure 12.13 Hash Join versus Block Nested Loops for Large Relations

We note that this picture is rather simplistic. It does not capture the cost of scanning
R in block nested loops join and the cost of the partitioning phase in hash join, and it
focuses on the cost of the probing phase.

348 Chapter 12

Hash Join versus Sort-Merge Join

Let us compare hash join with sort-merge join. If we have B >
√

M buffer pages, where
M is the number of pages in the smaller relation, and we assume uniform partitioning,
the cost of hash join is 3(M + N) I/Os. If we have B >

√
N buffer pages, where N is

the number of pages in the larger relation, the cost of sort-merge join is also 3(M +N),
as discussed in Section 12.5.2. A choice between these techniques is therefore governed
by other factors, notably:

If the partitions in hash join are not uniformly sized, hash join could cost more.
Sort-merge join is less sensitive to such data skew.

If the available number of buffers falls between
√

M and
√

N , hash join costs less
than sort-merge join, since we need only enough memory to hold partitions of the
smaller relation, whereas in sort-merge join the memory requirements depend on
the size of the larger relation. The larger the difference in size between the two
relations, the more important this factor becomes.

Additional considerations include the fact that the result is sorted in sort-merge
join.

12.5.4 General Join Conditions *

We have discussed several join algorithms for the case of a simple equality join con-
dition. Other important cases include a join condition that involves equalities over
several attributes and inequality conditions. To illustrate the case of several equalities,
we consider the join of Reserves R and Sailors S with the join condition R.sid=S.sid
∧ R.rname=S.sname:

For index nested loops join, we can build an index on Reserves on the combination
of fields 〈R.sid, R.rname〉 and treat Reserves as the inner relation. We can also
use an existing index on this combination of fields, or on R.sid, or on R.rname.
(Similar remarks hold for the choice of Sailors as the inner relation, of course.)

For sort-merge join, we sort Reserves on the combination of fields 〈sid, rname〉
and Sailors on the combination of fields 〈sid, sname〉. Similarly, for hash join, we
partition on these combinations of fields.

The other join algorithms that we discussed are essentially unaffected.

If we have an inequality comparison, for example, a join of Reserves R and Sailors S

with the join condition R.rname < S.sname:

We require a B+ tree index for index nested loops join.

Evaluation of Relational Operators 349

Hash join and sort-merge join are not applicable.

The other join algorithms that we discussed are essentially unaffected.

Of course, regardless of the algorithm, the number of qualifying tuples in an inequality
join is likely to be much higher than in an equality join.

We conclude our presentation of joins with the observation that there is no join algo-
rithm that is uniformly superior to the others. The choice of a good algorithm depends
on the sizes of the relations being joined, available access methods, and the size of the
buffer pool. This choice can have a considerable impact on performance because the
difference between a good and a bad algorithm for a given join can be enormous.

12.6 THE SET OPERATIONS *

We now briefly consider the implementation of the set operations R∩S, R×S, R∪S,
and R − S. From an implementation standpoint, intersection and cross-product can
be seen as special cases of join (with equality on all fields as the join condition for
intersection, and with no join condition for cross-product). Therefore, we will not
discuss them further.

The main point to address in the implementation of union is the elimination of du-
plicates. Set-difference can also be implemented using a variation of the techniques
for duplicate elimination. (Union and difference queries on a single relation can be
thought of as a selection query with a complex selection condition. The techniques
discussed in Section 12.3 are applicable for such queries.)

There are two implementation algorithms for union and set-difference, again based
on sorting and hashing. Both algorithms are instances of the partitioning technique
mentioned in Section 12.1.

12.6.1 Sorting for Union and Difference

To implement R ∪ S:

1. Sort R using the combination of all fields; similarly, sort S.

2. Scan the sorted R and S in parallel and merge them, eliminating duplicates.

As a refinement, we can produce sorted runs of R and S and merge these runs in
parallel. (This refinement is similar to the one discussed in detail for projection.) The
implementation of R − S is similar. During the merging pass, we write only tuples of
R to the result, after checking that they do not appear in S.

350 Chapter 12

12.6.2 Hashing for Union and Difference

To implement R ∪ S:

1. Partition R and S using a hash function h.

2. Process each partition l as follows:

Build an in-memory hash table (using hash function h2 6= h) for Sl.

Scan Rl. For each tuple, probe the hash table for Sl. If the tuple is in the
hash table, discard it; otherwise, add it to the table.

Write out the hash table and then clear it to prepare for the next partition.

To implement R − S, we proceed similarly. The difference is in the processing of a
partition. After building an in-memory hash table for Sl, we scan Rl. For each Rl

tuple, we probe the hash table; if the tuple is not in the table, we write it to the result.

12.7 AGGREGATE OPERATIONS *

The SQL query shown in Figure 12.14 involves an aggregate operation, AVG. The other
aggregate operations supported in SQL-92 are MIN, MAX, SUM, and COUNT.

SELECT AVG(S.age)
FROM Sailors S

Figure 12.14 Simple Aggregation Query

The basic algorithm for aggregate operators consists of scanning the entire Sailors
relation and maintaining some running information about the scanned tuples; the
details are straightforward. The running information for each aggregate operation is
shown in Figure 12.15. The cost of this operation is the cost of scanning all Sailors
tuples.

Aggregate Operation Running Information
SUM Total of the values retrieved
AVG 〈Total, Count〉 of the values retrieved
COUNT Count of values retrieved
MIN Smallest value retrieved
MAX Largest value retrieved

Figure 12.15 Running Information for Aggregate Operations

Aggregate operators can also be used in combination with a GROUP BY clause. If we
add GROUP BY rating to the query in Figure 12.14, we would have to compute the

Evaluation of Relational Operators 351

average age of sailors for each rating group. For queries with grouping, there are two
good evaluation algorithms that do not rely on an existing index; one algorithm is
based on sorting and the other is based on hashing. Both algorithms are instances of
the partitioning technique mentioned in Section 12.1.

The sorting approach is simple—we sort the relation on the grouping attribute (rating)
and then scan it again to compute the result of the aggregate operation for each
group. The second step is similar to the way we implement aggregate operations
without grouping, with the only additional point being that we have to watch for
group boundaries. (It is possible to refine the approach by doing aggregation as part
of the sorting step; we leave this as an exercise for the reader.) The I/O cost of this
approach is just the cost of the sorting algorithm.

In the hashing approach we build a hash table (in main memory if possible) on the
grouping attribute. The entries have the form 〈grouping-value, running-info〉. The
running information depends on the aggregate operation, as per the discussion of
aggregate operations without grouping. As we scan the relation, for each tuple, we
probe the hash table to find the entry for the group to which the tuple belongs and
update the running information. When the hash table is complete, the entry for a
grouping value can be used to compute the answer tuple for the corresponding group
in the obvious way. If the hash table fits in memory, which is likely because each entry
is quite small and there is only one entry per grouping value, the cost of the hashing
approach is O(M), where M is the size of the relation.

If the relation is so large that the hash table does not fit in memory, we can parti-
tion the relation using a hash function h on grouping-value. Since all tuples with a
given grouping-value are in the same partition, we can then process each partition
independently by building an in-memory hash table for the tuples in it.

12.7.1 Implementing Aggregation by Using an Index

The technique of using an index to select a subset of useful tuples is not applicable for
aggregation. However, under certain conditions we can evaluate aggregate operations
efficiently by using the data entries in an index instead of the data records:

If the search key for the index includes all the attributes needed for the aggregation
query, we can apply the techniques described earlier in this section to the set of
data entries in the index, rather than to the collection of data records, and thereby
avoid fetching data records.

If the GROUP BY clause attribute list forms a prefix of the index search key and the
index is a tree index, we can retrieve data entries (and data records, if necessary)
in the order required for the grouping operation, and thereby avoid a sorting step.

352 Chapter 12

A given index may support one or both of these techniques; both are examples of index-
only plans. We discuss the use of indexes for queries with grouping and aggregation in
the context of queries that also include selections and projections in Section 14.4.1.

12.8 THE IMPACT OF BUFFERING *

In implementations of relational operators, effective use of the buffer pool is very
important, and we explicitly considered the size of the buffer pool in determining
algorithm parameters for several of the algorithms that we discussed. There are three
main points to note:

1. If several operations execute concurrently, they share the buffer pool. This effec-
tively reduces the number of buffer pages available for each operation.

2. If tuples are accessed using an index, especially an unclustered index, the likelihood
of finding a page in the buffer pool if it is requested multiple times depends (in
a rather unpredictable way, unfortunately) on the size of the buffer pool and the
replacement policy. Further, if tuples are accessed using an unclustered index,
each tuple retrieved is likely to require us to bring in a new page; thus, the buffer
pool fills up quickly, leading to a high level of paging activity.

3. If an operation has a pattern of repeated page accesses, we can increase the like-
lihood of finding a page in memory by a good choice of replacement policy or by
reserving a sufficient number of buffers for the operation (if the buffer manager
provides this capability). Several examples of such patterns of repeated access
follow:

Consider a simple nested loops join. For each tuple of the outer relation,
we repeatedly scan all pages in the inner relation. If we have enough buffer
pages to hold the entire inner relation, the replacement policy is irrelevant.
Otherwise, the replacement policy becomes critical. With LRU we will never
find a page when it is requested, because it is paged out. This is the sequential
flooding problem that we discussed in Section 7.4.1. With MRU we obtain
the best buffer utilization—the first B − 2 pages of the inner relation always
remain in the buffer pool. (B is the number of buffer pages; we use one page
for scanning the outer relation,4 and always replace the last page used for
scanning the inner relation.)

In a block nested loops join, for each block of the outer relation, we scan the
entire inner relation. However, since only one unpinned page is available for
the scan of the inner relation, the replacement policy makes no difference.

In an index nested loops join, for each tuple of the outer relation, we use the
index to find matching inner tuples. If several tuples of the outer relation

4Think about the sequence of pins and unpins used to achieve this.

Evaluation of Relational Operators 353

have the same value in the join attribute, there is a repeated pattern of access
on the inner relation; we can maximize the repetition by sorting the outer
relation on the join attributes.

12.9 POINTS TO REVIEW

Queries are composed of a few basic operators whose implementation impacts
performance. All queries need to retrieve tuples from one or more input relations.
The alternative ways of retrieving tuples from a relation are called access paths.
An index matches selection conditions in a query if the index can be used to only
retrieve tuples that satisfy the selection conditions. The selectivity of an access
path with respect to a query is the total number of pages retrieved using the access
path for this query. (Section 12.1)

Consider a simple selection query of the form σR.attr op value(R). If there is no
index and the file is not sorted, the only access path is a file scan. If there is no
index but the file is sorted, a binary search can find the first occurrence of a tuple
in the query. If a B+ tree index matches the selection condition, the selectivity
depends on whether the index is clustered or unclustered and the number of result
tuples. Hash indexes can be used only for equality selections. (Section 12.2)

General selection conditions can be expressed in conjunctive normal form, where
each conjunct consists of one or more terms. Conjuncts that contain ∨ are called
disjunctive. A more complicated rule can be used to determine whether a general
selection condition matches an index. There are several implementation options
for general selections. (Section 12.3)

The projection operation can be implemented by sorting and duplicate elimina-
tion during the sorting step. Another, hash-based implementation first partitions
the file according to a hash function on the output attributes. Two tuples that
belong to different partitions are guaranteed not to be duplicates because they
have different hash values. In a subsequent step each partition is read into main
memory and within-partition duplicates are eliminated. If an index contains all
output attributes, tuples can be retrieved solely from the index. This technique
is called an index-only scan. (Section 12.4)

Assume that we join relations R and S. In a nested loops join, the join condition
is evaluated between each pair of tuples from R and S. A block nested loops join
performs the pairing in a way that minimizes the number of disk accesses. An
index nested loops join fetches only matching tuples from S for each tuple of R by
using an index. A sort-merge join sorts R and S on the join attributes using an
external merge sort and performs the pairing during the final merge step. A hash
join first partitions R and S using a hash function on the join attributes. Only
partitions with the same hash values need to be joined in a subsequent step. A
hybrid hash join extends the basic hash join algorithm by making more efficient

354 Chapter 12

use of main memory if more buffer pages are available. Since a join is a very
expensive, but common operation, its implementation can have great impact on
overall system performance. The choice of the join implementation depends on
the number of buffer pages available and the sizes of R and S. (Section 12.5)

The set operations R ∩ S, R × S, R ∪ S, and R − S can be implemented using
sorting or hashing. In sorting, R and S are first sorted and the set operation is
performed during a subsequent merge step. In a hash-based implementation, R

and S are first partitioned according to a hash function. The set operation is
performed when processing corresponding partitions. (Section 12.6)

Aggregation can be performed by maintaining running information about the tu-
ples. Aggregation with grouping can be implemented using either sorting or hash-
ing with the grouping attribute determining the partitions. If an index contains
sufficient information for either simple aggregation or aggregation with grouping,
index-only plans that do not access the actual tuples are possible. (Section 12.7)

The number of buffer pool pages available —influenced by the number of operators
being evaluated concurrently—and their effective use has great impact on the
performance of implementations of relational operators. If an operation has a
regular pattern of page accesses, choice of a good buffer pool replacement policy
can influence overall performance. (Section 12.8)

EXERCISES

Exercise 12.1 Briefly answer the following questions:

1. Consider the three basic techniques, iteration, indexing, and partitioning, and the re-

lational algebra operators selection, projection, and join. For each technique–operator

pair, describe an algorithm based on the technique for evaluating the operator.

2. Define the term most selective access path for a query.

3. Describe conjunctive normal form, and explain why it is important in the context of

relational query evaluation.

4. When does a general selection condition match an index? What is a primary term in a

selection condition with respect to a given index?

5. How does hybrid hash join improve upon the basic hash join algorithm?

6. Discuss the pros and cons of hash join, sort-merge join, and block nested loops join.

7. If the join condition is not equality, can you use sort-merge join? Can you use hash join?

Can you use index nested loops join? Can you use block nested loops join?

8. Describe how to evaluate a grouping query with aggregation operator MAX using a sorting-

based approach.

9. Suppose that you are building a DBMS and want to add a new aggregate operator called

SECOND LARGEST, which is a variation of the MAX operator. Describe how you would

implement it.

Evaluation of Relational Operators 355

10. Give an example of how buffer replacement policies can affect the performance of a join

algorithm.

Exercise 12.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where each data

page of the relation holds 10 records. R is organized as a sorted file with dense secondary

indexes. Assume that R.a is a candidate key for R, with values lying in the range 0 to

4,999,999, and that R is stored in R.a order. For each of the following relational algebra

queries, state which of the following three approaches is most likely to be the cheapest:

Access the sorted file for R directly.

Use a (clustered) B+ tree index on attribute R.a.

Use a linear hashed index on attribute R.a.

1. σa<50,000(R)

2. σa=50,000(R)

3. σa>50,000∧a<50,010(R)

4. σa6=50,000(R)

Exercise 12.3 Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of

the same length.

The ename attribute is a candidate key.

The relation contains 10,000 pages.

There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The initial sorting

pass reads the input relation and creates sorted runs of tuples containing only attributes ename

and title. Subsequent merging passes eliminate duplicates while merging the initial runs to

obtain a single sorted result (as opposed to doing a separate pass to eliminate duplicates from

a sorted result containing duplicates).

1. How many sorted runs are produced in the first pass? What is the average length of

these runs? (Assume that memory is utilized well and that any available optimization

to increase run size is used.) What is the I/O cost of this sorting pass?

2. How many additional merge passes will be required to compute the final result of the

projection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on title is available. Is this index likely to

offer a cheaper alternative to sorting? Would your answer change if the index were

unclustered? Would your answer change if the index were a hash index?

(b) Suppose that a clustered B+ tree index on ename is available. Is this index likely

to offer a cheaper alternative to sorting? Would your answer change if the index

were unclustered? Would your answer change if the index were a hash index?

356 Chapter 12

(c) Suppose that a clustered B+ tree index on 〈ename, title〉 is available. Is this index

likely to offer a cheaper alternative to sorting? Would your answer change if the

index were unclustered? Would your answer change if the index were a hash index?

4. Suppose that the query is as follows:

SELECT E.title, E.ename FROM Executives E

That is, you are not required to do duplicate elimination. How would your answers to

the previous questions change?

Exercise 12.4 Consider the join R./R.a=S.bS, given the following information about the

relations to be joined. The cost metric is the number of page I/Os unless otherwise noted,

and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.

Relation S contains 2,000 tuples and also has 10 tuples per page.

Attribute b of relation S is the primary key for S.

Both relations are stored as simple heap files.

Neither relation has any indexes built on it.

52 buffer pages are available.

1. What is the cost of joining R and S using a page-oriented simple nested loops join? What

is the minimum number of buffer pages required for this cost to remain unchanged?

2. What is the cost of joining R and S using a block nested loops join? What is the minimum

number of buffer pages required for this cost to remain unchanged?

3. What is the cost of joining R and S using a sort-merge join? What is the minimum

number of buffer pages required for this cost to remain unchanged?

4. What is the cost of joining R and S using a hash join? What is the minimum number of

buffer pages required for this cost to remain unchanged?

5. What would be the lowest possible I/O cost for joining R and S using any join algorithm,

and how much buffer space would be needed to achieve this cost? Explain briefly.

6. How many tuples will the join of R and S produce, at most, and how many pages would

be required to store the result of the join back on disk?

7. Would your answers to any of the previous questions in this exercise change if you are

told that R.a is a foreign key that refers to S.b?

Exercise 12.5 Consider the join of R and S described in Exercise 12.4.

1. With 52 buffer pages, if unclustered B+ indexes existed on R.a and S.b, would either

provide a cheaper alternative for performing the join (using an index nested loops join)

than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000 tuples?

2. With 52 buffer pages, if clustered B+ indexes existed on R.a and S.b, would either provide

a cheaper alternative for performing the join (using the index nested loops algorithm)

than a block nested loops join? Explain.

Evaluation of Relational Operators 357

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000 tuples?

3. If only 15 buffers were available, what would be the cost of a sort-merge join? What

would be the cost of a hash join?

4. If the size of S were increased to also be 10,000 tuples, but only 15 buffer pages were

available, what would be the cost of a sort-merge join? What would be the cost of a

hash join?

5. If the size of S were increased to also be 10,000 tuples, and 52 buffer pages were available,

what would be the cost of sort-merge join? What would be the cost of hash join?

Exercise 12.6 Answer each of the questions—if some question is inapplicable, explain why—

in Exercise 12.4 again, but using the following information about R and S:

Relation R contains 200,000 tuples and has 20 tuples per page.

Relation S contains 4,000,000 tuples and also has 20 tuples per page.

Attribute a of relation R is the primary key for R.

Each tuple of R joins with exactly 20 tuples of S.

1,002 buffer pages are available.

Exercise 12.7 We described variations of the join operation called outer joins in Section

5.6.4. One approach to implementing an outer join operation is to first evaluate the corre-

sponding (inner) join and then add additional tuples padded with null values to the result

in accordance with the semantics of the given outer join operator. However, this requires us

to compare the result of the inner join with the input relations to determine the additional

tuples to be added. The cost of this comparison can be avoided by modifying the join al-

gorithm to add these extra tuples to the result while input tuples are processed during the

join. Consider the following join algorithms: block nested loops join, index nested loops join,

sort-merge join, and hash join. Describe how you would modify each of these algorithms to

compute the following operations on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

PROJECT-BASED EXERCISES

Exercise 12.8 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix B.) Implement the various join algorithms described in this chapter

in Minibase. (As additional exercises, you may want to implement selected algorithms for the

other operators as well.)

358 Chapter 12

BIBLIOGRAPHIC NOTES

The implementation techniques used for relational operators in System R are discussed in

[88]. The implementation techniques used in PRTV, which utilized relational algebra trans-

formations and a form of multiple-query optimization, are discussed in [303]. The techniques

used for aggregate operations in Ingres are described in [209]. [275] is an excellent survey of

algorithms for implementing relational operators and is recommended for further reading.

Hash-based techniques are investigated (and compared with sort-based techniques) in [93],

[187], [276], and [588]. Duplicate elimination was discussed in [86]. [238] discusses secondary

storage access patterns arising in join implementations. Parallel algorithms for implementing

relational operations are discussed in [86, 141, 185, 189, 196, 251, 464].

13 INTRODUCTION TO
QUERY OPTIMIZATION

This very remarkable man

Commends a most practical plan:

You can do what you want

If you don’t think you can’t,

So don’t think you can’t if you can.

—Charles Inge

Consider a simple selection query asking for all reservations made by sailor Joe. As we
saw in the previous chapter, there are many ways to evaluate even this simple query,
each of which is superior in certain situations, and the DBMS must consider these
alternatives and choose the one with the least estimated cost. Queries that consist
of several operations have many more evaluation options, and finding a good plan
represents a significant challenge.

A more detailed view of the query optimization and execution layer in the DBMS
architecture presented in Section 1.8 is shown in Figure 13.1. Queries are parsed and
then presented to a query optimizer, which is responsible for identifying an efficient
execution plan for evaluating the query. The optimizer generates alternative plans and
chooses the plan with the least estimated cost. To estimate the cost of a plan, the
optimizer uses information in the system catalogs.

This chapter presents an overview of query optimization, some relevant background
information, and a case study that illustrates and motivates query optimization. We
discuss relational query optimizers in detail in Chapter 14.

Section 13.1 lays the foundation for our discussion. It introduces query evaluation
plans, which are composed of relational operators; considers alternative techniques
for passing results between relational operators in a plan; and describes an iterator
interface that makes it easy to combine code for individual relational operators into
an executable plan. In Section 13.2, we describe the system catalogs for a relational
DBMS. The catalogs contain the information needed by the optimizer to choose be-
tween alternate plans for a given query. Since the costs of alternative plans for a given
query can vary by orders of magnitude, the choice of query evaluation plan can have
a dramatic impact on execution time. We illustrate the differences in cost between
alternative plans through a detailed motivating example in Section 13.3.

359

360 Chapter 13

Generator Estimator

Plan CostPlan

Query Plan Evaluator

Query Optimizer

Query Parser

Manager

Catalog

Evaluation plan

Parsed query

Query

Figure 13.1 Query Parsing, Optimization, and Execution

We will consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

As in Chapter 12, we will assume that each tuple of Reserves is 40 bytes long, that
a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.
Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can
hold 80 Sailors tuples, and that we have 500 pages of such tuples.

13.1 OVERVIEW OF RELATIONAL QUERY OPTIMIZATION

The goal of a query optimizer is to find a good evaluation plan for a given query. The
space of plans considered by a typical relational query optimizer can be understood
by recognizing that a query is essentially treated as a σ − π − × algebra expression,
with the remaining operations (if any, in a given query) carried out on the result of
the σ−π−× expression. Optimizing such a relational algebra expression involves two
basic steps:

Enumerating alternative plans for evaluating the expression; typically, an opti-
mizer considers a subset of all possible plans because the number of possible plans
is very large.

Estimating the cost of each enumerated plan, and choosing the plan with the least
estimated cost.

Introduction to Query Optimization 361

Commercial optimizers: Current RDBMS optimizers are complex pieces of
software with many closely guarded details and typically represent 40 to 50 man-
years of development effort!

In this section we lay the foundation for our discussion of query optimization by in-
troducing evaluation plans. We conclude this section by highlighting IBM’s System R
optimizer, which influenced subsequent relational optimizers.

13.1.1 Query Evaluation Plans

A query evaluation plan (or simply plan) consists of an extended relational algebra
tree, with additional annotations at each node indicating the access methods to use
for each relation and the implementation method to use for each relational operator.

Consider the following SQL query:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5

This query can be expressed in relational algebra as follows:

πsname(σbid=100∧rating>5(Reserves./sid=sidSailors))

This expression is shown in the form of a tree in Figure 13.2. The algebra expression
partially specifies how to evaluate the query—we first compute the natural join of
Reserves and Sailors, then perform the selections, and finally project the sname field.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 13.2 Query Expressed as a Relational Algebra Tree

To obtain a fully specified evaluation plan, we must decide on an implementation for
each of the algebra operations involved. For example, we can use a page-oriented

362 Chapter 13

simple nested loops join with Reserves as the outer relation and apply selections and
projections to each tuple in the result of the join as it is produced; the result of the
join before the selections and projections is never stored in its entirety. This query
evaluation plan is shown in Figure 13.3.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(On-the-fly)

(On-the-fly)

(Simple nested loops)

(File scan)(File scan)

Figure 13.3 Query Evaluation Plan for Sample Query

In drawing the query evaluation plan, we have used the convention that the outer
relation is the left child of the join operator. We will adopt this convention henceforth.

13.1.2 Pipelined Evaluation

When a query is composed of several operators, the result of one operator is sometimes
pipelined to another operator without creating a temporary relation to hold the
intermediate result. The plan in Figure 13.3 pipelines the output of the join of Sailors
and Reserves into the selections and projections that follow. Pipelining the output
of an operator into the next operator saves the cost of writing out the intermediate
result and reading it back in, and the cost savings can be significant. If the output of
an operator is saved in a temporary relation for processing by the next operator, we
say that the tuples are materialized. Pipelined evaluation has lower overhead costs
than materialization and is chosen whenever the algorithm for the operator evaluation
permits it.

There are many opportunities for pipelining in typical query plans, even simple plans
that involve only selections. Consider a selection query in which only part of the se-
lection condition matches an index. We can think of such a query as containing two
instances of the selection operator: The first contains the primary, or matching, part
of the original selection condition, and the second contains the rest of the selection
condition. We can evaluate such a query by applying the primary selection and writ-
ing the result to a temporary relation and then applying the second selection to the
temporary relation. In contrast, a pipelined evaluation consists of applying the second
selection to each tuple in the result of the primary selection as it is produced and
adding tuples that qualify to the final result. When the input relation to a unary

Introduction to Query Optimization 363

operator (e.g., selection or projection) is pipelined into it, we sometimes say that the
operator is applied on-the-fly.

As a second and more general example, consider a join of the form (A ./ B) ./ C,
shown in Figure 13.4 as a tree of join operations.

Result tuples
of first join
pipelined into
join with C

A B

C

Figure 13.4 A Query Tree Illustrating Pipelining

Both joins can be evaluated in pipelined fashion using some version of a nested loops
join. Conceptually, the evaluation is initiated from the root, and the node joining A

and B produces tuples as and when they are requested by its parent node. When the
root node gets a page of tuples from its left child (the outer relation), all the matching
inner tuples are retrieved (using either an index or a scan) and joined with matching
outer tuples; the current page of outer tuples is then discarded. A request is then made
to the left child for the next page of tuples, and the process is repeated. Pipelined
evaluation is thus a control strategy governing the rate at which different joins in the
plan proceed. It has the great virtue of not writing the result of intermediate joins to
a temporary file because the results are produced, consumed, and discarded one page
at a time.

13.1.3 The Iterator Interface for Operators and Access Methods

A query evaluation plan is a tree of relational operators and is executed by calling the
operators in some (possibly interleaved) order. Each operator has one or more inputs
and an output, which are also nodes in the plan, and tuples must be passed between
operators according to the plan’s tree structure.

In order to simplify the code that is responsible for coordinating the execution of a plan,
the relational operators that form the nodes of a plan tree (which is to be evaluated
using pipelining) typically support a uniform iterator interface, hiding the internal
implementation details of each operator. The iterator interface for an operator includes
the functions open, get next, and close. The open function initializes the state of
the iterator by allocating buffers for its inputs and output, and is also used to pass
in arguments such as selection conditions that modify the behavior of the operator.
The code for the get next function calls the get next function on each input node and
calls operator-specific code to process the input tuples. The output tuples generated
by the processing are placed in the output buffer of the operator, and the state of

364 Chapter 13

the iterator is updated to keep track of how much input has been consumed. When
all output tuples have been produced through repeated calls to get next, the close
function is called (by the code that initiated execution of this operator) to deallocate
state information.

The iterator interface supports pipelining of results naturally; the decision to pipeline
or materialize input tuples is encapsulated in the operator-specific code that processes
input tuples. If the algorithm implemented for the operator allows input tuples to
be processed completely when they are received, input tuples are not materialized
and the evaluation is pipelined. If the algorithm examines the same input tuples
several times, they are materialized. This decision, like other details of the operator’s
implementation, is hidden by the iterator interface for the operator.

The iterator interface is also used to encapsulate access methods such as B+ trees and
hash-based indexes. Externally, access methods can be viewed simply as operators
that produce a stream of output tuples. In this case, the open function can be used to
pass the selection conditions that match the access path.

13.1.4 The System R Optimizer

Current relational query optimizers have been greatly influenced by choices made in
the design of IBM’s System R query optimizer. Important design choices in the System
R optimizer include:

1. The use of statistics about the database instance to estimate the cost of a query
evaluation plan.

2. A decision to consider only plans with binary joins in which the inner relation
is a base relation (i.e., not a temporary relation). This heuristic reduces the
(potentially very large) number of alternative plans that must be considered.

3. A decision to focus optimization on the class of SQL queries without nesting and
to treat nested queries in a relatively ad hoc way.

4. A decision not to perform duplicate elimination for projections (except as a final
step in the query evaluation when required by a DISTINCT clause).

5. A model of cost that accounted for CPU costs as well as I/O costs.

Our discussion of optimization reflects these design choices, except for the last point
in the preceding list, which we ignore in order to retain our simple cost model based
on the number of page I/Os.

Introduction to Query Optimization 365

13.2 SYSTEM CATALOG IN A RELATIONAL DBMS

We can store a relation using one of several alternative file structures, and we can
create one or more indexes—each stored as a file—on every relation. Conversely, in a
relational DBMS, every file contains either the tuples in a relation or the entries in an
index. The collection of files corresponding to users’ relations and indexes represents
the data in the database.

A fundamental property of a database system is that it maintains a description of
all the data that it contains. A relational DBMS maintains information about every
relation and index that it contains. The DBMS also maintains information about
views, for which no tuples are stored explicitly; rather, a definition of the view is
stored and used to compute the tuples that belong in the view when the view is
queried. This information is stored in a collection of relations, maintained by the
system, called the catalog relations; an example of a catalog relation is shown in
Figure 13.5. The catalog relations are also called the system catalog, the catalog,
or the data dictionary. The system catalog is sometimes referred to as metadata;
that is, not data, but descriptive information about the data. The information in the
system catalog is used extensively for query optimization.

13.2.1 Information Stored in the System Catalog

Let us consider what is stored in the system catalog. At a minimum we have system-
wide information, such as the size of the buffer pool and the page size, and the following
information about individual relations, indexes, and views:

For each relation:

– Its relation name, the file name (or some identifier), and the file structure
(e.g., heap file) of the file in which it is stored.

– The attribute name and type of each of its attributes.

– The index name of each index on the relation.

– The integrity constraints (e.g., primary key and foreign key constraints) on
the relation.

For each index:

– The index name and the structure (e.g., B+ tree) of the index.

– The search key attributes.

For each view:

– Its view name and definition.

366 Chapter 13

In addition, statistics about relations and indexes are stored in the system catalogs
and updated periodically (not every time the underlying relations are modified). The
following information is commonly stored:

Cardinality: The number of tuples NTuples(R) for each relation R.

Size: The number of pages NPages(R) for each relation R.

Index Cardinality: Number of distinct key values NKeys(I) for each index I.

Index Size: The number of pages INPages(I) for each index I. (For a B+ tree
index I, we will take INPages to be the number of leaf pages.)

Index Height: The number of nonleaf levels IHeight(I) for each tree index I.

Index Range: The minimum present key value ILow(I) and the maximum
present key value IHigh(I) for each index I.

We will assume that the database architecture presented in Chapter 1 is used. Further,
we assume that each file of records is implemented as a separate file of pages. Other file
organizations are possible, of course. For example, in System R a page file can contain
pages that store records from more than one record file. (System R uses different names
for these abstractions and in fact uses somewhat different abstractions.) If such a file
organization is used, additional statistics must be maintained, such as the fraction of
pages in a file that contain records from a given collection of records.

The catalogs also contain information about users, such as accounting information and
authorization information (e.g., Joe User can modify the Enrolled relation, but only
read the Faculty relation).

How Catalogs are Stored

A very elegant aspect of a relational DBMS is that the system catalog is itself a
collection of relations. For example, we might store information about the attributes
of relations in a catalog relation called Attribute Cat:

Attribute Cat(attr name: string, rel name: string,
type: string, position: integer)

Suppose that the database contains two relations:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)

Introduction to Query Optimization 367

Figure 13.5 shows the tuples in the Attribute Cat relation that describe the attributes
of these two relations. Notice that in addition to the tuples describing Students and
Faculty, other tuples (the first four listed) describe the four attributes of the At-
tribute Cat relation itself! These other tuples illustrate an important point: the cata-
log relations describe all the relations in the database, including the catalog relations
themselves. When information about a relation is needed, it is obtained from the
system catalog. Of course, at the implementation level, whenever the DBMS needs
to find the schema of a catalog relation, the code that retrieves this information must
be handled specially. (Otherwise, this code would have to retrieve this information
from the catalog relations without, presumably, knowing the schema of the catalog
relations!)

attr name rel name type position

attr name Attribute cat string 1
rel name Attribute cat string 2
type Attribute cat string 3
position Attribute cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Figure 13.5 An Instance of the Attribute Cat Relation

The fact that the system catalog is also a collection of relations is very useful. For
example, catalog relations can be queried just like any other relation, using the query
language of the DBMS! Further, all the techniques available for implementing and
managing relations apply directly to catalog relations. The choice of catalog relations
and their schemas is not unique and is made by the implementor of the DBMS. Real
systems vary in their catalog schema design, but the catalog is always implemented as a
collection of relations, and it essentially describes all the data stored in the database.1

1Some systems may store additional information in a non-relational form. For example, a system
with a sophisticated query optimizer may maintain histograms or other statistical information about
the distribution of values in certain attributes of a relation. We can think of such information, when
it is maintained, as a supplement to the catalog relations.

368 Chapter 13

13.3 ALTERNATIVE PLANS: A MOTIVATING EXAMPLE

Consider the example query from Section 13.1. Let us consider the cost of evaluating
the plan shown in Figure 13.3. The cost of the join is 1, 000 + 1, 000 ∗ 500 = 501, 000
page I/Os. The selections and the projection are done on-the-fly and do not incur
additional I/Os. Following the cost convention described in Section 12.1.2, we ignore
the cost of writing out the final result. The total cost of this plan is therefore 501,000
page I/Os. This plan is admittedly naive; however, it is possible to be even more naive
by treating the join as a cross-product followed by a selection!

We now consider several alternative plans for evaluating this query. Each alternative
improves on the original plan in a different way and introduces some optimization ideas
that are examined in more detail in the rest of this chapter.

13.3.1 Pushing Selections

A join is a relatively expensive operation, and a good heuristic is to reduce the sizes of
the relations to be joined as much as possible. One approach is to apply selections early;
if a selection operator appears after a join operator, it is worth examining whether the
selection can be ‘pushed’ ahead of the join. As an example, the selection bid=100
involves only the attributes of Reserves and can be applied to Reserves before the join.
Similarly, the selection rating> 5 involves only attributes of Sailors and can be applied
to Sailors before the join. Let us suppose that the selections are performed using a
simple file scan, that the result of each selection is written to a temporary relation on
disk, and that the temporary relations are then joined using a sort-merge join. The
resulting query evaluation plan is shown in Figure 13.6.

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Sort-merge join)

(On-the-fly)

(Scan;
write to
temp T2)

File scanFile scan

Figure 13.6 A Second Query Evaluation Plan

Let us assume that five buffer pages are available and estimate the cost of this query
evaluation plan. (It is likely that more buffer pages will be available in practice. We

Introduction to Query Optimization 369

have chosen a small number simply for illustration purposes in this example.) The
cost of applying bid=100 to Reserves is the cost of scanning Reserves (1,000 pages)
plus the cost of writing the result to a temporary relation, say T1. Note that the
cost of writing the temporary relation cannot be ignored—we can only ignore the cost
of writing out the final result of the query, which is the only component of the cost
that is the same for all plans, according to the convention described in Section 12.1.2.
To estimate the size of T1, we require some additional information. For example, if
we assume that the maximum number of reservations of a given boat is one, just one
tuple appears in the result. Alternatively, if we know that there are 100 boats, we can
assume that reservations are spread out uniformly across all boats and estimate the
number of pages in T1 to be 10. For concreteness, let us assume that the number of
pages in T1 is indeed 10.

The cost of applying rating> 5 to Sailors is the cost of scanning Sailors (500 pages)
plus the cost of writing out the result to a temporary relation, say T2. If we assume
that ratings are uniformly distributed over the range 1 to 10, we can approximately
estimate the size of T2 as 250 pages.

To do a sort-merge join of T1 and T2, let us assume that a straightforward implemen-
tation is used in which the two relations are first completely sorted and then merged.
Since five buffer pages are available, we can sort T1 (which has 10 pages) in two passes.
Two runs of five pages each are produced in the first pass and these are merged in the
second pass. In each pass, we read and write 10 pages; thus, the cost of sorting T1 is
2 ∗ 2 ∗ 10 = 40 page I/Os. We need four passes to sort T2, which has 250 pages. The
cost is 2 ∗ 4 ∗ 250 = 2, 000 page I/Os. To merge the sorted versions of T1 and T2, we
need to scan these relations, and the cost of this step is 10 + 250 = 260. The final
projection is done on-the-fly, and by convention we ignore the cost of writing the final
result.

The total cost of the plan shown in Figure 13.6 is the sum of the cost of the selection
(1, 000 + 10 + 500 + 250 = 1, 760) and the cost of the join (40 + 2, 000 + 260 = 2, 300),
that is, 4,060 page I/Os.

Sort-merge join is one of several join methods. We may be able to reduce the cost of
this plan by choosing a different join method. As an alternative, suppose that we used
block nested loops join instead of sort-merge join. Using T1 as the outer relation, for
every three-page block of T1, we scan all of T2; thus, we scan T2 four times. The
cost of the join is therefore the cost of scanning T1 (10) plus the cost of scanning T2
(4 ∗ 250 = 1, 000). The cost of the plan is now 1, 760 + 1, 010 = 2, 770 page I/Os.

A further refinement is to push the projection, just like we pushed the selections past
the join. Observe that only the sid attribute of T1 and the sid and sname attributes of
T2 are really required. As we scan Reserves and Sailors to do the selections, we could
also eliminate unwanted columns. This on-the-fly projection reduces the sizes of the

370 Chapter 13

temporary relations T1 and T2. The reduction in the size of T1 is substantial because
only an integer field is retained. In fact, T1 will now fit within three buffer pages, and
we can perform a block nested loops join with a single scan of T2. The cost of the join
step thus drops to under 250 page I/Os, and the total cost of the plan drops to about
2,000 I/Os.

13.3.2 Using Indexes

If indexes are available on the Reserves and Sailors relations, even better query evalua-
tion plans may be available. For example, suppose that we have a clustered static hash
index on the bid field of Reserves and another hash index on the sid field of Sailors.
We can then use the query evaluation plan shown in Figure 13.7.

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining)

(Use hash
index; do
not write
result to
temp)

Hash index on bid

Hash index on sid

Figure 13.7 A Query Evaluation Plan Using Indexes

The selection bid=100 is performed on Reserves by using the hash index on bid to
retrieve only matching tuples. As before, if we know that 100 boats are available and
assume that reservations are spread out uniformly across all boats, we can estimate
the number of selected tuples to be 100, 000/100 = 1, 000. Since the index on bid is
clustered, these 1,000 tuples appear consecutively within the same bucket; thus, the
cost is 10 page I/Os.

For each selected tuple, we retrieve matching Sailors tuples using the hash index on
the sid field; selected Reserves tuples are not materialized and the join is pipelined.
For each tuple in the result of the join, we perform the selection rating>5 and the
projection of sname on-the-fly. There are several important points to note here:

1. Since the result of the selection on Reserves is not materialized, the optimization
of projecting out fields that are not needed subsequently is unnecessary (and is
not used in the plan shown in Figure 13.7).

Introduction to Query Optimization 371

2. The join field sid is a key for Sailors. Therefore, at most one Sailors tuple matches
a given Reserves tuple. The cost of retrieving this matching tuple depends on
whether the directory of the hash index on the sid column of Sailors fits in memory
and on the presence of overflow pages (if any). However, the cost does not depend
on whether this index is clustered because there is at most one matching Sailors
tuple and requests for Sailors tuples are made in random order by sid (because
Reserves tuples are retrieved by bid and are therefore considered in random order
by sid). For a hash index, 1.2 page I/Os (on average) is a good estimate of the
cost for retrieving a data entry. Assuming that the sid hash index on Sailors uses
Alternative (1) for data entries, 1.2 I/Os is the cost to retrieve a matching Sailors
tuple (and if one of the other two alternatives is used, the cost would be 2.2 I/Os).

3. We have chosen not to push the selection rating>5 ahead of the join, and there is
an important reason for this decision. If we performed the selection before the join,
the selection would involve scanning Sailors, assuming that no index is available
on the rating field of Sailors. Further, whether or not such an index is available,
once we apply such a selection, we do not have an index on the sid field of the
result of the selection (unless we choose to build such an index solely for the sake
of the subsequent join). Thus, pushing selections ahead of joins is a good heuristic,
but not always the best strategy. Typically, as in this example, the existence of
useful indexes is the reason that a selection is not pushed. (Otherwise, selections
are pushed.)

Let us estimate the cost of the plan shown in Figure 13.7. The selection of Reserves
tuples costs 10 I/Os, as we saw earlier. There are 1,000 such tuples, and for each the
cost of finding the matching Sailors tuple is 1.2 I/Os, on average. The cost of this
step (the join) is therefore 1,200 I/Os. All remaining selections and projections are
performed on-the-fly. The total cost of the plan is 1,210 I/Os.

As noted earlier, this plan does not utilize clustering of the Sailors index. The plan
can be further refined if the index on the sid field of Sailors is clustered. Suppose we
materialize the result of performing the selection bid=100 on Reserves and sort this
temporary relation. This relation contains 10 pages. Selecting the tuples costs 10 page
I/Os (as before), writing out the result to a temporary relation costs another 10 I/Os,
and with five buffer pages, sorting this temporary costs 2∗ 2 ∗ 10 = 40 I/Os. (The cost
of this step is reduced if we push the projection on sid. The sid column of materialized
Reserves tuples requires only three pages and can be sorted in memory with five buffer
pages.) The selected Reserves tuples can now be retrieved in order by sid.

If a sailor has reserved the same boat many times, all corresponding Reserves tuples
are now retrieved consecutively; the matching Sailors tuple will be found in the buffer
pool on all but the first request for it. This improved plan also demonstrates that
pipelining is not always the best strategy.

372 Chapter 13

The combination of pushing selections and using indexes that is illustrated by this plan
is very powerful. If the selected tuples from the outer relation join with a single inner
tuple, the join operation may become trivial, and the performance gains with respect
to the naive plan shown in Figure 13.6 are even more dramatic. The following variant
of our example query illustrates this situation:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5
AND R.day = ‘8/9/94’

A slight variant of the plan shown in Figure 13.7, designed to answer this query, is
shown in Figure 13.8. The selection day=‘8/9/94’ is applied on-the-fly to the result of
the selection bid=100 on the Reserves relation.

(Use hash
index; do
not write
result to
temp)

Sailors

sid=sid

sname

rating > 5

Reserves

bid=100

day=’8/9/94’

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining)

(On-the-fly)
Hash index on sid

Hash index on bid

Figure 13.8 A Query Evaluation Plan for the Second Example

Suppose that bid and day form a key for Reserves. (Note that this assumption differs
from the schema presented earlier in this chapter.) Let us estimate the cost of the plan
shown in Figure 13.8. The selection bid=100 costs 10 page I/Os, as before, and the
additional selection day=‘8/9/94’ is applied on-the-fly, eliminating all but (at most)
one Reserves tuple. There is at most one matching Sailors tuple, and this is retrieved
in 1.2 I/Os (an average number!). The selection on rating and the projection on sname
are then applied on-the-fly at no additional cost. The total cost of the plan in Figure
13.8 is thus about 11 I/Os. In contrast, if we modify the naive plan in Figure 13.6 to
perform the additional selection on day together with the selection bid=100, the cost
remains at 501,000 I/Os.

Introduction to Query Optimization 373

13.4 POINTS TO REVIEW

The goal of query optimization is usually to avoid the worst evaluation plans and
find a good plan, rather than to find the best plan. To optimize an SQL query,
we first express it in relational algebra, consider several query evaluation plans for
the algebra expression, and choose the plan with the least estimated cost. A query
evaluation plan is a tree with relational operators at the intermediate nodes and
relations at the leaf nodes. Intermediate nodes are annotated with the algorithm
chosen to execute the relational operator and leaf nodes are annotated with the
access method used to retrieve tuples from the relation. Results of one operator
can be pipelined into another operator without materializing the intermediate
result. If the input tuples to a unary operator are pipelined, this operator is
said to be applied on-the-fly. Operators have a uniform iterator interface with
functions open, get next, and close. (Section 13.1)

A DBMS maintains information (called metadata) about the data in a special set
of relations called the catalog (also called the system catalog or data dictionary).
The system catalog contains information about each relation, index, and view.
In addition, it contains statistics about relations and indexes. Since the system
catalog itself is stored in a set of relations, we can use the full power of SQL to
query it and manipulate it. (Section 13.2)

Alternative plans can differ substantially in their overall cost. One heuristic is to
apply selections as early as possible to reduce the size of intermediate relations.
Existing indexes can be used as matching access paths for a selection condition. In
addition, when considering the choice of a join algorithm the existence of indexes
on the inner relation impacts the cost of the join. (Section 13.3)

EXERCISES

Exercise 13.1 Briefly answer the following questions.

1. What is the goal of query optimization? Why is it important?

2. Describe the advantages of pipelining.

3. Give an example in which pipelining cannot be used.

4. Describe the iterator interface and explain its advantages.

5. What role do statistics gathered from the database play in query optimization?

6. What information is stored in the system catalogs?

7. What are the benefits of making the system catalogs be relations?

8. What were the important design decisions made in the System R optimizer?

Additional exercises and bibliographic notes can be found at the end of Chapter 14.

14 A TYPICAL RELATIONAL
QUERY OPTIMIZER

Life is what happens while you’re busy making other plans.

—John Lennon

In this chapter, we present a typical relational query optimizer in detail. We begin by
discussing how SQL queries are converted into units called blocks and how blocks are
translated into (extended) relational algebra expressions (Section 14.1). The central
task of an optimizer is to find a good plan for evaluating such expressions. Optimizing
a relational algebra expression involves two basic steps:

Enumerating alternative plans for evaluating the expression. Typically, an opti-
mizer considers a subset of all possible plans because the number of possible plans
is very large.

Estimating the cost of each enumerated plan, and choosing the plan with the least
estimated cost.

To estimate the cost of a plan, we must estimate the cost of individual relational
operators in the plan, using information about properties (e.g., size, sort order) of the
argument relations, and we must estimate the properties of the result of an operator
(in order to be able to compute the cost of any operator that uses this result as input).
We discussed the cost of individual relational operators in Chapter 12. We discuss
how to use system statistics to estimate the properties of the result of a relational
operation, in particular result sizes, in Section 14.2.

After discussing how to estimate the cost of a given plan, we describe the space of plans
considered by a typical relational query optimizer in Sections 14.3 and 14.4. Exploring
all possible plans is prohibitively expensive because of the large number of alternative
plans for even relatively simple queries. Thus optimizers have to somehow narrow the
space of alternative plans that they consider.

We discuss how nested SQL queries are handled in Section 14.5.

This chapter concentrates on an exhaustive, dynamic-programming approach to query
optimization. Although this approach is currently the most widely used, it cannot
satisfactorily handle complex queries. We conclude with a short discussion of other
approaches to query optimization in Section 14.6.

374

A Typical Relational Query Optimizer 375

We will consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

As in Chapter 12, we will assume that each tuple of Reserves is 40 bytes long, that
a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.
Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can
hold 80 Sailors tuples, and that we have 500 pages of such tuples.

14.1 TRANSLATING SQL QUERIES INTO ALGEBRA

SQL queries are optimized by decomposing them into a collection of smaller units
called blocks. A typical relational query optimizer concentrates on optimizing a single
block at a time. In this section we describe how a query is decomposed into blocks and
how the optimization of a single block can be understood in terms of plans composed
of relational algebra operators.

14.1.1 Decomposition of a Query into Blocks

When a user submits an SQL query, the query is parsed into a collection of query blocks
and then passed on to the query optimizer. A query block (or simply block) is an
SQL query with no nesting and exactly one SELECT clause and one FROM clause and
at most one WHERE clause, GROUP BY clause, and HAVING clause. The WHERE clause is
assumed to be in conjunctive normal form, as per the discussion in Section 12.3. We
will use the following query as a running example:

For each sailor with the highest rating (over all sailors), and at least two reservations
for red boats, find the sailor id and the earliest date on which the sailor has a reservation
for a red boat.

The SQL version of this query is shown in Figure 14.1. This query has two query
blocks. The nested block is:

SELECT MAX (S2.rating)
FROM Sailors S2

The nested block computes the highest sailor rating. The outer block is shown in
Figure 14.2. Every SQL query can be decomposed into a collection of query blocks
without nesting.

376 Chapter 14

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = (SELECT MAX (S2.rating)
FROM Sailors S2)

GROUP BY S.sid
HAVING COUNT (*) > 1

Figure 14.1 Sailors Reserving Red Boats

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = Reference to nested block
GROUP BY S.sid
HAVING COUNT (*) > 1

Figure 14.2 Outer Block of Red Boats Query

The optimizer examines the system catalogs to retrieve information about the types
and lengths of fields, statistics about the referenced relations, and the access paths (in-
dexes) available for them. The optimizer then considers each query block and chooses
a query evaluation plan for that block. We will mostly focus on optimizing a single
query block and defer a discussion of nested queries to Section 14.5.

14.1.2 A Query Block as a Relational Algebra Expression

The first step in optimizing a query block is to express it as a relational algebra
expression. For uniformity, let us assume that GROUP BY and HAVING are also operators
in the extended algebra used for plans, and that aggregate operations are allowed to
appear in the argument list of the projection operator. The meaning of the operators
should be clear from our discussion of SQL. The SQL query of Figure 14.2 can be
expressed in the extended algebra as:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats))))

For brevity, we’ve used S, R, and B (rather than Sailors, Reserves, and Boats) to
prefix attributes. Intuitively, the selection is applied to the cross-product of the three

A Typical Relational Query Optimizer 377

relations. Then the qualifying tuples are grouped by S.sid, and the HAVING clause
condition is used to discard some groups. For each remaining group, a result tuple
containing the attributes (and count) mentioned in the projection list is generated.
This algebra expression is a faithful summary of the semantics of an SQL query, which
we discussed in Chapter 5.

Every SQL query block can be expressed as an extended algebra expression having
this form. The SELECT clause corresponds to the projection operator, the WHERE clause
corresponds to the selection operator, the FROM clause corresponds to the cross-product
of relations, and the remaining clauses are mapped to corresponding operators in a
straightforward manner.

The alternative plans examined by a typical relational query optimizer can be under-
stood by recognizing that a query is essentially treated as a σπ× algebra expression,
with the remaining operations (if any, in a given query) carried out on the result of
the σπ× expression. The σπ× expression for the query in Figure 14.2 is:

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats))

To make sure that the GROUP BY and HAVING operations in the query can be carried
out, the attributes mentioned in these clauses are added to the projection list. Further,
since aggregate operations in the SELECT clause, such as the MIN(R.day) operation in
our example, are computed after first computing the σπ× part of the query, aggregate
expressions in the projection list are replaced by the names of the attributes that they
refer to. Thus, the optimization of the σπ× part of the query essentially ignores these
aggregate operations.

The optimizer finds the best plan for the σπ× expression obtained in this manner from
a query. This plan is evaluated and the resulting tuples are then sorted (alternatively,
hashed) to implement the GROUP BY clause. The HAVING clause is applied to eliminate
some groups, and aggregate expressions in the SELECT clause are computed for each
remaining group. This procedure is summarized in the following extended algebra
expression:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats)))))

378 Chapter 14

Some optimizations are possible if the FROM clause contains just one relation and the
relation has some indexes that can be used to carry out the grouping operation. We
discuss this situation further in Section 14.4.1.

To a first approximation therefore, the alternative plans examined by a typical opti-
mizer can be understood in terms of the plans considered for σπ× queries. An optimizer
enumerates plans by applying several equivalences between relational algebra expres-
sions, which we present in Section 14.3. We discuss the space of plans enumerated by
an optimizer in Section 14.4.

14.2 ESTIMATING THE COST OF A PLAN

For each enumerated plan, we have to estimate its cost. There are two parts to esti-
mating the cost of an evaluation plan for a query block:

1. For each node in the tree, we must estimate the cost of performing the corre-
sponding operation. Costs are affected significantly by whether pipelining is used
or temporary relations are created to pass the output of an operator to its parent.

2. For each node in the tree, we must estimate the size of the result, and whether it
is sorted. This result is the input for the operation that corresponds to the parent
of the current node, and the size and sort order will in turn affect the estimation
of size, cost, and sort order for the parent.

We discussed the cost of implementation techniques for relational operators in Chapter
12. As we saw there, estimating costs requires knowledge of various parameters of the
input relations, such as the number of pages and available indexes. Such statistics are
maintained in the DBMS’s system catalogs. In this section we describe the statistics
maintained by a typical DBMS and discuss how result sizes are estimated. As in
Chapter 12, we will use the number of page I/Os as the metric of cost, and ignore
issues such as blocked access, for the sake of simplicity.

The estimates used by a DBMS for result sizes and costs are at best approximations
to actual sizes and costs. It is unrealistic to expect an optimizer to find the very best
plan; it is more important to avoid the worst plans and to find a good plan.

14.2.1 Estimating Result Sizes

We now discuss how a typical optimizer estimates the size of the result computed by
an operator on given inputs. Size estimation plays an important role in cost estimation
as well because the output of one operator can be the input to another operator, and
the cost of an operator depends on the size of its inputs.

A Typical Relational Query Optimizer 379

Consider a query block of the form:

SELECT attribute list

FROM relation list

WHERE term1 ∧ term2 ∧ . . . ∧ termn

The maximum number of tuples in the result of this query (without duplicate elimina-
tion) is the product of the cardinalities of the relations in the FROM clause. Every term
in the WHERE clause, however, eliminates some of these potential result tuples. We can
model the effect of the WHERE clause on the result size by associating a reduction
factor with each term, which is the ratio of the (expected) result size to the input
size considering only the selection represented by the term. The actual size of the re-
sult can be estimated as the maximum size times the product of the reduction factors
for the terms in the WHERE clause. Of course, this estimate reflects the—unrealistic,
but simplifying—assumption that the conditions tested by each term are statistically
independent.

We now consider how reduction factors can be computed for different kinds of terms
in the WHERE clause by using the statistics available in the catalogs:

column = value: For a term of this form, the reduction factor can be approximated
by 1

NKeys(I) if there is an index I on column for the relation in question. This
formula assumes uniform distribution of tuples among the index key values; this
uniform distribution assumption is frequently made in arriving at cost estimates
in a typical relational query optimizer. If there is no index on column, the System
R optimizer arbitrarily assumes that the reduction factor is 1

10 ! Of course, it is
possible to maintain statistics such as the number of distinct values present for
any attribute whether or not there is an index on that attribute. If such statistics
are maintained, we can do better than the arbitrary choice of 1

10 .

column1 = column2: In this case the reduction factor can be approximated by
1

MAX (NKeys(I1),NKeys(I2))
if there are indexes I1 and I2 on column1 and column2,

respectively. This formula assumes that each key value in the smaller index, say
I1, has a matching value in the other index. Given a value for column1, we
assume that each of the NKeys(I2) values for column2 is equally likely. Thus,
the number of tuples that have the same value in column2 as a given value in
column1 is 1

NKeys(I2) . If only one of the two columns has an index I, we take the
reduction factor to be 1

NKeys(I) ; if neither column has an index, we approximate
it by the ubiquitous 1

10 . These formulas are used whether or not the two columns
appear in the same relation.

column > value: The reduction factor is approximated by High(I) − value
High(I) − Low(I) if there

is an index I on column. If the column is not of an arithmetic type or there is
no index, a fraction less than half is arbitrarily chosen. Similar formulas for the
reduction factor can be derived for other range selections.

380 Chapter 14

column IN (list of values): The reduction factor is taken to be the reduction
factor for column = value multiplied by the number of items in the list. However,
it is allowed to be at most half, reflecting the heuristic belief that each selection
eliminates at least half the candidate tuples.

These estimates for reduction factors are at best approximations that rely on assump-
tions such as uniform distribution of values and independent distribution of values in
different columns. In recent years more sophisticated techniques based on storing more
detailed statistics (e.g., histograms of the values in a column, which we consider later
in this section) have been proposed and are finding their way into commercial systems.

Reduction factors can also be approximated for terms of the form column IN subquery
(ratio of the estimated size of the subquery result to the number of distinct values
in column in the outer relation); NOT condition (1−reduction factor for condition);
value1<column<value2; the disjunction of two conditions; and so on, but we will not
discuss such reduction factors.

To summarize, regardless of the plan chosen, we can estimate the size of the final result
by taking the product of the sizes of the relations in the FROM clause and the reduction
factors for the terms in the WHERE clause. We can similarly estimate the size of the
result of each operator in a plan tree by using reduction factors, since the subtree
rooted at that operator’s node is itself a query block.

Note that the number of tuples in the result is not affected by projections if duplicate
elimination is not performed. However, projections reduce the number of pages in the
result because tuples in the result of a projection are smaller than the original tuples;
the ratio of tuple sizes can be used as a reduction factor for projection to estimate
the result size in pages, given the size of the input relation.

Improved Statistics: Histograms

Consider a relation with N tuples and a selection of the form column > value on a
column with an index I. The reduction factor r is approximated by High(I) − value

High(I) − Low(I) ,
and the size of the result is estimated as rN . This estimate relies upon the assumption
that the distribution of values is uniform.

Estimates can be considerably improved by maintaining more detailed statistics than
just the low and high values in the index I. Intuitively, we want to approximate the
distribution of key values I as accurately as possible. Consider the two distributions
of values shown in Figure 14.3. The first is a nonuniform distribution D of values (say,
for an attribute called age). The frequency of a value is the number of tuples with that
age value; a distribution is represented by showing the frequency for each possible age
value. In our example, the lowest age value is 0, the highest is 14, and all recorded

A Typical Relational Query Optimizer 381

Estimating query characteristics: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all use histograms to estimate query characteristics
such as result size and cost. As an example, Sybase ASE uses one-dimensional,
equidepth histograms with some special attention paid to high frequency values,
so that their count is estimated accurately. ASE also keeps the average count of
duplicates for each prefix of an index in order to estimate correlations between
histograms for composite keys (although it does not maintain such histograms).
ASE also maintains estimates of the degree of clustering in tables and indexes.
IBM DB2, Informix, and Oracle also use one-dimensional equidepth histograms;
Oracle automatically switches to maintaining a count of duplicates for each value
when there are few values in a column. Microsoft SQL Server uses one-dimensional
equiarea histograms with some optimizations (adjacent buckets with similar dis-
tributions are sometimes combined to compress the histogram). In SQL Server,
the creation and maintenance of histograms is done automatically without a need
for user input.
Although sampling techniques have been studied for estimating result sizes and
costs, in current systems sampling is used only by system utilities to estimate
statistics or to build histograms, but not directly by the optimizer to estimate
query characteristics. Sometimes, sampling is used to do load balancing in parallel
implementations.

age values are integers in the range 0 to 14. The second distribution approximates
D by assuming that each age value in the range 0 to 14 appears equally often in the
underlying collection of tuples. This approximation can be stored compactly because
we only need to record the low and high values for the age range (0 and 14 respectively)
and the total count of all frequencies (which is 45 in our example).

10 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94

3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3

1 1

0

2

1

2

3

2

3

8

4 4

9

2

Distribution D Uniform distribution approximating D

Figure 14.3 Uniform vs. Nonuniform Distributions

Consider the selection age > 13. From the distribution D in Figure 14.3, we see that
the result has 9 tuples. Using the uniform distribution approximation, on the other

382 Chapter 14

hand, we estimate the result size as 1
15 ∗ 45 = 3 tuples. Clearly, the estimate is quite

inaccurate.

A histogram is a data structure maintained by a DBMS to approximate a data
distribution. In Figure 14.4, we show how the data distribution from Figure 14.3 can
be approximated by dividing the range of age values into subranges called buckets,
and for each bucket, counting the number of tuples with age values within that bucket.
Figure 14.4 shows two different kinds of histograms, called equiwidth and equidepth,
respectively.

10 11 12 13 140 2 31 5 6 7 8 9410 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94

Equidepth

2.67

1.33

5.0

1.0

5.0

2.67

1.33

5.0

1.0

5.0

2.67

1.33

5.0

1.0

5.0
Equiwidth

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Count=8 Count=4 Count=15 Count=3 Count=15

Bucket 1Bucket 1

Count=9

Bucket 4

Count=7

Bucket 3

Count=10

Bucket 2

Count=10

Bucket 5

Count=9

2.52.25

5.0

9.0

1.75

Figure 14.4 Histograms Approximating Distribution D

Consider the selection query age > 13 again and the first (equiwidth) histogram.
We can estimate the size of the result to be 5 because the selected range includes a
third of the range for Bucket 5. Since Bucket 5 represents a total of 15 tuples, the
selected range corresponds to 1

3 ∗ 15 = 5 tuples. As this example shows, we assume
that the distribution within a histogram bucket is uniform. Thus, when we simply
maintain the high and low values for index I, we effectively use a ‘histogram’ with a
single bucket. Using histograms with a small number of buckets instead leads to much
more accurate estimates, at the cost of a few hundred bytes per histogram. (Like all
statistics in a DBMS, histograms are updated periodically, rather than whenever the
data is changed.)

One important question is how to divide the value range into buckets. In an equiwidth
histogram, we divide the range into subranges of equal size (in terms of the age value
range). We could also choose subranges such that the number of tuples within each
subrange (i.e., bucket) is equal. Such a histogram is called an equidepth histogram
and is also illustrated in Figure 14.4. Consider the selection age > 13 again. Using
the equidepth histogram, we are led to Bucket 5, which contains only the age value 15,
and thus we arrive at the exact answer, 9. While the relevant bucket (or buckets) will
generally contain more than one tuple, equidepth histograms provide better estimates
than equiwidth histograms. Intuitively, buckets with very frequently occurring values

A Typical Relational Query Optimizer 383

contain fewer values, and thus the uniform distribution assumption is applied to a
smaller range of values, leading to better approximations. Conversely, buckets with
mostly infrequent values are approximated less accurately in an equidepth histogram,
but for good estimation, it is the frequent values that are important.

Proceeding further with the intuition about the importance of frequent values, another
alternative is to separately maintain counts for a small number of very frequent values,
say the age values 7 and 14 in our example, and to maintain an equidepth (or other)
histogram to cover the remaining values. Such a histogram is called a compressed
histogram. Most commercial DBMSs currently use equidepth histograms, and some
use compressed histograms.

14.3 RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions over the same set of input relations are said to be
equivalent if they produce the same result on all instances of the input relations.
In this section we present several equivalences among relational algebra expressions,
and in Section 14.4 we discuss the space of alternative plans considered by a opti-
mizer. Relational algebra equivalences play a central role in identifying alternative
plans. Consider the query discussed in Section 13.3. As we saw earlier, pushing the
selection in that query ahead of the join yielded a dramatically better evaluation plan;
pushing selections ahead of joins is based on relational algebra equivalences involving
the selection and cross-product operators.

Our discussion of equivalences is aimed at explaining the role that such equivalences
play in a System R style optimizer. In essence, a basic SQL query block can be
thought of as an algebra expression consisting of the cross-product of all relations in
the FROM clause, the selections in the WHERE clause, and the projections in the SELECT
clause. The optimizer can choose to evaluate any equivalent expression and still obtain
the same result. Algebra equivalences allow us to convert cross-products to joins, to
choose different join orders, and to push selections and projections ahead of joins. For
simplicity, we will assume that naming conflicts never arise and that we do not need
to consider the renaming operator ρ.

14.3.1 Selections

There are two important equivalences that involve the selection operation. The first
one involves cascading of selections:

σc1∧c2∧...cn(R) ≡ σc1(σc2(. . . (σcn(R)) . . .))

Going from the right side to the left, this equivalence allows us to combine several
selections into one selection. Intuitively, we can test whether a tuple meets each of the

384 Chapter 14

conditions c1 . . . cn at the same time. In the other direction, this equivalence allows us
to take a selection condition involving several conjuncts and to replace it with several
smaller selection operations. Replacing a selection with several smaller selections turns
out to be very useful in combination with other equivalences, especially commutation
of selections with joins or cross-products, which we will discuss shortly. Intuitively,
such a replacement is useful in cases where only part of a complex selection condition
can be pushed.

The second equivalence states that selections are commutative:

σc1(σc2(R)) ≡ σc2(σc1(R))

In other words, we can test the conditions c1 and c2 in either order.

14.3.2 Projections

The rule for cascading projections says that successively eliminating columns from
a relation is equivalent to simply eliminating all but the columns retained by the final
projection:

πa1(R) ≡ πa1(πa2(. . . (πan
(R)) . . .))

Each ai is a set of attributes of relation R, and ai ⊆ ai+1 for i = 1 . . . n − 1. This
equivalence is useful in conjunction with other equivalences such as commutation of
projections with joins.

14.3.3 Cross-Products and Joins

There are two important equivalences involving cross-products and joins. We present
them in terms of natural joins for simplicity, but they hold for general joins as well.

First, assuming that fields are identified by name rather than position, these operations
are commutative:

R × S ≡ S × R

R ./ S ≡ S ./ R

This property is very important. It allows us to choose which relation is to be the
inner and which the outer in a join of two relations.

The second equivalence states that joins and cross-products are associative:

R × (S × T) ≡ (R × S) × T

R ./ (S ./ T) ≡ (R ./ S) ./ T

A Typical Relational Query Optimizer 385

Thus we can either join R and S first and then join T to the result, or join S and T

first and then join R to the result. The intuition behind associativity of cross-products
is that regardless of the order in which the three relations are considered, the final
result contains the same columns. Join associativity is based on the same intuition,
with the additional observation that the selections specifying the join conditions can
be cascaded. Thus the same rows appear in the final result, regardless of the order in
which the relations are joined.

Together with commutativity, associativity essentially says that we can choose to join
any pair of these relations, then join the result with the third relation, and always
obtain the same final result. For example, let us verify that

R ./ (S ./ T) ≡ (T ./ R) ./ S

From commutativity, we have:

R ./ (S ./ T) ≡ R ./ (T ./ S)

From associativity, we have:

R ./ (T ./ S) ≡ (R ./ T) ./ S

Using commutativity again, we have:

(R ./ T) ./ S ≡ (T ./ R) ./ S

In other words, when joining several relations, we are free to join the relations in
any order that we choose. This order-independence is fundamental to how a query
optimizer generates alternative query evaluation plans.

14.3.4 Selects, Projects, and Joins

Some important equivalences involve two or more operators.

We can commute a selection with a projection if the selection operation involves only
attributes that are retained by the projection:

πa(σc(R)) ≡ σc(πa(R))

Every attribute mentioned in the selection condition c must be included in the set of
attributes a.

We can combine a selection with a cross-product to form a join, as per the definition
of join:

R ./c S ≡ σc(R × S)

386 Chapter 14

We can commute a selection with a cross-product or a join if the selection condition
involves only attributes of one of the arguments to the cross-product or join:

σc(R × S) ≡ σc(R) × S

σc(R ./ S) ≡ σc(R) ./ S

The attributes mentioned in c must appear only in R, and not in S. Similar equiva-
lences hold if c involves only attributes of S and not R, of course.

In general a selection σc on R × S can be replaced by a cascade of selections σc1 , σc2 ,
and σc3 such that c1 involves attributes of both R and S, c2 involves only attributes
of R, and c3 involves only attributes of S:

σc(R × S) ≡ σc1∧c2∧c3(R × S)

Using the cascading rule for selections, this expression is equivalent to

σc1(σc2(σc3(R × S)))

Using the rule for commuting selections and cross-products, this expression is equiva-
lent to

σc1(σc2(R) × σc3(S)).

Thus we can push part of the selection condition c ahead of the cross-product. This
observation also holds for selections in combination with joins, of course.

We can commute a projection with a cross-product:

πa(R × S) ≡ πa1(R) × πa2(S)

a1 is the subset of attributes in a that appear in R, and a2 is the subset of attributes
in a that appear in S. We can also commute a projection with a join if the join
condition involves only attributes retained by the projection:

πa(R ./c S) ≡ πa1(R) ./c πa2(S)

a1 is the subset of attributes in a that appear in R, and a2 is the subset of attributes
in a that appear in S. Further, every attribute mentioned in the join condition c must
appear in a.

Intuitively, we need to retain only those attributes of R and S that are either mentioned
in the join condition c or included in the set of attributes a retained by the projection.
Clearly, if a includes all attributes mentioned in c, the commutation rules above hold.
If a does not include all attributes mentioned in c, we can generalize the commutation
rules by first projecting out attributes that are not mentioned in c or a, performing
the join, and then projecting out all attributes that are not in a:

πa(R ./c S) ≡ πa(πa1(R) ./c πa2(S))

A Typical Relational Query Optimizer 387

Now a1 is the subset of attributes of R that appear in either a or c, and a2 is the
subset of attributes of S that appear in either a or c.

We can in fact derive the more general commutation rule by using the rule for cascading
projections and the simple commutation rule, and we leave this as an exercise for the
reader.

14.3.5 Other Equivalences

Additional equivalences hold when we consider operations such as set-difference, union,
and intersection. Union and intersection are associative and commutative. Selections
and projections can be commuted with each of the set operations (set-difference, union,
and intersection). We will not discuss these equivalences further.

14.4 ENUMERATION OF ALTERNATIVE PLANS

We now come to an issue that is at the heart of an optimizer, namely, the space of
alternative plans that is considered for a given query. Given a query, an optimizer essen-
tially enumerates a certain set of plans and chooses the plan with the least estimated
cost; the discussion in Section 13.2.1 indicated how the cost of a plan is estimated.
The algebraic equivalences discussed in Section 14.3 form the basis for generating al-
ternative plans, in conjunction with the choice of implementation technique for the
relational operators (e.g., joins) present in the query. However, not all algebraically
equivalent plans are considered because doing so would make the cost of optimization
prohibitively expensive for all but the simplest queries. This section describes the
subset of plans that are considered by a typical optimizer.

There are two important cases to consider: queries in which the FROM clause contains
a single relation and queries in which the FROM clause contains two or more relations.

14.4.1 Single-Relation Queries

If the query contains a single relation in the FROM clause, only selection, projection,
grouping, and aggregate operations are involved; there are no joins. If we have just
one selection or projection or aggregate operation applied to a relation, the alternative
implementation techniques and cost estimates discussed in Chapter 12 cover all the
plans that must be considered. We now consider how to optimize queries that involve
a combination of several such operations, using the following query as an example:

For each rating greater than 5, print the rating and the number of 20-year-old sailors
with that rating, provided that there are at least two such sailors with different names.

388 Chapter 14

The SQL version of this query is shown in Figure 14.5. Using the extended algebra

SELECT S.rating, COUNT (*)
FROM Sailors S
WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating
HAVING COUNT DISTINCT (S.sname) > 2

Figure 14.5 A Single-Relation Query

notation introduced in Section 14.1.2, we can write this query as:

πS.rating,COUNT (∗)(

HAV INGCOUNTDISTINCT (S.sname)>2(

GROUP BY S.rating(

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors)))))

Notice that S.sname is added to the projection list, even though it is not in the SELECT
clause, because it is required to test the HAVING clause condition.

We are now ready to discuss the plans that an optimizer would consider. The main
decision to be made is which access path to use in retrieving Sailors tuples. If we
considered only the selections, we would simply choose the most selective access path
based on which available indexes match the conditions in the WHERE clause (as per the
definition in Section 12.3.1). Given the additional operators in this query, we must
also take into account the cost of subsequent sorting steps and consider whether these
operations can be performed without sorting by exploiting some index. We first discuss
the plans generated when there are no suitable indexes and then examine plans that
utilize some index.

Plans without Indexes

The basic approach in the absence of a suitable index is to scan the Sailors relation
and apply the selection and projection (without duplicate elimination) operations to
each retrieved tuple, as indicated by the following algebra expression:

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors))

The resulting tuples are then sorted according to the GROUP BY clause (in the exam-
ple query, on rating), and one answer tuple is generated for each group that meets

A Typical Relational Query Optimizer 389

the condition in the HAVING clause. The computation of the aggregate functions in
the SELECT and HAVING clauses is done for each group, using one of the techniques
described in Section 12.7.

The cost of this approach consists of the costs of each of these steps:

1. Performing a file scan to retrieve tuples and apply the selections and projections.

2. Writing out tuples after the selections and projections.

3. Sorting these tuples to implement the GROUP BY clause.

Note that the HAVING clause does not cause additional I/O. The aggregate computa-
tions can be done on-the-fly (with respect to I/O) as we generate the tuples in each
group at the end of the sorting step for the GROUP BY clause.

In the example query the cost includes the cost of a file scan on Sailors plus the cost
of writing out 〈S.rating, S.sname〉 pairs plus the cost of sorting as per the GROUP BY
clause. The cost of the file scan is NPages(Sailors), which is 500 I/Os, and the cost of
writing out 〈S.rating, S.sname〉 pairs is NPages(Sailors) times the ratio of the size of
such a pair to the size of a Sailors tuple times the reduction factors of the two selection
conditions. In our example the result tuple size ratio is about 0.8, the rating selection
has a reduction factor of 0.5 and we use the default factor of 0.1 for the age selection.
Thus, the cost of this step is 20 I/Os. The cost of sorting this intermediate relation
(which we will call Temp) can be estimated as 3*NPages(Temp), which is 60 I/Os, if
we assume that enough pages are available in the buffer pool to sort it in two passes.
(Relational optimizers often assume that a relation can be sorted in two passes, to
simplify the estimation of sorting costs. If this assumption is not met at run-time, the
actual cost of sorting may be higher than the estimate!) The total cost of the example
query is therefore 500 + 20 + 60 = 580 I/Os.

Plans Utilizing an Index

Indexes can be utilized in several ways and can lead to plans that are significantly
faster than any plan that does not utilize indexes.

1. Single-index access path: If several indexes match the selection conditions
in the WHERE clause, each matching index offers an alternative access path. An
optimizer can choose the access path that it estimates will result in retrieving the
fewest pages, apply any projections and nonprimary selection terms (i.e., parts of
the selection condition that do not match the index), and then proceed to compute
the grouping and aggregation operations (by sorting on the GROUP BY attributes).

2. Multiple-index access path: If several indexes using Alternatives (2) or (3) for
data entries match the selection condition, each such index can be used to retrieve

390 Chapter 14

a set of rids. We can intersect these sets of rids, then sort the result by page id
(assuming that the rid representation includes the page id) and retrieve tuples that
satisfy the primary selection terms of all the matching indexes. Any projections
and nonprimary selection terms can then be applied, followed by grouping and
aggregation operations.

3. Sorted index access path: If the list of grouping attributes is a prefix of a
tree index, the index can be used to retrieve tuples in the order required by the
GROUP BY clause. All selection conditions can be applied on each retrieved tuple,
unwanted fields can be removed, and aggregate operations computed for each
group. This strategy works well for clustered indexes.

4. Index-Only Access Path: If all the attributes mentioned in the query (in the
SELECT, WHERE, GROUP BY, or HAVING clauses) are included in the search key for
some dense index on the relation in the FROM clause, an index-only scan can be
used to compute answers. Because the data entries in the index contain all the
attributes of a tuple that are needed for this query, and there is one index entry
per tuple, we never need to retrieve actual tuples from the relation. Using just
the data entries from the index, we can carry out the following steps as needed in
a given query: apply selection conditions, remove unwanted attributes, sort the
result to achieve grouping, and compute aggregate functions within each group.
This index-only approach works even if the index does not match the selections
in the WHERE clause. If the index matches the selection, we need only examine a
subset of the index entries; otherwise, we must scan all index entries. In either
case, we can avoid retrieving actual data records; therefore, the cost of this strategy
does not depend on whether the index is clustered.

In addition, if the index is a tree index and the list of attributes in the GROUP BY
clause forms a prefix of the index key, we can retrieve data entries in the order
needed for the GROUP BY clause and thereby avoid sorting!

We now illustrate each of these four cases, using the query shown in Figure 14.5 as a
running example. We will assume that the following indexes, all using Alternative (2)
for data entries, are available: a B+ tree index on rating, a hash index on age, and a
B+ tree index on 〈rating, sname, age〉. For brevity, we will not present detailed cost
calculations, but the reader should be able to calculate the cost of each plan. The
steps in these plans are scans (a file scan, a scan retrieving tuples by using an index,
or a scan of only index entries), sorting, and writing temporary relations, and we have
already discussed how to estimate the costs of these operations.

As an example of the first case, we could choose to retrieve Sailors tuples such that
S.age=20 using the hash index on age. The cost of this step is the cost of retrieving the
index entries plus the cost of retrieving the corresponding Sailors tuples, which depends
on whether the index is clustered. We can then apply the condition S.rating> 5 to
each retrieved tuple; project out fields not mentioned in the SELECT, GROUP BY, and

A Typical Relational Query Optimizer 391

Utilizing indexes: All of the main RDBMSs recognize the importance of index-
only plans, and look for such plans whenever possible. In IBM DB2, when creating
an index a user can specify a set of ‘include’ columns that are to be kept in the
index but are not part of the index key. This allows a richer set of index-only
queries to be handled because columns that are frequently accessed are included
in the index even if they are not part of the key. In Microsoft SQL Server, an
interesting class of index-only plans is considered: Consider a query that selects
attributes sal and age from a table, given an index on sal and another index on
age. SQL Server uses the indexes by joining the entries on the rid of data records
to identify 〈sal, age〉 pairs that appear in the table.

HAVING clauses; and write the result to a temporary relation. In the example, only the
rating and sname fields need to be retained. The temporary relation is then sorted on
the rating field to identify the groups, and some groups are eliminated by applying the
HAVING condition.

As an example of the second case, we can retrieve rids of tuples satisfying rating>5
using the index on rating, retrieve rids of tuples satisfying age=20 using the index
on age, sort the retrieved rids by page number, and then retrieve the corresponding
Sailors tuples. We can retain just the rating and name fields and write the result to
a temporary relation, which we can sort on rating to implement the GROUP BY clause.
(A good optimizer might pipeline the projected tuples to the sort operator without
creating a temporary relation.) The HAVING clause is handled as before.

As an example of the third case, we can retrieve Sailors tuples such that S.rating> 5,
ordered by rating, using the B+ tree index on rating. We can compute the aggregate
functions in the HAVING and SELECT clauses on-the-fly because tuples are retrieved in
rating order.

As an example of the fourth case, we can retrieve data entries from the 〈rating, sname,
age〉 index such that rating> 5. These entries are sorted by rating (and then by sname
and age, although this additional ordering is not relevant for this query). We can choose
entries with age=20 and compute the aggregate functions in the HAVING and SELECT
clauses on-the-fly because the data entries are retrieved in rating order. In this case,
in contrast to the previous case, we do not retrieve any Sailors tuples. This property
of not retrieving data records makes the index-only strategy especially valuable with
unclustered indexes.

392 Chapter 14

14.4.2 Multiple-Relation Queries

Query blocks that contain two or more relations in the FROM clause require joins (or
cross-products). Finding a good plan for such queries is very important because these
queries can be quite expensive. Regardless of the plan chosen, the size of the final
result can be estimated by taking the product of the sizes of the relations in the FROM
clause and the reduction factors for the terms in the WHERE clause. But depending on
the order in which relations are joined, intermediate relations of widely varying sizes
can be created, leading to plans with very different costs.

In this section we consider how multiple-relation queries are optimized. We first in-
troduce the class of plans considered by a typical optimizer, and then describe how all
such plans are enumerated.

Left-Deep Plans

Consider a query of the form A ./ B ./ C ./ D, that is, the natural join of four
relations. Two relational algebra operator trees that are equivalent to this query are
shown in Figure 14.6.

A B

C

D

C

A B

D

Figure 14.6 Two Linear Join Trees

We note that the left child of a join node is the outer relation and the right child is the
inner relation, as per our convention. By adding details such as the join method for
each join node, it is straightforward to obtain several query evaluation plans from these
trees. Also, the equivalence of these trees is based on the relational algebra equivalences
that we discussed earlier, particularly the associativity and commutativity of joins and
cross-products.

The form of these trees is important in understanding the space of alternative plans
explored by the System R query optimizer. Both the trees in Figure 14.6 are called
linear trees. In a linear tree, at least one child of a join node is a base relation. The
first tree is an example of a left-deep tree—the right child of each join node is a base
relation. An example of a join tree that is not linear is shown in Figure 14.7; such
trees are called bushy trees.

A Typical Relational Query Optimizer 393

A B C D

Figure 14.7 A Nonlinear Join Tree

A fundamental heuristic decision in the System R optimizer is to examine only left-
deep trees in constructing alternative plans for a join query. Of course, this decision
rules out many alternative plans that may cost less than the best plan using a left-deep
tree; we have to live with the fact that the optimizer will never find such plans. There
are two main reasons for this decision to concentrate on left-deep plans, or plans
based on left-deep trees:

1. As the number of joins increases, the number of alternative plans increases rapidly
and some pruning of the space of alternative plans becomes necessary.

2. Left-deep trees allow us to generate all fully pipelined plans, that is, plans in
which the joins are all evaluated using pipelining. Inner relations must always be
materialized fully because we must examine the entire inner relation for each tuple
of the outer relation. Thus, a plan in which an inner relation is the result of a
join forces us to materialize the result of that join. This observation motivates the
heuristic decision to consider only left-deep trees. Of course, not all plans using
left-deep trees are fully pipelined. For example, a plan that uses a sort-merge join
may require the outer tuples to be retrieved in a certain sorted order, which may
force us to materialize the outer relation.

Enumeration of Left-Deep Plans

Consider a query block of the form:

SELECT attribute list
FROM relation list
WHERE term1 ∧ term2 ∧ . . . ∧ termn

A System R style query optimizer enumerates all left-deep plans, with selections and
projections considered (but not necessarily applied!) as early as possible. The enumer-
ation of plans can be understood as a multiple-pass algorithm in which we proceed as
follows:

Pass 1: We enumerate all single-relation plans (over some relation in the FROM clause).
Intuitively, each single-relation plan is a partial left-deep plan for evaluating the query

394 Chapter 14

in which the given relation is the first (in the linear join order for the left-deep plan
of which it is a part). When considering plans involving a relation A, we identify
those selection terms in the WHERE clause that mention only attributes of A. These
are the selections that can be performed when first accessing A, before any joins that
involve A. We also identify those attributes of A that are not mentioned in the SELECT
clause or in terms in the WHERE clause involving attributes of other relations. These
attributes can be projected out when first accessing A, before any joins that involve A.
We choose the best access method for A to carry out these selections and projections,
as per the discussion in Section 14.4.1.

For each relation, if we find plans that produce tuples in different orders, we retain
the cheapest plan for each such ordering of tuples. An ordering of tuples could prove
useful at a subsequent step, say for a sort-merge join or for implementing a GROUP
BY or ORDER BY clause. Thus, for a single relation, we may retain a file scan (as the
cheapest overall plan for fetching all tuples) and a B+ tree index (as the cheapest plan
for fetching all tuples in the search key order).

Pass 2: We generate all two-relation plans by considering each single-relation plan
that is retained after Pass 1 as the outer relation and (successively) every other relation
as the inner relation. Suppose that A is the outer relation and B the inner relation for
a particular two-relation plan. We examine the list of selections in the WHERE clause
and identify:

1. Selections that involve only attributes of B and can be applied before the join.

2. Selections that serve to define the join (i.e., are conditions involving attributes of
both A and B and no other relation).

3. Selections that involve attributes of other relations and can be applied only after
the join.

The first two groups of selections can be considered while choosing an access path for
the inner relation B. We also identify the attributes of B that do not appear in the
SELECT clause or in any selection conditions in the second or third group above and
can therefore be projected out before the join.

Notice that our identification of attributes that can be projected out before the join
and selections that can be applied before the join is based on the relational algebra
equivalences discussed earlier. In particular, we are relying on the equivalences that
allow us to push selections and projections ahead of joins. As we will see, whether
we actually perform these selections and projections ahead of a given join depends
on cost considerations. The only selections that are really applied before the join are
those that match the chosen access paths for A and B. The remaining selections and
projections are done on-the-fly as part of the join.

A Typical Relational Query Optimizer 395

An important point to note is that tuples generated by the outer plan are assumed
to be pipelined into the join. That is, we avoid having the outer plan write its result
to a file that is subsequently read by the join (to obtain outer tuples). For some join
methods, the join operator might require materializing the outer tuples. For example, a
hash join would partition the incoming tuples, and a sort-merge join would sort them
if they are not already in the appropriate sort order. Nested loops joins, however,
can use outer tuples as they are generated and avoid materializing them. Similarly,
sort-merge joins can use outer tuples as they are generated if they are generated in
the sorted order required for the join. We include the cost of materializing the outer,
should this be necessary, in the cost of the join. The adjustments to the join costs
discussed in Chapter 12 to reflect the use of pipelining or materialization of the outer
are straightforward.

For each single-relation plan for A retained after Pass 1, for each join method that we
consider, we must determine the best access method to use for B. The access method
chosen for B will retrieve, in general, a subset of the tuples in B, possibly with some
fields eliminated, as discussed below. Consider relation B. We have a collection of
selections (some of which are the join conditions) and projections on a single relation,
and the choice of the best access method is made as per the discussion in Section
14.4.1. The only additional consideration is that the join method might require tuples
to be retrieved in some order. For example, in a sort-merge join we want the inner
tuples in sorted order on the join column(s). If a given access method does not retrieve
inner tuples in this order, we must add the cost of an additional sorting step to the
cost of the access method.

Pass 3: We generate all three-relation plans. We proceed as in Pass 2, except that we
now consider plans retained after Pass 2 as outer relations, instead of plans retained
after Pass 1.

Additional passes: This process is repeated with additional passes until we produce
plans that contain all the relations in the query. We now have the cheapest overall
plan for the query, as well as the cheapest plan for producing the answers in some
interesting order.

If a multiple-relation query contains a GROUP BY clause and aggregate functions such
as MIN, MAX, and SUM in the SELECT clause, these are dealt with at the very end. If the
query block includes a GROUP BY clause, a set of tuples is computed based on the rest
of the query, as described above, and this set is sorted as per the GROUP BY clause.
Of course, if there is a plan according to which the set of tuples is produced in the
desired order, the cost of this plan is compared with the cost of the cheapest plan
(assuming that the two are different) plus the sorting cost. Given the sorted set of
tuples, partitions are identified and any aggregate functions in the SELECT clause are
applied on a per-partition basis, as per the discussion in Chapter 12.

396 Chapter 14

Optimization in commercial systems: IBM DB2, Informix, Microsoft SQL
Server, Oracle 8, and Sybase ASE all search for left-deep trees using dynamic pro-
gramming, as described here, with several variations. For example, Oracle always
considers interchanging the two relations in a hash join, which could lead to right-
deep trees or hybrids. DB2 generates some bushy trees as well. Systems often use
a variety of strategies for generating plans, going beyond the systematic bottom-
up enumeration that we described, in conjunction with a dynamic programming
strategy for costing plans and remembering interesting plans (in order to avoid
repeated analysis of the same plan). Systems also vary in the degree of control
they give to users. Sybase ASE and Oracle 8 allow users to force the choice of join
orders and indexes—Sybase ASE even allows users to explicitly edit the execution
plan—whereas IBM DB2 does not allow users to direct the optimizer other than
by setting an ‘optimization level,’ which influences how many alternative plans
the optimizer considers.

Examples of Multiple-Relation Query Optimization

Consider the query tree shown in Figure 13.2. Figure 14.8 shows the same query,
taking into account how selections and projections are considered early.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 14.8 A Query Tree

In looking at this figure, it is worth emphasizing that the selections shown on the
leaves are not necessarily done in a distinct step that precedes the join—rather, as we
have seen, they are considered as potential matching predicates when considering the
available access paths on the relations.

Suppose that we have the following indexes, all unclustered and using Alternative (2)
for data entries: a B+ tree index on the rating field of Sailors, a hash index on the
sid field of Sailors, and a B+ tree index on the bid field of Reserves. In addition, we

A Typical Relational Query Optimizer 397

assume that we can do a sequential scan of both Reserves and Sailors. Let us consider
how the optimizer proceeds.

In Pass 1 we consider three access methods for Sailors (B+ tree, hash index, and
sequential scan), taking into account the selection σrating>5. This selection matches
the B+ tree on rating and therefore reduces the cost for retrieving tuples that satisfy
this selection. The cost of retrieving tuples using the hash index and the sequential
scan is likely to be much higher than the cost of using the B+ tree. So the plan retained
for Sailors is access via the B+ tree index, and it retrieves tuples in sorted order by
rating. Similarly, we consider two access methods for Reserves taking into account the
selection σbid=100. This selection matches the B+ tree index on Reserves, and the cost
of retrieving matching tuples via this index is likely to be much lower than the cost of
retrieving tuples using a sequential scan; access through the B+ tree index is therefore
the only plan retained for Reserves after Pass 1.

In Pass 2 we consider taking the (relation computed by the) plan for Reserves and
joining it (as the outer) with Sailors. In doing so, we recognize that now, we need only
Sailors tuples that satisfy σrating>5 and σsid=value, where value is some value from an
outer tuple. The selection σsid=value matches the hash index on the sid field of Sailors,
and the selection σrating>5 matches the B+ tree index on the rating field. Since the
equality selection has a much lower reduction factor, the hash index is likely to be
the cheaper access method. In addition to the preceding consideration of alternative
access methods, we consider alternative join methods. All available join methods are
considered. For example, consider a sort-merge join. The inputs must be sorted by
sid; since neither input is sorted by sid or has an access method that can return tuples
in this order, the cost of the sort-merge join in this case must include the cost of
storing the two inputs in temporary relations and sorting them. A sort-merge join
provides results in sorted order by sid, but this is not a useful ordering in this example
because the projection πsname is applied (on-the-fly) to the result of the join, thereby
eliminating the sid field from the answer. Thus, the plan using sort-merge join will
be retained after Pass 2 only if it is the least expensive plan involving Reserves and
Sailors.

Similarly, we also consider taking the plan for Sailors retained after Pass 1 and joining
it (as the outer) with Reserves. Now we recognize that we need only Reserves tuples
that satisfy σbid=100 and σsid=value, where value is some value from an outer tuple.
Again, we consider all available join methods.

We finally retain the cheapest plan overall.

As another example, illustrating the case when more than two relations are joined,
consider the following query:

SELECT S.sid, COUNT(*) AS numres

398 Chapter 14

FROM Boats B, Reserves R, Sailors S
WHERE R.sid = S.sid AND B.bid=R.bid AND B.color = ‘red’
GROUP BY S.sid

This query finds the number of red boats reserved by each sailor. This query is shown
in the form of a tree in Figure 14.9.

GROUPBY sid

sid, COUNT(*) AS numres

color=’red’

sid=sid

bid=bid

Boats

Sailors

Reserves

Figure 14.9 A Query Tree

Suppose that the following indexes are available: for Reserves, a B+ tree on the sid
field and a clustered B+ tree on the bid field; for Sailors, a B+ tree index on the sid
field and a hash index on the sid field; and for Boats, a B+ tree index on the color field
and a hash index on the color field. (The list of available indexes is contrived to create
a relatively simple, illustrative example.) Let us consider how this query is optimized.
The initial focus is on the SELECT, FROM, and WHERE clauses.

Pass 1: The best plan is found for accessing each relation, regarded as the first relation
in an execution plan. For Reserves and Sailors, the best plan is obviously a file scan
because there are no selections that match an available index. The best plan for Boats
is to use the hash index on color, which matches the selection B.color = ‘red’. The B+
tree on color also matches this selection and is retained even though the hash index is
cheaper, because it returns tuples in sorted order by color.

Pass 2: For each of the plans generated in Pass 1, taken as the outer, we consider
joining another relation as the inner. Thus, we consider each of the following joins: file
scan of Reserves (outer) with Boats (inner), file scan of Reserves (outer) with Sailors
(inner), file scan of Sailors (outer) with Boats (inner), file scan of Sailors (outer) with
Reserves (inner), Boats accessed via B+ tree index on color (outer) with Sailors (inner),
Boats accessed via hash index on color (outer) with Sailors (inner), Boats accessed via
B+ tree index on color (outer) with Reserves (inner), and Boats accessed via hash
index on color (outer) with Reserves (inner).

A Typical Relational Query Optimizer 399

For each such pair, we consider each join method, and for each join method, we consider
every available access path for the inner relation. For each pair of relations, we retain
the cheapest of the plans considered for each sorted order in which the tuples are
generated. For example, with Boats accessed via the hash index on color as the outer
relation, an index nested loops join accessing Reserves via the B+ tree index on bid is
likely to be a good plan; observe that there is no hash index on this field of Reserves.
Another plan for joining Reserves and Boats is to access Boats using the hash index on
color, access Reserves using the B+ tree on bid, and use a sort-merge join; this plan,
in contrast to the previous one, generates tuples in sorted order by bid. It is retained
even if the previous plan is cheaper, unless there is an even cheaper plan that produces
the tuples in sorted order by bid! However, the previous plan, which produces tuples
in no particular order, would not be retained if this plan is cheaper.

A good heuristic is to avoid considering cross-products if possible. If we apply this
heuristic, we would not consider the following ‘joins’ in Pass 2 of this example: file
scan of Sailors (outer) with Boats (inner), Boats accessed via B+ tree index on color
(outer) with Sailors (inner), and Boats accessed via hash index on color (outer) with
Sailors (inner).

Pass 3: For each plan retained in Pass 2, taken as the outer, we consider how to join
the remaining relation as the inner. An example of a plan generated at this step is the
following: Access Boats via the hash index on color, access Reserves via the B+ tree
index on bid, and join them using a sort-merge join; then take the result of this join as
the outer and join with Sailors using a sort-merge join, accessing Sailors via the B+
tree index on the sid field. Notice that since the result of the first join is produced in
sorted order by bid, whereas the second join requires its inputs to be sorted by sid, the
result of the first join must be sorted by sid before being used in the second join. The
tuples in the result of the second join are generated in sorted order by sid.

The GROUP BY clause is considered next, after all joins, and it requires sorting on the
sid field. For each plan retained in Pass 3, if the result is not sorted on sid, we add the
cost of sorting on the sid field. The sample plan generated in Pass 3 produces tuples
in sid order; therefore it may be the cheapest plan for the query even if a cheaper plan
joins all three relations but does not produce tuples in sid order.

14.5 NESTED SUBQUERIES

The unit of optimization in a typical system is a query block, and nested queries are
dealt with using some form of nested loops evaluation. Consider the following nested
query in SQL: Find the names of sailors with the highest rating.

SELECT S.sname
FROM Sailors S

400 Chapter 14

WHERE S.rating = (SELECT MAX (S2.rating)
FROM Sailors S2)

In this simple query the nested subquery can be evaluated just once, yielding a single
value. This value is incorporated into the top-level query as if it had been part of the
original statement of the query. For example, if the highest rated sailor has a rating
of 8, the WHERE clause is effectively modified to WHERE S.rating = 8.

However, the subquery may sometimes return a relation, or more precisely, a table in
the SQL sense (i.e., possibly with duplicate rows). Consider the following query: Find
the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid = 103)

Again, the nested subquery can be evaluated just once, yielding a collection of sids.
For each tuple of Sailors, we must now check whether the sid value is in the computed
collection of sids; this check entails a join of Sailors and the computed collection of
sids, and in principle we have the full range of join methods to choose from. For
example, if there is an index on the sid field of Sailors, an index nested loops join with
the computed collection of sids as the outer relation and Sailors as the inner might be
the most efficient join method. However, in many systems, the query optimizer is not
smart enough to find this strategy—a common approach is to always do a nested loops
join in which the inner relation is the collection of sids computed from the subquery
(and this collection may not be indexed).

The motivation for this approach is that it is a simple variant of the technique used to
deal with correlated queries such as the following version of the previous query:

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid = 103

AND S.sid = R.sid)

This query is correlated—the tuple variable S from the top-level query appears in the
nested subquery. Therefore, we cannot evaluate the subquery just once. In this case
the typical evaluation strategy is to evaluate the nested subquery for each tuple of
Sailors.

A Typical Relational Query Optimizer 401

An important point to note about nested queries is that a typical optimizer is likely
to do a poor job, because of the limited approach to nested query optimization. This
is highlighted below:

In a nested query with correlation, the join method is effectively index nested
loops, with the inner relation typically a subquery (and therefore potentially ex-
pensive to compute). This approach creates two distinct problems. First, the
nested subquery is evaluated once per outer tuple; if the same value appears in
the correlation field (S.sid in our example) of several outer tuples, the same sub-
query is evaluated many times. The second problem is that the approach to nested
subqueries is not set-oriented. In effect, a join is seen as a scan of the outer rela-
tion with a selection on the inner subquery for each outer tuple. This precludes
consideration of alternative join methods such as a sort-merge join or a hash join,
which could lead to superior plans.

Even if index nested loops is the appropriate join method, nested query evaluation
may be inefficient. For example, if there is an index on the sid field of Reserves,
a good strategy might be to do an index nested loops join with Sailors as the
outer relation and Reserves as the inner relation, and to apply the selection on
bid on-the-fly. However, this option is not considered when optimizing the version
of the query that uses IN because the nested subquery is fully evaluated as a first
step; that is, Reserves tuples that meet the bid selection are retrieved first.

Opportunities for finding a good evaluation plan may also be missed because of
the implicit ordering imposed by the nesting. For example, if there is an index
on the sid field of Sailors, an index nested loops join with Reserves as the outer
relation and Sailors as the inner might be the most efficient plan for our example
correlated query. However, this join ordering is never considered by an optimizer.

A nested query often has an equivalent query without nesting, and a correlated query
often has an equivalent query without correlation. We have already seen correlated
and uncorrelated versions of the example nested query. There is also an equivalent
query without nesting:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

A typical SQL optimizer is likely to find a much better evaluation strategy if it is
given the unnested or ‘decorrelated’ version of the example query than it would if it
were given either of the nested versions of the query. Many current optimizers cannot
recognize the equivalence of these queries and transform one of the nested versions to
the nonnested form. This is, unfortunately, up to the educated user. From an efficiency
standpoint, users are advised to consider such alternative formulations of a query.

402 Chapter 14

Nested queries: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and
Sybase ASE all use some version of correlated evaluation to handle nested queries,
which are an important part of the TPC-D benchmark; IBM and Informix support
a version in which the results of subqueries are stored in a ‘memo’ table and
the same subquery is not executed multiple times. All these RDBMSs consider
decorrelation and “flattening” of nested queries as an option. Microsoft SQL
Server, Oracle 8 and IBM DB2 also use rewriting techniques, e.g., Magic Sets (see
Chapter 27) or variants, in conjunction with decorrelation.

We conclude our discussion of nested queries by observing that there could be several
levels of nesting. In general the approach that we have sketched is extended by evalu-
ating such queries from the innermost to the outermost level, in order, in the absence
of correlation. A correlated subquery must be evaluated for each candidate tuple of
the higher-level (sub)query that refers to it. The basic idea is thus similar to the case
of one-level nested queries; we omit the details.

14.6 OTHER APPROACHES TO QUERY OPTIMIZATION

We have described query optimization based on an exhaustive search of a large space
of plans for a given query. The space of all possible plans grows rapidly with the size of
the query expression, in particular with respect to the number of joins, because join-
order optimization is a central issue. Therefore, heuristics are used to limit the space
of plans considered by an optimizer. A widely used heuristic is that only left-deep
plans are considered, which works well for most queries. However, once the number
of joins becomes greater than about 15, the cost of optimization using this exhaustive
approach becomes prohibitively high, even if we consider only left-deep plans.

Such complex queries are becoming important in decision-support environments, and
other approaches to query optimization have been proposed. These include rule-based
optimizers, which use a set of rules to guide the generation of candidate plans, and
randomized plan generation, which uses probabilistic algorithms such as simulated
annealing to explore a large space of plans quickly, with a reasonable likelihood of
finding a good plan.

Current research in this area also involves techniques for estimating the size of inter-
mediate relations more accurately; parametric query optimization, which seeks to
find good plans for a given query for each of several different conditions that might be
encountered at run-time; and multiple-query optimization, in which the optimizer
takes concurrent execution of several queries into account.

A Typical Relational Query Optimizer 403

14.7 POINTS TO REVIEW

When optimizing SQL queries, they are first decomposed into small units called
blocks. The outermost query block is often called outer block; the other blocks are
called nested blocks. The first step in optimizing a query block is to translate it
into an extended relational algebra expression. Extended relational algebra also
contains operators for GROUP BY and HAVING. Optimizers consider the σπ× part
of the query separately in a first step and then apply the remaining operations
to the result of the first step. Thus, the alternative plans considered result from
optimizing the σπ× part of the query. (Section 14.1)

Each possible query plan has an associated estimated cost. Since the cost of each
operator in the query tree is estimated from the sizes of its input relations, it is
important to have good result size estimates. Consider a selection condition in
conjunctive normal form. Every term has an associated reduction factor, which is
the relative reduction in the number of result tuples due to this term. There exist
heuristic reduction factor formulas for different kinds of terms that depend on the
assumption of uniform distribution of values and independence of relation fields.
More accurate reduction factors can be obtained by using more accurate statistics,
for example histograms. A histogram is a data structure that approximates a data
distribution by dividing the value range into buckets and maintaining summarized
information about each bucket. In an equiwidth histogram, the value range is
divided into subranges of equal size. In an equidepth histogram, the range is
divided into subranges such that each subrange contains the same number of
tuples. (Section 14.2)

Two relational algebra expressions are equivalent if they produce the same output
for all possible input instances. The existence of equivalent expressions implies
a choice of evaluation strategies. Several relational algebra equivalences allow us
to modify a relational algebra expression to obtain an expression with a cheaper
plan. (Section 14.3)

Several alternative query plans are constructed. When generating plans for multi-
ple relations, heuristically only left-deep plans are considered. A plan is left-deep
if the inner relations of all joins are base relations. For plans with a single relation,
all possible access methods are considered. Possible access methods include a file
scan, a single index, multiple indexes with subsequent intersection of the retrieved
rids, usage of an index to retrieve tuples in sorted order, and an index-only access
path. Only the cheapest plan for each ordering of tuples is maintained. Query
plans for multiple relations are generated in multiple passes. In the first pass, all
cheapest single-relation plans for each output order are generated. The second
pass generates plans with one join. All plans that were generated during pass one
are considered as outer relations and every other relation as inner. Subsequent
passes proceed analogously and generate plans with more joins. This process
finally generates a plan that contains all relations in the query. (Section 14.4)

404 Chapter 14

Nested subqueries within queries are usually evaluated using some form of nested
loops join. For correlated queries, the inner block needs to be evaluated for each
tuple of the outer block. Current query optimizers do not handle nested subqueries
well. (Section 14.5)

In some scenarios the search space of the exhaustive search algorithm we described
is too large and other approaches to query optimization can be used to find a good
plan. (Section 14.6)

EXERCISES

Exercise 14.1 Briefly answer the following questions.

1. In the context of query optimization, what is an SQL query block?

2. Define the term reduction factor.

3. Describe a situation in which projection should precede selection in processing a project-

select query, and describe a situation where the opposite processing order is better.

(Assume that duplicate elimination for projection is done via sorting.)

4. If there are dense, unclustered (secondary) B+ tree indexes on both R.a and S.b, the

join R ./a=bS could be processed by doing a sort-merge type of join—without doing any

sorting—by using these indexes.

(a) Would this be a good idea if R and S each have only one tuple per page, or would

it be better to ignore the indexes and sort R and S? Explain.

(b) What if R and S each have many tuples per page? Again, explain.

5. Why does the System R optimizer consider only left-deep join trees? Give an example

of a plan that would not be considered because of this restriction.

6. Explain the role of interesting orders in the System R optimizer.

Exercise 14.2 Consider a relation with this schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash

index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index

on 〈age, sal〉. Each Employees record is 100 bytes long, and you can assume that each index

data entry is 20 bytes long. The Employees relation contains 10,000 pages.

1. Consider each of the following selection conditions and, assuming that the reduction

factor (RF) for each term that matches an index is 0.1, compute the cost of the most

selective access path for retrieving all Employees tuples that satisfy the condition:

(a) sal > 100

(b) age = 25

A Typical Relational Query Optimizer 405

(c) age > 20

(d) eid = 1, 000

(e) sal > 200 ∧ age > 30

(f) sal > 200 ∧ age = 20

(g) sal > 200 ∧ title =′CFO′

(h) sal > 200 ∧ age > 30 ∧ title =′CFO′

2. Suppose that for each of the preceding selection conditions, you want to retrieve the aver-

age salary of qualifying tuples. For each selection condition, describe the least expensive

evaluation method and state its cost.

3. Suppose that for each of the preceding selection conditions, you want to compute the av-

erage salary for each age group. For each selection condition, describe the least expensive

evaluation method and state its cost.

4. Suppose that for each of the preceding selection conditions, you want to compute the

average age for each sal level (i.e., group by sal). For each selection condition, describe

the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:

(a) sal > 200 ∨ age = 20

(b) sal > 200 ∨ title =′CFO′

(c) title =′CFO′ ∧ ename =′Joe′

Exercise 14.3 For each of the following SQL queries, for each relation involved, list the

attributes that must be examined in order to compute the answer. All queries refer to the

following relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT * FROM Emp

2. SELECT * FROM Emp, Dept

3. SELECT * FROM Emp E, Dept D WHERE E.did = D.did

4. SELECT E.eid, D.dname FROM Emp E, Dept D WHERE E.did = D.did

5. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did

6. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did

7. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5

8. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY D.did

9. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor HAVING COUNT(*) > 2

10. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor

Exercise 14.4 You are given the following information:

406 Chapter 14

Executives has attributes ename, title, dname, and address; all are string fields of

the same length.

The ename attribute is a candidate key.

The relation contains 10,000 pages.

There are 10 buffer pages.

1. Consider the following query:

SELECT E.title, E.ename FROM Executives E WHERE E.title=‘CFO’

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan? (In this and subsequent questions, be sure to describe

the plan that you have in mind.)

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.

What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on address is (the only index) available.

What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index) avail-

able. What is the cost of the best plan?

2. Suppose that the query is as follows:

SELECT E.ename FROM Executives E WHERE E.title=‘CFO’ AND E.dname=‘Toy’

Assume that only 10 percent of Executives tuples meet the condition E.title =′CFO′,
only 10 percent meet E.dname =′Toy′, and that only 5 percent meet both conditions.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan?

(b) Suppose that a clustered B+ tree index on dname is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index) avail-

able. What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈dname, title, ename〉 is (the only index)

available. What is the cost of the best plan?

(f) Suppose that a clustered B+ tree index on 〈ename, title, dname〉 is (the only index)

available. What is the cost of the best plan?

3. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan?

A Typical Relational Query Optimizer 407

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.

What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index) avail-

able. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E

WHERE E.dname > ‘W%’ GROUP BY E.title

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan? If an additional index (on any search key that you

want) is available, would it help to produce a better plan?

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on dname is (the only index) available.

What is the cost of the best plan? If an additional index (on any search key that

you want) is available, would it help to produce a better plan?

(d) Suppose that a clustered B+ tree index on 〈dname, title〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index) avail-

able. What is the cost of the best plan?

Exercise 14.5 Consider the query πA,B,C,D(R ./A=CS). Suppose that the projection routine

is based on sorting and is smart enough to eliminate all but the desired attributes during the

initial pass of the sort, and also to toss out duplicate tuples on-the-fly while sorting, thus

eliminating two potential extra passes. Finally, assume that you know the following:

R is 10 pages long, and R tuples are 300 bytes long.

S is 100 pages long, and S tuples are 500 bytes long.

C is a key for S, and A is a key for R.

The page size is 1,024 bytes.

Each S tuple joins with exactly one R tuple.

The combined size of attributes A, B, C, and D is 450 bytes.

A and B are in R and have a combined size of 200 bytes; C and D are in S.

1. What is the cost of writing out the final result? (As usual, you should ignore this cost

in answering subsequent questions.)

2. Suppose that three buffer pages are available, and the only join method that is imple-

mented is simple (page-oriented) nested loops.

(a) Compute the cost of doing the projection followed by the join.

408 Chapter 14

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

3. Suppose that there are three buffer pages available, and the only join method that is

implemented is block nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

Exercise 14.6 Briefly answer the following questions.

1. Explain the role of relational algebra equivalences in the System R optimizer.

2. Consider a relational algebra expression of the form σc(πl(R × S)). Suppose that the

equivalent expression with selections and projections pushed as much as possible, taking

into account only relational algebra equivalences, is in one of the following forms. In

each case give an illustrative example of the selection conditions and the projection lists

(c, l, c1, l1, etc.).

(a) Equivalent maximally pushed form: πl1(σc1(R) × S).

(b) Equivalent maximally pushed form: πl1(σc1(R) × σc2(S)).

(c) Equivalent maximally pushed form: σc(πl1(πl2(R) × S)).

(d) Equivalent maximally pushed form: σc1(πl1(σc2(πl2(R)) × S)).

(e) Equivalent maximally pushed form: σc1(πl1(πl2(σc2(R)) × S)).

(f) Equivalent maximally pushed form: πl(σc1(πl1(πl2(σc2(R)) × S))).

Exercise 14.7 Consider the following relational schema and SQL query. The schema cap-

tures information about employees, departments, and company finances (organized on a per

department basis).

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dname: char(20), floor: integer, phone: char(10))

Finance(did: integer, budget: real, sales: real, expenses: real)

Consider the following query:

SELECT D.dname, F.budget

FROM Emp E, Dept D, Finance F

WHERE E.did=D.did AND D.did=F.did AND D.floor=1

AND E.sal ≥ 59000 AND E.hobby = ‘yodeling’

1. Identify a relational algebra tree (or a relational algebra expression if you prefer) that

reflects the order of operations that a decent query optimizer would choose.

A Typical Relational Query Optimizer 409

2. List the join orders (i.e., orders in which pairs of relations can be joined together to com-

pute the query result) that a relational query optimizer will consider. (Assume that the

optimizer follows the heuristic of never considering plans that require the computation

of cross-products.) Briefly explain how you arrived at your list.

3. Suppose that the following additional information is available: Unclustered B+ tree

indexes exist on Emp.did, Emp.sal, Dept.floor, Dept.did, and Finance.did. The system’s

statistics indicate that employee salaries range from 10,000 to 60,000, employees enjoy

200 different hobbies, and the company owns two floors in the building. There are

a total of 50,000 employees and 5,000 departments (each with corresponding financial

information) in the database. The DBMS used by the company has just one join method

available, namely, index nested loops.

(a) For each of the query’s base relations (Emp, Dept and Finance) estimate the number

of tuples that would be initially selected from that relation if all of the non-join

predicates on that relation were applied to it before any join processing begins.

(b) Given your answer to the preceding question, which of the join orders that are

considered by the optimizer has the least estimated cost?

Exercise 14.8 Consider the following relational schema and SQL query:

Suppliers(sid: integer, sname: char(20), city: char(20))

Supply(sid: integer, pid: integer)

Parts(pid: integer, pname: char(20), price: real)

SELECT S.sname, P.pname

FROM Suppliers S, Parts P, Supply Y

WHERE S.sid = Y.sid AND Y.pid = P.pid AND

S.city = ‘Madison’ AND P.price ≤ 1,000

1. What information about these relations will the query optimizer need to select a good

query execution plan for the given query?

2. How many different join orders, assuming that cross-products are disallowed, will a

System R style query optimizer consider when deciding how to process the given query?

List each of these join orders.

3. What indexes might be of help in processing this query? Explain briefly.

4. How does adding DISTINCT to the SELECT clause affect the plans produced?

5. How does adding ORDER BY sname to the query affect the plans produced?

6. How does adding GROUP BY sname to the query affect the plans produced?

Exercise 14.9 Consider the following scenario:

Emp(eid: integer, sal: integer, age: real, did: integer)

Dept(did: integer, projid: integer, budget: real, status: char(10))

Proj(projid: integer, code: integer, report: varchar)

410 Chapter 14

Assume that each Emp record is 20 bytes long, each Dept record is 40 bytes long, and each

Proj record is 2,000 bytes long on average. There are 20,000 tuples in Emp, 5,000 tuples

in Dept (note that did is not a key), and 1,000 tuples in Proj. Each department, identified

by did, has 10 projects on average. The file system supports 4,000 byte pages, and 12 buffer

pages are available. The following questions are all based on this information. You can assume

uniform distribution of values. State any additional assumptions. The cost metric to use is

the number of page I/Os. Ignore the cost of writing out the final result.

1. Consider the following two queries: “Find all employees with age = 30” and “Find all

projects with code = 20.” Assume that the number of qualifying tuples is the same

in each case. If you are building indexes on the selected attributes to speed up these

queries, for which query is a clustered index (in comparison to an unclustered index) more

important?

2. Consider the following query: “Find all employees with age > 30.” Assume that there is

an unclustered index on age. Let the number of qualifying tuples be N . For what values

of N is a sequential scan cheaper than using the index?

3. Consider the following query:

SELECT *

FROM Emp E, Dept D

WHERE E.did=D.did

(a) Suppose that there is a clustered hash index on did on Emp. List all the plans that

are considered and identify the plan with the least estimated cost.

(b) Assume that both relations are sorted on the join column. List all the plans that

are considered and show the plan with the least estimated cost.

(c) Suppose that there is a clustered B+ tree index on did on Emp and that Dept is

sorted on did. List all the plans that are considered and identify the plan with the

least estimated cost.

4. Consider the following query:

SELECT D.did, COUNT(*)

FROM Dept D, Proj P

WHERE D.projid=P.projid

GROUP BY D.did

(a) Suppose that no indexes are available. Show the plan with the least estimated cost.

(b) If there is a hash index on P.projid what is the plan with least estimated cost?

(c) If there is a hash index on D.projid what is the plan with least estimated cost?

(d) If there is a hash index on D.projid and P.projid what is the plan with least esti-

mated cost?

(e) Suppose that there is a clustered B+ tree index on D.did and a hash index on

P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index on D.projid,

and a hash index on P.projid. Show the plan with the least estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

A Typical Relational Query Optimizer 411

(h) Suppose that there is a clustered B+ tree index on 〈D.projid, D.did〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

5. Consider the following query:

SELECT D.did, COUNT(*)

FROM Dept D, Proj P

WHERE D.projid=P.projid AND D.budget>99000

GROUP BY D.did

Assume that department budgets are uniformly distributed in the range 0 to 100,000.

(a) Show the plan with least estimated cost if no indexes are available.

(b) If there is a hash index on P.projid show the plan with least estimated cost.

(c) If there is a hash index on D.budget show the plan with least estimated cost.

(d) If there is a hash index on D.projid and D.budget show the plan with least estimated

cost.

(e) Suppose that there is a clustered B+ tree index on 〈D.did,D.budget〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index on D.budget,

and a hash index on P.projid. Show the plan with the least estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.budget, D.projid〉 and

a hash index on P.projid. Show the plan with the least estimated cost.

(h) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid, D.budget〉 and

a hash index on P.projid. Show the plan with the least estimated cost.

6. Consider the following query:

SELECT E.eid, D.did, P.projid

FROM Emp E, Dept D, Proj P

WHERE E.sal=50,000 AND D.budget>20,000

E.did=D.did AND D.projid=P.projid

Assume that employee salaries are uniformly distributed in the range 10,009 to 110,008

and that project budgets are uniformly distributed in the range 10,000 to 30,000. There

is a clustered index on sal for Emp, a clustered index on did for Dept, and a clustered

index on projid for Proj.

(a) List all the one-relation, two-relation, and three-relation subplans considered in

optimizing this query.

(b) Show the plan with the least estimated cost for this query.

(c) If the index on Proj were unclustered, would the cost of the preceding plan change

substantially? What if the index on Emp or on Dept were unclustered?

412 Chapter 14

PROJECT-BASED EXERCISES

Exercise 14.10 (Note to instructors: This exercise can be made more specific by providing

additional details about the queries and the catalogs. See Appendix B.) Minibase has a nice

query optimizer visualization tool that lets you see how a query is optimized. Try initializing

the catalogs to reflect various scenarios (perhaps taken from the chapter or the other exer-

cises) and optimizing different queries. Using the graphical interface, you can look at each

enumerated plan at several levels of detail, toggle (i.e., turn on/off) the availability of indexes,

join methods, and so on.

BIBLIOGRAPHIC NOTES

Query optimization is critical in a relational DBMS, and it has therefore been extensively

studied. We have concentrated in this chapter on the approach taken in System R, as described

in [581], although our discussion incorporated subsequent refinements to the approach. [688]

describes query optimization in Ingres. Good surveys can be found in [349] and [338]. [372]

contains several articles on query processing and optimization.

From a theoretical standpoint, [132] showed that determining whether two conjunctive queries

(queries involving only selections, projections, and cross-products) are equivalent is an NP-

complete problem; if relations are multisets, rather than sets of tuples, it is not known whether

the problem is decidable, although it is Π2
p hard. The equivalence problem was shown

to be decidable for queries involving selections, projections, cross-products, and unions in

[560]; surprisingly, this problem is undecidable if relations are multisets [343]. Equivalence of

conjunctive queries in the presence of integrity constraints is studied in [26], and equivalence

of conjunctive queries with inequality selections is studied in [379].

An important problem in query optimization is estimating the size of the result of a query

expression. Approaches based on sampling are explored in [298, 299, 324, 416, 497]. The

use of detailed statistics, in the form of histograms, to estimate size is studied in [344, 487,

521]. Unless care is exercised, errors in size estimation can quickly propagate and make cost

estimates worthless for expressions with several operators. This problem is examined in [339].

[445] surveys several techniques for estimating result sizes and correlations between values in

relations. There are a number of other papers in this area, for example, [22, 143, 517, 636],

and our list is far from complete.

Semantic query optimization is based on transformations that preserve equivalence only when

certain integrity constraints hold. The idea was introduced in [375] and developed further in

[594, 127, 599].

In recent years, there has been increasing interest in complex queries for decision support

applications. Optimization of nested SQL queries is discussed in [667, 256, 364, 368, 486].

The use of the Magic Sets technique for optimizing SQL queries is studied in [482, 484, 483,

586, 583]. Rule-based query optimizers are studied in [246, 277, 425, 468, 519]. Finding a

good join order for queries with a large number of joins is studied in [391, 340, 341, 637].

Optimization of multiple queries for simultaneous execution is considered in [510, 551, 582].

A Typical Relational Query Optimizer 413

Determining query plans at run-time is discussed in [278, 342]. Re-optimization of running

queries based on statistics gathered during query execution is considered by Kabra and DeWitt

[353]. Probabilistic optimization of queries is proposed in [152, 192].

PART V

DATABASE DESIGN

15 SCHEMA REFINEMENT AND
NORMAL FORMS

It is a melancholy truth that even great men have their poor relations.

—Charles Dickens

Conceptual database design gives us a set of relation schemas and integrity constraints
(ICs) that can be regarded as a good starting point for the final database design.
This initial design must be refined by taking the ICs into account more fully than is
possible with just the ER model constructs and also by considering performance criteria
and typical workloads. In this chapter we discuss how ICs can be used to refine the
conceptual schema produced by translating an ER model design into a collection of
relations. Workload and performance considerations are discussed in Chapter 16.

We concentrate on an important class of constraints called functional dependencies.
Other kinds of ICs, for example multivalued dependencies and join dependencies, also
provide useful information. They can sometimes reveal redundancies that cannot be de-
tected using functional dependencies alone. We discuss these other constraints briefly.

This chapter is organized as follows. Section 15.1 is an overview of the schema re-
finement approach discussed in this chapter. We introduce functional dependencies in
Section 15.2. In Section 15.3 we present several examples that highlight the problems
caused by redundancy and illustrate how relational schemas obtained by translating
an ER model design can nonetheless suffer from these problems. Thus, ER design is
a good starting point, but we still need techniques to detect schemas with these prob-
lems and to refine such schemas to eliminate the problems. We lay the foundation for
developing such schema refinement techniques in Section 15.4, where we show how to
reason with functional dependency information to infer additional dependencies from
a given set of dependencies.

We introduce normal forms for relations in Section 15.5; the normal form satisfied by
a relation is a measure of the redundancy in the relation. A relation with redundancy
can be refined by decomposing it, or replacing it with smaller relations that contain the
same information, but without redundancy. We discuss decompositions and desirable
properties of decompositions in Section 15.6. We show how relations can be decom-
posed into smaller relations that are in desirable normal forms in Section 15.7. Finally,
we discuss the use of other kinds of dependencies for database design in Section 15.8.

417

418 Chapter 15

15.1 INTRODUCTION TO SCHEMA REFINEMENT

We now present an overview of the problems that schema refinement is intended to
address and a refinement approach based on decompositions. Redundant storage of
information is the root cause of these problems. Although decomposition can eliminate
redundancy, it can lead to problems of its own and should be used with caution.

15.1.1 Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one place within a
database, can lead to several problems:

Redundant storage: Some information is stored repeatedly.

Update anomalies: If one copy of such repeated data is updated, an inconsis-
tency is created unless all copies are similarly updated.

Insertion anomalies: It may not be possible to store some information unless
some other information is stored as well.

Deletion anomalies: It may not be possible to delete some information without
losing some other information as well.

Consider a relation obtained by translating a variant of the Hourly Emps entity set
from Chapter 2:

Hourly Emps(ssn, name, lot, rating, hourly wages, hours worked)

In this chapter we will omit attribute type information for brevity, since our focus is on
the grouping of attributes into relations. We will often abbreviate an attribute name
to a single letter and refer to a relation schema by a string of letters, one per attribute.
For example, we will refer to the Hourly Emps schema as SNLRWH (W denotes the
hourly wages attribute).

The key for Hourly Emps is ssn. In addition, suppose that the hourly wages attribute
is determined by the rating attribute. That is, for a given rating value, there is only
one permissible hourly wages value. This IC is an example of a functional dependency.
It leads to possible redundancy in the relation Hourly Emps, as illustrated in Figure
15.1.

If the same value appears in the rating column of two tuples, the IC tells us that the
same value must appear in the hourly wages column as well. This redundancy has
several negative consequences:

Schema Refinement and Normal Forms 419

ssn name lot rating hourly wages hours worked

123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

Figure 15.1 An Instance of the Hourly Emps Relation

Some information is stored multiple times. For example, the rating value 8 cor-
responds to the hourly wage 10, and this association is repeated three times. In
addition to wasting space by storing the same information many times, redun-
dancy leads to potential inconsistency. For example, the hourly wages in the first
tuple could be updated without making a similar change in the second tuple,
which is an example of an update anomaly. Also, we cannot insert a tuple for an
employee unless we know the hourly wage for the employee’s rating value, which
is an example of an insertion anomaly.

If we delete all tuples with a given rating value (e.g., we delete the tuples for
Smethurst and Guldu) we lose the association between that rating value and its
hourly wage value (a deletion anomaly).

Let us consider whether the use of null values can address some of these problems.
Clearly, null values cannot help eliminate redundant storage or update anomalies. It
appears that they can address insertion and deletion anomalies. For instance, to deal
with the insertion anomaly example, we can insert an employee tuple with null values in
the hourly wage field. However, null values cannot address all insertion anomalies. For
example, we cannot record the hourly wage for a rating unless there is an employee with
that rating, because we cannot store a null value in the ssn field, which is a primary key
field. Similarly, to deal with the deletion anomaly example, we might consider storing
a tuple with null values in all fields except rating and hourly wages if the last tuple
with a given rating would otherwise be deleted. However, this solution will not work
because it requires the ssn value to be null, and primary key fields cannot be null.
Thus, null values do not provide a general solution to the problems of redundancy,
even though they can help in some cases. We will not discuss the use of null values
further.

Ideally, we want schemas that do not permit redundancy, but at the very least we want
to be able to identify schemas that do allow redundancy. Even if we choose to accept
a schema with some of these drawbacks, perhaps owing to performance considerations,
we want to make an informed decision.

420 Chapter 15

15.1.2 Use of Decompositions

Intuitively, redundancy arises when a relational schema forces an association between
attributes that is not natural. Functional dependencies (and, for that matter, other
ICs) can be used to identify such situations and to suggest refinements to the schema.
The essential idea is that many problems arising from redundancy can be addressed
by replacing a relation with a collection of ‘smaller’ relations. Each of the smaller
relations contains a (strict) subset of the attributes of the original relation. We refer
to this process as decomposition of the larger relation into the smaller relations.

We can deal with the redundancy in Hourly Emps by decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

The instances of these relations corresponding to the instance of Hourly Emps relation
in Figure 15.1 is shown in Figure 15.2.

ssn name lot rating hours worked

123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

rating hourly wages

8 10
5 7

Figure 15.2 Instances of Hourly Emps2 and Wages

Note that we can easily record the hourly wage for any rating simply by adding a
tuple to Wages, even if no employee with that rating appears in the current instance
of Hourly Emps. Changing the wage associated with a rating involves updating a
single Wages tuple. This is more efficient than updating several tuples (as in the
original design), and it also eliminates the potential for inconsistency. Notice that the
insertion and deletion anomalies have also been eliminated.

Schema Refinement and Normal Forms 421

15.1.3 Problems Related to Decomposition

Unless we are careful, decomposing a relation schema can create more problems than
it solves. Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?

2. What problems (if any) does a given decomposition cause?

To help with the first question, several normal forms have been proposed for relations.
If a relation schema is in one of these normal forms, we know that certain kinds of
problems cannot arise. Considering the normal form of a given relation schema can
help us to decide whether or not to decompose it further. If we decide that a relation
schema must be decomposed further, we must choose a particular decomposition (i.e.,
a particular collection of smaller relations to replace the given relation).

With respect to the second question, two properties of decompositions are of particular
interest. The lossless-join property enables us to recover any instance of the decom-
posed relation from corresponding instances of the smaller relations. The dependency-
preservation property enables us to enforce any constraint on the original relation by
simply enforcing some contraints on each of the smaller relations. That is, we need
not perform joins of the smaller relations to check whether a constraint on the original
relation is violated.

A serious drawback of decompositions is that queries over the original relation may
require us to join the decomposed relations. If such queries are common, the perfor-
mance penalty of decomposing the relation may not be acceptable. In this case we
may choose to live with some of the problems of redundancy and not decompose the
relation. It is important to be aware of the potential problems caused by such resid-
ual redundancy in the design and to take steps to avoid them (e.g., by adding some
checks to application code). We will not discuss the impact of decompositions on query
performance in this chapter; this issue is covered in Section 16.8.

Our goal in this chapter is to explain some powerful concepts and design guidelines
based on the theory of functional dependencies. A good database designer should
have a firm grasp of normal forms and what problems they (do or do not) alleviate,
the technique of decomposition, and potential problems with decompositions. For
example, a designer will often ask questions such as these: Is a relation in a given
normal form? Is a decomposition dependency-preserving? Our objective is to explain
when to raise these questions and the significance of the answers.

422 Chapter 15

15.2 FUNCTIONAL DEPENDENCIES

A functional dependency (FD) is a kind of IC that generalizes the concept of a key.
Let R be a relation schema and let X and Y be nonempty sets of attributes in R. We
say that an instance r of R satisfies the FD X → Y 1 if the following holds for every
pair of tuples t1 and t2 in r:

If t1.X = t2.X, then t1.Y = t2.Y .

We use the notation t1.X to refer to the projection of tuple t1 onto the attributes
in X, in a natural extension of our TRC notation (see Chapter 4) t.a for referring to
attribute a of tuple t. An FD X → Y essentially says that if two tuples agree on the
values in attributes X, they must also agree on the values in attributes Y.

Figure 15.3 illustrates the meaning of the FD AB → C by showing an instance that
satisfies this dependency. The first two tuples show that an FD is not the same as
a key constraint: Although the FD is not violated, AB is clearly not a key for the
relation. The third and fourth tuples illustrate that if two tuples differ in either the
A field or the B field, they can differ in the C field without violating the FD. On the
other hand, if we add a tuple 〈a1, b1, c2, d1〉 to the instance shown in this figure, the
resulting instance would violate the FD; to see this violation, compare the first tuple
in the figure with the new tuple.

A B C D

a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

Figure 15.3 An Instance that Satisfies AB → C

Recall that a legal instance of a relation must satisfy all specified ICs, including all
specified FDs. As noted in Section 3.2, ICs must be identified and specified based on
the semantics of the real-world enterprise being modeled. By looking at an instance of
a relation, we might be able to tell that a certain FD does not hold. However, we can
never deduce that an FD does hold by looking at one or more instances of the relation
because an FD, like other ICs, is a statement about all possible legal instances of the
relation.

1X → Y is read as X functionally determines Y, or simply as X determines Y.

Schema Refinement and Normal Forms 423

A primary key constraint is a special case of an FD. The attributes in the key play
the role of X, and the set of all attributes in the relation plays the role of Y. Note,
however, that the definition of an FD does not require that the set X be minimal; the
additional minimality condition must be met for X to be a key. If X → Y holds, where
Y is the set of all attributes, and there is some subset V of X such that V → Y holds,
then X is a superkey; if V is a strict subset of X, then X is not a key.

In the rest of this chapter, we will see several examples of FDs that are not key
constraints.

15.3 EXAMPLES MOTIVATING SCHEMA REFINEMENT

It is natural to ask whether we need to decompose relations produced by translating
an ER diagram. Shouldn’t a good ER design lead to a collection of good relations?
Unfortunately, ER design can generate some schemas with redundancy problems, be-
cause it is a complex, subjective process, and certain constraints are not expressible
in terms of ER diagrams. The examples in this section are intended to illustrate why
decomposition of relations produced through ER design might be necessary.

15.3.1 Constraints on an Entity Set

Consider the Hourly Emps relation again. The constraint that attribute ssn is a key
can be expressed as an FD:

{ssn} → {ssn, name, lot, rating, hourly wages, hours worked}

For brevity, we will write this FD as S → SNLRWH, using a single letter to denote each
attribute and omitting the set braces, but the reader should remember that both sides
of an FD contain sets of attributes. In addition, the constraint that the hourly wages
attribute is determined by the rating attribute is an FD: R → W.

As we saw in Section 15.1.1, this FD led to redundant storage of rating–wage associ-
ations. It cannot be expressed in terms of the ER model. Only FDs that determine
all attributes of a relation (i.e., key constraints) can be expressed in the ER model.
Therefore, we could not detect it when we considered Hourly Emps as an entity set
during ER modeling.

We could argue that the problem with the original design was an artifact of a poor ER
design, which could have been avoided by introducing an entity set called Wage Table
(with attributes rating and hourly wages) and a relationship set Has Wages associating
Hourly Emps and Wage Table. The point, however, is that we could easily arrive at the
original design given the subjective nature of ER modeling. Having formal techniques
to identify the problem with this design, and to guide us to a better design, is very

424 Chapter 15

useful. The value of such techniques cannot be underestimated when designing large
schemas—schemas with more than a hundred tables are not uncommon!

15.3.2 Constraints on a Relationship Set

The previous example illustrated how FDs can help to refine the subjective decisions
made during ER design, but one could argue that the best possible ER diagram would
have led to the same final set of relations. Our next example shows how FD information
can lead to a set of relations that eliminates some redundancy problems and is unlikely
to be arrived at solely through ER design.

We revisit an example from Chapter 2. Suppose that we have entity sets Parts, Sup-
pliers, and Departments, as well as a relationship set Contracts that involves all of
them. We refer to the schema for Contracts as CQPSD. A contract with contract id
C specifies that a supplier S will supply some quantity Q of a part P to a department
D. (We have added the contract id field C to the version of the Contracts relation that
was discussed in Chapter 2.)

We might have a policy that a department purchases at most one part from any given
supplier. Thus, if there are several contracts between the same supplier and depart-
ment, we know that the same part must be involved in all of them. This constraint is
an FD, DS → P.

Again we have redundancy and its associated problems. We can address this situ-
ation by decomposing Contracts into two relations with attributes CQSD and SDP.
Intuitively, the relation SDP records the part supplied to a department by a supplier,
and the relation CQSD records additional information about a contract. It is unlikely
that we would arrive at such a design solely through ER modeling, since it is hard to
formulate an entity or relationship that corresponds naturally to CQSD.

15.3.3 Identifying Attributes of Entities

This example illustrates how a careful examination of FDs can lead to a better under-
standing of the entities and relationships underlying the relational tables; in particular,
it shows that attributes can easily be associated with the ‘wrong’ entity set during ER
design. The ER diagram in Figure 15.4 shows a relationship set called Works In that
is similar to the Works In relationship set of Chapter 2, but with an additional key
constraint indicating that an employee can work in at most one department. (Observe
the arrow connecting Employees to Works In.)

Using the key constraint, we can translate this ER diagram into two relations:

Workers(ssn, name, lot, did, since)

Schema Refinement and Normal Forms 425

dname

budgetdid

since

name

Works_In DepartmentsEmployees

ssn lot

Figure 15.4 The Works In Relationship Set

Departments(did, dname, budget)

The entity set Employees and the relationship set Works In are mapped to a single re-
lation, Workers. This translation is based on the second approach discussed in Section
2.4.1.

Now suppose that employees are assigned parking lots based on their department, and
that all employees in a given department are assigned the same lot. This constraint is
not expressible with respect to the ER diagram of Figure 15.4. It is another example
of an FD: did → lot. The redundancy in this design can be eliminated by decomposing
the Workers relation into two relations:

Workers2(ssn, name, did, since)
Dept Lots(did, lot)

The new design has much to recommend it. We can change the lots associated with a
department by updating a single tuple in the second relation (i.e., no update anoma-
lies). We can associate a lot with a department even if it currently has no employees,
without using null values (i.e., no deletion anomalies). We can add an employee to a
department by inserting a tuple to the first relation even if there is no lot associated
with the employee’s department (i.e., no insertion anomalies).

Examining the two relations Departments and Dept Lots, which have the same key,
we realize that a Departments tuple and a Dept Lots tuple with the same key value
describe the same entity. This observation is reflected in the ER diagram shown in
Figure 15.5.

Translating this diagram into the relational model would yield:

Workers2(ssn, name, did, since)
Departments(did, dname, budget, lot)

426 Chapter 15

budgetdid

since

name

Works_In DepartmentsEmployees

ssn

lotdname

Figure 15.5 Refined Works In Relationship Set

It seems intuitive to associate lots with employees; on the other hand, the ICs reveal
that in this example lots are really associated with departments. The subjective process
of ER modeling could miss this point. The rigorous process of normalization would
not.

15.3.4 Identifying Entity Sets

Consider a variant of the Reserves schema used in earlier chapters. Let Reserves contain
attributes S, B, and D as before, indicating that sailor S has a reservation for boat B
on day D. In addition, let there be an attribute C denoting the credit card to which
the reservation is charged. We use this example to illustrate how FD information can
be used to refine an ER design. In particular, we discuss how FD information can help
to decide whether a concept should be modeled as an entity or as an attribute.

Suppose that every sailor uses a unique credit card for reservations. This constraint
is expressed by the FD S → C. This constraint indicates that in relation Reserves,
we store the credit card number for a sailor as often as we have reservations for that
sailor, and we have redundancy and potential update anomalies. A solution is to
decompose Reserves into two relations with attributes SBD and SC. Intuitively, one
holds information about reservations, and the other holds information about credit
cards.

It is instructive to think about an ER design that would lead to these relations. One
approach is to introduce an entity set called Credit Cards, with the sole attribute
cardno, and a relationship set Has Card associating Sailors and Credit Cards. By
noting that each credit card belongs to a single sailor, we can map Has Card and
Credit Cards to a single relation with attributes SC. We would probably not model
credit card numbers as entities if our main interest in card numbers is to indicate how
a reservation is to be paid for; it suffices to use an attribute to model card numbers in
this situation.

Schema Refinement and Normal Forms 427

A second approach is to make cardno an attribute of Sailors. But this approach is
not very natural—a sailor may have several cards, and we are not interested in all of
them. Our interest is in the one card that is used to pay for reservations, which is best
modeled as an attribute of the relationship Reserves.

A helpful way to think about the design problem in this example is that we first make
cardno an attribute of Reserves and then refine the resulting tables by taking into
account the FD information. (Whether we refine the design by adding cardno to the
table obtained from Sailors or by creating a new table with attributes SC is a separate
issue.)

15.4 REASONING ABOUT FUNCTIONAL DEPENDENCIES

The discussion up to this point has highlighted the need for techniques that allow us to
carefully examine and further refine relations obtained through ER design (or, for that
matter, through other approaches to conceptual design). Before proceeding with the
main task at hand, which is the discussion of such schema refinement techniques, we
digress to examine FDs in more detail because they play such a central role in schema
analysis and refinement.

Given a set of FDs over a relation schema R, there are typically several additional FDs
that hold over R whenever all of the given FDs hold. As an example, consider:

Workers(ssn, name, lot, did, since)

We know that ssn → did holds, since ssn is the key, and FD did → lot is given to hold.
Therefore, in any legal instance of Workers, if two tuples have the same ssn value, they
must have the same did value (from the first FD), and because they have the same did
value, they must also have the same lot value (from the second FD). Thus, the FD ssn
→ lot also holds on Workers.

We say that an FD f is implied by a given set F of FDs if f holds on every relation
instance that satisfies all dependencies in F, that is, f holds whenever all FDs in F
hold. Note that it is not sufficient for f to hold on some instance that satisfies all
dependencies in F; rather, f must hold on every instance that satisfies all dependencies
in F.

15.4.1 Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the closure of F and is
denoted as F+. An important question is how we can infer, or compute, the closure
of a given set F of FDs. The answer is simple and elegant. The following three rules,
called Armstrong’s Axioms, can be applied repeatedly to infer all FDs implied by

428 Chapter 15

a set F of FDs. We use X, Y, and Z to denote sets of attributes over a relation schema
R:

Reflexivity: If X ⊇ Y, then X → Y.

Augmentation: If X → Y, then XZ → YZ for any Z.

Transitivity: If X → Y and Y → Z, then X → Z.

Armstrong’s Axioms are sound in that they generate only FDs in F+ when applied
to a set F of FDs. They are complete in that repeated application of these rules will
generate all FDs in the closure F+. (We will not prove these claims.) It is convenient
to use some additional rules while reasoning about F+:

Union: If X → Y and X → Z, then X → YZ.

Decomposition: If X → YZ, then X → Y and X → Z.

These additional rules are not essential; their soundness can be proved using Arm-
strong’s Axioms.

To illustrate the use of these inference rules for FDs, consider a relation schema ABC
with FDs A → B and B → C. A trivial FD is one in which the right side contains
only attributes that also appear on the left side; such dependencies always hold due
to reflexivity. Using reflexivity, we can generate all trivial dependencies, which are of
the form:

X → Y, where Y ⊆ X, X ⊆ ABC, and Y ⊆ ABC.

From transitivity we get A → C. From augmentation we get the nontrivial dependen-
cies:

AC → BC, AB → AC, AB → CB.

As a second example, we use a more elaborate version of the Contracts relation:

Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

We denote the schema for Contracts as CSJDPQV. The meaning of a tuple in this
relation is that the contract with contractid C is an agreement that supplier S (sup-
plierid) will supply Q items of part P (partid) to project J (projectid) associated with
department D (deptid); the value V of this contract is equal to value.

