Database Management Systems

Second Edition

Raghu Ramakrishnan / Johannes Gehrke

CONTENTS

PREFACE

PartI BASICS

1

INTRODUCTION TO DATABASE SYSTEMS

1.1 Overview

1.2 A Historical Perspective

1.3 File Systems versus a DBMS

1.4 Advantages of a DBMS

1.5 Describing and Storing Data in a DBMS
1.5.1 The Relational Model
1.5.2 Levels of Abstraction in a DBMS
1.5.3 Data Independence

1.6 Queries in a DBMS

1.7 Transaction Management
1.7.1 Concurrent Execution of Transactions
1.7.2 Incomplete Transactions and System Crashes
1.7.3 Points to Note

1.8 Structure of a DBMS

1.9 People Who Deal with Databases

1.10 Points to Review

THE ENTITY-RELATIONSHIP MODEL
2.1 Overview of Database Design
2.1.1 Beyond the ER Model
2.2 Entities, Attributes, and Entity Sets
2.3 Relationships and Relationship Sets
2.4 Additional Features of the ER Model
2.4.1 Key Constraints
2.4.2 Participation Constraints
2.4.3 Weak Entities
2.4.4 Class Hierarchies
2.4.5 Aggregation

vii

xxii

© 00 = Ut =~ W

10
11
14
15
15
16
17
18
18
20
21

24
24
25
26
27
30
30
32
33
35
37

viil

2.5

2.6
2.7

DATABASE MANAGEMENT SYSTEMS

Conceptual Database Design With the ER, Model
2.5.1 Entity versus Attribute
2.5.2 Entity versus Relationship
2.5.3 Binary versus Ternary Relationships *
2.5.4 Aggregation versus Ternary Relationships *
Conceptual Design for Large Enterprises *
Points to Review

3 THE RELATIONAL MODEL

3.1

3.2

3.3
3.4
3.5

3.6

3.7
3.8

Part 11

Introduction to the Relational Model
3.1.1 Creating and Modifying Relations Using SQL-92
Integrity Constraints over Relations
3.2.1 Key Constraints
3.2.2 Foreign Key Constraints
3.2.3 General Constraints
Enforcing Integrity Constraints
Querying Relational Data
Logical Database Design: ER to Relational
3.5.1 Entity Sets to Tables
3.5.2 Relationship Sets (without Constraints) to Tables
3.5.3 Translating Relationship Sets with Key Constraints
3.5.4 Translating Relationship Sets with Participation Constraints
3.5.5 Translating Weak Entity Sets
3.5.6 Translating Class Hierarchies
3.5.7 Translating ER Diagrams with Aggregation
3.5.8 ER to Relational: Additional Examples *
Introduction to Views
3.6.1 Views, Data Independence, Security
3.6.2 Updates on Views
Destroying/Altering Tables and Views
Points to Review

RELATIONAL QUERIES

4 RELATIONAL ALGEBRA AND CALCULUS

4.1
4.2

Preliminaries
Relational Algebra
4.2.1 Selection and Projection
4.2.2 Set Operations
4.2.3 Renaming
4.2.4 Joins
4.2.5 Division
4.2.6 More Examples of Relational Algebra Queries

38
39
40
41
43
44
45

o1
52
55
56
57
59
61
62
64
66
67
67
69
71
73
74
75
76
78
79
79
82
83

89

91
91
92
93
94
96
97
99
100

Contents

4.3

4.4
4.5

5.1
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9
5.10

5.11

5.12

5.13

Relational Calculus

4.3.1 Tuple Relational Calculus

4.3.2 Domain Relational Calculus
Expressive Power of Algebra and Calculus *
Points to Review

SQL: QUERIES, PROGRAMMING, TRIGGERS

About the Examples
The Form of a Basic SQL Query
5.2.1 Examples of Basic SQL Queries

5.2.2 Expressions and Strings in the SELECT Command

UNION, INTERSECT, and EXCEPT
Nested Queries
5.4.1 Introduction to Nested Queries
5.4.2 Correlated Nested Queries
5.4.3 Set-Comparison Operators
5.4.4 More Examples of Nested Queries
Aggregate Operators
5.5.1 The GROUP BY and HAVING Clauses
5.5.2 More Examples of Aggregate Queries
Null Values *
5.6.1 Comparisons Using Null Values
5.6.2 Logical Connectives AND, OR, and NOT
5.6.3 Impact on SQL Constructs
5.6.4 Outer Joins
5.6.5 Disallowing Null Values
Embedded SQL *
5.7.1 Declaring Variables and Exceptions
5.7.2 Embedding SQL Statements
Cursors *
5.8.1 Basic Cursor Definition and Usage
5.8.2 Properties of Cursors
Dynamic SQL *
ODBC and JDBC *
5.10.1 Architecture
5.10.2 An Example Using JDBC
Complex Integrity Constraints in SQL-92 *
5.11.1 Constraints over a Single Table
5.11.2 Domain Constraints
5.11.3 Assertions: ICs over Several Tables
Triggers and Active Databases
5.12.1 Examples of Triggers in SQL
Designing Active Databases
5.13.1 Why Triggers Can Be Hard to Understand

X

106
107
111
114
115

119
121
121
126
127
129
132
132
134
135
136
138
140
143
147
147
148
148
149
150
150
151
152
153
153
155
156
157
158
159
161
161
162
163
164
165
166
167

DATABASE MANAGEMENT SYSTEMS

5.13.2 Constraints versus Triggers
5.13.3 Other Uses of Triggers
5.14 Points to Review

QUERY-BY-EXAMPLE (QBE)
6.1 Introduction
6.2 Basic QBE Queries
6.2.1 Other Features: Duplicates, Ordering Answers
6.3 Queries over Multiple Relations
6.4 Negation in the Relation-Name Column
6.5 Aggregates
6.6 The Conditions Box
6.6.1 And/Or Queries
6.7 Unnamed Columns
6.8 Updates
6.8.1 Restrictions on Update Commands
6.9 Division and Relational Completeness *
6.10 Points to Review

Part III DATA STORAGE AND INDEXING

7

STORING DATA: DISKS AND FILES
7.1 The Memory Hierarchy

7.1.1 Magnetic Disks

7.1.2 Performance Implications of Disk Structure
7.2 RAID

7.2.1 Data Striping

7.2.2 Redundancy

7.2.3 Levels of Redundancy

7.2.4 Choice of RAID Levels
7.3 Disk Space Management

7.3.1 Keeping Track of Free Blocks

7.3.2 Using OS File Systems to Manage Disk Space
7.4 Buffer Manager

7.4.1 Buffer Replacement Policies

7.4.2 Buffer Management in DBMS versus OS
7.5 Files and Indexes

7.5.1 Heap Files

7.5.2 Introduction to Indexes
7.6 Page Formats *

7.6.1 Fixed-Length Records

7.6.2 Variable-Length Records
7.7 Record Formats *

167
168
168

177
177
178
179
180
181
181
183
184
185
185
187
187
189

193

195
196
197
199
200
200
201
203
206
207
207
207
208
211
212
214
214
216
218
218
219
221

Contents

10

7.7.1 Fixed-Length Records
7.7.2 Variable-Length Records
7.8 Points to Review

FILE ORGANIZATIONS AND INDEXES

8.1 Cost Model
8.2 Comparison of Three File Organizations
8.2.1 Heap Files
8.2.2 Sorted Files
8.2.3 Hashed Files
8.2.4 Choosing a File Organization
8.3 Overview of Indexes
8.3.1 Alternatives for Data Entries in an Index
8.4 Properties of Indexes
8.4.1 Clustered versus Unclustered Indexes
8.4.2 Dense versus Sparse Indexes
8.4.3 Primary and Secondary Indexes
8.4.4 Indexes Using Composite Search Keys
8.5 Index Specification in SQL-92
8.6 Points to Review

TREE-STRUCTURED INDEXING
9.1 Indexed Sequential Access Method (ISAM)
9.2 B+ Trees: A Dynamic Index Structure

9.3 Format of a Node

9.4 Search
9.5 Insert
9.6 Delete *

9.7 Duplicates *
9.8 B+ Trees in Practice *

9.8.1 Key Compression

9.8.2 Bulk-Loading a B+ Tree

9.8.3 The Order Concept

9.8.4 The Effect of Inserts and Deletes on Rids
9.9 Points to Review

HASH-BASED INDEXING
10.1 Static Hashing
10.1.1 Notation and Conventions
10.2 Extendible Hashing *
10.3 Linear Hashing *
10.4 Extendible Hashing versus Linear Hashing *
10.5 Points to Review

x1

222
222
224

230
231
232
232
233
235
236
237
238
239
239
241
242
243
244
244

247
248
253
254
255
257
260
265
266
266
268
271
272
272

278
278
280
280
286
291
292

xii DATABASE MANAGEMENT SYSTEMS

Part IV QUERY EVALUATION

11 EXTERNAL SORTING
11.1 A Simple Two-Way Merge Sort
11.2 External Merge Sort
11.2.1 Minimizing the Number of Runs *
11.3 Minimizing I/O Cost versus Number of I/Os
11.3.1 Blocked I/O
11.3.2 Double Buffering
11.4 Using B+ Trees for Sorting
11.4.1 Clustered Index
11.4.2 Unclustered Index
11.5 Points to Review

12 EVALUATION OF RELATIONAL OPERATORS
12.1 Introduction to Query Processing
12.1.1 Access Paths
12.1.2 Preliminaries: Examples and Cost Calculations
12.2 The Selection Operation
12.2.1 No Index, Unsorted Data
12.2.2 No Index, Sorted Data
12.2.3 B+ Tree Index
12.2.4 Hash Index, Equality Selection
12.3 General Selection Conditions *
12.3.1 CNF and Index Matching
12.3.2 Evaluating Selections without Disjunction
12.3.3 Selections with Disjunction
12.4 The Projection Operation
12.4.1 Projection Based on Sorting
12.4.2 Projection Based on Hashing *
12.4.3 Sorting versus Hashing for Projections *
12.4.4 Use of Indexes for Projections *
12.5 The Join Operation
12.5.1 Nested Loops Join
12.5.2 Sort-Merge Join *
12.5.3 Hash Join *
12.5.4 General Join Conditions *
12.6 The Set Operations *
12.6.1 Sorting for Union and Difference
12.6.2 Hashing for Union and Difference
12.7 Aggregate Operations *
12.7.1 Implementing Aggregation by Using an Index
12.8 The Impact of Buffering *

299

301
302
305
308
309
310
311
312
312
313
315

319
320
320
321
321
322
322
323
324
325
325
326
327
329
329
330
332
333
333
334
339
343
348
349
349
350
350
351
352

Contents xiii

12.9 Points to Review 353

13 INTRODUCTION TO QUERY OPTIMIZATION 359
13.1 Overview of Relational Query Optimization 360
13.1.1 Query Evaluation Plans 361

13.1.2 Pipelined Evaluation 362

13.1.3 The Iterator Interface for Operators and Access Methods 363

13.1.4 The System R Optimizer 364

13.2 System Catalog in a Relational DBMS 365
13.2.1 Information Stored in the System Catalog 365

13.3 Alternative Plans: A Motivating Example 368
13.3.1 Pushing Selections 368

13.3.2 Using Indexes 370

13.4 Points to Review 373

14 A TYPICAL RELATIONAL QUERY OPTIMIZER 374
14.1 Translating SQL Queries into Algebra 375
14.1.1 Decomposition of a Query into Blocks 375

14.1.2 A Query Block as a Relational Algebra Expression 376

14.2 Estimating the Cost of a Plan 378
14.2.1 Estimating Result Sizes 378

14.3 Relational Algebra Equivalences 383
14.3.1 Selections 383

14.3.2 Projections 384

14.3.3 Cross-Products and Joins 384

14.3.4 Selects, Projects, and Joins 385

14.3.5 Other Equivalences 387

14.4 Enumeration of Alternative Plans 387
14.4.1 Single-Relation Queries 387

14.4.2 Multiple-Relation Queries 392

14.5 Nested Subqueries 399

14.6 Other Approaches to Query Optimization 402

14.7 Points to Review 403
Part V. DATABASE DESIGN 415
15 SCHEMA REFINEMENT AND NORMAL FORMS 417
15.1 Introduction to Schema Refinement 418
15.1.1 Problems Caused by Redundancy 418

15.1.2 Use of Decompositions 420

15.1.3 Problems Related to Decomposition 421

15.2 Functional Dependencies 422

15.3 Examples Motivating Schema Refinement 423

Xiv DATABASE MANAGEMENT SYSTEMS

15.3.1 Constraints on an Entity Set 423

15.3.2 Constraints on a Relationship Set 424

15.3.3 Identifying Attributes of Entities 424

15.3.4 Identifying Entity Sets 426

15.4 Reasoning about Functional Dependencies 427
15.4.1 Closure of a Set of FDs 427

15.4.2 Attribute Closure 429

15.5 Normal Forms 430
15.5.1 Boyce-Codd Normal Form 430

15.5.2 Third Normal Form 432

15.6 Decompositions 434
15.6.1 Lossless-Join Decomposition 435

15.6.2 Dependency-Preserving Decomposition 436

15.7 Normalization 438
15.7.1 Decomposition into BCNF 438

15.7.2 Decomposition into 3NF * 440

15.8 Other Kinds of Dependencies * 444
15.8.1 Multivalued Dependencies 445

15.8.2 Fourth Normal Form 447

15.8.3 Join Dependencies 449

15.8.4 Fifth Normal Form 449

15.8.5 Inclusion Dependencies 449

15.9 Points to Review 450
16 PHYSICAL DATABASE DESIGN AND TUNING 457
16.1 Introduction to Physical Database Design 458
16.1.1 Database Workloads 458

16.1.2 Physical Design and Tuning Decisions 459

16.1.3 Need for Database Tuning 460

16.2 Guidelines for Index Selection 460
16.3 Basic Examples of Index Selection 463
16.4 Clustering and Indexing * 465
16.4.1 Co-clustering Two Relations 468

16.5 Indexes on Multiple-Attribute Search Keys * 470
16.6 Indexes that Enable Index-Only Plans * 471
16.7 Overview of Database Tuning 474
16.7.1 Tuning Indexes 474

16.7.2 Tuning the Conceptual Schema 475

16.7.3 Tuning Queries and Views 476

16.8 Choices in Tuning the Conceptual Schema * 477
16.8.1 Settling for a Weaker Normal Form 478

16.8.2 Denormalization 478

16.8.3 Choice of Decompositions 479

16.8.4 Vertical Decomposition 480

Contents

16.9
16.10
16.11

16.12

16.8.5 Horizontal Decomposition
Choices in Tuning Queries and Views *
Impact of Concurrency *

DBMS Benchmarking *

16.11.1 Well-Known DBMS Benchmarks

16.11.2 Using a Benchmark
Points to Review

17 SECURITY

17.1
17.2
17.3

17.4

17.5

17.6

Part VI

18 TRANSACTION MANAGEMENT OVERVIEW

18.1

18.2
18.3

18.4

18.5

18.6

Introduction to Database Security
Access Control
Discretionary Access Control

17.3.1 Grant and Revoke on Views and Integrity Constraints *

Mandatory Access Control *
17.4.1 Multilevel Relations and Polyinstantiation
17.4.2 Covert Channels, DoD Security Levels
Additional Issues Related to Security *
17.5.1 Role of the Database Administrator
17.5.2 Security in Statistical Databases
17.5.3 Encryption
Points to Review

TRANSACTION MANAGEMENT

The Concept of a Transaction
18.1.1 Consistency and Isolation
18.1.2 Atomicity and Durability
Transactions and Schedules
Concurrent Execution of Transactions
18.3.1 Motivation for Concurrent Execution
18.3.2 Serializability
18.3.3 Some Anomalies Associated with Interleaved Execution
18.3.4 Schedules Involving Aborted Transactions
Lock-Based Concurrency Control
18.4.1 Strict Two-Phase Locking (Strict 2PL)
Introduction to Crash Recovery
18.5.1 Stealing Frames and Forcing Pages
18.5.2 Recovery-Related Steps during Normal Execution
18.5.3 Overview of ARIES
Points to Review

19 CONCURRENCY CONTROL

XV

481
482
484
485
486
486
487

497
497
498
499
506
508
510
511
512
512
513
514
517

521

523
523
525
525
526
527
527
528
528
531
532
532
533
535
536
537
537

540

xvi DATABASE MANAGEMENT SYSTEMS

19.1 Lock-Based Concurrency Control Revisited 540
19.1.1 2PL, Serializability, and Recoverability 540

19.1.2 View Serializability 543

19.2 Lock Management 543
19.2.1 Implementing Lock and Unlock Requests 544

19.2.2 Deadlocks 546

19.2.3 Performance of Lock-Based Concurrency Control 548

19.3 Specialized Locking Techniques 549
19.3.1 Dynamic Databases and the Phantom Problem 550

19.3.2 Concurrency Control in B+ Trees 551

19.3.3 Multiple-Granularity Locking 554

19.4 Transaction Support in SQL-92 * 555
19.4.1 Transaction Characteristics 556

19.4.2 Transactions and Constraints 558

19.5 Concurrency Control without Locking 559
19.5.1 Optimistic Concurrency Control 559

19.5.2 Timestamp-Based Concurrency Control 561

19.5.3 Multiversion Concurrency Control 563

19.6 Points to Review 564
20 CRASH RECOVERY 571
20.1 Introduction to ARIES 571
20.1.1 The Log 573

20.1.2 Other Recovery-Related Data Structures 576

20.1.3 The Write-Ahead Log Protocol 577

20.1.4 Checkpointing 578

20.2 Recovering from a System Crash 578
20.2.1 Analysis Phase 579

20.2.2 Redo Phase 581

20.2.3 Undo Phase 583

20.3 Media Recovery 586
20.4 Other Algorithms and Interaction with Concurrency Control 587
20.5 Points to Review 588
Part VII ADVANCED TOPICS 595
21 PARALLEL AND DISTRIBUTED DATABASES 597
21.1 Architectures for Parallel Databases 598
21.2 Parallel Query Evaluation 600
21.2.1 Data Partitioning 601

21.2.2 Parallelizing Sequential Operator Evaluation Code 601

21.3 Parallelizing Individual Operations 602

21.3.1 Bulk Loading and Scanning 602

Contents

22

21.3.2 Sorting
21.3.3 Joins
21.4 Parallel Query Optimization
21.5 Introduction to Distributed Databases
21.5.1 Types of Distributed Databases
21.6 Distributed DBMS Architectures
21.6.1 Client-Server Systems
21.6.2 Collaborating Server Systems
21.6.3 Middleware Systems
21.7 Storing Data in a Distributed DBMS
21.7.1 Fragmentation
21.7.2 Replication
21.8 Distributed Catalog Management
21.8.1 Naming Objects
21.8.2 Catalog Structure
21.8.3 Distributed Data Independence
21.9 Distributed Query Processing
21.9.1 Nonjoin Queries in a Distributed DBMS
21.9.2 Joins in a Distributed DBMS
21.9.3 Cost-Based Query Optimization
21.10 Updating Distributed Data
21.10.1 Synchronous Replication
21.10.2 Asynchronous Replication
21.11 Introduction to Distributed Transactions
21.12 Distributed Concurrency Control
21.12.1 Distributed Deadlock
21.13 Distributed Recovery
21.13.1 Normal Execution and Commit Protocols
21.13.2 Restart after a Failure
21.13.3 Two-Phase Commit Revisited
21.13.4 Three-Phase Commit
21.14 Points to Review

INTERNET DATABASES
22.1 The World Wide Web
22.1.1 Introduction to HTML
22.1.2 Databases and the Web
22.2 Architecture
22.2.1 Application Servers and Server-Side Java
22.3 Beyond HTML
22.3.1 Introduction to XML
22.3.2 XML DTDs
22.3.3 Domain-Specific DTDs
22.3.4 XML-QL: Querying XML Data

xvil

602
603
606
607
607
608
608
609
609
610
610
611
611
612
612
613
614
614
615
619
619
620
621
624
625
625
627
628
629
630
632
632

642
643
643
645
645
647
651
652
654
657
659

xviii DATABASE MANAGEMENT SYSTEMS

22.3.5 The Semistructured Data Model 661

22.3.6 Implementation Issues for Semistructured Data 663

22.4 Indexing for Text Search 663
22.4.1 Inverted Files 665

22.4.2 Signature Files 666

22.5 Ranked Keyword Searches on the Web 667
22.5.1 An Algorithm for Ranking Web Pages 668

22.6 Points to Review 671
23 DECISION SUPPORT 677
23.1 Introduction to Decision Support 678
23.2 Data Warehousing 679
23.2.1 Creating and Maintaining a Warehouse 680

23.3 OLAP 682
23.3.1 Multidimensional Data Model 682

23.3.2 OLAP Queries 685

23.3.3 Database Design for OLAP 689

23.4 Implementation Techniques for OLAP 690
23.4.1 Bitmap Indexes 691

23.4.2 Join Indexes 692

23.4.3 File Organizations 693

23.4.4 Additional OLAP Implementation Issues 693

23.5 Views and Decision Support 694
23.5.1 Views, OLAP, and Warehousing 694

23.5.2 Query Modification 695

23.5.3 View Materialization versus Computing on Demand 696

23.5.4 Issues in View Materialization 698

23.6 Finding Answers Quickly 699
23.6.1 Top N Queries 700

23.6.2 Online Aggregation 701

23.7 Points to Review 702
24 DATA MINING 707
24.1 Introduction to Data Mining 707
24.2 Counting Co-occurrences 708
24.2.1 Frequent Itemsets 709

24.2.2 Iceberg Queries 711

24.3 Mining for Rules 713
24.3.1 Association Rules 714

24.3.2 An Algorithm for Finding Association Rules 714

24.3.3 Association Rules and ISA Hierarchies 715

24.3.4 Generalized Association Rules 716

24.3.5 Sequential Patterns 717

Contents xix

24.3.6 The Use of Association Rules for Prediction 718

24.3.7 Bayesian Networks 719

24.3.8 Classification and Regression Rules 720

24.4 Tree-Structured Rules 722
24.4.1 Decision Trees 723

24.4.2 An Algorithm to Build Decision Trees 725

24.5 Clustering 726
24.5.1 A Clustering Algorithm 728

24.6 Similarity Search over Sequences 729
24.6.1 An Algorithm to Find Similar Sequences 730

24.7 Additional Data Mining Tasks 731
24.8 Points to Review 732
25 OBJECT-DATABASE SYSTEMS 736
25.1 Motivating Example 737
25.1.1 New Data Types 738

25.1.2 Manipulating the New Kinds of Data 739

25.2 User-Defined Abstract Data Types 742
25.2.1 Defining Methods of an ADT 743

25.3 Structured Types 744
25.3.1 Manipulating Data of Structured Types 745

25.4 Objects, Object Identity, and Reference Types 748
25.4.1 Notions of Equality 749

25.4.2 Dereferencing Reference Types 750

25.5 Inheritance 750
25.5.1 Defining Types with Inheritance 751

25.5.2 Binding of Methods 751

25.5.3 Collection Hierarchies, Type Extents, and Queries 752

25.6 Database Design for an ORDBMS 753
25.6.1 Structured Types and ADTs 753

25.6.2 Object Identity 756

25.6.3 Extending the ER Model 757

25.6.4 Using Nested Collections 758

25.7 New Challenges in Implementing an ORDBMS 759
25.7.1 Storage and Access Methods 760

25.7.2 Query Processing 761

25.7.3 Query Optimization 763

25.8 OODBMS 765
25.8.1 The ODMG Data Model and ODL 765

25.8.2 OQL 768

25.9 Comparing RDBMS with OODBMS and ORDBMS 769
25.9.1 RDBMS versus ORDBMS 769

25.9.2 OODBMS versus ORDBMS: Similarities 770

25.9.3 OODBMS versus ORDBMS: Differences 770

XX

26

27

28

DATABASE MANAGEMENT SYSTEMS

25.10 Points to Review

SPATIAL DATA MANAGEMENT
26.1 Types of Spatial Data and Queries
26.2 Applications Involving Spatial Data
26.3 Introduction to Spatial Indexes
26.3.1 Overview of Proposed Index Structures
26.4 Indexing Based on Space-Filling Curves
26.4.1 Region Quad Trees and Z-Ordering: Region Data
26.4.2 Spatial Queries Using Z-Ordering
26.5 Grid Files
26.5.1 Adapting Grid Files to Handle Regions
26.6 R Trees: Point and Region Data
26.6.1 Queries
26.6.2 Insert and Delete Operations
26.6.3 Concurrency Control
26.6.4 Generalized Search Trees
26.7 Issues in High-Dimensional Indexing
26.8 Points to Review

DEDUCTIVE DATABASES
27.1 Introduction to Recursive Queries
27.1.1 Datalog
27.2 Theoretical Foundations
27.2.1 Least Model Semantics
27.2.2 Safe Datalog Programs
27.2.3 The Fixpoint Operator
27.2.4 Least Model = Least Fixpoint
27.3 Recursive Queries with Negation
27.3.1 Range-Restriction and Negation
27.3.2 Stratification
27.3.3 Aggregate Operations
27.4 Efficient Evaluation of Recursive Queries
27.4.1 Fixpoint Evaluation without Repeated Inferences
27.4.2 Pushing Selections to Avoid Irrelevant Inferences
27.5 Points to Review

ADDITIONAL TOPICS

28.1 Advanced Transaction Processing
28.1.1 Transaction Processing Monitors
28.1.2 New Transaction Models
28.1.3 Real-Time DBMSs

28.2 Integrated Access to Multiple Data Sources

771

T
T
779
781
782
783
784
785
786
789
789
790
792
793
794
795
795

799
800
801
803
804
805
806
807
808
809
809
812
813
814
816
818

822
822
822
823
824
824

Contents

28.3
28.4
28.5
28.6
28.7
28.8
28.9

A DATABASE DESIGN CASE STUDY: THE INTERNET

Mobile Databases

Main Memory Databases
Multimedia Databases

Geographic Information Systems
Temporal and Sequence Databases
Information Visualization
Summary

SHOP

Al
A2
A3
A4
A5

A.6
AT

Requirements Analysis

Conceptual Design

Logical Database Design

Schema Refinement

Physical Database Design
A.5.1 Tuning the Database

Security

Application Layers

B THE MINIBASE SOFTWARE

B.1 What’s Available
B.2 Overview of Minibase Assignments
B.2.1 Overview of Programming Projects
B.2.2 Overview of Nonprogramming Assignments
B.3 Acknowledgments
REFERENCES
SUBJECT INDEX

AUTHOR INDEX

xx1

825
825
826
827
828
829
829

831
831
832
832
835
836
838
838
840

842
842
843
843
844
845

847

879

896

PREFACE

The advantage of doing one’s praising for oneself is that one can lay it on so thick
and exactly in the right places.

—Samuel Butler

Database management systems have become ubiquitous as a fundamental tool for man-
aging information, and a course on the principles and practice of database systems is
now an integral part of computer science curricula. This book covers the fundamentals
of modern database management systems, in particular relational database systems.
It is intended as a text for an introductory database course for undergraduates, and
we have attempted to present the material in a clear, simple style.

A quantitative approach is used throughout and detailed examples abound. An exten-
sive set of exercises (for which solutions are available online to instructors) accompanies
each chapter and reinforces students’ ability to apply the concepts to real problems.
The book contains enough material to support a second course, ideally supplemented
by selected research papers. It can be used, with the accompanying software and SQL
programming assignments, in two distinct kinds of introductory courses:

1. A course that aims to present the principles of database systems, with a practical
focus but without any implementation assignments. The SQL programming as-
signments are a useful supplement for such a course. The supplementary Minibase
software can be used to create exercises and experiments with no programming.

2. A course that has a strong systems emphasis and assumes that students have
good programming skills in C and C++. In this case the software can be used
as the basis for projects in which students are asked to implement various parts
of a relational DBMS. Several central modules in the project software (e.g., heap
files, buffer manager, B+ trees, hash indexes, various join methods, concurrency
control, and recovery algorithms) are described in sufficient detail in the text to
enable students to implement them, given the (C++) class interfaces.

Many instructors will no doubt teach a course that falls between these two extremes.

xxii

Preface xxiii

Choice of Topics
The choice of material has been influenced by these considerations:

m To concentrate on issues central to the design, tuning, and implementation of rela-
tional database applications. However, many of the issues discussed (e.g., buffering
and access methods) are not specific to relational systems, and additional topics
such as decision support and object-database systems are covered in later chapters.

m To provide adequate coverage of implementation topics to support a concurrent
laboratory section or course project. For example, implementation of relational
operations has been covered in more detail than is necessary in a first course.
However, the variety of alternative implementation techniques permits a wide
choice of project assignments. An instructor who wishes to assign implementation
of sort-merge join might cover that topic in depth, whereas another might choose
to emphasize index nested loops join.

m To provide in-depth coverage of the state of the art in currently available commer-
cial systems, rather than a broad coverage of several alternatives. For example,
we discuss the relational data model, B+ trees, SQL, System R style query op-
timization, lock-based concurrency control, the ARIES recovery algorithm, the
two-phase commit protocol, asynchronous replication in distributed databases,
and object-relational DBMSs in detail, with numerous illustrative examples. This
is made possible by omitting or briefly covering some related topics such as the
hierarchical and network models, B tree variants, Quel, semantic query optimiza-
tion, view serializability, the shadow-page recovery algorithm, and the three-phase
commit protocol.

m The same preference for in-depth coverage of selected topics governed our choice
of topics for chapters on advanced material. Instead of covering a broad range of
topics briefly, we have chosen topics that we believe to be practically important
and at the cutting edge of current thinking in database systems, and we have
covered them in depth.

New in the Second Edition

Based on extensive user surveys and feedback, we have refined the book’s organization.
The major change is the early introduction of the ER model, together with a discussion
of conceptual database design. As in the first edition, we introduce SQL-92’s data
definition features together with the relational model (in Chapter 3), and whenever
appropriate, relational model concepts (e.g., definition of a relation, updates, views, ER,
to relational mapping) are illustrated and discussed in the context of SQL. Of course,
we maintain a careful separation between the concepts and their SQL realization. The
material on data storage, file organization, and indexes has been moved back, and the

XXiv DATABASE MANAGEMENT SYSTEMS

material on relational queries has been moved forward. Nonetheless, the two parts
(storage and organization vs. queries) can still be taught in either order based on the
instructor’s preferences.

In order to facilitate brief coverage in a first course, the second edition contains overview
chapters on transaction processing and query optimization. Most chapters have been
revised extensively, and additional explanations and figures have been added in many
places. For example, the chapters on query languages now contain a uniform numbering
of all queries to facilitate comparisons of the same query (in algebra, calculus, and
SQL), and the results of several queries are shown in figures. JDBC and ODBC
coverage has been added to the SQL query chapter and SQL:1999 features are discussed
both in this chapter and the chapter on object-relational databases. A discussion of
RAID has been added to Chapter 7. We have added a new database design case study,
illustrating the entire design cycle, as an appendix.

Two new pedagogical features have been introduced. First, ‘floating boxes’ provide ad-
ditional perspective and relate the concepts to real systems, while keeping the main dis-
cussion free of product-specific details. Second, each chapter concludes with a ‘Points
to Review’ section that summarizes the main ideas introduced in the chapter and
includes pointers to the sections where they are discussed.

For use in a second course, many advanced chapters from the first edition have been
extended or split into multiple chapters to provide thorough coverage of current top-
ics. In particular, new material has been added to the chapters on decision support,
deductive databases, and object databases. New chapters on Internet databases, data
mining, and spatial databases have been added, greatly expanding the coverage of
these topics.

The material can be divided into roughly seven parts, as indicated in Figure 0.1, which
also shows the dependencies between chapters. An arrow from Chapter I to Chapter J
means that I depends on material in J. The broken arrows indicate a weak dependency,
which can be ignored at the instructor’s discretion. It is recommended that Part I be
covered first, followed by Part IT and Part IIT (in either order). Other than these three
parts, dependencies across parts are minimal.

Order of Presentation

The book’s modular organization offers instructors a variety of choices. For exam-
ple, some instructors will want to cover SQL and get students to use a relational
database, before discussing file organizations or indexing; they should cover Part II
before Part III. In fact, in a course that emphasizes concepts and SQL, many of the
implementation-oriented chapters might be skipped. On the other hand, instructors
assigning implementation projects based on file organizations may want to cover Part

Preface

XXV

4
Relational Algebra
and Calculus

\

\

5
SQL Queries, €tc.

1

Introduction

2
ER Model

3

Conceptual Design

Relational Model

7
Data Storage

8

Introduction to

File Organizations

9
Tree Indexes

10
Hash Indexes

SQL DDL
e N
1 12 13 14
v External Sorting Evaluation of Introduction to ATypica
Relational Operators Query Optimization Relational Optimizer
I
—
(15 16 17) 21
\ Schema Refinement, Physicl DB <-4 Database Parallel and
__FDs, Normalization _Design, Tuning) Security Distributed DBs
(18 (19) 20 22
\ Transaction Mgmt Concurrency Crash Internet
___ Overview ___ Control) Recovery | Databases
(23 24 25 (26 27 28
VIl | Decision Data Object-Database Spatial Deductive Additional
Support Mining Systems _ Databases Databases Topics)

Figure 0.1 Chapter Organization and Dependencies

I1T early to space assignments. As another example, it is not necessary to cover all the

alternatives for a given operator (e.g., various techniques for joins) in Chapter 12 in
order to cover later related material (e.g., on optimization or tuning) adequately. The
database design case study in the appendix can be discussed concurrently with the
appropriate design chapters, or it can be discussed after all design topics have been
covered, as a review.

Several section headings contain an asterisk. This symbol does not necessarily indicate
a higher level of difficulty. Rather, omitting all asterisked sections leaves about the
right amount of material in Chapters 1-18, possibly omitting Chapters 6, 10, and 14,
for a broad introductory one-quarter or one-semester course (depending on the depth

at which the remaining material is discussed and the nature of the course assignments).

xxvi DATABASE MANAGEMENT SYSTEMS

The book can be used in several kinds of introductory or second courses by choosing
topics appropriately, or in a two-course sequence by supplementing the material with
some advanced readings in the second course. Examples of appropriate introductory
courses include courses on file organizations and introduction to database management
systems, especially if the course focuses on relational database design or implementa-
tion. Advanced courses can be built around the later chapters, which contain detailed
bibliographies with ample pointers for further study.

Supplementary Material

Each chapter contains several exercises designed to test and expand the reader’s un-
derstanding of the material. Students can obtain solutions to odd-numbered chapter
exercises and a set of lecture slides for each chapter through the Web in Postscript and
Adobe PDF formats.

The following material is available online to instructors:

1. Lecture slides for all chapters in MS Powerpoint, Postscript, and PDF formats.
2. Solutions to all chapter exercises.

3. SQL queries and programming assignments with solutions. (This is new for the
second edition.)

4. Supplementary project software (Minibase) with sample assignments and solu-
tions, as described in Appendix B. The text itself does not refer to the project
software, however, and can be used independently in a course that presents the
principles of database management systems from a practical perspective, but with-
out a project component.

The supplementary material on SQL is new for the second edition. The remaining
material has been extensively revised from the first edition versions.

For More Information
The home page for this book is at URL:
http://www.cs.wisc.edu/” dbbook
This page is frequently updated and contains a link to all known errors in the book, the

accompanying slides, and the supplements. Instructors should visit this site periodically
or register at this site to be notified of important changes by email.

Preface xXxXVvii

Acknowledgments

This book grew out of lecture notes for CS564, the introductory (senior/graduate level)
database course at UW-Madison. David DeWitt developed this course and the Minirel
project, in which students wrote several well-chosen parts of a relational DBMS. My
thinking about this material was shaped by teaching CS564, and Minirel was the
inspiration for Minibase, which is more comprehensive (e.g., it has a query optimizer
and includes visualization software) but tries to retain the spirit of Minirel. Mike Carey
and I jointly designed much of Minibase. My lecture notes (and in turn this book)
were influenced by Mike’s lecture notes and by Yannis Ioannidis’s lecture slides.

Joe Hellerstein used the beta edition of the book at Berkeley and provided invaluable
feedback, assistance on slides, and hilarious quotes. Writing the chapter on object-
database systems with Joe was a lot of fun.

C. Mohan provided invaluable assistance, patiently answering a number of questions
about implementation techniques used in various commercial systems, in particular in-
dexing, concurrency control, and recovery algorithms. Moshe Zloof answered numerous
questions about QBE semantics and commercial systems based on QBE. Ron Fagin,
Krishna Kulkarni, Len Shapiro, Jim Melton, Dennis Shasha, and Dirk Van Gucht re-
viewed the book and provided detailed feedback, greatly improving the content and
presentation. Michael Goldweber at Beloit College, Matthew Haines at Wyoming,
Michael Kifer at SUNY StonyBrook, Jeff Naughton at Wisconsin, Praveen Seshadri at
Cornell, and Stan Zdonik at Brown also used the beta edition in their database courses
and offered feedback and bug reports. In particular, Michael Kifer pointed out an er-
ror in the (old) algorithm for computing a minimal cover and suggested covering some
SQL features in Chapter 2 to improve modularity. Gio Wiederhold’s bibliography,
converted to Latex format by S. Sudarshan, and Michael Ley’s online bibliography on
databases and logic programming were a great help while compiling the chapter bibli-
ographies. Shaun Flisakowski and Uri Shaft helped me frequently in my never-ending
battles with Latex.

I owe a special thanks to the many, many students who have contributed to the Mini-
base software. Emmanuel Ackaouy, Jim Pruyne, Lee Schumacher, and Michael Lee
worked with me when I developed the first version of Minibase (much of which was
subsequently discarded, but which influenced the next version). Emmanuel Ackaouy
and Bryan So were my TAs when I taught CS564 using this version and went well be-
yond the limits of a TAship in their efforts to refine the project. Paul Aoki struggled
with a version of Minibase and offered lots of useful comments as a TA at Berkeley. An
entire class of CS764 students (our graduate database course) developed much of the
current version of Minibase in a large class project that was led and coordinated by
Mike Carey and me. Amit Shukla and Michael Lee were my TAs when I first taught
(CS564 using this version of Minibase and developed the software further.

xxviii DATABASE MANAGEMENT SYSTEMS

Several students worked with me on independent projects, over a long period of time,
to develop Minibase components. These include visualization packages for the buffer
manager and B+ trees (Huseyin Bektas, Harry Stavropoulos, and Weiqing Huang); a
query optimizer and visualizer (Stephen Harris, Michael Lee, and Donko Donjerkovic);
an ER diagram tool based on the Opossum schema editor (Eben Haber); and a GUI-
based tool for normalization (Andrew Prock and Andy Therber). In addition, Bill
Kimmel worked to integrate and fix a large body of code (storage manager, buffer
manager, files and access methods, relational operators, and the query plan executor)
produced by the CS764 class project. Ranjani Ramamurty considerably extended
Bill’'s work on cleaning up and integrating the various modules. Luke Blanshard, Uri
Shaft, and Shaun Flisakowski worked on putting together the release version of the
code and developed test suites and exercises based on the Minibase software. Krishna
Kunchithapadam tested the optimizer and developed part of the Minibase GUI.

Clearly, the Minibase software would not exist without the contributions of a great
many talented people. With this software available freely in the public domain, I hope
that more instructors will be able to teach a systems-oriented database course with a
blend of implementation and experimentation to complement the lecture material.

I’d like to thank the many students who helped in developing and checking the solu-
tions to the exercises and provided useful feedback on draft versions of the book. In
alphabetical order: X. Bao, S. Biao, M. Chakrabarti, C. Chan, W. Chen, N. Cheung,
D. Colwell, C. Fritz, V. Ganti, J. Gehrke, G. Glass, V. Gopalakrishnan, M. Higgins, T.
Jasmin, M. Krishnaprasad, Y. Lin, C. Liu, M. Lusignan, H. Modi, S. Narayanan, D.
Randolph, A. Ranganathan, J. Reminga, A. Therber, M. Thomas, Q. Wang, R. Wang,
Z. Wang, and J. Yuan. Arcady Grenader, James Harrington, and Martin Reames at
Wisconsin and Nina Tang at Berkeley provided especially detailed feedback.

Charlie Fischer, Avi Silberschatz, and Jeff Ullman gave me invaluable advice on work-
ing with a publisher. My editors at McGraw-Hill, Betsy Jones and Eric Munson,
obtained extensive reviews and guided this book in its early stages. Emily Gray and
Brad Kosirog were there whenever problems cropped up. At Wisconsin, Ginny Werner
really helped me to stay on top of things.

Finally, this book was a thief of time, and in many ways it was harder on my family
than on me. My sons expressed themselves forthrightly. From my (then) five-year-
old, Ketan: “Dad, stop working on that silly book. You don’t have any time for
me.” Two-year-old Vivek: “You working boook? No no no come play basketball me!”
All the seasons of their discontent were visited upon my wife, and Apu nonetheless
cheerfully kept the family going in its usual chaotic, happy way all the many evenings
and weekends I was wrapped up in this book. (Not to mention the days when I was
wrapped up in being a faculty member!) As in all things, I can trace my parents’ hand
in much of this; my father, with his love of learning, and my mother, with her love

of us, shaped me. My brother Kartik’s contributions to this book consisted chiefly of

Preface XXix

phone calls in which he kept me from working, but if I don’t acknowledge him, he’s
liable to be annoyed. I'd like to thank my family for being there and giving meaning
to everything I do. (There! I knew I'd find a legitimate reason to thank Kartik.)

Acknowledgments for the Second Edition

Emily Gray and Betsy Jones at McGraw-Hill obtained extensive reviews and provided
guidance and support as we prepared the second edition. Jonathan Goldstein helped
with the bibliography for spatial databases. The following reviewers provided valuable
feedback on content and organization: Liming Cai at Ohio University, Costas Tsat-
soulis at University of Kansas, Kwok-Bun Yue at University of Houston, Clear Lake,
William Grosky at Wayne State University, Sang H. Son at University of Virginia,
James M. Slack at Minnesota State University, Mankato, Herman Balsters at Uni-
versity of Twente, Netherlands, Karen C. Davis at University of Cincinnati, Joachim
Hammer at University of Florida, Fred Petry at Tulane University, Gregory Speegle
at Baylor University, Salih Yurttas at Texas A&M University, and David Chao at San
Francisco State University.

A number of people reported bugs in the first edition. In particular, we wish to thank
the following: Joseph Albert at Portland State University, Han-yin Chen at University
of Wisconsin, Lois Delcambre at Oregon Graduate Institute, Maggie Fich at South-
ern Methodist University, Raj Gopalan at Curtin University of Technology, Davood
Rafiei at University of Toronto, Michael Schrefl at University of South Australia, Alex
Thomasian at University of Connecticut, and Scott Vandenberg at Siena College.

A special thanks to the many people who answered a detailed survey about how com-
mercial systems support various features: At IBM, Mike Carey, Bruce Lindsay, C.
Mohan, and James Teng; at Informix, M. Muralikrishna and Michael Ubell; at Mi-
crosoft, David Campbell, Goetz Graefe, and Peter Spiro; at Oracle, Hakan Jacobsson,
Jonathan D. Klein, Muralidhar Krishnaprasad, and M. Ziauddin; and at Sybase, Marc
Chanliau, Lucien Dimino, Sangeeta Doraiswamy, Hanuma Kodavalla, Roger MacNicol,
and Tirumanjanam Rengarajan.

After reading about himself in the acknowledgment to the first edition, Ketan (now 8)
had a simple question: “How come you didn’t dedicate the book to us? Why mom?”
Ketan, I took care of this inexplicable oversight. Vivek (now 5) was more concerned
about the extent of his fame: “Daddy, is my name in evvy copy of your book? Do
they have it in evvy compooter science department in the world?” Vivek, I hope so.
Finally, this revision would not have made it without Apu’s and Keiko’s support.

PART |

BASICS

INTRODUCTION TO
DATABASE SYSTEMS

Has everyone noticed that all the letters of the word database are typed with the left
hand? Now the layout of the QWERTY typewriter keyboard was designed, among
other things, to facilitate the even use of both hands. It follows, therefore, that
writing about databases is not only unnatural, but a lot harder than it appears.

—Anonymous

Today, more than at any previous time, the success of an organization depends on
its ability to acquire accurate and timely data about its operations, to manage this
data effectively, and to use it to analyze and guide its activities. Phrases such as the
information superhighway have become ubiquitous, and information processing is a
rapidly growing multibillion dollar industry.

The amount of information available to us is literally exploding, and the value of data
as an organizational asset is widely recognized. Yet without the ability to manage this
vast amount of data, and to quickly find the information that is relevant to a given
question, as the amount of information increases, it tends to become a distraction
and a liability, rather than an asset. This paradox drives the need for increasingly
powerful and flexible data management systems. To get the most out of their large
and complex datasets, users must have tools that simplify the tasks of managing the
data and extracting useful information in a timely fashion. Otherwise, data can become
a liability, with the cost of acquiring it and managing it far exceeding the value that
is derived from it.

A database is a collection of data, typically describing the activities of one or more
related organizations. For example, a university database might contain information
about the following:

®m FEntities such as students, faculty, courses, and classrooms.

m Relationships between entities, such as students’ enrollment in courses, faculty
teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist in
maintaining and utilizing large collections of data, and the need for such systems, as
well as their use, is growing rapidly. The alternative to using a DBMS is to use ad

4 CHAPTER 1

hoc approaches that do not carry over from one application to another; for example,
to store the data in files and write application-specific code to manage it. The use of
a DBMS has several important advantages, as we will see in Section 1.4.

The area of database management systems is a microcosm of computer science in gen-
eral. The issues addressed and the techniques used span a wide spectrum, including
languages, object-orientation and other programming paradigms, compilation, oper-
ating systems, concurrent programming, data structures, algorithms, theory, parallel
and distributed systems, user interfaces, expert systems and artificial intelligence, sta-
tistical techniques, and dynamic programming. We will not be able to go into all these
aspects of database management in this book, but it should be clear that this is a rich
and vibrant discipline.

1.1 OVERVIEW

The goal of this book is to present an in-depth introduction to database management
systems, with an emphasis on how to organize information in a DBMS and to main-
tain it and retrieve it efficiently, that is, how to design a database and use a DBMS
effectively. Not surprisingly, many decisions about how to use a DBMS for a given
application depend on what capabilities the DBMS supports efficiently. Thus, to use a
DBMS well, it is necessary to also understand how a DBMS works. The approach taken
in this book is to emphasize how to use a DBMS, while covering DBMS implementation
and architecture in sufficient detail to understand how to design a database.

Many kinds of database management systems are in use, but this book concentrates on
relational systems, which are by far the dominant type of DBMS today. The following
questions are addressed in the core chapters of this book:

1. Database Design: How can a user describe a real-world enterprise (e.g., a uni-
versity) in terms of the data stored in a DBMS? What factors must be considered
in deciding how to organize the stored data? (Chapters 2, 3, 15, 16, and 17.)

2. Data Analysis: How can a user answer questions about the enterprise by posing
queries over the data in the DBMS? (Chapters 4, 5, 6, and 23.)

3. Concurrency and Robustness: How does a DBMS allow many users to access
data concurrently, and how does it protect the data in the event of system failures?
(Chapters 18, 19, and 20.)

4. Efficiency and Scalability: How does a DBMS store large datasets and answer
questions against this data efficiently? (Chapters 7, 8, 9, 10, 11, 12, 13, and 14.)

Later chapters cover important and rapidly evolving topics such as parallel and dis-
tributed database management, Internet databases, data warehousing and complex

Introduction to Database Systems 5

queries for decision support, data mining, object databases, spatial data management,
and rule-oriented DBMS extensions.

In the rest of this chapter, we introduce the issues listed above. In Section 1.2, we begin
with a brief history of the field and a discussion of the role of database management
in modern information systems. We then identify benefits of storing data in a DBMS
instead of a file system in Section 1.3, and discuss the advantages of using a DBMS
to manage data in Section 1.4. In Section 1.5 we consider how information about an
enterprise should be organized and stored in a DBMS. A user probably thinks about
this information in high-level terms corresponding to the entities in the organization
and their relationships, whereas the DBMS ultimately stores data in the form of (many,
many) bits. The gap between how users think of their data and how the data is
ultimately stored is bridged through several levels of abstraction supported by the
DBMS. Intuitively, a user can begin by describing the data in fairly high-level terms,
and then refine this description by considering additional storage and representation
details as needed.

In Section 1.6 we consider how users can retrieve data stored in a DBMS and the
need for techniques to efficiently compute answers to questions involving such data.
In Section 1.7 we provide an overview of how a DBMS supports concurrent access to
data by several users, and how it protects the data in the event of system failures.

We then briefly describe the internal structure of a DBMS in Section 1.8, and mention
various groups of people associated with the development and use of a DBMS in Section
1.9.

1.2 AHISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a major
application focus. The first general-purpose DBMS was designed by Charles Bachman
at General Electric in the early 1960s and was called the Integrated Data Store. It
formed the basis for the network data model, which was standardized by the Conference
on Data Systems Languages (CODASYL) and strongly influenced database systems
through the 1960s. Bachman was the first recipient of ACM’s Turing Award (the
computer science equivalent of a Nobel prize) for work in the database area; he received
the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS) DBMS,
used even today in many major installations. IMS formed the basis for an alternative
data representation framework called the hierarchical data model. The SABRE system
for making airline reservations was jointly developed by American Airlines and IBM
around the same time, and it allowed several people to access the same data through

6 CHAPTER 1

a computer network. Interestingly, today the same SABRE system is used to power
popular Web-based travel services such as Travelocity!

In 1970, Edgar Codd, at IBM’s San Jose Research Laboratory, proposed a new data
representation framework called the relational data model. This proved to be a water-
shed in the development of database systems: it sparked rapid development of several
DBMSs based on the relational model, along with a rich body of theoretical results
that placed the field on a firm foundation. Codd won the 1981 Turing Award for his
seminal work. Database systems matured as an academic discipline, and the popu-
larity of relational DBMSs changed the commercial landscape. Their benefits were
widely recognized, and the use of DBMSs for managing corporate data became stan-
dard practice.

In the 1980s, the relational model consolidated its position as the dominant DBMS
paradigm, and database systems continued to gain widespread use. The SQL query
language for relational databases, developed as part of IBM’s System R project, is now
the standard query language. SQL was standardized in the late 1980s, and the current
standard, SQL-92, was adopted by the American National Standards Institute (ANSI)
and International Standards Organization (ISO). Arguably, the most widely used form
of concurrent programming is the concurrent execution of database programs (called
transactions). Users write programs as if they are to be run by themselves, and the
responsibility for running them concurrently is given to the DBMS. James Gray won

the 1999 Turing award for his contributions to the field of transaction management in
a DBMS.

In the late 1980s and the 1990s, advances have been made in many areas of database
systems. Considerable research has been carried out into more powerful query lan-
guages and richer data models, and there has been a big emphasis on supporting
complex analysis of data from all parts of an enterprise. Several vendors (e.g., IBM’s
DB2, Oracle 8, Informix UDS) have extended their systems with the ability to store
new data types such as images and text, and with the ability to ask more complex
queries. Specialized systems have been developed by numerous vendors for creating
data warehouses, consolidating data from several databases, and for carrying out spe-
cialized analysis.

An interesting phenomenon is the emergence of several enterprise resource planning
(ERP) and management resource planning (MRP) packages, which add a substantial
layer of application-oriented features on top of a DBMS. Widely used packages include
systems from Baan, Oracle, PeopleSoft, SAP, and Siebel. These packages identify a
set of common tasks (e.g., inventory management, human resources planning, finan-
cial analysis) encountered by a large number of organizations and provide a general
application layer to carry out these tasks. The data is stored in a relational DBMS,
and the application layer can be customized to different companies, leading to lower

Introduction to Database Systems 7

overall costs for the companies, compared to the cost of building the application layer
from scratch.

Most significantly, perhaps, DBMSs have entered the Internet Age. While the first
generation of Web sites stored their data exclusively in operating systems files, the
use of a DBMS to store data that is accessed through a Web browser is becoming
widespread. Queries are generated through Web-accessible forms and answers are
formatted using a markup language such as HTML, in order to be easily displayed
in a browser. All the database vendors are adding features to their DBMS aimed at
making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is brought
on-line, and made ever more accessible through computer networking. Today the field is
being driven by exciting visions such as multimedia databases, interactive video, digital
libraries, a host of scientific projects such as the human genome mapping effort and
NASA’s Earth Observation System project, and the desire of companies to consolidate
their decision-making processes and mine their data repositories for useful information
about their businesses. Commercially, database management systems represent one of
the largest and most vigorous market segments. Thus the study of database systems
could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A company
has a large collection (say, 500 GB!) of data on employees, departments, products,
sales, and so on. This data is accessed concurrently by several employees. Questions
about the data must be answered quickly, changes made to the data by different users
must be applied consistently, and access to certain parts of the data (e.g., salaries)
must be restricted.

We can try to deal with this data management problem by storing the data in a
collection of operating system files. This approach has many drawbacks, including the
following:

m We probably do not have 500 GB of main memory to hold all the data. We must
therefore store data in a storage device such as a disk or tape and bring relevant
parts into main memory for processing as needed.

m Even if we have 500 GB of main memory, on computer systems with 32-bit ad-
dressing, we cannot refer directly to more than about 4 GB of data! We have to
program some method of identifying all data items.

LA kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes.

CHAPTER 1

We have to write special programs to answer each question that users may want
to ask about the data. These programs are likely to be complex because of the
large volume of data to be searched.

We must protect the data from inconsistent changes made by different users ac-
cessing the data concurrently. If programs that access the data are written with
such concurrent access in mind, this adds greatly to their complexity.

We must ensure that data is restored to a consistent state if the system crashes
while changes are being made.

Operating systems provide only a password mechanism for security. This is not
sufficiently flexible to enforce security policies in which different users have per-
mission to access different subsets of the data.

A DBMS is a piece of software that is designed to make the preceding tasks easier.
By storing data in a DBMS, rather than as a collection of operating system files, we
can use the DBMS’s features to manage the data in a robust and efficient manner.
As the volume of data and the number of users grow—hundreds of gigabytes of data
and thousands of users are common in current corporate databases—DBMS support
becomes indispensable.

1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possi-
ble from details of data representation and storage. The DBMS can provide an
abstract view of the data to insulate application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to
store and retrieve data efficiently. This feature is especially important if the data
is stored on external storage devices.

Data integrity and security: If data is always accessed through the DBMS, the
DBMS can enforce integrity constraints on the data. For example, before inserting
salary information for an employee, the DBMS can check that the department
budget is not exceeded. Also, the DBMS can enforce access controls that govern
what data is visible to different classes of users.

Data administration: When several users share the data, centralizing the ad-
ministration of data can offer significant improvements. Experienced professionals
who understand the nature of the data being managed, and how different groups
of users use it, can be responsible for organizing the data representation to min-
imize redundancy and for fine-tuning the storage of the data to make retrieval
efficient.

Introduction to Database Systems 9

m Concurrent access and crash recovery: A DBMS schedules concurrent ac-
cesses to the data in such a manner that users can think of the data as being
accessed by only one user at a time. Further, the DBMS protects users from the
effects of system failures.

m Reduced application development time: Clearly, the DBMS supports many
important functions that are common to many applications accessing data stored
in the DBMS. This, in conjunction with the high-level interface to the data, facil-
itates quick development of applications. Such applications are also likely to be
more robust than applications developed from scratch because many important
tasks are handled by the DBMS instead of being implemented by the application.