The following ICs are known to hold:

Schema Refinement and Normal Forms 429

1. The contract id C is a key: C → CSJDPQV.

2. A project purchases a given part using a single contract: JP → C.

3. A department purchases at most one part from a supplier: SD → P.

Several additional FDs hold in the closure of the set of given FDs:

From JP → C, C → CSJDPQV and transitivity, we infer JP → CSJDPQV.

From SD → P and augmentation, we infer SDJ → JP.

From SDJ → JP, JP → CSJDPQV and transitivity, we infer SDJ → CSJDPQV. (Inci-
dentally, while it may appear tempting to do so, we cannot conclude SD → CSDPQV,
canceling J on both sides. FD inference is not like arithmetic multiplication!)

We can infer several additional FDs that are in the closure by using augmentation or
decomposition. For example, from C → CSJDPQV, using decomposition we can infer:

C → C, C → S, C → J, C → D, etc.

Finally, we have a number of trivial FDs from the reflexivity rule.

15.4.2 Attribute Closure

If we just want to check whether a given dependency, say, X → Y, is in the closure of
a set F of FDs, we can do so efficiently without computing F+. We first compute the
attribute closure X+ with respect to F, which is the set of attributes A such that X
→ A can be inferred using the Armstrong Axioms. The algorithm for computing the
attribute closure of a set X of attributes is shown in Figure 15.6.

closure = X;
repeat until there is no change: {

if there is an FD U → V in F such that U ⊆ closure,
then set closure = closure ∪ V

}

Figure 15.6 Computing the Attribute Closure of Attribute Set X

This algorithm can be modified to find keys by starting with set X containing a single
attribute and stopping as soon as closure contains all attributes in the relation schema.

430 Chapter 15

By varying the starting attribute and the order in which the algorithm considers FDs,
we can obtain all candidate keys.

15.5 NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or whether
we need to decompose it into smaller relations. Such a decision must be guided by
an understanding of what problems, if any, arise from the current schema. To provide
such guidance, several normal forms have been proposed. If a relation schema is in
one of these normal forms, we know that certain kinds of problems cannot arise.

The normal forms based on FDs are first normal form (1NF), second normal form
(2NF), third normal form (3NF), and Boyce-Codd normal form (BCNF). These forms
have increasingly restrictive requirements: Every relation in BCNF is also in 3NF,
every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF. A relation
is in first normal form if every field contains only atomic values, that is, not lists or
sets. This requirement is implicit in our definition of the relational model. Although
some of the newer database systems are relaxing this requirement, in this chapter we
will assume that it always holds. 2NF is mainly of historical interest. 3NF and BCNF
are important from a database design standpoint.

While studying normal forms, it is important to appreciate the role played by FDs.
Consider a relation schema R with attributes ABC. In the absence of any ICs, any
set of ternary tuples is a legal instance and there is no potential for redundancy. On
the other hand, suppose that we have the FD A → B. Now if several tuples have the
same A value, they must also have the same B value. This potential redundancy can
be predicted using the FD information. If more detailed ICs are specified, we may be
able to detect more subtle redundancies as well.

We will primarily discuss redundancy that is revealed by FD information. In Sec-
tion 15.8, we discuss more sophisticated ICs called multivalued dependencies and join
dependencies and normal forms based on them.

15.5.1 Boyce-Codd Normal Form

Let R be a relation schema, X be a subset of the attributes of R, and let A be an
attribute of R. R is in Boyce-Codd normal form if for every FD X → A that holds
over R, one of the following statements is true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey.

Schema Refinement and Normal Forms 431

Note that if we are given a set F of FDs, according to this definition, we must consider
each dependency X → A in the closure F+ to determine whether R is in BCNF.
However, we can prove that it is sufficient to check whether the left side of each
dependency in F is a superkey (by computing the attribute closure and seeing if it
includes all attributes of R).

Intuitively, in a BCNF relation the only nontrivial dependencies are those in which
a key determines some attribute(s). Thus, each tuple can be thought of as an entity
or relationship, identified by a key and described by the remaining attributes. Kent
puts this colorfully, if a little loosely: “Each attribute must describe [an entity or
relationship identified by] the key, the whole key, and nothing but the key.” If we
use ovals to denote attributes or sets of attributes and draw arcs to indicate FDs, a
relation in BCNF has the structure illustrated in Figure 15.7, considering just one key
for simplicity. (If there are several candidate keys, each candidate key can play the
role of KEY in the figure, with the other attributes being the ones not in the chosen
candidate key.)

KEY Nonkey attr1 Nonkey attrkNonkey attr2

Figure 15.7 FDs in a BCNF Relation

BCNF ensures that no redundancy can be detected using FD information alone. It is
thus the most desirable normal form (from the point of view of redundancy) if we take
into account only FD information. This point is illustrated in Figure 15.8.

X Y A
x y1 a

x y2 ?

Figure 15.8 Instance Illustrating BCNF

This figure shows (two tuples in) an instance of a relation with three attributes X, Y,
and A. There are two tuples with the same value in the X column. Now suppose that
we know that this instance satisfies an FD X → A. We can see that one of the tuples
has the value a in the A column. What can we infer about the value in the A column
in the second tuple? Using the FD, we can conclude that the second tuple also has
the value a in this column. (Note that this is really the only kind of inference we can
make about values in the fields of tuples by using FDs.)

But isn’t this situation an example of redundancy? We appear to have stored the
value a twice. Can such a situation arise in a BCNF relation? No! If this relation is

432 Chapter 15

in BCNF, because A is distinct from X it follows that X must be a key. (Otherwise,
the FD X → A would violate BCNF.) If X is a key, then y1 = y2, which means that
the two tuples are identical. Since a relation is defined to be a set of tuples, we cannot
have two copies of the same tuple and the situation shown in Figure 15.8 cannot arise.

Thus, if a relation is in BCNF, every field of every tuple records a piece of information
that cannot be inferred (using only FDs) from the values in all other fields in (all tuples
of) the relation instance.

15.5.2 Third Normal Form

Let R be a relation schema, X be a subset of the attributes of R, and A be an attribute
of R. R is in third normal form if for every FD X → A that holds over R, one of the
following statements is true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey, or

A is part of some key for R.

The definition of 3NF is similar to that of BCNF, with the only difference being
the third condition. Every BCNF relation is also in 3NF. To understand the third
condition, recall that a key for a relation is a minimal set of attributes that uniquely
determines all other attributes. A must be part of a key (any key, if there are several).
It is not enough for A to be part of a superkey, because the latter condition is satisfied
by each and every attribute! Finding all keys of a relation schema is known to be an
NP-complete problem, and so is the problem of determining whether a relation schema
is in 3NF.

Suppose that a dependency X → A causes a violation of 3NF. There are two cases:

X is a proper subset of some key K. Such a dependency is sometimes called a
partial dependency. In this case we store (X, A) pairs redundantly. As an
example, consider the Reserves relation with attributes SBDC from Section 15.3.4.
The only key is SBD, and we have the FD S → C. We store the credit card number
for a sailor as many times as there are reservations for that sailor.

X is not a proper subset of any key. Such a dependency is sometimes called a
transitive dependency because it means we have a chain of dependencies K
→ X → A. The problem is that we cannot associate an X value with a K value
unless we also associate an A value with an X value. As an example, consider
the Hourly Emps relation with attributes SNLRWH from Section 15.3.1. The
only key is S, but there is an FD R → W, which gives rise to the chain S → R

Schema Refinement and Normal Forms 433

→ W. The consequence is that we cannot record the fact that employee S has
rating R without knowing the hourly wage for that rating. This condition leads
to insertion, deletion, and update anomalies.

Partial dependencies are illustrated in Figure 15.9, and transitive dependencies are
illustrated in Figure 15.10. Note that in Figure 15.10, the set X of attributes may or
may not have some attributes in common with KEY; the diagram should be interpreted
as indicating only that X is not a subset of KEY.

KEY Attribute AAttributes X Case 1: A not in KEY

Figure 15.9 Partial Dependencies

Attribute AKEY Attributes X Case 1: A not in KEY

Case 2: A is in KEYKEY Attribute A Attributes X

Figure 15.10 Transitive Dependencies

The motivation for 3NF is rather technical. By making an exception for certain de-
pendencies involving key attributes, we can ensure that every relation schema can be
decomposed into a collection of 3NF relations using only decompositions that have
certain desirable properties (Section 15.6). Such a guarantee does not exist for BCNF
relations; the 3NF definition weakens the BCNF requirements just enough to make
this guarantee possible. We may therefore compromise by settling for a 3NF design.
As we shall see in Chapter 16, we may sometimes accept this compromise (or even
settle for a non-3NF schema) for other reasons as well.

Unlike BCNF, however, some redundancy is possible with 3NF. The problems associ-
ated with partial and transitive dependencies persist if there is a nontrivial dependency
X → A and X is not a superkey, even if the relation is in 3NF because A is part of
a key. To understand this point, let us revisit the Reserves relation with attributes
SBDC and the FD S → C, which states that a sailor uses a unique credit card to pay
for reservations. S is not a key, and C is not part of a key. (In fact, the only key is
SBD.) Thus, this relation is not in 3NF; (S, C) pairs are stored redundantly. However,
if we also know that credit cards uniquely identify the owner, we have the FD C →

434 Chapter 15

S, which means that CBD is also a key for Reserves. Therefore, the dependency S →
C does not violate 3NF, and Reserves is in 3NF. Nonetheless, in all tuples containing
the same S value, the same (S, C) pair is redundantly recorded.

For completeness, we remark that the definition of second normal form is essentially
that partial dependencies are not allowed. Thus, if a relation is in 3NF (which precludes
both partial and transitive dependencies), it is also in 2NF.

15.6 DECOMPOSITIONS

As we have seen, a relation in BCNF is free of redundancy (to be precise, redundancy
that can be detected using FD information), and a relation schema in 3NF comes
close. If a relation schema is not in one of these normal forms, the FDs that cause
a violation can give us insight into the potential problems. The main technique for
addressing such redundancy-related problems is decomposing a relation schema into
relation schemas with fewer attributes.

A decomposition of a relation schema R consists of replacing the relation schema
by two (or more) relation schemas that each contain a subset of the attributes of R and
together include all attributes in R. Intuitively, we want to store the information in
any given instance of R by storing projections of the instance. This section examines
the use of decompositions through several examples.

We begin with the Hourly Emps example from Section 15.3.1. This relation has at-
tributes SNLRWH and two FDs: S → SNLRWH and R → W. Since R is not a key
and W is not part of any key, the second dependency causes a violation of 3NF.

The alternative design consisted of replacing Hourly Emps with two relations having
attributes SNLRH and RW. S → SNLRH holds over SNLRH, and S is a key. R → W
holds over RW, and R is a key for RW. The only other dependencies that hold over
these schemas are those obtained by augmentation. Thus both schemas are in BCNF.

Our decision to decompose SNLRWH into SNLRH and RW, rather than, say, SNLR
and LRWH, was not just a good guess. It was guided by the observation that the
dependency R → W caused the violation of 3NF; the most natural way to deal with
this violation is to remove the attribute W from this schema. To compensate for
removing W from the main schema, we can add a relation RW, because each R value
is associated with at most one W value according to the FD R → W.

A very important question must be asked at this point: If we replace a legal instance r
of relation schema SNLRWH with its projections on SNLRH (r1) and RW (r2), can we
recover r from r1 and r2? The decision to decompose SNLRWH into SNLRH and RW
is equivalent to saying that we will store instances r1 and r2 instead of r. However,

Schema Refinement and Normal Forms 435

it is the instance r that captures the intended entities or relationships. If we cannot
compute r from r1 and r2, our attempt to deal with redundancy has effectively thrown
out the baby with the bathwater. We consider this issue in more detail below.

15.6.1 Lossless-Join Decomposition

Let R be a relation schema and let F be a set of FDs over R. A decomposition of R into
two schemas with attribute sets X and Y is said to be a lossless-join decomposition
with respect to F if for every instance r of R that satisfies the dependencies in F,
πX(r) ./ πY (r) = r.

This definition can easily be extended to cover a decomposition of R into more than
two relations. It is easy to see that r ⊆ πX(r) ./ πY (r) always holds. In general,
though, the other direction does not hold. If we take projections of a relation and
recombine them using natural join, we typically obtain some tuples that were not in
the original relation. This situation is illustrated in Figure 15.11.

S P D
s1 p1 d1
s2 p2 d2
s3 p1 d3

Instance r

S P
s1 p1
s2 p2
s3 p1

πSP (r)

P D
p1 d1
p2 d2
p1 d3

πPD(r)

S P D
s1 p1 d1
s2 p2 d2
s3 p1 d3
s1 p1 d3
s3 p1 d1

πSP (r) ./ πPD(r)

Figure 15.11 Instances Illustrating Lossy Decompositions

By replacing the instance r shown in Figure 15.11 with the instances πSP (r) and
πPD(r), we lose some information. In particular, suppose that the tuples in r denote
relationships. We can no longer tell that the relationships (s1, p1, d3) and (s3, p1, d1)
do not hold. The decomposition of schema SPD into SP and PD is therefore a ‘lossy’
decomposition if the instance r shown in the figure is legal, that is, if this instance
could arise in the enterprise being modeled. (Observe the similarities between this
example and the Contracts relationship set in Section 2.5.3.)

All decompositions used to eliminate redundancy must be lossless. The following simple
test is very useful:

Let R be a relation and F be a set of FDs that hold over R. The decomposition
of R into relations with attribute sets R1 and R2 is lossless if and only if F+

contains either the FD R1 ∩ R2 → R1 or the FD R1 ∩ R2 → R2.

436 Chapter 15

In other words, the attributes common to R1 and R2 must contain a key for either R1 or
R2. If a relation is decomposed into two relations, this test is a necessary and sufficient
condition for the decomposition to be lossless-join.2 If a relation is decomposed into
more than two relations, an efficient (time polynomial in the size of the dependency
set) algorithm is available to test whether or not the decomposition is lossless, but we
will not discuss it.

Consider the Hourly Emps relation again. It has attributes SNLRWH, and the FD
R → W causes a violation of 3NF. We dealt with this violation by decomposing the
relation into SNLRH and RW. Since R is common to both decomposed relations, and
R → W holds, this decomposition is lossless-join.

This example illustrates a general observation:

If an FD X → Y holds over a relation R and X∩Y is empty, the decomposition
of R into R − Y and XY is lossless.

X appears in both R−Y (since X ∩ Y is empty) and XY, and it is a key for XY. Thus,
the above observation follows from the test for a lossless-join decomposition.

Another important observation has to do with repeated decompositions. Suppose that
a relation R is decomposed into R1 and R2 through a lossless-join decomposition, and
that R1 is decomposed into R11 and R12 through another lossless-join decomposition.
Then the decomposition of R into R11, R12, and R2 is lossless-join; by joining R11
and R12 we can recover R1, and by then joining R1 and R2, we can recover R.

15.6.2 Dependency-Preserving Decomposition

Consider the Contracts relation with attributes CSJDPQV from Section 15.4.1. The
given FDs are C → CSJDPQV, JP → C, and SD → P. Because SD is not a key the
dependency SD → P causes a violation of BCNF.

We can decompose Contracts into two relations with schemas CSJDQV and SDP to
address this violation; the decomposition is lossless-join. There is one subtle problem,
however. We can enforce the integrity constraint JP → C easily when a tuple is
inserted into Contracts by ensuring that no existing tuple has the same JP values
(as the inserted tuple) but different C values. Once we decompose Contracts into
CSJDQV and SDP, enforcing this constraint requires an expensive join of the two
relations whenever a tuple is inserted into CSJDQV. We say that this decomposition
is not dependency-preserving.

2It is necessary only if we assume that only functional dependencies can be specified as integrity
constraints. See Exercise 15.8.

Schema Refinement and Normal Forms 437

Intuitively, a dependency-preserving decomposition allows us to enforce all FDs by ex-
amining a single relation instance on each insertion or modification of a tuple. (Note
that deletions cannot cause violation of FDs.) To define dependency-preserving de-
compositions precisely, we have to introduce the concept of a projection of FDs.

Let R be a relation schema that is decomposed into two schemas with attribute sets
X and Y, and let F be a set of FDs over R. The projection of F on X is the set of
FDs in the closure F+ (not just F !) that involve only attributes in X. We will denote
the projection of F on attributes X as FX . Note that a dependency U → V in F+ is
in FX only if all the attributes in U and V are in X.

The decomposition of relation schema R with FDs F into schemas with attribute sets
X and Y is dependency-preserving if (FX ∪ FY)+ = F+. That is, if we take the
dependencies in FX and FY and compute the closure of their union, we get back all
dependencies in the closure of F. Therefore, we need to enforce only the dependencies
in FX and FY ; all FDs in F+ are then sure to be satisfied. To enforce FX , we need
to examine only relation X (on inserts to that relation). To enforce FY , we need to
examine only relation Y.

To appreciate the need to consider the closure F+ while computing the projection of
F, suppose that a relation R with attributes ABC is decomposed into relations with
attributes AB and BC. The set F of FDs over R includes A → B, B → C, and C
→ A. Of these, A → B is in FAB and B → C is in FBC . But is this decomposition
dependency-preserving? What about C → A? This dependency is not implied by the
dependencies listed (thus far) for FAB and FBC .

The closure of F contains all dependencies in F plus A → C, B → A, and C → B.
Consequently, FAB also contains B → A, and FBC contains C → B. Thus, FAB ∪FBC

contains A → B, B → C, B → A, and C → B. The closure of the dependencies in FAB

and FBC now includes C → A (which follows from C → B, B → A, and transitivity).
Thus, the decomposition preserves the dependency C → A.

A direct application of the definition gives us a straightforward algorithm for testing
whether a decomposition is dependency-preserving. (This algorithm is exponential in
the size of the dependency set; a polynomial algorithm is available, although we will
not discuss it.)

We began this section with an example of a lossless-join decomposition that was not
dependency-preserving. Other decompositions are dependency-preserving, but not
lossless. A simple example consists of a relation ABC with FD A → B that is de-
composed into AB and BC.

438 Chapter 15

15.7 NORMALIZATION

Having covered the concepts needed to understand the role of normal forms and de-
compositions in database design, we now consider algorithms for converting relations
to BCNF or 3NF. If a relation schema is not in BCNF, it is possible to obtain a
lossless-join decomposition into a collection of BCNF relation schemas. Unfortunately,
there may not be any dependency-preserving decomposition into a collection of BCNF
relation schemas. However, there is always a dependency-preserving, lossless-join de-
composition into a collection of 3NF relation schemas.

15.7.1 Decomposition into BCNF

We now present an algorithm for decomposing a relation schema R into a collection of
BCNF relation schemas:

1. Suppose that R is not in BCNF. Let X ⊂ R, A be a single attribute in R, and X
→ A be an FD that causes a violation of BCNF. Decompose R into R − A and
XA.

2. If either R − A or XA is not in BCNF, decompose them further by a recursive
application of this algorithm.

R − A denotes the set of attributes other than A in R, and XA denotes the union of
attributes in X and A. Since X → A violates BCNF, it is not a trivial dependency;
further, A is a single attribute. Therefore, A is not in X; that is, X∩A is empty. Thus,
each decomposition carried out in Step (1) is lossless-join.

The set of dependencies associated with R − A and XA is the projection of F onto
their attributes. If one of the new relations is not in BCNF, we decompose it further in
Step (2). Since a decomposition results in relations with strictly fewer attributes, this
process will terminate, leaving us with a collection of relation schemas that are all in
BCNF. Further, joining instances of the (two or more) relations obtained through this
algorithm will yield precisely the corresponding instance of the original relation (i.e.,
the decomposition into a collection of relations that are each in BCNF is a lossless-join
decomposition).

Consider the Contracts relation with attributes CSJDPQV and key C. We are given
FDs JP → C and SD → P. By using the dependency SD → P to guide the decompo-
sition, we get the two schemas SDP and CSJDQV. SDP is in BCNF. Suppose that we
also have the constraint that each project deals with a single supplier: J → S. This
means that the schema CSJDQV is not in BCNF. So we decompose it further into JS
and CJDQV. C → JDQV holds over CJDQV; the only other FDs that hold are those
obtained from this FD by augmentation, and therefore all FDs contain a key in the left

Schema Refinement and Normal Forms 439

side. Thus, each of the schemas SDP, JS, and CJDQV is in BCNF, and this collection
of schemas also represents a lossless-join decomposition of CSJDQV.

The steps in this decomposition process can be visualized as a tree, as shown in Figure
15.12. The root is the original relation CSJDPQV, and the leaves are the BCNF
relations that are the result of the decomposition algorithm, namely, SDP, JS, and
CSDQV. Intuitively, each internal node is replaced by its children through a single
decomposition step that is guided by the FD shown just below the node.

SD P

J S

CSJDPQV

CSJDQVSDP

JS CJDQV

Figure 15.12 Decomposition of CSJDQV into SDP, JS, and CJDQV

Redundancy in BCNF Revisited

The decomposition of CSJDQV into SDP, JS, and CJDQV is not dependency-preserving.
Intuitively, dependency JP → C cannot be enforced without a join. One way to deal
with this situation is to add a relation with attributes CJP. In effect, this solution
amounts to storing some information redundantly in order to make the dependency
enforcement cheaper.

This is a subtle point: Each of the schemas CJP, SDP, JS, and CJDQV is in BCNF,
yet there is some redundancy that can be predicted by FD information. In particular,
if we join the relation instances for SDP and CJDQV and project onto the attributes
CJP, we must get exactly the instance stored in the relation with schema CJP. We saw
in Section 15.5.1 that there is no such redundancy within a single BCNF relation. The
current example shows that redundancy can still occur across relations, even though
there is no redundancy within a relation.

440 Chapter 15

Alternatives in Decomposing to BCNF

Suppose that several dependencies violate BCNF. Depending on which of these de-
pendencies we choose to guide the next decomposition step, we may arrive at quite
different collections of BCNF relations. Consider Contracts. We just decomposed it
into SDP, JS, and CJDQV. Suppose that we choose to decompose the original relation
CSJDPQV into JS and CJDPQV, based on the FD J → S. The only dependencies
that hold over CJDPQV are JP → C and the key dependency C → CJDPQV. Since
JP is a key, CJDPQV is in BCNF. Thus, the schemas JS and CJDPQV represent a
lossless-join decomposition of Contracts into BCNF relations.

The lesson to be learned here is that the theory of dependencies can tell us when there is
redundancy and give us clues about possible decompositions to address the problem,
but it cannot discriminate between decomposition alternatives. A designer has to
consider the alternatives and choose one based on the semantics of the application.

BCNF and Dependency-Preservation

Sometimes, there simply is no decomposition into BCNF that is dependency-preserving.
As an example, consider the relation schema SBD, in which a tuple denotes that sailor
S has reserved boat B on date D. If we have the FDs SB → D (a sailor can reserve a
given boat for at most one day) and D → B (on any given day at most one boat can
be reserved), SBD is not in BCNF because D is not a key. If we try to decompose it,
however, we cannot preserve the dependency SB → D.

15.7.2 Decomposition into 3NF *

Clearly, the approach that we outlined for lossless-join decomposition into BCNF will
also give us a lossless-join decomposition into 3NF. (Typically, we can stop a little
earlier if we are satisfied with a collection of 3NF relations.) But this approach does
not ensure dependency-preservation.

A simple modification, however, yields a decomposition into 3NF relations that is
lossless-join and dependency-preserving. Before we describe this modification, we need
to introduce the concept of a minimal cover for a set of FDs.

Minimal Cover for a Set of FDs

A minimal cover for a set F of FDs is a set G of FDs such that:

1. Every dependency in G is of the form X → A, where A is a single attribute.

2. The closure F+ is equal to the closure G+.

Schema Refinement and Normal Forms 441

3. If we obtain a set H of dependencies from G by deleting one or more dependencies,
or by deleting attributes from a dependency in G, then F+ 6= H+.

Intuitively, a minimal cover for a set F of FDs is an equivalent set of dependencies that
is minimal in two respects: (1) Every dependency is as small as possible; that is, each
attribute on the left side is necessary and the right side is a single attribute. (2) Every
dependency in it is required in order for the closure to be equal to F+.

As an example, let F be the set of dependencies:

A → B, ABCD → E, EF → G, EF → H, and ACDF → EG.

First, let us rewrite ACDF → EG so that every right side is a single attribute:

ACDF → E and ACDF → G.

Next consider ACDF → G. This dependency is implied by the following FDs:

A → B, ABCD → E, and EF → G.

Therefore, we can delete it. Similarly, we can delete ACDF → E. Next consider ABCD
→ E. Since A → B holds, we can replace it with ACD → E. (At this point, the reader
should verify that each remaining FD is minimal and required.) Thus, a minimal cover
for F is the set:

A → B, ACD → E, EF → G, and EF → H.

The preceding example suggests a general algorithm for obtaining a minimal cover of
a set F of FDs:

1. Put the FDs in a standard form: Obtain a collection G of equivalent FDs
with a single attribute on the right side (using the decomposition axiom).

2. Minimize the left side of each FD: For each FD in G, check each attribute in
the left side to see if it can be deleted while preserving equivalence to F+.

3. Delete redundant FDs: Check each remaining FD in G to see if it can be
deleted while preserving equivalence to F+.

Note that the order in which we consider FDs while applying these steps could produce
different minimal covers; there could be several minimal covers for a given set of FDs.

More important, it is necessary to minimize the left sides of FDs before checking for
redundant FDs. If these two steps are reversed, the final set of FDs could still contain
some redundant FDs (i.e., not be a minimal cover), as the following example illustrates.
Let F be the set of dependencies, each of which is already in the standard form:

442 Chapter 15

ABCD → E, E → D, A → B, and AC → D.

Observe that none of these FDs is redundant; if we checked for redundant FDs first,
we would get the same set of FDs F. The left side of ABCD → E can be replaced
by AC while preserving equivalence to F+, and we would stop here if we checked for
redundant FDs in F before minimizing the left sides. However, the set of FDs we have
is not a minimal cover:

AC → E, E → D, A → B, and AC → D.

From transitivity, the first two FDs imply the last FD, which can therefore be deleted
while preserving equivalence to F+. The important point to note is that AC → D
becomes redundant only after we replace ABCD → E with AC → E. If we minimize
left sides of FDs first and then check for redundant FDs, we are left with the first three
FDs in the preceding list, which is indeed a minimal cover for F.

Dependency-Preserving Decomposition into 3NF

Returning to the problem of obtaining a lossless-join, dependency-preserving decom-
position into 3NF relations, let R be a relation with a set F of FDs that is a minimal
cover, and let R1, R2, . . . , Rn be a lossless-join decomposition of R. For 1 ≤ i ≤ n,
suppose that each Ri is in 3NF and let Fi denote the projection of F onto the attributes
of Ri. Do the following:

Identify the set N of dependencies in F that are not preserved, that is, not
included in the closure of the union of Fis.

For each FD X → A in N , create a relation schema XA and add it to the decom-
position of R.

Obviously, every dependency in F is preserved if we replace R by the Ris plus the
schemas of the form XA added in this step. The Ris are given to be in 3NF. We can
show that each of the schemas XA is in 3NF as follows: Since X → A is in the minimal
cover F, Y → A does not hold for any Y that is a strict subset of X. Therefore, X
is a key for XA. Further, if any other dependencies hold over XA, the right side can
involve only attributes in X because A is a single attribute (because X → A is an FD
in a minimal cover). Since X is a key for XA, none of these additional dependencies
causes a violation of 3NF (although they might cause a violation of BCNF).

As an optimization, if the set N contains several FDs with the same left side, say,
X → A1, X → A2, . . . , X → An, we can replace them with a single equivalent
FD X → A1 . . . An. Therefore, we produce one relation schema XA1 . . . An, instead of
several schemas XA1, . . . , XAn, which is generally preferable.

Schema Refinement and Normal Forms 443

Consider the Contracts relation with attributes CSJDPQV and FDs JP → C, SD → P,
and J → S. If we decompose CSJDPQV into SDP and CSJDQV, then SDP is in BCNF,
but CSJDQV is not even in 3NF. So we decompose it further into JS and CJDQV.
The relation schemas SDP, JS, and CJDQV are in 3NF (in fact, in BCNF), and the
decomposition is lossless-join. However, the dependency JP → C is not preserved. This
problem can be addressed by adding a relation schema CJP to the decomposition.

3NF Synthesis

We have assumed that the design process starts with an ER diagram, and that our use
of FDs is primarily to guide decisions about decomposition. The algorithm for obtain-
ing a lossless-join, dependency-preserving decomposition was presented in the previous
section from this perspective—a lossless-join decomposition into 3NF is straightfor-
ward, and the algorithm addresses dependency-preservation by adding extra relation
schemas.

An alternative approach, called synthesis, is to take all the attributes over the original
relation R and a minimal cover F for the FDs that hold over it, and to add a relation
schema XA to the decomposition of R for each FD X → A in F.

The resulting collection of relation schemas is in 3NF and preserves all FDs. If it is
not a lossless-join decomposition of R, we can make it so by adding a relation schema
that contains just those attributes that appear in some key. This algorithm gives us
a lossless-join, dependency-preserving decomposition into 3NF, and has polynomial
complexity—polynomial algorithms are available for computing minimal covers, and
a key can be found in polynomial time (even though finding all keys is known to be
NP-complete). The existence of a polynomial algorithm for obtaining a lossless-join,
dependency-preserving decomposition into 3NF is surprising when we consider that
testing whether a given schema is in 3NF is NP-complete.

As an example, consider a relation ABC with FDs F = {A → B, C → B}. The first
step yields the relation schemas AB and BC. This is not a lossless-join decomposition
of ABC; AB ∩ BC is B, and neither B → A nor B → C is in F+. If we add a schema
AC, we have the lossless-join property as well. Although the collection of relations
AB, BC, and AC is a dependency-preserving, lossless-join decomposition of ABC, we
obtained it through a process of synthesis, rather than through a process of repeated
decomposition. We note that the decomposition produced by the synthesis approach
is heavily dependent on the minimal cover that is used.

As another example of the synthesis approach, consider the Contracts relation with
attributes CSJDPQV and the following FDs:

C → CSJDPQV, JP → C, SD → P, and J → S.

444 Chapter 15

This set of FDs is not a minimal cover, and so we must find one. We first replace C
→ CSJDPQV with the FDs:

C → S, C → J, C → D, C → P, C → Q, and C → V.

The FD C → P is implied by C → S, C → D, and SD → P; so we can delete it. The
FD C → S is implied by C → J and J → S; so we can delete it. This leaves us with a
minimal cover:

C → J, C → D, C → Q, C → V, JP → C, SD → P, and J → S.

Using the algorithm for ensuring dependency-preservation, we obtain the relational
schema CJ, CD, CQ, CV, CJP, SDP, and JS. We can improve this schema by combining
relations for which C is the key into CDJPQV. In addition, we have SDP and JS in
our decomposition. Since one of these relations (CDJPQV) is a superkey, we are done.

Comparing this decomposition with the one that we obtained earlier in this section,
we find that they are quite close, with the only difference being that one of them has
CDJPQV instead of CJP and CJDQV. In general, however, there could be significant
differences.

Database designers typically use a conceptual design methodology (e.g., ER design)
to arrive at an initial database design. Given this, the approach of repeated decompo-
sitions to rectify instances of redundancy is likely to be the most natural use of FDs
and normalization techniques. However, a designer can also consider the alternative
designs suggested by the synthesis approach.

15.8 OTHER KINDS OF DEPENDENCIES *

FDs are probably the most common and important kind of constraint from the point
of view of database design. However, there are several other kinds of dependencies.
In particular, there is a well-developed theory for database design using multivalued
dependencies and join dependencies. By taking such dependencies into account, we
can identify potential redundancy problems that cannot be detected using FDs alone.

This section illustrates the kinds of redundancy that can be detected using multivalued
dependencies. Our main observation, however, is that simple guidelines (which can be
checked using only FD reasoning) can tell us whether we even need to worry about
complex constraints such as multivalued and join dependencies. We also comment on
the role of inclusion dependencies in database design.

Schema Refinement and Normal Forms 445

15.8.1 Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book, which we
denote as CTB. The meaning of a tuple is that teacher T can teach course C, and book
B is a recommended text for the course. There are no FDs; the key is CTB. However,
the recommended texts for a course are independent of the instructor. The instance
shown in Figure 15.13 illustrates this situation.

course teacher book

Physics101 Green Mechanics
Physics101 Green Optics
Physics101 Brown Mechanics
Physics101 Brown Optics
Math301 Green Mechanics
Math301 Green Vectors
Math301 Green Geometry

Figure 15.13 BCNF Relation with Redundancy That Is Revealed by MVDs

There are three points to note here:

The relation schema CTB is in BCNF; thus we would not consider decomposing
it further if we looked only at the FDs that hold over CTB.

There is redundancy. The fact that Green can teach Physics101 is recorded once
per recommended text for the course. Similarly, the fact that Optics is a text for
Physics101 is recorded once per potential teacher.

The redundancy can be eliminated by decomposing CTB into CT and CB.

The redundancy in this example is due to the constraint that the texts for a course are
independent of the instructors, which cannot be expressed in terms of FDs. This con-
straint is an example of a multivalued dependency, or MVD. Ideally, we should model
this situation using two binary relationship sets, Instructors with attributes CT and
Text with attributes CB. Because these are two essentially independent relationships,
modeling them with a single ternary relationship set with attributes CTB is inappropri-
ate. (See Section 2.5.3 for a further discussion of ternary versus binary relationships.)
Given the subjectivity of ER design, however, we might create a ternary relationship.
A careful analysis of the MVD information would then reveal the problem.

Let R be a relation schema and let X and Y be subsets of the attributes of R. Intuitively,
the multivalued dependency X →→ Y is said to hold over R if, in every legal

446 Chapter 15

instance r of R, each X value is associated with a set of Y values and this set is
independent of the values in the other attributes.

Formally, if the MVD X →→ Y holds over R and Z = R−XY , the following must be
true for every legal instance r of R:

If t1 ∈ r, t2 ∈ r and t1.X = t2.X, then there must be some t3 ∈ r such that
t1.XY = t3.XY and t2.Z = t3.Z.

Figure 15.14 illustrates this definition. If we are given the first two tuples and told that
the MVD X →→ Y holds over this relation, we can infer that the relation instance
must also contain the third tuple. Indeed, by interchanging the roles of the first two
tuples—treating the first tuple as t2 and the second tuple as t1—we can deduce that
the tuple t4 must also be in the relation instance.

X Y Z
a b1 c1 — tuple t1
a b2 c2 — tuple t2

a b1 c2 — tuple t3
a b2 c1 — tuple t4

Figure 15.14 Illustration of MVD Definition

This table suggests another way to think about MVDs: If X →→ Y holds over R, then
πY Z(σX=x(R)) = πY (σX=x(R)) × πZ(σX=x(R)) in every legal instance of R, for
any value x that appears in the X column of R. In other words, consider groups of
tuples in R with the same X-value, for each X-value. In each such group consider the
projection onto the attributes YZ. This projection must be equal to the cross-product
of the projections onto Y and Z. That is, for a given X-value, the Y-values and Z-
values are independent. (From this definition it is easy to see that X →→ Y must hold
whenever X → Y holds. If the FD X → Y holds, there is exactly one Y-value for a
given X-value, and the conditions in the MVD definition hold trivially. The converse
does not hold, as Figure 15.14 illustrates.)

Returning to our CTB example, the constraint that course texts are independent of
instructors can be expressed as C →→ T. In terms of the definition of MVDs, this
constraint can be read as follows:

“If (there is a tuple showing that) C is taught by teacher T,
and (there is a tuple showing that) C has book B as text,
then (there is a tuple showing that) C is taught by T and has text B.

Schema Refinement and Normal Forms 447

Given a set of FDs and MVDs, in general we can infer that several additional FDs
and MVDs hold. A sound and complete set of inference rules consists of the three
Armstrong Axioms plus five additional rules. Three of the additional rules involve
only MVDs:

MVD Complementation: If X →→ Y, then X →→ R − XY .

MVD Augmentation: If X →→ Y and W ⊇ Z, then WX →→ YZ.

MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z − Y).

As an example of the use of these rules, since we have C →→ T over CTB, MVD
complementation allows us to infer that C →→ CTB −CT as well, that is, C →→ B.
The remaining two rules relate FDs and MVDs:

Replication: If X → Y, then X →→ Y.

Coalescence: If X →→ Y and there is a W such that W ∩ Y is empty, W → Z,
and Y ⊇ Z, then X → Z.

Observe that replication states that every FD is also an MVD.

15.8.2 Fourth Normal Form

Fourth normal form is a direct generalization of BCNF. Let R be a relation schema,
X and Y be nonempty subsets of the attributes of R, and F be a set of dependencies
that includes both FDs and MVDs. R is said to be in fourth normal form (4NF)
if for every MVD X →→ Y that holds over R, one of the following statements is true:

Y ⊆ X or XY = R, or

X is a superkey.

In reading this definition, it is important to understand that the definition of a key
has not changed—the key must uniquely determine all attributes through FDs alone.
X →→ Y is a trivial MVD if Y ⊆ X ⊆ R or XY = R; such MVDs always hold.

The relation CTB is not in 4NF because C →→ T is a nontrivial MVD and C is not
a key. We can eliminate the resulting redundancy by decomposing CTB into CT and
CB; each of these relations is then in 4NF.

To use MVD information fully, we must understand the theory of MVDs. However,
the following result due to Date and Fagin identifies conditions—detected using only
FD information!—under which we can safely ignore MVD information. That is, using
MVD information in addition to the FD information will not reveal any redundancy.
Therefore, if these conditions hold, we do not even need to identify all MVDs.

448 Chapter 15

If a relation schema is in BCNF, and at least one of its keys consists of a
single attribute, it is also in 4NF.

An important assumption is implicit in any application of the preceding result: The
set of FDs identified thus far is indeed the set of all FDs that hold over the relation.
This assumption is important because the result relies on the relation being in BCNF,
which in turn depends on the set of FDs that hold over the relation.

We illustrate this point using an example. Consider a relation schema ABCD and
suppose that the FD A → BCD and the MVD B →→ C are given. Considering only
these dependencies, this relation schema appears to be a counter example to the result.
The relation has a simple key, appears to be in BCNF, and yet is not in 4NF because
B →→ C causes a violation of the 4NF conditions. But let’s take a closer look.

Figure 15.15 shows three tuples from an instance of ABCD that satisfies the given
MVD B →→ C. From the definition of an MVD, given tuples t1 and t2, it follows

B C A D
b c1 a1 d1 — tuple t1
b c2 a2 d2 — tuple t2
b c1 a2 d2 — tuple t3

Figure 15.15 Three Tuples from a Legal Instance of ABCD

that tuple t3 must also be included in the instance. Consider tuples t2 and t3. From
the given FD A → BCD and the fact that these tuples have the same A-value, we can
deduce that c1 = c2. Thus, we see that the FD B → C must hold over ABCD whenever
the FD A → BCD and the MVD B →→ C hold. If B → C holds, the relation ABCD
is not in BCNF (unless additional FDs hold that make B a key)!

Thus, the apparent counter example is really not a counter example—rather, it illus-
trates the importance of correctly identifying all FDs that hold over a relation. In
this example A → BCD is not the only FD; the FD B → C also holds but was not
identified initially. Given a set of FDs and MVDs, the inference rules can be used to
infer additional FDs (and MVDs); to apply the Date-Fagin result without first using
the MVD inference rules, we must be certain that we have identified all the FDs.

In summary, the Date-Fagin result offers a convenient way to check that a relation is
in 4NF (without reasoning about MVDs) if we are confident that we have identified
all FDs. At this point the reader is invited to go over the examples we have discussed
in this chapter and see if there is a relation that is not in 4NF.

Schema Refinement and Normal Forms 449

15.8.3 Join Dependencies

A join dependency is a further generalization of MVDs. A join dependency (JD)
./ {R1, . . . , Rn} is said to hold over a relation R if R1, . . . , Rn is a lossless-join
decomposition of R.

An MVD X →→ Y over a relation R can be expressed as the join dependency ./ {XY,
X(R−Y)}. As an example, in the CTB relation, the MVD C →→ T can be expressed
as the join dependency ./ {CT, CB}.

Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs.

15.8.4 Fifth Normal Form

A relation schema R is said to be in fifth normal form (5NF) if for every JD
./ {R1, . . . , Rn} that holds over R, one of the following statements is true:

Ri = R for some i, or

The JD is implied by the set of those FDs over R in which the left side is a key
for R.

The second condition deserves some explanation, since we have not presented inference
rules for FDs and JDs taken together. Intuitively, we must be able to show that the
decomposition of R into {R1, . . . , Rn} is lossless-join whenever the key dependen-
cies (FDs in which the left side is a key for R) hold. ./ {R1, . . . , Rn} is a trivial
JD if Ri = R for some i; such a JD always holds.

The following result, also due to Date and Fagin, identifies conditions—again, detected
using only FD information—under which we can safely ignore JD information.

If a relation schema is in 3NF and each of its keys consists of a single attribute,
it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF, but not
necessary. The result can be very useful in practice because it allows us to conclude
that a relation is in 5NF without ever identifying the MVDs and JDs that may hold
over the relation.

15.8.5 Inclusion Dependencies

MVDs and JDs can be used to guide database design, as we have seen, although they
are less common than FDs and harder to recognize and reason about. In contrast,

450 Chapter 15

inclusion dependencies are very intuitive and quite common. However, they typically
have little influence on database design (beyond the ER design stage).

Informally, an inclusion dependency is a statement of the form that some columns of
a relation are contained in other columns (usually of a second relation). A foreign key
constraint is an example of an inclusion dependency; the referring column(s) in one
relation must be contained in the primary key column(s) of the referenced relation. As
another example, if R and S are two relations obtained by translating two entity sets
such that every R entity is also an S entity, we would have an inclusion dependency;
projecting R on its key attributes yields a relation that is contained in the relation
obtained by projecting S on its key attributes.

The main point to bear in mind is that we should not split groups of attributes that
participate in an inclusion dependency. For example, if we have an inclusion depen-
dency AB ⊆ CD, while decomposing the relation schema containing AB, we should
ensure that at least one of the schemas obtained in the decomposition contains both
A and B. Otherwise, we cannot check the inclusion dependency AB ⊆ CD without
reconstructing the relation containing AB.

Most inclusion dependencies in practice are key-based, that is, involve only keys. For-
eign key constraints are a good example of key-based inclusion dependencies. An ER
diagram that involves ISA hierarchies also leads to key-based inclusion dependencies.
If all inclusion dependencies are key-based, we rarely have to worry about splitting
attribute groups that participate in inclusions, since decompositions usually do not
split the primary key. Note, however, that going from 3NF to BCNF always involves
splitting some key (hopefully not the primary key!), since the dependency guiding the
split is of the form X → A where A is part of a key.

15.9 POINTS TO REVIEW

Redundancy, storing the same information several times in a database, can result
in update anomalies (all copies need to be updated), insertion anomalies (certain
information cannot be stored unless other information is stored as well), and
deletion anomalies (deleting some information means loss of other information as
well). We can reduce redundancy by replacing a relation schema R with several
smaller relation schemas. This process is called decomposition. (Section 15.1)

A functional dependency X → Y is a type of IC. It says that if two tuples agree
upon (i.e., have the same) values in the X attributes, then they also agree upon
the values in the Y attributes. (Section 15.2)

FDs can help to refine subjective decisions made during conceptual design. (Sec-
tion 15.3)

Schema Refinement and Normal Forms 451

An FD f is implied by a set F of FDs if for all relation instances where F holds,
f also holds. The closure of a set F of FDs is the set of all FDs F+ implied by
F. Armstrong’s Axioms are a sound and complete set of rules to generate all FDs
in the closure. An FD X → Y is trivial if X contains only attributes that also
appear in Y. The attribute closure X+ of a set of attributes X with respect to a
set of FDs F is the set of attributes A such that X → A can be inferred using
Armstrong’s Axioms. (Section 15.4)

A normal form is a property of a relation schema indicating the type of redundancy
that the relation schema exhibits. If a relation schema is in Boyce-Codd normal
form (BCNF), then the only nontrivial FDs are key constraints. If a relation is
in third normal form (3NF), then all nontrivial FDs are key constraints or their
right side is part of a candidate key. Thus, every relation that is in BCNF is also
in 3NF, but not vice versa. (Section 15.5)

A decomposition of a relation schema R into two relation schemas X and Y is a
lossless-join decomposition with respect to a set of FDs F if for any instance r of
R that satisfies the FDs in F , πX(r) ./ πY (r) = r. The decomposition of R

into X and Y is lossless-join if and only if F+ contains either X ∩Y → X or the
FD X ∩ Y → Y . The decomposition is dependency-preserving if we can enforce
all FDs that are given to hold on R by simply enforcing FDs on X and FDs on Y

independently (i.e., without joining X and Y). (Section 15.6)

There is an algorithm to obtain a lossless-join decomposition of a relation into
a collection of BCNF relation schemas, but sometimes there is no dependency-
preserving decomposition into BCNF schemas. We also discussed an algorithm
for decomposing a relation schema into a collection of 3NF relation schemas. There
is always a lossless-join, dependency-preserving decomposition into a collection of
3NF relation schemas. A minimal cover of a set of FDs is an equivalent set of
FDs that has certain minimality properties (intuitively, the set of FDs is as small
as possible). Instead of decomposing a relation schema, we can also synthesize a
corresponding collection of 3NF relation schemas. (Section 15.7)

Other kinds of dependencies include multivalued dependencies, join dependencies,
and inclusion dependencies. Fourth and fifth normal forms are more stringent
than BCNF, and eliminate redundancy due to multivalued and join dependencies,
respectively. (Section 15.8)

EXERCISES

Exercise 15.1 Briefly answer the following questions.

1. Define the term functional dependency.

2. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which

R is in 1NF but not in 2NF.

452 Chapter 15

3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which

R is in 2NF but not in 3NF.

4. Consider the relation schema R(A,B,C), which has the FD B → C. If A is a candidate

key for R, is it possible for R to be in BCNF? If so, under what conditions? If not,

explain why not.

5. Suppose that we have a relation schema R(A,B,C) representing a relationship between

two entity sets with keys A and B, respectively, and suppose that R has (among others)

the FDs A → B and B → A. Explain what such a pair of dependencies means (i.e., what

they imply about the relationship that the relation models).

Exercise 15.2 Consider a relation R with five attributes ABCDE. You are given the following

dependencies: A → B, BC → E, and ED → A.

1. List all keys for R.

2. Is R in 3NF?

3. Is R in BCNF?

Exercise 15.3 Consider the following collection of relations and dependencies. Assume that

each relation is obtained through decomposition from a relation with attributes ABCDEFGHI

and that all the known dependencies over relation ABCDEFGHI are listed for each question.

(The questions are independent of each other, obviously, since the given dependencies over

ABCDEFGHI are different.) For each (sub) relation: (a) State the strongest normal form

that the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF

relations.

1. R1(A,C,B,D,E), A → B, C → D

2. R2(A,B,F), AC → E, B → F

3. R3(A,D), D → G, G → H

4. R4(D,C,H,G), A → I, I → A

5. R5(A,I,C,E)

Exercise 15.4 Suppose that we have the following three tuples in a legal instance of a relation

schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and (5,3,3).

1. Which of the following dependencies can you infer does not hold over schema S?

(a) A → B (b) BC → A (c) B → C

2. Can you identify any dependencies that hold over S?

Exercise 15.5 Suppose you are given a relation R with four attributes, ABCD. For each of

the following sets of FDs, assuming those are the only dependencies that hold for R, do the

following: (a) Identify the candidate key(s) for R. (b) Identify the best normal form that R

satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF, decompose it into a set of

BCNF relations that preserve the dependencies.

1. C → D, C → A, B → C

Schema Refinement and Normal Forms 453

2. B → C, D → A

3. ABC → D, D → A

4. A → B, BC → D, A → C

5. AB → C, AB → D, C → A, D → B

Exercise 15.6 Consider the attribute set R = ABCDEGH and the FD set F = {AB → C,

AC → B, AD → E, B → D, BC → A, E → G}.

1. For each of the following attribute sets, do the following: (i) Compute the set of depen-

dencies that hold over the set and write down a minimal cover. (ii) Name the strongest

normal form that is not violated by the relation containing these attributes. (iii) De-

compose it into a collection of BCNF relations if it is not in BCNF.

(a) ABC (b) ABCD (c) ABCEG (d) DCEGH (e) ACEH

2. Which of the following decompositions of R = ABCDEG, with the same set of depen-

dencies F , is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE, EG }
(b) {ABC, ACDE, ADG }

Exercise 15.7 Let R be decomposed into R1, R2, . . ., Rn. Let F be a set of FDs on R.

1. Define what it means for F to be preserved in the set of decomposed relations.

2. Describe a polynomial-time algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes Y requires

that we consider the closure of the FDs. Give an example where considering the closure

is important in testing dependency-preservation; that is, considering just the given FDs

gives incorrect results.

Exercise 15.8 Consider a relation R that has three attributes ABC. It is decomposed into

relations R1 with attributes AB and R2 with attributes BC.

1. State the definition of a lossless-join decomposition with respect to this example. Answer

this question concisely by writing a relational algebra equation involving R, R1, and R2.

2. Suppose that B →→ C. Is the decomposition of R into R1 and R2 lossless-join? Reconcile

your answer with the observation that neither of the FDs R1∩R2 → R1 nor R1∩R2 → R2

hold, in light of the simple test offering a necessary and sufficient condition for lossless-

join decomposition into two relations in Section 15.6.1.

3. If you are given the following instances of R1 and R2, what can you say about the

instance of R from which these were obtained? Answer this question by listing tuples

that are definitely in R and listing tuples that are possibly in R.

Instance of R1 = {(5,1), (6,1)}
Instance of R2 = {(1,8), (1,9)}

Can you say that attribute B definitely is or is not a key for R?

454 Chapter 15

Exercise 15.9 Suppose you are given a relation R(A,B,C,D). For each of the following sets

of FDs, assuming they are the only dependencies that hold for R, do the following: (a) Identify

the candidate key(s) for R. (b) State whether or not the proposed decomposition of R into

smaller relations is a good decomposition, and briefly explain why or why not.

1. B → C, D → A; decompose into BC and AD.

2. AB → C, C → A, C → D; decompose into ACD and BC.

3. A → BC, C → AD; decompose into ABC and AD.

4. A → B, B → C, C → D; decompose into AB and ACD.

5. A → B, B → C, C → D; decompose into AB, AD and CD.

Exercise 15.10 Suppose that we have the following four tuples in a relation S with three

attributes ABC: (1,2,3), (4,2,3), (5,3,3), (5,3,4). Which of the following functional (→) and

multivalued (→→) dependencies can you infer does not hold over relation S?

1. A → B

2. A →→ B

3. BC → A

4. BC →→ A

5. B → C

6. B →→ C

Exercise 15.11 Consider a relation R with five attributes ABCDE.

1. For each of the following instances of R, state whether (a) it violates the FD BC → D,

and (b) it violates the MVD BC →→ D:

(a) { } (i.e., empty relation)

(b) {(a,2,3,4,5), (2,a,3,5,5)}
(c) {(a,2,3,4,5), (2,a,3,5,5), (a,2,3,4,6)}
(d) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5)}
(e) {(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)}
(f) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)}
(g) {(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)}

2. If each instance for R listed above is legal, what can you say about the FD A → B?

Exercise 15.12 JDs are motivated by the fact that sometimes a relation that cannot be

decomposed into two smaller relations in a lossless-join manner can be so decomposed into

three or more relations. An example is a relation with attributes supplier, part, and project,

denoted SPJ, with no FDs or MVDs. The JD ./ {SP, PJ, JS} holds.

From the JD, the set of relation schemes SP, PJ, and JS is a lossless-join decomposition of

SPJ. Construct an instance of SPJ to illustrate that no two of these schemes suffice.

Schema Refinement and Normal Forms 455

Exercise 15.13 Consider a relation R with attributes ABCDE. Let the following FDs be

given: A → BC, BC → E, and E → DA. Similarly, let S be a relation with attributes ABCDE

and let the following FDs be given: A → BC, B → E, and E → DA. (Only the second

dependency differs from those that hold over R.) You do not know whether or which other

(join) dependencies hold.

1. Is R in BCNF?

2. Is R in 4NF?

3. Is R in 5NF?

4. Is S in BCNF?

5. Is S in 4NF?

6. Is S in 5NF?

Exercise 15.14 Let us say that an FD X → Y is simple if Y is a single attribute.

1. Replace the FD AB → CD by the smallest equivalent collection of simple FDs.

2. Prove that every FD X → Y in a set of FDs F can be replaced by a set of simple FDs

such that F+ is equal to the closure of the new set of FDs.

Exercise 15.15 Prove that Armstrong’s Axioms are sound and complete for FD inference.

That is, show that repeated application of these axioms on a set F of FDs produces exactly

the dependencies in F+.

Exercise 15.16 Describe a linear-time (in the size of the set of FDs, where the size of each

FD is the number of attributes involved) algorithm for finding the attribute closure of a set

of attributes with respect to a set of FDs.

Exercise 15.17 Consider a scheme R with FDs F that is decomposed into schemes with

attributes X and Y. Show that this is dependency-preserving if F ⊆ (FX ∪ FY)+.

Exercise 15.18 Let R be a relation schema with a set F of FDs. Prove that the decom-

position of R into R1 and R2 is lossless-join if and only if F+ contains R1 ∩ R2 → R1 or

R1 ∩ R2 → R2.

Exercise 15.19 Prove that the optimization of the algorithm for lossless-join, dependency-

preserving decomposition into 3NF relations (Section 15.7.2) is correct.

Exercise 15.20 Prove that the 3NF synthesis algorithm produces a lossless-join decomposi-

tion of the relation containing all the original attributes.

Exercise 15.21 Prove that an MVD X →→ Y over a relation R can be expressed as the

join dependency ./ {XY, X(R − Y)}.
Exercise 15.22 Prove that if R has only one key, it is in BCNF if and only if it is in 3NF.

Exercise 15.23 Prove that if R is in 3NF and every key is simple, then R is in BCNF.

Exercise 15.24 Prove these statements:

1. If a relation scheme is in BCNF and at least one of its keys consists of a single attribute,

it is also in 4NF.

2. If a relation scheme is in 3NF and each key has a single attribute, it is also in 5NF.

Exercise 15.25 Give an algorithm for testing whether a relation scheme is in BCNF. The

algorithm should be polynomial in the size of the set of given FDs. (The size is the sum over

all FDs of the number of attributes that appear in the FD.) Is there a polynomial algorithm

for testing whether a relation scheme is in 3NF?

456 Chapter 15

PROJECT-BASED EXERCISES

Exercise 15.26 Minibase provides a tool called Designview for doing database design us-

ing FDs. It lets you check whether a relation is in a particular normal form, test whether

decompositions have nice properties, compute attribute closures, try several decomposition

sequences and switch between them, generate SQL statements to create the final database

schema, and so on.

1. Use Designview to check your answers to exercises that call for computing closures,

testing normal forms, decomposing into a desired normal form, and so on.

2. (Note to instructors: This exercise should be made more specific by providing additional

details. See Appendix B.) Apply Designview to a large, real-world design problem.

BIBLIOGRAPHIC NOTES

Textbook presentations of dependency theory and its use in database design include [3, 38,

436, 443, 656]. Good survey articles on the topic include [663, 355].

FDs were introduced in [156], along with the concept of 3NF, and axioms for inferring FDs

were presented in [31]. BCNF was introduced in [157]. The concept of a legal relation instance

and dependency satisfaction are studied formally in [279]. FDs were generalized to semantic

data models in [674].

Finding a key is shown to be NP-complete in [432]. Lossless-join decompositions were studied

in [24, 437, 546]. Dependency-preserving decompositions were studied in [61]. [68] introduced

minimal covers. Decomposition into 3NF is studied by [68, 85] and decomposition into BCNF

is addressed in [651]. [351] shows that testing whether a relation is in 3NF is NP-complete.

[215] introduced 4NF and discussed decomposition into 4NF. Fagin introduced other normal

forms in [216] (project-join normal form) and [217] (domain-key normal form). In contrast to

the extensive study of vertical decompositions, there has been relatively little formal investi-

gation of horizontal decompositions. [175] investigates horizontal decompositions.

MVDs were discovered independently by Delobel [177], Fagin [215], and Zaniolo [690]. Axioms

for FDs and MVDs were presented in [60]. [516] shows that there is no axiomatization for

JDs, although [575] provides an axiomatization for a more general class of dependencies. The

sufficient conditions for 4NF and 5NF in terms of FDs that were discussed in Section 15.8 are

from [171]. An approach to database design that uses dependency information to construct

sample relation instances is described in [442, 443].

16 PHYSICAL DATABASE DESIGN
AND TUNING

Advice to a client who complained about rain leaking through the roof onto the

dining table: “Move the table.”

—Architect Frank Lloyd Wright

The performance of a DBMS on commonly asked queries and typical update operations
is the ultimate measure of a database design. A DBA can improve performance by
adjusting some DBMS parameters (e.g., the size of the buffer pool or the frequency
of checkpointing) and by identifying performance bottlenecks and adding hardware to
eliminate such bottlenecks. The first step in achieving good performance, however, is
to make good database design choices, which is the focus of this chapter.

After we have designed the conceptual and external schemas, that is, created a collec-
tion of relations and views along with a set of integrity constraints, we must address
performance goals through physical database design, in which we design the phys-
ical schema. As user requirements evolve, it is usually necessary to tune, or adjust,
all aspects of a database design for good performance.

This chapter is organized as follows. We give an overview of physical database design
and tuning in Section 16.1. The most important physical design decisions concern the
choice of indexes. We present guidelines for deciding which indexes to create in Section
16.2. These guidelines are illustrated through several examples and developed further
in Sections 16.3 through 16.6. In Section 16.3 we present examples that highlight basic
alternatives in index selection. In Section 16.4 we look closely at the important issue
of clustering; we discuss how to choose clustered indexes and whether to store tuples
from different relations near each other (an option supported by some DBMSs). In
Section 16.5 we consider the use of indexes with composite or multiple-attribute search
keys. In Section 16.6 we emphasize how well-chosen indexes can enable some queries
to be answered without ever looking at the actual data records.

In Section 16.7 we survey the main issues of database tuning. In addition to tuning
indexes, we may have to tune the conceptual schema, as well as frequently used query
and view definitions. We discuss how to refine the conceptual schema in Section 16.8
and how to refine queries and view definitions in Section 16.9. We briefly discuss the
performance impact of concurrent access in Section 16.10. We conclude the chap-

457

458 Chapter 16

Physical design tools: RDBMSs have hitherto provided few tools to assist
with physical database design and tuning, but vendors have started to address
this issue. Microsoft SQL Server has a tuning wizard that makes suggestions on
indexes to create; it also suggests dropping an index when the addition of other
indexes makes the maintenance cost of the index outweigh its benefits on queries.
IBM DB2 V6 also has a tuning wizard and Oracle Expert makes recommendations
on global parameters, suggests adding/deleting indexes etc.

ter with a short discussion of DBMS benchmarks in Section 16.11; benchmarks help
evaluate the performance of alternative DBMS products.

16.1 INTRODUCTION TO PHYSICAL DATABASE DESIGN

Like all other aspects of database design, physical design must be guided by the nature
of the data and its intended use. In particular, it is important to understand the typical
workload that the database must support; the workload consists of a mix of queries
and updates. Users also have certain requirements about how fast certain queries
or updates must run or how many transactions must be processed per second. The
workload description and users’ performance requirements are the basis on which a
number of decisions have to be made during physical database design.

To create a good physical database design and to tune the system for performance in
response to evolving user requirements, the designer needs to understand the workings
of a DBMS, especially the indexing and query processing techniques supported by the
DBMS. If the database is expected to be accessed concurrently by many users, or is
a distributed database, the task becomes more complicated, and other features of a
DBMS come into play. We discuss the impact of concurrency on database design in
Section 16.10. We discuss distributed databases in Chapter 21.

16.1.1 Database Workloads

The key to good physical design is arriving at an accurate description of the expected
workload. A workload description includes the following elements:

1. A list of queries and their frequencies, as a fraction of all queries and updates.

2. A list of updates and their frequencies.

3. Performance goals for each type of query and update.

For each query in the workload, we must identify:

Physical Database Design and Tuning 459

Which relations are accessed.

Which attributes are retained (in the SELECT clause).

Which attributes have selection or join conditions expressed on them (in the WHERE
clause) and how selective these conditions are likely to be.

Similarly, for each update in the workload, we must identify:

Which attributes have selection or join conditions expressed on them (in the WHERE
clause) and how selective these conditions are likely to be.

The type of update (INSERT, DELETE, or UPDATE) and the updated relation.

For UPDATE commands, the fields that are modified by the update.

Remember that queries and updates typically have parameters, for example, a debit or
credit operation involves a particular account number. The values of these parameters
determine selectivity of selection and join conditions.

Updates have a query component that is used to find the target tuples. This component
can benefit from a good physical design and the presence of indexes. On the other hand,
updates typically require additional work to maintain indexes on the attributes that
they modify. Thus, while queries can only benefit from the presence of an index, an
index may either speed up or slow down a given update. Designers should keep this
trade-off in mind when creating indexes.

16.1.2 Physical Design and Tuning Decisions

Important decisions made during physical database design and database tuning include
the following:

1. Which indexes to create.

Which relations to index and which field or combination of fields to choose
as index search keys.

For each index, should it be clustered or unclustered? Should it be dense or
sparse?

2. Whether we should make changes to the conceptual schema in order to enhance
performance. For example, we have to consider:

Alternative normalized schemas: We usually have more than one way to
decompose a schema into a desired normal form (BCNF or 3NF). A choice
can be made on the basis of performance criteria.

460 Chapter 16

Denormalization: We might want to reconsider schema decompositions car-
ried out for normalization during the conceptual schema design process to
improve the performance of queries that involve attributes from several pre-
viously decomposed relations.

Vertical partitioning: Under certain circumstances we might want to further
decompose relations to improve the performance of queries that involve only
a few attributes.

Views: We might want to add some views to mask the changes in the con-
ceptual schema from users.

3. Whether frequently executed queries and transactions should be rewritten to run
faster.

In parallel or distributed databases, which we discuss in Chapter 21, there are addi-
tional choices to consider, such as whether to partition a relation across different sites
or whether to store copies of a relation at multiple sites.

16.1.3 Need for Database Tuning

Accurate, detailed workload information may be hard to come by while doing the initial
design of the system. Consequently, tuning a database after it has been designed and
deployed is important—we must refine the initial design in the light of actual usage
patterns to obtain the best possible performance.

The distinction between database design and database tuning is somewhat arbitrary.
We could consider the design process to be over once an initial conceptual schema
is designed and a set of indexing and clustering decisions is made. Any subsequent
changes to the conceptual schema or the indexes, say, would then be regarded as a
tuning activity. Alternatively, we could consider some refinement of the conceptual
schema (and physical design decisions affected by this refinement) to be part of the
physical design process.

Where we draw the line between design and tuning is not very important, and we
will simply discuss the issues of index selection and database tuning without regard to
when the tuning activities are carried out.

16.2 GUIDELINES FOR INDEX SELECTION

In considering which indexes to create, we begin with the list of queries (including
queries that appear as part of update operations). Obviously, only relations accessed
by some query need to be considered as candidates for indexing, and the choice of
attributes to index on is guided by the conditions that appear in the WHERE clauses of

Physical Database Design and Tuning 461

the queries in the workload. The presence of suitable indexes can significantly improve
the evaluation plan for a query, as we saw in Chapter 13.

One approach to index selection is to consider the most important queries in turn, and
for each to determine which plan the optimizer would choose given the indexes that
are currently on our list of (to be created) indexes. Then we consider whether we can
arrive at a substantially better plan by adding more indexes; if so, these additional
indexes are candidates for inclusion in our list of indexes. In general, range retrievals
will benefit from a B+ tree index, and exact-match retrievals will benefit from a hash
index. Clustering will benefit range queries, and it will benefit exact-match queries if
several data entries contain the same key value.

Before adding an index to the list, however, we must consider the impact of having
this index on the updates in our workload. As we noted earlier, although an index can
speed up the query component of an update, all indexes on an updated attribute—on
any attribute, in the case of inserts and deletes—must be updated whenever the value
of the attribute is changed. Therefore, we must sometimes consider the trade-off of
slowing some update operations in the workload in order to speed up some queries.

Clearly, choosing a good set of indexes for a given workload requires an understanding
of the available indexing techniques, and of the workings of the query optimizer. The
following guidelines for index selection summarize our discussion:

Guideline 1 (whether to index): The obvious points are often the most important.
Don’t build an index unless some query—including the query components of updates—
will benefit from it. Whenever possible, choose indexes that speed up more than one
query.

Guideline 2 (choice of search key): Attributes mentioned in a WHERE clause are
candidates for indexing.

An exact-match selection condition suggests that we should consider an index on
the selected attributes, ideally, a hash index.

A range selection condition suggests that we should consider a B+ tree (or ISAM)
index on the selected attributes. A B+ tree index is usually preferable to an ISAM
index. An ISAM index may be worth considering if the relation is infrequently
updated, but we will assume that a B+ tree index is always chosen over an ISAM
index, for simplicity.

Guideline 3 (multiple-attribute search keys): Indexes with multiple-attribute
search keys should be considered in the following two situations:

A WHERE clause includes conditions on more than one attribute of a relation.

462 Chapter 16

They enable index-only evaluation strategies (i.e., accessing the relation can be
avoided) for important queries. (This situation could lead to attributes being in
the search key even if they do not appear in WHERE clauses.)

When creating indexes on search keys with multiple attributes, if range queries are
expected, be careful to order the attributes in the search key to match the queries.

Guideline 4 (whether to cluster): At most one index on a given relation can be
clustered, and clustering affects performance greatly; so the choice of clustered index
is important.

As a rule of thumb, range queries are likely to benefit the most from clustering. If
several range queries are posed on a relation, involving different sets of attributes,
consider the selectivity of the queries and their relative frequency in the workload
when deciding which index should be clustered.

If an index enables an index-only evaluation strategy for the query it is intended
to speed up, the index need not be clustered. (Clustering matters only when the
index is used to retrieve tuples from the underlying relation.)

Guideline 5 (hash versus tree index): A B+ tree index is usually preferable
because it supports range queries as well as equality queries. A hash index is better in
the following situations:

The index is intended to support index nested loops join; the indexed relation
is the inner relation, and the search key includes the join columns. In this case,
the slight improvement of a hash index over a B+ tree for equality selections is
magnified, because an equality selection is generated for each tuple in the outer
relation.

There is a very important equality query, and there are no range queries, involving
the search key attributes.

Guideline 6 (balancing the cost of index maintenance): After drawing up a
‘wishlist’ of indexes to create, consider the impact of each index on the updates in the
workload.

If maintaining an index slows down frequent update operations, consider dropping
the index.

Keep in mind, however, that adding an index may well speed up a given update
operation. For example, an index on employee ids could speed up the operation
of increasing the salary of a given employee (specified by id).

Physical Database Design and Tuning 463

16.3 BASIC EXAMPLES OF INDEX SELECTION

The following examples illustrate how to choose indexes during database design. The
schemas used in the examples are not described in detail; in general they contain the
attributes named in the queries. Additional information is presented when necessary.

Let us begin with a simple query:

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

The relations mentioned in the query are Employees and Departments, and both con-
ditions in the WHERE clause involve equalities. Our guidelines suggest that we should
build hash indexes on the attributes involved. It seems clear that we should build
a hash index on the dname attribute of Departments. But consider the equality
E.dno=D.dno. Should we build an index (hash, of course) on the dno attribute of
Departments or of Employees (or both)? Intuitively, we want to retrieve Departments
tuples using the index on dname because few tuples are likely to satisfy the equal-
ity selection D.dname=‘Toy’.1 For each qualifying Departments tuple, we then find
matching Employees tuples by using an index on the dno attribute of Employees. Thus,
we should build an index on the dno field of Employees. (Note that nothing is gained
by building an additional index on the dno field of Departments because Departments
tuples are retrieved using the dname index.)

Our choice of indexes was guided by a query evaluation plan that we wanted to utilize.
This consideration of a potential evaluation plan is common while making physical
design decisions. Understanding query optimization is very useful for physical design.
We show the desired plan for this query in Figure 16.1.

As a variant of this query, suppose that the WHERE clause is modified to be WHERE
D.dname=‘Toy’ AND E.dno=D.dno AND E.age=25. Let us consider alternative evalu-
ation plans. One good plan is to retrieve Departments tuples that satisfy the selection
on dname and to retrieve matching Employees tuples by using an index on the dno
field; the selection on age is then applied on-the-fly. However, unlike the previous vari-
ant of this query, we do not really need to have an index on the dno field of Employees
if we have an index on age. In this case we can retrieve Departments tuples that satisfy
the selection on dname (by using the index on dname, as before), retrieve Employees
tuples that satisfy the selection on age by using the index on age, and join these sets
of tuples. Since the sets of tuples we join are small, they fit in memory and the join
method is not important. This plan is likely to be somewhat poorer than using an

1This is only a heuristic. If dname is not the key, and we do not have statistics to verify this claim,
it is possible that several tuples satisfy this condition!

464 Chapter 16

dname=’Toy’ Employee

Department

ename

dno=dno
Index Nested Loops

Figure 16.1 A Desirable Query Evaluation Plan

index on dno, but it is a reasonable alternative. Therefore, if we have an index on age
already (prompted by some other query in the workload), this variant of the sample
query does not justify creating an index on the dno field of Employees.

Our next query involves a range selection:

SELECT E.ename, D.dname
FROM Employees E, Departments D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

This query illustrates the use of the BETWEEN operator for expressing range selections.
It is equivalent to the condition:

10000 ≤ E.sal AND E.sal ≤ 20000

The use of BETWEEN to express range conditions is recommended; it makes it easier for
both the user and the optimizer to recognize both parts of the range selection.

Returning to the example query, both (nonjoin) selections are on the Employees rela-
tion. Therefore, it is clear that a plan in which Employees is the outer relation and
Departments is the inner relation is the best, as in the previous query, and we should
build a hash index on the dno attribute of Departments. But which index should we
build on Employees? A B+ tree index on the sal attribute would help with the range
selection, especially if it is clustered. A hash index on the hobby attribute would help
with the equality selection. If one of these indexes is available, we could retrieve Em-
ployees tuples using this index, retrieve matching Departments tuples using the index
on dno, and apply all remaining selections and projections on-the-fly. If both indexes
are available, the optimizer would choose the more selective access path for the given
query; that is, it would consider which selection (the range condition on salary or the
equality on hobby) has fewer qualifying tuples. In general, which access path is more

Physical Database Design and Tuning 465

selective depends on the data. If there are very few people with salaries in the given
range and many people collect stamps, the B+ tree index is best. Otherwise, the hash
index on hobby is best.

If the query constants are known (as in our example), the selectivities can be estimated
if statistics on the data are available. Otherwise, as a rule of thumb, an equality
selection is likely to be more selective, and a reasonable decision would be to create
a hash index on hobby. Sometimes, the query constants are not known—we might
obtain a query by expanding a query on a view at run-time, or we might have a query
in dynamic SQL, which allows constants to be specified as wild-card variables (e.g.,
%X) and instantiated at run-time (see Sections 5.9 and 5.10). In this case, if the query
is very important, we might choose to create a B+ tree index on sal and a hash index
on hobby and leave the choice to be made by the optimizer at run-time.

16.4 CLUSTERING AND INDEXING *

Range queries are good candidates for improvement with a clustered index:

SELECT E.dno
FROM Employees E
WHERE E.age > 40

If we have a B+ tree index on age, we can use it to retrieve only tuples that satisfy
the selection E.age> 40. Whether such an index is worthwhile depends first of all
on the selectivity of the condition. What fraction of the employees are older than
40? If virtually everyone is older than 40, we don’t gain much by using an index
on age; a sequential scan of the relation would do almost as well. However, suppose
that only 10 percent of the employees are older than 40. Now, is an index useful? The
answer depends on whether the index is clustered. If the index is unclustered, we could
have one page I/O per qualifying employee, and this could be more expensive than a
sequential scan even if only 10 percent of the employees qualify! On the other hand,
a clustered B+ tree index on age requires only 10 percent of the I/Os for a sequential
scan (ignoring the few I/Os needed to traverse from the root to the first retrieved leaf
page and the I/Os for the relevant index leaf pages).

As another example, consider the following refinement of the previous query:

SELECT E.dno, COUNT(*)
FROM Employees E
WHERE E.age > 10
GROUP BY E.dno

If a B+ tree index is available on age, we could retrieve tuples using it, sort the
retrieved tuples on dno, and so answer the query. However, this may not be a good

466 Chapter 16

plan if virtually all employees are more than 10 years old. This plan is especially bad
if the index is not clustered.

Let us consider whether an index on dno might suit our purposes better. We could use
the index to retrieve all tuples, grouped by dno, and for each dno count the number of
tuples with age > 10. (This strategy can be used with both hash and B+ tree indexes;
we only require the tuples to be grouped, not necessarily sorted, by dno.) Again, the
efficiency depends crucially on whether the index is clustered. If it is, this plan is
likely to be the best if the condition on age is not very selective. (Even if we have
a clustered index on age, if the condition on age is not selective, the cost of sorting
qualifying tuples on dno is likely to be high.) If the index is not clustered, we could
perform one page I/O per tuple in Employees, and this plan would be terrible. Indeed,
if the index is not clustered, the optimizer will choose the straightforward plan based
on sorting on dno. Thus, this query suggests that we build a clustered index on dno if
the condition on age is not very selective. If the condition is very selective, we should
consider building an index (not necessarily clustered) on age instead.

Clustering is also important for an index on a search key that does not include a
candidate key, that is, an index in which several data entries can have the same key
value. To illustrate this point, we present the following query:

SELECT E.dno
FROM Employees E
WHERE E.hobby=‘Stamps’

If many people collect stamps, retrieving tuples through an unclustered index on hobby
can be very inefficient. It may be cheaper to simply scan the relation to retrieve all
tuples and to apply the selection on-the-fly to the retrieved tuples. Therefore, if such
a query is important, we should consider making the index on hobby a clustered index.
On the other hand, if we assume that eid is a key for Employees, and replace the
condition E.hobby=‘Stamps’ by E.eid=552, we know that at most one Employees tuple
will satisfy this selection condition. In this case, there is no advantage to making the
index clustered.

Clustered indexes can be especially important while accessing the inner relation in an
index nested loops join. To understand the relationship between clustered indexes and
joins, let us revisit our first example.

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

We concluded that a good evaluation plan is to use an index on dname to retrieve
Departments tuples satisfying the condition on dname and to find matching Employees

Physical Database Design and Tuning 467

tuples using an index on dno. Should these indexes be clustered? Given our assumption
that the number of tuples satisfying D.dname=‘Toy’ is likely to be small, we should
build an unclustered index on dname. On the other hand, Employees is the inner
relation in an index nested loops join, and dno is not a candidate key. This situation
is a strong argument that the index on the dno field of Employees should be clustered.
In fact, because the join consists of repeatedly posing equality selections on the dno
field of the inner relation, this type of query is a stronger justification for making the
index on dno be clustered than a simple selection query such as the previous selection
on hobby. (Of course, factors such as selectivities and frequency of queries have to be
taken into account as well.)

The following example, very similar to the previous one, illustrates how clustered
indexes can be used for sort-merge joins.

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE E.hobby=‘Stamps’ AND E.dno=D.dno

This query differs from the previous query in that the condition E.hobby=‘Stamps’
replaces D.dname=‘Toy’. Based on the assumption that there are few employees in
the Toy department, we chose indexes that would facilitate an indexed nested loops
join with Departments as the outer relation. Now let us suppose that many employees
collect stamps. In this case, a block nested loops or sort-merge join might be more
efficient. A sort-merge join can take advantage of a clustered B+ tree index on the dno
attribute in Departments to retrieve tuples and thereby avoid sorting Departments.
Note that an unclustered index is not useful—since all tuples are retrieved, performing
one I/O per tuple is likely to be prohibitively expensive. If there is no index on the
dno field of Employees, we could retrieve Employees tuples (possibly using an index
on hobby, especially if the index is clustered), apply the selection E.hobby=‘Stamps’
on-the-fly, and sort the qualifying tuples on dno.

As our discussion has indicated, when we retrieve tuples using an index, the impact
of clustering depends on the number of retrieved tuples, that is, the number of tuples
that satisfy the selection conditions that match the index. An unclustered index is
just as good as a clustered index for a selection that retrieves a single tuple (e.g., an
equality selection on a candidate key). As the number of retrieved tuples increases,
the unclustered index quickly becomes more expensive than even a sequential scan
of the entire relation. Although the sequential scan retrieves all tuples, it has the
property that each page is retrieved exactly once, whereas a page may be retrieved as
often as the number of tuples it contains if an unclustered index is used. If blocked
I/O is performed (as is common), the relative advantage of sequential scan versus
an unclustered index increases further. (Blocked I/O also speeds up access using a
clustered index, of course.)

468 Chapter 16

We illustrate the relationship between the number of retrieved tuples, viewed as a
percentage of the total number of tuples in the relation, and the cost of various access
methods in Figure 16.2. We assume that the query is a selection on a single relation, for
simplicity. (Note that this figure reflects the cost of writing out the result; otherwise,
the line for sequential scan would be flat.)

unclustered index is
better than sequential
scan of entire relation

Range in which

Percentage of tuples retrieved

Cost

0 100

Unclustered index

Sequential scan

Clustered index

Figure 16.2 The Impact of Clustering

16.4.1 Co-clustering Two Relations

In our description of a typical database system architecture in Chapter 7, we explained
how a relation is stored as a file of records. Although a file usually contains only the
records of some one relation, some systems allow records from more than one relation
to be stored in a single file. The database user can request that the records from
two relations be interleaved physically in this manner. This data layout is sometimes
referred to as co-clustering the two relations. We now discuss when co-clustering can
be beneficial.

As an example, consider two relations with the following schemas:

Parts(pid: integer, pname: string, cost: integer, supplierid: integer)
Assembly(partid: integer, componentid: integer, quantity: integer)

In this schema the componentid field of Assembly is intended to be the pid of some part
that is used as a component in assembling the part with pid equal to partid. Thus,
the Assembly table represents a 1:N relationship between parts and their subparts; a
part can have many subparts, but each part is the subpart of at most one part. In
the Parts table pid is the key. For composite parts (those assembled from other parts,
as indicated by the contents of Assembly), the cost field is taken to be the cost of
assembling the part from its subparts.

Physical Database Design and Tuning 469

Suppose that a frequent query is to find the (immediate) subparts of all parts that are
supplied by a given supplier:

SELECT P.pid, A.componentid
FROM Parts P, Assembly A
WHERE P.pid = A.partid AND P.supplierid = ‘Acme’

A good evaluation plan is to apply the selection condition on Parts and to then retrieve
matching Assembly tuples through an index on the partid field. Ideally, the index on
partid should be clustered. This plan is reasonably good. However, if such selections
are common and we want to optimize them further, we can co-cluster the two tables.
In this approach we store records of the two tables together, with each Parts record
P followed by all the Assembly records A such that P.pid = A.partid. This approach
improves on storing the two relations separately and having a clustered index on partid
because it doesn’t need an index lookup to find the Assembly records that match a
given Parts record. Thus, for each selection query, we save a few (typically two or
three) index page I/Os.

If we are interested in finding the immediate subparts of all parts (i.e., the above query
without the selection on supplierid), creating a clustered index on partid and doing an
index nested loops join with Assembly as the inner relation offers good performance.
An even better strategy is to create a clustered index on the partid field of Assembly
and the pid field of Parts, and to then do a sort-merge join, using the indexes to
retrieve tuples in sorted order. This strategy is comparable to doing the join using a
co-clustered organization, which involves just one scan of the set of tuples (of Parts
and Assembly, which are stored together in interleaved fashion).

The real benefit of co-clustering is illustrated by the following query:

SELECT P.pid, A.componentid
FROM Parts P, Assembly A
WHERE P.pid = A.partid AND P.cost=10

Suppose that many parts have cost = 10. This query essentially amounts to a collection
of queries in which we are given a Parts record and want to find matching Assembly
records. If we have an index on the cost field of Parts, we can retrieve qualifying Parts
tuples. For each such tuple we have to use the index on Assembly to locate records
with the given pid. The index access for Assembly is avoided if we have a co-clustered
organization. (Of course, we still require an index on the cost attribute of Parts tuples.)

Such an optimization is especially important if we want to traverse several levels of
the part-subpart hierarchy. For example, a common query is to find the total cost
of a part, which requires us to repeatedly carry out joins of Parts and Assembly.
Incidentally, if we don’t know the number of levels in the hierarchy in advance, the

470 Chapter 16

number of joins varies and the query cannot be expressed in SQL. The query can
be answered by embedding an SQL statement for the join inside an iterative host
language program. How to express the query is orthogonal to our main point here,
which is that co-clustering is especially beneficial when the join in question is carried
out very frequently (either because it arises repeatedly in an important query such as
finding total cost, or because the join query is itself asked very frequently).

To summarize co-clustering:

It can speed up joins, in particular key–foreign key joins corresponding to 1:N
relationships.

A sequential scan of either relation becomes slower. (In our example, since several
Assembly tuples are stored in between consecutive Parts tuples, a scan of all
Parts tuples becomes slower than if Parts tuples were stored separately. Similarly,
a sequential scan of all Assembly tuples is also slower.)

Inserts, deletes, and updates that alter record lengths all become slower, thanks
to the overheads involved in maintaining the clustering. (We will not discuss the
implementation issues involved in co-clustering.)

16.5 INDEXES ON MULTIPLE-ATTRIBUTE SEARCH KEYS *

It is sometimes best to build an index on a search key that contains more than one field.
For example, if we want to retrieve Employees records with age=30 and sal=4000, an
index with search key 〈age, sal〉 (or 〈sal, age〉) is superior to an index with search key
age or an index with search key sal. If we have two indexes, one on age and one on
sal, we could use them both to answer the query by retrieving and intersecting rids.
However, if we are considering what indexes to create for the sake of this query, we are
better off building one composite index.

Issues such as whether to make the index clustered or unclustered, dense or sparse, and
so on are orthogonal to the choice of the search key. We will call indexes on multiple-
attribute search keys composite indexes. In addition to supporting equality queries on
more than one attribute, composite indexes can be used to support multidimensional
range queries.

Consider the following query, which returns all employees with 20 < age < 30 and
3000 < sal < 5000:

SELECT E.eid
FROM Employees E
WHERE E.age BETWEEN 20 AND 30

AND E.sal BETWEEN 3000 AND 5000

Physical Database Design and Tuning 471

A composite index on 〈age, sal〉 could help if the conditions in the WHERE clause are
fairly selective. Obviously, a hash index will not help; a B+ tree (or ISAM) index is
required. It is also clear that a clustered index is likely to be superior to an unclustered
index. For this query, in which the conditions on age and sal are equally selective, a
composite, clustered B+ tree index on 〈age, sal〉 is as effective as a composite, clustered
B+ tree index on 〈sal, age〉. However, the order of search key attributes can sometimes
make a big difference, as the next query illustrates:

SELECT E.eid
FROM Employees E
WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

In this query a composite, clustered B+ tree index on 〈age, sal〉 will give good per-
formance because records are sorted by age first and then (if two records have the
same age value) by sal. Thus, all records with age = 25 are clustered together. On
the other hand, a composite, clustered B+ tree index on 〈sal, age〉 will not perform as
well. In this case, records are sorted by sal first, and therefore two records with the
same age value (in particular, with age = 25) may be quite far apart. In effect, this
index allows us to use the range selection on sal, but not the equality selection on age,
to retrieve tuples. (Good performance on both variants of the query can be achieved
using a single spatial index. We discuss spatial indexes in Chapter 26.)

Some points about composite indexes are worth mentioning. Since data entries in the
index contain more information about the data record (i.e., more fields than a single-
attribute index), the opportunities for index-only evaluation strategies are increased
(see Section 16.6). On the negative side, a composite index must be updated in response
to any operation (insert, delete, or update) that modifies any field in the search key. A
composite index is likely to be larger than a single-attribute search key index because
the size of entries is larger. For a composite B+ tree index, this also means a potential
increase in the number of levels, although key compression can be used to alleviate
this problem (see Section 9.8.1).

16.6 INDEXES THAT ENABLE INDEX-ONLY PLANS *

This section considers a number of queries for which we can find efficient plans that
avoid retrieving tuples from one of the referenced relations; instead, these plans scan
an associated index (which is likely to be much smaller). An index that is used (only)
for index-only scans does not have to be clustered because tuples from the indexed
relation are not retrieved! However, only dense indexes can be used for the index-only
strategies discussed here.

This query retrieves the managers of departments with at least one employee:

472 Chapter 16

SELECT D.mgr
FROM Departments D, Employees E
WHERE D.dno=E.dno

Observe that no attributes of Employees are retained. If we have a dense index on the
dno field of Employees, the optimization of doing an index nested loops join using an
index-only scan for the inner relation is applicable; this optimization is discussed in
Section 14.7. Note that it does not matter whether this index is clustered because we
do not retrieve Employees tuples anyway. Given this variant of the query, the correct
decision is to build an unclustered, dense index on the dno field of Employees, rather
than a (dense or sparse) clustered index.

The next query takes this idea a step further:

SELECT D.mgr, E.eid
FROM Departments D, Employees E
WHERE D.dno=E.dno

If we have an index on the dno field of Employees, we can use it to retrieve Employees
tuples during the join (with Departments as the outer relation), but unless the index
is clustered, this approach will not be efficient. On the other hand, suppose that we
have a dense B+ tree index on 〈dno, eid〉. Now all the information we need about an
Employees tuple is contained in the data entry for this tuple in the index. We can use
the index to find the first data entry with a given dno; all data entries with the same
dno are stored together in the index. (Note that a hash index on the composite key
〈dno, eid〉 cannot be used to locate an entry with just a given dno!) We can therefore
evaluate this query using an index nested loops join with Departments as the outer
relation and an index-only scan of the inner relation.

The next query shows how aggregate operations can influence the choice of indexes:

SELECT E.dno, COUNT(*)
FROM Employees E
GROUP BY E.dno

A straightforward plan for this query is to sort Employees on dno in order to compute
the count of employees for each dno. However, if a dense index—hash or B+ tree—is
available, we can answer this query by scanning only the index. For each dno value,
we simply count the number of data entries in the index with this value for the search
key. Note that it does not matter whether the index is clustered because we never
retrieve tuples of Employees.

Here is a variation of the previous example:

SELECT E.dno, COUNT(*)

Physical Database Design and Tuning 473

FROM Employees E
WHERE E.sal=10,000
GROUP BY E.dno

An index on dno alone will not allow us to evaluate this query with an index-only scan,
because we need to look at the sal field of each tuple to verify that sal = 10, 000.

However, we can use an index-only plan if we have a composite B+ tree index on
〈sal, dno〉 or 〈dno, sal〉. In an index with key 〈sal, dno〉, all data entries with sal =
10, 000 are arranged contiguously (whether or not the index is clustered). Further,
these entries are sorted by dno, making it easy to obtain a count for each dno group.
Note that we need to retrieve only data entries with sal = 10, 000. It is worth observing
that this strategy will not work if the WHERE clause is modified to use sal > 10, 000.
Although it suffices to retrieve only index data entries—that is, an index-only strategy
still applies—these entries must now be sorted by dno to identify the groups (because,
for example, two entries with the same dno but different sal values may not be con-
tiguous).

In an index with key 〈dno, sal〉, data entries with a given dno value are stored together,
and each such group of entries is itself sorted by sal. For each dno group, we can
eliminate the entries with sal not equal to 10,000 and count the rest. We observe that
this strategy works even if the WHERE clause uses sal > 10, 000. Of course, this method
is less efficient than an index-only scan with key 〈sal, dno〉 because we must read all
data entries.

As another example, suppose that we want to find the minimum sal for each dno:

SELECT E.dno, MIN(E.sal)
FROM Employees E
GROUP BY E.dno

An index on dno alone will not allow us to evaluate this query with an index-only
scan. However, we can use an index-only plan if we have a composite B+ tree index on
〈dno, sal〉. Notice that all data entries in the index with a given dno value are stored
together (whether or not the index is clustered). Further, this group of entries is itself
sorted by sal. An index on 〈sal, dno〉 would enable us to avoid retrieving data records,
but the index data entries must be sorted on dno.

Finally consider the following query:

SELECT AVG (E.sal)
FROM Employees E
WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

474 Chapter 16

A dense, composite B+ tree index on 〈age, sal〉 allows us to answer the query with an
index-only scan. A dense, composite B+ tree index on 〈sal, age〉 will also allow us to
answer the query with an index-only scan, although more index entries are retrieved
in this case than with an index on 〈age, sal〉.

16.7 OVERVIEW OF DATABASE TUNING

After the initial phase of database design, actual use of the database provides a valuable
source of detailed information that can be used to refine the initial design. Many of
the original assumptions about the expected workload can be replaced by observed
usage patterns; in general, some of the initial workload specification will be validated,
and some of it will turn out to be wrong. Initial guesses about the size of data can
be replaced with actual statistics from the system catalogs (although this information
will keep changing as the system evolves). Careful monitoring of queries can reveal
unexpected problems; for example, the optimizer may not be using some indexes as
intended to produce good plans.

Continued database tuning is important to get the best possible performance. In this
section, we introduce three kinds of tuning: tuning indexes, tuning the conceptual
schema, and tuning queries. Our discussion of index selection also applies to index
tuning decisions. Conceptual schema and query tuning are discussed further in Sections
16.8 and 16.9.

16.7.1 Tuning Indexes

The initial choice of indexes may be refined for one of several reasons. The simplest
reason is that the observed workload reveals that some queries and updates considered
important in the initial workload specification are not very frequent. The observed
workload may also identify some new queries and updates that are important. The
initial choice of indexes has to be reviewed in light of this new information. Some of
the original indexes may be dropped and new ones added. The reasoning involved is
similar to that used in the initial design.

It may also be discovered that the optimizer in a given system is not finding some of
the plans that it was expected to. For example, consider the following query, which
we discussed earlier:

SELECT D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

A good plan here would be to use an index on dname to retrieve Departments tuples
with dname=‘Toy’ and to use a dense index on the dno field of Employees as the inner

Physical Database Design and Tuning 475

relation, using an index-only scan. Anticipating that the optimizer would find such a
plan, we might have created a dense, unclustered index on the dno field of Employees.

Now suppose that queries of this form take an unexpectedly long time to execute. We
can ask to see the plan produced by the optimizer. (Most commercial systems provide a
simple command to do this.) If the plan indicates that an index-only scan is not being
used, but that Employees tuples are being retrieved, we have to rethink our initial
choice of index, given this revelation about our system’s (unfortunate) limitations. An
alternative to consider here would be to drop the unclustered index on the dno field of
Employees and to replace it with a clustered index.

Some other common limitations of optimizers are that they do not handle selections
involving string expressions, arithmetic, or null values effectively. We discuss these
points further when we consider query tuning in Section 16.9.

In addition to re-examining our choice of indexes, it pays to periodically reorganize
some indexes. For example, a static index such as an ISAM index may have devel-
oped long overflow chains. Dropping the index and rebuilding it—if feasible, given
the interrupted access to the indexed relation—can substantially improve access times
through this index. Even for a dynamic structure such as a B+ tree, if the implemen-
tation does not merge pages on deletes, space occupancy can decrease considerably
in some situations. This in turn makes the size of the index (in pages) larger than
necessary, and could increase the height and therefore the access time. Rebuilding the
index should be considered. Extensive updates to a clustered index might also lead
to overflow pages being allocated, thereby decreasing the degree of clustering. Again,
rebuilding the index may be worthwhile.

Finally, note that the query optimizer relies on statistics maintained in the system
catalogs. These statistics are updated only when a special utility program is run; be
sure to run the utility frequently enough to keep the statistics reasonably current.

16.7.2 Tuning the Conceptual Schema

In the course of database design, we may realize that our current choice of relation
schemas does not enable us meet our performance objectives for the given workload
with any (feasible) set of physical design choices. If so, we may have to redesign our
conceptual schema (and re-examine physical design decisions that are affected by the
changes that we make).

We may realize that a redesign is necessary during the initial design process or later,
after the system has been in use for a while. Once a database has been designed and
populated with tuples, changing the conceptual schema requires a significant effort
in terms of mapping the contents of relations that are affected. Nonetheless, it may

476 Chapter 16

sometimes be necessary to revise the conceptual schema in light of experience with the
system. (Such changes to the schema of an operational system are sometimes referred
to as schema evolution.) We now consider the issues involved in conceptual schema
(re)design from the point of view of performance.

The main point to understand is that our choice of conceptual schema should be guided
by a consideration of the queries and updates in our workload, in addition to the issues
of redundancy that motivate normalization (which we discussed in Chapter 15). Several
options must be considered while tuning the conceptual schema:

We may decide to settle for a 3NF design instead of a BCNF design.

If there are two ways to decompose a given schema into 3NF or BCNF, our choice
should be guided by the workload.

Sometimes we might decide to further decompose a relation that is already in
BCNF.

In other situations we might denormalize. That is, we might choose to replace a
collection of relations obtained by a decomposition from a larger relation with the
original (larger) relation, even though it suffers from some redundancy problems.
Alternatively, we might choose to add some fields to certain relations to speed
up some important queries, even if this leads to a redundant storage of some
information (and consequently, a schema that is in neither 3NF nor BCNF).

This discussion of normalization has concentrated on the technique of decomposi-
tion, which amounts to vertical partitioning of a relation. Another technique to
consider is horizontal partitioning of a relation, which would lead to our having
two relations with identical schemas. Note that we are not talking about phys-
ically partitioning the tuples of a single relation; rather, we want to create two
distinct relations (possibly with different constraints and indexes on each).

Incidentally, when we redesign the conceptual schema, especially if we are tuning an
existing database schema, it is worth considering whether we should create views to
mask these changes from users for whom the original schema is more natural. We will
discuss the choices involved in tuning the conceptual schema in Section 16.8.

16.7.3 Tuning Queries and Views

If we notice that a query is running much slower than we expected, we have to examine
the query carefully to find the problem. Some rewriting of the query, perhaps in
conjunction with some index tuning, can often fix the problem. Similar tuning may
be called for if queries on some view run slower than expected. We will not discuss
view tuning separately; just think of queries on views as queries in their own right

Physical Database Design and Tuning 477

(after all, queries on views are expanded to account for the view definition before
being optimized) and consider how to tune them.

When tuning a query, the first thing to verify is that the system is using the plan that
you expect it to use. It may be that the system is not finding the best plan for a
variety of reasons. Some common situations that are not handled efficiently by many
optimizers follow.

A selection condition involving null values.

Selection conditions involving arithmetic or string expressions or conditions using
the OR connective. For example, if we have a condition E.age = 2*D.age in the
WHERE clause, the optimizer may correctly utilize an available index on E.age but
fail to utilize an available index on D.age. Replacing the condition by E.age/2 =
D.age would reverse the situation.

Inability to recognize a sophisticated plan such as an index-only scan for an ag-
gregation query involving a GROUP BY clause. Of course, virtually no optimizer
will look for plans outside the plan space described in Chapters 12 and 13, such
as nonleft-deep join trees. So a good understanding of what an optimizer typi-
cally does is important. In addition, the more aware you are of a given system’s
strengths and limitations, the better off you are.

If the optimizer is not smart enough to find the best plan (using access methods and
evaluation strategies supported by the DBMS), some systems allow users to guide the
choice of a plan by providing hints to the optimizer; for example, users might be able
to force the use of a particular index or choose the join order and join method. A user
who wishes to guide optimization in this manner should have a thorough understanding
of both optimization and the capabilities of the given DBMS. We will discuss query
tuning further in Section 16.9.

16.8 CHOICES IN TUNING THE CONCEPTUAL SCHEMA *

We now illustrate the choices involved in tuning the conceptual schema through several
examples using the following schemas:

Contracts(cid: integer, supplierid: integer, projectid: integer,
deptid: integer, partid: integer, qty: integer, value: real)

Departments(did: integer, budget: real, annualreport: varchar)
Parts(pid: integer, cost: integer)
Projects(jid: integer, mgr: char(20))
Suppliers(sid: integer, address: char(50))

For brevity, we will often use the common convention of denoting attributes by a
single character and denoting relation schemas by a sequence of characters. Consider

478 Chapter 16

the schema for the relation Contracts, which we will denote as CSJDPQV, with each
letter denoting an attribute. The meaning of a tuple in this relation is that the contract
with cid C is an agreement that supplier S (with sid equal to supplierid) will supply
Q items of part P (with pid equal to partid) to project J (with jid equal to projectid)
associated with department D (with deptid equal to did), and that the value V of this
contract is equal to value.2

There are two known integrity constraints with respect to Contracts. A project pur-
chases a given part using a single contract; thus, there will not be two distinct contracts
in which the same project buys the same part. This constraint is represented using
the FD JP → C. Also, a department purchases at most one part from any given
supplier. This constraint is represented using the FD SD → P . In addition, of course,
the contract id C is a key. The meaning of the other relations should be obvious, and
we will not describe them further because our focus will be on the Contracts relation.

16.8.1 Settling for a Weaker Normal Form

Consider the Contracts relation. Should we decompose it into smaller relations? Let
us see what normal form it is in. The candidate keys for this relation are C and JP. (C
is given to be a key, and JP functionally determines C.) The only nonkey dependency
is SD → P , and P is a prime attribute because it is part of candidate key JP. Thus,
the relation is not in BCNF—because there is a nonkey dependency—but it is in 3NF.

By using the dependency SD → P to guide the decomposition, we get the two
schemas SDP and CSJDQV. This decomposition is lossless, but it is not dependency-
preserving. However, by adding the relation scheme CJP, we obtain a lossless-join
and dependency-preserving decomposition into BCNF. Using the guideline that a
dependency-preserving, lossless-join decomposition into BCNF is good, we might de-
cide to replace Contracts by three relations with schemas CJP, SDP, and CSJDQV.

However, suppose that the following query is very frequently asked: Find the number of
copies Q of part P ordered in contract C. This query requires a join of the decomposed
relations CJP and CSJDQV (or of SDP and CSJDQV), whereas it can be answered
directly using the relation Contracts. The added cost for this query could persuade us
to settle for a 3NF design and not decompose Contracts further.

16.8.2 Denormalization

The reasons motivating us to settle for a weaker normal form may lead us to take
an even more extreme step: deliberately introduce some redundancy. As an example,

2If this schema seems complicated, note that real-life situations often call for considerably more
complex schemas!

Physical Database Design and Tuning 479

consider the Contracts relation, which is in 3NF. Now, suppose that a frequent query
is to check that the value of a contract is less than the budget of the contracting
department. We might decide to add a budget field B to Contracts. Since did is a
key for Departments, we now have the dependency D → B in Contracts, which means
Contracts is not in 3NF any more. Nonetheless, we might choose to stay with this
design if the motivating query is sufficiently important. Such a decision is clearly
subjective and comes at the cost of significant redundancy.

16.8.3 Choice of Decompositions

Consider the Contracts relation again. Several choices are possible for dealing with
the redundancy in this relation:

We can leave Contracts as it is and accept the redundancy associated with its
being in 3NF rather than BCNF.

We might decide that we want to avoid the anomalies resulting from this redun-
dancy by decomposing Contracts into BCNF using one of the following methods:

– We have a lossless-join decomposition into PartInfo with attributes SDP and
ContractInfo with attributes CSJDQV. As noted previously, this decompo-
sition is not dependency-preserving, and to make it dependency-preserving
would require us to add a third relation CJP, whose sole purpose is to allow
us to check the dependency JP → C.

– We could choose to replace Contracts by just PartInfo and ContractInfo even
though this decomposition is not dependency-preserving.

Replacing Contracts by just PartInfo and ContractInfo does not prevent us from en-
forcing the constraint JP → C; it only makes this more expensive. We could create
an assertion in SQL-92 to check this constraint:

CREATE ASSERTION checkDep
CHECK (NOT EXISTS

(SELECT *
FROM PartInfo PI, ContractInfo CI
WHERE PI.supplierid=CI.supplierid

AND PI.deptid=CI.deptid
GROUP BY CI.projectid, PI.partid
HAVING COUNT (cid) > 1))

This assertion is expensive to evaluate because it involves a join followed by a sort
(to do the grouping). In comparison, the system can check that JP is a primary key
for table CJP by maintaining an index on JP . This difference in integrity-checking
cost is the motivation for dependency-preservation. On the other hand, if updates are

480 Chapter 16

infrequent, this increased cost may be acceptable; therefore, we might choose not to
maintain the table CJP (and quite likely, an index on it).

As another example illustrating decomposition choices, consider the Contracts relation
again, and suppose that we also have the integrity constraint that a department uses
a given supplier for at most one of its projects: SPQ → V . Proceeding as before, we
have a lossless-join decomposition of Contracts into SDP and CSJDQV. Alternatively,
we could begin by using the dependency SPQ → V to guide our decomposition, and
replace Contracts with SPQV and CSJDPQ. We can then decompose CSJDPQ, guided
by SD → P , to obtain SDP and CSJDQ.

Thus, we now have two alternative lossless-join decompositions of Contracts into
BCNF, neither of which is dependency-preserving. The first alternative is to replace
Contracts with the relations SDP and CSJDQV. The second alternative is to replace it
with SPQV, SDP, and CSJDQ. The addition of CJP makes the second decomposition
(but not the first!) dependency-preserving. Again, the cost of maintaining the three
relations CJP, SPQV, and CSJDQ (versus just CSJDQV) may lead us to choose the
first alternative. In this case, enforcing the given FDs becomes more expensive. We
might consider not enforcing them, but we then risk a violation of the integrity of our
data.

16.8.4 Vertical Decomposition

Suppose that we have decided to decompose Contracts into SDP and CSJDQV. These
schemas are in BCNF, and there is no reason to decompose them further from a nor-
malization standpoint. However, suppose that the following queries are very frequent:

Find the contracts held by supplier S.

Find the contracts placed by department D.

These queries might lead us to decompose CSJDQV into CS, CD, and CJQV. The
decomposition is lossless, of course, and the two important queries can be answered by
examining much smaller relations.

Whenever we decompose a relation, we have to consider which queries the decompo-
sition might adversely affect, especially if the only motivation for the decomposition
is improved performance. For example, if another important query is to find the to-
tal value of contracts held by a supplier, it would involve a join of the decomposed
relations CS and CJQV. In this situation we might decide against the decomposition.

Physical Database Design and Tuning 481

16.8.5 Horizontal Decomposition

Thus far, we have essentially considered how to replace a relation with a collection
of vertical decompositions. Sometimes, it is worth considering whether to replace a
relation with two relations that have the same attributes as the original relation, each
containing a subset of the tuples in the original. Intuitively, this technique is useful
when different subsets of tuples are queried in very distinct ways.

For example, different rules may govern large contracts, which are defined as contracts
with values greater than 10,000. (Perhaps such contracts have to be awarded through a
bidding process.) This constraint could lead to a number of queries in which Contracts
tuples are selected using a condition of the form value > 10, 000. One way to approach
this situation is to build a clustered B+ tree index on the value field of Contracts.
Alternatively, we could replace Contracts with two relations called LargeContracts
and SmallContracts, with the obvious meaning. If this query is the only motivation
for the index, horizontal decomposition offers all the benefits of the index without
the overhead of index maintenance. This alternative is especially attractive if other
important queries on Contracts also require clustered indexes (on fields other than
value).

If we replace Contracts by two relations LargeContracts and SmallContracts, we could
mask this change by defining a view called Contracts:

CREATE VIEW Contracts(cid, supplierid, projectid, deptid, partid, qty, value)
AS ((SELECT *

FROM LargeContracts)
UNION
(SELECT *
FROM SmallContracts))

However, any query that deals solely with LargeContracts should be expressed directly
on LargeContracts, and not on the view. Expressing the query on the view Contracts
with the selection condition value > 10, 000 is equivalent to expressing the query on
LargeContracts, but less efficient. This point is quite general: Although we can mask
changes to the conceptual schema by adding view definitions, users concerned about
performance have to be aware of the change.

As another example, if Contracts had an additional field year and queries typically
dealt with the contracts in some one year, we might choose to partition Contracts by
year. Of course, queries that involved contracts from more than one year might require
us to pose queries against each of the decomposed relations.

482 Chapter 16

16.9 CHOICES IN TUNING QUERIES AND VIEWS *

The first step in tuning a query is to understand the plan that is used by the DBMS
to evaluate the query. Systems usually provide some facility for identifying the plan
used to evaluate a query. Once we understand the plan selected by the system, we can
consider how to improve performance. We can consider a different choice of indexes
or perhaps co-clustering two relations for join queries, guided by our understanding of
the old plan and a better plan that we want the DBMS to use. The details are similar
to the initial design process.

One point worth making is that before creating new indexes we should consider whether
rewriting the query will achieve acceptable results with existing indexes. For example,
consider the following query with an OR connective:

SELECT E.dno
FROM Employees E
WHERE E.hobby=‘Stamps’ OR E.age=10

If we have indexes on both hobby and age, we can use these indexes to retrieve the
necessary tuples, but an optimizer might fail to recognize this opportunity. The op-
timizer might view the conditions in the WHERE clause as a whole as not matching
either index, do a sequential scan of Employees, and apply the selections on-the-fly.
Suppose we rewrite the query as the union of two queries, one with the clause WHERE
E.hobby=‘Stamps’ and the other with the clause WHERE E.age=10. Now each of these
queries will be answered efficiently with the aid of the indexes on hobby and age.

We should also consider rewriting the query to avoid some expensive operations. For
example, including DISTINCT in the SELECT clause leads to duplicate elimination,
which can be costly. Thus, we should omit DISTINCT whenever possible. For ex-
ample, for a query on a single relation, we can omit DISTINCT whenever either of the
following conditions holds:

We do not care about the presence of duplicates.

The attributes mentioned in the SELECT clause include a candidate key for the
relation.

Sometimes a query with GROUP BY and HAVING can be replaced by a query without
these clauses, thereby eliminating a sort operation. For example, consider:

SELECT MIN (E.age)
FROM Employees E
GROUP BY E.dno
HAVING E.dno=102

Physical Database Design and Tuning 483

This query is equivalent to

SELECT MIN (E.age)
FROM Employees E
WHERE E.dno=102

Complex queries are often written in steps, using a temporary relation. We can usually
rewrite such queries without the temporary relation to make them run faster. Consider
the following query for computing the average salary of departments managed by
Robinson:

SELECT *
INTO Temp
FROM Employees E, Departments D
WHERE E.dno=D.dno AND D.mgrname=‘Robinson’

SELECT T.dno, AVG (T.sal)
FROM Temp T
GROUP BY T.dno

This query can be rewritten as

SELECT E.dno, AVG (E.sal)
FROM Employees E, Departments D
WHERE E.dno=D.dno AND D.mgrname=‘Robinson’
GROUP BY E.dno

The rewritten query does not materialize the intermediate relation Temp and is there-
fore likely to be faster. In fact, the optimizer may even find a very efficient index-only
plan that never retrieves Employees tuples if there is a dense, composite B+ tree index
on 〈dno, sal〉. This example illustrates a general observation: By rewriting queries to
avoid unnecessary temporaries, we not only avoid creating the temporary relations, we
also open up more optimization possibilities for the optimizer to explore.

In some situations, however, if the optimizer is unable to find a good plan for a complex
query (typically a nested query with correlation), it may be worthwhile to rewrite the
query using temporary relations to guide the optimizer toward a good plan.

In fact, nested queries are a common source of inefficiency because many optimizers
deal poorly with them, as discussed in Section 14.5. Whenever possible, it is better
to rewrite a nested query without nesting and to rewrite a correlated query without
correlation. As already noted, a good reformulation of the query may require us to
introduce new, temporary relations, and techniques to do so systematically (ideally, to

484 Chapter 16

be done by the optimizer) have been widely studied. Often though, it is possible to
rewrite nested queries without nesting or the use of temporary relations, as illustrated
in Section 14.5.

16.10 IMPACT OF CONCURRENCY *

In a system with many concurrent users, several additional points must be considered.
As we saw in Chapter 1, each user’s program (transaction) obtains locks on the pages
that it reads or writes. Other transactions cannot access locked pages until this trans-
action completes and releases the locks. This restriction can lead to contention for
locks on heavily used pages.

The duration for which transactions hold locks can affect performance signifi-
cantly. Tuning transactions by writing to local program variables and deferring
changes to the database until the end of the transaction (and thereby delaying the
acquisition of the corresponding locks) can greatly improve performance. On a
related note, performance can be improved by replacing a transaction with several
smaller transactions, each of which holds locks for a shorter time.

At the physical level, a careful partitioning of the tuples in a relation and its
associated indexes across a collection of disks can significantly improve concurrent
access. For example, if we have the relation on one disk and an index on another,
accesses to the index can proceed without interfering with accesses to the relation,
at least at the level of disk reads.

If a relation is updated frequently, B+ tree indexes in particular can become a con-
currency control bottleneck because all accesses through the index must go through
the root; thus, the root and index pages just below it can become hotspots, that
is, pages for which there is heavy contention. If the DBMS uses specialized locking
protocols for tree indexes, and in particular, sets fine-granularity locks, this prob-
lem is greatly alleviated. Many current systems use such techniques. Nonetheless,
this consideration may lead us to choose an ISAM index in some situations. Be-
cause the index levels of an ISAM index are static, we do not need to obtain locks
on these pages; only the leaf pages need to be locked. An ISAM index may be
preferable to a B+ tree index, for example, if frequent updates occur but we ex-
pect the relative distribution of records and the number (and size) of records with
a given range of search key values to stay approximately the same. In this case the
ISAM index offers a lower locking overhead (and reduced contention for locks),
and the distribution of records is such that few overflow pages will be created.

Hashed indexes do not create such a concurrency bottleneck, unless the data
distribution is very skewed and many data items are concentrated in a few buckets.
In this case the directory entries for these buckets can become a hotspot.

The pattern of updates to a relation can also become significant. For example,
if tuples are inserted into the Employees relation in eid order and we have a B+

Physical Database Design and Tuning 485

tree index on eid, each insert will go to the last leaf page of the B+ tree. This
leads to hotspots along the path from the root to the right-most leaf page. Such
considerations may lead us to choose a hash index over a B+ tree index or to index
on a different field. (Note that this pattern of access leads to poor performance
for ISAM indexes as well, since the last leaf page becomes a hot spot.)

Again, this is not a problem for hash indexes because the hashing process ran-
domizes the bucket into which a record is inserted.

SQL features for specifying transaction properties, which we discuss in Section
19.4, can be used for improving performance. If a transaction does not modify the
database, we should specify that its access mode is READ ONLY. Sometimes it is
acceptable for a transaction (e.g., one that computes statistical summaries) to see
some anomalous data due to concurrent execution. For such transactions, more
concurrency can be achieved by controlling a parameter called the isolation level.

16.11 DBMS BENCHMARKING *

Thus far, we have considered how to improve the design of a database to obtain better
performance. As the database grows, however, the underlying DBMS may no longer be
able to provide adequate performance even with the best possible design, and we have
to consider upgrading our system, typically by buying faster hardware and additional
memory. We may also consider migrating our database to a new DBMS.

When evaluating DBMS products, performance is an important consideration. A
DBMS is a complex piece of software, and different vendors may target their sys-
tems toward different market segments by putting more effort into optimizing certain
parts of the system, or by choosing different system designs. For example, some sys-
tems are designed to run complex queries efficiently, while others are designed to run
many simple transactions per second. Within each category of systems, there are
many competing products. To assist users in choosing a DBMS that is well suited to
their needs, several performance benchmarks have been developed. These include
benchmarks for measuring the performance of a certain class of applications (e.g., the
TPC benchmarks) and benchmarks for measuring how well a DBMS performs various
operations (e.g., the Wisconsin benchmark).

Benchmarks should be portable, easy to understand, and scale naturally to larger prob-
lem instances. They should measure peak performance (e.g., transactions per second,
or tps) as well as price/performance ratios (e.g., $/tps) for typical workloads in a given
application domain. The Transaction Processing Council (TPC) was created to de-
fine benchmarks for transaction processing and database systems. Other well-known
benchmarks have been proposed by academic researchers and industry organizations.
Benchmarks that are proprietary to a given vendor are not very useful for comparing

486 Chapter 16

different systems (although they may be useful in determining how well a given system
would handle a particular workload).

16.11.1 Well-Known DBMS Benchmarks

On-line Transaction Processing Benchmarks: The TPC-A and TPC-B bench-
marks constitute the standard definitions of the tps and $/tps measures. TPC-A mea-
sures the performance and price of a computer network in addition to the DBMS,
whereas the TPC-B benchmark considers the DBMS by itself. These benchmarks
involve a simple transaction that updates three data records, from three different ta-
bles, and appends a record to a fourth table. A number of details (e.g., transaction
arrival distribution, interconnect method, system properties) are rigorously specified,
ensuring that results for different systems can be meaningfully compared. The TPC-C
benchmark is a more complex suite of transactional tasks than TPC-A and TPC-B.
It models a warehouse that tracks items supplied to customers and involves five types
of transactions. Each TPC-C transaction is much more expensive than a TPC-A or
TPC-B transaction, and TPC-C exercises a much wider range of system capabilities,
such as use of secondary indexes and transaction aborts. It has more or less completely
replaced TPC-A and TPC-B as the standard transaction processing benchmark.

Query Benchmarks: The Wisconsin benchmark is widely used for measuring the
performance of simple relational queries. The Set Query benchmark measures the
performance of a suite of more complex queries, and the AS3AP benchmark measures
the performance of a mixed workload of transactions, relational queries, and utility
functions. The TPC-D benchmark is a suite of complex SQL queries, intended to be
representative of the decision-support application domain. The OLAP Council has also
developed a benchmark for complex decision-support queries, including some queries
that cannot be expressed easily in SQL; this is intended to measure systems for on-line
analytic processing (OLAP), which we discuss in Chapter 23, rather than traditional
SQL systems. The Sequoia 2000 benchmark is designed to compare DBMS support
for geographic information systems.

Object-Database Benchmarks: The 001 and 007 benchmarks measure the per-
formance of object-oriented database systems. The Bucky benchmark measures the
performance of object-relational database systems. (We discuss object database sys-
tems in Chapter 25.)

16.11.2 Using a Benchmark

Benchmarks should be used with a good understanding of what they are designed to
measure and the application environment in which a DBMS is to be used. When you

Physical Database Design and Tuning 487

use benchmarks to guide your choice of a DBMS, keep the following guidelines in mind:

How meaningful is a given benchmark? Benchmarks that try to distill
performance into a single number can be overly simplistic. A DBMS is a complex
piece of software used in a variety of applications. A good benchmark should have
a suite of tasks that are carefully chosen to cover a particular application domain
and to test DBMS features that are important for that domain.

How well does a benchmark reflect your workload? You should consider
your expected workload and compare it with the benchmark. Give more weight
to the performance of those benchmark tasks (i.e., queries and updates) that
are similar to important tasks in your workload. Also consider how benchmark
numbers are measured. For example, elapsed times for individual queries might be
misleading if considered in a multiuser setting: A system may have higher elapsed
times because of slower I/O. On a multiuser workload, given sufficient disks for
parallel I/O, such a system might outperform a system with a lower elapsed time.

Create your own benchmark: Vendors often tweak their systems in ad hoc
ways to obtain good numbers on important benchmarks. To counter this, create
your own benchmark by modifying standard benchmarks slightly or by replacing
the tasks in a standard benchmark with similar tasks from your workload.

16.12 POINTS TO REVIEW

In physical design, we adjust the physical schema according to the typical query
and update workload. A workload description contains detailed information about
queries, updates, and their frequencies. During physical design, we might create
indexes, make changes to the conceptual schema, and/or rewrite queries. (Sec-
tion 16.1)

There are guidelines that help us to decide whether to index, what to index,
whether to use a multiple-attribute index, whether to create an unclustered or a
clustered index, and whether to use a hash or a tree index. Indexes can speed up
queries but can also slow down update operations. (Section 16.2)

When choosing indexes, we must consider complete query plans including potential
join methods that benefit from the indexes. It is not enough to just consider
the conditions in the WHERE clause as selection criteria for accessing individual
relations. (Section 16.3)

Range queries can benefit from clustered indexes. When deciding which index
to create, we have to take the selectivity of conditions in the WHERE clause into
account. Some systems allow us to store records from more than one relation in
a single file. This physical layout, called co-clustering, can speed up key–foreign
key joins, which arise frequently in practice. (Section 16.4)

488 Chapter 16

If the WHERE condition has several conjunctions involving different attributes, an
index on a search key with more than one field, called a composite index, can
improve query performance. (Section 16.5)

Query plans that do not have to retrieve records from an underlying relation are
called index-only plans. Indexes that are used for index-only access do not need
to be clustered. (Section 16.6)

After an initial physical design, continuous database tuning is important to ob-
tain best possible performance. Using the observed workload over time, we can
reconsider our choice of indexes and our relation schema. Other tasks include pe-
riodic reorganization of indexes and updating the statistics in the system catalogs.
(Section 16.7)

We can tune the conceptual schema for increased performance by settling for
a weaker normal form or denormalizing a relation to speed up some important
query. Usually, we have several decomposition choices that we need to investigate
carefully. In some cases we can increase performance through vertical or horizontal
decomposition of a relation. (Section 16.8)

When tuning queries, we first need to understand the query plan that the DBMS
generates. Sometimes, query performance can be improved by rewriting the query
in order to help the DBMS find a better query plan. (Section 16.9)

If many users access the database concurrently, lock contention can decrease per-
formance. Several possibilities exist for decreasing concurrency bottlenecks. (Sec-
tion 16.10)

A DBMS benchmark tests the performance of a class of applications or specific
aspects of a DBMS to help users evaluate system performance. Well-known bench-
marks include TPC-A, TPC-B, TPC-C, and TPC-D. (Section 16.11)

EXERCISES

Exercise 16.1 Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)

Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has about

five employees on average, there are 10 floors, and budgets vary from $10,000 to $1,000,000.

You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to speed

up the query? If your database system does not consider index-only plans (i.e., data records

are always retrieved even if enough information is available in the index entry), how would

your answer change? Explain briefly.

Physical Database Design and Tuning 489

1. Query: Print ename, age, and sal for all employees.

(a) Clustered, dense hash index on 〈ename, age, sal〉 fields of Emp.

(b) Unclustered hash index on 〈ename, age, sal〉 fields of Emp.

(c) Clustered, sparse B+ tree index on 〈ename, age, sal〉 fields of Emp.

(d) Unclustered hash index on 〈eid, did〉 fields of Emp.

(e) No index.

2. Query: Find the dids of departments that are on the 10th floor and that have a budget

of less than $15,000.

(a) Clustered, dense hash index on the floor field of Dept.

(b) Unclustered hash index on the floor field of Dept.

(c) Clustered, dense B+ tree index on 〈floor, budget〉 fields of Dept.

(d) Clustered, sparse B+ tree index on the budget field of Dept.

(e) No index.

3. Query: Find the names of employees who manage some department and have a salary

greater than $12,000.

(a) Clustered, sparse B+ tree index on the sal field of Emp.

(b) Clustered hash index on the did field of Dept.

(c) Unclustered hash index on the did field of Dept.

(d) Unclustered hash index on the did field of Emp.

(e) Clustered B+ tree index on sal field of Emp and clustered hash index on the did

field of Dept.

4. Query: Print the average salary for each department.

(a) Clustered, sparse B+ tree index on the did field of Emp.

(b) Clustered, dense B+ tree index on the did field of Emp.

(c) Clustered, dense B+ tree index on 〈did, sal〉 fields of Emp.

(d) Unclustered hash index on 〈did, sal〉 fields of Emp.

(e) Clustered, dense B+ tree index on the did field of Dept.

Exercise 16.2 Consider the following relation:

Emp(eid: integer, sal: integer, age: real, did: integer)

There is a clustered index on eid and an unclustered index on age.

1. Which factors would you consider in deciding whether to make an index on a relation a

clustered index? Would you always create at least one clustered index on every relation?

2. How would you use the indexes to enforce the constraint that eid is a key?

3. Give an example of an update that is definitely speeded up because of the available

indexes. (English description is sufficient.)

490 Chapter 16

4. Give an example of an update that is definitely slowed down because of the indexes.

(English description is sufficient.)

5. Can you give an example of an update that is neither speeded up nor slowed down by

the indexes?

Exercise 16.3 Consider the following BCNF schema for a portion of a simple corporate

database (type information is not relevant to this question and is omitted):

Emp (eid, ename, addr, sal, age, yrs, deptid)

Dept (did, dname, floor, budget)

Suppose you know that the following queries are the six most common queries in the workload

for this corporation and that all six are roughly equivalent in frequency and importance:

List the id, name, and address of employees in a user-specified age range.

List the id, name, and address of employees who work in the department with a user-

specified department name.

List the id and address of employees with a user-specified employee name.

List the overall average salary for employees.

List the average salary for employees of each age; that is, for each age in the database,

list the age and the corresponding average salary.

List all the department information, ordered by department floor numbers.

1. Given this information, and assuming that these queries are more important than any

updates, design a physical schema for the corporate database that will give good perfor-

mance for the expected workload. In particular, decide which attributes will be indexed

and whether each index will be a clustered index or an unclustered index. Assume that

B+ tree indexes are the only index type supported by the DBMS and that both single-

and multiple-attribute keys are permitted. Specify your physical design by identifying

the attributes that you recommend indexing on via clustered or unclustered B+ trees.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

List the id and address of employees with a user-specified employee name.

List the overall maximum salary for employees.

List the average salary for employees by department; that is, for each deptid value,

list the deptid value and the average salary of employees in that department.

List the sum of the budgets of all departments by floor; that is, for each floor, list

the floor and the sum.

Exercise 16.4 Consider the following BCNF relational schema for a portion of a university

database (type information is not relevant to this question and is omitted):

Prof(ssno, pname, office, age, sex, specialty, dept did)

Dept(did, dname, budget, num majors, chair ssno)

Physical Database Design and Tuning 491

Suppose you know that the following queries are the five most common queries in the workload

for this university and that all five are roughly equivalent in frequency and importance:

List the names, ages, and offices of professors of a user-specified sex (male or female)

who have a user-specified research specialty (e.g., recursive query processing). Assume

that the university has a diverse set of faculty members, making it very uncommon for

more than a few professors to have the same research specialty.

List all the department information for departments with professors in a user-specified

age range.

List the department id, department name, and chairperson name for departments with

a user-specified number of majors.

List the lowest budget for a department in the university.

List all the information about professors who are department chairpersons.

These queries occur much more frequently than updates, so you should build whatever in-

dexes you need to speed up these queries. However, you should not build any unnecessary

indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given

this information, design a physical schema for the university database that will give good per-

formance for the expected workload. In particular, decide which attributes should be indexed

and whether each index should be a clustered index or an unclustered index. Assume that

both B+ trees and hashed indexes are supported by the DBMS and that both single- and

multiple-attribute index search keys are permitted.

1. Specify your physical design by identifying the attributes that you recommend indexing

on, indicating whether each index should be clustered or unclustered and whether it

should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

List the number of different specialties covered by professors in each department,

by department.

Find the department with the fewest majors.

Find the youngest professor who is a department chairperson.

Exercise 16.5 Consider the following BCNF relational schema for a portion of a company

database (type information is not relevant to this question and is omitted):

Project(pno, proj name, proj base dept, proj mgr, topic, budget)

Manager(mid, mgr name, mgr dept, salary, age, sex)

Note that each project is based in some department, each manager is employed in some

department, and the manager of a project need not be employed in the same department (in

which the project is based). Suppose you know that the following queries are the five most

common queries in the workload for this university and that all five are roughly equivalent in

frequency and importance:

List the names, ages, and salaries of managers of a user-specified sex (male or female)

working in a given department. You can assume that while there are many departments,

each department contains very few project managers.

492 Chapter 16

List the names of all projects with managers whose ages are in a user-specified range

(e.g., younger than 30).

List the names of all departments such that a manager in this department manages a

project based in this department.

List the name of the project with the lowest budget.

List the names of all managers in the same department as a given project.

These queries occur much more frequently than updates, so you should build whatever in-

dexes you need to speed up these queries. However, you should not build any unnecessary

indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given

this information, design a physical schema for the company database that will give good per-

formance for the expected workload. In particular, decide which attributes should be indexed

and whether each index should be a clustered index or an unclustered index. Assume that

both B+ trees and hashed indexes are supported by the DBMS, and that both single- and

multiple-attribute index keys are permitted.

1. Specify your physical design by identifying the attributes that you recommend indexing

on, indicating whether each index should be clustered or unclustered and whether it

should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

Find the total of the budgets for projects managed by each manager; that is, list

proj mgr and the total of the budgets of projects managed by that manager, for

all values of proj mgr.

Find the total of the budgets for projects managed by each manager but only for

managers who are in a user-specified age range.

Find the number of male managers.

Find the average age of managers.

Exercise 16.6 The Globetrotters Club is organized into chapters. The president of a chapter

can never serve as the president of any other chapter, and each chapter gives its president

some salary. Chapters keep moving to new locations, and a new president is elected when

(and only when) a chapter moves. The above data is stored in a relation G(C,S,L,P), where

the attributes are chapters (C), salaries (S), locations (L), and presidents (P). Queries of the

following form are frequently asked, and you must be able to answer them without computing

a join: “Who was the president of chapter X when it was in location Y?”

1. List the FDs that are given to hold over G.

2. What are the candidate keys for relation G?

3. What normal form is the schema G in?

4. Design a good database schema for the club. (Remember that your design must satisfy

the query requirement stated above!)

5. What normal form is your good schema in? Give an example of a query that is likely to

run slower on this schema than on the relation G.

Physical Database Design and Tuning 493

6. Is there a lossless-join, dependency-preserving decomposition of G into BCNF?

7. Is there ever a good reason to accept something less than 3NF when designing a schema

for a relational database? Use this example, if necessary adding further constraints, to

illustrate your answer.

Exercise 16.7 Consider the following BCNF relation, which lists the ids, types (e.g., nuts

or bolts), and costs of various parts, along with the number that are available or in stock:

Parts (pid, pname, cost, num avail)

You are told that the following two queries are extremely important:

Find the total number available by part type, for all types. (That is, the sum of the

num avail value of all nuts, the sum of the num avail value of all bolts, etc.)

List the pids of parts with the highest cost.

1. Describe the physical design that you would choose for this relation. That is, what kind

of a file structure would you choose for the set of Parts records, and what indexes would

you create?

2. Suppose that your customers subsequently complain that performance is still not sat-

isfactory (given the indexes and file organization that you chose for the Parts relation

in response to the previous question). Since you cannot afford to buy new hardware or

software, you have to consider a schema redesign. Explain how you would try to obtain

better performance by describing the schema for the relation(s) that you would use and

your choice of file organizations and indexes on these relations.

3. How would your answers to the above two questions change, if at all, if your system did

not support indexes with multiple-attribute search keys?

Exercise 16.8 Consider the following BCNF relations, which describe employees and de-

partments that they work in:

Emp (eid, sal, did)

Dept (did, location, budget)

You are told that the following queries are extremely important:

Find the location where a user-specified employee works.

Check whether the budget of a department is greater than the salary of each employee

in that department.

1. Describe the physical design that you would choose for this relation. That is, what kind

of a file structure would you choose for these relations, and what indexes would you

create?

2. Suppose that your customers subsequently complain that performance is still not sat-

isfactory (given the indexes and file organization that you chose for the relations in

response to the previous question). Since you cannot afford to buy new hardware or

software, you have to consider a schema redesign. Explain how you would try to obtain

better performance by describing the schema for the relation(s) that you would use and

your choice of file organizations and indexes on these relations.

494 Chapter 16

3. Suppose that your database system has very inefficient implementations of index struc-

tures. What kind of a design would you try in this case?

Exercise 16.9 Consider the following BCNF relations, which describe departments in a

company and employees:

Dept(did, dname, location, managerid)

Emp(eid, sal)

You are told that the following queries are extremely important:

List the names and ids of managers for each department in a user-specified location, in

alphabetical order by department name.

Find the average salary of employees who manage departments in a user-specified loca-

tion. You can assume that no one manages more than one department.

1. Describe the file structures and indexes that you would choose.

2. You subsequently realize that updates to these relations are frequent. Because indexes

incur a high overhead, can you think of a way to improve performance on these queries

without using indexes?

Exercise 16.10 For each of the following queries, identify one possible reason why an op-

timizer might not find a good plan. Rewrite the query so that a good plan is likely to be

found. Any available indexes or known constraints are listed before each query; assume that

the relation schemas are consistent with the attributes referred to in the query.

1. An index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE E.age=20 OR E.age=10

2. A B+ tree index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE E.age<20 AND E.age>10

3. An index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE 2*E.age<20

4. No indexes are available.

SELECT DISTINCT *

FROM Employee E

5. No indexes are available.

SELECT AVG (E.sal)

FROM Employee E

GROUP BY E.dno

HAVING E.dno=22

Physical Database Design and Tuning 495

6. sid in Reserves is a foreign key that refers to Sailors.

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

Exercise 16.11 Consider the following two ways of computing the names of employees who

earn more than $100,000 and whose age is equal to their manager’s age. First, a nested query:

SELECT E1.ename

FROM Emp E1

WHERE E1.sal > 100 AND E1.age = (SELECT E2.age

FROM Emp E2, Dept D2

WHERE E1.dname = D2.dname

AND D2.mgr = E2.ename)

Second, a query that uses a view definition:

SELECT E1.ename

FROM Emp E1, MgrAge A

WHERE E1.dname = A.dname AND E1.sal > 100 AND E1.age = A.age

CREATE VIEW MgrAge (dname, age)

AS SELECT D.dname, E.age

FROM Emp E, Dept D

WHERE D.mgr = E.ename

1. Describe a situation in which the first query is likely to outperform the second query.

2. Describe a situation in which the second query is likely to outperform the first query.

3. Can you construct an equivalent query that is likely to beat both these queries when

every employee who earns more than $100,000 is either 35 or 40 years old? Explain

briefly.

PROJECT-BASED EXERCISES

Exercise 16.12 Minibase’s Designview tool does not provide any support for choosing in-

dexes or, in general, physical database design. How do you see Designview being used, if at

all, in the context of physical database design?

BIBLIOGRAPHIC NOTES

[572] is an early discussion of physical database design. [573] discusses the performance

implications of normalization and observes that denormalization may improve performance

for certain queries. The ideas underlying a physical design tool from IBM are described in

496 Chapter 16

[234]. The Microsoft AutoAdmin tool that performs automatic index selection according to

a query workload is described in [138]. Other approaches to physical database design are

described in [125, 557]. [591] considers transaction tuning, which we discussed only briefly.

The issue is how an application should be structured into a collection of transactions to

maximize performance.

The following books on database design cover physical design issues in detail; they are recom-

mended for further reading. [236] is largely independent of specific products, although many

examples are based on DB2 and Teradata systems. [684] deals primarily with DB2. [589] is

a very readable treatment of performance tuning and is not specific to any one system.

[284] contains several papers on benchmarking database systems and has accompanying soft-

ware. It includes articles on the AS3AP , Set Query, TPC-A, TPC-B, Wisconsin, and 001

benchmarks written by the original developers. The Bucky benchmark is described in [112],

the 007 benchmark is described in [111], and the TPC-D benchmark is described in [648].

The Sequoia 2000 benchmark is described in [631].

17 SECURITY

I know that’s a secret, for it’s whispered everywhere.

—William Congreve

Database management systems are increasingly being used to store information about
all aspects of an enterprise. The data stored in a DBMS is often vital to the business
interests of the organization and is regarded as a corporate asset. In addition to
protecting the intrinsic value of the data, corporations must consider ways to ensure
privacy and to control access to data that must not be revealed to certain groups of
users for various reasons.

In this chapter we discuss the concepts underlying access control and security in a
DBMS. After introducing database security issues in Section 17.1, we consider two
distinct approaches, called discretionary and mandatory, to specifying and managing
access controls. An access control mechanism is a way to control the data that is
accessible to a given user. After introducing access controls in Section 17.2 we cover
discretionary access control, which is supported in SQL-92, in Section 17.3. We briefly
cover mandatory access control, which is not supported in SQL-92, in Section 17.4.

In Section 17.5 we discuss several additional aspects of security, such as security in a
statistical database, the role of the database administrator, and the use of techniques
such as encryption and audit trails.

17.1 INTRODUCTION TO DATABASE SECURITY

There are three main objectives to consider while designing a secure database appli-
cation:

1. Secrecy: Information should not be disclosed to unauthorized users. For example,
a student should not be allowed to examine other students’ grades.

2. Integrity: Only authorized users should be allowed to modify data. For example,
students may be allowed to see their grades, yet not allowed (obviously!) to modify
them.

3. Availability: Authorized users should not be denied access. For example, an
instructor who wishes to change a grade should be allowed to do so.

497

498 Chapter 17

To achieve these objectives, a clear and consistent security policy should be developed
to describe what security measures must be enforced. In particular, we must determine
what part of the data is to be protected and which users get access to which portions of
the data. Next, the security mechanisms of the underlying DBMS (and OS, as well
as external mechanisms such as securing access to buildings and so on) must be utilized
to enforce the policy. We emphasize that security measures must be taken at several
levels. Security leaks in the operating system or network connections can circumvent
database security mechanisms. For example, such leaks could allow an intruder to log
on as the database administrator with all the attendant DBMS access rights! Human
factors are another source of security leaks. For example, a user may choose a password
that is easy to guess, or a user who is authorized to see sensitive data may misuse it.
Such errors in fact account for a large percentage of security breaches. We will not
discuss these aspects of security despite their importance because they are not specific
to database management systems.

Views provide a valuable tool in enforcing security policies. The view mechanism can
be used to create a ‘window’ on a collection of data that is appropriate for some group
of users. Views allow us to limit access to sensitive data by providing access to a
restricted version (defined through a view) of that data, rather than to the data itself.

We use the following schemas in our examples:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sname: string, bid: integer, day: dates)

Notice that Reserves has been modified to use sname, rather than sid.

17.2 ACCESS CONTROL

A database for an enterprise contains a great deal of information and usually has several
groups of users. Most users need to access only a small part of the database to carry
out their tasks. Allowing users unrestricted access to all the data can be undesirable,
and a DBMS should provide mechanisms to control access to data.

A DBMS offers two main approaches to access control. Discretionary access control
is based on the concept of access rights, or privileges, and mechanisms for giving
users such privileges. A privilege allows a user to access some data object in a certain
manner (e.g., to read or to modify). A user who creates a database object such as
a table or a view automatically gets all applicable privileges on that object. The
DBMS subsequently keeps track of how these privileges are granted to other users,
and possibly revoked, and ensures that at all times only users with the necessary
privileges can access an object. SQL-92 supports discretionary access control through

Security 499

the GRANT and REVOKE commands. The GRANT command gives privileges to users, and
the REVOKE command takes away privileges. We discuss discretionary access control
in Section 17.3.

Discretionary access control mechanisms, while generally effective, have certain weak-
nesses. In particular, a devious unauthorized user can trick an authorized user into
disclosing sensitive data. Mandatory access control is based on systemwide policies
that cannot be changed by individual users. In this approach each database object is
assigned a security class, each user is assigned clearance for a security class, and rules
are imposed on reading and writing of database objects by users. The DBMS deter-
mines whether a given user can read or write a given object based on certain rules that
involve the security level of the object and the clearance of the user. These rules seek
to ensure that sensitive data can never be ‘passed on’ to a user without the necessary
clearance. The SQL-92 standard does not include any support for mandatory access
control. We discuss mandatory access control in Section 17.4.

17.3 DISCRETIONARY ACCESS CONTROL

SQL-92 supports discretionary access control through the GRANT and REVOKE com-
mands. The GRANT command gives users privileges to base tables and views. The
syntax of this command is as follows:

GRANT privileges ON object TO users [WITH GRANT OPTION]

For our purposes object is either a base table or a view. SQL recognizes certain other
kinds of objects, but we will not discuss them. Several privileges can be specified,
including these:

SELECT: The right to access (read) all columns of the table specified as the object,
including columns added later through ALTER TABLE commands.

INSERT(column-name): The right to insert rows with (non-null or nondefault)
values in the named column of the table named as object. If this right is to be
granted with respect to all columns, including columns that might be added later,
we can simply use INSERT. The privileges UPDATE(column-name) and UPDATE are
similar.

DELETE: The right to delete rows from the table named as object.

REFERENCES(column-name): The right to define foreign keys (in other tables) that
refer to the specified column of the table object. REFERENCES without a column
name specified denotes this right with respect to all columns, including any that
are added later.

500 Chapter 17

If a user has a privilege with the grant option, he or she can pass it to another user
(with or without the grant option) by using the GRANT command. A user who creates
a base table automatically has all applicable privileges on it, along with the right to
grant these privileges to other users. A user who creates a view has precisely those
privileges on the view that he or she has on every one of the view or base tables used
to define the view. The user creating the view must have the SELECT privilege on
each underlying table, of course, and so is always granted the SELECT privilege on the
view. The creator of the view has the SELECT privilege with the grant option only if
he or she has the SELECT privilege with the grant option on every underlying table.
In addition, if the view is updatable and the user holds INSERT, DELETE, or UPDATE
privileges (with or without the grant option) on the (single) underlying table, the user
automatically gets the same privileges on the view.

Only the owner of a schema can execute the data definition statements CREATE, ALTER,
and DROP on that schema. The right to execute these statements cannot be granted or
revoked.

In conjunction with the GRANT and REVOKE commands, views are an important com-
ponent of the security mechanisms provided by a relational DBMS. By defining views
on the base tables, we can present needed information to a user while hiding other
information that the user should not be given access to. For example, consider the
following view definition:

CREATE VIEW ActiveSailors (name, age, day)
AS SELECT S.sname, S.age, R.day

FROM Sailors S, Reserves R
WHERE S.sname = R.sname AND S.rating > 6

A user who can access ActiveSailors, but not Sailors or Reserves, knows which sailors
have reservations but cannot find out the bids of boats reserved by a given sailor.

Privileges are assigned in SQL-92 to authorization ids, which can denote a single
user or a group of users; a user must specify an authorization id and, in many systems,
a corresponding password before the DBMS accepts any commands from him or her.
So, technically, Joe, Michael, and so on are authorization ids rather than user names
in the following examples.

Suppose that user Joe has created the tables Boats, Reserves, and Sailors. Some
examples of the GRANT command that Joe can now execute are listed below:

GRANT INSERT, DELETE ON Reserves TO Yuppy WITH GRANT OPTION
GRANT SELECT ON Reserves TO Michael
GRANT SELECT ON Sailors TO Michael WITH GRANT OPTION
GRANT UPDATE (rating) ON Sailors TO Leah

Security 501

Role-based authorization in SQL: Privileges are assigned to users (autho-
rization ids, to be precise) in SQL-92. In the real world, privileges are often
associated with a user’s job or role within the organization. Many DBMSs have
long supported the concept of a role and allowed privileges to be assigned to
roles. Roles can then be granted to users and other roles. (Of courses, privileges
can also be granted directly to users.) The SQL:1999 standard includes support
for roles. What is the benefit of including a feature that many systems already
support? This ensures that over time, all vendors who comply with the standard
will support this feature. Thus, users can use the feature without worrying about
portability of their application across DBMSs.

GRANT REFERENCES (bid) ON Boats TO Bill

Yuppy can insert or delete Reserves rows and can authorize someone else to do the
same. Michael can execute SELECT queries on Sailors and Reserves, and he can pass
this privilege to others for Sailors, but not for Reserves. With the SELECT privilege,
Michael can create a view that accesses the Sailors and Reserves tables (for example,
the ActiveSailors view) but he cannot grant SELECT on ActiveSailors to others.

On the other hand, suppose that Michael creates the following view:

CREATE VIEW YoungSailors (sid, age, rating)
AS SELECT S.sid, S.age, S.rating

FROM Sailors S
WHERE S.age < 18

The only underlying table is Sailors, for which Michael has SELECT with the grant
option. He therefore has SELECT with the grant option on YoungSailors and can pass
on the SELECT privilege on YoungSailors to Eric and Guppy:

GRANT SELECT ON YoungSailors TO Eric, Guppy

Eric and Guppy can now execute SELECT queries on the view YoungSailors—note,
however, that Eric and Guppy do not have the right to execute SELECT queries directly
on the underlying Sailors table.

Michael can also define constraints based on the information in the Sailors and Reserves
tables. For example, Michael can define the following table, which has an associated
table constraint:

CREATE TABLE Sneaky (maxrating INTEGER,
CHECK (maxrating >=

502 Chapter 17

(SELECT MAX (S.rating)
FROM Sailors S)))

By repeatedly inserting rows with gradually increasing maxrating values into the Sneaky
table until an insertion finally succeeds, Michael can find out the highest rating value
in the Sailors table! This example illustrates why SQL requires the creator of a table
constraint that refers to Sailors to possess the SELECT privilege on Sailors.

Returning to the privileges granted by Joe, Leah can update only the rating column
of Sailors rows. She can execute the following command, which sets all ratings to 8:

UPDATE Sailors S
SET S.rating = 8

However, she cannot execute the same command if the SET clause is changed to be SET
S.age = 25, because she is not allowed to update the age field. A more subtle point is
illustrated by the following command, which decrements the rating of all sailors:

UPDATE Sailors S
SET S.rating = S.rating - 1

Leah cannot execute this command because it requires the SELECT privilege on the
S.rating column and Leah does not have this privilege!

Bill can refer to the bid column of Boats as a foreign key in another table. For example,
Bill can create the Reserves table through the following command:

CREATE TABLE Reserves (sname CHAR(10) NOTNULL,
bid INTEGER,
day DATE,
PRIMARY KEY (bid, day),
UNIQUE (sname),
FOREIGN KEY (bid) REFERENCES Boats)

If Bill did not have the REFERENCES privilege on the bid column of Boats, he would
not be able to execute this CREATE statement because the FOREIGN KEY clause requires
this privilege.

Specifying just the INSERT (similarly, REFERENCES etc.) privilege in a GRANT command
is not the same as specifying SELECT(column-name) for each column currently in the
table. Consider the following command over the Sailors table, which has columns sid,
sname, rating, and age:

GRANT INSERT ON Sailors TO Michael

Security 503

Suppose that this command is executed and then a column is added to the Sailors
table (by executing an ALTER TABLE command). Note that Michael has the INSERT
privilege with respect to the newly added column! If we had executed the following
GRANT command, instead of the previous one, Michael would not have the INSERT
privilege on the new column:

GRANT INSERT ON Sailors(sid), Sailors(sname), Sailors(rating),
Sailors(age), TO Michael

There is a complementary command to GRANT that allows the withdrawal of privileges.
The syntax of the REVOKE command is as follows:

REVOKE [GRANT OPTION FOR] privileges
ON object FROM users { RESTRICT | CASCADE }

The command can be used to revoke either a privilege or just the grant option on a
privilege (by using the optional GRANT OPTION FOR clause). One of the two alterna-
tives, RESTRICT or CASCADE, must be specified; we will see what this choice means
shortly.

The intuition behind the GRANT command is clear: The creator of a base table or a
view is given all the appropriate privileges with respect to it and is allowed to pass
these privileges—including the right to pass along a privilege!—to other users. The
REVOKE command is, as expected, intended to achieve the reverse: A user who has
granted a privilege to another user may change his mind and want to withdraw the
granted privilege. The intuition behind exactly what effect a REVOKE command has is
complicated by the fact that a user may be granted the same privilege multiple times,
possibly by different users.

When a user executes a REVOKE command with the CASCADE keyword, the effect is
to withdraw the named privileges or grant option from all users who currently hold
these privileges solely through a GRANT command that was previously executed by the
same user who is now executing the REVOKE command. If these users received the
privileges with the grant option and passed it along, those recipients will also lose
their privileges as a consequence of the REVOKE command unless they also received
these privileges independently.

We illustrate the REVOKE command through several examples. First, consider what
happens after the following sequence of commands, where Joe is the creator of Sailors.

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

504 Chapter 17

Art loses the SELECT privilege on Sailors, of course. Then Bob, who received this
privilege from Art, and only Art, also loses this privilege. Bob’s privilege is said to be
abandoned when the privilege that it was derived from (Art’s SELECT privilege with
grant option, in this example) is revoked. When the CASCADE keyword is specified, all
abandoned privileges are also revoked (possibly causing privileges held by other users
to become abandoned and thereby revoked recursively). If the RESTRICT keyword is
specified in the REVOKE command, the command is rejected if revoking the privileges
just from the users specified in the command would result in other privileges becoming
abandoned.

Consider the following sequence, as another example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

As before, Art loses the SELECT privilege on Sailors. But what about Bob? Bob
received this privilege from Art, but he also received it independently (coincidentally,
directly from Joe). Thus Bob retains this privilege. Consider a third example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

Since Joe granted the privilege to Art twice and only revoked it once, does Art get
to keep the privilege? As per the SQL-92 standard, no. Even if Joe absentmindedly
granted the same privilege to Art several times, he can revoke it with a single REVOKE
command.

It is possible to revoke just the grant option on a privilege:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
REVOKE GRANT OPTION FOR SELECT ON Sailors

FROM Art CASCADE (executed by Joe)

This command would leave Art with the SELECT privilege on Sailors, but Art no longer
has the grant option on this privilege and therefore cannot pass it on to other users.

These examples bring out the intuition behind the REVOKE command, but they also
highlight the complex interaction between GRANT and REVOKE commands. When a
GRANT is executed, a privilege descriptor is added to a table of such descriptors
maintained by the DBMS. The privilege descriptor specifies the following: the grantor
of the privilege, the grantee who receives the privilege, the granted privilege (including

Security 505

the name of the object involved), and whether the grant option is included. When
a user creates a table or view and ‘automatically’ gets certain privileges, a privilege
descriptor with system as the grantor is entered into this table.

The effect of a series of GRANT commands can be described in terms of an authoriza-
tion graph in which the nodes are users—technically, they are authorization ids—and
the arcs indicate how privileges are passed. There is an arc from (the node for) user
1 to user 2 if user 1 executed a GRANT command giving a privilege to user 2; the arc
is labeled with the descriptor for the GRANT command. A GRANT command has no ef-
fect if the same privileges have already been granted to the same grantee by the same
grantor. The following sequence of commands illustrates the semantics of GRANT and
REVOKE commands when there is a cycle in the authorization graph:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Bob)
GRANT SELECT ON Sailors TO Cal WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Cal)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

The authorization graph for this example is shown in Figure 17.1. Note that we
indicate how Joe, the creator of Sailors, acquired the SELECT privilege from the DBMS
by introducing a System node and drawing an arc from this node to Joe’s node.

Joe Art

BobCal

System

(System, Joe, Select on Sailors, Yes)

(Joe, Cal, Select on Sailors, Yes)

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(Joe, Art, Select on Sailors, Yes)

(Cal, Bob, Select on Sailors, Yes)

Figure 17.1 Example Authorization Graph

As the graph clearly indicates, Bob’s grant to Art and Art’s grant to Bob (of the same
privilege) creates a cycle. Bob is subsequently given the same privilege by Cal, who
received it independently from Joe. At this point Joe decides to revoke the privilege
that he granted to Art.

506 Chapter 17

Let us trace the effect of this revocation. The arc from Joe to Art is removed because
it corresponds to the granting action that is revoked. All remaining nodes have the
following property: If node N has an outgoing arc labeled with a privilege, there is
a path from the System node to node N in which each arc label contains the same
privilege plus the grant option. That is, any remaining granting action is justified by
a privilege received (directly or indirectly) from the System. The execution of Joe’s
REVOKE command therefore stops at this point, with everyone continuing to hold the
SELECT privilege on Sailors.

This result may seem unintuitive because Art continues to have the privilege only
because he received it from Bob, and at the time that Bob granted the privilege to
Art, he had received it only from Art! Although Bob acquired the privilege through
Cal subsequently, shouldn’t the effect of his grant to Art be undone when executing
Joe’s REVOKE command? The effect of the grant from Bob to Art is not undone in
SQL-92. In effect, if a user acquires a privilege multiple times from different grantors,
SQL-92 treats each of these grants to the user as having occurred before that user
passed on the privilege to other users. This implementation of REVOKE is convenient
in many real-world situations. For example, if a manager is fired after passing on some
privileges to subordinates (who may in turn have passed the privileges to others), we
can ensure that only the manager’s privileges are removed by first redoing all of the
manager’s granting actions and then revoking his or her privileges. That is, we need
not recursively redo the subordinates’ granting actions.

To return to the saga of Joe and his friends, let us suppose that Joe decides to revoke
Cal’s SELECT privilege as well. Clearly, the arc from Joe to Cal corresponding to
the grant of this privilege is removed. The arc from Cal to Bob is removed as well,
since there is no longer a path from System to Cal that gives Cal the right to pass
the SELECT privilege on Sailors to Bob. The authorization graph at this intermediate
point is shown in Figure 17.2.

The graph now contains two nodes (Art and Bob) for which there are outgoing arcs
with labels containing the SELECT privilege on Sailors; thus, these users have granted
this privilege. However, although each node contains an incoming arc carrying the same
privilege, there is no such path from System to either of these nodes; thus, these users’
right to grant the privilege has been abandoned. We therefore remove the outgoing
arcs as well. In general, these nodes might have other arcs incident upon them, but
in this example, they now have no incident arcs. Joe is left as the only user with the
SELECT privilege on Sailors; Art and Bob have lost their privileges.

17.3.1 Grant and Revoke on Views and Integrity Constraints *

The privileges held by the creator of a view (with respect to the view) change over
time as he or she gains or loses privileges on the underlying tables. If the creator loses

Security 507

Joe Art

BobCal

System

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(System, Joe, Select on Sailors, Yes)

Figure 17.2 Example Authorization Graph during Revocation

a privilege held with the grant option, users who were given that privilege on the view
will lose it as well. There are some subtle aspects to the GRANT and REVOKE commands
when they involve views or integrity constraints. We will consider some examples that
highlight the following important points:

1. A view may be dropped because a SELECT privilege is revoked from the user who
created the view.

2. If the creator of a view gains additional privileges on the underlying tables, he or
she automatically gains additional privileges on the view.

3. The distinction between the REFERENCES and SELECT privileges is important.

Suppose that Joe created Sailors and gave Michael the SELECT privilege on it with
the grant option, and Michael then created the view YoungSailors and gave Eric the
SELECT privilege on YoungSailors. Eric now defines a view called FineYoungSailors:

CREATE VIEW FineYoungSailors (name, age, rating)
AS SELECT S.sname, S.age, S.rating

FROM YoungSailors S
WHERE S.rating > 6

What happens if Joe revokes the SELECT privilege on Sailors from Michael? Michael
no longer has the authority to execute the query used to define YoungSailors because
the definition refers to Sailors. Therefore, the view YoungSailors is dropped (i.e.,
destroyed). In turn, FineYoungSailors is dropped as well. Both these view definitions
are removed from the system catalogs; even if a remorseful Joe decides to give back

508 Chapter 17

the SELECT privilege on Sailors to Michael, the views are gone and must be created
afresh if they are required.

On a more happy note, suppose that everything proceeds as described above un-
til Eric defines FineYoungSailors; then, instead of revoking the SELECT privilege on
Sailors from Michael, Joe decides to also give Michael the INSERT privilege on Sailors.
Michael’s privileges on the view YoungSailors are upgraded to what he would have if
he were to create the view now. Thus he acquires the INSERT privilege on Young-
Sailors as well. (Note that this view is updatable.) What about Eric? His privileges
are unchanged.

Whether or not Michael has the INSERT privilege on YoungSailors with the grant
option depends on whether or not Joe gives him the INSERT privilege on Sailors with
the grant option. To understand this situation, consider Eric again. If Michael has the
INSERT privilege on YoungSailors with the grant option, he can pass this privilege to
Eric. Eric could then insert rows into the Sailors table because inserts on YoungSailors
are effected by modifying the underlying base table, Sailors. Clearly, we don’t want
Michael to be able to authorize Eric to make such changes unless Michael has the
INSERT privilege on Sailors with the grant option.

The REFERENCES privilege is very different from the SELECT privilege, as the following
example illustrates. Suppose that Joe is the creator of Boats. He can authorize another
user, say Fred, to create Reserves with a foreign key that refers to the bid column of
Boats by giving Fred the REFERENCES privilege with respect to this column. On the
other hand, if Fred has the SELECT privilege on the bid column of Boats but not the
REFERENCES privilege, Fred cannot create Reserves with a foreign key that refers to
Boats. If Fred creates Reserves with a foreign key column that refers to bid in Boats,
and later loses the REFERENCES privilege on the bid column of boats, the foreign key
constraint in Reserves is dropped; however, the Reserves table is not dropped.

To understand why the SQL-92 standard chose to introduce the REFERENCES privilege,
rather than to simply allow the SELECT privilege to be used in this situation, consider
what happens if the definition of Reserves specified the NO ACTION option with the
foreign key—Joe, the owner of Boats, may be prevented from deleting a row from
Boats because a row in Reserves refers to this Boats row! Giving Fred, the creator
of Reserves, the right to constrain updates on Boats in this manner goes beyond
simply allowing him to read the values in Boats, which is all that the SELECT privilege
authorizes.

17.4 MANDATORY ACCESS CONTROL *

Discretionary access control mechanisms, while generally effective, have certain weak-
nesses. In particular they are susceptible to Trojan horse schemes whereby a devious

Security 509

unauthorized user can trick an authorized user into disclosing sensitive data. For exam-
ple, suppose that student Tricky Dick wants to break into the grade tables of instructor
Trustin Justin. Dick does the following:

He creates a new table called MineAllMine and gives INSERT privileges on this
table to Justin (who is blissfully unaware of all this attention, of course).

He modifies the code of some DBMS application that Justin uses often to do a
couple of additional things: first, read the Grades table, and next, write the result
into MineAllMine.

Then he sits back and waits for the grades to be copied into MineAllMine and later
undoes the modifications to the application to ensure that Justin does not somehow find
out later that he has been cheated. Thus, despite the DBMS enforcing all discretionary
access controls—only Justin’s authorized code was allowed to access Grades—sensitive
data is disclosed to an intruder. The fact that Dick could surreptitiously modify
Justin’s code is outside the scope of the DBMS’s access control mechanism.

Mandatory access control mechanisms are aimed at addressing such loopholes in dis-
cretionary access control. The popular model for mandatory access control, called
the Bell-LaPadula model, is described in terms of objects (e.g., tables, views, rows,
columns), subjects (e.g., users, programs), security classes, and clearances. Each
database object is assigned a security class, and each subject is assigned clearance for
a security class; we will denote the class of an object or subject A as class(A). The
security classes in a system are organized according to a partial order, with a most
secure class and a least secure class. For simplicity, we will assume that there are
four classes: top secret (TS), secret (S), confidential (C), and unclassified (U). In this
system, TS > S > C > U, where A > B means that class A data is more sensitive than
class B data.

The Bell-LaPadula model imposes two restrictions on all reads and writes of database
objects:

1. Simple Security Property: Subject S is allowed to read object O only if class(S)
≥ class(O). For example, a user with TS clearance can read a table with C clear-
ance, but a user with C clearance is not allowed to read a table with TS classifi-
cation.

2. *-Property: Subject S is allowed to write object O only if class(S) ≤ class(O). For
example, a user with S clearance can only write objects with S or TS classification.

If discretionary access controls are also specified, these rules represent additional re-
strictions. Thus, to read or write a database object, a user must have the necessary
privileges (obtained via GRANT commands) and the security classes of the user and the
object must satisfy the preceding restrictions. Let us consider how such a mandatory

510 Chapter 17

control mechanism might have foiled Tricky Dick. The Grades table could be clas-
sified as S, Justin could be given clearance for S, and Tricky Dick could be given a
lower clearance (C). Dick can only create objects of C or lower classification; thus,
the table MineAllMine can have at most the classification C. When the application
program running on behalf of Justin (and therefore with clearance S) tries to copy
Grades into MineAllMine, it is not allowed to do so because class(MineAllMine) <

class(application), and the *-Property is violated.

17.4.1 Multilevel Relations and Polyinstantiation

To apply mandatory access control policies in a relational DBMS, a security class must
be assigned to each database object. The objects can be at the granularity of tables,
rows, or even individual column values. Let us assume that each row is assigned a
security class. This situation leads to the concept of a multilevel table, which is a
table with the surprising property that users with different security clearances will see
a different collection of rows when they access the same table.

Consider the instance of the Boats table shown in Figure 17.3. Users with S and TS
clearance will get both rows in the answer when they ask to see all rows in Boats. A
user with C clearance will get only the second row, and a user with U clearance will
get no rows.

bid bname color Security Class

101 Salsa Red S
102 Pinto Brown C

Figure 17.3 An Instance B1 of Boats

The Boats table is defined to have bid as the primary key. Suppose that a user with
clearance C wishes to enter the row 〈101,Picante,Scarlet,C〉. We have a dilemma:

If the insertion is permitted, two distinct rows in the table will have key 101.

If the insertion is not permitted because the primary key constraint is violated,
the user trying to insert the new row, who has clearance C, can infer that there is
a boat with bid=101 whose security class is higher than C. This situation compro-
mises the principle that users should not be able to infer any information about
objects that have a higher security classification.

This dilemma is resolved by effectively treating the security classification as part of
the key. Thus, the insertion is allowed to continue, and the table instance is modified
as shown in Figure 17.4.

Security 511

bid bname color Security Class

101 Salsa Red S
101 Picante Scarlet C
102 Pinto Brown C

Figure 17.4 Instance B1 after Insertion

Users with clearance C or U see just the rows for Picante and Pinto, but users with
clearance S or TS see all three rows. The two rows with bid=101 can be interpreted in
one of two ways: only the row with the higher classification (Salsa, with classification
S) actually exists, or both exist and their presence is revealed to users according to
their clearance level. The choice of interpretation is up to application developers and
users.

The presence of data objects that appear to have different values to users with differ-
ent clearances (for example, the boat with bid 101) is called polyinstantiation. If
we consider security classifications associated with individual columns, the intuition
underlying polyinstantiation can be generalized in a straightforward manner, but some
additional details must be addressed. We remark that the main drawback of manda-
tory access control schemes is their rigidity; policies are set by system administrators,
and the classification mechanisms are not flexible enough. A satisfactory combination
of discretionary and mandatory access controls is yet to be achieved.

17.4.2 Covert Channels, DoD Security Levels

Even if a DBMS enforces the mandatory access control scheme discussed above, infor-
mation can flow from a higher classification level to a lower classification level through
indirect means, called covert channels. For example, if a transaction accesses data
at more than one site in a distributed DBMS, the actions at the two sites must be
coordinated. The process at one site may have a lower clearance (say C) than the
process at another site (say S), and both processes have to agree to commit before the
transaction can be committed. This requirement can be exploited to pass information
with an S classification to the process with a C clearance: The transaction is repeat-
edly invoked, and the process with the C clearance always agrees to commit, whereas
the process with the S clearance agrees to commit if it wants to transmit a 1 bit and
does not agree if it wants to transmit a 0 bit.

In this (admittedly tortuous) manner, information with an S clearance can be sent to
a process with a C clearance as a stream of bits. This covert channel is an indirect
violation of the intent behind the *-Property. Additional examples of covert channels
can be found readily in statistical databases, which we discuss in Section 17.5.2.

512 Chapter 17

Current systems: Commercial RDBMSs are available that support discre-
tionary controls at the C2 level and mandatory controls at the B1 level. IBM
DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support
SQL-92’s features for discretionary access control. In general, they do not sup-
port mandatory access control; Oracle does offer a version of their product with
support for mandatory access control.

DBMS vendors have recently started implementing mandatory access control mecha-
nisms (although they are not part of the SQL-92 standard) because the United States
Department of Defense (DoD) requires such support for its systems. The DoD require-
ments can be described in terms of security levels A, B, C, and D of which A is the
most secure and D is the least secure.

Level C requires support for discretionary access control. It is divided into sublevels
C1 and C2; C2 also requires some degree of accountability through procedures such
as login verification and audit trails. Level B requires support for mandatory access
control. It is subdivided into levels B1, B2, and B3. Level B2 additionally requires
the identification and elimination of covert channels. Level B3 additionally requires
maintenance of audit trails and the designation of a security administrator (usually,
but not necessarily, the DBA). Level A, the most secure level, requires a mathematical
proof that the security mechanism enforces the security policy!

17.5 ADDITIONAL ISSUES RELATED TO SECURITY *

Security is a broad topic, and our coverage is necessarily limited. This section briefly
touches on some additional important issues.

17.5.1 Role of the Database Administrator

The database administrator (DBA) plays an important role in enforcing the security-
related aspects of a database design. In conjunction with the owners of the data, the
DBA will probably also contribute to developing a security policy. The DBA has a
special account, which we will call the system account, and is responsible for the
overall security of the system. In particular the DBA deals with the following:

1. Creating new accounts: Each new user or group of users must be assigned an
authorization id and a password. Note that application programs that access the
database have the same authorization id as the user executing the program.

2. Mandatory control issues: If the DBMS supports mandatory control—some
customized systems for applications with very high security requirements (for

Security 513

example, military data) provide such support—the DBA must assign security
classes to each database object and assign security clearances to each authorization
id in accordance with the chosen security policy.

The DBA is also responsible for maintaining the audit trail, which is essentially the
log of updates with the authorization id (of the user who is executing the transaction)
added to each log entry. This log is just a minor extension of the log mechanism
used to recover from crashes. Additionally, the DBA may choose to maintain a log
of all actions, including reads, performed by a user. Analyzing such histories of how
the DBMS was accessed can help prevent security violations by identifying suspicious
patterns before an intruder finally succeeds in breaking in, or it can help track down
an intruder after a violation has been detected.

17.5.2 Security in Statistical Databases

A statistical database is one that contains specific information on individuals or
events but is intended to permit only statistical queries. For example, if we maintained
a statistical database of information about sailors, we would allow statistical queries
about average ratings, maximum age, and so on, but would not want to allow queries
about individual sailors. Security in such databases poses some new problems because
it is possible to infer protected information (such as an individual sailor’s rating) from
answers to permitted statistical queries. Such inference opportunities represent covert
channels that can compromise the security policy of the database.

Suppose that sailor Sneaky Pete wants to know the rating of Admiral Horntooter, the
esteemed chairman of the sailing club, and happens to know that Horntooter is the
oldest sailor in the club. Pete repeatedly asks queries of the form “How many sailors
are there whose age is greater than X?” for various values of X, until the answer is 1.
Obviously, this sailor is Horntooter, the oldest sailor. Note that each of these queries
is a valid statistical query and is permitted. Let the value of X at this point be, say,
65. Pete now asks the query, “What is the maximum rating of all sailors whose age
is greater than 65?” Again, this query is permitted because it is a statistical query.
However, the answer to this query reveals Horntooter’s rating to Pete, and the security
policy of the database is violated.

One approach to preventing such violations is to require that each query must involve
at least some minimum number, say N, of rows. With a reasonable choice of N, Pete
would not be able to isolate the information about Horntooter, because the query
about the maximum rating would fail. This restriction, however, is easy to overcome.
By repeatedly asking queries of the form, “How many sailors are there whose age is
greater than X?” until the system rejects one such query, Pete identifies a set of N
sailors, including Horntooter. Let the value of X at this point be 55. Now, Pete can
ask two queries:

514 Chapter 17

“What is the sum of the ratings of all sailors whose age is greater than 55?” Since
N sailors have age greater than 55, this query is permitted.

“What is the sum of the ratings of all sailors, other than Horntooter, whose age
is greater than 55, and sailor Pete?” Since the set of sailors whose ratings are
added up now includes Pete instead of Horntooter, but is otherwise the same, the
number of sailors involved is still N, and this query is also permitted.

From the answers to these two queries, say A1 and A2, Pete, who knows his rating,
can easily calculate Horntooter’s rating as A1 − A2 + Pete’s rating.

Pete succeeded because he was able to ask two queries that involved many of the
same sailors. The number of rows examined in common by two queries is called their
intersection. If a limit were to be placed on the amount of intersection permitted
between any two queries issued by the same user, Pete could be foiled. Actually,
a truly fiendish (and patient) user can generally find out information about specific
individuals even if the system places a minimum number of rows bound (N) and a
maximum intersection bound (M) on queries, but the number of queries required to do
this grows in proportion to N/M . We can try to additionally limit the total number of
queries that a user is allowed to ask, but two users could still conspire to breach security.
By maintaining a log of all activity (including read-only accesses), such query patterns
can be detected, hopefully before a security violation occurs. This discussion should
make it clear, however, that security in statistical databases is difficult to enforce.

17.5.3 Encryption

A DBMS can use encryption to protect information in certain situations where the
normal security mechanisms of the DBMS are not adequate. For example, an intruder
may steal tapes containing some data or tap a communication line. By storing and
transmitting data in an encrypted form, the DBMS ensures that such stolen data is
not intelligible to the intruder.

The basic idea behind encryption is to apply an encryption algorithm, which may
be accessible to the intruder, to the original data and a user-specified or DBA-specified
encryption key, which is kept secret. The output of the algorithm is the encrypted
version of the data. There is also a decryption algorithm, which takes the encrypted
data and the encryption key as input and then returns the original data. Without the
correct encryption key, the decryption algorithm produces gibberish. This approach
forms the basis for the Data Encryption Standard (DES), which has been in use
since 1977, with an encryption algorithm that consists of character substitutions and
permutations. The main weakness of this approach is that authorized users must be
told the encryption key, and the mechanism for communicating this information is
vulnerable to clever intruders.

Security 515

Another approach to encryption, called public-key encryption, has become increas-
ingly popular in recent years. The encryption scheme proposed by Rivest, Shamir,
and Adleman, called RSA, is a well-known example of public-key encryption. Each
authorized user has a public encryption key, known to everyone, and a private
decryption key (used by the decryption algorithm), chosen by the user and known
only to him or her. The encryption and decryption algorithms themselves are assumed
to be publicly known. Consider a user called Sam. Anyone can send Sam a secret
message by encrypting the message using Sam’s publicly known encryption key. Only
Sam can decrypt this secret message because the decryption algorithm requires Sam’s
decryption key, known only to Sam. Since users choose their own decryption keys, the
weakness of DES is avoided.

The main issue for public-key encryption is how encryption and decryption keys are
chosen. Technically, public-key encryption algorithms rely on the existence of one-
way functions, which are functions whose inverse is computationally very hard to
determine. The RSA algorithm, for example, is based on the observation that although
checking whether a given number is prime is easy, determining the prime factors of a
nonprime number is extremely hard. (Determining the prime factors of a number with
over 100 digits can take years of CPU-time on the fastest available computers today.)

We now sketch the intuition behind the RSA algorithm, assuming that the data to be
encrypted is an integer I. To choose an encryption key and a decryption key, our friend
Sam would first choose a very large integer limit, which we assume is larger than the
largest integer that he will ever need to encode. Sam chooses limit to be the product of
two (large!) distinct prime numbers, say p ∗ q. Sam then chooses some prime number
e, chosen to be larger than both p and q, as his encryption key. Both limit and e are
made public and are used by the encryption algorithm.

Now comes the clever part: Sam chooses the decryption key d in a special way based
on p, q, and e.1 The essential point of the scheme is that it is easy to compute d
given e, p, and q, but very hard to compute d given just e and limit. In turn, this
difficulty depends on the fact that it is hard to determine the prime factors of limit,
which happen to be p and q.

A very important property of the encryption and decryption algorithms in this scheme
is that given the corresponding encryption and decryption keys, the algorithms are
inverses of each other—not only can data be encrypted and then decrypted, but we
can also apply the decryption algorithm first and then the encryption algorithm and
still get the original data back! This property can be exploited by two users, say Elmer
and Sam, to exchange messages in such a way that if Elmer gets a message that is
supposedly from Sam, he can verify that it is from Sam (in addition to being able to
decrypt the message), and further, prove that it is from Sam. This feature has obvious

1In case you are curious, d is chosen such that d ∗ e = 1 mod ((p − 1) ∗ (q − 1)).

516 Chapter 17

practical value. For example, suppose that Elmer’s company accepts orders for its
products over the Internet and stores these orders in a DBMS. The requirements are:

1. Only the company (Elmer) should be able to understand an order. A customer
(say Sam) who orders jewelry frequently may want to keep the orders private
(perhaps because he does not want to become a popular attraction for burglars!).

2. The company should be able to verify that an order that supposedly was placed
by customer Sam was indeed placed by Sam, and not by an intruder claiming to
be Sam. By the same token, Sam should not be able to claim that the company
forged an order from him—an order from Sam must provably come from Sam.

The company asks each customer to choose an encryption key (Sam chooses eSam)
and a decryption key (dSam) and to make the encryption key public. It also makes its
own encryption key (eElmer) public. The company’s decryption key (dElmer) is kept
secret, and customers are expected to keep their decryption keys secret as well.

Now let’s see how the two requirements can be met. To place an order, Sam could just
encrypt the order using encryption key eElmer, and Elmer could decrypt this using
decryption key dElmer. This simple approach satisfies the first requirement because
dElmer is known only to Elmer. However, since eElmer is known to everyone, someone
who wishes to play a prank could easily place an order on behalf of Sam without
informing Sam. From the order itself, there is no way for Elmer to verify that it came
from Sam. (Of course, one way to handle this is to give each customer an account and
to rely on the login procedure to verify the identity of the user placing the order—the
user would have to know the password for Sam’s account—but the company may have
thousands of customers and may not want to give each of them an account.)

A clever use of the encryption scheme, however, allows Elmer to verify whether the
order was indeed placed by Sam. Instead of encrypting the order using eElmer, Sam
first applies his decryption algorithm, using dSam, known only to Sam (and not even to
Elmer!), to the original order. Since the order was not encrypted first, this produces
gibberish, but as we shall see, there is a method in this madness. Next, Sam encrypts
the result of the previous step using eElmer and registers the result in the database.

When Elmer examines such an order, he first decrypts it using dElmer. This step
yields the gibberish that Sam generated from his order, because the encryption and
decryption algorithm are inverses when applied with the right keys. Next, Elmer
applies the encryption algorithm to this gibberish, using Sam’s encryption key eSam,
which is known to Elmer (and is public). This step yields the original unencrypted
order, again because the encryption and decryption algorithm are inverses!

If the order had been forged, the forger could not have known Sam’s decryption key
dSam; the final result would have been nonsensical, rather than the original order.

Security 517

Further, because the company does not know dSam, Sam cannot claim that a genuine
order was forged by the company.

The use of public-key cryptography is not limited to database systems, but it is likely
to find increasing application in the DBMS context thanks to the use of the DBMS as
a repository for the records of sensitive commercial transactions. Internet commerce,
as in the example above, could be a driving force in this respect.

17.6 POINTS TO REVIEW

There are three main security objectives. First, information should not be dis-
closed to unauthorized users (secrecy). Second, only authorized users should be
allowed to modify data (integrity). Third, authorized users should not be denied
access (availability). A security policy describes the security measures enforced.
These measures use the security mechanisms of the underlying DBMS. (Sec-
tion 17.1)

There are two main approaches to enforcing security measures. In discretionary
access control, users have privileges to access or modify objects in the database.
If they have permission, users can grant their privileges to other users, and the
DBMS keeps track of who has what rights. In mandatory access control, objects
are assigned security classes. Users have security clearance for a security class.
Rules involving the security class and a user’s clearance determine which database
objects the user can access. (Section 17.2)

SQL supports discretionary access through the GRANT and REVOKE commands.
The creator of a table has automatically all privileges on it and can pass privi-
leges on to other users or revoke privileges from other users. The effect of GRANT
commands can be described as adding edges into an authorization graph and the
effect of REVOKE commands can be described as removing edges from the graph.
(Section 17.3)

In mandatory access control, objects are organized into several security classes
and users are organized into several levels of clearance. The security classes form
a partial order. Reads and writes of an object are restricted by rules that involve
the security class of the object and the clearance of the user. Users with different
levels of clearance might see different records in the same table. This phenomenon
is called polyinstantiation. (Section 17.4)

The database administrator is responsible for the overall security of the system.
The DBA has a system account with special privileges. The DBA also maintains
an audit trail, a log of accesses to the DBMS with the corresponding user identi-
fiers. Statistical databases only allow summary queries, but clever users can infer
information about specific individuals from the answers to valid statistical queries.

518 Chapter 17

We can use encryption techniques to ensure that stolen data cannot be deciphered.
(Section 17.5)

EXERCISES

Exercise 17.1 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)

AS SELECT E.ename, E.age, E.salary

FROM Emp E

WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname

FROM SeniorEmp S

WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating

Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)

and explain why your example presents the update problem that it does.

4. Consider the following view definition:

CREATE VIEW DInfo (did, manager, numemps, totsals)

AS SELECT D.did, D.managerid, COUNT (*), SUM (E.salary)

FROM Emp E, Works W, Dept D

WHERE E.eid = W.eid AND W.did = D.did

GROUP BY D.did, D.managerid

(a) Give an example of a view update on DInfo that could (in principle) be implemented

automatically by updating one or more of the relations Emp, Works, and Dept.

Does SQL-92 allow such a view update?

(b) Give an example of a view update on DInfo that cannot (even in principle) be

implemented automatically by updating one or more of the relations Emp, Works,

and Dept. Explain why.

(c) How could the view DInfo help in enforcing security?

Exercise 17.2 You are the DBA for the VeryFine Toy Company, and you create a relation

called Employees with fields ename, dept, and salary. For authorization reasons, you also

define views EmployeeNames (with ename as the only attribute) and DeptInfo with fields

dept and avgsalary. The latter lists the average salary for each department.

Security 519

1. Show the view definition statements for EmployeeNames and DeptInfo.

2. What privileges should be granted to a user who needs to know only average department

salaries for the Toy and CS departments?

3. You want to authorize your secretary to fire people (you’ll probably tell him whom to

fire, but you want to be able to delegate this task), to check on who is an employee, and

to check on average department salaries. What privileges should you grant?

4. Continuing with the preceding scenario, you don’t want your secretary to be able to look

at the salaries of individuals. Does your answer to the previous question ensure this?

Be specific: Can your secretary possibly find out salaries of some individuals (depending

on the actual set of tuples), or can your secretary always find out the salary of any

individual that he wants to?

5. You want to give your secretary the authority to allow other people to read the Employ-

eeNames view. Show the appropriate command.

6. Your secretary defines two new views using the EmployeeNames view. The first is called

AtoRNames and simply selects names that begin with a letter in the range A to R. The

second is called HowManyNames and counts the number of names. You are so pleased

with this achievement that you decide to give your secretary the right to insert tuples into

the EmployeeNames view. Show the appropriate command, and describe what privileges

your secretary has after this command is executed.

7. Your secretary allows Todd to read the EmployeeNames relation and later quits. You

then revoke the secretary’s privileges. What happens to Todd’s privileges?

8. Give an example of a view update on the above schema that cannot be implemented

through updates to Employees.

9. You decide to go on an extended vacation, and to make sure that emergencies can be

handled, you want to authorize your boss Joe to read and modify the Employees relation

and the EmployeeNames relation (and Joe must be able to delegate authority, of course,

since he’s too far up the management hierarchy to actually do any work). Show the

appropriate SQL statements. Can Joe read the DeptInfo view?

10. After returning from your (wonderful) vacation, you see a note from Joe, indicating that

he authorized his secretary Mike to read the Employees relation. You want to revoke

Mike’s SELECT privilege on Employees, but you don’t want to revoke the rights that you

gave to Joe, even temporarily. Can you do this in SQL?

11. Later you realize that Joe has been quite busy. He has defined a view called AllNames

using the view EmployeeNames, defined another relation called StaffNames that he has

access to (but that you can’t access), and given his secretary Mike the right to read from

the AllNames view. Mike has passed this right on to his friend Susan. You decide that

even at the cost of annoying Joe by revoking some of his privileges, you simply have

to take away Mike and Susan’s rights to see your data. What REVOKE statement would

you execute? What rights does Joe have on Employees after this statement is executed?

What views are dropped as a consequence?

Exercise 17.3 Briefly answer the following questions.

1. Explain the intuition behind the two rules in the Bell-LaPadula model for mandatory

access control.

520 Chapter 17

2. Give an example of how covert channels can be used to defeat the Bell-LaPadula model.

3. Give an example of polyinstantiation.

4. Describe a scenario in which mandatory access controls prevent a breach of security that

cannot be prevented through discretionary controls.

5. Describe a scenario in which discretionary access controls are required to enforce a secu-

rity policy that cannot be enforced using only mandatory controls.

6. If a DBMS already supports discretionary and mandatory access controls, is there a need

for encryption?

7. Explain the need for each of the following limits in a statistical database system:

(a) A maximum on the number of queries a user can pose.

(b) A minimum on the number of tuples involved in answering a query.

(c) A maximum on the intersection of two queries (i.e., on the number of tuples that

both queries examine).

8. Explain the use of an audit trail, with special reference to a statistical database system.

9. What is the role of the DBA with respect to security?

10. What is public-key encryption? How does it differ from the encryption approach taken

in the Data Encryption Standard (DES), and in what ways is it better than DES?

11. What are one-way functions, and what role do they play in public-key encryption?

12. Explain how a company offering services on the Internet could use public-key encryption

to make its order-entry process secure. Describe how you would use DES encryption for

the same purpose, and contrast the public-key and DES approaches.

PROJECT-BASED EXERCISES

Exercise 17.4 Is there any support for views or authorization in Minibase?

BIBLIOGRAPHIC NOTES

The authorization mechanism of System R, which greatly influenced the GRANT and REVOKE

paradigm in SQL-92, is described in [290]. A good general treatment of security and cryptog-

raphy is presented in [179], and an overview of database security can be found in [119] and

[404]. Security in statistical databases is investigated in several papers, including [178] and

[148]. Multilevel security is discussed in several papers, including [348, 434, 605, 621].

PART VI

TRANSACTION MANAGEMENT

18 TRANSACTION MANAGEMENT
OVERVIEW

I always say, keep a diary and someday it’ll keep you.

—Mae West

In this chapter we cover the concept of a transaction, which is the foundation for
concurrent execution and recovery from system failure in a DBMS. A transaction is
defined as any one execution of a user program in a DBMS and differs from an execution
of a program outside the DBMS (e.g., a C program executing on Unix) in important
ways. (Executing the same program several times will generate several transactions.)

For performance reasons, a DBMS has to interleave the actions of several transactions.
However, to give users a simple way to understand the effect of running their programs,
the interleaving is done carefully to ensure that the result of a concurrent execution of
transactions is nonetheless equivalent (in its effect upon the database) to some serial,
or one-at-a-time, execution of the same set of transactions. How the DBMS handles
concurrent executions is an important aspect of transaction management and is the
subject of concurrency control. A closely related issue is how the DBMS handles partial
transactions, or transactions that are interrupted before they run to normal completion.
The DBMS ensures that the changes made by such partial transactions are not seen
by other transactions. How this is achieved is the subject of crash recovery. In this
chapter, we provide a broad introduction to concurrency control and crash recovery in
a DBMS. The details are developed further in the next two chapters.

Section 18.1 reviews the transaction concept, which we discussed briefly in Chapter
1. Section 18.2 presents an abstract way of describing an interleaved execution of
several transactions, called a schedule. Section 18.3 discusses various problems that
can arise due to interleaved execution. We conclude with an overview of crash recovery
in Section 18.5.

18.1 THE CONCEPT OF A TRANSACTION

A user writes data access/update programs in terms of the high-level query and up-
date language supported by the DBMS. To understand how the DBMS handles such
requests, with respect to concurrency control and recovery, it is convenient to regard

523

524 Chapter 18

an execution of a user program, or transaction, as a series of reads and writes of
database objects:

To read a database object, it is first brought into main memory (specifically, some
frame in the buffer pool) from disk, and then its value is copied into a program
variable.

To write a database object, an in-memory copy of the object is first modified and
then written to disk.

Database ‘objects’ are the units in which programs read or write information. The
units could be pages, records, and so on, but this is dependent on the DBMS and
is not central to the principles underlying concurrency control or recovery. In this
chapter, we will consider a database to be a fixed collection of independent objects.
When objects are added to or deleted from a database, or there are relationships
between database objects that we want to exploit for performance, some additional
issues arise; we discuss these issues in Section 19.3.

There are four important properties of transactions that a DBMS must ensure to
maintain data in the face of concurrent access and system failures:

1. Users should be able to regard the execution of each transaction as atomic: either
all actions are carried out or none are. Users should not have to worry about the
effect of incomplete transactions (say, when a system crash occurs).

2. Each transaction, run by itself with no concurrent execution of other transactions,
must preserve the consistency of the database. This property is called consis-
tency, and the DBMS assumes that it holds for each transaction. Ensuring this
property of a transaction is the responsibility of the user.

3. Users should be able to understand a transaction without considering the effect of
other concurrently executing transactions, even if the DBMS interleaves the ac-
tions of several transactions for performance reasons. This property is sometimes
referred to as isolation: Transactions are isolated, or protected, from the effects
of concurrently scheduling other transactions.

4. Once the DBMS informs the user that a transaction has been successfully com-
pleted, its effects should persist even if the system crashes before all its changes
are reflected on disk. This property is called durability.

The acronym ACID is sometimes used to refer to the four properties of transactions
that we have presented here: atomicity, consistency, isolation and durability. We now
consider how each of these properties is ensured in a DBMS.

Transaction Management Overview 525

18.1.1 Consistency and Isolation

Users are responsible for ensuring transaction consistency. That is, the user who
submits a transaction must ensure that when run to completion by itself against a
‘consistent’ database instance, the transaction will leave the database in a ‘consistent’
state. For example, the user may (naturally!) have the consistency criterion that
fund transfers between bank accounts should not change the total amount of money
in the accounts. To transfer money from one account to another, a transaction must
debit one account, temporarily leaving the database inconsistent in a global sense, even
though the new account balance may satisfy any integrity constraints with respect to
the range of acceptable account balances. The user’s notion of a consistent database
is preserved when the second account is credited with the transferred amount. If a
faulty transfer program always credits the second account with one dollar less than
the amount debited from the first account, the DBMS cannot be expected to detect
inconsistencies due to such errors in the user program’s logic.

The isolation property is ensured by guaranteeing that even though actions of several
transactions might be interleaved, the net effect is identical to executing all transactions
one after the other in some serial order. (We discuss how the DBMS implements
this guarantee in Section 18.4.) For example, if two transactions T1 and T2 are
executed concurrently, the net effect is guaranteed to be equivalent to executing (all
of) T1 followed by executing T2 or executing T2 followed by executing T1. (The
DBMS provides no guarantees about which of these orders is effectively chosen.) If
each transaction maps a consistent database instance to another consistent database
instance, executing several transactions one after the other (on a consistent initial
database instance) will also result in a consistent final database instance.

Database consistency is the property that every transaction sees a consistent database
instance. Database consistency follows from transaction atomicity, isolation, and trans-
action consistency. Next, we discuss how atomicity and durability are guaranteed in a
DBMS.

18.1.2 Atomicity and Durability

Transactions can be incomplete for three kinds of reasons. First, a transaction can be
aborted, or terminated unsuccessfully, by the DBMS because some anomaly arises
during execution. If a transaction is aborted by the DBMS for some internal reason,
it is automatically restarted and executed anew. Second, the system may crash (e.g.,
because the power supply is interrupted) while one or more transactions are in progress.
Third, a transaction may encounter an unexpected situation (for example, read an
unexpected data value or be unable to access some disk) and decide to abort (i.e.,
terminate itself).

526 Chapter 18

Of course, since users think of transactions as being atomic, a transaction that is
interrupted in the middle may leave the database in an inconsistent state. Thus a
DBMS must find a way to remove the effects of partial transactions from the database,
that is, it must ensure transaction atomicity: either all of a transaction’s actions are
carried out, or none are. A DBMS ensures transaction atomicity by undoing the actions
of incomplete transactions. This means that users can ignore incomplete transactions
in thinking about how the database is modified by transactions over time. To be able
to do this, the DBMS maintains a record, called the log, of all writes to the database.
The log is also used to ensure durability: If the system crashes before the changes
made by a completed transaction are written to disk, the log is used to remember and
restore these changes when the system restarts.

The DBMS component that ensures atomicity and durability is called the recovery
manager and is discussed further in Section 18.5.

18.2 TRANSACTIONS AND SCHEDULES

A transaction is seen by the DBMS as a series, or list, of actions. The actions that
can be executed by a transaction include reads and writes of database objects. A
transaction can also be defined as a set of actions that are partially ordered. That is,
the relative order of some of the actions may not be important. In order to concentrate
on the main issues, we will treat transactions (and later, schedules) as a list of actions.
Further, to keep our notation simple, we’ll assume that an object O is always read
into a program variable that is also named O. We can therefore denote the action of
a transaction T reading an object O as RT (O); similarly, we can denote writing as
WT (O). When the transaction T is clear from the context, we will omit the subscript.

In addition to reading and writing, each transaction must specify as its final action
either commit (i.e., complete successfully) or abort (i.e., terminate and undo all the
actions carried out thus far). AbortT denotes the action of T aborting, and CommitT
denotes T committing.

A schedule is a list of actions (reading, writing, aborting, or committing) from a
set of transactions, and the order in which two actions of a transaction T appear in
a schedule must be the same as the order in which they appear in T . Intuitively,
a schedule represents an actual or potential execution sequence. For example, the
schedule in Figure 18.1 shows an execution order for actions of two transactions T1
and T2. We move forward in time as we go down from one row to the next. We
emphasize that a schedule describes the actions of transactions as seen by the DBMS.
In addition to these actions, a transaction may carry out other actions, such as reading
or writing from operating system files, evaluating arithmetic expressions, and so on.

Transaction Management Overview 527

T1 T2
R(A)
W (A)

R(B)
W (B)

R(C)
W (C)

Figure 18.1 A Schedule Involving Two Transactions

Notice that the schedule in Figure 18.1 does not contain an abort or commit action
for either transaction. A schedule that contains either an abort or a commit for each
transaction whose actions are listed in it is called a complete schedule. A complete
schedule must contain all the actions of every transaction that appears in it. If the
actions of different transactions are not interleaved—that is, transactions are executed
from start to finish, one by one—we call the schedule a serial schedule.

18.3 CONCURRENT EXECUTION OF TRANSACTIONS

Now that we’ve introduced the concept of a schedule, we have a convenient way to
describe interleaved executions of transactions. The DBMS interleaves the actions of
different transactions to improve performance, in terms of increased throughput or
improved response times for short transactions, but not all interleavings should be
allowed. In this section we consider what interleavings, or schedules, a DBMS should
allow.

18.3.1 Motivation for Concurrent Execution

The schedule shown in Figure 18.1 represents an interleaved execution of the two trans-
actions. Ensuring transaction isolation while permitting such concurrent execution is
difficult, but is necessary for performance reasons. First, while one transaction is wait-
ing for a page to be read in from disk, the CPU can process another transaction. This
is because I/O activity can be done in parallel with CPU activity in a computer. Over-
lapping I/O and CPU activity reduces the amount of time disks and processors are idle,
and increases system throughput (the average number of transactions completed in
a given time). Second, interleaved execution of a short transaction with a long trans-
action usually allows the short transaction to complete quickly. In serial execution, a
short transaction could get stuck behind a long transaction leading to unpredictable
delays in response time, or average time taken to complete a transaction.

528 Chapter 18

18.3.2 Serializability

To begin with, we assume that the database designer has defined some notion of a
consistent database state. For example, we can define a consistency criterion for a
university database to be that the sum of employee salaries in each department should
be less than 80 percent of the budget for that department. We require that each
transaction must preserve database consistency; it follows that any serial schedule
that is complete will also preserve database consistency. That is, when a complete
serial schedule is executed against a consistent database, the result is also a consistent
database.

A serializable schedule over a set S of committed transactions is a schedule whose
effect on any consistent database instance is guaranteed to be identical to that of
some complete serial schedule over S. That is, the database instance that results from
executing the given schedule is identical to the database instance that results from
executing the transactions in some serial order. There are some important points to
note in this definition:

Executing the transactions serially in different orders may produce different re-
sults, but all are presumed to be acceptable; the DBMS makes no guarantees
about which of them will be the outcome of an interleaved execution.

The above definition of a serializable schedule does not cover the case of schedules
containing aborted transactions. For simplicity, we begin by discussing interleaved
execution of a set of complete, committed transactions and consider the impact
of aborted transactions in Section 18.3.4.

If a transaction computes a value and prints it to the screen, this is an ‘effect’
that is not directly captured in the state of the database. We will assume that all
such values are also written into the database, for simplicity.

18.3.3 Some Anomalies Associated with Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency
preserving, committed transactions could run against a consistent database and leave
it in an inconsistent state. Two actions on the same data object conflict if at least
one of them is a write. The three anomalous situations can be described in terms of
when the actions of two transactions T1 and T2 conflict with each other: in a write-
read (WR) conflict T2 reads a data object previously written by T1; we define
read-write (RW) and write-write (WW) conflicts similarly.

Transaction Management Overview 529

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction T2 could read a database object
A that has been modified by another transaction T1, which has not yet committed.
Such a read is called a dirty read. A simple example illustrates how such a schedule
could lead to an inconsistent database state. Consider two transactions T1 and T2,
each of which, run alone, preserves database consistency: T1 transfers $100 from A to
B, and T2 increments both A and B by 6 percent (e.g., annual interest is deposited
into these two accounts). Suppose that their actions are interleaved so that (1) the
account transfer program T1 deducts $100 from account A, then (2) the interest deposit
program T2 reads the current values of accounts A and B and adds 6 percent interest
to each, and then (3) the account transfer program credits $100 to account B. The
corresponding schedule, which is the view the DBMS has of this series of events, is
illustrated in Figure 18.2. The result of this schedule is different from any result that

T1 T2
R(A)
W (A)

R(A)
W (A)
R(B)
W (B)
Commit

R(B)
W (B)
Commit

Figure 18.2 Reading Uncommitted Data

we would get by running one of the two transactions first and then the other. The
problem can be traced to the fact that the value of A written by T1 is read by T2
before T1 has completed all its changes.

The general problem illustrated here is that T1 may write some value into A that
makes the database inconsistent. As long as T1 overwrites this value with a ‘correct’
value of A before committing, no harm is done if T1 and T2 run in some serial order,
because T2 would then not see the (temporary) inconsistency. On the other hand,
interleaved execution can expose this inconsistency and lead to an inconsistent final
database state.

Note that although a transaction must leave a database in a consistent state after it
completes, it is not required to keep the database consistent while it is still in progress.
Such a requirement would be too restrictive: To transfer money from one account

530 Chapter 18

to another, a transaction must debit one account, temporarily leaving the database
inconsistent, and then credit the second account, restoring consistency again.

Unrepeatable Reads (RW Conflicts)

The second way in which anomalous behavior could result is that a transaction T2
could change the value of an object A that has been read by a transaction T1, while
T1 is still in progress. This situation causes two problems.

First, if T1 tries to read the value of A again, it will get a different result, even though
it has not modified A in the meantime. This situation could not arise in a serial
execution of two transactions; it is called an unrepeatable read.

Second, suppose that both T1 and T2 read the same value of A, say, 5, and then T1,
which wants to increment A by 1, changes it to 6, and T2, which wants to decrement
A by 1, decrements the value that it read (i.e., 5) and changes A to 4. Running
these transactions in any serial order should leave A with a final value of 5; thus, the
interleaved execution leads to an inconsistent state. The underlying problem here is
that although T2’s change is not directly read by T1, it invalidates T1’s assumption
about the value of A, which is the basis for some of T1’s subsequent actions.

Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T2 could overwrite the
value of an object A, which has already been modified by a transaction T1, while T1
is still in progress. Even if T2 does not read the value of A written by T1, a potential
problem exists as the following example illustrates.

Suppose that Harry and Larry are two employees, and their salaries must be kept equal.
Transaction T1 sets their salaries to $1,000 and transaction T2 sets their salaries to
$2,000. If we execute these in the serial order T1 followed by T2, both receive the
salary $2,000; the serial order T2 followed by T1 gives each the salary $1,000. Either
of these is acceptable from a consistency standpoint (although Harry and Larry may
prefer a higher salary!). Notice that neither transaction reads a salary value before
writing it—such a write is called a blind write, for obvious reasons.

Now, consider the following interleaving of the actions of T1 and T2: T1 sets Harry’s
salary to $1,000, T2 sets Larry’s salary to $2,000, T1 sets Larry’s salary to $1,000,
and finally T2 sets Harry’s salary to $2,000. The result is not identical to the result
of either of the two possible serial executions, and the interleaved schedule is therefore
not serializable. It violates the desired consistency criterion that the two salaries must
be equal.

Transaction Management Overview 531

18.3.4 Schedules Involving Aborted Transactions

We now extend our definition of serializability to include aborted transactions.1 In-
tuitively, all actions of aborted transactions are to be undone, and we can therefore
imagine that they were never carried out to begin with. Using this intuition, we ex-
tend the definition of a serializable schedule as follows: A serializable schedule over
a set S of transactions is a schedule whose effect on any consistent database instance
is guaranteed to be identical to that of some complete serial schedule over the set of
committed transactions in S.

This definition of serializability relies on the actions of aborted transactions being
undone completely, which may be impossible in some situations. For example, suppose
that (1) an account transfer program T1 deducts $100 from account A, then (2) an
interest deposit program T2 reads the current values of accounts A and B and adds 6
percent interest to each, then commits, and then (3) T1 is aborted. The corresponding
schedule is shown in Figure 18.3. Now, T2 has read a value for A that should never have

T1 T2
R(A)
W (A)

R(A)
W (A)
R(B)
W (B)
Commit

Abort

Figure 18.3 An Unrecoverable Schedule

been there! (Recall that aborted transactions’ effects are not supposed to be visible to
other transactions.) If T2 had not yet committed, we could deal with the situation by
cascading the abort of T1 and also aborting T2; this process would recursively abort any
transaction that read data written by T2, and so on. But T2 has already committed,
and so we cannot undo its actions! We say that such a schedule is unrecoverable. A
recoverable schedule is one in which transactions commit only after (and if!) all
transactions whose changes they read commit. If transactions read only the changes
of committed transactions, not only is the schedule recoverable, but also aborting a
transaction can be accomplished without cascading the abort to other transactions.
Such a schedule is said to avoid cascading aborts.

1We must also consider incomplete transactions for a rigorous discussion of system failures, because
transactions that are active when the system fails are neither aborted nor committed. However, system
recovery usually begins by aborting all active transactions, and for our informal discussion, considering
schedules involving committed and aborted transactions is sufficient.

532 Chapter 18

There is another potential problem in undoing the actions of a transaction. Suppose
that a transaction T2 overwrites the value of an object A that has been modified by a
transaction T1, while T1 is still in progress, and T1 subsequently aborts. All of T1’s
changes to database objects are undone by restoring the value of any object that it
modified to the value of the object before T1’s changes. (We will look at the details
of how a transaction abort is handled in Chapter 20.) When T1 is aborted, and its
changes are undone in this manner, T2’s changes are lost as well, even if T2 decides
to commit. So, for example, if A originally had the value 5, then was changed by
T1 to 6, and by T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even if
T2 commits, its change to A is inadvertently lost. A concurrency control technique
called Strict 2PL, introduced in Section 18.4, can prevent this problem (as discussed
in Section 19.1.1).

18.4 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules are al-
lowed, and that no actions of committed transactions are lost while undoing aborted
transactions. A DBMS typically uses a locking protocol to achieve this. A locking
protocol is a set of rules to be followed by each transaction (and enforced by the
DBMS), in order to ensure that even though actions of several transactions might be
interleaved, the net effect is identical to executing all transactions in some serial order.

18.4.1 Strict Two-Phase Locking (Strict 2PL)

The most widely used locking protocol, called Strict Two-Phase Locking, or Strict 2PL,
has two rules. The first rule is

(1) If a transaction T wants to read (respectively, modify) an object, it first
requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the object; an ad-
ditional shared lock is not required. A transaction that requests a lock is suspended
until the DBMS is able to grant it the requested lock. The DBMS keeps track of the
locks it has granted and ensures that if a transaction holds an exclusive lock on an
object, no other transaction holds a shared or exclusive lock on the same object. The
second rule in Strict 2PL is:

(2) All locks held by a transaction are released when the transaction is com-
pleted.

Requests to acquire and release locks can be automatically inserted into transactions
by the DBMS; users need not worry about these details.

Transaction Management Overview 533

In effect the locking protocol allows only ‘safe’ interleavings of transactions. If two
transactions access completely independent parts of the database, they will be able to
concurrently obtain the locks that they need and proceed merrily on their ways. On
the other hand, if two transactions access the same object, and one of them wants
to modify it, their actions are effectively ordered serially—all actions of one of these
transactions (the one that gets the lock on the common object first) are completed
before (this lock is released and) the other transaction can proceed.

We denote the action of a transaction T requesting a shared (respectively, exclusive)
lock on object O as ST (O) (respectively, XT (O)), and omit the subscript denoting the
transaction when it is clear from the context. As an example, consider the schedule
shown in Figure 18.2. This interleaving could result in a state that cannot result from
any serial execution of the three transactions. For instance, T1 could change A from 10
to 20, then T2 (which reads the value 20 for A) could change B from 100 to 200, and
then T1 would read the value 200 for B. If run serially, either T1 or T2 would execute
first, and read the values 10 for A and 100 for B: Clearly, the interleaved execution is
not equivalent to either serial execution.

If the Strict 2PL protocol is used, the above interleaving is disallowed. Let us see
why. Assuming that the transactions proceed at the same relative speed as before, T1
would obtain an exclusive lock on A first and then read and write A (Figure 18.4).
Then, T2 would request a lock on A. However, this request cannot be granted until

T1 T2
X(A)
R(A)
W (A)

Figure 18.4 Schedule Illustrating Strict 2PL

T1 releases its exclusive lock on A, and the DBMS therefore suspends T2. T1 now
proceeds to obtain an exclusive lock on B, reads and writes B, then finally commits, at
which time its locks are released. T2’s lock request is now granted, and it proceeds. In
this example the locking protocol results in a serial execution of the two transactions,
shown in Figure 18.5. In general, however, the actions of different transactions could
be interleaved. As an example, consider the interleaving of two transactions shown in
Figure 18.6, which is permitted by the Strict 2PL protocol.

18.5 INTRODUCTION TO CRASH RECOVERY

The recovery manager of a DBMS is responsible for ensuring transaction atomicity
and durability. It ensures atomicity by undoing the actions of transactions that do

534 Chapter 18

T1 T2
X(A)
R(A)
W (A)
X(B)
R(B)
W (B)
Commit

X(A)
R(A)
W (A)
X(B)
R(B)
W (B)
Commit

Figure 18.5 Schedule Illustrating Strict 2PL with Serial Execution

T1 T2
S(A)
R(A)

S(A)
R(A)
X(B)
R(B)
W (B)
Commit

X(C)
R(C)
W (C)
Commit

Figure 18.6 Schedule Following Strict 2PL with Interleaved Actions

Transaction Management Overview 535

not commit and durability by making sure that all actions of committed transactions
survive system crashes, (e.g., a core dump caused by a bus error) and media failures
(e.g., a disk is corrupted).

When a DBMS is restarted after crashes, the recovery manager is given control and
must bring the database to a consistent state. The recovery manager is also responsible
for undoing the actions of an aborted transaction. To see what it takes to implement a
recovery manager, it is necessary to understand what happens during normal execution.

The transaction manager of a DBMS controls the execution of transactions. Before
reading and writing objects during normal execution, locks must be acquired (and
released at some later time) according to a chosen locking protocol.2 For simplicity of
exposition, we make the following assumption:

Atomic Writes: Writing a page to disk is an atomic action.

This implies that the system does not crash while a write is in progress and is unrealis-
tic. In practice, disk writes do not have this property, and steps must be taken during
restart after a crash (Section 20.2) to verify that the most recent write to a given page
was completed successfully and to deal with the consequences if not.

18.5.1 Stealing Frames and Forcing Pages

With respect to writing objects, two additional questions arise:

1. Can the changes made to an object O in the buffer pool by a transaction T

be written to disk before T commits? Such writes are executed when another
transaction wants to bring in a page and the buffer manager chooses to replace
the page containing O; of course, this page must have been unpinned by T . If
such writes are allowed, we say that a steal approach is used. (Informally, the
second transaction ‘steals’ a frame from T .)

2. When a transaction commits, must we ensure that all the changes it has made
to objects in the buffer pool are immediately forced to disk? If so, we say that a
force approach is used.

From the standpoint of implementing a recovery manager, it is simplest to use a buffer
manager with a no-steal, force approach. If no-steal is used, we don’t have to undo
the changes of an aborted transaction (because these changes have not been written to
disk), and if force is used, we don’t have to redo the changes of a committed transaction

2A concurrency control technique that does not involve locking could be used instead, but we will
assume that locking is used.

536 Chapter 18

if there is a subsequent crash (because all these changes are guaranteed to have been
written to disk at commit time).

However, these policies have important drawbacks. The no-steal approach assumes
that all pages modified by ongoing transactions can be accommodated in the buffer
pool, and in the presence of large transactions (typically run in batch mode, e.g., payroll
processing), this assumption is unrealistic. The force approach results in excessive page
I/O costs. If a highly used page is updated in succession by 20 transactions, it would
be written to disk 20 times. With a no-force approach, on the other hand, the in-
memory copy of the page would be successively modified and written to disk just once,
reflecting the effects of all 20 updates, when the page is eventually replaced in the
buffer pool (in accordance with the buffer manager’s page replacement policy).

For these reasons, most systems use a steal, no-force approach. Thus, if a frame is
dirty and chosen for replacement, the page it contains is written to disk even if the
modifying transaction is still active (steal); in addition, pages in the buffer pool that
are modified by a transaction are not forced to disk when the transaction commits
(no-force).

18.5.2 Recovery-Related Steps during Normal Execution

The recovery manager of a DBMS maintains some information during normal execution
of transactions in order to enable it to perform its task in the event of a failure. In
particular, a log of all modifications to the database is saved on stable storage,
which is guaranteed (with very high probability) to survive crashes and media failures.
Stable storage is implemented by maintaining multiple copies of information (perhaps
in different locations) on nonvolatile storage devices such as disks or tapes. It is
important to ensure that the log entries describing a change to the database are written
to stable storage before the change is made; otherwise, the system might crash just
after the change, leaving us without a record of the change.

The log enables the recovery manager to undo the actions of aborted and incomplete
transactions and to redo the actions of committed transactions. For example, a trans-
action that committed before the crash may have made updates to a copy (of a database
object) in the buffer pool, and this change may not have been written to disk before
the crash, because of a no-force approach. Such changes must be identified using the
log, and must be written to disk. Further, changes of transactions that did not commit
prior to the crash might have been written to disk because of a steal approach. Such
changes must be identified using the log and then undone.

Transaction Management Overview 537

18.5.3 Overview of ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force approach.
When the recovery manager is invoked after a crash, restart proceeds in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have not
been written to disk) and active transactions at the time of the crash.

2. Redo: Repeats all actions, starting from an appropriate point in the log, and
restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that the
database reflects only the actions of committed transactions.

The ARIES algorithm is discussed further in Chapter 20.

18.6 POINTS TO REVIEW

A transaction is any one execution of a user program. A DBMS has to ensure four
important properties of transactions: atomicity (all actions in a transaction are
carried out or none), consistency (as long as each transaction leaves the DBMS in
a consistent state, no transaction will see an inconsistent DBMS state), isolation
(two concurrently executing transactions do not have to consider interference),
and durability (if a transaction completes successfully, its effects persist even if
the system crashes). (Section 18.1)

A transaction is a series of reads and writes of database objects. As its final action,
each transaction either commits (completes successfully) or aborts (terminates
unsuccessfully). If a transaction commits, its actions have to be durable. If a
transaction aborts, all its actions have to be undone. A schedule is a potential
execution sequence for the actions in a set of transactions. (Section 18.2)

Concurrent execution of transactions improves overall system performance by in-
creasing system throughput (the average number of transactions completed in a
given time) and response time (the average time taken to complete a transaction).
Two actions on the same data object conflict if at least one of the actions is a
write. Three types of conflicting actions lead to three different anomalies. In a
write-read (WR) conflict, one transaction could read uncommitted data from an-
other transaction. Such a read is called a dirty read. In a read-write (RW) conflict,
a transaction could read a data object twice with different results. Such a situa-
tion is called an unrepeatable read. In a write-write (WW) conflict, a transaction
overwrites a data object written by another transaction. If the first transaction
subsequently aborts, the change made by the second transaction could be lost
unless a complex recovery mechanism is used. A serializable schedule is a schedule

538 Chapter 18

whose effect is identical to a serial schedule. A recoverable schedule is a schedule
in which transactions commit only after all transactions whose changes they read
have committed. A schedule avoids cascading aborts if it only reads data written
by already committed transactions. A strict schedule only reads or writes data
written by already committed transactions. (Section 18.3)

A locking protocol ensures that only schedules with desirable properties are gen-
erated. In Strict Two-Phase Locking (Strict 2PL), a transaction first acquires a
lock before it accesses a data object. Locks can be shared (read-locks) or exclusive
(write-locks). In Strict 2PL, all locks held by a transaction must be held until the
transaction completes. (Section 18.4)

The recovery manager of a DBMS ensures atomicity if transactions abort and
durability if the system crashes or storage media fail. It maintains a log of all
modifications to the database. The transaction manager controls the execution
of all transactions. If changes made by a transaction can be propagated to disk
before the transaction has committed, we say that a steal approach is used. If all
changes made by a transaction are immediately forced to disk after the transaction
commits, we say that a force approach is used. ARIES is a recovery algorithm
with a steal, no-force approach. (Section 18.5)

EXERCISES

Exercise 18.1 Give brief answers to the following questions:

1. What is a transaction? In what ways is it different from an ordinary program (in a

language such as C)?

2. Define these terms: atomicity, consistency, isolation, durability, schedule, blind write,

dirty read, unrepeatable read, serializable schedule, recoverable schedule, avoids-cascading-

aborts schedule.

3. Describe Strict 2PL.

Exercise 18.2 Consider the following actions taken by transaction T1 on database objects

X and Y :

R(X), W(X), R(Y), W(Y)

1. Give an example of another transaction T2 that, if run concurrently to transaction T

without some form of concurrency control, could interfere with T1.

2. Explain how the use of Strict 2PL would prevent interference between the two transac-

tions.

3. Strict 2PL is used in many database systems. Give two reasons for its popularity.

Exercise 18.3 Consider a database with objects X and Y and assume that there are two

transactions T1 and T2. Transaction T1 reads objects X and Y and then writes object X.

Transaction T2 reads objects X and Y and then writes objects X and Y .

Transaction Management Overview 539

1. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-read conflict.

2. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a read-write conflict.

3. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Exercise 18.4 Consider the following (incomplete) schedule S:

T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

1. Can you determine the serializability graph for this schedule? Assuming that all three

transactions eventually commit, show the serializability graph.

2. For each of the following, modify S to create a complete schedule that satisfies the

stated condition. If a modification is not possible, explain briefly. If it is possible, use

the smallest possible number of actions (read, write, commit, or abort). You are free to

add new actions anywhere in the schedule S, including in the middle.

(a) Resulting schedule avoids cascading aborts but is not recoverable.

(b) Resulting schedule is recoverable.

(c) Resulting schedule is conflict-serializable.

Exercise 18.5 Suppose that a DBMS recognizes increment, which increments an integer-

valued object by 1, and decrement as actions, in addition to reads and writes. A transaction

that increments an object need not know the value of the object; increment and decrement

are versions of blind writes. In addition to shared and exclusive locks, two special locks are

supported: An object must be locked in I mode before incrementing it and locked in D mode

before decrementing it. An I lock is compatible with another I or D lock on the same object,

but not with S and X locks.

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule

allowed by Strict 2PL that only uses S and X locks. Explain how the use of I and D

locks can allow more actions to be interleaved, while continuing to follow Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence of I

and D locks. (Identify which pairs of actions conflict, in the sense that their relative

order can affect the result, and show that the use of S, X, I, and D locks according

to Strict 2PL orders all conflicting pairs of actions to be the same as the order in some

serial schedule.)

BIBLIOGRAPHIC NOTES

The transaction concept and some of its limitations are discussed in [282]. A formal transac-

tion model that generalizes several earlier transaction models is proposed in [151].

Two-phase locking is introduced in [214], a fundamental paper that also discusses the concepts

of transactions, phantoms, and predicate locks. Formal treatments of serializability appear

in [79, 506].

19 CONCURRENCY CONTROL

Pooh was sitting in his house one day, counting his pots of honey, when there
came a knock on the door.
“Fourteen,” said Pooh. “Come in. Fourteen. Or was it fifteen? Bother.
That’s muddled me.”
“Hallo, Pooh,” said Rabbit. “Hallo, Rabbit. Fourteen, wasn’t it?” “What
was?” “My pots of honey what I was counting.”
“Fourteen, that’s right.”
“Are you sure?”
“No,” said Rabbit. “Does it matter?”

—A.A. Milne, The House at Pooh Corner

In this chapter, we look at concurrency control in more detail. We begin by looking at
locking protocols and how they guarantee various important properties of schedules in
Section 19.1. Section 19.2 covers how locking protocols are implemented in a DBMS.
Section 19.3 discusses three specialized locking protocols—for locking sets of objects
identified by some predicate, for locking nodes in tree-structured indexes, and for
locking collections of related objects. Section 19.4 presents the SQL-92 features related
to transactions, and Section 19.5 examines some alternatives to the locking approach.

19.1 LOCK-BASED CONCURRENCY CONTROL REVISITED

We now consider how locking protocols guarantee some important properties of sched-
ules, namely serializability and recoverability.

19.1.1 2PL, Serializability, and Recoverability

Two schedules are said to be conflict equivalent if they involve the (same set of)
actions of the same transactions and they order every pair of conflicting actions of two
committed transactions in the same way.

As we saw in Section 18.3.3, two actions conflict if they operate on the same data
object and at least one of them is a write. The outcome of a schedule depends only
on the order of conflicting operations; we can interchange any pair of nonconflicting

540

Concurrency Control 541

operations without altering the effect of the schedule on the database. If two schedules
are conflict equivalent, it is easy to see that they have the same effect on a database.
Indeed, because they order all pairs of conflicting operations in the same way, we
can obtain one of them from the other by repeatedly swapping pairs of nonconflicting
actions, that is, by swapping pairs of actions whose relative order does not alter the
outcome.

A schedule is conflict serializable if it is conflict equivalent to some serial schedule.
Every conflict serializable schedule is serializable, if we assume that the set of items in
the database does not grow or shrink; that is, values can be modified but items are not
added or deleted. We will make this assumption for now and consider its consequences
in Section 19.3.1. However, some serializable schedules are not conflict serializable, as
illustrated in Figure 19.1. This schedule is equivalent to executing the transactions

T1 T2 T3
R(A)

W (A)
Commit

W (A)
Commit

W (A)
Commit

Figure 19.1 Serializable Schedule That Is Not Conflict Serializable

serially in the order T1, T2, T3, but it is not conflict equivalent to this serial schedule
because the writes of T1 and T2 are ordered differently.

It is useful to capture all potential conflicts between the transactions in a schedule in
a precedence graph, also called a serializability graph. The precedence graph for
a schedule S contains:

A node for each committed transaction in S.

An arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s
actions.

The precedence graphs for the schedules shown in Figures 18.5, 18.6, and 19.1 are
shown in Figure 19.2 (parts (a), (b), and (c), respectively).

The Strict 2PL protocol (introduced in Section 18.4) allows only serializable schedules,
as is seen from the following two results:

542 Chapter 19

T2 T1

T1

T1 T2

T3

T2

(a) (b)

(c)

Figure 19.2 Examples of Precedence Graphs

1. A schedule S is conflict serializable if and only if its precedence graph is acyclic.
(An equivalent serial schedule in this case is given by any topological sort over the
precedence graph.)

2. Strict 2PL ensures that the precedence graph for any schedule that it allows is
acyclic.

A widely studied variant of Strict 2PL, called Two-Phase Locking (2PL), relaxes
the second rule of Strict 2PL to allow transactions to release locks before the end, that
is, before the commit or abort action. For 2PL, the second rule is replaced by the
following rule:

(2PL) (2) A transaction cannot request additional locks once it releases any
lock.

Thus, every transaction has a ‘growing’ phase in which it acquires locks, followed by a
‘shrinking’ phase in which it releases locks.

It can be shown that even (nonstrict) 2PL ensures acyclicity of the precedence graph
and therefore allows only serializable schedules. Intuitively, an equivalent serial order
of transactions is given by the order in which transactions enter their shrinking phase:
If T2 reads or writes an object written by T1, T1 must have released its lock on the
object before T2 requested a lock on this object. Thus, T1 will precede T2. (A similar
argument shows that T1 precedes T2 if T2 writes an object previously read by T1.
A formal proof of the claim would have to show that there is no cycle of transactions
that ‘precede’ each other by this argument.)

A schedule is said to be strict if a value written by a transaction T is not read or
overwritten by other transactions until T either aborts or commits. Strict schedules are
recoverable, do not require cascading aborts, and actions of aborted transactions can

Concurrency Control 543

be undone by restoring the original values of modified objects. (See the last example
in Section 18.3.4.) Strict 2PL improves upon 2PL by guaranteeing that every allowed
schedule is strict, in addition to being conflict serializable. The reason is that when a
transaction T writes an object under Strict 2PL, it holds the (exclusive) lock until it
commits or aborts. Thus, no other transaction can see or modify this object until T

is complete.

The reader is invited to revisit the examples in Section 18.3.3 to see how the correspond-
ing schedules are disallowed by Strict 2PL and 2PL. Similarly, it would be instructive
to work out how the schedules for the examples in Section 18.3.4 are disallowed by
Strict 2PL but not by 2PL.

19.1.2 View Serializability

Conflict serializability is sufficient but not necessary for serializability. A more general
sufficient condition is view serializability. Two schedules S1 and S2 over the same set
of transactions—any transaction that appears in either S1 or S2 must also appear in
the other—are view equivalent under these conditions:

1. If Ti reads the initial value of object A in S1, it must also read the initial value
of A in S2.

2. If Ti reads a value of A written by Tj in S1, it must also read the value of A

written by Tj in S2.

3. For each data object A, the transaction (if any) that performs the final write on
A in S1 must also perform the final write on A in S2.

A schedule is view serializable if it is view equivalent to some serial schedule. Every
conflict serializable schedule is view serializable, although the converse is not true.
For example, the schedule shown in Figure 19.1 is view serializable, although it is not
conflict serializable. Incidentally, note that this example contains blind writes. This
is not a coincidence; it can be shown that any view serializable schedule that is not
conflict serializable contains a blind write.

As we saw in Section 19.1.1, efficient locking protocols allow us to ensure that only
conflict serializable schedules are allowed. Enforcing or testing view serializability
turns out to be much more expensive, and the concept therefore has little practical
use, although it increases our understanding of serializability.

19.2 LOCK MANAGEMENT

The part of the DBMS that keeps track of the locks issued to transactions is called the
lock manager. The lock manager maintains a lock table, which is a hash table with

544 Chapter 19

the data object identifier as the key. The DBMS also maintains a descriptive entry for
each transaction in a transaction table, and among other things, the entry contains
a pointer to a list of locks held by the transaction.

A lock table entry for an object—which can be a page, a record, and so on, depend-
ing on the DBMS—contains the following information: the number of transactions
currently holding a lock on the object (this can be more than one if the object is
locked in shared mode), the nature of the lock (shared or exclusive), and a pointer to
a queue of lock requests.

19.2.1 Implementing Lock and Unlock Requests

According to the Strict 2PL protocol, before a transaction T reads or writes a database
object O, it must obtain a shared or exclusive lock on O and must hold on to the lock
until it commits or aborts. When a transaction needs a lock on an object, it issues a
lock request to the lock manager:

1. If a shared lock is requested, the queue of requests is empty, and the object is not
currently locked in exclusive mode, the lock manager grants the lock and updates
the lock table entry for the object (indicating that the object is locked in shared
mode, and incrementing the number of transactions holding a lock by one).

2. If an exclusive lock is requested, and no transaction currently holds a lock on
the object (which also implies the queue of requests is empty), the lock manager
grants the lock and updates the lock table entry.

3. Otherwise, the requested lock cannot be immediately granted, and the lock request
is added to the queue of lock requests for this object. The transaction requesting
the lock is suspended.

When a transaction aborts or commits, it releases all its locks. When a lock on an
object is released, the lock manager updates the lock table entry for the object and
examines the lock request at the head of the queue for this object. If this request can
now be granted, the transaction that made the request is woken up and given the lock.
Indeed, if there are several requests for a shared lock on the object at the front of the
queue, all of these requests can now be granted together.

Note that if T1 has a shared lock on O, and T2 requests an exclusive lock, T2’s request
is queued. Now, if T3 requests a shared lock, its request enters the queue behind that
of T2, even though the requested lock is compatible with the lock held by T1. This
rule ensures that T2 does not starve, that is, wait indefinitely while a stream of other
transactions acquire shared locks and thereby prevent T2 from getting the exclusive
lock that it is waiting for.

Concurrency Control 545

Atomicity of Locking and Unlocking

The implementation of lock and unlock commands must ensure that these are atomic
operations. To ensure atomicity of these operations when several instances of the lock
manager code can execute concurrently, access to the lock table has to be guarded by
an operating system synchronization mechanism such as a semaphore.

To understand why, suppose that a transaction requests an exclusive lock. The lock
manager checks and finds that no other transaction holds a lock on the object and
therefore decides to grant the request. But in the meantime, another transaction might
have requested and received a conflicting lock! To prevent this, the entire sequence of
actions in a lock request call (checking to see if the request can be granted, updating
the lock table, etc.) must be implemented as an atomic operation.

Additional Issues: Lock Upgrades, Convoys, Latches

The DBMS maintains a transaction table, which contains (among other things) a list
of the locks currently held by a transaction. This list can be checked before requesting
a lock, to ensure that the same transaction does not request the same lock twice.
However, a transaction may need to acquire an exclusive lock on an object for which
it already holds a shared lock. Such a lock upgrade request is handled specially by
granting the write lock immediately if no other transaction holds a shared lock on the
object and inserting the request at the front of the queue otherwise. The rationale for
favoring the transaction thus is that it already holds a shared lock on the object and
queuing it behind another transaction that wants an exclusive lock on the same object
causes both transactions to wait for each other and therefore be blocked forever; we
discuss such situations in Section 19.2.2.

We have concentrated thus far on how the DBMS schedules transactions, based on their
requests for locks. This interleaving interacts with the operating system’s scheduling of
processes’ access to the CPU and can lead to a situation called a convoy, where most
of the CPU cycles are spent on process switching. The problem is that a transaction
T holding a heavily used lock may be suspended by the operating system. Until T is
resumed, every other transaction that needs this lock is queued. Such queues, called
convoys, can quickly become very long; a convoy, once formed, tends to be stable.
Convoys are one of the drawbacks of building a DBMS on top of a general-purpose
operating system with preemptive scheduling.

In addition to locks, which are held over a long duration, a DBMS also supports short-
duration latches. Setting a latch before reading or writing a page ensures that the
physical read or write operation is atomic; otherwise, two read/write operations might
conflict if the objects being locked do not correspond to disk pages (the units of I/O).
Latches are unset immediately after the physical read or write operation is completed.

546 Chapter 19

19.2.2 Deadlocks

Consider the following example: transaction T1 gets an exclusive lock on object A,
T2 gets an exclusive lock on B, T1 requests an exclusive lock on B and is queued,
and T2 requests an exclusive lock on A and is queued. Now, T1 is waiting for T2 to
release its lock and T2 is waiting for T1 to release its lock! Such a cycle of transactions
waiting for locks to be released is called a deadlock. Clearly, these two transactions
will make no further progress. Worse, they hold locks that may be required by other
transactions. The DBMS must either prevent or detect (and resolve) such deadlock
situations.

Deadlock Prevention

We can prevent deadlocks by giving each transaction a priority and ensuring that lower
priority transactions are not allowed to wait for higher priority transactions (or vice
versa). One way to assign priorities is to give each transaction a timestamp when it
starts up. The lower the timestamp, the higher the transaction’s priority, that is, the
oldest transaction has the highest priority.

If a transaction Ti requests a lock and transaction Tj holds a conflicting lock, the lock
manager can use one of the following two policies:

Wait-die: If Ti has higher priority, it is allowed to wait; otherwise it is aborted.

Wound-wait: If Ti has higher priority, abort Tj; otherwise Ti waits.

In the wait-die scheme, lower priority transactions can never wait for higher priority
transactions. In the wound-wait scheme, higher priority transactions never wait for
lower priority transactions. In either case no deadlock cycle can develop.

A subtle point is that we must also ensure that no transaction is perennially aborted
because it never has a sufficiently high priority. (Note that in both schemes, the higher
priority transaction is never aborted.) When a transaction is aborted and restarted, it
should be given the same timestamp that it had originally. Reissuing timestamps in
this way ensures that each transaction will eventually become the oldest transaction,
and thus the one with the highest priority, and will get all the locks that it requires.

The wait-die scheme is nonpreemptive; only a transaction requesting a lock can be
aborted. As a transaction grows older (and its priority increases), it tends to wait for
more and more younger transactions. A younger transaction that conflicts with an
older transaction may be repeatedly aborted (a disadvantage with respect to wound-
wait), but on the other hand, a transaction that has all the locks it needs will never
be aborted for deadlock reasons (an advantage with respect to wound-wait, which is
preemptive).

Concurrency Control 547

Deadlock Detection

Deadlocks tend to be rare and typically involve very few transactions. This observation
suggests that rather than taking measures to prevent deadlocks, it may be better to
detect and resolve deadlocks as they arise. In the detection approach, the DBMS must
periodically check for deadlocks.

When a transaction Ti is suspended because a lock that it requests cannot be granted,
it must wait until all transactions Tj that currently hold conflicting locks release them.
The lock manager maintains a structure called a waits-for graph to detect deadlock
cycles. The nodes correspond to active transactions, and there is an arc from Ti to
Tj if (and only if) Ti is waiting for Tj to release a lock. The lock manager adds
edges to this graph when it queues lock requests and removes edges when it grants
lock requests.

Consider the schedule shown in Figure 19.3. The last step, shown below the line,
creates a cycle in the waits-for graph. Figure 19.4 shows the waits-for graph before
and after this step.

T1 T2 T3 T4
S(A)
R(A)

X(B)
W (B)

S(B)
S(C)
R(C)

X(C)
X(B)

X(A)

Figure 19.3 Schedule Illustrating Deadlock

Observe that the waits-for graph describes all active transactions, some of which will
eventually abort. If there is an edge from Ti to Tj in the waits-for graph, and both
Ti and Tj eventually commit, there will be an edge in the opposite direction (from Tj

to Ti) in the precedence graph (which involves only committed transactions).

The waits-for graph is periodically checked for cycles, which indicate deadlock. A
deadlock is resolved by aborting a transaction that is on a cycle and releasing its locks;
this action allows some of the waiting transactions to proceed.

548 Chapter 19

(a) (b)

T1 T2

T3T4

T1 T2

T3T4

Figure 19.4 Waits-for Graph before and after Deadlock

As an alternative to maintaining a waits-for graph, a simplistic way to identify dead-
locks is to use a timeout mechanism: if a transaction has been waiting too long for a
lock, we can assume (pessimistically) that it is in a deadlock cycle and abort it.

19.2.3 Performance of Lock-Based Concurrency Control

Designing a good lock-based concurrency control mechanism in a DBMS involves mak-
ing a number of choices:

Should we use deadlock-prevention or deadlock-detection?

If we use deadlock-detection, how frequently should we check for deadlocks?

If we use deadlock-detection and identify a deadlock, which transaction (on some
cycle in the waits-for graph, of course) should we abort?

Lock-based schemes are designed to resolve conflicts between transactions and use one
of two mechanisms: blocking and aborting transactions. Both mechanisms involve a
performance penalty; blocked transactions may hold locks that force other transactions
to wait, and aborting and restarting a transaction obviously wastes the work done
thus far by that transaction. A deadlock represents an extreme instance of blocking in
which a set of transactions is forever blocked unless one of the deadlocked transactions
is aborted by the DBMS.

Detection versus Prevention

In prevention-based schemes, the abort mechanism is used preemptively in order to
avoid deadlocks. On the other hand, in detection-based schemes, the transactions
in a deadlock cycle hold locks that prevent other transactions from making progress.
System throughput is reduced because many transactions may be blocked, waiting to
obtain locks currently held by deadlocked transactions.

Concurrency Control 549

This is the fundamental trade-off between these prevention and detection approaches
to deadlocks: loss of work due to preemptive aborts versus loss of work due to blocked
transactions in a deadlock cycle. We can increase the frequency with which we check
for deadlock cycles, and thereby reduce the amount of work lost due to blocked trans-
actions, but this entails a corresponding increase in the cost of the deadlock detection
mechanism.

A variant of 2PL called Conservative 2PL can also prevent deadlocks. Under Con-
servative 2PL, a transaction obtains all the locks that it will ever need when it begins,
or blocks waiting for these locks to become available. This scheme ensures that there
will not be any deadlocks, and, perhaps more importantly, that a transaction that
already holds some locks will not block waiting for other locks. The trade-off is that a
transaction acquires locks earlier. If lock contention is low, locks are held longer under
Conservative 2PL. If lock contention is heavy, on the other hand, Conservative 2PL
can reduce the time that locks are held on average, because transactions that hold
locks are never blocked.

Frequency of Deadlock Detection

Empirical results indicate that deadlocks are relatively infrequent, and detection-based
schemes work well in practice. However, if there is a high level of contention for locks,
and therefore an increased likelihood of deadlocks, prevention-based schemes could
perform better.

Choice of Deadlock Victim

When a deadlock is detected, the choice of which transaction to abort can be made
using several criteria: the one with the fewest locks, the one that has done the least
work, the one that is farthest from completion, and so on. Further, a transaction
might have been repeatedly restarted and then chosen as the victim in a deadlock
cycle. Such transactions should eventually be favored during deadlock detection and
allowed to complete.

The issues involved in designing a good concurrency control mechanism are complex,
and we have only outlined them briefly. For the interested reader, there is a rich
literature on the topic, and some of this work is mentioned in the bibliography.

19.3 SPECIALIZED LOCKING TECHNIQUES

Thus far, we have treated a database as a fixed collection of independent data objects
in our presentation of locking protocols. We now relax each of these restrictions and
discuss the consequences.

550 Chapter 19

If the collection of database objects is not fixed, but can grow and shrink through the
insertion and deletion of objects, we must deal with a subtle complication known as
the phantom problem. We discuss this problem in Section 19.3.1.

Although treating a database as an independent collection of objects is adequate for
a discussion of serializability and recoverability, much better performance can some-
times be obtained using protocols that recognize and exploit the relationships between
objects. We discuss two such cases, namely, locking in tree-structured indexes (Sec-
tion 19.3.2) and locking a collection of objects with containment relationships between
them (Section 19.3.3).

19.3.1 Dynamic Databases and the Phantom Problem

Consider the following example: Transaction T1 scans the Sailors relation to find the
oldest sailor for each of the rating levels 1 and 2. First, T1 identifies and locks all pages
(assuming that page-level locks are set) containing sailors with rating 1 and then finds
the age of the oldest sailor, which is, say, 71. Next, transaction T2 inserts a new sailor
with rating 1 and age 96. Observe that this new Sailors record can be inserted onto
a page that does not contain other sailors with rating 1; thus, an exclusive lock on
this page does not conflict with any of the locks held by T1. T2 also locks the page
containing the oldest sailor with rating 2 and deletes this sailor (whose age is, say, 80).
T2 then commits and releases its locks. Finally, transaction T1 identifies and locks
pages containing (all remaining) sailors with rating 2 and finds the age of the oldest
such sailor, which is, say, 63.

The result of the interleaved execution is that ages 71 and 63 are printed in response
to the query. If T1 had run first, then T2, we would have gotten the ages 71 and 80;
if T2 had run first, then T1, we would have gotten the ages 96 and 63. Thus, the
result of the interleaved execution is not identical to any serial exection of T1 and T2,
even though both transactions follow Strict 2PL and commit! The problem is that
T1 assumes that the pages it has locked include all pages containing Sailors records
with rating 1, and this assumption is violated when T2 inserts a new such sailor on a
different page.

The flaw is not in the Strict 2PL protocol. Rather, it is in T1’s implicit assumption
that it has locked the set of all Sailors records with rating value 1. T1’s semantics
requires it to identify all such records, but locking pages that contain such records at a
given time does not prevent new “phantom” records from being added on other pages.
T1 has therefore not locked the set of desired Sailors records.

Strict 2PL guarantees conflict serializability; indeed, there are no cycles in the prece-
dence graph for this example because conflicts are defined with respect to objects (in
this example, pages) read/written by the transactions. However, because the set of

Concurrency Control 551

objects that should have been locked by T1 was altered by the actions of T2, the out-
come of the schedule differed from the outcome of any serial execution. This example
brings out an important point about conflict serializability: If new items are added to
the database, conflict serializability does not guarantee serializability!

A closer look at how a transaction identifies pages containing Sailors records with
rating 1 suggests how the problem can be handled:

If there is no index, and all pages in the file must be scanned, T1 must somehow
ensure that no new pages are added to the file, in addition to locking all existing
pages.

If there is a dense index1 on the rating field, T1 can obtain a lock on the in-
dex page—again, assuming that physical locking is done at the page level—that
contains a data entry with rating=1. If there are no such data entries, that is,
no records with this rating value, the page that would contain a data entry for
rating=1 is locked, in order to prevent such a record from being inserted. Any
transaction that tries to insert a record with rating=1 into the Sailors relation
must insert a data entry pointing to the new record into this index page and is
blocked until T1 releases its locks. This technique is called index locking.

Both techniques effectively give T1 a lock on the set of Sailors records with rating=1:
each existing record with rating=1 is protected from changes by other transactions,
and additionally, new records with rating=1 cannot be inserted.

An independent issue is how transaction T1 can efficiently identify and lock the index
page containing rating=1. We discuss this issue for the case of tree-structured indexes
in Section 19.3.2.

We note that index locking is a special case of a more general concept called predicate
locking. In our example, the lock on the index page implicitly locked all Sailors records
that satisfy the logical predicate rating=1. More generally, we can support implicit
locking of all records that match an arbitrary predicate. General predicate locking is
expensive to implement and is therefore not commonly used.

19.3.2 Concurrency Control in B+ Trees

A straightforward approach to concurrency control for B+ trees and ISAM indexes is
to ignore the index structure, treat each page as a data object, and use some version
of 2PL. This simplistic locking strategy would lead to very high lock contention in
the higher levels of the tree because every tree search begins at the root and proceeds
along some path to a leaf node. Fortunately, much more efficient locking protocols

1This idea can be adapted to work with sparse indexes as well.

552 Chapter 19

that exploit the hierarchical structure of a tree index are known to reduce the locking
overhead while ensuring serializability and recoverability. We discuss some of these
approaches briefly, concentrating on the search and insert operations.

Two observations provide the necessary insight:

1. The higher levels of the tree only serve to direct searches, and all the ‘real’ data is
in the leaf levels (in the format of one of the three alternatives for data entries).

2. For inserts, a node must be locked (in exclusive mode, of course) only if a split
can propagate up to it from the modified leaf.

Searches should obtain shared locks on nodes, starting at the root and proceeding
along a path to the desired leaf. The first observation suggests that a lock on a node
can be released as soon as a lock on a child node is obtained, because searches never
go back up.

A conservative locking strategy for inserts would be to obtain exclusive locks on all
nodes as we go down from the root to the leaf node to be modified, because splits can
propagate all the way from a leaf to the root. However, once we lock the child of a
node, the lock on the node is required only in the event that a split propagates back
up to it. In particular, if the child of this node (on the path to the modified leaf) is
not full when it is locked, any split that propagates up to the child can be resolved at
the child, and will not propagate further to the current node. Thus, when we lock a
child node, we can release the lock on the parent if the child is not full. The locks held
thus by an insert force any other transaction following the same path to wait at the
earliest point (i.e., the node nearest the root) that might be affected by the insert.

We illustrate B+ tree locking using the tree shown in Figure 19.5. To search for the
data entry 38*, a transaction Ti must obtain an S lock on node A, read the contents
and determine that it needs to examine node B, obtain an S lock on node B and
release the lock on A, then obtain an S lock on node C and release the lock on B, then
obtain an S lock on node D and release the lock on C.

Ti always maintains a lock on one node in the path, in order to force new transactions
that want to read or modify nodes on the same path to wait until the current transac-
tion is done. If transaction Tj wants to delete 38*, for example, it must also traverse
the path from the root to node D and is forced to wait until Ti is done. Of course, if
some transaction Tk holds a lock on, say, node C before Ti reaches this node, Ti is
similarly forced to wait for Tk to complete.

To insert data entry 45*, a transaction must obtain an S lock on node A, obtain an S

lock on node B and release the lock on A, then obtain an S lock on node C (observe
that the lock on B is not released, because C is full!), then obtain an X lock on node

Concurrency Control 553

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

20

4438126 23

3510

D E

C

B

A

F

G H I

Figure 19.5 B+ Tree Locking Example

E and release the locks on C and then B. Because node E has space for the new entry,
the insert is accomplished by modifying this node.

In contrast, consider the insertion of data entry 25*. Proceeding as for the insert of
45*, we obtain an X lock on node H. Unfortunately, this node is full and must be
split. Splitting H requires that we also modify the parent, node F , but the transaction
has only an S lock on F . Thus, it must request an upgrade of this lock to an X lock.
If no other transaction holds an S lock on F , the upgrade is granted, and since F has
space, the split will not propagate further, and the insertion of 25* can proceed (by
splitting H and locking G to modify the sibling pointer in I to point to the newly
created node). However, if another transaction holds an S lock on node F , the first
transaction is suspended until this transaction releases its S lock.

Observe that if another transaction holds an S lock on F and also wants to access
node H, we have a deadlock because the first transaction has an X lock on H! The
above example also illustrates an interesting point about sibling pointers: When we
split leaf node H, the new node must be added to the left of H, since otherwise the
node whose sibling pointer is to be changed would be node I, which has a different
parent. To modify a sibling pointer on I, we would have to lock its parent, node C

(and possibly ancestors of C, in order to lock C).

Except for the locks on intermediate nodes that we indicated could be released early,
some variant of 2PL must be used to govern when locks can be released, in order to
ensure serializability and recoverability.

554 Chapter 19

This approach improves considerably upon the naive use of 2PL, but several exclusive
locks are still set unnecessarily and, although they are quickly released, affect perfor-
mance substantially. One way to improve performance is for inserts to obtain shared
locks instead of exclusive locks, except for the leaf, which is locked in exclusive mode.
In the vast majority of cases, a split is not required, and this approach works very
well. If the leaf is full, however, we must upgrade from shared locks to exclusive locks
for all nodes to which the split propagates. Note that such lock upgrade requests can
also lead to deadlocks.

The tree locking ideas that we have described illustrate the potential for efficient locking
protocols in this very important special case, but they are not the current state of the
art. The interested reader should pursue the leads in the bibliography.

19.3.3 Multiple-Granularity Locking

Another specialized locking strategy is called multiple-granularity locking, and it
allows us to efficiently set locks on objects that contain other objects.

For instance, a database contains several files, a file is a collection of pages, and a
page is a collection of records. A transaction that expects to access most of the pages
in a file should probably set a lock on the entire file, rather than locking individual
pages (or records!) as and when it needs them. Doing so reduces the locking overhead
considerably. On the other hand, other transactions that require access to parts of the
file—even parts that are not needed by this transaction—are blocked. If a transaction
accesses relatively few pages of the file, it is better to lock only those pages. Similarly,
if a transaction accesses several records on a page, it should lock the entire page, and
if it accesses just a few records, it should lock just those records.

The question to be addressed is how a lock manager can efficiently ensure that a page,
for example, is not locked by a transaction while another transaction holds a conflicting
lock on the file containing the page (and therefore, implicitly, on the page).

The idea is to exploit the hierarchical nature of the ‘contains’ relationship. A database
contains a set of files, each file contains a set of pages, and each page contains a set
of records. This containment hierarchy can be thought of as a tree of objects, where
each node contains all its children. (The approach can easily be extended to cover
hierarchies that are not trees, but we will not discuss this extension.) A lock on a node
locks that node and, implicitly, all its descendants. (Note that this interpretation of
a lock is very different from B+ tree locking, where locking a node does not lock any
descendants implicitly!)

In addition to shared (S) and exclusive (X) locks, multiple-granularity locking pro-
tocols also use two new kinds of locks, called intention shared (IS) and intention

Concurrency Control 555

exclusive (IX) locks. IS locks conflict only with X locks. IX locks conflict with S

and X locks. To lock a node in S (respectively X) mode, a transaction must first lock
all its ancestors in IS (respectively IX) mode. Thus, if a transaction locks a node in
S mode, no other transaction can have locked any ancestor in X mode; similarly, if a
transaction locks a node in X mode, no other transaction can have locked any ancestor
in S or X mode. This ensures that no other transaction holds a lock on an ancestor
that conflicts with the requested S or X lock on the node.

A common situation is that a transaction needs to read an entire file and modify a few
of the records in it; that is, it needs an S lock on the file and an IX lock so that it
can subsequently lock some of the contained objects in X mode. It is useful to define
a new kind of lock called an SIX lock that is logically equivalent to holding an S lock
and an IX lock. A transaction can obtain a single SIX lock (which conflicts with any
lock that conflicts with either S or IX) instead of an S lock and an IX lock.

A subtle point is that locks must be released in leaf-to-root order for this protocol
to work correctly. To see this, consider what happens when a transaction Ti locks
all nodes on a path from the root (corresponding to the entire database) to the node
corresponding to some page p in IS mode, locks p in S mode, and then releases the
lock on the root node. Another transaction Tj could now obtain an X lock on the
root. This lock implicitly gives Tj an X lock on page p, which conflicts with the S

lock currently held by Ti.

Multiple-granularity locking must be used with 2PL in order to ensure serializability.
2PL dictates when locks can be released. At that time, locks obtained using multiple-
granularity locking can be released and must be released in leaf-to-root order.

Finally, there is the question of how to decide what granularity of locking is appropriate
for a given transaction. One approach is to begin by obtaining fine granularity locks
(e.g., at the record level) and after the transaction requests a certain number of locks
at that granularity, to start obtaining locks at the next higher granularity (e.g., at the
page level). This procedure is called lock escalation.

19.4 TRANSACTION SUPPORT IN SQL-92 *

We have thus far studied transactions and transaction management using an abstract
model of a transaction as a sequence of read, write, and abort/commit actions. We now
consider what support SQL provides for users to specify transaction-level behavior.

A transaction is automatically started when a user executes a statement that modifies
either the database or the catalogs, such as a SELECT query, an UPDATE command,

556 Chapter 19

or a CREATE TABLE statement.2 Once a transaction is started, other statements can
be executed as part of this transaction until the transaction is terminated by either a
COMMIT command or a ROLLBACK (the SQL keyword for abort) command.

19.4.1 Transaction Characteristics

Every transaction has three characteristics: access mode, diagnostics size, and isolation
level. The diagnostics size determines the number of error conditions that can be
recorded; we will not discuss this feature further.

If the access mode is READ ONLY, the transaction is not allowed to modify the
database. Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be executed.
If we have to execute one of these commands, the access mode should be set to READ
WRITE. For transactions with READ ONLY access mode, only shared locks need to be
obtained, thereby increasing concurrency.

The isolation level controls the extent to which a given transaction is exposed to the
actions of other transactions executing concurrently. By choosing one of four possible
isolation level settings, a user can obtain greater concurrency at the cost of increasing
the transaction’s exposure to other transactions’ uncommitted changes.

Isolation level choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ,
and SERIALIZABLE. The effect of these levels is summarized in Figure 19.6. In this
context, dirty read and unrepeatable read are defined as usual. Phantom is defined to
be the possibility that a transaction retrieves a collection of objects (in SQL terms, a
collection of tuples) twice and sees different results, even though it does not modify
any of these tuples itself. The highest degree of isolation from the effects of other

Level Dirty Read Unrepeatable Read Phantom
READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

Figure 19.6 Transaction Isolation Levels in SQL-92

transactions is achieved by setting isolation level for a transaction T to SERIALIZABLE.
This isolation level ensures that T reads only the changes made by committed transac-
tions, that no value read or written by T is changed by any other transaction until T

is complete, and that if T reads a set of values based on some search condition, this set

2There are some SQL statements that do not require the creation of a transaction.

Concurrency Control 557

is not changed by other transactions until T is complete (i.e., T avoids the phantom
phenomenon).

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains locks
before reading or writing objects, including locks on sets of objects that it requires to
be unchanged (see Section 19.3.1), and holds them until the end, according to Strict
2PL.

REPEATABLE READ ensures that T reads only the changes made by committed transac-
tions, and that no value read or written by T is changed by any other transaction until
T is complete. However, T could experience the phantom phenomenon; for example,
while T examines all Sailors records with rating=1, another transaction might add a
new such Sailors record, which is missed by T .

A REPEATABLE READ transaction uses the same locking protocol as a SERIALIZABLE
transaction, except that it does not do index locking, that is, it locks only individual
objects, not sets of objects.

READ COMMITTED ensures that T reads only the changes made by committed transac-
tions, and that no value written by T is changed by any other transaction until T is
complete. However, a value read by T may well be modified by another transaction
while T is still in progress, and T is, of course, exposed to the phantom problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects and holds
these locks until the end. It also obtains shared locks before reading objects, but these
locks are released immediately; their only effect is to guarantee that the transaction
that last modified the object is complete. (This guarantee relies on the fact that every
SQL transaction obtains exclusive locks before writing objects and holds exclusive locks
until the end.)

A READ UNCOMMITTED transaction T can read changes made to an object by an ongoing
transaction; obviously, the object can be changed further while T is in progress, and
T is also vulnerable to the phantom problem.

A READ UNCOMMITTED transaction does not obtain shared locks before reading objects.
This mode represents the greatest exposure to uncommitted changes of other trans-
actions; so much so that SQL prohibits such a transaction from making any changes
itself—a READ UNCOMMITTED transaction is required to have an access mode of READ
ONLY. Since such a transaction obtains no locks for reading objects, and it is not al-
lowed to write objects (and therefore never requests exclusive locks), it never makes
any lock requests.

The SERIALIZABLE isolation level is generally the safest and is recommended for most
transactions. Some transactions, however, can run with a lower isolation level, and the

558 Chapter 19

smaller number of locks requested can contribute to improved system performance.
For example, a statistical query that finds the average sailor age can be run at the
READ COMMITTED level, or even the READ UNCOMMITTED level, because a few incorrect
or missing values will not significantly affect the result if the number of sailors is large.

The isolation level and access mode can be set using the SET TRANSACTION com-
mand. For example, the following command declares the current transaction to be
SERIALIZABLE and READ ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

When a transaction is started, the default is SERIALIZABLE and READ WRITE.

19.4.2 Transactions and Constraints

SQL constructs for defining integrity constraints were presented in Chapter 3. As
noted there, an integrity constraint represents a condition that must be satisfied by
the database state. An important question that arises is when to check integrity
constraints.

By default, a constraint is checked at the end of every SQL statement that could lead
to a violation, and if there is a violation, the statement is rejected. Sometimes this
approach is too inflexible. Consider the following variants of the Sailors and Boats
relations; every sailor is assigned to a boat, and every boat is required to have a
captain.

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
assigned INTEGER NOT NULL,
PRIMARY KEY (sid),
FOREIGN KEY (assigned) REFERENCES Boats (bid))

CREATE TABLE Boats (bid INTEGER,
bname CHAR(10),
color CHAR(10),
captain INTEGER NOT NULL,
PRIMARY KEY (bid)
FOREIGN KEY (captain) REFERENCES Sailors (sid))

Whenever a Boats tuple is inserted, there is a check to see if the captain is in the
Sailors relation, and whenever a Sailors tuple is inserted, there is a check to see that

Concurrency Control 559

the assigned boat is in the Boats relation. How are we to insert the very first boat or
sailor tuple? One cannot be inserted without the other. The only way to accomplish
this insertion is to defer the constraint checking that would normally be carried out
at the end of an INSERT statement.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstraintFoo DEFERRED

A constraint that is in deferred mode is checked at commit time. In our example, the
foreign key constraints on Boats and Sailors can both be declared to be in deferred
mode. We can then insert a boat with a nonexistent sailor as the captain (temporar-
ily making the database inconsistent), insert the sailor (restoring consistency), then
commit and check that both constraints are satisfied.

19.5 CONCURRENCY CONTROL WITHOUT LOCKING

Locking is the most widely used approach to concurrency control in a DBMS, but it
is not the only one. We now consider some alternative approaches.

19.5.1 Optimistic Concurrency Control

Locking protocols take a pessimistic approach to conflicts between transactions and
use either transaction abort or blocking to resolve conflicts. In a system with relatively
light contention for data objects, the overhead of obtaining locks and following a locking
protocol must nonetheless be paid.

In optimistic concurrency control, the basic premise is that most transactions will not
conflict with other transactions, and the idea is to be as permissive as possible in
allowing transactions to execute. Transactions proceed in three phases:

1. Read: The transaction executes, reading values from the database and writing
to a private workspace.

2. Validation: If the transaction decides that it wants to commit, the DBMS checks
whether the transaction could possibly have conflicted with any other concurrently
executing transaction. If there is a possible conflict, the transaction is aborted;
its private workspace is cleared and it is restarted.

3. Write: If validation determines that there are no possible conflicts, the changes
to data objects made by the transaction in its private workspace are copied into
the database.

560 Chapter 19

If, indeed, there are few conflicts, and validation can be done efficiently, this approach
should lead to better performance than locking does. If there are many conflicts, the
cost of repeatedly restarting transactions (thereby wasting the work they’ve done) will
hurt performance significantly.

Each transaction Ti is assigned a timestamp TS(Ti) at the beginning of its validation
phase, and the validation criterion checks whether the timestamp-ordering of transac-
tions is an equivalent serial order. For every pair of transactions Ti and Tj such that
TS(Ti) < TS(Tj), one of the following conditions must hold:

1. Ti completes (all three phases) before Tj begins; or

2. Ti completes before Tj starts its Write phase, and Ti does not write any database
object that is read by Tj; or

3. Ti completes its Read phase before Tj completes its Read phase, and Ti does not
write any database object that is either read or written by Tj.

To validate Tj, we must check to see that one of these conditions holds with respect to
each committed transaction Ti such that TS(Ti) < TS(Tj). Each of these conditions
ensures that Tj’s modifications are not visible to Ti.

Further, the first condition allows Tj to see some of Ti’s changes, but clearly, they
execute completely in serial order with respect to each other. The second condition
allows Tj to read objects while Ti is still modifying objects, but there is no conflict
because Tj does not read any object modified by Ti. Although Tj might overwrite
some objects written by Ti, all of Ti’s writes precede all of Tj’s writes. The third
condition allows Ti and Tj to write objects at the same time, and thus have even
more overlap in time than the second condition, but the sets of objects written by the
two transactions cannot overlap. Thus, no RW, WR, or WW conflicts are possible if
any of these three conditions is met.

Checking these validation criteria requires us to maintain lists of objects read and
written by each transaction. Further, while one transaction is being validated, no other
transaction can be allowed to commit; otherwise, the validation of the first transaction
might miss conflicts with respect to the newly committed transaction.

Clearly, it is not the case that optimistic concurrency control has no concurrency
control overhead; rather, the locking overheads of lock-based approaches are replaced
with the overheads of recording read-lists and write-lists for transactions, checking for
conflicts, and copying changes from the private workspace. Similarly, the implicit cost
of blocking in a lock-based approach is replaced by the implicit cost of the work wasted
by restarted transactions.

Concurrency Control 561

19.5.2 Timestamp-Based Concurrency Control

In lock-based concurrency control, conflicting actions of different transactions are or-
dered by the order in which locks are obtained, and the lock protocol extends this
ordering on actions to transactions, thereby ensuring serializability. In optimistic con-
currency control, a timestamp ordering is imposed on transactions, and validation
checks that all conflicting actions occurred in the same order.

Timestamps can also be used in another way: each transaction can be assigned a times-
tamp at startup, and we can ensure, at execution time, that if action ai of transaction
Ti conflicts with action aj of transaction Tj, ai occurs before aj if TS(Ti) < TS(Tj).
If an action violates this ordering, the transaction is aborted and restarted.

To implement this concurrency control scheme, every database object O is given a read
timestamp RTS(O) and a write timestamp WTS(O). If transaction T wants to
read object O, and TS(T) < WTS(O), the order of this read with respect to the
most recent write on O would violate the timestamp order between this transaction
and the writer. Therefore, T is aborted and restarted with a new, larger timestamp.
If TS(T) > WTS(O), T reads O, and RTS(O) is set to the larger of RTS(O) and
TS(T). (Note that there is a physical change—the change to RTS(O)—to be written
to disk and to be recorded in the log for recovery purposes, even on reads. This write
operation is a significant overhead.)

Observe that if T is restarted with the same timestamp, it is guaranteed to be aborted
again, due to the same conflict. Contrast this behavior with the use of timestamps
in 2PL for deadlock prevention: there, transactions were restarted with the same
timestamp as before in order to avoid repeated restarts. This shows that the two uses
of timestamps are quite different and should not be confused.

Next, let us consider what happens when transaction T wants to write object O:

1. If TS(T) < RTS(O), the write action conflicts with the most recent read action
of O, and T is therefore aborted and restarted.

2. If TS(T) < WTS(O), a naive approach would be to abort T because its write
action conflicts with the most recent write of O and is out of timestamp order. It
turns out that we can safely ignore such writes and continue. Ignoring outdated
writes is called the Thomas Write Rule.

3. Otherwise, T writes O and WTS(O) is set to TS(T).

562 Chapter 19

The Thomas Write Rule

We now consider the justification for the Thomas Write Rule. If TS(T) < WTS(O),
the current write action has, in effect, been made obsolete by the most recent write of O,
which follows the current write according to the timestamp ordering on transactions.
We can think of T ’s write action as if it had occurred immediately before the most
recent write of O and was never read by anyone.

If the Thomas Write Rule is not used, that is, T is aborted in case (2) above, the
timestamp protocol, like 2PL, allows only conflict serializable schedules. (Both 2PL
and this timestamp protocol allow schedules that the other does not.) If the Thomas
Write Rule is used, some serializable schedules are permitted that are not conflict
serializable, as illustrated by the schedule in Figure 19.7. Because T2’s write follows

T1 T2
R(A)

W (A)
Commit

W (A)
Commit

Figure 19.7 A Serializable Schedule That Is Not Conflict Serializable

T1’s read and precedes T1’s write of the same object, this schedule is not conflict
serializable. The Thomas Write Rule relies on the observation that T2’s write is never
seen by any transaction and the schedule in Figure 19.7 is therefore equivalent to the
serializable schedule obtained by deleting this write action, which is shown in Figure
19.8.

T1 T2
R(A)

Commit
W (A)
Commit

Figure 19.8 A Conflict Serializable Schedule

Concurrency Control 563

Recoverability

Unfortunately, the timestamp protocol presented above permits schedules that are
not recoverable, as illustrated by the schedule in Figure 19.9. If TS(T1) = 1 and

T1 T2
W (A)

R(A)
W (B)
Commit

Figure 19.9 An Unrecoverable Schedule

TS(T2) = 2, this schedule is permitted by the timestamp protocol (with or without
the Thomas Write Rule). The timestamp protocol can be modified to disallow such
schedules by buffering all write actions until the transaction commits. In the example,
when T1 wants to write A, WTS(A) is updated to reflect this action, but the change
to A is not carried out immediately; instead, it is recorded in a private workspace,
or buffer. When T2 wants to read A subsequently, its timestamp is compared with
WTS(A), and the read is seen to be permissible. However, T2 is blocked until T1
completes. If T1 commits, its change to A is copied from the buffer; otherwise, the
changes in the buffer are discarded. T2 is then allowed to read A.

This blocking of T2 is similar to the effect of T1 obtaining an exclusive lock on A!
Nonetheless, even with this modification the timestamp protocol permits some sched-
ules that are not permitted by 2PL; the two protocols are not quite the same.

Because recoverability is essential, such a modification must be used for the timestamp
protocol to be practical. Given the added overheads this entails, on top of the (consid-
erable) cost of maintaining read and write timestamps, timestamp concurrency control
is unlikely to beat lock-based protocols in centralized systems. Indeed, it has mainly
been studied in the context of distributed database systems (Chapter 21).

19.5.3 Multiversion Concurrency Control

This protocol represents yet another way of using timestamps, assigned at startup
time, to achieve serializability. The goal is to ensure that a transaction never has to
wait to read a database object, and the idea is to maintain several versions of each
database object, each with a write timestamp, and to let transaction Ti read the most
recent version whose timestamp precedes TS(Ti).

564 Chapter 19

What do real systems do? IBM DB2, Informix, Microsoft SQL Server, and
Sybase ASE use Strict 2PL or variants (if a transaction requests a lower than
SERIALIZABLE SQL isolation level; see Section 19.4). Microsoft SQL Server but
also supports modification timestamps so that a transaction can run without set-
ting locks and validate itself (do-it-yourself optimistic CC!). Oracle 8 uses a mul-
tiversion concurrency control scheme in which readers never wait; in fact, readers
never get locks, and detect conflicts by checking if a block changed since they read
it. All of these systems support multiple-granularity locking, with support for ta-
ble, page, and row level locks. All of them deal with deadlocks using waits-for
graphs. Sybase ASIQ only supports table-level locks and aborts a transaction if a
lock request fails—updates (and therefore conflicts) are rare in a data warehouse,
and this simple scheme suffices.

If transaction Ti wants to write an object, we must ensure that the object has not
already been read by some other transaction Tj such that TS(Ti) < TS(Tj). If we
allow Ti to write such an object, its change should be seen by Tj for serializability,
but obviously Tj, which read the object at some time in the past, will not see Ti’s
change.

To check this condition, every object also has an associated read timestamp, and
whenever a transaction reads the object, the read timestamp is set to the maximum of
the current read timestamp and the reader’s timestamp. If Ti wants to write an object
O and TS(Ti) < RTS(O), Ti is aborted and restarted with a new, larger timestamp.
Otherwise, Ti creates a new version of O, and sets the read and write timestamps of
the new version to TS(Ti).

The drawbacks of this scheme are similar to those of timestamp concurrency control,
and in addition there is the cost of maintaining versions. On the other hand, reads are
never blocked, which can be important for workloads dominated by transactions that
only read values from the database.

19.6 POINTS TO REVIEW

Two schedules are conflict equivalent if they order every pair of conflicting actions
of two committed transactions in the same way. A schedule is conflict serializable if
it is conflict equivalent to some serial schedule. A schedule is called strict if a value
written by a transaction T is not read or overwritten by other transactions until
T either aborts or commits. Potential conflicts between transactions in a schedule
can be described in a precedence graph or serializability graph. A variant of Strict
2PL called two-phase locking (2PL) allows transactions to release locks before
the transaction commits or aborts. Once a transaction following 2PL releases any

Concurrency Control 565

lock, however, it cannot acquire additional locks. Both 2PL and Strict 2PL ensure
that only conflict serializable schedules are permitted to execute. (Section 19.1)

The lock manager is the part of the DBMS that keeps track of the locks issued. It
maintains a lock table with lock table entries that contain information about the
lock, and a transaction table with a pointer to the list of locks held by each trans-
action. Locking and unlocking objects must be atomic operations. Lock upgrades,
the request to acquire an exclusive lock on an object for which the transaction
already holds a shared lock, are handled in a special way. A deadlock is a cycle of
transactions that are all waiting for another transaction in the cycle to release a
lock. Deadlock prevention or detection schemes are used to resolve deadlocks. In
conservative 2PL, a deadlock-preventing locking scheme, a transaction obtains all
its locks at startup or waits until all locks are available. (Section 19.2)

If the collection of database objects is not fixed, but can grow and shrink through
insertion and deletion of objects, we must deal with a subtle complication known
as the phantom problem. In the phantom problem, a transaction can retrieve a
collection of records twice with different results due to insertions of new records
from another transaction. The phantom problem can be avoided through index
locking. In tree index structures, the higher levels of the tree are very contended
and locking these pages can become a performance bottleneck. Specialized locking
techniques that release locks as early as possible can be used to improve perfor-
mance for tree index structures. Multiple-granularity locking enables us to set
locks on objects that contain other objects, thus implicitly locking all contained
objects. (Section 19.3)

SQL supports two access modes (READ ONLY and READ WRITE) and four isolation lev-
els (READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE)
that control the extent to which a given transaction is exposed to the actions of
other concurrently executing transactions. SQL allows the checking of constraints
to be deferred until the transaction commits. (Section 19.4)

Besides locking, there are alternative approaches to concurrency control. In op-
timistic concurrency control, no locks are set and transactions read and modify
data objects in a private workspace. In a subsequent validation phase, the DBMS
checks for potential conflicts, and if no conflicts occur, the changes are copied
to the database. In timestamp-based concurrency control, transactions are as-
signed a timestamp at startup and actions that reach the database are required
to be ordered by the timestamp of the transactions involved. A special rule called
Thomas Write Rule allows us to ignore subsequent writes that are not ordered.
Timestamp-based concurrency control allows schedules that are not recoverable,
but it can be modified through buffering to disallow such schedules. We briefly
discussed multiversion concurrency control. (Section 19.5)

566 Chapter 19

EXERCISES

Exercise 19.1 1. Define these terms: conflict-serializable schedule, view-serializable sched-

ule, strict schedule.

2. Describe each of the following locking protocols: 2PL, Conservative 2PL.

3. Why must lock and unlock be atomic operations?

4. What is the phantom problem? Can it occur in a database where the set of database

objects is fixed and only the values of objects can be changed?

5. Identify one difference in the timestamps assigned to restarted transactions when times-

tamps are used for deadlock prevention versus when timestamps are used for concurrency

control.

6. State and justify the Thomas Write Rule.

Exercise 19.2 Consider the following classes of schedules: serializable, conflict-serializable,

view-serializable, recoverable, avoids-cascading-aborts, and strict. For each of the following

schedules, state which of the above classes it belongs to. If you cannot decide whether a

schedule belongs in a certain class based on the listed actions, explain briefly.

The actions are listed in the order they are scheduled, and prefixed with the transaction name.

If a commit or abort is not shown, the schedule is incomplete; assume that abort/commit

must follow all the listed actions.

1. T1:R(X), T2:R(X), T1:W(X), T2:W(X)

2. T1:W(X), T2:R(Y), T1:R(Y), T2:R(X)

3. T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)

4. T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

5. T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit

6. T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit

7. T1:W(X), T2:R(X), T1:W(X), T2:Abort, T1:Commit

8. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit

9. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort

10. T2: R(X), T3:W(X), T3:Commit, T1:W(Y), T1:Commit, T2:R(Y),

T2:W(Z), T2:Commit

11. T1:R(X), T2:W(X), T2:Commit, T1:W(X), T1:Commit, T3:R(X), T3:Commit

12. T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit

Exercise 19.3 Consider the following concurrency control protocols: 2PL, Strict 2PL, Con-

servative 2PL, Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the

Thomas Write Rule, and Multiversion. For each of the schedules in Exercise 19.2, state which

of these protocols allows it, that is, allows the actions to occur in exactly the order shown.

For the timestamp-based protocols, assume that the timestamp for transaction Ti is i and

that a version of the protocol that ensures recoverability is used. Further, if the Thomas

Write Rule is used, show the equivalent serial schedule.

Concurrency Control 567

Exercise 19.4 Consider the following sequences of actions, listed in the order they are sub-

mitted to the DBMS:

Sequence S1: T1:R(X), T2:W(X), T2:W(Y), T3:W(Y), T1:W(Y),

T1:Commit, T2:Commit, T3:Commit

Sequence S2: T1:R(X), T2:W(Y), T2:W(X), T3:W(Y), T1:W(Y),

T1:Commit, T2:Commit, T3:Commit

For each sequence and for each of the following concurrency control mechanisms, describe

how the concurrency control mechanism handles the sequence.

Assume that the timestamp of transaction Ti is i. For lock-based concurrency control mech-

anisms, add lock and unlock requests to the above sequence of actions as per the locking

protocol. The DBMS processes actions in the order shown. If a transaction is blocked, as-

sume that all of its actions are queued until it is resumed; the DBMS continues with the next

action (according to the listed sequence) of an unblocked transaction.

1. Strict 2PL with timestamps used for deadlock prevention.

2. Strict 2PL with deadlock detection. (Show the waits-for graph if a deadlock cycle devel-

ops.)

3. Conservative (and strict, i.e., with locks held until end-of-transaction) 2PL.

4. Optimistic concurrency control.

5. Timestamp concurrency control with buffering of reads and writes (to ensure recover-

ability) and the Thomas Write Rule.

6. Multiversion concurrency control.

Exercise 19.5 For each of the following locking protocols, assuming that every transaction

follows that locking protocol, state which of these desirable properties are ensured: serializ-

ability, conflict-serializability, recoverability, avoid cascading aborts.

1. Always obtain an exclusive lock before writing; hold exclusive locks until end-of-transaction.

No shared locks are ever obtained.

2. In addition to (1), obtain a shared lock before reading; shared locks can be released at

any time.

3. As in (2), and in addition, locking is two-phase.

4. As in (2), and in addition, all locks held until end-of-transaction.

Exercise 19.6 The Venn diagram (from [76]) in Figure 19.10 shows the inclusions between

several classes of schedules. Give one example schedule for each of the regions S1 through

S12 in the diagram.

Exercise 19.7 Briefly answer the following questions:

1. Draw a Venn diagram that shows the inclusions between the classes of schedules permit-

ted by the following concurrency control protocols: 2PL, Strict 2PL, Conservative 2PL,

Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the Thomas

Write Rule, and Multiversion.

568 Chapter 19

S5

S11 S12

All Schedules

View Serializable

Conflict Serializable

Recoverable

Avoid Cascading Abort

Strict

SerialS10

S8 S9

S6

S3S2

S7

S4

S1

Figure 19.10 Venn Diagram for Classes of Schedules

2. Give one example schedule for each region in the diagram.

3. Extend the Venn diagram to include the class of serializable and conflict-serializable

schedules.

Exercise 19.8 Answer each of the following questions briefly. The questions are based on

the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real, did: integer)

Dept(did: integer, dname: string, floor: integer)

and on the following update command:

replace (salary = 1.1 * EMP.salary) where EMP.ename = ‘Santa’

1. Give an example of a query that would conflict with this command (in a concurrency

control sense) if both were run at the same time. Explain what could go wrong, and how

locking tuples would solve the problem.

2. Give an example of a query or a command that would conflict with this command, such

that the conflict could not be resolved by just locking individual tuples or pages, but

requires index locking.

3. Explain what index locking is and how it resolves the preceding conflict.

Exercise 19.9 SQL-92 supports four isolation-levels and two access-modes, for a total of

eight combinations of isolation-level and access-mode. Each combination implicitly defines a

class of transactions; the following questions refer to these eight classes.

1. For each of the eight classes, describe a locking protocol that allows only transactions in

this class. Does the locking protocol for a given class make any assumptions about the

locking protocols used for other classes? Explain briefly.

2. Consider a schedule generated by the execution of several SQL transactions. Is it guar-

anteed to be conflict-serializable? to be serializable? to be recoverable?

Concurrency Control 569

3. Consider a schedule generated by the execution of several SQL transactions, each of

which has READ ONLY access-mode. Is it guaranteed to be conflict-serializable? to be

serializable? to be recoverable?

4. Consider a schedule generated by the execution of several SQL transactions, each of

which has SERIALIZABLE isolation-level. Is it guaranteed to be conflict-serializable? to

be serializable? to be recoverable?

5. Can you think of a timestamp-based concurrency control scheme that can support the

eight classes of SQL transactions?

Exercise 19.10 Consider the tree shown in Figure 19.5. Describe the steps involved in

executing each of the following operations according to the tree-index concurrency control

algorithm discussed in Section 19.3.2, in terms of the order in which nodes are locked, un-

locked, read and written. Be specific about the kind of lock obtained and answer each part

independently of the others, always starting with the tree shown in Figure 19.5.

1. Search for data entry 40*.

2. Search for all data entries k∗ with k ≤ 40.

3. Insert data entry 62*.

4. Insert data entry 40*.

5. Insert data entries 62* and 75*.

Exercise 19.11 Consider a database that is organized in terms of the following hierarachy

of objects: The database itself is an object (D), and it contains two files (F1 and F2), each

of which contains 1000 pages (P1 . . . P1000 and P1001 . . . P2000, respectively). Each page

contains 100 records, and records are identified as p : i, where p is the page identifier and i is

the slot of the record on that page.

Multiple-granularity locking is used, with S, X, IS, IX and SIX locks, and database-level,

file-level, page-level and record-level locking. For each of the following operations, indicate

the sequence of lock requests that must be generated by a transaction that wants to carry

out (just) these operations:

1. Read record P1200 : 5.

2. Read records P1200 : 98 through P1205 : 2.

3. Read all (records on all) pages in file F1.

4. Read pages P500 through P520.

5. Read pages P10 through P980.

6. Read all pages in F1 and modify about 10 pages, which can be identified only after

reading F1.

7. Delete record P1200 : 98. (This is a blind write.)

8. Delete the first record from each page. (Again, these are blind writes.)

9. Delete all records.

570 Chapter 19

BIBLIOGRAPHIC NOTES

A good recent survey of concurrency control methods and their performance is [644]. Multiple-

granularity locking is introduced in [286] and studied further in [107, 388].

Concurrent access to B trees is considered in several papers, including [57, 394, 409, 440, 590].

A concurrency control method that works with the ARIES recovery method is presented in

[474]. Another paper that considers concurrency control issues in the context of recovery is

[427]. Algorithms for building indexes without stopping the DBMS are presented in [477] and

[6]. The performance of B tree concurrency control algorithms is studied in [615]. Concurrency

control techniques for Linear Hashing are presented in [203] and [472].

Timestamp-based multiversion concurrency control is studied in [540]. Multiversion concur-

rency control algorithms are studied formally in [74]. Lock-based multiversion techniques

are considered in [398]. Optimistic concurrency control is introduced in [395]. Transaction

management issues for real-time database systems are discussed in [1, 11, 311, 322, 326, 387].

A locking approach for high-contention environments is proposed in [240]. Performance of

various concurrency control algorithms is discussed in [12, 640, 645]. [393] is a comprehensive

collection of papers on this topic. There is a large body of theoretical results on database

concurrency control. [507, 76] offer thorough textbook presentations of this material.

20 CRASH RECOVERY

Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall.
All the King’s horses and all the King’s men
Could not put Humpty together again.

—Old nursery rhyme

The recovery manager of a DBMS is responsible for ensuring two important prop-
erties of transactions: atomicity and durability. It ensures atomicity by undoing the
actions of transactions that do not commit and durability by making sure that all
actions of committed transactions survive system crashes, (e.g., a core dump caused
by a bus error) and media failures (e.g., a disk is corrupted).

The recovery manager is one of the hardest components of a DBMS to design and
implement. It must deal with a wide variety of database states because it is called on
during system failures. In this chapter, we present the ARIES recovery algorithm,
which is conceptually simple, works well with a wide range of concurrency control
mechanisms, and is being used in an increasing number of database sytems.

We begin with an introduction to ARIES in Section 20.1. We discuss recovery from a
crash in Section 20.2. Aborting (or rolling back) a single transaction is a special case
of Undo and is discussed in Section 20.2.3. We concentrate on recovery from system
crashes in most of the chapter and discuss media failures in Section 20.3. We consider
recovery only in a centralized DBMS; recovery in a distributed DBMS is discussed in
Chapter 21.

20.1 INTRODUCTION TO ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force approach.
When the recovery manager is invoked after a crash, restart proceeds in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have not
been written to disk) and active transactions at the time of the crash.

571

572 Chapter 20

2. Redo: Repeats all actions, starting from an appropriate point in the log, and
restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that the
database reflects only the actions of committed transactions.

Consider the simple execution history illustrated in Figure 20.1. When the system is

10

20

30

40

50

LSN LOG

update: T1 writes P5

update: T2 writes P3

T2 commit

CRASH, RESTART

update: T3 writes P3

update: T3 writes P1

T2 end

60

Figure 20.1 Execution History with a Crash

restarted, the Analysis phase identifies T1 and T3 as transactions that were active at
the time of the crash, and therefore to be undone; T2 as a committed transaction,
and all its actions, therefore, to be written to disk; and P1, P3, and P5 as potentially
dirty pages. All the updates (including those of T1 and T3) are reapplied in the order
shown during the Redo phase. Finally, the actions of T1 and T3 are undone in reverse
order during the Undo phase; that is, T3’s write of P3 is undone, T3’s write of P1 is
undone, and then T1’s write of P5 is undone.

There are three main principles behind the ARIES recovery algorithm:

Write-ahead logging: Any change to a database object is first recorded in the
log; the record in the log must be written to stable storage before the change to
the database object is written to disk.

Repeating history during Redo: Upon restart following a crash, ARIES re-
traces all actions of the DBMS before the crash and brings the system back to the
exact state that it was in at the time of the crash. Then, it undoes the actions
of transactions that were still active at the time of the crash (effectively aborting
them).

Crash Recovery 573

Crash recovery: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and
Sybase ASE all use a WAL scheme for recovery. IBM DB2 uses ARIES, and the
others use schemes that are actually quite similar to ARIES (e.g., all changes
are re-applied, not just the changes made by transactions that are “winners”)
although there are several variations.

Logging changes during Undo: Changes made to the database while undoing
a transaction are logged in order to ensure that such an action is not repeated in
the event of repeated (failures causing) restarts.

The second point distinguishes ARIES from other recovery algorithms and is the basis
for much of its simplicity and flexibility. In particular, ARIES can support concurrency
control protocols that involve locks of finer granularity than a page (e.g., record-level
locks). The second and third points are also important in dealing with operations
such that redoing and undoing the operation are not exact inverses of each other. We
discuss the interaction between concurrency control and crash recovery in Section 20.4,
where we also discuss other approaches to recovery briefly.

20.1.1 The Log

The log, sometimes called the trail or journal, is a history of actions executed by the
DBMS. Physically, the log is a file of records stored in stable storage, which is assumed
to survive crashes; this durability can be achieved by maintaining two or more copies
of the log on different disks (perhaps in different locations), so that the chance of all
copies of the log being simultaneously lost is negligibly small.

The most recent portion of the log, called the log tail, is kept in main memory and
is periodically forced to stable storage. This way, log records and data records are
written to disk at the same granularity (pages or sets of pages).

Every log record is given a unique id called the log sequence number (LSN).
As with any record id, we can fetch a log record with one disk access given the LSN.
Further, LSNs should be assigned in monotonically increasing order; this property is
required for the ARIES recovery algorithm. If the log is a sequential file, in principle
growing indefinitely, the LSN can simply be the address of the first byte of the log
record.1

1In practice, various techniques are used to identify portions of the log that are ‘too old’ to ever be
needed again, in order to bound the amount of stable storage used for the log. Given such a bound,
the log may be implemented as a ‘circular’ file, in which case the LSN may be the log record id plus
a wrap-count.

574 Chapter 20

For recovery purposes, every page in the database contains the LSN of the most recent
log record that describes a change to this page. This LSN is called the pageLSN.

A log record is written for each of the following actions:

Updating a page: After modifying the page, an update type record (described
later in this section) is appended to the log tail. The pageLSN of the page is then
set to the LSN of the update log record. (The page must be pinned in the buffer
pool while these actions are carried out.)

Commit: When a transaction decides to commit, it force-writes a commit type
log record containing the transaction id. That is, the log record is appended to the
log, and the log tail is written to stable storage, up to and including the commit
record.2 The transaction is considered to have committed at the instant that its
commit log record is written to stable storage. (Some additional steps must be
taken, e.g., removing the transaction’s entry in the transaction table; these follow
the writing of the commit log record.)

Abort: When a transaction is aborted, an abort type log record containing the
transaction id is appended to the log, and Undo is initiated for this transaction
(Section 20.2.3).

End: As noted above, when a transaction is aborted or committed, some ad-
ditional actions must be taken beyond writing the abort or commit log record.
After all these additional steps are completed, an end type log record containing
the transaction id is appended to the log.

Undoing an update: When a transaction is rolled back (because the transaction
is aborted, or during recovery from a crash), its updates are undone. When the
action described by an update log record is undone, a compensation log record, or
CLR, is written.

Every log record has certain fields: prevLSN, transID, and type. The set of all log
records for a given transaction is maintained as a linked list going back in time, using
the prevLSN field; this list must be updated whenever a log record is added. The
transID field is the id of the transaction generating the log record, and the type field
obviously indicates the type of the log record.

Additional fields depend on the type of the log record. We have already mentioned the
additional contents of the various log record types, with the exception of the update
and compensation log record types, which we describe next.

2Note that this step requires the buffer manager to be able to selectively force pages to stable
storage.

Crash Recovery 575

Update Log Records

The fields in an update log record are illustrated in Figure 20.2. The pageID field

pageIDtransID type length before-image after-imageprevLSN offset

Fields common to all log records Additional fields for update log records

Figure 20.2 Contents of an Update Log Record

is the page id of the modified page; the length in bytes and the offset of the change
are also included. The before-image is the value of the changed bytes before the
change; the after-image is the value after the change. An update log record that
contains both before- and after-images can be used to redo the change and to undo
it. In certain contexts, which we will not discuss further, we can recognize that the
change will never be undone (or, perhaps, redone). A redo-only update log record
will contain just the after-image; similarly an undo-only update record will contain
just the before-image.

Compensation Log Records

A compensation log record (CLR) is written just before the change recorded
in an update log record U is undone. (Such an undo can happen during normal
system execution when a transaction is aborted or during recovery from a crash.) A
compensation log record C describes the action taken to undo the actions recorded in
the corresponding update log record and is appended to the log tail just like any other
log record. The compensation log record C also contains a field called undoNextLSN,
which is the LSN of the next log record that is to be undone for the transaction that
wrote update record U ; this field in C is set to the value of prevLSN in U .

As an example, consider the fourth update log record shown in Figure 20.3. If this
update is undone, a CLR would be written, and the information in it would include
the transID, pageID, length, offset, and before-image fields from the update record.
Notice that the CLR records the (undo) action of changing the affected bytes back to
the before-image value; thus, this value and the location of the affected bytes constitute
the redo information for the action described by the CLR. The undoNextLSN field is
set to the LSN of the first log record in Figure 20.3.

Unlike an update log record, a CLR describes an action that will never be undone,
that is, we never undo an undo action. The reason is simple: an update log record
describes a change made by a transaction during normal execution and the transaction
may subsequently be aborted, whereas a CLR describes an action taken to rollback a

576 Chapter 20

transaction for which the decision to abort has already been made. Thus, the trans-
action must be rolled back, and the undo action described by the CLR is definitely
required. This observation is very useful because it bounds the amount of space needed
for the log during restart from a crash: The number of CLRs that can be written dur-
ing Undo is no more than the number of update log records for active transactions at
the time of the crash.

It may well happen that a CLR is written to stable storage (following WAL, of course)
but that the undo action that it describes is not yet written to disk when the system
crashes again. In this case the undo action described in the CLR is reapplied during
the Redo phase, just like the action described in update log records.

For these reasons, a CLR contains the information needed to reapply, or redo, the
change described but not to reverse it.

20.1.2 Other Recovery-Related Data Structures

In addition to the log, the following two tables contain important recovery-related
information:

Transaction table: This table contains one entry for each active transaction.
The entry contains (among other things) the transaction id, the status, and a field
called lastLSN, which is the LSN of the most recent log record for this transaction.
The status of a transaction can be that it is in progress, is committed, or is
aborted. (In the latter two cases, the transaction will be removed from the table
once certain ‘clean up’ steps are completed.)

Dirty page table: This table contains one entry for each dirty page in the buffer
pool, that is, each page with changes that are not yet reflected on disk. The entry
contains a field recLSN, which is the LSN of the first log record that caused the
page to become dirty. Note that this LSN identifies the earliest log record that
might have to be redone for this page during restart from a crash.

During normal operation, these are maintained by the transaction manager and the
buffer manager, respectively, and during restart after a crash, these tables are recon-
structed in the Analysis phase of restart.

Consider the following simple example. Transaction T1000 changes the value of bytes
21 to 23 on page P500 from ‘ABC’ to ‘DEF’, transaction T2000 changes ‘HIJ’ to ‘KLM’
on page P600, transaction T2000 changes bytes 20 through 22 from ‘GDE’ to ‘QRS’
on page P500, then transaction T1000 changes ‘TUV’ to ‘WXY’ on page P505. The
dirty page table, the transaction table,3 and the log at this instant are shown in Figure

3The status field is not shown in the figure for space reasons; all transactions are in progress.

Crash Recovery 577

TRANSACTION TABLE

DIRTY PAGE TABLE

3

LOG

P500

P600

P505

T1000

T2000

T1000

T2000

T2000

T1000 update

update

update

update P500

P600

P500

P505

3

3

3

21

41

20

21

DEF

KLM

QRS

WXYTUV

GDE

HIJ

ABC

prevLSN transID type pageID length offset before-image after-image

pageID recLSN

transID lastLSN

Figure 20.3 Instance of Log and Transaction Table

20.3. Observe that the log is shown growing from top to bottom; older records are at
the top. Although the records for each transaction are linked using the prevLSN field,
the log as a whole also has a sequential order that is important—for example, T2000’s
change to page P500 follows T1000’s change to page P500, and in the event of a crash,
these changes must be redone in the same order.

20.1.3 The Write-Ahead Log Protocol

Before writing a page to disk, every update log record that describes a change to this
page must be forced to stable storage. This is accomplished by forcing all log records
up to and including the one with LSN equal to the pageLSN to stable storage before
writing the page to disk.

The importance of the WAL protocol cannot be overemphasized—WAL is the funda-
mental rule that ensures that a record of every change to the database is available while
attempting to recover from a crash. If a transaction made a change and committed,
the no-force approach means that some of these changes may not have been written to
disk at the time of a subsequent crash. Without a record of these changes, there would
be no way to ensure that the changes of a committed transaction survive crashes. Note
that the definition of a committed transaction is effectively “a transaction whose log
records, including a commit record, have all been written to stable storage”!

When a transaction is committed, the log tail is forced to stable storage, even if a no-
force approach is being used. It is worth contrasting this operation with the actions
taken under a force approach: If a force approach is used, all the pages modified by
the transaction, rather than a portion of the log that includes all its records, must be
forced to disk when the transaction commits. The set of all changed pages is typically
much larger than the log tail because the size of an update log record is close to (twice)
the size of the changed bytes, which is likely to be much smaller than the page size.