Given all these advantages, is there ever a reason not to use a DBMS? A DBMS is
a complex piece of software, optimized for certain kinds of workloads (e.g., answering
complex queries or handling many concurrent requests), and its performance may not
be adequate for certain specialized applications. Examples include applications with
tight real-time constraints or applications with just a few well-defined critical opera-
tions for which efficient custom code must be written. Another reason for not using a
DBMS is that an application may need to manipulate the data in ways not supported
by the query language. In such a situation, the abstract view of the data presented by
the DBMS does not match the application’s needs, and actually gets in the way. As an
example, relational databases do not support flexible analysis of text data (although
vendors are now extending their products in this direction). If specialized performance
or data manipulation requirements are central to an application, the application may
choose not to use a DBMS, especially if the added benefits of a DBMS (e.g., flexible
querying, security, concurrent access, and crash recovery) are not required. In most
situations calling for large-scale data management, however, DBMSs have become an
indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise, and the
data to be stored describes various aspects of this enterprise. For example, there are
students, faculty, and courses in a university, and the data in a university database
describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide many
low-level storage details. A DBMS allows a user to define the data to be stored in
terms of a data model. Most database management systems today are based on the
relational data model, which we will focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer to how
the DBMS stores data than to how a user thinks about the underlying enterprise. A
semantic data model is a more abstract, high-level data model that makes it easier

10 CHAPTER 1

for a user to come up with a good initial description of the data in an enterprise.
These models contain a wide variety of constructs that help describe a real application
scenario. A DBMS is not intended to support all these constructs directly; it is typically
built around a data model with just a few basic constructs, such as the relational model.
A database design in terms of a semantic model serves as a useful starting point and is
subsequently translated into a database design in terms of the data model the DBMS
actually supports.

A widely used semantic data model called the entity-relationship (ER) model allows
us to pictorially denote entities and the relationships among them. We cover the ER
model in Chapter 2.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The central
data description construct in this model is a relation, which can be thought of as a
set of records.

A description of data in terms of a data model is called a schema. In the relational
model, the schema for a relation specifies its name, the name of each field (or attribute
or column), and the type of each field. As an example, student information in a
university database may be stored in a relation with the following schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)
The preceding schema says that each record in the Students relation has five fields,

with field names and types as indicated.? An example instance of the Students relation
appears in Figure 1.1.

| sid | name | login | age | gpa |
53666 | Jones jones@cs 18 | 34
53688 | Smith smithQee 18 3.2
53650 | Smith smith@math 19 3.8
53831 | Madayan | madayan@music | 11 1.8
53832 | Guldu guldu@music 12 | 2.0

Figure 1.1 An Instance of the Students Relation

2Storing date of birth is preferable to storing age, since it does not change over time, unlike age.
We’ve used age for simplicity in our discussion.

Introduction to Database Systems 11

Each row in the Students relation is a record that describes a student. The description
is not complete—for example, the student’s height is not included—but is presumably
adequate for the intended applications in the university database. Every row follows
the schema of the Students relation. The schema can therefore be regarded as a
template for describing a student.

We can make the description of a collection of students more precise by specifying
integrity constraints, which are conditions that the records in a relation must satisfy.
For example, we could specify that every student has a unique sid value. Observe that
we cannot capture this information by simply adding another field to the Students
schema. Thus, the ability to specify uniqueness of the values in a field increases the
accuracy with which we can describe our data. The expressiveness of the constructs
available for specifying integrity constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems, including
IBM’s DB2, Informix, Oracle, Sybase, Microsoft’s Access, FoxBase, Paradox, Tandem,
and Teradata), other important data models include the hierarchical model (e.g., used
in IBM’s IMS DBMS), the network model (e.g., used in IDS and IDMS), the object-
oriented model (e.g., used in Objectstore and Versant), and the object-relational model
(e.g., used in DBMS products from IBM, Informix, ObjectStore, Oracle, Versant, and
others). While there are many databases that use the hierarchical and network models,
and systems based on the object-oriented and object-relational models are gaining
acceptance in the marketplace, the dominant model today is the relational model.

In this book, we will focus on the relational model because of its wide use and impor-
tance. Indeed, the object-relational model, which is gaining in popularity, is an effort
to combine the best features of the relational and object-oriented models, and a good
grasp of the relational model is necessary to understand object-relational concepts.
(We discuss the object-oriented and object-relational models in Chapter 25.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, as illustrated in Figure
1.2. The database description consists of a schema at each of these three levels of
abstraction: the conceptual, physical, and external schemas.

A data definition language (DDL) is used to define the external and conceptual
schemas. We will discuss the DDL facilities of the most widely used database language,
SQL, in Chapter 3. All DBMS vendors also support SQL commands to describe aspects
of the physical schema, but these commands are not part of the SQL-92 language

12 CHAPTER 1

External Schema 1 External Schema 2 External Schema 3

Conceptua Schema

$

Physical Schema

$

DISK ‘

Figure 1.2 Levels of Abstraction in a DBMS

standard. Information about the conceptual, external, and physical schemas is stored
in the system catalogs (Section 13.2). We discuss the three levels of abstraction in
the rest of this section.

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the stored
data in terms of the data model of the DBMS. In a relational DBMS, the conceptual
schema describes all relations that are stored in the database. In our sample university
database, these relations contain information about entities, such as students and
faculty, and about relationships, such as students’ enrollment in courses. All student
entities can be described using records in a Students relation, as we saw earlier. In
fact, each collection of entities and each collection of relationships can be described as
a relation, leading to the following conceptual schema:

Students(sid: string, name: string, login: string,

age: integer, gpa: real)
Faculty(fid: string, fname: string, sal: real)
Courses(cid: string, cname: string, credits: integer)
Rooms(rno: integer, address: string, capacity: integer)
Enrolled(sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets_In(cid: string, rno: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always obvi-
ous, and the process of arriving at a good conceptual schema is called conceptual
database design. We discuss conceptual database design in Chapters 2 and 15.

Introduction to Database Systems 13

Physical Schema

The physical schema specifies additional storage details. Essentially, the physical
schema summarizes how the relations described in the conceptual schema are actually
stored on secondary storage devices such as disks and tapes.

We must decide what file organizations to use to store the relations, and create auxiliary
data structures called indexes to speed up data retrieval operations. A sample physical
schema for the university database follows:

m Store all relations as unsorted files of records. (A file in a DBMS is either a
collection of records or a collection of pages, rather than a string of characters as
in an operating system.)

m Create indexes on the first column of the Students, Faculty, and Courses relations,
the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the data is
typically accessed. The process of arriving at a good physical schema is called physical
database design. We discuss physical database design in Chapter 16.

External Schema

External schemas, which usually are also in terms of the data model of the DBMS,
allow data access to be customized (and authorized) at the level of individual users
or groups of users. Any given database has exactly one conceptual schema and one
physical schema because it has just one set of stored relations, but it may have several
external schemas, each tailored to a particular group of users. Each external schema
consists of a collection of one or more views and relations from the conceptual schema.
A view is conceptually a relation, but the records in a view are not stored in the DBMS.
Rather, they are computed using a definition for the view, in terms of relations stored
in the DBMS. We discuss views in more detail in Chapter 3.

The external schema design is guided by end user requirements. For example, we might
want to allow students to find out the names of faculty members teaching courses, as
well as course enrollments. This can be done by defining the following view:

Courseinfo(cid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records in the
view. Even though the records in the view are not stored explicitly, they are computed
as needed. We did not include Courseinfo in the conceptual schema because we can
compute Courseinfo from the relations in the conceptual schema, and to store it in
addition would be redundant. Such redundancy, in addition to the wasted space, could

14 CHAPTER 1

lead to inconsistencies. For example, a tuple may be inserted into the Enrolled relation,
indicating that a particular student has enrolled in some course, without incrementing
the value in the enrollment field of the corresponding record of Courseinfo (if the latter
also is part of the conceptual schema and its tuples are stored in the DBMS).

1.5.3 DataIndependence

A very important advantage of using a DBMS is that it offers data independence.
That is, application programs are insulated from changes in the way the data is struc-
tured and stored. Data independence is achieved through use of the three levels of
data abstraction; in particular, the conceptual schema and the external schema pro-
vide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated on demand
from the relations corresponding to the conceptual schema.? If the underlying data is
reorganized, that is, the conceptual schema is changed, the definition of a view relation
can be modified so that the same relation is computed as before. For example, suppose
that the Faculty relation in our university database is replaced by the following two
relations:

Faculty _public(fid: string, fname: string, office: integer)
Faculty_private(fid: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a separate
relation and information about offices has been added. The Courseinfo view relation
can be redefined in terms of Faculty_public and Faculty_private, which together contain
all the information in Faculty, so that a user who queries Courseinfo will get the same
answers as before.

Thus users can be shielded from changes in the logical structure of the data, or changes
in the choice of relations to be stored. This property is called logical data indepen-
dence.

In turn, the conceptual schema insulates users from changes in the physical storage
of the data. This property is referred to as physical data independence. The
conceptual schema hides details such as how the data is actually laid out on disk, the
file structure, and the choice of indexes. As long as the conceptual schema remains the
same, we can change these storage details without altering applications. (Of course,
performance might be affected by such changes.)

3In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.

Introduction to Database Systems 15

1.6 QUERIESIN ADBMS

The ease with which information can be obtained from a database often determines
its value to a user. In contrast to older database systems, relational database systems
allow a rich class of questions to be posed easily; this feature has contributed greatly
to their popularity. Consider the sample university database in Section 1.5.2. Here are
examples of questions that a user might ask:

1. What is the name of the student with student id 1234567

2. What is the average salary of professors who teach the course with cid CS564?
3. How many students are enrolled in course CS5647

4. What fraction of students in course CS564 received a grade better than B?

5. Is any student with a GPA less than 3.0 enrolled in course CS5647

Such questions involving the data stored in a DBMS are called queries. A DBMS
provides a specialized language, called the query language, in which queries can be
posed. A very attractive feature of the relational model is that it supports powerful
query languages. Relational calculus is a formal query language based on mathemat-
ical logic, and queries in this language have an intuitive, precise meaning. Relational
algebra is another formal query language, based on a collection of operators for
manipulating relations, which is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We discuss
query optimization and evaluation in Chapters 12 and 13. Of course, the efficiency of
query evaluation is determined to a large extent by how the data is stored physically.
Indexes can be used to speed up many queries—in fact, a good choice of indexes for the
underlying relations can speed up each query in the preceding list. We discuss data
storage and indexing in Chapters 7, 8, 9, and 10.

A DBMS enables users to create, modify, and query data through a data manipula-
tion language (DML). Thus, the query language is only one part of the DML, which
also provides constructs to insert, delete, and modify data. We will discuss the DML
features of SQL in Chapter 5. The DML and DDL are collectively referred to as the
data sublanguage when embedded within a host language (e.g., C or COBOL).

1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any given
instant, it is possible (and likely) that several travel agents are looking up information
about available seats on various flights and making new seat reservations. When several
users access (and possibly modify) a database concurrently, the DBMS must order

16 CHAPTER 1

their requests carefully to avoid conflicts. For example, when one travel agent looks
up Flight 100 on some given day and finds an empty seat, another travel agent may
simultaneously be making a reservation for that seat, thereby making the information
seen by the first agent obsolete.

Another example of concurrent use is a bank’s database. While one user’s application
program is computing the total deposits, another application may transfer money
from an account that the first application has just ‘seen’ to an account that has not
yet been seen, thereby causing the total to appear larger than it should be. Clearly,
such anomalies should not be allowed to occur. However, disallowing concurrent access
can degrade performance.

Further, the DBMS must protect users from the effects of system failures by ensuring
that all data (and the status of active applications) is restored to a consistent state
when the system is restarted after a crash. For example, if a travel agent asks for a
reservation to be made, and the DBMS responds saying that the reservation has been
made, the reservation should not be lost if the system crashes. On the other hand, if
the DBMS has not yet responded to the request, but is in the process of making the
necessary changes to the data while the crash occurs, the partial changes should be
undone when the system comes back up.

A transaction is any one execution of a user program in a DBMS. (Executing the
same program several times will generate several transactions.) This is the basic unit
of change as seen by the DBMS: Partial transactions are not allowed, and the effect of
a group of transactions is equivalent to some serial execution of all transactions. We
briefly outline how these properties are guaranteed, deferring a detailed discussion to
later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so that each
user can safely ignore the fact that others are accessing the data concurrently. The im-
portance of this task cannot be underestimated because a database is typically shared
by a large number of users, who submit their requests to the DBMS independently, and
simply cannot be expected to deal with arbitrary changes being made concurrently by
other users. A DBMS allows users to think of their programs as if they were executing
in isolation, one after the other in some order chosen by the DBMS. For example, if
a program that deposits cash into an account is submitted to the DBMS at the same
time as another program that debits money from the same account, either of these
programs could be run first by the DBMS, but their steps will not be interleaved in
such a way that they interfere with each other.

Introduction to Database Systems 17

A locking protocol is a set of rules to be followed by each transaction (and enforced
by the DBMS), in order to ensure that even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in some
serial order. A lock is a mechanism used to control access to database objects. Two
kinds of locks are commonly supported by a DBMS: shared locks on an object can
be held by two different transactions at the same time, but an exclusive lock on an
object ensures that no other transactions hold any lock on this object.

Suppose that the following locking protocol is followed: Every transaction begins by
obtaining a shared lock on each data object that it needs to read and an exclusive
lock on each data object that it needs to modify, and then releases all its locks after
completing all actions. Consider two transactions 7'1 and T2 such that 7'1 wants to
modify a data object and T2 wants to read the same object. Intuitively, if T'1’s request
for an exclusive lock on the object is granted first, 72 cannot proceed until T'1 releases
this lock, because T'2’s request for a shared lock will not be granted by the DBMS
until then. Thus, all of T'1’s actions will be completed before any of T'2’s actions are
initiated. We consider locking in more detail in Chapters 18 and 19.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of reasons,
e.g., a system crash. A DBMS must ensure that the changes made by such incomplete
transactions are removed from the database. For example, if the DBMS is in the
middle of transferring money from account A to account B, and has debited the first
account but not yet credited the second when the crash occurs, the money debited
from account A must be restored when the system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial prop-
erty of the log is that each write action must be recorded in the log (on disk) before
the corresponding change is reflected in the database itself—otherwise, if the system
crashes just after making the change in the database but before the change is recorded
in the log, the DBMS would be unable to detect and undo this change. This property
is called Write-Ahead Log or WAL. To ensure this property, the DBMS must be
able to selectively force a page in memory to disk.

The log is also used to ensure that the changes made by a successfully completed
transaction are not lost due to a system crash, as explained in Chapter 20. Bringing
the database to a consistent state after a system crash can be a slow process, since
the DBMS must ensure that the effects of all transactions that completed prior to the
crash are restored, and that the effects of incomplete transactions are undone. The
time required to recover from a crash can be reduced by periodically forcing some
information to disk; this periodic operation is called a checkpoint.

18 CHAPTER 1

1.7.3 Points to Note

In summary, there are three points to remember with respect to DBMS support for
concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared or
exclusive mode, respectively. Placing a lock on an object restricts its availability
to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force a collec-
tion of pages in main memory to disk. Operating system support for this operation
is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash. Of
course, this must be balanced against the fact that checkpointing too often slows
down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS based on
the relational data model.

Sophisticated users, application
Unsophisticated users (customers, travel agents, etc.) programmers, DB administrators

[Web Forms] [Application Front Ends] { SQL Interface]

T-- I} D it >

SQl COMMANDS shows command flow
i
]
| Plan Executor | | Parser | shows interaction
Query
| Operator Evaluator | | Optimizer | Evaluation
\L Engine
TreTseian H| Files and Access Methods |9
Manager \L
Recovery
<—>| Buffer Manager |H Manager
Lock 20
Manager]
Concurrency Disk Space Manager
Control DBMS
. —
Index Files N shows references
\ System Catalog
Data Files <—/ DATABASE

Figure 1.3 Architecture of a DBMS

Introduction to Database Systems 19

The DBMS accepts SQL commands generated from a variety of user interfaces, pro-
duces query evaluation plans, executes these plans against the database, and returns
the answers. (This is a simplification: SQL commands can be embedded in host-
language application programs, e.g., Java or COBOL programs. We ignore these issues
to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query optimizer, which
uses information about how the data is stored to produce an efficient execution plan
for evaluating the query. An execution plan is a blueprint for evaluating a query, and
is usually represented as a tree of relational operators (with annotations that contain
additional detailed information about which access methods to use, etc.). We discuss
query optimization in Chapter 13. Relational operators serve as the building blocks
for evaluating queries posed against the data. The implementation of these operators
is discussed in Chapter 12.

The code that implements relational operators sits on top of the file and access methods
layer. This layer includes a variety of software for supporting the concept of a file,
which, in a DBMS, is a collection of pages or a collection of records. This layer typically
supports a heap file, or file of unordered pages, as well as indexes. In addition to
keeping track of the pages in a file, this layer organizes the information within a page.
File and page level storage issues are considered in Chapter 7. File organizations and
indexes are considered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager, which
brings pages in from disk to main memory as needed in response to read requests.
Buffer management is discussed in Chapter 7.

The lowest layer of the DBMS software deals with management of space on disk, where
the data is stored. Higher layers allocate, deallocate, read, and write pages through
(routines provided by) this layer, called the disk space manager. This layer is
discussed in Chapter 7.

The DBMS supports concurrency and crash recovery by carefully scheduling user re-
quests and maintaining a log of all changes to the database. DBMS components associ-
ated with concurrency control and recovery include the transaction manager, which
ensures that transactions request and release locks according to a suitable locking pro-
tocol and schedules the execution transactions; the lock manager, which keeps track
of requests for locks and grants locks on database objects when they become available;
and the recovery manager, which is responsible for maintaining a log, and restoring
the system to a consistent state after a crash. The disk space manager, buffer manager,
and file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 18.

20 CHAPTER 1

1.9 PEOPLE WHO DEAL WITH DATABASES

Quite a variety of people are associated with the creation and use of databases. Obvi-
ously, there are database implementors, who build DBMS software, and end users
who wish to store and use data in a DBMS. Database implementors work for ven-
dors such as IBM or Oracle. End users come from a diverse and increasing number
of fields. As data grows in complexity and volume, and is increasingly recognized as
a major asset, the importance of maintaining it professionally in a DBMS is being
widely accepted. Many end users simply use applications written by database applica-
tion programmers (see below), and so require little technical knowledge about DBMS
software. Of course, sophisticated users who make more extensive use of a DBMS,
such as writing their own queries, require a deeper understanding of its features.

In addition to end users and implementors, two other classes of people are associated
with a DBMS: application programmers and database administrators (DBAs).

Database application programmers develop packages that facilitate data access
for end users, who are usually not computer professionals, using the host or data
languages and software tools that DBMS vendors provide. (Such tools include report
writers, spreadsheets, statistical packages, etc.) Application programs should ideally
access data through the external schema. It is possible to write applications that access
data at a lower level, but such applications would compromise data independence.

A personal database is typically maintained by the individual who owns it and uses it.
However, corporate or enterprise-wide databases are typically important enough and
complex enough that the task of designing and maintaining the database is entrusted
to a professional called the database administrator. The DBA is responsible for
many critical tasks:

m Design of the conceptual and physical schemas: The DBA is responsible
for interacting with the users of the system to understand what data is to be
stored in the DBMS and how it is likely to be used. Based on this knowledge, the
DBA must design the conceptual schema (decide what relations to store) and the
physical schema (decide how to store them). The DBA may also design widely
used portions of the external schema, although users will probably augment this
schema by creating additional views.

m Security and authorization: The DBA is responsible for ensuring that unau-
thorized data access is not permitted. In general, not everyone should be able
to access all the data. In a relational DBMS, users can be granted permission
to access only certain views and relations. For example, although you might al-
low students to find out course enrollments and who teaches a given course, you
would not want students to see faculty salaries or each others’ grade information.

Introduction to Database Systems 21

The DBA can enforce this policy by giving students permission to read only the
Courseinfo view.

m Data availability and recovery from failures: The DBA must take steps
to ensure that if the system fails, users can continue to access as much of the
uncorrupted data as possible. The DBA must also work to restore the data to a
consistent state. The DBMS provides software support for these functions, but the
DBA is responsible for implementing procedures to back up the data periodically
and to maintain logs of system activity (to facilitate recovery from a crash).

m Database tuning: The needs of users are likely to evolve with time. The DBA is
responsible for modifying the database, in particular the conceptual and physical
schemas, to ensure adequate performance as user requirements change.

1.10 POINTS TO REVIEW

m A database management system (DBMS) is software that supports management
of large collections of data. A DBMS provides efficient data access, data in-
dependence, data integrity, security, quick application development, support for
concurrent access, and recovery from system failures. (Section 1.1)

m Storing data in a DBMS versus storing it in operating system files has many
advantages. (Section 1.3)

m Using a DBMS provides the user with data independence, efficient data access,
automatic data integrity, and security. (Section 1.4)

m The structure of the data is described in terms of a data model and the description
is called a schema. The relational modelis currently the most popular data model.
A DBMS distinguishes between external, conceptual, and physical schema and
thus allows a view of the data at three levels of abstraction. Physical and logical
data independence, which are made possible by these three levels of abstraction,
insulate the users of a DBMS from the way the data is structured and stored
inside a DBMS. (Section 1.5)

m A query language and a data manipulation language enable high-level access and
modification of the data. (Section 1.6)

m A {ransaction is a logical unit of access to a DBMS. The DBMS ensures that
either all or none of a transaction’s changes are applied to the database. For
performance reasons, the DBMS processes multiple transactions concurrently, but
ensures that the result is equivalent to running the transactions one after the other
in some order. The DBMS maintains a record of all changes to the data in the
system log, in order to undo partial transactions and recover from system crashes.
Checkpointing is a periodic operation that can reduce the time for recovery from
a crash. (Section 1.7)

22 CHAPTER 1

m DBMS code is organized into several modules: the disk space manager, the buffer
manager, a layer that supports the abstractions of files and index structures, a
layer that implements relational operators, and a layer that optimizes queries and
produces an execution plan in terms of relational operators. (Section 1.8)

m A database administrator (DBA) manages a DBMS for an enterprise. The DBA
designs schemas, provide security, restores the system after a failure, and period-
ically tunes the database to meet changing user needs. Application programmers
develop applications that use DBMS functionality to access and manipulate data,
and end users invoke these applications. (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in
operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?
Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.
How are these different schema layers related to the concepts of logical and physical data
independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never
interested in running his or her own queries, does the DBA still need to understand query
optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the
volume of data compels him to buy a database system. To save money, he wants to buy one
with the fewest possible features, and he plans to run it as a stand-alone application on his
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of
the following DBMS features Scrooge should pay for; in each case also indicate why Scrooge
should (or should not) pay for that feature in the system he buys.

A security facility.
Concurrency control.
Crash recovery.

A view mechanism.

orE W

A query language.

Exercise 1.7 Which of the following plays an important role in representing information
about the real world in a database? Explain briefly.

1. The data definition language.

Introduction to Database Systems 23

2. The data manipulation language.
3. The buffer manager.
4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to
support some new functions on OS files (e.g., the ability to force some sequence of bytes to
disk), which layer(s) of the DBMS would you have to rewrite in order to take advantage of
these new functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions, instead of executing
transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?
What should a DBMS guarantee with respect to concurrent execution of several trans-
actions and database consistency?

4. Explain the strict two-phase locking protocol.
5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try
to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [248]. The use of data models
for describing real-world data is discussed in [361], and [363] contains a taxonomy of data
models. The three levels of abstraction were introduced in [155, 623]. The network data
model is described in [155], and [680] discusses several commercial systems based on this
model. [634] contains a good annotated collection of systems-oriented papers on database
management.

Other texts covering database management systems include [169, 208, 289, 600, 499, 656, 669].
[169] provides a detailed discussion of the relational model from a conceptual standpoint and
is notable for its extensive annotated bibliography. [499] presents a performance-oriented per-
spective, with references to several commercial systems. [208] and [600] offer broad coverage of
database system concepts, including a discussion of the hierarchical and network data models.
[289] emphasizes the connection between database query languages and logic programming.
[669] emphasizes data models. Of these texts, [656] provides the most detailed discussion of
theoretical issues. Texts devoted to theoretical aspects include [38, 436, 3]. Handbook [653]
includes a section on databases that contains introductory survey articles on a number of
topics.

ENTITY-RELATIONSHIP MODEL

The great successful men of the world have used their imaginations. They think
ahead and create their mental picture, and then go to work materializing that
picture in all its details, filling in here, adding a little there, altering this bit and
that bit, but steadily building, steadily building.

—Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved in a
real-world enterprise in terms of objects and their relationships and is widely used to
develop an initial database design. In this chapter, we introduce the ER model and
discuss how its features allow us to model a wide range of data faithfully.

The ER model is important primarily for its role in database design. It provides useful
concepts that allow us to move from an informal description of what users want from
their database to a more detailed, and precise, description that can be implemented
in a DBMS. We begin with an overview of database design in Section 2.1 in order
to motivate our discussion of the ER model. Within the larger context of the overall
design process, the ER model is used in a phase called conceptual database design. We
then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5, we discuss
database design issues involving the ER model. We conclude with a brief discussion of
conceptual database design for large enterprises.

We note that many variations of ER diagrams are in use, and no widely accepted
standards prevail. The presentation in this chapter is representative of the family of
ER models and includes a selection of the most popular features.

2.1 OVERVIEW OF DATABASE DESIGN

The database design process can be divided into six steps. The ER model is most
relevant to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application
is to understand what data is to be stored in the database, what applications must be
built on top of it, and what operations are most frequent and subject to performance
requirements. In other words, we must find out what the users want from the database.

24

The Entity-Relationship Model 25

Database design tools: Design tools are available from RDBMS vendors as well
as third-party vendors. Sybase and Oracle, in particular, have comprehensive sets
design and analysis tools. See the following URL for details on Sybase’s tools:
http://www.sybase.com/products/application_tools The following provides
details on Oracle’s tools: http://www.oracle.com/tools

This is usually an informal process that involves discussions with user groups, a study
of the current operating environment and how it is expected to change, analysis of
any available documentation on existing applications that are expected to be replaced
or complemented by the database, and so on. Several methodologies have been pro-
posed for organizing and presenting the information gathered in this step, and some
automated tools have been developed to support this process.

(2) Conceptual Database Design: The information gathered in the requirements
analysis step is used to develop a high-level description of the data to be stored in the
database, along with the constraints that are known to hold over this data. This step
is often carried out using the ER model, or a similar high-level data model, and is
discussed in the rest of this chapter.

(3) Logical Database Design: We must choose a DBMS to implement our database
design, and convert the conceptual database design into a database schema in the data
model of the chosen DBMS. We will only consider relational DBMSs, and therefore,
the task in the logical design step is to convert an ER schema into a relational database
schema. We discuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond the ER Model

ER modeling is sometimes regarded as a complete approach to designing a logical
database schema. This is incorrect because the ER diagram is just an approximate
description of the data, constructed through a very subjective evaluation of the infor-
mation collected during requirements analysis. A more careful analysis can often refine
the logical schema obtained at the end of Step 3. Once we have a good logical schema,
we must consider performance criteria and design the physical schema. Finally, we
must address security issues and ensure that users are able to access the data they
need, but not data that we wish to hide from them. The remaining three steps of
database design are briefly described below: !

1This material can be omitted on a first reading of this chapter without loss of continuity.

26 CHAPTER 2

(4) Schema Refinement: The fourth step in database design is to analyze the
collection of relations in our relational database schema to identify potential problems,
and to refine it. In contrast to the requirements analysis and conceptual design steps,
which are essentially subjective, schema refinement can be guided by some elegant and
powerful theory. We discuss the theory of normalizing relations—restructuring them
to ensure some desirable properties—in Chapter 15.

(5) Physical Database Design: In this step we must consider typical expected
workloads that our database must support and further refine the database design to
ensure that it meets desired performance criteria. This step may simply involve build-
ing indexes on some tables and clustering some tables, or it may involve a substantial
redesign of parts of the database schema obtained from the earlier design steps. We
discuss physical design and database tuning in Chapter 16.

(6) Security Design: In this step, we identify different user groups and different
roles played by various users (e.g., the development team for a product, the customer
support representatives, the product manager). For each role and user group, we must
identify the parts of the database that they must be able to access and the parts of the
database that they should not be allowed to access, and take steps to ensure that they
can access only the necessary parts. A DBMS provides several mechanisms to assist
in this step, and we discuss this in Chapter 17.

In general, our division of the design process into steps should be seen as a classification
of the kinds of steps involved in design. Realistically, although we might begin with
the six step process outlined here, a complete database design will probably require
a subsequent tuning phase in which all six kinds of design steps are interleaved and
repeated until the design is satisfactory. Further, we have omitted the important steps
of implementing the database design, and designing and implementing the application
layers that run on top of the DBMS. In practice, of course, these additional steps can
lead to a rethinking of the basic database design.

The concepts and techniques that underlie a relational DBMS are clearly useful to
someone who wants to implement or maintain the internals of a database system.
However, it is important to recognize that serious users and DBAs must also know
how a DBMS works. A good understanding of database system internals is essential
for a user who wishes to take full advantage of a DBMS and design a good database;
this is especially true of physical design and database tuning.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other objects.
Examples include the following: the Green Dragonzord toy, the toy department, the
manager of the toy department, the home address of the manager of the toy depart-

The Entity-Relationship Model 27

ment. It is often useful to identify a collection of similar entities. Such a collection is
called an entity set. Note that entity sets need not be disjoint; the collection of toy
department employees and the collection of appliance department employees may both
contain employee John Doe (who happens to work in both departments). We could
also define an entity set called Employees that contains both the toy and appliance
department employee sets.

An entity is described using a set of attributes. All entities in a given entity set have
the same attributes; this is essentially what we mean by similar. (This statement is
an oversimplification, as we will see when we discuss inheritance hierarchies in Section
2.4.4, but it suffices for now and highlights the main idea.) Our choice of attributes
reflects the level of detail at which we wish to represent information about entities.
For example, the Employees entity set could use name, social security number (ssn),
and parking lot (lot) as attributes. In this case we will store the name, social secu-
rity number, and lot number for each employee. However, we will not store, say, an
employee’s address (or gender or age).

For each attribute associated with an entity set, we must identify a domain of possible
values. For example, the domain associated with the attribute name of Employees
might be the set of 20-character strings.? As another example, if the company rates
employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated
domain consists of integers 1 through 10. Further, for each entity set, we choose a key.
A key is a minimal set of attributes whose values uniquely identify an entity in the
set. There could be more than one candidate key; if so, we designate one of them as
the primary key. For now we will assume that each entity set contains at least one
set of attributes that uniquely identifies an entity in the entity set; that is, the set of
attributes contains a key. We will revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure 2.1.
An entity set is represented by a rectangle, and an attribute is represented by an oval.
Each attribute in the primary key is underlined. The domain information could be
listed along with the attribute name, but we omit this to keep the figures compact.
The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we may
have the relationship that Attishoo works in the pharmacy department. As with
entities, we may wish to collect a set of similar relationships into a relationship set.

2To avoid confusion, we will assume that attribute names do not repeat across entity sets. This is
not a real limitation because we can always use the entity set name to resolve ambiguities if the same
attribute name is used in more than one entity set.

28 CHAPTER 2

> T

Employees

Figure 2.1 The Employees Entity Set

A relationship set can be thought of as a set of n-tuples:
{(e1,...,en) | €1 € E1,...,en € By}

Each n-tuple denotes a relationship involving n entities e; through e,,, where entity e;
is in entity set E;. In Figure 2.2 we show the relationship set Works_In, in which each
relationship indicates a department in which an employee works. Note that several
relationship sets might involve the same entity sets. For example, we could also have
a Manages relationship set involving Employees and Departments.

SIS

Employees Departments

Figure 2.2 The Works_In Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes are used
to record information about the relationship, rather than about any one of the par-
ticipating entities; for example, we may wish to record that Attishoo works in the
pharmacy department as of January 1991. This information is captured in Figure 2.2
by adding an attribute, since, to Works_In. A relationship must be uniquely identified
by the participating entities, without reference to the descriptive attributes. In the
Works_In relationship set, for example, each Works_In relationship must be uniquely
identified by the combination of employee ssn and department did. Thus, for a given
employee-department pair, we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an instance
can be thought of as a ‘snapshot’ of the relationship set at some instant in time. An
instance of the Works_In relationship set is shown in Figure 2.3. Each Employees entity
is denoted by its ssn, and each Departments entity is denoted by its did, for simplicity.

The Entity-Relationship Model 29

The since value is shown beside each relationship. (The ‘many-to-many’ and ‘total
participation’ comments in the figure will be discussed later, when we discuss integrity
constraints.)

EMPLOYEES WORKS_IN DEPARTMENTS
Total participation Many to Many Total participation

Figure 2.3 An Instance of the Works_In Relationship Set

As another example of an ER diagram, suppose that each department has offices in
several locations and we want to record the locations at which each employee works.
This relationship is ternary because we must record an association between an em-
ployee, a department, and a location. The ER diagram for this variant of Works_In,
which we call Works_In2, is shown in Figure 2.4.

RN
GO

Employees — | Departments

Locations

Figure 2.4 A Ternary Relationship Set

The entity sets that participate in a relationship set need not be distinct; sometimes
a relationship might involve two entities in the same entity set. For example, consider
the Reports_To relationship set that is shown in Figure 2.5. Since employees report
to other employees, every relationship in Reports_To is of the form (emp;,emps),

30 CHAPTER 2

where both emp; and empy are entities in Employees. However, they play different
roles: emp; reports to the managing employee empo, which is reflected in the role
indicators supervisor and subordinate in Figure 2.5. If an entity set plays more than
one role, the role indicator concatenated with an attribute name from the entity set
gives us a unique name for each attribute in the relationship set. For example, the
Reports_To relationship set has attributes corresponding to the ssn of the supervisor
and the ssn of the subordinate, and the names of these attributes are supervisor_ssn
and subordinate_ssn.

ST

S

Employees

supervisor subordinate

Reports_To

Figure 2.5 The Reports_To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe some
subtle properties of the data. The expressiveness of the ER model is a big reason for
its widespread use.

24.1 Key Constraints

Consider the Works_In relationship shown in Figure 2.2. An employee can work in
several departments, and a department can have several employees, as illustrated in
the Works_In instance shown in Figure 2.3. Employee 231-31-5368 has worked in
Department 51 since 3/3/93 and in Department 56 since 2/2/92. Department 51 has
two employees.

Now consider another relationship set called Manages between the Employees and De-
partments entity sets such that each department has at most one manager, although a
single employee is allowed to manage more than one department. The restriction that
each department has at most one manager is an example of a key constraint, and
it implies that each Departments entity appears in at most one Manages relationship

The Entity-Relationship Model 31

in any allowable instance of Manages. This restriction is indicated in the ER diagram
of Figure 2.6 by using an arrow from Departments to Manages. Intuitively, the ar-
row states that given a Departments entity, we can uniquely determine the Manages
relationship in which it appears.

ST

Employees Manages Departments

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this is also
a potential instance for the Works_In relationship set, the instance of Works_In shown
in Figure 2.3 violates the key constraint on Manages.

eIl
el

EMPLOYEES MANAGES DEPARTMENTS
Partial participation Oneto Many Total participation

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to indicate that
one employee can be associated with many departments (in the capacity of a manager),
whereas each department can be associated with at most one employee as its manager.
In contrast, the Works_In relationship set, in which an employee is allowed to work in
several departments and a department is allowed to have several employees, is said to
be many-to-many.

32 CHAPTER 2

If we add the restriction that each employee can manage at most one department
to the Manages relationship set, which would be indicated by adding an arrow from
Employees to Manages in Figure 2.6, we have a one-to-one relationship set.

Key Constraints for Ternary Relationships

We can extend this convention—and the underlying key constraint concept—to rela-
tionship sets involving three or more entity sets: If an entity set E has a key constraint
in a relationship set R, each entity in an instance of E appears in at most one rela-
tionship in (a corresponding instance of) R. To indicate a key constraint on entity set
E in relationship set R, we draw an arrow from E to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each employee
works in at most one department, and at a single location. An instance of the
Works_In3 relationship set is shown in Figure 2.9. Notice that each department can be
associated with several employees and locations, and each location can be associated
with several departments and employees; however, each employee is associated with a
single department and location.

Cm DT Co D Ce D7 Comm D

S~

Employees ——| Departments

Locations

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one manager.
A natural question to ask is whether every department has a manager. Let us say that
every department is required to have a manager. This requirement is an example of
a participation constraint; the participation of the entity set Departments in the
relationship set Manages is said to be total. A participation that is not total is said to
be partial. As an example, the participation of the entity set Employees in Manages
is partial, since not every employee gets to manage a department.

The Entity-Relationship Model 33

DEPARTMENTS

EMPLOYEES
Key constraint

WORKS IN3

LOCATIONS

Figure 2.9 An Instance of Works_In3

Revisiting the Works_In relationship set, it is natural to expect that each employee
works in at least one department and that each department has at least one employee.
This means that the participation of both Employees and Departments in Works_In
is total. The ER diagram in Figure 2.10 shows both the Manages and Works_In
relationship sets and all the given constraints. If the participation of an entity set
in a relationship set is total, the two are connected by a thick line; independently,
the presence of an arrow indicates a key constraint. The instances of Works_In and
Manages shown in Figures 2.3 and 2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set include a
key. This assumption does not always hold. For example, suppose that employees can
purchase insurance policies to cover their dependents. We wish to record information
about policies, including who is covered by each policy, but this information is really
our only interest in the dependents of an employee. If an employee quits, any policy
owned by the employee is terminated and we want to delete all the relevant policy and
dependent information from the database.

We might choose to identify a dependent by name alone in this situation, since it is rea-
sonable to expect that the dependents of a given employee have different names. Thus
the attributes of the Dependents entity set might be pname and age. The attribute
pname does not identify a dependent uniquely. Recall that the key for Employees is

34 CHAPTER 2

ST

Employees Manages Departments

Figure 2.10 Manages and Works_In

ssm; thus we might have two employees called Smethurst, and each might have a son
called Joe.

Dependents is an example of a weak entity set. A weak entity can be identified
uniquely only by considering some of its attributes in conjunction with the primary
key of another entity, which is called the identifying owner.

The following restrictions must hold:

m The owner entity set and the weak entity set must participate in a one-to-many
relationship set (one owner entity is associated with one or more weak entities,
but each weak entity has a single owner). This relationship set is called the
identifying relationship set of the weak entity set.

m The weak entity set must have total participation in the identifying relationship
set.

For example, a Dependents entity can be identified uniquely only if we take the key
of the owning Employees entity and the pname of the Dependents entity. The set of
attributes of a weak entity set that uniquely identify a weak entity for a given owner
entity is called a partial key of the weak entity set. In our example pname is a partial
key for Dependents.

The Dependents weak entity set and its relationship to Employees is shown in Fig-
ure 2.11. The total participation of Dependents in Policy is indicated by linking them

The Entity-Relationship Model 35

with a dark line. The arrow from Dependents to Policy indicates that each Dependents
entity appears in at most one (indeed, exactly one, because of the participation con-
straint) Policy relationship. To underscore the fact that Dependents is a weak entity
and Policy is its identifying relationship, we draw both with dark lines. To indicate
that pname is a partial key for Dependents, we underline it using a broken line. This
means that there may well be two dependents with the same pname value.

Employees @ Dependents

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses. For
example, we might want to talk about an Hourly_Emps entity set and a Contract_Emps
entity set to distinguish the basis on which they are paid. We might have attributes
hours_worked and hourly_wage defined for Hourly_ Emps and an attribute contractid
defined for Contract_Emps.

We want the semantics that every entity in one of these sets is also an Employees entity,
and as such must have all of the attributes of Employees defined. Thus, the attributes
defined for an Hourly_Emps entity are the attributes for Employees plus Hourly_Emps.
We say that the attributes for the entity set Employees are inherited by the entity
set Hourly_Emps, and that Hourly_ Emps ISA (read is a) Employees. In addition—
and in contrast to class hierarchies in programming languages such as C++—there is
a constraint on queries over instances of these entity sets: A query that asks for all
Employees entities must consider all Hourly_Emps and Contract_Emps entities as well.
Figure 2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For example,
we might identify a subset of employees as Senior_Emps. We can modify Figure 2.12
to reflect this change by adding a second ISA node as a child of Employees and making
Senior_Emps a child of this node. Each of these entity sets might be classified further,
creating a multilevel ISA hierarchy.

A class hierarchy can be viewed in one of two ways:

36 CHAPTER 2

~

Employees

ISA
hours_worked
hourly_wages

Figure 2.12 Class Hierarchy

Hourly_Emps Contract_Emps

m Employees is specialized into subclasses. Specialization is the process of iden-
tifying subsets of an entity set (the superclass) that share some distinguishing
characteristic. Typically the superclass is defined first, the subclasses are defined
next, and subclass-specific attributes and relationship sets are then added.

m Hourly_ Emps and Contract_Emps are generalized by Employees. As another
example, two entity sets Motorboats and Cars may be generalized into an entity
set Motor_Vehicles. Generalization consists of identifying some common charac-
teristics of a collection of entity sets and creating a new entity set that contains
entities possessing these common characteristics. Typically the subclasses are de-
fined first, the superclass is defined next, and any relationship sets that involve
the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely, overlap
and covering constraints. Overlap constraints determine whether two subclasses are
allowed to contain the same entity. For example, can Attishoo be both an Hourly_Emps
entity and a Contract_Emps entity? Intuitively, no. Can he be both a Contract_Emps
entity and a Senior_Emps entity? Intuitively, yes. We denote this by writing ‘Con-
tract_Emps OVERLAPS Senior_Emps.” In the absence of such a statement, we assume
by default that entity sets are constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collectively
include all entities in the superclass. For example, does every Employees entity have
to belong to one of its subclasses? Intuitively, no. Does every Motor_Vehicles entity
have to be either a Motorboats entity or a Cars entity? Intuitively, yes; a charac-
teristic property of generalization hierarchies is that every instance of a superclass is
an instance of a subclass. We denote this by writing ‘Motorboats AND Cars COVER

The Entity-Relationship Model 37

Motor_Vehicles.” In the absence of such a statement, we assume by default that there
is no covering constraint; we can have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or generaliza-
tion):

1. We might want to add descriptive attributes that make sense only for the entities
in a subclass. For example, hourly_wages does not make sense for a Contract_Emps
entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some relation-
ship. For example, we might wish to define the Manages relationship so that the
participating entity sets are Senior_Emps and Departments, to ensure that only
senior employees can be managers. As another example, Motorboats and Cars
may have different descriptive attributes (say, tonnage and number of doors), but
as Motor_Vehicles entities, they must be licensed. The licensing information can
be captured by a Licensed_To relationship between Motor_Vehicles and an entity
set called Owners.

2.4.5 Aggregation

As we have defined it thus far, a relationship set is an association between entity sets.
Sometimes we have to model a relationship between a collection of entities and rela-
tionships. Suppose that we have an entity set called Projects and that each Projects
entity is sponsored by one or more departments. The Sponsors relationship set cap-
tures this information. A department that sponsors a project might assign employees
to monitor the sponsorship. Intuitively, Monitors should be a relationship set that
associates a Sponsors relationship (rather than a Projects or Departments entity) with
an Employees entity. However, we have defined relationships to associate two or more
entities.

In order to define a relationship set such as Monitors, we introduce a new feature of the
ER model, called aggregation. Aggregation allows us to indicate that a relationship
set (identified through a dashed box) participates in another relationship set. This is
illustrated in Figure 2.13, with a dashed box around Sponsors (and its participating
entity sets) used to denote aggregation. This effectively allows us to treat Sponsors as
an entity set for purposes of defining the Monitors relationship set.

When should we use aggregation? Intuitively, we use it when we need to express a
relationship among relationships. But can’t we express relationships involving other
relationships without using aggregation? In our example, why not make Sponsors a
ternary relationship? The answer is that there are really two distinct relationships,
Sponsors and Monitors, each possibly with attributes of its own. For instance, the

38 CHAPTER 2

,,

|
! |
I
i .
! |
: _—
! I
! I
| \ ‘
! I
! |
! |
! I
! I

Projects —Wi Departments

Figure 2.13 Aggregation

Monitors relationship has an attribute until that records the date until when the em-
ployee is appointed as the sponsorship monitor. Compare this attribute with the
attribute since of Sponsors, which is the date when the sponsorship took effect. The
use of aggregation versus a ternary relationship may also be guided by certain integrity
constraints, as explained in Section 2.5.4.

2.5 CONCEPTUAL DATABASE DESIGN WITH THE ER MODEL

Developing an ER. diagram presents several choices, including the following:

Should a concept be modeled as an entity or an attribute?
m Should a concept be modeled as an entity or a relationship?

m What are the relationship sets and their participating entity sets? Should we use
binary or ternary relationships?

m Should we use aggregation?

We now discuss the issues involved in making these choices.

The Entity-Relationship Model 39

251 Entity versus Attri bute

While identifying the attributes of an entity set, it is sometimes not clear whether a
property should be modeled as an attribute or as an entity set (and related to the first
entity set using a relationship set). For example, consider adding address information
to the Employees entity set. One option is to use an attribute address. This option is
appropriate if we need to record only one address per employee, and it suffices to think
of an address as a string. An alternative is to create an entity set called Addresses
and to record associations between employees and addresses using a relationship (say,
Has_Address). This more complex alternative is necessary in two situations:

m We have to record more than one address for an employee.

. We want to capture the structure of an address in our ER diagram. For example,
we might break down an address into city, state, country, and Zip code, in addition
to a string for street information. By representing an address as an entity with
these attributes, we can support queries such as “Find all employees with an
address in Madison, WI.”

For another example of when to model a concept as an entity set rather than as an
attribute, consider the relationship set (called Works_In2) shown in Figure 2.14.

Co D77 Cm D

T T

Employees Departments

Figure 2.14 The Works_In2 Relationship Set

It differs from the Works_In relationship set of Figure 2.2 only in that it has attributes
from and to, instead of since. Intuitively, it records the interval during which an
employee works for a department. Now suppose that it is possible for an employee to
work in a given department over more than one period.

This possibility is ruled out by the ER diagram’s semantics. The problem is that
we want to record several values for the descriptive attributes for each instance of
the Works In2 relationship. (This situation is analogous to wanting to record several
addresses for each employee.) We can address this problem by introducing an entity
set called, say, Duration, with attributes from and to, as shown in Figure 2.15.

40 CHAPTER 2

S

Employees Departments

e

Figure 2.15 The Works_In4 Relationship Set

In some versions of the ER model, attributes are allowed to take on sets as values.
Given this feature, we could make Duration an attribute of Works_In, rather than an
entity set; associated with each Works_In relationship, we would have a set of intervals.
This approach is perhaps more intuitive than modeling Duration as an entity set.
Nonetheless, when such set-valued attributes are translated into the relational model,
which does not support set-valued attributes, the resulting relational schema is very
similar to what we get by regarding Duration as an entity set.

2.5.2 Entity versus Relationship
Consider the relationship set called Manages in Figure 2.6. Suppose that each depart-

ment manager is given a discretionary budget (dbudget), as shown in Figure 2.16, in
which we have also renamed the relationship set to Manages2.

dbudget
Tm

Departments

=T

Employees Manages2

Figure 2.16 Entity versus Relationship

There is at most one employee managing a department, but a given employee could
manage several departments; we store the starting date and discretionary budget for
each manager-department pair. This approach is natural if we assume that a manager
receives a separate discretionary budget for each department that he or she manages.

The Entity-Relationship Model 41

But what if the discretionary budget is a sum that covers all departments managed by
that employee? In this case each Manages2 relationship that involves a given employee
will have the same value in the dbudget field. In general such redundancy could be
significant and could cause a variety of problems. (We discuss redundancy and its
attendant problems in Chapter 15.) Another problem with this design is that it is
misleading.

We can address these problems by associating dbudget with the appointment of the
employee as manager of a group of departments. In this approach, we model the
appointment as an entity set, say Mgr_Appt, and use a ternary relationship, say Man-
ages3, to relate a manager, an appointment, and a department. The details of an
appointment (such as the discretionary budget) are not repeated for each department
that is included in the appointment now, although there is still one Manages3 relation-
ship instance per such department. Further, note that each department has at most
one manager, as before, because of the key constraint. This approach is illustrated in
Figure 2.17.

Sy

Employees Manages3 Departments

dbudget

Figure 2.17 Entity Set versus Relationship

2.5.3 Binary versus Ternary Relationships *

Consider the ER diagram shown in Figure 2.18. It models a situation in which an
employee can own several policies, each policy can be owned by several employees, and
each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

m A policy cannot be owned jointly by two or more employees.

m Every policy must be owned by some employee.

42 CHAPTER 2

I

Employees Dependents

Policies

Figure 2.18 Policies as an Entity Set

m Dependents is a weak entity set, and each dependent entity is uniquely identified by
taking pname in conjunction with the policyid of a policy entity (which, intuitively,
covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with respect
to Covers, but this constraint has the unintended side effect that a policy can cover only
one dependent. The second requirement suggests that we impose a total participation
constraint on Policies. This solution is acceptable if each policy covers at least one
dependent. The third requirement forces us to introduce an identifying relationship
that is binary (in our version of ER diagrams, although there are versions in which
this is not the case).

Even ignoring the third point above, the best way to model this situation is to use two
binary relationships, as shown in Figure 2.19.

This example really had two relationships involving Policies, and our attempt to use
a single ternary relationship (Figure 2.18) was inappropriate. There are situations,
however, where a relationship inherently associates more than two entities. We have
seen such an example in Figure 2.4 and also Figures 2.15 and 2.17.

As a good example of a ternary relationship, consider entity sets Parts, Suppliers, and
Departments, and a relationship set Contracts (with descriptive attribute gty) that
involves all of them. A contract specifies that a supplier will supply (some quantity of)
a part to a department. This relationship cannot be adequately captured by a collection
of binary relationships (without the use of aggregation). With binary relationships, we
can denote that a supplier ‘can supply’ certain parts, that a department ‘needs’ some

The Entity-Relationship Model 43

Employees Dependents
* Beneficiary

Policies

Figure 2.19 Policy Revisited

parts, or that a department ‘deals with’ a certain supplier. No combination of these
relationships expresses the meaning of a contract adequately, for at least two reasons:

m The facts that supplier S can supply part P, that department D needs part P, and
that D will buy from S do not necessarily imply that department D indeed buys
part P from supplier S!

m We cannot represent the ¢ty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships *

As we noted in Section 2.4.5, the choice between using aggregation or a ternary relation-
ship is mainly determined by the existence of a relationship that relates a relationship
set to an entity set (or second relationship set). The choice may also be guided by
certain integrity constraints that we want to express. For example, consider the ER
diagram shown in Figure 2.13. According to this diagram, a project can be sponsored
by any number of departments, a department can sponsor one or more projects, and
each sponsorship is monitored by one or more employees. If we don’t need to record
the wuntil attribute of Monitors, then we might reasonably use a ternary relationship,
say, Sponsors2, as shown in Figure 2.20.

Consider the constraint that each sponsorship (of a project by a department) be mon-
itored by at most one employee. We cannot express this constraint in terms of the
Sponsors2 relationship set. On the other hand, we can easily express the constraint
by drawing an arrow from the aggregated relationship Sponsors to the relationship

44 CHAPTER 2

ST

o~

Employees
started_on
- pbudget - budget
Projects Departments

Figure 2.20 Using a Ternary Relationship instead of Aggregation

Monitors in Figure 2.13. Thus, the presence of such a constraint serves as another
reason for using aggregation rather than a ternary relationship set.

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES *

We have thus far concentrated on the constructs available in the ER model for describ-
ing various application concepts and relationships. The process of conceptual design
consists of more than just describing small fragments of the application in terms of
ER diagrams. For a large enterprise, the design may require the efforts of more than
one designer and span data and application code used by a number of user groups.
Using a high-level, semantic data model such as ER diagrams for conceptual design in
such an environment offers the additional advantage that the high-level design can be
diagrammatically represented and is easily understood by the many people who must
provide input to the design process.

An important aspect of the design process is the methodology used to structure the
development of the overall design and to ensure that the design takes into account all
user requirements and is consistent. The usual approach is that the requirements of
various user groups are considered, any conflicting requirements are somehow resolved,
and a single set of global requirements is generated at the end of the requirements
analysis phase. Generating a single set of global requirements is a difficult task, but
it allows the conceptual design phase to proceed with the development of a logical
schema that spans all the data and applications throughout the enterprise.

The Entity-Relationship Model 45

An alternative approach is to develop separate conceptual schemas for different user
groups and to then integrate these conceptual schemas. To integrate multiple concep-
tual schemas, we must establish correspondences between entities, relationships, and
attributes, and we must resolve numerous kinds of conflicts (e.g., naming conflicts,
domain mismatches, differences in measurement units). This task is difficult in its
own right. In some situations schema integration cannot be avoided—for example,
when one organization merges with another, existing databases may have to be inte-
grated. Schema integration is also increasing in importance as users demand access to
heterogeneous data sources, often maintained by different organizations.

2.7 POINTS TO REVIEW

m Database design has six steps: requirements analysis, conceptual database design,
logical database design, schema refinement, physical database design, and security
design. Conceptual design should produce a high-level description of the data,
and the entity-relationship (ER) data model provides a graphical approach to this
design phase. (Section 2.1)

m In the ER model, a real-world object is represented as an entity. An entity setis a
collection of structurally identical entities. Entities are described using attributes.
Each entity set has a distinguished set of attributes called a key that can be used
to uniquely identify each entity. (Section 2.2)

m A relationship is an association between two or more entities. A relationship set
is a collection of relationships that relate entities from the same entity sets. A
relationship can also have descriptive attributes. (Section 2.3)

m A key constraint between an entity set S and a relationship set restricts instances
of the relationship set by requiring that each entity of S participate in at most one
relationship. A participation constraint between an entity set S and a relationship
set restricts instances of the relationship set by requiring that each entity of S
participate in at least one relationship. The identity and existence of a weak entity
depends on the identity and existence of another (owner) entity. Class hierarchies
organize structurally similar entities through inheritance into sub- and super-
classes. Aggregation conceptually transforms a relationship set into an entity set
such that the resulting construct can be related to other entity sets. (Section 2.4)

m Development of an ER diagram involves important modeling decisions. A thor-
ough understanding of the problem being modeled is necessary to decide whether
to use an attribute or an entity set, an entity or a relationship set, a binary or
ternary relationship, or aggregation. (Section 2.5)

m Conceptual design for large enterprises is especially challenging because data from
many sources, managed by many groups, is involved. (Section 2.6)

46 CHAPTER 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,
entity set, relationship set, one-to-many relationship, many-to-many relationship, participa-
tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role
indicator.

Exercise 2.2 A university database contains information about professors (identified by so-
cial security number, or SSN) and courses (identified by courseid). Professors teach courses;
each of the following situations concerns the Teaches relationship set. For each situation,
draw an ER diagram that describes it (assuming that no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be
recorded.

2. Professors can teach the same course in several semesters, and only the most recent
such offering needs to be recorded. (Assume this condition applies in all subsequent
questions.)

3. Every professor must teach some course.
4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be
taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it
is possible that no one professor in a team can teach the course. Model this situation,
introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

u Professors have an SSN, a name, an age, a rank, and a research specialty.

u Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending
date, and a budget.

L Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or
Ph.D.).

L] Each project is managed by one professor (known as the project’s principal investigator).
L] Each project is worked on by one or more professors (known as the project’s co-investigators).
L] Professors can manage and/or work on multiple projects.

u Each project is worked on by one or more graduate students (known as the project’s
research assistants).

u When graduate students work on a project, a professor must supervise their work on the
project. Graduate students can work on multiple projects, in which case they will have
a (potentially different) supervisor for each one.

u Departments have a department number, a department name, and a main office.
m Departments have a professor (known as the chairman) who runs the department.

m Professors work in one or more departments, and for each department that they work
in, a time percentage is associated with their job.

The Entity-Relationship Model 47

® Graduate students have one major department in which they are working on their degree.