578 Chapter 20

Further, the log is maintained as a sequential file, and thus all writes to the log are
sequential writes. Consequently, the cost of forcing the log tail is much smaller than
the cost of writing all changed pages to disk.

20.1.4 Checkpointing

A checkpoint is like a snapshot of the DBMS state, and by taking checkpoints peri-
odically, as we will see, the DBMS can reduce the amount of work to be done during
restart in the event of a subsequent crash.

Checkpointing in ARIES has three steps. First, a begin checkpoint record is written
to indicate when the checkpoint starts. Second, an end checkpoint record is con-
structed, including in it the current contents of the transaction table and the dirty page
table, and appended to the log. The third step is carried out after the end checkpoint
record is written to stable storage: A special master record containing the LSN of the
begin checkpoint log record is written to a known place on stable storage. While the
end checkpoint record is being constructed, the DBMS continues executing transac-
tions and writing other log records; the only guarantee we have is that the transaction
table and dirty page table are accurate as of the time of the begin checkpoint record.

This kind of checkpoint is called a fuzzy checkpoint and is inexpensive because it
does not require quiescing the system or writing out pages in the buffer pool (unlike
some other forms of checkpointing). On the other hand, the effectiveness of this check-
pointing technique is limited by the earliest recLSN of pages in the dirty pages table,
because during restart we must redo changes starting from the log record whose LSN
is equal to this recLSN. Having a background process that periodically writes dirty
pages to disk helps to limit this problem.

When the system comes back up after a crash, the restart process begins by locating
the most recent checkpoint record. For uniformity, the system always begins normal
execution by taking a checkpoint, in which the transaction table and dirty page table
are both empty.

20.2 RECOVERING FROM A SYSTEM CRASH

When the system is restarted after a crash, the recovery manager proceeds in three
phases, as shown in Figure 20.4.

The Analysis phase begins by examining the most recent begin checkpoint record,
whose LSN is denoted as C in Figure 20.4, and proceeds forward in the log until the
last log record. The Redo phase follows Analysis and redoes all changes to any page
that might have been dirty at the time of the crash; this set of pages and the starting

Crash Recovery 579

ANALYSIS

REDO

UNDO

C

B

A

LOG
Oldest log record

in dirty page table

Most recent checkpoint

CRASH (end of log)

of transactions
active at crash

Smallest recLSN

at end of Analysis

Figure 20.4 Three Phases of Restart in ARIES

point for Redo (the smallest recLSN of any dirty page) are determined during Analysis.
The Undo phase follows Redo and undoes the changes of all transactions that were
active at the time of the crash; again, this set of transactions is identified during the
Analysis phase. Notice that Redo reapplies changes in the order in which they were
originally carried out; Undo reverses changes in the opposite order, reversing the most
recent change first.

Observe that the relative order of the three points A, B, and C in the log may differ
from that shown in Figure 20.4. The three phases of restart are described in more
detail in the following sections.

20.2.1 Analysis Phase

The Analysis phase performs three tasks:

1. It determines the point in the log at which to start the Redo pass.

2. It determines (a conservative superset of the) pages in the buffer pool that were
dirty at the time of the crash.

3. It identifies transactions that were active at the time of the crash and must be
undone.

Analysis begins by examining the most recent begin checkpoint log record and initial-
izing the dirty page table and transaction table to the copies of those structures in
the next end checkpoint record. Thus, these tables are initialized to the set of dirty
pages and active transactions at the time of the checkpoint. (If there are additional
log records between the begin checkpoint and end checkpoint records, the tables must
be adjusted to reflect the information in these records, but we omit the details of this

580 Chapter 20

step. See Exercise 20.9.) Analysis then scans the log in the forward direction until it
reaches the end of the log:

If an end log record for a transaction T is encountered, T is removed from the
transaction table because it is no longer active.

If a log record other than an end record for a transaction T is encountered, an
entry for T is added to the transaction table if it is not already there. Further,
the entry for T is modified:

1. The lastLSN field is set to the LSN of this log record.

2. If the log record is a commit record, the status is set to C, otherwise it is set
to U (indicating that it is to be undone).

If a redoable log record affecting page P is encountered, and P is not in the dirty
page table, an entry is inserted into this table with page id P and recLSN equal
to the LSN of this redoable log record. This LSN identifies the oldest change
affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate list of all
transactions that were active at the time of the crash—this is the set of transactions
with status U. The dirty page table includes all pages that were dirty at the time of
the crash, but may also contain some pages that were written to disk. If an end write
log record were written at the completion of each write operation, the dirty page
table constructed during Analysis could be made more accurate, but in ARIES, the
additional cost of writing end write log records is not considered to be worth the gain.

As an example, consider the execution illustrated in Figure 20.3. Let us extend this
execution by assuming that T2000 commits, then T1000 modifies another page, say,
P700, and appends an update record to the log tail, and then the system crashes
(before this update log record is written to stable storage).

The dirty page table and the transaction table, held in memory, are lost in the crash.
The most recent checkpoint is the one that was taken at the beginning of the execution,
with an empty transaction table and dirty page table; it is not shown in Figure 20.3.
After examining this log record, which we assume is just before the first log record
shown in the figure, Analysis initializes the two tables to be empty. Scanning forward
in the log, T1000 is added to the transaction table; in addition, P500 is added to the
dirty page table with recLSN equal to the LSN of the first shown log record. Similarly,
T2000 is added to the transaction table and P600 is added to the dirty page table.
There is no change based on the third log record, and the fourth record results in the
addition of P505 to the dirty page table. The commit record for T2000 (not in the
figure) is now encountered, and T2000 is removed from the transaction table.

Crash Recovery 581

The Analysis phase is now complete, and it is recognized that the only active trans-
action at the time of the crash is T1000, with lastLSN equal to the LSN of the fourth
record in Figure 20.3. The dirty page table reconstructed in the Analysis phase is
identical to that shown in the figure. The update log record for the change to P700
is lost in the crash and is not seen during the Analysis pass. Thanks to the WAL
protocol, however, all is well—the corresponding change to page P700 cannot have
been written to disk either!

Some of the updates may have been written to disk; for concreteness, let us assume
that the change to P600 (and only this update) was written to disk before the crash.
Thus P600 is not dirty, yet it is included in the dirty page table. The pageLSN on
page P 600, however, reflects the write because it is now equal to the LSN of the third
update log record shown in Figure 20.3.

20.2.2 Redo Phase

During the Redo phase, ARIES reapplies the updates of all transactions, committed or
otherwise. Further, if a transaction was aborted before the crash and its updates were
undone, as indicated by CLRs, the actions described in the CLRs are also reapplied.
This repeating history paradigm distinguishes ARIES from other proposed WAL-
based recovery algorithms and causes the database to be brought to the same state
that it was in at the time of the crash.

The Redo phase begins with the log record that has the smallest recLSN of all pages in
the dirty page table constructed by the Analysis pass because this log record identifies
the oldest update that may not have been written to disk prior to the crash. Starting
from this log record, Redo scans forward until the end of the log. For each redoable
log record (update or CLR) encountered, Redo checks whether the logged action must
be redone. The action must be redone unless one of the following conditions holds:

The affected page is not in the dirty page table, or

The affected page is in the dirty page table, but the recLSN for the entry is greater
than the LSN of the log record being checked, or

The pageLSN (stored on the page, which must be retrieved to check this condition)
is greater than or equal to the LSN of the log record being checked.

The first condition obviously means that all changes to this page have been written
to disk. Because the recLSN is the first update to this page that may not have been
written to disk, the second condition means that the update being checked was indeed
propagated to disk. The third condition, which is checked last because it requires us
to retrieve the page, also ensures that the update being checked was written to disk,

582 Chapter 20

because either this update or a later update to the page was written. (Recall our
assumption that a write to a page is atomic; this assumption is important here!)

If the logged action must be redone:

1. The logged action is reapplied.

2. The pageLSN on the page is set to the LSN of the redone log record. No additional
log record is written at this time.

Let us continue with the example discussed in Section 20.2.1. From the dirty page
table, the smallest recLSN is seen to be the LSN of the first log record shown in Figure
20.3. Clearly the changes recorded by earlier log records (there happen to be none
in this example) have all been written to disk. Now, Redo fetches the affected page,
P500, and compares the LSN of this log record with the pageLSN on the page and,
because we assumed that this page was not written to disk before the crash, finds
that the pageLSN is less. The update is therefore reapplied; bytes 21 through 23 are
changed to ‘DEF’, and the pageLSN is set to the LSN of this update log record.

Redo then examines the second log record. Again, the affected page, P600, is fetched
and the pageLSN is compared to the LSN of the update log record. In this case,
because we assumed that P600 was written to disk before the crash, they are equal,
and the update does not have to be redone.

The remaining log records are processed similarly, bringing the system back to the exact
state it was in at the time of the crash. Notice that the first two conditions indicating
that a redo is unnecessary never hold in this example. Intuitively, they come into play
when the dirty page table contains a very old recLSN, going back to before the most
recent checkpoint. In this case, as Redo scans forward from the log record with this
LSN, it will encounter log records for pages that were written to disk prior to the
checkpoint and were therefore not in the dirty page table in the checkpoint. Some of
these pages may be dirtied again after the checkpoint; nonetheless, the updates to these
pages prior to the checkpoint need not be redone. Although the third condition alone
is sufficient to recognize that these updates need not be redone, it requires us to fetch
the affected page. The first two conditions allow us to recognize this situation without
fetching the page. (The reader is encouraged to construct examples that illustrate the
use of each of these conditions; see Exercise 20.8.)

At the end of the Redo phase, end type records are written for all transactions with
status C, which are removed from the transaction table.

Crash Recovery 583

20.2.3 Undo Phase

The Undo phase, unlike the other two phases, scans backward from the end of the log.
The goal of this phase is to undo the actions of all transactions that were active at
the time of the crash, that is, to effectively abort them. This set of transactions is
identified in the transaction table constructed by the Analysis phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the Analysis phase, which
identifies all transactions that were active at the time of the crash, and includes the
LSN of the most recent log record (the lastLSN field) for each such transaction. Such
transactions are called loser transactions. All actions of losers must be undone, and
further, these actions must be undone in the reverse of the order in which they appear
in the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set
ToUndo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in this
set and processes it, until ToUndo is empty. To process a log record:

1. If it is a CLR, and the undoNextLSN value is not null, the undoNextLSN value
is added to the set ToUndo; if the undoNextLSN is null, an end record is written
for the transaction because it is completely undone, and the CLR is discarded.

2. If it is an update record, a CLR is written and the corresponding action is undone,
as described in Section 20.1.1, and the prevLSN value in the update log record is
added to the set ToUndo.

When the set ToUndo is empty, the Undo phase is complete. Restart is now complete,
and the system can proceed with normal operations.

Let us continue with the scenario discussed in Sections 20.2.1 and 20.2.2. The only
active transaction at the time of the crash was determined to be T1000. From the
transaction table, we get the LSN of its most recent log record, which is the fourth
update log record in Figure 20.3. The update is undone, and a CLR is written with
undoNextLSN equal to the LSN of the first log record in the figure. The next record
to be undone for transaction T1000 is the first log record in the figure. After this is
undone, a CLR and an end log record for T1000 are written, and the Undo phase is
complete.

In this example, undoing the action recorded in the first log record causes the action
of the third log record, which is due to a committed transaction, to be overwritten and
thereby lost! This situation arises because T2000 overwrote a data item written by

584 Chapter 20

T1000 while T1000 was still active; if Strict 2PL were followed, T2000 would not have
been allowed to overwrite this data item.

Aborting a Transaction

Aborting a transaction is just a special case of the Undo phase of Restart in which a
single transaction, rather than a set of transactions, is undone. The example in Figure
20.5, discussed next, illustrates this point.

Crashes during Restart

It is important to understand how the Undo algorithm presented in Section 20.2.3
handles repeated system crashes. Because the details of precisely how the action
described in an update log record is undone are straightforward, we will discuss Undo
in the presence of system crashes using an execution history, shown in Figure 20.5, that
abstracts away unnecessary detail. This example illustrates how aborting a transaction
is a special case of Undo and how the use of CLRs ensures that the Undo action for
an update log record is not applied twice.

10

20

CRASH, RESTART

30

50

60

70

CRASH, RESTART

update: T1 writes P5

update: T2 writes P3

update: T3 writes P1

update: T2 writes P5

CLR: Undo T2 LSN 60

LSN LOG

begin_checkpoint, end_checkpoint00, 05

CLR: Undo T1 LSN 10, T1 end

T1 abort

40, 45

CLR: Undo T3 LSN 50, T3 end

CLR: Undo T2 LSN 20, T2 end

undonextLSN

prevLSN

80, 85

90, 95

Figure 20.5 Example of Undo with Repeated Crashes

The log shows the order in which the DBMS executed various actions; notice that the
LSNs are in ascending order, and that each log record for a transaction has a prevLSN

Crash Recovery 585

field that points to the previous log record for that transaction. We have not shown
null prevLSNs, that is, some special value used in the prevLSN field of the first log
record for a transaction to indicate that there is no previous log record. We have
also compacted the figure by occasionally displaying two log records (separated by a
comma) on a single line.

Log record (with LSN) 30 indicates that T1 aborts. All actions of this transaction
should be undone in reverse order, and the only action of T1, described by the update
log record 10, is indeed undone as indicated by CLR 40.

After the first crash, Analysis identifies P1 (with recLSN 50), P3 (with recLSN 20),
and P5 (with recLSN 10) as dirty pages. Log record 45 shows that T1 is a completed
transaction; thus, the transaction table identifies T2 (with lastLSN 60) and T3 (with
lastLSN 50) as active at the time of the crash. The Redo phase begins with log record
10, which is the minimum recLSN in the dirty page table, and reapplies all actions (for
the update and CLR records), as per the Redo algorithm presented in Section 20.2.2.

The ToUndo set consists of LSNs 60, for T2, and 50, for T3. The Undo phase now
begins by processing the log record with LSN 60 because 60 is the largest LSN in the
ToUndo set. The update is undone, and a CLR (with LSN 70) is written to the log.
This CLR has undoNextLSN equal to 20, which is the prevLSN value in log record
60; 20 is the next action to be undone for T2. Now the largest remaining LSN in the
ToUndo set is 50. The write corresponding to log record 50 is now undone, and a CLR
describing the change is written. This CLR has LSN 80, and its undoNextLSN field
is null because 50 is the only log record for transaction T3. Thus T3 is completely
undone, and an end record is written. Log records 70, 80, and 85 are written to stable
storage before the system crashes a second time; however, the changes described by
these records may not have been written to disk.

When the system is restarted after the second crash, Analysis determines that the
only active transaction at the time of the crash was T2; in addition, the dirty page
table is identical to what it was during the previous restart. Log records 10 through
85 are processed again during Redo. (If some of the changes made during the previous
Redo were written to disk, the pageLSNs on the affected pages are used to detect this
situation and avoid writing these pages again.) The Undo phase considers the only
LSN in the ToUndo set, 70, and processes it by adding the undoNextLSN value (20)
to the ToUndo set. Next, log record 20 is processed by undoing T2’s write of page
P3, and a CLR is written (LSN 90). Because 20 is the first of T2’s log records—and
therefore, the last of its records to be undone—the undoNextLSN field in this CLR is
null, an end record is written for T2, and the ToUndo set is now empty.

Recovery is now complete, and normal execution can resume with the writing of a
checkpoint record.

586 Chapter 20

This example illustrated repeated crashes during the Undo phase. For completeness,
let us consider what happens if the system crashes while Restart is in the Analysis or
Redo phases. If a crash occurs during the Analysis phase, all the work done in this
phase is lost, and on restart the Analysis phase starts afresh with the same information
as before. If a crash occurs during the Redo phase, the only effect that survives the
crash is that some of the changes made during Redo may have been written to disk
prior to the crash. Restart starts again with the Analysis phase and then the Redo
phase, and some update log records that were redone the first time around will not be
redone a second time because the pageLSN will now be equal to the update record’s
LSN (although the pages will have to fetched again to detect this).

We can take checkpoints during Restart to minimize repeated work in the event of a
crash, but we will not discuss this point.

20.3 MEDIA RECOVERY

Media recovery is based on periodically making a copy of the database. Because
copying a large database object such as a file can take a long time, and the DBMS
must be allowed to continue with its operations in the meantime, creating a copy is
handled in a manner similar to taking a fuzzy checkpoint.

When a database object such as a file or a page is corrupted, the copy of that object is
brought up-to-date by using the log to identify and reapply the changes of committed
transactions and undo the changes of uncommitted transactions (as of the time of the
media recovery operation).

The begin checkpoint LSN of the most recent complete checkpoint is recorded along
with the copy of the database object in order to minimize the work in reapplying
changes of committed transactions. Let us compare the smallest recLSN of a dirty
page in the corresponding end checkpoint record with the LSN of the begin checkpoint
record and call the smaller of these two LSNs I. We observe that the actions recorded
in all log records with LSNs less than I must be reflected in the copy. Thus, only log
records with LSNs greater than I need to be reapplied to the copy.

Finally, the updates of transactions that are incomplete at the time of media recovery
or that were aborted after the fuzzy copy was completed need to be undone to ensure
that the page reflects only the actions of committed transactions. The set of such
transactions can be identified as in the Analysis pass, and we omit the details.

Crash Recovery 587

20.4 OTHER ALGORITHMS AND INTERACTION WITH

CONCURRENCY CONTROL

Like ARIES, the most popular alternative recovery algorithms also maintain a log of
database actions according to the WAL protocol. A major distinction between ARIES
and these variants is that the Redo phase in ARIES repeats history, that is, redoes
the actions of all transactions, not just the non-losers. Other algorithms redo only the
non-losers, and the Redo phase follows the Undo phase, in which the actions of losers
are rolled back.

Thanks to the repeating history paradigm and the use of CLRs, ARIES is able to
support fine-granularity locks (record-level locks) and logging of logical operations,
rather than just byte-level modifications. For example, consider a transaction T that
inserts a data entry 15∗ into a B+ tree index. Between the time this insert is done and
the time that T is eventually aborted, other transactions may also insert and delete
entries from the tree. If record-level locks are set, rather than page-level locks, it is
possible that the entry 15∗ is on a different physical page when T aborts from the one
that T inserted it into. In this case the undo operation for the insert of 15∗ must be
recorded in logical terms because the physical (byte-level) actions involved in undoing
this operation are not the inverse of the physical actions involved in inserting the entry.

Logging logical operations yields considerably higher concurrency, although the use of
fine-granularity locks can lead to increased locking activity (because more locks must
be set). Thus, there is a trade-off between different WAL-based recovery schemes. We
have chosen to cover ARIES because it has several attractive properties, in particular,
its simplicity and its ability to support fine-granularity locks and logging of logical
operations.

One of the earliest recovery algorithms, used in the System R prototype at IBM,
takes a very different approach. There is no logging and, of course, no WAL protocol.
Instead, the database is treated as a collection of pages and accessed through a page
table, which maps page ids to disk addresses. When a transaction makes changes to
a data page, it actually makes a copy of the page, called the shadow of the page,
and changes the shadow page. The transaction copies the appropriate part of the
page table and changes the entry for the changed page to point to the shadow, so
that it can see the changes; however, other transactions continue to see the original
page table, and therefore the original page, until this transaction commits. Aborting
a transaction is simple: just discard its shadow versions of the page table and the data
pages. Committing a transaction involves making its version of the page table public
and discarding the original data pages that are superseded by shadow pages.

This scheme suffers from a number of problems. First, data becomes highly fragmented
due to the replacement of pages by shadow versions, which may be located far from

588 Chapter 20

the original page. This phenomenon reduces data clustering and makes good garbage
collection imperative. Second, the scheme does not yield a sufficiently high degree of
concurrency. Third, there is a substantial storage overhead due to the use of shadow
pages. Fourth, the process aborting a transaction can itself run into deadlocks, and
this situation must be specially handled because the semantics of aborting an abort
transaction gets murky.

For these reasons, even in System R, shadow paging was eventually superseded by
WAL-based recovery techniques.

20.5 POINTS TO REVIEW

ARIES is a very popular recovery algorithm with a steal, no-force approach. Com-
pared to other recovery algorithms, ARIES is relatively simple, and supports locks
at a finer granularity than a page. After a crash, restart in ARIES proceeds in
three phases. The Analysis phase identifies dirty buffer pool pages and active
transactions at the time of the crash. The Redo phase restores the database to its
state at the time of the crash. The Undo phase undoes actions of transactions that
did not commit due to the crash. ARIES maintains a log of all actions executed by
the DBMS. Each log record has a unique log sequence number (LSN). Log records
are written for updates, commits, aborts, and whenever an update is undone. In
addition, a special end record is written whenever the DBMS finishes processing
a transaction. ARIES is a write-ahead log protocol. Before writing a page to disk
or before committing a transaction, every log record that refers to the page or
transaction is forced to disk. To reduce the amount of work to be done during
a restart, the DBMS takes occasional snapshots called checkpoints. The restart
process then starts at the most recent checkpoint. (Section 20.1)

After a system crash, the Analysis, Redo, and Undo phases are executed. The
redo phase repeats history by transforming the database into its state before the
crash. The Undo phase undoes actions by loser transaction, transactions that are
aborted since they were active at the time of the crash. ARIES handles subsequent
crashes during system restart by writing compensating log records (CLRs) when
undoing actions of aborted transaction. CLRs indicate which actions have already
been undone and prevent undoing the same action twice. (Section 20.2)

To be able to recover from media failure without reading the complete log, we
periodically make a copy of the database. The procedure of copying the database
is similar to creating a checkpoint. (Section 20.3)

There are other recovery schemes based on write-ahead logging and there is a re-
covery scheme that makes changes to copies of data pages, or shadow pages. Aries
and its variants are replacing these other schemes because of their relative simplic-

Crash Recovery 589

ity and ability to support fine-granularity locks and logging of logical operations.
(Section 20.4)

EXERCISES

Exercise 20.1 Briefly answer the following questions:

1. How does the recovery manager ensure atomicity of transactions? How does it ensure

durability?

2. What is the difference between stable storage and disk?

3. What is the difference between a system crash and a media failure?

4. Explain the WAL protocol.

5. Describe the steal and no-force policies.

Exercise 20.2 Briefly answer the following questions:

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each field.

3. What are redoable log records?

4. What are the differences between update log records and CLRs?

Exercise 20.3 Briefly answer the following questions:

1. What are the roles of the Analysis, Redo and Undo phases in ARIES?

2. Consider the execution shown in Figure 20.6.

(a) What is done during Analysis? (Be precise about the points at which Analysis

begins and ends and describe the contents of any tables constructed in this phase.)

(b) What is done during Redo? (Be precise about the points at which Redo begins and

ends.)

(c) What is done during Undo? (Be precise about the points at which Undo begins

and ends.)

Exercise 20.4 Consider the execution shown in Figure 20.7.

1. Extend the figure to show prevLSN and undonextLSN values.

2. Describe the actions taken to rollback transaction T2.

3. Show the log after T2 is rolled back, including all prevLSN and undonextLSN values in

log records.

Exercise 20.5 Consider the execution shown in Figure 20.8. In addition, the system crashes

during recovery after writing two log records to stable storage and again after writing another

two log records.

590 Chapter 20

10

20

30

40

50

60

00

end_checkpoint

begin_checkpoint

LOG LSN

update: T1 writes P5

update: T2 writes P3

update: T3 writes P3

CRASH, RESTART

T2 end

T2 commit

T1 abort70

Figure 20.6 Execution with a Crash

10

20

30

40

50

60

LSN LOG

00

update: T1 writes P1

update: T3 writes P3

70

update: T1 writes P2

update: T2 writes P3

update: T2 writes P5

update: T2 writes P5

T2 abort

T3 commit

Figure 20.7 Aborting a Transaction

Crash Recovery 591

10

20

30

40

50

60

LSN LOG

00

70

CRASH, RESTART

T3 abort

update: T1 writes P5

T2 end

update: T3 writes P2

T2 commit

update: T3 writes P3

update: T2 writes P2

update: T1 writes P1

begin_checkpoint

end_checkpoint

80

90

Figure 20.8 Execution with Multiple Crashes

1. What is the value of the LSN stored in the master log record?

2. What is done during Analysis?

3. What is done during Redo?

4. What is done during Undo?

5. Show the log when recovery is complete, including all non-null prevLSN and undonextLSN

values in log records.

Exercise 20.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

2. Checkpointing can also be done as follows: Quiesce the system so that only checkpointing

activity can be in progress, write out copies of all dirty pages, and include the dirty page

table and transaction table in the checkpoint record. What are the pros and cons of this

approach versus the checkpointing approach of ARIES?

3. What happens if a second begin checkpoint record is encountered during the Analysis

phase?

4. Can a second end checkpoint record be encountered during the Analysis phase?

5. Why is the use of CLRs important for the use of undo actions that are not the physical

inverse of the original update?

6. Give an example that illustrates how the paradigm of repeating history and the use of

CLRs allow ARIES to support locks of finer granularity than a page.

Exercise 20.7 Briefly answer the following questions:

592 Chapter 20

10

20

30

40

LSN LOG

00 begin_checkpoint

update: T1 writes P1

update: T2 writes P2

50

60

70

80

T1 commit

CRASH, RESTART

T3 commit

end_checkpoint

update: T3 writes P3

T2 abort

T1 end

Figure 20.9 Log Records between Checkpoint Records

1. If the system fails repeatedly during recovery, what is the maximum number of log

records that can be written (as a function of the number of update and other log records

written before the crash) before restart completes successfully?

2. What is the oldest log record that we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we ensure that there

is always enough stable storage to hold all log records written during restart?

Exercise 20.8 Consider the three conditions under which a redo is unnecessary (Section

20.2.2).

1. Why is it cheaper to test the first two conditions?

2. Describe an execution that illustrates the use of the first condition.

3. Describe an execution that illustrates the use of the second condition.

Exercise 20.9 The description in Section 20.2.1 of the Analysis phase made the simplifying

assumption that no log records appeared between the begin checkpoint and end checkpoint

records for the most recent complete checkpoint. The following questions explore how such

records should be handled.

1. Explain why log records could be written between the begin checkpoint and end checkpoint

records.

2. Describe how the Analysis phase could be modified to handle such records.

3. Consider the execution shown in Figure 20.9. Show the contents of the end checkpoint

record.

4. Illustrate your modified Analysis phase on the execution shown in Figure 20.9.

Exercise 20.10 Answer the following questions briefly:

Crash Recovery 593

1. Explain how media recovery is handled in ARIES.

2. What are the pros and cons of using fuzzy dumps for media recovery?

3. What are the similarities and differences between checkpoints and fuzzy dumps?

4. Contrast ARIES with other WAL-based recovery schemes.

5. Contrast ARIES with shadow-page-based recovery.

BIBLIOGRAPHIC NOTES

Our discussion of the ARIES recovery algorithm is based on [473]. [241] is a survey article

that contains a very readable, short description of ARIES. [470, 474] also discuss ARIES.

Fine-granularity locking increases concurrency but at the cost of more locking activity; [471]

suggests a technique based on LSNs for alleviating this problem. [396] presents a formal

verification of ARIES.

[300] is an excellent survey that provides a broader treatment of recovery algorithms than

our coverage, in which we have chosen to concentrate on one particular algorithm. [13]

considers performance of concurrency control and recovery algorithms, taking into account

their interactions. The impact of recovery on concurrency control is also discussed in [675].

[544] contains a performance analysis of various recovery techniques. [199] compares recovery

techniques for main memory database systems, which are optimized for the case that most

of the active data set fits in main memory. [288] provides an encyclopedic treatment of

transaction processing.

[414] presents a description of a recovery algorithm based on write-ahead logging in which

‘loser’ transactions are first undone and then (only) transactions that committed before the

crash are redone. Shadow paging is described in [428, 287]. A scheme that uses a combination

of shadow paging and in-place updating is described in [543].

PART VII

ADVANCED TOPICS

21 PARALLEL AND
DISTRIBUTED DATABASES

No man is an island, entire of itself; every man is a piece of the continent, a
part of the main.

—John Donne

We have thus far considered centralized database management systems, in which all
the data is maintained at a single site, and assumed that the processing of individual
transactions is essentially sequential. One of the most important trends in databases
is the increased use of parallel evaluation techniques and data distribution. There are
four distinct motivations:

Performance: Using several resources (e.g., CPUs and disks) in parallel can
significantly improve performance.

Increased availability: If a site containing a relation goes down, the relation
continues to be available if a copy is maintained at another site.

Distributed access to data: An organization may have branches in several
cities. Although analysts may need to access data corresponding to different sites,
we usually find locality in the access patterns (e.g., a bank manager is likely to
look up the accounts of customers at the local branch), and this locality can be
exploited by distributing the data accordingly.

Analysis of distributed data: Organizations increasingly want to examine all
the data available to them, even when it is stored across multiple sites and on
multiple database systems. Support for such integrated access involves many
issues; even enabling access to widely distributed data can be a challenge.

A parallel database system is one that seeks to improve performance through par-
allel implementation of various operations such as loading data, building indexes, and
evaluating queries. Although data may be stored in a distributed fashion in such a
system, the distribution is governed solely by performance considerations.

In a distributed database system, data is physically stored across several sites, and
each site is typically managed by a DBMS that is capable of running independently of
the other sites. The location of data items and the degree of autonomy of individual

597

598 Chapter 21

sites have a significant impact on all aspects of the system, including query optimization
and processing, concurrency control, and recovery. In contrast to parallel databases,
the distribution of data is governed by factors such as local ownership and increased
availability, in addition to performance issues.

In this chapter we look at the issues of parallelism and data distribution in a DBMS.
In Section 21.1 we discuss alternative hardware configurations for a parallel DBMS. In
Section 21.2 we introduce the concept of data partitioning and consider its influence on
parallel query evaluation. In Section 21.3 we show how data partitioning can be used to
parallelize several relational operations. In Section 21.4 we conclude our treatment of
parallel query processing with a discussion of parallel query optimization. The rest of
the chapter is devoted to distributed databases. We present an overview of distributed
databases in Section 21.5. We discuss some alternative architectures for a distributed
DBMS in Section 21.6 and describe options for distributing data in Section 21.7. In
Section 21.9 we discuss query optimization and evaluation for distributed databases,
in Section 21.10 we discuss updating distributed data, and finally, in Sections 21.12
and 21.13 we discuss distributed transaction management.

21.1 ARCHITECTURES FOR PARALLEL DATABASES

The basic idea behind parallel databases is to carry out evaluation steps in parallel
whenever possible, in order to improve performance. There are many opportunities
for parallelism in a DBMS; databases represent one of the most successful instances of
parallel computing.

Three main architectures have been proposed for building parallel DBMSs. In a
shared-memory system, multiple CPUs are attached to an interconnection network
and can access a common region of main memory. In a shared-disk system, each CPU
has a private memory and direct access to all disks through an interconnection network.
In a shared-nothing system, each CPU has local main memory and disk space, but
no two CPUs can access the same storage area; all communication between CPUs is
through a network connection. The three architectures are illustrated in Figure 21.1.

The shared memory architecture is closer to a conventional machine, and many com-
mercial database systems have been ported to shared memory platforms with relative
ease. Communication overheads are low, because main memory can be used for this
purpose, and operating system services can be leveraged to utilize the additional CPUs.
Although this approach is attractive for achieving moderate parallelism—a few tens of
CPUs can be exploited in this fashion—memory contention becomes a bottleneck as
the number of CPUs increases. The shared-disk architecture faces a similar problem
because large amounts of data are shipped through the interconnection network.

Parallel and Distributed Databases 599

D D D

Interconnection Network

P P P Interconnection Network

D D D

P P P

D D D

P P P

M MM

M MM

Interconnection NetworkGlobal Shared Memory

SHARED NOTHING SHARED MEMORY SHARED DISK

Figure 21.1 Physical Architectures for Parallel Database Systems

The basic problem with the shared-memory and shared-disk architectures is inter-
ference: As more CPUs are added, existing CPUs are slowed down because of the
increased contention for memory accesses and network bandwidth. It has been noted
that even an average 1 percent slowdown per additional CPU means that the maximum
speedup is a factor of 37, and adding additional CPUs actually slows down the system;
a system with 1,000 CPUs is only 4 percent as effective as a single CPU system! This
observation has motivated the development of the shared-nothing architecture, which
is now widely considered to be the best architecture for large parallel database systems.

The shared-nothing architecture requires more extensive reorganization of the DBMS
code, but it has been shown to provide linear speed-up, in that the time taken for
operations decreases in proportion to the increase in the number of CPUs and disks,
and linear scale-up, in that performance is sustained if the number of CPUs and disks
are increased in proportion to the amount of data. Consequently, ever-more power-
ful parallel database systems can be built by taking advantage of rapidly improving
performance for single CPU systems and connecting as many CPUs as desired.

Speed-up and scale-up are illustrated in Figure 21.2. The speed-up curves show how,
for a fixed database size, more transactions can be executed per second by adding
CPUs. The scale-up curves show how adding more resources (in the form of CPUs)
enables us to process larger problems. The first scale-up graph measures the number
of transactions executed per second as the database size is increased and the number
of CPUs is correspondingly increased. An alternative way to measure scale-up is
to consider the time taken per transaction as more CPUs are added to process an
increasing number of transactions per second; the goal here is to sustain the response
time per transaction.

600 Chapter 21

T
im

e
pe

r
tr

an
sa

ct
io

n

of CPUs, # transactions per second

Sublinear scale-up

(ideal)Linear scale-up

of CPUs

tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d Linear speed-up (ideal)

Sublinear speed-up

SCALE-UP with # XACTS/SECSCALE-UP with DB SIZESPEED-UP

tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d

Sublinear scale-up

(ideal)Linear scale-up

of CPUs, database size

Figure 21.2 Speed-up and Scale-up

21.2 PARALLEL QUERY EVALUATION

In this section we discuss parallel evaluation of a relational query in a DBMS with
a shared-nothing architecture. While it is possible to consider parallel execution of
multiple queries, it is hard to identify in advance which queries will run concurrently.
So the emphasis has been on parallel execution of a single query.

A relational query execution plan is a graph of relational algebra operators and the
operators in a graph can be executed in parallel. If an operator consumes the output of
a second operator, we have pipelined parallelism (the output of the second operator
is worked on by the first operator as soon as it is generated); if not, the two operators
can proceed essentially independently. An operator is said to block if it produces no
output until it has consumed all its inputs. Pipelined parallelism is limited by the
presence of operators (e.g., sorting or aggregation) that block.

In addition to evaluating different operators in parallel, we can evaluate each individual
operator in a query plan in a parallel fashion. The key to evaluating an operator in
parallel is to partition the input data; we can then work on each partition in parallel and
combine the results. This approach is called data-partitioned parallel evaluation.
By exercising some care, existing code for sequentially evaluating relational operators
can be ported easily for data-partitioned parallel evaluation.

An important observation, which explains why shared-nothing parallel database sys-
tems have been very successful, is that database query evaluation is very amenable to
data-partitioned parallel evaluation. The goal is to minimize data shipping by par-
titioning the data and by structuring the algorithms to do most of the processing at
individual processors. (We use processor to refer to a CPU together with its local disk.)

We now consider data partitioning and parallelization of existing operator evaluation
code in more detail.

Parallel and Distributed Databases 601

21.2.1 Data Partitioning

Partitioning a large dataset horizontally across several disks enables us to exploit the
I/O bandwidth of the disks by reading and writing them in parallel. There are several
ways to horizontally partition a relation. We can assign tuples to processors in a round-
robin fashion, we can use hashing, or we can assign tuples to processors by ranges of
field values. If there are n processors, the ith tuple is assigned to processor i mod n

in round-robin partitioning. Recall that round-robin partitioning is used in RAID
storage systems (see Section 7.2). In hash partitioning, a hash function is applied to
(selected fields of) a tuple to determine its processor. In range partitioning, tuples
are sorted (conceptually), and n ranges are chosen for the sort key values so that each
range contains roughly the same number of tuples; tuples in range i are assigned to
processor i.

Round-robin partitioning is suitable for efficiently evaluating queries that access the
entire relation. If only a subset of the tuples (e.g., those that satisfy the selection con-
dition age = 20) is required, hash partitioning and range partitioning are better than
round-robin partitioning because they enable us to access only those disks that contain
matching tuples. (Of course, this statement assumes that the tuples are partitioned
on the attributes in the selection condition; if age = 20 is specified, the tuples must
be partitioned on age.) If range selections such as 15 < age < 25 are specified, range
partitioning is superior to hash partitioning because qualifying tuples are likely to be
clustered together on a few processors. On the other hand, range partitioning can
lead to data skew; that is, partitions with widely varying numbers of tuples across
partitions or disks. Skew causes processors dealing with large partitions to become
performance bottlenecks. Hash partitioning has the additional virtue that it keeps
data evenly distributed even if the data grows and shrinks over time.

To reduce skew in range partitioning, the main question is how to choose the ranges
by which tuples are distributed. One effective approach is to take samples from each
processor, collect and sort all samples, and divide the sorted set of samples into equally
sized subsets. If tuples are to be partitioned on age, the age ranges of the sampled
subsets of tuples can be used as the basis for redistributing the entire relation.

21.2.2 Parallelizing Sequential Operator Evaluation Code

An elegant software architecture for parallel DBMSs enables us to readily parallelize
existing code for sequentially evaluating a relational operator. The basic idea is to use
parallel data streams. Streams (from different disks or the output of other operators)
are merged as needed to provide the inputs for a relational operator, and the output
of an operator is split as needed to parallelize subsequent processing.

602 Chapter 21

A parallel evaluation plan consists of a dataflow network of relational, merge, and
split operators. The merge and split operators should be able to buffer some data
and should be able to halt the operators producing their input data. They can then
regulate the speed of the execution according to the execution speed of the operator
that consumes their output.

As we will see, obtaining good parallel versions of algorithms for sequential operator
evaluation requires careful consideration; there is no magic formula for taking sequen-
tial code and producing a parallel version. Good use of split and merge in a dataflow
software architecture, however, can greatly reduce the effort of implementing parallel
query evaluation algorithms, as we illustrate in Section 21.3.3.

21.3 PARALLELIZING INDIVIDUAL OPERATIONS

This section shows how various operations can be implemented in parallel in a shared-
nothing architecture. We assume that each relation is horizontally partitioned across
several disks, although this partitioning may or may not be appropriate for a given
query. The evaluation of a query must take the initial partitioning criteria into account
and repartition if necessary.

21.3.1 Bulk Loading and Scanning

We begin with two simple operations: scanning a relation and loading a relation. Pages
can be read in parallel while scanning a relation, and the retrieved tuples can then be
merged, if the relation is partitioned across several disks. More generally, the idea also
applies when retrieving all tuples that meet a selection condition. If hashing or range
partitioning is used, selection queries can be answered by going to just those processors
that contain relevant tuples.

A similar observation holds for bulk loading. Further, if a relation has associated
indexes, any sorting of data entries required for building the indexes during bulk loading
can also be done in parallel (see below).

21.3.2 Sorting

A simple idea is to let each CPU sort the part of the relation that is on its local disk
and to then merge these sorted sets of tuples. The degree of parallelism is likely to be
limited by the merging phase.

A better idea is to first redistribute all tuples in the relation using range partitioning.
For example, if we want to sort a collection of employee tuples by salary, salary values
range from 10 to 210, and we have 20 processors, we could send all tuples with salary

Parallel and Distributed Databases 603

values in the range 10 to 20 to the first processor, all in the range 21 to 30 to the
second processor, and so on. (Prior to the redistribution, while tuples are distributed
across the processors, we cannot assume that they are distributed according to salary
ranges.)

Each processor then sorts the tuples assigned to it, using some sequential sorting
algorithm. For example, a processor can collect tuples until its memory is full, then
sort these tuples and write out a run, until all incoming tuples have been written to
such sorted runs on the local disk. These runs can then be merged to create the sorted
version of the set of tuples assigned to this processor. The entire sorted relation can be
retrieved by visiting the processors in an order corresponding to the ranges assigned
to them and simply scanning the tuples.

The basic challenge in parallel sorting is to do the range partitioning so that each
processor receives roughly the same number of tuples; otherwise, a processor that
receives a disproportionately large number of tuples to sort becomes a bottleneck and
limits the scalability of the parallel sort. One good approach to range partitioning
is to obtain a sample of the entire relation by taking samples at each processor that
initially contains part of the relation. The (relatively small) sample is sorted and used
to identify ranges with equal numbers of tuples. This set of range values, called a
splitting vector, is then distributed to all processors and used to range partition the
entire relation.

A particularly important application of parallel sorting is sorting the data entries in
tree-structured indexes. Sorting data entries can significantly speed up the process of
bulk-loading an index.

21.3.3 Joins

In this section we consider how the join operation can be parallelized. We present
the basic idea behind the parallelization and also illustrate the use of the merge and
split operators described in Section 21.2.2. We focus on parallel hash join, which
is widely used, and briefly outline how sort-merge join can be similarly parallelized.
Other join algorithms can be parallelized as well, although not as effectively as these
two algorithms.

Suppose that we want to join two relations, say, A and B, on the age attribute. We
assume that they are initially distributed across several disks in some way that is not
useful for the join operation, that is, the initial partitioning is not based on the join
attribute. The basic idea for joining A and B in parallel is to decompose the join into
a collection of k smaller joins. We can decompose the join by partitioning both A and
B into a collection of k logical buckets or partitions. By using the same partitioning
function for both A and B, we ensure that the union of the k smaller joins computes

604 Chapter 21

the join of A and B; this idea is similar to intuition behind the partitioning phase
of a sequential hash join, described in Section 12.5.3. Because A and B are initially
distributed across several processors, the partitioning step can itself be done in parallel
at these processors. At each processor, all local tuples are retrieved and hashed into
one of k partitions, with the same hash function used at all sites, of course.

Alternatively, we can partition A and B by dividing the range of the join attribute
age into k disjoint subranges and placing A and B tuples into partitions according to
the subrange to which their age values belong. For example, suppose that we have
10 processors, the join attribute is age, with values from 0 to 100. Assuming uniform
distribution, A and B tuples with 0 ≤ age < 10 go to processor 1, 10 ≤ age < 20
go to processor 2, and so on. This approach is likely to be more susceptible than
hash partitioning to data skew (i.e., the number of tuples to be joined can vary widely
across partitions), unless the subranges are carefully determined; we will not discuss
how good subrange boundaries can be identified.

Having decided on a partitioning strategy, we can assign each partition to a processor
and carry out a local join, using any join algorithm we want, at each processor. In
this case the number of partitions k is chosen to be equal to the number of processors
n that are available for carrying out the join, and during partitioning, each processor
sends tuples in the ith partition to processor i. After partitioning, each processor joins
the A and B tuples assigned to it. Each join process executes sequential join code,
and receives input A and B tuples from several processors; a merge operator merges
all incoming A tuples, and another merge operator merges all incoming B tuples.
Depending on how we want to distribute the result of the join of A and B, the output
of the join process may be split into several data streams. The network of operators
for parallel join is shown in Figure 21.3. To simplify the figure, we assume that the
processors doing the join are distinct from the processors that initially contain tuples
of A and B and show only four processors.

If range partitioning is used, the algorithm outlined above leads to a parallel version
of a sort-merge join, with the advantage that the output is available in sorted order.
If hash partitioning is used, we obtain a parallel version of a hash join.

Improved Parallel Hash Join

A hash-based refinement of the approach offers improved performance. The main
observation is that if A and B are very large, and the number of partitions k is chosen
to be equal to the number of processors n, the size of each partition may still be large,
leading to a high cost for each local join at the n processors.

An alternative is to execute the smaller joins Ai ./ Bi, for i = 1 . . . k, one after the
other, but with each join executed in parallel using all processors. This approach allows

Parallel and Distributed Databases 605

Ai Aj Bi Bj

A’ B’ Aj BjA" B" Ai Bi

A B

SCAN

SPLIT

SCAN

SPLIT

A B

SCAN

SPLIT

SCAN

SPLIT

JOIN

MERGE MERGE MERGE MERGE

JOIN

Ai Aj Bi Bj Ai Ai Bi Bi Aj Aj Bj Bj

Figure 21.3 Dataflow Network of Operators for Parallel Join

us to utilize the total available main memory at all n processors in each join Ai ./ Bi

and is described in more detail as follows:

1. At each site, apply a hash function h1 to partition the A and B tuples at this
site into partitions i = 1 . . . k. Let A be the smaller relation. The number of
partitions k is chosen such that each partition of A fits into the aggregate or
combined memory of all n processors.

2. For i = 1 . . . k, process the join of the ith partitions of A and B. To compute
Ai ./ Bi, do the following at every site:
(a) Apply a second hash function h2 to all Ai tuples to determine where they

should be joined and send tuple t to site h2(t).

(b) As Ai tuples arrive to be joined, add them to an in-memory hash table.

(c) After all Ai tuples have been distributed, apply h2 to Bi tuples to determine
where they should be joined and send tuple t to site h2(t).

(d) As Bi tuples arrive to be joined, probe the in-memory table of Ai tuples and
output result tuples.

The use of the second hash function h2 ensures that tuples are (more or less) uniformly
distributed across all n processors participating in the join. This approach greatly
reduces the cost for each of the smaller joins and therefore reduces the overall join
cost. Observe that all available processors are fully utilized, even though the smaller
joins are carried out one after the other.

The reader is invited to adapt the network of operators shown in Figure 21.3 to reflect
the improved parallel join algorithm.

606 Chapter 21

21.4 PARALLEL QUERY OPTIMIZATION

In addition to parallelizing individual operations, we can obviously execute different
operations in a query in parallel and execute multiple queries in parallel. Optimizing
a single query for parallel execution has received more attention; systems typically
optimize queries without regard to other queries that might be executing at the same
time.

Two kinds of interoperation parallelism can be exploited within a query:

The result of one operator can be pipelined into another. For example, consider a
left-deep plan in which all the joins use index nested loops. The result of the first
(i.e., the bottom-most) join is the outer relation tuples for the next join node. As
tuples are produced by the first join, they can be used to probe the inner relation
in the second join. The result of the second join can similarly be pipelined into
the next join, and so on.

Multiple independent operations can be executed concurrently. For example, con-
sider a (nonleft-deep) plan in which relations A and B are joined, relations C and
D are joined, and the results of these two joins are finally joined. Clearly, the join
of A and B can be executed concurrently with the join of C and D.

An optimizer that seeks to parallelize query evaluation has to consider several issues,
and we will only outline the main points. The cost of executing individual operations
in parallel (e.g., parallel sorting) obviously differs from executing them sequentially,
and the optimizer should estimate operation costs accordingly.

Next, the plan that returns answers quickest may not be the plan with the least cost.
For example, the cost of A ./ B plus the cost of C ./ D plus the cost of joining their
results may be more than the cost of the cheapest left-deep plan. However, the time
taken is the time for the more expensive of A ./ B and C ./ D, plus the time to join
their results. This time may be less than the time taken by the cheapest left-deep
plan. This observation suggests that a parallelizing optimizer should not restrict itself
to only left-deep trees and should also consider bushy trees, which significantly enlarge
the space of plans to be considered.

Finally, there are a number of parameters such as available buffer space and the num-
ber of free processors that will be known only at run-time. This comment holds in a
multiuser environment even if only sequential plans are considered; a multiuser envi-
ronment is a simple instance of interquery parallelism.

Parallel and Distributed Databases 607

21.5 INTRODUCTION TO DISTRIBUTED DATABASES

As we observed earlier, data in a distributed database system is stored across several
sites, and each site is typically managed by a DBMS that can run independently of
the other sites. The classical view of a distributed database system is that the system
should make the impact of data distribution transparent. In particular, the following
properties are considered desirable:

Distributed data independence: Users should be able to ask queries without
specifying where the referenced relations, or copies or fragments of the relations,
are located. This principle is a natural extension of physical and logical data
independence; we discuss it in Section 21.7. Further, queries that span multiple
sites should be optimized systematically in a cost-based manner, taking into ac-
count communication costs and differences in local computation costs. We discuss
distributed query optimization in Section 21.9.

Distributed transaction atomicity: Users should be able to write transactions
that access and update data at several sites just as they would write transactions
over purely local data. In particular, the effects of a transaction across sites should
continue to be atomic; that is, all changes persist if the transaction commits, and
none persist if it aborts. We discuss this distributed transaction processing in
Sections 21.10, 21.12, and 21.13.

Although most people would agree that the above properties are in general desirable,
in certain situations, such as when sites are connected by a slow long-distance net-
work, these properties are not efficiently achievable. Indeed, it has been argued that
when sites are globally distributed, these properties are not even desirable. The ar-
gument essentially is that the administrative overhead of supporting a system with
distributed data independence and transaction atomicity—in effect, coordinating all
activities across all sites in order to support the view of the whole as a unified collection
of data—is prohibitive, over and above DBMS performance considerations.

Keep these remarks about distributed databases in mind as we cover the topic in
more detail in the rest of this chapter. There is no real consensus on what the design
objectives of distributed databases should be, and the field is evolving in response to
users’ needs.

21.5.1 Types of Distributed Databases

If data is distributed but all servers run the same DBMS software, we have a ho-
mogeneous distributed database system. If different sites run under the control
of different DBMSs, essentially autonomously, and are connected somehow to enable
access to data from multiple sites, we have a heterogeneous distributed database
system, also referred to as a multidatabase system.

608 Chapter 21

The key to building heterogeneous systems is to have well-accepted standards for gate-
way protocols. A gateway protocol is an API that exposes DBMS functionality to
external applications. Examples include ODBC and JDBC (see Section 5.10). By ac-
cessing database servers through gateway protocols, their differences (in capabilities,
data formats, etc.) are masked, and the differences between the different servers in a
distributed system are bridged to a large degree.

Gateways are not a panacea, however. They add a layer of processing that can be
expensive, and they do not completely mask the differences between servers. For
example, a server may not be capable of providing the services required for distributed
transaction management (see Sections 21.12 and 21.13), and even if it is capable,
standardizing gateway protocols all the way down to this level of interaction poses
challenges that have not yet been resolved satisfactorily.

Distributed data management, in the final analysis, comes at a significant cost in terms
of performance, software complexity, and administration difficulty. This observation is
especially true of heterogeneous systems.

21.6 DISTRIBUTED DBMS ARCHITECTURES

There are three alternative approaches to separating functionality across different
DBMS-related processes; these alternative distributed DBMS architectures are called
Client-Server, Collaborating Server, and Middleware.

21.6.1 Client-Server Systems

A Client-Server system has one or more client processes and one or more server
processes, and a client process can send a query to any one server process. Clients are
responsible for user-interface issues, and servers manage data and execute transactions.
Thus, a client process could run on a personal computer and send queries to a server
running on a mainframe.

This architecture has become very popular for several reasons. First, it is relatively
simple to implement due to its clean separation of functionality and because the server
is centralized. Second, expensive server machines are not underutilized by dealing with
mundane user-interactions, which are now relegated to inexpensive client machines.
Third, users can run a graphical user interface that they are familiar with, rather than
the (possibly unfamiliar and unfriendly) user interface on the server.

While writing Client-Server applications, it is important to remember the boundary
between the client and the server and to keep the communication between them as
set-oriented as possible. In particular, opening a cursor and fetching tuples one at a

Parallel and Distributed Databases 609

time generates many messages and should be avoided. (Even if we fetch several tuples
and cache them at the client, messages must be exchanged when the cursor is advanced
to ensure that the current row is locked.) Techniques to exploit client-side caching to
reduce communication overhead have been extensively studied, although we will not
discuss them further.

21.6.2 Collaborating Server Systems

The Client-Server architecture does not allow a single query to span multiple servers
because the client process would have to be capable of breaking such a query into
appropriate subqueries to be executed at different sites and then piecing together
the answers to the subqueries. The client process would thus be quite complex, and
its capabilities would begin to overlap with the server; distinguishing between clients
and servers becomes harder. Eliminating this distinction leads us to an alternative
to the Client-Server architecture: a Collaborating Server system. We can have a
collection of database servers, each capable of running transactions against local data,
which cooperatively execute transactions spanning multiple servers.

When a server receives a query that requires access to data at other servers, it generates
appropriate subqueries to be executed by other servers and puts the results together
to compute answers to the original query. Ideally, the decomposition of the query
should be done using cost-based optimization, taking into account the costs of network
communication as well as local processing costs.

21.6.3 Middleware Systems

The Middleware architecture is designed to allow a single query to span multiple
servers, without requiring all database servers to be capable of managing such multi-
site execution strategies. It is especially attractive when trying to integrate several
legacy systems, whose basic capabilities cannot be extended.

The idea is that we need just one database server that is capable of managing queries
and transactions spanning multiple servers; the remaining servers only need to handle
local queries and transactions. We can think of this special server as a layer of software
that coordinates the execution of queries and transactions across one or more inde-
pendent database servers; such software is often called middleware. The middleware
layer is capable of executing joins and other relational operations on data obtained
from the other servers, but typically, does not itself maintain any data.

610 Chapter 21

21.7 STORING DATA IN A DISTRIBUTED DBMS

In a distributed DBMS, relations are stored across several sites. Accessing a relation
that is stored at a remote site incurs message-passing costs, and to reduce this overhead,
a single relation may be partitioned or fragmented across several sites, with fragments
stored at the sites where they are most often accessed, or replicated at each site where
the relation is in high demand.

21.7.1 Fragmentation

Fragmentation consists of breaking a relation into smaller relations or fragments,
and storing the fragments (instead of the relation itself), possibly at different sites. In
horizontal fragmentation, each fragment consists of a subset of rows of the original
relation. In vertical fragmentation, each fragment consists of a subset of columns of
the original relation. Horizontal and vertical fragments are illustrated in Figure 21.4.

Jones

Smith

Smith

Madayan

Guldu

53666

53688

53650

53831

53832

18

18

19

11

12

t1

t2

t3

t4

t5

TID

Vertical Fragment Horizontal Fragment

name ageeid city sal

35

32

48

20

20

Madras

Chicago

Chicago

Bombay

Bombay

Figure 21.4 Horizontal and Vertical Fragmentation

Typically, the tuples that belong to a given horizontal fragment are identified by a
selection query; for example, employee tuples might be organized into fragments by
city, with all employees in a given city assigned to the same fragment. The horizontal
fragment shown in Figure 21.4 corresponds to Chicago. By storing fragments in the
database site at the corresponding city, we achieve locality of reference—Chicago data
is most likely to be updated and queried from Chicago, and storing this data in Chicago
makes it local (and reduces communication costs) for most queries. Similarly, the tuples
in a given vertical fragment are identified by a projection query. The vertical fragment
in the figure results from projection on the first two columns of the employees relation.

When a relation is fragmented, we must be able to recover the original relation from
the fragments:

Parallel and Distributed Databases 611

Horizontal fragmentation: The union of the horizontal fragments must be
equal to the original relation. Fragments are usually also required to be disjoint.

Vertical fragmentation: The collection of vertical fragments should be a lossless-
join decomposition, as per the definition in Chapter 15.

To ensure that a vertical fragmentation is lossless-join, systems often assign a unique
tuple id to each tuple in the original relation, as shown in Figure 21.4, and attach this
id to the projection of the tuple in each fragment. If we think of the original relation as
containing an additional tuple-id field that is a key, this field is added to each vertical
fragment. Such a decomposition is guaranteed to be lossless-join.

In general a relation can be (horizontally or vertically) fragmented, and each resulting
fragment can be further fragmented. For simplicity of exposition, in the rest of this
chapter we will assume that fragments are not recursively partitioned in this manner.

21.7.2 Replication

Replication means that we store several copies of a relation or relation fragment. An
entire relation can be replicated at one or more sites. Similarly, one or more fragments
of a relation can be replicated at other sites. For example, if a relation R is fragmented
into R1, R2, and R3, there might be just one copy of R1, whereas R2 is replicated at
two other sites and R3 is replicated at all sites.

The motivation for replication is twofold:

Increased availability of data: If a site that contains a replica goes down, we
can find the same data at other sites. Similarly, if local copies of remote relations
are available, we are less vulnerable to failure of communication links.

Faster query evaluation: Queries can execute faster by using a local copy of a
relation instead of going to a remote site.

There are two kinds of replication, called synchronous and asynchronous replication,
which differ primarily in how replicas are kept current when the relation is modified.
(See Section 21.10.)

21.8 DISTRIBUTED CATALOG MANAGEMENT

Keeping track of data that is distributed across several sites can get complicated.
We must keep track of how relations are fragmented and replicated—that is, how
relation fragmentss are distributed across several sites and where copies of fragments
are stored—in addition to the usual schema, authorization, and statistical information.

612 Chapter 21

21.8.1 Naming Objects

If a relation is fragmented and replicated, we must be able to uniquely identify each
replica of each fragment. Generating such unique names requires some care. If we use
a global name-server to assign globally unique names, local autonomy is compromised;
we want (users at) each site to be able to assign names to local objects without reference
to names systemwide.

The usual solution to the naming problem is to use names consisting of several fields.
For example, we could have:

A local name field, which is the name assigned locally at the site where the relation
is created. Two objects at different sites could possibly have the same local name,
but two objects at a given site cannot have the same local name.

A birth site field, which identifies the site where the relation was created, and
where information is maintained about all fragments and replicas of the relation.

These two fields identify a relation uniquely; we call the combination a global relation
name. To identify a replica (of a relation or a relation fragment), we take the global
relation name and add a replica-id field; we call the combination a global replica
name.

21.8.2 Catalog Structure

A centralized system catalog can be used but is vulnerable to failure of the site con-
taining the catalog. An alternative is to maintain a copy of a global system catalog,
which describes all the data, at every site. Although this approach is not vulnerable to
a single-site failure, it compromises site autonomy, just like the first solution, because
every change to a local catalog must now be broadcast to all sites.

A better approach, which preserves local autonomy and is not vulnerable to a single-site
failure, was developed in the R* distributed database project, which was a successor
to the System R project at IBM. Each site maintains a local catalog that describes
all copies of data stored at that site. In addition, the catalog at the birth site for a
relation is responsible for keeping track of where replicas of the relation (in general,
of fragments of the relation) are stored. In particular, a precise description of each
replica’s contents—a list of columns for a vertical fragment or a selection condition for
a horizontal fragment—is stored in the birth site catalog. Whenever a new replica is
created, or a replica is moved across sites, the information in the birth site catalog for
the relation must be updated.

In order to locate a relation, the catalog at its birth site must be looked up. This
catalog information can be cached at other sites for quicker access, but the cached

Parallel and Distributed Databases 613

information may become out of date if, for example, a fragment is moved. We will
discover that the locally cached information is out of date when we use it to access
the relation, and at that point, we must update the cache by looking up the catalog
at the birth site of the relation. (The birth site of a relation is recorded in each local
cache that describes the relation, and the birth site never changes, even if the relation
is moved.)

21.8.3 Distributed Data Independence

Distributed data independence means that users should be able to write queries without
regard to how a relation is fragmented or replicated; it is the responsibility of the DBMS
to compute the relation as needed (by locating suitable copies of fragments, joining
the vertical fragments, and taking the union of horizontal fragments).

In particular, this property implies that users should not have to specify the full name
for the data objects accessed while evaluating a query. Let us see how users can be
enabled to access relations without considering how the relations are distributed. The
local name of a relation in the system catalog (Section 21.8.1) is really a combination
of a user name and a user-defined relation name. Users can give whatever names they
wish to their relations, without regard to the relations created by other users. When
a user writes a program or SQL statement that refers to a relation, he or she simply
uses the relation name. The DBMS adds the user name to the relation name to get a
local name, then adds the user’s site-id as the (default) birth site to obtain a global
relation name. By looking up the global relation name—in the local catalog if it is
cached there or in the catalog at the birth site—the DBMS can locate replicas of the
relation.

A user may want to create objects at several sites or to refer to relations created by
other users. To do this, a user can create a synonym for a global relation name, using
an SQL-style command (although such a command is not currently part of the SQL-92
standard), and can subsequently refer to the relation using the synonym. For each
user known at a site, the DBMS maintains a table of synonyms as part of the system
catalog at that site, and uses this table to find the global relation name. Note that a
user’s program will run unchanged even if replicas of the relation are moved, because
the global relation name is never changed until the relation itself is destroyed.

Users may want to run queries against specific replicas, especially if asynchronous
replication is used. To support this, the synonym mechanism can be adapted to also
allow users to create synonyms for global replica names.

614 Chapter 21

21.9 DISTRIBUTED QUERY PROCESSING

We first discuss the issues involved in evaluating relational algebra operations in a dis-
tributed database through examples and then outline distributed query optimization.
Consider the following two relations:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: date, rname: string)

As in Chapter 12, assume that each tuple of Reserves is 40 bytes long, that a page
can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples. Similarly,
assume that each tuple of Sailors is 50 bytes long, that a page can hold 80 Sailors
tuples, and that we have 500 pages of such tuples.

To estimate the cost of an evaluation strategy, in addition to counting the number of
page I/Os, we must count the number of pages that are shipped—no pun intended—
from one site to another because communication costs are a significant component of
overall cost in a distributed database. We must also change our cost model to count
the cost of shipping the result tuples to the site where the query is posed from the site
where the result is assembled! In this chapter we will denote the time taken to read
one page from disk (or to write one page to disk) as td and the time taken to ship one
page (from any site to another site) as ts.

21.9.1 Nonjoin Queries in a Distributed DBMS

Even simple operations such as scanning a relation, selection, and projection are af-
fected by fragmentation and replication. Consider the following query:

SELECT S.age
FROM Sailors S
WHERE S.rating > 3 AND S.rating < 7

Suppose that the Sailors relation is horizontally fragmented, with all tuples having a
rating less than 5 at Shanghai and all tuples having a rating greater than 5 at Tokyo.

The DBMS must answer this query by evaluating it at both sites and taking the union
of the answers. If the SELECT clause contained AVG (S.age), combining the answers
cannot be done by simply taking the union—the DBMS must compute the sum and
count of age values at the two sites, and use this information to compute the average
age of all sailors.

If the WHERE clause contained just the condition S.rating > 6, on the other hand, the
DBMS should recognize that this query can be answered by just executing it at Tokyo.

Parallel and Distributed Databases 615

As another example, suppose that the Sailors relation is vertically fragmented, with
the sid and rating fields at Shanghai and the sname and age fields at Tokyo. No
field is stored at both sites. This vertical fragmentation would therefore be a lossy
decomposition, except for the fact that a field containing the id of the corresponding
Sailors tuple is included by the DBMS in both fragments! Now, the DBMS has to
reconstruct the Sailors relation by joining the two fragments on the common tuple-id
field and execute the query over this reconstructed relation.

Finally, suppose that the entire Sailors relation is stored at both Shanghai and Tokyo.
We can answer any of the queries mentioned above by executing it at either Shanghai
or Tokyo. Where should the query be executed? This depends on the cost of shipping
the answer to the query site (which may be Shanghai, Tokyo, or some other site), as
well as the cost of executing the query at Shanghai and at Tokyo—the local processing
costs may differ depending on what indexes are available on Sailors at the two sites,
for example.

21.9.2 Joins in a Distributed DBMS

Joins of relations at different sites can be very expensive, and we now consider the
evaluation options that must be considered in a distributed environment. Suppose
that the Sailors relation is stored at London, and that the Reserves relation is stored
at Paris. We will consider the cost of various strategies for computing Sailors ./

Reserves.

Fetch As Needed

We could do a page-oriented nested loops join in London with Sailors as the outer,
and for each Sailors page, fetch all Reserves pages from Paris. If we cache the fetched
Reserves pages in London until the join is complete, pages are fetched only once, but
let’s assume that Reserves pages are not cached, just to see how bad things can get.
(The situation can get much worse if we use a tuple-oriented nested loops join!)

The cost is 500td to scan Sailors plus, for each Sailors page, the cost of scanning
and shipping all of Reserves, which is 1, 000(td + ts). The total cost is therefore
500td + 500, 000(td + ts).

In addition, if the query was not submitted at the London site, we must add the cost of
shipping the result to the query site; this cost depends on the size of the result. Because
sid is a key for Sailors, the number of tuples in the result is 100,000 (the number of
tuples in Reserves) and each tuple is 40+50 = 90 bytes long; thus 4000/90 = 44 result
tuples fit on a page, and the result size is 100, 000/44 = 2, 273 pages. The cost of
shipping the answer to another site, if necessary, is 2, 273ts. In the rest of this section

616 Chapter 21

we will assume that the query is posed at the site where the result is computed; if not,
the cost of shipping the result to the query site must be added to the cost.

In this example observe that if the query site is not London or Paris, the cost of
shipping the result is greater than the cost of shipping both Sailors and Reserves to
the query site! Thus, it would be cheaper to ship both relations to the query site and
compute the join there.

Alternatively, we could do an index nested loops join in London, fetching all matching
Reserves tuples for each Sailors tuple. Suppose that we have an unclustered hash index
on the sid column of Reserves. Because there are 100,000 Reserves tuples and 40,000
Sailors tuples, on average each sailor has 2.5 reservations. The cost of finding the 2.5
Reservations tuples that match a given Sailors tuple is (1.2+2.5)td, assuming 1.2 I/Os
to locate the appropriate bucket in the index. The total cost is the cost of scanning
Sailors plus the cost of finding and fetching matching Reserves tuples for each Sailors
tuple, and is 500td + 40, 000(3.7td + 2.5ts).

Both algorithms fetch required Reserves tuples from a remote site as needed. Clearly,
this is not a good idea; the cost of shipping tuples dominates the total cost even for a
fast network.

Ship to One Site

We can ship Sailors from London to Paris and carry out the join there, ship Reserves
to London and carry out the join there, or ship both to the site where the query was
posed and compute the join there. Note again that the query could have been posed
in London, Paris, or perhaps a third site, say, Timbuktu!

The cost of scanning and shipping Sailors, saving it at Paris, and then doing the
join at Paris is 500(2td + ts) + 4, 500td, assuming that the version of the sort-merge
join described in Section 12.10 is used, and that we have an adequate number of buffer
pages. In the rest of this section we will assume that sort-merge join is the join method
used when both relations are at the same site.

The cost of shipping Reserves and doing the join at London is 1, 000(2td+ts)+4, 500td.

Semijoins and Bloomjoins

Consider the strategy of shipping Reserves to London and computing the join at Lon-
don. Some tuples in (the current instance of) Reserves do not join with any tuple in
(the current instance of) Sailors. If we could somehow identify Reserves tuples that
are guaranteed not to join with any Sailors tuples, we could avoid shipping them.

Parallel and Distributed Databases 617

Two techniques, Semijoin and Bloomjoin, have been proposed for reducing the number
of Reserves tuples to be shipped. The first technique is called Semijoin. The idea is
to proceed in three steps:

1. At London, compute the projection of Sailors onto the join columns (in this case
just the sid field), and ship this projection to Paris.

2. At Paris, compute the natural join of the projection received from the first site with
the Reserves relation. The result of this join is called the reduction of Reserves
with respect to Sailors. Clearly, only those Reserves tuples in the reduction will
join with tuples in the Sailors relation. Therefore, ship the reduction of Reserves
to London, rather than the entire Reserves relation.

3. At London, compute the join of the reduction of Reserves with Sailors.

Let us compute the cost of using this technique for our example join query. Suppose
that we have a straightforward implementation of projection based on first scanning
Sailors and creating a temporary relation with tuples that have only an sid field, then
sorting the temporary and scanning the sorted temporary to eliminate duplicates. If
we assume that the size of the sid field is 10 bytes, the cost of projection is 500td for
scanning Sailors, plus 100td for creating the temporary, plus 400td for sorting it (in
two passes), plus 100td for the final scan, plus 100td for writing the result into another
temporary relation; a total of 1, 200td. (Because sid is a key, there are no duplicates to
be eliminated; if the optimizer is good enough to recognize this, the cost of projection
is just (500 + 100)td!)

The cost of computing the projection and shipping it to Paris is therefore 1, 200td +
100ts. The cost of computing the reduction of Reserves is 3 ∗ (100 + 1, 000) = 3, 300td,
assuming that sort-merge join is used. (The cost does not reflect the fact that the
projection of Sailors is already sorted; the cost would decrease slightly if the refined
sort-merge join exploits this.)

What is the size of the reduction? If every sailor holds at least one reservation, the
reduction includes every tuple of Reserves! The effort invested in shipping the projec-
tion and reducing Reserves is a total waste. Indeed, because of this observation, we
note that Semijoin is especially useful in conjunction with a selection on one of the
relations. For example, if we want to compute the join of Sailors tuples with a rating
greater than 8 with the Reserves relation, the size of the projection on sid for tuples
that satisfy the selection would be just 20 percent of the original projection, that is,
20 pages.

Let us now continue the example join, with the assumption that we have the additional
selection on rating. (The cost of computing the projection of Sailors goes down a bit,
the cost of shipping it goes down to 20ts, and the cost of the reduction of Reserves also
goes down a little, but we will ignore these reductions for simplicity.) We will assume

618 Chapter 21

that only 20 percent of the Reserves tuples are included in the reduction, thanks to
the selection. Thus, the reduction contains 200 pages, and the cost of shipping it is
200ts.

Finally, at London, the reduction of Reserves is joined with Sailors, at a cost of 3 ∗
(200 + 500) = 2, 100td. Observe that there are over 6,500 page I/Os versus about 200
pages shipped, using this join technique. In contrast, to ship Reserves to London and
do the join there costs 1, 000ts plus 4, 500td. With a high-speed network, the cost of
Semijoin may be more than the cost of shipping Reserves in its entirety, even though
the shipping cost itself is much less (200ts versus 1, 000ts).

The second technique, called Bloomjoin, is quite similar. The main difference is that
a bit-vector is shipped in the first step, instead of the projection of Sailors. A bit-vector
of (some chosen) size k is computed by hashing each tuple of Sailors into the range
0 to k − 1 and setting bit i to 1 if some tuple hashes to i, and 0 otherwise. In the
second step, the reduction of Reserves is computed by hashing each tuple of Reserves
(using the sid field) into the range 0 to k − 1, using the same hash function used to
construct the bit-vector, and discarding tuples whose hash value i corresponds to a 0
bit. Because no Sailors tuples hash to such an i, no Sailors tuple can join with any
Reserves tuple that is not in the reduction.

The costs of shipping a bit-vector and reducing Reserves using the vector are less than
the corresponding costs in Semijoin. On the other hand, the size of the reduction of
Reserves is likely to be larger than in Semijoin; thus, the costs of shipping the reduction
and joining it with Sailors are likely to be higher.

Let us estimate the cost of this approach. The cost of computing the bit-vector is
essentially the cost of scanning Sailors, which is 500td. The cost of sending the bit-
vector depends on the size we choose for the bit-vector, which is certainly smaller than
the size of the projection; we will take this cost to be 20ts, for concreteness. The cost
of reducing Reserves is just the cost of scanning Reserves; it is 1, 000td. The size of
the reduction of Reserves is likely to be about the same as or a little larger than the
size of the reduction in the Semijoin approach; instead of 200, we will take this size to
be 220 pages. (We assume that the selection on Sailors is included, in order to permit
a direct comparison with the cost of Semijoin.) The cost of shipping the reduction is
therefore 220ts. The cost of the final join at London is 3 ∗ (500 + 220) = 2, 160td.

Thus, in comparison to Semijoin, the shipping cost of this approach is about the same,
although it could be higher if the bit-vector is not as selective as the projection of
Sailors in terms of reducing Reserves. Typically, though, the reduction of Reserves is
no more than 10 percent to 20 percent larger than the size of the reduction in Semijoin.
In exchange for this slightly higher shipping cost, Bloomjoin achieves a significantly
lower processing cost: less than 3, 700td versus more than 6, 500td for Semijoin. Indeed,
Bloomjoin has a lower I/O cost and a lower shipping cost than the strategy of shipping

Parallel and Distributed Databases 619

all of Reserves to London! These numbers indicate why Bloomjoin is an attractive
distributed join method; but the sensitivity of the method to the effectiveness of bit-
vector hashing (in reducing Reserves) should be kept in mind.

21.9.3 Cost-Based Query Optimization

We have seen how data distribution can affect the implementation of individual opera-
tions such as selection, projection, aggregation, and join. In general, of course, a query
involves several operations, and optimizing queries in a distributed database poses the
following additional challenges:

Communication costs must be considered. If we have several copies of a relation,
we must also decide which copy to use.

If individual sites are run under the control of different DBMSs, the autonomy of
each site must be respected while doing global query planning.

Query optimization proceeds essentially as in a centralized DBMS, as described in
Chapter 13, with information about relations at remote sites obtained from the system
catalogs. Of course, there are more alternative methods to consider for each opera-
tion (e.g., consider the new options for distributed joins), and the cost metric must
account for communication costs as well, but the overall planning process is essentially
unchanged if we take the cost metric to be the total cost of all operations. (If we
consider response time, the fact that certain subqueries can be carried out in parallel
at different sites would require us to change the optimizer as per the discussion in
Section 21.4.)

In the overall plan, local manipulation of relations at the site where they are stored
(in order to compute an intermediate relation that is to be shipped elsewhere) is en-
capsulated into a suggested local plan. The overall plan includes several such local
plans, which we can think of as subqueries executing at different sites. While gener-
ating the global plan, the suggested local plans provide realistic cost estimates for the
computation of the intermediate relations; the suggested local plans are constructed
by the optimizer mainly to provide these local cost estimates. A site is free to ignore
the local plan suggested to it if it is able to find a cheaper plan by using more current
information in the local catalogs. Thus, site autonomy is respected in the optimization
and evaluation of distributed queries.

21.10 UPDATING DISTRIBUTED DATA

The classical view of a distributed DBMS is that it should behave just like a central-
ized DBMS from the point of view of a user; issues arising from distribution of data

620 Chapter 21

should be transparent to the user, although, of course, they must be addressed at the
implementation level.

With respect to queries, this view of a distributed DBMS means that users should be
able to ask queries without worrying about how and where relations are stored; we
have already seen the implications of this requirement on query evaluation.

With respect to updates, this view means that transactions should continue to be
atomic actions, regardless of data fragmentation and replication. In particular, all
copies of a modified relation must be updated before the modifying transaction com-
mits. We will refer to replication with this semantics as synchronous replication;
before an update transaction commits, it synchronizes all copies of modified data.

An alternative approach to replication, called asynchronous replication, has come
to be widely used in commercial distributed DBMSs. Copies of a modified relation
are updated only periodically in this approach, and a transaction that reads different
copies of the same relation may see different values. Thus, asynchronous replication
compromises distributed data independence, but it can be more efficiently implemented
than synchronous replication.

21.10.1 Synchronous Replication

There are two basic techniques for ensuring that transactions see the same value re-
gardless of which copy of an object they access. In the first technique, called voting,
a transaction must write a majority of copies in order to modify an object and read
at least enough copies to make sure that one of the copies is current. For example, if
there are 10 copies and 7 copies are written by update transactions, then at least 4
copies must be read. Each copy has a version number, and the copy with the highest
version number is current. This technique is not attractive in most situations because
reading an object requires reading multiple copies; in most applications, objects are
read much more frequently than they are updated, and efficient performance on reads
is very important.

In the second technique, called read-any write-all, to read an object, a transaction
can read any one copy, but to write an object, it must write all copies. Reads are fast,
especially if we have a local copy, but writes are slower, relative to the first technique.
This technique is attractive when reads are much more frequent than writes, and it is
usually adopted for implementing synchronous replication.

Parallel and Distributed Databases 621

21.10.2 Asynchronous Replication

Synchronous replication comes at a significant cost. Before an update transaction can
commit, it must obtain exclusive locks on all copies—assuming that the read-any write-
all technique is used—of modified data. The transaction may have to send lock requests
to remote sites, and wait for the locks to be granted, and during this potentially long
period, it continues to hold all its other locks. If sites or communication links fail,
the transaction cannot commit until all sites at which it has modified data recover
and are reachable. Finally, even if locks are obtained readily and there are no failures,
committing a transaction requires several additional messages to be sent as part of a
commit protocol (Section 21.13.1).

For these reasons, synchronous replication is undesirable or even unachievable in many
situations. Asynchronous replication is gaining in popularity, even though it allows
different copies of the same object to have different values for short periods of time.
This situation violates the principle of distributed data independence; users must be
aware of which copy they are accessing, recognize that copies are brought up-to-date
only periodically, and live with this reduced level of data consistency. Nonetheless,
this seems to be a practical compromise that is acceptable in many situations.

Primary Site versus Peer-to-Peer Replication

Asynchronous replication comes in two flavors. In primary site asynchronous repli-
cation, one copy of a relation is designated as the primary or master copy. Replicas
of the entire relation or of fragments of the relation can be created at other sites;
these are secondary copies, and, unlike the primary copy, they cannot be updated.
A common mechanism for setting up primary and secondary copies is that users first
register or publish the relation at the primary site and subsequently subscribe to
a fragment of a registered relation from another (secondary) site.

In peer-to-peer asynchronous replication, more than one copy (although perhaps
not all) can be designated as being updatable, that is, a master copy. In addition
to propagating changes, a conflict resolution strategy must be used to deal with
conflicting changes made at different sites. For example, Joe’s age may be changed to
35 at one site and to 38 at another. Which value is ‘correct’? Many more subtle kinds
of conflicts can arise in peer-to-peer replication, and in general peer-to-peer replication
leads to ad hoc conflict resolution. Some special situations in which peer-to-peer
replication does not lead to conflicts arise quite often, and it is in such situations that
peer-to-peer replication is best utilized. For example:

Each master is allowed to update only a fragment (typically a horizontal fragment)
of the relation, and any two fragments updatable by different masters are disjoint.
For example, it may be that salaries of German employees are updated only in

622 Chapter 21

Frankfurt, and salaries of Indian employees are updated only in Madras, even
though the entire relation is stored at both Frankfurt and Madras.

Updating rights are held by only one master at a time. For example, one site
is designated as a backup to another site. Changes at the master site are prop-
agated to other sites and updates are not allowed at other sites (including the
backup). But if the master site fails, the backup site takes over and updates are
now permitted at (only) the backup site.

We will not discuss peer-to-peer replication further.

Implementing Primary Site Asynchronous Replication

The main issue in implementing primary site replication is determining how changes
to the primary copy are propagated to the secondary copies. Changes are usually
propagated in two steps called Capture and Apply. Changes made by committed
transactions to the primary copy are somehow identified during the Capture step and
subsequently propagated to secondary copies during the Apply step.

In contrast to synchronous replication, a transaction that modifies a replicated relation
directly locks and changes only the primary copy. It is typically committed long before
the Apply step is carried out. Systems vary considerably in their implementation of
these steps. We present an overview of some of the alternatives.

Capture

The Capture step is implemented using one of two approaches. In log-based Capture,
the log maintained for recovery purposes is used to generate a record of updates.
Basically, when the log tail is written to stable storage, all log records that affect
replicated relations are also written to a separate change data table (CDT). Since
the transaction that generated the update log record may still be active when the
record is written to the CDT, it may subsequently abort. Update log records written
by transactions that subsequently abort must be removed from the CDT to obtain a
stream of updates due (only) to committed transactions. This stream can be obtained
as part of the Capture step or subsequently in the Apply step if commit log records
are added to the CDT; for concreteness, we will assume that the committed update
stream is obtained as part of the Capture step and that the CDT sent to the Apply
step contains only update log records of committed transactions.

In procedural Capture, a procedure that is automatically invoked by the DBMS or an
application program initiates the Capture process, which consists typically of taking a
snapshot of the primary copy. A snapshot is just a copy of the relation as it existed
at some instant in time. (A procedure that is automatically invoked by the DBMS,

Parallel and Distributed Databases 623

such as the one that initiates Capture, is called a trigger. We will discuss triggers in
Chapter 27.)

Log-based Capture has a smaller overhead than procedural Capture and, because it is
driven by changes to the data, results in a smaller delay between the time the primary
copy is changed and the time that the change is propagated to the secondary copies.
(Of course, this delay is also dependent on how the Apply step is implemented.) In
particular, only changes are propagated, and related changes (e.g., updates to two
tables with a referential integrity constraint between them) are propagated together.
The disadvantage is that implementing log-based Capture requires a detailed under-
standing of the structure of the log, which is quite system specific. Therefore, a vendor
cannot easily implement a log-based Capture mechanism that will capture changes
made to data in another vendor’s DBMS.

Apply

The Apply step takes the changes collected by the Capture step, which are in the CDT
table or a snapshot, and propagates them to the secondary copies. This can be done
by having the primary site continuously send the CDT or by periodically requesting
(the latest portion of) the CDT or a snapshot from the primary site. Typically, each
secondary site runs a copy of the Apply process and ‘pulls’ the changes in the CDT
from the primary site using periodic requests. The interval between such requests can
be controlled by a timer or by a user’s application program. Once the changes are
available at the secondary site, they can be directly applied to the replica.

In some systems, the replica need not be just a fragment of the original relation—it can
be a view defined using SQL, and the replication mechanism is sufficiently sophisticated
to maintain such a view at a remote site incrementally (by reevaluating only the part
of the view affected by changes recorded in the CDT).

Log-based Capture in conjunction with continuous Apply minimizes the delay in prop-
agating changes. It is the best combination in situations where the primary and sec-
ondary copies are both used as part of an operational DBMS and replicas must be
as closely synchronized with the primary copy as possible. Log-based Capture with
continuous Apply is essentially a less expensive substitute for synchronous replication.
Procedural Capture and application-driven Apply offer the most flexibility in process-
ing source data and changes before altering the replica; this flexibility is often useful
in data warehousing applications where the ability to ‘clean’ and filter the retrieved
data is more important than the currency of the replica.

624 Chapter 21

Data Warehousing: An Example of Replication

Complex decision support queries that look at data from multiple sites are becoming
very important. The paradigm of executing queries that span multiple sites is simply
inadequate for performance reasons. One way to provide such complex query support
over data from multiple sources is to create a copy of all the data at some one location
and to use the copy rather than going to the individual sources. Such a copied collection
of data is called a data warehouse. Specialized systems for building, maintaining,
and querying data warehouses have become important tools in the marketplace.

Data warehouses can be seen as one instance of asynchronous replication, in which
copies are updated relatively infrequently. When we talk of replication, we typically
mean copies maintained under the control of a single DBMS, whereas with data ware-
housing, the original data may be on different software platforms (including database
systems and OS file systems) and even belong to different organizations. This distinc-
tion, however, is likely to become blurred as vendors adopt more ‘open’ strategies to
replication. For example, some products already support the maintenance of replicas
of relations stored in one vendor’s DBMS in another vendor’s DBMS.

We note that data warehousing involves more than just replication. We discuss other
aspects of data warehousing in Chapter 23.

21.11 INTRODUCTION TO DISTRIBUTED TRANSACTIONS

In a distributed DBMS, a given transaction is submitted at some one site, but it can
access data at other sites as well. In this chapter we will refer to the activity of a
transaction at a given site as a subtransaction. When a transaction is submitted at
some site, the transaction manager at that site breaks it up into a collection of one
or more subtransactions that execute at different sites, submits them to transaction
managers at the other sites, and coordinates their activity.

We now consider aspects of concurrency control and recovery that require additional
attention because of data distribution. As we saw in Chapter 18, there are many con-
currency control protocols; in this chapter, for concreteness we will assume that Strict
2PL with deadlock detection is used. We discuss the following issues in subsequent
sections:

Distributed concurrency control: How can locks for objects stored across sev-
eral sites be managed? How can deadlocks be detected in a distributed database?

Distributed recovery: Transaction atomicity must be ensured—when a trans-
action commits, all its actions, across all the sites that it executes at, must persist.
Similarly, when a transaction aborts, none of its actions must be allowed to persist.

Parallel and Distributed Databases 625

21.12 DISTRIBUTED CONCURRENCY CONTROL

In Section 21.10.1, we described two techniques for implementing synchronous replica-
tion, and in Section 21.10.2, we discussed various techniques for implementing asyn-
chronous replication. The choice of technique determines which objects are to be
locked. When locks are obtained and released is determined by the concurrency con-
trol protocol. We now consider how lock and unlock requests are implemented in a
distributed environment.

Lock management can be distributed across sites in many ways:

Centralized: A single site is in charge of handling lock and unlock requests for
all objects.

Primary copy: One copy of each object is designated as the primary copy. All
requests to lock or unlock a copy of this object are handled by the lock manager
at the site where the primary copy is stored, regardless of where the copy itself is
stored.

Fully distributed: Requests to lock or unlock a copy of an object stored at a
site are handled by the lock manager at the site where the copy is stored.

The centralized scheme is vulnerable to failure of the single site that controls lock-
ing. The primary copy scheme avoids this problem, but in general, reading an object
requires communication with two sites: the site where the primary copy resides and
the site where the copy to be read resides. This problem is avoided in the fully dis-
tributed scheme because locking is done at the site where the copy to be read resides.
However, while writing, locks must be set at all sites where copies are modified in the
fully distributed scheme, whereas locks need only be set at one site in the other two
schemes.

Clearly, the fully distributed locking scheme is the most attractive scheme if reads are
much more frequent than writes, as is usually the case.

21.12.1 Distributed Deadlock

One issue that requires special attention when using either primary copy or fully dis-
tributed locking is deadlock detection. (Of course, a deadlock prevention scheme can
be used instead, but we will focus on deadlock detection, which is widely used.) As
in a centralized DBMS, deadlocks must be detected and resolved (by aborting some
deadlocked transaction).

Each site maintains a local waits-for graph, and a cycle in a local graph indicates a
deadlock. However, there can be a deadlock even if no local graph contains a cycle.

626 Chapter 21

For example, suppose that two sites, A and B, both contain copies of objects O1 and
O2, and that the read-any write-all technique is used. T1, which wants to read O1 and
write O2, obtains an S lock on O1 and an X lock on O2 at Site A, then requests an
X lock on O2 at Site B. T2, which wants to read O2 and write O1, meanwhile obtains
an S lock on O2 and an X lock on O1 at Site B, then requests an X lock on O1 at
Site A. As Figure 21.5 illustrates, T2 is waiting for T1 at Site A and T1 is waiting for
T2 at Site B; thus, we have a deadlock, which neither site can detect based solely on
its local waits-for graph.

T1 T2

T1 T2

T1 T2

Global Waits-for Graph

At site A

At site B

Figure 21.5 Distributed Deadlock

To detect such deadlocks, a distributed deadlock detection algorithm must be
used. We describe three such algorithms.

The first algorithm, which is centralized, consists of periodically sending all local waits-
for graphs to some one site that is responsible for global deadlock detection. At this
site, the global waits-for graph is generated by combining all the local graphs; the set
of nodes is the union of nodes in the local graphs, and there is an edge from one node
to another if there is such an edge in any of the local graphs.

The second algorithm, which is hierarchical, groups sites into a hierarchy. For instance,
sites might be grouped by state, then by country, and finally into a single group that
contains all sites. Every node in this hierarchy constructs a waits-for graph that
reveals deadlocks involving only sites contained in (the subtree rooted at) this node.
Thus, all sites periodically (e.g., every 10 seconds) send their local waits-for graph
to the site responsible for constructing the waits-for graph for their state. The sites
constructing waits-for graphs at the state level periodically (e.g., every minute) send
the state waits-for graph to the site constructing the waits-for graph for their country.
The sites constructing waits-for graphs at the country level periodically (e.g., every 10
minutes) send the country waits-for graph to the site constructing the global waits-for
graph. This scheme is based on the observation that more deadlocks are likely across
closely related sites than across unrelated sites, and it puts more effort into detecting
deadlocks across related sites. All deadlocks will eventually be detected, but a deadlock
involving two different countries may take a while to detect.

Parallel and Distributed Databases 627

The third algorithm is simple: If a transaction waits longer than some chosen time-
out interval, it is aborted. Although this algorithm may cause many unnecessary
restarts, the overhead of deadlock detection is (obviously!) low, and in a heterogeneous
distributed database, if the participating sites cannot cooperate to the extent of sharing
their waits-for graphs, it may be the only option.

A subtle point to note with respect to distributed deadlock detection is that delays in
propagating local information might cause the deadlock detection algorithm to identify
‘deadlocks’ that do not really exist. Such situations are called phantom deadlocks,
and lead to unnecessary aborts. For concreteness, we discuss the centralized algorithm,
although the hierarchical algorithm suffers from the same problem.

Consider a modification of the previous example. As before, the two transactions wait
on each other, generating the local waits-for graphs shown in Figure 21.5, and the local
waits-for graphs are sent to the global deadlock-detection site. However, T2 is now
aborted for reasons other than deadlock. (For example, T2 may also be executing at
a third site, where it reads an unexpected data value and decides to abort.) At this
point, the local waits-for graphs have changed so that there is no cycle in the ‘true’
global waits-for graph. However, the constructed global waits-for graph will contain a
cycle, and T1 may well be picked as the victim!

21.13 DISTRIBUTED RECOVERY

Recovery in a distributed DBMS is more complicated than in a centralized DBMS for
the following reasons:

New kinds of failure can arise, namely, failure of communication links and failure
of a remote site at which a subtransaction is executing.

Either all subtransactions of a given transaction must commit, or none must com-
mit, and this property must be guaranteed despite any combination of site and
link failures. This guarantee is achieved using a commit protocol.

As in a centralized DBMS, certain actions are carried out as part of normal execution in
order to provide the necessary information to recover from failures. A log is maintained
at each site, and in addition to the kinds of information maintained in a centralized
DBMS, actions taken as part of the commit protocol are also logged. The most widely
used commit protocol is called Two-Phase Commit (2PC). A variant called 2PC with
Presumed Abort, which we discuss below, has been adopted as an industry standard.

In this section we first describe the steps taken during normal execution, concentrating
on the commit protocol, and then discuss recovery from failures.

628 Chapter 21

21.13.1 Normal Execution and Commit Protocols

During normal execution, each site maintains a log, and the actions of a subtransac-
tion are logged at the site where it executes. The regular logging activity described in
Chapter 20 is carried out and, in addition, a commit protocol is followed to ensure that
all subtransactions of a given transaction either commit or abort uniformly. The trans-
action manager at the site where the transaction originated is called the coordinator
for the transaction; transaction managers at sites where its subtransactions execute
are called subordinates (with respect to the coordination of this transaction).

We now describe the Two-Phase Commit (2PC) protocol, in terms of the messages
exchanged and the log records written. When the user decides to commit a transaction,
the commit command is sent to the coordinator for the transaction. This initiates the
2PC protocol:

1. The coordinator sends a prepare message to each subordinate.

2. When a subordinate receives a prepare message, it decides whether to abort or
commit its subtransaction. It force-writes an abort or prepare log record, and
then sends a no or yes message to the coordinator. Notice that a prepare log
record is not used in a centralized DBMS; it is unique to the distributed commit
protocol.

3. If the coordinator receives yes messages from all subordinates, it force-writes a
commit log record and then sends a commit message to all subordinates. If it
receives even one no message, or does not receive any response from some sub-
ordinate for a specified time-out interval, it force-writes an abort log record, and
then sends an abort message to all subordinates.1

4. When a subordinate receives an abort message, it force-writes an abort log record,
sends an ack message to the coordinator, and aborts the subtransaction. When a
subordinate receives a commit message, it force-writes a commit log record, sends
an ack message to the coordinator, and commits the subtransaction.

5. After the coordinator has received ack messages from all subordinates, it writes
an end log record for the transaction.

The name Two-Phase Commit reflects the fact that two rounds of messages are ex-
changed: first a voting phase, then a termination phase, both initiated by the coordi-
nator. The basic principle is that any of the transaction managers involved (including
the coordinator) can unilaterally abort a transaction, whereas there must be unanimity
to commit a transaction. When a message is sent in 2PC, it signals a decision by the
sender. In order to ensure that this decision survives a crash at the sender’s site, the

1As an optimization, the coordinator need not send abort messages to subordinates who voted no.

Parallel and Distributed Databases 629

log record describing the decision is always forced to stable storage before the message
is sent.

A transaction is officially committed at the time the coordinator’s commit log record
reaches stable storage. Subsequent failures cannot affect the outcome of the transac-
tion; it is irrevocably committed. Log records written to record the commit protocol
actions contain the type of the record, the transaction id, and the identity of the co-
ordinator. A coordinator’s commit or abort log record also contains the identities of
the subordinates.

21.13.2 Restart after a Failure

When a site comes back up after a crash, we invoke a recovery process that reads the
log and processes all transactions that were executing the commit protocol at the time
of the crash. The transaction manager at this site could have been the coordinator for
some of these transactions and a subordinate for others. We do the following in the
recovery process:

If we have a commit or abort log record for transaction T , its status is clear;
we redo or undo T , respectively. If this site is the coordinator, which can be
determined from the commit or abort log record, we must periodically resend—
because there may be other link or site failures in the system—a commit or abort
message to each subordinate until we receive an ack. After we have received acks
from all subordinates, we write an end log record for T .

If we have a prepare log record for T but no commit or abort log record, this
site is a subordinate, and the coordinator can be determined from the prepare
record. We must repeatedly contact the coordinator site to determine the status
of T . Once the coordinator responds with either commit or abort, we write a
corresponding log record, redo or undo the transaction, and then write an end log
record for T .

If we have no prepare, commit, or abort log record for transaction T , T certainly
could not have voted to commit before the crash; so we can unilaterally abort and
undo T and write an end log record. In this case we have no way to determine
whether the current site is the coordinator or a subordinate for T . However, if this
site is the coordinator, it might have sent a prepare message prior to the crash,
and if so, other sites may have voted yes. If such a subordinate site contacts the
recovery process at the current site, we now know that the current site is the
coordinator for T , and given that there is no commit or abort log record, the
response to the subordinate should be to abort T .

Observe that if the coordinator site for a transaction T fails, subordinates who have
voted yes cannot decide whether to commit or abort T until the coordinator site

630 Chapter 21

recovers; we say that T is blocked. In principle, the active subordinate sites could
communicate among themselves, and if at least one of them contains an abort or
commit log record for T , its status becomes globally known. In order to communicate
among themselves, all subordinates must be told the identity of the other subordinates
at the time they are sent the prepare message. However, 2PC is still vulnerable to
coordinator failure during recovery because even if all subordinates have voted yes,
the coordinator (who also has a vote!) may have decided to abort T , and this decision
cannot be determined until the coordinator site recovers.

We have covered how a site recovers from a crash, but what should a site that is
involved in the commit protocol do if a site that it is communicating with fails? If the
current site is the coordinator, it should simply abort the transaction. If the current
site is a subordinate, and it has not yet responded to the coordinator’s prepare message,
it can (and should) abort the transaction. If it is a subordinate and has voted yes,
then it cannot unilaterally abort the transaction, and it cannot commit either; it is
blocked. It must periodically contact the coordinator until it receives a reply.

Failures of communication links are seen by active sites as failure of other sites that
they are communicating with, and therefore the solutions just outlined apply to this
case as well.

21.13.3 Two-Phase Commit Revisited

Now that we have examined how a site recovers from a failure, and seen the interaction
between the 2PC protocol and the recovery process, it is instructive to consider how
2PC can be refined further. In doing so, we will arrive at a more efficient version of
2PC, but equally important perhaps, we will understand the role of the various steps
of 2PC more clearly. There are three basic observations:

1. The ack messages in 2PC are used to determine when a coordinator (or the re-
covery process at a coordinator site following a crash) can ‘forget’ about a trans-
action T . Until the coordinator knows that all subordinates are aware of the
commit/abort decision for T , it must keep information about T in the transaction
table.

2. If the coordinator site fails after sending out prepare messages but before writing a
commit or abort log record, when it comes back up it has no information about the
transaction’s commit status prior to the crash. However, it is still free to abort the
transaction unilaterally (because it has not written a commit record, it can still
cast a no vote itself). If another site inquires about the status of the transaction,
the recovery process, as we have seen, responds with an abort message. Thus, in
the absence of information, a transaction is presumed to have aborted.

Parallel and Distributed Databases 631

3. If a subtransaction does no updates, it has no changes to either redo or undo; in
other words, its commit or abort status is irrelevant.

The first two observations suggest several refinements:

When a coordinator aborts a transaction T , it can undo T and remove it from the
transaction table immediately. After all, removing T from the table results in a ‘no
information’ state with respect to T , and the default response (to an enquiry about
T) in this state, which is abort, is the correct response for an aborted transaction.

By the same token, if a subordinate receives an abort message, it need not send
an ack message. The coordinator is not waiting to hear from subordinates after
sending an abort message! If, for some reason, a subordinate that receives a
prepare message (and voted yes) does not receive an abort or commit message for a
specified time-out interval, it will contact the coordinator again. If the coordinator
decided to abort, there may no longer be an entry in the transaction table for this
transaction, but the subordinate will receive the default abort message, which is
the correct response.

Because the coordinator is not waiting to hear from subordinates after deciding to
abort a transaction, the names of subordinates need not be recorded in the abort
log record for the coordinator.

All abort log records (for the coordinator as well as subordinates) can simply be
appended to the log tail, instead of doing a force-write. After all, if they are
not written to stable storage before a crash, the default decision is to abort the
transaction.

The third basic observation suggests some additional refinements:

If a subtransaction does no updates (which can be easily detected by keeping a
count of update log records), the subordinate can respond to a prepare message
from the coordinator with a reader message, instead of yes or no. The subordinate
writes no log records in this case.

When a coordinator receives a reader message, it treats the message as a yes
vote, but with the optimization that it does not send any more messages to the
subordinate, because the subordinate’s commit or abort status is irrelevant.

If all the subtransactions, including the subtransaction at the coordinator site,
send a reader message, we don’t need the second phase of the commit protocol.
Indeed, we can simply remove the transaction from the transaction table, without
writing any log records at any site for this transaction.

The Two-Phase Commit protocol with the refinements discussed in this section is
called Two-Phase Commit with Presumed Abort.

632 Chapter 21

21.13.4 Three-Phase Commit

A commit protocol called Three-Phase Commit (3PC) can avoid blocking even if
the coordinator site fails during recovery. The basic idea is that when the coordinator
sends out prepare messages and receives yes votes from all subordinates, it sends all
sites a precommit message, rather than a commit message. When a sufficient number—
more than the maximum number of failures that must be handled—of acks have been
received, the coordinator force-writes a commit log record and sends a commit mes-
sage to all subordinates. In 3PC the coordinator effectively postpones the decision
to commit until it is sure that enough sites know about the decision to commit; if
the coordinator subsequently fails, these sites can communicate with each other and
detect that the transaction must be committed—conversely, aborted, if none of them
has received a precommit message—without waiting for the coordinator to recover.

The 3PC protocol imposes a significant additional cost during normal execution and
requires that communication link failures do not lead to a network partition (wherein
some sites cannot reach some other sites through any path) in order to ensure freedom
from blocking. For these reasons, it is not used in practice.

21.14 POINTS TO REVIEW

Parallel databases evaluate queries in parallel in order to improve performance.
Three main architectures have been proposed. In a shared-memory system, mul-
tiple CPUs are attached to an interconnection network and can access a common
region of main memory. In a shared-disk system, each CPU has its own local
main memory and has direct access to all disks through an interconnection net-
work. In a shared-nothing system, each CPU has its own local main memory
and disk space; all communication between CPUs is through an interconnection
network. Interference is a basic problem with shared-memory and shared-disk
architectures. The shared-nothing architecture has been shown to provide linear
speed-up (performance increases linear with the number of CPUs) and linear scale-
up (performance remains constant if the number of disks and CPUs is increased
in proportion to the amount of data). (Section 21.1)

In pipelined parallelism, one operator consumes the output of another operator.
In data-partitioned parallelism, the input data is partitioned and we work on each
partition in parallel. We can obtain n horizontal partitions through round-robin
partitioning (tuple i goes to processor i mod n), hash partitioning (a hash function
distributes the tuples), or range partitioning (we distribute tuples over n search
key ranges). Existing code can be parallelized by introducing split and merge
operators. A split operator partitions the output of an operation over the n

processors; a merge operator merges the output of n data streams. (Section 21.2)

Parallel and Distributed Databases 633

In a shared-nothing architecture we can parallelize relational operators to make
use of data-partitioned parallelism. Range partitioning on the sorting attributes
partitions the load of a sort operation over all processors. We can parallelize hash
join by distributing the hash partitions over the available processors. If each hash
partition is still very large, we can again distribute each hash partition over the
available processors. (Section 21.3)

In parallel query optimization, we take the parallelism within each operator into
account. To exploit parallelism between operators, we can use pipelined paral-
lelism and the fact that parts of the query could be executed in parallel. (Sec-
tion 21.4)

In a distributed database, data is stored across several locations with the goal to
make the distribution transparent. We want distributed data independence (users
should not need to know about the location of data) and distributed transac-
tion atomicity (there is no difference between distributed transactions and local
transactions). If all locations run the same DBMS software, the system is called
homogeneous, otherwise it is called heterogeneous. (Section 21.5)

Distributed database systems can have three types of architectures. In a Client-
Server system, servers provide the DBMS functionality and clients provide user-
interface functionality. In a Collaborating Server system, there is no distinction
between client and server processes. In a Middleware system, a special server
allows coordination of queries across multiple databases. (Section 21.6)

In a distributed DBMS, a single relation might be fragmented or replicated across
several sites. In horizontal fragmentation, each partition consists of a set of rows
of the original relation. In vertical fragmentation, each partition consists of a set
of columns of the original relation. In replication, we store several copies of a
relation or a partition at several sites. (Section 21.7)

If a relation is fragmented and replicated, each partition needs a globally unique
name called the relation name. Distributed catalog management is needed to keep
track of what is stored where. (Section 21.8)

When processing queries in a distributed DBMS, the location of partitions of the
relation needs to be taken into account. We can join two relations that reside
on different sites by sending one relation to the other site and performing the
join locally. If the join involves selection conditions, the number of tuples actually
required for the join might be small. Semijoins and Bloomjoins reduce the number
of tuples sent across the network by first sending information that allows us to
filter irrelevant tuples. When optimizing queries in a distributed DBMS, we need
to consider communication in our cost model. In addition, we need to take the
autonomy of the individual sites into account. (Section 21.9)

In synchronous replication, all copies of a replicated relation are updated before
the transaction commits. In asynchronous replication, copies are only updated

634 Chapter 21

periodically. There are two techniques to ensure synchronous replication. In
voting, an update must write a majority of copies, and a read must access at
least enough copies to make sure that one of the copies is current. There are
also two main techniques for asynchronous replication. In peer-to-peer replication,
more than one copy can be updatable and a conflict resolution strategy deals with
conflicting changes. In primary site replication, there is one primary copy that is
updatable; the other secondary copies cannot be updated. Changes on the primary
copy are propagated through first a capture and then an apply step to the other
sites. (Section 21.10)

If a transaction involves activities at different sites, we call the activity at a given
site a subtransaction. (Section 21.11)

In a distributed DBMS, lock management can either be at a central location, at
a designated primary copy, or fully distributed. Distributed deadlock detection
is required and phantom deadlocks (deadlocks where one transaction has already
aborted) can arise. (Section 21.12)

Recovery in a distributed DBMS is achieved using a commit protocol that coor-
dinates activities at the different sites involved in the transaction. In Two-Phase
Commit, each transaction has a designated coordinator site. Subtransactions are
executed at subordinate sites. The protocol ensures that the changes made by any
transaction are recoverable. If the coordinate site crashes, subordinates are block-
ing; they have to wait for the coordinate site to recover. Three-Phase Commit
can avoid blocking even if the coordinator site fails, but due to its overhead it is
not used in practice. (Section 21.13)

EXERCISES

Exercise 21.1 Give brief answers to the following questions:

1. What are the similarities and differences between parallel and distributed database man-

agement systems?

2. Would you expect to see a parallel database built using a wide-area network? Would

you expect to see a distributed database built using a wide-area network? Explain.

3. Define the terms scale-up and speed-up.

4. Why is a shared-nothing architecture attractive for parallel database systems?

5. The idea of building specialized hardware to run parallel database applications received

considerable attention but has fallen out of favor. Comment on this trend.

6. What are the advantages of a distributed database management system over a centralized

DBMS?

7. Briefly describe and compare the Client-Server and Collaborating Servers architectures.

Parallel and Distributed Databases 635

8. In the Collaborating Servers architecture, when a transaction is submitted to the DBMS,

briefly describe how its activities at various sites are coordinated. In particular, describe

the role of transaction managers at the different sites, the concept of subtransactions,

and the concept of distributed transaction atomicity.

Exercise 21.2 Give brief answers to the following questions:

1. Define the terms fragmentation and replication, in terms of where data is stored.

2. What is the difference between synchronous and asynchronous replication?

3. Define the term distributed data independence. Specifically, what does this mean with

respect to querying and with respect to updating data in the presence of data fragmen-

tation and replication?

4. Consider the voting and read-one write-all techniques for implementing synchronous

replication. What are their respective pros and cons?

5. Give an overview of how asynchronous replication can be implemented. In particular,

explain the terms capture and apply.

6. What is the difference between log-based and procedural approaches to implementing

capture?

7. Why is giving database objects unique names more complicated in a distributed DBMS?

8. Describe a catalog organization that permits any replica (of an entire relation or a frag-

ment) to be given a unique name and that provides the naming infrastructure required

for ensuring distributed data independence.

9. If information from remote catalogs is cached at other sites, what happens if the cached

information becomes outdated? How can this condition be detected and resolved?

Exercise 21.3 Consider a parallel DBMS in which each relation is stored by horizontally

partitioning its tuples across all disks.

Employees(eid: integer, did: integer, sal: real)

Departments(did: integer, mgrid: integer, budget: integer)

The mgrid field of Departments is the eid of the manager. Each relation contains 20-byte

tuples, and the sal and budget fields both contain uniformly distributed values in the range

0 to 1,000,000. The Employees relation contains 100,000 pages, the Departments relation

contains 5,000 pages, and each processor has 100 buffer pages of 4,000 bytes each. The cost of

one page I/O is td, and the cost of shipping one page is ts; tuples are shipped in units of one

page by waiting for a page to be filled before sending a message from processor i to processor

j. There are no indexes, and all joins that are local to a processor are carried out using

a sort-merge join. Assume that the relations are initially partitioned using a round-robin

algorithm and that there are 10 processors.

For each of the following queries, describe the evaluation plan briefly and give its cost in terms

of td and ts. You should compute the total cost across all sites as well as the ‘elapsed time’

cost (i.e., if several operations are carried out concurrently, the time taken is the maximum

over these operations).

636 Chapter 21

1. Find the highest paid employee.

2. Find the highest paid employee in the department with did 55.

3. Find the highest paid employee over all departments with budget less than 100,000.

4. Find the highest paid employee over all departments with budget less than 300,000.

5. Find the average salary over all departments with budget less than 300,000.

6. Find the salaries of all managers.

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected

to a separate printer, and the answer can appear as several sorted lists, each printed by

a different processor, as long as we can obtain a fully sorted list by concatenating the

printed lists (in some order).

Exercise 21.4 Consider the same scenario as in Exercise 21.3, except that the relations are

originally partitioned using range partitioning on the sal and budget fields.

Exercise 21.5 Repeat Exercises 21.3 and 21.4 with the number of processors equal to (i) 1

and (ii) 100.

Exercise 21.6 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with all of Employees stored at Naples

and all of Departments stored at Berlin. There are no indexes on these relations. The cost of

various operations is as described in Exercise 21.3. Consider the query:

SELECT *

FROM Employees E, Departments D

WHERE E.eid = D.mgrid

The query is posed at Delhi, and you are told that only 1 percent of employees are managers.

Find the cost of answering this query using each of the following plans:

1. Compute the query at Naples by shipping Departments to Naples; then ship the result

to Delhi.

2. Compute the query at Berlin by shipping Employees to Berlin; then ship the result to

Delhi.

3. Compute the query at Delhi by shipping both relations to Delhi.

4. Compute the query at Naples using Bloomjoin; then ship the result to Delhi.

5. Compute the query at Berlin using Bloomjoin; then ship the result to Delhi.

6. Compute the query at Naples using Semijoin; then ship the result to Delhi.

7. Compute the query at Berlin using Semijoin; then ship the result to Delhi.

Exercise 21.7 Consider your answers in Exercise 21.6. Which plan minimizes shipping

costs? Is it necessarily the cheapest plan? Which do you expect to be the cheapest?

Parallel and Distributed Databases 637

Exercise 21.8 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with 10 sites. The Departments tuples are

horizontally partitioned across the 10 sites by did, with the same number of tuples assigned

to each site and with no particular order to how tuples are assigned to sites. The Employees

tuples are similarly partitioned, by sal ranges, with sal ≤ 100, 000 assigned to the first site,

100, 000 < sal ≤ 200, 000 assigned to the second site, and so on. In addition, the partition

sal ≤ 100, 000 is frequently accessed and infrequently updated, and it is therefore replicated

at every site. No other Employees partition is replicated.

1. Describe the best plan (unless a plan is specified) and give its cost:

(a) Compute the natural join of Employees and Departments using the strategy of

shipping all fragments of the smaller relation to every site containing tuples of the

larger relation.

(b) Find the highest paid employee.

(c) Find the highest paid employee with salary less than 100, 000.

(d) Find the highest paid employee with salary greater than 400, 000 and less than

500, 000.

(e) Find the highest paid employee with salary greater than 450, 000 and less than

550, 000.

(f) Find the highest paid manager for those departments stored at the query site.

(g) Find the highest paid manager.

2. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that synchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000:

(a) Give employees with salary less than 100, 000 a 10 percent raise, with a maximum

salary of 100, 000 (i.e., the raise cannot increase the salary to more than 100, 000).

(b) Give all employees a 10 percent raise. The conditions of the original partitioning

of Employees must still be satisfied after the update.

3. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that asynchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000.

(a) For all employees with salary less than 100, 000 give them a 10 percent raise, with

a maximum salary of 100, 000.

(b) Give all employees a 10 percent raise. After the update is completed, the conditions

of the original partitioning of Employees must still be satisfied.

Exercise 21.9 Consider the Employees and Departments relations from Exercise 21.3. You

are a DBA dealing with a distributed DBMS, and you need to decide how to distribute these

two relations across two sites, Manila and Nairobi. Your DBMS supports only unclustered

B+ tree indexes. You have a choice between synchronous and asynchronous replication. For

each of the following scenarios, describe how you would distribute them and what indexes you

would build at each site. If you feel that you have insufficient information to make a decision,

explain briefly.

638 Chapter 21

1. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at the

site where the department is located, but such changes are quite frequent. (Although the

location of a department is not included in the Departments schema, this information

can be obtained from another table.)

2. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at

the site where the department is located, but such changes are infrequent. Finding the

average salary for each department is a frequently asked query.

3. Half the departments are located in Manila, and the other half are in Nairobi. Employees

tuples are frequently changed (only) at the site where the corresponding department is lo-

cated, but the Departments relation is almost never changed. Finding a given employee’s

manager is a frequently asked query.

4. Half the employees work in Manila, and the other half work in Nairobi. Employees tuples

are frequently changed (only) at the site where they work.

Exercise 21.10 Suppose that the Employees relation is stored in Madison and the tuples

with sal ≤ 100, 000 are replicated at New York. Consider the following three options for lock

management: all locks managed at a single site, say, Milwaukee; primary copy with Madison

being the primary for Employees; and fully distributed. For each of the lock management

options, explain what locks are set (and at which site) for the following queries. Also state

which site the page is read from.

1. A query submitted at Austin wants to read a page containing Employees tuples with

sal ≤ 50, 000.

2. A query submitted at Madison wants to read a page containing Employees tuples with

sal ≤ 50, 000.

3. A query submitted at New York wants to read a page containing Employees tuples with

sal ≤ 50, 000.

Exercise 21.11 Briefly answer the following questions:

1. Compare the relative merits of centralized and hierarchical deadlock detection in a dis-

tributed DBMS.

2. What is a phantom deadlock? Give an example.

3. Give an example of a distributed DBMS with three sites such that no two local waits-for

graphs reveal a deadlock, yet there is a global deadlock.

4. Consider the following modification to a local waits-for graph: Add a new node Text, and

for every transaction Ti that is waiting for a lock at another site, add the edge Ti → Text.

Also add an edge Text → Ti if a transaction executing at another site is waiting for Ti

to release a lock at this site.

(a) If there is a cycle in the modified local waits-for graph that does not involve Text,

what can you conclude? If every cycle involves Text, what can you conclude?

Parallel and Distributed Databases 639

(b) Suppose that every site is assigned a unique integer site-id. Whenever the local

waits-for graph suggests that there might be a global deadlock, send the local waits-

for graph to the site with the next higher site-id. At that site, combine the received

graph with the local waits-for graph. If this combined graph does not indicate a

deadlock, ship it on to the next site, and so on, until either a deadlock is detected

or we are back at the site that originated this round of deadlock detection. Is this

scheme guaranteed to find a global deadlock if one exists?

Exercise 21.12 Timestamp-based concurrency control schemes can be used in a distributed

DBMS, but we must be able to generate globally unique, monotonically increasing timestamps

without a bias in favor of any one site. One approach is to assign timestamps at a single site.

Another is to use the local clock time and to append the site-id. A third scheme is to use a

counter at each site. Compare these three approaches.

Exercise 21.13 Consider the multiple-granularity locking protocol described in Chapter 18.

In a distributed DBMS the site containing the root object in the hierarchy can become a

bottleneck. You hire a database consultant who tells you to modify your protocol to allow

only intention locks on the root, and to implicitly grant all possible intention locks to every

transaction.

1. Explain why this modification works correctly, in that transactions continue to be able

to set locks on desired parts of the hierarchy.

2. Explain how it reduces the demand upon the root.

3. Why isn’t this idea included as part of the standard multiple-granularity locking protocol

for a centralized DBMS?

Exercise 21.14 Briefly answer the following questions:

1. Explain the need for a commit protocol in a distributed DBMS.

2. Describe 2PC. Be sure to explain the need for force-writes.

3. Why are ack messages required in 2PC?

4. What are the differences between 2PC and 2PC with Presumed Abort?

5. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate an identical sequence of actions.

6. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate different sequences of actions.

7. What is the intuition behind 3PC? What are its pros and cons relative to 2PC?

8. Suppose that a site does not get any response from another site for a long time. Can the

first site tell whether the connecting link has failed or the other site has failed? How is

such a failure handled?

9. Suppose that the coordinator includes a list of all subordinates in the prepare message.

If the coordinator fails after sending out either an abort or commit message, can you

suggest a way for active sites to terminate this transaction without waiting for the

coordinator to recover? Assume that some but not all of the abort/commit messages

from the coordinator are lost.

640 Chapter 21

10. Suppose that 2PC with Presumed Abort is used as the commit protocol. Explain how

the system recovers from failure and deals with a particular transaction T in each of the

following cases:

(a) A subordinate site for T fails before receiving a prepare message.

(b) A subordinate site for T fails after receiving a prepare message but before making

a decision.

(c) A subordinate site for T fails after receiving a prepare message and force-writing

an abort log record but before responding to the prepare message.

(d) A subordinate site for T fails after receiving a prepare message and force-writing a

prepare log record but before responding to the prepare message.

(e) A subordinate site for T fails after receiving a prepare message, force-writing an

abort log record, and sending a no vote.

(f) The coordinator site for T fails before sending a prepare message.

(g) The coordinator site for T fails after sending a prepare message but before collecting

all votes.

(h) The coordinator site for T fails after writing an abort log record but before sending

any further messages to its subordinates.

(i) The coordinator site for T fails after writing a commit log record but before sending

any further messages to its subordinates.

(j) The coordinator site for T fails after writing an end log record. Is it possible for the

recovery process to receive an inquiry about the status of T from a subordinate?

Exercise 21.15 Consider a heterogeneous distributed DBMS.

1. Define the terms multidatabase system and gateway.

2. Describe how queries that span multiple sites are executed in a multidatabase system.

Explain the role of the gateway with respect to catalog interfaces, query optimization,

and query execution.

3. Describe how transactions that update data at multiple sites are executed in a multi-

database system. Explain the role of the gateway with respect to lock management,

distributed deadlock detection, Two-Phase Commit, and recovery.

4. Schemas at different sites in a multidatabase system are probably designed independently.

This situation can lead to semantic heterogeneity; that is, units of measure may differ

across sites (e.g., inches versus centimeters), relations containing essentially the same

kind of information (e.g., employee salaries and ages) may have slightly different schemas,

and so on. What impact does this heterogeneity have on the end user? In particular,

comment on the concept of distributed data independence in such a system.

BIBLIOGRAPHIC NOTES

Work on parallel algorithms for sorting and various relational operations is discussed in the

bibliographies for Chapters 11 and 12. Our discussion of parallel joins follows [185], and

our discussion of parallel sorting follows [188]. [186] makes the case that for future high

Parallel and Distributed Databases 641

performance database systems, parallelism will be the key. Scheduling in parallel database

systems is discussed in [454]. [431] contains a good collection of papers on query processing

in parallel database systems.

Textbook discussions of distributed databases include [65, 123, 505]. Good survey articles in-

clude [72], which focuses on concurrency control; [555], which is about distributed databases

in general; and [689], which concentrates on distributed query processing. Two major projects

in the area were SDD-1 [554] and R* [682]. Fragmentation in distributed databases is consid-

ered in [134, 173]. Replication is considered in [8, 10, 116, 202, 201, 328, 325, 285, 481, 523].

For good overviews of current trends in asynchronous replication, see [197, 620, 677]. Papers

on view maintenance mentioned in the bibliography of Chapter 17 are also relevant in this

context.

Query processing in the SDD-1 distributed database is described in [75]. One of the notable

aspects of SDD-1 query processing was the extensive use of Semijoins. Theoretical studies

of Semijoins are presented in [70, 73, 354]. Query processing in R* is described in [580].

The R* query optimizer is validated in [435]; much of our discussion of distributed query

processing is drawn from the results reported in this paper. Query processing in Distributed

Ingres is described in [210]. Optimization of queries for parallel execution is discussed in

[255, 274, 323]. [243] discusses the trade-offs between query shipping, the more traditional

approach in relational databases, and data shipping, which consists of shipping data to the

client for processing and is widely used in object-oriented systems.

Concurrency control in the SDD-1 distributed database is described in [78]. Transaction man-

agement in R* is described in [476]. Concurrency control in Distributed Ingres is described in

[625]. [649] provides an introduction to distributed transaction management and various no-

tions of distributed data independence. Optimizations for read-only transactions are discussed

in [261]. Multiversion concurrency control algorithms based on timestamps were proposed in

[540]. Timestamp-based concurrency control is discussed in [71, 301]. Concurrency control

algorithms based on voting are discussed in [259, 270, 347, 390, 643]. The rotating primary

copy scheme is described in [467]. Optimistic concurrency control in distributed databases is

discussed in [574], and adaptive concurrency control is discussed in [423].

Two-Phase Commit was introduced in [403, 281]. 2PC with Presumed Abort is described in

[475], along with an alternative called 2PC with Presumed Commit. A variation of Presumed

Commit is proposed in [402]. Three-Phase Commit is described in [603]. The deadlock

detection algorithms in R* are described in [496]. Many papers discuss deadlocks, for example,

[133, 206, 456, 550]. [380] is a survey of several algorithms in this area. Distributed clock

synchronization is discussed by [401]. [283] argues that distributed data independence is not

always a good idea, due to processing and administrative overheads. The ARIES algorithm

is applicable for distributed recovery, but the details of how messages should be handled are

not discussed in [473]. The approach taken to recovery in SDD-1 is described in [36]. [97] also

addresses distributed recovery. [383] is a survey article that discusses concurrency control and

recovery in distributed systems. [82] contains several articles on these topics.

Multidatabase systems are discussed in [7, 96, 193, 194, 205, 412, 420, 451, 452, 522, 558, 672,

697]; see [95, 421, 595] for surveys.

22 INTERNET DATABASES

He profits most who serves best.

—Motto for Rotary International

The proliferation of computer networks, including the Internet and corporate ‘in-
tranets,’ has enabled users to access a large number of data sources. This increased
access to databases is likely to have a great practical impact; data and services can
now be offered directly to customers in ways that were impossible until recently. Elec-
tronic commerce applications cover a broad spectrum; examples include purchasing
books through a Web retailer such as Amazon.com, engaging in online auctions at a
site such as eBay, and exchanging bids and specifications for products between com-
panies. The emergence of standards such as XML for describing content (in addition
to the presentation aspects) of documents is likely to further accelerate the use of the
Web for electronic commerce applications.

While the first generation of Internet sites were collections of HTML files—HTML is
a standard for describing how a file should be displayed—most major sites today store
a large part (if not all) of their data in database systems. They rely upon DBMSs
to provide fast, reliable responses to user requests received over the Internet; this is
especially true of sites for electronic commerce. This unprecedented access will lead
to increased and novel demands upon DBMS technology. The impact of the Web
on DBMSs, however, goes beyond just a new source of large numbers of concurrent
queries: The presence of large collections of unstructured text documents and partially
structured HTML and XML documents and new kinds of queries such as keyword
search challenge DBMSs to significantly expand the data management features they
support. In this chapter, we discuss the role of DBMSs in the Internet environment
and the new challenges that arise.

We introduce the World Wide Web, Web browsers, Web servers, and the HTML
markup language in Section 22.1. In Section 22.2, we discuss alternative architec-
tures for making databases accessible through the Web. We discuss XML, an emerg-
ing standard for document description that is likely to supersede HTML, in Section
22.3. Given the proliferation of text documents on the Web, searching them for user-
specified keywords is an important new query type. Boolean keyword searches ask for
documents containing a specified boolean combination of keywords. Ranked keyword
searches ask for documents that are most relevant to a given list of keywords. We

642

Internet Databases 643

consider indexing techniques to support boolean keyword searches in Section 22.4 and
techniques to support ranked keyword searches in Section 22.5.

22.1 THE WORLD WIDE WEB

The Web makes it possible to access a file anywhere on the Internet. A file is identified
by a universal resource locator (URL):

http://www.informatik.uni-trier.de/˜ley/db/index.html

This URL identifies a file called index.html, stored in the directory ˜ley/db/ on
machine www.informatik.uni-trier.de. This file is a document formatted using
HyperText Markup Language (HTML) and contains several links to other files
(identified through their URLs).

The formatting commands are interpreted by a Web browser such as Microsoft’s
Internet Explorer or Netscape Navigator to display the document in an attractive
manner, and the user can then navigate to other related documents by choosing links.
A collection of such documents is called a Web site and is managed using a program
called a Web server, which accepts URLs and returns the corresponding documents.
Many organizations today maintain a Web site. (Incidentally, the URL shown above is
the entry point to Michael Ley’s Databases and Logic Programming (DBLP) Web site,
which contains information on database and logic programming research publications.
It is an invaluable resource for students and researchers in these areas.) The World
Wide Web, or Web, is the collection of Web sites that are accessible over the Internet.

An HTML link contains a URL, which identifies the site containing the linked file.
When a user clicks on a link, the Web browser connects to the Web server at the
destination Web site using a connection protocol called HTTP and submits the link’s
URL. When the browser receives a file from a Web server, it checks the file type by
examining the extension of the file name. It displays the file according to the file’s type
and if necessary calls an application program to handle the file. For example, a file
ending in .txt denotes an unformatted text file, which the Web browser displays by
interpreting the individual ASCII characters in the file. More sophisticated document
structures can be encoded in HTML, which has become a standard way of structuring
Web pages for display. As another example, a file ending in .doc denotes a Microsoft
Word document and the Web browser displays the file by invoking Microsoft Word.

22.1.1 Introduction to HTML

HTML is a simple language used to describe a document. It is also called a markup
language because HTML works by augmenting regular text with ‘marks’ that hold
special meaning for a Web browser handling the document. Commands in the language

644 Chapter 22

<HTML>
<HEAD></HEAD>
<BODY>
Science:

Author: Richard Feynman
Title: The Character of Physical Law
Published 1980
Hardcover

Fiction:

Author: R.K. Narayan
Title: Waiting for the Mahatma
Published 1981

Name: R.K. Narayan
Title: The English Teacher
Published 1980
Paperback

</BODY>
</HTML>

Figure 22.1 Book Listing in HTML

are called tags and they consist (usually) of a start tag and an end tag of the form
<TAG> and </TAG>, respectively. For example, consider the HTML fragment shown
in Figure 22.1. It describes a Web page that shows a list of books. The document is
enclosed by the tags <HTML> and </HTML>, marking it as an HTML document. The
remainder of the document—enclosed in <BODY> . . . </BODY>—contains information
about three books. Data about each book is represented as an unordered list (UL)
whose entries are marked with the LI tag. HTML defines the set of valid tags as well
as the meaning of the tags. For example, HTML specifies that the tag <TITLE> is a
valid tag that denotes the title of the document. As another example, the tag
always denotes an unordered list.

Audio, video, and even programs (written in Java, a highly portable language) can
be included in HTML documents. When a user retrieves such a document using a
suitable browser, images in the document are displayed, audio and video clips are
played, and embedded programs are executed at the user’s machine; the result is a
rich multimedia presentation. The ease with which HTML documents can be created—

Internet Databases 645

there are now visual editors that automatically generate HTML—and accessed using
Internet browsers has fueled the explosive growth of the Web.

22.1.2 Databases and the Web

The Web is the cornerstone of electronic commerce. Many organizations offer products
through their Web sites, and customers can place orders by visiting a Web site. For
such applications a URL must identify more than just a file, however rich the contents
of the file; a URL must provide an entry point to services available on the Web site.
It is common for a URL to include a form that users can fill in to describe what they
want. If the requested URL identifies a form, the Web server returns the form to the
browser, which displays the form to the user. After the user fills in the form, the form
is returned to the Web server, and the information filled in by the user can be used as
parameters to a program executing at the same site as the Web server.

The use of a Web browser to invoke a program at a remote site leads us to the role
of databases on the Web: The invoked program can generate a request to a database
system. This capability allows us to easily place a database on a computer network,
and make services that rely upon database access available over the Web. This leads
to a new and rapidly growing source of concurrent requests to a DBMS, and with
thousands of concurrent users routinely accessing popular Web sites, new levels of
scalability and robustness are required.

The diversity of information on the Web, its distributed nature, and the new uses
that it is being put to lead to challenges for DBMSs that go beyond simply improved
performance in traditional functionality. For instance, we require support for queries
that are run periodically or continuously and that access data from several distributed
sources. As an example, a user may want to be notified whenever a new item meeting
some criteria (e.g., a Peace Bear Beanie Baby toy costing less than $15) is offered for
sale at one of several Web sites. Given many such user profiles, how can we efficiently
monitor them and notify users promptly as the items they are interested in become
available? As another instance of a new class of problems, the emergence of the XML
standard for describing data leads to challenges in managing and querying XML data
(see Section 22.3).

22.2 ARCHITECTURE

To execute a program at the Web server’s site, the server creates a new process and
communicates with this process using the common gateway interface (CGI) pro-
tocol. The results of the program can be used to create an HTML document that is
returned to the requestor. Pages that are computed in this manner at the time they

646 Chapter 22

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>
<BODY>
<FORM action="find_books.cgi" method=post>

Type an author name:
<INPUT type="text" name="authorName" size=30 maxlength=50>
<INPUT type="submit" value="Send it">
<INPUT type="reset" value="Clear form">

</FORM>
</BODY></HTML>

Figure 22.2 A Sample Web Page with Form Input

are requested are called dynamic pages; pages that exist and are simply delivered to
the Web browser are called static pages.

As an example, consider the sample page shown in Figure 22.2. This Web page contains
a form where a user can fill in the name of an author. If the user presses the ‘Send
it’ button, the Perl script ‘findBooks.cgi’ mentioned in Figure 22.2 is executed as a
separate process. The CGI protocol defines how the communication between the form
and the script is performed. Figure 22.3 illustrates the processes created when using
the CGI protocol.

Figure 22.4 shows an example CGI script, written in Perl. We have omitted error-
checking code for simplicity. Perl is an interpreted language that is often used for CGI
scripting and there are many Perl libraries called modules that provide high-level
interfaces to the CGI protocol. We use two such libraries in our example: DBI and
CGI. DBI is a database-independent API for Perl that allows us to abstract from the
DBMS being used—DBI plays the same role for Perl as JDBC does for Java. Here
we use DBI as a bridge to an ODBC driver that handles the actual connection to the
database. The CGI module is a convenient collection of functions for creating CGI
scripts. In part 1 of the sample script, we extract the content of the HTML form as
follows:

$authorName = $dataIn->param(‘authorName’);

Note that the parameter name authorName was used in the form in Figure 22.2 to name
the first input field. In part 2 we construct the actual SQL command in the variable
$sql. In part 3 we start to assemble the page that is returned to the Web browser.
We want to display the result rows of the query as entries in an unordered list, and
we start the list with its start tag . Individual list entries will be enclosed by the
 tag. Conveniently, the CGI protocol abstracts the actual implementation of how
the Web page is returned to the Web browser; the Web page consists simply of the

Internet Databases 647

Web Browser
HTTP

Web Server

Application
C++

CGI

CGI
CGI JDBC

Process 1

Process 2 DBMS

Figure 22.3 Process Structure with CGI Scripts

output of our program. Thus, everything that the script writes in print-statements
will be part of the dynamically constructed Web page that is returned to the Web
browser. Part 4 establishes the database connection and prepares and executes the
SQL statement that we stored in the variable $sql in part 2. In part 5, we fetch the
result of the query, one row at a time, and append each row to the output. Part 6
closes the connection to the database system and we finish in part 7 by appending the
closing format tags to the resulting page.

Alternative protocols, in which the program invoked by a request is executed within the
Web server process, have been proposed by Microsoft (Internet Server API (ISAPI))
and by Netscape (Netscape Server API (NSAPI)). Indeed, the TPC-C benchmark has
been executed, with good results, by sending requests from 1,500 PC clients to a Web
server and through it to an SQL database server.

22.2.1 Application Servers and Server-Side Java

In the previous section, we discussed how the CGI protocol can be used to dynamically
assemble Web pages whose content is computed on demand. However, since each page
request results in the creation of a new process this solution does not scale well to a large
number of simultaneous requests. This performance problem led to the development
of specialized programs called application servers. An application server has pre-
forked threads or processes and thus avoids the startup cost of creating a new process
for each request. Application servers have evolved into flexible middle tier packages
that provide many different functions in addition to eliminating the process-creation
overhead:

Integration of heterogeneous data sources: Most companies have data in
many different database systems, from legacy systems to modern object-relational
systems. Electronic commerce applications require integrated access to all these
data sources.

Transactions involving several data sources: In electronic commerce ap-
plications, a user transaction might involve updates at several data sources. An

648 Chapter 22

#!/usr/bin/perl
use DBI; use CGI;

part 1
$dataIn = new CGI;
$dataIn->header();
$authorName = $dataIn->param(‘authorName’);

part 2
$sql = "SELECT authorName, title FROM books ";
$sql += "WHERE authorName = " + $authorName;

part 3
print "<HTML><TITLE>Results:</TITLE> Results:";

part 4
$dbh = DBI->connect(‘DBI:ODBC:BookStore’, ‘webuser’, ‘password’);
$sth = $dbh->prepare($sql);
$sth->execute;

part 5
while (@row = $sth->fetchrow) {

print " @row \n";
}

part 6
$sth->finish;
$dbhandle->disconnect;

part 7
print "</HTML>";
exit;

Figure 22.4 A Simple Perl Script

Internet Databases 649

An example of a real application server—IBM WebSphere: IBM Web-
Sphere is an application server that provides a wide range of functionality. It
includes a full-fledged Web server and supports dynamic Web page generation.
WebSphere includes a Java Servlet run time environment that allows users to
extend the functionality of the server. In addition to Java Servlets, Websphere
supports other Web technologies such as Java Server Pages and JavaBeans. It
includes a connection manager that handles a pool of relational database connec-
tions and caches intermediate query results.

application server can ensure transactional semantics across data sources by pro-
viding atomicity, isolation, and durability. The transaction boundary is the
point at which the application server provides transactional semantics. If the
transaction boundary is at the application server, very simple client programs are
possible.

Security: Since the users of a Web application usually include the general pop-
ulation, database access is performed using a general-purpose user identifier that
is known to the application server. While communication between the server and
the application at the server side is usually not a security risk, communication
between the client (Web browser) and the Web server could be a security hazard.
Encryption is usually performed at the Web server, where a secure protocol (in
most cases the Secure Sockets Layer (SSL) protocol) is used to communicate
with the client.

Session management: Often users engage in business processes that take several
steps to complete. Users expect the system to maintain continuity during a session,
and several session identifiers such as cookies, URL extensions, and hidden fields
in HTML forms can be used to identify a session. Application servers provide
functionality to detect when a session starts and ends and to keep track of the
sessions of individual users.

A possible architecture for a Web site with an application server is shown in Figure
22.5. The client (a Web browser) interacts with the Web server through the HTTP
protocol. The Web server delivers static HTML or XML pages directly to the client.
In order to assemble dynamic pages, the Web server sends a request to the application
server. The application server contacts one or more data sources to retrieve necessary
data or sends update requests to the data sources. After the interaction with the data
sources is completed, the application server assembles the Web page and reports the
result to the Web server, which retrieves the page and delivers it to the client.

The execution of business logic at the Web server’s site, or server-side processing,
has become a standard model for implementing more complicated business processes
on the Internet. There are many different technologies for server-side processing and

650 Chapter 22

Web Browser
HTTP

Web Server

Application Server

Pool of servlets

JDBC/ODBC

JDBC

Application
JavaBeans

Application
C++

DBMS 2

DBMS 1

Figure 22.5 Process Structure in the Application Server Architecture

we only mention a few in this section; the interested reader is referred to the references
at the end of the chapter.

The Java Servlet API allows Web developers to extend the functionality of a Web
server by writing small Java programs called servlets that interact with the Web server
through a well-defined API. A servlet consists of mostly business logic and routines to
format relatively small datasets into HTML. Java servlets are executed in their own
threads. Servlets can continue to execute even after the client request that led to
their invocation is completed and can thus maintain persistent information between
requests. The Web server or application server can manage a pool of servlet threads,
as illustrated in Figure 22.5, and can therefore avoid the overhead of process creation
for each requests. Since servlets are written in Java, they are portable between Web
servers and thus allow platform-independent development of server-side applications.

Server-side applications can also be written using JavaBeans. JavaBeans are reusable
software components written in Java that perform well-defined tasks and can be conve-
niently packaged and distributed (together with any Java classes, graphics, and other
files they need) in JAR files. JavaBeans can be assembled to create larger applications
and can be easily manipulated using visual tools.

Java Server Pages (JSP) are yet another platform-independent alternative for gen-
erating dynamic content on the server side. While servlets are very flexible and pow-
erful, slight modifications, for example in the appearance of the output page, require
the developer to change the servlet and to recompile the changes. JSP is designed to
separate application logic from the appearance of the Web page, while at the same
time simplifying and increasing the speed of the development process. JSP separates
content from presentation by using special HTML tags inside a Web page to gener-
ate dynamic content. The Web server interprets these tags and replaces them with
dynamic content before returning the page to the browser.

Internet Databases 651

For example, consider the following Web page that includes JSP commands:

<HTML>
<H1>Hello</H1>
<P>Today is </P>
<jsp:useBean id=="clock" class=="calendar.jspCalendar" />

Day: <%==clock.getDayOfMonth() %>
Year: <%==clock.getYear() %>

</HTML>

We first load a JavaBean component through the tag <jsp:useBean> and then eval-
uate the getDayOfMonth member functions of the bean as marked in the directive
<%==clock.getDayOfMonth() %>.

The technique of including proprietary markup tags into an HTML file and dynamically
evaluating the contents of these tags while assembling the answer page is used in many
application servers. Such pages are generally known as HTML templates. For
example, Cold Fusion is an application server that allows special markup tags that can
include database queries. The following code fragment shows an example query:

<cfquery name="listBooks" datasource="books">
select * from books

</cfquery>

22.3 BEYOND HTML

While HTML is adequate to represent the structure of documents for display purposes,
the features of the language are not sufficient to represent the structure of data within
a document for more general applications than a simple display. For example, we
can send the HTML document shown in Figure 22.1 to another application and the
application can display the information about our books, but using the HTML tags
the application cannot distinguish the first names of the authors from their last names.
(The application can try to recover such information by looking at the text inside the
tags, but that defeats the purpose of structuring the data using tags.) Thus, HTML is
inadequate for the exchange of complex documents containing product specifications
or bids, for example.

Extensible Markup Language (XML) is a markup language that was developed
to remedy the shortcomings of HTML. In contrast to having a fixed set of tags whose
meaning is fixed by the language (as in HTML), XML allows the user to define new
collections of tags that can then be used to structure any type of data or document the

652 Chapter 22

The design goals of XML: XML was developed starting in 1996 by a working
group under guidance of the World Wide Web Consortium (W3C) XML Special
Interest Group. The design goals for XML included the following:

1. XML should be compatible with SGML.

2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

user wishes to transmit. XML is an important bridge between the document-oriented
view of data implicit in HTML and the schema-oriented view of data that is central to
a DBMS. It has the potential to make database systems more tightly integrated into
Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The Stan-
dard Generalized Markup Language (SGML) is a metalanguage that allows the
definition of data and document interchange languages such as HTML. The SGML
standard was published in 1988 and many organizations that manage a large num-
ber of complex documents have adopted it. Due to its generality, SGML is complex
and requires sophisticated programs to harness its full potential. XML was developed
to have much of the power of SGML while remaining relatively simple. Nonetheless,
XML, like SGML, allows the definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the display of
the data in a Web browser, there is a style language for XML called Extensible Style
Language (XSL). XSL is a standard way of describing how an XML document that
adheres to a certain vocabulary of tags should be displayed.

22.3.1 Introduction to XML

The short introduction to XML given in this section is not complete, and the references
at the end of this chapter provide starting points for the interested reader. We will
use the small XML document shown in Figure 22.6 as an example.

Elements. Elements, also called tags, are the primary building blocks of an XML
document. The start of the content of an element ELM is marked with <ELM>, which
is called the start tag, and the end of the content end is marked with </ELM>,
called the end tag. In our example document, the element BOOKLIST encloses
all information in the sample document. The element BOOK demarcates all data
associated with a single book. XML elements are case sensitive: the element
<BOOK> is different from <Book>. Elements must be properly nested. Start tags

Internet Databases 653

that appear inside the content of other tags must have a corresponding end tag.
For example, consider the following XML fragment:

<BOOK>
<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
</AUTHOR>

</BOOK>

The element AUTHOR is completely nested inside the element BOOK, and both the
elements LASTNAME and FIRSTNAME are nested inside the element AUTHOR.

Attributes. An element can have descriptive attributes that provide additional
information about the element. The values of attributes are set inside the start
tag of an element. For example, let ELM denote an element with the attribute
att. We can set the value of att to value through the following expression: <ELM
att="value">. All attribute values must be enclosed in quotes. In Figure 22.6,
the element BOOK has two attributes. The attribute genre indicates the genre of
the book (science or fiction) and the attribute format indicates whether the book
is a hardcover or a paperback.

Entity references. Entities are shortcuts for portions of common text or the
content of external files and we call the usage of an entity in the XML document
an entity reference. Wherever an entity reference appears in the document, it
is textually replaced by its content. Entity references start with a ‘&’ and end
with a ‘;’ . There are five predefined entities in XML that are placeholders for
characters with special meaning in XML. For example, the < character that marks
the beginning of an XML command is reserved and has to be represented by the
entity lt. The other four reserved characters are &, >, ”, and ’, and they are
represented by the entities amp, gt, quot, and apos. For example, the text ‘1 < 5’
has to be encoded in an XML document as follows: '1<5'. We
can also use entities to insert arbitrary Unicode characters into the text. Unicode
is a standard for character representations, and is similar to ASCII. For example,
we can display the Japanese Hiragana character ‘a’ using the entity reference
あ.