L] Each graduate student has another, more senior graduate student (known as a student
advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only
the basic ER model here, that is, entities, relationships, and attributes. Be sure to indicate
any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified
by ssn, with salary and phone as attributes); departments (identified by dno, with dname and
budget as attributes); and children of employees (with name and age as attributes). Employees
work in departments; each department is managed by an employee; a child must be identified
uniquely by name when the parent (who is an employee; assume that only one parent works
for the company) is known. We are not interested in information about a child once the
parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform
on its albums (as well as other company data) in a database. The company has wisely chosen
to hire you as a database designer (at your usual consulting fee of $2,500/day).

u Each musician that records at Notown has an SSN, a name, an address, and a phone
number. Poorly paid musicians often share the same address, and no address has more
than one phone.

m Each instrument that is used in songs recorded at Notown has a name (e.g., guitar,
synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

u Each album that is recorded on the Notown label has a title, a copyright date, a format
(e.g., CD or MC), and an album identifier.

m Each song recorded at Notown has a title and an author.

u Each musician may play several instruments, and a given instrument may be played by
several musicians.

m Each album has a number of songs on it, but no song may appear on more than one
album.

u Each song is performed by one or more musicians, and a musician may perform a number
of songs.

m Each album has exactly one musician who acts as its producer. A musician may produce
several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The
following information describes the situation that the Notown database must model. Be sure
to indicate all key and cardinality constraints and any assumptions that you make. Identify
any constraints that you are unable to capture in the ER diagram and briefly explain why
you could not express them.

48 CHAPTER 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane
County Airport officials about the poor organization at the airport. As a result, the officials
have decided that all information related to the airport should be organized using a DBMS,
and you’ve been hired to design the database. Your first task is to organize the informa-
tion about all the airplanes that are stationed and maintained at the airport. The relevant
information is as follows:

L] Every airplane has a registration number, and each airplane is of a specific model.

® The airport accommodates a number of airplane models, and each model is identified by
a model number (e.g., DC-10) and has a capacity and a weight.

® A number of technicians work at the airport. You need to store the name, SSN, address,
phone number, and salary of each technician.

m Each technician is an expert on one or more plane model(s), and his or her expertise may
overlap with that of other technicians. This information about technicians must also be
recorded.

L] Traffic controllers must have an annual medical examination. For each traffic controller,
you must store the date of the most recent exam.

m All airport employees (including technicians) belong to a union. You must store the
union membership number of each employee. You can assume that each employee is
uniquely identified by the social security number.

L] The airport has a number of tests that are used periodically to ensure that airplanes are
still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a
name, and a maximum possible score.

m The FAA requires the airport to keep track of each time that a given airplane is tested
by a given technician using a given test. For each testing event, the information needed
is the date, the number of hours the technician spent doing the test, and the score that
the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes
of each entity and relationship set; also specify the key and participation constraints for
each relationship set. Specify any necessary overlap and covering constraints as well (in
English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician
who is an expert on that model. How would you express this constraint in the ER
diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life-
time supply of medicines if you design its database. Given the rising cost of health care, you
agree. Here’s the information that you gather:

u Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

m Doctors are identified by an SSN. For each doctor, the name, specialty, and years of
experience must be recorded.

] Each pharmaceutical company is identified by name and has a phone number.

The Entity-Relationship Model 49

m For each drug, the trade name and formula must be recorded. Each drug is sold by
a given pharmaceutical company, and the trade name identifies a drug uniquely from
among the products of that company. If a pharmaceutical company is deleted, you need
not keep track of its products any longer.

u Each pharmacy has a name, address, and phone number.
m Every patient has a primary physician. Every doctor has at least one patient.

u Each pharmacy sells several drugs and has a price for each. A drug could be sold at
several pharmacies, and the price could vary from one pharmacy to another.

m Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for
several patients, and a patient could obtain prescriptions from several doctors. Each
prescription has a date and a quantity associated with it. You can assume that if a
doctor prescribes the same drug for the same patient more than once, only the last such
prescription needs to be stored.

u Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical
company can contract with several pharmacies, and a pharmacy can contract with several
pharmaceutical companies. For each contract, you have to store a start date, an end date,
and the text of the contract.

] Pharmacies appoint a supervisor for each contract. There must always be a supervisor
for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the above information. Identify any constraints that
are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma-
cies?

3. How would your design change if the design requirements change as follows: If a doctor
prescribes the same drug for the same patient more than once, several such prescriptions
may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on
databases because you love to cook data and you somehow confused ‘data base’ with ‘data
baste.” Your old love is still there, however, so you set up a database company, ArtBase, that
builds a product for art galleries. The core of this product is a database with a schema that
captures all the information that galleries need to maintain. Galleries keep information about
artists, their names (which are unique), birthplaces, age, and style of art. For each piece
of artwork, the artist, the year it was made, its unique title, its type of art (e.g., painting,
lithograph, sculpture, photograph), and its price must be stored. Pieces of artwork are also
classified into groups of various kinds, for example, portraits, still lifes, works by Picasso, or
works of the 19th century; a given piece may belong to more than one group. Each group
is identified by a name (like those above) that describes the group. Finally, galleries keep
information about customers. For each customer, galleries keep their unique name, address,
total amount of dollars they have spent in the gallery (very important!), and the artists and
groups of art that each customer tends to like.

Draw the ER diagram for the database.

50 CHAPTER 2

BIBLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [52] (which also
contains a survey of commercial database design tools) and [641].

The ER model was proposed by Chen [145], and extensions have been proposed in a number of
subsequent papers. Generalization and aggregation were introduced in [604]. [330] and [514]
contain good surveys of semantic data models. Dynamic and temporal aspects of semantic
data models are discussed in [658].

[642] discusses a design methodology based on developing an ER diagram and then translating
to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercial systems (as of
that date) in [446, 447].

The entity-relationship conference proceedings contain numerous papers on conceptual design,
with an emphasis on the ER model, for example, [609].

View integration is discussed in several papers, including [84, 118, 153, 207, 465, 480, 479,
596, 608, 657]. [53] is a survey of several integration approaches.

THE RELATIONAL MODEL

TABLE: An arrangement of words, numbers, or signs, or combinations of them, as
in parallel columns, to exhibit a set of facts or relations in a definite, compact, and
comprehensive form; a synopsis or scheme.

—Webster’s Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time most database systems
were based on one of two older data models (the hierarchical model and the network
model); the relational model revolutionized the database field and largely supplanted
these earlier models. Prototype relational database management systems were devel-
oped in pioneering research projects at IBM and UC-Berkeley by the mid-70s, and
several vendors were offering relational database products shortly thereafter. Today,
the relational model is by far the dominant data model and is the foundation for the
leading DBMS products, including IBM’s DB2 family, Informix, Oracle, Sybase, Mi-
crosoft’s Access and SQLServer, FoxBase, and Paradox. Relational database systems
are ubiquitous in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant; a database is a collection of one or more
relations, where each relation is a table with rows and columns. This simple tabular
representation enables even novice users to understand the contents of a database,
and it permits the use of simple, high-level languages to query the data. The major
advantages of the relational model over the older data models are its simple data
representation and the ease with which even complex queries can be expressed.

This chapter introduces the relational model and covers the following issues:

m How is data represented?

m What kinds of integrity constraints can be expressed?

m How can data be created and modified?

m How can data be manipulated and queried?

m How do we obtain a database design in the relational model?

m How are logical and physical data independence achieved?

o1

H2 CHAPTER 3

SQL: It was the query language of the pioneering System-R relational DBMS
developed at IBM. Over the years, SQL has become the most widely used language
for creating, manipulating, and querying relational DBMSs. Since many vendors
offer SQL products, there is a need for a standard that defines ‘official SQL.’
The existence of a standard allows users to measure a given vendor’s version of
SQL for completeness. It also allows users to distinguish SQL features that are
specific to one product from those that are standard; an application that relies on
non-standard features is less portable.

The first SQL standard was developed in 1986 by the American National Stan-
dards Institute (ANSI), and was called SQL-86. There was a minor revision in
1989 called SQL-89, and a major revision in 1992 called SQL-92. The Interna-
tional Standards Organization (ISO) collaborated with ANSI to develop SQL-92.
Most commercial DBMSs currently support SQL-92. An exciting development is
the imminent approval of SQL:1999, a major extension of SQL-92. While the cov-
erage of SQL in this book is based upon SQL-92, we will cover the main extensions
of SQL:1999 as well.

While we concentrate on the underlying concepts, we also introduce the Data Def-
inition Language (DDL) features of SQL-92, the standard language for creating,
manipulating, and querying data in a relational DBMS. This allows us to ground the
discussion firmly in terms of real database systems.

We discuss the concept of a relation in Section 3.1 and show how to create relations
using the SQL language. An important component of a data model is the set of
constructs it provides for specifying conditions that must be satisfied by the data. Such
conditions, called integrity constraints (ICs), enable the DBMS to reject operations that
might corrupt the data. We present integrity constraints in the relational model in
Section 3.2, along with a discussion of SQL support for ICs. We discuss how a DBMS
enforces integrity constraints in Section 3.3. In Section 3.4 we turn to the mechanism
for accessing and retrieving data from the database, query languages, and introduce
the querying features of SQL, which we examine in greater detail in a later chapter.

We then discuss the step of converting an ER diagram into a relational database schema
in Section 3.5. Finally, we introduce views, or tables defined using queries, in Section
3.6. Views can be used to define the external schema for a database and thus provide
the support for logical data independence in the relational model.

3.1 INTRODUCTION TO THE RELATIONAL MODEL

The main construct for representing data in the relational model is a relation. A
relation consists of a relation schema and a relation instance. The relation instance

The Relational Model 53

is a table, and the relation schema describes the column heads for the table. We first
describe the relation schema and then the relation instance. The schema specifies the
relation’s name, the name of each field (or column, or attribute), and the domain
of each field. A domain is referred to in a relation schema by the domain name and
has a set of associated values.

We use the example of student information in a university database from Chapter 1
to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string. The set
of values associated with domain string is the set of all character strings.

We now turn to the instances of a relation. An instance of a relation is a set of
tuples, also called records, in which each tuple has the same number of fields as the
relation schema. A relation instance can be thought of as a table in which each tuple
is a row, and all rows have the same number of fields. (The term relation instance is
often abbreviated to just relation, when there is no confusion with other aspects of a
relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance S1 contains

FIELDS (ATTRIBUTES, COLUMNS)

o N

Field names /a/?’ sid ‘ name ‘ login ‘ age‘ gpa‘
50000 | Dave dave@cs 19 | 33

53666 | Jones jones@cs 18 | 34

TUPLES 53688 | Smith smith@ee 18 | 32
(RECORDS, ROWS) 53650 | Smith smith@math 19 | 38
53831 | Madayan | madayan@music | 11 | 1.8

53832 | Guldu guldu@music 12 | 2.0

Figure 3.1 An Instance S1 of the Students Relation

six tuples and has, as we expect from the schema, five fields. Note that no two rows
are identical. This is a requirement of the relational model—each relation is defined
to be a set of unique tuples or rows.! The order in which the rows are listed is not
important. Figure 3.2 shows the same relation instance. If the fields are named, as in

n practice, commercial systems allow tables to have duplicate rows, but we will assume that a
relation is indeed a set of tuples unless otherwise noted.

54 CHAPTER 3

| sid | name | login | age | gpa |
53831 | Madayan | madayan@music | 11 1.8
53832 | Guldu guldu@music 12 | 2.0

53688 | Smith smithQee 18 | 3.2
53650 | Smith smith@math 19 | 3.8
53666 | Jones jones@cs 18 | 3.4
50000 | Dave dave@cs 19 | 3.3

Figure 3.2 An Alternative Representation of Instance S1 of Students

our schema definitions and figures depicting relation instances, the order of fields does
not matter either. However, an alternative convention is to list fields in a specific order
and to refer to a field by its position. Thus sid is field 1 of Students, login is field 3,
and so on. If this convention is used, the order of fields is significant. Most database
systems use a combination of these conventions. For example, in SQL the named fields
convention is used in statements that retrieve tuples, and the ordered fields convention
is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation instance.
These domain constraints in the schema specify an important condition that we
want each instance of the relation to satisfy: The values that appear in a column must
be drawn from the domain associated with that column. Thus, the domain of a field
is essentially the type of that field, in programming language terms, and restricts the
values that can appear in the field.

More formally, let R(f1:D1, ..., f,:Dn) be a relation schema, and for each f;, 1 <1i <mn,
let Dom; be the set of values associated with the domain named Di. An instance of R
that satisfies the domain constraints in the schema is a set of tuples with n fields:

{{fi:d1, ... ,fn:dyn) | d1 € Domy, ... ,d, € Dom, }

The angular brackets (...) identify the fields of a tuple. Using this notation, the first
Students tuple shown in Figure 3.1 is written as (sid: 50000, name: Dave, login:
dave@Qcs, age: 19, gpa: 3.3). The curly brackets {...} denote a set (of tuples, in this
definition). The vertical bar | should be read ‘such that,” the symbol € should be read
‘in,” and the expression to the right of the vertical bar is a condition that must be
satisfied by the field values of each tuple in the set. Thus, an instance of R is defined
as a set of tuples. The fields of each tuple must correspond to the fields in the relation
schema.

Domain constraints are so fundamental in the relational model that we will henceforth
consider only relation instances that satisfy them; therefore, relation instance means
relation instance that satisfies the domain constraints in the relation schema.

The Relational Model 55

The degree, also called arity, of a relation is the number of fields. The cardinality
of a relation instance is the number of tuples in it. In Figure 3.1, the degree of the
relation (the number of columns) is five, and the cardinality of this instance is six.

A relational database is a collection of relations with distinct relation names. The
relational database schema is the collection of schemas for the relations in the
database. For example, in Chapter 1, we discussed a university database with rela-
tions called Students, Faculty, Courses, Rooms, Enrolled, Teaches, and Meets_In. An
instance of a relational database is a collection of relation instances, one per rela-
tion schema in the database schema; of course, each relation instance must satisfy the
domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL-92

The SQL-92 language standard uses the word table to denote relation, and we will
often follow this convention when discussing SQL. The subset of SQL that supports
the creation, deletion, and modification of tables is called the Data Definition Lan-
guage (DDL). Further, while there is a command that lets users define new domains,
analogous to type definition commands in a programming language, we postpone a dis-
cussion of domain definition until Section 5.11. For now, we will just consider domains
that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table.? To create the Students
relation, we can use the following statement:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL)

Tuples are inserted using the INSERT command. We can insert a single tuple into the
Students table as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’; 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list the values
in the appropriate order, but it is good style to be explicit about column names.

2SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.

56 CHAPTER 3

We can delete tuples using the DELETE command. We can delete all Students tuples
with name equal to Smith using the command:

DELETE
FROM Students S
WHERE S.name = ‘Smith’

We can modify the column values in an existing row using the UPDATE command. For
example, we can increment the age and decrement the gpa of the student with sid
53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa - 1
WHERE S.sid = 53688

These examples illustrate some important points. The WHERE clause is applied first
and determines which rows are to be modified. The SET clause then determines how
these rows are to be modified. If the column that is being modified is also used to
determine the new value, the value used in the expression on the right side of equals
(=) is the old value, that is, before the modification. To illustrate these points further,
consider the following variation of the previous query:

UPDATE Students S
SET S.gpa = S.gpa - 0.1
WHERE S.gpa >= 3.3

If this query is applied on the instance S1 of Students shown in Figure 3.1, we obtain
the instance shown in Figure 3.3.

| sid | name | login | age | gpa |
50000 | Dave daveQcs 19 | 3.2
53666 | Jones jones@cs 18 | 3.3
53688 | Smith smith@ee 18 | 3.2
53650 | Smith smith@math 19 | 3.7
53831 | Madayan | madayan@music | 11 1.8
53832 | Guldu guldu@music 12 | 2.0

Figure 3.3 Students Instance S1 after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must therefore
help prevent the entry of incorrect information. An integrity constraint (IC) is a

The Relational Model 57

condition that is specified on a database schema, and restricts the data that can be
stored in an instance of the database. If a database instance satisfies all the integrity
constraints specified on the database schema, it is a legal instance. A DBMS enforces
integrity constraints, in that it permits only legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she specifies the ICs
that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows
changes to the data that violate the specified ICs. (In some situations, rather than
disallow the change, the DBMS might instead make some compensating changes
to the data to ensure that the database instance satisfies all ICs. In any case,
changes to the database are not allowed to create an instance that violates any

1C.)

Many kinds of integrity constraints can be specified in the relational model. We have
already seen one example of an integrity constraint in the domain constraints associated
with a relation schema (Section 3.1). In general, other kinds of constraints can be
specified as well; for example, no two students have the same sid value. In this section
we discuss the integrity constraints, other than domain constraints, that a DBA or
user can specify in the relational model.

3.2.1 Key Constraints

Consider the Students relation and the constraint that no two students have the same
student id. This IC is an example of a key constraint. A key constraint is a statement
that a certain minimal subset of the fields of a relation is a unique identifier for a tuple.
A set of fields that uniquely identifies a tuple according to a key constraint is called
a candidate key for the relation; we often abbreviate this to just key. In the case of
the Students relation, the (set of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There are two
parts to the definition:?

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs, including
the key constraint) cannot have identical values in all the fields of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

3The term key is rather overworked. In the context of access methods, we speak of search keys,
which are quite different.

58 CHAPTER 3

The first part of the definition means that in any legal instance, the values in the key
fields uniquely identify a tuple in the instance. When specifying a key constraint, the
DBA or user must be sure that this constraint will not prevent them from storing a
‘correct’ set of tuples. (A similar comment applies to the specification of other kinds
of ICs as well.) The notion of ‘correctness’ here depends upon the nature of the data
being stored. For example, several students may have the same name, although each
student has a unique student id. If the name field is declared to be a key, the DBMS
will not allow the Students relation to contain two tuples describing different students
with the same name!

The second part of the definition means, for example, that the set of fields {sid, name}
is not a key for Students, because this set properly contains the key {sid}. The set
{sid, name} is an example of a superkey, which is a set of fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that two
different rows always have different sid values; sid is a key and uniquely identifies a
tuple. However, this does not hold for nonkey fields. For example, the relation contains
two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since a relation is a set of tuples,
the set of all fields is always a superkey. If other constraints hold, some subset of the
fields may form a key, but if not, the set of all fields is a key.

A relation may have several candidate keys. For example, the login and age fields of
the Students relation may, taken together, also identify students uniquely. That is,
{login, age} is also a key. It may seem that login is a key, since no two rows in the
example instance have the same login value. However, the key must identify tuples
uniquely in all possible legal instances of the relation. By stating that {login, age} is
a key, the user is declaring that two students may have the same login or age, but not
both.

Out of all the available candidate keys, a database designer can identify a primary
key. Intuitively, a tuple can be referred to from elsewhere in the database by storing
the values of its primary key fields. For example, we can refer to a Students tuple by
storing its sid value. As a consequence of referring to student tuples in this manner,
tuples are frequently accessed by specifying their sid value. In principle, we can use
any key, not just the primary key, to refer to a tuple. However, using the primary key is
preferable because it is what the DBMS expects—this is the significance of designating
a particular candidate key as a primary key—and optimizes for. For example, the
DBMS may create an index with the primary key fields as the search key, to make
the retrieval of a tuple given its primary key value efficient. The idea of referring to a
tuple is developed further in the next section.

The Relational Model 59

Specifying Key Constraints in SQL-92

In SQL we can declare that a subset of the columns of a table constitute a key by
using the UNIQUE constraint. At most one of these ‘candidate’ keys can be declared
to be a primary key, using the PRIMARY KEY constraint. (SQL does not require that
such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid))

This definition says that sid is the primary key and that the combination of name and
age is also a key. The definition of the primary key also illustrates how we can name
a constraint by preceding it with CONSTRAINT constraint-name. If the constraint is
violated, the constraint name is returned and can be used to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information stored in
another relation. If one of the relations is modified, the other must be checked, and
perhaps modified, to keep the data consistent. An IC involving both relations must
be specified if a DBMS is to make such checks. The most common IC involving two
relations is a foreign key constraint.

Suppose that in addition to Students, we have a second relation:
Enrolled(sid: string, cid: string, grade: string)

To ensure that only bona fide students can enroll in courses, any value that appears in
the sid field of an instance of the Enrolled relation should also appear in the sid field
of some tuple in the Students relation. The sid field of Enrolled is called a foreign
key and refers to Students. The foreign key in the referencing relation (Enrolled, in
our example) must match the primary key of the referenced relation (Students), i.e.,
it must have the same number of columns and compatible data types, although the
column names can be different.

This constraint is illustrated in Figure 3.4. As the figure shows, there may well be
some students who are not referenced from Enrolled (e.g., the student with sid=50000).

60 CHAPTER 3

However, every sid value that appears in the instance of the Enrolled table appears in
the primary key column of a row in the Students table.

Foreign key Primary key
1 1

cid ‘grade‘ sid Wsid ‘ name ‘ login ‘ age‘ gpa‘
Carnatic101 C | 53831 50000 | Dave dave@cs 19 | 33
Reggae203 B |53832| "\ _7 | 53666 | Jones jones@cs 18 | 34
Topology112l A | 53650 :\;{(/ 53688 | Smith | smith@ee 18 | 32
History105 | B | 536661 \\\‘} 53650 | Smith | smith@math 19 | 38
\\\\ 53831 | Madayan | madayan@music | 11 | 1.8

\153832| Guldu | guldu@music 12 | 20

Enrolled (Referencing relation) Students (Referenced relation)

Figure 3.4 Referential Integrity

If we try to insert the tuple (55555, Art104, A) into E1, the IC is violated because
there is no tuple in S1 with the id 55555; the database system should reject such
an insertion. Similarly, if we delete the tuple (53666, Jones, jones@cs, 18, 3.4) from
S1, we violate the foreign key constraint because the tuple (53666, Historyl05, B)
in E1 contains sid value 53666, the sid of the deleted Students tuple. The DBMS
should disallow the deletion or, perhaps, also delete the Enrolled tuple that refers to
the deleted Students tuple. We discuss foreign key constraints and their impact on
updates in Section 3.3.

Finally, we note that a foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare this
column to be a foreign key referring to Students. Intuitively, every student could then
have a partner, and the partner field contains the partner’s sid. The observant reader
will no doubt ask, “What if a student does not (yet) have a partner?” This situation
is handled in SQL by using a special value called null. The use of null in a field of a
tuple means that value in that field is either unknown or not applicable (e.g., we do not
know the partner yet, or there is no partner). The appearance of null in a foreign key
field does not violate the foreign key constraint. However, null values are not allowed
to appear in a primary key field (because the primary key fields are used to identify a
tuple uniquely). We will discuss null values further in Chapter 5.

Specifying Foreign Key Constraints in SQL-92
Let us define Enrolled(sid: string, cid: string, grade: string):

CREATE TABLE Enrolled (sid CHAR(20),

The Relational Model 61

cid CHAR(20),

grade CHAR(10),

PRIMARY KEY (sid, cid),

FOREIGN KEY (sid) REFERENCES Students)

The foreign key constraint states that every sid value in Enrolled must also appear in
Students, that is, sid in Enrolled is a foreign key referencing Students. Incidentally,
the primary key constraint states that a student has exactly one grade for each course
that he or she is enrolled in. If we want to record more than one grade per student
per course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fundamental
part of the relational data model and are given special attention in most commercial
systems. Sometimes, however, it is necessary to specify more general constraints.

For example, we may require that student ages be within a certain range of values;
given such an IC specification, the DBMS will reject inserts and updates that violate
the constraint. This is very useful in preventing data entry errors. If we specify that
all students must be at least 16 years old, the instance of Students shown in Figure
3.1 is illegal because two students are underage. If we disallow the insertion of these
two tuples, we have a legal instance, as shown in Figure 3.5.

‘ sid | name | login | age | gpa |
53666 | Jones | jones@Qcs 18 | 34
53688 | Smith | smith@ee 18 | 3.2

53650 | Smith | smith@math | 19 3.8

Figure 3.5 An Instance S2 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended domain
constraint, since we are essentially defining the set of permissible age values more strin-
gently than is possible by simply using a standard domain such as integer. In general,
however, constraints that go well beyond domain, key, or foreign key constraints can
be specified. For example, we could require that every student whose age is greater
than 18 must have a gpa greater than 3.

Current relational database systems support such general constraints in the form of
table constraints and assertions. Table constraints are associated with a single table
and are checked whenever that table is modified. In contrast, assertions involve several

62 CHAPTER 3

tables and are checked whenever any of these tables is modified. Both table constraints
and assertions can use the full power of SQL queries to specify the desired restriction.
We discuss SQL support for table constraints and assertions in Section 5.11 because a
full appreciation of their power requires a good grasp of SQL’s query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, ICs are specified when a relation is created and enforced when
a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE constraints
is straightforward: if an insert, delete, or update command causes a violation, it is
rejected. Potential IC violation is generally checked at the end of each SQL statement
execution, although it can be deferred until the end of the transaction executing the
statement, as we will see in Chapter 18.

Consider the instance S1 of Students shown in Figure 3.1. The following insertion
violates the primary key constraint because there is already a tuple with the sid 53688,
and it will be rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Mike’, ‘mike@ee’, 17, 3.4)

The following insertion violates the constraint that the primary key cannot contain
null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, ‘Mike’, ‘mike@ee’, 17, 3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a value in
a field that is not in the domain associated with that field, i.e., whenever we violate
a domain constraint. Deletion does not cause a violation of domain, primary key or
unique constraints. However, an update can cause violations, similar to an insertion:

UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

This update violates the primary key constraint because there is already a tuple with
sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes tries to
rectify a foreign key constraint violation instead of simply rejecting the change. We will

The Relational Model 63

discuss the referential integrity enforcement steps taken by the DBMS in terms
of our Enrolled and Students tables, with the foreign key constraint that Enrolled.sid
is a reference to (the primary key of) Students.

In addition to the instance S1 of Students, consider the instance of Enrolled shown
in Figure 3.4. Deletions of Enrolled tuples do not violate referential integrity, but
insertions of Enrolled tuples could. The following insertion is illegal because there is
no student with sid 51111:

INSERT
INTO Enrolled (cid, grade, sid)
VALUES (‘Hindil01’, ‘B’, 51111)

On the other hand, insertions of Students tuples do not violate referential integrity
although deletions could. Further, updates on either Enrolled or Students that change
the sid value could potentially violate referential integrity.

SQL-92 provides several alternative ways to handle foreign key violations. We must
consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a sid column value that
does not appear in any row of the Students table?

In this case the INSERT command is simply rejected.
2. What should we do if a Students row is deleted?

The options are:

m Delete all Enrolled rows that refer to the deleted Students row.
m Disallow the deletion of the Students row if an Enrolled row refers to it.

B Set the sid column to the sid of some (existing) ‘default’ student, for every
Enrolled row that refers to the deleted Students row.

s For every Enrolled row that refers to it, set the sid column to null. In our
example, this option conflicts with the fact that sid is part of the primary
key of Enrolled and therefore cannot be set to null. Thus, we are limited to
the first three options in our example, although this fourth option (setting
the foreign key to null) is available in the general case.

3. What should we do if the primary key value of a Students row is updated?

The options here are similar to the previous case.

SQL-92 allows us to choose any of the four options on DELETE and UPDATE. For exam-
ple, we can specify that when a Students row is deleted, all Enrolled rows that refer to
it are to be deleted as well, but that when the sid column of a Students row is modified,
this update is to be rejected if an Enrolled row refers to the modified Students row:

64 CHAPTER 3

CREATE TABLE Enrolled (sid CHAR(20)
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students
ON DELETE CASCADE
ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default option is
NO ACTION, which means that the action (DELETE or UPDATE) is to be rejected. Thus,
the ON UPDATE clause in our example could be omitted, with the same effect. The
CASCADE keyword says that if a Students row is deleted, all Enrolled rows that refer
to it are to be deleted as well. If the UPDATE clause specified CASCADE, and the sid
column of a Students row is updated, this update is also carried out in each Enrolled
row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a ‘default’ student by using
ON DELETE SET DEFAULT. The default student is specified as part of the definition of
the sid field in Enrolled; for example, sid CHAR(20) DEFAULT ‘53666°. Although the
specification of a default value is appropriate in some situations (e.g., a default parts
supplier if a particular supplier goes out of business), it is really not appropriate to
switch enrollments to a default student. The correct solution in this example is to also
delete all enrollment tuples for the deleted student (that is, CASCADE), or to reject the
update.

SQL also allows the use of null as the default value by specifying ON DELETE SET NULL.

3.4 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data, and the
answer consists of a new relation containing the result. For example, we might want
to find all students younger than 18 or all students enrolled in Reggae203. A query
language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS. We now
present some SQL examples that illustrate how easily relations can be queried. Con-
sider the instance of the Students relation shown in Figure 3.1. We can retrieve rows
corresponding to students who are younger than 18 with the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The Relational Model 65

The symbol * means that we retain all fields of selected tuples in the result. To
understand this query, think of S as a variable that takes on the value of each tuple
in Students, one tuple after the other. The condition S.age < 18 in the WHERE clause
specifies that we want to select only tuples in which the age field has a value less than
18. This query evaluates to the relation shown in Figure 3.6.

| sid | name | login | age | gpa |
53831 | Madayan | madayan@music | 11 | 1.8
53832 | Guldu guldu@music 12 | 2.0

Figure 3.6 Students with age < 18 on Instance S1

This example illustrates that the domain of a field restricts the operations that are
permitted on field values, in addition to restricting the values that can appear in the
field. The condition S.age < 18involves an arithmetic comparison of an age value with
an integer and is permissible because the domain of age is the set of integers. On the
other hand, a condition such as S.age = S.sid does not make sense because it compares
an integer value with a string value, and this comparison is defined to fail in SQL; a
query containing this condition will produce no answer tuples.

In addition to selecting a subset of tuples, a query can extract a subset of the fields
of each selected tuple. We can compute the names and logins of students who are
younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the selection
to the instance S1 of Students (to get the relation shown in Figure 3.6), followed by
removing unwanted fields. Note that the order in which we perform these operations
does matter—if we remove unwanted fields first, we cannot check the condition S.age
< 18, which involves one of those fields.

We can also combine information in the Students and Enrolled relations. If we want to
obtain the names of all students who obtained an A and the id of the course in which
they got an A, we could write the following query:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.sid AND E.grade = ‘A’

66 CHAPTER 3

DISTINCT types in SQL: A comparison of two values drawn from different do-
mains should fail, even if the values are ‘compatible’ in the sense that both are
numeric or both are string values etc. For example, if salary and age are two dif-
ferent domains whose values are represented as integers, a comparison of a salary
value with an age value should fail. Unfortunately, SQL-92’s support for the con-
cept of domains does not go this far: We are forced to define salary and age as
integer types and the comparison S < A will succeed when S is bound to the
salary value 25 and A is bound to the age value 50. The latest version of the SQL
standard, called SQL:1999, addresses this problem, and allows us to define salary
and age as DISTINCT types even though their values are represented as integers.
Many systems, e.g., Informix UDS and IBM DB2, already support this feature.

| name | login |

Madayan | madayan@music
Guldu guldu@music

Figure 3.7 Names and Logins of Students under 18

This query can be understood as follows: “If there is a Students tuple S and an Enrolled
tuple E such that S.sid = E.sid (so that S describes the student who is enrolled in E)
and E.grade = ‘A’, then print the student’s name and the course id.” When evaluated
on the instances of Students and Enrolled in Figure 3.4, this query returns a single
tuple, (Smith, Topology112).

We will cover relational queries, and SQL in particular, in more detail in subsequent
chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO RELATIONAL

The ER model is convenient for representing an initial, high-level database design.
Given an ER diagram describing a database, there is a standard approach to generating
a relational database schema that closely approximates the ER design. (The translation
is approximate to the extent that we cannot capture all the constraints implicit in the
ER design using SQL-92, unless we use certain SQIL-92 constraints that are costly to
check.) We now describe how to translate an ER diagram into a collection of tables
with associated constraints, i.e., a relational database schema.

The Relational Model 67

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute of the
entity set becomes an attribute of the table. Note that we know both the domain of
each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in Figure
3.8. A possible instance of the Employees entity set, containing three Employees

> T

Employees

Figure 3.8 The Employees Entity Set

entities, is shown in Figure 3.9 in a tabular format.

ssM | name | lot |
123-22-3666 | Attishoo 48
231-31-5368 | Smiley 22
131-24-3650 | Smethurst | 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the domain
constraints and key information:

CREATE TABLE Employees (ssn CHAR(11),
name CHAR(30),
lot INTEGER,

PRIMARY KEY (ssn))

3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational model.
We begin by considering relationship sets without key and participation constraints,
and we discuss how to handle such constraints in subsequent sections. To represent
a relationship, we must be able to identify each participating entity and give values

68 CHAPTER 3

to the descriptive attributes of the relationship. Thus, the attributes of the relation
include:

m The primary key attributes of each participating entity set, as foreign key fields.

m The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are no key
constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department has
offices in several locations and we want to record the locations at which each employee

works.
Ca DT Cn D

S

Employees — | Departments

Locations

Figure 3.10 A Ternary Relationship Set

All the available information about the Works_In2 table is captured by the following
SQL definition:

CREATE TABLE Works_In2 (ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,

PRIMARY KEY
FOREIGN KEY
FOREIGN KEY
FOREIGN KEY

ssn, did, address),

ssn) REFERENCES Employees,
address) REFERENCES Locations,
did) REFERENCES Departments)

A~ N N N

Note that the address, did, and ssn fields cannot take on null values. Because these
fields are part of the primary key for Works_In2, a NOT NULL constraint is implicit
for each of these fields. This constraint ensures that these fields uniquely identify
a department, an employee, and a location in each tuple of Works_In. We can also

The Relational Model 69

specify that a particular action is desired when a referenced Employees, Departments
or Locations tuple is deleted, as explained in the discussion of integrity constraints in
Section 3.2. In this chapter we assume that the default action is appropriate except
for situations in which the semantics of the ER diagram require some other action.

Finally, consider the Reports_To relationship set shown in Figure 3.11. The role in-

ST

T

Employees

supervisor subordinate

Reports_To

Figure 3.11 The Reports_To Relationship Set

dicators supervisor and subordinate are used to create meaningful field names in the
CREATE statement for the Reports_To table:

CREATE TABLE Reports_To (
supervisor_ssn CHAR(11),
subordinate_ssn CHAR(11),
PRIMARY KEY (supervisor_ssn, subordinate_ssn),
FOREIGN KEY (supervisor_ssn) REFERENCES Employees(ssn),
FOREIGN KEY (subordinate_ssn) REFERENCES Employees(ssn))

Observe that we need to explicitly name the referenced field of Employees because the
field name differs from the name(s) of the referring field(s).

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and some m of them are linked via arrows
in the ER diagram, the key for any one of these m entity sets constitutes a key for
the relation to which the relationship set is mapped. Thus we have m candidate keys,
and one of these should be designated as the primary key. The translation discussed
in Section 2.3 from relationship sets to a relation can be used in the presence of key
constraints, taking into account this point about keys.

70 CHAPTER 3

Consider the relationship set Manages shown in Figure 3.12. The table corresponding

ST

Employees Manages Departments

Figure 3.12 Key Constraint on Manages

to Manages has the attributes ssn, did, since. However, because each department has
at most one manager, no two tuples can have the same did value but differ on the ssn
value. A consequence of this observation is that did is itself a key for Manages; indeed,
the set did, ssnis not a key (because it is not minimal). The Manages relation can be
defined using the following SQL statement:

CREATE TABLE Manages (ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

A second approach to translating a relationship set with key constraints is often su-
perior because it avoids creating a distinct table for the relationship set. The idea
is to include the information about the relationship set in the table corresponding to
the entity set with the key, taking advantage of the key constraint. In the Manages
example, because a department has at most one manager, we can add the key fields of
the Employees tuple denoting the manager and the since attribute to the Departments
tuple.

This approach eliminates the need for a separate Manages relation, and queries asking
for a department’s manager can be answered without combining information from two
relations. The only drawback to this approach is that space could be wasted if several
departments have no managers. In this case the added fields would have to be filled
with null values. The first translation (using a separate table for Manages) avoids this
inefficiency, but some important queries require us to combine information from two
relations, which can be a slow operation.

The following SQL statement, defining a Dept_Mgr relation that captures the informa-
tion in both Departments and Manages, illustrates the second approach to translating
relationship sets with key constraints:

The Relational Model 71

CREATE TABLE Dept_Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than two entity
sets. In general, if a relationship set involves n entity sets and some m of them are
linked via arrows in the ER diagram, the relation corresponding to any one of the m

sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after consid-
ering how to translate relationship sets with participation constraints into tables.

3.5.4 Translating Relationship Sets with Participation Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets, Manages
and Works_In.

S

Employees Manages Departments

Figure 3.13 Manages and Works_In

72 CHAPTER 3

Every department is required to have a manager, due to the participation constraint,
and at most one manager, due to the key constraint. The following SQL statement
reflects the second translation approach discussed in Section 3.5.3, and uses the key
constraint:

CREATE TABLE Dept_Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE NO ACTION)

It also captures the participation constraint that every department must have a man-
ager: Because ssn cannot take on null values, each tuple of Dept_Mgr identifies a tuple
in Employees (who is the manager). The NO ACTION specification, which is the default
and need not be explicitly specified, ensures that an Employees tuple cannot be deleted
while it is pointed to by a Dept_Mgr tuple. If we wish to delete such an Employees
tuple, we must first change the Dept_Mgr tuple to have a new employee as manager.
(We could have specified CASCADE instead of NO ACTION, but deleting all information
about a department just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be captured using
the first translation approach discussed in Section 3.5.3. (Look at the definition of
Manages and think about what effect it would have if we added NOT NULL constraints
to the ssn and did fields. Hint: The constraint would prevent the firing of a manager,
but does not ensure that a manager is initially appointed for each department!) This
situation is a strong argument in favor of using the second approach for one-to-many
relationships such as Manages, especially when the entity set with the key constraint
also has a total participation constraint.

Unfortunately, there are many participation constraints that we cannot capture using
SQL-92, short of using table constraints or assertions. Table constraints and assertions
can be specified using the full power of the SQL query language (as discussed in
Section 5.11) and are very expressive, but also very expensive to check and enforce.
For example, we cannot enforce the participation constraints on the Works_In relation
without using these general constraints. To see why, consider the Works_In relation
obtained by translating the ER diagram into relations. It contains fields ssn and
did, which are foreign keys referring to Employees and Departments. To ensure total
participation of Departments in Works_In, we have to guarantee that every did value in
Departments appears in a tuple of Works_In. We could try to guarantee this condition
by declaring that did in Departments is a foreign key referring to Works_In, but this
is not a valid foreign key constraint because did is not a candidate key for Works_In.

The Relational Model 73

To ensure total participation of Departments in Works_In using SQL-92, we need an
assertion. We have to guarantee that every did value in Departments appears in a
tuple of Works_In; further, this tuple of Works_In must also have non null values in
the fields that are foreign keys referencing other entity sets involved in the relationship
(in this example, the ssn field). We can ensure the second part of this constraint by
imposing the stronger requirement that ssn in Works_In cannot contain null values.
(Ensuring that the participation of Employees in Works_In is total is symmetric.)

Another constraint that requires assertions to express in SQL is the requirement that
each Employees entity (in the context of the Manages relationship set) must manage
at least one department.

In fact, the Manages relationship set exemplifies most of the participation constraints
that we can capture using key and foreign key constraints. Manages is a binary rela-
tionship set in which exactly one of the entity sets (Departments) has a key constraint,
and the total participation constraint is expressed on that entity set.

We can also capture participation constraints using key and foreign key constraints in
one other special situation: a relationship set in which all participating entity sets have
key constraints and total participation. The best translation approach in this case is
to map all the entities as well as the relationship into a single table; the details are
straightforward.

3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and has a
key constraint and total participation. The second translation approach discussed in
Section 3.5.3 is ideal in this case, but we must take into account the fact that the weak
entity has only a partial key. Also, when an owner entity is deleted, we want all owned
weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial key pname.
A Dependents entity can be identified uniquely only if we take the key of the owning
Employees entity and the pname of the Dependents entity, and the Dependents entity
must be deleted if the owning Employees entity is deleted.

We can capture the desired semantics with the following definition of the Dep_Policy
relation:

CREATE TABLE Dep_Policy (pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11),

74 CHAPTER 3

Employees @ Dependents

Figure 3.14 The Dependents Weak Entity Set

PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

Observe that the primary key is (pname, ssn), since Dependents is a weak entity. This
constraint is a change with respect to the translation discussed in Section 3.5.3. We
have to ensure that every Dependents entity is associated with an Employees entity
(the owner), as per the total participation constraint on Dependents. That is, ssn
cannot be null. This is ensured because ssn is part of the primary key. The CASCADE
option ensures that information about an employee’s policy and dependents is deleted
if the corresponding Employees tuple is deleted.

3.5.6 Translating Class Hierarchies

We present the two basic approaches to handling ISA hierarchies by applying them to

the ER diagram shown in Figure 3.15:

~

Employees

ISA
hours_worked
hourly_wages

Figure 3.15 Class Hierarchy

Hourly_Emps Contract_Emps

The Relational Model 75

1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps
to a distinct relation. The Employees relation is created as in Section 2.2. We
discuss Hourly _Emps here; Contract_Emps is handled similarly. The relation for
Hourly_Emps includes the hourly_-wages and hours_worked attributes of Hourly _Emps.
It also contains the key attributes of the superclass (ssn, in this example), which
serve as the primary key for Hourly_Emps, as well as a foreign key referencing
the superclass (Employees). For each Hourly_Emps entity, the value of the name
and lot attributes are stored in the corresponding row of the superclass (Employ-
ees). Note that if the superclass tuple is deleted, the delete must be cascaded to
Hourly _Emps.

2. Alternatively, we can create just two relations, corresponding to Hourly_Emps
and Contract_Emps. The relation for Hourly_Emps includes all the attributes
of Hourly_Emps as well as all the attributes of Employees (i.e., ssn, name, lot,
hourly_wages, hours_worked).

The first approach is general and is always applicable. Queries in which we want to
examine all employees and do not care about the attributes specific to the subclasses
are handled easily using the Employees relation. However, queries in which we want
to examine, say, hourly employees, may require us to combine Hourly_Emps (or Con-
tract_Emps, as the case may be) with Employees to retrieve name and lot.

The second approach is not applicable if we have employees who are neither hourly
employees nor contract employees, since there is no way to store such employees. Also,
if an employee is both an Hourly_Emps and a Contract_Emps entity, then the name
and lot values are stored twice. This duplication can lead to some of the anomalies
that we discuss in Chapter 15. A query that needs to examine all employees must now
examine two relations. On the other hand, a query that needs to examine only hourly
employees can now do so by examining just one relation. The choice between these
approaches clearly depends on the semantics of the data and the frequency of common
operations.

In general, overlap and covering constraints can be expressed in SQL-92 only by using
assertions.

3.5.7 Translating ER Diagrams with Aggregation

Translating aggregation into the relational model is easy because there is no real dis-
tinction between entities and relationships in the relational model.

Consider the ER diagram shown in Figure 3.16. The Employees, Projects, and De-
partments entity sets and the Sponsors relationship set are mapped as described in
previous sections. For the Monitors relationship set, we create a relation with the
following attributes: the key attributes of Employees (ssn), the key attributes of Spon-

76 CHAPTER 3

,,

I
! |
I
, .
! |
: T
! I
| \ |
! I
! I
! |
! |
! I
! I

Projects —Wi Departments

Figure 3.16 Aggregation

sors (did, pid), and the descriptive attributes of Monitors (until). This translation is
essentially the standard mapping for a relationship set, as described in Section 3.5.2.

There is a special case in which this translation can be refined further by dropping
the Sponsors relation. Consider the Sponsors relation. It has attributes pid, did, and
since, and in general we need it (in addition to Monitors) for two reasons:

1. We have to record the descriptive attributes (in our example, since) of the Sponsors
relationship.

2. Not every sponsorship has a monitor, and thus some (pid, did) pairs in the Spon-
sors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation in Mon-
itors, every possible instance of the Sponsors relation can be obtained by looking at
the (pid, did) columns of the Monitors relation. Thus, we need not store the Sponsors
relation in this case.

3.5.8 ER to Relational: Additional Examples *

Consider the ER diagram shown in Figure 3.17. We can translate this ER diagram
into the relational model as follows, taking advantage of the key constraints to combine
Purchaser information with Policies and Beneficiary information with Dependents:

The Relational Model 77

Employees Dependents
* Beneficiary

Policies

Figure 3.17 Policy Revisited

CREATE TABLE Policies (policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

CREATE TABLE Dependents (pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies
ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of all policies owned by
the employee and all dependents who are beneficiaries of those policies. Further, each
dependent is required to have a covering policy—because policyid is part of the primary
key of Dependents, there is an implicit NOT NULL constraint. This model accurately
reflects the participation constraints in the ER diagram and the intended actions when
an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity sets. For
example, we assumed that policyid uniquely identifies a policy. Suppose that policyid
only distinguishes the policies owned by a given employee; that is, policyid is only a
partial key and Policies should be modeled as a weak entity set. This new assumption

78 CHAPTER 3

about policyid does not cause much to change in the preceding discussion. In fact,
the only changes are that the primary key of Policies becomes (policyid, ssn), and as
a consequence, the definition of Dependents changes—a field called ssn is added and
becomes part of both the primary key of Dependents and the foreign key referencing
Policies:

CREATE TABLE Dependents (pname CHAR(20),
ssn CHAR(11),
age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies
ON DELETE CASCADE)

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but are computed
as needed from a view definition. Consider the Students and Enrolled relations.
Suppose that we are often interested in finding the names and student identifiers of
students who got a grade of B in some course, together with the cid for the course.
We can define a view for this purpose. Using SQL-92 notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.sid AND E.grade = ‘B’

The view B-Students has three fields called name, sid, and course with the same
domains as the fields sname and sid in Students and cid in Enrolled. (If the optional
arguments name, sid, and course are omitted from the CREATE VIEW statement, the
column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in defining new
queries or views. Given the instances of Enrolled and Students shown in Figure 3.4, B-
Students contains the tuples shown in Figure 3.18. Conceptually, whenever B-Students
is used in a query, the view definition is first evaluated to obtain the corresponding
instance of B-Students, and then the rest of the query is evaluated treating B-Students
like any other relation referred to in the query. (We will discuss how queries on views
are evaluated in practice in Chapter 23.)

The Relational Model 79

| name | sid | course

Jones | 53666 | Historyl105
Guldu | 53832 | Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction that we discussed in Section 1.5.2. The physical
schema for a relational database describes how the relations in the conceptual schema
are stored, in terms of the file organizations and indexes used. The conceptual schema is
the collection of schemas of the relations stored in the database. While some relations
in the conceptual schema can also be exposed to applications, i.e., be part of the
external schema of the database, additional relations in the external schema can be
defined using the view mechanism. The view mechanism thus provides the support
for logical data independence in the relational model. That is, it can be used to define
relations in the external schema that mask changes in the conceptual schema of the
database from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema, and applications that expect to see the old
schema can now use this view.

Views are also valuable in the context of security: We can define views that give a
group of users access to just the information they are allowed to see. For example, we
can define a view that allows students to see other students’ name and age but not
their gpa, and allow all students to access this view, but not the underlying Students
table (see Chapter 17).

3.6.2 Updates on Views

The motivation behind the view mechanism is to tailor how users see the data. Users
should not have to worry about the view versus base table distinction. This goal is
indeed achieved in the case of queries on views; a view can be used just like any other
relation in defining a query. However, it is natural to want to specify updates on views
as well. Here, unfortunately, the distinction between a view and a base table must be
kept in mind.

The SQL-92 standard allows updates to be specified only on views that are defined
on a single base table using just selection and projection, with no use of aggregate
operations. Such views are called updatable views. This definition is oversimplified,
but it captures the spirit of the restrictions. An update on such a restricted view can

80 CHAPTER 3

always be implemented by updating the underlying base table in an unambiguous way.
Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa
FROM Students S
WHERE S.gpa > 3.0

We can implement a command to modify the gpa of a GoodStudents row by modifying
the corresponding row in Students. We can delete a GoodStudents row by deleting
the corresponding row from Students. (In general, if the view did not include a key
for the underlying table, several rows in the table could ‘correspond’ to a single row
in the view. This would be the case, for example, if we used S.sname instead of S.sid
in the definition of GoodStudents. A command that affects a row in the view would
then affect all corresponding rows in the underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using null values
in columns of Students that do not appear in GoodStudents (e.g., sname, login). Note
that primary key columns are not allowed to contain null values. Therefore, if we
attempt to insert rows through a view that does not contain the primary key of the
underlying table, the insertions will be rejected. For example, if GoodStudents con-
tained sname but not sid, we could not insert rows into Students through insertions
to GoodStudents.

An important observation is that an INSERT or UPDATE may change the underlying
base table so that the resulting (i.e., inserted or modified) row is not in the view! For
example, if we try to insert a row (51234, 2.8) into the view, this row can be (padded
with null values in the other fields of Students and then) added to the underlying
Students table, but it will not appear in the GoodStudents view because it does not
satisfy the view condition gpa > 3.0. The SQL-92 default action is to allow this
insertion, but we can disallow it by adding the clause WITH CHECK OPTION to the
definition of the view.

We caution the reader that when a view is defined in terms of another view, the inter-
action between these view definitions with respect to updates and the CHECK OPTION
clause can be complex; we will not go into the details.

Need to Restrict View Updates

While the SQL-92 rules on updatable views are more stringent than necessary, there
are some fundamental problems with updates specified on views, and there is good
reason to limit the class of views that can be updated. Consider the Students relation
and a new relation called Clubs:

The Relational Model 81

Clubs(cname: string, jyear: date, mname: string)

A tuple in Clubs denotes that the student called mname has been a member of the
club cname since the date jyear.* Suppose that we are often interested in finding the
names and logins of students with a gpa greater than 3 who belong to at least one
club, along with the club name and the date they joined the club. We can define a
view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.login, C.cname, C.jyear
FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa > 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20. When

| sid | name | login | age | gpa |
| cname | jyear | mname | 50000 | Dave | daveQcs 19 | 3.3
Sailing | 1996 | Dave 53666 | Jones | jones@cs 18 | 34
Hiking | 1997 | Smith 53688 | Smith | smith@ee 18 | 3.2
Rowing | 1998 | Smith 53650 | Smith | smith@math | 19 | 3.8
Figure 3.19 An Instance C of Clubs Figure 3.20 An Instance S3 of Students

evaluated using the instances C' and 53, ActiveStudents contains the rows shown in
Figure 3.21.

| name | login | club | since |
Dave | daveQcs Sailing | 1996
Smith | smith@ee Hiking | 1997
Smith | smith@ee Rowing | 1998
Smith | smith@math | Hiking | 1997
Smith | smith@math | Rowing | 1998

Figure 3.21 Instance of ActiveStudents

Now suppose that we want to delete the row (Smith, smith@ee, Hiking, 1997) from Ac-
tiveStudents. How are we to do this? ActiveStudents rows are not stored explicitly but
are computed as needed from the Students and Clubs tables using the view definition.
So we must change either Students or Clubs (or both) in such a way that evaluating the

4We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.

82 CHAPTER 3

view definition on the modified instance does not produce the row (Smith, smith@ee,
Hiking, 1997.) This task can be accomplished in one of two ways: by either deleting
the row (53688, Smith, smith@ee, 18, 3.2) from Students or deleting the row (Hiking,
1997, Smith) from Clubs. But neither solution is satisfactory. Removing the Students
row has the effect of also deleting the row (Smith, smith@ee, Rowing, 1998) from the
view ActiveStudents. Removing the Clubs row has the effect of also deleting the row
(Smith, smith@math, Hiking, 1997) from the view ActiveStudents. Neither of these
side effects is desirable. In fact, the only reasonable solution is to disallow such updates
on views.

There are views involving more than one base table that can, in principle, be safely
updated. The B-Students view that we introduced at the beginning of this section
is an example of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as in Figure
3.4). To insert a tuple, say (Dave, 50000, Reggae203) B-Students, we can simply insert
a tuple (Reggae203, B, 50000) into Enrolled since there is already a tuple for sid 50000
in Students. To insert {John, 55000, Reggae203), on the other hand, we have to insert
(Reggae203, B, 55000) into Enrolled and also insert (55000, John, null, null, null)
into Students. Observe how null values are used in fields of the inserted tuple whose
value is not available. Fortunately, the view schema contains the primary key fields
of both underlying base tables; otherwise, we would not be able to support insertions
into this view. To delete a tuple from the view B-Students, we can simply delete the
corresponding tuple from Enrolled.

Although this example illustrates that the SQL-92 rules on updatable views are un-
necessarily restrictive, it also brings out the complexity of handling view updates in
the general case. For practical reasons, the SQL-92 standard has chosen to allow only
updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e., delete
all the rows and remove the table definition information), we can use the DROP TABLE
command. For example, DROP TABLE Students RESTRICT destroys the Students table
unless some view or integrity constraint refers to Students; if so, the command fails.
If the keyword RESTRICT is replaced by CASCADE, Students is dropped and any ref-
erencing views or integrity constraints are (recursively) dropped as well; one of these
two keywords must always be specified. A view can be dropped using the DROP VIEW
command, which is just like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column called
maiden-name to Students, for example, we would use the following command:

The Relational Model 83

ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows are
padded with null values in this column. ALTER TABLE can also be used to delete
columns and to add or drop integrity constraints on a table; we will not discuss these
aspects of the command beyond remarking that dropping columns is treated very
similarly to dropping tables or views.

3.8 POINTS TO REVIEW

m The main element of the relational model is a relation. A relation schema describes
the structure of a relation by specifying the relation name and the names of each
field. In addition, the relation schema includes domain constraints, which are
type restrictions on the fields of the relation. The number of fields is called the
degree of the relation. The relation instance is an actual table that contains a set
of tuples that adhere to the relation schema. The number of tuples is called the
cardinality of the relation. SQL-92 is a standard language for interacting with a
DBMS. Its data definition language (DDL) enables the creation (CREATE TABLE)
and modification (DELETE, UPDATE) of relations. (Section 3.1)

m [ntegrity constraints are conditions on a database schema that every legal database
instance has to satisfy. Besides domain constraints, other important types of
ICs are key constraints (a minimal set of fields that uniquely identify a tuple)
and foreign key constraints (fields in one relation that refer to fields in another
relation). SQL-92 supports the specification of the above kinds of ICs, as well as
more general constraints called table constraints and assertions. (Section 3.2)

m ICs are enforced whenever a relation is modified and the specified ICs might con-
flict with the modification. For foreign key constraint violations, SQL-92 provides
several alternatives to deal with the violation: NO ACTION, CASCADE, SET DEFAULT,
and SET NULL. (Section 3.3)

m A relational database query is a question about the data. SQL supports a very
expressive query language. (Section 3.4)

m There are standard translations of ER model constructs into SQL. Entity sets
are mapped into relations. Relationship sets without constraints are also mapped
into relations. When translating relationship sets with constraints, weak entity
sets, class hierarchies, and aggregation, the mapping is more complicated. (Sec-
tion 3.5)

m A view is a relation whose instance is not explicitly stored but is computed as
needed. In addition to enabling logical data independence by defining the external
schema through views, views play an important role in restricting access to data for

84 CHAPTER 3

security reasons. Since views might be defined through complex queries, handling
updates specified on views is complicated, and SQL-92 has very stringent rules on
when a view is updatable. (Section 3.6)

m SQL provides language constructs to modify the structure of tables (ALTER TABLE)
and to destroy tables and views (DROP TABLE). (Section 3.7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do-
main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 227

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide physical
and logical data independence? Explain.