Comments. We can insert comments anywhere in an XML document. Com-
ments start with <!- and end with ->. Comments can contain arbitrary text
except the string --.

Document type declarations (DTDs). In XML, we can define our own
markup language. A DTD is a set of rules that allows us to specify our own
set of elements, attributes, and entities. Thus, a DTD is basically a grammar that
indicates what tags are allowed, in what order they can appear, and how they can
be nested. We will discuss DTDs in detail in the next section.

We call an XML document well-formed if it does not have an associated DTD but
follows the following structural guidelines:

654 Chapter 22

<?XML version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE BOOKLIST SYSTEM "books.dtd">
<BOOKLIST>
<BOOK genre="Science" format="Hardcover">

<AUTHOR>
<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>

</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
</BOOKLIST>

Figure 22.6 Book Information in XML

The document starts with an XML declaration. An example of an XML declara-
tion is the first line of the XML document shown in Figure 22.6.

There is a root element that contains all the other elements. In our example, the
root element is the element BOOKLIST.

All elements must be properly nested. This requirement states that start and end
tags of an element must appear within the same enclosing element.

22.3.2 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements, attributes,
and entities. A DTD specifies which elements we can use and constraints on these
elements, e.g., how elements can be nested and where elements can appear in the

Internet Databases 655

<!DOCTYPE BOOKLIST [
<!ELEMENT BOOKLIST (BOOK)*>
<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>
<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT LASTNAME (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT PUBLISHED (#PCDATA)>

<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>
<!ATTLIST BOOK format (Paperback|Hardcover) "Paperback">

]>

Figure 22.7 Bookstore XML DTD

document. We will call a document valid if there is a DTD associated with it and
the document is structured according to the rules set by the DTD. In the remainder
of this section, we will use the example DTD shown in Figure 22.7 to illustrate how to
construct DTDs.

A DTD is enclosed in <!DOCTYPE name [DTDdeclaration]>, where name is the name
of the outermost enclosing tag, and DTDdeclaration is the text of the rules of the DTD.
The DTD starts with the outermost element, also called the root element, which is
BOOKLIST in our example. Consider the next rule:

<!ELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK elements.
The * after BOOK indicates how many BOOK elements can appear inside the BOOKLIST
element. A * denotes zero or more occurrences, a + denotes one or more occurrences,
and a ? denotes zero or one occurrence. For example, if we want to ensure that a
BOOKLIST has at least one book, we could change the rule as follows:

<!ELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>

This rule states that a BOOK element contains a NAME element, a TITLE element, and an
optional PUBLISHED element. Note the use of the ? to indicate that the information is
optional by having zero or one occurrence of the element. Let us move ahead to the
following rule:

656 Chapter 22

<!ELEMENT LASTNAME (#PCDATA)>

Until now we only considered elements that contained other elements. The above rule
states that LASTNAME is an element that does not contain other elements, but contains
actual text. Elements that only contain other elements are said to have element
content, whereas elements that also contain #PCDATA are said to have mixed content.
In general, an element type declaration has the following structure:

<!ELEMENT (contentType) >

The are five possible content types:

Other elements.

The special symbol #PCDATA, which indicates (parsed) character data.

The special symbol EMPTY, which indicates that the element has no content. Ele-
ments that have no content are not required to have an end tag.

The special symbol ANY, which indicates that any content is permitted. This
content should be avoided whenever possible since it disables all checking of the
document structure inside the element.

A regular expression constructed from the above four choices. A regular ex-
pression is one of the following:

– exp1, exp2, exp3: A list of regular expressions.

– exp∗: An optional expression (zero or more occurrences).

– exp?: An optional expression (zero or one occurrences).

– exp+: A mandatory expression (one or more occurrences).

– exp1 | exp2: exp1 or exp2.

Attributes of elements are declared outside of the element. For example, consider the
following attribute declaration from Figure 22.7.

<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>

This XML DTD fragment specifies the attribute genre, which is an attribute of the
element BOOK. The attribute can take two values: Science or Fiction. Each BOOK
element must be described in its start tag by a genre attribute since the attribute is
required as indicated by #REQUIRED. Let us look at the general structure of a DTD
attribute declaration:

<!ATTLIST elementName (attName attType default)+ >

Internet Databases 657

The keyword ATTLIST indicates the beginning of an attribute declaration. The string
elementName is the name of the element that the following attribute definition is
associated with. What follows is the declaration of one or more attributes. Each
attribute has a name as indicated by attName and a type as indicated by attType.
XML defines several possible types for an attribute. We only discuss string types and
enumerated types here. An attribute of type string can take any string as a value.
We can declare such an attribute by setting its type field to CDATA. For example, we
can declare a third attribute of type string of the element BOOK as follows:

<!ATTLIST BOOK edition CDATA "1">

If an attribute has an enumerated type, we list all its possible values in the attribute
declaration. In our example, the attribute genre is an enumerated attribute type; its
possible attribute values are ‘Science’ and ‘Fiction’.

The last part of an attribute declaration is called its default specification. The
XML DTD in Figure 22.7 shows two different default specifications: #REQUIRED and
the string ‘Paperback’. The default specification #REQUIRED indicates that the at-
tribute is required and whenever its associated element appears somewhere in the
XML document a value for the attribute must be specified. The default specifica-
tion indicated by the string ‘Paperback’ indicates that the attribute is not required;
whenever its associated element appears without setting a value for the attribute, the
attribute automatically takes the value ‘Paperback’. For example, we can make the
attribute value ‘Science’ the default value for the genre attribute as follows:

<!ATTLIST BOOK genre (Science|Fiction) "Science">

The complete XML DTD language is much more powerful than the small part that
we have explained. The interested reader is referred to the references at the end of the
chapter.

22.3.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains—including a wide
range of commercial, engineering, financial, industrial, and scientific domains—and a
lot of the excitement about XML has its origins in the belief that more and more
standardized DTDs will be developed. Standardized DTDs would enable seamless
data exchange between heterogeneous sources, a problem that is solved today either
by implementing specialized protocols such as Electronic Data Interchange (EDI)
or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to straightfor-
wardly integrate several XML documents by matching elements in their DTDs because

658 Chapter 22

even when two elements have identical names in two different DTDs, the meaning of
the elements could be completely different. If both documents use a single, standard
DTD we avoid this problem. The development of standardized DTDs is more a social
process than a hard research problem since the major players in a given domain or
industry segment have to collaborate.

For example, the mathematical markup language (MathML) has been developed
for encoding mathematical material on the Web. There are two types of MathML ele-
ments. The 28 presentation elements describe the layout structure of a document;
examples are the mrow element, which indicates a horizontal row of characters, and
the msup element, which indicates a base and a subscript. The 75 content elements
describe mathematical concepts. An example is the plus element which denotes the
addition operator. (There is a third type of element, the math element, that is used
to pass parameters to the MathML processor.) MathML allows us to encode math-
ematical objects in both notations since the requirements of the user of the objects
might be different. Content elements encode the precise mathematical meaning of an
object without ambiguity and thus the description can be used by applications such
as computer algebra systems. On the other hand, good notation can suggest the log-
ical structure to a human and can emphasize key aspects of an object; presentation
elements allow us to describe mathematical objects at this level.

For example, consider the following simple equation:

x2 − 4x − 32 = 0

Using presentation elements, the equation is represented as follows:

<mrow>
<mrow> <msup><mi>x</mi><mn>2</mn></msup>

<mo>-</mo>
<mrow><mn>4</mn><mo>&invisibletimes;</mo><mi>x</mi></mrow>
<mo>-</mo><mn>32</mn>

</mrow><mo>=</mo><mn>0</mn>
</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>
<apply>
<minus/>
<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>
<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>
<cn>32</cn>

</apply> <cn>0</cn>
</reln>

Internet Databases 659

Note the additional power that we gain from using MathML instead of encoding the
formula in HTML. The common way of displaying mathematical objects inside an
HTML object is to include images that display the objects, for example as in the
following code fragment:

The equation is encoded inside an IMG tag with an alternative display format specified
in the ALT tag. Using this encoding of a mathematical object leads to the following
presentation problems. First, the image is usually sized to match a certain font size
and on systems with other font sizes the image is either too small or too large. Sec-
ond, on systems with a different background color the picture does not blend into the
background and the resolution of the image is usually inferior when printing the doc-
ument. Apart from problems with changing presentations, we cannot easily search for
a formula or formula fragments on a page, since there is no specific markup tag.

22.3.4 XML-QL: Querying XML Data

Given that data is encoded in a way that reflects (a considerable amount of) structure
in XML documents, we have the opportunity to use a high-level language that exploits
this structure to conveniently retrieve data from within such documents. Such a lan-
guage would bring XML data management much closer to database management than
the text-oriented paradigm of HTML documents. Such a language would also allow
us to easily translate XML data between different DTDs, as is required for integrating
data from multiple sources.

At the time of writing of this chapter (summer of 1999), the discussion about a stan-
dard query language for XML was still ongoing. In this section, we will give an informal
example of one specific query language for XML called XML-QL that has strong simi-
larities to several query languages that have been developed in the database community
(see Section 22.3.5).

Consider again the XML document shown in Figure 22.6. The following example query
returns the last names of all authors, assuming that our XML document resides at the
location www.ourbookstore.com/books.xml.

WHERE <BOOK>
<NAME><LASTNAME> $l </LASTNAME></NAME>

</BOOK> IN "www.ourbookstore.com/books.xml"
CONSTRUCT <RESULTNAME> $l </RESULTNAME>

This query extracts data from the XML document by specifying a pattern of markups.
We are interested in data that is nested inside a BOOK element, a NAME element, and

660 Chapter 22

a LASTNAME element. For each part of the XML document that matches the structure
specified by the query, the variable l is bound to the contents of the element LASTNAME.
To distinguish variable names from normal text, variable names are prefixed with a
dollar sign $. If this query is applied to the sample data shown in Figure 22.6, the
result would be the following XML document:

<RESULTNAME>Feynman</RESULTNAME>
<RESULTNAME>Narayan</RESULTNAME>

Selections are expressed by placing text in the content of an element. Also, the output
of a query is not limited to a single element. We illustrate these two points in the next
query. Assume that we want to find the last names and first names of all authors who
wrote a book that was published in 1980. We can express this query as follows:

WHERE <BOOK> <NAME>
<LASTNAME> $l </LASTNAME>
<FIRSTNAME> $f </FIRSTNAME>

</NAME>
<PUBLISHED>1980</PUBLISHED>

</BOOK> IN "www.ourbookstore.com/books.xml"
CONSTRUCT <RESULTNAME>

<FIRST>$f</FIRST><LAST>$l</LAST>
</RESULTNAME>

The result of the above query is the following XML document:

<RESULTNAME><FIRST>Richard</FIRST><LAST>Feynman</LAST></RESULTNAME>
<RESULTNAME><FIRST>R.K.</FIRST><LAST>Narayan</LAST></RESULTNAME>

We conclude our discussion with a slightly more complicated example. Suppose that
for each year we want to find the last names of authors who wrote a book published
in that year. We group by PUBLISHED and the result contains a list of last names for
each year:

WHERE <BOOK> $e <BOOK> IN "www.ourbookstore.com/books.xml",
<AUTHOR>$n</AUTHOR>,
<PUBLISHED>$p</PUBLISHED> IN $e

CONSTRUCT <RESULT><PUBLISHED> $p </PUBLISHED>
WHERE <LASTNAME> $l </LASTNAME> IN $n
CONSTRUCT <LASTNAME> $l </LASTNAME>

</RESULT>

Using the XML document in Figure 22.6 as input, this query produces the following
result:

Internet Databases 661

Commercial database systems and XML: Many relational and object-
relational database system vendors are currently looking into support for XML in
their database engines. Several vendors of object-oriented database management
systems already offer database engines that can store XML data whose contents
can be accessed through graphical user interfaces, server-side Java extensions, or
through XML-QL queries.

<RESULT> <PUBLISHED>1980</PUBLISHED>
<LASTNAME>Feynman</LASTNAME>
<LASTNAME>Narayan</LASTNAME>

</RESULT>
<RESULT> <PUBLISHED>1981</PUBLISHED>

<LASTNAME>Narayan</LASTNAME>
</RESULT>

22.3.5 The Semistructured Data Model

Consider a set of documents on the Web that contain hyperlinks to other documents.
These documents, although not completely unstructured, cannot be modeled naturally
in the relational data model because the pattern of hyperlinks is not regular across
documents. A bibliography file also has a certain degree of structure due to fields such
as author and title, but is otherwise unstructured text. While some data is completely
unstructured—for example video streams, audio streams, and image data—a lot of data
is neither completely unstructured nor completely structured. We refer to data with
partial structure as semistructured data. XML documents represent an important
and growing source of semistructured data, and the theory of semistructured data
models and queries has the potential to serve as the foundation for XML.

There are many reasons why data might be semistructured. First, the structure of data
might be implicit, hidden, unknown, or the user might choose to ignore it. Second,
consider the problem of integrating data from several heterogeneous sources where
data exchange and transformation are important problems. We need a highly flexible
data model to integrate data from all types of data sources including flat files and
legacy systems; a structured data model is often too rigid. Third, we cannot query a
structured database without knowing the schema, but sometimes we want to query the
data without full knowledge of the schema. For example, we cannot express the query
“Where in the database can we find the string Malgudi?” in a relational database
system without knowing the schema.

All data models proposed for semistructured data represent the data as some kind of
labeled graph. Nodes in the graph correspond to compound objects or atomic values,

662 Chapter 22

1980 1981
Character

Law

NarayanR.K.

Mahatma
for the

Waiting

BOOKBOOKBOOK

NAME NAME
FIRST

NAME

LAST

NAME

Richard Feynman

The

of Physical

FIRST LAST

TITLE PUBLISHEDAUTHOR AUTHOR TITLE PUBLISHED

Figure 22.8 The Semistructured Data Model

and edges correspond to attributes. There is no separate schema and no auxiliary
description; the data in the graph is self describing. For example, consider the graph
shown in Figure 22.8, which represents part of the XML data from Figure 22.6. The
root node of the graph represents the outermost element, BOOKLIST. The node has
three outgoing edges that are labeled with the element name BOOK, since the list of
books consists of three individual books.

We now discuss one of the proposed data models for semistructured data, called the
object exchange model (OEM). Each object is described by a triple consisting of
a label, a type, and the value of the object. (An object in the object exchange model
also has an object identifier, which is a unique identifier for the object. We omit object
identifiers from our discussion here; the references at the end of the chapter provide
pointers for the interested reader.) Since each object has a label that can be thought
of as the column name in the relational model, and each object has a type that can be
thought of as the column type in the relational model, the object exchange model is
basically self-describing. Labels in the object exchange model should be as informative
as possible, since they can serve two purposes: They can be used to identify an object
as well as to convey the meaning of an object. For example, we can represent the last
name of an author as follows:

〈lastName, string, "Feynman"〉

More complex objects are decomposed hierarchically into smaller objects. For example,
an author name can contain a first name and a last name. This object is described as
follows:

〈authorName, set, {firstname1, lastname1}〉
firstname1 is 〈firstName, string, "Richard"〉
lastname1 is 〈lastName, string, "Feynman"〉

As another example, an object representing a set of books is described as follows:

Internet Databases 663

〈bookList, set, {book1, book2, book3}〉
book1 is 〈book, set, {author1, title1, published1}〉
book2 is 〈book, set, {author2, title2, published2}〉
book3 is 〈book, set, {author3, title3, published3}〉

author3 is 〈author, set, {firstname3, lastname3}〉
title3 is 〈title, string, "The English Teacher"〉
published3 is 〈published, integer, 1980〉

22.3.6 Implementation Issues for Semistructured Data

Database system support for semistructured data has been the focus of much research
recently, and given the commercial success of XML, this emphasis is likely to continue.
Semistructured data poses new challenges, since most of the traditional storage, index-
ing, and query processing strategies assume that the data adheres to a regular schema.
For example, should we store semistructured data by mapping it into the relational
model and then store the mapped data in a relational database system? Or does a stor-
age subsystem specialized for semistructured data deliver better performance? How
can we index semistructured data? Given a query language like XML-QL, what are
suitable query processing strategies? Current research tries to find answers to these
questions.

22.4 INDEXING FOR TEXT SEARCH

In this section, we assume that our database is a collection of documents and we
call such a database a text database. For simplicity, we assume that the database
contains exactly one relation and that the relation schema has exactly one field of
type document. Thus, each record in the relation contains exactly one document. In
practice, the relation schema would contain other fields such as the date of the creation
of the document, a possible classification of the document, or a field with keywords
describing the document. Text databases are used to store newspaper articles, legal
papers, and other types of documents.

An important class of queries based on keyword search enables us to ask for all
documents containing a given keyword. This is the most common kind of query on
the Web today, and is supported by a number of search engines such as AltaVista
and Lycos. Some systems maintain a list of synonyms for important words and return
documents that contain a desired keyword or one of its synonyms; for example, a
query asking for documents containing car will also retrieve documents containing
automobile. A more complex query is “Find all documents that have keyword1 AND
keyword2.” For such composite queries, constructed with AND, OR, and NOT, we can
rank retrieved documents by the proximity of the query keywords in the document.

664 Chapter 22

There are two common types of queries for text databases: boolean queries and ranked
queries. In a boolean query, the user supplies a boolean expression of the following
form, which is called conjunctive normal form:

(t11 ∨ t12 ∨ . . . ∨ t1i1) ∧ . . . ∧ (tj1 ∨ t12 ∨ . . . ∨ t1ij
),

where the tij are individual query terms or keywords. The query consists of j con-
juncts, each of which consists of several disjuncts. In our query, the first conjunct is
the expression (t11 ∨ t12 ∨ . . . ∨ t1i1); it consists of i1 disjuncts. Queries in conjunctive
normal form have a natural interpretation. The result of the query are documents that
involve several concepts. Each conjunct corresponds to one concept, and the different
words within each conjunct correspond to different terms for the same concept.

Ranked queries are structurally very similar. In a ranked query the user also spec-
ifies a list of words, but the result of the query is a list of documents ranked by their
relevance to the list of user terms. How to define when and how relevant a document
is to a set of user terms is a difficult problem. Algorithms to evaluate such queries
belong to the field of information retrieval, which is closely related to database
management. Information retrieval systems, like database systems, have the goal of
enabling users to query a large volume of data, but the focus has been on large col-
lections of unstructured documents. Updates, concurrency control, and recovery have
traditionally not been addressed in information retrieval systems because the data in
typical applications is largely static.

The criteria used to evaluate such information retrieval systems include precision,
which is the percentage of retrieved documents that are relevant to the query, and
recall, which is the percentage of relevant documents in the database that are retrieved
in response to a query.

The advent of the Web has given fresh impetus to information retrieval because millions
of documents are now available to users and searching for desired information is a
fundamental operation; without good search mechanisms, users would be overwhelmed.
An index for an information retrieval system essentially contains 〈keyword,documentid〉
pairs, possibly with additional fields such as the number of times a keyword appears in
a document; a Web search engine creates a centralized index for documents that are
stored at several sites.

In the rest of this section, we concentrate on boolean queries. We introduce two
index schemas that support the evaluation of boolean queries efficiently. The inverted
file index discussed in Section 22.4.1 is widely used due to its simplicity and good
performance. Its main disadvantage is that it imposes a significant space overhead:
The size can be up to 300 percent the size of the original file. The signature file
index discussed in Section 22.4.2 has a small space overhead and offers a quick filter
that eliminates most nonqualifying documents. However, it scales less well to larger

Internet Databases 665

Rid Document Signature
1 agent James Bond 1100
2 agent mobile computer 1101
3 James Madison movie 1011
4 James Bond movie 1110

Word Inverted list Hash
agent 〈1, 2〉 1000
Bond 〈1, 4〉 0100
computer 〈2〉 0100
James 〈1, 3, 4〉 1000
Madison 〈3〉 0001
mobile 〈2〉 0001
movie 〈3, 4〉 0010

Figure 22.9 A Text Database with Four Records and Indexes

database sizes because the index has to be sequentially scanned. We discuss evaluation
of ranked queries in Section 22.5.

We assume that slightly different words that have the same root have been stemmed,
or analyzed for the common root, during index creation. For example, we assume
that the result of a query on ‘index’ also contains documents that include the terms
‘indexes’ and ‘indexing.’ Whether and how to stem is application dependent, and we
will not discuss the details.

As a running example, we assume that we have the four documents shown in Figure
22.9. For simplicity, we assume that the record identifiers of the four documents are the
numbers one to four. Usually the record identifiers are not physical addresses on the
disk, but rather entries in an address table. An address table is an array that maps
the logical record identifiers, as shown in Figure 22.9, to physical record addresses on
disk.

22.4.1 Inverted Files

An inverted file is an index structure that enables fast retrieval of all documents that
contain a query term. For each term, the index maintains an ordered list (called the
inverted list) of document identifiers that contain the indexed term. For example,
consider the text database shown in Figure 22.9. The query term ‘James’ has the
inverted list of record identifiers 〈1, 3, 4〉 and the query term ‘movie’ has the list 〈3, 4〉.
Figure 22.9 shows the inverted lists of all query terms.

In order to quickly find the inverted list for a query term, all possible query terms are
organized in a second index structure such as a B+ tree or a hash index. To avoid any
confusion, we will call the second index that allows fast retrieval of the inverted list for
a query term the vocabulary index. The vocabulary index contains each possible
query term and a pointer to its inverted list.

666 Chapter 22

A query containing a single term is evaluated by first traversing the vocabulary index
to the leaf node entry with the address of the inverted list for the term. Then the
inverted list is retrieved, the rids are mapped to physical document addresses, and
the corresponding documents are retrieved. A query with a conjunction of several
terms is evaluated by retrieving the inverted lists of the query terms one at a time and
intersecting them. In order to minimize memory usage, the inverted lists should be
retrieved in order of increasing length. A query with a disjunction of several terms is
evaluated by merging all relevant inverted lists.

Consider again the example text database shown in Figure 22.9. To evaluate the query
‘James’, we probe the vocabulary index to find the inverted list for ‘James’, fetch the
inverted list from disk and then retrieve document one. To evaluate the query ‘James’
AND ‘Bond’, we retrieve the inverted list for the term ‘Bond’ and intersect it with the
inverted list for the term ‘James.’ (The inverted list of the term ‘Bond’ has length
two, whereas the inverted list of the term ‘James’ has length three.) The result of the
intersection of the list 〈1, 4〉 with the list 〈1, 3, 4〉 is the list 〈1, 4〉 and the first and
fourth document are retrieved. To evaluate the query ‘James’ OR ‘Bond,’ we retrieve
the two inverted lists in any order and merge the results.

22.4.2 Signature Files

A signature file is another index structure for text database systems that supports
efficient evaluation of boolean queries. A signature file contains an index record for each
document in the database. This index record is called the signature of the document.
Each signature has a fixed size of b bits; b is called the signature width. How do we
decide which bits to set for a document? The bits that are set depend on the words
that appear in the document. We map words to bits by applying a hash function to
each word in the document and we set the bits that appear in the result of the hash
function. Note that unless we have a bit for each possible word in the vocabulary, the
same bit could be set twice by different words because the hash function maps both
words to the same bit. We say that a signature S1 matches another signature S2 if
all the bits that are set in signature S2 are also set in signature S1. If signature S1

matches signature S2, then signature S1 has at least as many bits set as signature S2.

For a query consisting of a conjunction of terms, we first generate the query signature
by applying the hash function to each word in the query. We then scan the signature file
and retrieve all documents whose signatures match the query signature, because every
such document is a potential result to the query. Since the signature does not uniquely
identify the words that a document contains, we have to retrieve each potential match
and check whether the document actually contains the query terms. A document
whose signature matches the query signature but that does not contain all terms in
the query is called a false positive. A false positive is an expensive mistake since the

Internet Databases 667

document has to be retrieved from disk, parsed, stemmed, and checked to determine
whether it contains the query terms.

For a query consisting of a disjunction of terms, we generate a list of query signatures,
one for each term in the query. The query is evaluated by scanning the signature file to
find documents whose signatures match any signature in the list of query signatures.

Note that for each query we have to scan the complete signature file, and there are
as many records in the signature file as there are documents in the database. To
reduce the amount of data that has to be retrieved for each query, we can vertically
partition a signature file into a set of bit slices, and we call such an index a bit-sliced
signature file. The length of each bit slice is still equal to the number of documents
in the database, but for a query with q bits set in the query signature we need only to
retrieve q bit slices.

As an example, consider the text database shown in Figure 22.9 with a signature file of
width 4. The bits set by the hashed values of all query terms are shown in the figure.
To evaluate the query ‘James,’ we first compute the hash value of the term which is
1000. Then we scan the signature file and find matching index records. As we can
see from Figure 22.9, the signatures of all records have the first bit set. We retrieve
all documents and check for false positives; the only false positive for this query is
document with rid 2. (Unfortunately, the hashed value of the term ‘agent’ also sets
the very first bit in the signature.) Consider the query ‘James’ AND ‘Bond.’ The query
signature is 1100 and three document signatures match the query signature. Again,
we retrieve one false positive. As another example of a conjunctive query, consider
the query ‘movie’ AND ‘Madison.’ The query signature is 0011, and only one document
signature matches the query signature. No false positives are retrieved. The reader is
invited to construct a bit-sliced signature file and to evaluate the example queries in
this paragraph using the bit slices.

22.5 RANKED KEYWORD SEARCHES ON THE WEB

The World Wide Web contains a mind-boggling amount of information. Finding Web
pages that are relevant to a user query can be more difficult than finding a needle in
a haystack. The variety of pages in terms of structure, content, authorship, quality,
and validity of the data makes it difficult if not impossible to apply standard retrieval
techniques.

For example, a boolean text search as discussed in Section 22.4 is not sufficient because
the result for a query with a single term could consist of links to thousands, if not
millions of pages, and we rarely have the time to browse manually through all of them.
Even if we pose a more sophisticated query using conjunction and disjunction of terms
the number of Web pages returned is still several hundreds for any topic of reasonable

668 Chapter 22

breadth. Thus, querying effectively using a boolean keyword search requires expert
users who can carefully combine terms specifying a very narrowly defined subject.

One natural solution to the excessive number of answers returned by boolean keyword
searches is to take the output of the boolean text query and somehow process this set
further to find the most relevant pages. For abstract concepts, however, often the most
relevant pages do not contain the search terms at all and are therefore not returned
by a boolean keyword search! For example, consider the query term ‘Web browser.’
A boolean text query using the terms does not return the relevant pages of Netscape
Corporation or Microsoft, because these pages do not contain the term ‘Web browser’
at all. Similarly, the home page of Yahoo does not contain the term ‘search engine.’
The problem is that relevant sites do not necessarily describe their contents in a way
that is useful for boolean text queries.

Until now, we only considered information within a single Web page to estimate its
relevance to a query. But Web pages are connected through hyperlinks, and it is quite
likely that there is a Web page containing the term ‘search engine’ that has a link to
Yahoo’s home page. Can we use the information hidden in such links?

In our search for relevant pages, we distinguish between two types of pages: authorities
and hubs. An authority is a page that is very relevant to a certain topic and that is
recognized by other pages as authoritative on the subject. These other pages, called
hubs, usually have a significant number of hyperlinks to authorities, although they
themselves are not very well known and do not necessarily carry a lot of content
relevant to the given query. Hub pages could be compilations of resources about
a topic on a site for professionals, lists of recommended sites for the hobbies of an
individual user, or even a part of the bookmarks of an individual user that are relevant
to one of the user’s interests; their main property is that they have many outgoing
links to relevant pages. Good hub pages are often not well known and there may be
few links pointing to a good hub. In contrast, good authorities are ‘endorsed’ by many
good hubs and thus have many links from good hub pages.

We will use this symbiotic relationship between hubs and authorities in the HITS
algorithm, a link-based search algorithm that discovers high-quality pages that are
relevant to a user’s query terms.

22.5.1 An Algorithm for Ranking Web Pages

In this section we will discuss HITS, an algorithm that finds good authorities and hubs
and returns them as the result of a user query. We view the World Wide Web as a
directed graph. Each Web page represents a node in the graph, and a hyperlink from
page A to page B is represented as an edge between the two corresponding nodes.

Internet Databases 669

Assume that we are given a user query with several terms. The algorithm proceeds in
two steps. In the first step, the sampling step, we collect a set of pages called the base
set. The base set most likely includes very relevant pages to the user’s query, but the
base set can still be quite large. In the second step, the iteration step, we find good
authorities and good hubs among the pages in the base set.

The sampling step retrieves a set of Web pages that contain the query terms, using
some traditional technique. For example, we can evaluate the query as a boolean
keyword search and retrieve all Web pages that contain the query terms. We call the
resulting set of pages the root set. The root set might not contain all relevant pages
because some authoritative pages might not include the user query words. But we
expect that at least some of the pages in the root set contain hyperlinks to the most
relevant authoritative pages or that some authoritative pages link to pages in the root
set. This motivates our notion of a link page. We call a page a link page if it has a
hyperlink to some page in the root set or if a page in the root set has a hyperlink to
it. In order not to miss potentially relevant pages, we augment the root set by all link
pages and we call the resulting set of pages the base set. Thus, the base set includes
all root pages and all link pages; we will refer to a Web page in the base set as a base
page.

Our goal in the second step of the algorithm is to find out which base pages are good
hubs and good authorities and to return the best authorities and hubs as the answers
to the query. To quantify the quality of a base page as a hub and as an authority,
we associate with each base page in the base set a hub weight and an authority
weight. The hub weight of the page indicates the quality of the page as a hub, and
the authority weight of the page indicates the quality of the page as an authority. We
compute the weights of each page according to the intuition that a page is a good
authority if many good hubs have hyperlinks to it, and that a page is a good hub if it
has many outgoing hyperlinks to good authorities. Since we do not have any a priori
knowledge about which pages are good hubs and authorities, we initialize all weights
to one. We then update the authority and hub weights of base pages iteratively as
described below.

Consider a base page p with hub weight hp and with authority weight ap. In one
iteration, we update ap to be the sum of the hub weights of all pages that have a
hyperlink to p. Formally:

ap =
∑

All base pages q that have a link to p

hq

Analogously, we update hp to be the sum of the weights of all pages that p points to:

hp =
∑

All base pages q such that p has a link to q

aq

670 Chapter 22

Computing hub and authority weights: We can use matrix notation to write
the updates for all hub and authority weights in one step. Assume that we number
all pages in the base set {1, 2, ..., n}. The adjacency matrix B of the base set is
an n×n matrix whose entries are either 0 or 1. The matrix entry (i, j) is set to 1
if page i has a hyperlink to page j; it is set to 0 otherwise. We can also write the
hub weights h and authority weights a in vector notation: h = 〈h1, . . . , hn〉 and
a = 〈a1, . . . , an〉. We can now rewrite our update rules as follows:

h = B · a, and a = BT · h .

Unfolding this equation once, corresponding to the first iteration, we obtain:

h = BBT h = (BBT)h, and a = BT Ba = (BT B)a .

After the second iteration, we arrive at:

h = (BBT)2h, and a = (BT B)2a .

Results from linear algebra tell us that the sequence of iterations for the hub (resp.
authority) weights converges to the principal eigenvectors of BBT (resp. BT B)
if we normalize the weights before each iteration so that the sum of the squares
of all weights is always 2 · n. Furthermore, results from linear algebra tell us that
this convergence is independent of the choice of initial weights, as long as the
initial weights are positive. Thus, our rather arbitrary choice of initial weights—
we initialized all hub and authority weights to 1—does not change the outcome
of the algorithm.

Comparing the algorithm with the other approaches to querying text that we discussed
in this chapter, we note that the iteration step of the HITS algorithm—the distribu-
tion of the weights—does not take into account the words on the base pages. In the
iteration step, we are only concerned about the relationship between the base pages as
represented by hyperlinks.

The HITS algorithm often produces very good results. For example, the five highest
ranked authorities for the query ‘search engines’ are the following Web pages:

http://www.yahoo.com/
http://www.excite.com/
http://www.mckinley.com/
http://www.lycos.com/
http://www.altavista.digital.com/

The three highest ranked authorities for the query containing the single keyword ‘Gates’
are the following Web pages:

Internet Databases 671

http://www.roadahead.com/
http://www.microsoft.com/
http://www.microsoft.com/corpinfo/bill-g.htm

22.6 POINTS TO REVIEW

Files on the World Wide Web are identified through universal resource locators
(URLs). A Web browser takes a URL, goes to the site containing the file, and
asks the Web server at that site for the file. It then displays the file appropriately,
taking into account the type of file and the formatting instructions that it contains.
The browser calls application programs to handle certain types of files, e.g., it
calls Microsoft Word to handle Word documents (which are identified through a
.doc file name extension). HTML is a simple markup language used to describe
a document. Audio, video, and even Java programs can be included in HTML
documents.

Increasingly, data accessed through the Web is stored in DBMSs. A Web server
can access data in a DBMS to construct a page requested by a Web browser.
(Section 22.1)

A Web server often has to execute a program at its site in order to satisfy a request
from a Web browser (which is usually executing at a different site). For example,
it may have to access data in a DBMS. There are two ways for a Web server to
execute a program: It can create a new process and communicate with it using the
CGI protocol, or it can create a new thread (or invoke an existing thread) for a
Java servlet. The second approach avoids the overhead of creating a new process
for each request. An application server manages several threads and provides
other functionality to facilitate executing programs at the Web server’s site. The
additional functionality includes security, session management, and coordination
of access to multiple data sources. JavaBeans and Java Server Pages are Java-
based technologies that assist in creating and managing programs designed to be
invoked by a Web server. (Section 22.2)

XML is an emerging document description standard that allows us to describe
the content and structure of a document in addition to giving display directives.
It is based upon HTML and SGML, which is a powerful document description
standard that is widely used. XML is designed to be simple enough to permit
easy manipulation of XML documents, in contrast to SGML, while allowing users
to develop their own document descriptions, unlike HTML. In particular, a DTD
is a document description that is independent of the contents of a document, just
like a relational database schema is a description of a database that is independent
of the actual database instance. The development of DTDs for different applica-
tion domains offers the potential that documents in these domains can be freely
exchanged and uniformly interpreted according to standard, agreed-upon DTD
descriptions. XML documents have less rigid structure than a relational database

672 Chapter 22

and are said to be semistructured. Nonetheless, there is sufficient structure to
permit many useful queries, and query languages are being developed for XML
data. (Section 22.3)

The proliferation of text data on the Web has brought renewed attention to in-
formation retrieval techniques for searching text. Two broad classes of search are
boolean queries and ranked queries. Boolean queries ask for documents containing
a specified boolean combination of keywords. Ranked queries ask for documents
that are most relevant to a given list of keywords; the quality of answers is eval-
uated using precision (the percentage of retrieved documents that are relevant to
the query) and recall (the percentage of relevant documents in the database that
are retrieved) as metrics.

Inverted files and signature files are two indexing techniques that support boolean
queries. Inverted files are widely used and perform well, but have a high space
overhead. Signature files address the space problem associated with inverted files
but must be sequentially scanned. (Section 22.4)

Handling ranked queries on the Web is a difficult problem. The HITS algorithm
uses a combination of boolean queries and analysis of links to a page from other
Web sites to evaluate ranked queries. The intuition is to find authoritative sources
for the concepts listed in the query. An authoritative source is likely to be fre-
quently cited. A good source of citations is likely to cite several good authorities.
These observations can be used to assign weights to sites and identify which sites
are good authorities and hubs for a given query. (Section 22.5)

EXERCISES

Exercise 22.1 Briefly answer the following questions.

1. Define the following terms and describe what they are used for: HTML, URL, CGI,

server-side processing, Java Servlet, JavaBean, Java server page, HTML template, CCS,

XML, DTD, XSL, semistructured data, inverted file, signature file.

2. What is CGI? What are the disadvantages of an architecture using CGI scripts?

3. What is the difference between a Web server and an application server? What funcional-

ity do typical application servers provide?

4. When is an XML document well-formed? When is an XML document valid?

Exercise 22.2 Consider our bookstore example again. Assume that customers also want to

search books by title.

1. Extend the HTML document shown in Figure 22.2 by another form that allows users to

input the title of a book.

2. Write a Perl script similar to the Perl script shown in Figure 22.3 that generates dynam-

ically an HTML page with all books that have the user-specified title.

Internet Databases 673

Exercise 22.3 Consider the following description of items shown in the Eggface computer

mail-order catalog.

“Eggface sells hardware and software. We sell the new Palm Pilot V for $400; its part number

is 345. We also sell the IBM ThinkPad 570 for only $1999; choose part number 3784. We sell

both business and entertainment software. Microsoft Office 2000 has just arrived and you can

purchase the Standard Edition for only $140, part number 974. The new desktop publishing

software from Adobe called InDesign is here for only $200, part 664. We carry the newest

games from Blizzard software. You can start playing Diablo II for only $30, part number 12,

and you can purchase Starcraft for only $10, part number 812.”

1. Design an HTML document that depicts the items offered by Eggface.

2. Create a well-formed XML document that describes the contents of the Eggface catalog.

3. Create a DTD for your XML document and make sure that the document you created

in the last question is valid with respect to this DTD.

4. Write an XML-QL query that lists all software items in the catalog.

5. Write an XML-QL query that lists the prices of all hardware items in the catalog.

6. Depict the catalog data in the semistructured data model as shown in Figure 22.8.

Exercise 22.4 A university database contains information about professors and the courses

they teach. The university has decided to publish this information on the Web and you are

in charge of the execution. You are given the following information about the contents of the

database:

In the fall semester 1999, the course ‘Introduction to Database Management Systems’ was

taught by Professor Ioannidis. The course took place Mondays and Wednesdays from 9–10

a.m. in room 101. The discussion section was held on Fridays from 9–10 a.m. Also in the fall

semester 1999, the course ‘Advanced Database Management Systems’ was taught by Professor

Carey. Thirty five students took that course which was held in room 110 Tuesdays and

Thursdays from 1–2 p.m. In the spring semester 1999, the course ‘Introduction to Database

Management Systems’ was taught by U.N. Owen on Tuesdays and Thursdays from 3–4 p.m.

in room 110. Sixty three students were enrolled; the discussion section was on Thursdays

from 4–5 p.m. The other course taught in the spring semester was ‘Advanced Database

Management Systems’ by Professor Ioannidis, Monday, Wednesday, and Friday from 8–9 a.m.

1. Create a well-formed XML document that contains the university database.

2. Create a DTD for your XML document. Make sure that the XML document is valid

with respect to this DTD.

3. Write an XML-QL query that lists the name of all professors.

4. Describe the information in a different XML document—a document that has a different

structure. Create a corresponding DTD and make sure that the document is valid. Re-

formulate your XML-QL query that finds the names of all professors to work with the

new DTD.

674 Chapter 22

Exercise 22.5 Consider the database of the FamilyWear clothes manufacturer. FamilyWear

produces three types of clothes: women’s clothes, men’s clothes, and children’s clothes. Men

can choose between polo shirts and T-shirts. Each polo shirt has a list of available colors,

sizes, and a uniform price. Each T-shirt has a price, a list of available colors, and a list of

available sizes. Women have the same choice of polo shirts and T-shirts as men. In addition

women can choose between three types of jeans: slim fit, easy fit, and relaxed fit jeans. Each

pair of jeans has a list of possible waist sizes and possible lengths. The price of a pair of jeans

only depends on its type. Children can choose between T-shirts and baseball caps. Each

T-shirt has a price, a list of available colors, and a list of available patterns. T-shirts for

children all have the same size. Baseball caps come in three different sizes: small, medium,

and large. Each item has an optional sales price that is offered on special occasions.

Design an XML DTD for FamilyWear so that FamilyWear can publish its catalog on the Web.

Exercise 22.6 Assume you are given a document database that contains six documents.

After stemming, the documents contain the following terms:

Document Terms

1 car manufacturer Honda auto

2 auto computer navigation

3 Honda navigation

4 manufacturer computer IBM

5 IBM personal computer

6 car Beetle VW

Answer the following questions.

1. Discuss the advantages and disadvantages of inverted files versus signature files.

2. Show the result of creating an inverted file on the documents.

3. Show the result of creating a signature file with a width of 5 bits. Construct your own

hashing function that maps terms to bit positions.

4. Evaluate the following queries using the inverted file and the signature file that you

created: ‘car’, ‘IBM’ AND ‘computer’, ‘IBM’ AND ‘car’, ‘IBM’ OR ‘auto’, and ‘IBM’ AND

‘computer’ AND ‘manufacturer’.

5. Assume that the query load against the document database consists of exactly the queries

that were stated in the previous question. Also assume that each of these queries is

evaluated exactly once.

(a) Design a signature file with a width of 3 bits and design a hashing function that

minimizes the overall number of false positives retrieved when evaluating the

(b) Design a signature file with a width of 6 bits and a hashing function that minimizes

the overall number of false positives.

(c) Assume you want to construct a signature file. What is the smallest signature

width that allows you to evaluate all queries without retrieving any false positives?

Exercise 22.7 Assume that the base set of the HITS algorithm consists of the set of Web

pages displayed in the following table. An entry should be interpreted as follows: Web page

1 has hyperlinks to pages 5 and 6.

Internet Databases 675

Web page Pages that this page has links to

1 5, 6, 7

2 5, 7

3 6, 8

4

5 1, 2

6 1, 3

7 1, 2

8 4

Run five iterations of the HITS algorithm and find the highest ranked authority and the

highest ranked hub.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found from the Web pages

of the World Wide Web Consortium (www.w3.org). Its Web site contains links to information

about HTML, cascading style sheets, XML, XSL, and much more. The book by Hall is a

general introduction to Web programming technologies [302]; a good starting point on the

Web is www.Webdeveloper.com. There are many introductory books on CGI programming,

for example [176, 166]. The JavaSoft (java.sun.com) home page is a good starting point for

JavaBeans, Servlets, JSP, and all other Java-related technologies. The book by Hunter [333]

is a good introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a

comparable technology to JSP. More information about ASP can be found on the Microsoft

Developer’s Network homepage (msdn.microsoft.com).

There are excellent Web sites devoted to the advancement of XML, for example www.xml.com

and www.ibm.com/xml, that also contain a plethora of links with information about the other

standards. There are good introductory books on many different aspects of XML, for example

[164, 135, 520, 411, 321, 271]. Information about UNICODE can be found on its home page

http://www.unicode.org.

There is a lot of research on semistructured data in the database community. The Tsimmis

data integration system uses a semistructured data model to cope with possible heterogene-

ity of data sources [509, 508]. Several new query languages for semistructured data have

been developed: LOREL [525], UnQL [106], StruQL [233], and WebSQL [458]. LORE is a

database management system designed for semistructured data [450]. Query optimization for

semistructured data is addressed in [5, 272]. Work on describing the structure of semistruc-

tured databases can be found in [490, 272].

There has been a lot of work on using semistructured data models for Web data and several

Web query systems have been developed: WebSQL [458], W3QS [384], WebLog [399], We-

bOQL [32], STRUDEL [232], ARANEUS [39], and FLORID [319]. [237] is a good overview

of database research in the context of the Web.

Introductory reading material on information retrieval includes the standard textbooks by

Salton and McGill [562] and by van Rijsbergen [661]. Collections of articles for the more

676 Chapter 22

advanced reader have been edited by Jones and Willett [350] and by Frakes and Baeza-Yates

[239]. Querying text repositories has been studied extensively in information retrieval; see

[545] for a recent survey. Faloutsos overviews indexing methods for text databases [219].

Inverted files are discussed in [469] and signature files are discussed in [221]. Zobel, Moffat,

and Ramamohanarao give a comparison of inverted files and signature files [703]. Other

aspects of indexing for text databases are addressed in [704]. The book by Witten, Moffat,

and Bell has a lot of material on compression techniques for document databases [685].

The number of citation counts as a measure of scientific impact has first been studied by

Garfield [262]; see also [670]. Usage of hypertextual information to improve the quality of

search engines has been proposed by Spertus [610] and by Weiss et al. [676]. The HITS

algorithm was developed by Jon Kleinberg [376]. Concurrently, Brin and Page developed

the Pagerank algorithm, which also takes hyperlinks between pages into account [99]. The

discovery of structure in the World Wide Web is currently a very active area of research; see

for example the work by Gibson et al. [268].

23 DECISION SUPPORT

Nothing is more difficult, and therefore more precious, than to be able to
decide.

—Napoleon Bonaparte

Database management systems are widely used by organizations for maintaining data
that documents their everyday operations. In applications that update such operational
data, transactions typically make small changes (for example, adding a reservation or
depositing a check) and a large number of transactions must be reliably and efficiently
processed. Such online transaction processing (OLTP) applications have driven
the growth of the DBMS industry in the past three decades and will doubtless continue
to be important. DBMSs have traditionally been optimized extensively to perform well
in such applications.

Recently, however, organizations have increasingly emphasized applications in which
current and historical data are comprehensively analyzed and explored, identifying
useful trends and creating summaries of the data, in order to support high-level decision
making. Such applications are referred to as decision support. Decision support has
rapidly grown into a multibillion dollar industry, and further growth is expected. A
number of vendors offer specialized database systems and analysis tools to facilitate
decision support. Industry organizations are emerging to set standards and create
consensus on issues like language and architecture design.

Mainstream relational DBMS vendors have recognized the importance of this market
segment and are adding features to their products in order to support it. In particular,
novel indexing and query optimization techniques are being added to support complex
queries. Systems are also providing additional features for defining and using views.
The use of views has gained rapidly in popularity because of their utility in applica-
tions involving complex data analysis. While queries on views can be answered by
evaluating the view definition when the query is submitted, views also offer the option
of precomputing the view definition and thereby making queries run much faster. This
option becomes increasingly attractive as the view definition increases in complexity
and the frequency of queries increases.

Carrying the motivation for precomputed views one step further, organizations can
consolidate information from several databases into a data warehouse by copying tables

677

678 Chapter 23

from many sources into one location or by materializing a view that is defined over
tables from several sources. Data warehousing has become widespread, and many
specialized products are now available to create and manage warehouses of data from
multiple databases.

We begin this chapter with an overview of decision support in Section 23.1. We cover
data warehousing in Section 23.2 and present on-line analytic processing, or OLAP, in
Section 23.3. We discuss implementation techniques to support OLAP in Section 23.4.
These new implementation techniques form the basis for specialized OLAP products,
and are also being added to relational DBMS products to support complex decision
support applications. We discuss the role of views in decision support applications and
techniques for rapidly processing queries on views in Section 23.5. Finally, in Section
23.6, we discuss a recent trend toward quickly computing approximate answers or a
desired subset of answers, rather than computing all answers.

23.1 INTRODUCTION TO DECISION SUPPORT

Organizational decision making requires a comprehensive view of all aspects of an enter-
prise, and many organizations have therefore created consolidated data warehouses
that contain data drawn from several databases maintained by different business units,
together with historical and summary information.

The trend toward data warehousing is complemented by an increased emphasis on
powerful analysis tools. There are many characteristics of decision support queries
that make traditional SQL systems inadequate:

The conditions in the WHERE clause often contain many AND and OR conditions.
As we saw in Section 12.3.3, OR conditions, in particular, are poorly handled in
many relational DBMSs.

Applications require extensive use of statistical functions such as standard devia-
tion, which are not supported in SQL-92. Thus, SQL queries must frequently be
embedded in a host language program.

Many queries involve conditions over time or require aggregating over time periods.
SQL-92 provides poor support for such time-series analysis.

Users often need to pose several related queries. Since there is no convenient
way to express these commonly occurring families of queries, users have to write
them as a collection of independent queries, which can be tedious. Further, the
DBMS has no way to recognize and exploit optimization opportunities arising
from executing many related queries together.

Three broad classes of analysis tools are available. First, there are systems that support
a class of stylized queries that typically involve group-by and aggregation operators

Decision Support 679

and provide excellent support for complex boolean conditions, statistical functions,
and features for time-series analysis. Applications dominated by such queries are called
online analytic processing, or OLAP. These systems support a querying style in
which the data is best thought of as a multidimensional array, and are influenced by
end user tools such as spreadsheets, in addition to database query languages.

Second, there are DBMSs that support traditional SQL-style queries but are de-
signed to also support OLAP queries efficiently. Such systems can be regarded as
relational DBMSs optimized for decision support applications. Many vendors of rela-
tional DBMSs are currently enhancing their products in this direction, and over time
the distinction between specialized OLAP systems and relational DBMSs enhanced to
support OLAP queries is likely to diminish.

The third class of analysis tools is motivated by the desire to find interesting or un-
expected trends and patterns in large data sets, rather than by the complex query
characteristics listed above. In exploratory data analysis, although an analyst can
recognize an ‘interesting pattern’ when shown such a pattern, it is very difficult to
formulate a query that captures the essence of an interesting pattern. For example,
an analyst looking at credit-card usage histories may want to detect unusual activity
indicating misuse of a lost or stolen card. A catalog merchant may want to look at
customer records to identify promising customers for a new promotion; this identifi-
cation would depend on income levels, buying patterns, demonstrated interest areas,
and so on. The amount of data in many applications is too large to permit manual
analysis or even traditional statistical analysis, and the goal of data mining is to
support exploratory analysis over very large data sets. We discuss data mining further
in Chapter 24.

Clearly, evaluating OLAP or data mining queries over globally distributed data is
likely to be excruciatingly slow. Further, for such complex analysis, often statistical
in nature, it is not essential that the most current version of the data be used. The
natural solution is to create a centralized repository of all the data, i.e., a data ware-
house. Thus, the availability of a warehouse facilitates the application of OLAP and
data mining tools, and conversely, the desire to apply such analysis tools is a strong
motivation for building a data warehouse.

23.2 DATA WAREHOUSING

Data warehouses contain consolidated data from many sources, augmented with sum-
mary information and covering a long time period. Warehouses are much larger than
other kinds of databases; sizes ranging from several gigabytes to terabytes are com-
mon. Typical workloads involve ad hoc, fairly complex queries and fast response times
are important. These characteristics differentiate warehouse applications from OLTP
applications, and different DBMS design and implementation techniques must be used

680 Chapter 23

to achieve satisfactory results. A distributed DBMS with good scalability and high
availability (achieved by storing tables redundantly at more than one site) is required
for very large warehouses.

A typical data warehousing architecture is illustrated in Figure 23.1. An organiza-

OLAP

Data Warehouse

TRANSFORM

EXTRACT
CLEAN

LOAD
REFRESH

SERVES

External Data Sources

Operational Databases Data Mining

Visualization

Metadata Repository

Figure 23.1 A Typical Data Warehousing Architecture

tion’s daily operations access and modify operational databases. Data from these
operational databases and other external sources (e.g., customer profiles supplied by
external consultants) are extracted by using gateways, or standard external interfaces
supported by the underlying DBMSs. A gateway is an application program interface
that allows client programs to generate SQL statements to be executed at a server
(see Section 5.10). Standards such as Open Database Connectivity (ODBC) and Open
Linking and Embedding for Databases (OLE-DB) from Microsoft and Java Database
Connectivity (JDBC) are emerging for gateways.

23.2.1 Creating and Maintaining a Warehouse

There are many challenges in creating and maintaining a large data warehouse. A good
database schema must be designed to hold an integrated collection of data copied from
diverse sources. For example, a company warehouse might include the inventory and
personnel departments’ databases, together with sales databases maintained by offices
in different countries. Since the source databases are often created and maintained by
different groups, there are a number of semantic mismatches across these databases,
such as different currency units, different names for the same attribute, and differences
in how tables are normalized or structured; these differences must be reconciled when
data is brought into the warehouse. After the warehouse schema is designed, the

Decision Support 681

warehouse must be populated, and over time, it must be kept consistent with the
source databases.

Data is extracted from operational databases and external sources, cleaned to mini-
mize errors and fill in missing information when possible, and transformed to recon-
cile semantic mismatches. Transforming data is typically accomplished by defining a
relational view over the tables in the data sources (the operational databases and other
external sources). Loading data consists of materializing such views and storing them
in the warehouse. Unlike a standard view in a relational DBMS, therefore, the view is
stored in a database (the warehouse) that is different from the database(s) containing
the tables it is defined over.

The cleaned and transformed data is finally loaded into the warehouse. Additional
preprocessing such as sorting and generation of summary information is carried out at
this stage. Data is partitioned and indexes are built for efficiency. Due to the large
volume of data, loading is a slow process. Loading a terabyte of data sequentially
can take weeks, and loading even a gigabyte can take hours. Parallelism is therefore
important for loading warehouses.

After data is loaded into a warehouse, additional measures must be taken to ensure
that the data in the warehouse is periodically refreshed to reflect updates to the data
sources and to periodically purge data that is too old from the warehouse (perhaps
onto archival media). Observe the connection between the problem of refreshing ware-
house tables and asynchronously maintaining replicas of tables in a distributed DBMS.
Maintaining replicas of source relations is an essential part of warehousing, and this
application domain is an important factor in the popularity of asynchronous replication
(Section 21.10.2), despite the fact that asynchronous replication violates the principle
of distributed data independence. The problem of refreshing warehouse tables (which
are materialized views over tables in the source databases) has also renewed interest
in incremental maintenance of materialized views. (We discuss materialized views in
Section 23.5.)

An important task in maintaining a warehouse is keeping track of the data currently
stored in it; this bookkeeping is done by storing information about the warehouse data
in the system catalogs. The system catalogs associated with a warehouse are very large
and are often stored and managed in a separate database called a metadata reposi-
tory. The size and complexity of the catalogs is in part due to the size and complexity
of the warehouse itself and in part because a lot of administrative information must
be maintained. For example, we must keep track of the source of each warehouse table
and when it was last refreshed, in addition to describing its fields.

The value of a warehouse is ultimately in the analysis that it enables. The data in a
warehouse is typically accessed and analyzed using a variety of tools, including OLAP

682 Chapter 23

query engines, data mining algorithms, information visualization tools, statistical pack-
ages, and report generators.

23.3 OLAP

OLAP applications are dominated by ad hoc, complex queries. In SQL terms, these
are queries that involve group-by and aggregation operators. The natural way to think
about typical OLAP queries, however, is in terms of a multidimensional data model.
We begin this section by presenting the multidimensional data model and comparing
it with a relational representation of data. We describe OLAP queries in terms of the
multidimensional data model and then consider some new implementation techniques
designed to support such queries. Finally, we briefly contrast database design for
OLAP applications with more traditional relational database design.

23.3.1 Multidimensional Data Model

In the multidimensional data model, the focus is on a collection of numeric measures.
Each measure depends on a set of dimensions. We will use a running example based
on sales data. The measure attribute in our example is sales. The dimensions are
Product, Location, and Time. Given a product, a location, and a time, we have at
most associated one sales value. If we identify a product by a unique identifier pid, and
similarly identify location by locid and time by timeid, we can think of sales information
as being arranged in a three-dimensional array Sales. This array is shown in Figure
23.2; for clarity, we show only the values for a single locid value, locid= 1, which can
be thought of as a slice orthogonal to the locid axis.

timeid

1 2 3

11
12

13

pi
d

locid

25

30

8 10

20

8 15

50

10

Figure 23.2 Sales: A Multidimensional Dataset

This view of data as a multidimensional array is readily generalized to more than
three dimensions. In OLAP applications, the bulk of the data can be represented in
such a multidimensional array. Indeed, some OLAP systems, for example, Essbase

Decision Support 683

from Arbor Software, actually store data in a multidimensional array (of course, im-
plemented without the usual programming language assumption that the entire array
fits in memory). OLAP systems that use arrays to store multidimensional datasets are
called multidimensional OLAP (MOLAP) systems.

The data in a multidimensional array can also be represented as a relation, as illus-
trated in Figure 23.3, which shows the same data as in Figure 23.2; additional rows
corresponding to the ‘slice’ locid= 2 are shown in addition to the data visible in Figure
23.3. This relation, which relates the dimensions to the measure of interest, is called
the fact table.

 pid locidtimeid sales

1 25

Sales

1

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

12 3 2 20

13 1 2 20

13 2 40

13 3 2 5

2

8

11

Stationery

 pid pname

Lee Jeans

Zord

Biro Pen

price

25

category

Apparel

Toys

2

18

Products

USAArizonaTempe5

2

1 Ames

Chennai TN

Iowa USA

India

 locid city state country

Locations

11

12

13

Figure 23.3 Locations, Products, and Sales Represented as Relations

Now let us turn to dimensions. Each dimension can have a set of associated attributes.
For example, the Location dimension is identified by the locid attribute, which we used
to identify a location in the Sales table. We will assume that it also has attributes

684 Chapter 23

country, state, and city. We will also assume that the Product dimension has attributes
pname, category, and price, in addition to the identifier pid. The category of a product
indicates its general nature; for example, a product pant could have category value
apparel. We will assume that the Time dimension has attributes date, week, month,
quarter, year, and holiday flag, in addition to the identifier timeid.

For each dimension, the set of associated values can be structured as a hierarchy.
For example, cities belong to states, and states belong to countries. Dates belong to
weeks and to months, both weeks and months are contained in quarters, and quarters
are contained in years. (Note that a week could span a month; thus, weeks are not
contained in months.) Some of the attributes of a dimension describe the position of
a dimension value with respect to this underlying hierarchy of dimension values. The
hierarchies for the Product, Location, and Time hierarchies in our example are shown
at the attribute level in Figure 23.4.

category

pname city

state

 country

month

quarter

year

date

week

LOCATIONTIMEPRODUCT

Figure 23.4 Dimension Hierarchies

Information about dimensions can also be represented as a collection of relations:

Locations(locid: integer, city: string, state: string, country: string)
Products(pid: integer, pname: string, category: string, price: real)
Times(timeid: integer, date: string, week: integer, month: integer,

quarter: integer, year: integer, holiday flag: boolean)

These relations are much smaller than the fact table in a typical OLAP application;
they are called the dimension tables. OLAP systems that store all information,
including fact tables, as relations are called relational OLAP (ROLAP) systems.

The Times table illustrates the attention paid to the Time dimension in typical OLAP
applications. SQL’s date and timestamp data types are not adequate; in order to
support summarizations that reflect business operations, information such as fiscal
quarters, holiday status, and so on is maintained for each time value.

Decision Support 685

23.3.2 OLAP Queries

Now that we have seen the multidimensional model of data, let us consider how such
data can be queried and manipulated. The operations supported by this model are
strongly influenced by end user tools such as spreadsheets. The goal is to give end users
who are not SQL experts an intuitive and powerful interface for common business-
oriented analysis tasks. Users are expected to pose ad hoc queries directly, without
relying on database application programmers. In this section we assume that the user
is working with a multidimensional dataset and that each operation returns either
a different presentation or summarization of this underlying dataset; the underlying
dataset is always available for the user to manipulate, regardless of the level of detail
at which it is currently viewed.

A very common operation is aggregating a measure over one or more dimensions. The
following queries are typical:

Find the total sales.

Find total sales for each city.

Find total sales for each state.

Find the top five products ranked by total sales.

The first three queries can be expressed as SQL queries over the fact and dimension
tables, but the last query cannot be expressed in SQL (although we can approximate
it if we return answers in sorted order by total sales, using ORDER BY).

When we aggregate a measure on one or more dimensions, the aggregated measure de-
pends on fewer dimensions than the original measure. For example, when we compute
the total sales by city, the aggregated measure is total sales and it depends only on
the Location dimension, whereas the original sales measure depended on the Location,
Time, and Product dimensions.

Another use of aggregation is to summarize at different levels of a dimension hierarchy.
If we are given total sales per city, we can aggregate on the Location dimension to obtain
sales per state. This operation is called roll-up in the OLAP literature. The inverse
of roll-up is drill-down: given total sales by state, we can ask for a more detailed
presentation by drilling down on Location. We can ask for sales by city or just sales
by city for a selected state (with sales presented on a per-state basis for the remaining
states, as before). We can also drill down on a dimension other than Location. For
example, we can ask for total sales for each product for each state, drilling down on
the Product dimension.

Another common operation is pivoting. Consider a tabular presentation of the Sales
table. If we pivot it on the Location and Time dimensions, we obtain a table of total

686 Chapter 23

sales for each location for each time value. This information can be presented as a
two-dimensional chart in which the axes are labeled with location and time values,
and the entries in the chart correspond to the total sales for that location and time.
Thus, values that appear in columns of the original presentation become labels of axes
in the result presentation. Of course, pivoting can be combined with aggregation; we
can pivot to obtain yearly sales by state. The result of pivoting is called a cross-
tabulation and is illustrated in Figure 23.5. Observe that in spreadsheet style, in
addition to the total sales by year and state (taken together), we also have additional
summaries of sales by year and sales by state.

WI CA

63

107

223

144

145

110

399

38

75

176

35

81

Total

1997

Total

1996

1995

Figure 23.5 Cross-Tabulation of Sales by Year and State

Pivoting can also be used to change the dimensions of the cross-tabulation; from a
presentation of sales by year and state, we can obtain a presentation of sales by product
and year.

The Time dimension is very important in OLAP. Typical queries include:

Find total sales by month.

Find total sales by month for each city.

Find the percentage change in the total monthly sales for each product.

Find the trailing n day moving average of sales. (For each day, we must compute
the average daily sales over the preceding n days.)

The first two queries can be expressed as SQL queries over the fact and dimension
tables. The third query can be expressed too, but it is quite complicated in SQL. The
last query cannot be expressed in SQL if n is to be a parameter of the query.

Clearly, the OLAP framework makes it convenient to pose a broad class of queries.
It also gives catchy names to some familiar operations: slicing a dataset amounts to
an equality selection on one or more dimensions, possibly also with some dimensions
projected out. Dicing a dataset amounts to a range selection. These terms come from
visualizing the effect of these operations on a cube or cross-tabulated representation
of the data.

Decision Support 687

Comparison with SQL Queries

Some OLAP queries cannot be easily expressed, or cannot be expressed at all, in SQL,
as we saw in the above discussion. Notably, queries that rank results and queries that
involve time-oriented operations fall into this category.

A large number of OLAP queries, however, can be expressed in SQL. Typically, they
involve grouping and aggregation, and a single OLAP operation leads to several closely
related SQL queries. For example, consider the cross-tabulation shown in Figure 23.5,
which was obtained by pivoting the Sales table. To obtain the same information, we
would issue the following queries:

SELECT SUM (S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

This query generates the entries in the body of the chart (outlined by the dark lines).
The summary row at the bottom is generated by the query:

SELECT SUM (S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

The summary column on the right is generated by the query:

SELECT SUM (S.sales)
FROM Sales S, Locations L
WHERE S.locid=L.locid
GROUP BY L.state

The example cross-tabulation can be thought of as roll-up on the Location dimension,
on the Time dimension, and on the Location and Time dimensions together. Each
roll-up corresponds to a single SQL query with grouping. In general, given a measure
with k associated dimensions, we can roll up on any subset of these k dimensions, and
so we have a total of 2k such SQL queries.

Through high-level operations such as pivoting, users can generate many of these
2k SQL queries. Recognizing the commonalities between these queries enables more
efficient, coordinated computation of the set of queries. A proposed extension to SQL
called the CUBE is equivalent to a collection of GROUP BY statements, with one GROUP
BY statement for each subset of the k dimensions. We illustrate it using the Sales
relation. Consider the following query:

688 Chapter 23

CUBE pid, locid, timeid BY SUM Sales

This query will roll up the table Sales on all eight subsets of the set {pid, locid, timeid}
(including the empty subset). It is equivalent to eight queries of the form:

SELECT SUM (S.sales)
FROM Sales S
GROUP BY grouping-list

The queries differ only in the grouping-list, which is some subset of the set {pid, locid,
timeid}. We can think of these eight queries as being arranged in a lattice, as shown
in Figure 23.6. The result tuples at a node can be aggregated further to compute the
result for any child of the node. This relationship between the queries arising in a CUBE
can be exploited for efficient evaluation.

{pid, locid, timeid}

{pid, locid} {pid, timeid} {locid, timeid}

{timeid}{pid}

{ }

{locid}

Figure 23.6 The Lattice of GROUP BY Queries in a CUBE Query

We conclude our discussion of the relationship between SQL and OLAP queries by
noting that they complement each other, and both are important for decision support.
The goal of OLAP is to enable end users to ask a broad class of business-oriented
queries easily and with interactive response times over very large datasets. SQL, on
the other hand, can be used to write complex queries that combine information from
several relations. The data need not be schemas corresponding to the multidimensional
data model, and the OLAP querying idioms are not always applicable. Such complex
queries are written by application programmers, compiled, and made available to end
users as ‘canned’ programs, often through a menu-driven graphical interface. The
importance of such SQL applications is reflected in the increased attention being paid
to optimizing complex SQL queries and the emergence of decision support oriented
SQL benchmarks, such as TPC-D.

A Note on Statistical Databases

Many OLAP concepts are present in earlier work on statistical databases (SDBs),
which are database systems designed to support statistical applications, although this

Decision Support 689

connection has not been sufficiently recognized because of differences in application
domains and terminology. The multidimensional data model, with the notions of a
measure associated with dimensions, and classification hierarchies for dimension val-
ues, is also used in SDBs. OLAP operations such as roll-up and drill-down have
counterparts in SDBs. Indeed, some implementation techniques developed for OLAP
have also been applied to SDBs.

Nonetheless, there are some differences arising from the different domains that OLAP
and SDBs were developed to support. For example, SDBs are used in socioeconomic
applications, where classification hierarchies and privacy issues are very important.
This is reflected in the fact that classification hierarchies in SDBs are more complex
than in OLAP and have received more attention, along with issues such as potential
breaches of privacy. (The privacy issue concerns whether a user with access to summa-
rized data can reconstruct the original, unsummarized data.) In contrast, OLAP has
been aimed at business applications with large volumes of data, and efficient handling
of very large datasets has received more attention than in the SDB literature.

23.3.3 Database Design for OLAP

Figure 23.7 shows the tables in our running sales example.

LOCATIONSPRODUCTS

SALES

TIMES

timeid year holiday_flag

timeid saleslocid

pid pname category price city countrystatelocid

pid

date week month quarter

Figure 23.7 An Example of a Star Schema

It suggests a star, centered at the fact table Sales; such a combination of a fact table
and dimension tables is called a star schema. This schema pattern is very common in
databases designed for OLAP. The bulk of the data is typically in the fact table, which
has no redundancy; it is usually in BCNF. In fact, to minimize the size of the fact
table, dimension identifiers (such as pid and timeid) are system-generated identifiers.

Information about dimension values is maintained in the dimension tables. Dimension
tables are usually not normalized. The rationale is that the dimension tables in a
database used for OLAP are static and update, insertion, and deletion anomalies are
not important. Further, because the size of the database is dominated by the fact table,

690 Chapter 23

Beyond B+ trees: Complex queries have motivated the addition of powerful
indexing techniques to DBMSs. In addition to B+ tree indexes, Oracle 8 supports
bitmap and join indexes, and maintains these dynamically as the indexed relations
are updated. Oracle 8 also supports indexes on expressions over attribute values,
e.g., 10 ∗ sal + bonus. Microsoft SQL Server uses bitmap indexes. Sybase IQ
supports several kinds of bitmap indexes, and may shortly add support for a
linear hashing based index. Informix UDS supports R trees and Informix XPS
supports bitmap indexes.

the space saved by normalizing dimension tables is negligible. Therefore, minimizing
the computation time for combining facts in the fact table with dimension information
is the main design criterion, which suggests that we avoid breaking a dimension table
into smaller tables (which might lead to additional joins).

Small response times for interactive querying are important in OLAP, and most systems
support the materialization of summary tables (typically generated through queries
using grouping). Ad hoc queries posed by users are answered using the original tables
along with precomputed summaries. A very important design issue is which summary
tables should be materialized to achieve the best use of available memory and to
answer commonly asked ad hoc queries with interactive response times. In current
OLAP systems, deciding which summary tables to materialize may well be the most
important design decision.

Finally, new storage structures and indexing techniques have been developed to support
OLAP, and they present the database designer with additional physical design choices.
We cover some of these implementation techniques briefly in the next section.

23.4 IMPLEMENTATION TECHNIQUES FOR OLAP

In this section we survey some implementation techniques motivated by the OLAP
environment. The goal is to provide a feel for how OLAP systems differ from more
traditional SQL systems; our discussion is far from comprehensive.

The mostly-read environment of OLAP systems makes the CPU overhead of maintain-
ing indexes negligible, and the requirement of interactive response times for queries
over very large datasets makes the availability of suitable indexes very important.
This combination of factors has led to the development of new indexing techniques.
We discuss several of these techniques. We then consider file organizations and other
OLAP implementation issues briefly.

Decision Support 691

23.4.1 Bitmap Indexes

Consider a table that describes customers:

Customers(custid: integer, name: string, gender: boolean, rating: integer)

The rating value is an integer in the range 1 to 5, and only two values are recorded for
gender. Columns with few possible values are called sparse. We can exploit sparsity
to construct a new kind of index that greatly speeds up queries on these columns.

The idea is to record values for sparse columns as a sequence of bits, one for each
possible value. For example, a gender value is either 10 or 01; a 1 in the first position
denotes male, and 1 in the second position denotes female. Similarly, 10000 denotes
the rating value 1, and 00001 denotes the rating value 5.

If we consider the gender values for all rows in the Customers table, we can treat this
as a collection of two bit vectors, one of which has the associated value ‘Male’ and
the other the associated value ‘Female’. Each bit vector has one bit per row in the
Customers table, indicating whether the value in that row is the value associated with
the bit vector. The collection of bit vectors for a column is called a bitmap index for
that column.

An example instance of the Customers table, together with the bitmap indexes for
gender and rating, is shown in Figure 23.8.

M F
1 0
1 0
0 1
1 0

custid name gender rating
112 Joe M 3
115 Ram M 5
119 Sue F 5
112 Woo M 4

1 2 3 4 5
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0

Figure 23.8 Bitmap Indexes on the Customers Relation

Bitmap indexes offer two important advantages over conventional hash and tree in-
dexes. First, they allow the use of efficient bit operations to answer queries. For
example, consider the query “How many male customers have a rating of 5?” We can
take the first bit vector for gender and do a bit-wise AND with the fifth bit vector for
rating to obtain a bit vector that has 1 for every male customer with rating 5. We can
then count the number of 1s in this bit vector to answer the query. Second, bitmap
indexes can be much more compact than a traditional B+ tree index and are very
amenable to the use of compression techniques.

Bit vectors correspond closely to the rid-lists used to represent data entries in Alter-
native (3) for a traditional B+ tree index (see Section 8.3.1). In fact, we can think of a

692 Chapter 23

bit vector for a given age value, say, as an alternative representation of the rid-list for
that value. This leads to a possible way to combine bit vectors (and their advantages
of bit-wise processing) with B+ tree indexes on columns that are not sparse; we can
use Alternative (3) for data entries, using a bit vector representation of rid-lists. A
caveat is that if an rid-list is very small, the bit vector representation may be much
larger than a list of rid values, even if the bit vector is compressed. Further, the
use of compression leads to decompression costs, offsetting some of the computational
advantages of the bit vector representation.

23.4.2 Join Indexes

Computing joins with small response times is extremely hard for very large relations.
One approach to this problem is to create an index that is designed to speed up
specific join queries. Suppose that the Customers table is to be joined with a table
called Purchases (recording purchases made by customers) on the custid field. We can
create a collection of 〈c, p〉 pairs, where p is the rid of a Purchases record that joins
with a Customers record with custid c.

This idea can be generalized to support joins over more than two relations. We will
discuss the special case of a star schema, in which the fact table is likely to be joined
with several dimension tables. Consider a join query that joins fact table F with
dimension tables D1 and D2 and includes selection conditions on column C1 of table
D1 and column C2 of table D2. We store a tuple 〈r1, r2, r〉 in the join index if r1 is
the rid of a tuple in table D1 with value c1 in column C1, r2 is the rid of a tuple in
table D2 with value c2 in column C2, and r is the rid of a tuple in the fact table F,
and these three tuples join with each other.

The drawback of a join index is that the number of indexes can grow rapidly if several
columns in each dimension table are involved in selections and joins with the fact table.
An alternative kind of join index avoids this problem. Consider our example involving
fact table F and dimension tables D1 and D2. Let C1 be a column of D1 on which a
selection is expressed in some query that joins D1 with F. Conceptually, we now join
F with D1 to extend the fields of F with the fields of D1, and index F on the ‘virtual
field’ C1: If a tuple of D1 with value c1 in column C1 joins with a tuple of F with rid r,
we add a tuple 〈c1, r〉 to the join index. We create one such join index for each column
of either D1 or D2 that involves a selection in some join with F; C1 is an example of
such a column.

The price paid with respect to the previous version of join indexes is that join indexes
created in this way have to be combined (rid intersection) in order to deal with the join
queries of interest to us. This can be done efficiently if we make the new indexes bitmap
indexes; the result is called a bitmapped join index. The idea works especially well
if columns such as C1 are sparse, and therefore well suited to bitmap indexing.

Decision Support 693

Complex queries: The IBM DB2 optimizer recognizes star join queries and per-
forms rid-based semijoins (using Bloom filters) to filter the fact table. Then fact
table rows are rejoined to the dimension tables. Complex (multi-table) dimension
queries (called ‘snowflake queries’) are supported. DB2 also supports CUBE us-
ing smart algorithms that minimize sorts. Microsoft SQL Server optimizes star
join queries extensively. It considers taking the cross-product of small dimension
tables before joining with the fact table, the use of join indexes, and rid-based
semijoins. Oracle 8i also allows users to create dimensions to declare hierarchies
and functional dependencies. It supports the CUBE operator and optimizes star
join queries by eliminating joins when no column of a dimension table is part of
the query result. There are also DBMS products developed specially for decision
support applications, such as Sybase IQ and RedBrick (now part of Informix).

23.4.3 File Organizations

Since many OLAP queries involve just a few columns of a large relation, vertical
partitioning becomes attractive. However, storing a relation column-wise can degrade
performance for queries that involve several columns. An alternative in a mostly-read
environment is to store the relation row-wise, but to also store each column separately.

A more radical file organization is to regard the fact table as a large multidimensional
array, and to store it and index it as such. This approach is taken in MOLAP systems.
Since the array is much larger than available main memory, it is broken up into con-
tiguous chunks, as discussed in Section 25.7. In addition, traditional B+ tree indexes
are created to enable quick retrieval of chunks that contain tuples with values in a
given range for one or more dimensions.

23.4.4 Additional OLAP Implementation Issues

Our discussion of OLAP implementation techniques is far from complete. A number of
other implementation issues must be considered for efficient OLAP query evaluation.

First, the use of compression is becoming widespread in database systems aimed at
OLAP. The amount of information is so large that compression is obviously attractive.
Further, the use of data structures like bitmap indexes, which are highly amenable to
compression techniques, makes compression even more attractive.

Second, deciding which views to precompute and store in order to facilitate evaluation
of ad hoc queries is a challenging problem. Especially for aggregate queries, the rich
structure of operators such as CUBE offers many opportunities for a clever choice of
views to precompute and store. Although the choice of views to precompute is made

694 Chapter 23

by the database designer in current systems, ongoing research is aimed at automating
this choice.

Third, many OLAP systems are enhancing query language and optimization features
in novel ways. As an example of query language enhancement, Redbrick (recently
acquired by Informix) supports a version of SQL that allows users to define new ag-
gregation operators by writing code for initialization, iteration, and termination. For
example, if tuples with fields department, employee, and salary are retrieved in sorted
order by department, we can compute the standard deviation of salaries for each de-
partment; the initialization function would initialize the variables used to compute
standard deviation, the iteration function would update the variables as each tuple
is retrieved and processed, and the termination function would output the standard
deviation for a department as soon as the first tuple for the next department is en-
countered. (Several ORDBMSs also support user-defined aggregate functions, and it
is likely that this feature will be included in future versions of the SQL standard.) As
an example of novel optimization features, some OLAP systems try to combine multi-
ple scans, possibly part of different transactions, over a table. This seemingly simple
optimization can be challenging: If the scans begin at different times, for example, we
must keep track of the records seen by each scan to make sure that each scan sees
every tuple exactly once; we must also deal with differences in the speeds at which the
scan operations process tuples.

Finally, we note that the emphasis on query processing and decision support applica-
tions in OLAP systems is being complemented by a greater emphasis on evaluating
complex SQL queries in traditional SQL systems. Traditional SQL systems are evolv-
ing to support OLAP-style queries more efficiently, incorporating techniques previously
found only in specialized OLAP systems.

23.5 VIEWS AND DECISION SUPPORT

Views are widely used in decision support applications. Different groups of analysts
within an organization are typically concerned with different aspects of the business,
and it is convenient to define views that give each group insight into the business
details that concern them. Once a view is defined, we can write queries or new view
definitions that use it, as we saw in Section 3.6; in this respect a view is just like a base
table. Evaluating queries posed against views is very important for decision support
applications. In this section, we consider how such queries can be evaluated efficiently
after placing views within the context of decision support applications.

23.5.1 Views, OLAP, and Warehousing

Views are closely related to OLAP and data warehousing.

Decision Support 695

Views and OLAP: OLAP queries are typically aggregate queries. Analysts want
fast answers to these queries over very large datasets, and it is natural to consider
precomputing views (see Sections 23.5.3 and 23.5.4). In particular, the CUBE operator—
discussed in Section 23.3.2—gives rise to several aggregate queries that are closely
related. The relationships that exist between the many aggregate queries that arise
from a single CUBE operation can be exploited to develop very effective precomputation
strategies. The idea is to choose a subset of the aggregate queries for materialization in
such a way that typical CUBE queries can be quickly answered by using the materialized
views and doing some additional computation. The choice of views to materialize is
influenced by how many queries they can potentially speed up and by the amount
of space required to store the materialized view (since we have to work with a given
amount of storage space).

Views and Warehousing: A data warehouse is just a collection of asynchronously
replicated tables and periodically maintained views. A warehouse is characterized by
its size, the number of tables involved, and the fact that most of the underlying tables
are from external, independently maintained databases. Nonetheless, the fundamental
problem in warehouse maintenance is asynchronous maintenance of replicated tables
and materialized views (see Section 23.5.4).

23.5.2 Query Modification

Consider the view RegionalSales, defined below, which computes sales of products by
category and state:

CREATE VIEW RegionalSales (category, sales, state)
AS SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid = S.pid AND S.locid = L.locid

The following query computes the total sales for each category by state:

SELECT R.category, R.state, SUM (R.sales)
FROM RegionalSales R
GROUP BY R.category, R.state

While the SQL-92 standard does not specify how to evaluate queries on views, it is
useful to think in terms of a process called query modification. The idea is to replace
the occurrence of RegionalSales in the query by the view definition. The result on the
above query is:

SELECT R.category, R.state, SUM (R.sales)
FROM (SELECT P.category, S.sales, L.state

696 Chapter 23

FROM Products P, Sales S, Locations L
WHERE P.pid = S.pid AND S.locid = L.locid) AS R

GROUP BY R.category, R.state

23.5.3 View Materialization versus Computing on Demand

We can answer a query on a view by evaluating the modified query constructed using
the query modification technique described above. Often, however, queries against
complex view definitions must be answered very fast because users engaged in decision
support activities require interactive response times. Even with sophisticated opti-
mization and evaluation techniques, there is a limit to how fast we can answer such
queries.

A popular approach to dealing with this problem is to evaluate the view definition
and store the result. When a query is now posed on the view, the (unmodified)
query is executed directly on the precomputed result. This approach is called view
materialization and is likely to be much faster than the query modification approach
because the complex view need not be evaluated when the query is computed. The
drawback, of course, is that we must maintain the consistency of the precomputed (or
materialized) view whenever the underlying tables are updated.

Consider the RegionalSales view. It involves a join of Sales, Products, and Locations
and is likely to be expensive to compute. On the other hand, if it is materialized and
stored with a clustered B+ tree index on the composite search key 〈category, state,
sales〉, we can answer the example query by an index-only scan.

Given the materialized view and this index, we can also answer queries of the following
form efficiently:

SELECT R.state, SUM (R.sales)
FROM RegionalSales R
WHERE R.category = ‘Laptop’
GROUP BY R.state

To answer such a query, we can use the index on the materialized view to locate the
first index leaf entry with category = ‘Laptop’ and then scan the leaf level until we
come to the first entry with category not equal to ‘Laptop.’

The given index is less effective on the following query, for which we are forced to scan
the entire leaf level:

SELECT R.state, SUM (R.sales)
FROM RegionalSales R

Decision Support 697

WHERE R.state = ‘Wisconsin’
GROUP BY R.category

This example indicates how the choice of views to materialize and the indexes to create
are affected by the expected workload. This point is illustrated further by our next
example.

Consider the following two queries:

SELECT P.category, SUM (S.sales)
FROM Products P, Sales S
WHERE P.pid = S.pid
GROUP BY P.category

SELECT L.state, SUM (S.sales)
FROM Locations L, Sales S
WHERE L.locid = S.locid
GROUP BY L.state

The above two queries require us to join the Sales table (which is likely to be very large)
with another table and to then aggregate the result. How can we use materialization
to speed these queries up? The straightforward approach is to precompute each of the
joins involved (Products with Sales and Locations with Sales) or to precompute each
query in its entirety. An alternative approach is to define the following view:

CREATE VIEW TotalSales (pid, locid, total)
AS SELECT S.pid, S.locid, SUM (S.sales)

FROM Sales S
GROUP BY S.pid, S.locid

The view TotalSales can be materialized and used instead of Sales in our two example
queries:

SELECT P.category, SUM (T.total)
FROM Products P, TotalSales T
WHERE P.pid = T.pid
GROUP BY P.category

SELECT L.state, SUM (T.total)
FROM Locations L, TotalSales T
WHERE L.locid = T.locid
GROUP BY L.state

698 Chapter 23

23.5.4 Issues in View Materialization

There are three main questions to consider with regard to view materialization:

1. What views should we materialize and what indexes should we build on the ma-
terialized views?

2. Given a query on a view and a set of materialized views, can we exploit the
materialized views to answer the query?

3. How frequently should we refresh materialized views in order to make them con-
sistent with changes to the underlying tables?

As the example queries using TotalSales illustrated, the answers to the first two ques-
tions are related. The choice of views to materialize and index is governed by the
expected workload, and the discussion of indexing in Chapter 16 is relevant to this
question as well. The choice of views to materialize is more complex than just choos-
ing indexes on a set of database tables, however, because the range of alternative views
to materialize is wider. The goal is to materialize a small, carefully chosen set of views
that can be utilized to quickly answer most of the important queries. Conversely, once
we have chosen a set of views to materialize, we have to consider how they can be used
to answer a given query.

A materialized view is said to be refreshed when we make it consistent with changes to
its underlying tables. Ideally, algorithms for refreshing a view should be incremental
in that the cost is proportional to the extent of the change, rather than the cost of
recomputing the view from scratch. While it is usually possible to incrementally refresh
views when new tuples are added to the underlying tables, incremental refreshing is
harder when tuples are deleted from the underlying tables.

A view maintenance policy is a decision about when a view is refreshed and is in-
dependent of whether the refresh is incremental or not. A view can be refreshed within
the same transaction that updates the underlying tables. This is called immediate
view maintenance. The update transaction is slowed by the refresh step, and the
impact of refresh increases with the number of materialized views that depend upon
the updated table.

Alternatively, we can defer refreshing the view. Updates are captured in a log and
applied subsequently to the materialized views. There are several deferred view
maintenance policies:

1. Lazy: The materialized view V is refreshed at the time a query is evaluated
using V, if V is not already consistent with its underlying base tables. This
approach slows down queries rather than updates, in contrast to immediate view
maintenance.

Decision Support 699

Views for decision support: DBMS vendors are enhancing their main rela-
tional products to support decision support queries. IBM DB2 supports materi-
alized views with transaction-consistent or user-invoked maintenance. Microsoft
SQL Server supports partition views, which are unions of (many) horizontal
partitions of a table. These are aimed at a warehousing environment where each
partition could be, for example, a monthly update. Queries on partition views
are optimized so that only relevant partitions are accessed. Oracle 8i supports
materialized views with transaction-consistent, user-invoked, or time-scheduled
maintenance.

2. Periodic: The materialized view is refreshed periodically, e.g., once a day. The
discussion of the Capture and Apply steps in asynchronous replication (see Section
21.10.2) should be reviewed at this point since it is very relevant to periodic view
maintenance. In fact, many vendors are extending their asynchronous replication
features to support materialized views. Materialized views that are refreshed
periodically are also called snapshots.

3. Forced: The materialized view is refreshed after a certain number of changes
have been made to the underlying tables.

In periodic and forced view maintenance, queries may see an instance of the material-
ized view that is not consistent with the current state of the underlying tables. That
is, the queries would see a different set of tuples if the view definition was recomputed.
This is the price paid for fast updates and queries, and the trade-off is similar to the
trade-off made in using asynchronous replication.

23.6 FINDING ANSWERS QUICKLY

A recent trend, fueled in part by the popularity of the Internet, is an emphasis on
queries for which a user wants only the first few, or the ‘best’ few, answers quickly.
When users pose queries to a search engine such as AltaVista, they rarely look beyond
the first or second page of results. If they do not find what they are looking for, they
refine their query and resubmit it. The same phenomenon is being observed in decision
support applications, and some DBMS products (e.g., DB2) already support extended
SQL constructs to specify such queries. A related trend is that for complex queries,
users would like to see an approximate answer quickly and then have it be continually
refined, rather than wait until the exact answer is available. We now discuss these two
trends briefly.

700 Chapter 23

23.6.1 Top N Queries

An analyst often wants to identify the top-selling handful of products, for example.
We can sort by sales for each product and return answers in this order. If we have a
million products and the analyst is only interested in the top 10, this straightforward
evaluation strategy is clearly wasteful. Thus, it is desirable for users to be able to
explicitly indicate how many answers they want, making it possible for the DBMS to
optimize execution. The example query below asks for the top 10 products ordered by
sales in a given location and time:

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

The OPTIMIZE FOR N ROWS construct is not in SQL-92 (or even SQL:1999), but it
is supported in IBM’s DB2 product, and other products (e.g., Oracle 7) have similar
constructs. In the absence of a cue such as OPTIMIZE FOR 10 ROWS, the DBMS computes
sales for all products and returns them in descending order by sales. The application
can close the result cursor (i.e., terminate the query execution) after consuming 10
rows, but considerable effort has already been expended in computing sales for all
products and sorting them.

Now let us consider how a DBMS can make use of the OPTIMIZE FOR cue to execute
the query efficiently. The key is to somehow compute sales only for products that are
likely to be in the top 10 by sales. Suppose that we know the distribution of sales
values because we maintain a histogram on the sales column of the Sales relation. We
can then choose a value of sales, say c, such that only 10 products have a larger sales
value. For those Sales tuples that meet this condition, we can apply the location and
time conditions as well and sort the result. Evaluating the following query is equivalent
to this approach:

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 AND S.sales > c

ORDER BY S.sales DESC

This approach is, of course, much faster than the alternative of computing all product
sales and sorting them, but there are some important problems to resolve:

1. How do we choose the sales cutoff value c? Histograms and other system statistics
can be used for this purpose, but this can be a tricky issue. For one thing, the
statistics maintained by a DBMS are only approximate. For another, even if we

Decision Support 701

choose the cutoff to reflect the top 10 sales values accurately, other conditions in
the query may eliminate some of the selected tuples, leaving us with fewer than
10 tuples in the result.

2. What if we have more than 10 tuples in the result? Since the choice of the cutoff
c is approximate, we could get more than the desired number of tuples in the
result. This is easily handled by returning just the top 10 to the user. We have
still saved considerably with respect to the approach of computing sales for all
products, thanks to the conservative pruning of irrelevant sales information, using
the cutoff c.

3. What if we have fewer than 10 tuples in the result? Even if we choose the sales
cutoff c conservatively, there is the possibility that we compute fewer than 10
result tuples. In this case, we can re-execute the query with a smaller cutoff value
c2, or simply re-execute the original query with no cutoff.

The effectiveness of the approach depends on how well we can estimate the cutoff, and
in particular, on minimizing the number of times we obtain fewer than the desired
number of result tuples.

23.6.2 Online Aggregation

Consider the following query, which asks for the average sales amount by state:

SELECT L.state, AVG (S.sales)
FROM Sales S, Locations L
WHERE S.locid=L.locid
GROUP BY L.state

This can be an expensive query if Sales and Locations are large relations, and we can-
not achieve fast response times with the traditional approach of computing the anwer
in its entirety when the query is presented. One alternative, as we have seen, is to
use precomputation. Another alternative is to compute the answer to the query when
the query is presented, but to return an approximate answer to the user as soon as
possible. As the computation progresses, the answer quality is continually refined.
This approach is called online aggregation. It is very attractive for queries involv-
ing aggregation, because efficient techniques for computing and refining approximate
answers are available.

Online aggregation is illustrated in Figure 23.9: For each state—the grouping criterion
for our example query—the current value for average sales is displayed, together with
a confidence interval. The entry for Alaska tells us that the current estimate of average
per-store sales in Alaska is $2,832.50, and that this is within the range $2,700.30 and
$2,964.70 with 93 percent probability. The status bar in the first column indicates how

702 Chapter 23

PRIORITIZE AVG(sales) Confidence Intervalstate

Arizona

Alaska 2,832.5

Alabama 5,232.5

STATUS

Wyoming

6,432.5

4,243.5 92% 152.3

98%

93%

97% 103.4

132.2

52.3

Figure 23.9 Online Aggregation

close we are to arriving at an exact value for the average sales, and the second column
indicates whether calculating the average sales for this state is a priority. Estimating
average sales for Alaska is not a priority, but estimating it for Arizona is a priority.
As the figure indicates, the DBMS devotes more system resources to estimating the
average sales for prioritized states; the estimate for Arizona is much tighter than that
for Alaska, and holds with a higher probability. Users can set the priority for a state
by clicking on the priority button at any time during the execution. This degree of
interactivity, together with the continuous feedback provided by the visual display,
makes online aggregation an attractive technique.

In order to implement online aggregation, a DBMS must incorporate statistical tech-
niques to provide confidence intervals for approximate answers and use nonblocking
algorithms for the relational operators. An algorithm is said to block if it does not
produce output tuples until it has consumed all of its input tuples. For example, the
sort-merge join algorithm blocks because sorting requires all input tuples before deter-
mining the first output tuple. Nested loops join and hash join are therefore preferable
to sort-merge join for online aggregation. Similarly, hash-based aggregation is better
than sort-based aggregation.

23.7 POINTS TO REVIEW

A data warehouse contains consolidated data drawn from several different databases
together with historical and summary information. Online analytic processing
(OLAP) applications and data mining applications generate complex queries that
make traditional SQL systems inadequate. Such applications support high-level
decision making and are also called decision support applications. (Section 23.1)

Decision Support 703

Information about daily operations of an organization is stored in operational
databases. This data is extracted through gateways, then cleaned and transformed
before loading it into the data warehouse. Data in the data warehouse is periodi-
cally refreshed to reflect updates, and it is periodically purged to delete outdated
information. The system catalogs of the data warehouse can be very large and are
managed in a separate database called the metadata repository. (Section 23.2)

The multidimensional data model consists of measures and dimensions. The re-
lation that relates the dimensions to the measures is called the fact table. OLAP
systems that store multidimensional datasets as arrays are called multidimensional
OLAP (MOLAP) systems. OLAP systems that store the data in relations are
called relational OLAP (ROLAP) systems. Common OLAP operations have re-
ceived special names: roll-up, drill-down, pivoting, slicing, and dicing. Databases
designed for OLAP queries commonly arrange the fact and dimension tables in a
star schema. (Section 23.3)

Index structures that are especially suitable for OLAP systems include bitmap
indexes and join indexes. (Section 23.4)

Views are widely used in decision support applications. Since decision support
systems require fast response times for interactive queries, queries involving views
must be evaluated very efficiently. Views can either be materialized or computed
on demand. We say that a materialized view is refreshed when we make it consis-
tent with changes to the underlying tables. An algorithm for refreshing a view is
incremental if the update cost is proportional to the amount of change at the base
tables. A view maintenance policy determines when a view is refreshed. In im-
mediate view maintenance the view is updated within the same transaction that
modifies the underlying tables; otherwise the policy is said to be deferred view
maintenance. Deferred view maintenance has three variants: In lazy maintenance
we refresh the view at query time. In periodic maintenance we refresh the view pe-
riodically; such views are also called snapshots. In forced maintenance we refresh
the view after a certain number of changes have been made to the base tables.
(Section 23.5)

New query paradigms include top N queries and online aggregation. In top N
queries we only want to retrieve the first N rows of the query result. An on-
line aggregation query returns an approximate answer to an aggregation query
immediately and refines the answer progressively. (Section 23.6)

EXERCISES

Exercise 23.1 Briefly answer the following questions.

1. How do warehousing, OLAP, and data mining complement each other?

704 Chapter 23

2. What is the relationship between data warehousing and data replication? Which form of

replication (synchronous or asynchronous) is better suited for data warehousing? Why?

3. What is the role of the metadata repository in a data warehouse? How does it differ

from a catalog in a relational DBMS?

4. What are the considerations in designing a data warehouse?

5. Once a warehouse is designed and loaded, how is it kept current with respect to changes

to the source databases?

6. One of the advantages of a warehouse is that we can use it to track how the contents of

a relation change over time; in contrast, we have only the current snapshot of a relation

in a regular DBMS. Discuss how you would maintain the history of a relation R, taking

into account that ‘old’ information must somehow be purged to make space for new

information.

7. Describe dimensions and measures in the multidimensional data model.

8. What is a fact table, and why is it so important from a performance standpoint?

9. What is the fundamental difference between MOLAP and ROLAP systems?

10. What is a star schema? Is it typically in BCNF? Why or why not?

11. How is data mining different from OLAP?

Exercise 23.2 Consider the instance of the Sales relation shown in Figure 23.3.

1. Show the result of pivoting the relation on pid and timeid.

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of pivoting the relation on pid and locid.

Exercise 23.3 Consider the cross-tabulation of the Sales relation shown in Figure 23.5.

1. Show the result of roll-up on locid (i.e., state).

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of roll-up on locid followed by drill-down on pid.

4. Write a collection of SQL queries to obtain the same result as in the previous part,

starting with the cross-tabulation shown in Figure 23.5.

Exercise 23.4 Consider the Customers relation and the bitmap indexes shown in Figure

23.8.

1. For the same data, if the underlying set of rating values is assumed to range from 1 to

10, show how the bitmap indexes would change.

2. How would you use the bitmap indexes to answer the following queries? If the bitmap

indexes are not useful, explain why.

(a) How many customers with a rating less than 3 are male?

(b) What percentage of customers are male?

(c) How many customers are there?

Decision Support 705

(d) How many customers are named Woo?

(e) Find the rating value with the greatest number of customers and also find the num-

ber of customers with that rating value; if several rating values have the maximum

number of customers, list the requested information for all of them. (Assume that

very few rating values have the same number of customers.)

Exercise 23.5 In addition to the Customers table of Figure 23.8 with bitmap indexes on

gender and rating, assume that you have a table called Prospects, with fields rating and

prospectid. This table is used to identify potential customers.

1. Suppose that you also have a bitmap index on the rating field of Prospects. Discuss

whether or not the bitmap indexes would help in computing the join of Customers and

Prospects on rating.

2. Suppose that you do not have a bitmap index on the rating field of Prospects. Discuss

whether or not the bitmap indexes on Customers would help in computing the join of

Customers and Prospects on rating.

3. Describe the use of a join index to support the join of these two relations with the join

condition custid=prospectid.

Exercise 23.6 Consider the instances of the Locations, Products, and Sales relations shown

in Figure 23.3.

1. Consider the basic join indexes described in Section 23.4.2. Suppose you want to optimize

for the following two kinds of queries: Query 1 finds sales in a given city, and Query

2 finds sales in a given state. Show the indexes that you would create on the example

instances shown in Figure 23.3.

2. Consider the bitmapped join indexes described in Section 23.4.2. Suppose you want to

optimize for the following two kinds of queries: Query 1 finds sales in a given city, and

Query 2 finds sales in a given state. Show the indexes that you would create on the

example instances shown in Figure 23.3.

3. Consider the basic join indexes described in Section 23.4.2. Suppose you want to optimize

for the following two kinds of queries: Query 1 finds sales in a given city for a given

product name, and Query 2 finds sales in a given state for a given product category.

Show the indexes that you would create on the example instances shown in Figure 23.3.

4. Consider the bitmapped join indexes described in Section 23.4.2. Suppose you want to

optimize for the following two kinds of queries: Query 1 finds sales in a given city for a

given product name, and Query 2 finds sales in a given state for a given product category.

Show the indexes that you would create on the example instances shown in Figure 23.3.

Exercise 23.7 Consider the view NumReservations defined below:

CREATE VIEW NumReservations (sid, sname, numres)

AS SELECT S.sid, S.sname, COUNT (*)

FROM Sailors S, Reserves R

WHERE S.sid = R.sid

GROUP BY S.sid, S.sname

706 Chapter 23

1. How is the following query, which is intended to find the highest number of reservations

made by some one sailor, rewritten using query modification?

SELECT MAX (N.numres)

FROM NumReservations N

2. Consider the alternatives of computing on demand and view materialization for the above

query. Discuss the pros and cons of materialization.

3. Discuss the pros and cons of materialization for the following query:

SELECT N.sname, MAX (N.numres)

FROM NumReservations N

GROUP BY N.sname

BIBLIOGRAPHIC NOTES

A good survey of data warehousing and OLAP is presented in [137], which is the source of

Figure 23.1. [597] provides an overview of OLAP and statistical database research, showing

the strong parallels between concepts and research in these two areas. The book by Kimball

[374], one of the pioneers in warehousing, and the collection of papers [51] offer a good practical

introduction to the area. The term OLAP was popularized by Codd’s paper [160]. For a recent

discussion of the performance of algorithms utilizing bitmap and other nontraditional index

structures, see [500].

[624] discusses how queries on views can be converted to queries on the underlying tables

through query modification. [308] compares the performance of query modification versus

immediate and deferred view maintenance. [618] presents an analytical model of materialized

view maintenance algorithms. A number of papers discuss how materialized views can be

incrementally maintained as the underlying relations are changed. This area has become very

active recently, in part because of the interest in data warehouses, which can be thought of

as collections of views over relations from various sources. An excellent overview of the state

of the art can be found in [293], which contains a number of influential papers together with

additional material that provides context and background. The following partial list should

provide pointers for further reading: [87, 161, 162, 294, 312, 498, 524, 553, 577, 616, 700].

[285] introduced the CUBE operator, and optimization of CUBE queries and efficient maintenance

of the result of a CUBE query have been addressed in several papers, including [9, 81, 182, 310,

320, 389, 552, 556, 598, 699]. Related algorithms for processing queries with aggregates and

grouping are presented in [136, 139]. [538] addresses the implementation of queries involving

generalized quantifiers such as a majority of. [619] describes an access method to support

processing of aggregate queries.

[114, 115] discuss how to evaluate queries for which only the first few answers are desired.L

[192] considers how a probabilistic approach to query optimization can be applied to this

problem. [316, 40] discuss how to return approximate answers to aggregate queries and to

refine them ‘online.’

24 DATA MINING

The secret of success is to know something nobody else knows.

—Aristotle Onassis

Data mining consists of finding interesting trends or patterns in large datasets, in
order to guide decisions about future activities. There is a general expectation that
data mining tools should be able to identify these patterns in the data with minimal
user input. The patterns identified by such tools can give a data analyst useful and
unexpected insights that can be more carefully investigated subsequently, perhaps
using other decision support tools. In this chapter, we discuss several widely studied
data mining tasks. There are commercial tools available for each of these tasks from
major vendors, and the area is rapidly growing in importance as these tools gain
acceptance from the user community.

We start in Section 24.1 by giving a short introduction to data mining. In Section 24.2,
we discuss the important task of counting co-occurring items. In Section 24.3, we
discuss how this task arises in data mining algorithms that discover rules from the
data. In Section 24.4, we discuss patterns that represent rules in the form of a tree.
In Section 24.5, we introduce a different data mining pattern called clustering and
consider how to find clusters. In Section 24.6, we consider how to perform similarity
search over sequences. We conclude with a short overview of other data mining tasks
in Section 24.7.

24.1 INTRODUCTION TO DATA MINING

Data mining is related to the subarea of statistics called exploratory data analysis,
which has similar goals and relies on statistical measures. It is also closely related to
the subareas of artificial intelligence called knowledge discovery and machine learning.
The important distinguishing characteristic of data mining is that the volume of data
is very large; although ideas from these related areas of study are applicable to data
mining problems, scalability with respect to data size is an important new criterion.
An algorithm is scalable if the running time grows (linearly) in proportion to the
dataset size, given the available system resources (e.g., amount of main memory and
disk). Old algorithms must be adapted or new algorithms must be developed to ensure
scalability.

707

708 Chapter 24

Finding useful trends in datasets is a rather loose definition of data mining: In a
certain sense, all database queries can be thought of as doing just this. Indeed, we
have a continuum of analysis and exploration tools with SQL queries at one end, OLAP
queries in the middle, and data mining techniques at the other end. SQL queries are
constructed using relational algebra (with some extensions); OLAP provides higher-
level querying idioms based on the multidimensional data model; and data mining
provides the most abstract analysis operations. We can think of different data mining
tasks as complex ‘queries’ specified at a high level, with a few parameters that are
user-definable, and for which specialized algorithms are implemented.

In the real world, data mining is much more than simply applying one of these algo-
rithms. Data is often noisy or incomplete, and unless this is understood and corrected
for, it is likely that many interesting patterns will be missed and the reliability of
detected patterns will be low. Further, the analyst must decide what kinds of mining
algorithms are called for, apply them to a well-chosen subset of data samples and vari-
ables (i.e., tuples and attributes), digest the results, apply other decision support and
mining tools, and iterate the process.

The knowledge discovery process, or short KDD process, can roughly be sepa-
rated into four steps. The raw data first undergoes a data selection step, in which we
identify the target dataset and relevant attributes. Then in a data cleaning step, we
remove noise and outliers, transform field values to common units, generate new fields
through combination of existing fields, and bring the data into the relational schema
that is used as input to the data mining activity. The data cleaning step might also
involve a denormalization of the underlying relations. In the data mining step, we
extract the actual patterns. In the final step, the evaluation step, we present the
patterns in an understandable form to the end user, for example through visualization.
The results of any step in the KDD process might lead us back to an earlier step in
order to redo the process with the new knowledge gained. In this chapter, however, we
will limit ourselves to looking at algorithms for some specific data mining tasks. We
will not discuss other aspects of the KDD process further.

24.2 COUNTING CO-OCCURRENCES

We begin by considering the problem of counting co-occurring items, which is motivated
by problems such as market basket analysis. A market basket is a collection of items
purchased by a customer in a single customer transaction. A customer transaction
consists of a single visit to a store, a single order through a mail-order catalog, or
an order at a virtual store on the web. (In this chapter, we will often abbreviate
customer transaction by transaction when there is no confusion with the usual meaning
of transaction in a DBMS context, which is an execution of a user program.) A common
goal for retailers is to identify items that are purchased together. This information can
be used to improve the layout of goods in a store or the layout of catalog pages.

Data Mining 709

transid custid date item qty
111 201 5/1/99 pen 2
111 201 5/1/99 ink 1
111 201 5/1/99 milk 3
111 201 5/1/99 juice 6
112 105 6/3/99 pen 1
112 105 6/3/99 ink 1
112 105 6/3/99 milk 1
113 106 5/10/99 pen 1
113 106 5/10/99 milk 1
114 201 6/1/99 pen 2
114 201 6/1/99 ink 2
114 201 6/1/99 juice 4

Figure 24.1 The Purchases Relation for Market Basket Analysis

24.2.1 Frequent Itemsets

We will use the Purchases relation shown in Figure 24.1 to illustrate frequent itemsets.
The records are shown sorted into groups by transaction. All tuples in a group have
the same transid, and together they describe a customer transaction, which involves
purchases of one or more items. A transaction occurs on a given date, and the name
of each purchased item is recorded, along with the purchased quantity. Observe that
there is redundancy in Purchases: It can be decomposed by storing transid–custid–date
triples separately and dropping custid and date; this may be how the data is actually
stored. However, it is convenient to consider the Purchases relation as it is shown
in Figure 24.1 in order to compute frequent itemsets. Creating such ‘denormalized’
tables for ease of data mining is commonly done in the data cleaning step of the KDD
process.

By examining the set of transaction groups in Purchases, we can make observations
of the form: “In 75 percent of the transactions both a pen and ink are purchased
together.” It is a statement that describes the transactions in the database. Extrap-
olation to future transactions should be done with caution, as discussed in Section
24.3.6. Let us begin by introducing the terminology of market basket analysis. An
itemset is a set of items. The support of an itemset is the fraction of transactions in
the database that contain all the items in the itemset. In our example, we considered
the itemset {pen, ink} and observed that the support of this itemset was 75 percent in
Purchases. We can thus conclude that pens and ink are frequently purchased together.
If we consider the itemset {milk, juice}, its support is only 25 percent. Thus milk and
juice are not purchased together frequently.

710 Chapter 24

Usually the number of sets of items that are frequently purchased together is relatively
small, especially as the size of the itemsets increases. We are interested in all itemsets
whose support is higher than a user-specified minimum support called minsup; we call
such itemsets frequent itemsets. For example, if the minimum support is set to 70
percent, then the frequent itemsets in our example are {pen}, {ink}, {milk}, {pen,
ink}, and {pen, milk}. Note that we are also interested in itemsets that contain only
a single item since they identify items that are purchased frequently.

We show an algorithm for identifying frequent itemsets in Figure 24.2. This algorithm
relies upon a simple yet fundamental property of frequent itemsets:

The a priori property: Every subset of a frequent itemset must also be a
frequent itemset.

The algorithm proceeds iteratively, first identifying frequent itemsets with just one
item. In each subsequent iteration, frequent itemsets identified in the previous iteration
are extended with another item to generate larger candidate itemsets. By considering
only itemsets obtained by enlarging frequent itemsets, we greatly reduce the number
of candidate frequent itemsets; this optimization is crucial for efficient execution. The
a priori property guarantees that this optimization is correct, that is, we don’t miss
any frequent itemsets. A single scan of all transactions (the Purchases relation in
our example) suffices to determine which candidate itemsets generated in an iteration
are frequent itemsets. The algorithm terminates when no new frequent itemsets are
identified in an iteration.

foreach item, // Level 1
check if it is a frequent itemset // appears in > minsup transactions

k = 1
repeat // Iterative, level-wise identification of frequent itemsets

foreach new frequent itemset Ik with k items // Level k + 1
generate all itemsets Ik+1 with k + 1 items, Ik ⊂ Ik+1

Scan all transactions once and check if
the generated k + 1-itemsets are frequent
k = k + 1

until no new frequent itemsets are identified

Figure 24.2 An Algorithm for Finding Frequent Itemsets

We illustrate the algorithm on the Purchases relation in Figure 24.1, with minsup set
to 70 percent. In the first iteration (Level 1), we scan the Purchases relation and
determine that each of these one-item sets is a frequent itemset: {pen} (appears in
all four transactions), {ink} (appears in three out of four transactions), and {milk}
(appears in three out of four transactions).

Data Mining 711

In the second iteration (Level 2), we extend each frequent itemset with an additional
item and generate the following candidate itemsets: {pen, ink}, {pen, milk}, {pen,
juice}, {ink, milk}, {ink, juice}, and {milk, juice}. By scanning the Purchases relation
again, we determine that the following are frequent itemsets: {pen, ink} (appears in
three out of four transactions), and {pen, milk} (appears in three out of four transac-
tions).

In the third iteration (Level 3), we extend these itemsets with an additional item,
and generate the following candidate itemsets: {pen, ink, milk}, {pen, ink, juice}, and
{pen, milk, juice}. (Observe that {ink, milk, juice} is not generated.) A third scan of
the Purchases relation allows us to determine that none of these is a frequent itemset.

The simple algorithm presented here for finding frequent itemsets illustrates the prin-
cipal feature of more sophisticated algorithms, namely the iterative generation and
testing of candidate itemsets. We consider one important refinement of this simple al-
gorithm. Generating candidate itemsets by adding an item to an itemset that is already
known to be frequent is an attempt to limit the number of candidate itemsets using the
a priori property. The a priori property implies that a candidate itemset can only be
frequent if all its subsets are frequent. Thus, we can reduce the number of candidate
itemsets further—a priori to scanning the Purchases database—by checking whether
all subsets of a newly generated candidate itemset are frequent. Only if all subsets of a
candidate itemset are frequent do we compute its support in the subsequent database
scan. Compared to the simple algorithm, this refined algorithm generates fewer can-
didate itemsets at each level and thus reduces the amount of computation performed
during the database scan of Purchases.

Consider the refined algorithm on the Purchases table in Figure 24.1 with minsup= 70
percent. In the first iteration (Level 1), we determine the frequent itemsets of size
one: {pen}, {ink}, and {milk}. In the second iteration (Level 2), only the following
candidate itemsets remain when scanning the Purchases table: {pen, ink}, {pen, milk},
and {ink, milk}. Since {juice} is not frequent, the itemsets {pen, juice}, {ink, juice},
and {milk, juice} cannot be frequent as well and we can eliminate those itemsets a
priori, that is, without considering them during the subsequent scan of the Purchases
relation. In the third iteration (Level 3), no further candidate itemsets are generated.
The itemset {pen, ink, milk} cannot be frequent since its subset {ink, milk} is not
frequent. Thus, the improved version of the algorithm does not need a third scan of
Purchases.

24.2.2 Iceberg Queries

We introduce iceberg queries through an example. Consider again the Purchases rela-
tion shown in Figure 24.1. Assume that we want to find pairs of customers and items

712 Chapter 24

such that the customer has purchased the item more than five times. We can express
this query in SQL as follows:

SELECT P.custid, P.item, SUM (P.qty)
FROM Purchases P
GROUP BY P.custid, P.item
HAVING SUM (P.qty) > 5

Think about how this query would be evaluated by a relational DBMS. Conceptually,
for each (custid, item) pair, we need to check whether the sum of the qty field is greater
than 5. One approach is to make a scan over the Purchases relation and maintain
running sums for each (custid,item) pair. This is a feasible execution strategy as long
as the number of pairs is small enough to fit into main memory. If the number of pairs
is larger than main memory, more expensive query evaluation plans that involve either
sorting or hashing have to be used.

The query has an important property that is not exploited by the above execution
strategy: Even though the Purchases relation is potentially very large and the number
of (custid,item) groups can be huge, the output of the query is likely to be relatively
small because of the condition in the HAVING clause. Only groups where the customer
has purchased the item more than five times appear in the output. For example,
there are nine groups in the query over the Purchases relation shown in Figure 24.1,
although the output only contains three records. The number of groups is very large,
but the answer to the query—the tip of the iceberg—is usually very small. Therefore,
we call such a query an iceberg query. In general, given a relational schema R with
attributes A1, A2, . . . , Ak, and B and an aggregation function aggr, an iceberg query
has the following structure:

SELECT R.A1, R.A2, ..., R.Ak, aggr(R.B)
FROM Relation R
GROUP BY R.A1, ..., R.Ak
HAVING aggr(R.B) >= constant

Traditional query plans for this query that use sorting or hashing first compute the
value of the aggregation function for all groups and then eliminate groups that do not
satisfy the condition in the HAVING clause.

Comparing the query with the problem of finding frequent itemsets that we discussed
in the previous section, there is a striking similarity. Consider again the Purchases
relation shown in Figure 24.1 and the iceberg query from the beginning of this section.
We are interested in (custid, item) pairs that have SUM (P.qty) > 5. Using a variation
of the a priori property, we can argue that we only have to consider values of the custid
field where the customer has purchased at least five items overall. We can generate
such items through the following query:

Data Mining 713

SELECT P.custid
FROM Purchases P
GROUP BY P.custid
HAVING SUM (P.qty) > 5

Similarly, we can restrict the candidate values for the item field through the following
query:

SELECT P.item
FROM Purchases P
GROUP BY P.item
HAVING SUM (P.qty) > 5

If we restrict the computation of the original iceberg query to (custid, item) groups
where the field values are in the output of the previous two queries, we eliminate a
large number of (custid, item) pairs a priori! Thus, a possible evaluation strategy
is to first compute candidate values for the custid and item fields, and only to use
combinations of these values in the evaluation of the original iceberg query. We first
generate candidate field values for individual fields and only use those values that
survive the a priori pruning step as expressed in the two previous queries. Thus, the
iceberg query is amenable to the same bottom-up evaluation strategy that is used to
find frequent itemsets. In particular, we can use the a priori property as follows: We
only keep a counter for a group if each individual component of the group satisfies
the condition expressed in the HAVING clause. The performance improvements of this
alternative evaluation strategy over traditional query plans can be very significant in
practice.

Even though the bottom-up query processing strategy eliminates many groups a priori,
the number of (custid, item) pairs can still be very large in practice—even larger
than main memory. Efficient strategies that use sampling and more sophisticated
hashing techniques have been developed; the references at the end of the chapter
provide pointers to the relevant literature.

24.3 MINING FOR RULES

Many algorithms have been proposed for discovering various forms of rules that suc-
cinctly describe the data. We now look at some widely discussed forms of rules and
algorithms for discovering them.

714 Chapter 24

24.3.1 Association Rules

We will use the Purchases relation shown in Figure 24.1 to illustrate association rules.
By examining the set of transactions in Purchases, we can identify rules of the form:

{pen} ⇒ {ink}

This rule should be read as follows: “If a pen is purchased in a transaction, it is likely
that ink will also be purchased in that transaction.” It is a statement that describes
the transactions in the database; extrapolation to future transactions should be done
with caution, as discussed in Section 24.3.6. More generally, an association rule has
the form LHS ⇒ RHS, where both LHS and RHS are sets of items. The interpretation
of such a rule is that if every item in LHS is purchased in a transaction, then it is likely
that the items in RHS are purchased as well.

There are two important measures for an association rule:

Support: The support for a set of items is the percentage of transactions that
contain all of these items. The support for a rule LHS ⇒ RHS is the support for
the set of items LHS ∪ RHS. For example, consider the rule {pen} ⇒ {ink}. The
support of this rule is the support of the itemset {pen, ink}, which is 75 percent.

Confidence: Consider transactions that contain all items in LHS. The confidence
for a rule LHS ⇒ RHS is the percentage of such transactions that also contain
all items in RHS. More precisely, let sup(LHS) be the percentage of transactions
that contain LHS and let sup(LHS ∪ RHS) be the percentage of transactions
that contain both LHS and RHS. Then the confidence of the rule LHS ⇒ RHS is
sup(LHS ∪ RHS) / sup(RHS). The confidence of a rule is an indication of the
strength of the rule. As an example, consider again the rule {pen} ⇒ {ink}. The
confidence of this rule is 75 percent; 75 percent of the transactions that contain
the itemset {pen} also contain the itemset {ink}.

24.3.2 An Algorithm for Finding Association Rules

A user can ask for all association rules that have a specified minimum support (minsup)
and minimum confidence (minconf), and various algorithms have been developed for
finding such rules efficiently. These algorithms proceed in two steps. In the first step,
all frequent itemsets with the user-specified minimum support are computed. In the
second step, rules are generated using the frequent itemsets as input. We discussed an
algorithm for finding frequent itemsets in Section 24.2, thus we concentrate here on
the rule generation part.

Once frequent itemsets are identified, the generation of all possible candidate rules with
the user-specified minimum support is straightforward. Consider a frequent itemset

Data Mining 715

X with support sX identified in the first step of the algorithm. To generate a rule
from X, we divide X into two itemsets LHS and RHS. The confidence of the rule LHS
⇒ RHS is sX/sLHS, the ratio of the support of X and the support of LHS. From
the a priori property, we know that the support of LHS is larger than minsup, and
thus we have computed the support of LHS during the first step of the algorithm.
We can compute the confidence values for the candidate rule by calculating the ratio
support(X)/ support(LHS) and then check how the ratio compares to minconf.

In general, the expensive step of the algorithm is the computation of the frequent
itemsets and many different algorithms have been developed to perform this step ef-
ficiently. Rule generation—given that all frequent itemsets have been identified—is
straightforward.

In the remainder of this section we will discuss some generalizations of the problem.

24.3.3 Association Rules and ISA Hierarchies

In many cases an ISA hierarchy or category hierarchy is imposed upon the set
of items. In the presence of a hierarchy, a transaction contains for each of its items
implicitly all the item’s ancestors in the hierarchy. For example, consider the category
hierarchy shown in Figure 24.3. Given this hierarchy, the Purchases relation is con-
ceptually enlarged by the eight records shown in Figure 24.4. That is, the Purchases
relation has all tuples shown in Figure 24.1 in addition to the tuples shown in Figure
24.4.

The hierarchy allows us to detect relationships between items at different levels of the
hierarchy. As an example, the support of the itemset {ink, juice} is 50 percent, but if
we replace juice with the more general category beverage, the support of the resulting
itemset {ink, beverage} increases to 75 percent. In general, the support of an itemset
can only increase if an item is replaced by one of its ancestors in the ISA hierarchy.

Assuming that we actually physically add the eight records shown in Figure 24.4 to the
Purchases relation, we can use any algorithm for computing frequent itemsets on the
augmented database. Assuming that the hierarchy fits into main memory, we can also
perform the addition on-the-fly while we are scanning the database, as an optimization.

Stationery Beverage

Pen Ink Juice Milk

Figure 24.3 An ISA Category Taxonomy

716 Chapter 24

transid custid date item qty
111 201 5/1/99 stationery 3
111 201 5/1/99 beverage 9
112 105 6/3/99 stationery 2
112 105 6/3/99 beverage 1
113 106 5/10/99 stationery 1
113 106 5/10/99 beverage 1
114 201 6/1/99 stationery 4
114 201 6/1/99 beverage 4

Figure 24.4 Conceptual Additions to the Purchases Relation with ISA Hierarchy

24.3.4 Generalized Association Rules

Although association rules have been most widely studied in the context of market
basket analysis, or analysis of customer transactions, the concept is more general.
Consider the Purchases relation as shown in Figure 24.5, grouped by custid. By ex-
amining the set of customer groups, we can identify association rules such as {pen} ⇒
{milk}. This rule should now be read as follows: “If a pen is purchased by a customer,
it is likely that milk will also be purchased by that customer.” In the Purchases relation
shown in Figure 24.5, this rule has both support and confidence of 100 percent.

transid custid date item qty
112 105 6/3/99 pen 1
112 105 6/3/99 ink 1
112 105 6/3/99 milk 1
113 106 5/10/99 pen 1
113 106 5/10/99 milk 1
114 201 5/15/99 pen 2
114 201 5/15/99 ink 2
114 201 5/15/99 juice 4
111 201 5/1/99 pen 2
111 201 5/1/99 ink 1
111 201 5/1/99 milk 3
111 201 5/1/99 juice 6

Figure 24.5 The Purchases Relation Sorted on Customer Id

Data Mining 717

Similarly, we can group tuples by date and identify association rules that describe
purchase behavior on the same day. As an example consider again the Purchases
relation. In this case, the rule {pen} ⇒ {milk} is now interpreted as follows: “On a
day when a pen is purchased, it is likely that milk will also be purchased.”

If we use the date field as grouping attribute, we can consider a more general problem
called calendric market basket analysis. In calendric market basket analysis, the
user specifies a collection of calendars. A calendar is any group of dates, e.g., every
Sunday in the year 1999, or every first of the month. A rule holds if it holds on every
day in the calendar. Given a calendar, we can compute association rules over the set
of tuples whose date field falls within the calendar.

By specifying interesting calendars, we can identify rules that might not have enough
support and confidence with respect to the entire database, but that have enough
support and confidence on the subset of tuples that fall within the calendar. On the
other hand, even though a rule might have enough support and confidence with respect
to the complete database, it might gain its support only from tuples that fall within
a calendar. In this case, the support of the rule over the tuples within the calendar is
significantly higher than its support with respect to the entire database.

As an example, consider the Purchases relation with the calendar every first of the
month. Within this calendar, the association rule pen ⇒ juice has support and con-
fidence of 100 percent, whereas over the entire Purchases relation, this rule only has
50 percent support. On the other hand, within the calendar, the rule pen ⇒ milk has
support of confidence of 50 percent, whereas over the entire Purchases relation it has
support and confidence of 75 percent.

More general specifications of the conditions that must be true within a group for a
rule to hold (for that group) have also been proposed. We might want to say that all
items in the LHS have to be purchased in a quantity of less than two items, and all
items in the RHS must be purchased in a quantity of more than three.

Using different choices for the grouping attribute and sophisticated conditions as in the
above examples, we can identify rules that are more complex than the basic association
rules discussed earlier. These more complex rules, nonetheless, retain the essential
structure of an association rule as a condition over a group of tuples, with support and
confidence measures defined as usual.

24.3.5 Sequential Patterns

Consider the Purchases relation shown in Figure 24.1. Each group of tuples, having
the same custid value, can be thought of as a sequence of transactions ordered by date.
This allows us to identify frequently arising buying patterns over time.

718 Chapter 24

We begin by introducing the concept of a sequence of itemsets. Each transaction
is represented by a set of tuples, and by looking at the values in the item column,
we get a set of items purchased in that transaction. Thus, the sequence of trans-
actions associated with a customer corresponds naturally to a sequence of itemsets
purchased by the customer. For example, the sequence of purchases for customer 201
is 〈{pen,ink,milk,juice}, {pen,ink,juice}〉.

A subsequence of a sequence of itemsets is obtained by deleting one or more item-
sets, and is also a sequence of itemsets. We say that a sequence 〈a1, . . . , am〉 is con-
tained in another sequence S if S has a subsequence 〈b1, . . . , bm〉 such that ai ⊆ bi,
for 1 ≤ i ≤ m. Thus, the sequence 〈{pen}, {ink,milk}, {pen,juice}〉 is contained in
〈{pen,ink}, {shirt}, {juice,ink,milk}, {juice,pen,milk}〉. Note that the order of items
within each itemset does not matter. However, the order of itemsets does matter:
the sequence 〈{pen}, {ink,milk}, {pen,juice}〉 is not contained in 〈{pen,ink}, {shirt},
{juice,pen,milk}, {juice,milk,ink}〉.

The support for a sequence S of itemsets is the percentage of customer sequences of
which S is a subsequence. The problem of identifying sequential patterns is to find all
sequences that have a user-specified minimum support. A sequence 〈a1, a2, a3, . . . , am〉
with minimum support tells us that customers often purchase the items in set a1 in
a transaction, then in some subsequent transaction buy the items in set a2, then the
items in set a3 in a later transaction, and so on.

Like association rules, sequential patterns are statements about groups of tuples in
the current database. Computationally, algorithms for finding frequently occurring
sequential patterns resemble algorithms for finding frequent itemsets. Longer and
longer sequences with the required minimum support are identified iteratively in a
manner that is very similar to the iterative identification of frequent itemsets.

24.3.6 The Use of Association Rules for Prediction

Association rules are widely used for prediction, but it is important to recognize that
such predictive use is not justified without additional analysis or domain knowledge.
Association rules describe existing data accurately but can be misleading when used
naively for prediction. For example, consider the rule

{pen} ⇒ {ink}

The confidence associated with this rule is the conditional probability of an ink pur-
chase given a pen purchase over the given database; that is, it is a descriptive measure.
We might use this rule to guide future sales promotions. For example, we might offer
a discount on pens in order to increase the sales of pens and, therefore, also increase
sales of ink.

Data Mining 719

However, such a promotion assumes that pen purchases are good indicators of ink
purchases in future customer transactions (in addition to transactions in the current
database). This assumption is justified if there is a causal link between pen purchases
and ink purchases; that is, if buying pens causes the buyer to also buy ink. However,
we can infer association rules with high support and confidence in some situations
where there is no causal link between LHS and RHS! For example, suppose that pens
are always purchased together with pencils, perhaps because of customers’ tendency
to order writing instruments together. We would then infer the rule

{pencil} ⇒ {ink}
with the same support and confidence as the rule

{pen} ⇒ {ink}
However, there is no causal link between pencils and ink. If we promote pencils, a
customer who purchases several pencils due to the promotion has no reason to buy
more ink. Thus, a sales promotion that discounted pencils in order to increase the
sales of ink would fail.

In practice, one would expect that by examining a large database of past transactions
(collected over a long time and a variety of circumstances) and restricting attention
to rules that occur often (i.e., that have high support), we minimize inferring mis-
leading rules. However, we should bear in mind that misleading, noncausal rules will
be generated. Therefore, we should treat the generated rules as possibly, rather than
conclusively, identifying causal relationships. Although association rules do not indi-
cate causal relationships between the LHS and RHS, we emphasize that they provide
a useful starting point for identifying such relationships, using either further analysis
or a domain expert’s judgment; this is the reason for their popularity.

24.3.7 Bayesian Networks

Finding causal relationships is a challenging task, as we saw in Section 24.3.6. In
general, if certain events are highly correlated, there are many possible explanations.
For example, suppose that pens, pencils, and ink are purchased together frequently. It
might be the case that the purchase of one of these items (e.g., ink) depends causally
upon the purchase of another item (e.g., pen). Or it might be the case that the purchase
of one of these items (e.g., pen) is strongly correlated with the purchase of another (e.g.,
pencil) because there is some underlying phenomenon (e.g., users’ tendency to think
about writing instruments together) that causally influences both purchases. How can
we identify the true causal relationships that hold between these events in the real
world?

One approach is to consider each possible combination of causal relationships among
the variables or events of interest to us and to evaluate the likelihood of each combina-

720 Chapter 24

tion on the basis of the data available to us. If we think of each combination of causal
relationships as a model of the real world underlying the collected data, we can assign
a score to each model by considering how consistent it is (in terms of probabilities,
with some simplifying assumptions) with the observed data. Bayesian networks are
graphs that can be used to describe a class of such models, with one node per variable
or event, and arcs between nodes to indicate causality. For example, a good model for
our running example of pens, pencils, and ink is shown in Figure 24.6. In general, the
number of possible models is exponential in the number of variables, and considering
all models is expensive, so some subset of all possible models is evaluated.

Think of
writing instruments

Buy pens

Buy pencils

Buy ink

Figure 24.6 Bayesian Network Showing Causality

24.3.8 Classification and Regression Rules

Consider the following view that contains information from a mailing campaign per-
formed by a publishing company:

InsuranceInfo(age: integer, cartype: string, highrisk: boolean)

The InsuranceInfo view has information about current customers. Each record contains
a customer’s age and type of car as well as a flag indicating whether the person is
considered a high-risk customer. If the flag is true, the customer is considered high-
risk. We would like to use this information to identify rules that predict the insurance
risk of new insurance applicants whose age and car type are known. For example, one
such rule could be: “If age is between 16 and 25 and cartype is either Sports or Truck,
then the risk is high.”

Note that the rules we want to find have a specific structure. We are not interested
in rules that predict the age or type of car of a person; we are only interested in
rules that predict the insurance risk. Thus, there is one designated attribute whose
value we would like to predict and we will call this attribute the dependent attribute.
The other attributes are called predictor attributes. In our example, the dependent
attribute in the InsuranceInfo view is the highrisk attribute and the predictor attributes
are age and cartype. The general form of the types of rules we want to discover is:

P1(X1) ∧ P2(X2) . . . ∧ Pk(Xk) ⇒ Y = c

Data Mining 721

The predictor attributes X1, . . . , Xk are used to predict the value of the dependent
attribute Y . Both sides of a rule can be interpreted as conditions on fields of a tuple.
The Pi(Xi) are predicates that involve attribute Xi. The form of the predicate de-
pends on the type of the predictor attribute. We distinguish two types of attributes:
numerical and categorical attributes. For numerical attributes, we can perform
numerical computations such as computing the average of two values, whereas for cat-
egorical attributes their domain is a set of values. In the InsuranceInfo view, age is a
numerical attribute whereas cartype and highrisk are categorical attributes. Returning
to the form of the predicates, if Xi is a numerical attribute, its predicate Pi is of the
form li ≤ Xi ≤ hi; if Xi is a categorical attribute, Pi is of the form Xi ∈ {v1, . . . , vj}.

If the dependent attribute is categorical, we call such rules classification rules. If
the dependent attribute is numerical, we call such rules regression rules.

For example, consider again our example rule: “If age is between 16 and 25 and cartype
is either Sports or Truck, then highrisk is true.” Since highrisk is a categorical attribute,
this rule is a classification rule. We can express this rule formally as follows:

(16 ≤ age ≤ 25) ∧ (cartype ∈ {Sports, Truck}) ⇒ highrisk = true

We can define support and confidence for classification and regression rules, as for
association rules:

Support: The support for a condition C is the percentage of tuples that satisfy
C. The support for a rule C1 ⇒ C2 is the support for the condition C1 ∧ C2.

Confidence: Consider those tuples that satisfy condition C1. The confidence for
a rule C1 ⇒ C2 is the percentage of such tuples that also satisfy condition C2.

As a further generalization, consider the right-hand side of a classification or regression
rule: Y = c. Each rule predicts a value of Y for a given tuple based on the values of
predictor attributes X1, . . . , Xk. We can consider rules of the form:

P1(X1) ∧ . . . ∧ Pk(Xk) ⇒ Y = f(X1, . . . , Xk)

where f is some function. We will not discuss such rules further.

Classification and regression rules differ from association rules by considering contin-
uous and categorical fields, rather than only one field that is set-valued. Identifying
such rules efficiently presents a new set of challenges and we will not discuss the general
case of discovering such rules. We will discuss a special type of such rules in Section
24.4.

Classification and regression rules have many applications. Examples include classifi-
cation of results of scientific experiments, where the type of object to be recognized

722 Chapter 24

depends on the measurements taken; direct mail prospecting, where the response of a
given customer to a promotion is a function of his or her income level and age; and
car insurance risk assessment, where a customer could be classified as risky depending
on his age, profession, and car type. Example applications of regression rules include
financial forecasting, where the price of coffee futures could be some function of the
rainfall in Colombia a month ago, and medical prognosis, where the likelihood of a
tumor being cancerous is a function of measured attributes of the tumor.

24.4 TREE-STRUCTURED RULES

In this section, we discuss the problem of discovering classification and regression rules
from a relation, but we consider only rules that have a very special structure. The type
of rules that we discuss can be represented by a tree, and typically the tree itself is the
output of the data mining activity. Trees that represent classification rules are called
classification trees or decision trees and trees that represent regression rules are
called regression trees.

Age

Car Type

>25

Sports, TruckSedan

NO

YESNO

<= 25

Figure 24.7 Insurance Risk Example Decision Tree

As an example, consider the decision tree shown in Figure 24.7. Each path from the
root node to a leaf node represents one classification rule. For example, the path from
the root to the leftmost leaf node represents the classification rule: “If a person is 25
years or younger and drives a sedan, then he is likely to have a low insurance risk.”
The path from the root to the right-most leaf node represents the classification rule:
“If a person is older than 25 years, then he is likely to have a low insurance risk.”

Tree-structured rules are very popular since they are easy to interpret. Ease of un-
derstanding is very important, since the result of any data mining activity needs to
be comprehensible by nonspecialists. In addition, studies have shown that despite
limitations in structure, tree-structured rules are very accurate. There exist efficient

Data Mining 723

algorithms to construct tree-structured rules from large databases. We will discuss a
sample algorithm for decision tree construction in the remainder of this section.

24.4.1 Decision Trees

A decision tree is a graphical representation of a collection of classification rules. Given
a data record, the tree directs the record from the root to a leaf. Each internal node of
the tree is labeled with a predictor attribute. This attribute is often called a splitting
attribute, because the data is ‘split’ based on conditions over this attribute. The
outgoing edges of an internal node are labeled with predicates that involve the splitting
attribute of the node; every data record entering the node must satisfy the predicate
labeling exactly one outgoing edge. The combined information about the splitting
attribute and the predicates on the outgoing edges is called the splitting criterion
of the node. A node with no outgoing edges is called a leaf node. Each leaf node of
the tree is labeled with a value of the dependent attribute. We only consider binary
trees where internal nodes have two outgoing edges, although trees of higher degree
are possible.

Consider the decision tree shown in Figure 24.7. The splitting attribute of the root
node is age, the splitting attribute of the left child of the root node is cartype. The
predicate on the left outgoing edge of the root node is age ≤ 25, the predicate on the
right outgoing edge is age > 25.

We can now associate a classification rule with each leaf node in the tree as follows.
Consider the path from the root of the tree to the leaf node. Each edge on that path
is labeled with a predicate. The conjunction of all these predicates makes up the left
hand side of the rule. The value of the dependent attribute at the leaf node makes
up the right-hand side of the rule. Thus, the decision tree represents a collection of
classification rules, one for each leaf node.

A decision tree is usually constructed in two phases. In phase one, the growth phase,
an overly large tree is constructed. This tree represents the records in the input
database very accurately; for example, the tree might contain leaf nodes for individual
records from the input database. In phase two, the pruning phase, the final size of
the tree is determined. The rules represented by the tree constructed in phase one are
usually overspecialized. By reducing the size of the tree, we generate a smaller number
of more general rules that are better than a very large number of very specialized rules.
Algorithms for tree pruning are beyond our scope of discussion here.

Classification tree algorithms build the tree greedily top-down in the following way.
At the root node, the database is examined and the locally ‘best’ splitting criterion
is computed. The database is then partitioned, according to the root node’s splitting
criterion, into two parts, one partition for the left child and one partition for the

724 Chapter 24

Input: node n, partition D, split selection method S
Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)

(1) Apply S to D to find the splitting criterion

(2) if (a good splitting criterion is found)

(3) Create two children nodes n1 and n2 of n

(4) Partition D into D1 and D2

(5) BuildTree(n1, D1, S)

(6) BuildTree(n2, D2, S)

(7) endif

Figure 24.8 Decision Tree Induction Schema

right child. The algorithm then recurses on each child. This schema is depicted in
Figure 24.8.

The splitting criterion at a node is found through application of a split selection
method. A split selection method is an algorithm that takes as input (part of) a
relation and outputs the locally ‘best’ splitting criterion. In our example, the split se-
lection method examines the attributes cartype and age, selects one of them as splitting
attribute, and then selects the splitting predicates. Many different, very sophisticated
split selection methods have been developed; the references provide pointers to the
relevant literature.

age cartype highrisk
23 Sedan false
30 Sports false
36 Sedan false
25 Truck true
30 Sedan false
23 Truck true
30 Truck false
25 Sports true
18 Sedan false

Figure 24.9 The InsuranceInfo Relation

Data Mining 725

24.4.2 An Algorithm to Build Decision Trees

If the input database fits into main memory we can directly follow the classification
tree induction schema shown in Figure 24.8. How can we construct decision trees when
the input relation is larger than main memory? In this case, step (1) in Figure 24.8
fails, since the input database does not fit in memory. But we can make one important
observation about split selection methods that helps us to reduce the main memory
requirements.

Consider a node of the decision tree. The split selection method has to make two
decisions after examining the partition at that node: (i) It has to select the splitting
attribute, and (ii) It has to select the splitting predicates for the outgoing edges. Once
decided on the splitting criterion, the algorithm is recursively applied to each of the
children of the node. Does a split selection method actually need the complete database
partition as input? Fortunately, the answer is no.

Split selection methods that compute splitting criteria that involve a single predic-
tor attribute at each node evaluate each predictor attribute individually. Since each
attribute is examined separately, we can provide the split selection method with aggre-
gated information about the database instead of loading the complete database into
main memory. Chosen correctly, this aggregated information is sufficient to compute
the ‘best’ splitting criterion—the same splitting criterion as if the complete database
would reside in main memory.

Since the split selection method examines all predictor attributes, we need aggregated
information about each predictor attribute. We call this aggregated information the
AVC set of the predictor attribute. The AVC set of a predictor attribute X at
node n is the projection of n’s database partition onto X and the dependent attribute
where counts of the individual values in the domain of the dependent attribute are
aggregated. (The acronym AVC stands for Attribute-Value, Classlabel, because the
values of the dependent attribute are often called class labels.) For example, consider
the InsuranceInfo relation as shown in Figure 24.9. The AVC set of the root node of
the tree for predictor attribute age is the result of the following database query:

SELECT R.age, R.highrisk, COUNT (*)
FROM InsuranceInfo R
GROUP BY R.age, R.highrisk

The AVC set for the left child of the root node for predictor attribute cartype is the
result of the following query:

SELECT R.cartype, R.highrisk, COUNT (*)
FROM InsuranceInfo R

726 Chapter 24

WHERE R.age <= 25
GROUP BY R.cartype, R.highrisk

The two AVC sets of the root node of the tree are shown in Figure 24.10.

highrisk
Car type

true false
Sedan 0 4
Sports 1 1
Truck 2 1

highrisk
Age

true false
18 0 1
23 1 1
25 2 0
30 0 3
36 0 1

Figure 24.10 AVC Group of the Root Node for the InsuranceInfo Relation

We define the AVC group of a node n to be the set of the AVC sets of all predictor
attributes at node n. In our example of the InsuranceInfo relation, there are two
predictor attributes; therefore, the AVC group of any node consists of two AVC sets.

How large are AVC sets? Note that the size of the AVC set of a predictor attribute X

at node n depends only on the number of distinct attribute values of X and the size of
the domain of the dependent attribute. For example, consider the AVC sets shown in
Figure 24.10. The AVC set for the predictor attribute cartype has three entries, and
the AVC set for predictor attribute age has five entries, although the InsuranceInfo
relation as shown in Figure 24.9 has nine records. For large databases, the size of the
AVC sets is independent of the number of tuples in the database, except if there are
attributes with very large domains, e.g., a real-valued field that is recorded at a very
high precision with many digits after the decimal point.

If we make the simplifying assumption that all the AVC sets of the root node together
fit into main memory, then we can construct decision trees from very large databases
as follows: We make a scan over the database and construct the AVC group of the root
node in memory. Then we run the split selection method of our choice with the AVC
group as input. After the split selection method computes the splitting attribute and
the splitting predicates on the outgoing nodes, we partition the database and recurse.
Note that this algorithm is very similar to the original algorithm shown in Figure 24.8;
the only modification necessary is shown in Figure 24.11. In addition, this algorithm
is still independent of the actual split selection method involved.

24.5 CLUSTERING

In this section we discuss the clustering problem. The goal is to partition a set
of records into groups such that records within a group are similar to each other and

Data Mining 727

Input: node n, partition D, split selection method S
Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)

(1a) Make a scan over D and construct the AVC group of n in-memory

(1b) Apply S to the AVC group to find the splitting criterion

Figure 24.11 Classification Tree Induction Refinement with AVC Groups

records that belong to two different groups are dissimilar. Each such group is called
a cluster and each record belongs to exactly one cluster.1 Similarity between records
is measured computationally by a distance function. A distance function takes
two input records and returns a value that is a measure of their similarity. Different
applications have different notions of similarity and there is no one measure that works
for all domains.

As an example, consider the schema of the CustomerInfo view:

CustomerInfo(age: int, salary: real)

We can plot the records in the view on a two-dimensional plane as shown in Figure
24.12. The two coordinates of a record are the values of the record’s salary and age
fields. We can visually identify three clusters: Young customers who have low salaries,
young customers with high salaries, and older customers with high salaries.

Usually, the output of a clustering algorithm consists of a summarized represen-
tation of each cluster. The type of summarized representation depends strongly on
the type and shape of clusters the algorithm computes. For example, assume that we
have spherical clusters as in the example shown in Figure 24.12. We can summarize
each cluster by its center (often also called the mean) and its radius which are defined
as follows. Given a collection of records r1, . . . , rn, their center C and radius R are
defined as follows:

C =
1
n

n∑
i=1

ri, and R =

√∑n
i=1(ri − C)

n

There are two types of clustering algorithms. A partitional clustering algorithm
partitions the data into k groups such that some criterion that evaluates the clustering
quality is optimized. The number of clusters k is a parameter whose value is specified

1There are clustering algorithms that allow overlapping clusters, where a record can potentially
belong to several clusters.

728 Chapter 24

Age

30k

60k

Salary

604020

C

A

B

Figure 24.12 Records in CustomerInfo

by the user. A hierarchical clustering algorithm generates a sequence of partitions
of the records. Starting with a partition in which each cluster consists of one single
record, the algorithm merges two partitions in each step until only one single partition
remains in the end.

24.5.1 A Clustering Algorithm

Clustering is a very old problem and numerous algorithms have been developed to clus-
ter a collection of records. Traditionally, the number of records in the input database
was assumed to be relatively small and the complete database was assumed to fit
into main memory. In this section we describe a clustering algorithm called BIRCH
that handles very large databases. The design of BIRCH reflects the following two
assumptions:

The number of records is potentially very large and therefore we want to make
only one scan over the database.

We have only a limited amount of main memory available.

A user can set two parameters to control the BIRCH algorithm. The first parameter
is a threshold on the amount of main memory available. This main memory threshold
translates into a maximum number of cluster summaries k that can be maintained in
memory. The second parameter ε is an initial threshold for the radius of any cluster.
The value of ε is an upper bound on the radius of any cluster and controls the number
of clusters that the algorithm discovers. If ε is small, we discover many small clusters;
if ε is large, we discover very few clusters, each of which is relatively large. We say
that a cluster is compact if its radius is smaller than ε.

Data Mining 729

BIRCH always maintains k or fewer cluster summaries (Ci, Ri) in main memory, where
Ci is the center of cluster i and Ri is the radius of cluster i. The algorithm always
maintains compact clusters, i.e., the radius of each cluster is less than ε. If this invari-
ant cannot be maintained with the given amount of main memory, ε is increased as
described below.

The algorithm reads records from the database sequentially and processes them as
follows:

1. Compute the distance between record r and each of the existing cluster centers.
Let i be the cluster index such that the distance between r and Ci is the smallest.

2. Compute the value of the new radius R′
i of the ith cluster under the assumption

that r is inserted into it. If R′
i ≤ ε, then the ith cluster remains compact and we

assign r to the ith cluster by updating its center and setting its radius to R′
i. If

R′
i > ε, then the ith cluster is no longer compact if we insert r into it. Therefore,

we start a new cluster containing only the record r.

The second step above presents a problem if we already have the maximum number
of cluster summaries, k. If we now read a record that requires us to create a new
cluster, we don’t have the main memory required to hold its summary. In this case,
we increase the radius threshold ε—using some heuristic to determine the increase—in
order to merge existing clusters: An increase of ε has two consequences. First, existing
clusters can accommodate ‘more’ records, since their maximum radius has increased.
Second, it might be possible to merge existing clusters such that the resulting cluster
is still compact. Thus, an increase in ε usually reduces the number of existing clusters.

The complete BIRCH algorithm uses a balanced in-memory tree, which is similar to a
B+ tree in structure, to quickly identify the closest cluster center for a new record. A
description of this data structure is beyond the scope of our discussion.

24.6 SIMILARITY SEARCH OVER SEQUENCES

A lot of information stored in databases consists of sequences. In this section, we
introduce the problem of similarity search over a collection of sequences. Our query
model is very simple: We assume that the user specifies a query sequence and wants
to retrieve all data sequences that are similar to the query sequence. Similarity search
is different from ‘normal’ queries in that we are not only interested in sequences that
match the query sequence exactly, but also in sequences that differ only slightly from
the query sequence.

We begin by describing sequences and similarity between sequences. A data sequence
X is a series of numbers X = 〈x1, . . . , xk〉. Sometimes X is also called a time series.
We call k the length of the sequence. A subsequence Z = 〈z1, . . . , zj〉 is obtained

730 Chapter 24

from another sequence X = 〈x1, . . . , xk〉 by deleting numbers from the front and back
of the sequence X. Formally, Z is a subsequence of X if z1 = xi, z2 = xi+1, . . . , zj =
zi+j−1 for some i ∈ {1, . . . , k − j + 1}. Given two sequences X = 〈x1, . . . , xk〉 and
Y = 〈y1, . . . , yk〉, we can define the Euclidean norm as the distance between the two
sequences as follows:

‖X − Y ‖ =
k∑

i=1

(xi − yi)2

Given a user-specified query sequence and a threshold parameter ε, our goal is to
retrieve all data sequences that are within ε-distance to the query sequence.

Similarity queries over sequences can be classified into two types.

Complete sequence matching: The query sequence and the sequences in the
database have the same length. Given a user-specified threshold parameter ε, our
goal is to retrieve all sequences in the database that are within ε-distance to the
query sequence.

Subsequence matching: The query sequence is shorter than the sequences in
the database. In this case, we want to find all subsequences of sequences in the
database such that the subsequence is within distance ε of the query sequence.
We will not discuss subsequence matching.

24.6.1 An Algorithm to Find Similar Sequences

Given a collection of data sequences, a query sequence, and a distance threshold ε,
how can we efficiently find all sequences that are within ε-distance from the query
sequence?

One possibility is to scan the database, retrieve each data sequence, and compute its
distance to the query sequence. Even though this algorithm is very simple, it always
retrieves every data sequence.

Because we consider the complete sequence matching problem, all data sequences and
the query sequence have the same length. We can think of this similarity search as
a high-dimensional indexing problem. Each data sequence and the query sequence
can be represented as a point in a k-dimensional space. Thus, if we insert all data
sequences into a multidimensional index, we can retrieve data sequences that exactly
match the query sequence by querying the index. But since we want to retrieve not
only data sequences that match the query exactly, but also all sequences that are
within ε-distance from the query sequence, we do not use a point query as defined
by the query sequence. Instead, we query the index with a hyper-rectangle that has
side-length 2 · ε and the query sequence as center, and we retrieve all sequences that

Data Mining 731

Two example data mining products—IBM Intelligent Miner and Sili-
con Graphics Mineset: Both products offer a wide range of data mining algo-
rithms including association rules, regression, classification, and clustering. The
emphasis of Intelligent Miner is on scalability—the product contains versions of
all algorithms for parallel computers and is tightly integrated with IBM’s DB2
database system. Mineset supports extensive visualization of all data mining re-
sults, utilizing the powerful graphics features of SGI workstations.

fall within this hyper-rectangle. We then discard sequences that are actually further
than only a distance of ε away from the query sequence.

Using the index allows us to greatly reduce the number of sequences that we consider
and decreases the time to evaluate the similarity query significantly. The references at
the end of the chapter provide pointers to further improvements.

24.7 ADDITIONAL DATA MINING TASKS

We have concentrated on the problem of discovering patterns from a database. There
are several other equally important data mining tasks, some of which we discuss briefly
below. The bibliographic references at the end of the chapter provide many pointers
for further study.

Dataset and feature selection: It is often important to select the ‘right’ dataset
to mine. Dataset selection is the process of finding which datasets to mine. Feature
selection is the process of deciding which attributes to include in the mining process.

Sampling: One way to explore a large dataset is to obtain one or more samples and
to analyze the samples. The advantage of sampling is that we can carry out detailed
analysis on a sample that would be infeasible on the entire dataset, for very large
datasets. The disadvantage of sampling is that obtaining a representative sample for
a given task is difficult; we might miss important trends or patterns because they are
not reflected in the sample. Current database systems also provide poor support for
efficiently obtaining samples. Improving database support for obtaining samples with
various desirable statistical properties is relatively straightforward and is likely to be
available in future DBMSs. Applying sampling for data mining is an area for further
research.

Visualization: Visualization techniques can significantly assist in understanding com-
plex datasets and detecting interesting patterns, and the importance of visualization
in data mining is widely recognized.

732 Chapter 24

24.8 POINTS TO REVIEW

Data mining consists of finding interesting patterns in large datasets. It is part
of an iterative process that involves data source selection, preprocessing, transfor-
mation, data mining, and finally interpretation of results. (Section 24.1)

An itemset is a collection of items purchased by a customer in a single customer
transaction. Given a database of transactions, we call an itemset frequent if it is
contained in a user-specified percentage of all transactions. The a priori prop-
erty is that every subset of a frequent itemset is also frequent. We can identify
frequent itemsets efficiently through a bottom-up algorithm that first generates
all frequent itemsets of size one, then size two, and so on. We can prune the
search space of candidate itemsets using the a priori property. Iceberg queries are
SELECT-FROM-GROUP BY-HAVING queries with a condition involving aggregation in
the HAVING clause. Iceberg queries are amenable to the same bottom-up strategy
that is used for computing frequent itemsets. (Section 24.2)

An important type of pattern that we can discover from a database is a rule.
Association rules have the form LHS ⇒ RHS with the interpretation that if every
item in the LHS is purchased, then it is likely that items in the RHS are pur-
chased as well. Two important measures for a rule are its support and confidence.
We can compute all association rules with user-specified support and confidence
thresholds by post-processing frequent itemsets. Generalizations of association
rules involve an ISA hierarchy on the items and more general grouping condi-
tions that extend beyond the concept of a customer transaction. A sequential
pattern is a sequence of itemsets purchased by the same customer. The type of
rules that we discussed describe associations in the database and do not imply
causal relationships. Bayesian networks are graphical models that can represent
causal relationships. Classification and regression rules are more general rules that
involve numerical and categorical attributes. (Section 24.3)

Classification and regression rules are often represented in the form of a tree. If
a tree represents a collection of classification rules, it is often called a decision
tree. Decision trees are constructed greedily top-down. A split selection method
selects the splitting criterion at each node of the tree. A relatively compact data
structure, the AVC set contains sufficient information to let split selection methods
decide on the splitting criterion. (Section 24.4)

Clustering aims to partition a collection of records into groups called clusters such
that similar records fall into the same cluster and dissimilar records fall into dif-
ferent clusters. Similarity is usually based on a distance function. (Section 24.5)

Similarity queries are different from exact queries in that we also want to retrieve
results that are slightly different from the exact answer. A sequence is an or-
dered series of numbers. We can measure the difference between two sequences
by computing the Euclidean distance between the sequences. In similarity search

Data Mining 733

over sequences, we are given a collection of data sequences, a query sequence, and
a threshold parameter ε and want to retrieve all data sequences that are within
ε-distance from the query sequence. One approach is to represent each sequence
as a point in a multidimensional space and then use a multidimensional indexing
method to limit the number of candidate sequences returned. (Section 24.6)

Additional data mining tasks include dataset and feature selection, sampling, and
visualization. (Section 24.7)

EXERCISES

Exercise 24.1 Briefly answer the following questions.

1. Define support and confidence for an association rule.

2. Explain why association rules cannot be used directly for prediction, without further

analysis or domain knowledge.

3. Distinguish between association rules, classification rules, and regression rules.

4. Distinguish between classification and clustering.

5. What is the role of information visualization in data mining?

6. Give examples of queries over a database of stock price quotes, stored as sequences, one

per stock, that cannot be expressed in SQL.

Exercise 24.2 Consider the Purchases table shown in Figure 24.1.

1. Simulate the algorithm for finding frequent itemsets on this table with minsup=90 per-

cent, and then find association rules with minconf=90 percent.

2. Can you modify the table so that the same frequent itemsets are obtained with minsup=90

percent as with minsup=70 percent on the table shown in Figure 24.1?

3. Simulate the algorithm for finding frequent itemsets on the table in Figure 24.1 with

minsup=10 percent and then find association rules with minconf=90 percent.

4. Can you modify the table so that the same frequent itemsets are obtained with minsup=10

percent as with minsup=70 percent on the table shown in Figure 24.1?

Exercise 24.3 Consider the Purchases table shown in Figure 24.1. Find all (generalized)

association rules that indicate likelihood of items being purchased on the same date by the

same customer, with minsup=10 percent and minconf=70 percent.

Exercise 24.4 Let us develop a new algorithm for the computation of all large itemsets.

Assume that we are given a relation D similar to the Purchases table shown in Figure 24.1.

We partition the table horizontally into k parts D1, . . . , Dk.

1. Show that if itemset x is frequent in D, then it is frequent in at least one of the k parts.

2. Use this observation to develop an algorithm that computes all frequent itemsets in two

scans over D. (Hint: In the first scan, compute the locally frequent itemsets for each

part Di, i ∈ {1, . . . , k}.)

734 Chapter 24

3. Illustrate your algorithm using the Purchases table shown in Figure 24.1. The first

partition consists of the two transactions with transid 111 and 112, the second partition

consists of the two transactions with transid 113 and 114. Assume that the minimum

support is 70 percent.

Exercise 24.5 Consider the Purchases table shown in Figure 24.1. Find all sequential pat-

terns with minsup= 60 percent. (The text only sketches the algorithm for discovering sequen-

tial patterns; so use brute force or read one of the references for a complete algorithm.)

age salary subscription

37 45k No

39 70k Yes

56 50k Yes

52 43k Yes

35 90k Yes

32 54k No

40 58k No

55 85k Yes

43 68k Yes

Figure 24.13 The SubscriberInfo Relation

Exercise 24.6 Consider the SubscriberInfo Relation shown in Figure 24.13. It contains

information about the marketing campaign of the DB Aficionado magazine. The first two

columns show the age and salary of a potential customer and the subscription column shows

whether the person subscribed to the magazine. We want to use this data to construct a

decision tree that helps to predict whether a person is going to subscribe to the magazine.

1. Construct the AVC-group of the root node of the tree.

2. Assume that the spliting predicate at the root node is age≤ 50. Construct the AVC-

groups of the two children nodes of the root node.

Exercise 24.7 Assume you are given the following set of six records: 〈7, 55〉, 〈21, 202〉,
〈25, 220〉, 〈12, 73〉, 〈8, 61〉, and 〈22, 249〉.

1. Assuming that all six records belong to a single cluster, compute its center and radius.

2. Assume that the first three records belong to one cluster and the second three records

belong to a different cluster. Compute the center and radius of the two clusters.

3. Which of the two clusterings is ‘better’ in your opinion and why?

Exercise 24.8 Assume you are given the three sequences 〈1, 3, 4〉, 〈2, 3, 2〉, 〈3, 3, 7〉. Compute

the Euclidian norm between all pairs of sequences.

BIBLIOGRAPHIC NOTES

Discovering useful knowledge from a large database is more than just applying a collection

of data mining algorithms, and the point of view that it is an iterative process guided by

Data Mining 735

an analyst is stressed in [227] and [579]. Work on exploratory data analysis in statistics, for

example, [654], and on machine learning and knowledge discovery in artificial intelligence was

a precursor to the current focus on data mining; the added emphasis on large volumes of

data is the important new element. Good recent surveys of data mining algorithms include

[336, 229, 441]. [228] contains additional surveys and articles on many aspects of data mining

and knowledge discovery, including a tutorial on Bayesian networks [313]. The book by

Piatetsky-Shapiro and Frawley [518] and the book by Fayyad, Piatetsky-Shapiro, Smyth, and

Uthurusamy [230] contain collections of data mining papers. The annual SIGKDD conference,

run by the ACM special interest group in knowledge discovery in databases, is a good resource

for readers interested in current research in data mining [231, 602, 314, 21], as is the Journal

of Knowledge Discovery and Data Mining.

The problem of mining association rules was introduced by Agrawal, Imielinski, and Swami

[16]. Many efficient algorithms have been proposed for the computation of large itemsets,

including [17]. Iceberg queries have been introduced by Fang et al. [226]. There is also a

large body of research on generalized forms of association rules; for example [611, 612, 614].

A fast algorithm based on sampling is proposed in [647]. Parallel algorithms are described in

[19] and [570]. [249] presents an algorithm for discovering association rules over a continuous

numeric attribute; association rules over numeric attributes are also discussed in [687]. The

general form of association rules in which attributes other than the transaction id are grouped

is developed in [459]. Association rules over items in a hierarchy are discussed in [611, 306].

Further extensions and generalization of association rules are proposed in [98, 492, 352].

Integration of mining for frequent itemsets into database systems has been addressed in [569,

652]. The problem of mining sequential patterns is discussed in [20], and further algorithms

for mining sequential patterns can be found in [444, 613].

General introductions to classification and regression rules can be found in [307, 462]. The

classic reference for decision and regression tree construction is the CART book by Breiman,

Friedman, Olshen, and Stone [94]. A machine learning perspective of decision tree con-

struction is given by Quinlan [526]. Recently, several scalable algorithms for decision tree

construction have been developed [264, 265, 453, 539, 587].

The clustering problem has been studied for decades in several disciplines. Sample textbooks

include [195, 346, 357]. Sample scalable clustering algorithms include CLARANS [491], DB-

SCAN [211, 212], BIRCH [698], and CURE [292]. Bradley, Fayyad and Reina address the

problem of scaling the K-Means clustering algorithm to large databases [92, 91]. The problem

of finding clusters in subsets of the fields is addressed in [15]. Ganti et al. examine the problem

of clustering data in arbitrary metric spaces [258]. Algorithms for clustering caterogical data

include STIRR [267] and CACTUS [257].

Sequence queries have received a lot of attention recently. Extending relational systems, which

deal with sets of records, to deal with sequences of records is investigated in [410, 578, 584].

Finding similar sequences from a large database of sequences is discussed in [18, 224, 385,

528, 592].

25 OBJECT-DATABASE SYSTEMS

with Joseph M. Hellerstein
U. C. Berkeley

You know my methods, Watson. Apply them.

—Arthur Conan Doyle, The Memoirs of Sherlock Holmes

Relational database systems support a small, fixed collection of data types (e.g., in-
tegers, dates, strings), which has proven adequate for traditional application domains
such as administrative data processing. In many application domains, however, much
more complex kinds of data must be handled. Typically this complex data has been
stored in OS file systems or specialized data structures, rather than in a DBMS. Ex-
amples of domains with complex data include computer-aided design and modeling
(CAD/CAM), multimedia repositories, and document management.

As the amount of data grows, the many features offered by a DBMS—for example,
reduced application development time, concurrency control and recovery, indexing
support, and query capabilities—become increasingly attractive and, ultimately, nec-
essary. In order to support such applications, a DBMS must support complex data
types. Object-oriented concepts have strongly influenced efforts to enhance database
support for complex data and have led to the development of object-database systems,
which we discuss in this chapter.

Object-database systems have developed along two distinct paths:

Object-oriented database systems: Object-oriented database systems are
proposed as an alternative to relational systems and are aimed at application
domains where complex objects play a central role. The approach is heavily in-
fluenced by object-oriented programming languages and can be understood as an
attempt to add DBMS functionality to a programming language environment.

Object-relational database systems: Object-relational database systems can
be thought of as an attempt to extend relational database systems with the func-
tionality necessary to support a broader class of applications and, in many ways,
provide a bridge between the relational and object-oriented paradigms.

736

Object-Database Systems 737

We will use acronyms for relational database management systems (RDBMS), object-
oriented database management systems (OODBMS), and object-relational database
management systems (ORDBMS). In this chapter we focus on ORDBMSs and em-
phasize how they can be viewed as a development of RDBMSs, rather than as an
entirely different paradigm.

The SQL:1999 standard is based on the ORDBMS model, rather than the OODBMS
model. The standard includes support for many of the complex data type features
discussed in this chapter. We have concentrated on developing the fundamental con-
cepts, rather than on presenting SQL:1999; some of the features that we discuss are
not included in SQL:1999. We have tried to be consistent with SQL:1999 for notation,
although we have occasionally diverged slightly for clarity. It is important to recognize
that the main concepts discussed are common to both ORDBMSs and OODBMSs, and
we discuss how they are supported in the ODL/OQL standard proposed for OODBMSs
in Section 25.8.

RDBMS vendors, including IBM, Informix, and Oracle, are adding ORDBMS func-
tionality (to varying degrees) in their products, and it is important to recognize how
the existing body of knowledge about the design and implementation of relational
databases can be leveraged to deal with the ORDBMS extensions. It is also impor-
tant to understand the challenges and opportunities that these extensions present to
database users, designers, and implementors.

In this chapter, sections 25.1 through 25.5 motivate and introduce object-oriented
concepts. The concepts discussed in these sections are common to both OODBMSs and
ORDBMSs, even though our syntax is similar to SQL:1999. We begin by presenting
an example in Section 25.1 that illustrates why extensions to the relational model
are needed to cope with some new application domains. This is used as a running
example throughout the chapter. We discuss how abstract data types can be defined
and manipulated in Section 25.2 and how types can be composed into structured types
in Section 25.3. We then consider objects and object identity in Section 25.4 and
inheritance and type hierarchies in Section 25.5.

We consider how to take advantage of the new object-oriented concepts to do ORDBMS
database design in Section 25.6. In Section 25.7, we discuss some of the new imple-
mentation challenges posed by object-relational systems. We discuss ODL and OQL,
the standards for OODBMSs, in Section 25.8, and then present a brief comparison of
ORDBMSs and OODBMSs in Section 25.9.

25.1 MOTIVATING EXAMPLE

As a specific example of the need for object-relational systems, we focus on a new busi-
ness data processing problem that is both harder and (in our view) more entertaining

738 Chapter 25

than the dollars and cents bookkeeping of previous decades. Today, companies in in-
dustries such as entertainment are in the business of selling bits; their basic corporate
assets are not tangible products, but rather software artifacts such as video and audio.

We consider the fictional Dinky Entertainment Company, a large Hollywood conglom-
erate whose main assets are a collection of cartoon characters, especially the cuddly
and internationally beloved Herbert the Worm. Dinky has a number of Herbert the
Worm films, many of which are being shown in theaters around the world at any given
time. Dinky also makes a good deal of money licensing Herbert’s image, voice, and
video footage for various purposes: action figures, video games, product endorsements,
and so on. Dinky’s database is used to manage the sales and leasing records for the
various Herbert-related products, as well as the video and audio data that make up
Herbert’s many films.

25.1.1 New Data Types

A basic problem confronting Dinky’s database designers is that they need support for
considerably richer data types than is available in a relational DBMS:

User-defined abstract data types (ADTs): Dinky’s assets include Herbert’s
image, voice, and video footage, and these must be stored in the database. Further,
we need special functions to manipulate these objects. For example, we may want
to write functions that produce a compressed version of an image or a lower-
resolution image. (See Section 25.2.)

Structured types: In this application, as indeed in many traditional business
data processing applications, we need new types built up from atomic types using
constructors for creating sets, tuples, arrays, sequences, and so on. (See Sec-
tion 25.3.)

Inheritance: As the number of data types grows, it is important to recognize
the commonality between different types and to take advantage of it. For exam-
ple, compressed images and lower-resolution images are both, at some level, just
images. It is therefore desirable to inherit some features of image objects while
defining (and later manipulating) compressed image objects and lower-resolution
image objects. (See Section 25.5.)

How might we address these issues in an RDBMS? We could store images, videos, and
so on as BLOBs in current relational systems. A binary large object (BLOB) is
just a long stream of bytes, and the DBMS’s support consists of storing and retrieving
BLOBs in such a manner that a user does not have to worry about the size of the
BLOB; a BLOB can span several pages, unlike a traditional attribute. All further
processing of the BLOB has to be done by the user’s application program, in the host
language in which the SQL code is embedded. This solution is not efficient because we

Object-Database Systems 739

Large objects in SQL: SQL:1999 includes a new data type called LARGE OBJECT
or LOB, with two variants called BLOB (binary large object) and CLOB (character
large object). This standardizes the large object support found in many current
relational DBMSs. LOBs cannot be included in primary keys, GROUP BY, or ORDER
BY clauses. They can be compared using equality, inequality, and substring oper-
ations. A LOB has a locator that is essentially a unique id and allows LOBs to
be manipulated without extensive copying.
LOBs are typically stored separately from the data records in whose fields they
appear. IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE
all support LOBs.

are forced to retrieve all BLOBs in a collection even if most of them could be filtered
out of the answer by applying user-defined functions (within the DBMS). It is not
satisfactory from a data consistency standpoint either, because the semantics of the
data is now heavily dependent on the host language application code and cannot be
enforced by the DBMS.

As for structured types and inheritance, there is simply no support in the relational
model. We are forced to map data with such complex structure into a collection of flat
tables. (We saw examples of such mappings when we discussed the translation from
ER diagrams with inheritance to relations in Chapter 2.)

This application clearly requires features that are not available in the relational model.
As an illustration of these features, Figure 25.1 presents SQL:1999 DDL statements
for a portion of Dinky’s ORDBMS schema that will be used in subsequent examples.
Although the DDL is very similar to that of a traditional relational system, it has
some important distinctions that highlight the new data modeling capabilities of an
ORDBMS. A quick glance at the DDL statements is sufficient for now; we will study
them in detail in the next section, after presenting some of the basic concepts that our
sample application suggests are needed in a next-generation DBMS.

25.1.2 Manipulating the New Kinds of Data

Thus far, we have described the new kinds of data that must be stored in the Dinky
database. We have not yet said anything about how to use these new types in queries,
so let’s study two queries that Dinky’s database needs to support. The syntax of the
queries is not critical; it is sufficient to understand what they express. We will return
to the specifics of the queries’ syntax as we proceed.

Our first challenge comes from the Clog breakfast cereal company. Clog produces a
cereal called Delirios, and it wants to lease an image of Herbert the Worm in front of

740 Chapter 25

1. CREATE TABLE Frames
(frameno integer, image jpeg image, category integer);

2. CREATE TABLE Categories
(cid integer, name text, lease price float, comments text);

3. CREATE TYPE theater t AS
ROW(tno integer, name text, address text, phone text);

4. CREATE TABLE Theaters OF theater t;
5. CREATE TABLE Nowshowing

(film integer, theater ref(theater t) with scope Theaters, start date, end date);
6. CREATE TABLE Films

(filmno integer, title text, stars setof(text),
director text, budget float);

7. CREATE TABLE Countries
(name text, boundary polygon, population integer, language text);

Figure 25.1 SQL:1999 DDL Statements for Dinky Schema

a sunrise, to incorporate in the Delirios box design. A query to present a collection
of possible images and their lease prices can be expressed in SQL-like syntax as in
Figure 25.2. Dinky has a number of methods written in an imperative language like
Java and registered with the database system. These methods can be used in queries
in the same way as built-in methods, such as =, +,−, <, >, are used in a relational
language like SQL. The thumbnail method in the Select clause produces a small
version of its full-size input image. The is sunrise method is a boolean function that
analyzes an image and returns true if the image contains a sunrise; the is herbert
method returns true if the image contains a picture of Herbert. The query produces
the frame code number, image thumbnail, and price for all frames that contain Herbert
and a sunrise.

SELECT F.frameno, thumbnail(F.image), C.lease price
FROM Frames F, Categories C
WHERE F.category = C.cid AND is sunrise(F.image) AND is herbert(F.image)

Figure 25.2 Extended SQL to Find Pictures of Herbert at Sunrise

The second challenge comes from Dinky’s executives. They know that Delirios is
exceedingly popular in the tiny country of Andorra, so they want to make sure that a
number of Herbert films are playing at theaters near Andorra when the cereal hits the
shelves. To check on the current state of affairs, the executives want to find the names
of all theaters showing Herbert films within 100 kilometers of Andorra. Figure 25.3
shows this query in an SQL-like syntax.

Object-Database Systems 741

SELECT N.theater–>name, N.theater–>address, F.title
FROM Nowshowing N, Films F, Countries C
WHERE N.film = F.filmno AND

overlaps(C.boundary, radius(N.theater–>address, 100)) AND
C.name = ‘Andorra’ AND ‘Herbert the Worm’ ∈ F.stars

Figure 25.3 Extended SQL to Find Herbert Films Playing near Andorra

The theater attribute of the Nowshowing table is a reference to an object in another
table, which has attributes name, address, and location. This object referencing allows
for the notation N.theater–>name and N.theater–>address, each of which refers to
attributes of the theater t object referenced in the Nowshowing row N . The stars
attribute of the films table is a set of names of each film’s stars. The radius method
returns a circle centered at its first argument with radius equal to its second argument.
The overlaps method tests for spatial overlap. Thus, Nowshowing and Films are
joined by the equijoin clause, while Nowshowing and Countries are joined by the spatial
overlap clause. The selections to ‘Andorra’ and films containing ‘Herbert the Worm’
complete the query.

These two object-relational queries are similar to SQL-92 queries but have some un-
usual features:

User-defined methods: User-defined abstract types are manipulated via their
methods, for example, is herbert (Section 25.2).

Operators for structured types: Along with the structured types available
in the data model, ORDBMSs provide the natural methods for those types. For
example, the setof types have the standard set methods ∈,3,⊂,⊆, =,⊇,⊃,∪,∩,

and − (Section 25.3.1).

Operators for reference types: Reference types are dereferenced via an arrow
(–>) notation (Section 25.4.2).

To summarize the points highlighted by our motivating example, traditional relational
systems offer limited flexibility in the data types available. Data is stored in tables,
and the type of each field value is limited to a simple atomic type (e.g., integer or
string), with a small, fixed set of such types to choose from. This limited type system
can be extended in three main ways: user-defined abstract data types, structured types,
and reference types. Collectively, we refer to these new types as complex types. In
the rest of this chapter we consider how a DBMS can be extended to provide support
for defining new complex types and manipulating objects of these new types.

742 Chapter 25

25.2 USER-DEFINED ABSTRACT DATA TYPES

Consider the Frames table of Figure 25.1. It has a column image of type jpeg image,
which stores a compressed image representing a single frame of a film. The jpeg image
type is not one of the DBMS’s built-in types and was defined by a user for the Dinky
application to store image data compressed using the JPEG standard. As another
example, the Countries table defined in Line 7 of Figure 25.1 has a column boundary
of type polygon, which contains representations of the shapes of countries’ outlines on
a world map.

Allowing users to define arbitrary new data types is a key feature of ORDBMSs. The
DBMS allows users to store and retrieve objects of type jpeg image, just like an
object of any other type, such as integer. New atomic data types usually need to
have type-specific operations defined by the user who creates them. For example, one
might define operations on an image data type such as compress, rotate, shrink, and
crop. The combination of an atomic data type and its associated methods is called
an abstract data type, or ADT. Traditional SQL comes with built-in ADTs, such
as integers (with the associated arithmetic methods), or strings (with the equality,
comparison, and LIKE methods). Object-relational systems include these ADTs and
also allow users to define their own ADTs.

The label ‘abstract’ is applied to these data types because the database system does
not need to know how an ADT’s data is stored nor how the ADT’s methods work. It
merely needs to know what methods are available and the input and output types for
the methods. Hiding of ADT internals is called encapsulation.1 Note that even in
a relational system, atomic types such as integers have associated methods that are
encapsulated into ADTs. In the case of integers, the standard methods for the ADT
are the usual arithmetic operators and comparators. To evaluate the addition operator
on integers, the database system need not understand the laws of addition—it merely
needs to know how to invoke the addition operator’s code and what type of data to
expect in return.

In an object-relational system, the simplification due to encapsulation is critical be-
cause it hides any substantive distinctions between data types and allows an ORDBMS
to be implemented without anticipating the types and methods that users might want
to add. For example, adding integers and overlaying images can be treated uniformly
by the system, with the only significant distinctions being that different code is invoked
for the two operations and differently typed objects are expected to be returned from
that code.

1Some ORDBMSs actually refer to ADTs as opaque types because they are encapsulated and
hence one cannot see their details.

Object-Database Systems 743

Packaged ORDBMS extensions: Developing a set of user-defined types and
methods for a particular application—say image management—can involve a signif-
icant amount of work and domain-specific expertise. As a result, most ORDBMS
vendors partner with third parties to sell prepackaged sets of ADTs for particular
domains. Informix calls these extensions DataBlades, Oracle calls them Data Car-
tridges, IBM calls them DB2 Extenders, and so on. These packages include the
ADT method code, DDL scripts to automate loading the ADTs into the system,
and in some cases specialized access methods for the data type. Packaged ADT
extensions are analogous to class libraries that are available for object-oriented
programming languages: They provide a set of objects that together address a
common task.

25.2.1 Defining Methods of an ADT

At a minimum, for each new atomic type a user must define methods that enable the
DBMS to read in and to output objects of this type and to compute the amount of
storage needed to hold the object. The user who creates a new atomic type must
register the following methods with the DBMS:

Size: Returns the number of bytes of storage required for items of the type or the
special value variable, if items vary in size.

Import: Creates new items of this type from textual inputs (e.g., INSERT state-
ments).

Export: Maps items of this type to a form suitable for printing, or for use in an
application program (e.g., an ASCII string or a file handle).

In order to register a new method for an atomic type, users must write the code for
the method and then inform the database system about the method. The code to be
written depends on the languages supported by the DBMS, and possibly the operating
system in question. For example, the ORDBMS may handle Java code in the Linux
operating system. In this case the method code must be written in Java and compiled
into a Java bytecode file stored in a Linux file system. Then an SQL-style method
registration command is given to the ORDBMS so that it recognizes the new method:

CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

This statement defines the salient aspects of the method: the type of the associated
ADT, the return type, and the location of the code. Once the method is registered,

744 Chapter 25

the DBMS uses a Java virtual machine to execute the code2. Figure 25.4 presents a
number of method registration commands for our Dinky database.

1. CREATE FUNCTION thumbnail(jpeg image) RETURNS jpeg image
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

2. CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

3. CREATE FUNCTION is herbert(jpeg image) RETURNS boolean
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

4. CREATE FUNCTION radius(polygon, float) RETURNS polygon
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

5. CREATE FUNCTION overlaps(polygon, polygon) RETURNS boolean
AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

Figure 25.4 Method Registration Commands for the Dinky Database

Type definition statements for the user-defined atomic data types in the Dinky schema
are given in Figure 25.5.

1. CREATE ABSTRACT DATA TYPE jpeg image
(internallength = VARIABLE, input = jpeg in, output = jpeg out);

2. CREATE ABSTRACT DATA TYPE polygon
(internallength = VARIABLE, input = poly in, output = poly out);

Figure 25.5 Atomic Type Declaration Commands for Dinky Database

25.3 STRUCTURED TYPES

Atomic types and user-defined types can be combined to describe more complex struc-
tures using type constructors. For example, Line 6 of Figure 25.1 defines a column
stars of type setof(text); each entry in that column is a set of text strings, represent-
ing the stars in a film. The setof syntax is an example of a type constructor. Other
common type constructors include:

ROW(n1 t1, ..., nn tn): A type representing a row, or tuple, of n fields with fields
n1, ..., nn of types t1, ..., tn respectively.

listof(base): A type representing a sequence of base-type items.

ARRAY(base): A type representing an array of base-type items.

setof(base): A type representing a set of base-type items. Sets cannot contain
duplicate elements.

2In the case of non-portable compiled code – written, for example, in a language like C++ – the
DBMS uses the operating system’s dynamic linking facility to link the method code into the database
system so that it can be invoked.

Object-Database Systems 745

Structured data types in SQL: The theater t type in Figure 25.1 illustrates
the new ROW data type in SQL:1999; a value of ROW type can appear in a field
of a tuple. In SQL:1999 the ROW type has a special role because every table is a
collection of rows—every table is a set of rows or a multiset of rows. SQL:1999
also includes a data type called ARRAY, which allows a field value to be an array.
The ROW and ARRAY type constructors can be freely interleaved and nested to
build structured objects. The listof, bagof, and setof type constructors are
not included in SQL:1999. IBM DB2, Informix UDS, and Oracle 8 support the
ROW constructor.

bagof(base): A type representing a bag or multiset of base-type items.

To fully appreciate the power of type constructors, observe that they can be composed;
for example, ARRAY(ROW(age: integer, sal: integer)). Types defined using type con-
structors are called structured types. Those using listof, ARRAY, bagof, or setof
as the outermost type constructor are sometimes referred to as collection types, or
bulk data types.

The introduction of structured types changes a fundamental characteristic of relational
databases, which is that all fields contain atomic values. A relation that contains a
structured type object is not in first normal form! We discuss this point further in
Section 25.6.

25.3.1 Manipulating Data of Structured Types

The DBMS provides built-in methods for the types supported through type construc-
tors. These methods are analogous to built-in operations such as addition and multi-
plication for atomic types such as integers. In this section we present the methods for
various type constructors and illustrate how SQL queries can create and manipulate
values with structured types.

Built-in Operators for Structured Types

We now consider built-in operators for each of the structured types that we presented
in Section 25.3.

Rows: Given an item i whose type is ROW(n1 t1, ..., nn tn), the field extraction method
allows us to access an individual field nk using the traditional dot notation i.nk. If row
constructors are nested in a type definition, dots may be nested to access the fields of
the nested row; for example i.nk.ml. If we have a collection of rows, the dot notation

746 Chapter 25

gives us a collection as a result. For example, if i is a list of rows, i.nk gives us a list
of items of type tn; if i is a set of rows, i.nk gives us a set of items of type tn.

This nested-dot notation is often called a path expression because it describes a path
through the nested structure.

Sets and multisets: Set objects can be compared using the traditional set methods
⊂,⊆, =,⊇,⊃. An item of type setof(foo) can be compared with an item of type
foo using the ∈ method, as illustrated in Figure 25.3, which contains the comparison
‘Herbert the Worm’ ∈ F.stars. Two set objects (having elements of the same type)
can be combined to form a new object using the ∪, ∩, and − operators.

Each of the methods for sets can be defined for multisets, taking the number of copies
of elements into account. The ∪ operation simply adds up the number of copies of an
element, the ∩ operation counts the lesser number of times a given element appears in
the two input multisets, and − subtracts the number of times a given element appears
in the second multiset from the number of times it appears in the first multiset. For
example, using multiset semantics ∪({1,2,2,2}, {2,2,3}) = {1,2,2,2,2,2,3}; ∩({1,2,2,2},
{2,2,3}) = {2,2}; and −({1,2,2,2}, {2,2,3}) = {1,2}.

Lists: Traditional list operations include head, which returns the first element; tail,
which returns the list obtained by removing the first element; prepend, which takes an
element and inserts it as the first element in a list; and append, which appends one list
to another.

Arrays: Array types support an ‘array index’ method to allow users to access array
items at a particular offset. A postfix ‘square bracket’ syntax is usually used; for
example, foo array[5].

Other: The operators listed above are just a sample. We also have the aggregate
operators count, sum, avg, max, and min, which can (in principle) be applied to any
object of a collection type. Operators for type conversions are also common. For
example, we can provide operators to convert a multiset object to a set object by
eliminating duplicates.

Examples of Queries Involving Nested Collections

We now present some examples to illustrate how relations that contain nested col-
lections can be queried, using SQL syntax. Consider the Films relation. Each tuple
describes a film, uniquely identified by filmno, and contains a set (of stars in the film)
as a field value. Our first example illustrates how we can apply an aggregate operator

Object-Database Systems 747

to such a nested set. It identifies films with more than two stars by counting the
number of stars; the count operator is applied once per Films tuple.3

SELECT F.filmno
FROM Films F
WHERE count(F.stars) > 2

Our second query illustrates an operation called unnesting. Consider the instance of
Films shown in Figure 25.6; we have omitted the director and budget fields (included in
the Films schema in Figure 25.1) for simplicity. A flat version of the same information
is shown in Figure 25.7; for each film and star in the film, we have a tuple in Films flat.

filmno title stars
98 Casablanca {Bogart, Bergman}
54 Earth Worms Are Juicy {Herbert, Wanda}

Figure 25.6 A Nested Relation, Films

filmno title star
98 Casablanca Bogart
98 Casablanca Bergman
54 Earth Worms Are Juicy Herbert
54 Earth Worms Are Juicy Wanda

Figure 25.7 A Flat Version, Films flat

The following query generates the instance of Films flat from Films:

SELECT F.filmno, F.title, S AS star
FROM Films F, F.stars AS S

The variable F is successively bound to tuples in Films, and for each value of F , the
variable S is successively bound to the set in the stars field of F . Conversely, we may
want to generate the instance of Films from Films flat. We can generate the Films
instance using a generalized form of SQL’s GROUP BY construct, as the following query
illustrates:

SELECT F.filmno, F.title, set gen(F.star)
FROM Films flat F
GROUP BY F.filmno, F.title

3SQL:1999 limits the use of aggregate operators on nested collections; to emphasize this restriction,
we have used count rather than COUNT, which we reserve for legal uses of the operator in SQL.

748 Chapter 25

Objects and oids: In SQL:1999 every tuple in a table can be given an oid by
defining the table in terms of a structured type, as in the definition of the Theaters
table in Line 4 of Figure 25.1. Contrast this with the definition of the Countries
table in Line 7; Countries tuples do not have associated oids. SQL:1999 also
assigns oids to large objects: this is the locator for the object.
There is a special type called REF whose values are the unique identifiers or oids.
SQL:1999 requires that a given REF type must be associated with a specific struc-
tured type and that the table it refers to must be known at compilation time,
i.e., the scope of each reference must be a table known at compilation time. For
example, Line 5 of Figure 25.1 defines a column theater of type ref(theater t).
Items in this column are references to objects of type theater t, specifically the
rows in the Theaters table, which is defined in Line 4. IBM DB2, Informix UDS,
and Oracle 8 support REF types.

The operator set gen, to be used with GROUP BY, requires some explanation. The GROUP
BY clause partitions the Films flat table by sorting on the filmno attribute; all tuples
in a given partition have the same filmno (and therefore the same title). Consider the
set of values in the star column of a given partition. This set cannot be returned in
the result of an SQL-92 query, and we have to summarize it by applying an aggregate
operator such as COUNT. Now that we allow relations to contain sets as field values,
however, we would like to return the set of star values as a field value in a single answer
tuple; the answer tuple also contains the filmno of the corresponding partition. The
set gen operator collects the set of star values in a partition and creates a set-valued
object. This operation is called nesting. We can imagine similar generator functions
for creating multisets, lists, and so on. However, such generators are not included in
SQL:1999.

25.4 OBJECTS, OBJECT IDENTITY, AND REFERENCE TYPES

In object-database systems, data objects can be given an object identifier (oid),
which is some value that is unique in the database across time. The DBMS is respon-
sible for generating oids and ensuring that an oid identifies an object uniquely over
its entire lifetime. In some systems, all tuples stored in any table are objects and are
automatically assigned unique oids; in other systems, a user can specify the tables for
which the tuples are to be assigned oids. Often, there are also facilities for generating
oids for larger structures (e.g., tables) as well as smaller structures (e.g., instances of
data values such as a copy of the integer 5, or a JPEG image).

An object’s oid can be used to refer (or ‘point’) to it from elsewhere in the data. Such
a reference has a type (similar to the type of a pointer in a programming language),
with a corresponding type constructor:

Object-Database Systems 749

URLs and oids: It is instructive to note the differences between Internet URLs
and the oids in object systems. First, oids uniquely identify a single object over
all time, whereas the web resource pointed at by an URL can change over time.
Second, oids are simply identifiers and carry no physical information about the
objects they identify—this makes it possible to change the storage location of
an object without modifying pointers to the object. In contrast, URLs include
network addresses and often file-system names as well, meaning that if the resource
identified by the URL has to move to another file or network address, then all
links to that resource will either be incorrect or require a ‘forwarding’ mechanism.
Third, oids are automatically generated by the DBMS for each object, whereas
URLs are user-generated. Since users generate URLs, they often embed semantic
information into the URL via machine, directory, or file names; this can become
confusing if the object’s properties change over time.
In the case of both URLs and oids, deletions can be troublesome: In an object
database this can result in runtime errors during dereferencing; on the web this
is the notorious ‘404 Page Not Found’ error. The relational mechanisms for refer-
ential integrity are not available in either case.

ref(base): a type representing a reference to an object of type base.

The ref type constructor can be interleaved with the type constructors for structured
types; for example, ROW(ref(ARRAY(integer))).

25.4.1 Notions of Equality

The distinction between reference types and reference-free structured types raises an-
other issue: the definition of equality. Two objects having the same type are defined
to be deep equal if and only if:

The objects are of atomic type and have the same value, or

The objects are of reference type, and the deep equals operator is true for the two
referenced objects, or

The objects are of structured type, and the deep equals operator is true for all the
corresponding subparts of the two objects.

Two objects that have the same reference type are defined to be shallow equal if they
both refer to the same object (i.e., both references use the same oid). The definition of
shallow equality can be extended to objects of arbitrary type by taking the definition
of deep equality and replacing deep equals by shallow equals in parts (2) and (3).

750 Chapter 25

As an example, consider the complex objects ROW(538, t89, 6-3-97,8-7-97) and ROW(538,
t33, 6-3-97,8-7-97), whose type is the type of rows in the table Nowshowing (Line 5 of
Figure 25.1). These two objects are not shallow equal because they differ in the second
attribute value. Nonetheless, they might be deep equal, if, for instance, the oids t89
and t33 refer to objects of type theater t that have the same value; for example,
tuple(54, ‘Majestic’, ‘115 King’, ‘2556698’).

While two deep equal objects may not be shallow equal, as the example illustrates,
two shallow equal objects are always deep equal, of course. The default choice of
deep versus shallow equality for reference types is different across systems, although
typically we are given syntax to specify either semantics.

25.4.2 Dereferencing Reference Types

An item of reference type ref(foo) is not the same as the foo item to which it
points. In order to access the referenced foo item, a built-in deref() method is
provided along with the ref type constructor. For example, given a tuple from the
Nowshowing table, one can access the name field of the referenced theater t object
with the syntax Nowshowing.deref(theater).name. Since references to tuple types are
common, some systems provide a java-style arrow operator, which combines a postfix
version of the dereference operator with a tuple-type dot operator. Using the arrow
notation, the name of the referenced theater can be accessed with the equivalent syntax
Nowshowing.theater–>name, as in Figure 25.3.

At this point we have covered all the basic type extensions used in the Dinky schema in
Figure 25.1. The reader is invited to revisit the schema and to examine the structure
and content of each table and how the new features are used in the various sample
queries.

25.5 INHERITANCE

We considered the concept of inheritance in the context of the ER model in Chapter
2 and discussed how ER diagrams with inheritance were translated into tables. In
object-database systems, unlike relational systems, inheritance is supported directly
and allows type definitions to be reused and refined very easily. It can be very helpful
when modeling similar but slightly different classes of objects. In object-database
systems, inheritance can be used in two ways: for reusing and refining types, and for
creating hierarchies of collections of similar but not identical objects.

Object-Database Systems 751

25.5.1 Defining Types with Inheritance

In the Dinky database, we model movie theaters with the type theater t. Dinky also
wants their database to represent a new marketing technique in the theater business:
the theater-cafe, which serves pizza and other meals while screening movies. Theater-
cafes require additional information to be represented in the database. In particular,
a theater-cafe is just like a theater, but has an additional attribute representing the
theater’s menu. Inheritance allows us to capture this ‘specialization’ explicitly in the
database design with the following DDL statement:

CREATE TYPE theatercafe t UNDER theater t (menu text);

This statement creates a new type, theatercafe t, which has the same attributes
and methods as theater t, along with one additional attribute menu of type text.
Methods defined on theater t apply to objects of type theatercafe t, but not vice
versa. We say that theatercafe t inherits the attributes and methods of theater t.

Note that the inheritance mechanism is not merely a ‘macro’ to shorten CREATE
statements. It creates an explicit relationship in the database between the subtype
(theatercafe t) and the supertype (theater t): An object of the subtype is also
considered to be an object of the supertype. This treatment means that any operations
that apply to the supertype (methods as well as query operators such as projection or
join) also apply to the subtype. This is generally expressed in the following principle:

The Substitution Principle: Given a supertype A and a subtype B, it
is always possible to substitute an object of type B into a legal expression
written for objects of type A, without producing type errors.

This principle enables easy code reuse because queries and methods written for the
supertype can be applied to the subtype without modification.

Note that inheritance can also be used for atomic types, in addition to row types.
Given a supertype image t with methods title(), number of colors(), and display(), we
can define a subtype thumbnail image t for small images that inherits the methods
of image t.

25.5.2 Binding of Methods

In defining a subtype, it is sometimes useful to replace a method for the supertype with
a new version that operates differently on the subtype. Consider the image t type,
and the subtype jpeg image t from the Dinky database. Unfortunately, the display()
method for standard images does not work for JPEG images, which are specially
compressed. Thus, in creating type jpeg image t, we write a special display() method

752 Chapter 25

for JPEG images and register it with the database system using the CREATE FUNCTION
command:

CREATE FUNCTION display(jpeg image) RETURNS jpeg image
AS EXTERNAL NAME ‘/a/b/c/jpeg.class’ LANGUAGE ’java’;

Registering a new method with the same name as an old method is called overloading
the method name.

Because of overloading, the system must understand which method is intended in a
particular expression. For example, when the system needs to invoke the display()
method on an object of type jpeg image t, it uses the specialized display method.
When it needs to invoke display on an object of type image t that is not otherwise
subtyped, it invokes the standard display method. The process of deciding which
method to invoke is called binding the method to the object. In certain situations,
this binding can be done when an expression is parsed (early binding), but in other
cases the most specific type of an object cannot be known until runtime, so the method
cannot be bound until then (late binding). Late binding facilties add flexibility, but
can make it harder for the user to reason about the methods that get invoked for a
given query expression.

25.5.3 Collection Hierarchies, Type Extents, and Queries

Type inheritance was invented for object-oriented programming languages, and our
discussion of inheritance up to this point differs little from the discussion one might
find in a book on an object-oriented language such as C++ or Java.

However, because database systems provide query languages over tabular datasets,
the mechanisms from programming languages are enhanced in object databases to
deal with tables and queries as well. In particular, in object-relational systems we can
define a table containing objects of a particular type, such as the Theaters table in the
Dinky schema. Given a new subtype such as theater cafe, we would like to create
another table Theater cafes to store the information about theater cafes. But when
writing a query over the Theaters table, it is sometimes desirable to ask the same
query over the Theater cafes table; after all, if we project out the additional columns,
an instance of the Theater cafes table can be regarded as an instance of the Theaters
table.

Rather than requiring the user to specify a separate query for each such table, we can
inform the system that a new table of the subtype is to be treated as part of a table
of the supertype, with respect to queries over the latter table. In our example, we can
say:

CREATE TABLE Theater cafes OF TYPE theater cafe t UNDER Theaters;

Object-Database Systems 753

This statement tells the system that queries over the theaters table should actually
be run over all tuples in both the theaters and Theater cafes tables. In such cases,
if the subtype definition involves method overloading, late-binding is used to ensure
that the appropriate methods are called for each tuple.

In general, the UNDER clause can be used to generate an arbitrary tree of tables, called
a collection hierarchy. Queries over a particular table T in the hierarchy are run
over all tuples in T and its descendants. Sometimes, a user may want the query to run
only on T , and not on the descendants; additional syntax, for example, the keyword
ONLY, can be used in the query’s FROM clause to achieve this effect.

Some systems automatically create special tables for each type, which contain refer-
ences to every instance of the type that exists in the database. These tables are called
type extents and allow queries over all objects of a given type, regardless of where
the objects actually reside in the database. Type extents naturally form a collection
hierarchy that parallels the type hierarchy.

25.6 DATABASE DESIGN FOR AN ORDBMS

The rich variety of data types in an ORDBMS offers a database designer many oppor-
tunities for a more natural or more efficient design. In this section we illustrate the
differences between RDBMS and ORDBMS database design through several examples.

25.6.1 Structured Types and ADTs

Our first example involves several space probes, each of which continuously records
a video. A single video stream is associated with each probe, and while this stream
was collected over a certain time period, we assume that it is now a complete object
associated with the probe. During the time period over which the video was col-
lected, the probe’s location was periodically recorded (such information can easily be
‘piggy-backed’ onto the header portion of a video stream conforming to the MPEG
standard). Thus, the information associated with a probe has three parts: (1) a probe
id that identifies a probe uniquely, (2) a video stream, and (3) a location sequence of
〈time, location〉 pairs. What kind of a database schema should we use to store this
information?

An RDBMS Database Design

In an RDBMS, we must store each video stream as a BLOB and each location sequence
as tuples in a table. A possible RDBMS database design is illustrated below:

Probes(pid: integer, time: timestamp, lat: real, long: real,

754 Chapter 25

camera: string, video: BLOB)

There is a single table called Probes, and it has several rows for each probe. Each of
these rows has the same pid, camera, and video values, but different time, lat, and long
values. (We have used latitude and longitude to denote location.) The key for this
table can be represented as a functional dependency: PTLN → CV, where N stands
for longitude. There is another dependency: P → CV. This relation is therefore not
in BCNF; indeed, it is not even in 3NF. We can decompose Probes to obtain a BCNF
schema:

Probes Loc(pid: integer, time: timestamp, lat: real, long: real)
Probes Video(pid: integer, camera: string, video: BLOB)

This design is about the best we can achieve in an RDBMS. However, it suffers from
several drawbacks.

First, representing videos as BLOBs means that we have to write application code
in an external language to manipulate a video object in the database. Consider this
query: “For probe 10, display the video recorded between 1:10 p.m. and 1:15 p.m. on
May 10 1996.” We have to retrieve the entire video object associated with probe 10,
recorded over several hours, in order to display a segment recorded over 5 minutes.

Next, the fact that each probe has an associated sequence of location readings is
obscured, and the sequence information associated with a probe is dispersed across
several tuples. A third drawback is that we are forced to separate the video information
from the sequence information for a probe. These limitations are exposed by queries
that require us to consider all the information associated with each probe; for example,
“For each probe, print the earliest time at which it recorded, and the camera type.”
This query now involves a join of Probes Loc and Probes Video on the pid field.

An ORDBMS Database Design

An ORDBMS supports a much better solution. First, we can store the video as an
ADT object and write methods that capture any special manipulation that we wish
to perform. Second, because we are allowed to store structured types such as lists,
we can store the location sequence for a probe in a single tuple, along with the video
information! This layout eliminates the need for joins in queries that involve both the
sequence and video information. An ORDBMS design for our example consists of a
single relation called Probes AllInfo:

Probes AllInfo(pid: integer, locseq: location seq, camera: string,
video: mpeg stream)

Object-Database Systems 755

This definition involves two new types, location seq and mpeg stream. The mpeg stream
type is defined as an ADT, with a method display() that takes a start time and an
end time and displays the portion of the video recorded during that interval. This
method can be implemented efficiently by looking at the total recording duration and
the total length of the video and interpolating to extract the segment recorded during
the interval specified in the query.

Our first query is shown below in extended SQL syntax; using this display method:
We now retrieve only the required segment of the video, rather than the entire video.

SELECT display(P.video, 1:10 p.m. May 10 1996, 1:15 p.m. May 10 1996)
FROM Probes AllInfo P
WHERE P.pid = 10

Now consider the location seq type. We could define it as a list type, containing a
list of ROW type objects:

CREATE TYPE location seq listof
(row (time: timestamp, lat: real, long: real))

Consider the locseq field in a row for a given probe. This field contains a list of rows,
each of which has three fields. If the ORDBMS implements collection types in their
full generality, we should be able to extract the time column from this list to obtain a
list of timestamp values, and to apply the MIN aggregate operator to this list to find
the earliest time at which the given probe recorded. Such support for collection types
would enable us to express our second query as shown below:

SELECT P.pid, MIN(P.locseq.time)
FROM Probes AllInfo P

Current ORDBMSs are not as general and clean as this example query suggests. For
instance, the system may not recognize that projecting the time column from a list
of rows gives us a list of timestamp values; or the system may allow us to apply an
aggregate operator only to a table and not to a nested list value.

Continuing with our example, we may want to do specialized operations on our location
sequences that go beyond the standard aggregate operators. For instance, we may want
to define a method that takes a time interval and computes the distance traveled by
the probe during this interval. The code for this method must understand details of
a probe’s trajectory and geospatial coordinate systems. For these reasons, we might
choose to define location seq as an ADT.

Clearly, an (ideal) ORDBMS gives us many useful design options that are not available
in an RDBMS.

756 Chapter 25

25.6.2 Object Identity

We now discuss some of the consequences of using reference types or oids. The use of
oids is especially significant when the size of the object is large, either because it is a
structured data type or because it is a big object such as an image.

Although reference types and structured types seem similar, they are actually quite dif-
ferent. For example, consider a structured type my theater tuple(tno integer, name
text, address text, phone text) and the reference type theater ref(theater t) of
Figure 25.1. There are important differences in the way that database updates affect
these two types:

Deletion: Objects with references can be affected by the deletion of objects
that they reference, while reference-free structured objects are not affected by
deletion of other objects. For example, if the Theaters table were dropped from
the database, an object of type theater might change value to null, because the
theater t object that it refers to has been deleted, while a similar object of type
my theater would not change value.

Update: Objects of reference types will change value if the referenced object is
updated. Objects of reference-free structured types change value only if updated
directly.

Sharing versus copying: An identified object can be referenced by multiple
reference-type items, so that each update to the object is reflected in many places.
To get a similar affect in reference-free types requires updating all ‘copies’ of an
object.

There are also important storage distinctions between reference types and nonreference
types, which might affect performance:

Storage overhead: Storing copies of a large value in multiple structured type
objects may use much more space than storing the value once and referring to
it elsewhere through reference type objects. This additional storage requirement
can affect both disk usage and buffer management (if many copies are accessed at
once).

Clustering: The subparts of a structured object are typically stored together on
disk. Objects with references may point to other objects that are far away on the
disk, and the disk arm may require significant movement to assemble the object
and its references together. Structured objects can thus be more efficient than
reference types if they are typically accessed in their entirety.

Many of these issues also arise in traditional programming languages such as C or
Pascal, which distinguish between the notions of referring to objects by value and by

Object-Database Systems 757

Oids and referential integrity: In SQL:1999, all the oids that appear in a
column of a relation are required to reference the same target relation. This
‘scoping’ makes it possible to check oid references for ‘referential integrity’ just as
foreign key references are checked. While current ORDBMS products supporting
oids do not support such checks, it is likely that they will do so in future releases.
This will make it much safer to use oids.

reference. In database design, the choice between using a structured type or a reference
type will typically include consideration of the storage costs, clustering issues, and the
effect of updates.

Object Identity versus Foreign Keys

Using an oid to refer to an object is similar to using a foreign key to refer to a tuple in
another relation, but not quite the same: An oid can point to an object of theater t
that is stored anywhere in the database, even in a field, whereas a foreign key reference
is constrained to point to an object in a particular referenced relation. This restric-
tion makes it possible for the DBMS to provide much greater support for referential
integrity than for arbitrary oid pointers. In general, if an object is deleted while there
are still oid-pointers to it, the best the DBMS can do is to recognize the situation by
maintaining a reference count. (Even this limited support becomes impossible if oids
can be copied freely.) Thus, the responsibility for avoiding dangling references rests
largely with the user if oids are used to refer to objects. This burdensome responsibil-
ity suggests that we should use oids with great caution and use foreign keys instead
whenever possible.

25.6.3 Extending the ER Model

The ER model as we described it in Chapter 2 is not adequate for ORDBMS design.
We have to use an extended ER model that supports structured attributes (i.e., sets,
lists, arrays as attribute values), distinguishes whether entities have object ids, and
allows us to model entities whose attributes include methods. We illustrate these
comments using an extended ER diagram to describe the space probe data in Figure
25.8; our notational conventions are ad hoc, and only for illustrative purposes.

The definition of Probes in Figure 25.8 has two new aspects. First, it has a structured-
type attribute listof(row(time, lat, long)); each value assigned to this attribute in
a Probes entity is a list of tuples with three fields. Second, Probes has an attribute
called videos that is an abstract data type object, which is indicated by a dark oval
for this attribute with a dark line connecting it to Probes. Further, this attribute has
an ‘attribute’ of its own, which is a method of the ADT.

758 Chapter 25

listof(row(time, lat, long))

camerapid

display(start,end)

Probes

video

Figure 25.8 The Space Probe Entity Set

Alternatively, we could model each video as an entity by using an entity set called
Videos. The association between Probes entities and Videos entities could then be
captured by defining a relationship set that links them. Since each video is collected
by precisely one probe, and every video is collected by some probe, this relationship
can be maintained by simply storing a reference to a probe object with each Videos
entity; this technique is essentially the second translation approach from ER diagrams
to tables discussed in Section 2.4.1.

If we also make Videos a weak entity set in this alternative design, we can add a
referential integrity constraint that causes a Videos entity to be deleted when the cor-
responding Probes entity is deleted. More generally, this alternative design illustrates
a strong similarity between storing references to objects and foreign keys; the foreign
key mechanism achieves the same effect as storing oids, but in a controlled manner.
If oids are used, the user must ensure that there are no dangling references when an
object is deleted, with very little support from the DBMS.

Finally, we note that a significant extension to the ER model is required to support
the design of nested collections. For example, if a location sequence is modeled as
an entity, and we want to define an attribute of Probes that contains a set of such
entities, there is no way to do this without extending the ER model. We will not
discuss this point further at the level of ER diagrams, but consider an example below
that illustrates when to use a nested collection.

25.6.4 Using Nested Collections

Nested collections offer great modeling power, but also raise difficult design deci-
sions. Consider the following way to model location sequences (other information
about probes is omitted here to simplify the discussion):

Probes1(pid: integer, locseq: location seq)

Object-Database Systems 759

This is a good choice if the important queries in the workload require us to look at
the location sequence for a particular probe, as in the query “For each probe, print
the earliest time at which it recorded, and the camera type.” On the other hand,
consider a query that requires us to look at all location sequences: “Find the earliest
time at which a recording exists for lat=5, long=90.” This query can be answered
more efficiently if the following schema is used:

Probes2(pid: integer, time: timestamp, lat: real, long: real)

The choice of schema must therefore be guided by the expected workload (as always!).
As another example, consider the following schema:

Can Teach1(cid: integer, teachers: setof(ssn: string), sal: integer)

If tuples in this table are to be interpreted as “Course cid can be taught by any of
the teachers in the teachers field, at a cost sal” then we have the option of using the
following schema instead:

Can Teach2(cid: integer, teacher ssn: string, sal: integer)

A choice between these two alternatives can be made based on how we expect to
query this table. On the other hand, suppose that tuples in Can Teach1 are to be
interpreted as “Course cid can be taught by the team teachers, at a combined cost of
sal.” Can Teach2 is no longer a viable alternative. If we wanted to flatten Can Teach1,
we would have to use a separate table to encode teams:

Can Teach2(cid: integer, team id: oid, sal: integer)
Teams(tid: oid, ssn: string)

As these examples illustrate, nested collections are appropriate in certain situations,
but this feature can easily be misused; nested collections should therefore be used with
care.

25.7 NEW CHALLENGES IN IMPLEMENTING AN ORDBMS

The enhanced functionality of ORDBMSs raises several implementation challenges.
Some of these are well understood and solutions have been implemented in products;
others are subjects of current research. In this section we examine a few of the key
challenges that arise in implementing an efficient, fully functional ORDBMS. Many
more issues are involved than those discussed here; the interested reader is encouraged
to revisit the previous chapters in this book and consider whether the implementation
techniques described there apply naturally to ORDBMSs or not.

760 Chapter 25

25.7.1 Storage and Access Methods

Since object-relational databases store new types of data, ORDBMS implementors
need to revisit some of the storage and indexing issues discussed in earlier chapters. In
particular, the system must efficiently store ADT objects and structured objects and
provide efficient indexed access to both.

Storing Large ADT and Structured Type Objects

Large ADT objects and structured objects complicate the layout of data on disk.
This problem is well understood and has been solved in essentially all ORDBMSs and
OODBMSs. We present some of the main issues here.

User-defined ADTs can be quite large. In particular, they can be bigger than a single
disk page. Large ADTs, like BLOBs, require special storage, typically in a different
location on disk from the tuples that contain them. Disk-based pointers are maintained
from the tuples to the objects they contain.

Structured objects can also be large, but unlike ADT objects they often vary in size
during the lifetime of a database. For example, consider the stars attribute of the films
table in Figure 25.1. As the years pass, some of the ‘bit actors’ in an old movie may
become famous.4 When a bit actor becomes famous, Dinky might want to advertise his
or her presence in the earlier films. This involves an insertion into the stars attribute
of an individual tuple in films. Because these bulk attributes can grow arbitrarily,
flexible disk layout mechanisms are required.

An additional complication arises with array types. Traditionally, array elements are
stored sequentially on disk in a row-by-row fashion; for example

A11, . . . A1n, A21, . . . , A2n, . . . Am1, . . . , Amn

However, queries may often request subarrays that are not stored contiguously on
disk (e.g., A11, A21, . . . , Am1). Such requests can result in a very high I/O cost for
retrieving the subarray. In order to reduce the number of I/Os required in general,
arrays are often broken into contiguous chunks, which are then stored in some order
on disk. Although each chunk is some contiguous region of the array, chunks need
not be row-by-row or column-by-column. For example, a chunk of size 4 might be
A11, A12, A21, A22, which is a square region if we think of the array as being arranged
row-by-row in two dimensions.

4A well-known example is Marilyn Monroe, who had a bit part in the Bette Davis classic All About
Eve.

Object-Database Systems 761

Indexing New Types

One important reason for users to place their data in a database is to allow for efficient
access via indexes. Unfortunately, the standard RDBMS index structures support only
equality conditions (B+ trees and hash indexes) and range conditions (B+ trees). An
important issue for ORDBMSs is to provide efficient indexes for ADT methods and
operators on structured objects.

Many specialized index structures have been proposed by researchers for particular ap-
plications such as cartography, genome research, multimedia repositories, Web search,
and so on. An ORDBMS company cannot possibly implement every index that has
been invented. Instead, the set of index structures in an ORDBMS should be user-
extensible. Extensibility would allow an expert in cartography, for example, to not
only register an ADT for points on a map (i.e., latitude/longitude pairs), but also im-
plement an index structure that supports natural map queries (e.g., the R-tree, which
matches conditions such as “Find me all theaters within 100 miles of Andorra”). (See
Chapter 26 for more on R-trees and other spatial indexes.)

One way to make the set of index structures extensible is to publish an access method
interface that lets users implement an index structure outside of the DBMS. The index
and data can be stored in a file system, and the DBMS simply issues the open, next,
and close iterator requests to the user’s external index code. Such functionality makes
it possible for a user to connect a DBMS to a Web search engine, for example. A main
drawback of this approach is that data in an external index is not protected by the
DBMS’s support for concurrency and recovery. An alternative is for the ORDBMS to
provide a generic ‘template’ index structure that is sufficiently general to encompass
most index structures that users might invent. Because such a structure is implemented
within the DBMS, it can support high concurrency and recovery. The Generalized
Search Tree (GiST) is such a structure. It is a template index structure based on B+
trees, which allows most of the tree index structures invented so far to be implemented
with only a few lines of user-defined ADT code.

25.7.2 Query Processing

ADTs and structured types call for new functionality in processing queries in OR-
DBMSs. They also change a number of assumptions that affect the efficiency of
queries. In this section we look at two functionality issues (user-defined aggregates
and security) and two efficiency issues (method caching and pointer swizzling).

762 Chapter 25

User-Defined Aggregation Functions

Since users are allowed to define new methods for their ADTs, it is not unreason-
able to expect them to want to define new aggregation functions for their ADTs as
well. For example, the usual SQL aggregates—COUNT, SUM, MIN, MAX, AVG—are not
particularly appropriate for the image type in the Dinky schema.

Most ORDBMSs allow users to register new aggregation functions with the system.
To register an aggregation function, a user must implement three methods, which we
will call initialize, iterate, and terminate. The initialize method initializes the internal
state for the aggregation. The iterate method updates that state for every tuple seen,
while the terminate method computes the aggregation result based on the final state
and then cleans up. As an example, consider an aggregation function to compute the
second-highest value in a field. The initialize call would allocate storage for the top
two values, the iterate call would compare the current tuple’s value with the top two
and update the top two as necessary, and the terminate call would delete the storage
for the top two values, returning a copy of the second-highest value.

Method Security

ADTs give users the power to add code to the DBMS; this power can be abused. A
buggy or malicious ADT method can bring down the database server or even corrupt
the database. The DBMS must have mechanisms to prevent buggy or malicious user
code from causing problems. It may make sense to override these mechanisms for
efficiency in production environments with vendor-supplied methods. However, it is
important for the mechanisms to exist, if only to support debugging of ADT methods;
otherwise method writers would have to write bug-free code before registering their
methods with the DBMS—not a very forgiving programming environment!

One mechanism to prevent problems is to have the user methods be interpreted rather
than compiled. The DBMS can check that the method is well behaved either by
restricting the power of the interpreted language or by ensuring that each step taken
by a method is safe before executing it. Typical interpreted languages for this purpose
include Java and the procedural portions of SQL:1999.

An alternative mechanism is to allow user methods to be compiled from a general-
purpose programming language such as C++, but to run those methods in a different
address space than the DBMS. In this case the DBMS sends explicit interprocess
communications (IPCs) to the user method, which sends IPCs back in return. This
approach prevents bugs in the user methods (e.g., stray pointers) from corrupting
the state of the DBMS or database and prevents malicious methods from reading or
modifying the DBMS state or database as well. Note that the user writing the method
need not know that the DBMS is running the method in a separate process: The user

Object-Database Systems 763

code can be linked with a ‘wrapper’ that turns method invocations and return values
into IPCs.

Method Caching

User-defined ADT methods can be very expensive to execute and can account for the
bulk of the time spent in processing a query. During query processing it may make
sense to cache the results of methods, in case they are invoked multiple times with the
same argument. Within the scope of a single query, one can avoid calling a method
twice on duplicate values in a column by either sorting the table on that column or
using a hash-based scheme much like that used for aggregation (see Section 12.7). An
alternative is to maintain a cache of method inputs and matching outputs as a table in
the database. Then to find the value of a method on particular inputs, we essentially
join the input tuples with the cache table. These two approaches can also be combined.

Pointer Swizzling

In some applications, objects are retrieved into memory and accessed frequently through
their oids; dereferencing must be implemented very efficiently. Some systems maintain
a table of oids of objects that are (currently) in memory. When an object O is brought
into memory, they check each oid contained in O and replace oids of in-memory objects
by in-memory pointers to those objects. This technique is called pointer swizzling
and makes references to in-memory objects very fast. The downside is that when
an object is paged out, in-memory references to it must somehow be invalidated and
replaced with its oid.

25.7.3 Query Optimization

New indexes and query processing techniques widen the choices available to a query
optimizer. In order to handle the new query processing functionality, an optimizer
must know about the new functionality and use it appropriately. In this section we
discuss two issues in exposing information to the optimizer (new indexes and ADT
method estimation) and an issue in query planning that was ignored in relational
systems (expensive selection optimization).

Registering Indexes with the Optimizer

As new index structures are added to a system—either via external interfaces or built-
in template structures like GiSTs—the optimizer must be informed of their existence,
and their costs of access. In particular, for a given index structure the optimizer must
know (a) what WHERE-clause conditions are matched by that index, and (b) what the

764 Chapter 25

Optimizer extensibility: As an example, consider the Oracle 8i optimizer,
which is extensible and supports user defined ‘domain’ indexes and methods. The
support includes user defined statistics and cost functions that the optimizer will
use in tandem with system statistics. Suppose that there is a domain index for
text on the resume column and a regular Oracle B-tree index on hiringdate. A
query with a selection on both these fields can be evaluated by converting the rids
from the two indexes into bitmaps, performing a bitmap AND, and converting the
resulting bitmap to rids before accessing the table. Of course, the optimizer will
also consider using the two indexes individually, as well as a full table scan.

cost of fetching a tuple is for that index. Given this information, the optimizer can
use any index structure in constructing a query plan. Different ORDBMSs vary in
the syntax for registering new index structures. Most systems require users to state a
number representing the cost of access, but an alternative is for the DBMS to measure
the structure as it is used and maintain running statistics on cost.

Reduction Factor and Cost Estimation for ADT Methods

In Section 14.2.1 we discussed how to estimate the reduction factor of various selection
and join conditions including =, <, and so on. For user-defined conditions such as
is herbert(), the optimizer also needs to be able to estimate reduction factors. Esti-
mating reduction factors for user-defined conditions is a difficult problem and is being
actively studied. The currently popular approach is to leave it up to the user—a user
who registers a method can also register an auxiliary function to estimate the method’s
reduction factor. If such a function is not registered, the optimizer uses an arbitrary
value such as 1

10 .

ADT methods can be quite expensive and it is important for the optimizer to know
just how much these methods cost to execute. Again, estimating method costs is
open research. In current systems users who register a method are able to specify the
method’s cost as a number, typically in units of the cost of an I/O in the system.
Such estimation is hard for users to do accurately. An attractive alternative is for the
ORDBMS to run the method on objects of various sizes and attempt to estimate the
method’s cost automatically, but this approach has not been investigated in detail and
is not implemented in commercial ORDBMSs.

Expensive selection optimization

In relational systems, selection is expected to be a zero-time operation. For example, it
requires no I/Os and few CPU cycles to test if emp.salary < 10. However, conditions

Object-Database Systems 765

such as is herbert(Frames.image) can be quite expensive because they may fetch large
objects off the disk and process them in memory in complicated ways.

ORDBMS optimizers must consider carefully how to order selection conditions. For
example, consider a selection query that tests tuples in the Frames table with two con-
ditions: Frames.frameno < 100 ∧ is herbert(Frame.image). It is probably preferable
to check the frameno condition before testing is herbert. The first condition is quick
and may often return false, saving the trouble of checking the second condition. In
general, the best ordering among selections is a function of their costs and reduction
factors. It can be shown that selections should be ordered by increasing rank, where
rank = (reduction factor − 1)/cost. If a selection with very high rank appears in a
multi-table query, it may even make sense to postpone the selection until after per-
forming joins. Note that this approach is the opposite of the heuristic for pushing
selections presented in Section 14.3! The details of optimally placing expensive selec-
tions among joins are somewhat complicated, adding to the complexity of optimization
in ORDBMSs.

25.8 OODBMS

In the introduction of this chapter, we defined an OODBMS as a programming lan-
guage with support for persistent objects. While this definition reflects the origins of
OODBMSs accurately, and to a certain extent the implementation focus of OODBMSs,
the fact that OODBMSs support collection types (see Section 25.3) makes it possible
to provide a query language over collections. Indeed, a standard has been developed
by the Object Database Management Group (ODMG) and is called Object Query
Language, or OQL.

OQL is similar to SQL, with a SELECT–FROM–WHERE–style syntax (even GROUP BY,
HAVING, and ORDER BY are supported) and many of the proposed SQL:1999 extensions.
Notably, OQL supports structured types, including sets, bags, arrays, and lists. The
OQL treatment of collections is more uniform than SQL:1999 in that it does not give
special treatment to collections of rows; for example, OQL allows the aggregate opera-
tion COUNT to be applied to a list to compute the length of the list. OQL also supports
reference types, path expressions, ADTs and inheritance, type extents, and SQL-style
nested queries. There is also a standard Data Definition Language for OODBMSs
(Object Data Language, or ODL) that is similar to the DDL subset of SQL, but
supports the additional features found in OODBMSs, such as ADT definitions.

25.8.1 The ODMG Data Model and ODL

The ODMG data model is the basis for an OODBMS, just like the relational data
model is the basis for an RDBMS. A database contains a collection of objects, which

766 Chapter 25

Class = interface + implementation: Properly speaking, a class consists of
an interface together with an implementation of the interface. An ODL interface
definition is implemented in an OODBMS by translating it into declarations of
the object-oriented language (e.g., C++, Smalltalk or Java) supported by the
OODBMS. If we consider C++, for instance, there is a library of classes that
implement the ODL constructs. There is also an Object Manipulation Lan-
guage (OML) specific to the programming language (in our example, C++),
which specifies how database objects are manipulated in the programming lan-
guage. The goal is to seamlessly integrate the programming language and the
database features.

are similar to entities in the ER model. Every object has a unique oid, and a database
contains collections of objects with similar properties; such a collection is called a
class.

The properties of a class are specified using ODL and are of three kinds: attributes,
relationships, and methods. Attributes have an atomic type or a structured type.
ODL supports the set, bag, list, array, and struct type constructors; these are
just setof, bagof, listof, ARRAY, and ROW in the terminology of Section 25.3.

Relationships have a type that is either a reference to an object or a collection of such
references. A relationship captures how an object is related to one or more objects of
the same class or of a different class. A relationship in the ODMG model is really just
a binary relationship in the sense of the ER model. A relationship has a corresponding
inverse relationship; intuitively, it is the relationship ‘in the other direction.’ For
example, if a movie is being shown at several theaters, and each theater shows several
movies, we have two relationships that are inverses of each other: shownAt is associated
with the class of movies and is the set of theaters at which the given movie is being
shown, and nowShowing is associated with the class of theaters and is the set of movies
being shown at that theater.

Methods are functions that can be applied to objects of the class. There is no analog
to methods in the ER or relational models.

The keyword interface is used to define a class. For each interface, we can declare
an extent, which is the name for the current set of objects of that class. The extent is
analogous to the instance of a relation, and the interface is analogous to the schema.
If the user does not anticipate the need to work with the set of objects of a given
class—it is sufficient to manipulate individual objects—the extent declaration can be
omitted.

Object-Database Systems 767

The following ODL definitions of the Movie and Theater classes illustrate the above
concepts. (While these classes bear some resemblance to the Dinky database schema,
the reader should not look for an exact parallel, since we have modified the example
to highlight ODL features.)

interface Movie
(extent Movies key movieName)
{ attribute date start;
attribute date end;
attribute string moviename;
relationship Set〈Theater〉 shownAt inverse Theater::nowShowing;
}

The collection of database objects whose class is Movie is called Movies. No two
objects in Movies have the same movieName value, as the key declaration indicates.
Each movie is shown at a set of theaters and is shown during the specified period. (It
would be more realistic to associate a different period with each theater, since a movie
is typically played at different theaters over different periods. While we can define a
class that captures this detail, we have chosen a simpler definition for our discussion.)
A theater is an object of class Theater, which is defined below:

interface Theater
(extent Theaters key theaterName)
{ attribute string theaterName;
attribute string address;
attribute integer ticketPrice;
relationship Set〈Movie〉 nowShowing inverse Movie::shownAt;
float numshowing() raises(errorCountingMovies);
}

Each theater shows several movies and charges the same ticket price for every movie.
Observe that the shownAt relationship of Movie and the nowShowing relationship
of Theater are declared to be inverses of each other. Theater also has a method
numshowing() that can be applied to a theater object to find the number of movies
being shown at that theater.

ODL also allows us to specify inheritance hierarchies, as the following class definition
illustrates:

interface SpecialShow extends Movie
(extent SpecialShows)
{ attribute integer maximumAttendees;
attribute string benefitCharity;
}

768 Chapter 25

An object of class SpecialShow is an object of class Movie, with some additional prop-
erties, as discussed in Section 25.5.

25.8.2 OQL

The ODMG query language OQL was deliberately designed to have syntax similar to
SQL, in order to make it easy for users familiar with SQL to learn OQL. Let us begin
with a query that finds pairs of movies and theaters such that the movie is shown at
the theater and the theater is showing more than one movie:

SELECT mname: M.movieName, tname: T.theaterName
FROM Movies M, M.shownAt T
WHERE T.numshowing() > 1

The SELECT clause indicates how we can give names to fields in the result; the two
result fields are called mname and tname. The part of this query that differs from
SQL is the FROM clause. The variable M is bound in turn to each movie in the extent
Movies. For a given movie M , we bind the variable T in turn to each theater in the
collection M.shownAt. Thus, the use of the path expression M.shownAt allows us to
easily express a nested query. The following query illustrates the grouping construct
in OQL:

SELECT T.ticketPrice,
avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY T.ticketPrice

For each ticket price, we create a group of theaters with that ticket price. This group
of theaters is the partition for that ticket price and is referred to using the OQL
keyword partition. In the SELECT clause, for each ticket price, we compute the
average number of movies shown at theaters in the partition for that ticketPrice. OQL
supports an interesting variation of the grouping operation that is missing in SQL:

SELECT low, high,
avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY low: T.ticketPrice < 5, high: T.ticketPrice >= 5

The GROUP BY clause now creates just two partitions called low and high. Each the-
ater object T is placed in one of these partitions based on its ticket price. In the
SELECT clause, low and high are boolean variables, exactly one of which is true in
any given output tuple; partition is instantiated to the corresponding partition of
theater objects. In our example, we get two result tuples. One of them has low equal

Object-Database Systems 769

to true and avgNum equal to the average number of movies shown at theaters with
a low ticket price. The second tuple has high equal to true and avgNum equal to the
average number of movies shown at theaters with a high ticket price.

The next query illustrates OQL support for queries that return collections other than
set and multiset:

(SELECT T.theaterName
FROM Theaters T
ORDER BY T.ticketPrice DESC) [0:4]

The ORDER BY clause makes the result a list of theater names ordered by ticket price.
The elements of a list can be referred to by position, starting with position 0. Thus,
the expression [0:4] extracts a list containing the names of the five theaters with the
highest ticket prices.

OQL also supports DISTINCT, HAVING, explicit nesting of subqueries, view definitions,
and other SQL features.

25.9 COMPARING RDBMS WITH OODBMS AND ORDBMS

Now that we have covered the main object-oriented DBMS extensions, it is time to
consider the two main variants of object-databases, OODBMSs and ORDBMSs, and
to compare them with RDBMSs. Although we have presented the concepts underlying
object-databases, we still need to define the terms OODBMS and ORDBMS.

An ORDBMS is a relational DBMS with the extensions discussed in this chapter.
(Not all ORDBMS systems support all the extensions in the general form that we
have discussed them, but our concern in this section is the paradigm itself rather than
specific systems.) An OODBMS is a programming language with a type system
that supports the features discussed in this chapter and allows any data object to
be persistent, that is, to survive across different program executions. Many current
systems conform to neither definition entirely but are much closer to one or the other,
and can be classified accordingly.

25.9.1 RDBMS versus ORDBMS

Comparing an RDBMS with an ORDBMS is straightforward. An RDBMS does not
support the extensions discussed in this chapter. The resulting simplicity of the data
model makes it easier to optimize queries for efficient execution, for example. A rela-
tional system is also easier to use because there are fewer features to master. On the
other hand, it is less versatile than an ORDBMS.

770 Chapter 25

25.9.2 OODBMS versus ORDBMS: Similarities

OODBMSs and ORDBMSs both support user-defined ADTs, structured types, ob-
ject identity and reference types, and inheritance. Both support a query language
for manipulating collection types. ORDBMSs support an extended form of SQL, and
OODBMSs support ODL/OQL. The similarities are by no means accidental: OR-
DBMSs consciously try to add OODBMS features to an RDBMS, and OODBMSs
in turn have developed query languages based on relational query languages. Both
OODBMSs and ORDBMSs provide DBMS functionality such as concurrency control
and recovery.

25.9.3 OODBMS versus ORDBMS: Differences

The fundamental difference is really a philosophy that is carried all the way through:
OODBMSs try to add DBMS functionality to a programming language, whereas OR-
DBMSs try to add richer data types to a relational DBMS. Although the two kinds of
object-databases are converging in terms of functionality, this difference in their under-
lying philosophies (and for most systems, their implementation approach) has impor-
tant consequences in terms of the issues emphasized in the design of these DBMSs, and
the efficiency with which various features are supported, as the following comparison
indicates:

OODBMSs aim to achieve seamless integration with a programming language
such as C++, Java or Smalltalk. Such integration is not an important goal for an
ORDBMS. SQL:1999, like SQL-92, allows us to embed SQL commands in a host
language, but the interface is very evident to the SQL programer. (SQL:1999 also
provides extended programming language constructs of its own, incidentally.)

An OODBMS is aimed at applications where an object-centric viewpoint is ap-
propriate; that is, typical user sessions consist of retrieving a few objects and
working on them for long periods, with related objects (e.g., objects referenced
by the original objects) fetched occasionally. Objects may be extremely large,
and may have to be fetched in pieces; thus, attention must be paid to buffering
parts of objects. It is expected that most applications will be able to cache the
objects they require in memory, once the objects are retrieved from disk. Thus,
considerable attention is paid to making references to in-memory objects efficient.
Transactions are likely to be of very long duration and holding locks until the end
of a transaction may lead to poor performance; thus, alternatives to Two Phase
locking must be used.

An ORDBMS is optimized for applications where large data collections are the fo-
cus, even though objects may have rich structure and be fairly large. It is expected
that applications will retrieve data from disk extensively, and that optimizing disk
accesses is still the main concern for efficient execution. Transactions are assumed

Object-Database Systems 771

to be relatively short, and traditional RDBMS techniques are typically used for
concurrency control and recovery.

The query facilities of OQL are not supported efficiently in most OODBMSs,
whereas the query facilities are the centerpiece of an ORDBMS. To some extent,
this situation is the result of different concentrations of effort in the development
of these systems. To a significant extent, it is also a consequence of the systems’
being optimized for very different kinds of applications.

25.10 POINTS TO REVIEW

Object-oriented database systems (OODBMSs) add DBMS functionality to a pro-
gramming language and environment. Object-relational database systems (OR-
DBMSs) extend the functionality of relational database systems. The data type
system is extended with user-defined abstract data types (ADTs), structured types,
and inheritance. New query features include operators for structured types, oper-
ators for reference types, and user-defined methods. (Section 25.1)

An abstract data type is an atomic data type and its associated methods. Users
can create new ADTs. For a new atomic type, we must register the methods size,
import, and export with the DBMS. Object files containing new methods can also
be registered. (Section 25.2)

We can construct more complex data types from atomic types and user-defined
types using type constructors. There are type constructors for creating row types,
lists, arrays, sets, and bags and there are built-in operators for all these types. We
can unnest a set-valued type by creating a tuple for each element in the set. The
reverse operation is called nesting. (Section 25.3)

Data objects can have an object identifier (oid), which is a unique value that
identifies the object. An oid has a type called a reference type. Since fields
within objects can be of reference types, there are two notions of equality, deep
and shallow equality. Fields that contain a reference type can be dereferenced to
access the associated object. (Section 25.4)

Inheritance allows us to create new types (called subtypes) that extend existing
types (called supertypes). Any operations that apply to the supertype also apply to
the subtype. We can overload methods by defining the same method for sub- and
supertypes. The type of the object decides which method is called; this process
is called binding. Analogous to types, we can create an inheritance hierarchy for
tables called a collection hierarchy. (Section 25.5)

The multitude of data types in an ORDBMS allows us to design a more natural
and efficient database schema. But we have to be careful to take the differences
between reference types and structured types and between reference types and

772 Chapter 25

nonreference types into account. We should use oids with caution and use foreign
keys instead whenever possible. We can extend the ER model to incorporate
ADTs and methods, or we can model ADTs using existing constructs. Nested
types provide great modeling power but the choice of schema should be guided by
the expected workload. (Section 25.6)

Implementing an ORDBMS brings new challenges. The system must store large
ADTs and structured types that might be very large. Efficient and extensible
index mechanisms must be provided. Examples of new functionality include user-
defined aggregation functions (we can define new aggregation functions for our
ADTs) and method security (the system has to prevent user-defined methods from
compromising the security of the DBMS). Examples of new techniques to increase
performance include method caching and pointer swizzling. The optimizer must
know about the new functionality and use it appropriately. (Section 25.7)

Object Query Language (OQL) is a query language for OODBMSs that provides
constructs to query collection types. Its data definition language is called Object
Data Language (ODL). We discussed elements of the ODML data model and gave
examples of OQL and ODL. (Section 25.8)

An ORDBMS is a relational DBMS with the extensions discussed in this chapter.
An OODBMS is a programming language with a type system that includes the fea-
tures discussed in this chapter. ORDBMSs add OODBMS features to a RDBMS,
but there are several differences to a full-fledged OODBMS. (Section 25.9)

EXERCISES

Exercise 25.1 Briefly answer the following questions.

1. What are the two kinds of new data types supported in object-database systems? Give

an example of each, and discuss how the example situation would be handled if only an

RDBMS was available.

2. What must a user do to define a new ADT?

3. Allowing users to define methods can lead to efficiency gains. Give an example.

4. What is late binding of methods? Give an example of inheritance that illustrates the

need for dynamic binding.

5. What are collection hierarchies? Give an example that illustrates how collection hierar-

chies facilitate querying.

6. Discuss how a DBMS exploits encapsulation in implementing support for ADTs.

7. Give an example illustrating the nesting and unnesting operations.

8. Describe two objects that are deep equal but not shallow equal, or explain why this is

not possible.

Object-Database Systems 773

9. Describe two objects that are shallow equal but not deep equal, or explain why this is

not possible.

10. Compare RDBMSs with ORDBMSs. Describe an application scenario for which you

would choose an RDBMS, and explain why. Similarly, describe an application scenario

for which you would choose an ORDBMS, and explain why.

Exercise 25.2 Consider the Dinky schema shown in Figure 25.1 and all related methods

defined in the chapter. Write the following queries in extended SQL:

1. How many films were shown at theater tno = 5 between January 1 and February 1 of

1997?

2. What is the lowest budget for a film with at least two stars?

3. Consider theaters at which a film directed by Steven Spielberg started showing on Jan-

uary 1, 1997. For each such theater, print the names of all countries within a 100-mile

radius. (You can use the overlap and radius methods illustrated in Figure 25.2.)

Exercise 25.3 In a company database, you need to store information about employees, de-

partments, and children of employees. For each employee, identified by ssn, you must record

years (the number of years that the employee has worked for the company), phone, and photo

information. There are two subclasses of employees: contract and regular. Salary is com-

puted by invoking a method that takes years as a parameter; this method has a different

implementation for each subclass. Further, for each regular employee, you must record the

name and age of every child. The most common queries involving children are similar to

“Find the average age of Bob’s children” and “Print the names of all of Bob’s children.”

A photo is a large image object and can be stored in one of several image formats (e.g.,

gif, jpeg). You want to define a display method for image objects; display must be defined

differently for each image format. For each department, identified by dno, you must record

dname, budget, and workers information. Workers is the set of employees who work in a

given department. Typical queries involving workers include, “Find the average salary of all

workers (across all departments).”

1. Using extended SQL, design an ORDBMS schema for the company database. Show all

type definitions, including method definitions.

2. If you have to store this information in an RDBMS, what is the best possible design?

3. Compare the ORDBMS and RDBMS designs.

4. If you are told that a common request is to display the images of all employees in a given

department, how would you use this information for physical database design?

5. If you are told that an employee’s image must be displayed whenever any information

about the employee is retrieved, would this affect your schema design?

6. If you are told that a common query is to find all employees who look similar to a given

image, and given code that lets you create an index over all images to support retrieval

of similar images, what would you do to utilize this code in an ORDBMS?

Exercise 25.4 ORDBMSs need to support efficient access over collection hierarchies. Con-

sider the collection hierarchy of Theaters and Theater cafes presented in the Dinky example.

In your role as a DBMS implementor (not a DBA), you must evaluate three storage alterna-

tives for these tuples:

774 Chapter 25

All tuples for all kinds of theaters are stored together on disk in an arbitrary order.

All tuples for all kinds of theaters are stored together on disk, with the tuples that are

from Theater cafes stored directly after the last of the non-cafe tuples.

Tuples from Theater cafes are stored separately from the rest of the (non-cafe) theater

tuples.

1. For each storage option, describe a mechanism for distinguishing plain theater tuples

from Theater cafe tuples.

2. For each storage option, describe how to handle the insertion of a new non-cafe tuple.

3. Which storage option is most efficient for queries over all theaters? Over just The-

ater cafes? In terms of the number of I/Os, how much more efficient is the best technique

for each type of query compared to the other two techniques?

Exercise 25.5 Different ORDBMSs use different techniques for building indexes to evaluate

queries over collection hierarchies. For our Dinky example, to index theaters by name there

are two common options:

Build one B+ tree index over Theaters.name and another B+ tree index over The-

ater cafes.name.

Build one B+ tree index over the union of Theaters.name and Theater cafes.name.

1. Describe how to efficiently evaluate the following query using each indexing option (this

query is over all kinds of theater tuples):

SELECT * FROM Theaters T WHERE T.name = ‘Majestic’

Give an estimate of the number of I/Os required in the two different scenarios, assuming

there are 1,000,000 standard theaters and 1,000 theater-cafes. Which option is more

efficient?

2. Perform the same analysis over the following query:

SELECT * FROM Theater cafes T WHERE T.name = ‘Majestic’

3. For clustered indexes, does the choice of indexing technique interact with the choice of

storage options? For unclustered indexes?

Exercise 25.6 Consider the following query:

SELECT thumbnail(I.image)

FROM Images I

Given that the I.image column may contain duplicate values, describe how to use hashing to

avoid computing the thumbnail function more than once per distinct value in processing this

query.

Exercise 25.7 You are given a two-dimensional, n × n array of objects. Assume that you

can fit 100 objects on a disk page. Describe a way to lay out (chunk) the array onto pages

so that retrievals of square m × m subregions of the array are efficient. (Different queries

will request subregions of different sizes, i.e., different m values, and your arrangement of the

array onto pages should provide good performance, on average, for all such queries.)

Object-Database Systems 775

Exercise 25.8 An ORDBMS optimizer is given a single-table query with n expensive selec-

tion conditions, σn(...(σ1(T))). For each condition σi, the optimizer can estimate the cost ci

of evaluating the condition on a tuple and the reduction factor of the condition ri. Assume

that there are t tuples in T .

1. How many tuples appear in the output of this query?

2. Assuming that the query is evaluated as shown (without reordering selections), what

is the total cost of the query? Be sure to include the cost of scanning the table and

applying the selections.

3. In Section 25.7.2 it was asserted that the optimizer should reorder selections so that they

are applied to the table in order of increasing rank, where ranki = (ri − 1)/ci. Prove

that this assertion is optimal. That is, show that no other ordering could result in a

query of lower cost. (Hint: It may be easiest to consider the special case where n = 2

first and generalize from there.)

BIBLIOGRAPHIC NOTES

A number of the object-oriented features described here are based in part on fairly old ideas

in the programming languages community. [35] provides a good overview of these ideas in

a database context. Stonebraker’s book [630] describes the vision of ORDBMSs embodied

by his company’s early product, Illustra (now a product of Informix). Current commercial

DBMSs with object-relational support include Informix Universal Server, IBM DB/2 CS V2,

and UniSQL. An new version of Oracle is scheduled to include ORDBMS features as well.

Many of the ideas in current object-relational systems came out of a few prototypes built in

the 1980s, especially POSTGRES [633], Starburst [296], and O2 [183].

The idea of an object-oriented database was first articulated in [165], which described the

GemStone prototype system. Other prototypes include DASDBS [571], EXODUS [110], IRIS

[235], ObjectStore [400], ODE, [14] ORION [370], SHORE [109], and THOR [417]. O2 is

actually an early example of a system that was beginning to merge the themes of ORDBMSs

and OODBMSs—it could fit in this list as well. [34] lists a collection of features that are

generally considered to belong in an OODBMS. Current commercially available OODBMSs

include GemStone, Itasca, O2, Objectivity, ObjectStore, Ontos, Poet, and Versant. [369]

compares OODBMSs and RDBMSs.

Database support for ADTs was first explored in the INGRES and POSTGRES projects

at U.C. Berkeley. The basic ideas are described in [627], including mechanisms for query

processing and optimization with ADTs as well as extensible indexing. Support for ADTs

was also investigated in the Darmstadt database system, [415]. Using the POSTGRES index

extensibility correctly required intimate knowledge of DBMS-internal transaction mechanisms.

Generalized search trees were proposed to solve this problem; they are described in [317], with

concurrency and ARIES-based recovery details presented in [386]. [585] proposes that users

must be allowed to define operators over ADT objects and properties of these operators that

can be utilized for query optimization, rather than just a collection of methods.

776 Chapter 25

Array chunking is described in [568]. Techniques for method caching and optimizing queries

with expensive methods are presented in [315, 140]. Client-side data caching in a client-server

OODBMS is studied in [242]. Clustering of objects on disk is studied in [650]. Work on

nested relations was an early precursor of recent research on complex objects in OODBMSs

and ORDBMSs. One of the first nested relation proposals is [439]. MVDs play an important

role in reasoning about reduncancy in nested relations; see, for example, [504]. Storage

structures for nested relations were studied in [181].

Formal models and query languages for object-oriented databases have been widely studied;

papers include [4, 46, 62, 105, 331, 332, 366, 503, 635]. [365] proposes SQL extensions for

querying object-oriented databases. An early and elegant extension of SQL with path expres-

sions and inheritance was developed in GEM [692]. There has been much interest in combining

deductive and object-oriented features. Papers in this area include [37, 247, 430, 485, 617, 694].

See [3] for a thorough textbook discussion of formal aspects of object-orientation and query

languages.

[371, 373, 634, 696] include papers on DBMSs that would now be termed object-relational

and/or object-oriented. [695] contains a detailed overview of schema and database evolution in

object-oriented database systems. Drafts of the SQL3 standard are available electronically at

URL ftp://jerry.ece.umassd.edu/isowg3/. The SQL:1999 standard is discussed in [200].

The incorporation of several SQL:1999 features into IBM DB2 is described in [108]. OQL is

described in [120]. It is based to a large extent on the O2 query language, which is described,

together with other aspects of O2, in the collection of papers [45].

26 SPATIAL DATA MANAGEMENT

Nothing puzzles me more than time and space; and yet nothing puzzles me less, as

I never think about them.

—Charles Lamb

Many applications involve large collections of spatial objects, and querying, indexing
and maintaining such collections requires some specialized techniques. In this chapter,
we motivate spatial data management and provide an introduction to the required
techniques.

We introduce the different kinds of spatial data and queries in Section 26.1 and discuss
several motivating applications in Section 26.2. We explain why indexing structures
such as B+ trees are not adequate for handling spatial data in Section 26.3. We discuss
three approaches to indexing spatial data in Sections 26.4 through 26.6. In Section 26.4,
we discuss indexing techniques based on space-filling curves; in Section 26.5, we discuss
the Grid file, an indexing technique that partitions the data space into nonoverlapping
regions; and in Section 26.6, we discuss the R tree, an indexing technique based upon
hierarchical partitioning of the data space into possibly overlapping regions. Finally, in
Section 26.7 we discuss some issues that arise in indexing datasets with a large number
of dimensions.

26.1 TYPES OF SPATIAL DATA AND QUERIES

We use the term spatial data in a broad sense, covering multidimensional points,
lines, rectangles, polygons, cubes, and other geometric objects. A spatial data object
occupies a certain region of space, called its spatial extent, which is characterized by
its location and boundary.

From the point of view of a DBMS, we can classify spatial data as being either point
data or region data.

Point data: A point has a spatial extent characterized completely by its location;
intuitively, it occupies no space and has no associated area or volume. Point data
consists of a collection of points in a multidimensional space. Point data stored in a
database can be based on direct measurements or be generated by transforming data

777

778 Chapter 26

obtained through measurements for ease of storage and querying. Raster data is an
example of directly measured point data and includes bit maps or pixel maps such as
satellite imagery. Each pixel stores a measured value (e.g., temperature or color) for
a corresponding location in space. Another example of such measured point data is
medical imagery such as three-dimensional magnetic resonance imaging (MRI) brain
scans. Feature vectors extracted from images, text, or signals such as time series are
examples of point data obtained by transforming a data object. As we will see, it is
often easier to use such a representation of the data, instead of the actual image or
signal, to answer queries.

Region data: A region has a spatial extent with a location and a boundary. The
location can be thought of as the position of a fixed ‘anchor point’ for the region, e.g.,
its centroid. In two dimensions, the boundary can be visualized as a line (for finite
regions, a closed loop), and in three dimensions it is a surface. Region data consists of
a collection of regions. Region data stored in a database is typically a simple geometric
approximation to an actual data object. Vector data is the term used to describe
such geometric approximations, constructed using points, line segments, polygons,
spheres, cubes, etc. Many examples of region data arise in geographic applications.
For instance, roads and rivers can be represented as a collection of line segments, and
countries, states, and lakes can be represented as polygons. Other examples arise in
computer-aided design applications. For instance, an airplane wing might be modeled
as a wire frame using a collection of polygons (that intuitively tile the wire frame
surface approximating the wing), and a tubular object may be modeled as the difference
between two concentric cylinders.

Spatial queries, or queries that arise over spatial data, are of three main types:
spatial range queries, nearest neighbor queries, and spatial join queries.

Spatial range queries: In addition to multidimensional queries such as, “Find all
employees with salaries between $50,000 and $60,000 and ages between 40 and 50,”
we can ask queries such as, “Find all cities within 50 miles of Madison,” or, “Find all
rivers in Wisconsin.” A spatial range query has an associated region (with a location
and boundary). In the presence of region data, spatial range queries can return all
regions that overlap the specified range or all regions that are contained within the
specified range. Both variants of spatial range queries are useful, and algorithms for
evaluating one variant are easily adapted to solve the other. Range queries occur in a
wide variety of applications, including relational queries, GIS queries, and CAD/CAM
queries.

Nearest neighbor queries: A typical query is, “Find the 10 cities that are nearest
to Madison.” We usually want the answers to be ordered by distance to Madison,
i.e., by proximity. Such queries are especially important in the context of multimedia
databases, where an object (e.g., images) is represented by a point, and ‘similar’ objects

Spatial Data Management 779

are found by retrieving objects whose representative points are closest to the point
representing the query object.

Spatial join queries: Typical examples include “Find pairs of cities within 200 miles
of each other” and “Find all cities near a lake.” These queries can be quite expensive
to evaluate. If we consider a relation in which each tuple is a point representing a city
or a lake, the above queries can be answered by a join of this relation with itself, where
the join condition specifies the distance between two matching tuples. Of course, if
cities and lakes are represented in more detail and have a spatial extent, both the
meaning of such queries (are we looking for cities whose centroids are within 200 miles
of each other or cities whose boundaries come within 200 miles of each other?) and
the query evaluation strategies become more complex. Still, the essential character of
a spatial join query is retained.

These kinds of queries are very common and arise in most applications of spatial
data. Some applications also require specialized operations such as interpolation of
measurements at a set of locations to obtain values for the measured attribute over an
entire region.

26.2 APPLICATIONS INVOLVING SPATIAL DATA

There are many applications that involve spatial data. Even a traditional relation
with k fields can be thought of as a collection of k-dimensional points, and as we will
see in Section 26.3, certain relational queries can be executed faster by using indexing
techniques designed for spatial data. In this section, however, we concentrate on
applications in which spatial data plays a central role and in which efficient handling
of spatial data is essential for good performance.

Geographic Information Systems (GIS) deal extensively with spatial data, including
points, lines, and two- or three-dimensional regions. For example, a map contains lo-
cations of small objects (points), rivers and highways (lines), and cities and lakes (re-
gions). A GIS system must efficiently manage two-dimensional and three-dimensional
datasets. All the classes of spatial queries that we described arise naturally, and both
point data and region data must be handled. Commercial GIS systems such as ArcInfo
are in wide use today, and object database systems aim to support GIS applications
as well.

Computer-aided design and manufacturing (CAD/CAM) systems and medical imaging
systems store spatial objects such as surfaces of design objects (e.g., the fuselage of
an aircraft). As with GIS systems, both point and region data must be stored. Range
queries and spatial join queries are probably the most common queries, and spatial
integrity constraints such as “There must be a minimum clearance of one foot

780 Chapter 26

between the wheel and the fuselage” can be very useful. (CAD/CAM was a major
motivation for the development of object databases.)

Multimedia databases, which contain multimedia objects such as images, text, and
various kinds of time-series data (e.g., audio), also require spatial data management.
In particular, finding objects similar to a given object is a common kind of query in
a multimedia system, and a popular approach to answering similarity queries involves
first mapping multimedia data to a collection of points called feature vectors. A
similarity query is then converted to the problem of finding the nearest neighbors of
the point that represents the query object.

In medical image databases, we have to store digitized two-dimensional and three-
dimensional images such as X-rays or MRI images. Fingerprints (together with infor-
mation identifying the fingerprinted individual) can be stored in an image database,
and we can search for fingerprints that match a given fingerprint. Photographs from
driver’s licenses can be stored in a database, and we can search for faces that match
a given face. Such image database applications rely on content-based image re-
trieval (e.g., find images similar to a given image). Going beyond images, we can
store a database of video clips and search for clips in which a scene changes, or in
which there is a particular kind of object. We can store a database of signals or time-
series, and look for similar time-series. We can store a collection of text documents
and search for similar documents (i.e., dealing with similar topics).

Feature vectors representing multimedia objects are typically points in a high-dimensional
space. For example, we can obtain feature vectors from a text object by using a list of
keywords (or concepts) and noting which keywords are present; we thus get a vector
of 1s (the corresponding keyword is present) and 0s (the corresponding keyword is
missing in the text object) whose length is equal to the number of keywords in our
list. Lists of several hundred words are commonly used. We can obtain feature vectors
from an image by looking at its color distribution (the levels of red, green, and blue for
each pixel) or by using the first several coefficients of a mathematical function (e.g.,
the Hough transform) that closely approximates the shapes in the image. In general,
given an arbitrary signal, we can represent it using a mathematical function having
a standard series of terms, and approximate it by storing the coefficients of the most
significant terms.

When mapping multimedia data to a collection of points, it is important to ensure
that there is a measure of distance between two points that captures the notion of
similarity between the corresponding multimedia objects. Thus, two images that map
to two nearby points must be more similar than two images that map to two points
far from each other. Once objects are mapped into a suitable coordinate space, finding
similar images, similar documents, or similar time-series can be modeled as finding
points that are close to each other: We map the query object to a point and look for its
nearest neighbors. The most common kind of spatial data in multimedia applications

Spatial Data Management 781

is point data, and the most common query is nearest neighbor. In contrast to GIS and
CAD/CAM, the data is of high dimensionality (usually 10 or more dimensions).

26.3 INTRODUCTION TO SPATIAL INDEXES

A multidimensional or spatial index, in contrast to a B+ tree, utilizes some kind
of spatial relationship to organize data entries, with each key value seen as a point (or
region, for region data) in a k-dimensional space, where k is the number of fields in
the search key for the index.

In a B+ tree index, the two-dimensional space of 〈age, sal〉 values is linearized—i.e.,
points in the two-dimensional domain are totally ordered—by sorting on age first and
then on sal. In Figure 26.1, the dotted line indicates the linear order in which points
are stored in a B+ tree. In contrast, a spatial index stores data entries based on their
proximity in the underlying two-dimensional space. In Figure 26.1, the boxes indicate
how points are stored in a spatial index.

12

10

20

30

40

50

60

70

80

1311 12

10

20

30

40

50

60

70

80

1311

sa
l

sa
l

ageage

Figure 26.1 Clustering of Data Entries in B+ Tree vs. Spatial Indexes

Let us compare a B+ tree index on key 〈age, sal〉 with a spatial index on the space of
age and sal values, using several example queries:

1. age < 12: The B+ tree index performs very well. As we will see, a spatial index
will handle such a query quite well, although it cannot match a B+ tree index in
this case.

2. sal < 20: The B+ tree index is of no use since it does not match this selection.
In contrast, the spatial index will handle this query just as well as the previous
selection on age.

3. age < 12 ∧ sal < 20: The B+ tree index effectively utilizes only the selection on
age. If most tuples satisfy the age selection, it will perform poorly. The spatial

782 Chapter 26

index will fully utilize both selections and return only tuples that satisfy both
the age and sal conditions. To achieve this with B+ tree indexes, we have to
create two separate indexes on age and sal, retrieve rids of tuples satisfying the
age selection by using the index on age and retrieve rids of tuples satisfying the sal
condition by using the index on sal, intersect these rids, then retrieve the tuples
with these rids.

Spatial indexes are ideal for queries such as, “Find the 10 nearest neighbors of a given
point,” and, “Find all points within a certain distance of a given point.” The drawback
with respect to a B+ tree index is that if (almost) all data entries are to be retrieved
in age order, a spatial index is likely to be slower than a B+ tree index in which age
is the first field in the search key.

26.3.1 Overview of Proposed Index Structures

Many spatial index structures have been proposed. Some are primarily designed to
index collections of points although they can be adapted to handle regions, and some
handle region data naturally. Examples of index structures for point data include Grid
files, hB trees, KD trees, Point Quad trees, and SR trees. Examples of index structures
that handle regions as well as point data include Region Quad trees, R trees, and SKD
trees. The above lists are far from complete; there are many variants of the above
index structures and many entirely distinct index structures.

There is as yet no consensus on the ‘best’ spatial index structure. However, R trees
have been widely implemented and found their way into commercial DBMSs. This is
due to their relative simplicity, their ability to handle both point and region data, and
the fact that their performance is at least comparable to more complex structures.

We will discuss three approaches that are distinct and, taken together, illustrative of
many of the proposed indexing alternatives. First, we discuss index structures that
rely on space-filling curves to organize points. We begin by discussing Z-ordering for
point data, and then discuss Z-ordering for region data, which is essentially the idea
behind Region Quad trees. Region Quad trees illustrate an indexing approach based on
recursive subdivision of the multidimensional space, independent of the actual dataset.
There are several variants of Region Quad trees.

Second, we discuss Grid files, which illustrate how an Extendible Hashing style di-
rectory can be used to index spatial data. Many index structures such as Bang files,
Buddy trees, and Multilevel Grid files have been proposed, refining the basic idea. Fi-
nally, we discuss R trees, which also recursively subdivide the multidimensional space.
In contrast to Region Quad trees, the decomposition of space utilized in an R tree
depends upon the indexed dataset. We can think of R trees as an adaptation of the

Spatial Data Management 783

B+ tree idea to spatial data. Many variants of R trees have been proposed, including
Cell trees, Hilbert R trees, Packed R trees, R* trees, R+ trees, TV trees, and X trees.

26.4 INDEXING BASED ON SPACE-FILLING CURVES

Space-filling curves are based on the assumption that any attribute value can be rep-
resented with some fixed number of bits, say k bits. The maximum number of values
along each dimension is therefore 2k. We will consider a two-dimensional dataset for
simplicity although the approach can handle any number of dimensions.

4

10

11

12

3 91

0 2 8

146

5 7 13 1511

10

01

00

00 01 10 11

000

001

010

011

100

101

110

111

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

001

010

011

100

101

110

111

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Hilbert curve with three bitsZ-ordering with three bitsZ-ordering with two bits

Figure 26.2 Space Filling Curves

A space-filling curve imposes a linear ordering on the domain, as illustrated in Figure
26.2. The first curve shows the Z-ordering curve for domains with two-bit repre-
sentations of attribute values. A given dataset contains a subset of the points in the
domain, and these are shown as filled circles in the figure. Domain points that are not
in the given dataset are shown as unfilled circles. Consider the point with X = 01 and
Y = 11 in the first curve. The point has Z-value 0111, obtained by interleaving the
bits of the X and Y values; we take the first X bit (0), then the first Y bit (1), then
the second X bit (1), and finally the second Y bit (1). In decimal representation, the
Z-value 0111 is equal to 7, and the point X = 01 and Y = 11 has the Z-value 7 shown
next to it in Figure 26.2. This is the eighth domain point ‘visited’ by the space-filling
curve, which starts at point X = 00 and Y = 00 (Z-value 0).

The points in a dataset are stored in Z-value order and indexed by a traditional indexing
structure such as a B+ tree. That is, the Z-value of a point is stored together with the
point and is the search key for the B+ tree. (Actually, we do not have to store the X

and Y values for a point if we store the Z-value, since we can compute them from the
Z-value by extracting the interleaved bits.) To insert a point, we compute its Z-value
and insert it into the B+ tree. Deletion and search are similarly based on computing
the Z-value and then using the standard B+ tree algorithms.

784 Chapter 26

The advantage of this approach over using a B+ tree index on some combination of the
X and Y fields is that points are clustered together by spatial proximity in the X–Y

space. Spatial queries over the X–Y space now translate into linear range queries over
the ordering of Z-values and are efficiently answered using the B+ tree on Z-values.

The spatial clustering of points achieved by the Z-ordering curve is seen more clearly
in the second curve in Figure 26.2, which shows the Z-ordering curve for domains
with three-bit representations of attribute values. If we visualize the space of all
points as four quadrants, the curve visits all points in a quadrant before moving on to
another quadrant. This means that all points in a quadrant are stored together. This
property holds recursively within each quadrant as well—each of the four subquadrants
is completely traversed before the curve moves to another subquadrant. Thus, all
points in a subquadrant are stored together.

The Z-ordering curve achieves good spatial clustering of points, but it can be improved
upon. Intuitively, the curve occasionally makes long diagonal ‘jumps,’ and the points
connected by the jumps, while far apart in the X–Y space of points, are nonethe-
less close in Z-ordering. The Hilbert curve, shown as the third curve in Figure 26.2,
addresses this problem.

26.4.1 Region Quad Trees and Z-Ordering: Region Data

Z-ordering gives us a way to group points according to spatial proximity. What if we
have region data? The key is to understand how Z-ordering recursively decomposes
the data space into quadrants and subquadrants, as illustrated in Figure 26.3.

10

11

12

9

0 8

14

13 1511

10

01

00

00 01 10 11

4

1

5 7

3

2

6

10 11

10 110100

00 01

0 2 31

Figure 26.3 Z-Ordering and Region Quad Trees

The Region Quad tree structure corresponds directly to the recursive decomposition
of the data space. Each node in the tree corresponds to a square-shaped region of
the data space. As special cases, the root corresponds to the entire data space, and

Spatial Data Management 785

some leaf nodes correspond to exactly one point. Each internal node has four children,
corresponding to the four quadrants into which the space corresponding to the node is
partitioned: 00 identifies the bottom left quadrant, 01 identifies the top left quadrant,
10 identifies the bottom right quadrant, and 11 identifies the top right quadrant.

In Figure 26.3, consider the children of the root. All points in the quadrant corre-
sponding to the 00 child have Z-values that begin with 00, all points in the quadrant
corresponding to the 01 child have Z-values that begin with 01, and so on. In fact,
the Z-value of a point can be obtained by traversing the path from the root to the leaf
node for the point and concatenating all the edge labels.

Consider the region represented by the rounded rectangle in Figure 26.3. Suppose that
the rectangle object is stored in the DBMS and given the unique identifier (oid) R. R
includes all points in the 01 quadrant of the root as well as the points with Z-values 1
and 3, which are in the 00 quadrant of the root. In the figure, the nodes for points 1
and 3 and the 01 quadrant of the root are shown with dark boundaries. Together, the
dark nodes represent the rectangle R. The three records 〈 0001, R〉, 〈 0011, R〉, and 〈 01,
R〉 can be used to store this information. The first field of each record is a Z-value; the
records are clustered and indexed on this column using a B+ tree. Thus, a B+ tree is
used to implement a Region Quad tree, just as it was used to implement Z-ordering.

Note that a region object can usually be stored using fewer records if it is sufficient to
represent it at a coarser level of detail. For example, rectangle R can be represented
using two records 〈 00, R〉 and 〈 01, R〉. This approximates R by using the bottom left
and top left quadrants of the root.

The Region Quad tree idea can be generalized beyond two dimensions. In k dimensions,
at each node we partition the space into 2k subregions; for k = 2, we partition the
space into four equal parts (quadrants). We will not discuss the details.

26.4.2 Spatial Queries Using Z-Ordering

Range queries can be handled by translating the query into a collection of regions,
each represented by a Z-value. (We saw how to do this in our discussion of region data
and Region Quad trees.) We then search the B+ tree to find matching data items.

Nearest neighbor queries can also be handled, although they are a little trickier because
distance in the Z-value space does not always correspond well to distance in the original
X–Y coordinate space (recall the diagonal jumps in the Z-order curve). The basic idea
is to first compute the Z-value of the query and find the data point with the closest
Z-value by using the B+ tree. Then, to make sure we are not overlooking any points
that are closer in the X–Y space, we compute the actual distance r between the query
point and the retrieved data point and issue a range query centered at the query point

786 Chapter 26

and with radius r. We check all retrieved points and return the one that is closest to
the query point.

Spatial joins can be handled by extending the approach to range queries.

26.5 GRID FILES

In contrast to the Z-ordering approach, which partitions the data space independently
of any one dataset, the Grid file partitions the data space in a way that reflects the
data distribution in a given dataset. The method is designed to guarantee that any
point query (a query that retrieves the information associated with the query point)
can be answered in at most two disk accesses.

Grid files rely upon a grid directory to identify the data page containing a desired
point. The grid directory is similar to the directory used in Extendible Hashing (see
Chapter 10). When searching for a point, we first find the corresponding entry in the
grid directory. The grid directory entry, like the directory entry in Extendible Hashing,
identifies the page on which the desired point is stored, if the point is in the database.
To understand the Grid file structure, we need to understand how to find the grid
directory entry for a given point.

We describe the Grid file structure for two-dimensional data. The method can be gen-
eralized to any number of dimensions, but we restrict ourselves to the two-dimensional
case for simplicity. The Grid file partitions space into rectangular regions using lines
that are parallel to the axes. Thus, we can describe a Grid file partitioning by specify-
ing the points at which each axis is ‘cut.’ If the X axis is cut into i segments and the
Y axis is cut into j segments, we have a total of i × j partitions. The grid directory
is an i by j array with one entry per partition. This description is maintained in an
array called a linear scale; there is one linear scale per axis.

Figure 26.4 illustrates how we search for a point using a Grid file index. First, we
use the linear scales to find the X segment to which the X value of the given point
belongs and the Y segment to which the Y value belongs. This identifies the entry of
the grid directory for the given point. We assume that all linear scales are stored in
main memory, and therefore this step does not require any I/O. Next, we fetch the
grid directory entry. Since the grid directory may be too large to fit in main memory,
it is stored on disk. However, we can identify the disk page containing a given entry
and fetch it in one I/O because the grid directory entries are arranged sequentially in
either row-wise or column-wise order. The grid directory entry gives us the id of the
data page containing the desired point, and this page can now be retrieved in one I/O.
Thus, we can retrieve a point in two I/Os—one I/O for the directory entry and one
for the data page.

Spatial Data Management 787

z

a

f

k

p

0

Query: (1800,nut)

1000 1500 1700 2500 3500

LINEAR SCALE FOR X-AXIS

LINEAR SCALE FOR Y-AXIS

GRID DIRECTORY Stored on Disk

Figure 26.4 Searching for a Point in a Grid File

Range queries and nearest neighbor queries are easily answered using the Grid file.
For range queries, we use the linear scales to identify the set of grid directory entries
to fetch. For nearest neighbor queries, we first retrieve the grid directory entry for the
given point and search the data page it points to. If this data page is empty, we use
the linear scales to retrieve the data entries for grid partitions that are adjacent to the
partition that contains the query point. We retrieve all the data points within these
partitions and check them for nearness to the given point.

The Grid file relies upon the property that a grid directory entry points to a page that
contains the desired data point (if the point is in the database). This means that we
are forced to split the grid directory—and therefore a linear scale along the splitting
dimension—if a data page is full and a new point is inserted to that page. In order
to obtain good space utilization, we allow several grid directory entries to point to
the same page. That is, several partitions of the space may be mapped to the same
physical page, as long as the set of points across all these partitions fits on a single
page.

Insertion of points into a Grid file is illustrated in Figure 26.5, which has four parts
each illustrating a snapshot of a Grid file. Each snapshot shows just the grid directory
and the data pages; the linear scales are omitted for simplicity. Initially (the top left
part of the figure) there are only three points, all of which fit into a single page (A). The
grid directory contains a single entry, which covers the entire data space and points to
page A.

In this example, we assume that the capacity of a data page is three points. Thus,
when a new point is inserted, we need an additional data page. We are also forced
to split the grid directory in order to accommodate an entry for the new page. We

788 Chapter 26

1 2

3 4

1

2

3

5

1 4

62

3

1 4

2

3

5

1 4

62

3

9

7

1, 4

3, 6

2, 5

1, 2, 3

3

2, 5

3, 6

1, 7

1, 2, 4A A

A

B

C

A

B

C

D

B

8 4, 810

Figure 26.5 Inserting Points into a Grid File

do this by splitting along the X axis to obtain two equal regions; one of these regions
points to page A and the other points to the new data page B. The data points are
redistributed across pages A and B to reflect the partitioning of the grid directory.
The result is shown in the top right part of Figure 26.5.

The next part (bottom left) of Figure 26.5 illustrates the Grid file after two more
insertions. The insertion of point 5 forces us to split the grid directory again because
point 5 is in the region that points to page A, and page A is already full. Since we split
along the X axis in the previous split, we now split along the Y axis, and redistribute
the points in page A across page A and a new data page, C. (Choosing the axis to
split in a round-robin fashion is one of several possible splitting policies.) Observe
that splitting the region that points to page A also causes a split of the region that
points to page B, leading to two regions pointing to page B. Inserting point 6 next is
straightforward because it is in a region that points to page B, and page B has space
for the new point.

Next, consider the bottom right part of the figure. It shows the example file after
the insertion of two additional points, 7 and 8. The insertion of point 7 causes page
C to become full, and the subsequent insertion of point 8 causes another split. This
time, we split along the X axis and redistribute the points in page C across C and
the new data page D. Observe how the grid directory is partitioned the most in those
parts of the data space that contain the most points—the partitioning is sensitive
to data distribution, like the partitioning in Extendible Hashing, and handles skewed
distributions well.

Finally, consider the potential insertion of points 9 and 10, which are shown as light
circles to indicate that the result of these insertions is not reflected in the data pages.
Inserting point 9 fills page B, and subsequently inserting point 10 requires a new data
page. However, the grid directory does not have to be split further—points 6 and 9 can

Spatial Data Management 789

be in page B, points 3 and 10 can go to a new page E, and the second grid directory
entry that points to page B can be reset to point to page E.

Deletion of points from a Grid file is complicated. When a data page falls below some
occupancy threshold, e.g., less than half-full, it must be merged with some other data
page in order to maintain good space utilization. We will not go into the details beyond
noting that in order to simplify deletion, there is a convexity requirement on the set of
grid directory entries that point to a single data page: the region defined by this set of
grid directory entries must be convex.

26.5.1 Adapting Grid Files to Handle Regions

There are two basic approaches to handling region data in a Grid file, neither of which
is satisfactory. First, we can represent a region by a point in a higher dimensional
space. For example, a box in two dimensions can be represented as a four-dimensional
point by storing two diagonal corner points of the box. This approach does not support
nearest neighbor and spatial join queries since distances in the original space are not
reflected in the distances between points in the higher-dimensional space. Further,
this approach increases the dimensionality of the stored data, which leads to various
problems (see Section 26.7).

The second approach is to store a record representing the region object in each grid
partition that overlaps the region object. This is unsatisfactory because it leads to a
lot of additional records and makes insertion and deletion expensive.

In summary, the Grid file is not a good structure for storing region data.

26.6 R TREES: POINT AND REGION DATA

The R tree is an adaptation of the B+ tree to handle spatial data and it is a height-
balanced data structure, like the B+ tree. The search key for an R tree is a collection
of intervals, with one interval per dimension. We can think of a search key value as a
box that is bounded by the intervals; each side of the box is parallel to an axis. We
will refer to search key values in an R tree as bounding boxes.

A data entry consists of a pair 〈n-dimensional box, rid〉, where rid identifies an object
and the box is the smallest box that contains the object. As a special case, the box is
a point if the data object is a point instead of a region. Data entries are stored in leaf
nodes. Non-leaf nodes contain index entries of the form 〈n-dimensional box, pointer
to a child node〉. The box at a non-leaf node N is the smallest box that contains all
boxes associated with child nodes; intuitively, it bounds the region containing all data
objects stored in the subtree rooted at node N .

790 Chapter 26

Figure 26.6 shows two views of an example R tree. In the first view, we see the tree
structure. In the second view, we see how the data objects and bounding boxes are
distributed in space.

R10* R11* R12* R13* R14*R9*R8* R15* R16* R17* R18* R19*

R1 R2

R7R6R5R4R3

Root

R8

R9

R10

R11

R14

R19

R17

R18
R12

R16
R15

R1

R3
R4

R2 R7

R13R5

R6

Figure 26.6 Two Views of an Example R Tree

There are 19 regions in the example tree. Regions R8 through R19 represent data
objects and are shown in the tree as data entries at the leaf level. The entry R8*,
for example, consists of the bounding box for region R8 and the rid of the underlying
data object. Regions R1 through R7 represent bounding boxes for internal nodes in
the tree. Region R1, for example, is the bounding box for the space containing the left
subtree, which includes data objects R8, R9, R10, R11, R12, R13, and R14.

The bounding boxes for two children of a given node can overlap; for example, the
boxes for the children of the root node, R1 and R2, overlap. This means that more
than one leaf node could accommodate a given data object while satisfying all bounding
box constraints. However, every data object is stored in exactly one leaf node, even
if its bounding box falls within the regions corresponding to two or more higher-level
nodes. For example, consider the data object represented by R9. It is contained within
both R3 and R4 and could be placed in either the first or the second leaf node (going
from left to right in the tree). We have chosen to insert it into the left-most leaf node;
it is not inserted anywhere else in the tree. (We will discuss the criteria used to make
such choices in Section 26.6.2.)

26.6.1 Queries

To search for a point, we compute its bounding box B—which is just the point—and
start at the root of the tree. We test the bounding box for each child of the root to see
if it overlaps the query box B, and if so we search the subtree rooted at the child. If
more than one child of the root has a bounding box that overlaps B, we must search
all the corresponding subtrees. This is an important difference with respect to B+
trees: The search for even a single point can lead us down several paths in the tree.
When we get to the leaf level, we check to see if the node contains the desired point.
It is possible that we do not visit any leaf node—this happens when the query point

Spatial Data Management 791

is in a region that is not covered by any of the boxes associated with leaf nodes. If
the search does not visit any leaf pages, we know that the query point is not in the
indexed dataset.

Searches for region objects and range queries are handled similarly by computing a
bounding box for the desired region and proceeding as in the search for an object. For
a range query, when we get to the leaf level we must retrieve all region objects that
belong there and test to see if they overlap (or are contained in, depending upon the
query) the given range. The reason for this test is that even if the bounding box for
an object overlaps the query region, the object itself may not!

As an example, suppose that we want to find all objects that overlap our query region,
and the query region happens to be the box representing object R8. We start at the
root and find that the query box overlaps R1 but not R2. Thus, we search the left
subtree, but not the right subtree. We then find that the query box overlaps R3 but
not R4 or R5. So we search the left-most leaf and find object R8. As another example,
suppose that the query region coincides with R9 rather than R8. Again, the query box
overlaps R1 but not R2 and so we search (only) the left subtree. Now we find that
the query box overlaps both R3 and R4, but not R5. We therefore search the children
pointed to by the entries for R3 and R4.

As a refinement to the basic search strategy, we can approximate the query region by a
convex region defined by a collection of linear constraints, rather than a bounding box,
and test this convex region for overlap with the bounding boxes of internal nodes as we
search down the tree. The benefit is that a convex region is a tighter approximation
than a box, and therefore we can sometimes detect that there is no overlap although
the intersection of bounding boxes is nonempty. The cost is that the overlap test is
more expensive, but this is a pure CPU cost and is negligible in comparison to the
potential I/O savings.

Note that using convex regions to approximate the regions associated with nodes in the
R tree would also reduce the likelihood of false overlaps—the bounding regions overlap,
but the data object does not overlap the query region—but the cost of storing convex
region descriptions is much higher than the cost of storing bounding box descriptions.

To search for the nearest neighbors of a given point, we proceed as in a search for the
point itself. We retrieve all points in the leaves that we examine as part of this search
and return the point that is closest to the query point. If we do not visit any leaves,
then we replace the query point by a small box centered at the query point and repeat
the search. If we still do not visit any leaves, we increase the size of the box and search
again, continuing in this fashion until we visit a leaf node. We then consider all points
retrieved from leaf nodes in this iteration of the search and return the point that is
closest to the query point.

792 Chapter 26

26.6.2 Insert and Delete Operations

To insert a data object with rid r, we compute the bounding box B for the object and
insert the pair 〈B, r〉 into the tree. We start at the root node and traverse a single
path from the root to a leaf (in contrast to searching, where we could traverse several
such paths). At each level, we choose the child node whose bounding box needs the
least enlargement (in terms of the increase in its area) to cover the box B. If several
children have bounding boxes that cover B (or that require the same enlargement in
order to cover B), from these children we choose the one with the smallest bounding
box.

At the leaf level, we insert the object and if necessary we enlarge the bounding box of
the leaf to cover box B. If we have to enlarge the bounding box for the leaf, this must
be propagated to ancestors of the leaf—after the insertion is completed, the bounding
box for every node must cover the bounding box for all descendants. If the leaf node
does not have space for the new object, we must split the node and redistribute entries
between the old leaf and the new node. We must then adjust the bounding box for
the old leaf and insert the bounding box for the new leaf into the parent of the leaf.
Again, these changes could propagate up the tree.

GOOD SPLITBAD SPLIT

R1 R4

R3R2

Figure 26.7 Alternative Redistributions in a Node Split

It is important to minimize the overlap between bounding boxes in the R tree because
overlap causes us to search down multiple paths. The amount of overlap is greatly
influenced by how entries are distributed when a node is split. Figure 26.7 illustrates
two alternative redistributions during a node split. There are four regions R1, R2, R3,
and R4 to be distributed across two pages. The first split (shown in broken lines) puts
R1 and R2 on one page and R3 and R4 on the other page. The second split (shown in
solid lines) puts R1 and R4 on one page and R2 and R3 on the other page. Clearly,
the total area of the bounding boxes for the new pages is much less with the second
split.

Minimizing overlap using a good insertion algorithm is very important for good search
performance. A variant of the R tree called the R* tree introduces the concept
of forced reinserts to reduce overlap: When a node overflows, rather than split it

Spatial Data Management 793

immediately we remove some number of entries (about 30 percent of the node’s contents
works well) and reinsert them into the tree. This may result in all entries fitting inside
some existing page and eliminate the need for a split. The R* tree insertion algorithms
also try to minimize box perimeters rather than box areas.

To delete a data object from an R tree, we have to proceed as in the search algorithm
and potentially examine several leaves. If the object is in the tree, we remove it. In
principle, we can try to shrink the bounding box for the leaf containing the object and
the bounding boxes for all ancestor nodes. In practice, deletion is often implemented
by simply removing the object.

There is a variant called the R+ tree that avoids overlap by inserting an object into
multiple leaves if necessary. Consider the insertion of an object with bounding box
B at a node N . If box B overlaps the boxes associated with more than one child of
N , the object is inserted into the subtree associated with each such child. For the
purposes of insertion into child C with bounding box BC , the object’s bounding box
is considered to be the overlap of B and BC .1 The advantage of the more complex
insertion strategy is that searches can now proceed along a single path from the root
to a leaf.

26.6.3 Concurrency Control

The cost of implementing concurrency control algorithms is often overlooked in discus-
sions of spatial index structures. This is justifiable in environments where the data is
rarely updated and queries are predominant. In general, however, this cost can greatly
influence the choice of index structure.

We presented a simple concurrency control algorithm for B+ trees in Section 19.3.2:
Searches proceed from root to a leaf obtaining shared locks on nodes; a node is unlocked
as soon as a child is locked. Inserts proceed from root to a leaf obtaining exclusive
locks; a node is unlocked after a child is locked if the child is not full. This algorithm
can be adapted to R trees by modifying the insert algorithm to release a lock on a node
only if the locked child has space and its region contains the region for the inserted
entry (thus ensuring that the region modifications will not propagate to the node being
unlocked).

We presented an index locking technique for B+ trees in Section 19.3.1, which locks
a range of values and prevents new entries in this range from being inserted into the
tree. This technique is used to avoid the phantom problem. Now let us consider how
to adapt the index locking approach to R trees. The basic idea is to lock the index

1Insertion into an R+ tree involves additional details. For example, if box B is not contained in the
collection of boxes associated with the children of N whose boxes B overlaps, one of the children must
have its box enlarged so that B is contained in the collection of boxes associated with the children.

794 Chapter 26

page that contains or would contain entries with key values in the locked range. In R
trees, overlap between regions associated with the children of a node could force us to
lock several (non-leaf) nodes on different paths from the root to some leaf. Additional
complications arise from having to deal with changes—in particular, enlargements due
to insertions—in the regions of locked nodes. Without going into further detail, it
should be clear that index locking to avoid phantom insertions in R trees is both harder
and less efficient than in B+ trees. Further, ideas such as forced reinsertion in R* trees
and multiple insertions of an object in R+ trees make index locking prohibitively
expensive.

26.6.4 Generalized Search Trees

The B+ tree and R tree index structures are similar in many respects: They are both
height-balanced in which searches start at the root of the tree and proceed toward the
leaves, each node covers a portion of the underlying data space, and the children of a
node cover a subregion of the region associated with the node. There are important
differences of course—e.g., the space is linearized in the B+ tree representation but not
in the R tree—but the common features lead to striking similarities in the algorithms
for insertion, deletion, search, and even concurrency control.

The generalized search tree (GiST) abstracts the essential features of tree index
structures and provides ‘template’ algorithms for insertion, deletion, and searching.
The idea is that an ORDBMS can support these template algorithms and thereby make
it easy for an advanced database user to implement specific index structures, such as R
trees or variants, without making changes to any system code. The effort involved in
writing the extension methods is much less than that involved in implementing a new
indexing method from scratch, and the performance of the GiST template algorithms
is comparable to specialized code. (For concurrency control, more efficient approaches
are applicable if we exploit the properties that distinguish B+ trees from R trees.
However, B+ trees are implemented directly in most commercial DBMSs, and the
GiST approach is intended to support more complex tree indexes.)

The template algorithms call upon a set of extension methods that are specific to a
particular index structure and must be supplied by the implementor. For example,
the search template searches all children of a node whose region is consistent with the
query. In a B+ tree the region associated with a node is a range of key values, and in
an R tree the region is spatial. The check to see whether a region is consistent with
the query region is specific to the index structure and is an example of an extension
method. As another example of an extension method, consider how to choose the
child of an R tree node to insert a new entry into. This choice can be made based on
which candidate child’s region needs to be expanded the least; an extension method
is required to calculate the required expansions for candidate children and choose the
child to insert the entry into.

Spatial Data Management 795

26.7 ISSUES IN HIGH-DIMENSIONAL INDEXING

The spatial indexing techniques that we have discussed work quite well for two- and
three-dimensional datasets, which are encountered in many applications of spatial data.
In some applications such as content-based image retrieval or text indexing, however,
the number of dimensions can be large (tens of dimensions are not uncommon). In-
dexing such high-dimensional data presents unique challenges, and new techniques
are required. For example, sequential scan becomes superior to R trees even when
searching for a single point for datasets with more than about a dozen dimensions.

High-dimensional datasets are typically collections of points, not regions, and nearest
neighbor queries are the most common kind of queries. Searching for the nearest
neighbor of a query point is meaningful when the distance from the query point to
its nearest neighbor is less than the distance to other points. At the very least, we
want the nearest neighbor to be appreciably closer than the data point that is farthest
from the query point. There is a potential problem with high-dimensional data: For
a wide range of data distributions, as dimensionality d increases, the distance (from
any given query point) to the nearest neighbor grows closer and closer to the distance
to the farthest data point! Searching for nearest neighbors is not meaningful in such
situations.

In many applications, high-dimensional data may not suffer from these problems and
may be amenable to indexing. However, it is advisable to check high-dimensional
datasets to make sure that nearest neighbor queries are meaningful. Let us call the
ratio of the distance (from a query point) to the nearest neighbor to the distance to
the farthest point the contrast in the dataset. We can measure the contrast of a
dataset by generating a number of sample queries, measuring distances to the nearest
and farthest points for each of these sample queries and computing the ratios of these
distances, and taking the average of the measured ratios. In applications that call
for the nearest neighbor, we should first ensure that datasets have good contrast by
empirical tests of the data.

26.8 POINTS TO REVIEW

Spatial data occupies a region in space called its spatial extent. We discussed three
types of spatial queries. Spatial range queries specify a query region and aim to
retrieve all objects that fall within or overlap the query region. Nearest neighbor
queries specify a query point and aim to retrieve the object closest to the query
point. Spatial join queries compute all pairs of objects that satisfy user-specified
proximity constraints. (Section 26.1)

There are many applications that deal with spatial data, including Geographic
Information Systems (GIS), which deal efficiently with two- and three-dimensional

796 Chapter 26

data, and multimedia databases, which deal with high-dimensional feature vectors.
A feature vector is a representation of the salient characteristics of an object in
a high-dimensional space. Often, similarity between nonspatial objects can be
expressed as the distance between feature vectors of the objects. (Section 26.2)

A multidimensional or spatial index utilizes spatial relationships between data
objects to organize the index. We discussed the difference between a spatial index
and a B+ tree. (Section 26.3)

A space-filling curve imposes a linear ordering on a multidimensional space. Using
the linear order, objects can be indexed using a traditional index structure such
as a B+ tree. If the linear ordering preserves spatial proximity, spatial queries
translate into range queries on the B+ tree. We can use the recursive nature of
space-filling curves to recursively partition the space; this is done in the Region
Quad tree index structure. (Section 26.4)

A Grid file is a spatial index structure for point data. Each dimension is parti-
tioned into intervals that are maintained in an array called a linear scale. The
linear scales induce a partitioning of the space into rectangles and a grid directory
stores a pointer to the physical page associated with each rectangle. A grid file is
not suitable for region data. (Section 26.5)

R trees are height-balanced tree index structures whose search keys are bounding
boxes. The data entries in a leaf node consist of (bounding box, rid)-pairs. A data
entry in an intermediate node consists of the smallest bounding box that encloses
all bounding boxes of its children. Due to overlap of bounding boxes, a query
can take us down several paths in the tree. When inserting new objects, we try
to minimize the overlap between bounding boxes. The R+ tree avoids overlap by
inserting an object into multiple leaf nodes if necessary. Concurrency control in R
trees is similar to concurrency control in B+ trees, although the phantom problem
is more difficult to avoid. The generalized search tree (GiST) is a generic index
template for tree-structured indexes. (Section 26.6)

Indexing high-dimensional data is difficult and nearest neighbor queries are very
common for such data. Nearest neighbor queries are only meaningful if the
distance to the nearest neighbor differs significantly from the distance to other
points—a property that often does not hold in high dimensions. The contrast of
a data set measures its suitability for nearest neighbor queries. (Section 26.7)

EXERCISES

Exercise 26.1 Answer the following questions briefly.

1. How is point spatial data different from nonspatial data?

2. How is point data different from region data?

Spatial Data Management 797

3. Describe three common kinds of spatial queries.

4. Why are nearest neighbor queries important in multimedia applications?

5. How is a B+ tree index different from a spatial index? When would you use a B+ tree

index over a spatial index for point data? When would you use a spatial index over a

B+ tree index for point data?

6. What is the relationship between Z-ordering and Region Quad trees?

7. Compare Z-ordering and Hilbert curves as techniques to cluster spatial data.

Exercise 26.2 Consider Figure 26.3, which illustrates Z-ordering and Region Quad trees.

Answer the following questions.

1. Consider the region composed of the points with these Z-values: 4, 5, 6, and 7. Mark the

nodes that represent this region in the Region Quad tree shown in Figure 26.3. (Expand

the tree if necessary.)

2. Repeat the above exercise for the region composed of the points with Z-values 1 and 3.

3. Repeat it for the region composed of the points with Z-values 1 and 2.

4. Repeat it for the region composed of the points with Z-values 0 and 1.

5. Repeat it for the region composed of the points with Z-values 3 and 12.

6. Repeat it for the region composed of the points with Z-values 12 and 15.

7. Repeat it for the region composed of the points with Z-values 1, 3, 9, and 11.

8. Repeat it for the region composed of the points with Z-values 3, 6, 9, and 12.

9. Repeat it for the region composed of the points with Z-values 9, 11, 12, and 14.

10. Repeat it for the region composed of the points with Z-values 8, 9, 10, and 11.

Exercise 26.3 This exercise refers to Figure 26.3.