Exercise 3.4 What is the difference between a candidate key and the primary key for a given
relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.
1. Give an example of an attribute (or set of attributes) that you can deduce is not a

candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is a
candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What
is referential integrity?

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In that were defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations that
is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are based on the
following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)

Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are
the options for enforcing this constraint when a user attempts to delete a Dept tuple?

The Relational Model 85

2. Write the SQL statements required to create the above relations, including appropriate
versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have a
manager.

4. Write an SQL statement to add ‘John Doe’ as an employee with eid = 101, age = 32
and salary = 15, 000.

5. Write an SQL statement to give every employee a 10% raise.

6. Write an SQL statement to delete the ‘Toy’ department. Given the referential integrity
constraints you chose for this schema, explain what happens when this statement is
executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples
in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department
must have a manager. What, if anything, is achieved by requiring that the ssn field of Manages
be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,
and C such that A has a key constraint and total participation and B has a key constraint;
these are the only constraints. A has attributes al and a2, with al being the key; B and
C are similar. R has no descriptive attributes. Write SQL statements that create tables
corresponding to this information so as to capture as many of the constraints as possible. If
you cannot capture some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2 where you designed an ER diagram
for a university database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints, explain
why.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram that
you designed. Write SQL statements to create the corresponding relations and capture as
many of the constraints as possible. If you cannot capture some constraints, explain why.

Exercise 3.14 Consider the scenario from Exercise 2.4 where you designed an ER diagram
for a company database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec-
ommend that Notown use a relational database system to store company data. Show the
SQL statements for creating relations corresponding to the entity sets and relationship sets
in your design. Identify any constraints in the ER diagram that you are unable to capture in
the SQL statements and briefly explain why you could not express them.

86 CHAPTER 3

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and
show the SQL statements needed to create the relations, using only key and null constraints.
If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a
plane must be conducted by a technician who is an expert on that model. Can you modify
the SQL statements defining the relations obtained by mapping the ER diagram to check this
constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain of
pharmacies in Exercise 2.7. Define relations corresponding to the entity sets and relationship
sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia-
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the
ER diagram, explain why.

PROJECT-BASED EXERCISES

Exercise 3.19 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In in Minibase.

Exercise 3.20 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and
Enrolled. Create reasonable instances of the other relations.

Exercise 3.21 What integrity constraints are enforced by Minibase?

Exercise 3.22 Run the SQL queries presented in this chapter.

BIBLIOGRAPHIC NOTES

The relational model was proposed in a seminal paper by Codd [156]. Childs [146] and Kuhns
[392] foreshadowed some of these developments. Gallaire and Minker’s book [254] contains
several papers on the use of logic in the context of relational databases. A system based on a
variation of the relational model in which the entire database is regarded abstractly as a single
relation, called the universal relation, is described in [655]. Extensions of the relational model
to incorporate null values, which indicate an unknown or missing field value, are discussed by
several authors; for example, [280, 335, 542, 662, 691].

Pioneering projects include System R [33, 129] at IBM San Jose Research Laboratory (now
IBM Almaden Research Center), Ingres [628] at the University of California at Berkeley,
PRTV [646] at the IBM UK Scientific Center in Peterlee, and QBE [702] at IBM T.J. Watson
Research Center.

A rich theory underpins the field of relational databases. Texts devoted to theoretical aspects
include those by Atzeni and DeAntonellis [38]; Maier [436]; and Abiteboul, Hull, and Vianu
[3]. [355] is an excellent survey article.

The Relational Model 87

Integrity constraints in relational databases have been discussed at length. [159] addresses se-
mantic extensions to the relational model, but also discusses integrity, in particular referential
integrity. [305] discusses semantic integrity constraints. [168] contains papers that address
various aspects of integrity constraints, including in particular a detailed discussion of refer-
ential integrity. A vast literature deals with enforcing integrity constraints. [41] compares the
cost of enforcing integrity constraints via compile-time, run-time, and post-execution checks.
[124] presents an SQL-based language for specifying integrity constraints and identifies con-
ditions under which integrity rules specified in this language can be violated. [624] discusses
the technique of integrity constraint checking by query modification. [149] discusses real-time
integrity constraints. Other papers on checking integrity constraints in databases include
[69, 103, 117, 449]. [593] considers the approach of verifying the correctness of programs that
access the database, instead of run-time checks. Note that this list of references is far from
complete; in fact, it does not include any of the many papers on checking recursively specified
integrity constraints. Some early papers in this widely studied area can be found in [254] and
[253].

For references on SQL, see the bibliographic notes for Chapter 5. This book does not discuss
specific products based on the relational model, but many fine books do discuss each of
the major commercial systems; for example, Chamberlin’s book on DB2 [128], Date and
McGoveran’s book on Sybase [172], and Koch and Loney’s book on Oracle [382].

Several papers consider the problem of translating updates specified on views into updates
on the underlying table [49, 174, 360, 405, 683]. [250] is a good survey on this topic. See
the bibliographic notes for Chapter 23 for references to work querying views and maintaining
materialized views.

[642] discusses a design methodology based on developing an ER diagram and then translating
to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercial systems (as of
that date) in [446, 447].

PART Il

RELATIONAL QUERIES

RELATIONAL ALGEBRA
AND CALCULUS

Stand firm in your refusal to remain conscious during algebra. In real life, I assure
you, there is no such thing as algebra.

—Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational model.
Query languages are specialized languages for asking questions, or queries, that in-
volve the data in a database. After covering some preliminaries in Section 4.1, we
discuss relational algebra in Section 4.2. Queries in relational algebra are composed
using a collection of operators, and each query describes a step-by-step procedure for
computing the desired answer; that is, queries are specified in an operational manner.
In Section 4.3 we discuss relational calculus, in which a query describes the desired
answer without specifying how the answer is to be computed; this nonprocedural style
of querying is called declarative. We will usually refer to relational algebra and rela-
tional calculus as algebra and calculus, respectively. We compare the expressive power
of algebra and calculus in Section 4.4. These formal query languages have greatly
influenced commercial query languages such as SQL, which we will discuss in later
chapters.

4.1 PRELIMINARIES

We begin by clarifying some important points about relational queries. The inputs and
outputs of a query are relations. A query is evaluated using instances of each input
relation and it produces an instance of the output relation. In Section 3.4, we used
field names to refer to fields because this notation makes queries more readable. An
alternative is to always list the fields of a given relation in the same order and to refer
to fields by position rather than by field name.

In defining relational algebra and calculus, the alternative of referring to fields by
position is more convenient than referring to fields by name: Queries often involve the
computation of intermediate results, which are themselves relation instances, and if
we use field names to refer to fields, the definition of query language constructs must
specify the names of fields for all intermediate relation instances. This can be tedious
and is really a secondary issue because we can refer to fields by position anyway. On
the other hand, field names make queries more readable.

91

92 CHAPTER 4

Due to these considerations, we use the positional notation to formally define relational
algebra and calculus. We also introduce simple conventions that allow intermediate
relations to ‘inherit’ field names, for convenience.

We present a number of sample queries using the following schema:
Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the field
name. Thus sid is the key for Sailors, bid is the key for Boats, and all three fields
together form the key for Reserves. Fields in an instance of one of these relations will
be referred to by name, or positionally, using the order in which they are listed above.

In several examples illustrating the relational algebra operators, we will use the in-
stances S1 and S2 (of Sailors) and R1 (of Reserves) shown in Figures 4.1, 4.2, and 4.3,
respectively.

sid | sname | rating | age |

| sid | sname | rating | age | 28 | yuppy 9 35.0
22 | Dustin | 7 45.0 31 | Lubber | 8 55.5
31 | Lubber | 8 55.5 44 | guppy 5 35.0
58 | Rusty 10 35.0 58 | Rusty 10 35.0
Figure 4.1 Instance S1 of Sailors Figure 4.2 Instance S2 of Sailors

| sid| bid | day |

22 | 101 | 10/10/96
58 | 103 | 11/12/96

Figure 4.3 Instance R1 of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the re-
lational model. Queries in algebra are composed using a collection of operators. A
fundamental property is that every operator in the algebra accepts (one or two) rela-
tion instances as arguments and returns a relation instance as the result. This property
makes it easy to compose operators to form a complex query—a relational algebra
expression is recursively defined to be a relation, a unary algebra operator applied

Relational Algebra and Calculus 93

to a single expression, or a binary algebra operator applied to two expressions. We
describe the basic operators of the algebra (selection, projection, union, cross-product,
and difference), as well as some additional operators that can be defined in terms of
the basic operators but arise frequently enough to warrant special attention, in the
following sections.

Each relational query describes a step-by-step procedure for computing the desired
answer, based on the order in which operators are applied in the query. The procedural
nature of the algebra allows us to think of an algebra expression as a recipe, or a
plan, for evaluating a query, and relational systems in fact use algebra expressions to
represent query evaluation plans.

4.2.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (o) and to project
columns (7). These operations allow us to manipulate data in a single relation. Con-
sider the instance of the Sailors relation shown in Figure 4.2, denoted as S2. We can
retrieve rows corresponding to expert sailors by using the o operator. The expression

Orating>8 (52)

evaluates to the relation shown in Figure 4.4. The subscript rating>8 specifies the
selection criterion to be applied while retrieving tuples.

| sname | rating |

yuppy |9

‘ sid | sname | rating | age ’ Lubber | 8

28 | yuppy | 9 35.0 guppy)

58 | Rusty | 10 35.0 Rusty 10
Figure 4.4 0rating>8(S2) Figure 4.5 Tsname,rating(S2)

The selection operator o specifies the tuples to retain through a selection condition.
In general, the selection condition is a boolean combination (i.e., an expression using
the logical connectives A and V) of terms that have the form attribute op constant or
attributel op attribute2, where op is one of the comparison operators <, <=, =, #, >=,
or >. The reference to an attribute can be by position (of the form .7 or 7) or by name
(of the form .name or name). The schema of the result of a selection is the schema of
the input relation instance.

The projection operator m allows us to extract columns from a relation; for example,
we can find out all sailor names and ratings by using m. The expression

T sname,rating (52)

94 CHAPTER 4

evaluates to the relation shown in Figure 4.5. The subscript sname,rating specifies the
fields to be retained; the other fields are ‘projected out.” The schema of the result of
a projection is determined by the fields that are projected in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression
Tage(S2)

evaluates to the relation shown in Figure 4.6. The important point to note is that
although three sailors are aged 35, a single tuple with age=35.0 appears in the result
of the projection. This follows from the definition of a relation as a set of tuples. In
practice, real systems often omit the expensive step of eliminating duplicate tuples,
leading to relations that are multisets. However, our discussion of relational algebra
and calculus assumes that duplicate elimination is always done so that relations are
always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can substitute
an expression wherever a relation is expected. For example, we can compute the names
and ratings of highly rated sailors by combining two of the preceding queries. The
expression

Tsname,rating (Urating>8 (52))

produces the result shown in Figure 4.7. It is obtained by applying the selection to S2
(to get the relation shown in Figure 4.4) and then applying the projection.

sname | rating |

35.0 yuppy | 9
55.5 Rusty | 10
Figure 4.6 7g4c(52) Figure 4.7 Tsname,rating(Trating>8(52))

4.2.2 Set Operations

The following standard operations on sets are also available in relational algebra: union
(U), intersection (N), set-difference (=), and cross-product (x).

m Union: RUS returns a relation instance containing all tuples that occur in either
relation instance R or relation instance S (or both). R and S must be union-
compatible, and the schema of the result is defined to be identical to the schema
of R.

Two relation instances are said to be union-compatible if the following condi-
tions hold:
— they have the same number of the fields, and

— corresponding fields, taken in order from left to right, have the same domains.

Relational Algebra and Calculus 95

Note that field names are not used in defining union-compatibility. For conve-
nience, we will assume that the fields of R U S inherit names from R, if the fields
of R have names. (This assumption is implicit in defining the schema of RU S to
be identical to the schema of R, as stated earlier.)

m Intersection: RNS returns a relation instance containing all tuples that occur in
both R and S. The relations R and S must be union-compatible, and the schema
of the result is defined to be identical to the schema of R.

m Set-difference: R—.S returns a relation instance containing all tuples that occur
in R but not in S. The relations R and S must be union-compatible, and the
schema of the result is defined to be identical to the schema of R.

m Cross-product: R x S returns a relation instance whose schema contains all the
fields of R (in the same order as they appear in R) followed by all the fields of S
(in the same order as they appear in S). The result of R x S contains one tuple
(r, s) (the concatenation of tuples r and s) for each pair of tuples r € R, s € S.
The cross-product opertion is sometimes called Cartesian product.

We will use the convention that the fields of R x S inherit names from the cor-
responding fields of R and S. It is possible for both R and S to contain one or
more fields having the same name; this situation creates a naming conflict. The
corresponding fields in R x S are unnamed and are referred to solely by position.

In the preceding definitions, note that each operator can be applied to relation instances
that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of S1 and 52
is shown in Figure 4.8. Fields are listed in order; field names are also inherited from
S1. S2 has the same field names, of course, since it is also an instance of Sailors. In
general, fields of S2 may have different names; recall that we require only domains to
match. Note that the result is a set of tuples. Tuples that appear in both S1 and 52
appear only once in S1U S2. Also, S1U R1 is not a valid operation because the two
relations are not union-compatible. The intersection of S1 and S2 is shown in Figure
4.9, and the set-difference S1 — 52 is shown in Figure 4.10.

5id| sname | rating | age |

22 | Dustin | 7 45.0
31 | Lubber | 8 55.5
58 | Rusty 10 35.0
28 | yuppy |9 35.0
44 | guppy | 5 35.0

Figure 4.8 S1U.S2

96 CHAPTER 4

| sid | sname | rating | age |

31 | Lubber | 8 55.5 | sid | sname | rating | age |
58 | Rusty |10 35.0 | 22 | Dustin | 7 | 45.0 |
Figure 4.9 S1NS2 Figure 4.10 S1 — 52

The result of the cross-product S1 x R1 is shown in Figure 4.11. Because R1 and
S1 both have a field named sid, by our convention on field names, the corresponding
two fields in S1 x R1 are unnamed, and referred to solely by the position in which
they appear in Figure 4.11. The fields in S1 x R1 have the same domains as the
corresponding fields in R1 and S1. In Figure 4.11 sid is listed in parentheses to
emphasize that it is not an inherited field name; only the corresponding domain is
inherited.

| (sid) | sname | rating | age | (sid) | bid | day |

22 | Dustin | 7 45.0 [22 | 101 | 10/10/96
22 | Dustin | 7 45.0 | 58 | 103 | 11/12/96
31 | Lubber | 8 555 | 22 | 101 | 10/10/96
31 | Lubber | 8 555 | 58 | 103 | 11/12/96
58 | Rusty | 10 350 | 22 | 101 | 10/10/96
58 | Rusty | 10 350 | 58 | 103 | 11/12/96

Figure 4.11 S1 x R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result of
a relational algebra expression inherits field names from its argument (input) relation
instances in a natural way whenever possible. However, name conflicts can arise in
some cases; for example, in S1 x R1. It is therefore convenient to be able to give
names explicitly to the fields of a relation instance that is defined by a relational
algebra expression. In fact, it is often convenient to give the instance itself a name so
that we can break a large algebra expression into smaller pieces by giving names to
the results of subexpressions.

We introduce a renaming operator p for this purpose. The expression p(R(F), E)
takes an arbitrary relational algebra expression E and returns an instance of a (new)
relation called R. R contains the same tuples as the result of E, and has the same
schema as F, but some fields are renamed. The field names in relation R are the
same as in F, except for fields renamed in the renaming list F, which is a list of

Relational Algebra and Calculus 97

terms having the form oldname — newname or position — newname. For p to be
well-defined, references to fields (in the form of oldnames or positions in the renaming
list) may be unambiguous, and no two fields in the result must have the same name.
Sometimes we only want to rename fields or to (re)name the relation; we will therefore
treat both R and F' as optional in the use of p. (Of course, it is meaningless to omit
both.)

For example, the expression p(C(1 — sidl,5 — sid2), S1 x R1) returns a relation
that contains the tuples shown in Figure 4.11 and has the following schema: C(sidI:
integer, sname: string, rating: integer, age: real, sid2: integer, bid: integer,
day: dates).

It is customary to include some additional operators in the algebra, but they can all be
defined in terms of the operators that we have defined thus far. (In fact, the renaming
operator is only needed for syntactic convenience, and even the N operator is redundant;
RN S can be defined as R — (R — S).) We will consider these additional operators,
and their definition in terms of the basic operators, in the next two subsections.

4.2.4 Joins

The join operation is one of the most useful operations in relational algebra and is
the most commonly used way to combine information from two or more relations.
Although a join can be defined as a cross-product followed by selections and projections,
joins arise much more frequently in practice than plain cross-products. Further, the
result of a cross-product is typically much larger than the result of a join, and it
is very important to recognize joins and implement them without materializing the
underlying cross-product (by applying the selections and projections ‘on-the-fly’). For
these reasons, joins have received a lot of attention, and there are several variants of
the join operation.!

Condition Joins

The most general version of the join operation accepts a join condition ¢ and a pair of
relation instances as arguments, and returns a relation instance. The join condition is
identical to a selection condition in form. The operation is defined as follows:

RS = o.(RxS)

Thus < is defined to be a cross-product followed by a selection. Note that the condition
¢ can (and typically does) refer to attributes of both R and S. The reference to an

IThere are several variants of joins that are not discussed in this chapter. An important class of
joins called outer joins is discussed in Chapter 5.

98 CHAPTER 4

attribute of a relation, say R, can be by position (of the form R.i) or by name (of the
form R.name).

As an example, the result of S1 g1 sid<R1.5ia 1 is shown in Figure 4.12. Because sid
appears in both S1 and R1, the corresponding fields in the result of the cross-product
S1 x R1 (and therefore in the result of S1 g1 sid<R1.sid R1) are unnamed. Domains
are inherited from the corresponding fields of S1 and R1.

| (sid) | sname | rating | age | (sid) | bid | day |
922 | Dustin | 7 45.0 | 58 | 103 | 11/12/96
31 Lubber | 8 55.5 | 58 103 | 11/12/96

Figure 4.12 S1 XI51.sid< R1.sid R1

Equijoin

A common special case of the join operation R i1 S is when the join condition con-
sists solely of equalities (connected by A) of the form R.namel = S.name2, that is,
equalities between two fields in R and S. In this case, obviously, there is some redun-
dancy in retaining both attributes in the result. For join conditions that contain only
such equalities, the join operation is refined by doing an additional projection in which
S.name?2 is dropped. The join operation with this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same names
and domains as in R) followed by the fields of S that do not appear in the join
conditions. If this set of fields in the result relation includes two fields that inherit the
same name from R and S, they are unnamed in the result relation.

We illustrate S1 XIg.siq—s.sia 21 in Figure 4.13. Notice that only one field called sid
appears in the result.

| sid | sname | rating | age | bid | day |
22 | Dustin | 7 45.0 | 101 | 10/10/96
58 | Rusty | 10 35.0 | 103 | 11/12/96

Figure 4.13 S1 XR.sid=S.sid R1

Relational Algebra and Calculus 99

Natural Join

A further special case of the join operation R <1 .S is an equijoin in which equalities
are specified on all fields having the same name in R and S. In this case, we can
simply omit the join condition; the default is that the join condition is a collection of
equalities on all common fields. We call this special case a natural join, and it has the
nice property that the result is guaranteed not to have two fields with the same name.

The equijoin expression S1 X sig—s.sia B1 is actually a natural join and can simply
be denoted as S1 > R1, since the only common field is sid. If the two relations have
no attributes in common, S1 < R1 is simply the cross-product.

4.2.5 Division

The division operator is useful for expressing certain kinds of queries, for example:
“Find the names of sailors who have reserved all boats.” Understanding how to use
the basic operators of the algebra to define division is a useful exercise. However,
the division operator does not have the same importance as the other operators—it
is not needed as often, and database systems do not try to exploit the semantics of
division by implementing it as a distinct operator (as, for example, is done with the
join operator).

We discuss division through an example. Consider two relation instances A and B in
which A has (exactly) two fields z and y and B has just one field y, with the same
domain as in A. We define the division operation A/B as the set of all x values (in
the form of unary tuples) such that for every y value in (a tuple of) B, there is a tuple
(z,y) in A.

Another way to understand division is as follows. For each z value in (the first column
of) A, consider the set of y values that appear in (the second field of) tuples of A with
that x value. If this set contains (all y values in) B, the x value is in the result of A/B.

An analogy with integer division may also help to understand division. For integers A
and B, A/B is the largest integer @) such that @Q x B < A. For relation instances A
and B, A/B is the largest relation instance @ such that @ x B C A.

Division is illustrated in Figure 4.14. It helps to think of A as a relation listing the
parts supplied by suppliers, and of the B relations as listing parts. A/Bi computes
suppliers who supply all parts listed in relation instance Bi.

Expressing A/B in terms of the basic algebra operators is an interesting exercise, and
the reader should try to do this before reading further. The basic idea is to compute
all z values in A that are not disqualified. An x value is disqualified if by attaching a

100 CHAPTER 4

A m B1 L Pno A/B1
sL | pt sL
sl | p2 2
sl | p3 B2 3
sl | p4 p2 A
2 | p2 A/B2
s3 p2
B3 pno sl
4 | pa 02
p4 A/B3

Figure 4.14 Examples Illustrating Division

y value from B, we obtain a tuple (z,y) that is not in A. We can compute disqualified
tuples using the algebra expression

7 (7 (A) X B) — A)
Thus we can define A/B as

7p(A) — 7 (7 (A) X B) — A)

To understand the division operation in full generality, we have to consider the case
when both = and y are replaced by a set of attributes. The generalization is straightfor-
ward and is left as an exercise for the reader. We will discuss two additional examples
illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 More Examples of Relational Algebra Queries

We now present several examples to illustrate how to write queries in relational algebra.
We use the Sailors, Reserves, and Boats schema for all our examples in this section.
We will use parentheses as needed to make our algebra expressions unambiguous. Note
that all the example queries in this chapter are given a unique query number. The
query numbers are kept unique across both this chapter and the SQL query chapter
(Chapter 5). This numbering makes it easy to identify a query when it is revisited in
the context of relational calculus and SQL and to compare different ways of writing
the same query. (All references to a query can be found in the subject index.)

Relational Algebra and Calculus 101

In the rest of this chapter (and in Chapter 5), we illustrate queries using the instances
53 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures 4.15, 4.16, and 4.17,
respectively.

| sid | sname | rating | age | | sid | bid | day |
22 | Dustin 7 45.0 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 | Andy |8 25.5 22 | 104 | 10/7/98
58 | Rusty | 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98
Figure 4.15 An Instance S3 of Sailors Figure 4.16 An Instance R2 of Reserves

| bid | bname | color |
101 | Interlake | blue
102 | Interlake | red
103 | Clipper | green
104 | Marine red

Figure 4.17 An Instance B1 of Boats

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:
Tsname ((Tpida=103 Reserves) <t Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the
natural join of this set with Sailors. This expression can be evaluated on instances
of Reserves and Sailors. Evaluated on the instances R2 and 53, it yields a relation
that contains just one field, called sname, and three tuples (Dustin), (Horatio), and
(Lubber). (Observe that there are two sailors called Horatio, and only one of them has
reserved a red boat.)

We can break this query into smaller pieces using the renaming operator p:

p(Templ, opig=103 Reserves)

102 CHAPTER 4

p(Temp2, Templ < Sailors)
T sname (Temp2)

Notice that because we are only using p to give names to intermediate relations, the
renaming list is optional and is omitted. T'empl denotes an intermediate relation that
identifies reservations of boat 103. Temp2 is another intermediate relation, and it
denotes sailors who have made a reservation in the set Templ. The instances of these
relations when evaluating this query on the instances R2 and S3 are illustrated in
Figures 4.18 and 4.19. Finally, we extract the sname column from Temp?2.

| sid | bid | day | | sid | sname | rating | age | bid | day |
22 | 103 | 10/8/98 22 | Dustin | 7 45.0 | 103 | 10/8/98
31 | 103 | 11/6/98 31 | Lubber | 8 55.5 | 103 | 11/6/98
74 | 103 | 9/8/98 74 | Horatio | 9 35.0 | 103 | 9/8/98
Figure 4.18 Instance of T'empl Figure 4.19 Instance of Temp2

The version of the query using p is essentially the same as the original query; the use
of p is just syntactic sugar. However, there are indeed several distinct ways to write a
query in relational algebra. Here is another way to write this query:

Tsname (Obid=103(Reserves 1 Sailors))

In this version we first compute the natural join of Reserves and Sailors and then apply
the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational DBMS.
Queries are expressed by users in a language such as SQL. The DBMS translates an
SQL query into (an extended form of) relational algebra, and then looks for other
algebra expressions that will produce the same answers but are cheaper to evaluate. If
the user’s query is first translated into the expression

Tsname (Tbid=103 (Reserves <1 Sailors))
a good query optimizer will find the equivalent expression
Tsname((Obida=103 Reserves) 1 Sailors)

Further, the optimizer will recognize that the second expression is likely to be less
expensive to compute because the sizes of intermediate relations are smaller, thanks
to the early use of selection.

(Q2) Find the names of sailors who have reserved a red boat.

Tsname ((Ocolor=red Boats) 1 Reserves <1 Sailors)

Relational Algebra and Calculus 103

This query involves a series of two joins. First we choose (tuples describing) red boats.
Then we join this set with Reserves (natural join, with equality specified on the bid
column) to identify reservations of red boats. Next we join the resulting intermediate
relation with Sailors (natural join, with equality specified on the sid column) to retrieve
the names of sailors who have made reservations of red boats. Finally, we project the
sailors’ names. The answer, when evaluated on the instances B1, R2 and S3, contains
the names Dustin, Horatio, and Lubber.

An equivalent expression is:
Tsname (Tsid ((TbidOcotor=red» Boats) <1 Reserves) b1 Sailors)

The reader is invited to rewrite both of these queries by using p to make the interme-
diate relations explicit and to compare the schemas of the intermediate relations. The
second expression generates intermediate relations with fewer fields (and is therefore
likely to result in intermediate relation instances with fewer tuples, as well). A rela-
tional query optimizer would try to arrive at the second expression if it is given the
first.

(Q3) Find the colors of boats reserved by Lubber.
Teolor ((Tsname=Lubber’ Sailors) <1 Reserves <t Boats)

This query is very similar to the query we used to compute sailors who reserved red
boats. On instances B1, R2, and S3, the query will return the colors gren and red.

(Q4) Find the names of sailors who have reserved at least one boat.
Tsname (Sailors <1 Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples consist
of a Sailors tuple ‘attached to’ a Reserves tuple. A Sailors tuple appears in (some
tuple of) this intermediate relation only if at least one Reserves tuple has the same
std value, that is, the sailor has made some reservation. The answer, when evaluated
on the instances B1, R2 and S3, contains the three tuples (Dustin), (Horatio), and
(Lubber). Even though there are two sailors called Horatio who have reserved a boat,
the answer contains only one copy of the tuple (Horatio), because the answer is a
relation, i.e., a set of tuples, without any duplicates.

At this point it is worth remarking on how frequently the natural join operation is
used in our examples. This frequency is more than just a coincidence based on the
set of queries that we have chosen to discuss; the natural join is a very natural and
widely used operation. In particular, natural join is frequently used when joining two
tables on a foreign key field. In Query Q4, for example, the join equates the sid fields
of Sailors and Reserves, and the sid field of Reserves is a foreign key that refers to the
sid field of Sailors.

104 CHAPTER 4

(Q5) Find the names of sailors who have reserved a red or a green boat.

p(Tempboats, (Ucolor:’red’Boats) U (Ucolor: green’BoatS))

Tsname (Tempboats <t Reserves 1 Sailors)
We identify the set of all boats that are either red or green (Tempboats, which contains
boats with the bids 102, 103, and 104 on instances B1, R2, and S3). Then we join with
Reserves to identify sids of sailors who have reserved one of these boats; this gives us
sids 22, 31, 64, and 74 over our example instances. Finally, we join (an intermediate
relation containing this set of sids) with Sailors to find the names of Sailors with these
sids. This gives us the names Dustin, Horatio, and Lubber on the instances B1, R2,
and S3. Another equivalent definition is the following:

P(Tempboat& (Ucolor:’red’\/color:’green’ Boats))

Tsname (T empboats <1 Reserves <1 Sailors)

Let us now consider a very similar query:

(Q6) Find the names of sailors who have reserved a red and a green boat. It is tempting
to try to do this by simply replacing U by N in the definition of Tempboats:
p(Tempboats2, (0 color=req Boats) N (Gcolor='green Boats))
Tsname (T empboats2 <1 Reserves <1 Sailors)
However, this solution is incorrect—it instead tries to compute sailors who have re-
served a boat that is both red and green. (Since bid is a key for Boats, a boat can
be only one color; this query will always return an empty answer set.) The correct
approach is to find sailors who have reserved a red boat, then sailors who have reserved
a green boat, and then take the intersection of these two sets:
p(Tempred, Ts;q((0color=rea Boats) <1 Reserves))
p(Tempgreen, 7Tsid((G"colm":’green/lgoats) > RESB’I"UGS))
Tsname((Tempred N Tempgreen) <1 Sailors)
The two temporary relations compute the sids of sailors, and their intersection identifies
sailors who have reserved both red and green boats. On instances B1, R2, and S3, the
sids of sailors who have reserved a red boat are 22, 31, and 64. The sids of sailors who

have reserved a green boat are 22, 31, and 74. Thus, sailors 22 and 31 have reserved
both a red boat and a green boat; their names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors who have reserved
red or green boats (Query Q5); just replace N by U:

p(Tempred, 7s;q((0cotor=rear Boats) <1 Reserves))

p(Tempgreen, Tsid((Tcolor=green’ Boats) <1 Reserves))

Tsname ((Tempred U Tempgreen) < Sailors)

Relational Algebra and Calculus 105

In the above formulations of Queries Q5 and Q6, the fact that sid (the field over which
we compute union or intersection) is a key for Sailors is very important. Consider the
following attempt to answer Query QG6:

p(Tempred, Tsname (O cotor=rear Boats) <1 Reserves <1 Sailors))
p(Tempgreen, Tspame((Tcolor=1green’ Boats) b1 Reserves > Sailors))

Tempred N Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with the
same name, such as Horatio in our example instances, may have reserved red and
green boats, respectively. In this case, the name Horatio will (incorrectly) be included
in the answer even though no one individual called Horatio has reserved a red boat
and a green boat. The cause of this error is that sname is being used to identify sailors
(while doing the intersection) in this version of the query, but sname is not a key.

(Q7) Find the names of sailors who have reserved at least two boats.

p(Reservations, Tsid sname,pid(Sailors b Reserves))
p(Reservationpairs(l — sidl,2 — snamel,3 — bidl, 4 — sid2,
5 — sname2,6 — bid2), Reservations x Reservations)

Tsnamel O (sidl=sid2) A(bid1£bid2) leservationpairs

First we compute tuples of the form (sid,sname,bid), where sailor sid has made a
reservation for boat bid; this set of tuples is the temporary relation Reservations.
Next we find all pairs of Reservations tuples where the same sailor has made both
reservations and the boats involved are distinct. Here is the central idea: In order
to show that a sailor has reserved two boats, we must find two Reservations tuples
involving the same sailor but distinct boats. Over instances Bl, R2, and S3, the
sailors with sids 22, 31, and 64 have each reserved at least two boats. Finally, we
project the names of such sailors to obtain the answer, containing the names Dustin,
Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying sailors,
and we need it to check that two Reservations tuples involve the same sailor. As noted
in the previous example, we can’t use sname for this purpose.

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

Tsid(Tage>209ailors) —
Tsid (T color=redr Boats) it Reserves 1 Sailors)
This query illustrates the use of the set-difference operator. Again, we use the fact

that sid is the key for Sailors. We first identify sailors aged over 20 (over instances Bl1,
R2, and S3, sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then discard those who

106 CHAPTER 4

have reserved a red boat (sids 22, 31, and 64), to obtain the answer (sids 29, 32, 58, 74,
85, and 95). If we want to compute the names of such sailors, we must first compute
their sids (as shown above), and then join with Sailors and project the sname values.

(Q9) Find the names of sailors who have reserved all boats. The use of the word all
(or every) is a good indication that the division operation might be applicable:

p(Tempsids, (TsiapiaReserves)/(mpiqBoats))

Tsname(Tempsids <1 Sailors)

The intermediate relation Tempsids is defined using division, and computes the set of
sids of sailors who have reserved every boat (over instances B1, R2, and S3, this is just
sid 22). Notice how we define the two relations that the division operator (/) is applied
to—the first relation has the schema (sid,bid) and the second has the schema (bid).
Division then returns all sids such that there is a tuple (sid,bid) in the first relation for
each bid in the second. Joining Tempsids with Sailors is necessary to associate names
with the selected sids; for sailor 22, the name is Dustin.

(Q10) Find the names of sailors who have reserved all boats called Interlake.

p<TempSid57 (ﬂsid,bidReser’UeS)/(ﬂ-bid(abname:’lnterlake’ Boats)))

Tsname(Tempsids <1 Sailors)

The only difference with respect to the previous query is that now we apply a selection
to Boats, to ensure that we compute only bids of boats named Interlake in defining the
second argument to the division operator. Over instances B1, R2, and S3, Tempsids
evaluates to sids 22 and 64, and the answer contains their names, Dustin and Horatio.

4.3 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra,
which is procedural, the calculus is nonprocedural, or declarative, in that it allows
us to describe the set of answers without being explicit about how they should be
computed. Relational calculus has had a big influence on the design of commercial
query languages such as SQL and, especially, Query-by-Example (QBE).

The variant of the calculus that we present in detail is called the tuple relational
calculus (TRC). Variables in TRC take on tuples as values. In another variant, called
the domain relational calculus (DRC), the variables range over field values. TRC has
had more of an influence on SQL, while DRC has strongly influenced QBE. We discuss
DRC in Section 4.3.2.2

2The material on DRC is referred to in the chapter on QBE; with the exception of this chapter,
the material on DRC and TRC can be omitted without loss of continuity.

Relational Algebra and Calculus 107

4.3.1 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation schema as
values. That is, every value assigned to a given tuple variable has the same number
and type of fields. A tuple relational calculus query has the form { T | p(T) }, where
T is a tuple variable and p(T") denotes a formula that describes T'; we will shortly
define formulas and queries rigorously. The result of this query is the set of all tuples
t for which the formula p(T') evaluates to true with T" = ¢. The language for writing
formulas p(T') is thus at the heart of TRC and is essentially a simple subset of first-order
logic. As a simple example, consider the following query.

(Q11) Find all sailors with a rating above 7.
{S| S € Sailors A S.rating > 7}

When this query is evaluated on an instance of the Sailors relation, the tuple variable
S is instantiated successively with each tuple, and the test S.rating>7is applied. The
answer contains those instances of S that pass this test. On instance S3 of Sailors, the
answer contains Sailors tuples with sid 31, 32, 58, 71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula. Let
Rel be a relation name, R and S be tuple variables, ¢ an attribute of R, and b an
attribute of S. Let op denote an operator in the set {<, >,=,<,> #}. An atomic
formula is one of the following:

B RE Rel
m RaopSb

m R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and ¢ are them-
selves formulas, and p(R) denotes a formula in which the variable R appears:

® any atomic formula
" p,pAg pVqorp=q
m 3R(p(R)), where R is a tuple variable

m VR(p(R)), where R is a tuple variable

In the last two clauses above, the quantifiers 3 and V are said to bind the variable
R. A variable is said to be free in a formula or subformula (a formula contained in a

108 CHAPTER 4

larger formula) if the (sub)formula does not contain an occurrence of a quantifier that
binds it.?

We observe that every variable in a TRC formula appears in a subformula that is
atomic, and every relation schema specifies a domain for each field; this observation
ensures that each variable in a TRC formula has a well-defined domain from which
values for the variable are drawn. That is, each variable has a well-defined type, in the
programming language sense. Informally, an atomic formula R € Rel gives R the type
of tuples in Rel, and comparisons such as R.a op S.b and R.a op constant induce type
restrictions on the field R.a. If a variable R does not appear in an atomic formula of
the form R € Rel (i.e., it appears only in atomic formulas that are comparisons), we
will follow the convention that the type of R is a tuple whose fields include all (and
only) fields of R that appear in the formula.

We will not define types of variables formally, but the type of a variable should be clear
in most cases, and the important point to note is that comparisons of values having
different types should always fail. (In discussions of relational calculus, the simplifying
assumption is often made that there is a single domain of constants and that this is
the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T' | p(T)}, where T is the only
free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples for a
given TRC query? The answer to a TRC query {T' | p(T)}, as we noted earlier, is the
set of all tuples ¢ for which the formula p(T") evaluates to true with variable T assigned
the tuple value t. To complete this definition, we must state which assignments of tuple
values to the free variables in a formula make the formula evaluate to true.

A query is evaluated on a given instance of the database. Let each free variable in a
formula F' be bound to a tuple value. For the given assignment of tuples to variables,
with respect to the given database instance, F' evaluates to (or simply ‘is’) true if one
of the following holds:

m [is an atomic formula R € Rel, and R is assigned a tuple in the instance of
relation Rel.

3We will make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such as nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.

Relational Algebra and Calculus 109

m Fis acomparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples
assigned to R and S have field values R.a and S.b that make the comparison true.

m Fis of the form —p, and p is not true; or of the form p A ¢, and both p and ¢ are
true; or of the form pV ¢, and one of them is true, or of the form p = ¢ and ¢ is
true whenever? p is true.

" Fis of the form JR(p(R)), and there is some assignment of tuples to the free
variables in p(R), including the variable R,> that makes the formula p(R) true.

m F is of the form VR(p(R)), and there is some assignment of tuples to the free
variables in p(R) that makes the formula p(R) true no matter what tuple is
assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances B1 of
Boats, R2 of Reserves, and 53 of Sailors shown in Figures 4.15, 4.16, and 4.17. We will
use parentheses as needed to make our formulas unambiguous. Often, a formula p(R)
includes a condition R € Rel, and the meaning of the phrases some tuple R and for all
tuples R is intuitive. We will use the notation 3R € Rel(p(R)) for IR(R € Rel Ap(R)).
Similarly, we use the notation VR € Rel(p(R)) for VR(R € Rel = p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.
{P | 3S € Sailors(S.rating > 7 A P.name = S.sname A\ P.age = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable with
exactly two fields, which are called name and age, because these are the only fields of
P that are mentioned and P does not range over any of the relations in the query;
that is, there is no subformula of the form P € Relname. The result of this query is
a relation with two fields, name and age. The atomic formulas P.name = S.sname
and P.age = S.age give values to the fields of an answer tuple P. On instances Bl,
R2, and 53, the answer is the set of tuples (Lubber, 55.5), (Andy, 25.5), (Rusty, 35.0),
(Zorba,16.0), and (Horatio, 35.0).

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

{P | 3R € Reserves 3S € Sailors
(R.sid = S.sid A P.bid = R.bid A\ P.day = R.day N P.sname = S.sname)}

For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given a
pair of such tuples, we construct an answer tuple P with fields sname, bid, and day by

4 Whenever should be read more precisely as ‘for all assignments of tuples to the free variables.’
5Note that some of the free variables in p(R) (e.g., the variable R itself) may be bound in F.

110 CHAPTER 4

copying the corresponding fields from these two tuples. This query illustrates how we
can combine values from different relations in each answer tuple. The answer to this
query on instances B1, R2, and S3 is shown in Figure 4.20.

| sname | bid | day |
Dustin | 101 | 10/10/98
Dustin | 102 | 10/10/98
Dustin | 103 | 10/8/98
Dustin | 104 | 10/7/98
Lubber | 102 | 11/10/98
Lubber | 103 | 11/6/98
Lubber | 104 | 11/12/98
Horatio | 101 | 9/5/98

Horatio | 102 | 9/8/98

Horatio | 103 | 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.
{P | 3S € Sailors 3R € Reserves(R.sid = S.sid\R.bid = 103AP.sname = S.sname)}

This query can be read as follows: “Retrieve all sailor tuples for which there exists a
tuple in Reserves, having the same value in the sid field, and with bid = 103.” That
is, for each sailor tuple, we look for a tuple in Reserves that shows that this sailor has
reserved boat 103. The answer tuple P contains just one field, sname.

(Q2) Find the names of sailors who have reserved a red boat.

{P | 3S € Sailors 3R € Reserves(R.sid = S.sid A P.sname = S.sname
A3B € Boats(B.bid = R.bid A\ B.color ="red'))}
This query can be read as follows: “Retrieve all sailor tuples S for which there exist
tuples R in Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and

B.color ='red’.” Another way to write this query, which corresponds more closely to
this reading, is as follows:

{P | 35 € Sailors 3R € Reserves 3B € Boats
(R.sid = S.sid A\ B.bid = R.bid A\ B.color ='red’ N\ P.sname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P | 35 € Sailors 3R1 € Reserves JR2 € Reserves
(S.sid = Rl.sid A Rl.sid = R2.sid A R1.bid # R2.bid A P.sname = S.sname)}

Relational Algebra and Calculus 111

Contrast this query with the algebra version and see how much simpler the calculus
version is. In part, this difference is due to the cumbersome renaming of fields in the
algebra version, but the calculus version really is simpler.

(Q9) Find the names of sailors who have reserved all boats.

{P | 3S € Sailors VB € Boats
(3R € Reserves(S.sid = R.sid A R.bid = B.bid A P.sname = S.sname))}

This query was expressed using the division operator in relational algebra. Notice
how easily it is expressed in the calculus. The calculus query directly reflects how we
might express the query in English: “Find sailors S such that for all boats B there is
a Reserves tuple showing that sailor S has reserved boat B.”

(Q14) Find sailors who have reserved all red boats.

{S | S € Sailors ANVB € Boats
(B.color ='red’ = (3R € Reserves(S.sid = R.sid A R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red, the
sailor must have reserved it. That is, for a candidate sailor, a boat being red must
imply the sailor having reserved it. Observe that since we can return an entire sailor
tuple as the answer instead of just the sailor’s name, we have avoided introducing a
new free variable (e.g., the variable P in the previous example) to hold the answer
values. On instances B1, R2, and 53, the answer contains the Sailors tuples with sids
22 and 31.

We can write this query without using implication, by observing that an expression of
the form p = ¢ is logically equivalent to —p V ¢:

{S | S € Sailors N\VB € Boats
(B.color #'red V (3R € Reserves(S.sid = R.sid A R.bid = B.bid)))}

This query should be read as follows: “Find sailors S such that for all boats B, either
the boat is not red or a Reserves tuple shows that sailor S has reserved boat B.”

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some
attribute (e.g., the variable can be assigned an integer if it appears in an attribute
whose domain is the set of integers). A DRC query has the form {(z,xa,...,z,) |
p({x1,22,...,2,))}, where each z; is either a domain variable or a constant and
p({z1,za,...,x,)) denotes a DRC formula whose only free variables are the vari-
ables among the z;, 1 < ¢ < n. The result of this query is the set of all tuples
(x1,2,...,2,) for which the formula evaluates to true.

112 CHAPTER 4

A DRC formula is defined in a manner that is very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables. Let op
denote an operator in the set {<,>,=,<,>,#} and let X and Y be domain variables.
An atomic formula in DRC is one of the following:

" (x1,Z9,...,x,) € Rel, where Rel is a relation with n attributes; each z;, 1 <i<n
is either a variable or a constant.

m XopV

m X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and g are them-
selves formulas, and p(X) denotes a formula in which the variable X appears:

® any atomic formula

" -p,pAq,pVg orp=gq

B 3X(p(X)), where X is a domain variable
B VX(p(X)), where X is a domain variable

The reader is invited to compare this definition with the definition of TRC formulas
and see how closely these two definitions correspond. We will not define the semantics
of DRC formulas formally; this is left as an exercise for the reader.

Examples of DRC Queries

We now illustrate DRC through several examples. The reader is invited to compare
these with the TRC versions.

(Q11) Find all sailors with a rating above 7.
{{I, N,T,A) | (I, N,T, A) € Sailors \T > 7}

This differs from the TRC version in giving each attribute a (variable) name. The
condition (I, N, T, A) € Sailors ensures that the domain variables I, N, T', and A are
restricted to be fields of the same tuple. In comparison with the TRC query, we can
say T > 7 instead of S.rating > 7, but we must specify the tuple (I, N,T, A) in the
result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{(N)|3I,T,A({I,N,T, A) € Sailors
A3Ir, Br, D({Ir, Br, D) € Reserves A Ir = I A Br = 103))}

Relational Algebra and Calculus 113

Notice that only the sname field is retained in the answer and that only N is a free
variable. We use the notation 3Ir, Br, D(...) as a shorthand for 3Ir(3Br(3D(...))).
Very often, all the quantified variables appear in a single relation, as in this example.
An even more compact notation in this case is I(Ir, Br, D) € Reserves. With this
notation, which we will use henceforth, the above query would be as follows:

{{N) | 3I,T,A({I,N, T, A) € Sailors
AI(Ir, Br, D) € Reserves(Ir = I A Br =103))}

The comparison with the corresponding TRC formula should now be straightforward.
This query can also be written as follows; notice the repetition of variable I and the
use of the constant 103:

{(N) | 3I,T,A((I,N,T, A) € Sailors
A3D(({I,103, D) € Reserves))}

(Q2) Find the names of sailors who have reserved a red boat.

{(N) | 3I,T,A({I, N, T, A) € Sailors
A, Br, D) € Reserves A 3(Br, BN,red') € Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

{{N) | 3I,T,A({I,N, T, A) € Sailors A
iBrl, Br2,D1,D2({I, Brl, D1) € Reserves A (I, Br2, D2) € Reserves A\ Brl # Br2

Notice how the repeated use of variable I ensures that the same sailor has reserved
both the boats in question.

(Q9) Find the names of sailors who have reserved all boats.

{(N) | 3I,T,A({I,N, T, A) € Sailors A
VB, BN, C(~((B, BN, C) € Boats) V
(3(Ir, Br, D) € Reserves(I = Ir A Br = B))))}

This query can be read as follows: “Find all values of N such that there is some tuple
(I,N,T,A) in Sailors satisfying the following condition: for every (B, BN, C), either
this is not a tuple in Boats or there is some tuple (I, Br, D) in Reserves that proves
that Sailor I has reserved boat B.” The V quantifier allows the domain variables B,
BN, and C to range over all values in their respective attribute domains, and the
pattern ‘=((B, BN,C) € Boats)V’ is necessary to restrict attention to those values
that appear in tuples of Boats. This pattern is common in DRC formulas, and the

notation V(B, BN, C) € Boats can be used as a shorthand instead. This is similar to

114 CHAPTER 4

the notation introduced earlier for 3. With this notation the query would be written
as follows:

{(N) | 3I,T,A({I,N, T, A) € Sailors N\Y{(B, BN, C) € Boats
(3(Ir,Br, D) € Reserves(I = Ir A Br = B)))}

(Q14) Find sailors who have reserved all red boats.

{{I,N,T,A) | (I, N, T, A) € Sailors N\¥(B, BN,C) € Boats
(C ='red’ = 3(Ir, Br, D) € Reserves(I = Ir AN Br = B))}

Here, we find all sailors such that for every red boat there is a tuple in Reserves that
shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND CALCULUS *

We have presented two formal query languages for the relational model. Are they
equivalent in power? Can every query that can be expressed in relational algebra also
be expressed in relational calculus? The answer is yes, it can. Can every query that
can be expressed in relational calculus also be expressed in relational algebra? Before
we answer this question, we consider a major problem with the calculus as we have
presented it.

Consider the query {S' | =(S € Sailors)}. This query is syntactically correct. However,
it asks for all tuples S such that S is not in (the given instance of) Sailors. The set of
such S tuples is obviously infinite, in the context of infinite domains such as the set of
all integers. This simple example illustrates an unsafe query. It is desirable to restrict
relational calculus to disallow unsafe queries.

We now sketch how calculus queries are restricted to be safe. Consider a set I of
relation instances, with one instance per relation that appears in the query Q. Let
Dom(Q,T) be the set of all constants that appear in these relation instances I or in
the formulation of the query @ itself. Since we only allow finite instances I, Dom(Q, I)
is also finite.

For a calculus formula @ to be considered safe, at a minimum we want to ensure that
for any given I, the set of answers for () contains only values that are in Dom(Q, I).
While this restriction is obviously required, it is not enough. Not only do we want the
set of answers to be composed of constants in Dom/(Q, I), we wish to compute the set
of answers by only examining tuples that contain constants in Dom/(Q, I)! This wish
leads to a subtle point associated with the use of quantifiers V and 3: Given a TRC
formula of the form 3R(p(R)), we want to find all values for variable R that make this
formula true by checking only tuples that contain constants in Dom(Q, I). Similarly,

Relational Algebra and Calculus 115

given a TRC formula of the form VR(p(R)), we want to find any values for variable
R that make this formula false by checking only tuples that contain constants in
Dom(Q,I).

We therefore define a safe TRC formula @ to be a formula such that:

1. For any given I, the set of answers for @ contains only values that are in Dom/(Q, I).

2. For each subexpression of the form IR(p(R)) in @, if a tuple r (assigned to variable
R) makes the formula true, then r contains only constants in Dom(Q,I).

3. For each subexpression of the form VR(p(R)) in @, if a tuple r (assigned to variable
R) contains a constant that is not in Dom(Q, I), then r must make the formula
true.

Note that this definition is not constructive, that is, it does not tell us how to check if
a query is safe.

The query Q@ = {S | =(S € Sailors)} is unsafe by this definition. Dom(Q,I) is the
set of all values that appear in (an instance I of) Sailors. Consider the instance S1
shown in Figure 4.1. The answer to this query obviously includes values that do not
appear in Dom/(Q, S1).

Returning to the question of expressiveness, we can show that every query that can be
expressed using a safe relational calculus query can also be expressed as a relational
algebra query. The expressive power of relational algebra is often used as a metric of
how powerful a relational database query language is. If a query language can express
all the queries that we can express in relational algebra, it is said to be relationally
complete. A practical query language is expected to be relationally complete; in ad-
dition, commercial query languages typically support features that allow us to express
some queries that cannot be expressed in relational algebra.

4.5 POINTS TO REVIEW

m The inputs and outputs of a query are relations. A query takes instances of each
input relation and produces an instance of the output relation. (Section 4.1)

m A relational algebra query describes a procedure for computing the output rela-
tion from the input relations by applying relational algebra operators. Internally,
database systems use some variant of relational algebra to represent query evalu-
ation plans. (Section 4.2)

m Two basic relational algebra operators are selection (o), to select subsets of a
relation, and projection (), to select output fields. (Section 4.2.1)

116 CHAPTER 4

m Relational algebra includes standard operations on sets such as union (U), inter-
section (N), set-difference (—), and cross-product (x). (Section 4.2.2)

m Relations and fields can be renamed in relational algebra using the renaming
operator (p). (Section 4.2.3)

m Another relational algebra operation that arises commonly in practice is the join
(1) —with important special cases of equijoin and natural join. (Section 4.2.4)

m The division operation (/) is a convenient way to express that we only want tuples
where all possible value combinations—as described in another relation—exist.
(Section 4.2.5)

m Instead of describing a query by how to compute the output relation, a relational
calculus query describes the tuples in the output relation. The language for spec-
ifying the output tuples is essentially a restricted subset of first-order predicate
logic. In tuple relational calculus, variables take on tuple values and in domain re-
lational calculus, variables take on field values, but the two versions of the calculus
are very similar. (Section 4.3)

m All relational algebra queries can be expressed in relational calculus. If we restrict
ourselves to safe queries on the calculus, the converse also holds. An important cri-
terion for commercial query languages is that they should be relationally complete
in the sense that they can express all relational algebra queries. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why
is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains
N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in tuples) for
the result relation produced by each of the following relational algebra expressions. In each
case, state any assumptions about the schemas for R1 and R2 that are needed to make the
expression meaningful:

(1) RIUR2, (2) RINR2, (3) R1— R2, (4) R1 x R2, (5) cu—s(R1), (6) ma(R1), and
(7) R1/R2

Exercise 4.3 Consider the following schema:
Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

Relational Algebra and Calculus 117

The key fields are underlined, and the domain of each field is listed after the field name.
Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the
key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write
the following queries in relational algebra, tuple relational calculus, and domain relational
calculus:

Find the names of suppliers who supply some red part.

Find the sids of suppliers who supply some red or green part.

Find the sids of suppliers who supply some red part or are at 221 Packer Ave.
Find the sids of suppliers who supply some red part and some green part.
Find the sids of suppliers who supply every part.

Find the sids of suppliers who supply every red part.

Find the sids of suppliers who supply every red or green part.

Find the sids of suppliers who supply every red part or supply every green part.

© ® N ok WD

Find pairs of sids such that the supplier with the first sid charges more for some part
than the supplier with the second sid.

10. Find the pids of parts that are supplied by at least two different suppliers.
11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either
does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous question. State
what the following queries compute:

1. Tsname (Wsid(a—color:"red’PartS) > (Ucost<1000atalog) > Supplie”l's)
2. Tsname (Wsid((o—color:"red’Parts) > (Ucost<1000atalog) X Suppliers))
3

. (Tsname ((Teotor=trear Parts) X (ccost<100Catalog) > Suppliers)) N
(Tsname ((Tcotor=green’ Parts) X (ocost<100Catalog) > Suppliers))
4. (7sid((Ocotor=trea’ Parts) <1 (0cost<100Catalog) <1 Suppliers)) N
(Tsia((Tcotor=lgreent Parts) > (0cost<100Catalog) > Suppliers))
5. Toname((Tsid,sname((Tcotor=tred’ Parts) X (0cost<100Catalog) >t Suppliers)) N
(Tsid,sname ((Tcotor=green’ Parts) > (oeost<100Catalog) > Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,

distance: integer, departs: time, arrives: time)
Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

118 CHAPTER 4

Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only
pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela-
tional calculus. Note that some of these queries may not be expressible in relational algebra
(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,
informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5
for additional queries over the airline schema.)

. Find the eids of pilots certified for some Boeing aircraft.
. Find the names of pilots certified for some Boeing aircraft.

1
2
3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.
4

. Identify the flights that can be piloted by every pilot whose salary is more than $100,000.
(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising
range.)

5. Find the names of pilots who can operate some plane with a range greater than 3,000
miles but are not certified on any Boeing aircraft.

Find the eids of employees who make the highest salary.
Find the eids of employees who make the second highest salary.

Find the eids of pilots who are certified for the largest number of aircraft.

© % 3>

Find the eids of employees who are certified for exactly three aircraft.
10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is
required to depart from the city that is the destination of the previous flight; the first
flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction
on the number of intermediate flights. Your query must determine whether a sequence
of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,
can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important
to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [156], and he showed the equivalence of relational
algebra and TRC in [158]. Earlier, Kuhns [392] considered the use of logic to pose queries.
LaCroix and Pirotte discussed DRC in [397]. Klug generalized the algebra and calculus to
include aggregate operations in [378]. Extensions of the algebra and calculus to deal with
aggregate functions are also discussed in [503]. Merrett proposed an extended relational
algebra with quantifiers such as the number of, which go beyond just universal and existential
quantification [460]. Such generalized quantifiers are discussed at length in [42].

SQL: QUERIES, PROGRAMMING,
TRIGGERS

What men or gods are these? What maidens loth?
What mad pursuit? What struggle to escape?
What pipes and timbrels? What wild ecstasy?

—John Keats, Ode on a Grecian Urn
What is the average salary in the Toy department?

—Anonymous SQL user

Structured Query Language (SQL) is the most widely used commercial relational
database language. It was originally developed at IBM in the SEQUEL-XRM and
System-R projects (1974-1977). Almost immediately, other vendors introduced DBMS
products based on SQL, and it is now a de facto standard. SQL continues to evolve in
response to changing needs in the database area. Our presentation follows the current
ANSI/ISO standard for SQL, which is called SQL-92. We also discuss some important
extensions in the new standard, SQL:1999. While not all DBMS products support the
full SQL-92 standard yet, vendors are working toward this goal and most products
already support the core features. The SQL language has several aspects to it:

The Data Definition Language (DDL): This subset of SQL supports the
creation, deletion, and modification of definitions for tables and views. Integrity
constraints can be defined on tables, either when the table is created or later.
The DDL also provides commands for specifying access rights or privileges to
tables and views. Although the standard does not discuss indexes, commercial
implementations also provide commands for creating and deleting indexes. We
covered the DDL features of SQL in Chapter 3.

The Data Manipulation Language (DML): This subset of SQL allows users
to pose queries and to insert, delete, and modify rows. We covered DML com-
mands to insert, delete, and modify rows in Chapter 3.

Embedded and dynamic SQL: Embedded SQL features allow SQL code to be
called from a host language such as C or COBOL. Dynamic SQL features allow a
query to be constructed (and executed) at run-time.

Triggers: The new SQL:1999 standard includes support for triggers, which are
actions executed by the DBMS whenever changes to the database meet conditions
specified in the trigger.

119

120 CHAPTER 5

m Security: SQL provides mechanisms to control users’ access to data objects such
as tables and views.

m Transaction management: Various commands allow a user to explicitly control
aspects of how a transaction is to be executed.

m Client-server execution and remote database access: These commands
control how a client application program can connect to an SQL database server,
or access data from a database over a network.

This chapter covers the query language features which are the core of SQL’s DML,
embedded and dynamic SQL, and triggers. We also briefly discuss some integrity
constraint specifications that rely upon the use of the query language features of SQL.
The ease of expressing queries in SQL has played a major role in the success of relational
database systems. Although this material can be read independently of the preceding
chapters, relational algebra and calculus (which we covered in Chapter 4) provide a
formal foundation for a large subset of the SQL query language. Much of the power
and elegance of SQL can be attributed to this foundation.

We will continue our presentation of SQL in Chapter 17, where we discuss aspects of
SQL that are related to security. We discuss SQL’s support for the transaction concept
in Chapter 18.

The rest of this chapter is organized as follows. We present basic SQL queries in Section
5.2 and introduce SQL’s set operators in Section 5.3. We discuss nested queries, in
which a relation referred to in the query is itself defined within the query, in Section
5.4. We cover aggregate operators, which allow us to write SQL queries that are not
expressible in relational algebra, in Section 5.5. We discuss null values, which are
special values used to indicate unknown or nonexistent field values, in Section 5.6. We
consider how SQL commands can be embedded in a host language in Section 5.7 and in
Section 5.8, where we discuss how relations can be accessed one tuple at a time through
the use of cursors. In Section 5.9 we describe how queries can be constructed at run-
time using dynamic SQL, and in Section 5.10, we discuss two standard interfaces to
a DBMS, called ODBC and JDBC. We discuss complex integrity constraints that can
be specified using the SQL DDL in Section 5.11, extending the SQL DDL discussion
from Chapter 3; the new constraint specifications allow us to fully utilize the query
language capabilities of SQL.

Finally, we discuss the concept of an active database in Sections 5.12 and 5.13. An ac-
tive database has a collection of triggers, which are specified by the DBA. A trigger
describes actions to be taken when certain situations arise. The DBMS monitors the
database, detects these situations, and invokes the trigger. Several current relational
DBMS products support some form of triggers, and the current draft of the SQL:1999
standard requires support for triggers.

SQL: Queries, Programming, Triggers

Levels of SQL-92: SQL is a continously evolving standard with the current
standard being SQL-92. When the standard is updated, DMBS vendors are usu-
ally not able to immediately conform to the new standard in their next product
releases because they also have to address issues such as performance improve-
ments and better system management. Therefore, three SQL-92 levels have been
defined: Entry SQL, Intermediate SQL, and Full SQL. Of these, Entry SQL is
closest to the previous standard, SQL-89, and therefore the easiest for a vendor
to support. Intermediate SQL includes about half of the new features of SQL-92.
Full SQL is the complete language.

The idea is to make it possible for vendors to achieve full compliance with the
standard in steps and for customers to get an idea of how complete a vendor’s
support for SQL-92 really is, at each of these steps. In reality, while IBM DB2,
Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support several
features from Intermediate and Full SQL—and many of these products support
features in the new SQL:1999 standard as well—they can claim full support only
for Entry SQL.

5.1 ABOUT THE EXAMPLES

We will present a number of sample queries using the following table definitions:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

We will give each query a unique number, continuing with the numbering scheme used
in Chapter 4. The first new query in this chapter has number Q15. Queries Q1 through

121

Q14 were introduced in Chapter 4.! We illustrate queries using the instances S3 of

Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter 4, which we reproduce

in Figures 5.1, 5.2, and 5.3, respectively.

5.2 THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual evaluation strategy. A conceptual evaluation strategy is a way to
evaluate the query that is intended to be easy to understand, rather than efficient. A

DBMS would typically execute a query in a different and more efficient way.

LAll references to a query can be found in the subject index for the book.

122 CHAPTER 5

| sid | sname | rating | age | | sid | bid | day |
22 | Dustin | 7 45.0 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 | Andy 8 25.5 22 | 104 | 10/7/98
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98
Figure 5.1 An Instance S3 of Sailors Figure 5.2 An Instance R2 of Reserves

| bid | bname | color |

101 | Interlake | blue
102 | Interlake | red
103 | Clipper | green
104 | Marine red

Figure 5.3 An Instance Bl of Boats

The basic form of an SQL query is as follows:

SELECT [DISTINCT | select-list
FROM from-list
WHERE qualification

Such a query intuitively corresponds to a relational algebra expression involving selec-
tions, projections, and cross-products. Every query must have a SELECT clause, which
specifies columns to be retained in the result, and a FROM clause, which specifies a
cross-product of tables. The optional WHERE clause specifies selection conditions on
the tables mentioned in the FROM clause. Let us consider a simple query.

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair (sname, age). If two or more sailors
have the same name and age, the answer still contains just one pair with that name

SQL: Queries, Programming, Triggers 123

and age. This query is equivalent to applying the projection operator of relational
algebra.

If we omit the keyword DISTINCT, we would get a copy of the row (s,a) for each sailor
with name s and age a; the answer would be a multiset of rows. A multiset is similar
to a set in that it is an unordered collection of elements, but there could be several
copies of each element, and the number of copies is significant—two multisets could
have the same elements and yet be different because the number of copies is different
for some elements. For example, {a, b, b} and {b, a, b} denote the same multiset, and
differ from the multiset {a, a, b}.

The answer to this query with and without the keyword DISTINCT on instance S3
of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for
Horatio appears twice if DISTINCT is omitted; this is because there are two sailors
called Horatio and age 35.

sname | age |

sname | age | Dustin | 45.0
Dustin | 45.0 Brutus | 33.0
Brutus | 33.0 Lubber | 55.5
Lubber | 55.5 Andy 25.5
Andy 25.5 Rusty 35.0
Rusty 35.0 Horatio | 35.0
Horatio | 35.0 Zorba 16.0
Zorba 16.0 Horatio | 35.0
Art 25.5 Art 25.5
Bob 63.5 Bob 63.5
Figure 5.4 Answer to Q15 Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of relational
algebra.

(Q11) Find all sailors with a rating above 7.
SELECT S.sid, S.sname, S.rating, S.age

FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Incidentally,
when we want to retrieve all columns, as in this query, SQL provides a convenient

124 CHAPTER 5

shorthand: We can simply write SELECT *. This notation is useful for interactive
querying, but it is poor style for queries that are intended to be reused and maintained.

As these two examples illustrate, the SELECT clause is actually used to do projec-
tion, whereas selections in the relational algebra sense are expressed using the WHERE
clause! This mismatch between the naming of the selection and projection operators
in relational algebra and the syntax of SQL is an unfortunate historical accident.

We now consider the syntax of a basic SQL query in more detail.

m The from-list in the FROM clause is a list of table names. A table name can be
followed by a range variable; a range variable is particularly useful when the
same table name appears more than once in the from-list.

m The select-list is a list of (expressions involving) column names of tables named
in the from-list. Column names can be prefixed by a range variable.

m The qualification in the WHERE clause is a boolean combination (i.e., an expres-
sion using the logical connectives AND, OR, and NOT) of conditions of the form
expression op expression, where op is one of the comparison operators {<, <=, =
,<>,>=,>}12 An expression is a column name, a constant, or an (arithmetic or
string) expression.

m The DISTINCT keyword is optional. It indicates that the table computed as an
answer to this query should not contain duplicates, that is, two copies of the same
row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL query,
they don’t tell us the meaning of a query. The answer to a query is itself a relation—
which is a multiset of rows in SQL!-—whose contents can be understood by considering
the following conceptual evaluation strategy:

1. Compute the cross-product of the tables in the from-list.
2. Delete those rows in the cross-product that fail the qualification conditions.
3. Delete all columns that do not appear in the select-list.
4. If DISTINCT is specified, eliminate duplicate rows.
This straightforward conceptual evaluation strategy makes explicit the rows that must

be present in the answer to the query. However, it is likely to be quite inefficient. We
will consider how a DBMS actually evaluates queries in Chapters 12 and 13; for now,

2Expressions with NOT can always be replaced by equivalent expressions without NOT given the set
of comparison operators listed above.

SQL: Queries, Programming, Triggers 125

our purpose is simply to explain the meaning of a query. We illustrate the conceptual
evaluation strategy using the following query:

(Q1) Find the names of sailors who have reserved boat number 103.
It can be expressed in SQL as follows.
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103
Let us compute the answer to this query on the instances R3 of Reserves and S4 of

Sailors shown in Figures 5.6 and 5.7, since the computation on our usual example
instances (R2 and S3) would be unnecessarily tedious.

| sid | sname | rating | age |

| sid | bid | day | 22 | dustin | 7 45.0

22 101 10/10/96 31 lubber | 8 595.95

58 | 103 | 11/12/96 58 | rusty 10 35.0
Figure 5.6 Instance R3 of Reserves Figure 5.7 Instance S4 of Sailors

The first step is to construct the cross-product S4 x R3, which is shown in Figure 5.8.

| sid | sname | rating | age | 5id| bid | day |

22 | dustin | 7 45.0 | 22 | 101 | 10/10/96
22 | dustin | 7 45.0 | 58 | 103 | 11/12/96
31 | lubber | 8 55.5 | 22 | 101 | 10/10/96
31 | lubber | 8 55.5 | 58 | 103 | 11/12/96
58 | rusty | 10 35.0 | 22 | 101 | 10/10/96
58 | rusty | 10 35.0 | 58 | 103 | 11/12/96

Figure 5.8 S4 x RS3

The second step is to apply the qualification S.sid = R.sid AND R.bid=103. (Note that
the first part of this qualification requires a join operation.) This step eliminates all
but the last row from the instance shown in Figure 5.8. The third step is to eliminate
unwanted columns; only sname appears in the SELECT clause. This step leaves us with
the result shown in Figure 5.9, which is a table with a single column and, as it happens,
just one row.

126 CHAPTER 5

sname
rusty

Figure 5.9 Answer to Query Q1 on R3 and S4

5.2.1 Examples of Basic SQL Queries

We now present several example queries, many of which were expressed earlier in
relational algebra and calculus (Chapter 4). Our first example illustrates that the use
of range variables is optional, unless they are needed to resolve an ambiguity. Query
Q1, which we discussed in the previous section, can also be expressed as follows:

SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in both the
Sailors and Reserves tables. An equivalent way to write this query is:

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables. Range
variables need to be introduced explicitly only when the FROM clause contains more
than one occurrence of a relation.? However, we recommend the explicit use of range
variables and full qualification of all occurrences of columns with a range variable
to improve the readability of your queries. We will follow this convention in all our
examples.

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

This query contains a join of two tables, followed by a selection on the color of boats.
We can think of B and R as rows in the corresponding tables that ‘prove’ that a sailor
with sid R.sid reserved a red boat B.bid. On our example instances R2 and S3 (Figures

3The table name cannot be used as an implicit range variable once a range variable is introduced
for the relation.

SQL: Queries, Programming, Triggers 127

5.1 and 5.2), the answer consists of the sids 22, 31, and 64. If we want the names of
sailors in the result, we must also consider the Sailors relation, since Reserves does not
contain this information, as the next example illustrates.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

This query contains a join of three tables followed by a selection on the color of boats.
The join with Sailors allows us to find the name of the sailor who, according to Reserves
tuple R, has reserved a red boat described by tuple B.

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = ‘Lubber’

This query is very similar to the previous one. Notice that in general there may be
more than one sailor called Lubber (since sname is not a key for Sailors); this query is
still correct in that it will return the colors of boats reserved by some Lubber, if there
are several sailors called Lubber.

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the sailor has
made some reservation. (If a sailor has not made a reservation, the second step in
the conceptual evaluation strategy would eliminate all rows in the cross-product that
involve this sailor.)

5.2.2 Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of columns. Each
item in a select-list can be of the form expression AS column_name, where expression
is any arithmetic or string expression over column names (possibly prefixed by range
variables) and constants. It can also contain aggregates such as sum and count, which
we will discuss in Section 5.5. The SQL-92 standard also includes expressions over date

128 CHAPTER 5

Regular expressions in SQL: Reflecting the increased importance of text data,
SQL:1999 includes a more powerful version of the LIKE operator called SIMILAR.
This operator allows a rich set of regular expressions to be used as patterns while
searching text. The regular expressions are similar to those supported by the Unix
operating system for string searches, although the syntax is a little different.

and time values, which we will not discuss. Although not part of the SQL-92 standard,
many implementations also support the use of built-in functions such as sqrt, sin, and
mod.

(Q17) Compute increments for the ratings of persons who have sailed two different
boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = Rl.sid AND S.sid = R2.sid
AND Rl.day = R2.day AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expressionl = expression2.

SELECT Sl.sname AS namel, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*Sl.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <, >, etc.) with
the ordering of strings determined alphabetically as usual. If we need to sort strings
by an order other than alphabetical (e.g., sort strings denoting month names in the
calendar order January, February, March, etc.), SQL-92 supports a general concept of
a collation, or sort order, for a character set. A collation allows the user to specify
which characters are ‘less than’ which others, and provides great flexibility in string
manipulation.

In addition, SQL provides support for pattern matching through the LIKE operator,
along with the use of the wild-card symbols % (which stands for zero or more arbitrary
characters) and _ (which stands for exactly one, arbitrary, character). Thus, ‘_AB%’
denotes a pattern that will match every string that contains at least three characters,
with the second and third characters being A and B respectively. Note that unlike the
other comparison operators, blanks can be significant for the LIKE operator (depending
on the collation for the underlying character set). Thus, ‘Jeff’ = ‘Jeff ' could be true
while ‘Jeff’ LIKE ‘Jeff ’is false. An example of the use of LIKE in a query is given
below.

SQL: Queries, Programming, Triggers 129

(Q18) Find the ages of sailors whose name begins and ends with B and has at least
three characters.

SELECT S.age
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query form pre-
sented earlier. Since the answer to a query is a multiset of rows, it is natural to consider
the use of operations such as union, intersection, and difference. SQL supports these
operations under the names UNION, INTERSECT, and EXCEPT.* SQL also provides other
set operations: IN (to check if an element is in a given set), op ANY, op ALL (to com-
pare a value with the elements in a given set, using comparison operator op), and
EXISTS (to check if a set is empty). IN and EXISTS can be prefixed by NOT, with the
obvious modification to their meaning. We cover UNION, INTERSECT, and EXCEPT in
this section, and the other operations in Section 5.4.

Consider the following query:
(Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid
AND (B.color = ‘red’ OR B.color = ‘green’)

This query is easily expressed using the OR connective in the WHERE clause. However,
the following query, which is identical except for the use of ‘and’ rather than ‘or’ in
the English version, turns out to be much more difficult:

(Q6) Find the names of sailors who have reserved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy to
the English statements of the two queries, we would retrieve the names of sailors who
have reserved a boat that is both red and green. The integrity constraint that bid is a
key for Boats tells us that the same boat cannot have two colors, and so the variant

4Note that although the SQL-92 standard includes these operations, many systems currently sup-
port only UNION. Also, many systems recognize the keyword MINUS for EXCEPT.

130 CHAPTER 5

of the previous query with AND in place of OR will always return an empty answer set.
A correct statement of Query Q6 using AND is the following:

SELECT S.sname
FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2
WHERE S.sid = Rl.sid AND R1.bid = B1.bid

AND S.sid = R2.sid AND R2.bid = B2.bid

AND Bl.color=‘red’ AND B2.color = ‘green’

We can think of R1 and B1 as rows that prove that sailor S.sid has reserved a red boat.
R2 and B2 similarly prove that the same sailor has reserved a green boat. S.sname is
not included in the result unless five such rows S, R1, B1, R2, and B2 are found.

The previous query is difficult to understand (and also quite inefficient to execute,
as it turns out). In particular, the similarity to the previous OR query (Query Q5) is
completely lost. A better solution for these two queries is to use UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

UNION

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query says that we want the union of the set of sailors who have reserved red
boats and the set of sailors who have reserved green boats. In complete symmetry, the
AND query (Query Q6) can be rewritten as follows:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
INTERSECT

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query actually contains a subtle bug—if there are two sailors such as Horatio in
our example instances B1, R2, and 53, one of whom has reserved a red boat and the
other has reserved a green boat, the name Horatio is returned even though no one
individual called Horatio has reserved both a red and a green boat. Thus, the query
actually computes sailor names such that some sailor with this name has reserved a

SQL: Queries, Programming, Triggers 131

red boat and some sailor with the same name (perhaps a different sailor) has reserved
a green boat.

As we observed in Chapter 4, the problem arises because we are using sname to identify
sailors, and sname is not a key for Sailors! If we select sid instead of sname in the
previous query, we would compute the set of sids of sailors who have reserved both red
and green boats. (To compute the names of such sailors requires a nested query; we
will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.
(Q19) Find the sids of all sailors who have reserved red boats but not green boats.

SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
EXCEPT

SELECT S2.sid

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have reserved
green boats. Thus, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need to look
at the Sailors relation, and we can use the following simpler query:

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = ‘red’
EXCEPT

SELECT R2.sid

FROM Boats B2, Reserves R2

WHERE R2.bid = B2.bid AND B2.color = ‘green’

Note that UNION, INTERSECT, and EXCEPT can be used on any two tables that are
union-compatible, that is, have the same number of columns and the columns, taken
in order, have the same types. For example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or have reserved boat 104.
SELECT S.sid

FROM Sailors S
WHERE S.rating = 10

132 CHAPTER 5

UNION

SELECT R.sid

FROM Reserves R
WHERE R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns 22
and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A final point
to note about UNION, INTERSECT, and EXCEPT follows. In contrast to the default that
duplicates are not eliminated unless DISTINCT is specified in the basic query form, the
default for UNION queries is that duplicates are eliminated! To retain duplicates, UNION
ALL must be used; if so, the number of copies of a row in the result is m + n, where
m and n are the numbers of times that the row appears in the two parts of the union.
Similarly, one version of INTERSECT retains duplicates—the number of copies of a row
in the result is min(m,n)—and one version of EXCEPT also retains duplicates—the
number of copies of a row in the result is m — n, where m corresponds to the first
relation.

5.4 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query is a query
that has another query embedded within it; the embedded query is called a subquery.
When writing a query, we sometimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table is a
subquery and appears as part of the main query. A subquery typically appears within
the WHERE clause of a query. Subqueries can sometimes appear in the FROM clause
or the HAVING clause (which we present in Section 5.5). This section discusses only
subqueries that appear in the WHERE clause. The treatment of subqueries appearing
elsewhere is quite similar. Examples of subqueries that appear in the FROM clause are
discussed in Section 5.5.1.

5.4.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier, using a
nested subquery:

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

SQL: Queries, Programming, Triggers 133

The nested subquery computes the (multi)set of sids for sailors who have reserved boat
103 (the set contains 22, 31, and 74 on instances R2 and S3), and the top-level query
retrieves the names of sailors whose sid is in this set. The IN operator allows us to
test whether a value is in a given set of elements; an SQL query is used to generate
the set to be tested. Notice that it is very easy to modify this query to find all sailors
who have not reserved boat 103—we can just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a conceptual
evaluation strategy. In our example, the strategy consists of examining rows in Sailors,
and for each such row, evaluating the subquery over Reserves. In general, the concep-
tual evaluation strategy that we presented for defining the semantics of a query can be
extended to cover nested queries as follows: Construct the cross-product of the tables
in the FROM clause of the top-level query as before. For each row in the cross-product,
while testing the qualification in the WHERE clause, (re)compute the subquery.’ Of
course, the subquery might itself contain another nested subquery, in which case we
apply the same idea one more time, leading to an evaluation strategy with several
levels of nested loops.

As an example of a multiply-nested query, let us rewrite the following query.
(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid IN (SELECT B.bid
FROM Boats B
WHERE B.color = ‘red’)

The innermost subquery finds the set of bids of red boats (102 and 104 on instance
B1). The subquery one level above finds the set of sids of sailors who have reserved
one of these boats. On instances B1, R2, and S3, this set of sids contains 22, 31, and
64. The top-level query finds the names of sailors whose sid is in this set of sids. For
the example instances, we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, we replace the outermost
occurrence of IN by NOT IN:

(Q21) Find the names of sailors who have not reserved a red boat.

5Since the inner subquery in our example does not depend on the ‘current’ row from the outer
query in any way, you might wonder why we have to recompute the subquery for each outer row. For
an answer, see Section 5.4.2.

134 CHAPTER 5

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
FROM Reserves R
WHERE R.bid IN (SELECT B.bid
FROM Boats B
WHERE B.color = ‘red’)

This query computes the names of sailors whose sid is not in the set 22, 31, and 64.

In contrast to Query Q21, we can modify the previous query (the nested version of
Q2) by replacing the inner occurrence (rather than the outer occurence) of IN with
NOT IN. This modified query would compute the names of sailors who have reserved
a boat that is not red, i.e., if they have a reservation, it is not for a red boat. Let us
consider how. In the inner query, we check that R.bid is not either 102 or 104 (the
bids of red boats). The outer query then finds the sids in Reserves tuples where the
bid is not 102 or 104. On instances B1, R2, and 53, the outer query computes the set
of sids 22, 31, 64, and 74. Finally, we find the names of sailors whose sid is in this set.

We can also modify the nested query Q2 by replacing both occurrences of IN with
NOT IN. This variant finds the names of sailors who have not reserved a boat that is
not red, i.e., who have only reserved red boats (if they’ve reserved any boats at all).
Proceeding as in the previous paragraph, on instances B1, R2, and S3, the outer query
computes the set of sids (in Sailors) other than 22, 31, 64, and 74. This is the set 29,
32, 58, 71, 85, and 95. We then find the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries that we have seen thus far, the inner subquery has been completely
independent of the outer query. In general the inner subquery could depend on the
row that is currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more:

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid = 103
AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It allows us to
test whether a set is nonempty. Thus, for each Sailor row S, we test whether the set

SQL: Queries, Programming, Triggers 135

of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor
S has reserved boat 103, and we retrieve the name. The subquery clearly depends on
the current row S and must be re-evaluated for each row in Sailors. The occurrence
of S in the subquery (in the form of the literal S.sid) is called a correlation, and such
queries are called correlated queries.

This query also illustrates the use of the special symbol * in situations where all we
want to do is to check that a qualifying row exists, and don’t really want to retrieve
any columns from the row. This is one of the two uses of * in the SELECT clause
that is good programming style; the other is as an argument of the COUNT aggregate
operation, which we will describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute the
names of sailors who have not reserved a red boat. Closely related to EXISTS is
the UNIQUE predicate. When we apply UNIQUE to a subquery, it returns true if no
row appears twice in the answer to the subquery, that is, there are no duplicates; in
particular, it returns true if the answer is empty. (And there is also a NOT UNIQUE
version.)

5.4.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE, along
with their negated versions. SQL also supports op ANY and op ALL, where op is one of
the arithmetic comparison operators {<, <=,=,<>,>=,>}. (SOME is also available,
but it is just a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors 52
WHERE S2.sname = ‘Horatio’)

If there are several sailors called Horatio, this query finds all sailors whose rating is
better than that of some sailor called Horatio. On instance S3, this computes the
sids 31, 32, 58, 71, and 74. What if there were no sailor called Horatio? In this case
the comparison S.rating > ANY ... is defined to return false, and the above query
returns an empty answer set. To understand comparisons involving ANY, it is useful to
think of the comparison being carried out repeatedly. In the example above, S.rating
is successively compared with each rating value that is an answer to the nested query.
Intuitively, the subquery must return a row that makes the comparison true, in order
for S.rating > ANY ... to return true.

136 CHAPTER 5

(Q23) Find sailors whose rating is better than every sailor called Horatio.

We can obtain all such queries with a simple modification to Query Q22: just replace
ANY with ALL in the WHERE clause of the outer query. On instance S3, we would get
the sids 58 and 71. If there were no sailor called Horatio, the comparison S.rating
> ALL ... is defined to return true! The query would then return the names of all
sailors. Again, it is useful to think of the comparison being carried out repeatedly.
Intuitively, the comparison must be true for every returned row in order for S.rating
> ALL ... to return true.

As another illustration of ALL, consider the following query:
(Q24) Find the sailors with the highest rating.

SELECT S.sid

FROM Sailors S

WHERE S.rating >= ALL (SELECT S2.rating
FROM Sailors S2)

The subquery computes the set of all rating values in Sailors. The outer WHERE con-
dition is satisfied only when S.rating is greater than or equal to each of these rating
values, i.e., when it is the largest rating value. In the instance S3, the condition is
only satisfied for rating 10, and the answer includes the sids of sailors with this rating,
i.e., b8 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries
Let us revisit a query that we considered earlier using the INTERSECT operator.
(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid
AND B2.color = ‘green’)

This query can be understood as follows: “Find all sailors who have reserved a red
boat and, further, have sids that are included in the set of sids of sailors who have

SQL: Queries, Programming, Triggers 137

reserved a green boat.” This formulation of the query illustrates how queries involving
INTERSECT can be rewritten using IN, which is useful to know if your system does not
support INTERSECT. Queries using EXCEPT can be similarly rewritten by using NOT IN.
To find the sids of sailors who have reserved red boats but not green boats, we can
simply replace the keyword IN in the previous query by NOT IN.

As it turns out, writing this query (Q6) using INTERSECT is more complicated because
we have to use sids to identify sailors (while intersecting) and have to return sailor
names:

SELECT S3.sname
FROM Sailors S3
WHERE S3.sid IN ((SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’)
INTERSECT
(SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’))

Our next example illustrates how the division operation in relational algebra can be
expressed in SQL.

(Q9) Find the names of sailors who have reserved all boats.

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS ((SELECT B.bid
FROM Boats B)
EXCEPT
(SELECTR.bid
FROM Reserves R
WHERE R.sid = S.sid))

Notice that this query is correlated—for each sailor S, we check to see that the set of
boats reserved by S includes all boats. An alternative way to do this query without
using EXCEPT follows:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R

138 CHAPTER 5

WHERE R.bid = B.bid
AND R.sid = S.sid))

Intuitively, for each sailor we check that there is no boat that has not been reserved
by this sailor.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some computation or
summarization. As we noted earlier in this chapter, SQL allows the use of arithmetic
expressions. We now consider a powerful class of constructs for computing aggregate
values such as MIN and SUM. These features represent a significant extension of rela-
tional algebra. SQL supports five aggregate operations, which can be applied on any
column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.
(

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN or MAX
(although SQL-92 does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance S3, the average age is 37.4. Of course, the WHERE clause can be used to
restrict the sailors who are considered in computing the average age:

(Q26) Find the average age of sailors with a rating of 10.
SELECT AVG (S.age)
FROM Sailors S

WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be used
instead of AVG in the above queries to find the age of the youngest (oldest) sailor.

SQL: Queries, Programming, Triggers 139

However, finding both the name and the age of the oldest sailor is more tricky, as the
next query illustrates.

(Q27) Find the name and age of the oldest sailor. Consider the following attempt to
answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the name
of the sailors having that age. However, this query is illegal in SQL—if the SELECT
clause uses an aggregate operation, then it must use only aggregate operations unless
the query contains a GROUP BY clause! (The intuition behind this restriction should
become clear when we discuss the GROUP BY clause in Section 5.5.1.) Thus, we cannot
use MAX (S.age) as well as S.sname in the SELECT clause. We have to use a nested
query to compute the desired answer to Q27:

SELECT S.sname, S.age

FROM Sailors S

WHERE S.age = (SELECT MAX (S2.age)
FROM Sailors S2))

Observe that we have used the result of an aggregate operation in the subquery as
an argument to a comparison operation. Strictly speaking, we are comparing an age
value with the result of the subquery, which is a relation. However, because of the use
of the aggregate operation, the subquery is guaranteed to return a single tuple with
a single field, and SQL converts such a relation to a field value for the sake of the
comparison. The following equivalent query for Q27 is legal in the SQL-92 standard
but is not supported in many systems:

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (S2.age)
FROM Sailors S2) = S.age

We can count the number of sailors using COUNT. This example illustrates the use of *
as an argument to COUNT, which is useful when we want to count all rows.

(Q28) Count the number of sailors.

SELECT COUNT (*)
FROM Sailors S

We can think of * as shorthand for all the columns (in the cross-product of the from-
list in the FROM clause). Contrast this query with the following query, which computes
the number of distinct sailor names. (Remember that sname is not a key!)

140 CHAPTER 5

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTINCT S.Sname)
FROM Sailors S

On instance S3, the answer to Q28 is 10, whereas the answer to Q29 is 9 (because
two sailors have the same name, Horatio). If DISTINCT is omitted, the answer to Q29
is 10, because the name Horatio is counted twice. Thus, without DISTINCT Q29 is
equivalent to 28. However, the use of COUNT (*) is better querying style when it is
applicable.

Aggregate operations offer an alternative to the ANY and ALL constructs. For example,
consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a rating of
10.

SELECT S.sname

FROM Sailors S

WHERE S.age > (SELECT MAX (S2.age)
FROM Sailors S2
WHERE S2.rating = 10)

On instance 53, the oldest sailor with rating 10 is sailor 58, whose age is 35. The
names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL, this query
could alternatively be written as follows:

SELECT S.sname

FROM Sailors S

WHERE S.age > ALL (SELECT S2.age
FROM Sailors S2
WHERE S2.rating = 10)

However, the ALL query is more error prone—one could easily (and incorrectly!) use
ANY instead of ALL, and retrieve sailors who are older than some sailor with a rating
of 10. The use of ANY intuitively corresponds to the use of MIN, instead of MAX, in the
previous query.

5.5.1 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to all (qualifying) rows in a relation.
Often we want to apply aggregate operations to each of a number of groups of rows
in a relation, where the number of groups depends on the relation instance (i.e., is not
known in advance). For example, consider the following query.

SQL: Queries, Programming, Triggers 141

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to 10, we could write 10 queries of
the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = ¢

where i = 1,2,...,10. Writing 10 such queries is tedious. More importantly, we may
not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query form, namely,
the GROUP BY clause. In fact, the extension also includes an optional HAVING clause
that can be used to specify qualifications over groups (for example, we may only
be interested in rating levels > 6). The general form of an SQL query with these
extensions is:

SELECT [DISTINCT } select-list
FROM from-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

m The select-list in the SELECT clause consists of (1) a list of column names and
(2) a list of terms having the form aggop (column-name) AS new-name. The
optional AS new-name term gives this column a name in the table that is the
result of the query. Any of the aggregation operators can be used for aggop.

Every column that appears in (1) must also appear in grouping-list. The reason
is that each row in the result of the query corresponds to one group, which is a
collection of rows that agree on the values of columns in grouping-list. If a column
appears in list (1), but not in grouping-list, it is not clear what value should be
assigned to it in an answer row.

m The expressions appearing in the group-qualification in the HAVING clause must
have a single value per group. The intuition is that the HAVING clause determines

142 CHAPTER 5

whether an answer row is to be generated for a given group. Therefore, a col-
umn appearing in the group-qualification must appear as the argument to an
aggregation operator, or it must also appear in grouping-list.

m If the GROUP BY clause is omitted, the entire table is regarded as a single group.
We will explain the semantics of such a query through an example. Consider the query:

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18
years old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

We will evaluate this query on instance S3 of Sailors, reproduced in Figure 5.10 for
convenience. The instance of Sailors on which this query is to be evaluated is shown
in Figure 5.10. Extending the conceptual evaluation strategy presented in Section 5.2,
we proceed as follows. The first step is to construct the cross-product of tables in the
from-list. Because the only relation in the from-list in Query Q32 is Sailors, the result
is just the instance shown in Figure 5.10.

sid| sname | rating | age |

22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 25.5
95 | Bob 3 63.5

Figure 5.10 Instance S3 of Sailors

The second step is to apply the qualification in the WHERE clause, S.age >= 18. This
step eliminates the row (71, zorba,10,16). The third step is to eliminate unwanted
columns. Only columns mentioned in the SELECT clause, the GROUP BY clause, or
the HAVING clause are necessary, which means we can eliminate sid and sname in our
example. The result is shown in Figure 5.11. The fourth step is to sort the table

SQL: Queries, Programming, Triggers 143

according to the GROUP BY clause to identify the groups. The result of this step is
shown in Figure 5.12.

;

I

7 45.0 3 255
; ggg 3 635
3 25'5 7 45.0
10 35.0 ! 35.0
7 35.0 8 55.5
5[5 o [0
3 63.5 35.0
Figure 5.11 After Evaluation Step 3 Figure 5.12 After Evaluation Step 4

The fifth step is to apply the group-qualification in the HAVING clause, that is, the
condition COUNT (*) > 1. This step eliminates the groups with rating equal to 1, 9, and
10. Observe that the order in which the WHERE and GROUP BY clauses are considered
is significant: If the WHERE clause were not considered first, the group with rating=10
would have met the group-qualification in the HAVING clause. The sixth step is to
generate one answer row for each remaining group. The answer row corresponding
to a group consists of a subset of the grouping columns, plus one or more columns
generated by applying an aggregation operator. In our example, each answer row has
a rating column and a minage column, which is computed by applying MIN to the
values in the age column of the corresponding group. The result of this step is shown
in Figure 5.13.

| rating | minage

3 25.5
7 35.0
8 25.5

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT in the SELECT clause, duplicates are eliminated in an
additional, and final, step.

5.5.2 More Examples of Aggregate Queries

(Q38) For each red boat, find the number of reservations for this boat.

144 CHAPTER 5

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid

On instances B1 and R2, the answer to this query contains the two tuples (102, 3) and
(104, 2).

It is interesting to observe that the following version of the above query is illegal:

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid

GROUP BY B.bid

HAVING B.color = ‘red’

Even though the group-qualification B.color = ‘red’ is single-valued per group, since
the grouping attribute bid is a key for Boats (and therefore determines color), SQL
disallows this query. Only columns that appear in the GROUP BY clause can appear in
the HAVING clause, unless they appear as arguments to an aggregate operator in the
HAVING clause.

(Q34) Find the average age of sailors for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S

GROUP BY S.rating

HAVING COUNT (*) > 1

After identifying groups based on rating, we retain only groups with at least two sailors.
The answer to this query on instance S3 is shown in Figure 5.14.

| rating | avgage | rating | avgage
3 44.5 3 455 | rating | avgage
7 40.0 7 40.0 3 45.5
8 40.5 8 40.5 7 40.0
10 25.5 10 35.0 8 40.5
Figure 5.14 Q34 Answer Figure 5.15 Q35 Answer Figure 5.16 Q36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING clause
can have a nested subquery, just like the WHERE clause. Note that we can use S.rating
inside the nested subquery in the HAVING clause because it has a single value for the
current group of sailors:

SQL: Queries, Programming, Triggers 145

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating = S2.rating)

(Q35) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating = S2.rating)

In this variant of Query Q34, we first remove tuples with age <= 18 and group the
remaining tuples by rating. For each group, the subquery in the HAVING clause com-
putes the number of tuples in Sailors (without applying the selection age <= 18) with
the same rating value as the current group. If a group has less than 2 sailors, it is
discarded. For each remaining group, we output the average age. The answer to this
query on instance S3 is shown in Figure 5.15. Notice that the answer is very similar
to the answer for Q34, with the only difference being that for the group with rating
10, we now ignore the sailor with age 16 while computing the average.

(Q36) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two such sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating = S2.rating AND S2.age >= 18)

The above formulation of the query reflects the fact that it is a variant of Q35. The
answer to Q36 on instance S3 is shown in Figure 5.16. It differs from the answer to
Q35 in that there is no tuple for rating 10, since there is only one tuple with rating 10
and age > 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation shows:

146 CHAPTER 5

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S

WHERE S. age > 18

GROUP BY S.rating

HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is applied
before grouping is done; thus, only sailors with age > 18 are left when grouping is
done. It is instructive to consider yet another way of writing this query:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,
COUNT (*) AS ratingcount
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating) AS Temp
WHERE Temp.ratingcount > 1

This alternative brings out several interesting points. First, the FROM clause can also
contain a nested subquery according to the SQL-92 standard.® Second, the HAVING
clause is not needed at all. Any query with a HAVING clause can be rewritten without
one, but many queries are simpler to express with the HAVING clause. Finally, when a
subquery appears in the FROM clause, using the AS keyword to give it a name is neces-
sary (since otherwise we could not express, for instance, the condition Temp.ratingcount
>).

(Q37) Find those ratings for which the average age of sailors is the minimum over all
ratings.

We use this query to illustrate that aggregate operations cannot be nested. One might
consider writing it as follows:

SELECT S.rating

FROM Sailors S

WHERE ~ AVG (S.age) = (SELECT MIN (AVG (S2.age))
FROM Sailors S2
GROUP BY S2.rating)

A little thought shows that this query will not work even if the expression MIN (AVG
(S2.age)), which is illegal, were allowed. In the nested query, Sailors is partitioned
into groups by rating, and the average age is computed for each rating value. For each
group, applying MIN to this average age value for the group will return the same value!

6Not all systems currently support nested queries in the FROM clause.

SQL: Queries, Programming, Triggers 147

A correct version of the above query follows. It essentially computes a temporary table
containing the average age for each rating value and then finds the rating(s) for which
this average age is the minimum.

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage) FROM Temp)

The answer to this query on instance S3 is (10, 25.5).

As an exercise, the reader should consider whether the following query computes the
same answer, and if not, why:

SELECT Temp.rating, MIN (Temp.avgage)

FROM (SELECT S.rating, AVG (S.age) AS avgage,
FROM Sailors S
GROUP BY S.rating) AS Temp

GROUP BY Temp.rating

5.6 NULL VALUES*

Thus far, we have assumed that column values in a row are always known. In practice
column values can be unknown. For example, when a sailor, say Dan, joins a yacht
club, he may not yet have a rating assigned. Since the definition for the Sailors table
has a rating column, what row should we insert for Dan? What is needed here is a
special value that denotes unknown. Suppose the Sailor table definition was modified
to also include a maiden-name column. However, only married women who take their
husband’s last name have a maiden name. For single women and for men, the maiden-
name column is inapplicable. Again, what value do we include in this column for the
row representing Dan?

SQL provides a special column value called null to use in such situations. We use
null when the column value is either unknown or inapplicable. Using our Sailor table
definition, we might enter the row (98, Dan,null, 39) to represent Dan. The presence
of null values complicates many issues, and we consider the impact of null values on
SQL in this section.

5.6.1 Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the row for Dan, is
this condition true or false? Since Dan’s rating is unknown, it is reasonable to say

148 CHAPTER 5

that this comparison should evaluate to the value unknown. In fact, this is the case
for the comparisons rating > 8 and rating < 8 as well. Perhaps less obviously, if we
compare two null values using <, >, =, and so on, the result is always unknown. For
example, if we have null in two distinct rows of the sailor relation, any comparison
returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a column
value is null; for example, we can say rating IS NULL, which would evaluate to true on
the row representing Dan. We can also say rating IS NOT NULL, which would evaluate
to false on the row for Dan.

5.6.2 Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and rating
= 8 AND age < 407 Considering the row for Dan again, because age < 40, the first
expression evaluates to true regardless of the value of rating, but what about the
second? We can only say unknown.

But this example raises an important point—once we have null values, we must define
the logical operators AND, OR, and NOT using a three-valued logic in which expressions
evaluate to true, false, or unknown. We extend the usual interpretations of AND,
OR, and NOT to cover the case when one of the arguments is unknown as follows. The
expression NOT unknown is defined to be unknown. OR of two arguments evaluates to
true if either argument evaluates to true, and to unknown if one argument evaluates
to false and the other evaluates to unknown. (If both arguments are false, of course,
it evaluates to false.) AND of two arguments evaluates to false if either argument
evaluates to false, and to unknown if one argument evaluates to unknown and the other
evaluates to true or unknown. (If both arguments are true, it evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQL, and the impact of null values must
be recognized. For example, the qualification in the WHERE clause eliminates rows (in
the cross-product of tables named in the FROM clause) for which the qualification does
not evaluate to true. Therefore, in the presence of null values, any row that evaluates
to false or to unknown is eliminated. Eliminating rows that evaluate to unknown has
a subtle but significant impact on queries, especially nested queries involving EXISTS
or UNIQUE.

Another issue in the presence of null values is the definition of when two rows in a
relation instance are regarded as duplicates. The SQL definition is that two rows are
duplicates if corresponding columns are either equal, or both contain null. Contrast

SQL: Queries, Programming, Triggers 149

this definition with the fact that if we compare two null values using =, the result is
unknown! In the context of duplicates, this comparison is implicitly treated as true,
which is an anomaly.

As expected, the arithmetic operations +, —, %, and / all return null if one of their
arguments is null. However, nulls can cause some unexpected behavior with aggre-
gate operations. COUNT(*) handles null values just like other values, that is, they get
counted. All the other aggregate operations (COUNT, SUM, AVG, MIN, MAX, and variations
using DISTINCT) simply discard null values—thus SUM cannot be understood as just
the addition of all values in the (multi)set of values that it is applied to; a preliminary
step of discarding all null values must also be accounted for. As a special case, if one of
these operators—other than COUNT—is applied to only null values, the result is again
null.

5.6.4 Outer Joins

Some interesting variants of the join operation that rely on null values, called outer
joins, are supported in SQL. Consider the join of two tables, say Sailors <. Reserves.
Tuples of Sailors that do not match some row in Reserves according to the join condition
¢ do not appear in the result. In an outer join, on the other hand, Sailor rows without
a matching Reserves row appear exactly once in the result, with the result columns
inherited from Reserves assigned null values.

In fact, there are several variants of the outer join idea. In a left outer join, Sailor
rows without a matching Reserves row appear in the result, but not vice versa. In a
right outer join, Reserves rows without a matching Sailors row appear in the result,
but not vice versa. In a full outer join, both Sailors and Reserves rows without a
match appear in the result. (Of course, rows with a match always appear in the result,
for all these variants, just like the usual joins, sometimes called inner joins, presented
earlier in Chapter 4.)

SQL-92 allows the desired type of join to be specified in the FROM clause. For example,
the following query lists (sid,bid) pairs corresponding to sailors and boats they have
reserved:

SELECT Sailors.sid, Reserves.bid
FROM Sailors NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that the join condition is equality on all common at-
tributes (in this example, sid), and the WHERE clause is not required (unless we want
to specify additional, non-join conditions). On the instances of Sailors and Reserves
shown in Figure 5.6, this query computes the result shown in Figure 5.17.

150 CHAPTER 5

22 | 101
31 | null
58 | 103

Figure 5.17 Left Outer Join of Sailor! and Reservesl

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field definition, for
example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not
allowed to take on null values. Thus, there is an implicit NOT NULL constraint for every
field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should consult
one of the many books devoted to SQL for a more detailed treatment of the topic.

5.7 EMBEDDED SQL *

We have looked at a wide range of SQL query constructs, treating SQL as an inde-
pendent language in its own right. A relational DBMS supports an interactive SQL
interface, and users can directly enter SQL commands. This simple approach is fine
as long as the task at hand can be accomplished entirely with SQL commands. In
practice we often encounter situations in which we need the greater flexibility of a
general-purpose programming language, in addition to the data manipulation facilities
provided by SQL. For example, we may want to integrate a database application with
a nice graphical user interface, or we may want to ask a query that cannot be expressed
in SQL. (See Chapter 27 for examples of such queries.)

To deal with such situations, the SQL standard defines how SQL commands can be
executed from within a program in a host language such as C or Java. The use of
SQL commands within a host language program is called embedded SQL. Details
of embedded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

Conceptually, embedding SQL commands in a host language program is straightfor-
ward. SQL statements (i.e., not declarations) can be used wherever a statement in the
host language is allowed (with a few restrictions). Of course, SQL statements must be
clearly marked so that a preprocessor can deal with them before invoking the compiler
for the host language. Also, any host language variables used to pass arguments into
an SQL command must be declared in SQL. In particular, some special host language

SQL: Queries, Programming, Triggers 151

variables must be declared in SQL (so that, for example, any error conditions arising
during SQL execution can be communicated back to the main application program in
the host language).

There are, however, two complications to bear in mind. First, the data types recognized
by SQL may not be recognized by the host language, and vice versa. This mismatch is
typically addressed by casting data values appropriately before passing them to or from
SQL commands. (SQL, like C and other programming languages, provides an operator
to cast values of one type into values of another type.) The second complication has
to do with the fact that SQL is set-oriented; commands operate on and produce
tables, which are sets (or multisets) of rows. Programming languages do not typically
have a data type that corresponds to sets or multisets of rows. Thus, although SQL
commands deal with tables, the interface to the host language is constrained to be
one row at a time. The cursor mechanism is introduced to deal with this problem; we
discuss cursors in Section 5.8.

In our discussion of embedded SQL, we assume that the host language is C for con-
creteness, because minor differences exist in how SQL statements are embedded in
different host languages.

5.7.1 Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-language
variables must be prefixed by a colon (:) in SQL statements and must be declared be-
tween the commands EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE
SECTION. The declarations are similar to how they would look in a C program and,
as usual in C, are separated by semicolons. For example, we can declare variables
c_sname, c_sid, c_rating, and c_age (with the initial ¢ used as a naming convention to
emphasize that these are host language variables) as follows:

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various C types,
since we have just declared a collection of C variables whose values are intended to
be read (and possibly set) in an SQL run-time environment when an SQL statement
that refers to them is executed. The SQL-92 standard defines such a correspondence
between the host language types and SQL types for a number of host languages. In our
example c_sname has the type CHARACTER (20) when referred to in an SQL statement,

152 CHAPTER 5

c_sid has the type INTEGER, c_rating has the type SMALLINT, and c_age has the type
REAL.

An important point to consider is that SQL needs some way to report what went wrong
if an error condition arises when executing an SQL statement. The SQL-92 standard
recognizes two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an error condition
arises, without specifying further just what error a particular negative integer denotes.
SQLSTATE, introduced in the SQL-92 standard for the first time, associates predefined
values with several common error conditions, thereby introducing some uniformity to
how errors are reported. One of these two variables must be declared. The appropriate
C type for SQLCODE is long and the appropriate C type for SQLSTATE is char [6], that
is, a character string that is five characters long. (Recall the null-terminator in C
strings!) In this chapter, we will assume that SQLSTATE is declared.

5.7.2 Embedding SQL Statements

All SQL statements that are embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be pre-
fixed by EXEC SQL. An SQL statement can essentially appear in any place in the host
language program where a host language statement can appear.

As a simple example, the following embedded SQL statement inserts a row, whose
column values are based on the values of the host language variables contained in it,
into the Sailors relation:

EXEC SQL INSERT INTO Sailors VALUES (:c_sname, :c_sid, :c_rating, :c-age);

Observe that a semicolon terminates the command, as per the convention for termi-
nating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each embedded
SQL statement. SQL provides the WHENEVER command to simplify this tedious task:

EXEC SQL WHENEVER [SQLERROR | NOT FOUND | [CONTINUE | GOTO stmit]

The intent is that after each embedded SQL statement is executed, the value of
SQLSTATE should be checked. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably responsi-
ble for error/exception handling. Control is also transferred to stmt if NOT FOUND is
specified and the value of SQLSTATE is 02000, which denotes NO DATA.

SQL: Queries, Programming, Triggers 153

5.8 CURSORS*

A major problem in embedding SQL statements in a host language like C is that an
impedance mismatch occurs because SQL operates on sets of records, whereas languages
like C do not cleanly support a set-of-records abstraction. The solution is to essentially
provide a mechanism that allows us to retrieve rows one at a time from a relation.

This mechanism is called a cursor. We can declare a cursor on any relation or on any
SQL query (because every query returns a set of rows). Once a cursor is declared, we
can open it (which positions the cursor just before the first row); fetch the next row;
move the cursor (to the next row, to the row after the next n, to the first row, or to
the previous row, etc., by specifying additional parameters for the FETCH command);
or close the cursor. Thus, a cursor essentially allows us to retrieve the rows in a table
by positioning the cursor at a particular row and reading its contents.

5.8.1 Basic Cursor Definition and Usage

Cursors enable us to examine in the host language program a collection of rows com-
puted by an embedded SQL statement:

= We usually need to open a cursor if the embedded statement is a SELECT (i.e., a
query). However, we can avoid opening a cursor if the answer contains a single
row, as we will see shortly.

m INSERT, DELETE, and UPDATE statements typically don’t require a cursor, although
some variants of DELETE and UPDATE do use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value
to the host variable c_sid, declared earlier, as follows:

EXEC SQL SELECT S.sname, S.age
INTO :c_sname, :c_age
FROM Sailors S
WHERE S.sid = :csid;

The INTO clause allows us to assign the columns of the single answer row to the host
variables c_sname and c_age. Thus, we do not need a cursor to embed this query in
a host language program. But what about the following query, which computes the
names and ages of all sailors with a rating greater than the current value of the host
variable c_minrating?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_minrating

154 CHAPTER 5

This query returns a collection of rows, not just one row. When executed interactively,
the answers are printed on the screen. If we embed this query in a C program by
prefixing the command with EXEC SQL, how can the answers be bound to host language
variables? The INTO clause is not adequate because we must deal with several rows.
The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor sinfo is
defined. Subsequently, we can open the cursor:

OPEN sinfo;

The value of c_minrating in the SQL query associated with the cursor is the value of
this variable when we open the cursor. (The cursor declaration is processed at compile
time, and the OPEN command is executed at run-time.)

A cursor can be thought of as ‘pointing’ to a row in the collection of answers to the
query associated with it. When a cursor is opened, it is positioned just before the first
row. We can use the FETCH command to read the first row of cursor sinfo into host
language variables:

FETCH sinfo INTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next
row (which is the first row in the table when FETCH is executed for the first time after
opening the cursor) and the column values in the row are copied into the corresponding
host variables. By repeatedly executing this FETCH statement (say, in a while-loop in
the C program), we can read all the rows computed by the query, one row at a time.
Additional parameters to the FETCH command allow us to position a cursor in very
flexible ways, but we will not discuss them.

How do we know when we have looked at all the rows associated with the cursor?
By looking at the special variables SQLCODE or SQLSTATE, of course. SQLSTATE, for
example, is set to the value 02000, which denotes NO DATA, to indicate that there are
no more rows if the FETCH statement positions the cursor after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

SQL: Queries, Programming, Triggers 155

It can be opened again if needed, and the value of : c_minrating in the SQL query
associated with the cursor would be the value of the host variable c_minrating at that
time.

5.8.2 Properties of Cursors
The general form of a cursor declaration is:

DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR FOR
some query
[ORDER BY order-item-list |
[FOR READ ONLY | FOR UPDATE |

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if it is a cursor
on a base relation or an updatable view, to be an updatable cursor (FOR UPDATE).
If it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned. For example, if sinfo is an
updatable cursor and is open, we can execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

This embedded SQL statement modifies the rating value of the row currently pointed
to by cursor sinfo; similarly, we can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor (see
below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that vari-
ants of the FETCH command can be used to position the cursor in very flexible ways;
otherwise, only the basic FETCH command, which retrieves the next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a
private copy of the collection of answer rows. Otherwise, and by default, other actions
of some transaction could modify these rows, creating unpredictable behavior. For
example, while we are fetching rows using the sinfo cursor, we might modify rating
values in Sailor rows by concurrently executing the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

156 CHAPTER 5

Consider a Sailor row such that: (1) it has not yet been fetched, and (2) its original
rating value would have met the condition in the WHERE clause of the query associated
with sinfo, but the new rating value does not. Do we fetch such a Sailor row? If
INSENSITIVE is specified, the behavior is as if all answers were computed and stored
when sinfo was opened; thus, the update command has no effect on the rows fetched
by sinfo if it is executed after sinfo is opened. If INSENSITIVE is not specified, the
behavior is implementation dependent in this situation.

Finally, in what order do FETCH commands retrieve rows? In general this order is
unspecified, but the optional ORDER BY clause can be used to specify a sort order.
Note that columns mentioned in the ORDER BY clause cannot be updated through the
cursor!

The order-item-list is a list of order-items; an order-item is a column name, op-
tionally followed by one of the keywords ASC or DESC. Every column mentioned in the
ORDER BY clause must also appear in the select-list of the query associated with the
cursor; otherwise it is not clear what columns we should sort on. The keywords ASC or
DESC that follow a column control whether the result should be sorted—with respect
to that column—in ascending or descending order; the default is ASC. This clause is
applied as the last step in evaluating the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure 5.13.
Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC
The answer is sorted first in ascending order by minage, and if several rows have the

same minage value, these rows are sorted further in descending order by rating. The
cursor would fetch the rows in the order shown in Figure 5.18.

| rating | minage

8 25.5
3 25.5
7 35.0

Figure 5.18 Order in which Tuples Are Fetched

5.9 DYNAMIC SQL *

Consider an application such as a spreadsheet or a graphical front-end that needs to
access data from a DBMS. Such an application must accept commands from a user

SQL: Queries, Programming, Triggers 157

and, based on what the user needs, generate appropriate SQL statements to retrieve
the necessary data. In such situations, we may not be able to predict in advance just
what SQL statements need to be executed, even though there is (presumably) some
algorithm by which the application can construct the necessary SQL statements once
a user’s command is issued.

SQL provides some facilities to deal with such situations; these are referred to as
dynamic SQL. There are two main commands, PREPARE and EXECUTE, which we
illustrate through a simple example:

char c_sqlstring[] = {"DELETE FROM Sailors WHERE rating>5"};
EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sqlstring and initializes its value to the
string representation of an SQL command. The second statement results in this string
being parsed and compiled as an SQL command, with the resulting executable bound
to the SQL variable readytogo. (Since readytogo is an SQL variable, just like a cursor
name, it is not prefixed by a colon.) The third statement executes the command.

Many situations require the use of dynamic SQL. However, note that the preparation of
a dynamic SQL command occurs at run-time and is a run-time overhead. Interactive
and embedded SQL commands can be prepared once at compile time and then re-
executed as often as desired. Consequently you should limit the use of dynamic SQL
to situations in which it is essential.

There are many more things to know about dynamic SQL—how can we pass parameters
from the host langugage program to the SQL statement being prepared, for example?—
but we will not discuss it further; readers interested in using dynamic SQL should
consult one of the many good books devoted to SQL.

5.10 ODBC AND JDBC *

Embedded SQL enables the integration of SQL with a general-purpose programming
language. As described in Section 5.7, a DBMS-specific preprocessor transforms the
embedded SQL statements into function calls in the host language. The details of
this translation vary across DBMS, and therefore even though the source code can
be compiled to work with different DBMSs, the final executable works only with one
specific DBMS.

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase Con-
nectivity, also enable the integration of SQL with a general-purpose programming
language. Both ODBC and JDBC expose database capabilities in a standardized way

158 CHAPTER 5

to the application programmer through an application programming interface
(API). In contrast to embedded SQL, ODBC and JDBC allow a single executable to
access different DBMSs without recompilation. Thus, while embedded SQL is DBMS-
independent only at the source code level, applications using ODBC or JDBC are
DBMS-independent at the source code level and at the level of the executable. In
addition, using ODBC or JDBC an application can access not only one DBMS, but
several different DBMSs simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introducing
an extra level of indirection. All direct interaction with a specific DBMS happens
through a DBMS specific driver. A driver is a software program that translates the
ODBC or JDBC calls into DBMS-specific calls. Since it is only known at run-time
which DBMSs the application is going to access, drivers are loaded dynamically on
demand. Existing drivers are registered with a driver manager, which manages the
set of existing drivers.

One interesting point to note is that a driver does not necessarily need to interact with
a DBMS that understands SQL. It is sufficient that the driver translates the SQL com-
mands from the application into equivalent commands that the DBMS understands.
Therefore, we will refer in the remainder of this section to a data storage subsystem
with which a driver interacts as a data source.

An application that interacts with a data source through ODBC or JDBC performs
the following steps. A data source is selected, the corresponding driver is dynamically
loaded, and a connection with the data source is established. There is no limit on the
number of open connections and an application can have several open connections to
different data sources. Each connection has transaction semantics; that is, changes
from one connection are only visible to other connections after the connection has
committed its changes. While a connection is open, transactions are executed by
submitting SQL statements, retrieving results, processing errors and finally committing
or rolling back. The application disconnects from the data source to terminate the
interaction.

5.10.1 Architecture

The architecture of ODBC/JDBC has four main components: the application, the
driver manager, several data source specific drivers, and the corresponding data sources.
Each component has different roles, as explained in the next paragraph.

The application initiates and terminates the connection with the data source. It sets
transaction boundaries, submits SQL statements, and retrieves the results—all through
a well-defined interface as specified by the ODBC/JDBC API. The primary goal of the
driver manager is to load ODBC/JDBC drivers and to pass ODBC/JDBC function

SQL: Queries, Programming, Triggers 159

calls from the application to the correct driver. The driver manager also handles
ODBC/JDBC initialization and information calls from the applications and can log
all function calls. In addition, the driver manager performs some rudimentary error
checking. The driver establishes the connection with the data source. In addition
to submitting requests and returning request results, the driver translates data, error
formats, and error codes from a form that is specific to the data source into the
ODBC/JDBC standard. The data source processes commands from the driver and
returns the results.

Depending on the relative location of the data source and the application, several
architectural scenarios are possible. For example, drivers in JDBC are classified into
four types depending on the architectural relationship between the application and the
data source:

1. Type I (bridges) This type of driver translates JDBC function calls into function
calls of another API that is not native to the DBMS. An example is an ODBC-
JDBC bridge. In this case the application loads only one driver, namely the
bridge.

2. Type II (direct translation to the native API) This driver translates JDBC
function calls directly into method invocations of the API of one specific data
source. The driver is dynamically linked, and is specific to the data source.

3. Type III (network bridges) The driver talks over a network to a middle-ware
server that translates the JDBC requests into DBMS-specific method invocations.
In this case, the driver on the client site (i.e., the network bridge) is not DBMS-
specific.

4. Type IV (direct translation over sockets) Instead of calling the DBMS API
directly, the driver communicates with the DBMS through Java sockets. In this
case the driver on the client side is DBMS-specific.

5.10.2 An Example Using JDBC

JDBC is a collection of Java classes and interfaces that enables database access from
programs written in the Java programming language. The classes and interfaces are
part of the java.sql package. In this section, we illustrate the individual steps that
are required to submit a database query to a data source and to retrieve the results.

In JDBC, data source drivers are managed by the Drivermanager class, which main-
tains a list of all currently loaded drivers. The Drivermanager class has methods
registerDriver, deregisterDriver, and getDrivers to enable dynamic addition
and deletion of drivers.

160 CHAPTER 5

The first step in connecting to a data source is to load the corresponding JDBC driver.
This is accomplished by using the Java mechanism for dynamically loading classes.
The static method forName in the Class class returns the Java class as specified in
the argument string and executes its static constructor. The static constructor of
the dynamically loaded class loads an instance of the Driver class, and this Driver
object registers itself with the DriverManager class.

A session with a DBMS is started through creation of a Connection object. A connec-
tion can specify the granularity of transactions. If autocommit is set for a connection,
then each SQL statement is considered to be its own transaction. If autocommit is off,
then a series of statements that compose a transaction can be committed using the
commit method of the Connection class. The Connection class has methods to set
the autocommit mode (setAutoCommit) and to retrieve the current autocommit mode
(getAutoCommit). A transaction can be aborted using the rollback method.

The following Java example code dynamically loads a data source driver and establishes
a connection:

Class.forName(“oracle/jdbc.driver.OracleDriver”);
Connection connection = DriverManager.getConnection(url,uid,password);

In considering the interaction of an application with a data source, the issues that
we encountered in the context of embedded SQL—e.g., passing information between
the application and the data source through shared variables—arise again. To deal
with such issues, JDBC provides special data types and specifies their relationship to
corresponding SQL data types. JDBC allows the creation of SQL statements that
refer to variables in the Java host program. Similar to the SQLSTATE variable, JDBC
throws an SQLException if an error occurs. The information includes SQLState, a
string describing the error. As in embedded SQL, JDBC provides the concept of a
cursor through the ResultSet class.

While a complete discussion of the actual implementation of these concepts is beyond
the scope of the discussion here, we complete this section by considering two illustrative
JDBC code fragments.

In our first example, we show how JDBC refers to Java variables inside an SQL state-
ment. During a session, all interactions with a data source are encapsulated into objects
that are created by the Connection object. SQL statements that refer to variables in
the host program are objects of the class PreparedStatement. Whereas in embedded
SQL the actual names of the host language variables appear in the SQL query text,
JDBC replaces each parameter with a “?” and then sets values of each parameter at
run-time through settype methods, where type is the type of the parameter. These
points are illustrated in the following Java program fragment, which inserts one row
into the Sailors relation:

SQL: Queries, Programming, Triggers 161

connection.set AutoCommit(false);
PreparedStatement pstmt =
connection.prepareStatement(“INSERT INTO Sailors VALUES ?7,7,7.77);
pstmt.setString(1, jname); pstmt.setInt(2, j-id);
pstmt.setInt(3, jrating); pstmt.setInt(4, j_age);
pstmt.execute();
pstmt.close();
connection.commit();

Our second example shows how the ResultSet class provides the functionality of a
cursor. After the SQL statement stmt is executed, result is positioned right before the
first row. The method next fetches the next row and enables reading of its values
through gettype methods, where type is the type of the field.

Statement stmt = connection.createStatement();
ResultSet res = stmt.executeQuery (“SELECT S.name, S.age FROM Sailors S”);
while (result.next()) {

String name = res.getString(1);

int age = res.getInt(2);

// process result row

}

stmt.close();

5.11 COMPLEX INTEGRITY CONSTRAINTS IN SQL-92 *

In this section we discuss the specification of complex integrity constraints in SQL-92,
utilizing the full power of SQL query constructs. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.11.1 Constraints over a Single Table

We can specify complex constraints over a single table using table constraints, which
have the form CHECK conditional-expression. For example, to ensure that rating must
be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

To enforce the constraint that Interlake boats cannot be reserved, we could use:

162 CHAPTER 5

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT nolnterlakeRes
CHECK (‘Interlake’ <>
(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)))

When a row is inserted into Reserves or an existing row is modified, the conditional
expression in the CHECK constraint is evaluated. If it evaluates to false, the command
is rejected.

5.11.2 Domain Constraints

A user can define a new domain using the CREATE DOMAIN statement, which makes use
of CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 0
CHECK (VALUE >= 1 AND VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value
must be of this type. Values in ratingval are further restricted by using a CHECK
constraint; in defining this constraint, we use the keyword VALUE to refer to a value
in the domain. By using this facility, we can constrain the values that belong to a
domain using the full power of SQL queries. Once a domain is defined, the name of
the domain can be used to restrict column values in a table; we can use the following
line in a schema declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a domain. If
the domain ratingval is used for a column in some relation, and no value is entered
for this column in an inserted tuple, the default value 0 associated with ratingval is
used. (If a default value is specified for the column as part of the table definition, this
takes precedence over the default value associated with the domain.) This feature can
be used to minimize data entry errors; common default values are automatically filled
in rather than being typed in.

SQL-92’s support for the concept of a domain is limited in an important respect.
For example, we can define two domains called Sailorid and Boatclass, each using

SQL: Queries, Programming, Triggers 163

INTEGER as a base type. The intent is to force a comparison of a Sailorid value with a
Boatclass value to always fail (since they are drawn from different domains); however,
since they both have the same base type, INTEGER, the comparison will succeed in SQL-
92. This problem is addressed through the introduction of distinct types in SQL:1999
(see Section 3.4).

5.11.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional expression
in the CHECK clause can refer to other tables. Table constraints are required to hold
only if the associated table is nonempty. Thus, when a constraint involves two or more
tables, the table constraint mechanism is sometimes cumbersome and not quite what
is desired. To cover such situations, SQL supports the creation of assertions, which
are constraints not associated with any one table.

As an example, suppose that we wish to enforce the constraint that the number of
boats plus the number of sailors should be less than 100. (This condition might be
required, say, to qualify as a ‘small’ sailing club.) We could try the following table
constraint:

CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10)

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B)
< 100))

This solution suffers from two drawbacks. It is associated with Sailors, although it
involves Boats in a completely symmetric way. More important, if the Sailors table is
empty, this constraint is defined (as per the semantics of table constraints) to always
hold, even if we have more than 100 rows in Boats! We could extend this constraint
specification to check that Sailors is nonempty, but this approach becomes very cum-
bersome. The best solution is to create an assertion, as follows:

CREATE ASSERTION smallClub

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B)
<100)

164 CHAPTER 5

5.12 TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database, and is typically specified by the DBA. A database
that has a set of associated triggers is called an active database. A trigger description
contains three parts:

s Event: A change to the database that activates the trigger.
m Condition: A query or test that is run when the trigger is activated.

m Action: A procedure that is executed when the trigger is activated and its con-
dition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is executed
when the database is modified in a way that matches the event specification. An
insert, delete or update statement could activate a trigger, regardless of which user
or application invoked the activating statement; users may not even be aware that a
trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries are
less than $100,000) or a query. A query is interpreted as true if the answer set is
nonempty, and false if the query has no answers. If the condition part evaluates to
true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of the
trigger, refer to old and new values of tuples modified by the statement activating
the trigger, execute new queries, and make changes to the database. In fact, an
action can even execute a series of data-definition commands (e.g., create new tables,
change authorizations) and transaction-oriented commands (e.g., commit), or call host-
language procedures.

An important issue is when the action part of a trigger executes in relation to the
statement that activated the trigger. For example, a statement that inserts records
into the Students table may activate a trigger that is used to maintain statistics on how
many students younger than 18 are inserted at a time by a typical insert statement.
Depending on exactly what the trigger does, we may want its action to execute before
changes are made to the Students table, or after: a trigger that initializes a variable
used to count the number of qualifying insertions should be executed before, and a
trigger that executes once per qualifying inserted record and increments the variable
should be executed after each record is inserted (because we may want to examine the
values in the new record to determine the action).

SQL: Queries, Programming, Triggers 165

5.12.1 Examples of Triggers in SQL

The examples shown in Figure 5.19, written using Oracle 7 Server syntax for defining
triggers, illustrate the basic concepts behind triggers. (The SQL:1999 syntax for these
triggers is similar; we will see an example using SQL:1999 syntax shortly.) The trigger
called init_count initializes a counter variable before every execution of an INSERT
statement that adds tuples to the Students relation. The trigger called incr_count
increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init_count BEFORE INSERT ON Students /* Event */
DECLARE
count INTEGER;
BEGIN /* Action */
count := 0;
END
CREATE TRIGGER incr_count AFTER INSERT ON Students /* Event */
WHEN (new.age < 18) /* Condition; ‘new’ is just-inserted tuple */
FOR EACH ROW
BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */

count := count + 1;
END

Figure 5.19 Examples Illustrating Triggers

One of the example triggers in Figure 5.19 executes before the activating statement,
and the other example executes after. A trigger can also be scheduled to execute
instead of the activating statement, or in deferred fashion, at the end of the transaction
containing the activating statement, or in asynchronous fashion, as part of a separate
transaction.

The example in Figure 5.19 illustrates another point about trigger execution: A user
must be able to specify whether a trigger is to be executed once per modified record
or once per activating statement. If the action depends on individual changed records,
for example, we have to examine the age field of the inserted Students record to decide
whether to increment the count, the triggering event should be defined to occur for
each modified record; the FOR EACH ROW clause is used to do this. Such a trigger is
called a row-level trigger. On the other hand, the init_count trigger is executed just
once per INSERT statement, regardless of the number of records inserted, because we
have omitted the FOR EACH ROW phrase. Such a trigger is called a statement-level
trigger.

166 CHAPTER 5

In Figure 5.19, the keyword new refers to the newly inserted tuple. If an existing tuple
were modified, the keywords old and new could be used to refer to the values before
and after the modification. The SQL:1999 draft also allows the action part of a trigger
to refer to the set of changed records, rather than just one changed record at a time.
For example, it would be useful to be able to refer to the set of inserted Students
records in a trigger that executes once after the INSERT statement; we could count the
number of inserted records with age < 18 through an SQL query over this set. Such
a trigger is shown in Figure 5.20 and is an alternative to the triggers shown in Figure
5.19.

The definition in Figure 5.20 uses the syntax of the SQL:1999 draft, in order to il-
lustrate the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name (In-
sertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT clause
specifies a statement-level trigger and can be omitted because it is the default. This
definition does not have a WHEN clause; if such a clause is included, it follows the FOR
EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into Students,
and inserts a single tuple into a table that contains statistics on modifications to
database tables. The first two fields of the tuple contain constants (identifying the
modified table, Students, and the kind of modifying statement, an INSERT), and the
third field is the number of inserted Students tuples with age < 18. (The trigger in
Figure 5.19 only computes the count; an additional trigger is required to insert the
appropriate tuple into the statistics table.)

CREATE TRIGGER set_count AFTER INSERT ON Students /* Event */
REFERENCING NEW TABLE AS InsertedTuples
FOR EACH STATEMENT
INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count)

SELECT ‘Students’, ‘Insert’, COUNT *

FROM Inserted Tuples I

WHERE l.age < 18

Figure 5.20 Set-Oriented Trigger

5.13 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database, but they
must be used with caution. The effect of a collection of triggers can be very complex,

SQL: Queries, Programming, Triggers 167

and maintaining an active database can become very difficult. Often, a judicious use
of integrity constraints can replace the use of triggers.

5.13.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement that
modifies the database, it checks whether some trigger is activated by the statement. If
so, the DBMS processes the trigger by evaluating its condition part, and then (if the
condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes all of
them, in some arbitrary order. An important point is that the execution of the action
part of a trigger could in turn activate another trigger. In particular, the execution of
the action part of a trigger could again activate the same trigger; such triggers are called
recursive triggers. The potential for such chain activations, and the unpredictable
order in which a DBMS processes activated triggers, can make it difficult to understand
the effect of a collection of triggers.

5.13.2 Constraints versus Triggers

A common use of triggers is to maintain database consistency, and in such cases,
we should always consider whether using an integrity constraint (e.g., a foreign key
constraint) will achieve the same goals. The meaning of a constraint is not defined
operationally, unlike the effect of a trigger. This property makes a constraint easier
to understand, and also gives the DBMS more opportunities to optimize execution.
A constraint also prevents the data from being made inconsistent by any kind of
statement, whereas a trigger is activated by a specific kind of statement (e.g., an insert
or delete statement). Again, this restriction makes a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more flexible
ways, as the following examples illustrate.

= Suppose that we have a table called Orders with fields itemid, quantity, customerid,
and unitprice. When a customer places an order, the first three field values are
filled in by the user (in this example, a sales clerk). The fourth field’s value can
be obtained from a table called Items, but it is important to include it in the
Orders table to have a complete record of the order, in case the price of the item
is subsequently changed. We can define a trigger to look up this value and include
it in the fourth field of a newly inserted record. In addition to reducing the number
of fields that the clerk has to type in, this trigger eliminates the possibility of an
entry error leading to an inconsistent price in the Orders table.

168 CHAPTER 5

= Continuing with the above example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being charged
to a credit line issued by the company, we may want to check whether the total
cost of the purchase is within the current credit limit. We can use a trigger to do
the check; indeed, we can even use a CHECK constraint. Using a trigger, however,
allows us to implement more sophisticated policies for dealing with purchases that
exceed a credit limit. For instance, we may allow purchases that exceed the limit
by no more than 10% if the customer has dealt with the company for at least a
year, and add the customer to a table of candidates for credit limit increases.

5.13.3 Other Uses of Triggers

Many potential uses of triggers go beyond integrity maintenance. Triggers can alert
users to unusual events (as reflected in updates to the database). For example, we
may want to check whether a customer placing an order has made enough purchases
in the past month to qualify for an additional discount; if so, the sales clerk must be
informed so that he can tell the customer, and possibly generate additional sales! We
can relay this information by using a trigger that checks recent purchases and prints a
message if the customer qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks. For
example, each time a customer places an order, we can create a record with the cus-
tomer’s id and current credit limit, and insert this record in a customer history table.
Subsequent analysis of this table might suggest candidates for an increased credit limit
(e.g., customers who have never failed to pay a bill on time and who have come within
10% of their credit limit at least three times in the last month).

As the examples in Section 5.12 illustrate, we can use triggers to gather statistics on
table accesses and modifications. Some database systems even use triggers internally
as the basis for managing replicas of relations (Section 21.10.1). Our list of potential
uses of triggers is not exhaustive; for example, triggers have also been considered for
workflow management and enforcing business rules.

5.14 POINTS TO REVIEW

m A basic SQL query has a SELECT, a FROM, and a WHERE clause. The query answer
is a multiset of tuples. Duplicates in the query result can be removed by using
DISTINCT in the SELECT clause. Relation names in the WHERE clause can be fol-
lowed by a range variable. The output can involve arithmetic or string expressions
over column names and constants and the output columns can be renamed using
AS. SQL provides string pattern matching capabilities through the LIKE operator.
(Section 5.2)

SQL: Queries, Programming, Triggers 169

m SQL provides the following (multi)set operations: UNION, INTERSECT, and EXCEPT.
(Section 5.3)

m Queries that have (sub-)queries are called nested queries. Nested queries allow us
to express conditions that refer to tuples that are results of a query themselves.
Nested queries are often correlated, i.e., the subquery contains variables that are
bound to values in the outer (main) query. In the WHERE clause of an SQL query,
complex expressions using nested queries can be formed using IN, EXISTS, UNIQUE,
ANY, and ALL. Using nested queries, we can express division in SQL. (Section 5.4)

m SQL supports the aggregate operators COUNT, SUM, AVERAGE, MAX, and MIN. (Sec-
tion 5.5)

m Grouping in SQL extends the basic query form by the GROUP BY and HAVING
clauses. (Section 5.5.1)

m A special column value named null denotes unknown values. The treatment of
null values is based upon a three-valued logic involving true, false, and unknown.
(Section 5.6)

m SQL commands can be executed from within a host language such as C. Concep-
tually, the main issue is that of data type mismatches between SQL and the host
language. (Section 5.7)

m Typical programming languages do not have a data type that corresponds to a col-
lection of records (i.e., tables). Embedded SQL provides the cursor mechanism to
address this problem by allowing us to retrieve rows one at a time. (Section 5.8)

m Dynamic SQL enables interaction with a DBMS from a host language without
having the SQL commands fixed at compile time in the source code. (Section 5.9)

= ODBC and JDBC are application programming interfaces that introduce a layer of
indirection between the application and the DBMS. This layer enables abstraction
from the DBMS at the level of the executable. (Section 5.10)

m The query capabilities of SQL can be used to specify a rich class of integrity con-
straints, including domain constraints, CHECK constraints, and assertions. (Sec-
tion 5.11)

m A triggeris a procedure that is automatically invoked by the DBMS in response to
specified changes to the database. A trigger has three parts. The event describes
the change that activates the trigger. The condition is a query that is run when-
ever the trigger is activated. The action is the procedure that is executed if the
trigger is activated and the condition is true. A row-level trigger is activated for
each modified record, a statement-level trigger is activated only once per INSERT
command. (Section 5.12)

170 CHAPTER 5

m What triggers are activated in what order can be hard to understand because a
statement can activate more than one trigger and the action of one trigger can
activate other triggers. Triggers are more flexible than integrity constraints and
the potential uses of triggers go beyond maintaining database integrity. (Section
5.13)

EXERCISES

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class(name: string, meets_at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the answers.

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in a course
taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students
enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the same
time.

5. Find the names of faculty members who teach in every room in which some class is
taught.

6. Find the names of faculty members for whom the combined enrollment of the courses
that they teach is less than five.

7. Print the Level and the average age of students for that Level, for each Level.
8. Print the Level and the average age of students for that Level, for all Levels except JR.
9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

11. For each age value that appears in Students, find the level value that appears most often.
For example, if there are more FR level students aged 18 than SR, JR, or SO students
aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:
Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

SQL: Queries, Programming, Triggers 171

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

A

© ® 3 >

Find the pnames of parts for which there is some supplier.

Find the snames of suppliers who supply every part.

Find the snames of suppliers who supply every red part.

Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

Find the sids of suppliers who charge more for some part than the average cost of that
part (averaged over all the suppliers who supply that part).

For each part, find the sname of the supplier who charges the most for that part.
Find the sids of suppliers who supply only red parts.

Find the sids of suppliers who supply a red part and a green part.

Find the sids of suppliers who supply a red part or a green part.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,
departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the
following queries in SQL. (Additional queries using the same schema are listed in the exercises
for Chapter 4.)

1.

Find the names of aircraft such that all pilots certified to operate them earn more than
80,000.

For each pilot who is certified for more than three aircraft, find the eid and the maximum
cruisingrange of the aircraft that he (or she) is certified for.

Find the names of pilots whose salary is less than the price of the cheapest route from
Los Angeles to Honolulu.

For all aircraft with cruisingrange over 1,000 miles, find the name of the aircraft and the
average salary of all pilots certified for this aircraft.

Find the names of pilots certified for some Boeing aircraft.
Find the aids of all aircraft that can be used on routes from Los Angeles to Chicago.

Identify the flights that can be piloted by every pilot who makes more than $100,000.
(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising
range.)

Print the enames of pilots who can operate planes with cruisingrange greater than 3,000
miles, but are not certified on any Boeing aircraft.

172

9.

10.

11.

CHAPTER 5

| sid | sname | rating | age |

18 | jones 3 30.0
41 | jonah | 6 56.0
22 | ahab 7 44.0
63 | moby | null 15.0

Figure 5.21 An Instance of Sailors

A customer wants to travel from Madison to New York with no more than two changes
of flight. List the choice of departure times from Madison if the customer wants to arrive
in New York by 6 p.m.

Compute the difference between the average salary of a pilot and the average salary of
all employees (including pilots).

Print the name and salary of every nonpilot whose salary is more than the average salary
for pilots.

Exercise 5.4 Consider the following relational schema. An employee can work in more than
one department; the pct_time field of the Works relation shows the percentage of time that a
given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1.

Print the names and ages of each employee who works in both the Hardware department
and the Software department.

. For each department with more than 20 full-time-equivalent employees (i.e., where the

part-time and full-time employees add up to at least that many full-time employees),
print the did together with the number of employees that work in that department.

Print the name of each employee whose salary exceeds the budget of all of the depart-
ments that he or she works in.

Find the managerids of managers who manage only departments with budgets greater
than $1,000,000.

5. Find the enames of managers who manage the departments with the largest budget.

7.

If a manager manages more than one department, he or she controls the sum of all the
budgets for those departments. Find the managerids of managers who control more than
$5,000,000.

Find the managerids of managers who control the largest amount.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.21.

1.

Write SQL queries to compute the average rating, using AVG; the sum of the ratings,
using SUM; and the number of ratings, using COUNT.

SQL: Queries, Programming, Triggers 173

2.

4.

If you divide the sum computed above by the count, would the result be the same as
the average? How would your answer change if the above steps were carried out with
respect to the age field instead of rating?

Consider the following query: Find the names of sailors with a higher rating than all
sailors with age < 21. The following two SQL queries attempt to obtain the answer
to this question. Do they both compute the result? If not, explain why. Under what
conditions would they compute the same result?

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT *
FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating)
SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.age < 21)

Consider the instance of Sailors shown in Figure 5.21. Let us define instance S1 of Sailors
to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the
given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being sid=sid.

c) Show the full outer join of S with itself, with the join condition being sid=sid.

)
(c)
(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.
(e)
(f)

Show the right outer join of S1 with S2, with the join condition being sid=sid.
Show the full outer join of S1 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions.

1.

AN

Explain the term impedance mismatch in the context of embedding SQL commands in a
host language such as C.

How can the value of a host language variable be passed to an embedded SQL command?
Explain the WHENEVER command’s use in error and exception handling.
Explain the need for cursors.

Give an example of a situation that calls for the use of embedded SQL, that is, interactive
use of SQL commands is not enough, and some host language capabilities are needed.

Write a C program with embedded SQL commands to address your example in the
previous answer.

Write a C program with embedded SQL commands to find the standard deviation of
sailors’ ages.

Extend the previous program to find all sailors whose age is within one standard deviation
of the average age of all sailors.

174 CHAPTER 5

9. Explain how you would write a C program to compute the transitive closure of a graph,
represented as an SQL relation Edges(from, to), using embedded SQL commands. (You
don’t have to write the program; just explain the main points to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and scrol-
lability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers
sorted by age. Which fields of Sailors can such a cursor not update? Why?

12. Give an example of a situation that calls for dynamic SQL, that is, even embedded SQL
is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that
follow:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at least
$10,000.

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30. Compare
this assertion with the equivalent table constraint. Explain which is better.

4. Write SQL statements to delete all information about employees whose salaries exceed
that of the manager of one or more departments that they work in. Be sure to ensure
that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

level: string, age: integer)
Class(name: string, meets_al: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create the above relations, including appropriate
versions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the
primary and foreign key constraint; if so, explain how it is implied. If the constraint
cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,
deletes, and updates on specific relations) must be monitored to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment
of 30 students.

SQL: Queries, Programming, Triggers 175

At least one class meets in each room.
Every faculty member must teach at least two courses.

)
)
d) Only faculty in the department with deptid=33 teach more than three courses.
) Every student must be enrolled in the course called Math101.

)

The room in which the earliest scheduled class (i.e., the class with the smallest
meets_at value) meets should not be the same as the room in which the latest
scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice the
number of faculty members in the department with the fewest faculty members.

No department can have more than 10 faculty members.
A student cannot add more than two courses at a time (i.e., in a single update).
The number of CS majors must be more than the number of Math majors.

The number of distinct courses in which CS majors are enrolled is greater than the
number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with deptid=33
is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast
triggers with other integrity constraints supported by SQL.

Exercise 5.10 Consider the following relational schema. An employee can work in more
than one department; the pct_time field of the Works relation shows the percentage of time
that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser-
tions) or SQL:1999 triggers to ensure each of the following requirements, considered indepen-
dently.

ARl o

Employees must make a minimum salary of $1,000.

Every manager must be also be an employee.

The total percentage of all appointments for an employee must be under 100%.

A manager must always have a higher salary than any employee that he or she manages.

Whenever an employee is given a raise, the manager’s salary must be increased to be at
least as much.

Whenever an employee is given a raise, the manager’s salary must be increased to be
at least as much. Further, whenever an employee is given a raise, the department’s
budget must be increased to be greater than the sum of salaries of all employees in the
department.

176 CHAPTER 5

PROJECT-BASED EXERCISES

Exercise 5.11 Identify the subset of SQL-92 queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES

The original version of SQL was developed as the query language for IBM’s System R project,
and its early development can be traced in [90, 130]. SQL has since become the most widely
used relational query language, and its development is now subject to an international stan-
dardization process.

A very readable and comprehensive treatment of SQL-92 is presented by Melton and Simon
in [455]; we refer readers to this book and to [170] for a more detailed treatment. Date offers
an insightful critique of SQL in [167]. Although some of the problems have been addressed
in SQL-92, others remain. A formal semantics for a large subset of SQL queries is presented
in [489]. SQL-92 is the current International Standards Organization (ISO) and American
National Standards Institute (ANSI) standard. Melton is the editor of the ANSI document on
the SQL-92 standard, document X3.135-1992. The corresponding ISO document is ISO/TEC
9075:1992. A successor, called SQL:1999, builds on SQL-92 and includes procedural language
extensions, user-defined types, row ids, a call-level interface, multimedia data types, recursive
queries, and other enhancements; SQL:1999 is close to ratification (as of June 1999). Drafts
of the SQL:1999 (previously called SQL3) deliberations are available at the following URL:

ftp://jerry.ece.umassd.edu/isowg3/

The SQL:1999 standard is discussed in [200].

Information on ODBC can be found on Microsoft’s web page (www.microsoft.com/data/odbc),
and information on JDBC can be found on the JavaSoft web page (java.sun.com/products/jdbc).
There exist many books on ODBC, for example, Sander’s ODBC Developer’s Guide [567] and
the Microsoft ODBC SDK [463]. Books on JDBC include works by Hamilton et al. [304],
Reese [541], and White et al. [678].

[679] contains a collection of papers that cover the active database field. [695] includes a
good in-depth introduction to active rules, covering semantics, applications and design issues.
[213] discusses SQL extensions for specifying integrity constraint checks through triggers.
[104] also discusses a procedural mechanism, called an alerter, for monitoring a database.
[154] is a recent paper that suggests how triggers might be incorporated into SQL extensions.
Influential active database prototypes include Ariel [309], HIPAC [448], ODE [14], Postgres
[632], RDL [601], and Sentinel [29]. [126] compares various architectures for active database
systems.

[28] considers conditions under which a collection of active rules has the same behavior,
independent of evaluation order. Semantics of active databases is also studied in [244] and
[693]. Designing and managing complex rule systems is discussed in [50, 190]. [121] discusses
rule management using Chimera, a data model and language for active database systems.

QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating
and modifying) relational data. It is different from SQL, and from most other database
query languages, in having a graphical user interface that allows users to write queries
by creating example tables on the screen. A user needs minimal information to get
started and the whole language contains relatively few concepts. QBE is especially
suited for queries that are not too complex and can be expressed in terms of a few
tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number
of other companies sell QBE-like interfaces, including Paradox. Some systems, such as
Microsoft Access, offer partial support for form-based queries and reflect the influence
of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as
a more intuitive user-interface for simpler queries and the full power of SQL available
for more complex queries. An appreciation of the features of QBE offers insight into
the more general, and widely used, paradigm of tabular query interfaces for relational
databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE
version that it supports (Version 2, Release 4). This chapter explains how a tabular
interface can provide the expressive power of relational calculus (and more) in a user-
friendly form. The reader should concentrate on the connection between QBE and
domain relational calculus (DRC), and the role of various important constructs (e.g.,
the conditions box), rather than on QBE-specific details. We note that every QBE
query can be expressed in SQL; in fact, QMF supports a command called CONVERT
that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:
Sailors(sid: integer, sname: string, rating: integer, age: real)

177

178 CHAPTER 6

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations
in Section 6.3. We consider queries with set-difference in Section 6.4 and queries
with aggregation in Section 6.5. We discuss how to specify complex constraints in
Section 6.6. We show how additional computed fields can be included in the answer in
Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider
relational completeness of QBE and illustrate some of the subtleties of QBE queries
with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating erxample tables. QBE uses domain variables, as in
the DRC, to create example tables. The domain of a variable is determined by the
column in which it appears, and variable symbols are prefixed with underscore () to
distinguish them from constants. Constants, including strings, appear unquoted, in
contrast to SQL. The fields that should appear in the answer are specified by using
the command P., which stands for print. The fields containing this command are
analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

| Sailors | sid | sname | rating | age |
— [e~ P4

A variable that appears only once can be omitted; QBE supplies a unique new name
internally. Thus the previous query could also be written by omitting the variables
N and _A, leaving just P. in the sname and age columns. The query corresponds to
the following DRC query, obtained from the QBE query by introducing existentially
quantified domain variables for each field.

{(N,A) | 3I,T({I,N,T,A) € Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,
queries containing features such as aggregate operators cannot be expressed in DRC.)
We will present DRC versions of several QBE queries. Although we will not define the
translation from QBE to DRC formally, the idea should be clear from the examples;

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using AL

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

| Sailors | sid | sname | rating | age |

R

Selections are expressed by placing a constant in some field:

| Sailors | sid | sname | rating | age |
R [0 []

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{{I,N,10, A) | (I, N,10, A) € Sailors}

We can use other comparison operations (<, >, <=, >=,-) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say —10 to retrieve
sailors whose rating is not equal to 10. The expression —10 in an attribute column is
the same as # 10. As we will see shortly, — under the relation name denotes (a limited
form of) —3 in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the . A0 (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

| Sailors | sid| sname | rating | age |
| [[P. |P.A0(|P.ADCD) |

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.

180 CHAPTER 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
| [dd[P.S | L [dda] []

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:?

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
\ | d[P.S | | > 25 || | 1d |] 8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

| Sailors | sid | sname | rating | age |

B	[>25							
Reserves	sid	bid	day		Boats	bid	bname	color
	1d	B	8/24/96"			B	Interlake	P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
BREBR

T JalrN [

22 | B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

((N) | 314, T, A, B, D1, D2((Id, N, T, A) € Sailors
A(Id, B, D1) € Reserves A (22, B, D2) € Reserves)}

2Incidentally, note that we have quoted the date value. In general, constants are not quoted in
QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.

Query-by-Example (QBE) 181

Notice how the only free variable (N) is handled and how Id and B are repeated, as
in the QBE query.

6.4 NEGATION IN THE RELATION-NAME COLUMN

We can print the names of sailors who do not have a reservation by using the —
command in the relation name column:

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
| [dd[P.S | - XN

This query can be read as follows: “Print the sname field of Sailors tuples such that
there is no tuple in Reserves with the same value in the sid field.” Note the importance
of sid being a key for Sailors. In the relational model, keys are the only available means
for unique identification (of sailors, in this case). (Consider how the meaning of this
query would change if the Reserves schema contained sname—which is not a key!—
rather than sid, and we used a common variable in this column to effect the join.)

All variables in a negative row (i.e., a row that is preceded by —) must also appear
in positive rows (i.e., rows not preceded by —). Intuitively, variables in positive rows
can be instantiated in many ways, based on the tuples in the input instances of the
relations, and each negative row involves a simple check to see if the corresponding
relation contains a tuple with certain given field values.

The use of — in the relation-name column gives us a limited form of the set-difference
operator of relational algebra. For example, we can easily modify the previous query
to find sailors who are not (both) younger than 30 and rated higher than 4:

| Sailors | sid | sname | rating | age || Sailors | sid | sname | rating | age |
T Jmfes || - W[>4 <]

This mechanism is not as general as set-difference, because there is no way to control
the order in which occurrences of — are considered if a query contains more than one
occurrence of . To capture full set-difference, views can be used. (The issue of QBE’s
relational completeness, and in particular the ordering problem, is discussed further in
Section 6.9.)

6.5 AGGREGATES

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and SUM.
By default, these aggregate operators do not eliminate duplicates, with the exception

182 CHAPTER 6

of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants
AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)
Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

| sid | sname | rating | age |

22 | dustin 7 45.0
58 | rusty 10 35.0
44 | horatio | 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

| Sailors | sid | sname | rating | age | |
| |] \ [A [P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age
only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print
average ages by rating, we could use:

| Sailors | sid | sname | rating | age | |
| | [G.P. [_A [P.AVG. A]

To print the answers in sorted order by rating, we could use G.P.AO0 or G.P.DO0. instead.
When an aggregate operation is used in conjunction with P., or there is a use of the
G. operator, every column to be printed must specify either an aggregate operation or
the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than
one column, the result is similar to placing each of these column names in the GROUP
BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples
in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the
conditions box feature.

Query-by-Example (QBE) 183

6.6 THE CONDITIONS BOX

Simple conditions can be expressed directly in columns of the example tables. For
more complex conditions QBE provides a feature called a conditions box.

Conditions boxes are used to do the following:

m FExpress a condition involving two or more columns, such as _R/_A > 0.2.

m Fxpress a condition involving an aggregate operation on a group, for example,
AVG._A > 30. Notice that this use of a conditions box is similar to the HAVING
clause in SQL. The following query prints those ratings for which the average age
is more than 30:

| Sailors | sid | sname | rating | age || Conditions |
| | | G.P. | A |[AVG._A > 30 |

As another example, the following query prints the sids of sailors who have reserved
all boats for which there is some reservation:

| Sailors | sid | sname | rating | age |
— [rex| | |

| Reserves | sid | bid | day |
I

‘ Conditions |
| COUNT._B1 = COUNT._B2 |

_B2

For each _Id value (notice the G. operator), we count all _B1 values to get the
number of (distinct) bid values reserved by sailor .Id. We compare this count
against the count of all B2 values, which is simply the total number of (distinct)
bid values in the Reserves relation (i.e., the number of boats with reservations).
If these counts are equal, the sailor has reserved all boats for which there is some
reservation. Incidentally, the following query, intended to print the names of such
sailors, is incorrect:

| Sailors | sid | sname | rating | age |
| | P.G.1d | P. | | |

| Reserves | sid | bid | day |
A

| Conditions |
| COUNT._B1 = COUNT. B2 |

B2

184 CHAPTER 6

The problem is that in conjunction with G., only columns with either G. or an
aggregate operation can be printed. This limitation is a direct consequence of the
SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically
implemented by translating queries into SQL. If P.G. replaces P. in the sname
column, the query is legal, and we then group by both sid and sname, which
results in the same groups as before because sid is a key for Sailors.

m FEzxpress conditions involving the AND and OR operators. We can print the names
of sailors who are younger than 20 or older than 30 as follows:

| Sailors | sid | sname | rating | age || Conditions |
| | | P. | | A || -AA<200R 30 < A |

We can print the names of sailors who are both younger than 20 and older than
30 by simply replacing the condition with _A < 20 AND 30 < _A; of course, the
set of such sailors is always empty! We can print the names of sailors who are
either older than 20 or have a rating equal to 8 by using the condition 20 < _A OR
_R = 8, and placing the variable _R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE
without using a conditions box. We can print the names of sailors who are younger
than 30 or older than 20 by simply creating two example rows:

| Sailors | sid | sname | rating | age |
P. < 30
P.

> 20
To translate a QBE query with several rows containing P., we create subformulas for
each row with a P. and connect the subformulas through V. If a row containing P. is
linked to other rows through shared variables (which is not the case in this example),
the subformula contains a term for each linked row, all connected using A. Notice how
the answer variable N, which must be a free variable, is handled:

{(N) | 311, N1,T1, A1, 12, N2, T2, A2(
(I1,N1,T1, A1) € Sailors(A1 <30 AN = N1)
V(I2,N2,T2,A2) € Sailors(A2 > 20 AN = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use
the same variable in the key fields of both rows:

Query-by-Example (QBE) 185

| Sailors | sid | sname | rating | age |

‘ ‘_Id P. ‘ <30‘

Id > 20

The DRC formula for this query contains a term for each linked row, and these terms
are connected using A:

{(N) | 3I1,N1,T1, A1, N2, T2, A2
((I1,N1,T1, A1) € Sailors(Al < 30 AN = N1)
AN(I1,N2,T2, A2) € Sailors(A2 >20 AN = N2))}

Compare this DRC query with the DRC version of the previous query to see how
closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we
can create unnamed columns for display.? As an example —admittedly, a silly one!—we
could print the name of each sailor along with the ratio rating/age as follows:

| Sailors | sid | sname | rating | age | |
] | | P. | R | A|P.R/A|

All our examples thus far have included P. commands in exactly one table. This is a
QBE restriction. If we want to display fields from more than one table, we have to use
unnamed columns. To print the names of sailors along with the dates on which they
have a boat reserved, we could use the following:

| Sailors | sid | sname | rating | age | || Reserves | sid | bid | day |
— Jwe] eo] EIREER

Note that unnamed columns should not be used for expressing conditions such as
-D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands
I.,D., and U., respectively. We can insert a new tuple into the Sailors relation as
follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and
so on. We do not discuss these features but assume that they are available.

186 CHAPTER 6

| Sailors | sid | sname | rating | age |
| I. | 74 | Janice | 7 | 41 |

We can insert several tuples, computed essentially through a query, into the Sailors
relation as follows:

| Sailors | sid | sname | rating | age |
EREEREREY

| Students | sid | name | login | age || Conditions |
| [dd [N] [A |[.A > 18 0R N LIKE ‘C%’ |

We insert one tuple for each student older than 18 or with a name that begins with C.
(QBE’s LIKE operator is similar to the SQL version.) The rating field of every inserted
tuple contains a null value. The following query is very similar to the previous query,
but differs in a subtle way:

| Sailors | sid | sname | rating | age |

I. JId1 | LN1 SAl
I. Id2 | N2 _A2
| Students | sid | name | login | age |
Id1 | N1 A1 > 18
Id2 | N2 LIKE ‘C%’ _A2

The difference is that a student older than 18 with a name that begins with ‘C’ is
now inserted twice into Sailors. (The second insertion will be rejected by the integrity
constraint enforcement mechanism because sid is a key for Sailors. However, if this
integrity constraint is not declared, we would find two copies of such a student in the
Sailors relation.)

We can delete all tuples with rating > 5 from the Sailors relation as follows:

| Sailors | sid | sname | rating | age |
EEE [>5 []

We can delete all reservations for sailors with rating < 4 by using:

Query-by-Example (QBE) 187

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
| | 1d | (<4 [lp. [[

We can update the age of the sailor with sid 74 to be 42 years by using:

| Sailors | sid | sname | rating | age |

| | 74 | | | .42 |

The fact that sid is the key is significant here; we cannot update the key field, but we
can use it to identify the tuple to be modified (in other fields). We can also change
the age of sailor 74 from 41 to 42 by incrementing the age value:

| Sailors | sid | sname | rating | age |
| | 74] \ | U._A+1 |

6.8.1 Restrictions on Update Commands

There are some restrictions on the use of the I., D., and U. commands. First, we
cannot mix these operators in a single example table (or combine them with P.).
Second, we cannot specify I., D., or U. in an example table that contains G. Third,
we cannot insert, update, or modify tuples based on values in fields of other tuples in
the same table. Thus, the following update is incorrect:

| Sailors | sid | sname | rating | age |
john U._A+1
joe A

This update seeks to change John’s age based on Joe’s age. Since sname is not a key,
the meaning of such a query is ambiguous—should we update every John’s age, and
if so, based on which Joe’s age? QBE avoids such anomalies using a rather broad
restriction. For example, if sname were a key, this would be a reasonable request, even
though it is disallowed.

6.9 DIVISION AND RELATIONAL COMPLETENESS *

In Section 6.6 we saw how division can be expressed in QBE using COUNT. It is instruc-
tive to consider how division can be expressed in QBE without the use of aggregate
operators. If we don’t use aggregate operators, we cannot express division in QBE
without using the update commands to create a temporary relation or view. However,

188 CHAPTER 6

taking the update commands into account, QBE is relationally complete, even without
the aggregate operators. Although we will not prove these claims, the example that
we discuss below should bring out the underlying intuition.

We use the following query in our discussion of division:
Find sailors who have reserved all boats.

In Chapter 4 we saw that this query can be expressed in DRC as:

{{I, N,T,A) | (I, N,T, A) € Sailors AV(B,BN,C) € Boats
(3(Ir, Br,D) € Reserves(I = Ir A Br = B))}

The V quantifier is not available in QBE, so let us rewrite the above without V:

{{I, N,T,A) | (I, N,T, A) € Sailors N -3(B, BN, C) € Boats
(=3(Ir, Br,D) € Reserves(I = Ir A Br = B))}
This calculus query can be read as follows: “Find Sailors tuples (with sid I) for which

there is no Boats tuple (with bid B) such that no Reserves tuple indicates that sailor
I has reserved boat B.” We might try to write this query in QBE as follows:

| Sailors | sid | sname | rating | age |
— Jmles T

| Boats | bid | bname | color || Reserves | sid | bid | day |
RN - [d[B[|

This query is illegal because the variable _B does not appear in any positive row.
Going beyond this technical objection, this QBE query is ambiguous with respect to
the ordering of the two uses of —. It could denote either the calculus query that we
want to express or the following calculus query, which is not what we want:

{{I, N,T,A) | (I, N,T, A) € Sailors N\ =3(Ir, Br,D) € Reserves
(—3(B, BN, C) € Boats(I = It A Br = B))}
There is no mechanism in QBE to control the order in which the — operations in

a query are applied. (Incidentally, the above query finds all Sailors who have made
reservations only for boats that exist in the Boats relation.)

One way to achieve such control is to break the query into several parts by using
temporary relations or views. As we saw in Chapter 4, we can accomplish division in

Query-by-Example (QBE) 189

two logical steps: first, identify disqualified candidates, and then remove this set from
the set of all candidates. In the query at hand, we have to first identify the set of sids
(called, say, BadSids) of sailors who have not reserved some boat (i.e., for each such
sailor, we can find a boat not reserved by that sailor), and then we have to remove
BadSids from the set of sids of all sailors. This process will identify the set of sailors
who’ve reserved all boats. The view BadSids can be defined as follows:

| Sailors | sid | sname | rating | age || Reserves | sid | bid | day |
| | 1d | | - [d[B[|

| Boats | bid | bname | color || BadSids | sid |
| | B | | IRt | 1d |

Given the view BadSids, it is a simple matter to find sailors whose sids are not in this
view.

The ideas in this example can be extended to show that QBE is relationally complete.

6.10 POINTS TO REVIEW

. QBE is a user-friendly query language with a graphical interface. The interface
depicts each relation in tabular form. (Section 6.1)

m Queries are posed by placing constants and variables into individual columns and
thereby creating an example tuple of the query result. Simple conventions are
used to express selections, projections, sorting, and duplicate elimination. (Sec-
tion 6.2)

m Joins are accomplished in QBE by using the same variable in multiple locations.
(Section 6.3)

m QBE provides a limited form of set difference through the use of = in the relation-
name column. (Section 6.4)

m Aggregation (AVG., COUNT., MAX., MIN., and SUM.) and grouping (G.) can be
expressed by adding prefixes. (Section 6.5)

m The condition box provides a place for more complex query conditions, although
queries involving AND or OR can be expressed without using the condition box.
(Section 6.6)

m New, unnamed fields can be created to display information beyond fields retrieved
from a relation. (Section 6.7)

190 CHAPTER 6

m QBE provides support for insertion, deletion and updates of tuples. (Section 6.8)

m Using a temporary relation, division can be expressed in QBE without using ag-
gregation. QBE is relationally complete, taking into account its querying and
view creation features. (Section 6.9)

EXERCISES

Exercise 6.1 Consider the following relational schema. An employee can work in more than
one department.

Emp(eid: integer, ename: string, salary: real)
Works(eid: integer, did: integer)

Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish them
from your constants.
1. Print the names of all employees who work on the 10th floor and make less than $50,000.

2. Print the names of all managers who manage three or more departments on the same
floor.

Print the names of all managers who manage 10 or more departments on the same floor.
Give every employee who works in the toy department a 10 percent raise.

Print the names of the departments that employee Santa works in.

S e W

Print the names and salaries of employees who work in both the toy department and the
candy department.

7. Print the names of employees who earn a salary that is either less than $10,000 or more
than $100,000.

8. Print all of the attributes for employees who work in some department that employee
Santa also works in.

9. Fire Santa.

10. Print the names of employees who make more than $20,000 and work in either the video
department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahedron
works.

12. Print the name of each employee who earns more than the manager of the department
that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith and
who is neither the highest-paid nor the lowest-paid employee in the department.

Exercise 6.2 Write the following queries in QBE, based on this schema:

Query-by-Example (QBE) 191

10.

11.
12.

13.
14.

Suppliers(sid: integer, sname: string, city: string)
Parts(pid: integer, pname: string, color: string)
Orders(sid: integer, pid: integer, quantity: integer)

. For each supplier from whom all of the following things have been ordered in quantities

of at least 150, print the name and city of the supplier: a blue gear, a red crankshaft,
and a yellow bumper.

Print the names of the purple parts that have been ordered from suppliers located in
Madison, Milwaukee, or Waukesha.

Print the names and cities of suppliers who have an order for more than 150 units of a
yellow or purple part.

Print the pids of parts that have been ordered from a supplier named American but have
also been ordered from some supplier with a different name in a quantity that is greater
than the American order by at least 100 units.

Print the names of the suppliers located in Madison. Could there be any duplicates in
the answer?

Print all available information about suppliers that supply green parts.
For each order of a red part, print the quantity and the name of the part.

Print the names of the parts that come in both blue and green. (Assume that no two
distinct parts can have the same name and color.)

Print (in ascending order alphabetically) the names of parts supplied both by a Madison
supplier and by a Berkeley supplier.

Print the names of parts supplied by a Madison supplier, but not supplied by any Berkeley
supplier. Could there be any duplicates in the answer?

Print the total number of orders.

Print the largest quantity per order for each sid such that the minimum quantity per
order for that supplier is greater than 100.

Print the average quantity per order of red parts.

Can you write this query in QBE? If so, how?
Print the sids of suppliers from whom every part has been ordered.

Exercise 6.3 Answer the following questions:

o

. Describe the various uses for unnamed columns in QBE.
. Describe the various uses for a conditions box in QBE.

1
2
3.
4

What is unusual about the treatment of duplicates in QBE?

. Is QBE based upon relational algebra, tuple relational calculus, or domain relational

calculus? Explain briefly.
Is QBE relationally complete? Explain briefly.

What restrictions does QBE place on update commands?

192 CHAPTER 6

PROJECT-BASED EXERCISES

Exercise 6.4 Minibase’s version of QBE, called MiniQBE, tries to preserve the spirit of
QBE but cheats occasionally. Try the queries shown in this chapter and in the exercises,
and identify the ways in which MiniQBE differs from QBE. For each QBE query you try in
MiniQBE, examine the SQL query that it is translated into by MiniQBE.

BIBLIOGRAPHIC NOTES

The QBE project was led by Moshe Zloof [702] and resulted in the first visual database query
language, whose influence is seen today in products such as Borland’s Paradox and, to a
lesser extent, Microsoft’s Access. QBE was also one of the first relational query languages
to support the computation of transitive closure, through a special operator, anticipating
much subsequent research into extensions of relational query languages to support recursive
queries. A successor called Office-by-Example [701] sought to extend the QBE visual interac-
tion paradigm to applications such as electronic mail integrated with database access. Klug
presented a version of QBE that dealt with aggregate queries in [377].

PART Il

DATA STORAGE AND INDEXING

7 STORING DATA: DISKS & FILES

A memory is what is left when something happens and does not completely unhap-
pen.

—Edward DeBono

This chapter initiates a study of the internals of an RDBMS. In terms of the DBMS
architecture presented in Section 1.8, it covers the disk space manager, the buffer
manager, and the layer that supports the abstraction of a file of records. Later chapters
cover auxiliary structures to speed retrieval of desired subsets of the data, and the
implementation of a relational query language.

Data in a DBMS is stored on storage devices such as disks and tapes; we concentrate
on disks and cover tapes briefly. The disk space manager is responsible for keeping
track of available disk space. The file manager, which provides the abstraction of a file
of records to higher levels of DBMS code, issues requests to the disk space manager
to obtain and relinquish space on disk. The file management layer requests and frees
disk space in units of a page; the size of a page is a DBMS parameter, and typical
values are 4 KB or 8 KB. The file management layer is responsible for keeping track
of the pages in a file and for arranging records within pages.

When a record is needed for processing, it must be fetched from disk to main memory.
The page on which the record resides is determined by the file manager. Sometimes, the
file manager uses auxiliary data structures to quickly identify the page that contains
a desired record. After identifying the required page, the file manager issues a request
for the page to a layer of DBMS code called the buffer manager. The buffer manager
fetches a requested page from disk into a region of main memory called the buffer pool
and tells the file manager the location of the requested page.

We cover the above points in detail in this chapter. Section 7.1 introduces disks and
tapes. Section 7.2 describes RAID disk systems. Section 7.3 discusses how a DBMS
manages disk space, and Section 7.4 explains how a DBMS fetches data from disk into
main memory. Section 7.5 discusses how a collection of pages is organized into a file
and how auxiliary data structures can be built to speed up retrieval of records from a
file. Section 7.6 covers different ways to arrange a collection of records on a page, and
Section 7.7 covers alternative formats for storing individual records.

195

196 CHAPTER 7

7.1 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, as shown in Figure 7.1. At
the top, we have primary storage, which consists of cache and main memory, and
provides very fast access to data. Then comes secondary storage, which consists of
slower devices such as magnetic disks. Tertiary storage is the slowest class of storage
devices; for example, optical disks and tapes. Currently, the cost of a given amount of

o -

S
/
L. -
) CACHE - ~
< , Primary storage
—> . -
MAIN MEMORY - -
Request for data < _ J
g MAGNETIC DISK -~ ~ Secondary storage
_____ > : J
- - -
Data satisfying request TAPE Tertiary storage

Figure 7.1 The Memory Hierarchy

main memory is about 100 times the cost of the same amount of disk space, and tapes
are even less expensive than disks. Slower storage devices such as tapes and disks play
an important role in database systems because the amount of data is typically very
large. Since buying enough main memory to store all data is prohibitively expensive, we
must store data on tapes and disks and build database systems that can retrieve data
from lower levels of the memory hierarchy into main memory as needed for processing.

There are reasons other than cost for storing data on secondary and tertiary storage.
On systems with 32-bit addressing, only 232 bytes can be directly referenced in main
memory; the number of data objects may exceed this number! Further, data must
be maintained across program executions. This requires storage devices that retain
information when the computer is restarted (after a shutdown or a crash); we call
such storage nonvolatile. Primary storage is usually volatile (although it is possible
to make it nonvolatile by adding a battery backup feature), whereas secondary and
tertiary storage is nonvolatile.

Tapes are relatively inexpensive and can store very large amounts of data. They are
a good choice for archival storage, that is, when we need to maintain data for a long
period but do not expect to access it very often. A Quantum DLT 4000 drive is a
typical tape device; it stores 20 GB of data and can store about twice as much by
compressing the data. It records data on 128 tape tracks, which can be thought of as a

Storing Data: Disks and Files 197

linear sequence of adjacent bytes, and supports a sustained transfer rate of 1.5 MB/sec
with uncompressed data (typically 3.0 MB/sec with compressed data). A single DLT
4000 tape drive can be used to access up to seven tapes in a stacked configuration, for
a maximum compressed data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must
essentially step through all the data in order and cannot directly access a given location
on tape. For example, to access the last byte on a tape, we would have to wind
through the entire tape first. This makes tapes unsuitable for storing operational data,
or data that is frequently accessed. Tapes are mostly used to back up operational data
periodically.

7.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used for
database applications. A DBMS provides seamless access to data on disk; applications
need not worry about whether data is in main memory or disk. To understand how
disks work, consider Figure 7.2, which shows the structure of a disk in simplified form.

Disk arm Disk head Spindle

\ [/

Block

Arm movement \) Rotation

Figure 7.2 Structure of a Disk

Data is stored on disk in units called disk blocks. A disk block is a contiguous
sequence of bytes and is the unit in which data is written to a disk and read from a
disk. Blocks are arranged in concentric rings called tracks, on one or more platters.
Tracks can be recorded on one or both surfaces of a platter; we refer to platters as

198 CHAPTER 7

single-sided or double-sided accordingly. The set of all tracks with the same diameter is
called a cylinder, because the space occupied by these tracks is shaped like a cylinder;
a cylinder contains one track per platter surface. Each track is divided into arcs called
sectors, whose size is a characteristic of the disk and cannot be changed. The size of
a disk block can be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when one head
is positioned over a block, the other heads are in identical positions with respect to
their platters. To read or write a block, a disk head must be positioned on top of the
block. As the size of a platter decreases, seek times also decrease since we have to
move a disk head a smaller distance. Typical platter diameters are 3.5 inches and 5.25
inches.

Current systems typically allow at most one disk head to read or write at any one time.
All the disk heads cannot read or write in parallel—this technique would increase data
transfer rates by a factor equal to the number of disk heads, and considerably speed
up sequential scans. The reason they cannot is that it is very difficult to ensure that
all the heads are perfectly aligned on the corresponding tracks. Current approaches
are both expensive and more prone to faults as compared to disks with a single active
head. In practice very few commercial products support this capability, and then only
in a limited way; for example, two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements commands
to read or write a sector by moving the arm assembly and transferring data to and
from the disk surfaces. A checksum is computed for when data is written to a sector
and stored with the sector. The checksum is computed again when the data on the
sector is read back. If the sector is corrupted or the read is faulty for some reason,
it is very unlikely that the checksum computed when the sector is read matches the
checksum computed when the sector was written. The controller computes checksums
and if it detects an error, it tries to read the sector again. (Of course, it signals a
failure if the sector is corrupted and read fails repeatedly.)

While direct access to any desired location in main memory takes approximately the
same time, determining the time to access a location on disk is more complicated. The
time to access a disk block has several components. Seek time is the time taken to
move the disk heads to the track on which a desired block is located. Rotational
delay is the waiting time for the desired block to rotate under the disk head; it is
the time required for half a rotation on average and is usually less than seek time.
Transfer time is the time to actually read or write the data in the block once the
head is positioned, that is, the time for the disk to rotate over the block.

Storing Data: Disks and Files 199

An example of a current disk: The IBM Deskstar 14GPX. The IBM
Deskstar 14GPX is a 3.5 inch, 14.4 GB hard disk with an average seek time of 9.1
milliseconds (msec) and an average rotational delay of 4.17 msec. However, the
time to seek from one track to the next is just 2.2 msec, the maximum seek time
is 15.5 msec. The disk has five double-sided platters that spin at 7,200 rotations
per minute. Each platter holds 3.35 GB of data, with a density of 2.6 gigabit per
square inch. The data transfer rate is about 13 MB per second. To put these
numbers in perspective, observe that a disk access takes about 10 msecs, whereas
accessing a main memory location typically takes less than 60 nanoseconds!

7.1.2 Performance Implications of Disk Structure
1. Data must be in memory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a single
item on a block is needed, the entire block is transferred. Reading or writing a
disk block is called an I/O (for input/output) operation.

3. The time to read or write a block varies, depending on the location of the data:
access time = seek time + rotational delay + transfer time

These observations imply that the time taken for database operations is affected sig-
nificantly by how data is stored on disks. The time for moving blocks to or from disk
usually dominates the time taken for database operations. To minimize this time, it
is necessary to locate data records strategically on disk, because of the geometry and
mechanics of disks. In essence, if two records are frequently used together, we should
place them close together. The ‘closest’ that two records can be on a disk is to be on
the same block. In decreasing order of closeness, they could be on the same track, the
same cylinder, or an adjacent cylinder.

Two records on the same block are obviously as close together as possible, because they
are read or written as part of the same block. As the platter spins, other blocks on
the track being read or written rotate under the active head. In current disk designs,
all the data on a track can be read or written in one revolution. After a track is read
or written, another disk head becomes active, and another track in the same cylinder
is read or written. This process continues until all tracks in the current cylinder are
read or written, and then the arm assembly moves (in or out) to an adjacent cylinder.
Thus, we have a natural notion of ‘closeness’ for blocks, which we can extend to a
notion of next and previous blocks.

Exploiting this notion of next by arranging records so that they are read or written
sequentially is very important for reducing the time spent in disk I/Os. Sequential
access minimizes seek time and rotational delay and is much faster than random access.

200 CHAPTER 7

(This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader
is urged to work through them.)

7.2 RAID

Disks are potential bottlenecks for system performance and storage system reliability.
Even though disk performance has been improving continuously, microprocessor per-
formance has advanced much more rapidly. The performance of microprocessors has
improved at about 50 percent or more per year, but disk access times have improved
at a rate of about 10 percent per year and disk transfer rates at a rate of about 20
percent per year. In addition, since disks contain mechanical elements, they have much
higher failure rates than electronic parts of a computer system. If a disk fails, all the
data stored on it is lost.

A disk array is an arrangement of several disks, organized so as to increase perfor-
mance and improve reliability of the resulting storage system. Performance is increased
through data striping. Data striping distributes data over several disks to give the
impression of having a single large, very fast disk. Reliability is improved through
redundancy. Instead of having a single copy of the data, redundant information is
maintained. The redundant information is carefully organized so that in case of a
disk failure, it can be used to reconstruct the contents of the failed disk. Disk arrays
that implement a combination of data striping and redundancy are called redundant
arrays of independent disks, or in short, RAID.! Several RAID organizations, re-
ferred to as RAID levels, have been proposed. Each RAID level represents a different
trade-off between reliability and performance.

In the remainder of this section, we will first discuss data striping and redundancy and
then introduce the RAID levels that have become industry standards.

7.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk. If the
user issues an 1/O request, we first identify the set of physical disk blocks that store
the data requested. These disk blocks may reside on a single disk in the array or may
be distributed over several disks in the array. Then the set of blocks is retrieved from
the disk(s) involved. Thus, how we distribute the data over the disks in the array
influences how many disks are involved when an I/O request is processed.

IHistorically, the I in RAID stood for inexpensive, as a large number of small disks was much more
economical than a single very large disk. Today, such very large disks are not even manufactured—a
sign of the impact of RAID.

Storing Data: Disks and Files 201

Redundancy schemes: Alternatives to the parity scheme include schemes based
on Hamming codes and Reed-Solomon codes. In addition to recovery from
single disk failures, Hamming codes can identify which disk has failed. Reed-
Solomon codes can recover from up to two simultaneous disk failures. A detailed
discussion of these schemes is beyond the scope of our discussion here; the bibli-
ography provides pointers for the interested reader.

In data striping, the data is segmented into equal-size partitions that are distributed
over multiple disks. The size of a partition is called the striping unit. The partitions
are usually distributed using a round robin algorithm: If the disk array consists of D
disks, then partition ¢ is written onto disk i mod D.

As an example, consider a striping unit of a bit. Since any D successive data bits are
spread over all D data disks in the array, all I/O requests involve all disks in the array.
Since the smallest unit of transfer from a disk is a block, each I/O request involves
transfer of at least D blocks. Since we can read the D blocks from the D disks in
parallel, the transfer rate of each request is D times the transfer rate of a single disk;
each request uses the aggregated bandwidth of all disks in the array. But the disk
access time of the array is basically the access time of a single disk since all disk heads
have to move for all requests. Therefore, for a disk array with a striping unit of a single
bit, the number of requests per time unit that the array can process and the average
response time for each individual request are similar to that of a single disk.

As another example, consider a striping unit of a disk block. In this case, I/O requests
of the size of a disk block are processed by one disk in the array. If there are many I/0
requests of the size of a disk block and the requested blocks reside on different disks,
we can process all requests in parallel and thus reduce the average response time of an
I/O request. Since we distributed the striping partitions round-robin, large requests
of the size of many contiguous blocks involve all disks. We can process the request by
all disks in parallel and thus increase the transfer rate to the aggregated bandwidth of
all D disks.

7.2.2 Redundancy

While having more disks increases storage system performance, it also lowers overall
storage system reliability. Assume that the mean-time-to-failure, or MTTF, of
a single disk is 50,000 hours (about 5.7 years). Then, the MTTF of an array of
100 disks is only 50,000/100 = 500 hours or about 21 days, assuming that failures
occur independently and that the failure probability of a disk does not change over
time. (Actually, disks have a higher failure probability early and late in their lifetimes.
Early failures are often due to undetected manufacturing defects; late failures occur

202 CHAPTER 7

since the disk wears out. Failures do not occur independently either: consider a fire
in the building, an earthquake, or purchase of a set of disks that come from a ‘bad’
manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information. If a
disk failure occurs, the redundant information is used to reconstruct the data on the
failed disk. Redundancy can immensely increase the MTTF of a disk array. When
incorporating redundancy into a disk array design, we have to make two choices. First,
we have to decide where to store the redundant information. We can either store the
redundant information on a small number of check disks or we can distribute the
redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant information.
Most disk arrays store parity information: In the parity scheme, an extra check disk
contains information that can be used to recover from failure of any one disk in the
array. Assume that we have a disk array with D disks and consider the first bit on
each data disk. Suppose that ¢ of the D data bits are one. The first bit on the check
disk is set to one if i is odd, otherwise it is set to zero. This bit on the check disk is
called the parity of the data bits. The check disk contains parity information for each
set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number of bits
that are one on the D — 1 nonfailed disks; let this number be j. If j is odd and the
parity bit is one, or if j is even and the parity bit is zero, then the value of the bit on
the failed disk must have been zero. Otherwise, the value of the bit on the failed disk
must have been one. Thus, with parity we can recover from failure of any one disk.
Reconstruction of the lost information involves reading all data disks and the check
disk.

For example, with an additional 10 disks with redundant information, the MTTF of
our example storage system with 100 data disks can be increased to more than 250
years! What is more important, a large MTTF implies a small failure probability
during the actual usage time of the storage system, which is usually much smaller
than the reported lifetime or the MTTF. (Who actually uses 10-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where a
reliability group consists of a set of data disks and a set of check disks. A common
redundancy scheme (see box) is applied to each group. The number of check disks
depends on the RAID level chosen. In the remainder of this section, we assume for
ease of explanation that there is only one reliability group. The reader should keep
in mind that actual RAID implementations consist of several reliability groups, and
that the number of groups plays a role in the overall reliability of the resulting storage
system.

Storing Data: Disks and Files 203

7.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample data that
would just fit on four disks. That is, without any RAID technology our storage system
would consist of exactly four data disks. Depending on the RAID level chosen, the
number of additional disks varies from zero to four.

Level 0: Nonredundant

A RAID Level 0 system uses data striping to increase the maximum bandwidth avail-
able. No redundant information is maintained. While being the solution with the
lowest cost, reliability is a problem, since the MTTF decreases linearly with the num-
ber of disk drives in the array. RAID Level 0 has the best write performance of all
RAID levels, because absence of redundant information implies that no redundant in-
formation needs to be updated! Interestingly, RAID Level 0 does not have the best
read performance of all RAID levels, since systems with redundancy have a choice of
scheduling disk accesses as explained in the next section.

In our example, the RAID Level 0 solution consists of only four data disks. Independent
of the number of data disks, the effective space utilization for a RAID Level 0 system
is always 100 percent.

Level 1: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having one copy of
the data, two identical copies of the data on two different disks are maintained. This
type of redundancy is often called mirroring. Every write of a disk block involves a
write on both disks. These writes may not be performed simultaneously, since a global
system failure (e.g., due to a power outage) could occur while writing the blocks and
then leave both copies in an inconsistent state. Therefore, we always write a block on
one disk first and then write the other copy on the mirror disk. Since two copies of
each block exist on different disks, we can distribute reads between the two disks and
allow parallel reads of different disk blocks that conceptually reside on the same disk.
A read of a block can be scheduled to the disk that has the smaller expected access
time. RAID Level 1 does not stripe the data over different disks, thus the transfer rate
for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for a RAID
Level 1 implementation. The effective space utilization is 50 percent, independent of
the number of data disks.

204 CHAPTER 7

Level O+1: Striping and Mirroring

RAID Level 04+1—sometimes also referred to as RAID level 10—combines striping and
mirroring. Thus, as in RAID Level 1, read requests of the size of a disk block can be
scheduled both to a disk or its mirror image. In addition, read requests of the size of
several contiguous blocks benefit from the aggregated bandwidth of all disks. The cost
for writes is analogous to RAID Level 1.

As in RAID Level 1, our example with four data disks requires four check disks and
the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2 the striping unit is a single bit. The redundancy scheme used is
Hamming code. In our example with four data disks, only three check disks are needed.
In general, the number of check disks grows logarithmically with the number of data
disks.

Striping at the bit level has the implication that in a disk array with D data disks,
the smallest unit of transfer for a read is a set of D blocks. Thus, Level 2 is good for
workloads with many large requests since for each request the aggregated bandwidth
of all data disks is used. But RAID Level 2 is bad for small requests of the size of
an individual block for the same reason. (See the example in Section 7.2.1.) A write
of a block involves reading D blocks into main memory, modifying D + C blocks and
writing D + C blocks to disk, where C' is the number of check disks. This sequence of
steps is called a read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks are needed.
Thus, in our example the effective space utilization is about 57 percent. The effective
space utilization increases with the number of data disks. For example, in a setup
with 10 data disks, four check disks are needed and the effective space utilization is 71
percent. In a setup with 25 data disks, five check disks are required and the effective
space utilization grows to 83 percent.

Level 3: Bit-Interleaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost upon
RAID Level 1, it keeps more redundant information than is necessary. Hamming code,
as used in RAID Level 2, has the advantage of being able to identify which disk has
failed. But disk controllers can easily detect which disk has failed. Thus, the check
disks do not need to contain information to identify the failed disk. Information to
recover the lost data is sufficient. Instead of using several disks to store Hamming code,

Storing Data: Disks and Files 205

RAID Level 3 has a single check disk with parity information. Thus, the reliability
overhead for RAID Level 3 is a single disk, the lowest overhead possible.

The performance characteristics of RAID Level 2 and RAID Level 3 are very similar.
RAID Level 3 can also process only one I/O at a time, the minimum transfer unit is
D blocks, and a write requires a read-modify-write cycle.

Level 4: Block-Interleaved Parity

RAID Level 4 has a striping unit of a disk block, instead of a single bit as in RAID
Level 3. Block-level striping has the advantage that read requests of the size of a disk
block can be served entirely by the disk where the requested block resides. Large read
requests of several disk blocks can still utilize the aggregated bandwidth of the D disks.

The write of a single block still requires a read-modify-write cycle, but only one data
disk and the check disk are involved. The parity on the check disk can be updated
without reading all D disk blocks, because the new parity can be obtained by noticing
the differences between the old data block and the new data block and then applying
the difference to the parity block on the check disk:

NewParity = (01dData XOR NewData) XOR 0ldParity

The read-modify-write cycle involves reading of the old data block and the old parity
block, modifying the two blocks, and writing them back to disk, resulting in four disk
accesses per write. Since the check disk is involved in each write, it can easily become
the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single check
disk. Thus, in our example, the effective space utilization is 80 percent. The effective
space utilization increases with the number of data disks, since always only one check
disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5 improves upon Level 4 by distributing the parity blocks uniformly over
all disks, instead of storing them on a single check disk. This distribution has two
advantages. First, several write requests can potentially be processed in parallel, since
the bottleneck of a unique check disk has been eliminated. Second, read requests have
a higher level of parallelism. Since the data is distributed over all disks, read requests
involve all disks, whereas in systems with a dedicated check disk the check disk never
participates in reads.

206 CHAPTER 7

A RAID Level 5 system has the best performance of all RAID levels with redundancy
for small and large read and large write requests. Small writes still require a read-
modify-write cycle and are thus less efficient than in RAID Level 1.

In our example, the corresponding RAID Level 5 system has 5 disks overall and thus
the effective space utilization is the same as in RAID levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure of a
single disk is not sufficient in very large disk arrays. First, in large disk arrays, a
second disk might fail before replacement of an already failed disk could take place.
In addition, the probability of a disk failure during recovery of a failed disk is not
negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from up to two
simultaneous disk failures. RAID Level 6 requires (conceptually) two check disks, but
it also uniformly distributes redundant information at the block level as in RAID Level
5. Thus, the performance characteristics for small and large read requests and for large
write requests are analogous to RAID Level 5. For small writes, the read-modify-write
procedure involves six instead of four disks as compared to RAID Level 5, since two
blocks with redundant information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six disks
are required. Thus, in our example, the effective space utilization is 66 percent.

7.2.4 Choice of RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance at
the lowest cost. RAID Level 0+1 is superior to RAID Level 1. The main application
areas for RAID Level 041 systems are small storage subsystems where the cost of
mirroring is moderate. Sometimes RAID Level 0+1 is used for applications that have
a high percentage of writes in their workload, since RAID Level 041 provides the best
write performance. RAID levels 2 and 4 are always inferior to RAID levels 3 and 5,
respectively. RAID Level 3 is appropriate for workloads consisting mainly of large
transfer requests of several contiguous blocks. The performance of a RAID Level 3
system is bad for workloads with many small requests of a single disk block. RAID
Level 5 is a good general-purpose solution. It provides high performance for large
requests as well as for small requests. RAID Level 6 is appropriate if a higher level of
reliability is required.

Storing Data: Disks and Files 207

7.3 DISK SPACE MANAGEMENT

The lowest level of software in the DBMS architecture discussed in Section 1.8, called
the disk space manager, manages space on disk. Abstractly, the disk space manager
supports the concept of a page as a unit of data, and provides commands to allocate
or deallocate a page and read or write a page. The size of a page is chosen to be the
size of a disk block and pages are stored as disk blocks so that reading or writing a
page can be done in one disk I/O.

It is often useful to allocate a sequence of pages as a contiguous sequence of blocks to
hold data that is frequently accessed in sequential order. This capability is essential
for exploiting the advantages of sequentially accessing disk blocks, which we discussed
earlier in this chapter. Such a capability, if desired, must be provided by the disk space
manager to higher-level layers of the DBMS.

Thus, the disk space manager hides details of the underlying hardware (and possibly
the operating system) and allows higher levels of the software to think of the data as
a collection of pages.

7.3.1 Keeping Track of Free Blocks

A database grows and shrinks as records are inserted and deleted over time. The
disk space manager keeps track of which disk blocks are in use, in addition to keeping
track of which pages are on which disk blocks. Although it is likely that blocks are
initially allocated sequentially on disk, subsequent allocations and deallocations could
in general create ‘holes.’

One way to keep track of block usage is to maintain a list of free blocks. As blocks are
deallocated (by the higher-level software that requests and uses these blocks), we can
add them to the free list for future use. A pointer to the first block on the free block
list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which indicates
whether a block is in use or not. A bitmap also allows very fast identification and
allocation of contiguous areas on disk. This is difficult to accomplish with a linked list
approach.

7.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system supports
the abstraction of a file as a sequence of bytes. The OS manages space on the disk
and translates requests such as “Read byte i of file f” into corresponding low-level

208 CHAPTER 7

instructions: “Read block m of track ¢ of cylinder ¢ of disk d.” A database disk space
manager could be built using OS files. For example, the entire database could reside
in one or more OS files for which a number of blocks are allocated (by the OS) and
initialized. The disk space manager is then responsible for managing the space in these
OS files.

Many database systems do not rely on the OS file system and instead do their own
disk management, either from scratch or by extending OS facilities. The reasons
are practical as well as technical. One practical reason is that a DBMS vendor who
wishes to support several OS platforms cannot assume features specific to any OS,
for portability, and would therefore try to make the DBMS code as self-contained as
possible. A technical reason is that on a 32-bit system, the largest file size is 4 GB,
whereas a DBMS may want to access a single file larger than that. A related problem is
that typical OS files cannot span disk devices, which is often desirable or even necessary
in a DBMS. Additional technical reasons why a DBMS does not rely on the OS file
system are outlined in Section 7.4.2.

7.4 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Suppose
that the database contains 1,000,000 pages, but only 1,000 pages of main memory are
available for holding data. Consider a query that requires a scan of the entire file.
Because all the data cannot be brought into main memory at one time, the DBMS
must bring pages into main memory as they are needed and, in the process, decide
what existing page in main memory to replace to make space for the new page. The
policy used to decide which page to replace is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer manager is
the software layer that is responsible for bringing pages from disk to main memory as
needed. The buffer manager manages the available main memory by partitioning it
into a collection of pages, which we collectively refer to as the buffer pool. The main
memory pages in the buffer pool are called frames; it is convenient to think of them
as slots that can hold a page (that usually resides on disk or other secondary storage
media).

Higher levels of the DBMS code can be written without worrying about whether data
pages are in memory or not; they ask the buffer manager for the page, and it is brought
into a frame in the buffer pool if it is not already there. Of course, the higher-level
code that requests a page must also release the page when it is no longer needed, by
informing the buffer manager, so that the frame containing the page can be reused.
The higher-level code must also inform the buffer manager if it modifies the requested
page; the buffer manager then makes sure that the change is propagated to the copy
of the page on disk. Buffer management is illustrated in Figure 7.3.

Storing Data: Disks and Files 209

Page requests from higher-level code

BUFFER POOL

/1/]
disk page
S MAIN MEMORY
free frame

If arequested pageisnot in the

pool and the pool isfull, the ——
buffer manager’ s replacement

policy controls which existing

page is replaced. -

Figure 7.3 The Buffer Pool

In addition to the buffer pool itself, the buffer manager maintains some bookkeeping
information, and two variables for each frame in the pool: pin_count and dirty. The
number of times that the page currently in a given frame has been requested but
not released—the number of current users of the page—is recorded in the pin_count
variable for that frame. The boolean variable dirty indicates whether the page has
been modified since it was brought into the buffer pool from disk.

Initially, the pin_count for every frame is set to 0, and the dirty bits are turned off.
When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page, and if so
increments the pin_count of that frame. If the page is not in the pool, the buffer
manager brings it in as follows:

(a) Chooses a frame for replacement, using the replacement policy, and incre-
ments its pin_count.

(b) If the dirty bit for the replacement frame is on, writes the page it contains
to disk (that is, the disk copy of the page is overwritten with the contents of
the frame).

(¢) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested page
to the requestor.

210 CHAPTER 7

Incrementing pin_count is often called pinning the requested page in its frame. When
the code that calls the buffer manager and requests the page subsequently calls the
buffer manager and releases the page, the pin_count of the frame containing the re-
quested page is decremented. This is called unpinning the page. If the requestor has
modified the page, it also informs the buffer manager of this at the time that it unpins
the page, and the dirty bit for the frame is set. The buffer manager will not read
another page into a frame until its pin_count becomes 0, that is, until all requestors of
the page have unpinned it.

If a requested page is not in the buffer pool, and if a free frame is not available in the
buffer pool, a frame with pin_count 0 is chosen for replacement. If there are many such
frames, a frame is chosen according to the buffer manager’s replacement policy. We
discuss various replacement policies in Section 7.4.1.

When a page is eventually chosen for replacement, if the dirty bit is not set, it means
that the page has not been modified since being brought into main memory. Thus,
there is no need to write the page back to disk; the copy on disk is identical to the copy
in the frame, and the frame can simply be overwritten by the newly requested page.
Otherwise, the modifications to the page must be propagated to the copy on disk.
(The crash recovery protocol may impose further restrictions, as we saw in Section 1.7.
For example, in the Write-Ahead Log (WAL) protocol, special log records are used to
describe the changes made to a page. The log records pertaining to the page that is to
be replaced may well be in the buffer; if so, the protocol requires that they be written
to disk before the page is written to disk.)

If there is no page in the buffer pool with pin_count 0 and a page that is not in the
pool is requested, the buffer manager must wait until some page is released before
responding to the page request. In practice, the transaction requesting the page may
simply be aborted in this situation! So pages should be released—by the code that
calls the buffer manager to request the page—as soon as possible.

A good question to ask at this point is “What if a page is requested by several different
transactions?” That is, what if the page is requested by programs executing indepen-
dently on behalf of different users? There is the potential for such programs to make
conflicting changes to the page. The locking protocol (enforced by higher-level DBMS
code, in particular the transaction manager) ensures that each transaction obtains a
shared or exclusive lock before requesting a page to read or modify. Two different
transactions cannot hold an exclusive lock on the same page at the same time; this is
how conflicting changes are prevented. The buffer manager simply assumes that the
appropriate lock has been obtained before a page is requested.

Storing Data: Disks and Files 211

7.4.1 Buffer Replacement Policies

The policy that is used to choose an unpinned page for replacement can affect the time
taken for database operations considerably. Many alternative policies exist, and each
is suitable in different situations.

The best-known replacement policy is least recently used (LRU). This can be im-
plemented in the buffer manager using a queue of pointers to frames with pin_count 0.
A frame is added to the end of the queue when it becomes a candidate for replacement
(that is, when the pin_count goes to 0). The page chosen for replacement is the one in
the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less overhead.
The idea is to choose a page for replacement using a current variable that takes on
values 1 through N, where NV is the number of buffer frames, in circular order. We
can think of the frames being arranged in a circle, like a clock’s face, and current as a
clock hand moving across the face. In order to approximate LRU behavior, each frame
also has an associated referenced bit, which is turned on when the page pin_count goes
to 0.

The current frame is considered for replacement. If the frame is not chosen for replace-
ment, current is incremented and the next frame is considered; this process is repeated
until some frame is chosen. If the current frame has pin_count greater than 0, then it
is not a candidate for replacement and current is incremented. If the current frame
has the referenced bit turned on, the clock algorithm turns the referenced bit off and
increments current—this way, a recently referenced page is less likely to be replaced.
If the current frame has pin_count 0 and its referenced bit is off, then the page in it is
chosen for replacement. If all frames are pinned in some sweep of the clock hand (that
is, the value of current is incremented until it repeats), this means that no page in the
buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a
database system, particularly if many user requests require sequential scans of the
data. Consider the following illustrative situation. Suppose the buffer pool has 10
frames, and the file to be scanned has 10 or fewer pages. Assuming, for simplicity,
that there are no competing requests for pages, only the first scan of the file does any
I/O. Page requests in subsequent scans will always find the desired page in the buffer
pool. On the other hand, suppose that the file to be scanned has 11 pages (which is
one more than the number of available pages in the buffer pool). Using LRU, every
scan of the file will result in reading every page of the file! In this situation, called
sequential flooding, LRU is the worst possible replacement strategy.

212 CHAPTER 7

Buffer management in practice: IBM DB2 and Sybase ASE allow buffers to
be partitioned into named pools. Each database, table, or index can be bound
to one of these pools. Each pool can be configured to use either LRU or clock
replacement in ASE; DB2 uses a variant of clock replacement, with the initial clock
value based on the nature of the page (e.g., index nonleaves get a higher starting
clock value, which delays their replacement). Interestingly, a buffer pool client in
DB2 can explicitly indicate that it hates a page, making the page the next choice
for replacement. As a special case, DB2 applies MRU for the pages fetched in some
utility operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix
and Oracle 7 both maintain a single global buffer pool using LRU; Microsoft SQL
Server has a single pool using clock replacement. In Oracle 8, tables can be bound
to one of two pools; one has high priority, and the system attempts to keep pages
in this pool in memory.

Beyond setting a maximum number of pins for a given transaction, there are
typically no features for controlling buffer pool usage on a per-transaction basis.
Microsoft SQL Server, however, supports a reservation of buffer pages by queries
that require large amounts of memory (e.g., queries involving sorting or hashing).

Other replacement policies include first in first out (FIFO) and most recently
used (MRU), which also entail overhead similar to LRU, and random, among others.
The details of these policies should be evident from their names and the preceding
discussion of LRU and clock.

7.4.2 Buffer Management in DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and buffer
management in database management systems. In both cases the goal is to provide
access to more data than will fit in main memory, and the basic idea is to bring in
pages from disk to main memory as needed, replacing pages that are no longer needed
in main memory. Why can’t we build a DBMS using the virtual memory capability of
an OS? A DBMS can often predict the order in which pages will be accessed, or page
reference patterns, much more accurately than is typical in an OS environment, and
it is desirable to utilize this property. Further, a DBMS needs more control over when
a page is written to disk than an OS typically provides.

A DBMS can often predict reference patterns because most page references are gener-
ated by higher-level operations (such as sequential scans or particular implementations
of various relational algebra operators) with a known pattern of page accesses. This
ability to predict reference patterns allows for a better choice of pages to replace and
makes the idea of specialized buffer replacement policies more attractive in the DBMS
environment.

Storing Data: Disks and Files 213

Prefetching: In IBM DB2, both sequential and list prefetch (prefetching a list
of pages) are supported. In general, the prefetch size is 32 4KB pages, but this
can be set by the user. For some sequential type database utilities (e.g., COPY,
RUNSTATS), DB2 will prefetch upto 64 4KB pages. For a smaller buffer pool
(i.e., less than 1000 buffers), the prefetch quantity is adjusted downward to 16 or
8 pages. Prefetch size can be configured by the user; for certain environments, it
may be best to prefetch 1000 pages at a time! Sybase ASE supports asynchronous
prefetching of upto 256 pages, and uses this capability to reduce latency during
indexed access to a table in a range scan. Oracle 8 uses prefetching for sequential
scan, retrieving large objects, and for certain index scans. Microsoft SQL Server
supports prefetching for sequential scan and for scans along the leaf level of a B+
tree index and the prefetch size can be adjusted as a scan progresses. SQL Server
also uses asynchronous prefetching extensively. Informix supports prefetching with
a user-defined prefetch size.

Even more important, being able to predict reference patterns enables the use of a
simple and very effective strategy called prefetching of pages. The buffer manager
can anticipate the next several page requests and fetch the corresponding pages into
memory before the pages are requested. This strategy has two benefits. First, the
pages are available in the buffer pool when they are requested. Second, reading in a
contiguous block of pages is much faster than reading the same pages at different times
in response to distinct requests. (Review the discussion of disk geometry to appreciate
why this is so.) If the pages to be prefetched are not contiguous, recognizing that
several pages need to be fetched can nonetheless lead to faster I/O because an order
of retrieval can be chosen for these pages that minimizes seek times and rotational
delays.

Incidentally, note that the I/O can typically be done concurrently with CPU computa-
tion. Once the prefetch request is issued to the disk, the disk is responsible for reading
the requested pages into memory pages and the CPU can continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to ensure
that the copy of the page on disk is updated with the copy in memory. As a related
point, a DBMS must be able to ensure that certain pages in the buffer pool are written
to disk before certain other pages are written, in order to implement the WAL protocol
for crash recovery, as we saw in Section 1.7. Virtual memory implementations in
operating systems cannot be relied upon to provide such control over when pages are
written to disk; the OS command to write a page to disk may be implemented by
essentially recording the write request, and deferring the actual modification of the
disk copy. If the system crashes in the interim, the effects can be catastrophic for a
DBMS. (Crash recovery is discussed further in Chapter 20.)

214 CHAPTER 7

7.5 FILES AND INDEXES

We now turn our attention from the way pages are stored on disk and brought into
main memory to the way pages are used to store records and organized into logical
collections or files. Higher levels of the DBMS code treat a page as effectively being
a collection of records, ignoring the representation and storage details. In fact, the
concept of a collection of records is not limited to the contents of a single page; a file
of records is a collection of records that may reside on several pages. In this section,
we consider how a collection of pages can be organized as a file. We discuss how the
space on a page can be organized to store a collection of records in Sections 7.6 and
7.7.

Each record has a unique identifier called a record id, or rid for short. As we will see
in Section 7.6, we can identify the page containing a record by using the record’s rid.
The basic file structure that we consider, called a heap file, stores records in random
order and supports retrieval of all records or retrieval of a particular record specified
by its rid. Sometimes we want to retrieve records by specifying some condition on
the fields of desired records, for example, “Find all employee records with age 35.” To
speed up such selections, we can build auxiliary data structures that allow us to quickly
find the rids of employee records that satisfy the given selection condition. Such an
auxiliary structure is called an index; we introduce indexes in Section 7.5.2.

7.5.1 Heap Files

The simplest file structure is an unordered file or heap file. The data in the pages of
a heap file is not ordered in any way, and the only guarantee is that one can retrieve
all records in the file by repeated requests for the next record. Every record in the file
has a unique rid, and every page in a file is of the same size.

Supported operations on a heap file include create and destroy files, insert a record,
delete a record with a given rid, get a record with a given rid, and scan all records in
the file. To get or delete a record with a given rid, note that we must be able to find
the id of the page containing the record, given the id of the record.

We must keep track of the pages in each heap file in order to support scans, and
we must keep track of pages that contain free space in order to implement insertion
efficiently. We discuss two alternative ways to maintain this information. In each
of these alternatives, pages must hold two pointers (which are page ids) for file-level
bookkeeping in addition to the data.

Storing Data: Disks and Files 215

Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The DBMS
can remember where the first page is located by maintaining a table containing pairs
of (heap_file_name, page_1_addr) in a known location on disk. We call the first page
of the file the header page.

An important task is to maintain information about empty slots created by deleting a
record from the heap file. This task has two distinct parts: how to keep track of free
space within a page and how to keep track of pages that have some free space. We
consider the first part in Section 7.6. The second part can be addressed by maintaining
a doubly linked list of pages with free space and a doubly linked list of full pages;
together, these lists contain all pages in the heap file. This organization is illustrated
in Figure 7.4; note that each pointer is really a page id.

N N TN Ty

Data Data Linked list of pages
/} page page with free space
Header
page
é\ N\ g Wi\ P’
& Data Data Linked list of
page page full pages

Figure 7.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space manager
and then added to the list of pages in the file (probably as a page with free space,
because it is unlikely that the new record will take up all the space on the page). If a
page is to be deleted from the heap file, it is removed from the list and the disk space
manager is told to deallocate it. (Note that the scheme can easily be generalized to
allocate or deallocate a sequence of several pages and maintain a doubly linked list of
these page sequences.)

One disadvantage of this scheme is that virtually all pages in a file will be on the free
list if records are of variable length, because it is likely that every page has at least a
few free bytes. To insert a typical record, we must retrieve and examine several pages
on the free list before we find one with enough free space. The directory-based heap
file organization that we discuss next addresses this problem.

216 CHAPTER 7

Directory of Pages

An alternative to a linked list of pages is to maintain a directory of pages. The
DBMS must remember where the first directory page of each heap file is located. The
directory is itself a collection of pages and is shown as a linked list in Figure 7.5. (Other
organizations are possible for the directory itself, of course.)

Data

\ i (\,\ 1
Header page page

Data
page 2

Data
page N

DIRECTORY

Figure 7.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file. As the
heap file grows or shrinks, the number of entries in the directory—and possibly the
number of pages in the directory itself—grows or shrinks correspondingly. Note that
since each directory entry is quite small in comparison to a typical page, the size of
the directory is likely to be very small in comparison to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether the
corresponding page has any free space, or a count per entry, indicating the amount of
free space on the page. If the file contains variable-length records, we can examine the
free space count for an entry to determine if the record will fit on the page pointed to
by the entry. Since several entries fit on a directory page, we can efficiently search for
a data page with enough space to hold a record that is to be inserted.

7.5.2 Introduction to Indexes

Sometimes we want to find all records that have a given value in a particular field. If
we can find the rids of all such records, we can locate the page containing each record
from the record’s rid; however, the heap file organization does not help us to find the

Storing Data: Disks and Files 217

rids of such records. An index is an auxiliary data structure that is intended to help
us find rids of records that meet a selection condition.

Consider how you locate a desired book in a library. You can search a collection of
index cards, sorted on author name or book title, to find the call number for the book.
Because books are stored according to call numbers, the call number enables you to
walk to the shelf that contains the book you need. Observe that an index on author
name cannot be used to locate a book by title, and vice versa; each index speeds up
certain kinds of searches, but not all. This is illustrated in Figure 7.6.

Index by Author

Where are \\\\\\\\\\\ v V

bockshy Admov? } Foundation| | Nemesis
— ¢ by Asimov | | by Asmov
Foundation? AN T

Index by Title

Figure 7.6 Indexes in a Library

The same ideas apply when we want to support efficient retrieval of a desired subset of
the data in a file. From an implementation standpoint, an index is just another kind
of file, containing records that direct traffic on requests for data records. Every index
has an associated search key, which is a collection of one or more fields of the file of
records for which we are building the index; any subset of the fields can be a search
key. We sometimes refer to the file of records as the indexed file.

An index is designed to speed up equality or range selections on the search key. For
example, if we wanted to build an index to improve the efficiency of queries about
employees of a given age, we could build an index on the age attribute of the employee
dataset. The records stored in an index file, which we refer to as entries to avoid
confusion with data records, allow us to find data records with a given search key
value. In our example the index might contain (age, rid) pairs, where rid identifies a
data record.

The pages in the index file are organized in some way that allows us to quickly locate
those entries in the index that have a given search key value. For example, we have to
find entries with age > 30 (and then follow the rids in the retrieved entries) in order to
find employee records for employees who are older than 30. Organization techniques,
or data structures, for index files are called access methods, and several are known,

218 CHAPTER 7

Rids in commercial systems: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all implement record ids as a page id and slot number.
Sybase ASE uses the following page organization, which is typical: Pages contain
a header followed by the rows and a slot array. The header contains the page
identity, its allocation state, page free space state, and a timestamp. The slot
array is simply a mapping of slot number to page offset.

Oracle 8 and SQL Server use logical record ids rather than page id and slot number
in one special case: If a table has a clustered index, then records in the table are
identified using the key value for the clustered index. This has the advantage that
secondary indexes don’t have to be reorganized if records are moved across pages.

including B+ trees (Chapter 9) and hash-based structures (Chapter 10). B+ tree index
files and hash-based index files are built using the page allocation and manipulation
facilities provided by the disk space manager, just like heap files.

7.6 PAGE FORMATS *

The page abstraction is appropriate when dealing with I/O issues, but higher levels
of the DBMS see data as a collection of records. In this section, we consider how a
collection of records can be arranged on a page. We can think of a page as a collection
of slots, each of which contains a record. A record is identified by using the pair
(page id, slot number); this is the record id (rid). (We remark that an alternative way
to identify records is to assign each record a unique integer as its rid and to maintain
a table that lists the page and slot of the corresponding record for each rid. Due to
the overhead of maintaining this table, the approach of using (page id, slot number)
as an rid is more common.)

We now consider some alternative approaches to managing slots on a page. The main
considerations are how these approaches support operations such as searching, insert-
ing, or deleting records on a page.

7.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots are
uniform and can be arranged consecutively within a page. At any instant, some slots
are occupied by records, and others are unoccupied. When a record is inserted into
the page, we must locate an empty slot and place the record there. The main issues
are how we keep track of empty slots and how we locate all records on a page. The
alternatives hinge on how we handle the deletion of a record.

Storing Data: Disks and Files 219

The first alternative is to store records in the first N slots (where N is the number
of records on the page); whenever a record is deleted, we move the last record on the
page into the vacated slot. This format allows us to locate the ith record on a page by
a simple offset calculation, and all empty slots appear together at the end of the page.
However, this approach does not work if there are external references to the record
that is moved (because the rid contains the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per slot,
to keep track of free slot information. Locating records on the page requires scanning
the bit array to find slots whose bit is on; when a record is deleted, its bit is turned
off. The two alternatives for storing fixed-length records are illustrated in Figure 7.7.
Note that in addition to the information about records on the page, a page usually
contains additional file-level information (e.g., the id of the next page in the file). The
figure does not show this additional information.

Packed Unpacked, Bitmap
Slot 1 Siot 1
Slot 2 Slot 2
© o0 g{)?a?:e o O 0
Slot N L
Slot M | | |
[N Page 1| | |o]1]m
A g e

JA Head

Figure 7.7 Alternative Page Organizations for Fixed-Length Records

Number of records Number of slots

The slotted page organization described for variable-length records in Section 7.6.2 can
also be used for fixed-length records. It becomes attractive if we need to move records
around on a page for reasons other than keeping track of space freed by deletions. A
typical example is that we want to keep the records on a page sorted (according to the
value in some field).

7.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed collection
of slots. The problem is that when a new record is to be inserted, we have to find an
empty slot of just the right length—if we use a slot that is too big, we waste space,
and obviously we cannot use a slot that is smaller than the record length. Therefore,
when a record is inserted, we must allocate just the right amount of space for it, and
when a record is deleted, we must move records to fill the hole created by the deletion,

220 CHAPTER 7

in order to ensure that all the free space on the page is contiguous. Thus, the ability
to move records on a page becomes very important.

The most flexible organization for variable-length records is to maintain a directory
of slots for each page, with a (record offset, record length) pair per slot. The first
component (record offset) is a ‘pointer’ to the record, as shown in Figure 7.8; it is the
offset in bytes from the start of the data area on the page to the start of the record.
Deletion is readily accomplished by setting the record offset to -1. Records can be
moved around on the page because the rid, which is the page number and slot number
(that is, position in the directory), does not change when the record is moved; only
the record offset stored in the slot changes.

DATA AREA PAGE i
rid = (i,N)

, offset of record from
| 7/ dart of dataarea

rid = (i,2)

Pointer to
of free space
/

\ Record with rid = (i,1)

\
length =24

FREE SPACE

[Fz] 000 [Puftafn]d

N R |

Number of entries
SLOT DIRECTORY inslot directory

Figure 7.8 Page Organization for Variable-Length Records

The space available for new records must be managed carefully because the page is not
preformatted into slots. One way to manage free space is to maintain a pointer (that
is, offset from the start of the data area on the page) that indicates the start of the
free space area. When a new record is too large to fit into the remaining free space,
we have to move records on the page to reclaim the space freed by records that have
been deleted earlier. The idea is to ensure that after reorganization, all records appear
contiguously, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot always be
removed from the slot directory, because slot numbers are used to identify records—by
deleting a slot, we change (decrement) the slot number of subsequent slots in the slot
directory, and thereby change the rid of records pointed to by subsequent slots. The

Storing Data: Disks and Files 221

only way to remove slots from the slot directory is to remove the last slot if the record
that it points to is deleted. However, when a record is inserted, the slot directory
should be scanned for an element that currently does not point to any record, and this
slot should be used for the new record. A new slot is added to the slot directory only
if all existing slots point to records. If inserts are much more common than deletes (as
is typically the case), the number of entries in the slot directory is likely to be very
close to the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move them around
frequently; for example, when we want to maintain them in some sorted order. Indeed,
when all records are the same length, instead of storing this common length information
in the slot for each record, we can store it once in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we discuss in
Chapter 9), we may not care about changing the rid of a record. In this case the slot
directory can be compacted after every record deletion; this strategy guarantees that
the number of entries in the slot directory is the same as the number of records on the
page. If we do not care about modifying rids, we can also sort records on a page in an
efficient manner by simply moving slot entries rather than actual records, which are
likely to be much larger than slot entries.

A simple variation on the slotted organization is to maintain only record offsets in
the slots. For variable-length records, the length is then stored with the record (say,
in the first bytes). This variation makes the slot directory structure for pages with
fixed-length records be the same as for pages with variable-length records.

7.7 RECORD FORMATS *

In this section we discuss how to organize fields within a record. While choosing a way
to organize the fields of a record, we must take into account whether the fields of the
record are of fixed or variable length and consider the cost of various operations on the
record, including retrieval and modification of fields.

Before discussing record formats, we note that in addition to storing individual records,
information that is common to all records of a given record type (such as the number
of fields and field types) is stored in the system catalog, which can be thought of as
a description of the contents of a database, maintained by the DBMS (Section 13.2).
This avoids repeated storage of the same information with each record of a given type.

222 CHAPTER 7

Record formats in commercial systems: In IBM DB2, fixed length fields are
at fixed offsets from the beginning of the record. Variable length fields have offset
and length in the fixed offset part of the record, and the fields themselves follow
the fixed length part of the record. Informix, Microsoft SQL Server, and Sybase
ASE use the same organization with minor variations. In Oracle 8, records are
structured as if all fields are potentially variable length; a record is a sequence of
length—data pairs, with a special length value used to denote a null value.

7.7.1 Fixed-Length Records

In a fixed-length record, each field has a fixed length (that is, the value in this field
is of the same length in all records), and the number of fields is also fixed. The fields
of such a record can be stored consecutively, and, given the address of the record, the
address of a particular field can be calculated using information about the lengths of
preceding fields, which is available in the system catalog. This record organization is
illustrated in Figure 7.9.

F1 F2 F3 F4 Fi=Field i
L1 =—1L12 %\} L3 L4 Li = Length of
field i
Base address (B) Address=B+L1+L2

Figure 7.9 Organization of Records with Fixed-Length Fields

7.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number of fields.
If the number of fields is fixed, a record is of variable length only because some of its
fields are of variable length.

One possible organization is to store fields consecutively, separated by delimiters (which
are special characters that do not appear in the data itself). This organization requires
a scan of the record in order to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use as an array
of integer offsets—the ith integer in this array is the starting address of the ith field
value relative to the start of the record. Note that we also store an offset to the end of
the record; this offset is needed to recognize where the last field ends. Both alternatives
are illustrated in Figure 7.10.

Storing Data: Disks and Files 223

F1 $ F2 $ F3 |$ F4 $ Ei = Fidd i
Fields delimited by special symbol $
F1 F2 F3 F4

Array of field offsets

Figure 7.10 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array, we
get direct access to any field. We also get a clean way to deal with null values. A
null value is a special value used to denote that the value for a field is unavailable or
inapplicable. If a field contains a null value, the pointer to the end of the field is set
to be the same as the pointer to the beginning of the field. That is, no space is used
for representing the null value, and a comparison of the pointers to the beginning and
the end of the field is used to determine that the value in the field is null.

Variable-length record formats can obviously be used to store fixed-length records as
well; sometimes, the extra overhead is justified by the added flexibility, because issues
such as supporting null values and adding fields to a record type arise with fixed-length
records as well.

Having variable-length fields in a record can raise some subtle issues, especially when
a record is modified.

m Modifying a field may cause it to grow, which requires us to shift all subsequent
fields to make space for the modification in all three record formats presented
above.

m A record that is modified may no longer fit into the space remaining on its page.
If so, it may have to be moved to another page. If rids, which are used to ‘point’
to a record, include the page number (see Section 7.6), moving a record to another
page causes a problem. We may have to leave a ‘forwarding address’ on this page
identifying the new location of the record. And to ensure that space is always
available for this forwarding address, we would have to allocate some minimum
space for each record, regardless of its length.

m A record may grow so large that it no longer fits on any one page. We have to
deal with this condition by breaking a record into smaller records. The smaller

224

CHAPTER 7

Large records in real systems: In Sybase ASE, a record can be at most 1962
bytes. This limit is set by the 2 KB log page size, since records are not allowed to
be larger than a page. The exceptions to this rule are BLOBs and CLOBSs, which
consist of a set of bidirectionally linked pages. IBM DB2 and Microsoft SQL
Server also do not allow records to span pages, although large objects are allowed
to span pages and are handled separately from other data types. In DB2, record
size is limited only by the page size; in SQL Server, a record can be at most 8 KB,
excluding LOBs. Informix and Oracle 8 allow records to span pages. Informix
allows records to be at most 32 KB, while Oracle has no maximum record size;
large records are organized as a singly directed list.

7.8

records could be chained together—part of each smaller record is a pointer to the
next record in the chain—to enable retrieval of the entire original record.

POINTS TO REVIEW

Memory in a computer system is arranged into primary storage (cache and main
memory), secondary storage (magnetic disks), and tertiary storage (optical disks
and tapes). Storage devices that store data persistently are called nonvolatile.
(Section 7.1)

Disks provide inexpensive, nonvolatile storage. The unit of transfer from disk
into main memory is called a block or page. Blocks are arranged on tracks on
several platters. The time to access a page depends on its location on disk. The
access time has three components: the time to move the disk arm to the de-
sired track (seek time), the time to wait for the desired block to rotate under the
disk head (rotational delay), and the time to transfer the data (transfer time).
(Section 7.1.1)

Careful placement of pages on the disk to exploit the geometry of a disk can
minimize the seek time and rotational delay when pages are read sequentially.
(Section 7.1.2)

A disk array is an arrangement of several disks that are attached to a computer.
Performance of a disk array can be increased through data striping and reliability
can be increased through redundancy. Different RAID organizations called RAID
levels represent different trade-offs between reliability and performance. (Sec-
tion 7.2)

In a DBMS, the disk space manager manages space on disk by keeping track of
free and used disk blocks. It also provides the abstraction of the data being a
collection of disk pages. DBMSs rarely use OS files for performance, functionality,
and portability reasons. (Section 7.3)

Storing Data: Disks and Files 225

= In a DBMS, all page requests are centrally processed by the buffer manager. The
buffer manager transfers pages between the disk and a special area of main memory
called the buffer pool, which is divided into page-sized chunks called frames. For
each page in the buffer pool, the buffer manager maintains a pin_count, which
indicates the number of users of the current page, and a dirty flag, which indicates
whether the page has been modified. A requested page is kept in the buffer pool
until it is released (unpinned) by all users. Subsequently, a page is written back to
disk (if it has been modified while in the buffer pool) when the frame containing
it is chosen for replacement. (Section 7.4)

m The choice of frame to replace is based on the buffer manager’s replacement policy,
for example LRU or clock. Repeated scans of a file can cause sequential flooding
if LRU is used. (Section 7.4.1)

m A DBMS buffer manager can often predict the access pattern for disk pages. It
takes advantage of such opportunities by issuing requests to the disk to prefetch
several pages at a time. This technique minimizes disk arm movement and reduces
I/O time. A DBMS also needs to be able to force a page to disk to ensure crash
recovery. (Section 7.4.2)

m Database pages are organized into files, and higher-level DBMS code views the
data as a collection of records. (Section 7.5)

m The simplest file structure is a heap file, which is an unordered collection of records.
Heap files are either organized as a linked list of data pages or as a list of directory
pages that refer to the actual pages with data. (Section 7.5.1)

m [ndezes are auxiliary structures that support efficient retrieval of records based on
the values of a search key. (Section 7.5.2)

m A page contains a collection of slots, each of which identifies a record. Slotted
pages allow a record to be moved around on a page without altering the record
identifier or rid, a (page id, slot number) pair. Efficient page organizations exist
for either fixed-length records (bitmap of free slots) or variable-length records (slot
directory). (Section 7.6)

m For fixed-length records, the fields can be stored consecutively and the address
of a field can be easily calculated. Variable-length records can be stored with
an array of offsets at the beginning of the record or the individual can be fields
separated by a delimiter symbol. The organization with an array of offsets offers
direct access to fields (which can be important if records are long and contain
many fields) and support for null values. (Section 7.7)

226 CHAPTER 7

EXERCISES

Exercise 7.1 What is the most important difference between a disk and a tape?
Exercise 7.2 Explain the terms seek time, rotational delay, and transfer time.

Exercise 7.3 Both disks and main memory support direct access to any desired location
(page). On average, main memory accesses are faster, of course. What is the other important
difference (from the perspective of the time required to access a desired page)?

Exercise 7.4 If you have a large file that is frequently scanned sequentially, explain how you
would store the pages in the file on a disk.

Exercise 7.5 Consider a disk with a sector size of 512 bytes, 2,000 tracks per surface, 50
sectors per track, 5 double-sided platters, average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is
the capacity of the disk?

2. How many cylinders does the disk have?
3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2,0487 51,2007

4. If the disk platters rotate at 5,400 rpm (revolutions per minute), what is the maximum
rotational delay?

5. Assuming that one track of data can be transferred per revolution, what is the transfer
rate?

Exercise 7.6 Consider again the disk specifications from Exercise 7.5 and suppose that a
block size of 1,024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes
each is to be stored on such a disk and that no record is allowed to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially
on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what is the
page stored on block 1 of track 1 on the next disk surface? How would your answer
change if the disk were capable of reading/writing from all heads in parallel?

5. What is the time required to read a file containing 100,000 records of 100 bytes each
sequentially? Again, how would your answer change if the disk were capable of read-
ing/writing from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each
in some random order? Note that in order to read a record, the block containing the
record has to be fetched from disk. Assume that each block request incurs the average
seek time and rotational delay.

Exercise 7.7 Explain what the buffer manager must do to process a read request for a page.
What happens if the requested page is in the pool but not pinned?

Storing Data: Disks and Files 227

Exercise 7.8 When does a buffer manager write a page to disk?

Exercise 7.9 What does it mean to say that a page is pinned in the buffer pool? Who is
responsible for pinning pages? Who is responsible for unpinning pages?

Exercise 7.10 When a page in the buffer pool is modified, how does the DBMS ensure that
this change is propagated to disk? (Explain the role of the buffer manager as well as the
modifier of the page.)

Exercise 7.11 What happens if there is a page request when all pages in the buffer pool are
dirty?

Exercise 7.12 What is sequential flooding of the buffer pool?

Exercise 7.13 Name an important capability of a DBMS buffer manager that is not sup-
ported by a typical operating system’s buffer manager.

Exercise 7.14 Explain the term prefetching. Why is it important?

Exercise 7.15 Modern disks often have their own main memory caches, typically about one
MB, and use this to do prefetching of pages. The rationale for this technique is the empirical
observation that if a disk page is requested by some (not necessarily database!) application,
80 percent of the time the next page is requested as well. So the disk gambles by reading
ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled
by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently, each
scanning a different file.

3. Can the above problem be addressed by the DBMS buffer manager doing its own prefetch-
ing? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which
is used to cache pages from a different file. Does this technique help, with respect to the
above problem? Given this technique, does it matter whether the DBMS buffer manager
also does prefetching?

Exercise 7.16 Describe two possible record formats. What are the trade-offs between them?
Exercise 7.17 Describe two possible page formats. What are the trade-offs between them?
Exercise 7.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a maximum

number of slots) and to allocate the directory array when the page is created. Discuss
the pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according
to the value in some field) without moving records and without changing the record ids.

228 CHAPTER 7

Exercise 7.19 Consider the two internal organizations for heap files (using lists of pages and
a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you choose
if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations?

Exercise 7.20 Consider a list-based organization of the pages in a heap file in which two
lists are maintained: a list of all pages in the file and a list of all pages with free space. In
contrast, the list-based organization discussed in the text maintains a list of full pages and a
list of pages with free space.

1. What are the trade-offs, if any? Is one of them clearly superior?
2. For each of these organizations, describe a page format that can be used to implement

it.

Exercise 7.21 Modern disk drives store more sectors on the outer tracks than the inner
tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher
on the outer tracks. The seek time and rotational delay are unchanged. Considering this in-
formation, explain good strategies for placing files with the following kinds of access patterns:

Frequent, random accesses to a small file (e.g., catalog relations).
Sequential scans of a large file (e.g., selection from a relation with no index).

Random accesses to a large file via an index (e.g., selection from a relation via the index).

=W e

Sequential scans of a small file.

PROJECT-BASED EXERCISES

Exercise 7.22 Study the public interfaces for the disk space manager, the buffer manager,
and the heap file layer in Minibase.

. Are heap files with variable-length records supported?
. What page format is used in Minibase heap files?

1
2
3. What happens if you insert a record whose length is greater than the page size?
4. How is free space handled in Minibase?

5

. Note to Instructors: See Appendixz B for additional project-based exercises.

BIBLIOGRAPHIC NOTES

Salzberg [564] and Wiederhold [681] discuss secondary storage devices and file organizations
in detail.

Storing Data: Disks and Files 229

RAID was originally proposed by Patterson, Gibson, and Katz [512]. The article by Chen
et al. provides an excellent survey of RAID [144] . Books about RAID include Gibson’s
dissertation [269] and the publications from the RAID Advisory Board [527].

The design and implementation of storage managers is discussed in [54, 113, 413, 629, 184].
With the exception of [184], these systems emphasize extensibility, and the papers contain
much of interest from that standpoint as well. Other papers that cover storage management
issues in the context of significant implemented prototype systems are [415] and [513]. The
Dali storage manager, which is optimized for main memory databases, is described in [345].
Three techniques for implementing long fields are compared in [83].

Stonebraker discusses operating systems issues in the context of databases in [626]. Several
buffer management policies for database systems are compared in [150]. Buffer management
is also studied in [101, 142, 223, 198].

8 FILE ORGANIZATIONS & INDEXES

If you don’t find it in the index, look very carefully through the entire catalog.

—Sears, Roebuck, and Co., Consumers’ Guide, 1897

A file organization is a way of arranging the records in a file when the file is stored
on disk. A file of records is likely to be accessed and modified in a variety of ways,
and different ways of arranging the records enable different operations over the file
to be carried out efficiently. For example, if we want to retrieve employee records in
alphabetical order, sorting the file by name is a good file organization. On the other
hand, if we want to retrieve all employees whose salary is in a given range, sorting
employee records by name is not a good file organization. A DBMS supports several
file organization techniques, and an important task of a DBA is to choose a good
organization for each file, based on its expected pattern of use.

We begin this chapter with a discussion in Section 8.1 of the cost model that we
use in this book. In Section 8.2, we present a simplified analysis of three basic file
organizations: files of randomly ordered records (i.e., heap files), files sorted on some
field, and files that are hashed on some fields. Our objective is to emphasize the
importance of choosing an appropriate file organization.

Each file organization makes certain operations efficient, but often we are interested in
supporting more than one operation. For example, sorting a file of employee records on
the name field makes it easy to retrieve employees in alphabetical order, but we may
also want to retrieve all employees who are 55 years old; for this, we would have to scan
the entire file. To deal with such situations, a DBMS builds an index, as we described
in Section 7.5.2. An index on a file is designed to speed up operations that are not
efficiently supported by the basic organization of records in that file. Later chapters
cover several specific index data structures; in this chapter we focus on properties of
indexes that do not depend on the specific index data structure used.

Section 8.3 introduces indexing as a general technique that can speed up retrieval of

records with given values in the search field. Section 8.4 discusses some important
properties of indexes, and Section 8.5 discusses DBMS commands to create an index.

230

File Organizations and Indexes 231

8.1 COST MODEL

In this section we introduce a cost model that allows us to estimate the cost (in terms
of execution time) of different database operations. We will use the following notation
and assumptions in our analysis. There are B data pages with R records per page.
The average time to read or write a disk page is D, and the average time to process
a record (e.g., to compare a field value to a selection constant) is C. In the hashed
file organization, we will use a function, called a hash function, to map a record into a
range of numbers; the time required to apply the hash function to a record is H.

Typical values today are D = 15 milliseconds, C' and H = 100 nanoseconds; we there-
fore expect the cost of I/O to dominate. This conclusion is supported by current
hardware trends, in which CPU speeds are steadily rising, whereas disk speeds are not
increasing at a similar pace. On the other hand, as main memory sizes increase, a
much larger fraction of the needed pages are likely to fit in memory, leading to fewer
I/0O requests.

We therefore use the number of disk page 1/Os as our cost metric in this book.

m We emphasize that real systems must consider other aspects of cost, such as CPU
costs (and transmission costs in a distributed database). However, our goal is
primarily to present the underlying algorithms and to illustrate how costs can
be estimated. Therefore, for simplicity, we have chosen to concentrate on only
the I/O component of cost. Given the fact that I/O is often (even typically) the
dominant component of the cost of database operations, considering I/O costs
gives us a good first approximation to the true costs.

m Even with our decision to focus on I/O costs, an accurate model would be too
complex for our purposes of conveying the essential ideas in a simple way. We have
therefore chosen to use a simplistic model in which we just count the number of
pages that are read from or written to disk as a measure of I/O. We have ignored
the important issue of blocked access—typically, disk systems allow us to read
a block of contiguous pages in a single I/O request. The cost is equal to the time
required to seek the first page in the block and to transfer all pages in the block.
Such blocked access can be much cheaper than issuing one I/O request per page
in the block, especially if these requests do not follow consecutively: We would
have an additional seek cost for each page in the block.

This discussion of the cost metric we have chosen must be kept in mind when we
discuss the cost of various algorithms in this chapter and in later chapters. We discuss
the implications of the cost model whenever our simplifying assumptions are likely to
affect the conclusions drawn from our analysis in an important way.

232 CHAPTER 8

8.2 COMPARISON OF THREE FILE ORGANIZATIONS

We now compare the costs of some simple operations for three basic file organizations:
files of randomly ordered records, or heap files; files sorted on a sequence of fields; and
files that are hashed on a sequence of fields. For sorted and hashed files, the sequence of
fields (e.g., salary, age) on which the file is sorted or hashed is called the search key.
Note that the search key for an index can be any sequence of one or more fields; it need
not uniquely identify records. We observe that there is an unfortunate overloading of
the term key in the database literature. A primary key or candidate key (fields that
uniquely identify a record; see Chapter 3) is unrelated to the concept of a search key.

Our goal is to emphasize how important the choice of an appropriate file organization
can be. The operations that we consider are described below.

m Scan: Fetch all records in the file. The pages in the file must be fetched from
disk into the buffer pool. There is also a CPU overhead per record for locating
the record on the page (in the pool).

m Search with equality selection: Fetch all records that satisfy an equality selec-
tion, for example, “Find the Students record for the student with sid 23.” Pages
that contain qualifying records must be fetched from disk, and qualifying records
must be located within retrieved pages.

m Search with range selection: Fetch all records that satisfy a range selection,
for example, “Find all Students records with name alphabetically after ‘Smith.” ”

m Insert: Insert a given record into the file. We must identify the page in the file
into which the new record must be inserted, fetch that page from disk, modify it
to include the new record, and then write back the modified page. Depending on
the file organization, we may have to fetch, modify, and write back other pages as
well.

m Delete: Delete a record that is specified using its rid. We must identify the
page that contains the record, fetch it from disk, modify it, and write it back.
Depending on the file organization, we may have to fetch, modify, and write back
other pages as well.

8.2.1 Heap Files

Scan: The cost is B(D + RC) because we must retrieve each of B pages taking time
D per page, and for each page, process R records taking time C' per record.

Search with equality selection: Suppose that we know in advance that exactly one
record matches the desired equality selection, that is, the selection is specified on a
candidate key. On average, we must scan half the file, assuming that the record exists

File Organizations and Indexes 233

and the distribution of values in the search field is uniform. For each retrieved data
page, we must check all records on the page to see if it is the desired record. The cost
is 0.5B(D + RC). If there is no record that satisfies the selection, however, we must
scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., “Find students aged 18”), we
always have to scan the entire file because several records with age = 18 could be
dispersed all over the file, and we have no idea how many such records exist.

Search with range selection: The entire file must be scanned because qualifying
records could appear anywhere in the file, and we do not know how many qualifying
records exist. The cost is B(D + RC).

Insert: We assume that records are always inserted at the end of the file. We must
fetch the last page in the file, add the record, and write the page back. The cost is
2D+ C.

Delete: We must find the record, remove the record from the page, and write the
modified page back. We assume that no attempt is made to compact the file to reclaim
the free space created by deletions, for simplicity.! The cost is the cost of searching
plus C + D.

We assume that the record to be deleted is specified using the record id. Since the
page id can easily be obtained from the record id, we can directly read in the page.
The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition on some
fields, the cost of searching is given in our discussion of equality and range selections.
The cost of deletion is also affected by the number of qualifying records, since all pages
containing such records must be modified.

8.2.2 Sorted Files

Scan: The cost is B(D + RC) because all pages must be examined. Note that this
case is no better or worse than the case of unordered files. However, the order in which
records are retrieved corresponds to the sort order.

Search with equality selection: We assume that the equality selection is specified
on the field by which the file is sorted; if not, the cost is identical to that for a heap

n practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot, as discussed in Chapter 7. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison of heap files, sorted files, and hashed
files.

234 CHAPTER 8

file. We can locate the first page containing the desired record or records, should any
qualifying records exist, with a binary search in logs B steps. (This analysis assumes
that the pages in the sorted file are stored sequentially, and we can retrieve the ith page
on the file directly in one disk I/O. This assumption is not valid if, for example, the
sorted file is implemented as a heap file using the linked-list organization, with pages
in the appropriate sorted order.) Each step requires a disk I/O and two comparisons.
Once the page is known, the first qualifying record can again be located by a binary
search of the page at a cost of ClogaR. The cost is DlogsB 4+ Cloga R, which is a
significant improvement over searching heap files.

If there are several qualifying records (e.g., “Find all students aged 18”), they are
guaranteed to be adjacent to each other due to the sorting on age, and so the cost of
retrieving all such records is the cost of locating the first such record (Dlogs B+Clogs R)
plus the cost of reading all the qualifying records in sequential order. Typically, all
qualifying records fit on a single page. If there are no qualifying records, this is es-
tablished by the search for the first qualifying record, which finds the page that would
have contained a qualifying record, had one existed, and searches that page.

Search with range selection: Again assuming that the range selection is on the
sort field, the first record that satisfies the selection is located as it is for search with
equality. Subsequently, data pages are sequentially retrieved until a record is found
that does not satisfy the range selection; this is similar to an equality search with many
qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that satisfy the
search. The cost of the search includes the cost of fetching the first page containing
qualifying, or matching, records. For small range selections, all qualifying records
appear on this page. For larger range selections, we have to fetch additional pages
containing matching records.

Insert: To insert a record while preserving the sort order, we must first find the
correct position in the file, add the record, and then fetch and rewrite all subsequent
pages (because all the old records will be shifted by one slot, assuming that the file
has no empty slots). On average, we can assume that the inserted record belongs in
the middle of the file. Thus, we must read the latter half of the file and then write
it back after adding the new record. The cost is therefore the cost of searching to
find the position of the new record plus 2 * (0.5B(D + R(C')), that is, search cost plus
B(D + RC).

Delete: We must search for the record, remove the record from the page, and write
the modified page back. We must also read and write all subsequent pages because all

File Organizations and Indexes 235

records that follow the deleted record must be moved up to compact the free space.?
The cost is the same as for an insert, that is, search cost plus B(D + RC). Given the
rid of the record to delete, we can fetch the page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost of
deletion depends on the number of qualifying records. If the condition is specified on
the sort field, qualifying records are guaranteed to be contiguous due to the sorting,
and the first qualifying record can be located using binary search.

8.2.3 Hashed Files

A simple hashed file organization enables us to locate records with a given search key
value quickly, for example, “Find the Students record for Joe,” if the file is hashed on
the name field.

The pages in a hashed file are grouped into buckets. Given a bucket number, the
hashed file structure allows us to find the primary page for that bucket. The bucket
to which a record belongs can be determined by applying a special function called
a hash function, to the search field(s). On inserts, a record is inserted into the
appropriate bucket, with additional ‘overflow’ pages allocated if the primary page for
the bucket becomes full. The overflow pages for each bucket are maintained in a linked
list. To search for a record with a given search key value, we simply apply the hash
function to identify the bucket to which such records belong and look at all pages in
that bucket.

This organization is called a static hashed file, and its main drawback is that long
chains of overflow pages can develop. This can affect performance because all pages in
a bucket have to be searched. Dynamic hash structures that address this problem are
known, and we discuss them in Chapter 10; for the analysis in this chapter, we will
simply assume that there are no overflow pages.

Scan: In a hashed file, pages are kept at about 80 percent occupancy (to leave some
space for future insertions and minimize overflow pages as the file expands). This is
achieved by adding a new page to a bucket when each existing page is 80 percent full,
when records are initially organized into a hashed file structure. Thus, the number
of pages, and the cost of scanning all the data pages, is about 1.25 times the cost of
scanning an unordered file, that is, 1.25B(D + RC).

Search with equality selection: This operation is supported very efficiently if the
selection is on the search key for the hashed file. (Otherwise, the entire file must

2Unlike a heap file, there is no inexpensive way to manage free space, so we account for the cost
of compacting a file when a record is deleted.

236 CHAPTER 8

be scanned.) The cost of identifying the page that contains qualifying records is H;
assuming that this bucket consists of just one page (i.e., no overflow pages), retrieving
it costs D. The cost is H + D + 0.5RC if we assume that we find the record after
scanning half the records on the page. This is even lower than the cost for sorted files.
If there are several qualifying records, or none, we still have to retrieve just one page,
but we must scan the entire page.

Note that the hash function associated with a hashed file maps a record to a bucket
based on the values in all the search key fields; if the value for any one of these fields is
not specified, we cannot tell which bucket the record belongs to. Thus, if the selection
is not an equality condition on all the search key fields, we have to scan the entire file.

Search with range selection: The hash structure offers no help; even if the range
selection is on the search key, the entire file must be scanned. The cost is 1.25B(D +
RQC).

Insert: The appropriate page must be located, modified, and then written back. The
cost is the cost of search plus C' + D.

Delete: We must search for the record, remove it from the page, and write the modified
page back. The cost is again the cost of search plus C' + D (for writing the modified

page).

If records to be deleted are specified using an equality condition on the search key, all
qualifying records are guaranteed to be in the same bucket, which can be identified by
applying the hash function.

8.2.4 Choosing a File Organization

Figure 8.1 compares I/O costs for the three file organizations. A heap file has good
storage efficiency and supports fast scan, insertion, and deletion of records. However,
it is slow for searches.

File Scan Equality | Range Insert Delete

Type Search Search

Heap BD 0.56BD BD 2D Search + D

Sorted | BD DlogsB | DlogaB+# | Search+ BD | Search + BD
matches

Hashed | 1.25BD | D 1.25BD 2D Search + D

Figure 8.1 A Comparison of I/O Costs

File Organizations and Indexes 237

A sorted file also offers good storage efficiency, but insertion and deletion of records is
slow. It is quite fast for searches, and it is the best structure for range selections. It is
worth noting that in a real DBMS,; a file is almost never kept fully sorted. A structure
called a B+ tree, which we will discuss in Chapter 9, offers all the advantages of a
sorted file and supports inserts and deletes efficiently. (There is a space overhead for
these benefits, relative to a sorted file, but the trade-off is well worth it.)

Files are sometimes kept ‘almost sorted’ in that they are originally sorted, with some
free space left on each page to accommodate future insertions, but once this space is
used, overflow pages are used to handle insertions. The cost of insertion and deletion
is similar to a heap file, but the degree of sorting deteriorates as the file grows.

A hashed file does not utilize space quite as well as a sorted file, but insertions and
deletions are fast, and equality selections are very fast. However, the structure offers
no support for range selections, and full file scans are a little slower; the lower space
utilization means that files contain more pages.

In summary, Figure 8.1 demonstrates that no one file organization is uniformly superior
in all situations. An unordered file is best if only full file scans are desired. A hashed
file is best if the most common operation is an equality selection. A sorted file is best
if range selections are desired. The organizations that we have studied here can be
improved on—the problems of overflow pages in static hashing can be overcome by
using dynamic hashing structures, and the high cost of inserts and deletes in a sorted
file can be overcome by using tree-structured indexes—but the main observation, that
the choice of an appropriate file organization depends on how the file is commonly
used, remains valid.

8.3 OVERVIEW OF INDEXES

As we noted earlier, an index on a file is an auxiliary structure designed to speed up
operations that are not efficiently supported by the basic organization of records in
that file.

An index can be viewed as a collection of data entries, with an efficient way to locate
all data entries with search key value k. Each such data entry, which we denote as
k*, contains enough information to enable us to retrieve (one or more) data records
with search key value k. (Note that a data entry is, in general, different from a data
record!) Figure 8.2 shows an index with search key sal that contains (sal, rid) pairs as
data entries. The 7id component of a data entry in this index is a pointer to a record
with search key value sal.

Two important questions to consider are:

238 CHAPTER 8

h(age)=00 | Smith, 44,3000 <— |
€)= e [T 3000 |
& -7 Jones, 40, 6003 |y >~ _ h(sa)=00

P Tracy, 44, 5004 | L~ 3000 ~.

- 5004 S

age *" hage) =01 < - s
(g). hegg=01 5004 -
@ 7| Ashby, 25,3000 [1 |

S Basu, 33,4003 |1 -7

S Bristow, 29, 2007 400317 h(sal)=11
. N— 2007
h(age)=10 "~ J 6003
Cass, 50, 5004

/” 6003
Daniels, 22, 6003 |

File of <sal, rid> pairs
File hashed on age hashed on sal

Figure 8.2 File Hashed on age, with Index on sal

m How are data entries organized in order to support efficient retrieval of data entries
with a given search key value?

m FExactly what is stored as a data entry?

One way to organize data entries is to hash data entries on the search key. In this
approach, we essentially treat the collection of data entries as a file of records, hashed
on the search key. This is how the index on sal shown in Figure 8.2 is organized. The
hash function h for this example is quite simple; it converts the search key value to its
binary representation and uses the two least significant bits as the bucket identifier.
Another way to organize data entries is to build a data structure that directs a search
for data entries. Several index data structures are known that allow us to efficiently find
data entries with a given search key value. We will study tree-based index structures
in Chapter 9 and hash-based index structures in Chapter 10.

We consider what is stored in a data entry in the following section.

8.3.1 Alternatives for Data Entries in an Index

A data entry kx allows us to retrieve one or more data records with key value k. We
need to consider three main alternatives:

1. A data entry kx is an actual data record (with search key value k).

2. A data entry is a (k, rid) pair, where rid is the record id of a data record with
search key value k.

3. A data entry is a (k, rid-list) pair, where rid-list is a list of record ids of data
records with search key value k.

File Organizations and Indexes 239

Observe that if an index uses Alternative (1), there is no need to store the data records
separately, in addition to the contents of the index. We can think of such an index
as a special file organization that can be used instead of a sorted file or a heap file
organization. Figure 8.2 illustrates Alternatives (1) and (2). The file of employee
records is hashed on age; we can think of this as an index structure in which a hash
function is applied to the age value to locate the bucket for a record and Alternative
(1) is used for data entries. The index on sal also uses hashing to locate data entries,
which are now (sal, rid of employee record) pairs; that is, Alternative (2) is used for
data entries.

Alternatives (2) and (3), which contain data entries that point to data records, are
independent of the file organization that is used for the indexed file (i.e., the file
that contains the data records). Alternative (3) offers better space utilization than
Alternative (2), but data entries are variable in length, depending on the number of
data records with a given search key value.

If we want to build more than one index on a collection of data records, for example,
we want to build indexes on both the age and the sal fields as illustrated in Figure 8.2,
at most one of the indexes should use Alternative (1) because we want to avoid storing
data records multiple times.

We note that different index data structures used to speed up searches for data entries
with a given search key can be combined with any of the three alternatives for data
entries.

8.4 PROPERTIES OF INDEXES

In this section, we discuss some important properties of an index that affect the effi-
ciency of searches using the index.

8.4.1 Clustered versus Unclustered Indexes

When a file is organized so that the ordering of data records is the same as or close
to the ordering of data entries in some index, we say that the index is clustered.
An index that uses Alternative (1) is clustered, by definition. An index that uses
Alternative (2) or Alternative (3) can be a clustered index only if the data records are
sorted on the search key field. Otherwise, the order of the data records is random,
defined purely by their physical order, and there is no reasonable way to arrange the
data entries in the index in the same order. (Indexes based on hashing do not store
data entries in sorted order by search key, so a hash index is clustered only if it uses
Alternative (1).)

240 CHAPTER 8

Indexes that maintain data entries in sorted order by search key use a collection of
index entries, organized into a tree structure, to guide searches for data entries, which
are stored at the leaf level of the tree in sorted order. Clustered and unclustered tree
indexes are illustrated in Figures 8.3 and 8.4; we discuss tree-structured indexes further
in Chapter 9. For simplicity, in Figure 8.3 we assume that the underlying file of data
records is fully sorted.

Index entries]
(Direct search for
data entries)
Index file
~ == Dataentries
Data .
Datafile
records
Figure 8.3 Clustered Tree Index Using Alternative (2)
Index entries]
(Direct search for
data entries)
Index file
=~ == Dataentries
Data .
Datafile
records

Figure 8.4 Unclustered Tree Index Using Alternative (2)

In practice, data records are rarely maintained in fully sorted order, unless data records
are stored in an index using Alternative (1), because of the high overhead of moving
data records around to preserve the sort order as records are inserted and deleted.
Typically, the records are sorted initially and each page is left with some free space to
absorb future insertions. If the free space on a page is subsequently used up (by records

File Organizations and Indexes 241

inserted after the initial sorting step), further insertions to this page are handled using a
linked list of overflow pages. Thus, after a while, the order of records only approximates
the intended sorted order, and the file must be reorganized (i.e., sorted afresh) to
ensure good performance.

Thus, clustered indexes are relatively expensive to maintain when the file is updated.
Another reason clustered indexes are expensive to maintain is that data entries may
have to be moved across pages, and if records are identified by a combination of page
id and slot, as is often the case, all places in the database that point to a moved
record (typically, entries in other indexes for the same collection of records) must also
be updated to point to the new location; these additional updates can be very time-
consuming.

A data file can be clustered on at most one search key, which means that we can have
at most one clustered index on a data file. An index that is not clustered is called an
unclustered index; we can have several unclustered indexes on a data file. Suppose
that Students records are sorted by age; an index on age that stores data entries in
sorted order by age is a clustered index. If in addition we have an index on the gpa
field, the latter must be an unclustered index.

The cost of using an index to answer a range search query can vary tremendously
based on whether the index is clustered. If the index is clustered, the rids in qualifying
data entries point to a contiguous collection of records, as Figure 8.3 illustrates, and
we need to retrieve only a few data pages. If the index is unclustered, each qualifying
data entry could contain a rid that points to a distinct data page, leading to as many
data page I/Os as the number of data entries that match the range selection! This
point is discussed further in Chapters 11 and 16.

8.4.2 Dense versus Sparse Indexes

An index is said to be dense if it contains (at least) one data entry for every search
key value that appears in a record in the indexed file.®> A sparse index contains one
entry for each page of records in the data file. Alternative (1) for data entries always
leads to a dense index. Alternative (2) can be used to build either dense or sparse
indexes. Alternative (3) is typically only used to build a dense index.

We illustrate sparse and dense indexes in Figure 8.5. A data file of records with three
fields (name, age, and sal) is shown with two simple indexes on it, both of which use
Alternative (2) for data entry format. The first index is a sparse, clustered index on
name. Notice how the order of data entries in the index corresponds to the order of

3We say ‘at least’ because several data entries could have the same search key value if there are
duplicates and we use Alternative (2).

242 CHAPTER 8

records in the data file. There is one data entry per page of data records. The second
index is a dense, unclustered index on the age field. Notice that the order of data
entries in the index differs from the order of data records. There is one data entry in
the index per record in the data file (because we use Alternative (2)).

7| Ashby, 25,3000 |3
22
Basu, 33, 4003 ~
Bristow, 30, 2007 |< 25
[T~ 30
Ashby
J4 33
Cass —f || Cass, 50,5004 N\
4
Smith Daniels, 22, 6003
Jones, 40, 6003 || 40
44
44
Smith, 44, 3000 |1
50
Tracy, 44, 5004 [T
Sparse index Dense index
on on
name DATA age

Figure 8.5 Sparse versus Dense Indexes

We cannot build a sparse index that is not clustered. Thus, we can have at most one
sparse index. A sparse index is typically much smaller than a dense index. On the

other hand, some very useful optimization techniques rely on an index being dense
(Chapter 16).

A data file is said to be inverted on a field if there is a dense secondary index on this
field. A fully inverted file is one in which there is a dense secondary index on each
field that does not appear in the primary key.*

8.4.3 Primary and Secondary Indexes

An index on a set of fields that includes the primary key is called a primary index.
An index that is not a primary index is called a secondary index. (The terms primary
index and secondary index are sometimes used with a different meaning: An index that
uses Alternative (1) is called a primary index, and one that uses Alternatives (2) or
(3) is called a secondary index. We will be consistent with the definitions presented
earlier, but the reader should be aware of this lack of standard terminology in the
literature.)

4This terminology arises from the observation that these index structures allow us to take the value
in a non key field and get the values in key fields, which is the inverse of the more intuitive case in
which we use the values of the key fields to locate the record.

File Organizations and Indexes 243

Two data entries are said to be duplicates if they have the same value for the search
key field associated with the index. A primary index is guaranteed not to contain
duplicates, but an index on other (collections of) fields can contain duplicates. Thus,
in general, a secondary index contains duplicates. If we know that no duplicates exist,
that is, we know that the search key contains some candidate key, we call the index a
unique index.

8.4.4 Indexes Using Composite Search Keys

The search key for an index can contain several fields; such keys are called composite
search keys or concatenated keys. As an example, consider a collection of employee
records, with fields name, age, and sal, stored in sorted order by name. Figure 8.6
illustrates the difference between a composite index with key (age, sal), a composite
index with key (sal, age), an index with key age, and an index with key sal. All indexes
shown in the figure use Alternative (2) for data entries.

<age, sal> <age>
11,80 Index Index 11
12,10 12
12,20 name age sdl 12
13,75 bob 12 10 13

cd 11 80

<sdl, age> joe 12 20 <sal>
10,12 sue 13 75 10
20,12 Data 20
75,13 75
80,11 Index Index 80

Figure 8.6 Composite Key Indexes

If the search key is composite, an equality query is one in which each field in the
search key is bound to a constant. For example, we can ask to retrieve all data entries
with age = 20 and sal = 10. The hashed file organization supports only equality
queries, since a hash function identifies the bucket containing desired records only if a
value is specified for each field in the search key.

A range query is one in which not all fields in the search key are bound to constants.
For example, we can ask to retrieve all data entries with age = 20; this query implies
that any value is acceptable for the sal field. As another example of a range query, we
can ask to retrieve all data entries with age < 30 and sal > 40.

244 CHAPTER 8

8.5 INDEX SPECIFICATION IN SQL-92

The SQL-92 standard does not include any statement for creating or dropping index
structures. In fact, the standard does not even require SQL implementations to support
indexes! In practice, of course, every commercial relational DBMS supports one or
more kinds of indexes. The following command to create a B+ tree index—we discuss
B+ tree indexes in Chapter 9—is illustrative:

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE = BTREE,
KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using the
concatenation of the age and gpa columns as the key. Thus, key values are pairs of
the form (age, gpa), and there is a distinct entry for each such pair. Once the index is
created, it is automatically maintained by the DBMS adding/removing data entries in
response to inserts/deletes of records on the Students relation.

8.6 POINTS TO REVIEW

m A file organization is a way of arranging records in a file. In our discussion of
different file organizations, we use a simple cost model that uses the number of
disk page I/Os as the cost metric. (Section 8.1)

m We compare three basic file organizations (heap files, sorted files, and hashed files)
using the following operations: scan, equality search, range search, insert, and
delete. The choice of file organization can have a significant impact on perfor-
mance. (Section 8.2)

m An index is a data structure that speeds up certain operations on a file. The
operations involve a search key, which is a set of record fields (in most cases a
single field). The elements of an index are called data entries. Data entries can
be actual data records, (search-key, rid) pairs, or (search-key, rid-list) pairs. A
given file of data records can have several indexes, each with a different search
key. (Section 8.3)

m In a clustered index, the order of records in the file matches the order of data
entries in the index. An index is called dense if there is at least one data entry per
search key that appears in the file; otherwise the index is called sparse. An index
is called a primary index if the search key includes the primary key; otherwise it
is called a secondary index. If a search key contains several fields it is called a
composite key. (Section 8.4)

® SQL-92 does not include statements for management of index structures, and so
there some variation in index-related commands across different DBMSs. (Sec-
tion 8.5)

File Organizations and Indexes 245

EXERCISES

Exercise 8.1 What are the main conclusions that you can draw from the discussion of the
three file organizations?

Exercise 8.2 Consider a delete specified using an equality condition. What is the cost if no
record qualifies? What is the cost if the condition is not on a key?

Exercise 8.3 Which of the three basic file organizations would you choose for a file where
the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans where the order of records does not matter.

3. Search for a record based on a particular field value.
Exercise 8.4 Explain the difference between each of the following:

1. Primary versus secondary indexes.
2. Dense versus sparse indexes.

3. Clustered versus unclustered indexes.

If you were about to create an index on a relation, what considerations would guide your
choice with respect to each pair of properties listed above?

Exercise 8.5 Consider a relation stored as a randomly ordered file for which the only index
is an unclustered index on a field called sal. If you want to retrieve all records with sal > 20,
is using the index always the best alternative? Explain.

Exercise 8.6 If an index contains data records as ‘data entries’, is it clustered or unclustered?
Dense or sparse?

Exercise 8.7 Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as discussed
in Section 8.3.1. Are they all suitable for secondary indexes? Explain.

Exercise 8.8 Consider the instance of the Students relation shown in Figure 8.7, sorted by
age: For the purposes of this question, assume that these tuples are stored in a sorted file in
the order shown; the first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and
so on. Each page can store up to three data records. You can use (page-id, slot) to identify a
tuple.

List the data entries in each of the following indexes. If the order of entries is significant, say
so and explain why. If such an index cannot be constructed, say so and explain why.

1. A dense index on age using Alternative (1).

2. A dense index on age using Alternative (2).

3. A dense index on age using Alternative (3).
4

. A sparse index on age using Alternative (1).

246

CHAPTER 8

‘ sid | name login | age | gpa |
53831 | Madayan | madayan@music | 11 1.8
53832 | Guldu guldu@music 12 2.0
53666 | Jones jones@Qcs 18 3.4
53688 | Smith smith@ee 19 3.2
53650 | Smith smith@math 19 3.8
Figure 8.7 An Instance of the Students Relation, Sorted by age

© ® N o> w

A sparse index on age using Alternative

A sparse index on age using Alternative

2).

(
(3)-

A dense index on gpa using Alternative (1).
A dense index on gpa using Alternative (2).
).

A dense index on gpa using Alternative (3

10. A sparse index on gpa using Alternative (1).

(
11. A sparse index on gpa using Alternative (2).
(

12. A sparse index on gpa using Alternative (3).

PROJECT-BASED EXERCISES

Exercise 8.9 Answer the following questions:

1. What indexing techniques are supported in Minibase?

2. What alternatives for data entries are supported?

3. Are clustered indexes supported? Are sparse indexes supported?

BIBLIOGRAPHIC NOTES

Several books discuss file organizations in detail [25, 266, 381, 461, 564, 606, 630].

TREE-STRUCTURED INDEXING

I think that I shall never see

A billboard lovely as a tree.
Perhaps unless the billboards fall
I’ll never see a tree at all.

—Ogden Nash, Song of the Open Road

We now consider two index data structures, called ISAM and B+ trees, based on tree
organizations. These structures provide efficient support for range searches, including
sorted file scans as a special case. Unlike sorted files, these index structures support
efficient insertion and deletion. They also provide support for equality selections,
although they are not as efficient in this case as hash-based indexes, which are discussed
in Chapter 10.

An ISAM! tree is a static index structure that is effective when the file is not frequently
updated, but it is unsuitable for files that grow and shrink a lot. We discuss ISAM
in Section 9.1. The B+ tree is a dynamic structure that adjusts to changes in the file
gracefully. It is the most widely used index structure because it adjusts well to changes
and supports both equality and range queries. We introduce B+ trees in Section 9.2.
We cover B+ trees in detail in the remaining sections. Section 9.3 describes the format
of a tree node. Section 9.4 considers how to search for records by using a B+ tree
index. Section 9.5 presents the algorithm for inserting records into a B+ tree, and
Section 9.6 presents the deletion algorithm. Section 9.7 discusses how duplicates are
handled. We conclude with a discussion of some practical issues concerning B+ trees
in Section 9.8.

Notation: In the ISAM and B+ tree structures, leaf pages contain data entries,
according to the terminology introduced in Chapter 8. For convenience, we will denote
a data entry with search key value k as k*. Non-leaf pages contain index entries of
the form (search key value, page id) and are used to direct the search for a desired data
entry (which is stored in some leaf). We will often simply use entry where the context
makes the nature of the entry (index or data) clear.

1ISAM stands for Indexed Sequential Access Method.

247

248 CHAPTER 9

9.1 INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

To understand the motivation for the ISAM technique, it is useful to begin with a
simple sorted file. Consider a file of Students records sorted by gpa. To answer a range
selection such as “Find all students with a gpa higher than 3.0,” we must identify the
first such student by doing a binary search of the file and then scan the file from that
point on. If the file is large, the initial binary search can be quite expensive; can we
improve upon this method?

One idea is to create a second file with one record per page in the original (data) file, of
the form (first key on page, pointer to page), again sorted by the key attribute (which
is gpa in our example). The format of a page in the second indez file is illustrated in
Figure 9.1.

index entry
1

Po | Ky Pyl Ka|P

P !

Figure 9.1 Format of an Index Page

We refer to pairs of the form (key, pointer) as entries. Notice that each index page
contains one pointer more than the number of keys—each key serves as a separator for
the contents of the pages pointed to by the pointers to its left and right. This structure
is illustrated in Figure 9.2.

kik2 || | m Index file

’ Page 1 H Page 2 ’ Page 3 ‘ Datafile

Figure 9.2 One-Level Index Structure

We can do a binary search of the index file to identify the page containing the first
key (gpa) value that satisfies the range selection (in our example, the first student
with gpa over 3.0) and follow the pointer to the page containing the first data record
with that key value. We can then scan the data file sequentially from that point on
to retrieve other qualifying records. This example uses the index to find the first
data page containing a Students record with gpa greater than 3.0, and the data file is
scanned from that point on to retrieve other such Students records.

Tree-Structured Indexing 249

Because the size of an entry in the index file (key value and page id) is likely to be
much smaller than the size of a page, and only one such entry exists per page of the
data file, the index file is likely to be much smaller than the data file; thus, a binary
search of the index file is much faster than a binary search of the data file. However,
a binary search of the index file could still be fairly expensive, and the index file is
typically still large enough to make inserts and deletes expensive.

The potential large size of the index file motivates the ISAM idea: Why not apply
the previous step of building an auxiliary file on the indez file and so on recursively
until the final auxiliary file fits on one page? This repeated construction of a one-level
index leads to a tree structure that is illustrated in Figure 9.3. The data entries of the
ISAM index are in the leaf pages of the tree and additional overflow pages that are
chained to some leaf page. In addition, some systems carefully organize the layout of
pages so that page boundaries correspond closely to the physical characteristics of the
underlying storage device. The ISAM structure is completely static (except for the
overflow pages, of which it is hoped, there will be few) and facilitates such low-level
optimizations.

Non-leaf
pages

7 R AR AR
ol Cg”b N RS I R (A S B B PR M
- -

N~
Overflow pé\@i> DQ Primary pages

Figure 9.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This corre-
sponds to an index that uses Alternative (1) for data entries, in terms of the alternatives
described in Chapter 8; we can create an index with Alternative (2) by storing the data
records in a separate file and storing (key, rid) pairs in the leaf pages of the ISAM
index. When the file is created, all leaf pages are allocated sequentially and sorted on
the search key value. (If Alternatives (2) or (3) are used, the data records are created
and sorted before allocating the leaf pages of the ISAM index.) The non-leaf level
pages are then allocated. If there are several inserts to the file subsequently, so that
more entries are inserted into a leaf than will fit onto a single page, additional pages
are needed because the index structure is static. These additional pages are allocated
from an overflow area. The allocation of pages is illustrated in Figure 9.4.

250 CHAPTER 9

Data Pages

Index Pages

Overflow Pages

Figure 9.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are all quite straightforward.
For an equality selection search, we start at the root node and determine which subtree
to search by comparing the value in the search field of the given record with the key
values in the node. (The search algorithm is identical to that for a B+ tree; we present
this algorithm in more detail later.) For a range query, the starting point in the data
(or leaf) level is determined similarly, and data pages are then retrieved sequentially.
For inserts and deletes, the appropriate page is determined as for a search, and the
record is inserted or deleted with overflow pages added if necessary.

The following example illustrates the ISAM index structure. Consider the tree shown
in Figure 9.5. All searches begin at the root. For example, to locate a record with the
key value 27, we start at the root and follow the left pointer, since 27 < 40. We then
follow the middle pointer, since 20 <= 27 < 33. For a range search, we find the first
qualifying data entry as for an equality selection and then retrieve primary leaf pages
sequentially (also retrieving overflow pages as needed by following pointers from the
primary pages). The primary leaf pages are assumed to be allocated sequentially—this
assumption is reasonable because the number of such pages is known when the tree is
created and does not change subsequently under inserts and deletes—and so no ‘next
leaf page’ pointers are needed.

We assume that each leaf page can contain two entries. If we now insert a record with
key value 23, the entry 23* belongs in the second data page, which already contains
20* and 27* and has no more space. We deal with this situation by adding an overflow
page and putting 23* in the overflow page. Chains of overflow pages can easily develop.
For instance, inserting 48*, 41*, and 42* leads to an overflow chain of two pages. The
tree of Figure 9.5 with all these insertions is shown in Figure 9.6.

The deletion of an entry k* is handled by simply removing the entry. If this entry is
on an overflow page and the overflow page becomes empty, the page can be removed.
If the entry is on a primary page and deletion makes the primary page empty, the
simplest approach is to simply leave the empty primary page as it is; it serves as a

Tree-Structured Indexing 251

Root —.

40

S

20| |33 51||63

10* | 15* 20* | 27* 33*| 37* 40*% | 46* 51* | 55% 63* | 97*

Figure 9.5 Sample ISAM Tree

Root —._
Non-leaf 40

.

20| |33 51|63

Primary / \ / \

leaf 10* | 15 20% | 27+ 33* | 37+ 40% | 46* 51* | 55*| | 63| 97*
pages

Overflow 23* 48*| 41*

pages C
42*

Figure 9.6 ISAM Tree after Inserts

252 CHAPTER 9

placeholder for future insertions (and possibly non-empty overflow pages, because we
do not move records from the overflow pages to the primary page when deletions on
the primary page create space). Thus, the number of primary leaf pages is fixed at file
creation time. Notice that deleting entries could lead to a situation in which key values
that appear in the index levels do not appear in the leaves! Since index levels are used
only to direct a search to the correct leaf page, this situation is not a problem. The
tree of Figure 9.6 is shown in Figure 9.7 after deletion of the entries 42*, 51*, and 97*.
Note that after deleting 51*, the key value 51 continues to appear in the index level.
A subsequent search for 51* would go to the correct leaf page and determine that the
entry is not in the tree.

Root —.
40
20| | 33 51| |63
|
10* | 15* 20* | 27* 33* | 37* 40*% | 46* 55* 63*
23* C 48*%| 41~

Figure 9.7 ISAM Tree after Deletes

The non-leaf pages direct a search to the correct leaf page. The number of disk I/Os
is equal to the number of levels of the tree and is equal to logr N, where N is the
number of primary leaf pages and the fan-out F' is the number of children per index
page. This number is considerably less than the number of disk I/Os for binary search,
which is logs IV; in fact, it is reduced further by pinning the root page in memory. The
cost of access via a one-level index is loga(N/F). If we consider a file with 1,000,000
records, 10 records per leaf page, and 100 entries per index page, the cost (in page
I/0s) of a file scan is 100,000, a binary search of the sorted data file is 17, a binary
search of a one-level index is 10, and the ISAM file (assuming no overflow) is 3.

Note that once the ISAM file is created, inserts and deletes affect only the contents of
leaf pages. A consequence of this design is that long overflow chains could develop if a
number of inserts are made to the same leaf. These chains can significantly affect the
time to retrieve a record because the overflow chain has to be searched as well when
the search gets to this leaf. (Although data in the overflow chain can be kept sorted,

Tree-Structured Indexing 253

it usually is not, in order to make inserts fast.) To alleviate this problem, the tree
is initially created so that about 20 percent of each page is free. However, once the
free space is filled in with inserted records, unless space is freed again through deletes,
overflow chains can be eliminated only by a complete reorganization of the file.

The fact that only leaf pages are modified also has an important advantage with respect
to concurrent access. When a page is accessed, it is typically ‘locked’ by the requestor
to ensure that it is not concurrently modified by other users of the page. To modify
a page, it must be locked in ‘exclusive’ mode, which is permitted only when no one
else holds a lock on the page. Locking can lead to queues of users (transactions, to be
more precise) waiting to get access to a page. Queues can be a significant performance
bottleneck, especially for heavily accessed pages near the root of an index structure. In
the ISAM structure, since we know that index-level pages are never modified, we can
safely omit the locking step. Not locking index-level pages is an important advantage
of ISAM over a dynamic structure like a B+ tree. If the data distribution and size is
relatively static, which means overflow chains are rare, ISAM might be preferable to
B+ trees due to this advantage.

9.2 B+ TREES: ADYNAMIC INDEX STRUCTURE

A static structure such as the ISAM index suffers from the problem that long overflow
chains can develop as the file grows, leading to poor performance. This problem
motivated the development of more flexible, dynamic structures that adjust gracefully
to inserts and deletes. The B4 tree search structure, which is widely used, is a
balanced tree in which the internal nodes direct the search and the leaf nodes contain
the data entries. Since the tree structure grows and shrinks dynamically, it is not
feasible to allocate the leaf pages sequentially as in ISAM, where the set of primary
leaf pages was static. In order to retrieve all leaf pages efficiently, we have to link
them using page pointers. By organizing them into a doubly linked list, we can easily
traverse the sequence of leaf pages (sometimes called the sequence set) in either
direction. This structure is illustrated in Figure 9.8.

The following are some of the main characteristics of a B+ tree:

m Operations (insert, delete) on the tree keep it balanced.

® A minimum occupancy of 50 percent is guaranteed for each node except the root if
the deletion algorithm discussed in Section 9.6 is implemented. However, deletion
is often implemented by simply locating the data entry and removing it, without
adjusting the tree as needed to guarantee the 50 percent occupancy, because files
typically grow rather than shrink.

m Searching for a record requires just a traversal from the root to the appropriate
leaf. We will refer to the length of a path from the root to a leaf—any leaf, because

254 CHAPTER 9

Index entries
(Direct search)
I ndex
file
/ \ Data entries
("Sequence set™)

Figure 9.8 Structure of a B4 Tree

the tree is balanced—as the height of the tree. For example, a tree with only a
leaf level and a single index level, such as the tree shown in Figure 9.10, has height
1. Because of high fan-out, the height of a B+ tree is rarely more than 3 or 4.

We will study B+ trees in which every node contains m entries, where d < m < 2d.
The value d is a parameter of the B+ tree, called the order of the tree, and is a measure
of the capacity of a tree node. The root node is the only exception to this requirement
on the number of entries; for the root it is simply required that 1 < m < 2d.

If a file of records is updated frequently and sorted access is important, maintaining
a B+ tree index with data records stored as data entries is almost always superior
to maintaining a sorted file. For the space overhead of storing the index entries, we
obtain all the advantages of a sorted file plus efficient insertion and deletion algorithms.
B+ trees typically maintain 67 percent space occupancy. B+ trees are usually also
preferable to ISAM indexing because inserts are handled gracefully without overflow
chains. However, if the dataset size and distribution remain fairly static, overflow
chains may not be a major problem. In this case, two factors favor ISAM: the leaf
pages are allocated in sequence (making scans over a large range more efficient than in
a B+ tree, in which pages are likely to get out of sequence on disk over time, even if
they were in sequence after bulk-loading), and the locking overhead of ISAM is lower
than that for B+ trees. As a general rule, however, B+ trees are likely to perform
better than ISAM.

9.3 FORMAT OF ANODE

The format of a node is the same as for ISAM and is shown in Figure 9.1. Non-leaf
nodes with m index entries contain m + 1 pointers to children. Pointer P; points to
a subtree in which all key values K are such that K; < K < K;y1. As special cases,
Py points to a tree in which all key values are less than K7, and P,, points to a tree

Tree-Structured Indexing 255

in which all key values are greater than or equal to K,,. For leaf nodes, entries are
denoted as kx, as usual. Just as in ISAM, leaf nodes (and only leaf nodes!) contain
data entries. In the common case that Alternative (2) or (3) is used, leaf entries are
(K,I(K)) pairs, just like non-leaf entries. Regardless of the alternative chosen for leaf
entries, the leaf pages are chained together in a doubly linked list. Thus, the leaves
form a sequence, which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be achieved
using the record formats presented in Section 7.7; after all, each key—pointer pair can
be thought of as a record. If the field being indexed is of fixed length, these index
entries will be of fixed length; otherwise, we have variable-length records. In either
case the B+ tree can itself be viewed as a file of records. If the leaf pages do not
contain the actual data records, then the B+ tree is indeed a file of records that is
distinct from the file that contains the data. If the leaf pages contain data records,
then a file contains the B+ tree as well as the data.

9.4 SEARCH

The algorithm for search finds the leaf node in which a given data entry belongs. A
pseudocode sketch of the algorithm is given in Figure 9.9. We use the notation *ptr
to denote the value pointed to by a pointer variable ptr and & (value) to denote the
address of value. Note that finding 7 in tree_search requires us to search within the
node, which can be done with either a linear search or a binary search (e.g., depending
on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we will assume
that there are no duplicates. That is, no two data entries are allowed to have the same
key value. Of course, duplicates arise whenever the search key does not contain a
candidate key and must be dealt with in practice. We consider how duplicates can be
handled in Section 9.7.

Consider the sample B+ tree shown in Figure 9.10. This B+ tree is of order d=2.
That is, each node contains between 2 and 4 entries. Each non-leaf entry is a (key
value, nodepointer) pair; at the leaf level, the entries are data records that we denote
by kx*. To search for entry 5*, we follow the left-most child pointer, since 5 < 13. To
search for the entries 14* or 15*, we follow the second pointer, since 13 < 14 < 17, and
13 < 15 < 17. (We don’t find 15* on the appropriate leaf, and we can conclude that
it is not present in the tree.) To find 24*, we follow the fourth child pointer, since 24
< 24 < 30.

256 CHAPTER 9

func find (search key value K) returns nodepointer
// Given a search key value, finds its leaf node
return tree_search(root, K); // searches from root

endfunc

func tree_search (nodepointer, search key value K) returns nodepointer
// Searches tree for entry
if *nodepointer is a leaf, return nodepointer;
else,
if K < K; then return tree_search(Py, K);
else,
if K > K,,, then return tree_search(P,,, K);
else,
find ¢ such that K; < K < K;41;
return tree_search(P;, K)

// m = # entries

endfunc

Figure 9.9 Algorithm for Search

Root \
13 17

24

30

/N 2

£\

/N

‘ 2% | 3* | 5*

7 ‘14* 16* ‘ ‘ 19+

20* | 22*

‘ ‘24*

‘ ‘33* 34* | 38* | 39*

Figure 9.10 Example of a B4 Tree, Order d=2

Tree-Structured Indexing 257

9.5 INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs, and
inserts it there. Pseudocode for the B+ tree insertion algorithm is given in Figure
9.11. The basic idea behind the algorithm is that we recursively insert the entry by
calling the insert algorithm on the appropriate child node. Usually, this procedure
results in going down to the leaf node where the entry belongs, placing the entry there,
and returning all the way back to the root node. Occasionally a node is full and it
must be split. When the node is split, an entry pointing to the node created by the
split must be inserted into its parent; this entry is pointed to by the pointer variable
newchildentry. If the (old) root is split, a new root node is created and the height of
the tree increases by one.

To illustrate insertion, let us continue with the sample tree shown in Figure 9.10. If
we insert entry 8*, it belongs in the left-most leaf, which is already full. This insertion
causes a split of the leaf page; the split pages are shown in Figure 9.12. The tree must
now be adjusted to take the new leaf page into account, so we insert an entry consisting
of the pair (5, pointer to new page) into the parent node. Notice how the key 5, which
discriminates between the split leaf page and its newly created sibling, is ‘copied up.’
We cannot just ‘push up’ 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to split a
non-leaf node when it is full, containing 2d keys and 2d 4 1 pointers, and we have to
add another index entry to account for a child split. We now have 2d + 1 keys and
2d + 2 pointers, yielding two minimally full non-leaf nodes, each containing d keys and
d+ 1 pointers, and an extra key, which we choose to be the ‘middle’ key. This key and
a pointer to the second non-leaf node constitute an index entry that must be inserted
into the parent of the split non-leaf node. The middle key is thus ‘pushed up’ the tree,
in contrast to the case for a split of a leaf page.

The split pages in our example are shown in Figure 9.13. The index entry pointing to
the new non-leaf node is the pair (17, pointer to new indez-level page); notice that the
key value 17 is ‘pushed up’ the tree, in contrast to the splitting key value 5 in the leaf
split, which was ‘copied up.’

The difference in handling leaf-level and index-level splits arises from the B+ tree re-
quirement that all data entries k* must reside in the leaves. This requirement prevents
us from ‘pushing up’ 5 and leads to the slight redundancy of having some key values
appearing in the leaf level as well as in some index level. However, range queries can
be efficiently answered by just retrieving the sequence of leaf pages; the redundancy
is a small price to pay for efficiency. In dealing with the index levels, we have more
flexibility, and we ‘push up’ 17 to avoid having two copies of 17 in the index levels.

258 CHAPTER 9

proc insert (nodepointer, entry, newchildentry)
// Inserts entry into subtree with root ‘*nodepointer’; degree is d;

// ‘newchildentry’ is null initially, and null upon return unless child is split

if *nodepointer is a non-leaf node, say IV,
find 7 such that K; < entry’s key value < K;1; // choose subtree
insert(P;, entry, newchildentry); // recursively, insert entry
if newchildentry is null, return; // usual case; didn’t split child
else, // we split child, must insert *newchildentry in N
if N has space, // usual case
put *newchildentry on it, set newchildentry to null, return;
else, // note difference wrt splitting of leaf page!
split N: // 2d + 1 key values and 2d + 2 nodepointers
first d key values and d + 1 nodepointers stay,
last d keys and d + 1 pointers move to new node, N2;
// *newchildentry set to guide searches between N and N2
newchildentry = & ({smallest key value on N2, pointer to N2));
if N is the root, // root node was just split
create new node with (pointer to N, *newchildentry);
make the tree’s root-node pointer point to the new node;
return;

if *nodepointer is a leaf node, say L,
if L has space, // usual case
put entry on it, set newchildentry to null, and return;
else, // once in a while, the leaf is full
split L: first d entries stay, rest move to brand new node L2;
newchildentry = & ((smallest key value on L2, pointer to L2));
set sibling pointers in L and L2;
return;
endproc

Figure 9.11 Algorithm for Insertion into B+ Tree of Order d

Tree-Structured Indexing 259

_ - - Entry to beinserted in parent node.
5 ‘ < (Notethat 5is*copied up’ and
| continues to appear in the leaf.)

PN

2% 3* 5* 7* 8*

Figure 9.12 Split Leaf Pages during Insert of Entry 8*

_ Entry to be inserted in parent node.
(Notethat 17 is ‘ pushed up’ and
and appears once in the index. Contrast

—- /\
\ this with aleaf split.)

5 13 24 30

y /yo/

17

Figure 9.13 Split Index Pages during Insert of Entry 8*

Now, since the split node was the old root, we need to create a new root node to hold
the entry that distinguishes the two split index pages. The tree after completing the
insertion of the entry 8* is shown in Figure 9.14.

2\ N

‘ ‘ ‘ 19*| 20* | 22* ‘ ‘24*

16* 27* | 29* 34* | 38* | 39*

H14*

H33*

Figure 9.14 B+ Tree after Inserting Entry 8*

One variation of the insert algorithm tries to redistribute entries of a node N with a
sibling before splitting the node; this improves average occupancy. The sibling of a
node N, in this context, is a node that is immediately to the left or right of N and has
the same parent as N.

To illustrate redistribution, reconsider insertion of entry 8* into the tree shown in
Figure 9.10. The entry belongs in the left-most leaf, which is full. However, the (only)

260 CHAPTER 9

sibling of this leaf node contains only two entries and can thus accommodate more
entries. We can therefore handle the insertion of 8* with a redistribution. Note how
the entry in the parent node that points to the second leaf has a new key value; we
‘copy up’ the new low key value on the second leaf. This process is illustrated in Figure

9.15.
Root \
8 17

24 30

£ N N £\ /N

7* ‘ 8% |14* | 16* ‘ 19*| 20* | 22* ‘ ‘24* 27| 29* ‘ ‘33*

‘2* 3* | 5* 34* | 38* | 39*

Figure 9.15 B+ Tree after Inserting Entry 8* Using Redistribution

To determine whether redistribution is possible, we have to retrieve the sibling. If the
sibling happens to be full, we have to split the node anyway. On average, checking
whether redistribution is possible increases 1/O for index node splits, especially if we
check both siblings. (Checking whether redistribution is possible may reduce I/0 if
the redistribution succeeds whereas a split propagates up the tree, but this case is very
infrequent.) If the file is growing, average occupancy will probably not be affected
much even if we do not redistribute. Taking these considerations into account, mnot
redistributing entries at non-leaf levels usually pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor in order to
adjust the previous and next-neighbor pointers with respect to the newly created leaf
node. Therefore, a limited form of redistribution makes sense: If a leaf node is full,
fetch a neighbor node; if it has space, and has the same parent, redistribute entries.
Otherwise (neighbor has different parent, i.e., is not a sibling, or is also full) split the
leaf node and adjust the previous and next-neighbor pointers in the split node, the
newly created neighbor, and the old neighbor.

9.6 DELETE*

The algorithm for deletion takes an entry, finds the leaf node where it belongs, and
deletes it. Pseudocode for the B+ tree deletion algorithm is given in Figure 9.16. The
basic idea behind the algorithm is that we recursively delete the entry by calling the
delete algorithm on the appropriate child node. We usually go down to the leaf node
where the entry belongs, remove the entry from there, and return all the way back
to the root node. Occasionally a node is at minimum occupancy before the deletion,
and the deletion causes it to go below the occupancy threshold. When this happens,

Tree-Structured Indexing 261

we must either redistribute entries from an adjacent sibling or merge the node with
a sibling to maintain minimum occupancy. If entries are redistributed between two
nodes, their parent node must be updated to reflect this; the key value in the index
entry pointing to the second node must be changed to be the lowest search key in the
second node. If two nodes are merged, their parent must be updated to reflect this
by deleting the index entry for the second node; this index entry is pointed to by the
pointer variable oldchildentry when the delete call returns to the parent node. If the
last entry in the root node is deleted in this manner because one of its children was
deleted, the height of the tree decreases by one.

To illustrate deletion, let us consider the sample tree shown in Figure 9.14. To delete
entry 19%, we simply remove it from the leaf page on which it appears, and we are
done because the leaf still contains two entries. If we subsequently delete 20*, however,
the leaf contains only one entry after the deletion. The (only) sibling of the leaf node
that contained 20* has three entries, and we can therefore deal with the situation by
redistribution; we move entry 24* to the leaf page that contained 20* and ‘copy up’
the new splitting key (27, which is the new low key value of the leaf from which we
borrowed 24*) into the parent. This process is illustrated in Figure 9.17.

Suppose that we now delete entry 24*. The affected leaf contains only one entry
(22%*) after the deletion, and the (only) sibling contains just two entries (27* and 29%).
Therefore, we cannot redistribute entries. However, these two leaf nodes together
contain only three entries and can be merged. While merging, we can ‘toss’ the entry
({27, pointer to second leaf page)) in the parent, which pointed to the second leaf page,
because the second leaf page is empty after the merge and can be discarded. The right
subtree of Figure 9.17 after this step in the deletion of entry 24* is shown in Figure
9.18.

Deleting the entry (27, pointer to second leaf page) has created a non-leaf-level page
with just one entry, which is below the minimum of d=2. To fix this problem, we must
either redistribute or merge. In either case we must fetch a sibling. The only sibling
of this node contains just two entries (with key values 5 and 13), and so redistribution
is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite of the
situation when we have to split a non-leaf node. We have to split a non-leaf node when
it contains 2d keys and 2d + 1 pointers, and we have to add another key—pointer pair.
Since we resort to merging two non-leaf nodes only when we cannot redistribute entries
between them, the two nodes must be minimally full; that is, each must contain d keys
and d+ 1 pointers prior to the deletion. After merging the two nodes and removing the
key—pointer pair to be deleted, we have 2d — 1 keys and 2d + 1 pointers: Intuitively, the
left-most pointer on the second merged node lacks a key value. To see what key value
must be combined with this po