1. Consider the region represented by the 01 child of the root in the Region Quad tree

shown in Figure 26.3. What are the Z-values of points in this region?

2. Repeat the above exercise for the region represented by the 10 child of the root and the

01 child of the 00 child of the root.

3. List the Z-values of four adjacent data points that are distributed across the four children

of the root in the Region Quad tree.

4. Consider the alternative approaches of indexing a two-dimensional point dataset using a

B+ tree index: (i) on the composite search key 〈X, Y 〉, (ii) on the Z-ordering computed

over the X and Y values. Assuming that X and Y values can be represented using two

bits each, show an example dataset and query illustrating each of these cases:
(a) The alternative of indexing on the composite query is faster.

(b) The alternative of indexing on the Z-value is faster.

Exercise 26.4 Consider the Grid file instance with three points 1, 2, and 3 shown in the

first part of Figure 26.5.

1. Show the Grid file after inserting each of these points, in the order they are listed: 6, 9,

10, 7, 8, 4, and 5.

798 Chapter 26

2. Assume that deletions are handled by simply removing the deleted points, with no at-

tempt to merge empty or underfull pages. Can you suggest a simple concurrency control

scheme for Grid files?

3. Discuss the use of Grid files to handle region data.

Exercise 26.5 Answer each of the following questions independently with respect to the R

tree shown in Figure 26.6. (That is, don’t consider the insertions corresponding to other

questions when answering a given question.)

1. Show the bounding box of a new object that can be inserted into R4 but not into R3.

2. Show the bounding box of a new object that is contained in both R1 and R6 but is

inserted into R6.

3. Show the bounding box of a new object that is contained in both R1 and R6 and is

inserted into R1. Which leaf node is this object placed in?

4. Show the bounding box of a new object that could be inserted into either R4 or R5, but

is placed in R5 based on the principle of least expansion of the bounding box area.

5. Given an example of an object such that searching for the object takes us to both the

R1 subtree and the R2 subtree.

6. Give an example query that takes us to nodes R3 and R5. (Explain if there is no such

query.)

7. Give an example query that takes us to nodes R3 and R4, but not to R5. (Explain if

there is no such query.)

8. Give an example query that takes us to nodes R3 and R5, but not to R4. (Explain if

there is no such query.)

BIBLIOGRAPHIC NOTES

Several multidimensional indexing techniques have been proposed. These include Bang files

[245], Grid files [494], hB trees [426], KDB trees [548], Pyramid trees [67] Quad trees[565],

R trees [295], R∗ trees [59], R+ trees, the TV tree, and the VA file [673]. [273] discusses

how to search R trees for regions defined by linear constraints. Several variations of these,

and several other distinct techniques, have also been proposed; Samet’s text [566] deals with

many of them. A good recent survey is [252].

The use of Hilbert curves for linearizing multidimensional data is proposed in [225]. [100]

is an early paper discussing spatial joins. [317] proposes a generalized tree index that can

be specialized to obtain many of the specific tree indexes mentioned earlier. Concurrency

control and recovery issues for this generalized index are discussed in [386]. [318] discusses the

complexity of indexing schemes, in particular range queries, and [80] discusses the problems

arising with high-dimensionality. [220] provides a good overview of how to search multimedia

databases by content. A recent trend is towards spatiotemporal applications, such as tracking

moving objects [686].

27 DEDUCTIVE DATABASES

For ‘Is’ and ‘Is-Not’ though with Rule and Line,
And ‘Up-and-Down’ by Logic I define,
Of all that one should care to fathom, I
Was never deep in anything but—Wine.

—Rubaiyat of Omar Khayyam, Translated by Edward Fitzgerald

Relational database management systems have been enormously successful for admin-
istrative data processing. In recent years, however, as people have tried to use database
systems in increasingly complex applications, some important limitations of these sys-
tems have been exposed. For some applications, the query language and constraint
definition capabilities have been found to be inadequate. As an example, some com-
panies maintain a huge parts inventory database and frequently want to ask questions
such as, “Are we running low on any parts needed to build a ZX600 sports car?” or,
“What is the total component and assembly cost to build a ZX600 at today’s part
prices?” These queries cannot be expressed in SQL-92.

We begin this chapter by discussing queries that cannot be expressed in relational
algebra or SQL and present a more powerful relational language called Datalog. Queries
and views in SQL can be understood as if–then rules: “If some tuples exist in tables
mentioned in the FROM clause that satisfy the conditions listed in the WHERE clause,
then the tuple described in the SELECT clause is included in the answer.” Datalog
definitions retain this if–then reading, with the significant new feature that definitions
can be recursive, that is, a table can be defined in terms of itself.

Evaluating Datalog queries poses some additional challenges, beyond those encountered
in evaluating relational algebra queries, and we discuss some important implementation
and optimization techniques that were developed to address these challenges. Inter-
estingly, some of these techniques have been found to improve performance of even
nonrecursive SQL queries and have therefore been implemented in several current re-
lational DBMS products. Some systems, notably IBM’s DB2 DBMS, support recursive
queries and the SQL:1999 standard, the successor to the SQL-92 standard, requires
support for recursive queries.

We concentrate on the main ideas behind recursive queries and briefly cover the
SQL:1999 features that support these ideas. In Section 27.1, we introduce recursive

799

800 Chapter 27

Recursion in SQL: The concepts discussed in this chapter are not included in the
SQL-92 standard. However, the revised version of the SQL standard, SQL:1999,
includes support for recursive queries and IBM’s DB2 system already supports
recursive queries as required in SQL:1999.

queries and Datalog notation through an example. We present the theoretical foun-
dations for recursive queries, namely least fixpoints and least models, in Section 27.2.
We discuss queries that involve the use of negation or set-difference in Section 27.3.
Finally, we consider techniques for evaluating recursive queries efficiently in Section
27.4.

27.1 INTRODUCTION TO RECURSIVE QUERIES

We begin with a simple example that illustrates the limits of SQL-92 queries and
the power of recursive definitions. Let Assembly be a relation with three fields part,
subpart, and qty. An example instance of Assembly is shown in Figure 27.1. Each
tuple in Assembly indicates how many copies of a particular subpart are contained in
a given part. The first tuple indicates, for example, that a trike contains three wheels.
The Assembly relation can be visualized as a tree, as shown in Figure 27.2. A tuple is
shown as an edge going from the part to the subpart, with the qty value as the edge
label.

part subpart qty
trike wheel 3
trike frame 1
frame seat 1
frame pedal 1
wheel spoke 2
wheel tire 1
tire rim 1
tire tube 1

Figure 27.1 An Instance of Assembly

rim tube

seat pedal

frame

 trike

wheel

spoke tire

3 1

2 1 1 1

11

Figure 27.2 Assembly Instance Seen as a Tree

A natural question to ask is, “What are the components of a trike?” Rather surpris-
ingly, this query is impossible to write in SQL-92. Of course, if we look at a given
instance of the Assembly relation, we can write a ‘query’ that takes the union of the
parts that are used in a trike. But such a query is not interesting—we want a query
that identifies all components of a trike for any instance of Assembly, and such a query
cannot be written in relational algebra or in SQL-92. Intuitively, the problem is that
we are forced to join the Assembly relation with itself in order to recognize that trike

Deductive Databases 801

contains spoke and tire, that is, to go one level down the Assembly tree. For each
additional level, we need an additional join; two joins are needed to recognize that
trike contains rim, which is a subpart of tire. Thus, the number of joins needed to
identify all subparts of trike depends on the height of the Assembly tree, that is, on
the given instance of the Assembly relation. There is no relational algebra query that
works for all instances; given any query, we can construct an instance whose height is
greater than the number of joins in the query.

27.1.1 Datalog

We now define a relation called Components that identifies the components of every
part. Consider the following program, or collection of rules:

Components(Part, Subpart) :- Assembly(Part, Subpart, Qty).
Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

These are rules in Datalog, a relational query language inspired by Prolog, the well-
known logic programming language; indeed, the notation follows Prolog. The first rule
should be read as follows:

For all values of Part, Subpart, and Qty,
if there is a tuple 〈Part, Subpart, Qty〉 in Assembly,
then there must be a tuple 〈Part, Subpart〉 in Components.

The second rule should be read as follows:

For all values of Part, Part2, Subpart, and Qty,
if there is a tuple 〈Part, Part2, Qty〉 in Assembly and

a tuple 〈Part2, Subpart〉 in Components,
then there must be a tuple 〈Part, Subpart〉 in Components.

The part to the right of the :- symbol is called the body of the rule, and the part to
the left is called the head of the rule. The symbol :- denotes logical implication; if
the tuples mentioned in the body exist in the database, it is implied that the tuple
mentioned in the head of the rule must also be in the database. (Note that the
body could be empty; in this case, the tuple mentioned in the head of the rule must be
included in the database.) Therefore, if we are given a set of Assembly and Components
tuples, each rule can be used to infer, or deduce, some new tuples that belong in
Components. This is why database systems that support Datalog rules are often called
deductive database systems.

Each rule is really a template for making inferences: by assigning constants to the
variables that appear in a rule, we can infer specific Components tuples. For example,

802 Chapter 27

by setting Part=trike, Subpart=wheel, and Qty=3, we can infer that 〈trike, wheel〉 is
in Components. By considering each tuple in Assembly in turn, the first rule allows
us to infer that the set of tuples obtained by taking the projection of Assembly onto
its first two fields is in Components.

The second rule then allows us to combine previously discovered Components tuples
with Assembly tuples to infer new Components tuples. We can apply the second rule by
considering the cross-product of Assembly and (the current instance of) Components
and assigning values to the variables in the rule for each row of the cross-product, one
row at a time. Observe how the repeated use of the variable Part2 prevents certain
rows of the cross-product from contributing any new tuples; in effect, it specifies an
equality join condition on Assembly and Components. The tuples obtained by one
application of this rule are shown in Figure 27.3. (In addition, Components contains
the tuples obtained by applying the first rule; these are not shown.)

part subpart
trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube

Figure 27.3 Components Tuples Obtained
by Applying the Second Rule Once

part subpart
trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube
trike rim
trike tube

Figure 27.4 Components Tuples Obtained by
Applying the Second Rule Twice

The tuples obtained by a second application of this rule are shown in Figure 27.4. Note
that each tuple shown in Figure 27.3 is reinferred. Only the last two tuples are new.

Applying the second rule a third time does not generate any additional tuples. The set
of Components tuples shown in Figure 27.4 includes all the tuples that can be inferred
using the two Datalog rules defining Components and the given instance of Assembly.
The components of a trike can now be obtained by selecting all Components tuples
with the value trike in the first field.

Each application of a Datalog rule can be understood in terms of relational algebra.
The first rule in our example program simply applies projection to the Assembly rela-
tion and adds the resulting tuples to the Components relation, which is initially empty.
The second rule joins Assembly with Components and then does a projection. The
result of each rule application is combined with the existing set of Components tuples
using union.

Deductive Databases 803

The only Datalog operation that goes beyond relational algebra is the repeated ap-
plication of the rules defining Components until no new tuples are generated. This
repeated application of a set of rules is called the fixpoint operation, and we develop
this idea further in the next section.

We conclude this section by rewriting the Datalog definition of Components in terms
of extended SQL, using the syntax proposed in the SQL:1999 draft and currently
supported in IBM’s DB2 Version 2 DBMS:

WITH RECURSIVE Components(Part, Subpart) AS
(SELECTA1.Part, A1.Subpart FROM Assembly A1)
UNION
(SELECTA2.Part, C1.Subpart
FROM Assembly A2, Components C1
WHERE A2.Subpart = C1.Part)

SELECT * FROM Components C2

The WITH clause introduces a relation that is part of a query definition; this relation
is similar to a view, but the scope of a relation introduced using WITH is local to
the query definition. The RECURSIVE keyword signals that the table (in our example,
Components) is recursively defined. The structure of the definition closely parallels
the Datalog rules. Incidentally, if we wanted to find the components of a particular
part, for example, trike, we can simply replace the last line with the following:

SELECT * FROM Components C2
WHERE C2.Part = ‘trike’

27.2 THEORETICAL FOUNDATIONS

We classify the relations in a Datalog program as either output relations or input
relations. Output relations are defined by rules (e.g., Components), and input
relations have a set of tuples explicitly listed (e.g., Assembly). Given instances of the
input relations, we must compute instances for the output relations. The meaning of
a Datalog program is usually defined in two different ways, both of which essentially
describe the relation instances for the output relations. Technically, a query is a
selection over one of the output relations (e.g., all Components tuples C with C.part
= trike). However, the meaning of a query is clear once we understand how relation
instances are associated with the output relations in a Datalog program.

The first approach to defining what a Datalog program means is called the least model
semantics and gives users a way to understand the program without thinking about how
the program is to be executed. That is, the semantics is declarative, like the semantics

804 Chapter 27

of relational calculus, and not operational like relational algebra semantics. This is
important because the presence of recursive rules makes it difficult to understand a
program in terms of an evaluation strategy.

The second approach, called the least fixpoint semantics, gives a conceptual evaluation
strategy to compute the desired relation instances. This serves as the basis for recursive
query evaluation in a DBMS. More efficient evaluation strategies are used in an actual
implementation, but their correctness is shown by demonstrating their equivalence to
the least fixpoint approach. The fixpoint semantics is thus operational and plays a role
analogous to that of relational algebra semantics for nonrecursive queries.

27.2.1 Least Model Semantics

We want users to be able to understand a Datalog program by understanding each
rule independently of other rules, with the meaning: If the body is true, the head is
also true. This intuitive reading of a rule suggests that given certain relation instances
for the relation names that appear in the body of a rule, the relation instance for the
relation mentioned in the head of the rule must contain a certain set of tuples. If a
relation name R appears in the heads of several rules, the relation instance for R must
satisfy the intuitive reading of all these rules. However, we do not want tuples to be
included in the instance for R unless they are necessary to satisfy one of the rules
defining R. That is, we only want to compute tuples for R that are supported by some
rule for R.

To make these ideas precise, we need to introduce the concepts of models and least
models. A model is a collection of relation instances, one instance for each relation
in the program, that satisfies the following condition. For every rule in the program,
whenever we replace each variable in the rule by a corresponding constant, the following
holds:

If every tuple in the body (obtained by our replacement of variables with
constants) is in the corresponding relation instance,

Then the tuple generated for the head (by the assignment of constants to
variables that appear in the head) is also in the corresponding relation in-
stance.

Observe that the instances for the input relations are given, and the definition of a
model essentially restricts the instances for the output relations.

Consider the rule:

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Deductive Databases 805

Components(Part2, Subpart).

Suppose that we replace the variable Part by the constant wheel, Part2 by tire, Qty
by 1, and Subpart by rim:

Components(wheel, rim) :- Assembly(wheel, tire, 1),
Components(tire, rim).

Let A be an instance of Assembly and C be an instance of Components. If A contains
the tuple 〈wheel, tire, 1〉 and C contains the tuple 〈tire, rim〉, then C must also contain
the tuple 〈wheel, rim〉 in order for the pair of instances A and C to be a model. Of
course, the instances A and C must satisfy the inclusion requirement illustrated above
for every assignment of constants to the variables in the rule: If the tuples in the rule
body are in A and C, the tuple in the head must be in C.

As an example, the instance of Assembly shown in Figure 27.1 and the instance of
Components shown in Figure 27.4 together form a model for the Components program.

Given the instance of Assembly shown in Figure 27.1, there is no justification for
including the tuple 〈spoke, pedal〉 to the Components instance. Indeed, if we add
this tuple to the components instance in Figure 27.4, we no longer have a model
for our program, as the following instance of the recursive rule demonstrates, since
〈wheel, pedal〉 is not in the Components instance:

Components(wheel, pedal) :- Assembly(wheel, spoke, 2),
Components(spoke, pedal).

However, by also adding the tuple 〈wheel, pedal〉 to the Components instance, we
obtain another model of the Components program! Intuitively, this is unsatisfactory
since there is no justification for adding the tuple 〈spoke, pedal〉 in the first place, given
the tuples in the Assembly instance and the rules in the program.

We address this problem by using the concept of a least model. A least model of a
program is a model M such that for every other model M2 of the same program, for
each relation R in the program, the instance for R in M is contained in the instance of
R in M2. The model formed by the instances of Assembly and Components shown in
Figures 27.1 and 27.4 is the least model for the Components program with the given
Assembly instance.

27.2.2 Safe Datalog Programs

Consider the following program:

Complex Parts(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.

806 Chapter 27

According to this rule, complex part is defined to be any part that has more than two
copies of any one subpart. For each part mentioned in the Assembly relation, we can
easily check if it is a complex part. In contrast, consider the following program:

Price Parts(Part,Price) :- Assembly(Part, Subpart, Qty), Qty > 2.

This variation seeks to associate a price with each complex part. However, the variable
Price does not appear in the body of the rule. This means that an infinite number of
tuples must be included in any model of this program! To see this, suppose that we
replace the variable Part by the constant trike, SubPart by wheel, and Qty by 3. This
gives us a version of the rule with the only remaining variable being Price:

Price Parts(trike,Price) :- Assembly(trike, wheel, 3), 3 > 2.

Now, any assignment of a constant to Price gives us a tuple to be included in the
output relation Price Parts. For example, replacing Price by 100 gives us the tuple
Price Parts(trike,100). If the least model of a program is not finite, for even one
instance of its input relations, then we say the program is unsafe.

Database systems disallow unsafe programs by requiring that every variable in the
head of a rule must also appear in the body. Such programs are said to be range-
restricted, and every range-restricted Datalog program has a finite least model if the
input relation instances are finite. In the rest of this chapter, we will assume that
programs are range-restricted.

27.2.3 The Fixpoint Operator

A fixpoint of a function f is a value v such that the function applied to the value
returns the same value, that is, f(v) = v. Consider a function that is applied to a
set of values and also returns a set of values. For example, we can define double to
be a function that multiplies every element of the input set by two, and double+ to
be double ∪ identity. Thus, double({1,2,5}) = {2,4,10}, and double+({1,2,5}) =
{1,2,4,5,10}. The set of all even integers—which happens to be an infinite set!—is a
fixpoint of the function double+. Another fixpoint of the function double+ is the set of
all integers. The first fixpoint (the set of all even integers) is smaller than the second
fixpoint (the set of all integers) because it is contained in the latter.

The least fixpoint of a function is a fixpoint that is smaller than every other fixpoint
of that function. In general it is not guaranteed that a function has a least fixpoint.

Deductive Databases 807

For example, there may be two fixpoints, neither of which is smaller than the other.
(Does double have a least fixpoint? What is it?)

Now let us turn to functions over sets of tuples, in particular, functions defined using
relational algebra expressions. The Components relation can be defined by an equation
of the form:

Components = π1,5(Assembly ./2=1 Components) ∪ π1,2(Assembly)

This equation has the form

Components = f(Components, Assembly)

where the function f is defined using a relational algebra expression. For a given
instance of the input relation Assembly, this can be simplified to:

Components = f(Components)

The least fixpoint of f is an instance of Components that satisfies the above equation.
Clearly the projection of the first two fields of the tuples in the given instance of the
input relation Assembly must be included in the (instance that is the) least fixpoint of
Components. In addition, any tuple obtained by joining Components with Assembly
and projecting the appropriate fields must also be in Components.

A little thought shows that the instance of Components that is the least fixpoint of f

can be computed using repeated applications of the Datalog rules shown in the previous
section. Indeed, applying the two Datalog rules is identical to evaluating the relational
expression used in defining Components. If an application generates Components
tuples that are not in the current instance of the Components relation, the current
instance cannot be the fixpoint. Therefore, we add the new tuples to Components and
evaluate the relational expression (equivalently, the two Datalog rules) again. This
process is repeated until every tuple generated is already in the current instance of
Components; at this point, we have reached a fixpoint. If Components is initialized
to the empty set of tuples, intuitively we infer only tuples that are necessary by the
definition of a fixpoint, and the fixpoint computed is the least fixpoint.

27.2.4 Least Model = Least Fixpoint

Does a Datalog program always have a least model? Or is it possible that there are
two models, neither of which is contained in the other? Similarly, does every Datalog
program have a least fixpoint? What is the relationship between the least model and
the least fixpoint of a Datalog program?

As we noted earlier in this section, not every function has a least fixpoint. Fortunately,
every function defined in terms of relational algebra expressions that do not contain set-
difference is guaranteed to have a least fixpoint, and the least fixpoint can be computed

808 Chapter 27

by repeatedly evaluating the function. This tells us that every Datalog program has a
least fixpoint, and that the least fixpoint can be computed by repeatedly applying the
rules of the program on the given instances of the input relations.

Further, every Datalog program is guaranteed to have a least model, and the least
model is equal to the least fixpoint of the program! These results (whose proofs we
will not discuss) provide the basis for Datalog query processing. Users can understand
a program in terms of ‘If the body is true, the head is also true,’ thanks to the least
model semantics. The DBMS can compute the answer by repeatedly applying the
program rules, thanks to the least fixpoint semantics and the fact that the least model
and the least fixpoint are identical.

Unfortunately, once set-difference is allowed in the body of a rule, there may no longer
be a least model or a least fixpoint. We consider this point further in the next section.

27.3 RECURSIVE QUERIES WITH NEGATION

Consider the following rules:

Big(Part) :- Assembly(Part, Subpart, Qty), Qty > 2,
not Small(Part).

Small(Part) :- Assembly(Part, Subpart, Qty), not Big(Part).

These two rules can be thought of as an attempt to divide parts (those that are
mentioned in the first column of the Assembly table) into two classes, Big and Small.
The first rule defines Big to be the set of parts that use at least three copies of some
subpart and that are not classified as small parts. The second rule defines Small as
the set of parts that are not classified as big parts.

If we apply these rules to the instance of Assembly shown in Figure 27.1, trike is the
only part that uses at least three copies of some subpart. Should the tuple 〈trike〉 be
in Big or Small? If we apply the first rule and then the second rule, this tuple is in Big.
To apply the first rule, we consider the tuples in Assembly, choose those with Qty >

2 (which is just 〈trike〉), discard those that are in the current instance of Small (both
Big and Small are initially empty), and add the tuples that are left to Big. Therefore,
an application of the first rule adds 〈trike〉 to Big. Proceeding similarly, we can see
that if the second rule is applied before the first, 〈trike〉 is added to Small instead of
Big!

This program has two fixpoints, neither of which is smaller than the other, as shown
in Figure 27.5. The first fixpoint has a Big tuple that does not appear in the second
fixpoint; therefore, it is not smaller than the second fixpoint. The second fixpoint has
a Small tuple that does not appear in the first fixpoint; therefore, it is not smaller than

Deductive Databases 809

the first fixpoint. The order in which we apply the rules determines which fixpoint
is computed, and this situation is very unsatisfactory. We want users to be able to
understand their queries without thinking about exactly how the evaluation proceeds.

frame

wheel

tire

trike

Small

Fixpoint 2

Big

tire

wheel

frame

Small

Fixpoint 1

trikeBig

Figure 27.5 Two Fixpoints for the Big/Small Program

The root of the problem is the use of not. When we apply the first rule, some inferences
are disallowed because of the presence of tuples in Small. Parts that satisfy the other
conditions in the body of the rule are candidates for addition to Big, and we remove
the parts in Small from this set of candidates. Thus, some inferences that are possible
if Small is empty (as it is before the second rule is applied) are disallowed if Small
contains tuples (generated by applying the second rule before the first rule). Here
is the difficulty: If not is used, the addition of tuples to a relation can disallow the
inference of other tuples. Without not, this situation can never arise; the addition of
tuples to a relation can never disallow the inference of other tuples.

27.3.1 Range-Restriction and Negation

If rules are allowed to contain not in the body, the definition of range-restriction
must be extended in order to ensure that all range-restricted programs are safe. If
a relation appears in the body of a rule preceded by not, we call this a negated
occurrence. Relation occurrences in the body that are not negated are called positive
occurrences. A program is range-restricted if every variable in the head of the rule
appears in some positive relation occurrence in the body.

27.3.2 Stratification

A widely used solution to the problem caused by negation, or the use of not, is to
impose certain syntactic restrictions on programs. These restrictions can be easily
checked, and programs that satisfy them have a natural meaning.

810 Chapter 27

We say that a table T depends on a table S if some rule with T in the head contains
S, or (recursively) contains a predicate that depends on S, in the body. A recursively
defined predicate always depends on itself. For example, Big depends on Small (and
on itself). Indeed, the tables Big and Small are mutually recursive, that is, the
definition of Big depends on Small and vice versa. We say that a table T depends
negatively on a table S if some rule with T in the head contains not S, or (recursively)
contains a predicate that depends negatively on S, in the body.

Suppose that we classify the tables in a program into strata or layers as follows. The
tables that do not depend on any other tables are in stratum 0. In our Big/Small
example, Assembly is the only table in stratum 0. Next, we identify tables in stratum
1; these are tables that depend only on tables in stratum 0 or stratum 1 and depend
negatively only on tables in stratum 0. Higher strata are similarly defined: The tables
in stratum i are those that do not appear in lower strata, depend only on tables in
stratum i or lower strata, and depend negatively only on tables in lower strata. A
stratified program is a program whose tables can be classified into strata according
to the above algorithm.

The Big/Small program is not stratified. Since Big and Small depend on each other,
they must be in the same stratum. However, they depend negatively on each other,
violating the requirement that a table can depend negatively only on tables in lower
strata. Consider the following variant of the Big/Small program, in which the first
rule has been modified:

Big2(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.
Small2(Part) :- Assembly(Part, Subpart, Qty), not Big2(Part).

This program is stratified. Small2 depends on Big2 but Big2 does not depend on
Small2. Assembly is in stratum 0, Big is in stratum 1, and Small2 is in stratum 2.

A stratified program is evaluated stratum-by-stratum, starting with stratum 0. To
evaluate a stratum, we compute the fixpoint of all rules defining tables that belong to
this stratum. When evaluating a stratum, any occurrence of not involves a table from
a lower stratum, which has therefore been completely evaluated by now. The tuples in
the negated table will still disallow some inferences, but the effect is completely deter-
ministic, given the stratum-by-stratum evaluation. In the example, Big2 is computed
before Small2 because it is in a lower stratum than Small2; 〈trike〉 is added to Big2.
Next, when we compute Small2, we recognize that 〈trike〉 is not in Small2 because it
is already in Big2.

Incidentally, observe that the stratified Big/Small program is not even recursive! If we
replaced Assembly by Components, we would obtain a recursive, stratified program:
Assembly would be in stratum 0, Components would be in stratum 1, Big2 would also
be in stratum 1, and Small2 would be in stratum 2.

Deductive Databases 811

Intuition behind Stratification

Consider the stratified version of the Big/Small program. The rule defining Big2 forces
us to add 〈trike〉 to Big2, and it is natural to assume that 〈trike〉 is the only tuple
in Big2, because we have no supporting evidence for any other tuple being in Big2.
The minimal fixpoint computed by stratified fixpoint evaluation is consistent with this
intuition. However, there is another minimal fixpoint: We can place every part in
Big2 and make Small2 be empty. While this assignment of tuples to relations seems
unintuitive, it is nonetheless a minimal fixpoint!

The requirement that programs be stratified gives us a natural order for evaluating
rules. When the rules are evaluated in this order, the result is a unique fixpoint that is
one of the minimal fixpoints of the program. The fixpoint computed by the stratified
fixpoint evaluation usually corresponds well to our intuitive reading of a stratified
program, even if the program has more than one minimal fixpoint.

For nonstratified Datalog programs, it is harder to identify a natural model from
among the alternative minimal models, especially when we consider that the meaning
of a program must be clear even to users who do not have expertise in mathematical
logic. Although there has been considerable research on identifying natural models
for nonstratified programs, practical implementations of Datalog have concentrated on
stratified programs.

Relational Algebra and Stratified Datalog

Every relational algebra query can be written as a range-restricted, stratified Datalog
program. (Of course, not all Datalog programs can be expressed in relational algebra;
for example, the Components program.) We sketch the translation from algebra to
stratified Datalog by writing a Datalog program for each of the basic algebra opera-
tions, in terms of two example tables R and S, each with two fields:

Selection: Result(Y) :- R(X,Y), X=c.
Projection: Result(Y) :- R(X,Y).
Cross-product: Result(X,Y,U,V) :- R(X,Y), S(U,V).
Set-difference: Result(X,Y) :- R(X,Y), not S(U,V).
Union: Result(X,Y) :- R(X,Y).

Result(X,Y) :- S(X,Y).

We conclude our discussion of stratification by noting that the SQL:1999 draft re-
quires programs to be stratified. The stratified Big/Small program is shown below in
SQL:1999 notation, with a final additional selection on Big2:

WITH

812 Chapter 27

Big2(Part) AS
(SELECT A1.Part FROM Assembly A1 WHERE Qty > 2)

Small2(Part) AS
((SELECT A2.Part FROM Assembly A2)
EXCEPT
(SELECT B1.Part from Big2 B1))

SELECT * FROM Big2 B2

27.3.3 Aggregate Operations

Datalog can be extended with SQL-style grouping and aggregation operations. Con-
sider the following program:

NumParts(Part, SUM(〈Qty〉)) :- Assembly(Part, Subpart, Qty).

This program is equivalent to the SQL query:

SELECT A.Part, SUM (A.Qty)
FROM Assembly A
GROUP BY A.Part

The angular brackets 〈. . .〉 notation was introduced in the LDL deductive system,
one of the pioneering deductive database prototypes developed at MCC in the late
1980s. We use it to denote multiset generation, or the creation of multiset-values.
In principle, the rule defining NumParts is evaluated by first creating the temporary
relation shown in Figure 27.6. We create the temporary relation by sorting on the
part attribute (which appears in the left side of the rule, along with the 〈. . .〉 term)
and collecting the multiset of qty values for each part value. We then apply the SUM
aggregate to each multiset-value in the second column to obtain the answer, which is
shown in Figure 27.7.

part 〈qty〉
trike {3,1}
frame {1,1}
wheel {2,1}
tire {1,1}

Figure 27.6 Temporary Relation

part SUM(〈qty〉)
trike 4
frame 2
wheel 3
tire 2

Figure 27.7 The Tuples in NumParts

The temporary relation shown in Figure 27.6 need not be materialized in order to com-
pute NumParts—for example, SUM can be applied on-the-fly, or Assembly can simply

Deductive Databases 813

be sorted and aggregated as described in Section 12.7. However, we observe that sev-
eral deductive database systems (e.g., LDL, Coral) in fact allowed the materialization
of this temporary relation; the following program would do so:

TempReln(Part,〈Qty〉) :- Assembly(Part, Subpart, Qty).

The tuples in this relation are not in first-normal form, and there is no way to create
this relation using SQL-92.

The use of aggregate operations leads to problems similar to those caused by not, and
the idea of stratification can be applied to programs with aggregate operations as well.
Consider the following program:

NumComps(Part, COUNT(〈Subpart〉)) :- Components(Part, Subpart).
Components(Part, Subpart) :- Assembly(Part, Subpart, Qty).
Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

The idea is to count the number of subparts for each part; by aggregating over Com-
ponents rather than Assembly, we can count subparts at any level in the hierarchy
instead of just immediate subparts. The important point to note in this example is
that we must wait until Components has been completely evaluated before we apply
the NumComps rule. Otherwise, we obtain incomplete counts. This situation is anal-
ogous to the problem we faced with negation; we have to evaluate the negated relation
completely before applying a rule that involves the use of not. If a program is strati-
fied with respect to uses of 〈. . .〉 as well as not, stratified fixpoint evaluation gives us
meaningful results.

27.4 EFFICIENT EVALUATION OF RECURSIVE QUERIES

The evaluation of recursive queries has been widely studied. While all the problems of
evaluating nonrecursive queries continue to be present, the newly introduced fixpoint
operation creates additional difficulties. A straightforward approach to evaluating re-
cursive queries is to compute the fixpoint by repeatedly applying the rules as illustrated
in Section 27.1.1. One application of all the program rules is called an iteration; we
perform as many iterations as necessary to reach the least fixpoint. This approach has
two main disadvantages:

Repeated inferences: As Figures 27.3 and 27.4 illustrate, inferences are re-
peated across iterations. That is, the same tuple is inferred repeatedly in the
same way, that is, using the same rule and the same tuples for tables in the body
of the rule.

814 Chapter 27

Unnecessary inferences: Suppose that we only want to find the components
of a wheel. Computing the entire Components table is wasteful and does not take
advantage of information in the query.

In this section we discuss how each of these difficulties can be overcome. We will
consider only Datalog programs without negation.

27.4.1 Fixpoint Evaluation without Repeated Inferences

Computing the fixpoint by repeatedly applying all rules is called Naive fixpoint
evaluation. Naive evaluation is guaranteed to compute the least fixpoint, but every
application of a rule repeats all inferences made by earlier applications of this rule. We
illustrate this point using the following rule:

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),
Components(Part2, Subpart).

When this rule is applied for the first time, after applying the first rule defining Com-
ponents, the Components table contains the projection of Assembly on the first two
fields. Using these Components tuples in the body of the rule, we generate the tuples
shown in Figure 27.3. For example, the tuple 〈wheel, rim〉 is generated through the
following inference:

Components(wheel, rim) :- Assembly(wheel, tire, 1),
Components(tire, rim).

When this rule is applied a second time, the Components table contains the tuples
shown in Figure 27.3, in addition to the tuples that it contained before the first ap-
plication. Using the Components tuples shown in Figure 27.3 leads to new inferences,
for example:

Components(trike, rim) :- Assembly(trike, wheel, 3),
Components(wheel, rim).

However, every inference carried out in the first application of this rule is also repeated
in the second application of the rule, since all the Assembly and Components tuples
used in the first rule application are considered again. For example, the inference of
〈wheel, rim〉 shown above is repeated in the second application of this rule.

The solution to this repetition of inferences consists of remembering which inferences
were carried out in earlier rule applications and not carrying them out again. It turns
out that we can ‘remember’ previously executed inferences efficiently by simply keep-
ing track of which Components tuples were generated for the first time in the most

Deductive Databases 815

recent application of the recursive rule. Suppose that we keep track by introducing
a new relation called delta Components and storing just the newly generated Compo-
nents tuples in it. Now, we can use only the tuples in delta Components in the next
application of the recursive rule; any inference using other Components tuples should
have been carried out in earlier rule applications.

This refinement of fixpoint evaluation is called Seminaive fixpoint evaluation. Let
us trace Seminaive fixpoint evaluation on our example program. The first application of
the recursive rule produces the Components tuples shown in Figure 27.3, just like Naive
fixpoint evaluation, and these tuples are placed in delta Components. In the second
application, however, only delta Components tuples are considered, which means that
only the following inferences are carried out in the second application of the recursive
rule:

Components(trike, rim) :- Assembly(trike, wheel, 3),
delta Components(wheel, rim).

Components(trike, tube) :- Assembly(trike, wheel, 3),
delta Components(wheel, tube).

Next, the bookkeeping relation delta Components is updated to contain just these
two Components tuples. In the third application of the recursive rule, only these
two delta Components tuples are considered, and thus no additional inferences can be
made. The fixpoint of Components has been reached.

To implement Seminaive fixpoint evaluation for general Datalog programs, we apply
all the recursive rules in a program together in an iteration. Iterative application of
all recursive rules is repeated until no new tuples are generated in some iteration. To
summarize how Seminaive fixpoint evaluation is carried out, there are two important
differences with respect to Naive fixpoint evaluation:

We maintain a delta version of every recursive predicate to keep track of the
tuples generated for this predicate in the most recent iteration; for example,
delta Components for Components. The delta versions are updated at the end
of each iteration.

The original program rules are rewritten to ensure that every inference uses at
least one delta tuple, that is, one tuple that was not known before the previous
iteration. This property guarantees that the inference could not have been carried
out in earlier iterations.

We will not discuss the details of Seminaive fixpoint evaluation, such as the algorithm
for rewriting program rules to ensure the use of a delta tuple in each inference.

816 Chapter 27

27.4.2 Pushing Selections to Avoid Irrelevant Inferences

Consider a nonrecursive view definition. If we want only those tuples in the view that
satisfy an additional selection condition, the selection can be added to the plan as
a final selection operation, and the relational algebra transformations for commuting
selections with other relational operators allow us to ‘push’ the selection ahead of more
expensive operations such as cross-products and joins. In effect, we are able to restrict
the computation by utilizing selections in the query specification. The problem is more
complicated for recursively defined queries.

We will use the following program as an example in this section:

SameLevel(S1, S2) :- Assembly(P1, S1, Q1), Assembly(P1, S2, Q2).
SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

Consider the tree representation of Assembly tuples illustrated in Figure 27.2. There
is a tuple 〈S1, S2〉 in SameLevel if there is a path from S1 to S2 that goes up a certain
number of edges in the tree and then comes down the same number of edges.

Suppose that we want to find all SameLevel tuples with the first field equal to spoke.
Since SameLevel tuples can be used to compute other SameLevel tuples, we can-
not just compute those tuples with spoke in the first field. For example, the tuple
〈wheel, frame〉 in SameLevel allows us to infer a SameLevel tuple with spoke in the
first field:

SameLevel(spoke, seat) :- Assembly(wheel, spoke, 2),
SameLevel(wheel, frame),
Assembly(frame, seat, 1).

Intuitively, we have to compute all SameLevel tuples whose first field contains a value
that is on the path from spoke to the root in Figure 27.2. Each such tuple has the
potential to contribute to answers for the given query. On the other hand, computing
the entire SameLevel table is wasteful; for example, the SameLevel tuple 〈tire, seat〉
cannot be used to infer any answer to the given query (or indeed, to infer any tuple
that can in turn be used to infer an answer tuple). We can define a new table, which
we will call Magic SameLevel, such that each tuple in this table identifies a value m for
which we have to compute all SameLevel tuples with m in the first column, in order
to answer the given query:

Magic SameLevel(P1) :- Magic SameLevel(S1), Assembly(P1, S1, Q1).
Magic SameLevel(spoke) :- .

Consider the tuples in Magic SameLevel. Obviously we have 〈spoke〉. Using this
Magic SameLevel tuple and the Assembly tuple 〈wheel, spoke, 2〉, we can infer that

Deductive Databases 817

the tuple 〈wheel〉 is in Magic SameLevel. Using this tuple and the Assembly tuple
〈trike, wheel, 3〉, we can infer that the tuple 〈trike〉 is in Magic SameLevel. Thus,
Magic SameLevel contains each node that is on the path from spoke to the root in
Figure 27.2. The Magic SameLevel table can be used as a filter to restrict the compu-
tation:

SameLevel(S1, S2) :- Magic SameLevel(S1),
Assembly(P1, S1, Q1), Assembly(P2, S2, Q2).

SameLevel(S1, S2) :- Magic SameLevel(S1), Assembly(P1, S1, Q1),
SameLevel(P1, P2), Assembly(P2, S2, Q2).

These rules together with the rules defining Magic SameLevel give us a program for
computing all SameLevel tuples with spoke in the first column. Notice that the
new program depends on the query constant spoke only in the second rule defining
Magic SameLevel. Thus, the program for computing all SameLevel tuples with seat
in the first column, for instance, is identical except that the second Magic SameLevel
rule is:

Magic SameLevel(seat) :- .

The number of inferences made using the ‘Magic’ program can be far fewer than the
number of inferences made using the original program, depending on just how much
the selection in the query restricts the computation.

The Magic Sets Algorithm

We illustrated the Magic Sets algorithm on the SameLevel program, which contains
just one output relation and one recursive rule. The algorithm, however, can be applied
to any Datalog program. The input to the algorithm consists of the program and a
query form, which is a relation that we want to query plus the fields of the query
relation for which a query will provide constants. The output of the algorithm is a
rewritten program. When the rewritten program is evaluated, the constants in the
query are used to restrict the computation.

The Magic Sets program rewriting algorithm can be summarized as follows:

1. Add ‘Magic’ filters: Modify each rule in the program by adding a ‘Magic’
condition to the body that acts as a filter on the set of tuples generated by this
rule.

2. Define the ‘Magic’ relations: We must create new rules to define the ‘Magic’
relations. Intuitively, from each occurrence of an output relation R in the body of
a program rule, we obtain a rule defining the relation Magic R.

818 Chapter 27

When a query is posed, we add the corresponding ‘Magic’ tuple to the rewritten
program and evaluate the least fixpoint of the program.

We remark that the Magic Sets algorithm has turned out to be quite effective for
computing correlated nested SQL queries, even if there is no recursion, and is used for
this purpose in many commercial DBMSs even though these systems do not currently
support recursive queries.

27.5 POINTS TO REVIEW

It is not possible to write recursive rules in SQL-92, but SQL:1999 supports recur-
sion. A Datalog program consists of a collection of rules. A rule consists of a head
and a body. DBMSs that support Datalog are called deductive database systems
since the rules are applied iteratively to deduce new tuples. (Section 27.1)

Relations in Datalog are either defined by rules (output relations) or have tuples
explicitly listed (input relations). The meaning of a Datalog program can be
defined either through least model semantics or through least fixpoint semantics.
Least model semantics is declarative. A model of a program is a collection of
relations that is consistent with the input relations and the Datalog program. A
model that is contained in every other model is called a least model. There is
always a least model for a Datalog program without negation, and this model is
defined to be the meaning of the program. Least fixpoint semantics is operational.
A fixpoint of a function is a value v such that f(v) = v. The least fixpoint is a
fixpoint that is smaller than every other fixpoint. If we consider Datalog programs
without negation, every program has a least fixpoint and the least fixpoint is equal
to the least model. (Section 27.2)

We say that a table T depends on a table S if some rule with T in the head con-
tains S, or (recursively) contains a predicate that depends on S, in the body. If
a Datalog program contains not, it can have more than one least fixpoint. We
can syntactically restrict ourselves to stratified programs, for which there is a least
fixpoint (from among the many fixpoints that exist for the program) that corre-
sponds closely to an intuitive reading of the program. In a stratified program, the
relations can be classified into numbered layers called strata such that a relation
in stratum k only depends on relations in strata less than k. Datalog can be ex-
tended with grouping and aggregation operations. Unrestricted use of aggregation
can also result in programs with more than one least fixpoint, and we can again
restrict ourselves to stratified programs to get natural query results. (Section
27.3)

Straightforward evaluation of recursive queries by repeatedly applying the rules
leads to repeated inferences (the same tuples are inferred repeatedly by the same
rule) and unnecessary inferences (tuples that do not contribute to the desired

Deductive Databases 819

output of the query). We call one application of all rules using all tuples generated
so far an iteration. Simple repeated application of the rules to all tuples in each
iteration is also called Naive fixpoint evaluation. We can avoid repeated inferences
using Seminaive fixpoint evaluation. Seminaive fixpoint evaluation only applies
the rules to tuples that were newly generated in the previous iteration. To avoid
unnecessary inferences, we can add filter relations and modify the Datalog program
according to the Magic Sets program rewriting algorithm. (Section 27.4)

EXERCISES

Exercise 27.1 Consider the Flights relation:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time)

Write the following queries in Datalog and SQL3 syntax:

1. Find the flno of all flights that depart from Madison.

2. Find the flno of all flights that leave Chicago after Flight 101 arrives in Chicago and no

later than one hour after.

3. Find the flno of all flights that do not depart from Madison.

4. Find all cities reachable from Madison through a series of one or more connecting flights.

5. Find all cities reachable from Madison through a chain of one or more connecting flights,

with no more than one hour spent on any connection. (That is, every connecting flight

must depart within an hour of the arrival of the previous flight in the chain.)

6. Find the shortest time to fly from Madison to Madras, using a chain of one or more

connecting flights.

7. Find the flno of all flights that do not depart from Madison or a city that is reachable

from Madison through a chain of flights.

Exercise 27.2 Consider the definition of Components in Section 27.1.1. Suppose that the

second rule is replaced by

Components(Part, Subpart) :- Components(Part, Part2),

Components(Part2, Subpart).

1. If the modified program is evaluated on the Assembly relation in Figure 27.1, how many

iterations does Naive fixpoint evaluation take, and what Components facts are generated

in each iteration?

2. Extend the given instance of Assembly so that Naive fixpoint iteration takes two more

iterations.

3. Write this program in SQL3 syntax, using the WITH clause.

820 Chapter 27

4. Write a program in Datalog syntax to find the part with the most distinct subparts; if

several parts have the same maximum number of subparts, your query should return all

of these parts.

5. How would your answer to the previous part be changed if you also wanted to list the

number of subparts for the part with the most distinct subparts?

6. Rewrite your answers to the previous two parts in SQL3 syntax.

7. Suppose that you want to find the part with the most subparts, taking into account

the quantity of each subpart used in a part, how would you modify the Components

program? (Hint: To write such a query you reason about the number of inferences of

a fact. For this, you have to rely on SQL’s maintaining as many copies of each fact as

the number of inferences of that fact and take into account the properties of Seminaive

evaluation.)

Exercise 27.3 Consider the definition of Components in Exercise 27.2. Suppose that the

recursive rule is rewritten as follows for Seminaive fixpoint evaluation:

Components(Part, Subpart) :- delta Components(Part, Part2, Qty),

delta Components(Part2, Subpart).

1. At the end of an iteration, what steps must be taken to update delta Components to

contain just the new tuples generated in this iteration? Can you suggest an index on

Components that might help to make this faster?

2. Even if the delta relation is correctly updated, fixpoint evaluation using the preceding

rule will not always produce all answers. Show an instance of Assembly that illustrates

the problem.

3. Can you suggest a way to rewrite the recursive rule in terms of delta Components so

that Seminaive fixpoint evaluation always produces all answers and no inferences are

repeated across iterations?

4. Show how your version of the rewritten program performs on the example instance of

Assembly that you used to illustrate the problem with the given rewriting of the recursive

rule.

Exercise 27.4 Consider the definition of SameLevel in Section 27.4.2 and the Assembly

instance shown in Figure 27.1.

1. Rewrite the recursive rule for Seminaive fixpoint evaluation, and show how Seminaive

evaluation proceeds.

2. Consider the rules defining the relation Magic, with spoke as the query constant. For

Seminaive evaluation of the ‘Magic’ version of the SameLevel program, all tuples in Magic

are computed first. Show how Seminaive evaluation of the Magic relation proceeds.

3. After the Magic relation is computed, it can be treated as a fixed database relation, just

like Assembly, in the Seminaive fixpoint evaluation of the rules defining SameLevel in

the ‘Magic’ version of the program. Rewrite the recursive rule for Seminaive evaluation

and show how Seminaive evaluation of these rules proceeds.

Deductive Databases 821

BIBLIOGRAPHIC NOTES

The use of logic as a query language is discussed in several papers in [254, 466], which arose

out of influential workshops. Good textbook discussions of deductive databases can be found

in [656, 3, 122, 695, 438]. [535] is a recent survey article that provides an overview and covers

the major prototypes in the area, including LDL [147], Glue-Nail! [478] and [180], EKS-V1

[666], Aditi [536], Coral [534], LOLA [705], and XSB [561].

The fixpoint semantics of logic programs (and deductive databases as a special case) is pre-

sented in [659], which also shows equivalence of the fixpoint semantics to a least-model se-

mantics. The use of stratification to give a natural semantics to programs with negation was

developed independently in [30, 131, 488, 660].

Efficient evaluation of deductive database queries has been widely studied, and [48] is a survey

and comparison of several early techniques; [533] is a more recent survey. Seminaive fixpoint

evaluation was independently proposed several times; a good treatment appears in [44]. The

Magic Sets technique was proposed in [47] and was generalized to cover all deductive database

queries without negation in [64]. The Alexander method [549] was independently developed

and is equivalent to a variant of Magic Sets called Supplementary Magic Sets in [64]. [482]

showed how Magic Sets offers significant performance benefits even for nonrecursive SQL

queries. [586] describes a version of Magic Sets designed for SQL queries with correlation,

and its implementation in the Starburst system (which led to its implementation in IBM’s

DB2 DBMS). [583] discusses how Magic Sets can be incorporated into a System R style

cost-based optimization framework. The Magic Sets technique is extended to programs with

stratified negation in [63, 43]. [102] compares Magic Sets with top-down evaluation strategies

derived from Prolog.

[559] develops a program rewriting technique related to Magic Sets called Magic Counting.

Other related methods that are not based on program rewriting but rather on run-time control

strategies for evaluation include [191, 367, 664, 665]. The ideas in [191] have been developed

further to design an abstract machine for logic program evaluation using tabling in [638] and

[531]; this is the basis for the XSB system [561].

28 ADDITIONAL TOPICS

This is not the end. It is not even the beginning of the end. But it is, perhaps, the

end of the beginning.

—Winston Churchill

In this book we have concentrated on relational database systems and discussed several
fundamental issues in detail. However, our coverage of the database area, and indeed
even the relational database area, is far from exhaustive. In this chapter we look
briefly at several topics that we did not cover, with the goal of giving the reader some
perspective and indicating directions for further study.

We begin with a discussion of advanced transaction processing concepts in Section 28.1.
We discuss integrated access to data from multiple databases in Section 28.2, and touch
upon mobile applications that connect to databases in Section 28.3. We consider the
impact of increasingly larger main memory sizes in Section 28.4. We discuss multimedia
databases in Section 28.5, geographic information systems in Section 28.6, and sequence
data in Section 28.7. We conclude with a look at information visualization in Section
28.8.

The applications covered in this chapter are pushing the limits of currently available
database technology and are motivating the development of new techniques. As even
our brief coverage indicates, there is much work ahead for the database field!

28.1 ADVANCED TRANSACTION PROCESSING

The concept of a transaction has wide applicability for a variety of distributed comput-
ing tasks, such as airline reservations, inventory management, and electronic commerce.

28.1.1 Transaction Processing Monitors

Complex applications are often built on top of several resource managers, such
as database management systems, operating systems, user interfaces, and messaging
software. A transaction processing monitor glues together the services of several
resource managers and provides application programmers with a uniform interface for

822

Additional Topics 823

developing transactions with the ACID properties. In addition to providing a uniform
interface to the services of different resource managers, a TP monitor also routes
transactions to the appropriate resource managers. Finally, a TP monitor ensures that
an application behaves as a transaction by implementing concurrency control, logging,
and recovery functions, and by exploiting the transaction processing capabilities of the
underlying resource managers.

TP monitors are used in environments where applications require advanced features
such as access to multiple resource managers; sophisticated request routing (also called
workflow management); assigning priorities to transactions and doing priority-
based load-balancing across servers; and so on. A DBMS provides many of the func-
tions supported by a TP monitor in addition to processing queries and database up-
dates efficiently. A DBMS is appropriate for environments where the wealth of trans-
action management capabilities provided by a TP monitor is not necessary and, in
particular, where very high scalability (with respect to transaction processing activ-
ity) and interoperability are not essential.

The transaction processing capabilities of database systems are improving continually.
For example, many vendors offer distributed DBMS products today in which a transac-
tion can execute across several resource managers, each of which is a DBMS. Currently,
all the DBMSs must be from the same vendor; however, as transaction-oriented services
from different vendors become more standardized, distributed, heterogeneous DBMSs
should become available. Eventually, perhaps, the functions of current TP monitors
will also be available in many DBMSs; for now, TP monitors provide essential infras-
tructure for high-end transaction processing environments.

28.1.2 New Transaction Models

Consider an application such as computer-aided design, in which users retrieve large
design objects from a database and interactively analyze and modify them. Each
transaction takes a long time—minutes or even hours, whereas the TPC benchmark
transactions take under a millisecond—and holding locks this long affects performance.
Further, if a crash occurs, undoing an active transaction completely is unsatisfactory,
since considerable user effort may be lost. Ideally we want to be able to restore most
of the actions of an active transaction and resume execution. Finally, if several users
are concurrently developing a design, they may want to see changes being made by
others without waiting until the end of the transaction that changes the data.

To address the needs of long-duration activities, several refinements of the transaction
concept have been proposed. The basic idea is to treat each transaction as a collection
of related subtransactions. Subtransactions can acquire locks, and the changes made
by a subtransaction become visible to other transactions after the subtransaction ends
(and before the main transaction of which it is a part commits). In multilevel trans-

824 Chapter 28

actions, locks held by a subtransaction are released when the subtransaction ends.
In nested transactions, locks held by a subtransaction are assigned to the parent
(sub)transaction when the subtransaction ends. These refinements to the transaction
concept have a significant effect on concurrency control and recovery algorithms.

28.1.3 Real-Time DBMSs

Some transactions must be executed within a user-specified deadline. A hard dead-
line means the value of the transaction is zero after the deadline. For example, in a
DBMS designed to record bets on horse races, a transaction placing a bet is worthless
once the race begins. Such a transaction should not be executed; the bet should not
be placed. A soft deadline means the value of the transaction decreases after the
deadline, eventually going to zero. For example, in a DBMS designed to monitor some
activity (e.g., a complex reactor), a transaction that looks up the current reading of a
sensor must be executed within a short time, say, one second. The longer it takes to
execute the transaction, the less useful the reading becomes. In a real-time DBMS, the
goal is to maximize the value of executed transactions, and the DBMS must prioritize
transactions, taking their deadlines into account.

28.2 INTEGRATED ACCESS TO MULTIPLE DATA SOURCES

As databases proliferate, users want to access data from more than one source. For
example, if several travel agents market their travel packages through the Web, cus-
tomers would like to look at packages from different agents and compare them. A
more traditional example is that large organizations typically have several databases,
created (and maintained) by different divisions such as Sales, Production, and Pur-
chasing. While these databases contain much common information, determining the
exact relationship between tables in different databases can be a complicated prob-
lem. For example, prices in one database might be in dollars per dozen items, while
prices in another database might be in dollars per item. The development of XML
DTDs (see Section 22.3.3) offers the promise that such semantic mismatches can be
avoided if all parties conform to a single standard DTD. However, there are many
legacy databases and most domains still do not have agreed-upon DTDs; the problem
of semantic mismatches will be frequently encountered for the foreseeable future.

Semantic mismatches can be resolved and hidden from users by defining relational
views over the tables from the two databases. Defining a collection of views to give
a group of users a uniform presentation of relevant data from multiple databases is
called semantic integration. Creating views that mask semantic mismatches in a
natural manner is a difficult task and has been widely studied. In practice, the task
is made harder by the fact that the schemas of existing databases are often poorly

Additional Topics 825

documented; thus, it is difficult to even understand the meaning of rows in existing
tables, let alone define unifying views across several tables from different databases.

If the underlying databases are managed using different DBMSs, as is often the case,
some kind of ‘middleware’ must be used to evaluate queries over the integrating views,
retrieving data at query execution time by using protocols such as Open Database Con-
nectivity (ODBC) to give each underlying database a uniform interface, as discussed
in Chapter 5. Alternatively, the integrating views can be materialized and stored in
a data warehouse, as discussed in Chapter 23. Queries can then be executed over the
warehoused data without accessing the source DBMSs at run-time.

28.3 MOBILE DATABASES

The availability of portable computers and wireless communications has created a new
breed of nomadic database users. At one level these users are simply accessing a
database through a network, which is similar to distributed DBMSs. At another level
the network as well as data and user characteristics now have several novel properties,
which affect basic assumptions in many components of a DBMS, including the query
engine, transaction manager, and recovery manager;

Users are connected through a wireless link whose bandwidth is ten times less
than Ethernet and 100 times less than ATM networks. Communication costs are
therefore significantly higher in proportion to I/O and CPU costs.

Users’ locations are constantly changing, and mobile computers have a limited
battery life. Therefore, the true communication costs reflect connection time and
battery usage in addition to bytes transferred, and change constantly depending
on location. Data is frequently replicated to minimize the cost of accessing it from
different locations.

As a user moves around, data could be accessed from multiple database servers
within a single transaction. The likelihood of losing connections is also much
greater than in a traditional network. Centralized transaction management may
therefore be impractical, especially if some data is resident at the mobile comput-
ers. We may in fact have to give up on ACID transactions and develop alternative
notions of consistency for user programs.

28.4 MAIN MEMORY DATABASES

The price of main memory is now low enough that we can buy enough main memory
to hold the entire database for many applications; with 64-bit addressing, modern
CPUs also have very large address spaces. Some commercial systems now have several
gigabytes of main memory. This shift prompts a reexamination of some basic DBMS

826 Chapter 28

design decisions, since disk accesses no longer dominate processing time for a memory-
resident database:

Main memory does not survive system crashes, and so we still have to implement
logging and recovery to ensure transaction atomicity and durability. Log records
must be written to stable storage at commit time, and this process could become
a bottleneck. To minimize this problem, rather than commit each transaction as
it completes, we can collect completed transactions and commit them in batches;
this is called group commit. Recovery algorithms can also be optimized since
pages rarely have to be written out to make room for other pages.

The implementation of in-memory operations has to be optimized carefully since
disk accesses are no longer the limiting factor for performance.

A new criterion must be considered while optimizing queries, namely the amount
of space required to execute a plan. It is important to minimize the space overhead
because exceeding available physical memory would lead to swapping pages to disk
(through the operating system’s virtual memory mechanisms), greatly slowing
down execution.

Page-oriented data structures become less important (since pages are no longer the
unit of data retrieval), and clustering is not important (since the cost of accessing
any region of main memory is uniform).

28.5 MULTIMEDIA DATABASES

In an object-relational DBMS, users can define ADTs with appropriate methods, which
is an improvement over an RDBMS. Nonetheless, supporting just ADTs falls short of
what is required to deal with very large collections of multimedia objects, including
audio, images, free text, text marked up in HTML or variants, sequence data, and
videos. Illustrative applications include NASA’s EOS project, which aims to create a
repository of satellite imagery, the Human Genome project, which is creating databases
of genetic information such as GenBank, and NSF/DARPA’s Digital Libraries project,
which aims to put entire libraries into database systems and then make them accessible
through computer networks. Industrial applications such as collaborative development
of engineering designs also require multimedia database management, and are being
addressed by several vendors.

We outline some applications and challenges in this area:

Content-based retrieval: Users must be able to specify selection conditions
based on the contents of multimedia objects. For example, users may search for
images using queries such as: “Find all images that are similar to this image” and
“Find all images that contain at least three airplanes.” As images are inserted into

Additional Topics 827

the database, the DBMS must analyze them and automatically extract features
that will help answer such content-based queries. This information can then be
used to search for images that satisfy a given query, as discussed in Chapter 26.
As another example, users would like to search for documents of interest using
information retrieval techniques and keyword searches. Vendors are moving to-
wards incorporating such techniques into DBMS products. It is still not clear how
these domain-specific retrieval and search techniques can be combined effectively
with traditional DBMS queries. Research into abstract data types and ORDBMS
query processing has provided a starting point, but more work is needed.

Managing repositories of large objects: Traditionally, DBMSs have concen-
trated on tables that contain a large number of tuples, each of which is relatively
small. Once multimedia objects such as images, sound clips, and videos are stored
in a database, individual objects of very large size have to be handled efficiently.
For example, compression techniques must be carefully integrated into the DBMS
environment. As another example, distributed DBMSs must develop techniques
to efficiently retrieve such objects. Retrieval of multimedia objects in a distributed
system has been addressed in limited contexts, such as client-server systems, but
in general remains a difficult problem.

Video-on-demand: Many companies want to provide video-on-demand services
that enable users to dial into a server and request a particular video. The video
must then be delivered to the user’s computer in real time, reliably and inex-
pensively. Ideally, users must be able to perform familiar VCR functions such as
fast-forward and reverse. From a database perspective, the server has to contend
with specialized real-time constraints; video delivery rates must be synchronized
at the server and at the client, taking into account the characteristics of the com-
munication network.

28.6 GEOGRAPHIC INFORMATION SYSTEMS

Geographic Information Systems (GIS) contain spatial information about cities,
states, countries, streets, highways, lakes, rivers, and other geographical features, and
support applications to combine such spatial information with non-spatial data. As
discussed in Chapter 26, spatial data is stored in either raster or vector formats. In
addition, there is often a temporal dimension, as when we measure rainfall at several
locations over time. An important issue with spatial data sets is how to integrate data
from multiple sources, since each source may record data using a different coordinate
system to identify locations.

Now let us consider how spatial data in a GIS is analyzed. Spatial information is most
naturally thought of as being overlaid on maps. Typical queries include “What cities
lie on I-94 between Madison and Chicago?” and “What is the shortest route from
Madison to St. Louis?” These kinds of queries can be addressed using the techniques

828 Chapter 28

discussed in Chapter 26. An emerging application is in-vehicle navigation aids. With
Global Positioning Systems (GPS) technology, a car’s location can be pinpointed, and
by accessing a database of local maps, a driver can receive directions from his or her
current location to a desired destination; this application also involves mobile database
access!

In addition, many applications involve interpolating measurements at certain locations
across an entire region to obtain a model, and combining overlapping models. For ex-
ample, if we have measured rainfall at certain locations, we can use the TIN approach
to triangulate the region with the locations at which we have measurements being the
vertices of the triangles. Then, we use some form of interpolation to estimate the
rainfall at points within triangles. Interpolation, triangulation, map overlays, visual-
izations of spatial data, and many other domain-specific operations are supported in
GIS products such as ESRI Systems’ ARC-Info. Thus, while spatial query processing
techniques as discussed in Chapter 26 are an important part of a GIS product, con-
siderable additional functionality must be incorporated as well. How best to extend
ORDBMS systems with this additional functionality is an important problem yet to
be resolved. Agreeing upon standards for data representation formats and coordinate
systems is another major challenge facing the field.

28.7 TEMPORAL AND SEQUENCE DATABASES

Currently available DBMSs provide little support for queries over ordered collections
of records, or sequences, and over temporal data. Typical sequence queries include
“Find the weekly moving average of the Dow Jones Industrial Average,” and “Find the
first five consecutively increasing temperature readings” (from a trace of temperature
observations). Such queries can be easily expressed and often efficiently executed by
systems that support query languages designed for sequences. Some commercial SQL
systems now support such SQL extensions.

The first example is also a temporal query. However, temporal queries involve more
than just record ordering. For example, consider the following query: “Find the longest
interval in which the same person managed two different departments.” If the period
during which a given person managed a department is indicated by two fields from and
to, we have to reason about a collection of intervals, rather than a sequence of records.
Further, temporal queries require the DBMS to be aware of the anomalies associated
with calendars (such as leap years). Temporal extensions are likely to be incorporated
in future versions of the SQL standard.

A distinct and important class of sequence data consists of DNA sequences, which are
being generated at a rapid pace by the biological community. These are in fact closer
to sequences of characters in text than to time sequences as in the above examples.
The field of biological information management and analysis has become very popular

Additional Topics 829

in recent years, and is called bioinformatics. Biological data, such as DNA sequence
data, is characterized by complex structure and numerous relationships among data
elements, many overlapping and incomplete or erroneous data fragments (because ex-
perimentally collected data from several groups, often working on related problems,
is stored in the databases), a need to frequently change the database schema itself as
new kinds of relationships in the data are discovered, and the need to maintain several
versions of data for archival and reference.

28.8 INFORMATION VISUALIZATION

As computers become faster and main memory becomes cheaper, it becomes increas-
ingly feasible to create visual presentations of data, rather than just text-based reports.
Data visualization makes it easier for users to understand the information in large
complex datasets. The challenge here is to make it easy for users to develop visual
presentation of their data and to interactively query such presentations. Although a
number of data visualization tools are available, efficient visualization of large datasets
presents many challenges.

The need for visualization is especially important in the context of decision support;
when confronted with large quantities of high-dimensional data and various kinds of
data summaries produced by using analysis tools such as SQL, OLAP, and data mining
algorithms, the information can be overwhelming. Visualizing the data, together with
the generated summaries, can be a powerful way to sift through this information and
spot interesting trends or patterns. The human eye, after all, is very good at finding
patterns. A good framework for data mining must combine analytic tools to process
data, and bring out latent anomalies or trends, with a visualization environment in
which a user can notice these patterns and interactively drill down to the original data
for further analysis.

28.9 SUMMARY

The database area continues to grow vigorously, both in terms of technology and in
terms of applications. The fundamental reason for this growth is that the amount of
information stored and processed using computers is growing rapidly. Regardless of
the nature of the data and its intended applications, users need database management
systems and their services (concurrent access, crash recovery, easy and efficient query-
ing, etc.) as the volume of data increases. As the range of applications is broadened,
however, some shortcomings of current DBMSs become serious limitations. These
problems are being actively studied in the database research community.

The coverage in this book provides a good introduction, but is not intended to cover
all aspects of database systems. Ample material is available for further study, as this

830 Chapter 28

chapter illustrates, and we hope that the reader is motivated to pursue the leads in
the bibliography. Bon voyage!

BIBLIOGRAPHIC NOTES

[288] contains a comprehensive treatment of all aspects of transaction processing. An intro-

ductory textbook treatment can be found in [77]. See [204] for several papers that describe new

transaction models for nontraditional applications such as CAD/CAM. [1, 668, 502, 607, 622]

are some of the many papers on real-time databases.

Determining which entities are the same across different databases is a difficult problem;

it is an example of a semantic mismatch. Resolving such mismatches has been addressed

in many papers, including [362, 412, 558, 576]. [329] is an overview of theoretical work in

this area. Also see the bibliographic notes for Chapter 21 for references to related work on

multidatabases, and see the notes for Chapter 2 for references to work on view integration.

[260] is an early paper on main memory databases. [345, 89] describe the Dali main memory

storage manager. [359] surveys visualization idioms designed for large databases, and [291]

discusses visualization for data mining.

Visualization systems for databases include DataSpace [515], DEVise [424], IVEE [23], the

Mineset suite from SGI, Tioga [27], and VisDB [358]. In addition, a number of general tools

are available for data visualization.

Querying text repositories has been studied extensively in information retrieval; see [545] for

a recent survey. This topic has generated considerable interest in the database community

recently because of the widespread use of the Web, which contains many text sources. In

particular, HTML documents have some structure if we interpret links as edges in a graph.

Such documents are examples of semistructured data; see [2] for a good overview. Recent

papers on queries over the Web include [2, 384, 457, 493].

See [501] for a survey of multimedia issues in database management. There has been much

recent interest in database issues in a mobile computing environment, for example, [327, 337].

See [334] for a collection of articles on this subject. [639] contains several articles that cover

all aspects of temporal databases. The use of constraints in databases has been actively

investigated in recent years; [356] is a good overview. Geographic Information Systems have

also been studied extensively; [511] describes the Paradise system, which is notable for its

scalability.

The book [695] contains detailed discussions of temporal databases (including the TSQL2

language, which is influencing the SQL standard), spatial and multimedia databases, and

uncertainty in databases. Another SQL extension to query sequence data, called SRQL, is

proposed in [532].

A DATABASE DESIGN CASE STUDY:
THE INTERNET SHOP

Advice for software developers and horse racing enthusiasts: Avoid hacks.

—Anonymous

We now present an illustrative, ‘cradle-to-grave’ design example. DBDudes Inc., a
well-known database consulting firm, has been called in to help Barns and Nobble
(B&N) with their database design and implementation. B&N is a large bookstore
specializing in books on horse racing, and they’ve decided to go online. DBDudes first
verify that B&N is willing and able to pay their steep fees and then schedule a lunch
meeting—billed to B&N, naturally—to do requirements analysis.

A.1 REQUIREMENTS ANALYSIS

The owner of B&N has thought about what he wants and offers a concise summary:

“I would like my customers to be able to browse my catalog of books and to place orders
over the Internet. Currently, I take orders over the phone. I have mostly corporate
customers who call me and give me the ISBN number of a book and a quantity. I
then prepare a shipment that contains the books they have ordered. If I don’t have
enough copies in stock, I order additional copies and delay the shipment until the new
copies arrive; I want to ship a customer’s entire order together. My catalog includes
all the books that I sell. For each book, the catalog contains its ISBN number, title,
author, purchase price, sales price, and the year the book was published. Most of my
customers are regulars, and I have records with their name, address, and credit card
number. New customers have to call me first and establish an account before they can
use my Web site.

On my new Web site, customers should first identify themselves by their unique cus-
tomer identification number. Then they should be able to browse my catalog and to
place orders online.”

DBDudes’s consultants are a little surprised by how quickly the requirements phase
was completed—it usually takes them weeks of discussions (and many lunches and
dinners) to get this done—but return to their offices to analyze this information.

831

832 Appendix A

A.2 CONCEPTUAL DESIGN

In the conceptual design step, DBDudes develop a high level description of the data
in terms of the ER model. Their initial design is shown in Figure A.1. Books and
customers are modeled as entities and are related through orders that customers place.
Orders is a relationship set connecting the Books and Customers entity sets. For each
order, the following attributes are stored: quantity, order date, and ship date. As soon
as an order is shipped, the ship date is set; until then the ship date is set to null,
indicating that this order has not been shipped yet.

DBDudes has an internal design review at this point, and several questions are raised.
To protect their identities, we will refer to the design team leader as Dude 1 and the
design reviewer as Dude 2:

Dude 2: What if a customer places two orders for the same book on the same day?
Dude 1: The first order is handled by creating a new Orders relationship and the second
order is handled by updating the value of the quantity attribute in this relationship.
Dude 2: What if a customer places two orders for different books on the same day?
Dude 1: No problem. Each instance of the Orders relationship set relates the customer
to a different book.
Dude 2: Ah, but what if a customer places two orders for the same book on different
days?
Dude 1: We can use the attribute order date of the orders relationship to distinguish
the two orders.
Dude 2: Oh no you can’t. The attributes of Customers and Books must jointly contain
a key for Orders. So this design does not allow a customer to place orders for the same
book on different days.
Dude 1: Yikes, you’re right. Oh well, B&N probably won’t care; we’ll see.

DBDudes decides to proceed with the next phase, logical database design.

A.3 LOGICAL DATABASE DESIGN

Using the standard approach discussed in Chapter 3, DBDudes maps the ER diagram
shown in Figure A.1 to the relational model, generating the following tables:

CREATE TABLE Books (isbn CHAR(10),
title CHAR(80),
author CHAR(80),
qty in stock INTEGER,
price REAL,
year published INTEGER,
PRIMARY KEY (isbn))

Design Case Study: An Internet Shop 833

isbn

title price

year_published

qty_in_stockauthor

cardnumcid

Customers

addresscname

order_date

ship_dateqty

OrdersBooks

Figure A.1 ER Diagram of the Initial Design

CREATE TABLE Orders (isbn CHAR(10),
cid INTEGER,
qty INTEGER,
order date DATE,
ship date DATE,
PRIMARY KEY (isbn,cid),
FOREIGN KEY (isbn) REFERENCES Books,
FOREIGN KEY (cid) REFERENCES Customers)

CREATE TABLE Customers (cid INTEGER,
cname CHAR(80),
address CHAR(200),
cardnum CHAR(16),
PRIMARY KEY (cid)
UNIQUE (cardnum))

The design team leader, who is still brooding over the fact that the review exposed
a flaw in the design, now has an inspiration. The Orders table contains the field
order date and the key for the table contains only the fields isbn and cid. Because of
this, a customer cannot order the same book on different days, a restriction that was
not intended. Why not add the order date attribute to the key for the Orders table?
This would eliminate the unwanted restriction:

CREATE TABLE Orders (isbn CHAR(10),
...
PRIMARY KEY (isbn,cid,ship date),
...)

The reviewer, Dude 2, is not entirely happy with this solution, which he calls a ‘hack’.
He points out that there is no natural ER diagram that reflects this design, and stresses

834 Appendix A

the importance of the ER diagram as a design document. Dude 1 argues that while
Dude 2 has a point, it is important to present B&N with a preliminary design and get
feedback; everyone agrees with this, and they go back to B&N.

The owner of B&N now brings up some additional requirements that he did not mention
during the initial discussions: “Customers should be able to purchase several different
books in a single order. For example, if a customer wants to purchase three copies of
‘The English Teacher’ and two copies of ‘The Character of Physical Law,’ the customer
should be able to place a single order for both books.”

The design team leader, Dude 1, asks how this affects the shippping policy. Does B&N
still want to ship all books in an order together? The owner of B&N explains their
shipping policy: “As soon as we have have enough copies of an ordered book we ship
it, even if an order contains several books. So it could happen that the three copies
of ‘The English Teacher’ are shipped today because we have five copies in stock, but
that ‘The Character of Physical Law’ is shipped tomorrow, because we currently have
only one copy in stock and another copy arrives tomorrow. In addition, my customers
could place more than one order per day, and they want to be able to identify the
orders they placed.”

The DBDudes team thinks this over and identifies two new requirements: first, it
must be possible to order several different books in a single order, and second, a
customer must be able to distinguish between several orders placed the same day. To
accomodate these requirements, they introduce a new attribute into the Orders table
called ordernum, which uniquely identifies an order and therefore the customer placing
the order. However, since several books could be purchased in a single order, ordernum
and isbn are both needed to determine qty and ship date in the Orders table.

Orders are assigned order numbers sequentially and orders that are placed later have
higher order numbers. If several orders are placed by the same customer on a single
day, these orders have different order numbers and can thus be distinguished. The
SQL DDL statement to create the modified Orders table is given below:

CREATE TABLE Orders (ordernum INTEGER,
isbn CHAR(10),
cid INTEGER,
qty INTEGER,
order date DATE,
ship date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books
FOREIGN KEY (cid) REFERENCES Customers)

Design Case Study: An Internet Shop 835

A.4 SCHEMA REFINEMENT

Next, DBDudes analyzes the set of relations for possible redundancy. The Books rela-
tion has only one key (isbn), and no other functional dependencies hold over the table.
Thus, Books is in BCNF. The Customers relation has the key (cid), and since a credit
card number uniquely identifies its card holder, the functional dependency cardnum →
cid also holds. Since cid is a key, cardnum is also a key. No other dependencies hold,
and so Customers is also in BCNF.

DBDudes has already identified the pair 〈ordernum, isbn〉 as the key for the Orders
table. In addition, since each order is placed by one customer on one specific date, the
following two functional dependencies hold:

ordernum → cid, and ordernum → order date

The experts at DBDudes conclude that Orders is not even in 3NF. (Can you see why?)
They decide to decompose Orders into the following two relations:

Orders(ordernum, cid, order date, and
Orderlists(ordernum, isbn, qty, ship date)

The resulting two relations, Orders and Orderlists, are both in BCNF, and the decom-
position is lossless-join since ordernum is a key for (the new) Orders. The reader is
invited to check that this decomposition is also dependency-preserving. For complete-
ness, we give the SQL DDL for the Orders and Orderlists relations below:

CREATE TABLE Orders (ordernum INTEGER,
cid INTEGER,
order date DATE,
PRIMARY KEY (ordernum),
FOREIGN KEY (cid) REFERENCES Customers)

CREATE TABLE Orderlists (ordernum INTEGER,
isbn CHAR(10),
qty INTEGER,
ship date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books)

Figure A.2 shows an updated ER diagram that reflects the new design. Note that
DBDudes could have arrived immediately at this diagram if they had made Orders an
entity set instead of a relationship set right at the beginning. But at that time they did
not understand the requirements completely, and it seemed natural to model Orders

836 Appendix A

isbn

title price

year_published

qty_in_stockauthor

cardnumcid

Customers

addresscname

OrdersBooks

qty ship_date order_date

Order_List Place_Order

ordernum

Figure A.2 ER Diagram Reflecting the Final Design

as a relationship set. This iterative refinement process is typical of real-life database
design processes. As DBDudes has learned over time, it is rare to achieve an initial
design that is not changed as a project progresses.

The DBDudes team celebrates the successful completion of logical database design and
schema refinement by opening a bottle of champagne and charging it to B&N. After
recovering from the celebration, they move on to the physical design phase.

A.5 PHYSICAL DATABASE DESIGN

Next, DBDudes considers the expected workload. The owner of the bookstore expects
most of his customers to search for books by ISBN number before placing an order.
Placing an order involves inserting one record into the Orders table and inserting one
or more records into the Orderlists relation. If a sufficient number of books is available,
a shipment is prepared and a value for the ship date in the Orderlists relation is set. In
addition, the available quantities of books in stocks changes all the time since orders
are placed that decrease the quantity available and new books arrive from suppliers
and increase the quantity available.

The DBDudes team begins by considering searches for books by ISBN. Since isbn is
a key, an equality query on isbn returns at most one record. Thus, in order to speed
up queries from customers who look for books with a given ISBN, DBDudes decides
to build an unclustered hash index on isbn.

Next, they consider updates to book quantities. To update the qty in stock value for
a book, we must first search for the book by ISBN; the index on isbn speeds this
up. Since the qty in stock value for a book is updated quite frequently, DBDudes also
considers partitioning the Books relation vertically into the following two relations:

Design Case Study: An Internet Shop 837

BooksQty(isbn, qty), and
BookRest(isbn, title, author, price, year published).

Unfortunately, this vertical partition would slow down another very popular query:
Equality search on ISBN to retrieve full information about a book would require a
join between BooksQty and BooksRest. So DBDudes decide not to vertically partition
Books.

DBDudes thinks it is likely that customers will also want to search for books by title
and by author, and decides to add unclustered hash indexes on title and author—these
indexes are inexpensive to maintain because the set of books is rarely changed even
though the quantity in stock for a book changes often.

Next, they consider the Customers relation. A customer is first identified by the unique
customer identifaction number. Thus, the most common queries on Customers are
equality queries involving the customer identification number, and DBDudes decides
to build a clustered hash index on cid to achieve maximum speedup for this query.

Moving on to the Orders relation, they see that it is involved in two queries: insertion
of new orders and retrieval of existing orders. Both queries involve the ordernum
attribute as search key and so they decide to build an index on it. What type of
index should this be—a B+ tree or a hash index? Since order numbers are assigned
sequentially and thus correspond to the order date, sorting by ordernum effectively
sorts by order date as well. Thus DBDudes decides to build a clustered B+ tree index
on ordernum. Although the operational requirements that have been mentioned until
know favor neither a B+ tree nor a hash index, B&N will probably want to monitor
daily activities, and the clustered B+ tree is a better choice for such range queries. Of
course, this means that retrieving all orders for a given customer could be expensive
for customers with many orders, since clustering by ordernum precludes clustering by
other attributes, such as cid.

The Orderlists relation mostly involves insertions, with an occasional update of a
shipment date or a query to list all components of a given order. If Orderlists is kept
sorted on ordernum, all insertions are appends at the end of the relation and thus very
efficient. A clustered B+ tree index on ordernum maintains this sort order and also
speeds up retrieval of all items for a given order. To update a shipment date, we need
to search for a tuple by ordernum and isbn. The index on ordernum helps here as well.
Although an index on 〈ordernum, isbn〉 would be better for this purpose, insertions
would not be as efficient as with an index on just ordernum; DBDudes therefore decides
to index Orderlists on just ordernum.

838 Appendix A

A.5.1 Tuning the Database

We digress from our discussion of the initial design to consider a problem that arises
several months after the launch of the B&N site. DBDudes is called in and told that
customer enquiries about pending orders are being processed very slowly. B&N has
become very successful, and the Orders and Orderlists tables have grown huge.

Thinking further about the design, DBDudes realizes that there are two types of orders:
completed orders, for which all books have already shipped, and partially completed or-
ders, for which some books are yet to be shipped. Most customer requests to look up
an order involve partially completed orders, which are a small fraction of all orders.
DBDudes therefore decides to horizontally partition both the Orders table and the Or-
derlists table by ordernum. This results in four new relations: NewOrders, OldOrders,
NewOrderlists, and OldOrderlists.

An order and its components are always in exactly one pair of relations—and we
can determine which pair, old or new, by a simple check on ordernum—and queries
involving that order can always be evaluated using only the relevant relations. Some
queries are now slower, such as those asking for all of a customer’s orders, since they
require us to search two sets of relations. However, these queries are infrequent and
their performance is acceptable.

A.6 SECURITY

Returning to our discussion of the initial design phase, recall that DBDudes completed
physical database design. Next, they address security. There are three groups of users:
customers, employees, and the owner of the book shop. (Of course, there is also the
database administrator who has universal access to all data and who is responsible for
regular operation of the database system.)

The owner of the store has full privileges on all tables. Customers can query the Books
table and can place orders online, but they should not have access to other customers’
records nor to other customers’ orders. DBDudes restricts access in two ways. First,
they design a simple Web page with several forms similar to the page shown in Figure
22.1 in Chapter 22. This allows customers to submit a small collection of valid requests
without giving them the ability to directly access the underlying DBMS through an
SQL interface. Second, they use the security features of the DBMS to limit access to
sensitive data.

The Web page allows customers to query the Books relation by ISBN number, name of
the author, and title of a book. The Web page also has two buttons. The first button
retrieves a list of all of the customer’s orders that are not completely fulfilled yet. The
second button will display a list of all completed orders for that customer. Note that

Design Case Study: An Internet Shop 839

customers cannot specify actual SQL queries through the Web; they can only fill in
some parameters in a form to instantiate an automatically generated SQL query. All
queries that are generated through form input have a WHERE clause that includes the
cid attribute value of the current customer, and evaluation of the queries generated
by the two buttons requires knowledge of the customer identification number. Since
all users have to log on to the Web site before browsing the catalog, the business logic
(discussed in Section A.7) must maintain state information about a customer (i.e., the
customer identification number) during the customer’s visit to the Web site.

The second step is to configure the database to limit access according to each user
group’s need to know. DBDudes creates a special customer account that has the
following privileges:

SELECT ON Books, NewOrders, OldOrders, NewOrderlists, OldOrderlists
INSERT ON NewOrders, OldOrders, NewOrderlists, OldOrderlists

Employees should be able to add new books to the catalog, update the quantity of a
book in stock, revise customer orders if necessary, and update all customer information
except the credit card information. In fact, employees should not even be able to see a
customer’s credit card number. Thus, DBDudes creates the following view:

CREATE VIEW CustomerInfo (cid,cname,address)
AS SELECT C.cid, C.cname, C.address

FROM Customers C

They give the employee account the following privileges:

SELECT ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

INSERT ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

UPDATE ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

DELETE ON Books, NewOrders, OldOrders, NewOrderlists, OldOrderlists

In addition, there are security issues when the user first logs on to the Web site using
the customer identification number. Sending the number unencrypted over the Internet
is a security hazard, and a secure protocol such as the SSL should be used.

There are companies such as CyberCash and DigiCash that offer electronic commerce
payment solutions, even including ‘electronic’ cash. Discussion of how to incorporate
such techniques into the Website are outside the scope of this book.

840 Appendix A

A.7 APPLICATION LAYERS

DBDudes now moves on to the implementation of the application layer and considers
alternatives for connecting the DBMS to the World-Wide Web (see Chapter 22).

DBDudes note the need for session management. For example, users who log in to
the site, browse the catalog, and then select books to buy do not want to re-enter
their customer identification number. Session management has to extend to the whole
process of selecting books, adding them to a shopping cart, possibly removing books
from the cart, and then checking out and paying for the books.

DBDudes then considers whether Web pages for books should be static or dynamic.
If there is a static Web page for each book, then we need an extra database field in
the Books relation that points to the location of the file. Even though this enables
special page designs for different books, it is a very labor intensive solution. DBDudes
convinces B&N to dynamically assemble the Web page for a book from a standard
template instantiated with information about the book in the Books relation.

This leaves DBDudes with one final decision, namely how to connect applications to
the DBMS. They consider the two main alternatives that we presented in Section 22.2:
CGI scripts versus using an application server infrastructure. If they use CGI scripts,
they would have to encode session management logic—not an easy task. If they use
an application server, they can make use of all the functionality that the application
server provides. Thus, they recommend that B&N implement server-side processing
using an application server.

B&N, however, refuses to pay for an application server and decides that for their
purposes CGI scripts are fine. DBDudes accepts B&N’s decision and proceeds to build
the following pieces:

The top level HTML pages that allow users to navigate the site, and various forms
that allow users to search the catalog by ISBN, author name, or author title. An
example page containing a search form is shown in Figure 22.1 in Chapter 22. In
addition to the input forms, DBDudes must develop appropriate presentations for
the results.

The logic to track a customer session. Relevant information must be stored either
in a server-side data structure or be cached in hte customer’s browser using a
mechanism like cookies. Cookies are pieces of information that a Web server
can store in a user’s Web browser. Whenever the user generates a request, the
browser passes along the stored information, thereby enabling the Web server to
‘remember’ what the user did earlier.

The scripts that process the user requests. For example, a customer can use a
form called ‘Search books by title’ to type in a title and search for books with that

Design Case Study: An Internet Shop 841

title. The CGI interface communicates with a script that processes the request.
An example of such a script written in Perl using DBI for data access is shown in
Figure 22.4 in Chapter 22.

For completeness, we remark that if B&N had agreed to use an application server,
DBDudes would have had the following tasks:

As in the CGI-based architecture, they would have to design top level pages that
allow customers to navigate the Web site as well as various search forms and result
presentations.

Assuming that DBDudes select a Java-based application server, they have to write
Java Servlets to process form-generated requests. Potentially, they could reuse
existing (possibly commercially available) JavaBeans. They can use JDBC as a
database interface; examples of JDBC code can be found in Section 5.10. Instead
of programming Servlets, they could resort to Java Server Pages and annotate
pages with special JSP markup tags. An example of a Web page that includes
JSP commands is shown in Section 22.2.1.

If DBDudes select an application server that uses proprietary markup tags, they
have to develop Web pages by using such tags. An example using Cold Fusion
markup tags can be found in Section 22.2.1.

Our discussion thus far only covers the ‘client-interface’, the part of the Web site that
is exposed to B&N’s customers. DBDudes also need to add applications that allow
the employees and the shop owner to query and access the database and to generate
summary reports of business activities.

This completes our discussion of Barns and Nobble. While this study only describes
a small part of a real problem, we saw that a design even at this scale involved non-
trivial tradeoffs. We would like to emphasize again that database design is an iterative
process and that therefore it is very important not to lock oneself down early on in a
fixed model that is too inflexible to accomodate a changing environment. Welcome to
the exciting world of database management!

B THE MINIBASE SOFTWARE

Practice is the best of all instructors.

—Publius Syrus, 42 B.C.

Minibase is a small relational DBMS, together with a suite of visualization tools, that
has been developed for use with this book. While the book makes no direct reference to
the software and can be used independently, Minibase offers instructors an opportunity
to design a variety of hands-on assignments, with or without programming. To see an
online description of the software, visit this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.html

The software is available freely through ftp. By registering themselves as users at
the URL for the book, instructors can receive prompt notification of any major bug
reports and fixes. Sample project assignments, which elaborate upon some of the
briefly sketched ideas in the project-based exercises at the end of chapters, can be seen
at

http://www.cs.wisc.edu/˜dbbook/minihwk.html

Instructors should consider making small modifications to each assignment to discour-
age undesirable ‘code reuse’ by students; assignment handouts formatted using Latex
are available by ftp. Instructors can also obtain solutions to these assignments by
contacting the authors (raghu@cs.wisc.edu, johannes@cs.cornell.edu).

B.1 WHAT’S AVAILABLE

Minibase is intended to supplement the use of a commercial DBMS such as Oracle or
Sybase in course projects, not to replace them. While a commercial DBMS is ideal
for SQL assignments, it does not allow students to understand how the DBMS works.
Minibase is intended to address the latter issue; the subset of SQL that it supports is
intentionally kept small, and students should also be asked to use a commercial DBMS
for writing SQL queries and programs. Minibase is provided on an as-is basis with no
warranties or restrictions for educational or personal use. It includes the following:

842

The Minibase Software 843

Code for a small single-user relational DBMS, including a parser and query opti-
mizer for a subset of SQL, and components designed to be (re)written by students
as project assignments: heap files, buffer manager, B+ trees, sorting, and joins.

Graphical visualization tools to aid in students’ exploration and understanding of
the behavior of the buffer management, B+ tree, and query optimization compo-
nents of the system. There is also a graphical tool to refine a relational database
design using normalization.

B.2 OVERVIEW OF MINIBASE ASSIGNMENTS

Several assignments involving the use of Minibase are described below. Each of these
has been tested in a course already, but the details of how Minibase is set up might vary
at your school, so you may have to modify the assignments accordingly. If you plan to
use these assignments, you are advised to download and try them at your site well in
advance of handing them to students. We have done our best to test and document
these assignments, and the Minibase software, but bugs undoubtedly persist. Please
report bugs at this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.comments.html

I hope that users will contribute bug fixes, additional project assignments, and exten-
sions to Minibase. These will be made publicly available through the Minibase site,
together with pointers to the authors.

B.2.1 Overview of Programming Projects

In several assignments, students are asked to rewrite a component of Minibase. The
book provides the necessary background for all of these assignments, and the assign-
ment handout provides additional system-level details. The online HTML documen-
tation provides an overview of the software, in particular the component interfaces,
and can be downloaded and installed at each school that uses Minibase. The projects
listed below should be assigned after covering the relevant material from the indicated
chapter.

Buffer manager (Chapter 7): Students are given code for the layer that man-
ages space on disk and supports the concept of pages with page ids. They are
asked to implement a buffer manager that brings requested pages into memory if
they are not already there. One variation of this assignment could use different
replacement policies. Students are asked to assume a single-user environment,
with no concurrency control or recovery management.

HF page (Chapter 7): Students must write code that manages records on a
page using a slot-directory page format to keep track of records on a page. Possible

844 Appendix B

variants include fixed-length versus variable-length records and other ways to keep
track of records on a page.

Heap files (Chapter 7): Using the HF page and buffer manager code, students
are asked to implement a layer that supports the abstraction of files of unordered
pages, that is, heap files.

B+ trees (Chapter 9): This is one of the more complex assignments. Students
have to implement a page class that maintains records in sorted order within a
page and implement the B+ tree index structure to impose a sort order across
several leaf-level pages. Indexes store 〈key, record-pointer〉 pairs in leaf pages, and
data records are stored separately (in heap files). Similar assignments can easily
be created for Linear Hashing or Extendible Hashing index structures.

External sorting (Chapter 11): Building upon the buffer manager and heap
file layers, students are asked to implement external merge-sort. The emphasis is
on minimizing I/O, rather than on the in-memory sort used to create sorted runs.

Sort-merge join (Chapter 12): Building upon the code for external sorting,
students are asked to implement the sort-merge join algorithm. This assignment
can be easily modified to create assignments that involve other join algorithms.

Index nested-loop join (Chapter 12): This assignment is similar to the sort-
merge join assignment, but relies on B+ tree (or other indexing) code, instead of
sorting code.

B.2.2 Overview of Nonprogramming Assignments

Four assignments that do not require students to write any code (other than SQL, in
one assignment) are also available.

Optimizer exercises (Chapter 13): The Minibase optimizer visualizer offers
a flexible tool to explore how a typical relational query optimizer works. It ac-
cepts single-block SQL queries (including some queries that cannot be executed
in Minibase, such as queries involving grouping and aggregate operators). Stu-
dents can inspect and modify synthetic catalogs, add and drop indexes, enable or
disable different join algorithms, enable or disable index-only evaluation strate-
gies, and see the effect of such changes on the plan produced for a given query.
All (sub)plans generated by an iterative System R style optimizer can be viewed,
ordered by the iteration in which they are generated, and details on a given plan
can be obtained readily. All interaction with the optimizer visualizer is through a
GUI and requires no programming.

The assignment introduces students to this tool and then requires them to answer
questions involving specific catalogs, queries, and plans generated by controlling
various parameters.

The Minibase Software 845

Buffer manager viewer (Chapter 12): This viewer lets students visualize
how pages are moved in and out of the buffer pool, their status (e.g., dirty bit,
pin count) while in the pool, and some statistics (e.g., number of hits). The as-
signment requires students to generate traces by modifying some trace-generation
code (provided) and to answer questions about these traces by using the visual-
izer to look at them. While this assignment can be used after covering Chapter
7, deferring it until after Chapter 12 enables students to examine traces that are
representative of different relational operations.

B+ tree viewer (Chapter 9): This viewer lets students see a B+ tree as it is
modified through insert and delete statements. The assignment requires students
to work with trace files, answer questions about them, and generate operation
traces (i.e., a sequence of inserts and deletes) that create specified kinds of trees.

Normalization tool (Chapter 15): The normalization viewer is a tool for nor-
malizing relational tables. It supports the concept of a refinement session, in
which a schema is decomposed repeatedly and the resulting decomposition tree is
then saved. For a given schema, a user might consider several alternative decom-
positions (more precisely, decomposition trees), and each of these can be saved
as a refinement session. Refinement sessions are a very flexible and convenient
mechanism for trying out several alternative decomposition strategies. The nor-
malization assignment introduces students to this tool and asks design-oriented
questions involving the use of the tool.

Assignments that require students to evaluate various components can also be devel-
oped. For example, students can be asked to compare different join methods, different
index methods, and different buffer management policies.

B.3 ACKNOWLEDGMENTS

The Minibase software was inpired by Minirel, a small relational DBMS developed by
David DeWitt for instructional use. Minibase was developed by a large number of
dedicated students over a long time, and the design was guided by Mike Carey and R.
Ramakrishnan. See the online documentation for more on Minibase’s history.

REFERENCES

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance
evaluation. ACM Transactions on Database Systems, 17(3), 1992.

[2] S. Abiteboul. Querying semi-structured data. In Intl. Conf. on Database Theory, 1997.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[4] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1989.

[5] S. Abiteboul and V. Vianu. Regular path queries with constraints. In Proc. ACM Symp.
on Principles of Database Systems, 1997.

[6] K. Achyutuni, E. Omiecinski, and S. Navathe. Two techniques for on-line index mod-
ification in shared nothing parallel databases. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1996.

[7] S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query caching and
optimization in distributed mediator systems. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1996.

[8] M. E. Adiba. Derived relations: A unified mechanism for views, snapshots and dis-
tributed data. In Proc. Intl. Conf. on Very Large Databases, 1981.

[9] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the computation of multidimensional aggregates. In Proc. Intl. Conf.
on Very Large Databases, 1996.

[10] D. Agrawal and A. El Abbadi. The generalized tree quorum protocol: an efficient
approach for managing replicated data. ACM Transactions on Database Systems, 17(4),
1992.

[11] D. Agrawal, A. El Abbadi, and R. Jeffers. Using delayed commitment in locking pro-
tocols for real-time databases. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1992.

[12] R. Agrawal, M. Carey, and M. Livny. Concurrency control performance-modeling:
Alternatives and implications. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1985.

[13] R. Agrawal and D. DeWitt. Integrated concurrency control and recovery mecha-
nisms: Design and performance evaluation. ACM Transactions on Database Systems,
10(4):529–564, 1985.

[14] R. Agrawal and N. Gehani. ODE (Object Database and Environment): The language
and the data model. In Proc. ACM SIGMOD Conf. on the Management of Data, 1989.

[15] R. Agrawal, J. E. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining. In Proc. ACM SIGMOD Conf. on
Management of Data, 1998.

[16] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective.
IEEE Transactions on Knowledge and Data Engineering, 5(6):914–925, December 1993.

[17] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast Discovery
of Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 12, pages
307–328. AAAI/MIT Press, 1996.

847

848 Database Management Systems

[18] R. Agrawal, G. Psaila, E. Wimmers, and M. Zaot. Querying shapes of histories. In
Proc. Intl. Conf. on Very Large Databases, 1995.

[19] R. Agrawal and J. Shafer. Parallel mining of association rules. IEEE Transactions on
Knowledge and Data Engineering, 8(6):962–969, 1996.

[20] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. IEEE Intl. Conf. on
Data Engineering, 1995.

[21] R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors. Proc. Intl. Conf. on Knowl-
edge Discovery and Data Mining. AAAI Press, 1998.

[22] R. Ahad, K. BapaRao, and D. McLeod. On estimating the cardinality of the projection
of a database relation. ACM Transactions on Database Systems, 14(1):28–40, 1989.

[23] C. Ahlberg and E. Wistrand. IVEE: an information visualization exploration environ-
ment. In Intl. Symp. on Information Visualization, 1995.

[24] A. Aho, C. Beeri, and J. Ullman. The theory of joins in relational databases. ACM
Transactions on Database Systems, 4(3):297–314, 1979.

[25] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1983.

[26] A. Aho, Y. Sagiv, and J. Ullman. Equivalences among relational expressions. SIAM
Journal of Computing, 8(2):218–246, 1979.

[27] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. Tioga-2: A direct manipulation
database visualization environment. In Proc. IEEE Intl. Conf. on Data Engineering,
1996.

[28] A. Aiken, J. Widom, and J. Hellerstein. Static analysis techniques for predicting the
behavior of active database rules. ACM Transactions on Database Systems, 20(1):3–41,
1995.

[29] E. Anwar, L. Maugis, and U. Chakravarthy. A new perspective on rule support for
object-oriented databases. In Proc. ACM SIGMOD Conf. on the Management of Data,
1993.

[30] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
Foundations of Deductive Databases and Logic Programming. J. Minker (ed.), Morgan
Kaufmann, 1988.

[31] W. Armstrong. Dependency structures of database relationships. In Proc. IFIP
Congress, 1974.

[32] G. Arocena and A. O. Mendelzon. WebOQL: restructuring documents, databases and
webs. In Proc. Intl. Conf. on Data Engineering, 1988.

[33] M. Astrahan, M. Blasgen, D. Chamberlin, K. Eswaran, J. Gray, P. Griffiths, W. King,
R. Lorie, P. McJones, J. Mehl, G. Putzolu, I. Traiger, B. Wade, and V. Watson. System
R: A relational approach to database management. ACM Transactions on Database
Systems, 1(2):97–137, 1976.

[34] M. Atkinson, P. Bailey, K. Chisholm, P. Cockshott, and R. Morrison. An approach to
persistent programming. In Readings in Object-Oriented Databases. eds. S.B. Zdonik
and D. Maier, Morgan Kaufmann, 1990.

[35] M. Atkinson and O. Buneman. Types and persistence in database programming lan-
guages. ACM Computing Surveys, 19(2):105–190, 1987.

[36] R. Attar, P. Bernstein, and N. Goodman. Site initialization, recovery, and back-up in a
distributed database system. IEEE Transactions on Software Engineering, 10(6):645–
650, 1983.

[37] P. Atzeni, L. Cabibbo, and G. Mecca. Isalog: a declarative language for complex objects
with hierarchies. In Proc. IEEE Intl. Conf. on Data Engineering, 1993.

[38] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin-Cummings,
1993.

REFERENCES 849

[39] P. Atzeni, G. Mecca, and P. Merialdo. To weave the web. In Proc. Intl. Conf. Very
Large Data Bases, 1997.

[40] R. Avnur, J. Hellerstein, B. Lo, C. Olston, B. Raman, V. Raman, T. Roth, and K. Wylie.
Control: Continuous output and navigation technology with refinement online In Proc.
ACM SIGMOD Conf. on the Management of Data, 1998.

[41] D. Badal and G. Popek. Cost and performance analysis of semantic integrity validation
methods. In Proc. ACM SIGMOD Conf. on the Management of Data, 1979.

[42] A. Badia, D. Van Gucht, and M. Gyssens. Querying with generalized quantifiers. In
Applications of Logic Databases. ed. R. Ramakrishnan, Kluwer Academic, 1995.

[43] I. Balbin, G. Port, K. Ramamohanarao, and K. Meenakshi. Efficient bottom-up compu-
tation of queries on stratified databases. Journal of Logic Programming, 11(3):295–344,
1991.

[44] I. Balbin and K. Ramamohanarao. A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming, 4(3):259–262, 1987.

[45] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database
System. Morgan Kaufmann, 1991.

[46] F. Bancilhon and S. Khoshafian. A calculus for complex objects. Journal of Computer
and System Sciences, 38(2):326–340, 1989.

[47] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways
to implement logic programs. In ACM Symp. on Principles of Database Systems, 1986.

[48] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Proc. ACM SIGMOD Conf. on the Management of Data,
1986.

[49] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions
on Database Systems, 6(4):557–575, 1981.

[50] E. Baralis, S. Ceri, and S. Paraboschi. Modularization techniques for active rules
design. ACM Transactions on Database Systems, 21(1):1–29, 1996.

[51] R. Barquin and H. Edelstein. Planning and Designing the Data Warehouse. Prentice-
Hall, 1997.

[52] C. Batini, S. Ceri, and S. Navathe. Database Design: An Entity Relationship Approach.
Benjamin/Cummings Publishers, 1992.

[53] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[54] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise.
GENESIS: an extensible database management system. In Readings in Object-Oriented
Databases. eds. S.B. Zdonik and D. Maier, Morgan Kaufmann, 1990.

[55] B. Baugsto and J. Greipsland. Parallel sorting methods for large data volumes on a
hypercube database computer. In Proc. Intl. Workshop on Database Machines, 1989.

[56] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1(3):173–189, 1972.

[57] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informatica,
9(1):1–21, 1977.

[58] M. Beck, D. Bitton, and W. Wilkinson. Sorting large files on a backend multiprocessor.
IEEE Transactions on Computers, 37(7):769–778, 1988.

[59] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r∗ tree: An efficient and
robust access method for points and rectangles. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1990.

[60] C. Beeri, R. Fagin, and J. Howard. A complete axiomatization of functional and mul-
tivalued dependencies in database relations. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1977.

850 Database Management Systems

[61] C. Beeri and P. Honeyman. Preserving functional dependencies. SIAM Journal of
Computing, 10(3):647–656, 1982.

[62] C. Beeri and T. Milo. A model for active object-oriented database. In Proc. Intl. Conf.
on Very Large Databases, 1991.

[63] C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur. Sets and negation in
a logic database language (LDL1). In ACM Symp. on Principles of Database Systems,
1987.

[64] C. Beeri and R. Ramakrishnan. On the power of magic. In ACM Symp. on Principles
of Database Systems, 1987.

[65] D. Bell and J. Grimson. Distributed Database Systems. Addison-Wesley, 1992.

[66] J. Bentley and J. Friedman. Data structures for range searching. ACM Computing
Surveys, 13(3):397–409, 1979.

[67] S. Berchtold, C. Bohm, and H.-P. Kriegel. The pyramid-tree: Breaking the curse of
dimensionality. In ACM SIGMOD Conf. on the Management of Data, 1998.

[68] P. Bernstein. Synthesizing third normal form relations from functional dependencies.
ACM Transactions on Database Systems, 1(4):277–298, 1976.

[69] P. Bernstein, B. Blaustein, and E. Clarke. Fast maintenance of semantic integrity
assertions using redundant aggregate data. In Proc. Intl. Conf. on Very Large Databases,
1980.

[70] P. Bernstein and D. Chiu. Using semi-joins to solve relational queries. Journal of the
ACM, 28(1):25–40, 1981.

[71] P. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency control in
distributed database systems. In Proc. Intl. Conf. on Very Large Databases, 1980.

[72] P. Bernstein and N. Goodman. Concurrency control in distributed database systems.
ACM Computing Surveys, 13(2):185–222, 1981.

[73] P. Bernstein and N. Goodman. Power of natural semijoins. SIAM Journal of Computing,
10(4):751–771, 1981.

[74] P. Bernstein and N. Goodman. Multiversion concurrency control—theory and algo-
rithms. ACM Transactions on Database Systems, 8(4):465–483, 1983.

[75] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie. Query processing in
a system for distributed databases (SDD-1). ACM Transactions on Database Systems,
6(4):602–625, 1981.

[76] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[77] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kauf-
mann, 1997.

[78] P. Bernstein, D. Shipman, and J. Rothnie. Concurrency control in a system for dis-
tributed databases (SDD-1). ACM Transactions on Database Systems, 5(1):18–51, 1980.

[79] P. Bernstein, D. Shipman, and W. Wong. Formal aspects of serializability in database
concurrency control. IEEE Transactions on Software Engineering, 5(3):203–216, 1979.

[80] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor
meaningful? In IEEE International Conference on Database Theory, 1999.

[81] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes
In Proc. ACM SIGMOD Conf. on the Management of Data, 1999.

[82] B. Bhargava (ed.). Concurrency Control and Reliability in Distributed Systems. Van
Nostrand Reinhold, 1987.

[83] A. Biliris. The performance of three database storage structures for managing large
objects. In Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

REFERENCES 851

[84] J. Biskup and B. Convent. A formal view integration method. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1986.

[85] J. Biskup, U. Dayal, and P. Bernstein. Synthesizing independent database schemas. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1979.

[86] D. Bitton and D. DeWitt. Duplicate record elimination in large data files. ACM
Transactions on Database Systems, 8(2):255–265, 1983.

[87] J. Blakeley, P.-A. Larson, and F. Tompa. Efficiently updating materialized views. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1986.

[88] M. Blasgen and K. Eswaran. On the evaluation of queries in a database system. Tech-
nical report, IBM FJ (RJ1745), San Jose, 1975.

[89] P. Bohannon, D. Leinbaugh, R. Rastogi, S. Seshadri, A. Silberschatz, and S. Sudarshan.
Logical and physical versioning in main memory databases. In Proc. Intl. Conf. on
Very Large Databases, 1997.

[90] R. Boyce and D. Chamberlin. SEQUEL: a structured English query language. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1974.

[91] P. S. Bradley and U. M. Fayyad. Refining initial points for K-Means clustering. In Proc.
Intl. Conf. on Machine Learning, pages 91–99. Morgan Kaufmann, San Francisco, CA,
1998.

[92] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proc. Intl. Conf. on Knowledge Discovery and Data Mining, 1998.

[93] K. Bratbergsengen. Hashing methods and relational algebra operations. In Proc. Intl.
Conf. on Very Large Databases, 1984.

[94] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

[95] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase trans-
action management. In Proc. Intl. Conf. on Very Large Databases, 1992.

[96] Y. Breitbart, A. Silberschatz, and G. Thompson. Reliable transaction management in
a multidatabase system. In Proc. ACM SIGMOD Conf. on the Management of Data,
1990.

[97] Y. Breitbart, A. Silberschatz, and G. Thompson. An approach to recovery management
in a multidatabase system. In Proc. Intl. Conf. on Very Large Databases, 1992.

[98] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing associ-
ation rules to correlations. In Proc. ACM SIGMOD Conf. on the Management of Data,
1997.

[99] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of 7th World Wide Web Conference, 1998.

[100] T. Brinkhoff, H. Kriegel, and R. Schneider. Comparison of approximations of complex
objects used for approximation-based query processing in spatial database systems. In
Proc. IEEE Intl. Conf. on Data Engineering, 1993.

[101] K. Brown, M. Carey, and M. Livny. Goal-oriented buffer management revisited. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[102] F. Bry. Towards an efficient evaluation of general queries: Quantifier and disjunction
processing revisited. In Proc. ACM SIGMOD Conf. on the Management of Data, 1989.

[103] F. Bry and R. Manthey. Checking consistency of database constraints: a logical basis.
In Proc. Intl. Conf. on Very Large Databases, 1986.

[104] O. Buneman and E. Clemons. Efficiently monitoring relational databases. ACM Trans-
actions on Database Systems, 4(3), 1979.

[105] O. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with
complex objects and collection types. Theoretical Computer Science, 149(1):3–48, 1995.

852 Database Management Systems

[106] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimiza-
tion techniques for unstructured data. In Proc. ACM SIGMOD Conf. on Management
of Data, 1996.

[107] M. Carey. Granularity hierarchies in concurrency control. In ACM Symp. on Principles
of Database Systems, 1983.

[108] M. Carey, D. Chamberlin, S. Narayanan, B. Vance, D. Doole, S. Rielau, R. Swagerman,
and N. Mattos. O-O, what’s happening to DB2? In Proc. ACM SIGMOD Conf. on
the Management of Data, 1999.

[109] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh,
M. Solomon, C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring up persistent
applications. In Proc. ACM SIGMOD Conf. on the Management of Data, 1994.

[110] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and
S. Vandenberg. The EXODUS Extensible DBMS project: An overview. In Readings in
Object-Oriented Databases. S.B. Zdonik and D. Maier (eds.), Morgan Kaufmann, 1990.

[111] M. Carey, D. DeWitt, and J. Naughton. The dec 007 benchmark. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1993.

[112] M. Carey, D. DeWitt, J. Naughton, M. Asgarian, J. Gehrke, and D. Shah. The BUCKY
object-relational benchmark. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1997.

[113] M. Carey, D. DeWitt, J. Richardson, and E. Shekita. Object and file management in
the Exodus extensible database system. In Proc. Intl. Conf. on Very Large Databases,
1986.

[114] M. Carey and D. Kossman. On saying “Enough Already!” in SQL In Proc. ACM
SIGMOD Conf. on the Management of Data, 1997.

[115] M. Carey and D. Kossman. Reducing the braking distance of an SQL query engine In
Proc. Intl. Conf. on Very Large Databases, 1998.

[116] M. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Trans-
actions on Database Systems, 16(4), 1991.

[117] M. Casanova, L. Tucherman, and A. Furtado. Enforcing inclusion dependencies and
referential integrity. In Proc. Intl. Conf. on Very Large Databases, 1988.

[118] M. Casanova and M. Vidal. Towards a sound view integration methodology. In ACM
Symp. on Principles of Database Systems, 1983.

[119] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-
Wesley, 1995.

[120] R. Cattell. The Object Database Standard: ODMG-93 (Release 1.1). Morgan Kauf-
mann, 1994.

[121] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active rule management in Chimera.
In Active Database Systems. J. Widom and S. Ceri (eds.), Morgan Kaufmann, 1996.

[122] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer Verlag,
1990.

[123] S. Ceri and G. Pelagatti. Distributed Database Design: Principles and Systems.
McGraw-Hill, 1984.

[124] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proc.
Intl. Conf. on Very Large Databases, 1990.

[125] F. Cesarini, M. Missikoff, and G. Soda. An expert system approach for database
application tuning. Data and Knowledge Engineering, 8:35–55, 1992.

[126] U. Chakravarthy. Architectures and monitoring techniques for active databases: An
evaluation. Data and Knowledge Engineering, 16(1):1–26, 1995.

[127] U. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic query
optimization. ACM Transactions on Database Systems, 15(2):162–207, 1990.

REFERENCES 853

[128] D. Chamberlin. Using the New DB2. Morgan Kaufmann, 1996.

[129] D. Chamberlin, M. Astrahan, M. Blasgen, J. Gray, W. King, B. Lindsay, R. Lorie,
J. Mehl, T. Price, P. Selinger, M. Schkolnick, D. Slutz, I. Traiger, B. Wade, and R. Yost.
A history and evaluation of System R. Communications of the ACM, 24(10):632–646,
1981.

[130] D. Chamberlin, M. Astrahan, K. Eswaran, P. Griffiths, R. Lorie, J. Mehl, P. Reisner,
and B. Wade. Sequel 2: A unified approach to data definition, manipulation, and
control. IBM Journal of Research and Development, 20(6):560–575, 1976.

[131] A. Chandra and D. Harel. Structure and complexity of relational queries. J. Computer
and System Sciences, 25:99–128, 1982.

[132] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proc. ACM SIGACT Symp. on Theory of Computing, 1977.

[133] M. Chandy, L. Haas, and J. Misra. Distributed deadlock detection. ACM Transactions
on Computer Systems, 1(3):144–156, 1983.

[134] C. Chang and D. Leu. Multi-key sorting as a file organization scheme when queries are
not equally likely. In Proc. Intl. Symp. on Database Systems for Advanced Applications,
1989.

[135] D. Chang and D. Harkey. Client/server data access with Java and XML. John Wiley
and Sons, 1998.

[136] D. Chatziantoniou and K. Ross. Groupwise processing of relational queries. In Proc.
Intl. Conf. on Very Large Databases, 1997.

[137] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
SIGMOD Record, 26(1):65–74, 1997.

[138] S. Chaudhuri and V. Narasayya. An efficient cost-driven index selection tool for Mi-
crosoft SQL Server. In Proc. Intl. Conf. on Very Large Databases, 1997.

[139] S. Chaudhuri and K. Shim. Optimization queries with aggregate views. In Intl. Conf.
on Extending Database Technology, 1996.

[140] S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates. In
Proc. Intl. Conf. on Very Large Databases, 1996.

[141] J. Cheiney, P. Faudemay, R. Michel, and J. Thevenin. A reliable parallel backend using
multiattribute clustering and select-join operator. In Proc. Intl. Conf. on Very Large
Databases, 1986.

[142] C. Chen and N. Roussopoulos. Adaptive database buffer management using query
feedback. In Proc. Intl. Conf. on Very Large Databases, 1993.

[143] C. Chen and N. Roussopoulos. Adaptive selectivity estimation using query feedback.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1994.

[144] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: high-
performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–185, June
1994.

[145] P. P. Chen. The entity-relationship model—toward a unified view of data. ACM Trans-
actions on Database Systems, 1(1):9–36, 1976.

[146] D. Childs. Feasibility of a set theoretical data structure—a general structure based on
a reconstructed definition of relation. Proc. Tri-annual IFIP Conference, 1968.

[147] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The ldl
system prototype. IEEE Transactions on Knowledge and Data Engineering, 2(1):76–90,
1990.

[148] F. Chin and G. Ozsoyoglu. Statistical database design. ACM Transactions on Database
Systems, 6(1):113–139, 1981.

[149] J. Chomicki. Real-time integrity constraints. In ACM Symp. on Principles of Database
Systems, 1992.

854 Database Management Systems

[150] H.-T. Chou and D. DeWitt. An evaluation of buffer management strategies for relational
database systems. In Proc. Intl. Conf. on Very Large Databases, 1985.

[151] P. Chrysanthis and K. Ramamritham. Acta: a framework for specifying and reason-
ing about transaction structure and behavior. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1990.

[152] F. Chu, J. Halpern, and P. Seshadri. Least expected cost query optimization: An
exercise in utility ACM Symp. on Principles of Database Systems, 1999.

[153] F. Civelek, A. Dogac, and S. Spaccapietra. An expert system approach to view definition
and integration. In Proc. Entity-Relationship Conference, 1988.

[154] R. Cochrane, H. Pirahesh, and N. Mattos. Integrating triggers and declarative con-
straints in SQL database systems. In Proc. Intl. Conf. on Very Large Databases, 1996.

[155] CODASYL. Report of the CODASYL Data Base Task Group. ACM, 1971.

[156] E. Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970.

[157] E. Codd. Further normalization of the data base relational model. In Data Base
Systems. ed. R. Rustin, PrenticeHall, 1972.

[158] E. Codd. Relational completeness of data base sub-languages. In Data Base Systems.
ed. R. Rustin, PrenticeHall, 1972.

[159] E. Codd. Extending the database relational model to capture more meaning. ACM
Transactions on Database Systems, 4(4):397–434, 1979.

[160] E. Codd. Twelve rules for on-line analytic processing. Computerworld, April 13 1995.

[161] L. Colby, T. Griffin, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view
maintenance. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[162] L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting multiple
view maintenance policies: Concepts, algorithms, and performance analysis. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1997.

[163] D. Comer. The ubiquitous B-tree. ACM C. Surveys, 11(2):121–137, 1979.

[164] D. Connolly, editor. XML Principles, Tools and Techniques. O’Reilly & Associates,
Sebastopol, USA, 1997.

[165] D. Copeland and D. Maier. Making SMALLTALK a database system. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1984.

[166] G. Cornell and K. Abdali. CGI Programming With Java. PrenticeHall, 1998.

[167] C. Date. A critique of the SQL database language. ACM SIGMOD Record, 14(3):8–54,
1984.

[168] C. Date. Relational Database: Selected Writings. Addison-Wesley, 1986.

[169] C. Date. An Introduction to Database Systems (6th ed.). Addison-Wesley, 1995.

[170] C. Date and H. Darwen. A Guide to the SQL Standard (3rd ed.). Addison-Wesley, 1993.

[171] C. Date and R. Fagin. Simple conditions for guaranteeing higher normal forms in
relational databases. ACM Transactions on Database Systems, 17(3), 1992.

[172] C. Date and D. McGoveran. A Guide to Sybase and SQL Server. Addison-Wesley, 1993.

[173] U. Dayal and P. Bernstein. On the updatability of relational views. In Proc. Intl. Conf.
on Very Large Databases, 1978.

[174] U. Dayal and P. Bernstein. On the correct translation of update operations on relational
views. ACM Transactions on Database Systems, 7(3), 1982.

[175] P. DeBra and J. Paredaens. Horizontal decompositions for handling exceptions to FDs.
In Advances in Database Theory, H. Gallaire. eds. J. Minker and J-M. Nicolas, Plenum
Press, 1984.

[176] J. Deep and P. Holfelder. Developing CGI applications with Perl. Wiley, 1996.

REFERENCES 855

[177] C. Delobel. Normalization and hierarchial dependencies in the relational data model.
ACM Transactions on Database Systems, 3(3):201–222, 1978.

[178] D. Denning. Secure statistical databases with random sample queries. ACM Transac-
tions on Database Systems, 5(3):291–315, 1980.

[179] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[180] M. Derr, S. Morishita, and G. Phipps. The glue-nail deductive database system: Design,
implementation, and evaluation. VLDB Journal, 3(2):123–160, 1994.

[181] A. Deshpande. An implementation for nested relational databases. Technical report,
PhD thesis, Indiana University, 1989.

[182] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching multidimensional
queries using chunks. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, 1998.

[183] O. e. a. Deux. The story of O2. IEEE Transactions on Knowledge and Data Engineering,
2(1), 1990.

[184] D. DeWitt, H.-T. Chou, R. Katz, and A. Klug. Design and implementation of the
Wisconsin Storage System. Software Practice and Experience, 15(10):943–962, 1985.

[185] D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna.
Gamma—a high performance dataflow database machine. In Proc. Intl. Conf. on Very
Large Databases, 1986.

[186] D. DeWitt and J. Gray. Parallel database systems: The future of high-performance
database systems. Communications of the ACM, 35(6):85–98, 1992.

[187] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implemen-
tation techniques for main memory databases. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1984.

[188] D. DeWitt, J. Naughton, and D. Schneider. Parallel sorting on a shared-nothing archi-
tecture using probabilistic splitting. In Proc. Conf. on Parallel and Distributed Infor-
mation Systems, 1991.

[189] D. DeWitt, J. Naughton, D. Schneider, and S. Seshadri. Practical skew handling in
parallel joins. In Proc. Intl. Conf. on Very Large Databases, 1992.

[190] O. Diaz, N. Paton, and P. Gray. Rule management in object-oriented databases: A
uniform approach. In Proc. Intl. Conf. on Very Large Databases, 1991.

[191] S. Dietrich. Extension tables: Memo relations in logic programming. In Proc. Intl.
Symp. on Logic Programming, 1987.

[192] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n queries In
Proc. Intl. Conf. on Very Large Databases, 1999.

[193] W. Du and A. Elmagarmid. Quasi-serializability: a correctness criterion for global
concurrency control in interbase. In Proc. Intl. Conf. on Very Large Databases, 1989.

[194] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimization in a heterogeneous
DBMS. In Proc. Intl. Conf. on Very Large Databases, 1992.

[195] R. C. Dubes and A. Jain. Clustering methodologies in exploratory data analysis, Ad-
vances in Computers. Academic Press, New York, 1980.

[196] N. Duppel. Parallel SQL on TANDEM’s NonStop SQL. IEEE COMPCON, 1989.

[197] H. Edelstein. The challenge of replication, Parts 1 and 2. DBMS: Database and Client-
Server Solutions, 1995.

[198] W. Effelsberg and T. Haerder. Principles of database buffer management. ACM Trans-
actions on Database Systems, 9(4):560–595, 1984.

[199] M. H. Eich. A classification and comparison of main memory database recovery tech-
niques. In Proc. IEEE Intl. Conf. on Data Engineering, 1987.

[200] A. Eisenberg and J. Melton. Sql: 1999, formerly known as sql 3 ACM SIGMOD Record,
28(1):131–138, 1999.

856 Database Management Systems

[201] A. El Abbadi. Adaptive protocols for managing replicated distributed databases. In
IEEE Symp. on Parallel and Distributed Processing, 1991.

[202] A. El Abbadi, D. Skeen, and F. Cristian. An efficient, fault-tolerant protocol for repli-
cated data management. In ACM Symp. on Principles of Database Systems, 1985.

[203] C. Ellis. Concurrency in Linear Hashing. ACM Transactions on Database Systems,
12(2):195–217, 1987.

[204] A. Elmagarmid. Database Transaction Models for Advanced Applications. Morgan
Kaufmann, 1992.

[205] A. Elmagarmid, J. Jing, W. Kim, O. Bukhres, and A. Zhang. Global committability
in multidatabase systems. IEEE Transactions on Knowledge and Data Engineering,
8(5):816–824, 1996.

[206] A. Elmagarmid, A. Sheth, and M. Liu. Deadlock detection algorithms in distributed
database systems. In Proc. IEEE Intl. Conf. on Data Engineering, 1986.

[207] R. Elmasri and S. Navathe. Object integration in database design. In Proc. IEEE Intl.
Conf. on Data Engineering, 1984.

[208] R. Elmasri and S. Navathe. Fundamentals of Database Systems (2nd ed.). Benjamin-
Cummings, 1994.

[209] R. Epstein. Techniques for processing of aggregates in relational database systems.
Technical report, UC-Berkeley, Electronics Research Laboratory, M798, 1979.

[210] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a relational
data base system. In Proc. ACM SIGMOD Conf. on the Management of Data, 1978.

[211] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proc. Intl. Conf. on Knowledge
Discovery in Databases and Data Mining, 1995.

[212] M. Ester, H.-P. Kriegel, and X. Xu. A database interface for clustering in large spatial
databases. In Proc. Intl. Conf. on Knowledge Discovery in Databases and Data Mining,
1995.

[213] K. Eswaran and D. Chamberlin. Functional specification of a subsystem for data base
integrity. In Proc. Intl. Conf. on Very Large Databases, 1975.

[214] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of consistency and predicate
locks in a data base system. Communications of the ACM, 19(11):624–633, 1976.

[215] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
ACM Transactions on Database Systems, 2(3):262–278, 1977.

[216] R. Fagin. Normal forms and relational database operators. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1979.

[217] R. Fagin. A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6(3):387–415, 1981.

[218] R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong. Extendible Hashing—a fast access
method for dynamic files. ACM Transactions on Database Systems, 4(3), 1979.

[219] C. Faloutsos. Access methods for text. ACM Computing Surveys, 17(1):49–74, 1985.

[220] C. Faloutsos. Searching Multimedia Databases by Content Kluwer Academic, 1996.

[221] C. Faloutsos and S. Christodoulakis. Signature files: An access method for documents
and its analytical performance evaluation. ACM Transactions on Office Information
Systems, 2(4):267–288, 1984.

[222] C. Faloutsos and H. Jagadish. On B-Tree indices for skewed distributions. In Proc. Intl.
Conf. on Very Large Databases, 1992.

[223] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control for flexible buffer allocation.
In Proc. Intl. Conf. on Very Large Databases, 1991.

REFERENCES 857

[224] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proc. ACM SIGMOD Conf. on the Management of Data,
1994.

[225] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In ACM Symp. on
Principles of Database Systems, 1989.

[226] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing
iceberg queries efficiently. In Proc. Intl. Conf. On Very Large Data Bases, 1998.

[227] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The kdd process for extracting useful
knowledge from volumes of data. Communications of the ACM, 39(11):27–34, 1996.

[228] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowl-
edge Discovery and Data Mining. MIT Press, 1996.

[229] U. Fayyad and E. Simoudis. Data mining and knowledge discovery: Tutorial notes. In
Intl. Joint Conf. on Artificial Intelligence, 1997.

[230] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

[231] U. M. Fayyad and R. Uthurusamy, editors. Proc. Intl. Conf. on Knowledge Discovery
and Data Mining. AAAI Press, 1995.

[232] M. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. STRUDEL: A Web site
management system. In Proc. ACM SIGMOD Conf. on Management of Data, 1997.

[233] M. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. A query language for a Web-site
management system. SIGMOD Record (ACM Special Interest Group on Management
of Data), 26(3):4–11, 1997.

[234] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for relational
databases. IBM Research Review RJ5034, 1986.

[235] D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch,
W. Kent, P. Lyngbaek, B. Mahbod, M.-A. Neimat, T. Ryan, and M.-C. Shan. Iris: An
object-oriented database management system. ACM Transactions on Office Information
Systems, 5(1):48–69, 1987.

[236] C. Fleming and B. von Halle. Handbook of Relational Database Design. Addison-Wesley,
1989.

[237] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database techniques for the World-
Wide Web: A survey. SIGMOD Record (ACM Special Interest Group on Management
of Data), 27(3):59–74, 1998.

[238] F. Fotouhi and S. Pramanik. Optimal secondary storage access sequence for performing
relational join. IEEE Transactions on Knowledge and Data Engineering, 1(3):318–328,
1989.

[239] W. B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and
Algorithms. PrenticeHall, 1992.

[240] P. Franaszek, J. Robinson, and A. Thomasian. Concurrency control for high contention
environments. ACM Transactions on Database Systems, 17(2), 1992.

[241] M. Franklin. Concurrency control and recovery. In Handbook of Computer Science,
A.B. Tucker (ed.), CRC Press, 1996.

[242] M. Franklin, M. Carey, and M. Livny. Local disk caching for client-server database
systems. In Proc. Intl. Conf. on Very Large Databases, 1993.

[243] M. Franklin, B. Jonsson, and D. Kossman. Performance tradeoffs for client-server query
processing. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[244] P. Fraternali and L. Tanca. A structured approach for the definition of the semantics
of active databases. ACM Transactions on Database Systems, 20(4):414–471, 1995.

[245] M. W. Freeston. The BANG file: A new kind of Grid File. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1987.

858 Database Management Systems

[246] J. Freytag. A rule-based view of query optimization. In Proc. ACM SIGMOD Conf. on
the Management of Data, 1987.

[247] O. Friesen, A. Lefebvre, and L. Vieille. VALIDITY: Applications of a DOOD system.
In Intl. Conf. on Extending Database Technology, 1996.

[248] J. Fry and E. Sibley. Evolution of data-base management systems. ACM Computing
Surveys, 8(1):7–42, 1976.

[249] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized association
rules for numeric attributes. In ACM Symp. on Principles of Database Systems, 1996.

[250] A. Furtado and M. Casanova. Updating relational views. In Query Processing in
Database Systems. eds. W. Kim, D.S. Reiner and D.S. Batory, Springer-Verlag, 1985.

[251] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the systems software
of a parallel relational database machine: Grace. In Proc. Intl. Conf. on Very Large
Databases, 1986.

[252] V. Gaede and O. Guenther. Multidimensional access methods. Computing Surveys,
30(2):170–231, 1998.

[253] H. Gallaire, J. Minker, and J.-M. Nicolas (eds.). Advances in Database Theory, Vols. 1
and 2. Plenum Press, 1984.

[254] H. Gallaire and J. Minker (eds.). Logic and Data Bases. Plenum Press, 1978.

[255] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execu-
tion. In Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

[256] R. Ganski and H. Wong. Optimization of nested SQL queries revisited. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1987.

[257] V. Ganti, J. E. Gehrke, and R. Ramakrishnan. Cactus–clustering categorical data using
summaries. In Proc. ACM Intl. Conf. on Knowledge Discovery in Databases, 1999.

[258] V. Ganti, R. Ramakrishnan, J. E. Gehrke, A. Powell, and J. French. Clustering large
datasets in arbitrary metric spaces. In Proc. IEEE Intl. Conf. Data Engineering, 1999.

[259] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal
of the ACM, 32(4), 1985.

[260] H. Garcia-Molina, R. Lipton, and J. Valdes. A massive memory system machine. IEEE
Transactions on Computers, C33(4):391–399, 1984.

[261] H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed database.
ACM Transactions on Database Systems, 7(2):209–234, 1982.

[262] E. Garfield. Citation analysis as a tool in journal evaluation. Science, 178(4060):471–
479, 1972.

[263] A. Garg and C. Gotlieb. Order preserving key transformations. ACM Transactions on
Database Systems, 11(2):213–234, 1986.

[264] J. E. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. Boat: Optimistic decision
tree construction. In Proc. ACM SIGMOD Conf. on Managment of Data, 1999.

[265] J. E. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: a framework for fast decision
tree construction of large datasets. In Proc. Intl. Conf. on Very Large Databases, 1998.

[266] S. P. Ghosh. Data Base Organization for Data Management (2nd ed.). Academic Press,
1986.

[267] D. Gibson, J. M. Kleinberg, and P. Raghavan. Clustering categorical data: An approach
based on dynamical systems. In Proceedings of the 24th International Conference on
Very Large Databases, pages 311–323, New York City, New York, August 24-27 1998.

[268] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web communities from link
topology. In Proc. ACM Conf. on Hypertext, Structural Queries, 1998.

[269] G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. An ACM
Distinguished Dissertation 1991. MIT Press, 1992.

REFERENCES 859

[270] D. Gifford. Weighted voting for replicated data. In ACM Symp. on Operating Systems
Principles, 1979.

[271] C. F. Goldfarb and P. Prescod. The XML Handbook. PrenticeHall PTR, 1998.

[272] R. Goldman and J. Widom. DataGuides: enabling query formulation and optimization
in semistructured databases. In Proc. Intl. Conf. on Very Large Data Bases, pages
436–445, 1997.

[273] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu. Processing queries by linear
constraints. In Proc. ACM Symposium on Principles of Database Systems, 1997.

[274] G. Graefe. Encapsulation of parallelism in the Volcano query processing system. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1990.

[275] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2), 1993.

[276] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams in microsoft sql server:
In Proc. Intl. Conf. on Very Large Databases, 1998.

[277] G. Graefe and D. DeWitt. The Exodus optimizer generator. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1987.

[278] G. Graefe and K. Ward. Dynamic query optimization plans. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1989.

[279] M. Graham, A. Mendelzon, and M. Vardi. Notions of dependency satisfaction. Journal
of the ACM, 33(1):105–129, 1986.

[280] G. Grahne. The Problem of Incomplete Information in Relational Databases. Springer-
Verlag, 1991.

[281] J. Gray. Notes on data base operating systems. In Operating Systems: An Advanced
Course. eds. Bayer, Graham, and Seegmuller, Springer-Verlag, 1978.

[282] J. Gray. The transaction concept: Virtues and limitations. In Proc. Intl. Conf. on Very
Large Databases, 1981.

[283] J. Gray. Transparency in its place—the case against transparent access to geographically
distributed data. Tandem Computers, TR-89-1, 1989.

[284] J. Gray. The Benchmark Handbook: for Database and Transaction Processing Systems.
Morgan Kaufmann, 1991.

[285] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab and sub-totals. In Proc. IEEE Intl. Conf. on
Data Engineering, 1996.

[286] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of
consistency in a shared data base. In Proc. of IFIP Working Conf. on Modelling of
Data Base Management Systems, 1977.

[287] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, G. Putzolu, T. Price, and
I. Traiger. The recovery manager of the System R database manager. ACM Computing
Surveys, 13(2):223–242, 1981.

[288] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1992.

[289] P. Gray. Logic, Algebra, and Databases. John Wiley, 1984.

[290] P. Griffiths and B. Wade. An authorization mechanism for a relational database system.
ACM Transactions on Database Systems, 1(3):242–255, 1976.

[291] G. Grinstein. Visualization and data mining. In Intl. Conf. on Knowledge Discovery
in Databases, 1996.

[292] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large
databases. In Proc. ACM SIGMOD Conf. on Management of Data, 1998.

860 Database Management Systems

[293] A. Gupta and I. Mumick. Materialized Views: Techniques, Implementations, and Ap-
plications MIT Press, 1999.

[294] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incrementally. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1993.

[295] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1984.

[296] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G. Lapis, B. Lindsay, H. Pi-
rahesh, M. Carey, and E. Shekita. Starburst mid-flight: As the dust clears. IEEE
Transactions on Knowledge and Data Engineering, 2(1), 1990.

[297] L. M. Haas and A. Tiwary, editors. SIGMOD 1998, Proceedings of the ACM SIGMOD
International Conference on Management of Data, June 2-4, 1998, Seattle, Washington,
USA. ACM Press, 1998.

[298] P. Haas, J. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the
number of distinct values of an attribute. In Proc. Intl. Conf. on Very Large Databases,
1995.

[299] P. Haas and A. Swami. Sampling-based selectivity estimation for joins using augmented
frequent value statistics. In Proc. IEEE Intl. Conf. on Data Engineering, 1995.

[300] T. Haerder and A. Reuter. Principles of transaction oriented database recovery—a
taxonomy. ACM Computing Surveys, 15(4), 1982.

[301] U. Halici and A. Dogac. Concurrency control in distributed databases through time
intervals and short-term locks. IEEE Transactions on Software Engineering, 15(8):994–
1003, 1989.

[302] M. Hall. Core Web Programming: HTML, Java, CGI, & Javascript. Prentice-Hall,
1997.

[303] P. Hall. Optimization of a simple expression in a relational data base system. IBM
Journal of Research and Development, 20(3):244–257, 1976.

[304] G. Hamilton, R. Cattell, and M. Fisher. JDBC Database Access With Java: A Tutorial
and Annotated Reference. Java Series. Addison-Wesley, 1997.

[305] M. Hammer and D. McLeod. Semantic integrity in a relational data base system. In
Proc. Intl. Conf. on Very Large Databases, 1975.

[306] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases.
In Proc. Intl. Conf. on Very Large Databases, 1995.

[307] D. Hand. Construction and Assessment of Classification Rules. John Wiley & Sons,
Chichester, England, 1997.

[308] E. Hanson. A performance analysis of view materialization strategies. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1987.

[309] E. Hanson. Rule condition testing and action execution in Ariel. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1992.

[310] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[311] J. Haritsa, M. Carey, and M. Livny. On being optimistic about real-time constraints.
In ACM Symp. on Principles of Database Systems, 1990.

[312] J. Harrison and S. Dietrich. Maintenance of materialized views in deductive databases:
An update propagation approach. In Proc. Workshop on Deductive Databases, 1992.

[313] D. Heckerman. Bayesian networks for knowledge discovery. In Advances in Knowledge
Discovery and Data Mining. eds. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy, MIT Press, 1996.

[314] D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors. Proceedings of the
Third International Conference on Knowledge Discovery and Data Mining (KDD-97).
AAAI Press, 1997.

REFERENCES 861

[315] J. Hellerstein. Optimization and execution techniques for queries with expensive meth-
ods. Ph.D. thesis, University of Wisconsin-Madison, 1995.

[316] J. Hellerstein, P. Haas, and H. Wang. Online aggregation In Proc. ACM SIGMOD
Conf. on the Management of Data, 1997.

[317] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search trees for database sys-
tems. In Proc. Intl. Conf. on Very Large Databases, 1995.

[318] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of indexing
schemes. In Proc. ACM Symposium on Principles of Database Systems, pages 249–256,
1997.

[319] R. Himmeroeder, G. Lausen, B. Ludaescher, and C. Schlepphorst. On a declarative
semantics for Web queries. Lecture Notes in Computer Science, 1341:386–398, 1997.

[320] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1997.

[321] S. Holzner. XML Complete. McGraw-Hill, 1998.

[322] D. Hong, T. Johnson, and U. Chakravarthy. Real-time transaction scheduling: A cost
conscious approach. In Proc. ACM SIGMOD Conf. on the Management of Data, 1993.

[323] W. Hong and M. Stonebraker. Optimization of parallel query execution plans in XPRS.
In Proc. Intl. Conf. on Parallel and Distributed Information Systems, 1991.

[324] W.-C. Hou and G. Ozsoyoglu. Statistical estimators for aggregate relational algebra
queries. ACM Transactions on Database Systems, 16(4), 1991.

[325] H. Hsiao and D. DeWitt. A performance study of three high availability data replication
strategies. In Proc. Intl. Conf. on Parallel and Distributed Information Systems, 1991.

[326] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley. Experimental evaluation of
real-time optimistic concurrency control schemes. In Proc. Intl. Conf. on Very Large
Databases, 1991.

[327] Y. Huang, A. Sistla, and O. Wolfson. Data replication for mobile computers. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1994.

[328] Y. Huang and O. Wolfson. A competitive dynamic data replication algorithm. In Proc.
IEEE CS IEEE Intl. Conf. on Data Engineering, 1993.

[329] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In
ACM Symp. on Principles of Database Systems, 1997.

[330] R. Hull and R. King. Semantic database modeling: Survey, applications, and research
issues. ACM Computing Surveys, 19(19):201–260, 1987.

[331] R. Hull and J. Su. Algebraic and calculus query languages for recursively typed complex
objects. Journal of Computer and System Sciences, 47(1):121–156, 1993.

[332] R. Hull and M. Yoshikawa. ILOG: declarative creation and manipulation of object-
identifiers. In Proc. Intl. Conf. on Very Large Databases, 1990.

[333] J. Hunter. Java Servlet Programming. O’Reilly Associates, Inc., 1998.

[334] T. Imielinski and H. Korth (eds.). Mobile Computing. Kluwer Academic, 1996.

[335] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal
of the ACM, 31(4):761–791, 1984.

[336] T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Com-
munications of the ACM, 38(11):58–64, 1996.

[337] T. Imielinski, S. Viswanathan, and B. Badrinath. Energy efficient indexing on air. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1994.

[338] Y. Ioannidis. Query optimization. In Handbook of Computer Science. ed. A.B. Tucker,
CRC Press, 1996.

[339] Y. Ioannidis and S. Christodoulakis. Optimal histograms for limiting worst-case error
propagation in the size of join results. ACM Transactions on Database Systems, 1993.

862 Database Management Systems

[340] Y. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1990.

[341] Y. Ioannidis and Y. Kang. Left-deep vs. bushy trees: An analysis of strategy spaces
and its implications for query optimization. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1991.

[342] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis. Parametric query processing. In Proc. Intl.
Conf. on Very Large Databases, 1992.

[343] Y. Ioannidis and R. Ramakrishnan. Containment of conjunctive queries: Beyond rela-
tions as sets. ACM Transactions on Database Systems, 20(3):288–324, 1995.

[344] Y. E. Ioannidis. Universality of serial histograms. In Proc. Intl. Conf. on Very Large
Databases, 1993.

[345] H. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dali: a
high performance main-memory storage manager. In Proc. Intl. Conf. on Very Large
Databases, 1994.

[346] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. PrenticeHall, 1988.

[347] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consistency
of a replicated database. ACM Transactions on Database Systems, 15(2):230–280, 1990.

[348] S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In Proc.
IEEE Symp. on Security and Privacy, 1990.

[349] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing
Surveys, 16(2):111–152, 1984.

[350] K. S. Jones and P. Willett, editors. Readings in Information Retrieval. Multimedia
Information and Systems. Morgan Kaufmann Publishers, 1997.

[351] J. Jou and P. Fischer. The complexity of recognizing 3nf schemes. Information Pro-
cessing Letters, 14(4):187–190, 1983.

[352] R. J. B. Jr. Efficiently mining long patterns from databases. In Haas and Tiwary [297].

[353] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query
execution plans. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, 1998.

[354] Y. Kambayashi, M. Yoshikawa, and S. Yajima. Query processing for distributed
databases using generalized semi-joins. In Proc. ACM SIGMOD Conf. on the Man-
agement of Data, 1982.

[355] P. Kanellakis. Elements of relational database theory. In Handbook of Theoretical
Computer Science. ed. J. Van Leeuwen, Elsevier, 1991.

[356] P. Kanellakis. Constraint programming and database languages: A tutorial. In ACM
Symp. on Principles of Database Systems, 1995.

[357] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley and Sons, 1990.

[358] D. Keim and H.-P. Kriegel. VisDB: a system for visualizing large databases. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1995.

[359] D. Keim and H.-P. Kriegel. Visualization techniques for mining large databases: A
comparison. IEEE Transactions on Knowledge and Data Engineering, 8(6):923–938,
1996.

[360] A. Keller. Algorithms for translating view updates to database updates for views involv-
ing selections, projections, and joins. ACM Symp. on Principles of Database Systems,
1985.

[361] W. Kent. Data and Reality, Basic Assumptions in Data Processing Reconsidered.
North-Holland, 1978.

[362] W. Kent, R. Ahmed, J. Albert, M. Ketabchi, and M.-C. Shan. Object identification in
multi-database systems. In IFIP Intl. Conf. on Data Semantics, 1992.

REFERENCES 863

[363] L. Kerschberg, A. Klug, and D. Tsichritzis. A taxonomy of data models. In Systems
for Large Data Bases. eds. P.C. Lockemann and E.J. Neuhold, North-Holland, 1977.

[364] W. Kiessling. On semantic reefs and efficient processing of correlation queries with
aggregates. In Proc. Intl. Conf. on Very Large Databases, 1985.

[365] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1992.

[366] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4):741–843, 1995.

[367] M. Kifer and E. Lozinskii. Sygraf: implementing logic programs in a database style.
IEEE Transactions on Software Engineering, 14(7):922–935, 1988.

[368] W. Kim. On optimizing an SQL-like nested query. ACM Transactions on Database
Systems, 7(3), 1982.

[369] W. Kim. Object-oriented database systems: Promise, reality, and future. In Proc. Intl.
Conf. on Very Large Databases, 1993.

[370] W. Kim, J. Garza, N. Ballou, and D. Woelk. Architecture of the ORION next-generation
database system. IEEE Transactions on Knowledge and Data Engineering, 2(1):109–
124, 1990.

[371] W. Kim and F. Lochovsky (eds.). Object-Oriented Concepts, Databases, and Applica-
tions. Addison-Wesley, 1989.

[372] W. Kim, D. Reiner, and D. Batory (eds.). Query Processing in Database Systems.
Springer Verlag, 1984.

[373] W. Kim (ed.). Modern Database Systems. ACM Press and Addison-Wesley, 1995.

[374] R. Kimball. The Data Warehouse Toolkit. John Wiley and Sons, 1996.

[375] J. King. Quist: A system for semantic query optimization in relational databases. In
Proc. Intl. Conf. on Very Large Databases, 1981.

[376] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc. ACM-
SIAM Symp. on Discrete Algorithms, 1998.

[377] A. Klug. Access paths in the ABE statistical query facility. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1982.

[378] A. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. Journal of the ACM, 29(3):699–717, 1982.

[379] A. Klug. On conjunctive queries containing inequalities. Journal of the ACM, 35(1):146–
160, 1988.

[380] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys,
19(4):303–328, 1987.

[381] D. Knuth. The Art of Computer Programming, Vol.3—Sorting and Searching. Addison-
Wesley, 1973.

[382] G. Koch and K. Loney. Oracle: The Complete Reference. Oracle Press, Osborne-
McGraw-Hill, 1995.

[383] W. Kohler. A survey of techniques for synchronization and recovery in decentralized
computer systems. ACM Computing Surveys, 13(2):149–184, 1981.

[384] D. Konopnicki and O. Shmueli. W3QS: a system for WWW querying. In Proc. IEEE
Intl. Conf. on Data Engineering, 1997.

[385] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large
datasets of time sequences. In Proc. ACM SIGMOD Conf. on Management of Data,
1997.

[386] M. Kornacker, C. Mohan, and J. Hellerstein. Concurrency and recovery in generalized
search trees. In Proc. ACM SIGMOD Conf. on the Management of Data, 1997.

864 Database Management Systems

[387] H. Korth, N. Soparkar, and A. Silberschatz. Triggered real-time databases with consis-
tency constraints. In Proc. Intl. Conf. on Very Large Databases, 1990.

[388] H. F. Korth. Deadlock freedom using edge locks. ACM Transactions on Database
Systems, 7(4):632–652, 1982.

[389] Y. Kotidis and N. Roussopoulos. An alternative storage organization for rolap aggregate
views based on cubetrees. In Proc. ACM SIGMOD Intl. Conf. on Management of Data,
1998.

[390] N. Krishnakumar and A. Bernstein. High throughput escrow algorithms for replicated
databases. In Proc. Intl. Conf. on Very Large Databases, 1992.

[391] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries. In
Proc. Intl. Conf. on Very Large Databases, 1986.

[392] J. Kuhns. Logical aspects of question answering by computer. Technical report, Rand
Corporation, RM-5428-Pr., 1967.

[393] V. Kumar. Performance of Concurrency Control Mechanisms in Centralized Database
Systems. PrenticeHall, 1996.

[394] H. Kung and P. Lehman. Concurrent manipulation of binary search trees. ACM Trans-
actions on Database Systems, 5(3):354–382, 1980.

[395] H. Kung and J. Robinson. On optimistic methods for concurrency control. Proc. Intl.
Conf. on Very Large Databases, 1979.

[396] D. Kuo. Model and verification of a data manager based on ARIES. In Intl. Conf. on
Database Theory, 1992.

[397] M. LaCroix and A. Pirotte. Domain oriented relational languages. In Proc. Intl. Conf.
on Very Large Databases, 1977.

[398] M.-Y. Lai and W. Wilkinson. Distributed transaction management in jasmin. In Proc.
Intl. Conf. on Very Large Databases, 1984.

[399] L. Lakshmanan, F. Sadri, and I. N. Subramanian. A declarative query language for
querying and restructuring the web. In Proc. Intl. Conf. on Research Issues in Data
Engineering, 1996.

[400] C. Lam, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database system.
Communications of the ACM, 34(10), 1991.

[401] L. Lamport. Time, clocks and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

[402] B. Lampson and D. Lomet. A new presumed commit optimization for two phase commit.
In Proc. Intl. Conf. on Very Large Databases, 1993.

[403] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system.
Technical report, Xerox PARC, 1976.

[404] C. Landwehr. Formal models of computer security. ACM Computing Surveys, 13(3):247–
278, 1981.

[405] R. Langerak. View updates in relational databases with an independent scheme. ACM
Transactions on Database Systems, 15(1):40–66, 1990.

[406] P.-A. Larson. Linear hashing with overflow-handling by linear probing. ACM Transac-
tions on Database Systems, 10(1):75–89, 1985.

[407] P.-A. Larson. Linear hashing with separators—a dynamic hashing scheme achieving
one-access retrieval. ACM Transactions on Database Systems, 13(3):366–388, 1988.

[408] P.-A. Larson and G. Graefe. Memory Management During Run Generation in External
Sorting. In Proc. ACM SIGMOD Conf. on Management of Data, 1998.

[409] P. Lehman and S. Yao. Efficient locking for concurrent operations on b trees. ACM
Transactions on Database Systems, 6(4):650–670, 1981.

REFERENCES 865

[410] T. Leung and R. Muntz. Temporal query processing and optimization in multiprocessor
database machines. In Proc. Intl. Conf. on Very Large Databases, 1992.

[411] M. Leventhal, D. Lewis, and M. Fuchs. Designing XML Internet applications. The
Charles F. Goldfarb series on open information management. PrenticeHall, 1998.

[412] E.-P. Lim and J. Srivastava. Query optimization and processing in federated database
systems. In Proc. Intl. Conf. on Intelligent Knowledge Management, 1993.

[413] B. Lindsay, J. McPherson, and H. Pirahesh. A data management extension architecture.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1987.

[414] B. Lindsay, P. Selinger, C. Galtieri, J. Gray, R. Lorie, G. Putzolu, I. Traiger, and
B. Wade. Notes on distributed databases. Technical report, RJ2571, San Jose, CA,
1979.

[415] V. Linnemann, K. Kuspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper, N. Sudkamp,
G. Walch, and M. Wallrath. Design and implementation of an extensible database
management system supporting user defined data types and functions. In Proc. Intl.
Conf. on Very Large Databases, 1988.

[416] R. Lipton, J. Naughton, and D. Schneider. Practical selectivity estimation through
adaptive sampling. In Proc. ACM SIGMOD Conf. on the Management of Data, 1990.

[417] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and efficient sharing of persistent objects in Thor. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[418] W. Litwin. Linear Hashing: A new tool for file and table addressing. In Proc. Intl.
Conf. on Very Large Databases, 1980.

[419] W. Litwin. Trie Hashing. In Proc. ACM SIGMOD Conf. on the Management of Data,
1981.

[420] W. Litwin and A. Abdellatif. Multidatabase interoperability. IEEE Computer,
12(19):10–18, 1986.

[421] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3), 1990.

[422] W. Litwin, M.-A. Neimat, and D. Schneider. LH*—a scalable, distributed data struc-
ture. ACM Transactions on Database Systems, 21(4):480–525, 1996.

[423] M. Liu, A. Sheth, and A. Singhal. An adaptive concurrency control strategy for dis-
tributed database system. In Proc. IEEE Intl. Conf. on Data Engineering, 1984.

[424] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Myl-
lymaki, and K. Wenger. DEVise: Integrated querying and visual exploration of large
datasets. In Proc. ACM SIGMOD Conf. on the Management of Data, 1997.

[425] G. Lohman. Grammar-like functional rules for representing query optimization alter-
natives. In Proc. ACM SIGMOD Conf. on the Management of Data, 1988.

[426] D. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method with good
guaranteed performance. ACM Transactions on Database Systems, 15(4), 1990.

[427] D. Lomet and B. Salzberg. Access method concurrency with recovery. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1992.

[428] R. Lorie. Physical integrity in a large segmented database. ACM Transactions on
Database Systems, 2(1):91–104, 1977.

[429] R. Lorie and H. Young. A low communication sort algorithm for a parallel database
machine. In Proc. Intl. Conf. on Very Large Databases, 1989.

[430] Y. Lou and Z. Ozsoyoglu. LLO: an object-oriented deductive language with methods
and method inheritance. In Proc. ACM SIGMOD Conf. on the Management of Data,
1991.

[431] H. Lu, B.-C. Ooi, and K.-L. Tan (eds.). Query Processing in Parallel Relational
Database Systems. IEEE Computer Society Press, 1994.

866 Database Management Systems

[432] C. Lucchesi and S. Osborn. Candidate keys for relations. J. Computer and System
Sciences, 17(2):270–279, 1978.

[433] V. Lum. Multi-attribute retrieval with combined indexes. Communications of the ACM,
1(11):660–665, 1970.

[434] T. Lunt, D. Denning, R. Schell, M. Heckman, and W. Shockley. The seaview security
model. IEEE Transactions on Software Engineering, 16(6):593–607, 1990.

[435] L. Mackert and G. Lohman. R* optimizer validation and performance evaluation for
local queries. Technical report, IBM RJ-4989, San Jose, CA, 1986.

[436] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[437] D. Maier, A. Mendelzon, and Y. Sagiv. Testing implication of data dependencies. ACM
Transactions on Database Systems, 4(4), 1979.

[438] D. Maier and D. Warren. Computing with Logic: Logic Programming with Prolog.
Benjamin/Cummings Publishers, 1988.

[439] A. Makinouchi. A consideration on normal form of not-necessarily-normalized relation
in the relational data model. In Proc. Intl. Conf. on Very Large Databases, 1977.

[440] U. Manber and R. Ladner. Concurrency control in a dynamic search structure. ACM
Transactions on Database Systems, 9(3):439–455, 1984.

[441] H. Mannila. Methods and problems in data mining. In Intl. Conf. on Database Theory,
1997.

[442] H. Mannila and K.-J. Raiha. Design by Example: An application of Armstrong relations.
Journal of Computer and System Sciences, 33(2):126–141, 1986.

[443] H. Mannila and K.-J. Raiha. The Design of Relational Databases. Addison-Wesley,
1992.

[444] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in sequences.
In Proc. Intl. Conf. on Knowledge Discovery in Databases and Data Mining, 1995.

[445] M. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database systems.
ACM Computing Surveys, 20(3):191–221, 1988.

[446] V. Markowitz. Representing processes in the extended entity-relationship model. In
Proc. IEEE Intl. Conf. on Data Engineering, 1990.

[447] V. Markowitz. Safe referential integrity structures in relational databases. In Proc. Intl.
Conf. on Very Large Databases, 1991.

[448] D. McCarthy and U. Dayal. The architecture of an active data base management
system. In Proc. ACM SIGMOD Conf. on the Management of Data, 1989.

[449] W. McCune and L. Henschen. Maintaining state constraints in relational databases: A
proof theoretic basis. Journal of the ACM, 36(1):46–68, 1989.

[450] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record (ACM Special Interest
Group on Management of Data), 26(3):54–66, 1997.

[451] S. Mehrotra, R. Rastogi, Y. Breitbart, H. Korth, and A. Silberschatz. Ensuring trans-
action atomicity in multidatabase systems. In ACM Symp. on Principles of Database
Systems, 1992.

[452] S. Mehrotra, R. Rastogi, H. Korth, and A. Silberschatz. The concurrency control
problem in multidatabases: Characteristics and solutions. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1992.

[453] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: a fast scalable classifier for data mining.
In Proc. Intl. Conf. on Extending Database Technology, 1996.

[454] M. Mehta, V. Soloviev, and D. DeWitt. Batch scheduling in parallel database systems.
In Proc. IEEE Intl. Conf. on Data Engineering, 1993.

REFERENCES 867

[455] J. Melton and A. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufmann, 1993.

[456] D. Menasce and R. Muntz. Locking and deadlock detection in distributed data bases.
IEEE Transactions on Software Engineering, 5(3):195–222, 1979.

[457] A. Mendelzon and T. Milo. Formal models of web queries. In ACM Symp. on Principles
of Database Systems, 1997.

[458] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Journal
on Digital Libraries, 1:54–67, 1997.

[459] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules.
In Proc. Intl. Conf. on Very Large Databases, 1996.

[460] T. Merrett. The extended relational algebra, a basis for query languages. In Databases.
ed. Shneiderman, Academic Press, 1978.

[461] T. Merrett. Relational Information Systems. Reston Publishing Company, 1983.

[462] D. Michie, D. Spiegelhalter, and C. Taylor, editors. Machine Learning, Neural and
Statistical Classification. Ellis Horwood, London, 1994.

[463] Microsoft. Microsoft ODBC 3.0 Software Development Kit and Programmer’s Reference.
Microsoft Press, 1997.

[464] K. Mikkilineni and S. Su. An evaluation of relational join algorithms in a pipelined query
processing environment. IEEE Transactions on Software Engineering, 14(6):838–848,
1988.

[465] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The use of information capacity in
schema integration and translation. In Proc. Intl. Conf. on Very Large Databases, 1993.

[466] J. Minker (ed.). Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, 1988.

[467] T. Minoura and G. Wiederhold. Resilient extended true-copy token scheme for a dis-
tributed database. IEEE Transactions in Software Engineering, 8(3):173–189, 1982.

[468] G. Mitchell, U. Dayal, and S. Zdonik. Control of an extensible query optimizer: A
planning-based approach. In Proc. Intl. Conf. on Very Large Databases, 1993.

[469] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems, 14(4):349–379, 1996.

[470] C. Mohan. ARIES/NT: a recovery method based on write-ahead logging for nested. In
Proc. Intl. Conf. on Very Large Databases, 1989.

[471] C. Mohan. Commit LSN: A novel and simple method for reducing locking and latching
in transaction processing systems. In Proc. Intl. Conf. on Very Large Databases, 1990.

[472] C. Mohan. ARIES/LHS: a concurrency control and recovery method using write-ahead
logging for linear hashing with separators. In Proc. IEEE Intl. Conf. on Data Engi-
neering, 1993.

[473] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Transactions on Database Systems, 17(1):94–162, 1992.

[474] C. Mohan and F. Levine. ARIES/IM an efficient and high concurrency index man-
agement method using write-ahead logging. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1992.

[475] C. Mohan and B. Lindsay. Efficient commit protocols for the tree of processes model of
distributed transactions. In ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, 1983.

[476] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the R* dis-
tributed database management system. ACM Transactions on Database Systems,
11(4):378–396, 1986.

868 Database Management Systems

[477] C. Mohan and I. Narang. Algorithms for creating indexes for very large tables without
quiescing updates. In Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

[478] K. Morris, J. Naughton, Y. Saraiya, J. Ullman, and A. Van Gelder. YAWN! (Yet
Another Window on NAIL!). Database Engineering, 6:211–226, 1987.

[479] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transactions
on Software Engineering, 13(7):785–798, 1987.

[480] A. Motro and O. Buneman. Constructing superviews. In Proc. ACM SIGMOD Conf.
on the Management of Data, 1981.

[481] R. Mukkamala. Measuring the effect of data distribution and replication models on
performance evaluation of distributed database systems. In Proc. IEEE Intl. Conf. on
Data Engineering, 1989.

[482] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is relevant. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1990.

[483] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic conditions. ACM
Transactions on Database Systems, 21(1):107–155, 1996.

[484] I. Mumick, H. Pirahesh, and R. Ramakrishnan. Duplicates and aggregates in deductive
databases. In Proc. Intl. Conf. on Very Large Databases, 1990.

[485] I. Mumick and K. Ross. Noodle: a language for declarative querying in an object-
oriented database. In Intl. Conf. on Deductive and Object-Oriented Databases, 1993.

[486] M. Muralikrishna. Improved unnesting algorithms for join aggregate SQL queries. In
Proc. Intl. Conf. on Very Large Databases, 1992.

[487] M. Muralikrishna and D. DeWitt. Equi-depth histograms for estimating selectivity fac-
tors for multi-dimensional queries. In Proc. ACM SIGMOD Conf. on the Management
of Data, 1988.

[488] S. Naqvi. Negation as failure for first-order queries. In ACM Symp. on Principles of
Database Systems, 1986.

[489] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries. ACM
Transactions on Database Systems, 16(3), 1991.

[490] S. Nestorov, J. Ullman, J. Weiner, and S. Chawathe. Representative objects: Con-
cise representations of semistructured, hierarchical data. In Proc. Intl. Conf. on Data
Engineering. IEEE, 1997.

[491] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining.
In Proc. VLDB Conference, Santiago, Chile, September 1994.

[492] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained association rules. In Haas and Tiwary [297], pages 13–24.

[493] T. Nguyen and V. Srinivasan. Accessing relational databases from the World Wide
Web. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[494] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: An adaptable symmetric
multikey file structure. ACM Transactions on Database Systems, 9(1):38–71, 1984.

[495] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. Alphasort: a cache-
sensitive parallel external sort. VLDB Journal, 4(4):603–627, 1995.

[496] R. Obermarck. Global deadlock detection algorithm. ACM Transactions on Database
Systems, 7(2):187–208, 1981.

[497] F. Olken and D. Rotem. Simple random sampling from relational databases. In Proc.
Intl. Conf. on Very Large Databases, 1986.

[498] F. Olken and D. Rotem. Maintenance of materialized views of sampling queries. In
Proc. IEEE Intl. Conf. on Data Engineering, 1992.

[499] P. O’Neil. Database Principles, Programming, and Practice. Morgan Kaufmann, 1994.

REFERENCES 869

[500] P. O’Neil and D. Quass. Improved query performance with variant indexes. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1997.

[501] B. Ozden, R. Rastogi, and A. Silberschatz. Multimedia support for databases. In ACM
Symp. on Principles of Database Systems, 1997.

[502] G. Ozsoyoglu, K. Du, S. Guruswamy, and W.-C. Hou. Processing real-time, non-
aggregate queries with time-constraints in case-db. In Proc. IEEE Intl. Conf. on Data
Engineering, 1992.

[503] G. Ozsoyoglu, Z. Ozsoyoglu, and V. Matos. Extending relational algebra and relational
calculus with set-valued attributes and aggregate functions. ACM Transactions on
Database Systems, 12(4):566–592, 1987.

[504] Z. Ozsoyoglu and L.-Y. Yuan. A new normal form for nested relations. ACM Transac-
tions on Database Systems, 12(1):111–136, 1987.

[505] M. Ozsu and P. Valduriez. Principles of Distributed Database Systems. PrenticeHall,
1991.

[506] C. Papadimitriou. The serializability of concurrent database updates. Journal of the
ACM, 26(4):631–653, 1979.

[507] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science
Press, 1986.

[508] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator
systems. In Proc. Intl. Conf. on Very Large Data Bases, 1996.

[509] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across het-
erogeneous information sources. In Proc. Intl. Conf. on Data Engineering, 1995.

[510] J. Park and A. Segev. Using common subexpressions to optimize multiple queries. In
Proc. IEEE Intl. Conf. on Data Engineering, 1988.

[511] J. Patel, J.-B. Yu, K. Tufte, B. Nag, J. Burger, N. Hall, K. Ramasamy, R. Lueder,
C. Ellman, J. Kupsch, S. Guo, D. DeWitt, and J. Naughton. Building a scaleable geo-
spatial DBMS: Technology, implementation, and evaluation. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1997.

[512] D. Patterson, G. Gibson, and R. Katz. RAID: redundant arrays of inexpensive disks.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1988.

[513] H.-B. Paul, H.-J. Schek, M. Scholl, G. Weikum, and U. Deppisch. Architecture and
implementation of the Darmstadt database kernel system. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1987.

[514] J. Peckham and F. Maryanski. Semantic data models. ACM Computing Surveys,
20(3):153–189, 1988.

[515] E. Petajan, Y. Jean, D. Lieuwen, and V. Anupam. DataSpace: An automated visu-
alization system for large databases. In Proc. of SPIE, Visual Data Exploration and
Analysis, 1997.

[516] S. Petrov. Finite axiomatization of languages for representation of system properties.
Information Sciences, 47:339–372, 1989.

[517] G. Piatetsky-Shapiro and C. Cornell. Accurate estimation of the number of tuples
satisfying a condition. In Proc. ACM SIGMOD Conf. on the Management of Data,
1984.

[518] G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge Discovery in Databases.
AAAI/MIT Press, Menlo Park, CA, 1991.

[519] H. Pirahesh and J. Hellerstein. Extensible/rule-based query rewrite optimization in
starburst. In Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

[520] N. Pitts-Moultis and C. Kirk. XML black book: Indispensable problem solver. Coriolis
Group, 1998.

870 Database Management Systems

[521] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selectivity
estimation of range predicates. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1996.

[522] C. Pu. Superdatabases for composition of heterogeneous databases. In Proc. IEEE Intl.
Conf. on Data Engineering, 1988.

[523] C. Pu and A. Leff. Replica control in distributed systems: An asynchronous approach.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1991.

[524] X.-L. Qian and G. Wiederhold. Incremental recomputation of active relational expres-
sions. IEEE Transactions on Knowledge and Data Engineering, 3(3):337–341, 1990.

[525] D. Quass, A. Rajaraman, Y. Sagiv, and J. Ullman. Querying semistructured heteroge-
neous information. In Proc. Intl. Conf. on Deductive and Object-Oriented Databases,
1995.

[526] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.

[527] The RAIDBook: A source book for RAID technology. The RAID Advisory Board,
http://www.raid-advisory.com, North Grafton, MA, Dec. 1998. Sixth Edition.

[528] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In Proc.
ACM SIGMOD Conf. on the Management of Data, 1997.

[529] M. Ramakrishna. An exact probability model for finite hash tables. In Proc. IEEE Intl.
Conf. on Data Engineering, 1988.

[530] M. Ramakrishna and P.-A. Larson. File organization using composite perfect hashing.
ACM Transactions on Database Systems, 14(2):231–263, 1989.

[531] I. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. Warren. Efficient tabling
mechanisms for logic programs. In Intl. Conf. on Logic Programming, 1995.

[532] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. Beyer, and M. Krishnaprasad.
SRQL: Sorted relational query language In Proc. IEEE Intl. Conf. on Scientific and
Statistical DBMS, 1998.

[533] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient bottom-up evaluation of
logic programs. In The State of the Art in Computer Systems and Software Engineering.
ed. J. Vandewalle, Kluwer Academic, 1992.

[534] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL: deduc-
tive system. VLDB Journal, 3(2):161–210, 1994.

[535] R. Ramakrishnan and J. Ullman. A survey of deductive database systems. Journal of
Logic Programming, 23(2):125–149, 1995.

[536] K. Ramamohanarao. Design overview of the Aditi deductive database system. In Proc.
IEEE Intl. Conf. on Data Engineering, 1991.

[537] K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis. Partial-match retrieval for dy-
namic files using linear hashing with partial expansions. In Intl. Conf. on Foundations
of Data Organization and Algorithms, 1989.

[538] S. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of decision
support queries. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[539] R. Rastogi and K. Shim. Public: a decision tree classifier that integrates building and
pruning. In Proc. Intl. Conf. on Very Large Databases, 1998.

[540] D. Reed. Implementing atomic actions on decentralized data. ACM Transactions on
Database Systems, 1(1):3–23, 1983.

[541] G. Reese. Database Programming With JDBC and Java. O’Reilly & Associates, 1997.

[542] R. Reiter. A sound and sometimes complete query evaluation algorithm for relational
databases with null values. Journal of the ACM, 33(2):349–370, 1986.

[543] A. Reuter. A fast transaction-oriented logging scheme for undo recovery. IEEE Trans-
actions on Software Engineering, 6(4):348–356, 1980.

REFERENCES 871

[544] A. Reuter. Performance analysis of recovery techniques. ACM Transactions on Database
Systems, 9(4):526–559, 1984.

[545] E. Riloff and L. Hollaar. Text databases and information retrieval. In Handbook of
Computer Science. ed. A.B. Tucker, CRC Press, 1996.

[546] J. Rissanen. Independent components of relations. ACM Transactions on Database
Systems, 2(4):317–325, 1977.

[547] R. Rivest. Partial match retrieval algorithms. SIAM J. on Computing, 5(1):19–50, 1976.

[548] J. T. Robinson. The KDB tree: A search structure for large multidimensional dynamic
indexes. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 1981.

[549] J. Rohmer, F. Lescoeur, and J. Kerisit. The Alexander method, a technique for the
processing of recursive queries. New Generation Computing, 4(3):273–285, 1986.

[550] D. Rosenkrantz, R. Stearns, and P. Lewis. System level concurrency control for dis-
tributed database systems. ACM Transactions on Database Systems, 3(2), 1978.

[551] A. Rosenthal and U. Chakravarthy. Anatomy of a modular multiple query optimizer.
In Proc. Intl. Conf. on Very Large Databases, 1988.

[552] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. Intl. Conf.
on Very Large Databases, 1997.

[553] K. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and integrity
constraint checking: Trading space for time. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1996.

[554] J. Rothnie, P. Bernstein, S. Fox, N. Goodman, M. Hammer, T. Landers, C. Reeve,
D. Shipman, and E. Wong. Introduction to a system for distributed databases (SDD-
1). ACM Transactions on Database Systems, 5(1), 1980.

[555] J. Rothnie and N. Goodman. An overview of the preliminary design of SDD-1: A
system for distributed data bases. In Proc. Berkeley Workshop on Distributed Data
Management and Computer Networks, 1977.

[556] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: organization of and
bulk updates on the data cube. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1997.

[557] S. Rozen and D. Shasha. Using feature set compromise to automate physical database
design. In Proc. Intl. Conf. on Very Large Databases, 1991.

[558] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies
in a multidatabase environment. IEEE Computer, 24(12), 1991.

[559] D. Sacca and C. Zaniolo. Magic counting methods. In Proc. ACM SIGMOD Conf. on
the Management of Data, 1987.

[560] Y. Sagiv and M. Yannakakis. Equivalence among expressions with the union and dif-
ference operators. Journal of the ACM, 27(4):633–655, 1980.

[561] K. Sagonas, T. Swift, and D. Warren. XSB as an efficient deductive database engine.
In Proc. ACM SIGMOD Conf. on the Management of Data, 1994.

[562] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

[563] B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, and B. Vaughan. Fastsort: a
distributed single-input single-output external sort. In Proc. ACM SIGMOD Conf. on
the Management of Data, 1990.

[564] B. J. Salzberg. File Structures. PrenticeHall, 1988.

[565] H. Samet. The Quad Tree and related hierarchical data structures. ACM Computing
Surveys, 16(2), 1984.

[566] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

872 Database Management Systems

[567] R. E. Sanders. ODBC 3.5 Developer’s Guide. McGraw-Hill Series on Data Warehousing
and Data Management. McGraw-Hill, 1998.

[568] S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays.
In Proc. IEEE Intl. Conf. on Data Engineering, 1994.

[569] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational database
systems: Alternatives and implications. In Proc. ACM SIGMOD Intl. Conf. on Man-
agement of Data, 1998.

[570] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining associ-
ation rules in large databases. In Proc. Intl. Conf. on Very Large Databases, 1995.

[571] H.-J. Schek, H.-B. Paul, M. Scholl, and G. Weikum. The DASDBS project: Objects, ex-
periences, and future projects. IEEE Transactions on Knowledge and Data Engineering,
2(1), 1990.

[572] M. Schkolnick. Physical database design techniques. In NYU Symp. on Database Design,
1978.

[573] M. Schkolnick and P. Sorenson. The effects of denormalization on database performance.
Technical report, IBM RJ3082, San Jose, CA, 1981.

[574] G. Schlageter. Optimistic methods for concurrency control in distributed database
systems. In Proc. Intl. Conf. on Very Large Databases, 1981.

[575] E. Sciore. A complete axiomatization of full join dependencies. Journal of the ACM,
29(2):373–393, 1982.

[576] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate interop-
erability among heterogeneous information systems. ACM Transactions on Database
Systems, 19(2):254–290, 1994.

[577] A. Segev and J. Park. Maintaining materialized views in distributed databases. In Proc.
IEEE Intl. Conf. on Data Engineering, 1989.

[578] A. Segev and A. Shoshani. Logical modeling of temporal data. Proc. ACM SIGMOD
Conf. on the Management of Data, 1987.

[579] P. Selfridge, D. Srivastava, and L. Wilson. IDEA: interactive data exploration and
analysis. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[580] P. Selinger and M. Adiba. Access path selections in distributed data base management
systems. In Proc. Intl. Conf. on Databases, British Computer Society, 1980.

[581] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection
in a relational database management system. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1979.

[582] T. K. Sellis. Multiple query optimization. ACM Transactions on Database Systems,
13(1):23–52, 1988.

[583] P. Seshadri, J. Hellerstein, H. Pirahesh, T. Leung, R. Ramakrishnan, D. Srivastava,
P. Stuckey, and S. Sudarshan. Cost-based optimization for Magic: Algebra and imple-
mentation. In Proc. ACM SIGMOD Conf. on the Management of Data, 1996.

[584] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of a
sequence database system. In Proc. Intl. Conf. on Very Large Databases, 1996.

[585] P. Seshadri, M. Livny, and R. Ramakrishnan. The case for enhanced abstract data
types. In Proc. Intl. Conf. on Very Large Databases, 1997.

[586] P. Seshadri, H. Pirahesh, and T. Leung. Complex query decorrelation. In Proc. IEEE
Intl. Conf. on Data Engineering, 1996.

[587] J. Shafer and R. Agrawal. SPRINT: a scalable parallel classifier for data mining. In
Proc. Intl. Conf. on Very Large Databases, 1996.

[588] L. Shapiro. Join processing in database systems with large main memories. ACM
Transactions on Database Systems, 11(3):239–264, 1986.

REFERENCES 873

[589] D. Shasha. Database Tuning: A Principled Approach. PrenticeHall, 1992.

[590] D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transac-
tions on Database Systems, 13:53–90, 1988.

[591] D. Shasha, E. Simon, and P. Valduriez. Simple rational guidance for chopping up
transactions. In Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

[592] H. Shatkay and S. Zdonik. Approximate queries and representations for large data
sequences. In Proc. IEEE Intl. Conf. on Data Engineering, 1996.

[593] T. Sheard and D. Stemple. Automatic verification of database transaction safety. ACM
Transactions on Database Systems, 1989.

[594] S. Shenoy and Z. Ozsoyoglu. Design and implementation of a semantic query optimizer.
IEEE Transactions on Knowledge and Data Engineering, 1(3):344–361, 1989.

[595] A. Sheth and J. Larson. Federated database systems for managing distributed, hetero-
geneous, and autonomous databases. Computing Surveys, 22(3):183–236, 1990.

[596] A. Sheth, J. Larson, A. Cornelio, and S. Navathe. A tool for integrating conceptual
schemas and user views. In Proc. IEEE Intl. Conf. on Data Engineering, 1988.

[597] A. Shoshani. OLAP and statistical databases: Similarities and differences. In ACM
Symp. on Principles of Database Systems, 1997.

[598] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage estimation for
multidimensional aggregates in the presence of hierarchies. In Proc. Intl. Conf. on Very
Large Databases, 1996.

[599] M. Siegel, E. Sciore, and S. Salveter. A method for automatic rule derivation to support
semantic query optimization. ACM Transactions on Database Systems, 17(4), 1992.

[600] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts (3rd ed.).
McGraw-Hill, 1997.

[601] E. Simon, J. Kiernan, and C. de Maindreville. Implementing high-level active rules on
top of relational databases. In Proc. Intl. Conf. on Very Large Databases, 1992.

[602] E. Simoudis, J. Wei, and U. M. Fayyad, editors. Proc. Intl. Conf. on Knowledge
Discovery and Data Mining. AAAI Press, 1996.

[603] D. Skeen. Nonblocking commit protocols. In Proc. ACM SIGMOD Conf. on the Man-
agement of Data, 1981.

[604] J. Smith and D. Smith. Database abstractions: Aggregation and generalization. ACM
Transactions on Database Systems, 1(1):105–133, 1977.

[605] K. Smith and M. Winslett. Entity modeling in the MLS relational model. In Proc. Intl.
Conf. on Very Large Databases, 1992.

[606] P. Smith and M. Barnes. Files and Databases: An Introduction. Addison-Wesley, 1987.

[607] N. Soparkar, H. Korth, and A. Silberschatz. Databases with deadline and contingency
constraints. IEEE Transactions on Knowledge and Data Engineering, 7(4):552–565,
1995.

[608] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for integration
of heterogeneous schemas. In Proc. Intl. Conf. on Very Large Databases, 1992.

[609] S. Spaccapietra (ed.). Entity-Relationship Approach: Ten Years of Experience in Infor-
mation Modeling, Proc. Entity-Relationship Conf. North-Holland, 1987.

[610] E. Spertus. ParaSite: mining structural information on the web. In Intl. World Wide
Web Conference, 1997.

[611] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. Intl. Conf.
on Very Large Databases, 1995.

[612] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. ACM SIGMOD Conf. on Management of Data, 1996.

874 Database Management Systems

[613] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. In Proc. Intl. Conf. on Extending Database Technology, 1996.

[614] R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Constraints.
In Proc. Intl. Conf. on Knowledge Discovery in Databases and Data Mining, 1997.

[615] V. Srinivasan and M. Carey. Performance of B-Tree concurrency control algorithms. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1991.

[616] D. Srivastava, S. Dar, H. Jagadish, and A. Levy. Answering queries with aggregation
using views. In Proc. Intl. Conf. on Very Large Databases, 1996.

[617] D. Srivastava, R. Ramakrishnan, P. Seshadri, and S. Sudarshan. Coral++: Adding
object-orientation to a logic database language. In Proc. Intl. Conf. on Very Large

Databases, 1993.

[618] J. Srivastava and D. Rotem. Analytical modeling of materialized view maintenance. In
ACM Symp. on Principles of Database Systems, 1988.

[619] J. Srivastava, J. Tan, and V. Lum. Tbsam: an access method for efficient processing of
statistical queries. IEEE Transactions on Knowledge and Data Engineering, 1(4):414–
423, 1989.

[620] D. Stacey. Replication: DB2, Oracle or Sybase? Database Programming and Design,
pages 42–50, December 1994.

[621] P. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure relational
database management system. IEEE Transactions on Knowledge and Data Engineering,
2(2), 1990.

[622] J. Stankovic and W. Zhao. On real-time transactions. In Proc. ACM SIGMOD Conf.
on the Management of Data Record, 1988.

[623] T. Steel. Interim report of the ANSI-SPARC study group. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1975.

[624] M. Stonebraker. Implementation of integrity constraints and views by query modifica-
tion. In Proc. ACM SIGMOD Conf. on the Management of Data, 1975.

[625] M. Stonebraker. Concurrency control and consistency of multiple copies of data in
distributed ingres. IEEE Transactions on Software Engineering, 5(3), 1979.

[626] M. Stonebraker. Operating system support for database management. Communications
of the ACM, 14(7):412–418, 1981.

[627] M. Stonebraker. Inclusion of new types in relational database systems. In Proc. IEEE
Intl. Conf. on Data Engineering, 1986.

[628] M. Stonebraker. The INGRES papers: Anatomy of a Relational Database System.
Addison-Wesley, 1986.

[629] M. Stonebraker. The design of the postgres storage system. In Proc. Intl. Conf. on
Very Large Databases, 1987.

[630] M. Stonebraker. Object-relational DBMSs—The Next Great Wave. Morgan Kaufmann,
1996.

[631] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000 storage
benchmark. In Proc. ACM SIGMOD Conf. on the Management of Data, 1993.

[632] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, caching
and views in data base systems. In UCBERL M9036, 1990.

[633] M. Stonebraker and G. Kemnitz. The POSTGRES next-generation database manage-
ment system. Communications of the ACM, 34(10):78–92, 1991.

[634] M. Stonebraker (ed.). Readings in Database Systems (2nd ed.). Morgan Kaufmann,
1994.

[635] B. Subramanian, T. Leung, S. Vandenberg, and S. Zdonik. The AQUA approach to
querying lists and trees in object-oriented databases. In Proc. IEEE Intl. Conf. on Data
Engineering, 1995.

REFERENCES 875

[636] W. Sun, Y. Ling, N. Rishe, and Y. Deng. An instant and accurate size estimation
method for joins and selections in a retrieval-intensive environment. In Proc. ACM
SIGMOD Conf. on the Management of Data, 1993.

[637] A. Swami and A. Gupta. Optimization of large join queries: Combining heuristics and
combinatorial techniques. In Proc. ACM SIGMOD Conf. on the Management of Data,
1989.

[638] T. Swift and D. Warren. An abstract machine for SLG resolution: Definite programs.
In Intl. Logic Programming Symposium, 1994.

[639] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal
Databases: Theory, Design and Implementation. Benjamin-Cummings, 1993.

[640] Y. Tay, N. Goodman, and R. Suri. Locking performance in centralized databases. ACM
Transactions on Database Systems, 10(4):415–462, 1985.

[641] T. Teorey. Database Modeling and Design: The E-R Approach. Morgan Kaufmann,
1990.

[642] T. Teorey, D.-Q. Yang, and J. Fry. A logical database design methodology for rela-
tional databases using the extended entity-relationship model. ACM Computing Sur-
veys, 18(2):197–222, 1986.

[643] R. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems, 4(2):180–209, 1979.

[644] A. Thomasian. Concurrency control: methods, performance, and analysis. ACM Com-
puting Surveys, 30(1):70–119, 1998.

[645] A. Thomasian. Two-phase locking performance and its thrashing behavior ACM
Computing Surveys, 30(1):70–119, 1998.

[646] S. Todd. The Peterlee relational test vehicle. IBM Systems Journal, 15(4):285–307,
1976.

[647] H. Toivonen. Sampling large databases for association rules. In Proc. Intl. Conf. on
Very Large Databases, 1996.

[648] TP Performance Council. TPC Benchmark D: Standard specification, rev. 1.2. Technical
report, http://www.tpc.org/dspec.html, 1996.

[649] I. Traiger, J. Gray, C. Galtieri, and B. Lindsay. Transactions and consistency in dis-
tributed database systems. ACM Transactions on Database Systems, 25(9), 1982.

[650] M. Tsangaris and J. Naughton. On the performance of object clustering techniques. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1992.

[651] D.-M. Tsou and P. Fischer. Decomposition of a relation scheme into Boyce-Codd normal
form. SIGACT News, 14(3):23–29, 1982.

[652] D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosen-
thal. Query flocks: A generalization of association-rule mining. In Haas and Tiwary
[297], pages 1–12.

[653] A. Tucker (ed.). Computer Science and Engineering Handbook. CRC Press, 1996.

[654] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[655] J. Ullman. The U.R. strikes back. In ACM Symp. on Principles of Database Systems,
1982.

[656] J. Ullman. Principles of Database and Knowledgebase Systems, Vols. 1 and 2. Computer
Science Press, 1989.

[657] J. Ullman. Information integration using logical views. In Intl. Conf. on Database
Theory, 1997.

[658] S. Urban and L. Delcambre. An analysis of the structural, dynamic, and temporal
aspects of semantic data models. In Proc. IEEE Intl. Conf. on Data Engineering, 1986.

876 Database Management Systems

[659] M. Van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733–742, 1976.

[660] A. Van Gelder. Negation as failure using tight derivations for general logic programs.
In Foundations of Deductive Databases and Logic Programming. ed. J. Minker, Morgan
Kaufmann, 1988.

[661] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, United Kingdom,
1990.

[662] M. Vardi. Incomplete information and default reasoning. In ACM Symp. on Principles
of Database Systems, 1986.

[663] M. Vardi. Fundamentals of dependency theory. In Trends in Theoretical Computer
Science. ed. E. Borger, Computer Science Press, 1987.

[664] L. Vieille. Recursive axioms in deductive databases: The query-subquery approach. In
Intl. Conf. on Expert Database Systems, 1986.

[665] L. Vieille. From QSQ towards QoSaQ: global optimization of recursive queries. In Intl.
Conf. on Expert Database Systems, 1988.

[666] L. Vieille, P. Bayer, V. Kuchenhoff, and A. Lefebvre. EKS-V1, a short overview. In
AAAI-90 Workshop on Knowledge Base Management Systems, 1990.

[667] G. von Bultzingsloewen. Translating and optimizing SQL queries having aggregates. In
Proc. Intl. Conf. on Very Large Databases, 1987.

[668] G. von Bultzingsloewen, K. Dittrich, C. Iochpe, R.-P. Liedtke, P. Lockemann, and
M. Schryro. Kardamom—a dataflow database machine for real-time applications. In
Proc. ACM SIGMOD Conf. on the Management of Data, 1988.

[669] G. Vossen. Date Models, Database Languages and Database Management Systems.
Addison-Wesley, 1991.

[670] N. Wade. Citation analysis: A new tool for science administrators. Science,
188(4183):429–432, 1975.

[671] R. Wagner. Indexing design considerations. IBM Systems Journal, 12(4):351–367, 1973.

[672] X. Wang, S. Jajodia, and V. Subrahmanian. Temporal modules: An approach toward
federated temporal databases. In Proc. ACM SIGMOD Conf. on the Management of
Data, 1993.

[673] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proc. of the Conf. on Very
Large Databases, 1998.

[674] G. Weddell. Reasoning about functional dependencies generalized for semantic data
models. ACM Transactions on Database Systems, 17(1), 1992.

[675] W. Weihl. The impact of recovery on concurrency control. In ACM Symp. on Principles
of Database Systems, 1989.

[676] R. Weiss, B. Vélez, M. A. Sheldon, C. Manprempre, P. Szilagyi, A. Duda, and D. K.
Gifford. HyPursuit: A hierarchical network search engine that exploits content-link
hypertext clustering. In Proc. ACM Conf. on Hypertext, 1996.

[677] C. White. Let the replication battle begin. In Database Programming and Design, pages
21–24, May 1994.

[678] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner. JDBC API Tutorial and
Reference: Universal Data Access for the Java 2 Platform. Addison-Wesley, 2 edition,
1999.

[679] J. Widom and S. Ceri. Active Database Systems. Morgan Kaufmann, 1996.

[680] G. Wiederhold. Database Design (2nd ed.). McGraw-Hill, 1983.

[681] G. Wiederhold, S. Kaplan, and D. Sagalowicz. Physical database design research at
Stanford. IEEE Database Engineering, 1:117–119, 1983.

REFERENCES 877

[682] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck,
P. Selinger, A. Walker, P. Wilms, and R. Yost. R*: An overview of the architecture.
Technical report, IBM RJ3325, San Jose, CA, 1981.

[683] M. S. Winslett. A model-based approach to updating databases with incomplete infor-
mation. ACM Transactions on Database Systems, 13(2):167–196, 1988.

[684] G. Wiorkowski and D. Kull. DB2: Design and Development Guide (3rd ed.). Addison-
Wesley, 1992.

[685] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, 1994.

[686] O. Wolfson, A. Sistla, , B. Xu, J. Zhou, and S. Chamberlain. Domino: Databases for
moving objects tracking. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
1999.

[687] Y. Yang and R. Miller. Association rules over interval data. In Proc. ACM SIGMOD
Conf. on the Management of Data, 1997.

[688] K. Youssefi and E. Wong. Query processing in a relational database management system.
In Proc. Intl. Conf. on Very Large Databases, 1979.

[689] C. Yu and C. Chang. Distributed query processing. ACM Computing Surveys,
16(4):399–433, 1984.

[690] C. Zaniolo. Analysis and design of relational schemata. Technical report, Ph.D. Thesis,
UCLA, TR UCLA-ENG-7669, 1976.

[691] C. Zaniolo. Database relations with null values. Journal of Computer and System
Sciences, 28(1):142–166, 1984.

[692] C. Zaniolo. The database language GEM. In Readings in Object-Oriented Databases.
eds. S.B. Zdonik and D. Maier, Morgan Kaufmann, 1990.

[693] C. Zaniolo. Active database rules with transaction-conscious stable-model semantics.
In Intl. Conf. on Deductive and Object-Oriented Databases, 1996.

[694] C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in recursive rules: the
LDL++ approach. In Intl. Conf. on Deductive and Object-Oriented Databases, 1993.

[695] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. Subrahmanian, and R. Zicari. Ad-
vanced Database Systems. Morgan Kaufmann, 1997.

[696] S. Zdonik and D. Maier (eds.). Readings in Object-Oriented Databases. Morgan Kauf-
mann, 1990.

[697] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring relaxed atomicity for
flexible transactions in multidatabase systems. In Proc. ACM SIGMOD Conf. on the
Management of Data, 1994.

[698] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proc. ACM SIGMOD Conf. on Management of Data, 1996.

[699] Y. Zhao, P. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous optimization
and evaluation of multiple dimensional queries. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data, 1998.

[700] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a ware-
housing environment. In Proc. ACM SIGMOD Conf. on the Management of Data,
1995.

[701] M. Zloof. Office-by-example: a business language that unifies data and word processing
and electronic mail. IBM Systems Journal, 21(3):272–304, 1982.

[702] M. M. Zloof. Query-by-example: a database language. IBM Systems Journal, 16(4):324–
343, 1977.

[703] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for
text indexing. ACM Transactions on Database Systems, 23, 1998.

878 Database Management Systems

[704] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for full-text
database systems. In Intl. Conf. On Very Large Data Bases, 1992.

[705] U. Zukowski and B. Freitag. The deductive database system LOLA. In Proc. Intl. Conf.
on Logic Programming and Non-Monotonic Reasoning, 1997.

SUBJECT INDEX

1NF, 430
2NF, 434
2PC, 628, 630
blocking, 630
with Presumed Abort, 631

2PL, 542
distributed databases, 624

3NF, 432, 440, 443
3PC, 632
4NF, 447
5NF, 449
A priori property, 710
Abandoned privilege, 504
Abort, 525–526, 548, 556, 574, 584, 628
Abstract data types, 742
ACA schedule, 531
Access control, 8, 497–498
Access methods, 217
Access mode in SQL, 556
Access path, 320
most selective, 321

Access privileges, 498
Access times for disks, 198
ACID transactions, 524
Active databases, 120, 164
Adding tables in SQL, 82
ADTs, 742
encapsulation, 742
registering methods, 743
storage issues, 760

Aggregate functions in ORDBMSs, 762
Aggregation in Datalog, 812
Aggregation in QBE, 181
Aggregation in SQL, 138, 149
Aggregation in the ER model, 37, 75
Algebra, 92
ALTER, 500
Alternatives for data entries in an index,

238
Analysis phase of recovery, 571, 579
ANSI, 6, 52
API, 158
Application programmers, 20
Application programming interface, 158

Application servers, 647
Architecture of a DBMS, 18
ARIES recovery algorithm, 571, 587
Armstrong’s Axioms, 427
Array chunks, 693, 760
Arrays, 746
Assertions in SQL, 163
Association rules, 714, 716
use for prediction, 718
with calendars, 717
with item hierarchies, 715

Asynchronous replication, 611, 620–621,
681

Capture and Apply, 622
change data table (CDT), 622
conflict resolution, 621
peer-to-peer, 621
primary site, 621

Atomic formulas, 108
Atomicity, 524–525
Attribute, 10, 53
Attribute closure, 429
Attributes in the ER model, 27
Attributes in XML, 653
Audit trail, 513
Authorities, 668
Authorization, 8, 20
Authorization graph, 505
Authorization id, 500
Autocommit in JDBC, 160
AVC set, 725
AVG, 138
Avoiding cascading aborts, 531
Axioms for FDs, 427
B+ trees, 253
bulk-loading, 268
deletion, 260
for sorting, 312
height, 254
insertion, 257
key compression, 266
locking, 551
order, 254
search, 255

880 Database Management Systems

selection operation, 323
sequence set, 253

Bags, 745–746
Base table, 78
BCNF, 430, 438
Bell-LaPadula security model, 509
Benchmarks, 402, 485–486, 496
Binding
early vs. late, 752

Bioinformatics, 829
BIRCH, 728
Birth site, 612
Bit-sliced signature files, 667
Bitmap indexes, 691
Bitmapped join index, 692
Bitmaps
for space management, 207, 219

Blind writes, 530
BLOBs, 738, 760
Block nested loops join, 335
Blocked I/O, 310
Blocking, 548
Blocking algorithms, 702
Blocks in disks, 197
Bloomjoin, 618
Boolean queries, 664
Bounding box, 789
Boyce-Codd normal form, 430, 438
Browser, 643
Buckets, 235
in a hashed file, 278
in histograms, 382

Buffer frame, 208
Buffer management
DBMS vs. OS, 212
double buffering, 311
force approach, 535
real systems, 212
replacement policy, 211
sequential flooding, 211
steal approach, 535

Buffer manager, 19, 195, 208
forcing a page, 213
page replacement, 209–210
pinning, 209
prefetching, 213

Buffer pool, 208
Buffered writes, 563
Building phase in hash join, 344
Bulk data types, 745
Bulk-loading B+ trees, 268
Bushy trees, 392

Caching of methods, 763
CAD/CAM, 779
Calculus, 106
Calendric association rules, 717
Candidate keys, 27, 57, 68
Capture and Apply, 622
Cardinality of a relation, 55
Cartsian product, 95
CASCADE in foreign keys, 64
Cascading aborts, 531
Cascading operators, 383–384
Catalog relations, 376
Catalogs, 365, 376, 378, 611
Categorical attribute, 721
Centralized deadlock detection, 626
Centralized lock management, 625
CGI protocol, 645
Change data table, 622
Checkpoint, 17, 578
fuzzy, 578

Checksum, 198
Choice of indexes, 460
Choices in physical database design, 459
Chunking, 693, 760
Class hierarchies, 35, 74
Class interface, 766
Classification, 720–721
Classification rules, 721
Classification trees, 722
Clearance, 509
Client-server architecture, 608
Clock, 212
Clock policy, 211
Close an iterator, 363
Closure of FDs, 427
CLRs, 575, 583, 587
Clustering, 241, 465, 468, 726
CODASYL, D.B.T.G., 854
Cold Fusion, 651
Collations in SQL, 128
Collection hierarchies, 752
Collection types, 745
Collisions, 285
Column, 53
Commit, 526, 556, 574, 628
Commit protocol, 621
Commit protocols, 627
2PC, 628, 630
3PC, 632

Common gateway interface (CGI), 645
Communication costs, 609, 614, 619
Compensation log records, 575, 583, 587

Subject Index 881

Complete axioms, 428
Complex types, 741, 756
vs. reference types, 756

Composite search keys, 243, 470
Compressed histogram, 383
Compression in B+ trees, 266
Computer aided design and

manufacturing, 779
Concatenated search keys, 243, 470
Conceptual design, 12, 25
tuning, 475

Conceptual evaluation strategy, 121
Conceptual schema, 12
Concurrency, 9, 16
Concurrency control
multiversion, 563
optimistic, 559
timestamp, 561

Concurrent execution, 527
Conditions box in QBE, 183
Conflict equivalence, 540
Conflict resolution, 621
Conflict serializability vs. serializability,

551
Conflict serializable schedule, 541
Conflicting actions, 528
Conjunct, 325
Conjunctive normal form (CNF), 325, 664
Connections in JDBC, 160
Conservative 2PL, 549
Consistency, 524–525
Consistent database state, 528
Content types in XML, 656
Content-based queries, 780, 795
Convoy phenomenon, 545
Cookies, 649, 840
Coordinator site, 628
Correlated queries, 134, 400
Correlation, 402
Cost estimation, 378
for ADT methods, 764
real systems, 381

Cost model, 321
COUNT, 138, 187
Covering constraints, 36
Covert channel, 511
Crash recovery, 9, 17, 21, 535, 571, 575,

578–579, 581, 583, 586–587
CREATE, 500
Creating a relation in SQL, 55
Cross-product operation, 95
Cross-tabulation, 686

CS564 at Wisconsin, xxvii
CUBE operator, 687, 693, 706
Cursors in SQL, 153, 155
Cylinders in disks, 198
Dali, 830
Data definition language, 11
Data Definition Language (DDL), 11, 55,

119
Data dictionary, 365
Data Encryption Standard (DES), 514
Data entries in an index, 237
Data independence, 8, 14, 613
distributed, 607
logical, 14, 79, 607
physical, 14, 607

Data integration, 824
Data manipulation language, 15
Data Manipulation Language (DML), 119
Data mining, 7, 679, 707
Data model, 9
multidimensional, 682
semantic, 9

Data partitioning, 601
skew, 601

Data reduction, 617
Data skew, 601, 604
Data source, 158
Data striping in RAID, 200–201
Data sublanguage, 15
Data warehouse, 6, 624, 678–681
clean, 681
extract, 680
load, 681
metadata, 681
purge, 681
refresh, 681
transform, 681

Database administrators, 20
Database architecture
Client-Server vs. Collaborating Servers,

608
Database consistency, 528
Database design
conceptual design, 12, 25
for an ORDBMS, 754
for OLAP, 689
impact of concurrent access, 484
null values, 419
physical design, 13, 26, 457
requirements analysis step, 24
role of expected workload, 458
role of inclusion dependencies, 449

882 Database Management Systems

schema refinement, 26, 417
tools, 25
tuning, 21, 26, 457, 474, 476

Database management system, 3
Database tuning, 21, 26, 457, 459, 474
Databases, 3
Dataflow for parallelism, 602, 604
Datalog, 799, 801, 804
aggregation, 812
comparison with relational algebra, 811
input and output, 803
least fixpoint, 806–807
least model, 805, 807
model, 804
multiset generation, 812
negation, 808–809
range-restriction and negation, 809
rules, 801
safety and range-restriction, 806
stratification, 810

DataSpace, 830
Dates and times in SQL, 128
DBA, 20
DBI library, 646
DBLP Web site, 643
DBMS, 3
DBMS architecture, 18
DBMS vs. OS, 212
DDL, 11
Deadlines
hard vs. soft, 824

Deadlock, 546
detection, 547
detection vs. prevention, 548
distributed, 626
global vs. local, 626
phantom, 627
prevention, 546

Decision support, 677
Decision trees, 722
pruning, 723
splitting attributes, 723

Decompositions, 420, 434
dependency-preservation, 437
horizontal, 481
in the absence of redundancy, 480
into 3NF, 440
into BCNF, 438
lossless-join, 435

Decorrelation, 402
Decryption, 514
Deductions, 801

Deductive databases, 801
aggregation, 812
fixpoint semantics, 806
least fixpoint, 807
least model, 807
least model semantics, 804
Magic Sets rewriting, 817
negation, 808–809
optimization, 813
repeated inferences, 813
Seminaive evaluation, 815
unnecessary inferences, 814

Deep equality, 749
Denormalization, 460, 476, 478
Dense index, 241
Dependency-preserving decomposition, 437
Dependent attribute, 720
Deskstar disk, 199
DEVise, 830
Difference operation, 95, 129
Digital Libraries project, 826
Dimensions, 682
Directory
of pages, 216
of slots, 220

Directory doubling, 282
Dirty bit, 209
Dirty page table, 576, 580
Dirty read, 529
Discretionary access control, 498
Disjunctive selection condition, 325
Disk array, 200
Disk space manager, 19, 195, 207
Disk tracks, 197
Disks, 196
access times, 198
blocks, 197
controller, 198
cylinders, tracks, sectors, 198
head, 198
physical structure, 197
platters, 197

Distance function, 727
DISTINCT types, 66
Distributed data independence, 607, 613
Distributed databases, 597
catalogs, 611
commit protocols, 627
concurrency control, 625
data independence, 613
deadlock, 625
fragmentation, 610

Subject Index 883

global object names, 612
heterogeneous, 607
join, 615
lock management, 625
naming, 612
optimization, 619
project, 614
query processing, 614
recovery, 624, 627
replication, 611
scan, 614
select, 614
semijoin and Bloomjoin, 617
synchronous vs. asynchronous

replication, 620
transaction management, 624
transparency, 607
updates, 620

Distributed deadlock, 626
Distributed query processing, 614
Distributed transaction management, 624
Distributed transactions, 607
Division, 99
in QBE, 187
in SQL, 137

Division operation, 99
DML, 15
Document search, 663
Document type declarations (DTDs),

653–654
DoD security levels, 512
Domain, 27, 53
Domain constraints, 27, 54, 65, 162
Domain relational calculus, 111
Domain variables in QBE, 178
Domain-key normal form, 456
Double buffering, 311
Drill-down, 685
Driver, 158–159
manager, 158
types, 159

DROP, 500
Dropping tables in SQL, 82
DTDs, 653–654
Duplicates in an index, 243
Duplicates in QBE, 179
Duplicates in SQL, 124
Durability, 524–525
Dynamic databases, 550
Dynamic hashing, 280, 286
Dynamic indexes, 253, 280, 286
Dynamic linking, 744

Dynamic pages, 646
Dynamic SQL, 157
Dynamic Web pages, 650
Early binding, 752
Electronic commerce, 642
Elements in XML, 652
Embedded SQL, 150
Encapsulation, 742
Encryption, 514
Enforcing integrity constraints, 63
Entities, 3, 12
Entity references in XML, 653
Entity sets in the ER model, 26
Enumerating alternative plans, 387
Equality
deep vs. shallow, 749

Equidepth histogram, 382
Equijoin, 98
Equivalence of relational algebra

expressions, 383
Equiwidth histogram, 382
ER model
aggregation, 37, 75
attribute domains, 27
attributes, 27
class hierarchies, 35, 74
descriptive attributes, 28
entities and entity sets, 26
key constraints, 30
keys, 27
overlap and covering, 36
participation constraints, 32, 71
relationships
and relationship sets, 27
many-to-many, 31
many-to-one, 31
one-to-many, 31

roles, 30
weak entities, 33, 73

ERP, 6
Events activating triggers, 164
Example queries
Q1, 101, 110, 112, 125, 132, 134, 141
Q2, 102, 110, 113, 127, 133
Q3, 103, 127
Q4, 103, 127
Q5, 104, 129
Q6, 104, 129, 136
Q7, 105, 110, 113
Q8, 105
Q9, 106, 111, 113, 137
Q10, 106

884 Database Management Systems

Q11, 107, 112, 123
Q12, 109
Q13, 109
Q14, 111, 114
Q15, 122
Q16, 126
Q17, 128
Q18, 129
Q19, 131
Q20, 131
Q21, 133
Q22, 135
Q23, 136
Q24, 136
Q25, 138
Q26, 138
Q27, 139
Q28, 139
Q29, 140
Q30, 140
Q31, 141
Q32, 142
Q33, 143
Q34, 144
Q35, 145
Q36, 145
Q37, 146

Exclusive locks, 532
EXEC SQL, 151
Execution plan, 19
Expensive predicates, 765
Exploratory data analysis, 679, 707
Expressions in SQL, 127, 148
Expressive power
algebra vs. calculus, 114

Extendible hashing, 280
directory doubling, 282
global depth, 283
local depth, 284

Extensibility
in an optimizer, 764
indexing new types, 761

Extensible Markup Language (XML),
651–654, 656

Extensible Style Language (XSL), 652
Extents of types, 753
External schema, 13
External sorting, 301, 305, 308, 310–311
Failure
media, 535, 571
system crash, 535, 571

False positives, 666

Fan-out, 252, 254, 266, 268
Feature vectors, 778, 780
Field, 52
FIFO, 212
Fifth normal form, 449
File, 19
File of records, 214
File organization, 230
hashed, 235
random, 232
sorted, 233

First in first out (FIFO) policy, 212
First normal form, 430
Fixed-length records, 218
Fixpoint, 806
Naive evaluation, 814
Seminaive evaluation, 815

Fixpoint evaluation
iterations, 813

Force vs. no-force, 577
Force-write, 574, 628
Forced reinserts, 792
Forcing pages, 213, 535, 574
Foreign key constraints, 59
Foreign keys, 68
Foreign keys vs. oids, 757
Formulas, 108
Fourth normal form, 447
Fragmentation, 610–611
Frequent itemset, 710
Frequent itemsets
a priori property, 710

Fully distributed lock management, 625
Functional dependencies, 422
Armstrong’s Axioms, 427
attribute closure, 429
closure, 427
minimal cover, 440
projection, 437

Fuzzy checkpoint, 578
Gateways, 608, 680
GenBank, 826
Generalization, 36
Generalized Search Trees, 794
Geographic Information Systems (GIS),

779, 827
Get next tuple, 363
GiST, 761, 794
Global deadlock detection, 626
Global depth in extendible hashing, 283
GRANT, 499, 503
Grant option, 500

Subject Index 885

Granting privileges in SQL, 503
Grid directory, 786
Grid files, 786
convex regions, 789

Group commit, 826
Grouping in SQL, 141
Hash functions, 235, 279, 286, 605
Hash join, 344
parallel databases, 603–604

Hash partitioning, 601
Hashed files, 235
Heap files, 19, 214, 232
Height of a B+ tree, 254
Heterogeneous databases, 607
gateways, 608

Hierarchical clustering, 728
Hierarchical data model, 5
Hierarchical deadlock detection, 626
Histograms, 380, 382
compressed, 383
equidepth, 382
equiwidth, 382
real systems, 381

Horizontal decomposition, 481
Horizontal fragmentation, 610–611
Host language, 15, 150
HTML, 643, 651, 830
links, 643
Tags, 644

HTML templates, 651
HTTP protocol, 643
Hubs, 668
Human Genome project, 826
Hybrid hash join, 346
HyperText Markup Language (HTML),

643, 651
IBM DB2, 66, 121, 212–213, 218, 222, 224,

266–267, 302, 327, 333–334, 381, 391,
396, 402, 458, 512, 564, 573, 693, 699,
739, 745, 748, 800

Iceberg queries, 712
Identifying owner, 34
IDS, 5
Implementation
aggregation, 350
joins, 335, 337, 339, 346
hash, 343
nested loops, 334

projections, 329–330
hashing, 330
sorting, 329

selections, 322–327

with disjunction, 327
B+ tree, 323
hash index, 324
no disjunction, 326
no index, 322

set-operations, 349
IMS, 5
Inclusion dependencies, 449
Index, 13, 230, 237
duplicate data entries, 243
alternatives for data entries, 238
B+ tree, 253
bitmap, 691
clustered vs. unclustered, 241
composite key, 243
concatenated key, 243
data entry, 237
dense vs. sparse, 241
dynamic, 253, 280, 286
equality query, 243
extendible hashing, 280
hash, 279
buckets, 279
hash functions, 279
primary and overflow pages, 279

in SQL, 244
ISAM, 248
linear hashing, 286
matching a selection, 326
multidimensional, 781
primary vs. secondary, 242
range query, 243
search key, 217
spatial, 781
static, 248
static hashing, 278
unique, 243

Index entries in indexes, 240
Index locking, 551
Index nested loops join, 337
Index selection, 460
Index tuning, 474
Index-only plans, 471
Index-only scan, 333, 352, 390
Indexing new data types, 761
Indexing text, 663
Inference and security, 513
Inferences, 801
Information retrieval, 664
Information superhighway, 3

886 Database Management Systems

Informix, 121, 212–213, 218, 222, 224, 267,
302, 327, 333–334, 381, 396, 402, 512,
564, 573, 690, 693, 739, 745

Informix UDS, 66, 748
Inheritance hierarchies, 35, 74
Inheritance in object databases, 751
Inheritance of attributes, 35
Instance of a relation, 52
Instance of a relationship set, 28
Integration, 824
Integrity constraints, 8, 11, 30, 32, 36, 56,

71
in SQL, 163
spatial, 779
domain, 54, 65
foreign key, 59
in SQL, 161–162
key, 57
transactions in SQL, 558

Intelligent Miner, 731
Interface for a class, 766
Interference, 599
Internet, 516, 643
Internet databases, 7, 642, 645–647
Interprocess communication (IPC), 762
Intersection operation, 95, 129
Inverted file, 242, 665
ISA hierarchies, 35, 715
ISAM, 248
ISAPI, 647
ISO, 6, 52
Isolation, 524–525
Isolation level in SQL, 556
READ UNCOMMITTED, 556
REPEATABLE READ, 556
SERIALIZABLE, 556

Itemset, 709
a priori property, 710
frequent, 710
support, 709

Iterations, 813
Iterator interface, 363
IVEE, 830
JAR files, 650
Java Database Connectivity (JDBC), 157,

176, 608, 680
Java Server Pages, 649–650
Java servlets, 650
Java virtual machine, 744
JavaBeans, 649–650
JDBC, 157, 160–161, 176, 608, 646, 680
JDs, 449

Join dependencies, 449
Join operation in QBE, 180
Joins, 97
Bloomjoin, 618
definition, 97
distributed databases, 615
equijoin, 98
implementation, 334, 343
block nested loops, 335
hybrid hash, 346
index nested loops, 337
sort-merge, 339

natural join, 99
outer, 149
parallel databases, 603–604
Semijoin, 617

KDD, 708
Key, 27
Key compression, 266
Key constraints, 30–31
Keys
candidate, 57, 68
candidate vs. search, 232
composite search, 243
foreign, 68
foreign key, 59
primary, 58

Keys constraints, 57–58
Keyword search, 663
Knowledge discovery, 707
data cleaning step, 708
data mining step, 708
data selection step, 708
evaluation step, 708

Large object, 739
LastLSN, 576
Latch, 545
Late binding, 752
Least fixpoints, 804, 806
Least model = least fixpoint, 807
Least models, 804–805
Least recently used (LRU) policy, 211
Left-deep trees, 392
Legal relation instance, 57
Level counter in linear hashing, 286
Levels of abstraction, 11
Linear hashing, 286
family of hash functions, 286
level counter, 286

Linear scales, 786
Links in HTML, 643
Local deadlock detection, 626

Subject Index 887

Local depth in extendible hashing, 284
Locators, 739
Lock escalation, 555
Lock manager, 19, 544
distributed databases, 625

Lock upgrade, 545
Locking, 17
B+ trees, 551
concurrency, 484
Conservative 2PL, 549
distributed databases, 624
exclusive locks, 532
lock escalation, 555
lock upgrade, 545
multiple-granularity, 554
performance, 548
performance implications, 484
shared locks, 532
Strict 2PL, 532

Locking protocol, 17, 532
Log, 17, 526, 536, 573
abort record, 574
commit record, 574
compensation record (CLR), 574
end record, 574
force-write, 574
lastLSN, 576
pageLSN, 574
sequence number (LSN), 573
tail, 573
update record format, 575
WAL, 17

Log record
prevLSN field, 574
transID field, 574
type field, 574

Log-based Capture, 622
Logical data independence, 14, 79, 607
views, 14

Logical schema, 12, 25
Lossless-join decomposition, 435
LRU, 212
Machine learning, 707
Magic Sets, 402, 816–817
Main memory databases, 825
Mandatory access control, 499
objects and subjects, 509

Many-to-many relationship, 31
Many-to-one relationship, 31
Market basket, 708
Markup languages, 643
Master copy, 621

Master log record, 578
Matching phase in hash join, 344
Materialization of intermediate relations,

362
Materialization of views, 696
Materialized views
refresh, 698

MathML, 658
MAX, 138
Mean-time-to-failure, 201
Measures, 682
Media failure, 535, 571, 586
Media recovery, 586
Medical imaging, 779
Memory hierarchy, 196
Merge operator, 601
Merge sort, 305
Metadata, 681
Methods
caching, 763
interpreted vs. compiled, 762
security, 762

Microsoft SQL Server, 121, 212–213, 218,
222, 224, 266–267, 302, 327–328,
333–334, 381, 391, 396, 402, 458, 512,
564, 573, 690, 693, 699, 739

MIN, 138
Mineset, 731, 830
Minibase software, 842
Minimal cover, 440
Mirroring in RAID, 203
Mobile databases, 825
Model, 804
Modifying a table in SQL, 55
MOLAP, 683
Most recently used (MRU) policy, 212
MRP, 6
MRU, 212
Multidatabase system, 607
Multidimensional data model, 682
Multilevel relations, 510
Multilevel transactions, 824
Multimedia databases, 780, 826
Multiple-granularity locking, 554
Multiple-query optimization, 402
Multisets, 123, 745–746
Multivalued dependencies, 445
Multiversion concurrency control, 563
MVDs, 445
Naive fixpoint evaluation, 814
Named constraints in SQL, 59
Naming in distributed systems, 612

888 Database Management Systems

Natural join, 99
Nearest neighbor queries, 778
Negation in Datalog, 809
Nested collections, 746, 758
Nested loops join, 334
Nested queries, 132
implementation, 399

Nested relations
nesting, 748
unnesting, 747

Nested transactions, 824
Nesting operation, 748
Network data model, 5
NO ACTION in foreign keys, 64
Non-preemptive deadlock prevention, 546
Nonblocking algorithms, 702
Nonblocking commit protocol, 632
Nonvolatile storage, 196
Normal forms, 430
1NF, 430
2NF, 434
3NF, 432
Synthesis, 443

4NF, 447
5NF, 449
BCNF, 430
DKNF, 456
normalization, 438
PJNF, 456
tuning, 475

Normalization, 438, 459
NSAPI, 647
Null values, 419
implementation, 223
in SQL, 60, 62–64, 147

Numerical attribute, 721
Object databases, 11
Object exchange model (OEM), 662
Object identifiers, 748
Object manipulation language, 766
Object-oriented DBMS, 736, 765, 769
Object-relational DBMS, 736, 769
ODBC, 157, 176, 608, 680, 825
ODL, 765–766
ODMG data model
attribute, 766
class, 766
inverse relationship, 766
method, 766
objects, 765
relationship, 766

OEM, 662

Oids, 748
referential integrity, 757

Oids vs. foreign keys, 757
Oids vs. URLs, 749
OLAP, 486, 679, 706
cross-tabulation, 686
database design, 689
pivoting, 685
roll-up and drill-down, 685

OLE-DB, 680
OLTP, 677
OML, 766
On-the-fly evaluation, 363
One-to-many relationship, 31
One-to-one relationship, 32
One-way functions, 515
Online aggregation, 701
Online analytic processing (OLAP), 679
Online transaction processing (OLTP), 677
OODBMS vs. ORDBMS, 770
Opaque types, 742
Open an iterator, 363
Open Database Connectivity (ODBC),

157, 176, 608, 680, 825
Open Linking and Embedding for

Databases (OLE-DB), 680
Optimistic concurrency control, 559
validation, 560

Optimizers
cost estimation, 378
cost estimation
real systems, 381

decomposing a query into blocks, 375
extensibility, 764
for ORDBMSs, 763
handling expensive predicates, 765
histograms, 380
introduction, 359
nested queries, 399
overview, 374
real systems, 381, 391, 396, 402
relational algebra equivalences, 383
rule-based, 402

OQL, 765, 768
Oracle, 25, 121, 212–213, 218, 222, 224,

266–267, 302, 327–328, 333–334, 381,
396, 402, 458, 512, 564, 573, 690, 693,
699, 739, 745, 748, 764

ORDBMS database design, 754
ORDBMS implementation, 759
ORDBMS vs. OODBMS, 770
ORDBMS vs. RDBMS, 769

Subject Index 889

Order of a B+ tree, 254
Outer joins, 149
Overflow in hash join, 345
Overlap constraints, 36
Overloading, 752
Owner of a weak entity, 34
Page abstraction, 195, 207
Page formats, 218
fixed-length records, 218
variable-length records, 219

Page replacement policy, 208–209, 211
PageLSN, 574
Paradise, 830
Parallel database architecture
shared-memory vs. shared-nothing, 598

Parallel databases, 597–598
blocking, 600
bulk loading, 602
data partitioning, 600–601
interference, 599
join, 603–604
merge and split, 601
optimization, 606
pipelining, 600
scan, 602
sorting, 602
speed-up vs. scale-up, 599

Parameteric query optimization, 402
Parity, 202
Partial dependencies, 432
Partial participation, 32
Participation constraints, 32, 71
Partition views, 699
Partitional clustering, 727
Partitioned parallelism, 600
Partitioning, 610
hash vs. range, 604

Partitioning data, 601
Partitioning phase in hash join, 343–344
Path expressions, 746
Peer-to-peer replication, 621
Perl modules, 646
Phantom deadlocks, 627
Phantom problem, 550, 793
Phantoms, 550
SQL, 556

Physcial design
tools, 458

Physical data independence, 14, 607
Physical database design, 13, 26, 457
Physical design
choices to make, 459

clustered indexes, 465
co-clustering, 468
index selection, 460
index-only plans, 471
multiple-attribute indexes, 470
tuning the choice of indexes, 474

Physical schema, 13
Pin count, 209
Pinning pages, 209
Pipelined evaluation, 362, 391, 393
Pipelined parallelism, 600
Pivoting, 685
Platters on disks, 197
Point data, 777
Pointer swizzling, 763
Polyinstantiation, 511
Precedence graph, 541
Precision, 664
Precommit, 632
Predicate locking, 551
Predictor attribute, 720
categorical, 721
numerical, 721

Preemptive deadlock prevention, 546
Prefetching
real systems, 213

Prefetching pages, 213
Prepare messages, 628
Presumed Abort, 631
PrevLSN, 574
Primary conjunct in a selection, 326
Primary copy lock management, 625
Primary index, 242
PRIMARY KEY constraint in SQL, 59
Primary keys, 27, 58
in SQL, 59

Primary page for a bucket, 235
Primary site replication, 621
Primary storage, 196
Primary vs. overflow pages, 279
Privilege descriptor, 504
Probing phase in hash join, 344
Procedural Capture, 622
Process of knowledge discovery, 708
Project-join normal form, 456
Projections, 614
definition, 93
implementation, 329

Prolog, 801
Pruning, 723
Public-key encryption, 515
Publish and subscribe, 621

890 Database Management Systems

Pushing selections, 368
QBE, 177
aggregate operations, 181
conditions box, 183
domain variables, 178
duplicates, 179
example tables, 178
expressing division, 187
join queries, 180
ordering answers, 179
relational completeness, 189
unnamed fields, 185
updates, 185

Quantifiers, 108
Query, 15
Query block, 375
Query evaluation plan, 361
Query language, 15, 64
QBE, 177
Datalog, 799, 801
domain relational calculus, 111
OQL, 768
relational algebra, 92
relational completeness, 115
SQL, 119
tuple relational calculus, 107
XML-QL, 659

Query modification, 695
Query optimization, 359, 402
bushy trees, 392
deductive databases, 813
distributed databases, 619
enumeration of alternative plans, 387
left-deep trees, 392
overview, 360, 374
parallel databases, 606
pushing selections, 368
reduction factors, 379–380
relational algebra equivalences, 383
rule-based, 402
SQL query block, 375
statistics, 366

Query optimizer, 19
Query processing
distributed databases, 614

Query tuning, 476
R tree
bounding box, 789

R trees, 789
R+ tree, 793
RAID, 200
levels, 200

mirroring, 203
parity, 202
redundancy schemes, 201
reliability groups, 202
striping unit, 201

Randomized plan generation, 402
Range partitioning, 601
Range queries, 243, 778
Range-restriction, 806, 809
Ranked queries, 664
Ranking documents, 663
Raster data, 778
RDBMS vs. ORDBMS, 769
Real-time databases, 824
Recall, 664
Record formats, 221
fixed-length records, 222
real systems, 222, 224
variable-length records, 222

Record id, 214, 218
Record ids
real systems, 218

Records, 10, 53
Recoverability, 531
Recoverable schedule, 531, 563
Recovery, 9, 21, 571
Analysis phase, 579
ARIES, 571
checkpointing, 578
compensation log record, 575
distributed databases, 624, 627
fuzzy checkpoint, 578
log, 17, 526
loser transactions, 583
media failure, 586
Redo phase, 581
shadow pages, 587
three phases of restart, 578
Undo phase, 583
update log record, 575

Recovery manager, 19, 533, 571
Recursive rules, 799
RedBrick, 693
Redo phase of recovery, 571, 581
Reduction factors, 379–380
Redundancy and anomalies, 418
Redundancy in RAID, 200
Redundancy schemes, 201
Reference types, 756
Reference types in SQL:1999, 748
Referential integrity, 63
in SQL, 63

Subject Index 891

oids, 757
violation options, 63

Refreshing materialized views, 698
Region data, 778
Registering ADT methods, 743
Regression rules, 721
Regression trees, 722
Relation, 10, 52
cardinality, 55
degree, 55
instance, 53
legal instance, 57
schema, 53

Relational algebra, 93
comparison with Datalog, 811
division, 99
equivalences, 383
expression, 92
expressive power, 114
join, 97
projection, 93
renaming, 96
selection, 93
set-operations, 94, 349

Relational calculus
domain, 111
expressive power, 114
safety, 114
tuple, 107

Relational completeness, 115
QBE, 189

Relational data model, 6
Relational database
instance, 55
schema, 55

Relational model, 9, 51
Relationships, 3, 12, 27, 31
Renaming in relational algebra, 96
Repeating history, 572, 587
Replacement policy, 208–209
Replacement sort, 308
Replication, 610–611
asynchronous, 611, 620–621, 681
master copy, 621
publish and subscribe, 621
synchronous, 611, 620

Resource managers, 822
Response time, 527
Restart after crash, 578
Result size estimation, 378
REVOKE, 503
Revoking privileges in SQL, 503

Rid, 214, 218
Rids
real systems, 218

ROLAP, 684
Role-based authorization, 501
Roles in authorization, 26
Roles in the ER model, 30
Roll-up, 685
Rotational delay for disks, 198
Round-robin partitioning, 601
Row-level triggers, 165
Rule-based query optimization, 402
Rules in Datalog, 801
Running information for aggregation, 350
Runs in sorting, 302
R* trees, 792
SABRE, 5
Safe queries, 114
in Datalog, 806

Safety, 806
Sampling
real systems, 381

Scalability, 707
Scale-up, 599
Scan, 614
Schedule, 526
avoid cascading abort, 531
conflict equivalence, 540
conflict serializable, 541
recoverable, 531, 563
serial, 527
serializable, 528, 531
strict, 542
view serializable, 543

Schema, 10, 53, 55
Schema decomposition, 420, 434
Schema evolution, 476
Schema refinement, 26, 417
denormalization, 478

Schema tuning, 475
Search key, 232
Search key for an index, 217
Search space of plans, 387
Second normal form, 434
Secondary index, 242
Secondary storage, 196
Secure Sockets Layer (SSL), 649
Security, 20, 498, 500
classes, 499
discretionary access control, 498
encryption, 514
inference, 513

892 Database Management Systems

mandatory access control, 499
mechanisms, 498
policy, 498
privileges, 498
statistical databases, 513
using views, 506
Web servers, 649

Security administrator, 512
Security class, 509
Security levels, 512
Security of methods, 762
Seek time for disks, 198
Selection condition
conjunct, 325
conjunctive normal form, 325
term, 325

Selection pushing, 368
Selections, 614
definition, 93

Semantic data model, 9
Semantic integration, 824
Semijoin, 617
Semijoin reduction, 617
Seminaive fixpoint evaluation, 815
Semistructured data, 661, 830
Sequence data, 729, 828
Sequence of itemsets, 718
Sequence set in a B+ tree, 253
Sequential flooding, 211, 352
Sequential patterns, 717
Serial schedule, 527
Serializability, 528, 531, 541, 543, 551
Serializability graph, 541
Serializable schedule, 531
Server-side processing, 649
Servlets, 650
Session management, 649
Set comparisons in SQL, 135
SET DEFAULT in foreign keys, 64
Set operators
implementation, 349
in relational algebra, 94
in SQL, 129

Set-difference operation, 95
SGML, 652
Shadow page recovery, 587
Shallow equality, 749
Shared locks, 532
Shared-disk architecture, 598
Shared-memory architecture, 598
Shared-nothing architecture, 598
Signature files, 666

Skew, 601, 604
Slot directories, 220
Snapshots, 622, 699
Snowflake queries, 693
Sort-merge join, 339
Sorted files, 233
Sorted runs, 302
Sorting, 602
applications, 301
blocked I/O, 310
double buffering, 311
external merge sort algorithm, 305
replacement sort, 308
using B+ trees, 312

Sound axioms, 428
Space-filling curves, 783
Sparse index, 241
Spatial data, 777
boundary, 777
location, 777

Spatial extent, 777
Spatial join queries, 779
Spatial queries, 778
Spatial range queries, 778
Specialization, 36
Speed-up, 599
Split operator, 601
Split selection, 724
Splitting attributes, 723
Splitting vector, 603
SQL
access mode, 556
aggregate operations, 149
definition, 138
implementation, 350

ALL, 135, 140
ALTER, 500
ALTER TABLE, 82
ANY, 135, 140
AS, 127
authorization id, 500
AVG, 138
BETWEEN, 464
CASCADE, 64
collations, 128
COMMIT, 556
correlated queries, 134
COUNT, 138
CREATE, 500
CREATE DOMAIN, 162
CREATE TABLE, 55
creating views, 78

Subject Index 893

cursors, 153
ordering rows, 156
sensitivity, 155
updatability, 155

Data Definition Language (DDL), 55, 119
Data Manipulation Language (DML), 119
DATE values, 128
DELETE, 62
DISTINCT, 122, 124
DISTINCT for aggregation, 138
DROP, 500
DROP TABLE, 82
dynamic, 157
embedded language programming, 150
EXCEPT, 129, 137
EXEC, 151
EXISTS, 129, 148
expressing division, 137
expressions, 127, 148
giving names to constraints, 59
GRANT, 499, 503
grant option, 500

GROUP BY, 141
HAVING, 141
IN, 129
indexing, 244
INSERT, 55, 62
integrity constraints
assertions, 61, 163
CHECK, 161
deferred checking, 559
domain constraints, 162
effect on modifications, 62
PRIMARY KEY, 59
table constraints, 61, 161
UNIQUE, 59

INTERSECT, 129, 137
IS NULL, 148
isolation level, 556
MAX, 138
MIN, 138
multisets, 123
nested subqueries
definition, 132
implementation, 399

NO ACTION, 64
NOT, 124
null values, 60, 62–64, 147
ORDER BY, 156
outer joins, 149
phantoms, 556
privileges, 498–499

DELETE, 499
INSERT, 499
REFERENCES, 499
SELECT, 499
UPDATE, 499

query block, 375
READ UNCOMMITTED, 556
referential integrity
enforcement, 63

REPEATABLE READ, 556
REVOKE, 503
CASCADE, 503

ROLLBACK, 556
security, 500
SELECT-FROM-WHERE, 122
SERIALIZABLE, 556
SOME, 135
SQLCODE, 154
SQLERROR, 152
SQLSTATE, 152
standardization, 52
standards, 176
strings, 127
SUM, 138
transaction support, 555
transactions and constraints, 558
UNION, 129
UNIQUE, 148
UPDATE, 56, 62
view updates, 79
views, 81

SQL:1999, 52, 176, 765, 776
DISTINCT types, 66
reference types and oids, 748
role-based authorization, 501
structured types, 745
triggers, 164

SQLCODE, 154
SQLERROR, 152
SQLSTATE, 152
SRQL, 830
Stable storage, 536, 573
Standard Generalized Markup Language

(SGML), 652
Standardzation, 52
Star join queries, 693
Star schema, 689
Starvation, 544
Statement-level triggers, 165
Static hashing, 235, 278
Static indexes, 248
Static pages, 646

894 Database Management Systems

Statistical databases, 513, 689
Statistics maintained by DBMS, 366
Stealing frames, 535
Stemming, 665
Storage
nonvolatile, 196
primary, secondary, and tertiary, 196
stable, 536

Storing ADTs and structured types, 760
Stratification, 810
comparison to relational algebra, 811

Strict 2PL, 532, 541, 550
Strict schedule, 542
Strings in SQL, 127
Striping unit, 201
Structured types, 744–745
storage issues, 760

Subclass, 36
Substitution principle, 751
Subtransaction, 624
SUM, 138
Superclass, 36
Superkey, 58
Support, 709
association rule, 714
classification and regression, 721
frequent itemset, 709
itemset sequence, 718

Swizzling, 763
Sybase, 25
Sybase ASE, 121, 212–213, 218, 222, 224,

266–267, 302, 327–328, 333–334, 381,
396, 402, 512, 564, 573, 739

Sybase ASIQ, 327, 333–334
Sybase IQ, 328, 690, 693
Synchronous replication, 611, 620
read-any write-all technique, 620
voting technique, 620

System catalogs, 12, 221, 365, 376, 378,
611

System R, 6
System response time, 527
System throughput, 527
Table, 53
Tags in HTML, 644
Temporal queries, 828
Tertiary storage, 196
Text indexing, 663
Third normal form, 432, 440, 443
Thomas Write Rule, 561–562
Three-Phase Commit, 632
Throughput, 527

Time-out for deadlock detection, 627
Timestamp
concurrency control, 561
concurrency control
buffered writes, 563
recoverability, 563

deadlock prevention in 2PL, 546
Tioga, 830
Total participation, 32
TP monitor, 822
TPC-C, 647
TPC-D, 402
Tracks in disks, 197
Trail, 573
Transaction, 523–524
abort, 526
blind write, 530
commit, 526
conflicting actions, 528
constraints in SQL, 558
customer, 708
distributed, 607
in SQL, 555
locks and performance, 484
management in a distributed DBMS, 624
multilevel and nested, 824
properties, 16, 524
read, 526
schedule, 526
write, 526

Transaction manager, 19, 535
Transaction processing monitor, 822
Transaction table, 544, 576, 580
Transactions and JDBC, 160
Transfer time for disks, 198
TransID, 574
Transitive dependencies, 432
Transparent data distribution, 607
Travelocity, 5
Trees
R trees, 789
B+ tree, 253
classification and regression, 722
ISAM, 248
node format for B+ tree, 254
Region Quad trees, 784

Triggers, 120, 164, 169
activation, 164
row vs. statement level, 165
use in replication, 623

Trivial FD, 428
TSQL, 830

895

Tuning, 26, 457, 459, 474
Tuning for concurrency, 484
Tuning wizard, 458
Tuple, 53
Tuple relational calculus, 107
Turing award, 5
Two-Phase Commit, 628, 630
Presumed Abort, 631

Two-phase locking, 542
Type extents, 752
Types
complex vs. reference, 756
constructors, 744
extents, 753
object equality, 749

Undo phase of recovery, 571, 583
Unicode, 653
Union compatibility, 94
Union operation, 94, 129
UNIQUE constraint in SQL, 59
Unique index, 243
Universal resource locator, 643
Unnamed fields in QBE, 185
Unnesting operation, 747
Unpinning pages, 210
Unrepeatable read, 530
Updatable cursors, 155
Updatable views, 79
Update log record, 575
Updates in distributed databases, 620
Updates in QBE, 185
Upgrading locks, 545
URL, 643
URLs vs. oids, 749
User-defined aggregates, 762
User-defined types, 742
Valid XML documents, 655
Validation in optimistic CC, 560
Variable-length fields, 223
Variable-length records, 219
Vector data, 778
Vertical fragmentation, 610–611
Vertical partitioning, 460
View maintenance, 698
incremental, 698

View materialization, 696
View serializability, 543
View serializable schedule, 543
Views, 13, 78, 81, 460
for security, 506
GRANT, 506
query modification, 695

REVOKE, 506
updates on, 79

VisDB, 830
Visualization, 829
Vocabulary index, 665
Wait-die policy, 546
Waits-for graph, 547, 626
WAL, 17, 210, 572, 577
Warehouse, 624, 678–679
Weak entities, 33, 73
Weak entity set, 34
Web
browser, 643
server, 643
site, 643

WebSphere, 649
Well-formed XML document, 653
Wizard
tuning, 458

Workflow management, 823
Workloads and database design, 458
World Wide Web, 643
Wound-wait policy, 546
Write-ahead logging, 17, 210, 572, 577
WWW, 516
XML, 651–652
XML content, 656
XML DTDs, 653–654
XML-QL, 659
XSL, 652
Z-order curve, 783

AUTHOR INDEX

Abbott, R., 570, 830, 847
Abdali, K., 675, 854
Abdellatif, A., 641, 865
Abiteboul, S., 23, 86, 456, 675, 735, 776,

821, 830, 847, 866, 869, 875
Achyutuni, K.J., 570, 847
Ackaouy, E., xxvii
Adali, S., 641, 847
Adiba, M.E., 641, 847, 872
Adya, A., 775, 865
Agarwal, S., 706, 847
Agrawal, D., 570, 641, 847
Agrawal, R., 176, 593, 706, 735, 775,

847–848, 861, 866, 872–874
Ahad, R., 412, 848
Ahlberg, C., 830, 848
Ahmed, R., 830, 862
Aho, A.V., 246, 412, 456, 848
Aiken, A., 176, 830, 848
Albert, J.A., xxix, 830, 862
Anupam, V., 830, 869
Anwar, E., 176, 848
Apt, K.R., 821, 848
Armstrong, W.W., 456, 848
Arni, N., 776, 877
Arocena, G., 675, 848
Asgarian, M., 496, 852
Astrahan, M.M., 86, 176, 412, 848, 853,

872
Atkinson, M.P., 775, 848
Attar, R., 641, 848
Atzeni, P., 23, 86, 456, 675, 776, 848–849
Badal, D.Z., 87, 849
Badia, A., 118, 706, 849, 870
Badrinath, B.R., 830, 861
Baeza-Yates, R., 676, 857
Bailey, P., 848
Balbin, I., 821, 849
Ballou, N., 775, 863
Balsters, H., xxix
Bancilhon, F., 87, 775–776, 821, 849
BapaRao, K.V., 412, 848
Baralis, E., 176, 849
Barbara, D., 641, 858

Barclay, T., 318, 868
Barnes, M.G., 246, 873
Barnett, J.R., 229, 849
Barquin, R., 706, 849
Batini, C., 50, 849
Batory, D.S., 412, 849, 863
Baugsto, B.A.W., 318, 849
Bayardo Jr., R.J., 735, 862
Bayer, P., 821, 876
Bayer, R., 277, 849
Beck, M., 318, 849
Beckmann, N., 798, 849
Beech, D., 775, 857
Beeri, C., 456, 776, 821, 848–850
Bektas, H., xxviii
Bell, D., 641, 850
Bell, T.C., 676, 877
Bentley, J.L., 277, 850
Berchtold, S., 798, 850
Bernstein, A.J., 641, 864
Bernstein, P.A., 87, 456, 539, 567, 570,

641, 830, 848, 850–851, 854, 871
Beyer, K., 798, 830, 850, 865
Beyer, K.S., 706, 830, 850, 870
Bhargava, B.K., 641, 850
Biliris, A., 229, 850
Biskup, J., 50, 456, 851
Bitton, D., 318, 358, 849, 851
Blair, H., 821, 848
Blakeley, J.A., 706, 851
Blanchard, L., xxviii
Blasgen, M.W., 86, 358, 593, 848, 851, 853,

859
Blaustein, B.T., 87, 850
Blott, S., 798, 876
Bohannon, P., 830, 851
Bohm, C., 798, 850
Bonaparte, N., 677
Boral, H., 358, 412, 864
Bosworth, A., 706, 859
Boyce, R.F., 176, 851
Bradley, P.S., 851, 735
Bratbergsengen, K., 358, 851
Breiman, L., 735, 851

Author Index 897

Breitbart, Y., 641, 851, 866
Brin, S., 676, 851
Brinkhoff, T., 798, 851
Brown, K.P., 229, 851
Bry, F., 87, 821, 851
Bukhres, O.A., 641, 856
Buneman, O.P., 50, 176, 775–776, 848,

851, 868
Buneman, P., 675, 852
Bunker, R., 358, 859
Burger, J., 830, 869
Burke, E., 301
Cabibbo, L., 776, 848
Cai, L., xxix
Campbell, D., xxix
Candan, K.S., 641, 847
Carey, M.J., xxvii, xxix, 229, 496, 570,

641, 706, 775–776, 845, 847, 851–852,
857, 860, 874

Carroll, L., 319
Casanova, M.A., 50, 87, 852, 858
Castano, S., 520, 852
Castro, M., 775, 865
Cate, H.P., 775, 857
Cattell, R., 176, 860, 876
Cattell, R.G.G., 776, 852
Ceri, S., 50, 87, 176, 641, 735, 776, 821,

830, 849, 852, 867, 876–877
Cesarini, F., 496, 852
Chakravarthy, U.S., 176, 412, 570, 848,

852, 861, 871
Chamberlain, S., 798, 877
Chamberlin, D.D., 86–87, 176, 412, 776,

848, 851–853, 856, 872
Chan, M.C., 641
Chandra, A.K., 412, 821, 853
Chandy, M.K., 641, 853
Chang, C.C., 641, 853, 877
Chang, D., 675, 853
Chang, S.K., 641
Chang, W., 775, 860
Chanliau, M., xxix
Chao, D., xxix
Chatziantoniou, D., 706, 853
Chaudhuri, S., 496, 706, 776, 853
Chawathe, S., 675, 868
Cheiney, J.P., 358, 853
Chen, C.M., 229, 412, 853
Chen, G., 830, 865
Chen, H., xxix
Chen, J., 830, 848
Chen, P.M., 229, 853

Chen, P.P.S., 853
Cheng, W.H., 641
Childs, D.L., 86, 853
Chimenti, D., 821, 853
Chin, F.Y., 520, 853
Chisholm, K., 848
Chiu, D.W., 641, 850
Chomicki, J., 87, 853
Chou, H., 229, 775, 854–855
Chow, E.C., 775, 857
Christodoulakis, S., 412, 676, 861
Chrysanthis, P.K., 539, 854
Chu, F., 413, 854
Chu, P., 412, 866
Churchill, W., 822
Civelek, F.N., 50, 854
Clarke, E.M., 87, 850
Clemons, E.K., 176, 851
Clifford, J., 830, 875
Clifton, C., 735, 875
Cochrane, R.J., 176, 854
Cockshott, P., 848
Codd, E.F., 86, 118, 456, 706, 854
Colby, L.S., 706, 854
Collier, R., 24
Comer, D., 277, 854
Connell, C., 412
Connolly, D., 675, 854
Connors, T., 775, 857
Convent, B., 50, 851
Cooper, S., 358, 859
Copeland, D., 775, 854
Cornall, G., 675
Cornelio, A., 873, 50
Cornell, C., 869
Cornell, G., 854
Cosmadakis, S.S., 87
Cristian, F., 641, 856
Cristodoulakis, S., 856
Cvetanovic, Z., 318, 868
Dadam, P., 229, 775, 865
Daniels, D., 641, 877
Dar, S., 706, 874
Darwen, H., 854
Date, C.J., 23, 87, 176, 447, 456, 854
Davidson, S., 675, 852
Davis, J.W., 775, 857
Davis, K.C., xxix
Dayal, U., 87, 176, 412, 456, 641, 706, 851,

853–854, 866–867
Day, M., 775, 865
De Antonellis, V., 23, 86, 456, 848

898

De Maindreville, C., 176, 873
DeBono, E., 195
DeBra, P., 456, 854
Deep, J., 675, 854
Delcambre, L.M.L., xxix, 50, 87, 875
Delobel, C., 456, 776, 849, 855
Deng, Y., 412, 875
Denning, D.E., 520, 855, 866
Deppisch, U., 229, 869
Derr, M., 821, 855
Derrett, N., 775, 857
Deshpande, A., 776, 855
Deshpande, P., 706, 847, 855, 873, 877
Deux, O., 775, 855
DeWitt, D.J., xxvii, 229, 318, 358,

412–413, 496, 593, 640–641, 775, 830,
845, 847, 851–852, 854–855, 859,
861–862, 866, 868–869

Diaz, O., 176, 855
Dickens, C., 417
Dietrich, S.W., 706, 821, 855, 860
Dimino, L., xxix
Dittrich, K.R., 775, 830, 876
Dogac, A., 50, 641, 854, 860
Donjerkovic, D., xxviii, 413, 706, 830, 855,

865, 870
Donne, J., 597
Doole, D., 776, 852
Doraiswamy, S., xxix
Doyle, A.C., 736
Dubes, R., 735
Dubes, R.C., 855, 862
Du, K., 830, 869
Du, W., 641, 855
Duda, A., 676, 876
Dupont, Y., 50, 873
Duppel, N., 358, 855
Edelstein, H., 641, 706, 849, 855
Effelsberg, W., 229, 855
Eich, M.H., xxix, 593, 855
Eisenberg, A., 176, 776, 855
El Abbadi, A., 570, 641, 847, 856
Ellis, C.S., 570, 856
Ellman, C., 830, 869
Elmagarmid, A.K., 641, 830, 855–856
Elmasri, R., 23, 50, 856
Epstein, R., 358, 641, 856
Erbe, R., 229, 775, 865
Ester, M., 735, 856
Eswaran, K.P., 86, 176, 358, 539, 848, 851,

853, 856

Fagin, R., xxvii, 298, 447, 456, 849, 854,
856

Faloutsos, C., 176, 229, 277, 676, 735, 776,
798, 821, 830, 856–857, 863, 877

Fang, M., 735, 857
Faudemay, P., 358, 853
Fayyad, U.M., 735, 851, 857, 873
Fernandez, M., 675, 857
Finkelstein, S.J., 412, 496, 821, 857, 868
Fischer, C.N., xxviii
Fischer, P.C., 456, 862, 875
Fisher, M., 176, 860, 876
Fishman, D.H., 775, 857
Fitzgerald, E., 799
Fleming, C.C., 496, 857
Flisakowski, S., xxvii–xxviii
Florescu, D., 675, 857
Fotouhi, F., 358, 857
Fox, S., 641, 871
Frakes, W.B., 676, 857
Franaszek, P.A., 570, 857
Franklin, M.J., 641, 775–776, 852, 857
Fraternali, P., 176, 852, 857
Frawley, W.J., 735, 869
Freeston, M.W., 798, 857
Freitag, B., 821, 878
French, J., 858
Frew, J., 496, 874
Freytag, J.C., 412, 858
Friedman, J.H., 277, 735, 850–851
Friesen, O., 776, 858
Fry, J.P., 23, 50, 87, 858, 875
Fuchs, M., 675, 865
Fu, Y., 735, 860
Fugini, M.G., 520, 852
Fukuda, T., 735, 858
Furtado, A.L., 87, 852, 858
Fushimi, S., 358, 858
Gadia, S., 830, 875
Gaede, V., 798, 858
Gallaire, H., 86–87, 456, 821, 858
Galtieri, C.A., 593, 641, 865, 875
Gamboa, R., 821, 853
Ganguly, S., 641, 858
Ganski, R.A., 412, 858
Ganti, V., 735, 858
Garcia-Molina, H., 570, 641, 675, 706, 735,

830, 847, 851, 857–858, 869, 877
Gardels, K., 496, 874
Garfield, E., 676, 858
Garg, A.K., 298, 858
Garza, J.F., 229, 775, 849, 863

Author Index 899

Gehani, N.H., 176, 775, 847
Gehrke, J.E., 496, 735, 847, 852, 858
Gerber, R.H., 358, 640, 855
Ghemawat, S., 775, 865
Ghosh, S.P., 246, 858
Gibson, D., 676, 735, 858
Gibson, G.A., 229, 853, 858, 869
Gifford, D.K., 641, 859, 876
Gifford, K., 676
Goh, J., 176, 874
Goldfarb, C.F., 675, 859
Goldman, R., 675, 859, 866
Goldstein, J., 798, 850, 859
Goldweber, M., xxvii
Goodman, N., 567, 570, 641, 848, 850, 871,

873, 875
Gopalan, R., xxix
Gotlieb, C.C., 298, 858
Gottlob, G., 821, 852
Graefe, G., xxix, 318, 358, 412–413,

640–641, 775, 852, 855, 859, 864
Graham, M.H., 456, 859
Grahne, G., 86, 859
Grant, J., 412, 852
Gray, J.N., 86, 318, 496, 539, 593, 640–641,

706, 830, 848, 853, 855–856, 859, 865,
868, 871, 875

Gray, P.M.D., 23, 176, 855, 859
Greipsland, J.F., 318, 849
Griffin, T., 706, 854
Griffiths, P.P., 86, 176, 520, 593, 848, 853,

859
Grimson, J., 641, 850
Grinstein, G., 830, 859
Grosky, W., xxix
Gruber, R., 775, 865
Guenther, O., 798, 858
Guha, S., 735, 859
Gunopulos, D., 735, 847
Guo, S., 830, 869
Gupta, A., 412, 706, 847, 860, 875
Guruswamy, S., 830, 869
Guttman, A., 798, 860
Gyssens, M., 118, 849
Haas, L.M., 641, 775, 853, 860, 877
Haas, P.J., 412, 706, 860–861, 870
Haber, E., xxviii
Haderle, D., 593, 641, 867
Hadzilacos, V., 567, 570, 850
Haerder, T., 229, 593, 855, 860
Haight, D.M., 775, 852
Haines, M., xxvii

Halici, U., 641, 860
Hall, M., 675, 860
Hall, N.E., 775, 830, 852, 869
Hall, P.A.V., 358, 860
Halpern, J.Y., 413, 854
Hamilton, G., 176, 860, 876
Hammer, J., xxix, 706, 877
Hammer, M., 87, 641, 860, 871
Han, J., 735, 860, 868
Hand, D.J., 735, 860
Hanson, E.N., 176, 706, 860
Hapner, M., 176, 876
Harel, D., 821, 853
Harinarayan, V., 706, 860
Haritsa, J., 570, 860
Harkey, D., 675, 853
Harrington, J., xxviii
Harris, S., xxviii
Harrison, J., 706, 860
Hasan, W., 641, 858
Heckerman, D., 735, 860
Heckman, M., 520, 866
Helland, P., 641
Hellerstein, J.M., xxvii, 176, 412, 706,

775–776, 798, 821, 848–849, 861, 863,
869, 872, 736

Henschen, L.J., 87, 866
Heytens, M.L., 358, 640, 855
Hillebrand, G, 675
Hillebrand, G., 852
Himmeroeder, R., 675, 861
Hinterberger, H., 798, 868
Hoch, C.G., 775, 857
Ho, C-T., 706, 861
Holfelder, P., 675, 854
Hollaar, L.A., 676, 830, 871
Holzner, S., 675, 861
Honeyman, P., 456, 850
Hong, D., 570, 861
Hong, W., 641, 861
Hopcroft, J.E., 246, 848
Hou, W-C., 412, 830, 861, 869
Howard, J.H., 456, 849
Hsiao, H., 641, 861
Huang, J., 570, 861
Huang, W., xxviii
Huang, Y., 641, 830, 861
Hull, R., 23, 50, 86, 456, 776, 821, 830,

847, 861
Hunter, J., 675, 861
Imielinski, T., 86, 735, 830, 847, 861
Inge, C., 359

900

Ioannidis, Y.E., xxvii, 50, 412–413,
861–862, 867, 870

Iochpe, C., 830, 876
Jacobsson, H., xxix
Jagadish, H.V., 229, 277, 706, 798, 830,

856, 862–863, 874
Jain, A.K., 735, 855, 862
Jajodia, S., 520, 641, 830, 862, 875–876
Jarke, M., 412, 862
Jean, Y., 830, 869
Jeffers, R., 570, 847
Jhingran, A., 176, 874
Jing, J., 641, 856
Johnson, S., 177
Johnson, T., 570, 861
Jones, K.S., 676, 862
Jonsson, B.T., 641, 857
Jou, J.H., 456, 862
Kabra, N., 413, 830, 862, 869
Kambayashi, Y., 641, 862
Kanellakis, P.C., 86, 456, 776, 830, 847,

849, 862
Kang, J., 675, 857
Kang, Y.C., 412, 862
Kaplan, S.J., 876
Karabatis, G., 641, 830, 871
Katz, R.H., 229, 358, 853, 855, 869
Kaufman, L., 735, 862
Kawaguchi, A., 706, 854
Keats, J., 119
Keim, D.A., 830, 862
Keller, A.M., 87, 862
Kemnitz, G., 775, 874
Kemper, A.A., 229, 775, 865
Kent, W., 23, 431, 775, 830, 857, 862
Kerisit, J.M., 821, 871
Kerschberg, L., 23, 863
Ketabchi, M.A., 830, 862
Khayyam, O., 799
Khoshafian, S., 776, 849
Kiernan, J., 176, 873
Kiessling, W., 412, 863
Kifer, M., xxvii, 776, 821, 863
Kimball, R., 706, 863
Kim, W., 412, 641, 775–776, 856, 863
Kimmel, W., xxviii
King, J.J., 412, 863
King, R., 50, 861
King, W.F., 86, 848, 853
Kirk, C., 675, 869
Kitsuregawa, M., 358, 858
Kleinberg, J.M., 676, 735, 858, 863

Klein, J.D., xxix
Klug, A.C., 23, 118, 192, 229, 412, 855, 863
Knapp, E., 863
Knuth, D.E., 246, 318, 863
Koch, G., 87, 863
Koch, J., 412, 862
Kodavalla, H., xxix
Kohler, W.H., 863
Konopnicki, D., 675, 830, 863
Kornacker, M., 775, 798, 863
Korn, F., 863
Korth, H.F., 23, 570, 641, 830, 861, 864,

866, 873
Kossman, D., 641, 706, 852, 857
Kotidis, Y., 706, 864, 871
Koutsoupias, E., 798, 861
Kowalski, R.A., 821, 876
Kriegel, H., 798, 849, 851
Kriegel, H-P., 735, 798, 830, 850, 856, 862
Krishnakumar, N., 641, 864
Krishnamurthy, R., 412, 641, 821, 853,

855, 858, 864
Krishnaprasad, M., xxix, 830, 870
Kuchenhoff, V., 821, 876
Kuhns, J.L., 86, 118, 864
Kulkarni, K., xxvii
Kull, D., 496, 877
Kumar, K.B., 358, 640, 855
Kumar, V., 570, 864
Kunchithapadam, K., xxviii
Kung, H.T., 570, 864
Kuo, D., 864
Kupsch, J., 830, 869
Kuspert, K., 229, 775, 865
LaCroix, M., 118, 864
Ladner, R.E., 570, 866
Lai, M., 570, 864
Lakshmanan, L.V.S., 675, 735, 864, 868
Lam, C., 775, 864
Lamport, L., 641, 864
Lampson, B.W., 641, 864
Landers, T.A., 641, 871
Landis, G., 775, 864
Landwehr, C.L., 520
Langerak, R., 87, 864
Lapis, G., 641, 775, 860, 877
Larson, J.A., 50, 641, 873
Larson, P., 298, 706, 851, 864, 870
Larson, P-A., 318, 864
Lausen, G., 675, 776, 861, 863
Lawande, S., 830, 865
Layman, A., 706, 859

Author Index 901

Lebowitz, F., 91
Lee, E.K., 229, 853
Lee, M., xxviii
Lefebvre, A., 776, 821, 858, 876
Leff, A., 641, 870
Lehman, P.L., 570, 864
Leinbaugh, P., 830, 851
Lenzerini, M., 50, 849
Lescoeur, F., 821, 871
Leu, D.F., 853
Leung, T.W., 776, 874
Leung, T.Y.C., 412, 735, 821, 865, 872
Leventhal, M., 675, 865
Levine, F., 570, 593, 867
Levy, A.Y., 675, 706, 857, 874
Lewis, D., 675, 865
Lewis, P., 641, 871
Ley, M., xxvii, 643
Libkin, L., 706, 854
Liedtke, R., 830, 876
Lieuwen, D.F., 229, 706, 830, 854, 862, 869
Lim, E-P., 641, 830, 865
Lin, K-I., 798
Lindsay, B.G., xxix, 86, 229, 593, 641, 775,

853, 859–860, 865, 867, 875, 877
Ling, Y., 412, 875
Linnemann, V., 229, 775, 865
Lipski, W., 86, 861
Lipton, R.J., 858, 412, 830, 865
Liskov, B., 775, 865
Litwin, W., 298, 641, 865
Liu, M.T., 641, 856, 865
Livny, M., 229, 570, 641, 735, 775–776,

830, 847, 851–852, 857, 860, 865, 872,
877

Lochovsky, F., 776, 863
Lockemann, P.C., 830, 876
Lo, B., 706, 849
Loh, W-Y., 735
Lohman, G.M., 412, 641, 775, 860, 865–866
Lomet, D.B., 318, 570, 641, 798, 864–865,

868
Loney, K., 87, 863
Lorie, R.A., 86, 176, 318, 412, 539, 593,

848, 853, 856, 859, 865, 872
Lou, Y., 776, 865
Lozinskii, E.L., 821, 863
Lucchesi, C.L., 456, 866
Lu, H., 641, 865
Ludaescher, B., 675, 861
Lueder, R., 830, 869
Lum, V.Y., 277, 706, 866, 874

Lunt, T., 520, 866
Lyngbaek, P., 775, 857
Mackert, L.F., 641, 866
MacNicol, R., xxix
Mahbod, B., 775, 857
Maheshwari, U., 775, 865
Maier, D., 23, 86, 456, 775–776, 821, 849,

854, 866, 877
Makinouchi, A., 776, 866
Manber, U., 570, 866
Mannila, H., 456, 735, 847, 861, 866
Mannino, M.V., 412, 866
Manolopoulos, Y., 735, 857
Manprempre, C., 676, 876
Manthey, R., 87, 851
Mark, L., 641, 865
Markowitz, V.M., 50, 87, 866
Martella, G., 520, 852
Maryanski, F., 50, 869
Matos, V., 118, 776, 869
Mattos, N., 176, 776, 852, 854
Maugis, L., 176, 848
McAuliffe, M.L., 775, 852
McCarthy, D.R., 176, 866
McCreight, E.M., 277, 849
McCune, W.W., 87, 866
McGill, M.J., 675, 871
McGoveran, D., 87, 854
McHugh, J., 675, 866
McJones, P.R., 86, 593, 848, 859
McLeod, D., 87, 412, 848, 860
McPherson, J., 229, 775, 860, 865
Mecca, G., 675, 776, 848–849
Meenakshi, K., 821, 849
Megiddo, N., 706, 861
Mehl, J.W., 86, 176, 848, 853
Mehrotra, S., 641, 866
Mehta, M., 641, 735, 866, 872
Melton, J., xxvii, 176, 776, 855, 867
Menasce, D.A., 641, 867
Mendelzon, A.O., 456, 675, 735, 830, 848,

857, 859, 866–867, 870
Meo, R., 735, 867
Meredith, J., 496, 874
Merialdo, P., 675, 849
Merlin, P.M., 412, 853
Merrett, T.H., 118, 246, 867
Michel, R., 358, 853
Michie, D., 735, 867
Mihaila, G.A., 675, 867
Mikkilineni, K.P., 358, 867
Miller, R.J., 50, 735, 867, 877

902

Milne, A.A., 540
Milo, T., 675, 776, 830, 850, 867
Minker, J., 86–87, 412, 456, 821, 852, 858,

867
Minoura, T., 641, 867
Misra, J., 641, 853
Missikoff, M., 496, 852
Mitchell, G., 412, 867
Moffat, A., 676, 867, 877–878
Mohan, C., xxvii, xxix, 570, 593, 641, 775,

798, 863, 867–868
Morimoto, Y., 735, 858
Morishita, S., 735, 821, 855, 858
Morris, K.A., 821, 868
Morrison, R., 848
Motro, A., 50, 868
Motwani, R., 735, 851, 857, 875
Mukkamala, R., 641, 868
Mumick, I.S., 412, 706, 776, 821, 854, 860,

868
Muntz, R.R., 641, 735, 865, 867
Muralikrishna, M., xxix, 358, 412, 640,

855, 868
Mutchler, D., 641, 862
Myers, A.C., 775, 865
Myllymaki, J., 830, 865
Nag, B., 830, 869
Naqvi, S.A., 776, 821, 850–851, 853, 868
Narang, I., 570, 868
Narasayya, V.R., 496, 853
Narayanan, S., 776, 852
Nash, O., 247
Naughton, J., 877
Naughton, J.F., xxvii, 318, 358, 412, 496,

640, 706, 775–776, 798, 821, 830, 847,
852, 855, 860–861, 865, 868–869, 873,
875

Navathe, S.B., 23, 50, 570, 735, 847, 849,
856, 872–873

Negri, M., 176, 868
Neimat, M-A., 298, 775, 857, 865
Nestorov, S., 675, 735, 868, 875
Newcomer, E., 830, 850
Ng, P., 641, 877
Ng, R.T., 229, 735, 856, 862, 868
Nguyen, T., 830, 868
Nicolas, J-M., 87, 456, 858
Nievergelt, J., 298, 798, 856, 868
Nodine, M.H., 641
Nyberg, C., 318, 868
Obermarck, R., 641, 867–868, 877
Olken, F., 358, 412, 706, 855, 868

Olshen, R.A., 735, 851
Olston, C., 706, 849
Omiecinski, E., 570, 735, 847, 872
Onassis, A., 707
O’Neil, P., 23, 641, 706, 868–869
Ong, K., 776, 877
Ooi, B-C., 641, 865
Orenstein, J., 775, 864
Osborn, S.L., 456, 866
Ozden, B., 830, 869
Ozsoyoglu, G., 118, 412, 520, 776, 830,

853, 861, 869
Ozsoyoglu, Z.M., 118, 412, 776, 865, 869,

873
Ozsu, M.T., 641, 869
Page, L., 676, 851
Pang, A., 735, 868
Papadimitriou, C.H., 87, 539, 570, 798,

861, 869
Papakonstantinou, Y., 641, 675, 847, 869
Paraboschi, S., 176, 849, 852
Paredaens, J., 456, 854
Parent, C., 50, 873
Park, J., 412, 706, 869, 872
Patel, J.M., 830, 869
Paton, N., 176, 855
Patterson, D.A., 229, 853, 869
Paul, H., 229, 775, 869, 872
Peckham, J., 50, 869
Pelagatti, G., 176, 641, 852, 868
Petajan, E., 830, 869
Petrov, S.V., 456, 869
Petry, F., xxix
Pfeffer, A., 775, 798, 861
Phipps, G., 821, 855
Piatetsky-Shapiro, G., 412, 735, 848, 857,

869
Pippenger, N., 298, 856
Pirahesh, H., 176, 229, 412, 593, 641, 706,

775, 821, 854, 859–860, 865, 867–869,
872

Pirotte, A., 118, 864
Pistor, P., 229, 775, 865
Pitts-Moultis, N., 675, 869
Poosala, V., 412, 870
Pope, A., 278
Popek, G.J., 87, 849
Port, G.S., 821, 849
Potamianos, S., 176, 874
Powell, A., 858
Pramanik, S., 358, 857
Pregibon, D., 735

Author Index 903

Prescod, P., 675, 859
Price, T.G., 86, 412, 593, 853, 859, 872
Prock, A., xxviii
Pruyne, J., xxvii
Psaila, G., 735, 848, 867
Pu, C., 641, 870
Putzolu, G.R., 86, 570, 593, 848, 859, 865
Qian, X., 706, 870
Quass, D., 675, 706
Quass, D, 866
Quass, D., 869–870
Quinlan, J.R., 870
Quinlan, R., 735
Rafiei, D., xxix, 735, 870
Raghavan, P., 676, 735, 847, 858
Raiha, K-J., 456, 866
Rajaraman, A., 675, 706, 860, 870
Ramakrishna, M.V., 298, 870
Ramakrishnan, I.V., 821, 870
Ramakrishnan, R., 50, 412–413, 706, 735,

775–776, 798, 821, 830, 845, 847,
849–850, 855, 858–859, 862, 865,
867–868, 870, 872, 874, 877

Ramamohanarao, K., 298, 676, 821, 849,
870, 877

Ramamritham, K., 539, 570, 854, 861
Ramamurty, R., xxviii
Raman, B., 706, 849
Raman, V., 706, 849
Ramasamy, K., 706, 830, 855, 869, 873
Ranganathan, A., 830, 870
Ranganathan, M., 735, 857
Rao, P., 821, 870
Rao, S.G., 706, 870
Rastogi, R., 229, 641, 735, 830, 851, 859,

862, 866, 869–870
Reames, M., xxviii
Reed, D.P., 570, 641, 870
Reese, G., 176, 870
Reeve, C.L., 641, 850, 871
Reina, C., 735, 851
Reiner, D.S., 412, 863
Reisner, P., 176, 853
Reiter, R., 86, 870
Rengarajan, T., xxix
Reuter, A., 593, 830, 859–860, 870–871
Richardson, J.E., 775, 229, 852
Rielau, S., 776, 852
Riloff, E., 676, 830, 871
Rishe, N., 412, 875
Rissanen, J., 456, 735, 866, 871
Rivest, R.J., 298

Rivest, R.L., 871
Robinson, J.T., 570, 798, 857, 864, 871
Rohmer, J., 821, 871
Roseman, S., 798, 857
Rosenkrantz, D.J., 641, 871
Rosenthal, A., 412, 735, 830, 871–872, 875
Ross, K.A., 706, 776, 853–854, 868, 871
Rotem, D., 412, 706, 868, 874
Roth, T., 706, 849
Rothnie, J.B., 641, 850, 871
Rousseeuw, P.J., 735, 862
Roussopoulos, M., 706, 871
Roussopoulos, N., 229, 412, 641, 706, 798,

853, 864–865, 871
Rozen, S., 496, 871
Rusinkiewicz, M., 641, 830, 871
Ryan, T.A., 775, 857
Sacca, D., 821, 871
Sacks-Davis, R., 298, 676, 870, 878
Sadri, F., 675, 864
Sagalowicz, D., 876
Sager, T., 412, 866
Sagiv, Y., 412, 456, 675, 776, 821, 848–849,

863, 866, 870–871
Sagonas, K.F., 821, 870–871
Salton, G., 675, 871
Salveter, S., 412, 873
Salzberg, B.J., 228, 246, 318, 570, 798,

865, 871
Samarati, P., 520, 852
Samet, H., 798, 871
Sander, J., 856
Sander, R.E., 176
Sanders, R.E., 872
Sandhu, R., 520, 862
Saraiya, Y., 821, 868
Sarawagi, S., 706, 735, 776, 847, 872
Savasere, A., 735, 872
Sbattella, L., 176, 868
Schek, H., 229, 775, 869, 872
Schek, H.J., 798, 876
Schell, R., 520, 866
Schkolnick, M.M., 86, 495, 570, 849, 853,

857, 872
Schlageter, G., 641, 872
Schlepphorst, C., 675, 861
Schneider, D.A., 298, 318, 358, 412, 640,

855, 865
Schneider, R., 798, 849, 851
Scholl, M.H., 229, 775, 869, 872
Schrefl, M., xxix
Schryro, M., 830, 876

904

Schuh, D.T., 775, 852
Schumacher, L., xxvii
Schwarz, P., 593, 641, 867
Sciore, E., 412, 456, 830, 872–873
Seeger, B., 798, 849
Segev, A., 412, 706, 735, 830, 869, 872, 875
Selfridge, P.G., 735, 872
Selinger, P.G., 86, 176, 412, 520, 593, 641,

853, 865, 872, 877
Sellis, T.K., 229, 412, 798, 856, 862, 872
Seshadri, P., xxvii, 412–413, 735, 775–776,

821, 854, 870, 872, 874
Seshadri, S., 358, 412, 830, 851, 855, 860
Sevcik, K.C., 798, 868
Shafer, J.C., 735, 848, 872
Shaft, U., xxvii–xxviii, 798, 850, 859
Shah, D., 496, 852
Shan, M-C., 775, 830, 855, 857, 862
Shapiro, L.D., xxvii, 358, 855, 872
Shasha, D., xxvii, 496, 570, 641, 871, 873
Shatkay, H., 735, 873
Sheard, T., 87, 873
Shekita, E.J., 229, 412, 775, 852, 860, 870
Sheldon, M.A., 676, 876
Shenoy, S.T., 412, 873
Shepherd, J., 298, 870
Sheth, A.P., 50, 641, 830, 856, 865, 871,

873, 641
Shim, K., 706, 735, 776, 853, 859, 862, 870
Shipman, D.W., 539, 641, 850, 871
Shivakumar, N., 735, 857
Shmueli, O., 675, 821, 830, 850, 863
Shockley, W., 520, 866
Shoshani, A., 706, 735, 872–873
Shrira, L., 775, 865
Shukla, A., xxvii, 706, 855, 873, 877
Sibley, E.H., 23, 858
Siegel, M., 412, 830, 872–873
Silberschatz, A., 23, xxviii, 229, 570, 641,

830, 851, 862, 864, 866, 869, 873
Silverstein, C., 851
Simon, A.R., 176, 867
Simon, E., 176, 496, 873
Simoudis, E., 735, 857, 873
Singhal, A., 641, 865
Sistla, A.P., 798, 830, 861, 877
Skeen, D., 641, 856, 873
Slack, J.M., xxix
Slutz, D.R., 86, 853
Smith, D.C.P., 50, 873
Smith, J.M., 50, 873
Smith, K.P., 229, 520, 849, 873

Smith, P.D., 246, 873
Smyth, P., 735, 857
Snodgrass, R.T., 176, 776, 821, 830, 875,

877
So, B., xxvii
Soda, G., 496, 852
Solomon, M.H., 775, 852
Soloviev, V., 641, 866
Son, S.H., xxix
Soparkar, N., 570, 830, 864, 873
Sorenson, P., 495, 872
Spaccapietra, S., 50, 854, 873
Speegle, G., xxix
Spertus, E., 676, 873
Spiegelhalter, D.J., 735, 867
Spiro, P., xxix
Spyratos, N., 87, 849
Srikant, R., 706, 735, 847–848, 861,

873–874
Srinivasan, V., 570, 830, 868, 874
Srivastava, D., 412, 706, 735, 776, 821,

870–872, 874
Srivastava, J., 641, 706, 830, 865, 874
Stacey, D., 641, 874
Stachour, P., 520, 874
Stankovic, J.A., 570, 830, 861, 874
Stavropoulos, H., xxviii
Stearns, R., 641, 871
Steel, T.B., 874
Stemple, D., 87, 873
Stewart, M., 318, 871
Stokes, L., 412, 860
Stolorz, P., 735, 848
Stonebraker, M., 23, 86–87, 176, 229, 358,

496, 641, 706, 775–776, 830, 848,
855–856, 861, 872, 874

Stone, C.J., 735, 851
Strong, H.R., 298, 856
Stuckey, P.J., 412, 821, 872
Sturgis, H.E., 641, 864
Subrahmanian, V.S., 176, 641, 706, 776,

821, 830, 847, 860, 876–877
Subramanian, B., 776, 874
Subramanian, I.N., 675, 864
Suciu, D., 675, 852, 857
Su, J., 776, 861
Su, S.Y.W., 358, 867
Sudarshan, S., 870, 23, xxvii, 229, 412,

706, 776, 821, 830, 862, 870–874
Sudkamp, N., 229, 775, 865
Sun, W., 412, 875
Suri, R., 570, 875

Author Index 905

Swagerman, R., 776, 852
Swami, A., 412, 735, 847, 860, 875
Swift, T., 821, 870–871, 875
Szilagyi, P., 676, 876
Tanaka, H., 358, 858
Tanca, L., 176, 821, 852, 857
Tan, C.K., 775, 852
Tan, J.S., 706, 874
Tan, K-L., 641, 865
Tang, N., xxviii
Tannen, V.B., 776, 851
Tansel, A.U., 830, 875
Tay, Y.C., 570, 875
Taylor, C.C., 735
Taylor, C.C., 867
Teng, J., xxix
Teorey, T.J., 50, 87, 875
Therber, A., xxviii
Thevenin, J.M., 358, 853
Thomas, R.H., 641, 875
Thomas, S., 735, 872
Thomasian, A., xxix, 570, 857, 875
Thompson, G.R., 641, 851
Thuraisingham, B., 520, 874
Tiberio, P., 496, 857
Tiwary, A., 860
Todd, S.J.P., 86, 875
Toivonen, H., 735, 847, 866, 875
Tokuyama, T., 735, 858
Tompa, F.W., 706, 851
Towsley, D., 570, 861
Traiger, I.L., 86, 539, 593, 641, 848, 853,

856, 859, 865, 875
Trickey, H., 706, 854
Tsangaris, M., 776, 875
Tsatalos, O.G., 775, 852
Tsatsoulis, C., xxix
Tsichritzis, D.C., 23, 863
Tsou, D., 456, 875
Tsukerman, A., 318, 871
Tsukuda, K., 229, 849
Tsur, D., 735, 875
Tsur, S., 821, 850, 853
Tucherman, L., 87, 852
Tucker, A.B., 23, 875
Tufte, K., 830, 869
Tukey, J.W., 735, 875
Twichell, B.C., 229, 849
Ubell, M., xxix
Ullman, J.D., 23, xxviii, 50, 86, 246, 298,

412, 456, 675, 706, 735, 821, 848–849,
857, 860, 868, 870, 875

Urban, S.D., 50, 87, 875
Uren, S., 318, 871
Uthurusamy, R., 735, 857
Valdes, J., 830, 858
Valduriez, P., 496, 641, 869, 873
Van Emden, M., 821, 876
Van Gelder, A., 821, 868, 876
Van Gucht, D., xxvii, 118, 706, 776, 849,

870
Van Rijsbergen, C.J., 675, 876
Vance, B., 776, 852
Vandenberg, S.L., xxix, 775–776, 852, 874
Vardi, M.Y., 86, 456, 859, 876
Vaughan, B., 318, 871
Vélez, B., 676, 876
Verkamo, A.I., 735, 847, 866
Vianu, V., 23, 86, 456, 675, 776, 821, 830,

847
Vidal, M., 50, 852
Vieille, L., 776, 821, 858, 876
Viswanathan, S., 830, 861
Von Bultzingsloewen, G., 412, 830, 876
Von Halle, B., 496, 857
Vossen, G., 23, 876
Vu, Q., 735, 874
Wade, B.W., 86, 176, 520, 593, 848, 853,

859, 865
Wade, N., 676, 876
Wagner, R.E., 277, 876
Walch, G., 229, 775, 865
Walker, A., 641, 821, 848, 877
Wallrath, M., 229, 775, 865
Wang, X.S., 641, 876
Wang, H., 706, 861
Ward, K., 413, 859
Warren, D.S., 821, 866, 870–871, 875
Watson, V., 86, 848
Weber, R., 798, 876
Weddell, G.E., 456, 876
Wei, J., 873
Weihl, W., 593, 876
Weikum, G., 229, 775, 869, 872
Weiner, J., 675, 868
Weinreb, D., 775, 864
Weiss, R., 676, 876
Wenger, K., 830, 865
West, M., 523
White, C., 641, 876
White, S., 176, 876
White, S.J., 775, 852
Widom, J., 87, 176, 675, 706, 848, 852,

859, 866, 869, 876–877

906

Wiederhold, G., 23, xxvii, 228, 246, 641,
706, 858, 867, 870, 876

Wilkinson, W.K., 318, 358, 570, 849, 864
Willett, P., 676, 862
Williams, R., 641, 877
Wilms, P.F., 641, 775, 860, 877
Wilson, L.O., 735, 872
Wimmers, E.L., 735, 848
Winslett, M.S., 87, 520, 873, 877
Wiorkowski, G., 496, 877
Wise, T.E., 229, 849
Wistrand, E., 830, 848
Witten, I.H., 676, 877
Woelk, D., 775, 863
Wolfson, O., 641, 798, 830, 861, 877
Wong, E., 412, 641, 850, 856, 871, 877
Wong, H.K.T., 412, 858
Wong, L., 776, 851
Wong, W., 539, 850
Wood, D., 358, 855
Woodruff, A., 830, 848
Wright, F.L., 457
Wu, J., 776, 863
Wylie, K., 706, 849
Xu, B., 798, 877
Xu, X., 735, 856
Yajima, S., 641, 862
Yang, D., 50, 87, 875
Yang, Y., 735, 877
Yannakakis, M., 412, 871
Yao, S.B., 570, 864
Yoshikawa, M., 641, 776, 861–862
Yost, R.A., 86, 641, 853, 877
Young, H.C., 318, 865
Youssefi, K., 412, 877
Yuan, L., 776, 869
Yu, C.T., 641, 877
Yu, J-B., 798, 830, 859, 869
Yue, K.B., xxix
Yurttas, S., xxix
Zaniolo, C., 86, 176, 412, 456, 776, 821,

830, 853, 864, 871, 877
Zaot, M., 735, 848
Zdonik, S.B., xxvii, 412, 735, 775–776, 867,

873–874, 877
Zhang, A., 641, 856
Zhang, T., 735, 877
Zhang, W., 877
Zhao, W., 830, 874
Zhao, Y., 706, 877
Zhou, J., 798, 877
Zhuge, Y., 706, 877

Ziauddin, M., xxix
Zicari, R., 176, 776, 821, 830, 877
Zloof, M.M., xxvii, 86, 192, 877
Zobel, J., 676, 867, 877–878
Zukowski, U., 821, 878
Zwilling, M.J., 775, 852

	Database Management Systems (2nd Ed.)
	Table of Contents
	Preface
	Part I: Basics
	Ch1 Introduction to Database Systems
	1.1 Overview
	1.2 A Historical Perspective
	1.3 File Systems versus a DBMS
	1.4 Advantages of a DBMS
	1.5 Describing and Storing Data in a DBMS
	1.6 Queries in a DBMS
	1.7 Transaction Management
	1.8 Structure of a DBMS
	1.9 People Who Deal with Databases
	1.10 Points to Review
	Exercises
	Project-Based Exercises
	Bibliographical Notes

	Ch2 Identity-Relationship Model
	2.1 Overview of Database Design
	2.2 Entities, Attributes, and Entity Sets
	2.3 Relationships and Relationship Sets
	2.4 Additional Features of the ER Model
	2.5 Conceptual Database Design With the ER Model
	2.6 Conceptual Design for Large Enterprises*
	2.7 Points to Review

	Ch3 Relational Model
	3.1 Introduction to the Relational Model
	3.2 Integrity Constraints over Relations
	3.3 Enforcing Integrity Constraints
	3.4 Querying Relational Data
	3.5 Logical Database Design: ER to Relational
	3.6 Introduction to Views
	3.7 Destroying/Altering Tables and Views
	3.8 Points to Review

	Part II: Relational Queries
	Ch4 Relational Algebra & Calculus
	4.1 Preliminaries
	4.2 Relational Algebra
	4.3 Relational Calculus
	4.4 Expressive Power of Algebra and Calculus*
	4.5 Points to Review

	Ch5 SQL: Queries, Programming, Triggers
	5.1 About the Examples
	5.2 The Form of a Basic SQL Query
	5.3 UNION, INTERSECT, and EXCEPT
	5.4 Nested Queries
	5.5 Aggregate Operators
	5.6 Null Values*
	5.7 Embedded SQL*
	5.8 Cursors*
	5.9 Dynamic SQL*
	5.10 ODBC and JDBC*
	5.11 Complex Integrity Constraints in SQL-92*
	5.12 Triggers and Active Databases
	5.13 Designing Active Databases
	5.14 Points to Review

	Ch6 Query-By-Example (QBE)
	6.1 Introduction
	6.2 Basic QBE Queries
	6.3 Queries over Multiple Relations
	6.4 Negation in the Relation-Name Column
	6.5 Aggregates
	6.6 The Conditions Box
	6.7 Unnamed Columns
	6.8 Updates
	6.9 Division and Relational Completeness*
	6.10 Points to Review

	Part III: Data Storage & Indexing
	Ch7 Storing Data: Disks & Files
	7.1 The Memory Hierarchy
	7.2 RAID
	7.3 Disk Space Management
	7.4 Buffer Manager
	7.5 Files and Indexes
	7.6 Page Formats*
	7.7 Record Formats*
	7.8 Points to Review

	Ch8 File Organizations & Indexes
	8.1 Cost Model
	8.2 Comparison of Three File Organizations
	8.3 Overview of Indexes
	8.4 Properties of Indexes
	8.5 Index Specification in SQL-92
	8.6 Points to Review

	Ch9 Tree-Structured Indexing
	9.1 Indexed Sequential Access Method (ISAM)
	9.2 B+ Trees: A Dynamic Index Structure
	9.3 Format of a Node
	9.4 Search
	9.5 Insert
	9.6 Delete*
	9.7 Duplicates*
	9.8 B+ Trees in Practice*
	9.9 Points to Review

	Ch10 Hash-Based Indexing
	10.1 Static Hashing
	10.2 Extendible Hashing*
	10.3 Linear Hashing*
	10.4 Extendible Hashing versus Linear Hashing*
	10.5 Points to Review

	Part IV: Query Evaluation
	Ch11 External Sorting
	11.1 A Simple Two-Way Merge Sort
	11.2 External Merge Sort
	11.3 Minimizing I/O Cost versus Number of I/Os
	11.4 Using B+ Trees for Sorting
	11.5 Points to Review

	Ch12 Evaluation of Relational Operators
	12.1 Introduction to Query Processing
	12.2 The Selection Operation
	12.3 General Selection Conditions*
	12.4 The Projection Operation
	12.5 The Join Operation
	12.6 The Set Operations*
	12.7 Aggregate Operations*
	12.8 The Impact of Buffering*
	12.9 Points to Review

	Ch13 Introduction to Query Optimization
	13.1 Overview of Relational Query Optimization
	13.2 System Catalog in a Relational DBMS
	13.3 Alternative Plans: A Motivating Example
	13.4 Points to Review

	Ch14 A Typical Relational Query Optimizer
	14.1 Translating SQL Queries into Algebra
	14.2 Estimating the Cost of a Plan
	14.3 Relational Algebra Equivalences
	14.4 Enumeration of Alternative Plans
	14.5 Nested Subqueries
	14.6 Other Approaches to Query Optimization
	14.7 Points to Review

	Part V: Database Design
	Ch15 Schema Refinement & Normal Forms
	15.1 Introduction to Schema Refinement
	15.2 Functional Dependencies
	15.3 Examples Motivating Schema Refinement
	15.4 Reasoning about Functional Dependencies
	15.5 Normal Forms
	15.6 Decompositions
	15.7 Normalization
	15.8 Other Kinds of Dependencies*
	15.9 Points to Review

	Ch16 Physical Database Design & Tuning
	16.1 Introduction to Physical Database Design
	16.2 Guidelines for Index Selection
	16.3 Basic Examples of Index Selection
	16.4 Clustering and Indexing*
	16.5 Indexes on Multiple-Attribute Search Keys*
	16.6 Indexes that Enable Index-Only Plans*
	16.7 Overview of Database Tuning
	16.8 Choices in Tuning the Conceptual Schema*
	16.9 Choices in Tuning Queries and Views*
	16.10 Impact of Concurrency*
	16.11 DBMS Benchmarking*
	16.12 Points to Review

	Ch17 Security
	17.1 Introduction to Database Security
	17.2 Access Control
	17.3 Discretionary Access Control
	17.4 Mandatory Access Control*
	17.5 Additional Issues Related to Security*
	17.6 Points to Review

	Part VI: Transaction Management
	Ch18 Transaction Management Overview
	18.1 The Concept of a Transaction
	18.2 Transactions and Schedules
	18.3 Concurrent Execution of Transactions
	18.4 Lock-Based Concurrency Control
	18.5 Introduction to Crash Recovery
	18.6 Points to Review

	Ch19 Concurrency Control
	19.1 Lock-Based Concurrency Control Revisited
	19.2 Lock Management
	19.3 Specialized Locking Techniques
	19.4 Transaction Support in SQL-92*
	19.5 Concurrency Control without Locking
	19.6 Points to Review

	Ch20 Crash Recovery
	20.1 Introduction to ARIES
	20.2 Recovering from a System Crash
	20.3 Media Recovery
	20.4 Other Algorithms and Interaction with Concurrency Control
	20.5 Points to Review

	Part VII: Advanced Topics
	Ch21 Parallel & Distributed Databases
	21.1 Architectures for Parallel Databases
	21.2 Parallel Query Evaluation
	21.3 Parallelizing Individual Operations
	21.4 Parallel Query Optimization
	21.5 Introduction to Distributed Databases
	21.6 Distributed DBMS Architectures
	21.7 Storing Data in a Distributed DBMS
	21.8 Distributed Catalog Management
	21.9 Distributed Query Processing
	21.10 Updating Distributed Data
	21.11 Introduction to Distributed Transactions
	21.12 Distributed Concurrency Control
	21.13 Distributed Recovery
	21.14 Points to Review

	Ch22 Internet Databases
	22.1 The World Wide Web
	22.2 Architecture
	22.3 Beyond HTML
	22.4 Indexing for Text Search
	22.5 Ranked Keyword Searches on the Web
	22.6 Points to Review

	Ch23 Decision Support
	23.1 Introduction to Decision Support
	23.2 Data Warehousing
	23.3 OLAP
	23.4 Implementation Techniques for OLAP
	23.5 Views and Decision Support
	23.6 Finding Answers Quickly
	23.7 Points to Review

	Ch24 Data Mining
	24.1 Introduction to Data Mining
	24.2 Counting Co-occurrences
	24.3 Mining for Rules
	24.4 Tree-Structured Rules
	24.5 Clustering
	24.6 Similarity Search over Sequences
	24.7 Additional Data Mining Tasks
	24.8 Points to Review

	Ch25 Object-Database Systems
	25.1 Motivating Example
	25.2 User-Defined Abstract Data Types
	25.3 Structured Types
	25.4 Objects, Object Identity, and Reference Types
	25.5 Inheritance
	25.6 Database Design for an ORDBMS
	25.7 New Challenges in Implementing an ORDBMS
	25.8 OODBMS
	25.9 Comparing RDBMS with OODBMS and ORDBMS
	25.10 Points to Review

	Ch26 Spatial Data Management
	26.1 Types of Spatial Data and Queries
	26.2 Applications Involving Spatial Data
	26.3 Introduction to Spatial Indexes
	26.4 Indexing Based on Space-Filling Curves
	26.5 Grid Files
	26.6 R Trees: Point and Region Data
	26.7 Issues in High-Dimensional Indexing
	26.8 Points to Review

	Ch27 Deductive Databases
	27.1 Introduction to Recursive Queries
	27.2 Theoretical Foundations
	27.3 Recursive Queries with Negation
	27.4 Efficient Evaluation of Recursive Queries
	27.5 Points to Review

	Ch28 Additional Topics
	28.1 Advanced Transaction Processing
	28.2 Integrated Access to Multiple Data Sources
	28.3 Mobile Databases
	28.4 Main Memory Databases
	28.5 Multimedia Databases
	28.6 Geographic Information Systems
	28.7 Temporal and Sequence Databases
	28.8 Information Visualization
	28.9 Summary

	AppA Database Design Case Study: Internet Shop
	A.1 Requirements Analysis
	A.2 Conceptual Design
	A.3 Logical Database Design
	A.4 Schema Refinement
	A.5 Physical Database Design
	A.6 Security
	A.7 Application Layers

	AppB Minibase Software
	B.1 What's Available
	B.2 Overview of Minibase Assignments
	B.3 Acknowledgments

	References
	Subject Index
	Author Index
	Backcover

	back:
	TOC:
	e-text:
	forward:
	background:

