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Praise for Effective C++, Third Edition

“Scott Meyers’ book, Effective C++, Third Edition, is distilled programming experience — 
experience that you would otherwise have to learn the hard way. This book is a great 
resource that I recommend to everybody who writes C++ professionally.”

— Peter Dulimov, ME, Engineer, Ranges and Assessing Unit, NAVSYSCOM, 
Australia

“The third edition is still the best book on how to put all of the pieces of C++ together 
in an efficient, cohesive manner. If you claim to be a C++ programmer, you must read 
this book.”

— Eric Nagler, Consultant, Instructor, and author of Learning C++

“The first edition of this book ranks among the small (very small) number of books 
that I credit with significantly elevating my skills as a ‘professional’ software devel-
oper. Like the others, it was practical and easy to read, but loaded with important 
advice. Effective C++, Third Edition, continues that tradition. C++ is a very powerful 
programming language. If C gives you enough rope to hang yourself, C++ is a hard-
ware store with lots of helpful people ready to tie knots for you. Mastering the points 
discussed in this book will definitely increase your ability to effectively use C++ and 
reduce your stress level.”

— Jack W. Reeves, Chief Executive Officer, Bleading Edge Software Technologies

“Every new developer joining my team has one assignment — to read this book.”
— Michael Lanzetta, Senior Software Engineer

“I read the first edition of Effective C++ about nine years ago, and it immediately 
became my favorite book on C++. In my opinion, Effective C++, Third Edition, remains 
a mustread today for anyone who wishes to program effectively in C++. We would live 
in a better world if C++ programmers had to read this book before writing their first 
line of professional C++ code.”

— Danny Rabbani, Software Development Engineer

“I encountered the first edition of Scott Meyers’ Effective C++ as a struggling program-
mer in the trenches, trying to get better at what I was doing. What a lifesaver! I found 
Meyers’ advice was practical, useful, and effective, fulfilling the promise of the title 
100 percent. The third edition brings the practical realities of using C++ in serious 
development projects right up to date, adding chapters on the language’s very latest 
issues and features. I was delighted to still find myself learning something interesting 
and new from the latest edition of a book I already thought I knew well.”

— Michael Topic, Technical Program Manager

“From Scott Meyers, the guru of C++, this is the definitive guide for anyone who 
wants to use C++ safely and effectively, or is transitioning from any other OO lan-
guage to C++. This book has valuable information presented in a clear, concise, 
entertaining, and insightful manner.”

— Siddhartha Karan Singh, Software Developer
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“This should be the second book on C++ that any developer should read, after a gen-
eral introductory text. It goes beyond the how and what of C++ to address the why 
and wherefore. It helped me go from knowing the syntax to understanding the philos-
ophy of C++ programming.”

— Timothy Knox, Software Developer

“This is a fantastic update of a classic C++ text. Meyers covers a lot of new ground in this 
volume, and every serious C++ programmer should have a copy of this new edition.”

— Jeffrey Somers, Game Programmer

“Effective C++, Third Edition, covers the things you should be doing when writing code 
and does a terrific job of explaining why those things are important. Think of it as 
best practices for writing C++.”

— Jeff Scherpelz, Software Development Engineer

“As C++ embraces change, Scott Meyers’ Effective C++, Third Edition, soars to remain 
in perfect lock-step with the language. There are many fine introductory books on 
C++, but exactly one second book stands head and shoulders above the rest, and 
you’re holding it. With Scott guiding the way, prepare to do some soaring of your own!”

— Leor Zolman, C++ Trainer and Pundit, BD Software

“This book is a must-have for both C++ veterans and newbies. After you have finished 
reading it, it will not collect dust on your bookshelf — you will refer to it all the time.”

— Sam Lee, Software Developer

“Reading this book transforms ordinary C++ programmers into expert C++ program-
mers, step-by-step, using 55 easy-to-read items, each describing one technique or tip.”

— Jeffrey D. Oldham, Ph.D., Software Engineer, Google

“Scott Meyers’ Effective C++ books have long been required reading for new and expe-
rienced C++ programmers alike. This new edition, incorporating almost a decade’s 
worth of C++ language development, is his most content-packed book yet. He does 
not merely describe the problems inherent in the language, but instead he provides 
unambiguous and easy-to-follow advice on how to avoid the pitfalls and write ‘effec-
tive C++.’ I expect every C++ programmer to have read it.”

— Philipp K. Janert, Ph.D., Software Development Manager

“Each previous edition of Effective C++ has been the must-have book for developers 
who have used C++ for a few months or a few years, long enough to stumble into 
the traps latent in this rich language. In this third edition, Scott Meyers extensively 
refreshes his sound advice for the modern world of new language and library features 
and the programming styles that have evolved to use them. Scott’s engaging writing 
style makes it easy to assimilate his guidelines on your way to becoming an effective 
C++ developer.”

— David Smallberg, Instructor, DevelopMentor; Lecturer, Computer Science, UCLA

“Effective C++ has been completely updated for twenty-first-century C++ practice and 
can continue to claim to be the first second book for all C++ practitioners.” 

— Matthew Wilson, Ph.D., author of Imperfect C++



ptg7544714
Effective C++
Third Edition



ptg7544714

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor 

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling 

the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design
Dan Farmer/Wietse Venema, Forensic Discovery
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-

Oriented Software 
Peter Haggar, Practical Java™ Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software
Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming
S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs
Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition: 

C++ Programming with the Standard Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rago, UNIX® System V Network Programming
Eric S. Raymond, The Art of UNIX Programming
Marc J. Rochkind, Advanced UNIX Programming, Second Edition
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Bill Fenner/Andrew M. Rudoff,  UNIX Network Programming Volume 1, Third Edition: The 

Sockets Networking API
W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set
John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

http://www.awprofessional.com/series/professionalcomputing


ptg7544714
Effective C++
Third Edition

55 Specific Ways to Improve Your Programs and Designs

Scott Meyers

▲
▼▼

ADDISON-WESLEY

Boston  •  San Francisco  •  New York  •  Toronto  •  Montreal
London  •  Munich  •  Paris  •  Madrid

Capetown  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City



ptg7544714

This e-book reproduces in electronic form the printed book content of Effective C++, Third Edition: 55 
Specific Ways to Improve Your Programs and Designs, by Scott Meyers. Copyright © 2005 by Pearson 
Education, Inc. ISBN: 0-321-33487-6.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in 
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version 
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts 
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited. 

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its 
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in the original printed book and this e-book, and we were 
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book, 
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out 
of the use of the information or programs contained herein.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also 
offers site licenses for these e-books (not available in some countries). For more information, please 
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw.

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from 
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any 
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information 
regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

E-book ISBN 13:  978-0-321-51582-7
E-book ISBN 10:  0-321-51582-X

Second e-book release, April 2011 (essentially identical to the 11th Paper Printing).

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw


ptg7544714
For Nancy,
without whom nothing

would be much worth doing

Wisdom and beauty form a very rare combination.

— Petronius Arbiter
Satyricon, XCIV



ptg7544714
This page intentionally left blank 



ptg7544714
And in memory of Persephone,
1995–2004



ptg7544714
This page intentionally left blank 



ptg7544714
Preface xv

Acknowledgments xvii

Introduction 1

Chapter 1: Accustoming Yourself to C++ 11

Item 1: View C++ as a federation of languages. 11
Item 2: Prefer consts, enums, and inlines to #defines. 13
Item 3: Use const whenever possible. 17
Item 4: Make sure that objects are initialized before

they’re used. 26

Chapter 2: Constructors, Destructors, and
Assignment Operators 34

Item 5: Know what functions C++ silently writes and calls. 34
Item 6: Explicitly disallow the use of compiler-generated

functions you do not want. 37
Item 7: Declare destructors virtual in polymorphic

base classes. 40
Item 8: Prevent exceptions from leaving destructors. 44
Item 9: Never call virtual functions during construction or 

destruction. 48
Item 10: Have assignment operators return a reference to *this. 52
Item 11: Handle assignment to self in operator=. 53
Item 12: Copy all parts of an object. 57

Chapter 3: Resource Management 61

Item 13: Use objects to manage resources. 61

Contents



ptg7544714

xii Contents Effective C++
Item 14: Think carefully about copying behavior in
resource-managing classes. 66

Item 15: Provide access to raw resources in
resource-managing classes. 69

Item 16: Use the same form in corresponding uses of new
and delete. 73

Item 17: Store newed objects in smart pointers in standalone 
statements. 75

Chapter 4: Designs and Declarations 78

Item 18: Make interfaces easy to use correctly and hard to
use incorrectly. 78

Item 19: Treat class design as type design. 84
Item 20: Prefer pass-by-reference-to-const to pass-by-value. 86
Item 21: Don’t try to return a reference when you must

return an object. 90
Item 22: Declare data members private. 94
Item 23: Prefer non-member non-friend functions to

member functions. 98
Item 24: Declare non-member functions when type

conversions should apply to all parameters. 102
Item 25: Consider support for a non-throwing swap. 106

Chapter 5:  Implementations 113

Item 26: Postpone variable definitions as long as possible. 113
Item 27: Minimize casting. 116
Item 28: Avoid returning “handles” to object internals. 123
Item 29: Strive for exception-safe code. 127
Item 30: Understand the ins and outs of inlining. 134
Item 31: Minimize compilation dependencies between files. 140

Chapter 6: Inheritance and Object-Oriented Design 149

Item 32: Make sure public inheritance models “is-a.” 150
Item 33: Avoid hiding inherited names. 156
Item 34: Differentiate between inheritance of interface and 

inheritance of implementation. 161
Item 35: Consider alternatives to virtual functions. 169
Item 36: Never redefine an inherited non-virtual function. 178



ptg7544714

Effective C++ Contents xiii
Item 37: Never redefine a function’s inherited default
parameter value. 180

Item 38: Model “has-a” or “is-implemented-in-terms-of”
through composition. 184

Item 39: Use private inheritance judiciously. 187
Item 40: Use multiple inheritance judiciously. 192

Chapter 7: Templates and Generic Programming 199

Item 41: Understand implicit interfaces and compile-time 
polymorphism. 199

Item 42: Understand the two meanings of typename. 203
Item 43: Know how to access names in templatized

base classes. 207
Item 44: Factor parameter-independent code out of templates. 212
Item 45: Use member function templates to accept

“all compatible types.” 218
Item 46: Define non-member functions inside templates

when type conversions are desired. 222
Item 47: Use traits classes for information about types. 226
Item 48: Be aware of template metaprogramming. 233

Chapter 8: Customizing new and delete 239

Item 49: Understand the behavior of the new-handler. 240
Item 50: Understand when it makes sense to replace new

and delete. 247
Item 51: Adhere to convention when writing new and delete. 252
Item 52: Write placement delete if you write placement new. 256

Chapter 9: Miscellany 262

Item 53: Pay attention to compiler warnings. 262
Item 54: Familiarize yourself with the standard library,

including TR1. 263
Item 55: Familiarize yourself with Boost. 269

Appendix A:  Beyond Effective C++ 273

Appendix B: Item Mappings Between Second
and Third Editions 277

Index 280



ptg7544714
This page intentionally left blank 



ptg7544714
I wrote the original edition of Effective C++ in 1991. When the time
came for a second edition in 1997, I updated the material in important
ways, but, because I didn’t want to confuse readers familiar with the
first edition, I did my best to retain the existing structure: 48 of the
original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening
things up by replacing carpets, paint, and light fixtures. 

For the third edition, I tore the place down to the studs. (There were
times I wished I’d gone all the way to the foundation.) The world of
C++ has undergone enormous change since 1991, and the goal of this
book — to identify the most important C++ programming guidelines in
a small, readable package — was no longer served by the Items I’d es-
tablished nearly 15 years earlier. In 1991, it was reasonable to as-
sume that C++ programmers came from a C background. Now,
programmers moving to C++ are just as likely to come from Java or
C#. In 1991, inheritance and object-oriented programming were new
to most programmers. Now they’re well-established concepts, and ex-
ceptions, templates, and generic programming are the areas where
people need more guidance. In 1991, nobody had heard of design pat-
terns. Now it’s hard to discuss software systems without referring to
them. In 1991, work had just begun on a formal standard for C++.
Now that standard is eight years old, and work has begun on the next
version.

To address these changes, I wiped the slate as clean as I could and
asked myself, “What are the most important pieces of advice for prac-
ticing C++ programmers in 2005?” The result is the set of Items in this
new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are
woven throughout the text, because they affect almost everything in
C++. The book also includes new material on programming in the
presence of exceptions, on applying design patterns, and on using the

Preface
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xvi Preface Effective C++
new TR1 library facilities. (TR1 is described in Item 54.) It acknowl-
edges that techniques and approaches that work well in single-
threaded systems may not be appropriate in multithreaded systems.
Well over half the material in the book is new. However, most of the
fundamental information in the second edition continues to be impor-
tant, so I found a way to retain it in one form or another. (You’ll find a
mapping between the second and third edition Items in Appendix B.)

I’ve worked hard to make this book as good as I can, but I have no il-
lusions that it’s perfect. If you feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading, please tell me.
If you find an error of any kind — technical, grammatical, typographi-
cal, whatever — please tell me that, too. I’ll gladly add to the acknowl-
edgments in later printings the name of the first person to bring each
problem to my attention. 

Even with the number of Items expanded to 55, the set of guidelines
in this book is far from exhaustive. But coming up with good rules —
ones that apply to almost all applications almost all the time — is
harder than it might seem. If you have suggestions for additional
guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, includ-
ing bug fixes, clarifications, and technical updates. The list is avail-
able at the Effective C++ Errata web page, http://aristeia.com/BookErrata/
ec++3e-errata.html. If you’d like to be notified when I update the list, I
encourage you to join my mailing list. I use it to make announcements
likely to interest people who follow my professional work. For details,
consult http://aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://aristeia.com/ APRIL 2005

http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/MailingList/
http://aristeia.com/
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Effective C++ has existed for fifteen years, and I started learning C++
about three years before I wrote the book. The “Effective C++ project”
has thus been under development for nearly two decades. During that
time, I have benefited from the insights, suggestions, corrections, and,
occasionally, dumbfounded stares of hundreds (thousands?) of peo-
ple. Each has helped improve Effective C++. I am grateful to them all. 

I’ve given up trying to keep track of where I learned what, but one gen-
eral source of information has helped me as long as I can remember:
the Usenet C++ newsgroups, especially comp.lang.c++.moderated and
comp.std.c++. Many of the Items in this book — perhaps most — have
benefited from the vetting of technical ideas at which the participants
in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked
with me to come up with an initial set of candidate Items. In Item 11,
the idea of implementing operator= via copy-and-swap came from Herb
Sutter’s writings on the topic, e.g., Item 13 of his Exceptional C++ (Ad-
dison-Wesley, 2000). RAII (see Item 13) is from Bjarne Stroustrup’s
The C++ Programming Language (Addison-Wesley, 2000). The idea be-
hind Item 17 came from the “Best Practices” section of the Boost
shared_ptr web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-
Practices and was refined by Item 21 of Herb Sutter’s More Exceptional
C++ (Addison-Wesley, 2002). Item 29 was strongly influenced by Herb
Sutter’s extensive writings on the topic, e.g., Items 8-19 of Exceptional
C++, Items 17–23 of More Exceptional C++, and Items 11–13 of Excep-
tional C++ Style (Addison-Wesley, 2005); David Abrahams helped me
better understand the three exception safety guarantees. The NVI id-
iom in Item 35 is from Herb Sutter’s column, “Virtuality,” in the Sep-
tember 2001 C/C++ Users Journal. In that same Item, the Template
Method and Strategy design patterns are from Design Patterns (Addi-
son-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. The idea of using the NVI idiom in Item 37 came
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from Hendrik Schober. David Smallberg contributed the motivation
for writing a custom set implementation in Item 38. Item 39’s observa-
tion that the EBO generally isn’t available under multiple inheritance
is from David Vandevoorde’s and Nicolai M. Josuttis’ C++ Templates
(Addison-Wesley, 2003). In Item 42, my initial understanding about
typename came from Greg Comeau’s C++ and C FAQ (http://
www.comeaucomputing.com/techtalk/#typename), and Leor Zolman
helped me realize that my understanding was incorrect. (My fault, not
Greg’s.) The essence of Item 46 is from Dan Saks’ talk, “Making New
Friends.” The idea at the end of Item 52 that if you declare one version
of operator new, you should declare them all, is from Item 22 of Herb
Sutter’s Exceptional C++ Style. My understanding of the Boost review
process (summarized in Item 55) was refined by David Abrahams. 

Everything above corresponds to who or where I learned about some-
thing, not necessarily to who or where the thing was invented or first
published.

My notes tell me that I also used information from Steve Clamage, An-
toine Trux, Timothy Knox, and Mike Kaelbling, though, regrettably,
the notes fail to tell me how or where.

Drafts of the first edition were reviewed by Tom Cargill, Glenn Carroll,
Tony Davis, Brian Kernighan, Jak Kirman, Doug Lea, Moises Lejter,
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Zabluda. Later printings benefited from comments from Daniel
Steinberg, Arunprasad Marathe, Doug Stapp, Robert Hall, Cheryl
Ferguson, Gary Bartlett, Michael Tamm, Kendall Beaman, Eric Nagler,
Max Hailperin, Joe Gottman, Richard Weeks, Valentin Bonnard, Jun
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Learning the fundamentals of a programming language is one thing;
learning how to design and implement effective programs in that lan-
guage is something else entirely. This is especially true of C++, a lan-
guage boasting an uncommon range of power and expressiveness.
Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judi-
ciously chosen and carefully crafted set of classes, functions, and
templates can make application programming easy, intuitive, efficient,
and nearly error-free. It isn’t unduly difficult to write effective C++
programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inex-
tensible, inefficient, and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I
assume you already know C++ as a language and that you have some
experience in its use. What I provide here is a guide to using the lan-
guage so that your software is comprehensible, maintainable, porta-
ble, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design
strategies, and the nuts and bolts of specific language features. The
design discussions concentrate on how to choose between different
approaches to accomplishing something in C++. How do you choose
between inheritance and templates? Between public and private in-
heritance? Between private inheritance and composition? Between
member and non-member functions? Between pass-by-value and
pass-by-reference? It’s important to make these decisions correctly at
the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is
often difficult, time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just
right can be tricky. What’s the proper return type for assignment op-
erators? When should a destructor be virtual? How should operator

Introduction
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new behave when it can’t find enough memory? It’s crucial to sweat
details like these, because failure to do so almost always leads to un-
expected, possibly mystifying program behavior. This book will help
you avoid that.

This is not a comprehensive reference for C++. Rather, it’s a collection
of 55 specific suggestions (I call them Items) for how you can improve
your programs and designs. Each Item stands more or less on its own,
but most also contain references to other Items. One way to read the
book, then, is to start with an Item of interest, then follow its refer-
ences to see where they lead you. 

The book isn’t an introduction to C++, either. In Chapter 2, for exam-
ple, I’m eager to tell you all about the proper implementations of con-
structors, destructors, and assignment operators, but I assume you
already know or can go elsewhere to find out what these functions do
and how they are declared. A number of C++ books contain informa-
tion such as that.

The purpose of this book is to highlight those aspects of C++ program-
ming that are often overlooked. Other books describe the different
parts of the language. This book tells you how to combine those parts
so you end up with effective programs. Other books tell you how to get
your programs to compile. This book tells you how to avoid problems
that compilers won’t tell you about.

At the same time, this book limits itself to standard C++. Only fea-
tures in the official language standard have been used here. Portabil-
ity is a key concern in this book, so if you’re looking for platform-
dependent hacks and kludges, this is not the place to find them.

Another thing you won’t find in this book is the C++ Gospel, the One
True Path to perfect C++ software. Each of the Items in this book pro-
vides guidance on how to develop better designs, how to avoid com-
mon problems, or how to achieve greater efficiency, but none of the
Items is universally applicable. Software design and implementation is
a complex task, one colored by the constraints of the hardware, the
operating system, and the application, so the best I can do is provide
guidelines for creating better programs. 

If you follow all the guidelines all the time, you are unlikely to fall into
the most common traps surrounding C++, but guidelines, by their na-
ture, have exceptions. That’s why each Item has an explanation. The
explanations are the most important part of the book. Only by under-
standing the rationale behind an Item can you determine whether it
applies to the software you are developing and to the unique con-
straints under which you toil. 



ptg7544714

Effective C++ Introduction 3
The best use of this book is to gain insight into how C++ behaves, why
it behaves that way, and how to use its behavior to your advantage.
Blind application of the Items in this book is clearly inappropriate, but
at the same time, you probably shouldn’t violate any of the guidelines
without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should under-
stand. The following terms are important enough that it is worth mak-
ing sure we agree on what they mean.

A declaration tells compilers about the name and type of something,
but it omits certain details. These are declarations:

extern int x; // object declaration

std::size_t numDigits(int number); // function declaration

class Widget; // class declaration

template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of
built-in type. Some people reserve the name “object” for variables of
user-defined type, but I’m not one of them. Also note that the function
numDigits’ return type is std::size_t, i.e., the type size_t in namespace
std. That namespace is where virtually everything in C++’s standard li-
brary is located. However, because C’s standard library (the one from
C89, to be precise) can also be used in C++, symbols inherited from C
(such as size_t) may exist at global scope, inside std, or both, depend-
ing on which headers have been #included. In this book, I assume that
C++ headers have been #included, and that’s why I refer to std::size_t
instead of just size_t. When referring to components of the standard li-
brary in prose, I typically omit references to std, relying on you to rec-
ognize that things like size_t, vector, and cout are in std. In example
code, I always include std, because real code won’t compile without it. 

size_t, by the way, is just a typedef for some unsigned type that C++
uses when counting things (e.g., the number of characters in a char*-
based string, the number of elements in an STL container, etc.). It’s
also the type taken by the operator[] functions in vector, deque, and
string, a convention we’ll follow when defining our own operator[] func-
tions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter
and return types. A function’s signature is the same as its type. In the
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case of numDigits, the signature is std::size_t (int), i.e., “function taking
an int and returning a std::size_t.” The official C++ definition of “signa-
ture” excludes the function’s return type, but in this book, it’s more
useful to have the return type be considered part of the signature.

A definition provides compilers with the details a declaration omits.
For an object, the definition is where compilers set aside memory for
the object. For a function or a function template, the definition pro-
vides the code body. For a class or a class template, the definition lists
the members of the class or template:

int x; // object definition

std::size_t numDigits(int number) // function definition.
{ // (This function returns

std::size_t digitsSoFar = 1; // the number of digits
// in its parameter.)

while ((number /= 10) != 0) ++digitsSoFar;

return digitsSoFar;
}

class Widget { // class definition
public:

Widget();
~Widget();
...

};

template<typename T> // template definition
class GraphNode {
public:

GraphNode();
~GraphNode();
...

};

Initialization is the process of giving an object its first value. For ob-
jects generated from structs and classes, initialization is performed by
constructors. A default constructor is one that can be called without
any arguments. Such a constructor either has no parameters or has a
default value for every parameter:

class A {
public:

A(); // default constructor
};

class B {
public:

explicit B(int x = 0, bool b = true); // default constructor; see below
}; // for info on “explicit”
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class C {
public:

explicit C(int x); // not a default constructor
};

The constructors for classes B and C are declared explicit here. That
prevents them from being used to perform implicit type conversions,
though they may still be used for explicit type conversions:

void doSomething(B bObject); // a function taking an object of
// type B

B bObj1; // an object of type B

doSomething(bObj1); // fine, passes a B to doSomething

B bObj2(28); // fine, creates a B from the int 28
// (the bool defaults to true)

doSomething(28); // error! doSomething takes a B,
// not an int, and there is no 
// implicit conversion from int to B

doSomething(B(28)); // fine, uses the B constructor to
// explicitly convert (i.e., cast) the
// int to a B for this call. (See 
// Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit
ones, because they prevent compilers from performing unexpected
(often unintended) type conversions. Unless I have a good reason for
allowing a constructor to be used for implicit type conversions, I
declare it explicit. I encourage you to follow the same policy.

Please note how I’ve highlighted the cast in the example above.
Throughout this book, I use such highlighting to call your attention to
material that is particularly noteworthy. (I also highlight chapter
numbers, but that’s just because I think it looks nice.)

The copy constructor is used to initialize an object with a different
object of the same type, and the copy assignment operator is used
to copy the value from one object to another of the same type:

class Widget {
public:

Widget(); // default constructor
Widget(const Widget& rhs); // copy constructor
Widget& operator=(const Widget& rhs); // copy assignment operator
...

};

Widget w1; // invoke default constructor

Widget w2(w1); // invoke copy constructor

w1 = w2; // invoke copy
// assignment operator
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Read carefully when you see what appears to be an assignment, be-
cause the “=” syntax can also be used to call the copy constructor:

Widget w3 = w2; // invoke copy constructor! 

Fortunately, copy construction is easy to distinguish from copy as-
signment. If a new object is being defined (such as w3 in the statement
above), a constructor has to be called; it can’t be an assignment. If no
new object is being defined (such as in the “w1 = w2” statement above),
no constructor can be involved, so it’s an assignment.

The copy constructor is a particularly important function, because it
defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

...

Widget aWidget;

if (hasAcceptableQuality(aWidget)) ...

The parameter w is passed to hasAcceptableQuality by value, so in the
call above, aWidget is copied into w. The copying is done by Widget’s
copy constructor. Pass-by-value means “call the copy constructor.”
(However, it’s generally a bad idea to pass user-defined types by value.
Pass-by-reference-to-const is typically a better choice. For details, see
Item 20.)

The STL is the Standard Template Library, the part of C++’s standard
library devoted to containers (e.g., vector, list, set, map, etc.), iterators
(e.g., vector<int>::iterator, set<string>::iterator, etc.), algorithms (e.g.,
for_each, find, sort, etc.), and related functionality. Much of that related
functionality has to do with function objects: objects that act like
functions. Such objects come from classes that overload operator(), the
function call operator. If you’re unfamiliar with the STL, you’ll want to
have a decent reference available as you read this book, because the
STL is too useful for me not to take advantage of it. Once you’ve used
it a little, you’ll feel the same way.

Programmers coming to C++ from languages like Java or C# may be
surprised at the notion of undefined behavior. For a variety of rea-
sons, the behavior of some constructs in C++ is literally not defined:
you can’t reliably predict what will happen at runtime. Here are two
examples of code with undefined behavior:

int *p = 0; // p is a null pointer

std::cout << *p; // dereferencing a null pointer
// yields undefined behavior
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char name[] = "Darla"; // name is an array of size 6 (don’t
// forget the trailing null!)

char c = name[10]; // referring to an invalid array index
// yields undefined behavior

To emphasize that the results of undefined behavior are not predict-
able and may be very unpleasant, experienced C++ programmers of-
ten say that programs with undefined behavior can erase your hard
drive. It’s true: a program with undefined behavior could erase your
hard drive. But it’s not probable. More likely is that the program will
behave erratically, sometimes running normally, other times crash-
ing, still other times producing incorrect results. Effective C++ pro-
grammers do their best to steer clear of undefined behavior. In this
book, I point out a number of places where you need to be on the look-
out for it. 

Another term that may confuse programmers coming to C++ from an-
other language is interface. Java and the .NET languages offer Inter-
faces as a language element, but there is no such thing in C++,
though Item 31 discusses how to approximate them. When I use the
term “interface,” I’m generally talking about a function’s signature,
about the accessible elements of a class (e.g., a class’s “public inter-
face,” “protected interface,” or “private interface”), or about the ex-
pressions that must be valid for a template’s type parameter (see
Item 41). That is, I’m talking about interfaces as a fairly general de-
sign idea.

A client is someone or something that uses the code (typically the in-
terfaces) you write. A function’s clients, for example, are its users: the
parts of the code that call the function (or take its address) as well as
the humans who write and maintain such code. The clients of a class
or a template are the parts of the software that use the class or tem-
plate, as well as the programmers who write and maintain that code.
When discussing clients, I typically focus on programmers, because
programmers can be confused, misled, or annoyed by bad interfaces.
The code they write can’t be.

You may not be used to thinking about clients, but I’ll spend a good
deal of time trying to convince you to make their lives as easy as you
can. After all, you are a client of the software other people develop.
Wouldn’t you want those people to make things easy for you? Besides,
at some point you’ll almost certainly find yourself in the position of be-
ing your own client (i.e., using code you wrote), and at that point,
you’ll be glad you kept client concerns in mind when developing your
interfaces.
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In this book, I often gloss over the distinction between functions and
function templates and between classes and class templates. That’s
because what’s true about one is often true about the other. In situa-
tions where this is not the case, I distinguish among classes, func-
tions, and the templates that give rise to classes and functions. 

When referring to constructors and destructors in code comments, I
sometimes use the abbreviations ctor and dtor.

Naming Conventions

I have tried to select meaningful names for objects, classes, functions,
templates, etc., but the meanings behind some of my names may not
be immediately apparent. Two of my favorite parameter names, for
example, are lhs and rhs. They stand for “left-hand side” and “right-
hand side,” respectively. I often use them as parameter names for
functions implementing binary operators, e.g., operator== and opera-
tor*. For example, if a and b are objects representing rational numbers,
and if Rational objects can be multiplied via a non-member operator*
function (as Item 24 explains is likely to be the case), the expression

a * b

is equivalent to the function call 

operator*(a, b)

In Item 24, I declare operator* like this:

const Rational operator*(const Rational& lhs, const Rational& rhs);

As you can see, the left-hand operand, a, is known as lhs inside the
function, and the right-hand operand, b, is known as rhs.

For member functions, the left-hand argument is represented by the
this pointer, so sometimes I use the parameter name rhs by itself. You
may have noticed this in the declarations for some Widget member
functions on page 5. Which reminds me. I often use the Widget class
in examples. “Widget” doesn’t mean anything. It’s just a name I some-
times use when I need an example class name. It has nothing to do
with widgets in GUI toolkits.

I often name pointers following the rule that a pointer to an object of
type T is called pt, “pointer to T.” Here are some examples:

Widget *pw; // pw = ptr to Widget

class Airplane;
Airplane *pa; // pa = ptr to Airplane
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class GameCharacter;
GameCharacter *pgc; // pgc = ptr to GameCharacter

I use a similar convention for references: rw might be a reference to a
Widget and ra a reference to an Airplane.

I occasionally use the name mf when I’m talking about member func-
tions.

Threading Considerations

As a language, C++ has no notion of threads — no notion of concur-
rency of any kind, in fact. Ditto for C++’s standard library. As far as
C++ is concerned, multithreaded programs don’t exist. 

And yet they do. My focus in this book is on standard, portable C++,
but I can’t ignore the fact that thread safety is an issue many pro-
grammers confront. My approach to dealing with this chasm between
standard C++ and reality is to point out places where the C++ con-
structs I examine are likely to cause problems in a threaded environ-
ment. That doesn’t make this a book on multithreaded programming
with C++. Far from it. Rather, it makes it a book on C++ programming
that, while largely limiting itself to single-threaded considerations, ac-
knowledges the existence of multithreading and tries to point out
places where thread-aware programmers need to take particular care
in evaluating the advice I offer. 

If you’re unfamiliar with multithreading or have no need to worry
about it, you can ignore my threading-related remarks. If you are pro-
gramming a threaded application or library, however, remember that
my comments are little more than a starting point for the issues you’ll
need to address when using C++.

TR1 and Boost

You’ll find references to TR1 and Boost throughout this book. Each
has an Item that describes it in some detail (Item 54 for TR1, Item 55
for Boost), but, unfortunately, these Items are at the end of the book.
(They’re there because it works better that way. Really. I tried them in
a number of other places.) If you like, you can turn to those Items and
read them now, but if you’d prefer to start the book at the beginning
instead of the end, the following executive summary will tide you over:

■ TR1 (“Technical Report 1”) is a specification for new functionality
being added to C++’s standard library. This functionality takes the
form of new class and function templates for things like hash ta-
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bles, reference-counting smart pointers, regular expressions, and
more. All TR1 components are in the namespace tr1 that’s nested
inside the namespace std. 

■ Boost is an organization and a web site (http://boost.org) offering
portable, peer-reviewed, open source C++ libraries. Most TR1
functionality is based on work done at Boost, and until compiler
vendors include TR1 in their C++ library distributions, the Boost
web site is likely to remain the first stop for developers looking for
TR1 implementations. Boost offers more than is available in TR1,
however, so it’s worth knowing about in any case.

http://boost.org
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Accustoming Yourself to C++Regardless of your programming background, C++ is likely to take a
little getting used to. It’s a powerful language with an enormous range
of features, but before you can harness that power and make effective
use of those features, you have to accustom yourself to C++’s way of
doing things. This entire book is about how to do that, but some
things are more fundamental than others, and this chapter is about
some of the most fundamental things of all. 

Item 1: View C++ as a federation of languages.

In the beginning, C++ was just C with some object-oriented features
tacked on. Even C++’s original name, “C with Classes,” reflected this
simple heritage.

As the language matured, it grew bolder and more adventurous,
adopting ideas, features, and programming strategies different from
those of C with Classes. Exceptions required different approaches to
structuring functions (see Item 29). Templates gave rise to new ways
of thinking about design (see Item 41), and the STL defined an
approach to extensibility unlike any most people had ever seen. 

Today’s C++ is a multiparadigm programming language, one support-
ing a combination of procedural, object-oriented, functional, generic,
and metaprogramming features. This power and flexibility make C++
a tool without equal, but can also cause some confusion. All the
“proper usage” rules seem to have exceptions. How are we to make
sense of such a language? 

The easiest way is to view C++ not as a single language but as a feder-
ation of related languages. Within a particular sublanguage, the rules
tend to be simple, straightforward, and easy to remember. When you
move from one sublanguage to another, however, the rules may

Chapter 1: Accustoming Yourself to C++

Accustoming
Yourself to C++
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change. To make sense of C++, you have to recognize its primary sub-
languages. Fortunately, there are only four:

■ C. Way down deep, C++ is still based on C. Blocks, statements, the
preprocessor, built-in data types, arrays, pointers, etc., all come
from C. In many cases, C++ offers approaches to problems that
are superior to their C counterparts (e.g., see Items 2 (alternatives
to the preprocessor) and 13 (using objects to manage resources)),
but when you find yourself working with the C part of C++, the
rules for effective programming reflect C’s more limited scope: no
templates, no exceptions, no overloading, etc.

■ Object-Oriented C++. This part of C++ is what C with Classes was
all about: classes (including constructors and destructors), encap-
sulation, inheritance, polymorphism, virtual functions (dynamic
binding), etc. This is the part of C++ to which the classic rules for
object-oriented design most directly apply.

■ Template C++. This is the generic programming part of C++, the
one that most programmers have the least experience with. Tem-
plate considerations pervade C++, and it’s not uncommon for rules
of good programming to include special template-only clauses
(e.g., see Item 46 on facilitating type conversions in calls to tem-
plate functions). In fact, templates are so powerful, they give rise
to a completely new programming paradigm, template metapro-
gramming (TMP). Item 48 provides an overview of TMP, but unless
you’re a hard-core template junkie, you need not worry about it.
The rules for TMP rarely interact with mainstream C++ program-
ming.

■ The STL. The STL is a template library, of course, but it’s a very
special template library. Its conventions regarding containers, iter-
ators, algorithms, and function objects mesh beautifully, but tem-
plates and libraries can be built around other ideas, too. The STL
has particular ways of doing things, and when you’re working with
the STL, you need to be sure to follow its conventions. 

Keep these four sublanguages in mind, and don’t be surprised when
you encounter situations where effective programming requires that
you change strategy when you switch from one sublanguage to
another. For example, pass-by-value is generally more efficient than
pass-by-reference for built-in (i.e., C-like) types, but when you move
from the C part of C++ to Object-Oriented C++, the existence of user-
defined constructors and destructors means that pass-by-reference-
to-const is usually better. This is especially the case when working in
Template C++, because there, you don’t even know the type of object
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you’re dealing with. When you cross into the STL, however, you know
that iterators and function objects are modeled on pointers in C, so for
iterators and function objects in the STL, the old C pass-by-value rule
applies again. (For all the details on choosing among parameter-pass-
ing options, see Item 20.)

C++, then, isn’t a unified language with a single set of rules; it’s a fed-
eration of four sublanguages, each with its own conventions. Keep
these sublanguages in mind, and you’ll find that C++ is a lot easier to
understand.

Things to Remember

✦ Rules for effective C++ programming vary, depending on the part of
C++ you are using.

Item 2: Prefer consts, enums, and inlines to #defines.

This Item might better be called “prefer the compiler to the preproces-
sor,” because #define may be treated as if it’s not part of the language
per se. That’s one of its problems. When you do something like this,

#define ASPECT_RATIO 1.653

the symbolic name ASPECT_RATIO may never be seen by compilers; it
may be removed by the preprocessor before the source code ever gets
to a compiler. As a result, the name ASPECT_RATIO may not get entered
into the symbol table. This can be confusing if you get an error during
compilation involving the use of the constant, because the error mes-
sage may refer to 1.653, not ASPECT_RATIO. If ASPECT_RATIO were
defined in a header file you didn’t write, you’d have no idea where that
1.653 came from, and you’d waste time tracking it down. This problem
can also crop up in a symbolic debugger, because, again, the name
you’re programming with may not be in the symbol table.

The solution is to replace the macro with a constant:

const double AspectRatio = 1.653; // uppercase names are usually for
// macros, hence the name change

As a language constant, AspectRatio is definitely seen by compilers and
is certainly entered into their symbol tables. In addition, in the case of
a floating point constant (such as in this example), use of the constant
may yield smaller code than using a #define. That’s because the pre-
processor’s blind substitution of the macro name ASPECT_RATIO with
1.653 could result in multiple copies of 1.653 in your object code,
while the use of the constant AspectRatio should never result in more
than one copy.
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When replacing #defines with constants, two special cases are worth
mentioning. The first is defining constant pointers. Because constant
definitions are typically put in header files (where many different
source files will include them), it’s important that the pointer be
declared const, usually in addition to what the pointer points to. To
define a constant char*-based string in a header file, for example, you
have to write const twice:

const char * const authorName = "Scott Meyers";

For a complete discussion of the meanings and uses of const, espe-
cially in conjunction with pointers, see Item 3. However, it’s worth
reminding you here that string objects are generally preferable to their
char*-based progenitors, so authorName is often better defined this
way:

const std::string authorName("Scott Meyers"); 

The second special case concerns class-specific constants. To limit
the scope of a constant to a class, you must make it a member, and to
ensure there’s at most one copy of the constant, you must make it a
static member:

class GamePlayer {
private:

static const int NumTurns = 5; // constant declaration
int scores[NumTurns]; // use of constant
...

};

What you see above is a declaration for NumTurns, not a definition.
Usually, C++ requires that you provide a definition for anything you
use, but class-specific constants that are static and of integral type
(e.g., integers, chars, bools) are an exception. As long as you don’t take
their address, you can declare them and use them without providing a
definition. If you do take the address of a class constant, or if your
compiler incorrectly insists on a definition even if you don’t take the
address, you provide a separate definition like this:

const int GamePlayer::NumTurns; // definition of NumTurns; see 
// below for why no value is given

You put this in an implementation file, not a header file. Because the
initial value of class constants is provided where the constant is
declared (e.g., NumTurns is initialized to 5 when it is declared), no ini-
tial value is permitted at the point of definition.

Note, by the way, that there’s no way to create a class-specific con-
stant using a #define, because #defines don’t respect scope. Once a
macro is defined, it’s in force for the rest of the compilation (unless it’s
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#undefed somewhere along the line). Which means that not only can’t
#defines be used for class-specific constants, they also can’t be used to
provide any kind of encapsulation, i.e., there is no such thing as a
“private” #define. Of course, const data members can be encapsulated;
NumTurns is.

Older compilers may not accept the syntax above, because it used to
be illegal to provide an initial value for a static class member at its
point of declaration. Furthermore, in-class initialization is allowed
only for integral types and only for constants. In cases where the
above syntax can’t be used, you put the initial value at the point of
definition:

class CostEstimate {
private:

static const double FudgeFactor; // declaration of static class 
... // constant; goes in header file

};

const double // definition of static class
CostEstimate::FudgeFactor = 1.35; // constant; goes in impl. file

This is all you need almost all the time. The only exception is when
you need the value of a class constant during compilation of the class,
such as in the declaration of the array GamePlayer::scores above (where
compilers insist on knowing the size of the array during compilation).
Then the accepted way to compensate for compilers that (incorrectly)
forbid the in-class specification of initial values for static integral class
constants is to use what is affectionately (and non-pejoratively) known
as “the enum hack.” This technique takes advantage of the fact that
the values of an enumerated type can be used where ints are expected,
so GamePlayer could just as well be defined like this:

class GamePlayer {
private:

enum { NumTurns = 5 }; // “the enum hack” — makes 
// NumTurns a symbolic name for 5

int scores[NumTurns]; // fine

...

};

The enum hack is worth knowing about for several reasons. First, the
enum hack behaves in some ways more like a #define than a const
does, and sometimes that’s what you want. For example, it’s legal to
take the address of a const, but it’s not legal to take the address of an
enum, and it’s typically not legal to take the address of a #define,
either. If you don’t want to let people get a pointer or reference to one
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of your integral constants, an enum is a good way to enforce that con-
straint. (For more on enforcing design constraints through coding
decisions, consult Item 18.) Also, though good compilers won’t set
aside storage for const objects of integral types (unless you create a
pointer or reference to the object), sloppy compilers may, and you may
not be willing to set aside memory for such objects. Like #defines,
enums never result in that kind of unnecessary memory allocation.

A second reason to know about the enum hack is purely pragmatic.
Lots of code employs it, so you need to recognize it when you see it. In
fact, the enum hack is a fundamental technique of template metapro-
gramming (see Item 48).

Getting back to the preprocessor, another common (mis)use of the
#define directive is using it to implement macros that look like func-
tions but that don’t incur the overhead of a function call. Here’s a
macro that calls some function f with the greater of the macro’s argu-
ments:

// call f with the maximum of a and b
#define CALL_WITH_MAX(a, b) f((a) > (b) ? (a) : (b))

Macros like this have so many drawbacks, just thinking about them is
painful.

Whenever you write this kind of macro, you have to remember to
parenthesize all the arguments in the macro body. Otherwise you can
run into trouble when somebody calls the macro with an expression.
But even if you get that right, look at the weird things that can happen:

int a = 5, b = 0;

CALL_WITH_MAX(++a, b); // a is incremented twice
CALL_WITH_MAX(++a, b+10); // a is incremented once

Here, the number of times that a is incremented before calling f
depends on what it is being compared with!

Fortunately, you don’t need to put up with this nonsense. You can get
all the efficiency of a macro plus all the predictable behavior and type
safety of a regular function by using a template for an inline function
(see Item 30):

template<typename T> // because we don’t
inline void callWithMax(const T& a, const T& b) // know what T is, we
{ // pass by reference-to-

f(a > b ? a : b); // const — see Item 20
}

This template generates a whole family of functions, each of which
takes two objects of the same type and calls f with the greater of the



ptg7544714

Accustoming Yourself to C++ Item 3 17
two objects. There’s no need to parenthesize parameters inside the
function body, no need to worry about evaluating parameters multiple
times, etc. Furthermore, because callWithMax is a real function, it
obeys scope and access rules. For example, it makes perfect sense to
talk about an inline function that is private to a class. In general,
there’s just no way to do that with a macro.

Given the availability of consts, enums, and inlines, your need for the
preprocessor (especially #define) is reduced, but it’s not eliminated.
#include remains essential, and #ifdef/#ifndef continue to play impor-
tant roles in controlling compilation. It’s not yet time to retire the pre-
processor, but you should definitely give it long and frequent
vacations.

Things to Remember

✦ For simple constants, prefer const objects or enums to #defines.

✦ For function-like macros, prefer inline functions to #defines.

Item 3: Use const whenever possible.

The wonderful thing about const is that it allows you to specify a
semantic constraint — a particular object should not be modified —
and compilers will enforce that constraint. It allows you to communi-
cate to both compilers and other programmers that a value should
remain invariant. Whenever that is true, you should be sure to say so,
because that way you enlist your compilers’ aid in making sure the
constraint isn’t violated. 

The const keyword is remarkably versatile. Outside of classes, you can
use it for constants at global or namespace scope (see Item 2), as well
as for objects declared static at file, function, or block scope. Inside
classes, you can use it for both static and non-static data members.
For pointers, you can specify whether the pointer itself is const, the
data it points to is const, both, or neither:

char greeting[] = "Hello"; 

char *p = greeting; // non-const pointer, 
// non-const data

const char *p = greeting; // non-const pointer,
// const data

char * const p = greeting; // const pointer,
// non-const data

const char * const p = greeting; // const pointer,
// const data
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ntax isn’t as capricious as it may seem. If the word const
s to the left of the asterisk, what’s pointed to is constant; if the
nst appears to the right of the asterisk, the pointer itself is con-
f const appears on both sides, both are constant.†

what’s pointed to is constant, some programmers list const
the type. Others list it after the type but before the asterisk.
s no difference in meaning, so the following functions take the
arameter type:

 f1(const Widget *pw); // f1 takes a pointer to a
// constant Widget object

 f2(Widget const *pw); // so does f2

e both forms exist in real code, you should accustom yourself
 of them.

rators are modeled on pointers, so an iterator acts much like a
ter. Declaring an iterator const is like declaring a pointer const
claring a T* const pointer): the iterator isn’t allowed to point to
ing different, but the thing it points to may be modified. If you
n iterator that points to something that can’t be modified (i.e.,
 analogue of a const T* pointer), you want a const_iterator:

:vector<int> vec;

st std::vector<int>::iterator iter = // iter acts like a T* const
c.begin();
 = 10; // OK, changes what iter points to

ter; // error! iter is const

:vector<int>::const_iterator cIter = // cIter acts like a const T*
c.begin();
r = 10; // error! *cIter is const

Iter; // fine, changes cIter

f the most powerful uses of const stem from its application to
n declarations. Within a function declaration, const can refer to
ction’s return value, to individual parameters, and, for member
ns, to the function as a whole. 

 a function return a constant value is generally inappropriate,
etimes doing so can reduce the incidence of client errors with-

ing up safety or efficiency. For example, consider the declara-
the operator* function for rational numbers that is explored in
:

s Rational { ... };

st Rational operator*(const Rational& lhs, const Rational& rhs);

eople find it helpful to read pointer declarations right to left, e.g., to read const
onst p as “p is a constant pointer to constant chars.”
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ers squint when they first see this. Why should the
or* be a const object? Because if it weren’t, clients
 commit atrocities like this:

c;

// invoke operator= on the 
// result of a*b!

y any programmer would want to make an assignment
f two numbers, but I do know that many programmers
 it without wanting to. All it takes is a simple typo (and
be implicitly converted to bool):

// oops, meant to do a comparison!

ld be flat-out illegal if a and b were of a built-in type.
arks of good user-defined types is that they avoid gra-

atibilities with the built-ins (see also Item 18), and
ents to the product of two numbers seems pretty gra-

eclaring operator*’s return value const prevents it, and
he Right Thing To Do in this case.

 particularly new about const parameters — they act
onst objects, and you should use both whenever you
 need to be able to modify a parameter or local object,
re it const. It costs you only the effort to type six char-
n save you from annoying errors such as the “I meant
I accidently typed ‘=’” mistake we just saw.

Functions

const on member functions is to identify which mem-
ay be invoked on const objects. Such member func-
ant for two reasons. First, they make the interface of a
understand. It’s important to know which functions
object and which may not. Second, they make it possi-
h const objects. That’s a critical aspect of writing effi-
use, as Item 20 explains, one of the fundamental ways
+ program’s performance is to pass objects by refer-

hat technique is viable only if there are const member
 which to manipulate the resulting const-qualified
erlook the fact that member functions differing only in
 can be overloaded, but this is an important feature of
 class for representing a block of text:
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class TextBlock {
public:

...

const char& operator[](std::size_t position) const // operator[] for
{ return text[position]; } // const objects

char& operator[](std::size_t position)  // operator[] for
{ return text[position]; } // non-const objects

private:
 std::string text;

};

TextBlock’s operator[]s can be used like this:

TextBlock tb("Hello");
std::cout << tb[0]; // calls non-const

// TextBlock::operator[]
const TextBlock ctb("World");
std::cout << ctb[0]; // calls const TextBlock::operator[]

Incidentally, const objects most often arise in real programs as a result
of being passed by pointer- or reference-to-const. The example of ctb
above is artificial. This is more realistic:

void print(const TextBlock& ctb) // in this function, ctb is const
{

std::cout << ctb[0]; // calls const TextBlock::operator[]
...

}

By overloading operator[] and giving the different versions different
return types, you can have const and non-const TextBlocks handled dif-
ferently:

std::cout << tb[0]; // fine — reading a 
// non-const TextBlock 

tb[0] = ’x’; // fine — writing a 
// non-const TextBlock

std::cout << ctb[0]; // fine — reading a 
// const TextBlock 

ctb[0] = ’x’; // error! — writing a 
// const TextBlock 

Note that the error here has only to do with the return type of the
operator[] that is called; the calls to operator[] themselves are all fine.
The error arises out of an attempt to make an assignment to a const
char&, because that’s the return type from the const version of
operator[].



ptg7544714

Accustoming Yourself to C++ Item 3 21
Also note that the return type of the non-const operator[] is a reference
to a char — a char itself would not do. If operator[] did return a simple
char, statements like this wouldn’t compile:

tb[0] = ’x’;

That’s because it’s never legal to modify the return value of a function
that returns a built-in type. Even if it were legal, the fact that C++
returns objects by value (see Item 20) would mean that a copy of
tb.text[0] would be modified, not tb.text[0] itself, and that’s not the
behavior you want. 

Let’s take a brief time-out for philosophy. What does it mean for a
member function to be const? There are two prevailing notions: bitwise
constness (also known as physical constness) and logical constness.

The bitwise const camp believes that a member function is const if and
only if it doesn’t modify any of the object’s data members (excluding
those that are static), i.e., if it doesn’t modify any of the bits inside the
object. The nice thing about bitwise constness is that it’s easy to
detect violations: compilers just look for assignments to data mem-
bers. In fact, bitwise constness is C++’s definition of constness, and a
const member function isn’t allowed to modify any of the non-static
data members of the object on which it is invoked.

Unfortunately, many member functions that don’t act very const pass
the bitwise test. In particular, a member function that modifies what a
pointer points to frequently doesn’t act const. But if only the pointer is
in the object, the function is bitwise const, and compilers won’t com-
plain. That can lead to counterintuitive behavior. For example, sup-
pose we have a TextBlock-like class that stores its data as a char*
instead of a string, because it needs to communicate through a C API
that doesn’t understand string objects.

class CTextBlock {
public:

...

char& operator[](std::size_t position) const // inappropriate (but bitwise
{ return pText[position]; } // const) declaration of

// operator[]
private:

char *pText;
};

This class (inappropriately) declares operator[] as a const member
function, even though that function returns a reference to the object’s
internal data (a topic treated in depth in Item 28). Set that aside and
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note that operator[]’s implementation doesn’t modify pText in any way.
As a result, compilers will happily generate code for operator[]; it is,
after all, bitwise const, and that’s all compilers check for. But look
what it allows to happen:

const CTextBlock cctb("Hello"); // declare constant object

char *pc = &cctb[0]; // call the const operator[] to get a
// pointer to cctb’s data 

*pc = ’J’; // cctb now has the value “Jello”

Surely there is something wrong when you create a constant object
with a particular value and you invoke only const member functions
on it, yet you still change its value! 

This leads to the notion of logical constness. Adherents to this philos-
ophy — and you should be among them — argue that a const member
function might modify some of the bits in the object on which it’s
invoked, but only in ways that clients cannot detect. For example,
your CTextBlock class might want to cache the length of the textblock
whenever it’s requested:

class CTextBlock {
public:

...

std::size_t length() const;

private:
char *pText;
std::size_t textLength; // last calculated length of textblock
bool lengthIsValid; // whether length is currently valid

};

std::size_t CTextBlock::length() const
{

if (!lengthIsValid) {
textLength = std::strlen(pText); // error! can’t assign to textLength
lengthIsValid = true; // and lengthIsValid in a const 

} // member function

return textLength;
}

This implementation of length is certainly not bitwise const — both tex-
tLength and lengthIsValid may be modified — yet it seems as though it
should be valid for const CTextBlock objects. Compilers disagree. They
insist on bitwise constness. What to do?

The solution is simple: take advantage of C++’s const-related wiggle
room known as mutable. mutable frees non-static data members from
the constraints of bitwise constness:
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class CTextBlock {
public:

...

std::size_t length() const;

private:
char *pText;

mutable std::size_t textLength; // these data members may
mutable bool lengthIsValid; // always be modified, even in 

}; // const member functions

std::size_t CTextBlock::length() const
{

if (!lengthIsValid) {
textLength = std::strlen(pText); // now fine
lengthIsValid = true; // also fine

}

return textLength;
}

Avoiding Duplication in const and Non-const Member Functions

mutable is a nice solution to the bitwise-constness-is-not-what-I-had-
in-mind problem, but it doesn’t solve all const-related difficulties. For
example, suppose that operator[] in TextBlock (and CTextBlock) not only
returned a reference to the appropriate character, it also performed
bounds checking, logged access information, maybe even did data
integrity validation. Putting all this in both the const and the non-const
operator[] functions (and not fretting that we now have implicitly inline
functions of nontrivial length — see Item 30) yields this kind of mon-
strosity:

class TextBlock {
public:

...

const char& operator[](std::size_t position) const
{

... // do bounds checking

... // log access data

... // verify data integrity
return text[position];

}

char& operator[](std::size_t position)  
{

... // do bounds checking

... // log access data

... // verify data integrity
return text[position];

}

private:
 std::string text;

};
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Ouch! Can you say code duplication, along with its attendant compi-
lation time, maintenance, and code-bloat headaches? Sure, it’s possi-
ble to move all the code for bounds checking, etc. into a separate
member function (private, naturally) that both versions of operator[]
call, but you’ve still got the duplicated calls to that function and
you’ve still got the duplicated return statement code. 

What you really want to do is implement operator[] functionality once
and use it twice. That is, you want to have one version of operator[]
call the other one. And that brings us to casting away constness.

As a general rule, casting is such a bad idea, I’ve devoted an entire
Item to telling you not to do it (Item 27), but code duplication is no
picnic, either. In this case, the const version of operator[] does exactly
what the non-const version does, it just has a const-qualified return
type. Casting away the const on the return value is safe, in this case,
because whoever called the non-const operator[] must have had a non-
const object in the first place. Otherwise they couldn’t have called a
non-const function. So having the non-const operator[] call the const
version is a safe way to avoid code duplication, even though it requires
a cast. Here’s the code, but it may be clearer after you read the expla-
nation that follows:

class TextBlock {
public:

...

const char& operator[](std::size_t position) const // same as before
{

...

...

...
return text[position];

}

char& operator[](std::size_t position)  // now just calls const op[]
{

return
const_cast<char&>( // cast away const on

// op[]’s return type;
static_cast<const TextBlock&>(*this) // add const to *this’s type;

[position] // call const version of op[]
);

}

...

};
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As you can see, the code has two casts, not one. We want the non-
const operator[] to call the const one, but if, inside the non-const
operator[], we just call operator[], we’ll recursively call ourselves. That’s
only entertaining the first million or so times. To avoid infinite recur-
sion, we have to specify that we want to call the const operator[], but
there’s no direct way to do that. Instead, we cast *this from its native
type of TextBlock& to const TextBlock&. Yes, we use a cast to add const!
So we have two casts: one to add const to *this (so that our call to
operator[] will call the const version), the second to remove the const
from the const operator[]’s return value. 

The cast that adds const is just forcing a safe conversion (from a non-
const object to a const one), so we use a static_cast for that. The one
that removes const can be accomplished only via a const_cast, so we
don’t really have a choice there. (Technically, we do. A C-style cast
would also work, but, as I explain in Item 27, such casts are rarely the
right choice. If you’re unfamiliar with static_cast or const_cast, Item 27
contains an overview.) 

On top of everything else, we’re calling an operator in this example, so
the syntax is a little strange. The result may not win any beauty con-
tests, but it has the desired effect of avoiding code duplication by
implementing the non-const version of operator[] in terms of the const
version. Whether achieving that goal is worth the ungainly syntax is
something only you can determine, but the technique of implementing
a non-const member function in terms of its const twin is definitely
worth knowing.

Even more worth knowing is that trying to do things the other way
around — avoiding duplication by having the const version call the
non-const version — is not something you want to do. Remember, a
const member function promises never to change the logical state of
its object, but a non-const member function makes no such promise.
If you were to call a non-const function from a const one, you’d run the
risk that the object you’d promised not to modify would be changed.
That’s why having a const member function call a non-const one is
wrong: the object could be changed. In fact, to get the code to compile,
you’d have to use a const_cast to get rid of the const on *this, a clear
sign of trouble. The reverse calling sequence — the one we used above
— is safe: the non-const member function can do whatever it wants
with an object, so calling a const member function imposes no risk.
That’s why a static_cast works on *this in that case: there’s no const-
related danger.

As I noted at the beginning of this Item, const is a wonderful thing. On
pointers and iterators; on the objects referred to by pointers, iterators,
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and references; on function parameters and return types; on local
variables; and on member functions, const is a powerful ally. Use it
whenever you can. You’ll be glad you did.

Things to Remember

✦ Declaring something const helps compilers detect usage errors. const
can be applied to objects at any scope, to function parameters and
return types, and to member functions as a whole.

✦ Compilers enforce bitwise constness, but you should program using
logical constness.

✦ When const and non-const member functions have essentially identi-
cal implementations, code duplication can be avoided by having the
non-const version call the const version.

Item 4: Make sure that objects are initialized before 
they’re used.

C++ can seem rather fickle about initializing the values of objects. For
example, if you say this,

int x;

in some contexts, x is guaranteed to be initialized (to zero), but in oth-
ers, it’s not. If you say this,

class Point {
int x, y;

};

...

Point p;

p’s data members are sometimes guaranteed to be initialized (to zero),
but sometimes they’re not. If you’re coming from a language where
uninitialized objects can’t exist, pay attention, because this is impor-
tant.

Reading uninitialized values yields undefined behavior. On some plat-
forms, the mere act of reading an uninitialized value can halt your
program. More typically, the result of the read will be semi-random
bits, which will then pollute the object you read the bits into, eventu-
ally leading to inscrutable program behavior and a lot of unpleasant
debugging. 

Now, there are rules that describe when object initialization is guaran-
teed to take place and when it isn’t. Unfortunately, the rules are com-
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plicated — too complicated to be worth memorizing, in my opinion. In
general, if you’re in the C part of C++ (see Item 1) and initialization
would probably incur a runtime cost, it’s not guaranteed to take
place. If you cross into the non-C parts of C++, things sometimes
change. This explains why an array (from the C part of C++) isn’t nec-
essarily guaranteed to have its contents initialized, but a vector (from
the STL part of C++) is.

The best way to deal with this seemingly indeterminate state of affairs
is to always initialize your objects before you use them. For non-
member objects of built-in types, you’ll need to do this manually. For
example:

int x = 0; // manual initialization of an int

const char * text = "A C-style string"; // manual initialization of a
// pointer (see also Item 3)

double d; // “initialization” by reading from
std::cin >> d; // an input stream

For almost everything else, the responsibility for initialization falls on
constructors. The rule there is simple: make sure that all constructors
initialize everything in the object.

The rule is easy to follow, but it’s important not to confuse assignment
with initialization. Consider a constructor for a class representing
entries in an address book:

class PhoneNumber { ... };

class ABEntry { // ABEntry = “Address Book Entry”
public:

ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones);

private:
std::string theName;
std::string theAddress;
std::list<PhoneNumber> thePhones;
int numTimesConsulted;

};

ABEntry::ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones)

{
theName = name; // these are all assignments,
theAddress = address; // not initializations
thePhones = phones;
numTimesConsulted = 0;

}
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This will yield ABEntry objects with the values you expect, but it’s still
not the best approach. The rules of C++ stipulate that data members
of an object are initialized before the body of a constructor is entered.
Inside the ABEntry constructor, theName, theAddress, and thePhones
aren’t being initialized, they’re being assigned. Initialization took place
earlier — when their default constructors were automatically called
prior to entering the body of the ABEntry constructor. This isn’t true for
numTimesConsulted, because it’s a built-in type. For it, there’s no guar-
antee it was initialized at all prior to its assignment.

A better way to write the ABEntry constructor is to use the member ini-
tialization list instead of assignments:

ABEntry::ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones)

: theName(name),
theAddress(address), // these are now all initializations
thePhones(phones),
numTimesConsulted(0)

{} // the ctor body is now empty

This constructor yields the same end result as the one above, but it
will often be more efficient. The assignment-based version first called
default constructors to initialize theName, theAddress, and thePhones,
then promptly assigned new values on top of the default-constructed
ones. All the work performed in those default constructions was
therefore wasted. The member initialization list approach avoids that
problem, because the arguments in the initialization list are used as
constructor arguments for the various data members. In this case,
theName is copy-constructed from name, theAddress is copy-con-
structed from address, and thePhones is copy-constructed from phones.
For most types, a single call to a copy constructor is more efficient —
sometimes much more efficient — than a call to the default construc-
tor followed by a call to the copy assignment operator. 

For objects of built-in type like numTimesConsulted, there is no differ-
ence in cost between initialization and assignment, but for consis-
tency, it’s often best to initialize everything via member initialization.
Similarly, you can use the member initialization list even when you
want to default-construct a data member; just specify nothing as an
initialization argument. For example, if ABEntry had a constructor tak-
ing no parameters, it could be implemented like this:

ABEntry::ABEntry()
: theName(), // call theName’s default ctor;

theAddress(), // do the same for theAddress;
thePhones(), // and for thePhones;
numTimesConsulted(0) // but explicitly initialize

{} // numTimesConsulted to zero
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Because compilers will automatically call default constructors for data
members of user-defined types when those data members have no ini-
tializers on the member initialization list, some programmers consider
the above approach overkill. That’s understandable, but having a pol-
icy of always listing every data member on the initialization list avoids
having to remember which data members may go uninitialized if they
are omitted. Because numTimesConsulted is of a built-in type, for
example, leaving it off a member initialization list could open the door
to undefined behavior.

Sometimes the initialization list must be used, even for built-in types.
For example, data members that are const or are references must be
initialized; they can’t be assigned (see also Item 5). To avoid having to
memorize when data members must be initialized in the member ini-
tialization list and when it’s optional, the easiest choice is to always
use the initialization list. It’s sometimes required, and it’s often more
efficient than assignments.

Many classes have multiple constructors, and each constructor has
its own member initialization list. If there are many data members
and/or base classes, the existence of multiple initialization lists intro-
duces undesirable repetition (in the lists) and boredom (in the pro-
grammers). In such cases, it’s not unreasonable to omit entries in the
lists for data members where assignment works as well as true initial-
ization, moving the assignments to a single (typically private) function
that all the constructors call. This approach can be especially helpful
if the true initial values for the data members are to be read from a file
or looked up in a database. In general, however, true member initial-
ization (via an initialization list) is preferable to pseudo-initialization
via assignment.

One aspect of C++ that isn’t fickle is the order in which an object’s
data is initialized. This order is always the same: base classes are ini-
tialized before derived classes (see also Item 12), and within a class,
data members are initialized in the order in which they are declared.
In ABEntry, for example, theName will always be initialized first, theAd-
dress second, thePhones third, and numTimesConsulted last. This is true
even if they are listed in a different order on the member initialization
list (something that’s unfortunately legal). To avoid reader confusion,
as well as the possibility of some truly obscure behavioral bugs,
always list members in the initialization list in the same order as
they’re declared in the class. 

Once you’ve taken care of explicitly initializing non-member objects of
built-in types and you’ve ensured that your constructors initialize
their base classes and data members using the member initialization
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list, there’s only one more thing to worry about. That thing is — take a
deep breath — the order of initialization of non-local static objects
defined in different translation units. 

Let’s pick that phrase apart bit by bit.

A static object is one that exists from the time it’s constructed until the
end of the program. Stack and heap-based objects are thus excluded.
Included are global objects, objects defined at namespace scope,
objects declared static inside classes, objects declared static inside
functions, and objects declared static at file scope. Static objects inside
functions are known as local static objects (because they’re local to a
function), and the other kinds of static objects are known as non-local
static objects. Static objects are destroyed when the program exits,
i.e., their destructors are called when main finishes executing.

A translation unit is the source code giving rise to a single object file.
It’s basically a single source file, plus all of its #include files.

The problem we’re concerned with, then, involves at least two sepa-
rately compiled source files, each of which contains at least one non-
local static object (i.e., an object that’s global, at namespace scope, or
static in a class or at file scope). And the actual problem is this: if ini-
tialization of a non-local static object in one translation unit uses a
non-local static object in a different translation unit, the object it uses
could be uninitialized, because the relative order of initialization of non-
local static objects defined in different translation units is undefined. 

An example will help. Suppose you have a FileSystem class that makes
files on the Internet look like they’re local. Since your class makes the
world look like a single file system, you might create a special object at
global or namespace scope representing the single file system:

class FileSystem { // from your library’s header file
public:

...
std::size_t numDisks() const; // one of many member functions
...

}; 

extern FileSystem tfs; // declare object for clients to use
// (“tfs” = “the file system” ); definition
// is in some .cpp file in your library

A FileSystem object is decidedly non-trivial, so use of the tfs object
before it has been constructed would be disastrous.

Now suppose some client creates a class for directories in a file sys-
tem. Naturally, their class uses the tfs object:
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class Directory { // created by library client
public:

 Directory( params );
...

};

Directory::Directory( params )
{

...
std::size_t disks = tfs.numDisks(); // use the tfs object
...

}

Further suppose this client decides to create a single Directory object
for temporary files:

Directory tempDir( params ); // directory for temporary files

Now the importance of initialization order becomes apparent: unless
tfs is initialized before tempDir, tempDir’s constructor will attempt to
use tfs before it’s been initialized. But tfs and tempDir were created by
different people at different times in different source files — they’re
non-local static objects defined in different translation units. How can
you be sure that tfs will be initialized before tempDir?

You can’t. Again, the relative order of initialization of non-local static
objects defined in different translation units is undefined. There is a
reason for this. Determining the “proper” order in which to initialize
non-local static objects is hard. Very hard. Unsolvably hard. In its
most general form — with multiple translation units and non-local
static objects generated through implicit template instantiations
(which may themselves arise via implicit template instantiations) —
it’s not only impossible to determine the right order of initialization,
it’s typically not even worth looking for special cases where it is possi-
ble to determine the right order.

Fortunately, a small design change eliminates the problem entirely.
All that has to be done is to move each non-local static object into its
own function, where it’s declared static. These functions return refer-
ences to the objects they contain. Clients then call the functions
instead of referring to the objects. In other words, non-local static
objects are replaced with local static objects. (Aficionados of design
patterns will recognize this as a common implementation of the Sin-
gleton pattern.†)

This approach is founded on C++’s guarantee that local static objects
are initialized when the object’s definition is first encountered during
a call to that function. So if you replace direct accesses to non-local

† Actually, it’s only part of a Singleton implementation. An essential part of Singleton I
ignore in this Item is preventing the creation of multiple objects of a particular type.
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static objects with calls to functions that return references to local
static objects, you’re guaranteed that the references you get back will
refer to initialized objects. As a bonus, if you never call a function
emulating a non-local static object, you never incur the cost of con-
structing and destructing the object, something that can’t be said for
true non-local static objects.

Here’s the technique applied to both tfs and tempDir:

class FileSystem { ... }; // as before

FileSystem& tfs() // this replaces the tfs object; it could be
{ // static in the FileSystem class

static FileSystem fs; // define and initialize a local static object
return fs; // return a reference to it

}

class Directory { ... }; // as before

Directory::Directory( params ) // as before, except references to tfs are 
{ // now to tfs()

...
std::size_t disks = tfs().numDisks();
...

}

Directory& tempDir() // this replaces the tempDir object; it
{ // could be static in the Directory class

static Directory td( params ); // define/initialize local static object
return td; // return reference to it

}

Clients of this modified system program exactly as they used to,
except they now refer to tfs() and tempDir() instead of tfs and tempDir.
That is, they use functions returning references to objects instead of
using the objects themselves.

The reference-returning functions dictated by this scheme are always
simple: define and initialize a local static object on line 1, return it on
line 2. This simplicity makes them excellent candidates for inlining,
especially if they’re called frequently (see Item 30). On the other hand,
the fact that these functions contain static objects makes them prob-
lematic in multithreaded systems. Then again, any kind of non-const
static object — local or non-local — is trouble waiting to happen in the
presence of multiple threads. One way to deal with such trouble is to
manually invoke all the reference-returning functions during the sin-
gle-threaded startup portion of the program. This eliminates initializa-
tion-related race conditions.

Of course, the idea of using reference-returning functions to prevent
initialization order problems is dependent on there being a reasonable
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initialization order for your objects in the first place. If you have a sys-
tem where object A must be initialized before object B, but A’s initial-
ization is dependent on B’s having already been initialized, you are
going to have problems, and frankly, you deserve them. If you steer
clear of such pathological scenarios, however, the approach described
here should serve you nicely, at least in single-threaded applications. 

To avoid using objects before they’re initialized, then, you need to do
only three things. First, manually initialize non-member objects of
built-in types. Second, use member initialization lists to initialize all
parts of an object. Finally, design around the initialization order
uncertainty that afflicts non-local static objects defined in separate
translation units. 

Things to Remember

✦ Manually initialize objects of built-in type, because C++ only some-
times initializes them itself.

✦ In a constructor, prefer use of the member initialization list to as-
signment inside the body of the constructor. List data members in
the initialization list in the same order they’re declared in the class.

✦ Avoid initialization order problems across translation units by re-
placing non-local static objects with local static objects.



ptg7544714
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destructor, and a copy assignment operator. Little wonder. These are
your bread-and-butter functions, the ones that control the fundamen-
tal operations of bringing a new object into existence and making sure
it’s initialized, getting rid of an object and making sure it’s properly
cleaned up, and giving an object a new value. Making mistakes in
these functions will lead to far-reaching — and unpleasant — reper-
cussions throughout your classes, so it’s vital that you get them right.
In this chapter, I offer guidance on putting together the functions that
comprise the backbone of well-formed classes.

Item 5: Know what functions C++ silently writes and 
calls.

When is an empty class not an empty class? When C++ gets through
with it. If you don’t declare them yourself, compilers will declare their
own versions of a copy constructor, a copy assignment operator, and a
destructor. Furthermore, if you declare no constructors at all, compil-
ers will also declare a default constructor for you. All these functions
will be both public and inline (see Item 30). As a result, if you write

class Empty{};

it’s essentially the same as if you’d written this:

class Empty {
public:

Empty() { ... } // default constructor
Empty(const Empty& rhs) { ... } // copy constructor

~Empty() { ... } // destructor — see below
// for whether it’s virtual

Empty& operator=(const Empty& rhs) { ... } // copy assignment operator
};

Chapter 2: Constructors, Destructors, and Assignment Operators

Constructors,
Destructors, and

Assignment Operators
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These functions are generated only if they are needed, but it doesn’t
take much to need them. The following code will cause each function
to be generated:

Empty e1; // default constructor;
// destructor

Empty e2(e1); // copy constructor 

e2 = e1; // copy assignment operator 

Given that compilers are writing functions for you, what do the func-
tions do? Well, the default constructor and the destructor primarily
give compilers a place to put “behind the scenes” code such as invoca-
tion of constructors and destructors of base classes and non-static
data members. Note that the generated destructor is non-virtual (see
Item 7) unless it’s for a class inheriting from a base class that itself
declares a virtual destructor (in which case the function’s virtualness
comes from the base class). 

As for the copy constructor and the copy assignment operator, the
compiler-generated versions simply copy each non-static data mem-
ber of the source object over to the target object. For example, con-
sider a NamedObject template that allows you to associate names with
objects of type T:

template<typename T>
class NamedObject {
public:

NamedObject(const char *name, const T& value);
NamedObject(const std::string& name, const T& value);

...

private:
std::string nameValue;
T objectValue;

};

Because a constructor is declared in NamedObject, compilers won’t
generate a default constructor. This is important. It means that if
you’ve carefully engineered a class to require constructor arguments,
you don’t have to worry about compilers overriding your decision by
blithely adding a constructor that takes no arguments.

NamedObject declares neither copy constructor nor copy assignment
operator, so compilers will generate those functions (if they are
needed). Look, then, at this use of the copy constructor:

NamedObject<int> no1("Smallest Prime Number", 2);

NamedObject<int> no2(no1); // calls copy constructor
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The copy constructor generated by compilers must initialize no2.name-
Value and no2.objectValue using no1.nameValue and no1.objectValue,
respectively. The type of nameValue is string, and the standard string
type has a copy constructor, so no2.nameValue will be initialized by
calling the string copy constructor with no1.nameValue as its argument.
On the other hand, the type of NamedObject<int>::objectValue is int
(because T is int for this template instantiation), and int is a built-in
type, so no2.objectValue will be initialized by copying the bits in
no1.objectValue.

The compiler-generated copy assignment operator for NamedOb-
ject<int> would behave essentially the same way, but in general, com-
piler-generated copy assignment operators behave as I’ve described
only when the resulting code is both legal and has a reasonable
chance of making sense. If either of these tests fails, compilers will
refuse to generate an operator= for your class. 

For example, suppose NamedObject were defined like this, where
nameValue is a reference to a string and objectValue is a const T:

template<typename T>
class NamedObject {
public:

// this ctor no longer takes a const name, because nameValue
// is now a reference-to-non-const string. The char* constructor
// is gone, because we must have a string to refer to.
NamedObject(std::string& name, const T& value);

... // as above, assume no
// operator= is declared

private:
std::string& nameValue; // this is now a reference
const T objectValue; // this is now const

};

Now consider what should happen here:

std::string newDog("Persephone");
std::string oldDog("Satch");

NamedObject<int> p(newDog, 2); // when I originally wrote this, our
// dog Persephone was about to
// have her second birthday

NamedObject<int> s(oldDog, 36); // the family dog Satch (from my
// childhood) would be 36 if she
// were still alive

p = s; // what should happen to 
// the data members in p?

Before the assignment, both p.nameValue and s.nameValue refer to string
objects, though not the same ones. How should the assignment affect
p.nameValue? After the assignment, should p.nameValue refer to the
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string referred to by s.nameValue, i.e., should the reference itself be
modified? If so, that breaks new ground, because C++ doesn’t provide
a way to make a reference refer to a different object. Alternatively,
should the string object to which p.nameValue refers be modified, thus
affecting other objects that hold pointers or references to that string,
i.e., objects not directly involved in the assignment? Is that what the
compiler-generated copy assignment operator should do?

Faced with this conundrum, C++ refuses to compile the code. If you
want to support copy assignment in a class containing a reference
member, you must define the copy assignment operator yourself.
Compilers behave similarly for classes containing const members
(such as objectValue in the modified class above). It’s not legal to mod-
ify const members, so compilers are unsure how to treat them during
an implicitly generated assignment function. Finally, compilers reject
implicit copy assignment operators in derived classes that inherit
from base classes declaring the copy assignment operator private.
After all, compiler-generated copy assignment operators for derived
classes are supposed to handle base class parts, too (see Item 12), but
in doing so, they certainly can’t invoke member functions the derived
class has no right to call.

Things to Remember

✦ Compilers may implicitly generate a class’s default constructor, copy
constructor, copy assignment operator, and destructor.

Item 6: Explicitly disallow the use of compiler-
generated functions you do not want.

Real estate agents sell houses, and a software system supporting such
agents would naturally have a class representing homes for sale:

class HomeForSale { ... };

As every real estate agent will be quick to point out, every property is
unique — no two are exactly alike. That being the case, the idea of
making a copy of a HomeForSale object makes little sense. How can
you copy something that’s inherently unique? You’d thus like
attempts to copy HomeForSale objects to not compile:

HomeForSale h1;
HomeForSale h2;

HomeForSale h3(h1); // attempt to copy h1 — should 
// not compile!

h1 = h2; // attempt to copy h2 — should
// not compile!
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Alas, preventing such compilation isn’t completely straightforward.
Usually, if you don’t want a class to support a particular kind of func-
tionality, you simply don’t declare the function that would provide it.
This strategy doesn’t work for the copy constructor and copy assign-
ment operator, because, as Item 5 points out, if you don’t declare
them and somebody tries to call them, compilers declare them for you.

This puts you in a bind. If you don’t declare a copy constructor or a
copy assignment operator, compilers may generate them for you. Your
class thus supports copying. If, on the other hand, you do declare
these functions, your class still supports copying. But the goal here is
to prevent copying!

The key to the solution is that all the compiler generated functions are
public. To prevent these functions from being generated, you must
declare them yourself, but there is nothing that requires that you
declare them public. Instead, declare the copy constructor and the
copy assignment operator private. By declaring a member function
explicitly, you prevent compilers from generating their own version,
and by making the function private, you keep people from calling it. 

Mostly. The scheme isn’t foolproof, because member and friend func-
tions can still call your private functions. Unless, that is, you are
clever enough not to define them. Then if somebody inadvertently
calls one, they’ll get an error at link-time. This trick — declaring mem-
ber functions private and deliberately not implementing them — is so
well established, it’s used to prevent copying in several classes in
C++’s iostreams library. Take a look, for example, at the definitions of
ios_base, basic_ios, and sentry in your standard library implementation.
You’ll find that in each case, both the copy constructor and the copy
assignment operator are declared private and are not defined.

Applying the trick to HomeForSale is easy:

class HomeForSale {
public:

...

private:
...
HomeForSale(const HomeForSale&); // declarations only
HomeForSale& operator=(const HomeForSale&);

};

You’ll note that I’ve omitted the names of the functions’ parameters.
This isn’t required, it’s just a common convention. After all, the func-
tions will never be implemented, much less used, so what’s the point
in specifying parameter names?

With the above class definition, compilers will thwart client attempts
to copy HomeForSale objects, and if you inadvertently try to do it in a
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member or a friend function, the linker will complain.

It’s possible to move the link-time error up to compile time (always a
good thing — earlier error detection is better than later) by declaring
the copy constructor and copy assignment operator private not in
HomeForSale itself, but in a base class specifically designed to prevent
copying. The base class is simplicity itself:

class Uncopyable {
protected: // allow construction

Uncopyable() {} // and destruction of
~Uncopyable() { } // derived objects...

private:
Uncopyable(const Uncopyable&); // ...but prevent copying
Uncopyable& operator=(const Uncopyable&);

};

To keep HomeForSale objects from being copied, all we have to do now
is inherit from Uncopyable:

class HomeForSale: private Uncopyable { // class no longer
... // declares copy ctor or

}; // copy assign. operator

This works, because compilers will try to generate a copy constructor
and a copy assignment operator if anybody — even a member or friend
function — tries to copy a HomeForSale object. As Item 12 explains, the
compiler-generated versions of these functions will try to call their
base class counterparts, and those calls will be rejected, because the
copying operations are private in the base class.

The implementation and use of Uncopyable include some subtleties,
such as the fact that inheritance from Uncopyable needn’t be public
(see Items 32 and 39) and that Uncopyable’s destructor need not be
virtual (see Item 7). Because Uncopyable contains no data, it’s eligible
for the empty base class optimization described in Item 39, but
because it’s a base class, use of this technique could lead to multiple
inheritance (see Item 40). Multiple inheritance, in turn, can some-
times disable the empty base class optimization (again, see Item 39).
In general, you can ignore these subtleties and just use Uncopyable as
shown, because it works precisely as advertised. You can also use the
version available at Boost (see Item 55). That class is named noncopy-
able. It’s a fine class, I just find the name a bit un-, er, nonnatural.

Things to Remember

✦ To disallow functionality automatically provided by compilers, de-
clare the corresponding member functions private and give no imple-
mentations. Using a base class like Uncopyable is one way to do this.
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Item 7: Declare destructors virtual in polymorphic 
base classes.

There are lots of ways to keep track of time, so it would be reasonable
to create a TimeKeeper base class along with derived classes for differ-
ent approaches to timekeeping:

class TimeKeeper {
public:

TimeKeeper();
~TimeKeeper();
...

};

class AtomicClock: public TimeKeeper { ... };

class WaterClock: public TimeKeeper { ... };

class WristWatch: public TimeKeeper { ... };

Many clients will want access to the time without worrying about the
details of how it’s calculated, so a factory function — a function that
returns a base class pointer to a newly-created derived class object —
can be used to return a pointer to a timekeeping object:

TimeKeeper* getTimeKeeper(); // returns a pointer to a dynamic-
// ally allocated object of a class 
// derived from TimeKeeper

In keeping with the conventions of factory functions, the objects
returned by getTimeKeeper are on the heap, so to avoid leaking mem-
ory and other resources, it’s important that each returned object be
properly deleted:

TimeKeeper *ptk = getTimeKeeper(); // get dynamically allocated object
// from TimeKeeper hierarchy

... // use it

delete ptk; // release it to avoid resource leak

Item 13 explains that relying on clients to perform the deletion is
error-prone, and Item 18 explains how the interface to the factory
function can be modified to prevent common client errors, but such
concerns are secondary here, because in this Item we address a more
fundamental weakness of the code above: even if clients do everything
right, there is no way to know how the program will behave.

The problem is that getTimeKeeper returns a pointer to a derived class
object (e.g., AtomicClock), that object is being deleted via a base class
pointer (i.e., a TimeKeeper* pointer), and the base class (TimeKeeper)
has a non-virtual destructor. This is a recipe for disaster, because C++
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hen a derived class object is deleted through a pointer
 with a non-virtual destructor, results are undefined.
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If an int occupies 32 bits, a Point object can typically fit into a 64-bit
register. Furthermore, such a Point object can be passed as a 64-bit
quantity to functions written in other languages, such as C or FOR-
TRAN. If Point’s destructor is made virtual, however, the situation
changes. 

The implementation of virtual functions requires that objects carry
information that can be used at runtime to determine which virtual
functions should be invoked on the object. This information typically
takes the form of a pointer called a vptr (“virtual table pointer”). The
vptr points to an array of function pointers called a vtbl (“virtual
table”); each class with virtual functions has an associated vtbl. When
a virtual function is invoked on an object, the actual function called is
determined by following the object’s vptr to a vtbl and then looking up
the appropriate function pointer in the vtbl.

The details of how virtual functions are implemented are unimpor-
tant. What is important is that if the Point class contains a virtual
function, objects of that type will increase in size. On a 32-bit archi-
tecture, they’ll go from 64 bits (for the two ints) to 96 bits (for the ints
plus the vptr); on a 64-bit architecture, they may go from 64 to 128
bits, because pointers on such architectures are 64 bits in size. Addi-
tion of a vptr to Point will thus increase its size by 50–100%! No longer
can Point objects fit in a 64-bit register. Furthermore, Point objects in
C++ can no longer look like the same structure declared in another
language such as C, because their foreign language counterparts will
lack the vptr. As a result, it is no longer possible to pass Points to and
from functions written in other languages unless you explicitly com-
pensate for the vptr, which is itself an implementation detail and
hence unportable.

The bottom line is that gratuitously declaring all destructors virtual is
just as wrong as never declaring them virtual. In fact, many people
summarize the situation this way: declare a virtual destructor in a
class if and only if that class contains at least one virtual function. 

It is possible to get bitten by the non-virtual destructor problem even
in the complete absence of virtual functions. For example, the stan-
dard string type contains no virtual functions, but misguided program-
mers sometimes use it as a base class anyway:

class SpecialString: public std::string { // bad idea! std::string has a 
... // non-virtual destructor

};

At first glance, this may look innocuous, but if anywhere in an appli-
cation you somehow convert a pointer-to-SpecialString into a pointer-to-
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string and you then use delete on the string pointer, you are instantly
transported to the realm of undefined behavior:

SpecialString *pss =new SpecialString("Impending Doom");

std::string *ps;

...

ps = pss; // SpecialString* ⇒ std::string*
...

delete ps; // undefined! In practice, 
// *ps’s SpecialString resources
// will be leaked, because the
// SpecialString destructor won’t
// be called.

The same analysis applies to any class lacking a virtual destructor,
including all the STL container types (e.g., vector, list, set,
tr1::unordered_map (see Item 54), etc.). If you’re ever tempted to inherit
from a standard container or any other class with a non-virtual
destructor, resist the temptation! (Unfortunately, C++ offers no deriva-
tion-prevention mechanism akin to Java’s final classes or C#’s sealed
classes.)

Occasionally it can be convenient to give a class a pure virtual
destructor. Recall that pure virtual functions result in abstract classes
— classes that can’t be instantiated (i.e., you can’t create objects of
that type). Sometimes, however, you have a class that you’d like to be
abstract, but you don’t have any pure virtual functions. What to do?
Well, because an abstract class is intended to be used as a base class,
and because a base class should have a virtual destructor, and
because a pure virtual function yields an abstract class, the solution
is simple: declare a pure virtual destructor in the class you want to be
abstract. Here’s an example:

class AWOV { // AWOV = “Abstract w/o Virtuals”
public:

virtual ~AWOV() = 0; // declare pure virtual destructor
};

This class has a pure virtual function, so it’s abstract, and it has a vir-
tual destructor, so you won’t have to worry about the destructor prob-
lem. There is one twist, however: you must provide a definition for the
pure virtual destructor:

AWOV::~AWOV() {} // definition of pure virtual dtor

The way destructors work is that the most derived class’s destructor
is called first, then the destructor of each base class is called. Compil-
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ers will generate a call to ~AWOV from its derived classes’ destructors,
so you have to be sure to provide a body for the function. If you don’t,
the linker will complain.

The rule for giving base classes virtual destructors applies only to
polymorphic base classes — to base classes designed to allow the
manipulation of derived class types through base class interfaces.
TimeKeeper is a polymorphic base class, because we expect to be able
to manipulate AtomicClock and WaterClock objects, even if we have only
TimeKeeper pointers to them. 

Not all base classes are designed to be used polymorphically. Neither
the standard string type, for example, nor the STL container types are
designed to be base classes at all, much less polymorphic ones. Some
classes are designed to be used as base classes, yet are not designed
to be used polymorphically. Such classes — examples include Uncopy-
able from Item 6 and input_iterator_tag from the standard library (see
Item 47) — are not designed to allow the manipulation of derived class
objects via base class interfaces. As a result, they don’t need virtual
destructors. 

Things to Remember

✦ Polymorphic base classes should declare virtual destructors. If a
class has any virtual functions, it should have a virtual destructor.

✦ Classes not designed to be base classes or not designed to be used
polymorphically should not declare virtual destructors.

Item 8: Prevent exceptions from leaving destructors.

C++ doesn’t prohibit destructors from emitting exceptions, but it cer-
tainly discourages the practice. With good reason. Consider:

class Widget {
public:

...
~Widget() { ... } // assume this might emit an exception

};

void doSomething()
{

std::vector<Widget> v;
...

} // v is automatically destroyed here

When the vector v is destroyed, it is responsible for destroying all the
Widgets it contains. Suppose v has ten Widgets in it, and during
destruction of the first one, an exception is thrown. The other nine
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Widgets still have to be destroyed (otherwise any resources they hold
would be leaked), so v should invoke their destructors. But suppose
that during those calls, a second Widget destructor throws an excep-
tion. Now there are two simultaneously active exceptions, and that’s
one too many for C++. Depending on the precise conditions under
which such pairs of simultaneously active exceptions arise, program
execution either terminates or yields undefined behavior. In this
example, it yields undefined behavior. It would yield equally undefined
behavior using any other standard library container (e.g., list, set), any
container in TR1 (see Item 54), or even an array. Not that containers
or arrays are required to get into trouble. Premature program termi-
nation or undefined behavior can result from destructors emitting
exceptions even without using containers and arrays. C++ does not
like destructors that emit exceptions!

That’s easy enough to understand, but what should you do if your
destructor needs to perform an operation that may fail by throwing an
exception? For example, suppose you’re working with a class for data-
base connections:

class DBConnection {
public:

...

static DBConnection create(); // function to return
// DBConnection objects; params
// omitted for simplicity

void close(); // close connection; throw an
}; // exception if closing fails

To ensure that clients don’t forget to call close on DBConnection objects,
a reasonable idea would be to create a resource-managing class for
DBConnection that calls close in its destructor. Such resource-managing
classes are explored in detail in Chapter 3, but here, it’s enough to
consider what the destructor for such a class would look like:

class DBConn { // class to manage DBConnection
public: // objects

...

~DBConn() // make sure database connections
{ // are always closed

db.close();
}

private:
DBConnection db;

};

That allows clients to program like this:
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{ // open a block

DBConn dbc(DBConnection::create()); // create DBConnection object
// and turn it over to a DBConn
// object to manage

... // use the DBConnection object
// via the DBConn interface

} // at end of block, the DBConn
// object is destroyed, thus
// automatically calling close on 
// the DBConnection object

This is fine as long as the call to close succeeds, but if the call yields
an exception, DBConn’s destructor will propagate that exception, i.e.,
allow it to leave the destructor. That’s a problem, because destructors
that throw mean trouble.

There are two primary ways to avoid the trouble. DBConn’s destructor
could:

■ Terminate the program if close throws, typically by calling abort:

DBConn::~DBConn()
{

try { db.close(); }
catch (...) {

make log entry that the call to close failed;
std::abort();

}
}

This is a reasonable option if the program cannot continue to run
after an error is encountered during destruction. It has the advan-
tage that if allowing the exception to propagate from the destructor
would lead to undefined behavior, this prevents that from happen-
ing. That is, calling abort may forestall undefined behavior.

■ Swallow the exception arising from the call to close:

DBConn::~DBConn()
{

try { db.close(); }
catch (...) {

make log entry that the call to close failed;
}

}

In general, swallowing exceptions is a bad idea, because it sup-
presses important information — something failed! Sometimes,
however, swallowing exceptions is preferable to running the risk of
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rogram termination or undefined behavior. For this to
option, the program must be able to reliably continue
en after an error has been encountered and ignored. 

 approaches is especially appealing. The problem with
 program has no way to react to the condition that led
g an exception in the first place. 

y is to design DBConn’s interface so that its clients have
 to react to problems that may arise. For example,
ffer a close function itself, thus giving clients a chance
tions arising from that operation. It could also keep
r its DBConnection had been closed, closing it itself in
f not. That would prevent a connection from leaking. If
 were to fail in the DBConn destructor, however, we’d be
ting or swallowing:

 {

) // new function for
// client use

);
true;

) {
// close the connection

ose(); // if the client didn’t

...) { // if closing fails,
 log entry that call to close failed; // note that and

// terminate or swallow

ion db;
;

onsibility for calling close from DBConn’s destructor to
 (with DBConn’s destructor containing a “backup” call)

 as an unscrupulous shift of burden. You might even
ation of Item 18’s advice to make interfaces easy to use
t, it’s neither. If an operation may fail by throwing an
there may be a need to handle that exception, the
to come from some non-destructor function. That’s
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because destructors that emit exceptions are dangerous, always run-
ning the risk of premature program termination or undefined behav-
ior. In this example, telling clients to call close themselves doesn’t
impose a burden on them; it gives them an opportunity to deal with
errors they would otherwise have no chance to react to. If they don’t
find that opportunity useful (perhaps because they believe that no
error will really occur), they can ignore it, relying on DBConn’s destruc-
tor to call close for them. If an error occurs at that point — if close does
throw — they’re in no position to complain if DBConn swallows the
exception or terminates the program. After all, they had first crack at
dealing with the problem, and they chose not to use it.

Things to Remember

✦ Destructors should never emit exceptions. If functions called in a
destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

✦ If class clients need to be able to react to exceptions thrown during
an operation, the class should provide a regular (i.e., non-destruc-
tor) function that performs the operation.

Item 9: Never call virtual functions during 
construction or destruction.

I’ll begin with the recap: you shouldn’t call virtual functions during
construction or destruction, because the calls won’t do what you
think, and if they did, you’d still be unhappy. If you’re a recovering
Java or C# programmer, pay close attention to this Item, because this
is a place where those languages zig, while C++ zags. 

Suppose you’ve got a class hierarchy for modeling stock transactions,
e.g., buy orders, sell orders, etc. It’s important that such transactions
be auditable, so each time a transaction object is created, an appro-
priate entry needs to be created in an audit log. This seems like a rea-
sonable way to approach the problem:

class Transaction { // base class for all
public: // transactions

Transaction();

virtual void logTransaction() const = 0; // make type-dependent
// log entry

...

};
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Transaction::Transaction() // implementation of
{ // base class ctor

...
logTransaction(); // as final action, log this

} // transaction

class BuyTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

class SellTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

Consider what happens when this code is executed:

BuyTransaction b;

Clearly a BuyTransaction constructor will be called, but first, a Transac-
tion constructor must be called; base class parts of derived class
objects are constructed before derived class parts are. The last line of
the Transaction constructor calls the virtual function logTransaction, but
this is where the surprise comes in. The version of logTransaction that’s
called is the one in Transaction, not the one in BuyTransaction — even
though the type of object being created is BuyTransaction. During base
class construction, virtual functions never go down into derived
classes. Instead, the object behaves as if it were of the base type.
Informally speaking, during base class construction, virtual functions
aren’t. 

There’s a good reason for this seemingly counterintuitive behavior.
Because base class constructors execute before derived class con-
structors, derived class data members have not been initialized when
base class constructors run. If virtual functions called during base
class construction went down to derived classes, the derived class
functions would almost certainly refer to local data members, but
those data members would not yet have been initialized. That would
be a non-stop ticket to undefined behavior and late-night debugging
sessions. Calling down to parts of an object that have not yet been ini-
tialized is inherently dangerous, so C++ gives you no way to do it. 

It’s actually more fundamental than that. During base class construc-
tion of a derived class object, the type of the object is that of the base
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class. Not only do virtual functions resolve to the base class, but the
parts of the language using runtime type information (e.g.,
dynamic_cast (see Item 27) and typeid) treat the object as a base class
type. In our example, while the Transaction constructor is running to
initialize the base class part of a BuyTransaction object, the object is of
type Transaction. That’s how every part of C++ will treat it, and the
treatment makes sense: the BuyTransaction-specific parts of the object
haven’t been initialized yet, so it’s safest to treat them as if they didn’t
exist. An object doesn’t become a derived class object until execution
of a derived class constructor begins. 

The same reasoning applies during destruction. Once a derived class
destructor has run, the object’s derived class data members assume
undefined values, so C++ treats them as if they no longer exist. Upon
entry to the base class destructor, the object becomes a base class
object, and all parts of C++ — virtual functions, dynamic_casts, etc., —
treat it that way.

In the example code above, the Transaction constructor made a direct
call to a virtual function, a clear and easy-to-see violation of this
Item’s guidance. The violation is so easy to see, some compilers issue
a warning about it. (Others don’t. See Item 53 for a discussion of
warnings.) Even without such a warning, the problem would almost
certainly become apparent before runtime, because the logTransaction
function is pure virtual in Transaction. Unless it had been defined
(unlikely, but possible — see Item 34), the program wouldn’t link: the
linker would be unable to find the necessary implementation of Trans-
action::logTransaction.

It’s not always so easy to detect calls to virtual functions during con-
struction or destruction. If Transaction had multiple constructors, each
of which had to perform some of the same work, it would be good soft-
ware engineering to avoid code replication by putting the common ini-
tialization code, including the call to logTransaction, into a private non-
virtual initialization function, say, init:

class Transaction {
public:

Transaction()
{ init(); } // call to non-virtual...

virtual void logTransaction() const = 0;
...

private:
void init()
{

...
logTransaction(); // ...that calls a virtual!

}
};
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This code is conceptually the same as the earlier version, but it’s more
insidious, because it will typically compile and link without complaint.
In this case, because logTransaction is pure virtual in Transaction, most
runtime systems will abort the program when the pure virtual is
called (typically issuing a message to that effect). However, if logTrans-
action were a “normal” virtual function (i.e., not pure virtual) with an
implementation in Transaction, that version would be called, and the
program would merrily trot along, leaving you to figure out why the
wrong version of logTransaction was called when a derived class object
was created. The only way to avoid this problem is to make sure that
none of your constructors or destructors call virtual functions on the
object being created or destroyed and that all the functions they call
obey the same constraint. 

But how do you ensure that the proper version of logTransaction is
called each time an object in the Transaction hierarchy is created?
Clearly, calling a virtual function on the object from the Transaction
constructor(s) is the wrong way to do it. 

There are different ways to approach this problem. One is to turn
logTransaction into a non-virtual function in Transaction, then require
that derived class constructors pass the necessary log information to
the Transaction constructor. That function can then safely call the non-
virtual logTransaction. Like this:

class Transaction {
public:

explicit Transaction(const std::string& logInfo);

void logTransaction(const std::string& logInfo) const; // now a non-
// virtual func

...

};

Transaction::Transaction(const std::string& logInfo)
{

...
logTransaction(logInfo); // now a non-

} // virtual call

class BuyTransaction: public Transaction {
public:

BuyTransaction( parameters )
: Transaction(createLogString( parameters )) // pass log info
{ ... } // to base class
... // constructor

private:
static std::string createLogString( parameters );

};
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In other words, since you can’t use virtual functions to call down from
base classes during construction, you can compensate by having
derived classes pass necessary construction information up to base
class constructors instead. 

In this example, note the use of the (private) static function createL-
ogString in BuyTransaction. Using a helper function to create a value to
pass to a base class constructor is often more convenient (and more
readable) than going through contortions in the member initialization
list to give the base class what it needs. By making the function static,
there’s no danger of accidentally referring to the nascent BuyTransac-
tion object’s as-yet-uninitialized data members. That’s important,
because the fact that those data members will be in an undefined
state is why calling virtual functions during base class construction
and destruction doesn’t go down into derived classes in the first place.

Things to Remember

✦ Don’t call virtual functions during construction or destruction, be-
cause such calls will never go to a more derived class than that of
the currently executing constructor or destructor.

Item 10: Have assignment operators return a 
reference to *this.

One of the interesting things about assignments is that you can chain
them together:

int x, y, z;

x = y = z = 15; // chain of assignments

Also interesting is that assignment is right-associative, so the above
assignment chain is parsed like this:

x = (y = (z = 15));

Here, 15 is assigned to z, then the result of that assignment (the
updated z) is assigned to y, then the result of that assignment (the
updated y) is assigned to x. 

The way this is implemented is that assignment returns a reference to
its left-hand argument, and that’s the convention you should follow
when you implement assignment operators for your classes:

class Widget {
public:

...
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Widget& operator=(const Widget& rhs) // return type is a reference to
{ // the current class

...
return *this; // return the left-hand object

}
...

};

This convention applies to all assignment operators, not just the stan-
dard form shown above. Hence:

class Widget {
public:

...
Widget& operator+=(const Widget& rhs) // the convention applies to
{ // +=, -=, *=, etc.

...
return *this;

}

Widget& operator=(int rhs) // it applies even if the
{ // operator’s parameter type

... // is unconventional
return *this;

}
...

};

This is only a convention; code that doesn’t follow it will compile. How-
ever, the convention is followed by all the built-in types as well as by
all the types in (or soon to be in — see Item 54) the standard library
(e.g., string, vector, complex, tr1::shared_ptr, etc.). Unless you have a
good reason for doing things differently, don’t.

Things to Remember

✦ Have assignment operators return a reference to *this.

Item 11: Handle assignment to self in operator=.

An assignment to self occurs when an object is assigned to itself:

class Widget { ... };

Widget w;

...

w = w; // assignment to self

This looks silly, but it’s legal, so rest assured that clients will do it.
Besides, assignment isn’t always so recognizable. For example, 
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a[i] = a[j]; // potential assignment to self

is an assignment to self if i and j have the same value, and 

*px = *py; // potential assignment to self

is an assignment to self if px and py happen to point to the same
thing. These less obvious assignments to self are the result of aliasing:
having more than one way to refer to an object. In general, code that
operates on references or pointers to multiple objects of the same type
needs to consider that the objects might be the same. In fact, the two
objects need not even be declared to be of the same type if they’re from
the same hierarchy, because a base class reference or pointer can
refer or point to an object of a derived class type:

class Base { ... };

class Derived: public Base { ... };

void doSomething(const Base& rb, // rb and *pd might actually be
Derived* pd); // the same object 

If you follow the advice of Items 13 and 14, you’ll always use objects to
manage resources, and you’ll make sure that the resource-managing
objects behave well when copied. When that’s the case, your assign-
ment operators will probably be self-assignment-safe without your
having to think about it. If you try to manage resources yourself, how-
ever (which you’d certainly have to do if you were writing a resource-
managing class), you can fall into the trap of accidentally releasing a
resource before you’re done using it. For example, suppose you create
a class that holds a raw pointer to a dynamically allocated bitmap:

class Bitmap { ... };

class Widget {
...

private:
Bitmap *pb; // ptr to a heap-allocated object

};

Here’s an implementation of operator= that looks reasonable on the
surface but is unsafe in the presence of assignment to self. (It’s also
not exception-safe, but we’ll deal with that in a moment.)

Widget&
Widget::operator=(const Widget& rhs) // unsafe impl. of operator=
{

delete pb; // stop using current bitmap
pb = new Bitmap(*rhs.pb); // start using a copy of rhs’s bitmap

return *this; // see Item 10
}
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ty test at the top of operator=:
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f “new Bitmap” throws an exception, pb (and the Widget it’s inside
ains unchanged. Even without the identity test, this code han-

ssignment to self, because we make a copy of the original bit-
point to the copy we made, then delete the original bitmap. It
ot be the most efficient way to handle self-assignment, but it
ork.

’re concerned about efficiency, you could put the identity test
t the top of the function. Before doing that, however, ask your-
w often you expect self-assignments to occur, because the test
ee. It makes the code (both source and object) a bit bigger, and
oduces a branch into the flow of control, both of which can
se runtime speed. The effectiveness of instruction prefetching,
g, and pipelining can be reduced, for example.

ernative to manually ordering statements in operator= to make
he implementation is both exception- and self-assignment-safe
se the technique known as “copy and swap.” This technique is
 associated with exception safety, so it’s described in Item 29.
er, it’s a common enough way to write operator= that it’s worth
 what such an implementation often looks like:

ss Widget {
..
oid swap(Widget& rhs); // exchange *this’s and rhs’s data;

.. // see Item 29 for details

dget& Widget::operator=(const Widget& rhs)

idget temp(rhs); // make a copy of rhs’s data

wap(temp); // swap *this’s data with the copy’s

eturn *this;

tion on this theme takes advantage of the facts that (1) a class’s
ssignment operator may be declared to take its argument by
and (2) passing something by value makes a copy of it (see
0):

dget& Widget::operator=(Widget rhs) // rhs is a copy of the object
// passed in — note pass by val

wap(rhs); // swap *this’s data with

// the copy’s

eturn *this;
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Personally, I worry that this approach sacrifices clarity at the altar of
cleverness, but by moving the copying operation from the body of the
function to construction of the parameter, it’s a fact that compilers
can sometimes generate more efficient code. 

Things to Remember

✦ Make sure operator= is well-behaved when an object is assigned to
itself. Techniques include comparing addresses of source and target
objects, careful statement ordering, and copy-and-swap.

✦ Make sure that any function operating on more than one object be-
haves correctly if two or more of the objects are the same.

Item 12: Copy all parts of an object.

In well-designed object-oriented systems that encapsulate the internal
parts of objects, only two functions copy objects: the aptly named
copy constructor and copy assignment operator. We’ll call these the
copying functions. Item 5 observes that compilers will generate the
copying functions, if needed, and it explains that the compiler-gener-
ated versions do precisely what you’d expect: they copy all the data of
the object being copied. 

When you declare your own copying functions, you are indicating to
compilers that there is something about the default implementations
you don’t like. Compilers seem to take offense at this, and they retali-
ate in a curious fashion: they don’t tell you when your implementa-
tions are almost certainly wrong. 

Consider a class representing customers, where the copying functions
have been manually written so that calls to them are logged:

void logCall(const std::string& funcName); // make a log entry

class Customer {
public:

...
Customer(const Customer& rhs);
Customer& operator=(const Customer& rhs);
...

private:
std::string name;

};
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Customer::Customer(const Customer& rhs)
: name(rhs.name) // copy rhs’s data
{

logCall("Customer copy constructor");
}

Customer& Customer::operator=(const Customer& rhs)
{

logCall("Customer copy assignment operator");

name = rhs.name; // copy rhs’s data

return *this; // see Item 10
}

Everything here looks fine, and in fact everything is fine — until
another data member is added to Customer:

class Date { ... }; // for dates in time

class Customer {
public:

... // as before

private:
std::string name;
Date lastTransaction;

};

At this point, the existing copying functions are performing a partial
copy: they’re copying the customer’s name, but not its lastTransaction.
Yet most compilers say nothing about this, not even at maximal warn-
ing level (see also Item 53). That’s their revenge for your writing the
copying functions yourself. You reject the copying functions they’d
write, so they don’t tell you if your code is incomplete. The conclusion
is obvious: if you add a data member to a class, you need to make
sure that you update the copying functions, too. (You’ll also need to
update all the constructors (see Items 4 and 45) as well as any non-
standard forms of operator= in the class (Item 10 gives an example). If
you forget, compilers are unlikely to remind you.)

One of the most insidious ways this issue can arise is through inherit-
ance. Consider:

class PriorityCustomer: public Customer { // a derived class
public:

...
PriorityCustomer(const PriorityCustomer& rhs);
PriorityCustomer& operator=(const PriorityCustomer& rhs);
...

private:
int priority;

};
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PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)
: priority(rhs.priority)
{

logCall("PriorityCustomer copy constructor");
}

PriorityCustomer&
PriorityCustomer::operator=(const PriorityCustomer& rhs)
{

logCall("PriorityCustomer copy assignment operator");

priority = rhs.priority;

return *this;
}

PriorityCustomer’s copying functions look like they’re copying every-
thing in PriorityCustomer, but look again. Yes, they copy the data mem-
ber that PriorityCustomer declares, but every PriorityCustomer also
contains a copy of the data members it inherits from Customer, and
those data members are not being copied at all! PriorityCustomer’s copy
constructor specifies no arguments to be passed to its base class con-
structor (i.e., it makes no mention of Customer on its member initial-
ization list), so the Customer part of the PriorityCustomer object will be
initialized by the Customer constructor taking no arguments — by the
default constructor. (Assuming it has one. If not, the code won’t com-
pile.) That constructor will perform a default initialization for name
and lastTransaction. 

The situation is only slightly different for PriorityCustomer’s copy
assignment operator. It makes no attempt to modify its base class
data members in any way, so they’ll remain unchanged.

Any time you take it upon yourself to write copying functions for a
derived class, you must take care to also copy the base class parts.
Those parts are typically private, of course (see Item 22), so you can’t
access them directly. Instead, derived class copying functions must
invoke their corresponding base class functions:

PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)
: Customer(rhs), // invoke base class copy ctor

priority(rhs.priority)
{

logCall("PriorityCustomer copy constructor");
}

PriorityCustomer&
PriorityCustomer::operator=(const PriorityCustomer& rhs)
{

logCall("PriorityCustomer copy assignment operator");

Customer::operator=(rhs); // assign base class parts
priority = rhs.priority;

return *this;
}
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The meaning of “copy all parts” in this Item’s title should now be clear.
When you’re writing a copying function, be sure to (1) copy all local
data members and (2) invoke the appropriate copying function in all
base classes, too.

In practice, the two copying functions will often have similar bodies,
and this may tempt you to try to avoid code duplication by having one
function call the other. Your desire to avoid code duplication is laud-
able, but having one copying function call the other is the wrong way
to achieve it. 

It makes no sense to have the copy assignment operator call the copy
constructor, because you’d be trying to construct an object that
already exists. This is so nonsensical, there’s not even a syntax for it.
There are syntaxes that look like you’re doing it, but you’re not; and
there are syntaxes that do do it in a backwards kind of way, but they
corrupt your object under some conditions. So I’m not going to show
you any of those syntaxes. Simply accept that having the copy assign-
ment operator call the copy constructor is something you don’t want
to do.

Trying things the other way around — having the copy constructor
call the copy assignment operator — is equally nonsensical. A con-
structor initializes new objects, but an assignment operator applies
only to objects that have already been initialized. Performing an
assignment on an object under construction would mean doing some-
thing to a not-yet-initialized object that makes sense only for an ini-
tialized object. Nonsense! Don’t try it.

Instead, if you find that your copy constructor and copy assignment
operator have similar code bodies, eliminate the duplication by creat-
ing a third member function that both call. Such a function is typi-
cally private and is often named init. This strategy is a safe, proven
way to eliminate code duplication in copy constructors and copy
assignment operators.

Things to Remember

✦ Copying functions should be sure to copy all of an object’s data
members and all of its base class parts.

✦ Don’t try to implement one of the copying functions in terms of the
other. Instead, put common functionality in a third function that
both call.
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Resource ManagementA resource is something that, once you’re done using it, you need to
return to the system. If you don’t, bad things happen. In C++ pro-
grams, the most commonly used resource is dynamically allocated
memory (if you allocate memory and never deallocate it, you’ve got a
memory leak), but memory is only one of many resources you must
manage. Other common resources include file descriptors, mutex
locks, fonts and brushes in graphical user interfaces (GUIs), database
connections, and network sockets. Regardless of the resource, it’s
important that it be released when you’re finished with it. 

Trying to ensure this by hand is difficult under any conditions, but
when you consider exceptions, functions with multiple return paths,
and maintenance programmers modifying software without fully com-
prehending the impact of their changes, it becomes clear that ad hoc
ways of dealing with resource management aren’t sufficient. 

This chapter begins with a straightforward object-based approach to
resource management built on C++’s support for constructors,
destructors, and copying operations. Experience has shown that dis-
ciplined adherence to this approach can all but eliminate resource
management problems. The chapter then moves on to Items dedicated
specifically to memory management. These latter Items complement
the more general Items that come earlier, because objects that man-
age memory have to know how to do it properly.

Item 13: Use objects to manage resources.

Suppose we’re working with a library for modeling investments (e.g.,
stocks, bonds, etc.), where the various investment types inherit from a
root class Investment:

class Investment { ... }; // root class of hierarchy of
// investment types

Chapter 3: Resource Management

Resource
Management
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Further suppose that the way the library provides us with specific
Investment objects is through a factory function (see Item 7):

Investment* createInvestment(); // return ptr to dynamically allocated
// object in the Investment hierarchy;
// the caller must delete it
// (parameters omitted for simplicity)

As the comment indicates, callers of createInvestment are responsible
for deleting the object that function returns when they are done with
it. Consider, then, a function f written to fulfill this obligation:

void f()
{

Investment *pInv = createInvestment(); // call factory function

... // use pInv

delete pInv; // release object
}

This looks okay, but there are several ways f could fail to delete the
investment object it gets from createInvestment. There might be a pre-
mature return statement somewhere inside the “...” part of the func-
tion. If such a return were executed, control would never reach the
delete statement. A similar situation would arise if the uses of createIn-
vestment and delete were in a loop, and the loop was prematurely
exited by a break or goto statement. Finally, some statement inside the
“...” might throw an exception. If so, control would again not get to the
delete. Regardless of how the delete were to be skipped, we’d leak not
only the memory containing the investment object but also any
resources held by that object.

Of course, careful programming could prevent these kinds of errors,
but think about how the code might change over time. As the software
gets maintained, somebody might add a return or continue statement
without fully grasping the repercussions on the rest of the function’s
resource management strategy. Even worse, the “...” part of f might
call a function that never used to throw an exception but suddenly
starts doing so after it has been “improved.” Relying on f always get-
ting to its delete statement simply isn’t viable.

To make sure that the resource returned by createInvestment is always
released, we need to put that resource inside an object whose destruc-
tor will automatically release the resource when control leaves f. In
fact, that’s half the idea behind this Item: by putting resources inside
objects, we can rely on C++’s automatic destructor invocation to make
sure that the resources are released. (We’ll discuss the other half of
the idea in a moment.)
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Many resources are dynamically allocated on the heap, are used only
within a single block or function, and should be released when control
leaves that block or function. The standard library’s auto_ptr is tailor-
made for this kind of situation. auto_ptr is a pointer-like object (a
smart pointer) whose destructor automatically calls delete on what it
points to. Here’s how to use auto_ptr to prevent f’s potential resource
leak:

void f()
{

std::auto_ptr<Investment> pInv(createInvestment()); // call factory
// function

... // use pInv as
// before

} // automatically
// delete pInv via 
// auto_ptr’s dtor

This simple example demonstrates the two critical aspects of using
objects to manage resources:

■ Resources are acquired and immediately turned over to re-
source-managing objects. Above, the resource returned by create-
Investment is used to initialize the auto_ptr that will manage it. In
fact, the idea of using objects to manage resources is often called
Resource Acquisition Is Initialization (RAII), because it’s so common
to acquire a resource and initialize a resource-managing object in
the same statement. Sometimes acquired resources are assigned
to resource-managing objects instead of initializing them, but ei-
ther way, every resource is immediately turned over to a resource-
managing object at the time the resource is acquired.

■ Resource-managing objects use their destructors to ensure
that resources are released. Because destructors are called auto-
matically when an object is destroyed (e.g., when an object goes
out of scope), resources are correctly released, regardless of how
control leaves a block. Things can get tricky when the act of re-
leasing resources can lead to exceptions being thrown, but that’s a
matter addressed by Item 8, so we’ll not worry about it here.

Because an auto_ptr automatically deletes what it points to when the
auto_ptr is destroyed, it’s important that there never be more than one
auto_ptr pointing to an object. If there were, the object would be
deleted more than once, and that would put your program on the fast
track to undefined behavior. To prevent such problems, auto_ptrs have
an unusual characteristic: copying them (via copy constructor or copy
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assignment operator) sets them to null, and the copying pointer
assumes sole ownership of the resource!

std::auto_ptr<Investment> // pInv1 points to the
pInv1(createInvestment()); // object returned from

// createInvestment

std::auto_ptr<Investment> pInv2(pInv1); // pInv2 now points to the
// object; pInv1 is now null

pInv1 = pInv2; // now pInv1 points to the
// object, and pInv2 is null

This odd copying behavior, plus the underlying requirement that
resources managed by auto_ptrs must never have more than one
auto_ptr pointing to them, means that auto_ptrs aren’t the best way to
manage all dynamically allocated resources. For example, STL con-
tainers require that their contents exhibit “normal” copying behavior,
so containers of auto_ptr aren’t allowed. 

An alternative to auto_ptr is a reference-counting smart pointer (RCSP).
An RCSP is a smart pointer that keeps track of how many objects
point to a particular resource and automatically deletes the resource
when nobody is pointing to it any longer. As such, RCSPs offer behav-
ior that is similar to that of garbage collection. Unlike garbage collec-
tion, however, RCSPs can’t break cycles of references (e.g., two
otherwise unused objects that point to one another). 

TR1’s tr1::shared_ptr (see Item 54) is an RCSP, so you could write f this
way:

void f()
{

...

std::tr1::shared_ptr<Investment>
pInv(createInvestment()); // call factory function

... // use pInv as before

} // automatically delete
// pInv via shared_ptr’s dtor

This code looks almost the same as that employing auto_ptr, but copy-
ing shared_ptrs behaves much more naturally:

void f()
{

...

std::tr1::shared_ptr<Investment> // pInv1 points to the
pInv1(createInvestment()); // object returned from

// createInvestment
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std::tr1::shared_ptr<Investment> // both pInv1 and pInv2 now
pInv2(pInv1); // point to the object

pInv1 = pInv2; // ditto — nothing has
// changed

...
} // pInv1 and pInv2 are 

// destroyed, and the
// object they point to is
// automatically deleted

Because copying tr1::shared_ptrs works “as expected,” they can be used
in STL containers and other contexts where auto_ptr’s unorthodox
copying behavior is inappropriate.

Don’t be misled, though. This Item isn’t about auto_ptr, tr1::shared_ptr,
or any other kind of smart pointer. It’s about the importance of using
objects to manage resources. auto_ptr and tr1::shared_ptr are just
examples of objects that do that. (For more information on
tr1:shared_ptr, consult Items 14, 18, and 54.)

Both auto_ptr and tr1::shared_ptr use delete in their destructors, not
delete []. (Item 16 describes the difference.) That means that using
auto_ptr or tr1::shared_ptr with dynamically allocated arrays is a bad
idea, though, regrettably, one that will compile:

std::auto_ptr<std::string> // bad idea! the wrong 
aps(new std::string[10]); // delete form will be used 

std::tr1::shared_ptr<int> spi(new int[1024]); // same problem

You may be surprised to discover that there is nothing like auto_ptr or
tr1::shared_ptr for dynamically allocated arrays in C++, not even in
TR1. That’s because vector and string can almost always replace
dynamically allocated arrays. If you still think it would be nice to have
auto_ptr- and tr1::shared_ptr-like classes for arrays, look to Boost (see
Item 55). There you’ll be pleased to find the boost::scoped_array and
boost::shared_array classes that offer the behavior you’re looking for.

This Item’s guidance to use objects to manage resources suggests that
if you’re releasing resources manually (e.g., using delete other than in
a resource-managing class), you’re doing something wrong. Pre-
canned resource-managing classes like auto_ptr and tr1::shared_ptr
often make following this Item’s advice easy, but sometimes you’re
using a resource where these pre-fab classes don’t do what you need.
When that’s the case, you’ll need to craft your own resource-managing
classes. That’s not terribly difficult to do, but it does involve some
subtleties you’ll need to consider. Those considerations are the topic
of Items 14 and 15.
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As a final comment, I have to point out that createInvestment’s raw
pointer return type is an invitation to a resource leak, because it’s so
easy for callers to forget to call delete on the pointer they get back.
(Even if they use an auto_ptr or tr1::shared_ptr to perform the delete,
they still have to remember to store createInvestment’s return value in
a smart pointer object.) Combatting that problem calls for an interface
modification to createInvestment, a topic I address in Item 18.

Things to Remember

✦ To prevent resource leaks, use RAII objects that acquire resources
in their constructors and release them in their destructors.

✦ Two commonly useful RAII classes are tr1::shared_ptr and auto_ptr.
tr1::shared_ptr is usually the better choice, because its behavior when
copied is intuitive. Copying an auto_ptr sets it to null.

Item 14: Think carefully about copying behavior in 
resource-managing classes.

Item 13 introduces the idea of Resource Acquisition Is Initialization
(RAII) as the backbone of resource-managing classes, and it describes
how auto_ptr and tr1::shared_ptr are manifestations of this idea for
heap-based resources. Not all resources are heap-based, however,
and for such resources, smart pointers like auto_ptr and tr1::shared_ptr
are generally inappropriate as resource handlers. That being the case,
you’re likely to find yourself needing to create your own resource-
managing classes from time to time.

For example, suppose you’re using a C API to manipulate mutex
objects of type Mutex offering functions lock and unlock:

void lock(Mutex *pm); // lock mutex pointed to by pm

void unlock(Mutex *pm); // unlock the mutex

To make sure that you never forget to unlock a Mutex you’ve locked,
you’d like to create a class to manage locks. The basic structure of
such a class is dictated by the RAII principle that resources are
acquired during construction and released during destruction:

class Lock {
public:

explicit Lock(Mutex *pm)
: mutexPtr(pm)
{ lock(mutexPtr); } // acquire resource

~Lock() { unlock(mutexPtr); } // release resource

private:
Mutex *mutexPtr;

};
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Clients use Lock in the conventional RAII fashion:

Mutex m; // define the mutex you need to use

...

{ // create block to define critical section

Lock ml(&m); // lock the mutex

... // perform critical section operations

} // automatically unlock mutex at end
// of block 

This is fine, but what should happen if a Lock object is copied?

Lock ml1(&m); // lock m

Lock ml2(ml1); // copy ml1 to ml2 — what should
// happen here?

This is a specific example of a more general question, one that every
RAII class author must confront: what should happen when an RAII
object is copied? Most of the time, you’ll want to choose one of the fol-
lowing possibilities:

■ Prohibit copying. In many cases, it makes no sense to allow RAII
objects to be copied. This is likely to be true for a class like Lock,
because it rarely makes sense to have “copies” of synchronization
primitives. When copying makes no sense for an RAII class, you
should prohibit it. Item 6 explains how to do that: declare the
copying operations private. For Lock, that could look like this:

class Lock: private Uncopyable { // prohibit copying — see
public: // Item 6

... // as before

};
■ Reference-count the underlying resource. Sometimes it’s desir-

able to hold on to a resource until the last object using it has been
destroyed. When that’s the case, copying an RAII object should in-
crement the count of the number of objects referring to the re-
source. This is the meaning of “copy” used by tr1::shared_ptr. 

Often, RAII classes can implement reference-counting copying be-
havior by containing a tr1::shared_ptr data member. For example, if
Lock wanted to employ reference counting, it could change the type
of mutexPtr from Mutex* to tr1::shared_ptr<Mutex>. Unfortunately,
tr1::shared_ptr’s default behavior is to delete what it points to when
the reference count goes to zero, and that’s not what we want.
When we’re done with a Mutex, we want to unlock it, not delete it.



ptg7544714

68

Fo
fun
goe
alw
ram
lik

In 
str
cla
or 
cla
Bu
del
goe
ab
des
beh

■ Co
cop
res
lea
sou
Th
cop

So
ers
are
me
po
cop

■ Tr
sio

† In 200
the ex
www.a
Item 14 Chapter 3

rtunately, tr1::shared_ptr allows specification of a “deleter” — a
ction or function object to be called when the reference count
s to zero. (This functionality does not exist for auto_ptr, which
ays deletes its pointer.) The deleter is an optional second pa-
eter to the tr1::shared_ptr constructor, so the code would look

e this:

class Lock {
public:

explicit Lock(Mutex *pm) // init shared_ptr with the Mutex
: mutexPtr(pm, unlock) // to point to and the unlock func
{ // as the deleter†

lock(mutexPtr.get()); // see Item 15 for info on “get” 
}

private:
std::tr1::shared_ptr<Mutex> mutexPtr; // use shared_ptr

}; // instead of raw pointer

this example, notice how the Lock class no longer declares a de-
uctor. That’s because there’s no need to. Item 5 explains that a
ss’s destructor (regardless of whether it is compiler-generated
user-defined) automatically invokes the destructors of the

ss’s non-static data members. In this example, that’s mutexPtr.
t mutexPtr’s destructor will automatically call the tr1::shared_ptr’s
eter — unlock, in this case — when the mutex’s reference count
s to zero. (People looking at the class’s source code would prob-

ly appreciate a comment indicating that you didn’t forget about
truction, you’re just relying on the default compiler-generated
avior.)

py the underlying resource. Sometimes you can have as many
ies of a resource as you like, and the only reason you need a
ource-managing class is to make sure that each copy is re-
sed when you’re done with it. In that case, copying the re-
rce-managing object should also copy the resource it wraps.

at is, copying a resource-managing object performs a “deep
y.” 

me implementations of the standard string type consist of point-
 to heap memory, where the characters making up the string
 stored. Objects of such strings contain a pointer to the heap
mory. When a string object is copied, a copy is made of both the

inter and the memory it points to. Such strings exhibit deep
ying.

ansfer ownership of the underlying resource. On rare occa-
n, you may wish to make sure that only one RAII object refers

9, I was shown that this code is not quite exception-safe. The fix is simple, but
planation behind it is too long to be added to this page. Please consult http://
risteia.com/BookErrata/ec++3e-errata.html#p68LockCtorProb for the problem and fix.

http://www.aristeia.com/BookErrata/ec++3e-errata.html#p68LockCtorProb
http://www.aristeia.com/BookErrata/ec++3e-errata.html#p68LockCtorProb
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to a raw resource and that when the RAII object is copied, owner-
ship of the resource is transferred from the copied object to the
copying object. As explained in Item 13, this is the meaning of
“copy” used by auto_ptr.

The copying functions (copy constructor and copy assignment opera-
tor) may be generated by compilers, so unless the compiler-generated
versions will do what you want (Item 5 explains the default behavior),
you’ll need to write them yourself. In some cases, you’ll also want to
support generalized versions of these functions. Such versions are
described in Item 45. 

Things to Remember

✦ Copying an RAII object entails copying the resource it manages, so
the copying behavior of the resource determines the copying behav-
ior of the RAII object.

✦ Common RAII class copying behaviors are disallowing copying and
performing reference counting, but other behaviors are possible.

Item 15: Provide access to raw resources in resource-
managing classes.

Resource-managing classes are wonderful. They’re your bulwark
against resource leaks, the absence of such leaks being a fundamen-
tal characteristic of well-designed systems. In a perfect world, you’d
rely on such classes for all your interactions with resources, never
sullying your hands with direct access to raw resources. But the world
is not perfect. Many APIs refer to resources directly, so unless you
plan to foreswear use of such APIs (something that’s rarely practical),
you’ll have to bypass resource-managing objects and deal with raw
resources from time to time.

For example, Item 13 introduces the idea of using smart pointers like
auto_ptr or tr1::shared_ptr to hold the result of a call to a factory func-
tion like createInvestment:

std::tr1::shared_ptr<Investment> pInv(createInvestment()); // from Item 13

Suppose that a function you’d like to use when working with Invest-
ment objects is this:

int daysHeld(const Investment *pi); // return number of days
// investment has been held
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You’d like to call it like this,

int days = daysHeld(pInv); // error!

but the code won’t compile: daysHeld wants a raw Investment* pointer,
but you’re passing an object of type tr1::shared_ptr<Investment>. 

You need a way to convert an object of the RAII class (in this case,
tr1::shared_ptr) into the raw resource it contains (e.g., the underlying
Investment*). There are two general ways to do it: explicit conversion
and implicit conversion.

tr1::shared_ptr and auto_ptr both offer a get member function to per-
form an explicit conversion, i.e., to return (a copy of) the raw pointer
inside the smart pointer object:

int days = daysHeld(pInv.get()); // fine, passes the raw pointer
// in pInv to daysHeld

Like virtually all smart pointer classes, tr1::shared_ptr and auto_ptr also
overload the pointer dereferencing operators (operator-> and operator*),
and this allows implicit conversion to the underlying raw pointers:

class Investment { // root class for a hierarchy
public: // of investment types

bool isTaxFree() const;
...

};

Investment* createInvestment(); // factory function

std::tr1::shared_ptr<Investment> // have tr1::shared_ptr
pi1(createInvestment()); // manage a resource

bool taxable1 = !(pi1->isTaxFree()); // access resource
// via operator->

...

std::auto_ptr<Investment> pi2(createInvestment()); // have auto_ptr
// manage a
// resource

bool taxable2 = !((*pi2).isTaxFree()); // access resource
// via operator*

...

Because it is sometimes necessary to get at the raw resource inside an
RAII object, some RAII class designers grease the skids by offering an
implicit conversion function. For example, consider this RAII class for
fonts that are native to a C API:

FontHandle getFont(); // from C API — params omitted
// for simplicity

void releaseFont(FontHandle fh); // from the same C API
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class Font { // RAII class
public:

explicit Font(FontHandle fh) // acquire resource;
: f(fh) // use pass-by-value, because the
{} // C API does

~Font() { releaseFont(f ); } // release resource

... // handle copying (see Item 14)

private:
FontHandle f; // the raw font resource

};

Assuming there’s a large font-related C API that deals entirely with
FontHandles, there will be a frequent need to convert from Font objects
to FontHandles. The Font class could offer an explicit conversion func-
tion such as get:

class Font {
public:

...
FontHandle get() const { return f; } // explicit conversion function
...

};

Unfortunately, this would require that clients call get every time they
want to communicate with the API:

void changeFontSize(FontHandle f, int newSize); // from the C API

Font f(getFont());
int newFontSize;

...

changeFontSize(f.get(), newFontSize); // explicitly convert
// Font to FontHandle

Some programmers might find the need to explicitly request such con-
versions off-putting enough to avoid using the class. That, in turn,
would increase the chances of leaking fonts, the very thing the Font
class is designed to prevent.

The alternative is to have Font offer an implicit conversion function to
its FontHandle:

class Font {
public:

...
operator FontHandle() const // implicit conversion function
{ return f; }
...

};

That makes calling into the C API easy and natural:
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t f(getFont());
newFontSize;

ngeFontSize(f, newFontSize); // implicitly convert Font
// to FontHandle

wnside is that implicit conversions increase the chance of
 For example, a client might accidently create a FontHandle
 Font was intended:

t f1(getFont());

tHandle f2 = f1; // oops! meant to copy a Font 
// object, but instead implicitly
// converted f1 into its underlying
// FontHandle, then copied that

e program has a FontHandle being managed by the Font object
 the FontHandle is also available for direct use as f2. That’s
 never good. For example, when f1 is destroyed, the font will be
d, and f2 will dangle.

cision about whether to offer explicit conversion from an RAII
o its underlying resource (e.g., via a get member function) or
r to allow implicit conversion is one that depends on the spe-
sk the RAII class is designed to perform and the circumstances
h it is intended to be used. The best design is likely to be the

at adheres to Item 18’s advice to make interfaces easy to use
ly and hard to use incorrectly. Often, an explicit conversion
n like get is the preferable path, because it minimizes the
s of unintended type conversions. Sometimes, however, the
lness of use arising from implicit type conversions will tip the
in that direction.

have occurred to you that functions returning the raw resource
an RAII class are contrary to encapsulation. That’s true, but it’s
 design disaster it may at first appear. RAII classes don’t exist
psulate something; they exist to ensure that a particular action
urce release — takes place. If desired, encapsulation of the

ce can be layered on top of this primary functionality, but it’s
cessary. Furthermore, some RAII classes combine true encap-
n of implementation with very loose encapsulation of the

ying resource. For example, tr1::shared_ptr encapsulates all its
ce-counting machinery, but it still offers easy access to the raw
 it contains. Like most well-designed classes, it hides what cli-
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ents don’t need to see, but it makes available those things that clients
honestly need to access. 

Things to Remember

✦ APIs often require access to raw resources, so each RAII class
should offer a way to get at the resource it manages.

✦ Access may be via explicit conversion or implicit conversion. In gen-
eral, explicit conversion is safer, but implicit conversion is more con-
venient for clients.

Item 16: Use the same form in corresponding uses of 
new and delete.

What’s wrong with this picture?

std::string *stringArray = new std::string[100];

...

delete stringArray;

Everything appears to be in order. The new is matched with a delete.
Still, something is quite wrong. The program’s behavior is undefined.
At the very least, 99 of the 100 string objects pointed to by stringArray
are unlikely to be properly destroyed, because their destructors will
probably never be called.

When you employ a new expression (i.e., dynamic creation of an object
via a use of new), two things happen. First, memory is allocated (via a
function named operator new — see Items 49 and 51). Second, one or
more constructors are called for that memory. When you employ a
delete expression (i.e., use delete), two other things happen: one or
more destructors are called for the memory, then the memory is deal-
located (via a function named operator delete — see Item 51). The big
question for delete is this: how many objects reside in the memory
being deleted? The answer to that determines how many destructors
must be called.

Actually, the question is simpler: does the pointer being deleted point
to a single object or to an array of objects? It’s a critical question,
because the memory layout for single objects is generally different
from the memory layout for arrays. In particular, the memory for an
array usually includes the size of the array, thus making it easy for
delete to know how many destructors to call. The memory for a single
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object lacks this information. You can think of the different layouts as
looking like this, where n is the size of the array:

This is just an example, of course. Compilers aren’t required to imple-
ment things this way, though many do.

When you use delete on a pointer, the only way for delete to know
whether the array size information is there is for you to tell it. If you
use brackets in your use of delete, delete assumes an array is pointed
to. Otherwise, it assumes that a single object is pointed to:

std::string *stringPtr1 = new std::string;

std::string *stringPtr2 = new std::string[100];

...

delete stringPtr1; // delete an object

delete [] stringPtr2; // delete an array of objects

What would happen if you used the “[]” form on stringPtr1? The result
is undefined, but it’s unlikely to be pretty. Assuming the layout above,
delete would read some memory and interpret what it read as an array
size, then start invoking that many destructors, oblivious to the fact
that the memory it’s working on not only isn’t in the array, it’s also
probably not holding objects of the type it’s busy destructing.

What would happen if you didn’t use the “[]” form on stringPtr2? Well,
that’s undefined too, but you can see how it would lead to too few
destructors being called. Furthermore, it’s undefined (and sometimes
harmful) for built-in types like ints, too, even though such types lack
destructors.

The rule is simple: if you use [] in a new expression, you must use [] in
the corresponding delete expression. If you don’t use [] in a new
expression, don’t use [] in the matching delete expression.

This is a particularly important rule to bear in mind when you are
writing a class containing a pointer to dynamically allocated memory
and also offering multiple constructors, because then you must be
careful to use the same form of new in all the constructors to initialize
the pointer member. If you don’t, how will you know what form of
delete to use in your destructor? 

Object Object Object ...n

Object
Single

Array

Object
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This rule is also noteworthy for the typedef-inclined, because it means
that a typedef’s author must document which form of delete should be
employed when new is used to conjure up objects of the typedef type.
For example, consider this typedef:

typedef std::string AddressLines[4]; // a person’s address has 4 lines,
// each of which is a string

Because AddressLines is an array, this use of new,

std::string *pal = new AddressLines; // note that “new AddressLines”
// returns a string*, just like
// “new string[4]” would

must be matched with the array form of delete:

delete pal; // undefined!

delete [] pal; // fine

To avoid such confusion, abstain from typedefs for array types. That’s
easy, because the standard C++ library (see Item 54) includes string
and vector, and those templates reduce the need for dynamically allo-
cated arrays to nearly zero. Here, for example, AddressLines could be
defined to be a vector of strings, i.e., the type vector<string>.

Things to Remember

✦ If you use [ ] in a new expression, you must use [ ] in the correspond-
ing delete expression. If you don’t use [] in a new expression, you
mustn’t use [] in the corresponding delete expression.

Item 17: Store newed objects in smart pointers in 
standalone statements.

Suppose we have a function to reveal our processing priority and a
second function to do some processing on a dynamically allocated
Widget in accord with a priority:

int priority();

void processWidget(std::tr1::shared_ptr<Widget> pw, int priority);

Mindful of the wisdom of using objects to manage resources (see
Item 13), processWidget uses a smart pointer (here, a tr1::shared_ptr) for
the dynamically allocated Widget it processes. 

Consider now a call to processWidget:

processWidget(new Widget, priority());
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Wait, don’t consider that call. It won’t compile. tr1::shared_ptr’s con-
structor taking a raw pointer is explicit, so there’s no implicit conver-
sion from the raw pointer returned by the expression “new Widget” to
the tr1::shared_ptr required by processWidget. The following code, how-
ever, will compile:

processWidget(std::tr1::shared_ptr<Widget>(new Widget), priority());

Surprisingly, although we’re using object-managing resources every-
where here, this call may leak resources. It’s illuminating to see how.

Before compilers can generate a call to processWidget, they have to
evaluate the arguments being passed as its parameters. The second
argument is just a call to the function priority, but the first argument,
(“std::tr1::shared_ptr<Widget>(new Widget)”) consists of two parts:

■ Execution of the expression “new Widget”.

■ A call to the tr1::shared_ptr constructor.

Before processWidget can be called, then, compilers must generate
code to do these three things:

■ Call priority.

■ Execute “new Widget”.

■ Call the tr1::shared_ptr constructor.

C++ compilers are granted considerable latitude in determining the
order in which these things are to be done. (This is different from the
way languages like Java and C# work, where function parameters are
always evaluated in a particular order.) The “new Widget” expression
must be executed before the tr1::shared_ptr constructor can be called,
because the result of the expression is passed as an argument to the
tr1::shared_ptr constructor, but the call to priority can be performed
first, second, or third. If compilers choose to perform it second (some-
thing that may allow them to generate more efficient code), we end up
with this sequence of operations:

1. Execute “new Widget”.

2. Call priority.

3. Call the tr1::shared_ptr constructor.

But consider what will happen if the call to priority yields an exception.
In that case, the pointer returned from “new Widget” will be lost,
because it won’t have been stored in the tr1::shared_ptr we were expect-
ing would guard against resource leaks. A leak in the call to process-
Widget can arise because an exception can intervene between the time
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a resource is created (via “new Widget”) and the time that resource is
turned over to a resource-managing object.

The way to avoid problems like this is simple: use a separate state-
ment to create the Widget and store it in a smart pointer, then pass
the smart pointer to processWidget:

std::tr1::shared_ptr<Widget> pw(new Widget); // store newed object
// in a smart pointer in a
// standalone statement

processWidget(pw, priority()); // this call won’t leak

This works because compilers are given less leeway in reordering
operations across statements than within them. In this revised code,
the “new Widget” expression and the call to the tr1::shared_ptr construc-
tor are in a different statement from the one calling priority, so compil-
ers are not allowed to move the call to priority between them. 

Things to Remember

✦ Store newed objects in smart pointers in standalone statements.
Failure to do this can lead to subtle resource leaks when exceptions
are thrown.
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Designs and DeclarationsSoftware designs — approaches to getting the software to do what you
want it to do — typically begin as fairly general ideas, but they eventu-
ally become detailed enough to allow for the development of specific
interfaces. These interfaces must then be translated into C++ declara-
tions. In this chapter, we attack the problem of designing and declar-
ing good C++ interfaces. We begin with perhaps the most important
guideline about designing interfaces of any kind: that they should be
easy to use correctly and hard to use incorrectly. That sets the stage
for a number of more specific guidelines addressing a wide range of
topics, including correctness, efficiency, encapsulation, maintainabil-
ity, extensibility, and conformance to convention. 

The material that follows isn’t everything you need to know about
good interface design, but it highlights some of the most important
considerations, warns about some of the most frequent errors, and
provides solutions to problems often encountered by class, function,
and template designers. 

Item 18: Make interfaces easy to use correctly and 
hard to use incorrectly.

C++ is awash in interfaces. Function interfaces. Class interfaces.
Template interfaces. Each interface is a means by which clients inter-
act with your code. Assuming you’re dealing with reasonable people,
those clients are trying to do a good job. They want to use your inter-
faces correctly. That being the case, if they use one incorrectly, your
interface is at least partially to blame. Ideally, if an attempted use of
an interface won’t do what the client expects, the code won’t compile;
and if the code does compile, it will do what the client wants. 

Developing interfaces that are easy to use correctly and hard to use
incorrectly requires that you consider the kinds of mistakes that cli-

Chapter 4: Designs and Declarations

Designs and
Declarations
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ents might make. For example, suppose you’re designing the con-
structor for a class representing dates in time:

class Date {
public:

Date(int month, int day, int year);
...

};

At first glance, this interface may seem reasonable (at least in the
USA), but there are at least two errors that clients might easily make.
First, they might pass parameters in the wrong order:

Date d(30, 3, 1995); // Oops! Should be “3, 30” , not “30, 3”

Second, they might pass an invalid month or day number:

Date d(3, 40, 1995); // Oops! Should be “3, 30” , not “3, 40”

(This last example may look silly, but remember that on a keyboard,
4 is next to 3. Such “off by one” typing errors are not uncommon.)

Many client errors can be prevented by the introduction of new types.
Indeed, the type system is your primary ally in preventing undesirable
code from compiling. In this case, we can introduce simple wrapper
types to distinguish days, months, and years, then use these types in
the Date constructor:

struct Day { struct Month { struct Year {
explicit Day(int d) explicit Month(int m) explicit Year(int y)
: val(d) { } : val(m) {} : val(y){}

int val; int val; int val;
}; }; };

class Date {
public:

Date(const Month& m, const Day& d, const Year& y);
...

};

Date d(30, 3, 1995); // error! wrong types

Date d(Day(30), Month(3), Year(1995)); // error! wrong types

Date d(Month(3), Day(30), Year(1995)); // okay, types are correct

Making Day, Month, and Year full-fledged classes with encapsulated
data would be better than the simple use of structs above (see
Item 22), but even structs suffice to demonstrate that the judicious
introduction of new types can work wonders for the prevention of
interface usage errors. 



ptg7544714

80 Item 18 Chapter 4
Once the right types are in place, it can sometimes be reasonable to
restrict the values of those types. For example, there are only 12 valid
month values, so the Month type should reflect that. One way to do this
would be to use an enum to represent the month, but enums are not
as type-safe as we might like. For example, enums can be used like ints
(see Item 2). A safer solution is to predefine the set of all valid Months:

class Month {
public:

static Month Jan() { return Month(1); } // functions returning all valid
static Month Feb() { return Month(2); } // Month values; see below for
... // why these are functions, not
static Month Dec() { return Month(12); } // objects

... // other member functions 

private:
explicit Month(int m); // prevent creation of new

// Month values

... // month-specific data
};

Date d(Month::Mar(), Day(30), Year(1995));

If the idea of using functions instead of objects to represent specific
months strikes you as odd, it may be because you have forgotten that
reliable initialization of non-local static objects can be problematic.
Item 4 can refresh your memory. 

Another way to prevent likely client errors is to restrict what can be
done with a type. A common way to impose restrictions is to add const.
For example, Item 3 explains how const-qualifying the return type
from operator* can prevent clients from making this error for user-
defined types:

if (a * b = c) ... // oops, meant to do a comparison!

In fact, this is just a manifestation of another general guideline for
making types easy to use correctly and hard to use incorrectly: unless
there’s a good reason not to, have your types behave consistently with
the built-in types. Clients already know how types like int behave, so
you should strive to have your types behave the same way whenever
reasonable. For example, assignment to a*b isn’t legal if a and b are
ints, so unless there’s a good reason to diverge from this behavior, it
should be illegal for your types, too. When in doubt, do as the ints do.

The real reason for avoiding gratuitous incompatibilities with the
built-in types is to offer interfaces that behave consistently. Few char-
acteristics lead to interfaces that are easy to use correctly as much as
consistency, and few characteristics lead to aggravating interfaces as
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much as inconsistency. The interfaces to STL containers are largely
(though not perfectly) consistent, and this helps make them fairly
easy to use. For example, every STL container has a member function
named size that tells how many objects are in the container. Contrast
this with Java, where you use the length property for arrays, the length
method for Strings, and the size method for Lists; and with .NET, where
Arrays have a property named Length, while ArrayLists have a property
named Count. Some developers think that integrated development
environments (IDEs) render such inconsistencies unimportant, but
they are mistaken. Inconsistency imposes mental friction into a devel-
oper’s work that no IDE can fully remove.

Any interface that requires that clients remember to do something is
prone to incorrect use, because clients can forget to do it. For exam-
ple, Item 13 introduces a factory function that returns pointers to
dynamically allocated objects in an Investment hierarchy:

Investment* createInvestment(); // from Item 13; parameters omitted
// for simplicity

To avoid resource leaks, the pointers returned from createInvestment
must eventually be deleted, but that creates an opportunity for at
least two types of client errors: failure to delete a pointer, and deletion
of the same pointer more than once. 

Item 13 shows how clients can store createInvestment’s return value in
a smart pointer like auto_ptr or tr1::shared_ptr, thus turning over to the
smart pointer the responsibility for using delete. But what if clients
forget to use the smart pointer? In many cases, a better interface deci-
sion would be to preempt the problem by having the factory function
return a smart pointer in the first place:

std::tr1::shared_ptr<Investment> createInvestment();

This essentially forces clients to store the return value in a
tr1::shared_ptr, all but eliminating the possibility of forgetting to delete
the underlying Investment object when it’s no longer being used.

In fact, returning a tr1::shared_ptr makes it possible for an interface
designer to prevent a host of other client errors regarding resource
release, because, as Item 14 explains, tr1::shared_ptr allows a resource-
release function — a “deleter” — to be bound to the smart pointer
when the smart pointer is created. (auto_ptr has no such capability.) 

Suppose clients who get an Investment* pointer from createInvestment
are expected to pass that pointer to a function called getRidOfInvest-
ment instead of using delete on it. Such an interface would open the
door to a new kind of client error, one where clients use the wrong
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ce-destruction mechanism (i.e., delete instead of getRidOfInvest-
The implementer of createInvestment can forestall such prob-
y returning a tr1::shared_ptr with getRidOfInvestment bound to it
eleter.

red_ptr offers a constructor taking two arguments: the pointer
anaged and the deleter to be called when the reference count

 zero. This suggests that the way to create a null tr1::shared_ptr
tRidOfInvestment as its deleter is this:

::tr1::shared_ptr<Investment> // attempt to create a null 
Inv(0, getRidOfInvestment); // shared_ptr with a custom deleter;

// this won’t compile

his isn’t valid C++. The tr1::shared_ptr constructor insists on its
rameter being a pointer, and 0 isn’t a pointer, it’s an int. Yes, it’s
ible to a pointer, but that’s not good enough in this case;

red_ptr insists on an actual pointer. A cast solves the problem:

::tr1::shared_ptr<Investment> // create a null shared_ptr with 
Inv( static_cast<Investment*>(0), // getRidOfInvestment as its

getRidOfInvestment); // deleter; see Item 27 for info on
// static_cast

eans that the code for implementing createInvestment to return
ared_ptr with getRidOfInvestment as its deleter would look some-

ike this:

::tr1::shared_ptr<Investment> createInvestment()

d::tr1::shared_ptr<Investment> retVal(static_cast<Investment*>(0),
getRidOfInvestment);

// make retVal point to the 
// correct object

turn retVal;

rse, if the raw pointer to be managed by retVal could be deter-
prior to creating retVal, it would be better to pass the raw
 to retVal’s constructor instead of initializing retVal to null and
aking an assignment to it. For details on why, consult Item 26.

ecially nice feature of tr1::shared_ptr is that it automatically uses
-pointer deleter to eliminate another potential client error, the

DLL problem.” This problem crops up when an object is cre-
sing new in one dynamically linked library (DLL) but is deleted
fferent DLL. On many platforms, such cross-DLL new/delete
lead to runtime errors. tr1::shared_ptr avoids the problem,
e its default deleter uses delete from the same DLL where the
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tr1::shared_ptr is created. This means, for example, that if Stock is a
class derived from Investment and createInvestment is implemented like
this,

std::tr1::shared_ptr<Investment> createInvestment()
{

return std::tr1::shared_ptr<Investment>(new Stock);
}

the returned tr1::shared_ptr can be passed among DLLs without con-
cern for the cross-DLL problem. The tr1::shared_ptrs pointing to the
Stock keep track of which DLL’s delete should be used when the refer-
ence count for the Stock becomes zero.

This Item isn’t about tr1::shared_ptr — it’s about making interfaces easy
to use correctly and hard to use incorrectly — but tr1::shared_ptr is
such an easy way to eliminate some client errors, it’s worth an over-
view of the cost of using it. The most common implementation of
tr1::shared_ptr comes from Boost (see Item 55). Boost’s shared_ptr is
twice the size of a raw pointer, uses dynamically allocated memory for
bookkeeping and deleter-specific data, uses a virtual function call
when invoking its deleter, and incurs thread synchronization overhead
when modifying the reference count in an application it believes is
multithreaded. (You can disable multithreading support by defining a
preprocessor symbol.) In short, it’s bigger than a raw pointer, slower
than a raw pointer, and uses auxiliary dynamic memory. In many
applications, these additional runtime costs will be unnoticeable, but
the reduction in client errors will be apparent to everyone.

Things to Remember

✦ Good interfaces are easy to use correctly and hard to use incorrectly.
You should strive for these characteristics in all your interfaces.

✦ Ways to facilitate correct use include consistency in interfaces and
behavioral compatibility with built-in types. 

✦ Ways to prevent errors include creating new types, restricting opera-
tions on types, constraining object values, and eliminating client re-
source management responsibilities.

✦ tr1::shared_ptr supports custom deleters. This prevents the cross-
DLL problem, can be used to automatically unlock mutexes (see
Item 14), etc.
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Item 19: Treat class design as type design.

In C++, as in other object-oriented programming languages, defining a
new class defines a new type. Much of your time as a C++ developer
will thus be spent augmenting your type system. This means you’re
not just a class designer, you’re a type designer. Overloading functions
and operators, controlling memory allocation and deallocation, defin-
ing object initialization and finalization — it’s all in your hands. You
should therefore approach class design with the same care that lan-
guage designers lavish on the design of the language’s built-in types.

Designing good classes is challenging because designing good types is
challenging. Good types have a natural syntax, intuitive semantics,
and one or more efficient implementations. In C++, a poorly planned
class definition can make it impossible to achieve any of these goals.
Even the performance characteristics of a class’s member functions
may be affected by how they are declared.

How, then, do you design effective classes? First, you must under-
stand the issues you face. Virtually every class requires that you con-
front the following questions, the answers to which often lead to
constraints on your design:

■ How should objects of your new type be created and de-
stroyed? How this is done influences the design of your class’s
constructors and destructor, as well as its memory allocation and
deallocation functions (operator new, operator new[], operator delete,
and operator delete[] — see Chapter 8), if you write them.

■ How should object initialization differ from object assign-
ment? The answer to this question determines the behavior of
and the differences between your constructors and your assign-
ment operators. It’s important not to confuse initialization with as-
signment, because they correspond to different function calls (see
Item 4).

■ What does it mean for objects of your new type to be passed
by value? Remember, the copy constructor defines how pass-by-
value is implemented for a type.

■ What are the restrictions on legal values for your new type?
Usually, only some combinations of values for a class’s data mem-
bers are valid. Those combinations determine the invariants your
class will have to maintain. The invariants determine the error
checking you’ll have to do inside your member functions, espe-
cially your constructors, assignment operators, and “setter” func-
tions. It may also affect the exceptions your functions throw and,
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on the off chance you use them, your functions’ exception specifi-
cations.

■ Does your new type fit into an inheritance graph? If you inherit
from existing classes, you are constrained by the design of those
classes, particularly by whether their functions are virtual or non-
virtual (see Items 34 and 36). If you wish to allow other classes to
inherit from your class, that affects whether the functions you de-
clare are virtual, especially your destructor (see Item 7).

■ What kind of type conversions are allowed for your new type?
Your type exists in a sea of other types, so should there be conver-
sions between your type and other types? If you wish to allow ob-
jects of type T1 to be implicitly converted into objects of type T2,
you will want to write either a type conversion function in class T1
(e.g., operator T2) or a non-explicit constructor in class T2 that can
be called with a single argument. If you wish to allow explicit con-
versions only, you’ll want to write functions to perform the conver-
sions, but you’ll need to avoid making them type conversion
operators or non-explicit constructors that can be called with one
argument. (For an example of both implicit and explicit conversion
functions, see Item 15.)

■ What operators and functions make sense for the new type?
The answer to this question determines which functions you’ll de-
clare for your class. Some functions will be member functions, but
some will not (see Items 23, 24, and 46).

■ What standard functions should be disallowed? Those are the
ones you’ll need to declare private (see Item 6).

■ Who should have access to the members of your new type?
This question helps you determine which members are public,
which are protected, and which are private. It also helps you de-
termine which classes and/or functions should be friends, as well
as whether it makes sense to nest one class inside another.

■ What is the “undeclared interface” of your new type? What
kind of guarantees does it offer with respect to performance, ex-
ception safety (see Item 29), and resource usage (e.g., locks and
dynamic memory)? The guarantees you offer in these areas will
impose constraints on your class implementation.

■ How general is your new type? Perhaps you’re not really defining
a new type. Perhaps you’re defining a whole family of types. If so,
you don’t want to define a new class, you want to define a new
class template.
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■ Is a new type really what you need? If you’re defining a new de-
rived class only so you can add functionality to an existing class,
perhaps you’d better achieve your goals by simply defining one or
more non-member functions or templates.

These questions are difficult to answer, so defining effective classes
can be challenging. Done well, however, user-defined classes in C++
yield types that are at least as good as the built-in types, and that
makes all the effort worthwhile. 

Things to Remember

✦ Class design is type design. Before defining a new type, be sure to
consider all the issues discussed in this Item.

Item 20: Prefer pass-by-reference-to-const to pass-by-
value.

By default, C++ passes objects to and from functions by value (a char-
acteristic it inherits from C). Unless you specify otherwise, function
parameters are initialized with copies of the actual arguments, and
function callers get back a copy of the value returned by the function.
These copies are produced by the objects’ copy constructors. This can
make pass-by-value an expensive operation. For example, consider
the following class hierarchy:

class Person {
public:

Person(); // parameters omitted for simplicity
virtual ~Person(); // see Item 7 for why this is virtual
...

private:
std::string name;
std::string address;

};

class Student: public Person {
public:

Student(); // parameters again omitted
virtual ~Student();
...

private:
std::string schoolName;
std::string schoolAddress;

};
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Now consider the following code, in which we call a function, validat-
eStudent, that takes a Student argument (by value) and returns
whether it has been validated:

bool validateStudent(Student s); // function taking a Student
// by value

Student plato; // Plato studied under Socrates

bool platoIsOK = validateStudent(plato); // call the function

What happens when this function is called?

Clearly, the Student copy constructor is called to initialize the parame-
ter s from plato. Equally clearly, s is destroyed when validateStudent
returns. So the parameter-passing cost of this function is one call to
the Student copy constructor and one call to the Student destructor.

But that’s not the whole story. A Student object has two string objects
within it, so every time you construct a Student object you must also
construct two string objects. A Student object also inherits from a Per-
son object, so every time you construct a Student object you must also
construct a Person object. A Person object has two additional string
objects inside it, so each Person construction also entails two more
string constructions. The end result is that passing a Student object by
value leads to one call to the Student copy constructor, one call to the
Person copy constructor, and four calls to the string copy constructor.
When the copy of the Student object is destroyed, each constructor call
is matched by a destructor call, so the overall cost of passing a Student
by value is six constructors and six destructors!

Now, this is correct and desirable behavior. After all, you want all your
objects to be reliably initialized and destroyed. Still, it would be nice if
there were a way to bypass all those constructions and destructions.
There is: pass by reference-to-const:

bool validateStudent(const Student& s);

This is much more efficient: no constructors or destructors are called,
because no new objects are being created. The const in the revised
parameter declaration is important. The original version of validateStu-
dent took a Student parameter by value, so callers knew that they were
shielded from any changes the function might make to the Student they
passed in; validateStudent would be able to modify only a copy of it. Now
that the Student is being passed by reference, it’s necessary to also
declare it const, because otherwise callers would have to worry about
validateStudent making changes to the Student they passed in.

Passing parameters by reference also avoids the slicing problem. When
a derived class object is passed (by value) as a base class object, the



ptg7544714

88 Item 20 Chapter 4
base class copy constructor is called, and the specialized features that
make the object behave like a derived class object are “sliced” off.
You’re left with a simple base class object — little surprise, since a
base class constructor created it. This is almost never what you want.
For example, suppose you’re working on a set of classes for imple-
menting a graphical window system:

class Window {
public:

...
std::string name() const; // return name of window
virtual void display() const; // draw window and contents

};

class WindowWithScrollBars: public Window {
public:

...
virtual void display() const;

};

All Window objects have a name, which you can get at through the
name function, and all windows can be displayed, which you can bring
about by invoking the display function. The fact that display is virtual
tells you that the way in which simple base class Window objects are
displayed is apt to differ from the way in which the fancier Window-
WithScrollBars objects are displayed (see Items 34 and 36). 

Now suppose you’d like to write a function to print out a window’s
name and then display the window. Here’s the wrong way to write
such a function:

void printNameAndDisplay(Window w) // incorrect! parameter
{ // may be sliced!

std::cout << w.name();
w.display();

}

Consider what happens when you call this function with a Window-
WithScrollBars object:

WindowWithScrollBars wwsb;

printNameAndDisplay(wwsb);

The parameter w will be constructed — it’s passed by value, remem-
ber? — as a Window object, and all the specialized information that
made wwsb act like a WindowWithScrollBars object will be sliced off.
Inside printNameAndDisplay, w will always act like an object of class
Window (because it is an object of class Window), regardless of the type
of object passed to the function. In particular, the call to display inside
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printNameAndDisplay will always call Window::display, never Window-
WithScrollBars::display. 

The way around the slicing problem is to pass w by reference-to-const:

void printNameAndDisplay(const Window& w) // fine, parameter won’t
{ // be sliced

std::cout << w.name();
w.display();

}

Now w will act like whatever kind of window is actually passed in.

If you peek under the hood of a C++ compiler, you’ll find that refer-
ences are typically implemented as pointers, so passing something by
reference usually means really passing a pointer. As a result, if you
have an object of a built-in type (e.g., an int), it’s often more efficient to
pass it by value than by reference. For built-in types, then, when you
have a choice between pass-by-value and pass-by-reference-to-const,
it’s not unreasonable to choose pass-by-value. This same advice
applies to iterators and function objects in the STL, because, by con-
vention, they are designed to be passed by value. Implementers of iter-
ators and function objects are responsible for seeing to it that they are
efficient to copy and are not subject to the slicing problem. (This is an
example of how the rules change, depending on the part of C++ you
are using — see Item 1.)

Built-in types are small, so some people conclude that all small types
are good candidates for pass-by-value, even if they’re user-defined.
This is shaky reasoning. Just because an object is small doesn’t mean
that calling its copy constructor is inexpensive. Many objects — most
STL containers among them — contain little more than a pointer, but
copying such objects entails copying everything they point to. That
can be very expensive.

Even when small objects have inexpensive copy constructors, there
can be performance issues. Some compilers treat built-in and user-
defined types differently, even if they have the same underlying repre-
sentation. For example, some compilers refuse to put objects consist-
ing of only a double into a register, even though they happily place
naked doubles there on a regular basis. When that kind of thing hap-
pens, you can be better off passing such objects by reference, because
compilers will certainly put pointers (the implementation of refer-
ences) into registers.

Another reason why small user-defined types are not necessarily good
pass-by-value candidates is that, being user-defined, their size is sub-
ject to change. A type that’s small now may be bigger in a future
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release, because its internal implementation may change. Things can
even change when you switch to a different C++ implementation. As I
write this, for example, some implementations of the standard
library’s string type are seven times as big as others. 

In general, the only types for which you can reasonably assume that
pass-by-value is inexpensive are built-in types and STL iterator and
function object types. For everything else, follow the advice of this
Item and prefer pass-by-reference-to-const over pass-by-value.

Things to Remember

✦ Prefer pass-by-reference-to-const over pass-by-value. It’s typically
more efficient and it avoids the slicing problem. 

✦ The rule doesn’t apply to built-in types and STL iterator and func-
tion object types. For them, pass-by-value is usually appropriate.

Item 21: Don’t try to return a reference when you 
must return an object.

Once programmers grasp the efficiency implications of pass-by-value
for objects (see Item 20), many become crusaders, determined to root
out the evil of pass-by-value wherever it may hide. Unrelenting in
their pursuit of pass-by-reference purity, they invariably make a fatal
mistake: they start to pass references to objects that don’t exist. This
is not a good thing.

Consider a class for representing rational numbers, including a func-
tion for multiplying two rationals together:

class Rational {
public: 

Rational(int numerator = 0, // see Item 24 for why this
int denominator = 1); // ctor isn’t declared explicit

...

private:
int n, d; // numerator and denominator

friend
const Rational // see Item 3 for why the

operator*(const Rational& lhs, // return type is const
const Rational& rhs);

};

This version of operator* is returning its result object by value, and
you’d be shirking your professional duties if you failed to worry about
the cost of that object’s construction and destruction. You don’t want
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to pay for such an object if you don’t have to. So the question is this:
do you have to pay?

Well, you don’t have to if you can return a reference instead. But
remember that a reference is just a name, a name for some existing
object. Whenever you see the declaration for a reference, you should
immediately ask yourself what it is another name for, because it must
be another name for something. In the case of operator*, if the function
is to return a reference, it must return a reference to some Rational
object that already exists and that contains the product of the two
objects that are to be multiplied together.

There is certainly no reason to expect that such an object exists prior
to the call to operator*. That is, if you have

Rational a(1, 2); // a = 1/2
Rational b(3, 5); // b = 3/5

Rational c = a * b; // c should be 3/10

it seems unreasonable to expect that there already happens to exist a
rational number with the value three-tenths. No, if operator* is to
return a reference to such a number, it must create that number
object itself.

A function can create a new object in only two ways: on the stack or
on the heap. Creation on the stack is accomplished by defining a local
variable. Using that strategy, you might try to write operator* this way:

const Rational& operator*(const Rational& lhs, // warning! bad code!
const Rational& rhs)

{
Rational result(lhs.n * rhs.n, lhs.d * rhs.d);
return result;

}

You can reject this approach out of hand, because your goal was to
avoid a constructor call, and result will have to be constructed just like
any other object. A more serious problem is that this function returns
a reference to result, but result is a local object, and local objects are
destroyed when the function exits. This version of operator*, then,
doesn’t return a reference to a Rational — it returns a reference to an
ex-Rational; a former Rational; the empty, stinking, rotting carcass of
what used to be a Rational but is no longer, because it has been
destroyed. Any caller so much as glancing at this function’s return
value would instantly enter the realm of undefined behavior. The fact
is, any function returning a reference to a local object is broken. (The
same is true for any function returning a pointer to a local object.)
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Let us consider, then, the possibility of constructing an object on the
heap and returning a reference to it. Heap-based objects come into
being through the use of new, so you might write a heap-based opera-
tor* like this:

const Rational& operator*(const Rational& lhs, // warning! more bad
const Rational& rhs) // code!

{
Rational *result = new Rational(lhs.n * rhs.n, lhs.d * rhs.d);
return *result;

}

Well, you still have to pay for a constructor call, because the memory
allocated by new is initialized by calling an appropriate constructor,
but now you have a different problem: who will apply delete to the
object conjured up by your use of new?

Even if callers are conscientious and well intentioned, there’s not
much they can do to prevent leaks in reasonable usage scenarios like
this:

Rational w, x, y, z;

w = x * y * z; // same as operator*(operator*(x, y), z)

Here, there are two calls to operator* in the same statement, hence two
uses of new that need to be undone with uses of delete. Yet there is no
reasonable way for clients of operator* to make those calls, because
there’s no reasonable way for them to get at the pointers hidden
behind the references being returned from the calls to operator*. This
is a guaranteed resource leak.

But perhaps you notice that both the on-the-stack and on-the-heap
approaches suffer from having to call a constructor for each result
returned from operator*. Perhaps you recall that our initial goal was to
avoid such constructor invocations. Perhaps you think you know a
way to avoid all but one constructor call. Perhaps the following imple-
mentation occurs to you, an implementation based on operator*
returning a reference to a static Rational object, one defined inside the
function:

const Rational& operator*(const Rational& lhs, // warning! yet more
const Rational& rhs) // bad code!

{
static Rational result; // static object to which a 

// reference will be returned

result = ... ; // multiply lhs by rhs and put the
// product inside result

return result;
}
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Like all designs employing the use of static objects, this one immedi-
ately raises our thread-safety hackles, but that’s its more obvious
weakness. To see its deeper flaw, consider this perfectly reasonable
client code:

bool operator==(const Rational& lhs, // an operator==
const Rational& rhs); // for Rationals

Rational a, b, c, d;

...

if ((a * b) == (c * d))  {

do whatever’s appropriate when the products are equal;

} else  {

do whatever’s appropriate when they’re not;

}

Guess what? The expression ((a*b) == (c*d)) will always evaluate to
true, regardless of the values of a, b, c, and d! 

This revelation is easiest to understand when the code is rewritten in
its equivalent functional form:

if (operator==(operator*(a, b), operator*(c, d)))

Notice that when operator== is called, there will already be two active
calls to operator*, each of which will return a reference to the static
Rational object inside operator*. Thus, operator== will be asked to com-
pare the value of the static Rational object inside operator* with the
value of the static Rational object inside operator*. It would be surpris-
ing indeed if they did not compare equal. Always.

This should be enough to convince you that returning a reference
from a function like operator* is a waste of time, but some of you are
now thinking, “Well, if one static isn’t enough, maybe a static array
will do the trick....” 

I can’t bring myself to dignify this design with example code, but I can
sketch why the notion should cause you to blush in shame. First, you
must choose n, the size of the array. If n is too small, you may run out
of places to store function return values, in which case you’ll have
gained nothing over the single-static design we just discredited. But if
n is too big, you’ll decrease the performance of your program, because
every object in the array will be constructed the first time the function
is called. That will cost you n constructors and n destructors†, even if
the function in question is called only once. If “optimization” is the
process of improving software performance, this kind of thing should
be called “pessimization.” Finally, think about how you’d put the val-

† The destructors will be called once at program shutdown.
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ues you need into the array’s objects and what it would cost you to do
it. The most direct way to move a value between objects is via assign-
ment, but what is the cost of an assignment? For many types, it’s
about the same as a call to a destructor (to destroy the old value) plus
a call to a constructor (to copy over the new value). But your goal is to
avoid the costs of construction and destruction! Face it: this approach
just isn’t going to pan out. (No, using a vector instead of an array won’t
improve matters much.)

The right way to write a function that must return a new object is to
have that function return a new object. For Rational’s operator*, that
means either the following code or something essentially equivalent:

inline const Rational operator*(const Rational& lhs, const Rational& rhs) 
{

return Rational(lhs.n * rhs.n, lhs.d * rhs.d);
}

Sure, you may incur the cost of constructing and destructing opera-
tor*’s return value, but in the long run, that’s a small price to pay for
correct behavior. Besides, the bill that so terrifies you may never
arrive. Like all programming languages, C++ allows compiler imple-
menters to apply optimizations to improve the performance of the gen-
erated code without changing its observable behavior, and it turns out
that in some cases, construction and destruction of operator*’s return
value can be safely eliminated. When compilers take advantage of that
fact (and compilers often do), your program continues to behave the
way it’s supposed to, just faster than you expected. 

It all boils down to this: when deciding between returning a reference
and returning an object, your job is to make the choice that offers cor-
rect behavior. Let your compiler vendors wrestle with figuring out how
to make that choice as inexpensive as possible.

Things to Remember

✦ Never return a pointer or reference to a local stack object, a refer-
ence to a heap-allocated object, or a pointer or reference to a local
static object if there is a chance that more than one such object will
be needed. (Item 4 provides an example of a design where returning
a reference to a local static is reasonable, at least in single-threaded
environments.)

Item 22: Declare data members private.

Okay, here’s the plan. First, we’re going to see why data members
shouldn’t be public. Then we’ll see that all the arguments against
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public data members apply equally to protected ones. That will lead to
the conclusion that data members should be private, and at that
point, we’ll be done.

So, public data members. Why not? 

Let’s begin with syntactic consistency (see also Item 18). If data mem-
bers aren’t public, the only way for clients to access an object is via
member functions. If everything in the public interface is a function,
clients won’t have to scratch their heads trying to remember whether
to use parentheses when they want to access a member of the class.
They’ll just do it, because everything is a function. Over the course of
a lifetime, that can save a lot of head scratching.

But maybe you don’t find the consistency argument compelling. How
about the fact that using functions gives you much more precise con-
trol over the accessibility of data members? If you make a data mem-
ber public, everybody has read-write access to it, but if you use
functions to get or set its value, you can implement no access, read-
only access, and read-write access. Heck, you can even implement
write-only access if you want to:

class AccessLevels {
public:

...

int getReadOnly() const { return readOnly; }

void setReadWrite(int value) { readWrite = value; }
int getReadWrite() const { return readWrite; }

void setWriteOnly(int value) { writeOnly = value; }

private:
int noAccess; // no access to this int

int readOnly; // read-only access to this int

int readWrite; // read-write access to this int

int writeOnly; // write-only access to this int
};

Such fine-grained access control is important, because many data
members should be hidden. Rarely does every data member need a
getter and setter.

Still not convinced? Then it’s time to bring out the big gun: encapsula-
tion. If you implement access to a data member through a function,
you can later replace the data member with a computation, and
nobody using your class will be any the wiser. 
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For example, suppose you are writing an application in which auto-
mated equipment is monitoring the speed of passing cars. As each car
passes, its speed is computed and the value added to a collection of all
the speed data collected so far:

class SpeedDataCollection {
...

public:
void addValue(int speed); // add a new data value

double averageSoFar() const; // return average speed

...
};

Now consider the implementation of the member function averageSo-
Far. One way to implement it is to have a data member in the class
that is a running average of all the speed data so far collected. When-
ever averageSoFar is called, it just returns the value of that data mem-
ber. A different approach is to have averageSoFar compute its value
anew each time it’s called, something it could do by examining each
data value in the collection.

The first approach (keeping a running average) makes each SpeedData-
Collection object bigger, because you have to allocate space for the data
members holding the running average, the accumulated total, and the
number of data points. However, averageSoFar can be implemented
very efficiently; it’s just an inline function (see Item 30) that returns
the value of the running average. Conversely, computing the average
whenever it’s requested will make averageSoFar run slower, but each
SpeedDataCollection object will be smaller.

Who’s to say which is best? On a machine where memory is tight (e.g.,
an embedded roadside device), and in an application where averages
are needed only infrequently, computing the average each time is
probably a better solution. In an application where averages are
needed frequently, speed is of the essence, and memory is not an
issue, keeping a running average will typically be preferable. The
important point is that by accessing the average through a member
function (i.e., by encapsulating it), you can interchange these different
implementations (as well as any others you might think of), and cli-
ents will, at most, only have to recompile. (You can eliminate even that
inconvenience by following the techniques described in Item 31.)

Hiding data members behind functional interfaces can offer all kinds
of implementation flexibility. For example, it makes it easy to notify
other objects when data members are read or written, to verify class
invariants and function pre- and postconditions, to perform synchro-
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nization in threaded environments, etc. Programmers coming to C++
from languages like Delphi and C# will recognize such capabilities as
the equivalent of “properties” in these other languages, albeit with the
need to type an extra set of parentheses. 

The point about encapsulation is more important than it might ini-
tially appear. If you hide your data members from your clients (i.e.,
encapsulate them), you can ensure that class invariants are always
maintained, because only member functions can affect them. Further-
more, you reserve the right to change your implementation decisions
later. If you don’t hide such decisions, you’ll soon find that even if you
own the source code to a class, your ability to change anything public
is extremely restricted, because too much client code will be broken.
Public means unencapsulated, and practically speaking, unencapsu-
lated means unchangeable, especially for classes that are widely used.
Yet widely used classes are most in need of encapsulation, because
they are the ones that can most benefit from the ability to replace one
implementation with a better one.

The argument against protected data members is similar. In fact, it’s
identical, though it may not seem that way at first. The reasoning
about syntactic consistency and fine-grained access control is clearly
as applicable to protected data as to public, but what about encapsu-
lation? Aren’t protected data members more encapsulated than public
ones? Practically speaking, the surprising answer is that they are not.

Item 23 explains that something’s encapsulation is inversely propor-
tional to the amount of code that might be broken if that something
changes. The encapsulatedness of a data member, then, is inversely
proportional to the amount of code that might be broken if that data
member changes, e.g., if it’s removed from the class (possibly in favor
of a computation, as in averageSoFar, above).

Suppose we have a public data member, and we eliminate it. How
much code might be broken? All the client code that uses it, which is
generally an unknowably large amount. Public data members are thus
completely unencapsulated. But suppose we have a protected data
member, and we eliminate it. How much code might be broken now?
All the derived classes that use it, which is, again, typically an
unknowably large amount of code. Protected data members are thus
as unencapsulated as public ones, because in both cases, if the data
members are changed, an unknowably large amount of client code is
broken. This is unintuitive, but as experienced library implementers
will tell you, it’s still true. Once you’ve declared a data member public
or protected and clients have started using it, it’s very hard to change
anything about that data member. Too much code has to be rewritten,
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retested, redocumented, or recompiled. From an encapsulation point
of view, there are really only two access levels: private (which offers
encapsulation) and everything else (which doesn’t).

Things to Remember

✦ Declare data members private. It gives clients syntactically uniform
access to data, affords fine-grained access control, allows invariants
to be enforced, and offers class authors implementation flexibility.

✦ protected is no more encapsulated than public.

Item 23: Prefer non-member non-friend functions to 
member functions.

Imagine a class for representing web browsers. Among the many func-
tions such a class might offer are those to clear the cache of down-
loaded elements, clear the history of visited URLs, and remove all
cookies from the system:

class WebBrowser {
public:

...
void clearCache();
void clearHistory();
void removeCookies();
...

};

Many users will want to perform all these actions together, so Web-
Browser might also offer a function to do just that:

class WebBrowser {
public:

...
void clearEverything(); // calls clearCache, clearHistory,

// and removeCookies
...

};

Of course, this functionality could also be provided by a non-member
function that calls the appropriate member functions:

void clearBrowser(WebBrowser& wb)
{

wb.clearCache();
wb.clearHistory();
wb.removeCookies();

}
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So which is better, the member function clearEverything or the non-
member function clearBrowser?

Object-oriented principles dictate that data and the functions that
operate on them should be bundled together, and that suggests that
the member function is the better choice. Unfortunately, this sugges-
tion is incorrect. It’s based on a misunderstanding of what being
object-oriented means. Object-oriented principles dictate that data
should be as encapsulated as possible. Counterintuitively, the mem-
ber function clearEverything actually yields less encapsulation than the
non-member clearBrowser. Furthermore, offering the non-member
function allows for greater packaging flexibility for WebBrowser-related
functionality, and that, in turn, yields fewer compilation dependencies
and an increase in WebBrowser extensibility. The non-member
approach is thus better than a member function in many ways. It’s
important to understand why.

We’ll begin with encapsulation. If something is encapsulated, it’s hid-
den from view. The more something is encapsulated, the fewer things
can see it. The fewer things can see it, the greater flexibility we have to
change it, because our changes directly affect only those things that
can see what we change. The greater something is encapsulated, then,
the greater our ability to change it. That’s the reason we value encap-
sulation in the first place: it affords us the flexibility to change things
in a way that affects only a limited number of clients.

Consider the data associated with an object. The less code that can
see the data (i.e., access it), the more the data is encapsulated, and
the more freely we can change characteristics of an object’s data, such
as the number of data members, their types, etc. As a coarse-grained
measure of how much code can see a piece of data, we can count the
number of functions that can access that data: the more functions
that can access it, the less encapsulated the data. 

Item 22 explains that data members should be private, because if
they’re not, an unlimited number of functions can access them. They
have no encapsulation at all. For data members that are private, the
number of functions that can access them is the number of member
functions of the class plus the number of friend functions, because
only members and friends have access to private members. Given a
choice between a member function (which can access not only the pri-
vate data of a class, but also private functions, enums, typedefs, etc.)
and a non-member non-friend function (which can access none of
these things) providing the same functionality, the choice yielding
greater encapsulation is the non-member non-friend function,
because it doesn’t increase the number of functions that can access
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the private parts of the class. This explains why clearBrowser (the non-
member non-friend function) is preferable to clearEverything (the mem-
ber function): it yields greater encapsulation in the WebBrowser class.

At this point, two things are worth noting. First, this reasoning applies
only to non-member non-friend functions. Friends have the same
access to a class’s private members that member functions have,
hence the same impact on encapsulation. From an encapsulation
point of view, the choice isn’t between member and non-member func-
tions, it’s between member functions and non-member non-friend
functions. (Encapsulation isn’t the only point of view, of course.
Item 24 explains that when it comes to implicit type conversions, the
choice is between member and non-member functions.)

The second thing to note is that just because concerns about encap-
sulation dictate that a function be a non-member of one class doesn’t
mean it can’t be a member of another class. This may prove a mild
salve to programmers accustomed to languages where all functions
must be in classes (e.g., Eiffel, Java, C#, etc.). For example, we could
make clearBrowser a static member function of some utility class. As
long as it’s not part of (or a friend of) WebBrowser, it doesn’t affect the
encapsulation of WebBrowser’s private members.

In C++, a more natural approach would be to make clearBrowser a non-
member function in the same namespace as WebBrowser:

namespace WebBrowserStuff {

class WebBrowser { ... };

void clearBrowser(WebBrowser& wb);

...

}

This has more going for it than naturalness, however, because
namespaces, unlike classes, can be spread across multiple source
files. That’s important, because functions like clearBrowser are conve-
nience functions. Being neither members nor friends, they have no
special access to WebBrowser, so they can’t offer any functionality a
WebBrowser client couldn’t already get in some other way. For exam-
ple, if clearBrowser didn’t exist, clients could just call clearCache, clear-
History, and removeCookies themselves.

A class like WebBrowser might have a large number of convenience
functions, some related to bookmarks, others related to printing, still
others related to cookie management, etc. As a general rule, most cli-
ents will be interested in only some of these sets of convenience func-
tions. There’s no reason for a client interested only in bookmark-
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related convenience functions to be compilation dependent on, e.g.,
cookie-related convenience functions. The straightforward way to sep-
arate them is to declare bookmark-related convenience functions in
one header file, cookie-related convenience functions in a different
header file, printing-related convenience functions in a third, etc.:

// header “webbrowser.h” — header for class WebBrowser itself 
// as well as “core” WebBrowser-related functionality
namespace WebBrowserStuff {

class WebBrowser { ... };

... // “core” related functionality, e.g.
// non-member functions almost
// all clients need

}

// header “webbrowserbookmarks.h”
namespace WebBrowserStuff {

... // bookmark-related convenience
} // functions

// header “webbrowsercookies.h”
namespace WebBrowserStuff {

... // cookie-related convenience
} // functions

...

Note that this is exactly how the standard C++ library is organized.
Rather than having a single monolithic <C++StandardLibrary> header
containing everything in the std namespace, there are dozens of head-
ers (e.g., <vector>, <algorithm>, <memory>, etc.), each declaring some
of the functionality in std. Clients who use only vector-related func-
tionality aren’t required to #include <memory>; clients who don’t use
list don’t have to #include <list>. This allows clients to be compilation
dependent only on the parts of the system they actually use. (See
Item 31 for a discussion of other ways to reduce compilation depen-
dencies.) Partitioning functionality in this way is not possible when it
comes from a class’s member functions, because a class must be
defined in its entirety; it can’t be split into pieces. 

Putting all convenience functions in multiple header files — but one
namespace — also means that clients can easily extend the set of con-
venience functions. All they have to do is add more non-member non-
friend functions to the namespace. For example, if a WebBrowser client
decides to write convenience functions related to downloading images,
he or she just needs to create a new header file containing the decla-
rations of those functions in the WebBrowserStuff namespace. The new
functions are now as available and as integrated as all other conve-
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nience functions. This is another feature classes can’t offer, because
class definitions are closed to extension by clients. Sure, clients can
derive new classes, but derived classes have no access to encapsu-
lated (i.e., private) members in the base class, so such “extended func-
tionality” has second-class status. Besides, as Item 7 explains, not all
classes are designed to be base classes.

Things to Remember

✦ Prefer non-member non-friend functions to member functions. Do-
ing so increases encapsulation, packaging flexibility, and functional
extensibility.

Item 24: Declare non-member functions when type 
conversions should apply to all parameters.

I noted in the Introduction to this book that having classes support
implicit type conversions is generally a bad idea. Of course, there are
exceptions to this rule, and one of the most common is when creating
numerical types. For example, if you’re designing a class to represent
rational numbers, allowing implicit conversions from integers to ratio-
nals doesn’t seem unreasonable. It’s certainly no less reasonable than
C++’s built-in conversion from int to double (and it’s a lot more reason-
able than C++’s built-in conversion from double to int). That being the
case, you might start your Rational class this way:

class Rational {
public:

Rational(int numerator = 0, // ctor is deliberately not explicit;
int denominator = 1); // allows implicit int-to-Rational

// conversions

int numerator() const; // accessors for numerator and
int denominator() const; // denominator — see Item 22

private:
...

};

You know you’d like to support arithmetic operations like addition,
multiplication, etc., but you’re unsure whether you should implement
them via member functions, non-member functions, or, possibly, non-
member functions that are friends. Your instincts tell you that when
you’re in doubt, you should be object-oriented. You know that, say,
multiplication of rational numbers is related to the Rational class, so it
seems natural to implement operator* for rational numbers inside the
Rational class. Counterintuitively, Item 23 argues that the idea of put-
ting functions inside the class they are associated with is sometimes
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contrary to object-oriented principles, but let’s set that aside and
investigate the idea of making operator* a member function of Rational:

class Rational {
public:

...

const Rational operator*(const Rational& rhs) const;
};

(If you’re unsure why this function is declared the way it is — return-
ing a const by-value result, but taking a reference-to-const as its argu-
ment — consult Items 3, 20, and 21.)

This design lets you multiply rationals with the greatest of ease:

Rational oneEighth(1, 8);
Rational oneHalf(1, 2);

Rational result = oneHalf * oneEighth; // fine

result = result * oneEighth; // fine

But you’re not satisfied. You’d also like to support mixed-mode opera-
tions, where Rationals can be multiplied with, for example, ints. After
all, few things are as natural as multiplying two numbers together,
even if they happen to be different types of numbers.

When you try to do mixed-mode arithmetic, however, you find that it
works only half the time:

result = oneHalf * 2; // fine

result = 2 * oneHalf; // error!

This is a bad omen. Multiplication is supposed to be commutative,
remember?

The source of the problem becomes apparent when you rewrite the
last two examples in their equivalent functional form:

result = oneHalf.operator*(2); // fine

result = 2.operator*(oneHalf ); // error!

The object oneHalf is an instance of a class that contains an operator*,
so compilers call that function. However, the integer 2 has no associ-
ated class, hence no operator* member function. Compilers will also
look for non-member operator*s (i.e., ones at namespace or global
scope) that can be called like this:

result = operator*(2, oneHalf ); // error!

But in this example, there is no non-member operator* taking an int
and a Rational, so the search fails.
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Look again at the call that succeeds. You’ll see that its second param-
eter is the integer 2, yet Rational::operator* takes a Rational object as its
argument. What’s going on here? Why does 2 work in one position and
not in the other?

What’s going on is implicit type conversion. Compilers know you’re
passing an int and that the function requires a Rational, but they also
know they can conjure up a suitable Rational by calling the Rational
constructor with the int you provided, so that’s what they do. That is,
they treat the call as if it had been written more or less like this:

const Rational temp(2); // create a temporary
// Rational object from 2

result = oneHalf * temp; // same as oneHalf.operator*(temp);

Of course, compilers do this only because a non-explicit constructor is
involved. If Rational’s constructor were explicit, neither of these state-
ments would compile:

result = oneHalf * 2; // error! (with explicit ctor);
// can’t convert 2 to Rational

result = 2 * oneHalf; // same error, same problem

That would fail to support mixed-mode arithmetic, but at least the
behavior of the two statements would be consistent.

Your goal, however, is both consistency and support for mixed-mode
arithmetic, i.e., a design where both of the above statements will com-
pile. That brings us back to these two statements and why, even when
Rational’s constructor is not explicit, one compiles and one does not:

result = oneHalf * 2; // fine (with non-explicit ctor)

result = 2 * oneHalf; // error! (even with non-explicit ctor)

It turns out that parameters are eligible for implicit type conversion
only if they are listed in the parameter list. The implicit parameter cor-
responding to the object on which the member function is invoked —
the one this points to — is never eligible for implicit conversions.
That’s why the first call compiles and the second one does not. The
first case involves a parameter listed in the parameter list, but the
second one doesn’t.

You’d still like to support mixed-mode arithmetic, however, and the
way to do it is by now perhaps clear: make operator* a non-member
function, thus allowing compilers to perform implicit type conversions
on all arguments:
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class Rational {

... // contains no operator*
};

const Rational operator*(const Rational& lhs, // now a non-member
const Rational& rhs) // function

{
return Rational(lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator());
}

Rational oneFourth(1, 4);
Rational result;

result = oneFourth * 2; // fine
result = 2 * oneFourth; // hooray, it works!

This is certainly a happy ending to the tale, but there is a nagging
worry. Should operator* be made a friend of the Rational class?

In this case, the answer is no, because operator* can be implemented
entirely in terms of Rational’s public interface. The code above shows
one way to do it. That leads to an important observation: the opposite
of a member function is a non-member function, not a friend function.
Too many C++ programmers assume that if a function is related to a
class and should not be a member (due, for example, to a need for
type conversions on all arguments), it should be a friend. This exam-
ple demonstrates that such reasoning is flawed. Whenever you can
avoid friend functions, you should, because, much as in real life,
friends are often more trouble than they’re worth. Sometimes friend-
ship is warranted, of course, but the fact remains that just because a
function shouldn’t be a member doesn’t automatically mean it should
be a friend.

This Item contains the truth and nothing but the truth, but it’s not
the whole truth. When you cross the line from Object-Oriented C++
into Template C++ (see Item 1) and make Rational a class template
instead of a class, there are new issues to consider, new ways to
resolve them, and some surprising design implications. Such issues,
resolutions, and implications are the topic of Item 46.

Things to Remember

✦ If you need type conversions on all parameters to a function (includ-
ing the one that would otherwise be pointed to by the this pointer),
the function must be a non-member. 
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Item 25: Consider support for a non-throwing swap.

swap is an interesting function. Originally introduced as part of the
STL, it’s since become a mainstay of exception-safe programming (see
Item 29) and a common mechanism for coping with the possibility of
assignment to self (see Item 11). Because swap is so useful, it’s impor-
tant to implement it properly, but along with its singular importance
comes a set of singular complications. In this Item, we explore what
they are and how to deal with them.

To swap the values of two objects is to give each the other’s value. By
default, swapping is accomplished via the standard swap algorithm.
Its typical implementation is exactly what you’d expect:

namespace std {

template<typename T> // typical implementation of std::swap;
void swap(T& a, T& b) // swaps a’s and b’s values
{

T temp(a);
a = b;
b = temp;

}

}

As long as your types support copying (via copy constructor and copy
assignment operator), the default swap implementation will let objects
of your types be swapped without your having to do any special work
to support it.

However, the default swap implementation may not thrill you. It
involves copying three objects: a to temp, b to a, and temp to b. For
some types, none of these copies are really necessary. For such types,
the default swap puts you on the fast track to the slow lane.

Foremost among such types are those consisting primarily of a
pointer to another type that contains the real data. A common mani-
festation of this design approach is the “pimpl idiom” (“pointer to
implementation” — see Item 31). A Widget class employing such a
design might look like this:

class WidgetImpl { // class for Widget data;
public: // details are unimportant

...

private:
int a, b, c; // possibly lots of data —
std::vector<double> v; // expensive to copy!
...

};
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class Widget { // class using the pimpl idiom
public:

Widget(const Widget& rhs);

Widget& operator=(const Widget& rhs) // to copy a Widget, copy its
{ // WidgetImpl object. For

... // details on implementing
*pImpl = *(rhs.pImpl); // operator= in general,
... // see Items 10, 11, and 12.

}
...

private:
WidgetImpl *pImpl; // ptr to object with this 

}; // Widget’s data

To swap the value of two Widget objects, all we really need to do is
swap their pImpl pointers, but the default swap algorithm has no way
to know that. Instead, it would copy not only three Widgets, but also
three WidgetImpl objects. Very inefficient. Not a thrill.

What we’d like to do is tell std::swap that when Widgets are being
swapped, the way to perform the swap is to swap their internal pImpl
pointers. There is a way to say exactly that: specialize std::swap for
Widget. Here’s the basic idea, though it won’t compile in this form:

namespace std {

template<> // this is a specialized version
void swap<Widget>(Widget& a, // of std::swap for when T is

Widget& b) // Widget
{

swap(a.pImpl, b.pImpl); // to swap Widgets, swap their
} // pImpl pointers; this won’t 

compile

}

The “template<>” at the beginning of this function says that this is a
total template specialization for std::swap, and the “<Widget>” after the
name of the function says that the specialization is for when T is Wid-
get. In other words, when the general swap template is applied to Wid-
gets, this is the implementation that should be used. In general, we’re
not permitted to alter the contents of the std namespace, but we are
allowed to totally specialize standard templates (like swap) for types of
our own creation (such as Widget). That’s what we’re doing here.

As I said, though, this function won’t compile. That’s because it’s try-
ing to access the pImpl pointers inside a and b, and they’re private. We
could declare our specialization a friend, but the convention is differ-
ent: it’s to have Widget declare a public member function called swap
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that does the actual swapping, then specialize std::swap to call the
member function:

class Widget { // same as above, except for the
public: // addition of the swap mem func

...
void swap(Widget& other)
{

using std::swap; // the need for this declaration
// is explained later in this Item

swap(pImpl, other.pImpl); // to swap Widgets, swap their
} // pImpl pointers
...

};

namespace std {

template<> // revised specialization of
void swap<Widget>(Widget& a, // std::swap

Widget& b)
{

a.swap(b); // to swap Widgets, call their
} // swap member function

}

Not only does this compile, it’s also consistent with the STL contain-
ers, all of which provide both public swap member functions and ver-
sions of std::swap that call these member functions.

Suppose, however, that Widget and WidgetImpl were class templates
instead of classes, possibly so we could parameterize the type of the
data stored in WidgetImpl:

template<typename T>
class WidgetImpl { ... };

template<typename T>
class Widget { ... };

Putting a swap member function in Widget (and, if we need to, in Wid-
getImpl) is as easy as before, but we run into trouble with the special-
ization for std::swap. This is what we want to write:

namespace std {

template<typename T>
void swap<Widget<T> >(Widget<T>& a, // error! illegal code!

Widget<T>& b)
{ a.swap(b); }

}
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This looks perfectly reasonable, but it’s not legal. We’re trying to par-
tially specialize a function template (std::swap), but though C++ allows
partial specialization of class templates, it doesn’t allow it for function
templates. This code should not compile (though some compilers erro-
neously accept it).

When you want to “partially specialize” a function template, the usual
approach is to simply add an overload. That would look like this:

namespace std {

template<typename T> // an overloading of std::swap 
void swap(Widget<T>& a, // (note the lack of “<...>” after

Widget<T>& b) // “swap”), but see below for
{ a.swap(b); } // why this isn’t valid code

}

In general, overloading function templates is fine, but std is a special
namespace, and the rules governing it are special, too. It’s okay to
totally specialize templates in std, but it’s not okay to add new tem-
plates (or classes or functions or anything else) to std. The contents of
std are determined solely by the C++ standardization committee, and
we’re prohibited from augmenting what they’ve decided should go
there. Alas, the form of the prohibition may dismay you. Programs
that cross this line will almost certainly compile and run, but their
behavior is undefined. If you want your software to have predictable
behavior, you’ll not add new things to std.

So what to do? We still need a way to let other people call swap and get
our more efficient template-specific version. The answer is simple. We
still declare a non-member swap that calls the member swap, we just
don’t declare the non-member to be a specialization or overloading of
std::swap. For example, if all our Widget-related functionality is in the
namespace WidgetStuff, it would look like this:

namespace WidgetStuff {

... // templatized WidgetImpl, etc.

template<typename T> // as before, including the swap
class Widget { ... }; // member function

...

template<typename T> // non-member swap function;
void swap(Widget<T>& a, // not part of the std namespace

Widget<T>& b)
{

a.swap(b);
}

}
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Now, if any code anywhere calls swap on two Widget objects, the name
lookup rules in C++ (specifically the rules known as argument-depen-
dent lookup or Koenig lookup) will find the Widget-specific version in
WidgetStuff. Which is exactly what we want. 

This approach works as well for classes as for class templates, so it
seems like we should use it all the time. Unfortunately, there is a rea-
son for specializing std::swap for classes (I’ll describe it shortly), so if
you want to have your class-specific version of swap called in as many
contexts as possible (and you do), you need to write both a non-mem-
ber version in the same namespace as your class and a specialization
of std::swap.

By the way, if you’re not using namespaces, everything above contin-
ues to apply (i.e., you still need a non-member swap that calls the
member swap), but why are you clogging the global namespace with
all your class, template, function, enum, enumerant, and typedef
names? Have you no sense of propriety?

Everything I’ve written so far pertains to authors of swap, but it’s
worth looking at one situation from a client’s point of view. Suppose
you’re writing a function template where you need to swap the values
of two objects:

template<typename T>
void doSomething(T& obj1, T& obj2)
{

...
swap(obj1, obj2);
...

}

Which swap should this call? The general one in std, which you know
exists; a specialization of the general one in std, which may or may not
exist; or a T-specific one, which may or may not exist and which may
or may not be in a namespace (but should certainly not be in std)?
What you desire is to call a T-specific version if there is one, but to fall
back on the general version in std if there’s not. Here’s how you fulfill
your desire:

template<typename T>
void doSomething(T& obj1, T& obj2)
{

using std::swap; // make std::swap available in this function
...
swap(obj1, obj2); // call the best swap for objects of type T
...

}
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When compilers see the call to swap, they search for the right swap to
invoke. C++’s name lookup rules ensure that this will find any T-spe-
cific swap at global scope or in the same namespace as the type T. (For
example, if T is Widget in the namespace WidgetStuff, compilers will
use argument-dependent lookup to find swap in WidgetStuff.) If no T-
specific swap exists, compilers will use swap in std, thanks to the using
declaration that makes std::swap visible in this function. Even then,
however, compilers will prefer a T-specific specialization of std::swap
over the general template, so if std::swap has been specialized for T, the
specialized version will be used. 

Getting the right swap called is therefore easy. The one thing you want
to be careful of is to not qualify the call, because that will affect how
C++ determines the function to invoke. For example, if you were to
write the call to swap this way,

std::swap(obj1, obj2); // the wrong way to call swap

you’d force compilers to consider only the swap in std (including any
template specializations), thus eliminating the possibility of getting a
more appropriate T-specific version defined elsewhere. Alas, some
misguided programmers do qualify calls to swap in this way, and
that’s why it’s important to totally specialize std::swap for your classes:
it makes type-specific swap implementations available to code written
in this misguided fashion. (Such code is present in some standard
library implementations, so it’s in your interest to help such code
work as efficiently as possible.)

At this point, we’ve discussed the default swap, member swaps, non-
member swaps, specializations of std::swap, and calls to swap, so let’s
summarize the situation. 

First, if the default implementation of swap offers acceptable efficiency
for your class or class template, you don’t need to do anything. Any-
body trying to swap objects of your type will get the default version,
and that will work fine.

Second, if the default implementation of swap isn’t efficient enough
(which almost always means that your class or template is using some
variation of the pimpl idiom), do the following:

1. Offer a public swap member function that efficiently swaps the
value of two objects of your type. For reasons I’ll explain in a mo-
ment, this function should never throw an exception.

2. Offer a non-member swap in the same namespace as your class
or template. Have it call your swap member function.
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3. If you’re writing a class (not a class template), specialize std::swap
for your class. Have it also call your swap member function.

Finally, if you’re calling swap, be sure to include a using declaration to
make std::swap visible in your function, then call swap without any
namespace qualification.

The only loose end is my admonition to have the member version of
swap never throw exceptions. That’s because one of the most useful
applications of swap is to help classes (and class templates) offer the
strong exception-safety guarantee. Item 29 provides all the details,
but the technique is predicated on the assumption that the member
version of swap never throws. This constraint applies only to the mem-
ber version! It can’t apply to the non-member version, because the
default version of swap is based on copy construction and copy assign-
ment, and, in general, both of those functions are allowed to throw
exceptions. When you write a custom version of swap, then, you are
typically offering more than just an efficient way to swap values;
you’re also offering one that doesn’t throw exceptions. As a general
rule, these two swap characteristics go hand in hand, because highly
efficient swaps are almost always based on operations on built-in
types (such as the pointers underlying the pimpl idiom), and opera-
tions on built-in types never throw exceptions.

Things to Remember

✦ Provide a swap member function when std::swap would be inefficient
for your type. Make sure your swap doesn’t throw exceptions.

✦ If you offer a member swap, also offer a non-member swap that calls
the member. For classes (not templates), specialize std::swap, too.

✦ When calling swap, employ a using declaration for std::swap, then call
swap without namespace qualification.

✦ It’s fine to totally specialize std templates for user-defined types, but
never try to add something completely new to std.
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classes (and class templates) and appropriate declarations for your
functions (and function templates) is the lion’s share of the battle.
Once you’ve got those right, the corresponding implementations are
largely straightforward. Still, there are things to watch out for. Defin-
ing variables too soon can cause a drag on performance. Overuse of
casts can lead to code that’s slow, hard to maintain, and infected with
subtle bugs. Returning handles to an object’s internals can defeat
encapsulation and leave clients with dangling handles. Failure to con-
sider the impact of exceptions can lead to leaked resources and cor-
rupted data structures. Overzealous inlining can cause code bloat.
Excessive coupling can result in unacceptably long build times. 

All of these problems can be avoided. This chapter explains how.

Item 26: Postpone variable definitions as long as 
possible.

Whenever you define a variable of a type with a constructor or
destructor, you incur the cost of construction when control reaches
the variable’s definition, and you incur the cost of destruction when
the variable goes out of scope. There’s a cost associated with unused
variables, so you want to avoid them whenever you can.

You’re probably thinking that you never define unused variables, but
you may need to think again. Consider the following function, which
returns an encrypted version of a password, provided the password is
long enough. If the password is too short, the function throws an
exception of type logic_error, which is defined in the standard C++
library (see Item 54):

Chapter 5: Implementations

Implementations
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// this function defines the variable "encrypted" too soon
std::string encryptPassword(const std::string& password)
{

using namespace std;

string encrypted;

if (password.length() < MinimumPasswordLength) {
 throw logic_error("Password is too short");

}

... // do whatever is necessary to place an
// encrypted version of password in encrypted

return encrypted;
}

The object encrypted isn’t completely unused in this function, but it’s
unused if an exception is thrown. That is, you’ll pay for the construc-
tion and destruction of encrypted even if encryptPassword throws an
exception. As a result, you’re better off postponing encrypted’s defini-
tion until you know you’ll need it:

// this function postpones encrypted’s definition until it’s truly necessary
std::string encryptPassword(const std::string& password)
{

using namespace std;

if (password.length() < MinimumPasswordLength) {
throw logic_error("Password is too short");

}

string encrypted;

... // do whatever is necessary to place an
// encrypted version of password in encrypted

return encrypted;
}

This code still isn’t as tight as it might be, because encrypted is defined
without any initialization arguments. That means its default con-
structor will be used. In many cases, the first thing you’ll do to an
object is give it some value, often via an assignment. Item 4 explains
why default-constructing an object and then assigning to it is less effi-
cient than initializing it with the value you really want it to have. That
analysis applies here, too. For example, suppose the hard part of
encryptPassword is performed in this function:

void encrypt(std::string& s); // encrypts s in place

Then encryptPassword could be implemented like this, though it
wouldn’t be the best way to do it:



ptg7544714

Implementations Item 26 115
// this function postpones encrypted’s definition until
// it’s necessary, but it’s still needlessly inefficient
std::string encryptPassword(const std::string& password)
{

... // import std and check length as above

string encrypted; // default-construct encrypted
encrypted = password; // assign to encrypted

encrypt(encrypted);
return encrypted;

}

A preferable approach is to initialize encrypted with password, thus
skipping the pointless and potentially expensive default construction:

// finally, the best way to define and initialize encrypted
std::string encryptPassword(const std::string& password)
{

... // import std and check length 

string encrypted(password); // define and initialize via copy
// constructor

encrypt(encrypted);
return encrypted;

}

This suggests the real meaning of “as long as possible” in this Item’s
title. Not only should you postpone a variable’s definition until right
before you have to use the variable, you should also try to postpone
the definition until you have initialization arguments for it. By doing
so, you avoid constructing and destructing unneeded objects, and you
avoid unnecessary default constructions. Further, you help document
the purpose of variables by initializing them in contexts in which their
meaning is clear. 

“But what about loops?” you may wonder. If a variable is used only
inside a loop, is it better to define it outside the loop and make an
assignment to it on each loop iteration, or is it be better to define the
variable inside the loop? That is, which of these general structures is
better? 

// Approach A: define outside loop // Approach B: define inside loop

Widget w;
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) { 

w = some value dependent on i; Widget w(some value dependent on 
i);

... ...
} }
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Here I’ve switched from an object of type string to an object of type Wid-
get to avoid any preconceptions about the cost of performing a con-
struction, destruction, or assignment for the object. 

In terms of Widget operations, the costs of these two approaches are
as follows:

■ Approach A: 1 constructor + 1 destructor + n assignments.

■ Approach B: n constructors + n destructors.

For classes where an assignment costs less than a constructor-
destructor pair, Approach A is generally more efficient. This is espe-
cially the case as n gets large. Otherwise, Approach B is probably bet-
ter. Furthermore, Approach A makes the name w visible in a larger
scope (the one containing the loop) than Approach B, something that’s
contrary to program comprehensibility and maintainability. As a
result, unless you know that (1) assignment is less expensive than a
constructor-destructor pair and (2) you’re dealing with a perfor-
mance-sensitive part of your code, you should default to using
Approach B.

Things to Remember

✦ Postpone variable definitions as long as possible. It increases pro-
gram clarity and improves program efficiency.

Item 27: Minimize casting.

The rules of C++ are designed to guarantee that type errors are impos-
sible. In theory, if your program compiles cleanly, it’s not trying to
perform any unsafe or nonsensical operations on any objects. This is
a valuable guarantee. You don’t want to forgo it lightly.

Unfortunately, casts subvert the type system. That can lead to all
kinds of trouble, some easy to recognize, some extraordinarily subtle.
If you’re coming to C++ from C, Java, or C#, take note, because cast-
ing in those languages is more necessary and less dangerous than in
C++. But C++ is not C. It’s not Java. It’s not C#. In this language, cast-
ing is a feature you want to approach with great respect.

Let’s begin with a review of casting syntax, because there are usually
three different ways to write the same cast. C-style casts look like this:

(T) expression // cast expression to be of type T

Function-style casts use this syntax:

T(expression) // cast expression to be of type T
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There is no difference in meaning between these forms; it’s purely a
matter of where you put the parentheses. I call these two forms old-
style casts.

C++ also offers four new cast forms (often called new-style or C++-style
casts):

const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each serves a distinct purpose: 

■ const_cast is typically used to cast away the constness of objects. It
is the only C++-style cast that can do this.

■ dynamic_cast is primarily used to perform “safe downcasting,” i.e.,
to determine whether an object is of a particular type in an inher-
itance hierarchy. It is the only cast that cannot be performed us-
ing the old-style syntax. It is also the only cast that may have a
significant runtime cost. (I’ll provide details on this a bit later.)

■ reinterpret_cast is intended for low-level casts that yield implemen-
tation-dependent (i.e., unportable) results, e.g., casting a pointer
to an int. Such casts should be rare outside low-level code. I use it
only once in this book, and that’s only when discussing how you
might write a debugging allocator for raw memory (see Item 50).

■ static_cast can be used to force implicit conversions (e.g., non-const
object to const object (as in Item 3), int to double, etc.). It can also be
used to perform the reverse of many such conversions (e.g., void*
pointers to typed pointers, pointer-to-base to pointer-to-derived),
though it cannot cast from const to non-const objects. (Only
const_cast can do that.)

The old-style casts continue to be legal, but the new forms are prefer-
able. First, they’re much easier to identify in code (both for humans
and for tools like grep), thus simplifying the process of finding places
in the code where the type system is being subverted. Second, the
more narrowly specified purpose of each cast makes it possible for
compilers to diagnose usage errors. For example, if you try to cast
away constness using a new-style cast other than const_cast, your
code won’t compile. 

About the only time I use an old-style cast is when I want to call an ex-
plicit constructor to pass an object to a function. For example:
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class Widget {
public:

explicit Widget(int size);
...

};

void doSomeWork(const Widget& w);

doSomeWork(Widget(15)); // create Widget from int
// with function-style cast

doSomeWork(static_cast<Widget>(15)); // create Widget from int
// with C++-style cast

Somehow, deliberate object creation doesn’t “feel” like a cast, so I’d
probably use the function-style cast instead of the static_cast in this
case. (They do exactly the same thing here: create a temporary Widget
object to pass to doSomeWork.) Then again, code that leads to a core
dump usually feels pretty reasonable when you write it, so perhaps
you’d best ignore feelings and use new-style casts all the time.

Many programmers believe that casts do nothing but tell compilers to
treat one type as another, but this is mistaken. Type conversions of
any kind (either explicit via casts or implicit by compilers) often lead to
code that is executed at runtime. For example, in this code fragment,

int x, y;
...
double d = static_cast<double>(x)/y; // divide x by y, but use

// floating point division

the cast of the int x to a double almost certainly generates code,
because on most architectures, the underlying representation for an
int is different from that for a double. That’s perhaps not so surprising,
but this example may widen your eyes a bit:

class Base { ... };

class Derived: public Base { ... };

Derived d;

Base *pb = &d; // implicitly convert Derived* ⇒ Base*

Here we’re just creating a base class pointer to a derived class object,
but sometimes, the two pointer values will not be the same. When
that’s the case, an offset is applied at runtime to the Derived* pointer to
get the correct Base* pointer value. 

This last example demonstrates that a single object (e.g., an object of
type Derived) might have more than one address (e.g., its address
when pointed to by a Base* pointer and its address when pointed to by
a Derived* pointer). That can’t happen in C. It can’t happen in Java. It
can’t happen in C#. It does happen in C++. In fact, when multiple
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inheritance is in use, it happens virtually all the time, but it can hap-
pen under single inheritance, too. Among other things, that means
you should generally avoid making assumptions about how things are
laid out in C++, and you should certainly not perform casts based on
such assumptions. For example, casting object addresses to char*
pointers and then using pointer arithmetic on them almost always
yields undefined behavior.

But note that I said that an offset is “sometimes” required. The way
objects are laid out and the way their addresses are calculated varies
from compiler to compiler. That means that just because your “I know
how things are laid out” casts work on one platform doesn’t mean
they’ll work on others. The world is filled with woeful programmers
who’ve learned this lesson the hard way.

An interesting thing about casts is that it’s easy to write something
that looks right (and might be right in other languages) but is wrong.
Many application frameworks, for example, require that virtual mem-
ber function implementations in derived classes call their base class
counterparts first. Suppose we have a Window base class and a Spe-
cialWindow derived class, both of which define the virtual function
onResize. Further suppose that SpecialWindow’s onResize is expected to
invoke Window’s onResize first. Here’s a way to implement this that
looks like it does the right thing, but doesn’t:

class Window { // base class
public:

virtual void onResize() { ... } // base onResize impl
...

};

class SpecialWindow: public Window { // derived class
public:

virtual void onResize() { // derived onResize impl;
static_cast<Window>(*this).onResize(); // cast *this to Window,

// then call its onResize;
// this doesn’t work!

... // do SpecialWindow-
} // specific stuff

...

};

I’ve highlighted the cast in the code. (It’s a new-style cast, but using
an old-style cast wouldn’t change anything.) As you would expect, the
code casts *this to a Window. The resulting call to onResize therefore
invokes Window::onResize. What you might not expect is that it does
not invoke that function on the current object! Instead, the cast cre-



ptg7544714

120 Item 27 Chapter 5
ates a new, temporary copy of the base class part of *this, then invokes
onResize on the copy! The above code doesn’t call Window::onResize on
the current object and then perform the SpecialWindow-specific
actions on that object — it calls Window::onResize on a copy of the base
class part of the current object before performing SpecialWindow-spe-
cific actions on the current object. If Window::onResize modifies the
current object (hardly a remote possibility, since onResize is a non-
const member function), the current object won’t be modified. Instead,
a copy of that object will be modified. If SpecialWindow::onResize modi-
fies the current object, however, the current object will be modified,
leading to the prospect that the code will leave the current object in an
invalid state, one where base class modifications have not been made,
but derived class ones have been. 

The solution is to eliminate the cast, replacing it with what you really
want to say. You don’t want to trick compilers into treating *this as a
base class object; you want to call the base class version of onResize on
the current object. So say that:

class SpecialWindow: public Window {
public:

virtual void onResize() {
Window::onResize(); // call Window::onResize
... // on *this

}

...

};

This example also demonstrates that if you find yourself wanting to
cast, it’s a sign that you could be approaching things the wrong way.
This is especially the case if your want is for dynamic_cast.

Before delving into the design implications of dynamic_cast, it’s worth
observing that many implementations of dynamic_cast can be quite
slow. For example, at least one common implementation is based in
part on string comparisons of class names. If you’re performing a
dynamic_cast on an object in a single-inheritance hierarchy four levels
deep, each dynamic_cast under such an implementation could cost you
up to four calls to strcmp to compare class names. A deeper hierarchy
or one using multiple inheritance would be more expensive. There are
reasons that some implementations work this way (they have to do
with support for dynamic linking). Nonetheless, in addition to being
leery of casts in general, you should be especially leery of
dynamic_casts in performance-sensitive code.

The need for dynamic_cast generally arises because you want to per-
form derived class operations on what you believe to be a derived class



ptg7544714

Implementations Item 27 121
object, but you have only a pointer- or reference-to-base through
which to manipulate the object. There are two general ways to avoid
this problem. 

First, use containers that store pointers (often smart pointers — see
Item 13) to derived class objects directly, thus eliminating the need to
manipulate such objects through base class interfaces. For example,
if, in our Window/SpecialWindow hierarchy, only SpecialWindows sup-
port blinking, instead of doing this:

class Window { ... };

class SpecialWindow: public Window {
public:

void blink();
...

};

typedef // see Item 13 for info
std::vector<std::tr1::shared_ptr<Window> > VPW; // on tr1::shared_ptr

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); // undesirable code:
iter != winPtrs.end(); // uses dynamic_cast
++iter) {

if (SpecialWindow *psw = dynamic_cast<SpecialWindow*>(iter->get()))
psw->blink();

}

try to do this instead:

typedef std::vector<std::tr1::shared_ptr<SpecialWindow> > VPSW;

VPSW winPtrs;

...

for (VPSW::iterator iter = winPtrs.begin(); // better code: uses 
iter != winPtrs.end(); // no dynamic_cast
++iter)

(*iter)->blink();

Of course, this approach won’t allow you to store pointers to all possi-
ble Window derivatives in the same container. To work with different
window types, you might need multiple type-safe containers.

An alternative that will let you manipulate all possible Window deriva-
tives through a base class interface is to provide virtual functions in
the base class that let you do what you need. For example, though
only SpecialWindows can blink, maybe it makes sense to declare the
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function in the base class, offering a default implementation that does
nothing:

class Window {
public:

virtual void blink() {} // default impl is no-op;
... // see Item 34 for why

}; // a default impl may be
// a bad idea

class SpecialWindow: public Window {
public:

virtual void blink() { ... } // in this class, blink
... // does something

};

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs; // container holds
// (ptrs to) all possible

... // Window types

for (VPW::iterator iter = winPtrs.begin();
iter != winPtrs.end();
++iter) // note lack of 

(*iter)->blink(); // dynamic_cast

Neither of these approaches — using type-safe containers or moving
virtual functions up the hierarchy — is universally applicable, but in
many cases, they provide a viable alternative to dynamic_casting. When
they do, you should embrace them. 

One thing you definitely want to avoid is designs that involve cascad-
ing dynamic_casts, i.e., anything that looks like this:

class Window { ... };

... // derived classes are defined here

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); iter != winPtrs.end(); ++iter)
{

if (SpecialWindow1 *psw1 =
dynamic_cast<SpecialWindow1*>(iter->get())) { ... }

else if (SpecialWindow2 *psw2 =
dynamic_cast<SpecialWindow2*>(iter->get())) { ... }

else if (SpecialWindow3 *psw3 =
dynamic_cast<SpecialWindow3*>(iter->get())) { ... }

...

}
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Such C++ generates code that’s big and slow, plus it’s brittle, because
every time the Window class hierarchy changes, all such code has to
be examined to see if it needs to be updated. (For example, if a new
derived class gets added, a new conditional branch probably needs to
be added to the above cascade.) Code that looks like this should
almost always be replaced with something based on virtual function
calls.

Good C++ uses very few casts, but it’s generally not practical to get rid
of all of them. The cast from int to double on page 118, for example, is
a reasonable use of a cast, though it’s not strictly necessary. (The code
could be rewritten to declare a new variable of type double that’s ini-
tialized with x’s value.) Like most suspicious constructs, casts should
be isolated as much as possible, typically hidden inside functions
whose interfaces shield callers from the grubby work being done
inside.

Things to Remember

✦ Avoid casts whenever practical, especially dynamic_casts in perfor-
mance-sensitive code. If a design requires casting, try to develop a
cast-free alternative. 

✦ When casting is necessary, try to hide it inside a function. Clients
can then call the function instead of putting casts in their own code.

✦ Prefer C++-style casts to old-style casts. They are easier to see, and
they are more specific about what they do.

Item 28: Avoid returning “handles” to object internals.

Suppose you’re working on an application involving rectangles. Each
rectangle can be represented by its upper left corner and its lower
right corner. To keep a Rectangle object small, you might decide that
the points defining its extent shouldn’t be stored in the Rectangle
itself, but rather in an auxiliary struct that the Rectangle points to:

class Point { // class for representing points
public:

Point(int x, int y);
...

void setX(int newVal);
void setY(int newVal);
...

};
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struct RectData { // Point data for a Rectangle
Point ulhc; // ulhc = “ upper left-hand corner”
Point lrhc; // lrhc = “ lower right-hand corner”

};

class Rectangle {
...

private:
std::tr1::shared_ptr<RectData> pData; // see Item 13 for info on

}; // tr1::shared_ptr

Because Rectangle clients will need to be able to determine the extent
of a Rectangle, the class provides the upperLeft and lowerRight func-
tions. However, Point is a user-defined type, so, mindful of Item 20’s
observation that passing user-defined types by reference is typically
more efficient than passing them by value, these functions return ref-
erences to the underlying Point objects:

class Rectangle {
public:

...
Point& upperLeft() const { return pData->ulhc; }
Point& lowerRight() const { return pData->lrhc; }
...

};

This design will compile, but it’s wrong. In fact, it’s self-contradictory.
On the one hand, upperLeft and lowerRight are declared to be const
member functions, because they are designed only to offer clients a
way to learn what the Rectangle’s points are, not to let clients modify
the Rectangle (see Item 3). On the other hand, both functions return
references to private internal data — references that callers can use to
modify that internal data! For example:

Point coord1(0, 0);
Point coord2(100, 100);

const Rectangle rec(coord1, coord2); // rec is a const rectangle from
// (0, 0) to (100, 100)

rec.upperLeft().setX(50); // now rec goes from
// (50, 0) to (100, 100)!

Here, notice how the caller of upperLeft is able to use the returned ref-
erence to one of rec’s internal Point data members to modify that mem-
ber. But rec is supposed to be const!

This immediately leads to two lessons. First, a data member is only as
encapsulated as the most accessible function returning a reference to
it. In this case, though ulhc and lrhc are supposed to be private to their
Rectangle, they’re effectively public, because the public functions
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upperLeft and lowerRight return references to them. Second, if a const
member function returns a reference to data associated with an object
that is stored outside the object itself, the caller of the function can
modify that data. (This is just a fallout of the limitations of bitwise
constness — see Item 3.)

Everything we’ve done has involved member functions returning refer-
ences, but if they returned pointers or iterators, the same problems
would exist for the same reasons. References, pointers, and iterators
are all handles (ways to get at other objects), and returning a handle
to an object’s internals always runs the risk of compromising an
object’s encapsulation. As we’ve seen, it can also lead to const member
functions that allow an object’s state to be modified.

We generally think of an object’s “internals” as its data members, but
member functions not accessible to the general public (i.e., that are
protected or private) are part of an object’s internals, too. As such, it’s
important not to return handles to them. This means you should
never have a member function return a pointer to a less accessible
member function. If you do, the effective access level will be that of the
more accessible function, because clients will be able to get a pointer
to the less accessible function, then call that function through the
pointer. 

Functions that return pointers to member functions are uncommon,
however, so let’s turn our attention back to the Rectangle class and its
upperLeft and lowerRight member functions. Both of the problems
we’ve identified for those functions can be eliminated by simply apply-
ing const to their return types:

class Rectangle {
public:

...
const Point& upperLeft() const { return pData->ulhc; }
const Point& lowerRight() const { return pData->lrhc; }
...

};

With this altered design, clients can read the Points defining a rectan-
gle, but they can’t write them. This means that declaring upperLeft and
lowerRight as const is no longer a lie, because they no longer allow call-
ers to modify the state of the object. As for the encapsulation problem,
we always intended to let clients see the Points making up a Rectangle,
so this is a deliberate relaxation of encapsulation. More importantly,
it’s a limited relaxation: only read access is being granted by these
functions. Write access is still prohibited.

Even so, upperLeft and lowerRight are still returning handles to an
object’s internals, and that can be problematic in other ways. In par-



ptg7544714

126 Item 28 Chapter 5
ticular, it can lead to dangling handles: handles that refer to parts of
objects that don’t exist any longer. The most common source of such
disappearing objects are function return values. For example, con-
sider a function that returns the bounding box for a GUI object in the
form of a rectangle:

class GUIObject { ... };

const Rectangle // returns a rectangle by
boundingBox(const GUIObject& obj); // value; see Item 3 for why

//  return type is const

Now consider how a client might use this function:

GUIObject *pgo; // make pgo point to
... // some GUIObject

const Point *pUpperLeft = // get a ptr to the upper
 &(boundingBox(*pgo).upperLeft()); // left point of its

// bounding box

The call to boundingBox will return a new, temporary Rectangle object.
That object doesn’t have a name, so let’s call it temp. upperLeft will
then be called on temp, and that call will return a reference to an
internal part of temp, in particular, to one of the Points making it up.
pUpperLeft will then point to that Point object. So far, so good, but
we’re not done yet, because at the end of the statement, boundingBox’s
return value — temp — will be destroyed, and that will indirectly lead
to the destruction of temp’s Points. That, in turn, will leave pUpperLeft
pointing to an object that no longer exists; pUpperLeft will dangle by
the end of the statement that created it!

This is why any function that returns a handle to an internal part of
the object is dangerous. It doesn’t matter whether the handle is a
pointer, a reference, or an iterator. It doesn’t matter whether it’s qual-
ified with const. It doesn’t matter whether the member function
returning the handle is itself const. All that matters is that a handle is
being returned, because once that’s being done, you run the risk that
the handle will outlive the object it refers to.

This doesn’t mean that you should never have a member function that
returns a handle. Sometimes you have to. For example, operator[]
allows you to pluck individual elements out of strings and vectors, and
these operator[]s work by returning references to the data in the con-
tainers (see Item 3) — data that is destroyed when the containers
themselves are. Still, such functions are the exception, not the rule.

Things to Remember

✦ Avoid returning handles (references, pointers, or iterators) to object
internals. Not returning handles increases encapsulation, helps
const member functions act const, and minimizes the creation of
dangling handles.
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Item 29: Strive for exception-safe code.

Exception safety is sort of like pregnancy...but hold that thought for a
moment. We can’t really talk reproduction until we’ve worked our way
through courtship.

Suppose we have a class for representing GUI menus with back-
ground images. The class is designed to be used in a threaded envi-
ronment, so it has a mutex for concurrency control:

class PrettyMenu {
public:

...
void changeBackground(std::istream& imgSrc); // change background
... // image

private:
 Mutex mutex; // mutex for this object 

Image *bgImage; // current background image
int imageChanges; // # of times image has been changed

};

Consider this possible implementation of PrettyMenu’s changeBack-
ground function:

void PrettyMenu::changeBackground(std::istream& imgSrc)
{

lock(&mutex); // acquire mutex (as in Item 14)

delete bgImage; // get rid of old background
++imageChanges; // update image change count
bgImage = new Image(imgSrc); // install new background

unlock(&mutex); // release mutex
}

From the perspective of exception safety, this function is about as bad
as it gets. There are two requirements for exception safety, and this
satisfies neither. 

When an exception is thrown, exception-safe functions:

■ Leak no resources. The code above fails this test, because if the
“new Image(imgSrc)” expression yields an exception, the call to un-
lock never gets executed, and the mutex is held forever.

■ Don’t allow data structures to become corrupted. If “new Im-
age(imgSrc)” throws, bgImage is left pointing to a deleted object. In
addition, imageChanges has been incremented, even though it’s not
true that a new image has been installed. (On the other hand, the
old image has definitely been eliminated, so I suppose you could
argue that the image has been “changed.”)
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Addressing the resource leak issue is easy, because Item 13 explains
how to use objects to manage resources, and Item 14 introduces the
Lock class as a way to ensure that mutexes are released in a timely
fashion:

void PrettyMenu::changeBackground(std::istream& imgSrc)
{

Lock ml(&mutex); // from Item 14: acquire mutex and
// ensure its later release

delete bgImage;
++imageChanges;
bgImage = new Image(imgSrc);

}

One of the best things about resource management classes like Lock is
that they usually make functions shorter. See how the call to unlock is
no longer needed? As a general rule, less code is better code, because
there’s less to go wrong and less to misunderstand when making
changes.

With the resource leak behind us, we can turn our attention to the
issue of data structure corruption. Here we have a choice, but before
we can choose, we have to confront the terminology that defines our
choices.

Exception-safe functions offer one of three guarantees:

■ Functions offering the basic guarantee promise that if an excep-
tion is thrown, everything in the program remains in a valid state.
No objects or data structures become corrupted, and all objects
are in an internally consistent state (e.g., all class invariants are
satisfied). However, the exact state of the program may not be pre-
dictable. For example, we could write changeBackground so that if
an exception were thrown, the PrettyMenu object might continue to
have the old background image, or it might have some default
background image, but clients wouldn’t be able to predict which.
(To find out, they’d presumably have to call some member func-
tion that would tell them what the current background image
was.)

■ Functions offering the strong guarantee promise that if an excep-
tion is thrown, the state of the program is unchanged. Calls to
such functions are atomic in the sense that if they succeed, they
succeed completely, and if they fail, the program state is as if
they’d never been called.
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Working with functions offering the strong guarantee is easier
than working with functions offering only the basic guarantee, be-
cause after calling a function offering the strong guarantee, there
are only two possible program states: as expected following suc-
cessful execution of the function, or the state that existed at the
time the function was called. In contrast, if a call to a function of-
fering only the basic guarantee yields an exception, the program
could be in any valid state.

■ Functions offering the nothrow guarantee promise never to
throw exceptions, because they always do what they promise to
do. All operations on built-in types (e.g., ints, pointers, etc.) are no-
throw (i.e., offer the nothrow guarantee). This is a critical building
block of exception-safe code.

It might seem reasonable to assume that functions with an empty
exception specification are nothrow, but this isn’t necessarily true.
For example, consider this function:

int doSomething() throw(); // note empty exception spec.

This doesn’t say that doSomething will never throw an exception; it
says that if doSomething throws an exception, it’s a serious error,
and the unexpected function should be called.† In fact, doSome-
thing may not offer any exception guarantee at all. The declaration
of a function (including its exception specification, if it has one)
doesn’t tell you whether a function is correct or portable or effi-
cient, and it doesn’t tell you which, if any, exception safety guar-
antee it offers, either. All those characteristics are determined by
the function’s implementation, not its declaration.

Exception-safe code must offer one of the three guarantees above. If it
doesn’t, it’s not exception-safe. The choice, then, is to determine
which guarantee to offer for each of the functions you write. Other
than when dealing with exception-unsafe legacy code (which we’ll dis-
cuss later in this Item), offering no exception safety guarantee should
be an option only if your crack team of requirements analysts has
identified a need for your application to leak resources and run with
corrupt data structures.

As a general rule, you want to offer the strongest guarantee that’s
practical. From an exception safety point of view, nothrow functions
are wonderful, but it’s hard to climb out of the C part of C++ without

† For information on the unexpected function, consult your favorite search engine or
comprehensive C++ text. (You’ll probably have better luck searching for set_unexpected,
the function that specifies the unexpected function.)
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calling functions that might throw. Anything using dynamically allo-
cated memory (e.g., all STL containers) typically throws a bad_alloc
exception if it can’t find enough memory to satisfy a request (see
Item 49). Offer the nothrow guarantee when you can, but for most
functions, the choice is between the basic and strong guarantees.

In the case of changeBackground, almost offering the strong guarantee
is not difficult. First, we change the type of PrettyMenu’s bgImage data
member from a built-in Image* pointer to one of the smart resource-
managing pointers described in Item 13. Frankly, this is a good idea
purely on the basis of preventing resource leaks. The fact that it helps
us offer the strong exception safety guarantee simply reinforces
Item 13’s argument that using objects (such as smart pointers) to
manage resources is fundamental to good design. In the code below, I
show use of tr1::shared_ptr, because its more intuitive behavior when
copied generally makes it preferable to auto_ptr.

Second, we reorder the statements in changeBackground so that we
don’t increment imageChanges until the image has been changed. As a
general rule, it’s a good policy not to change the status of an object to
indicate that something has happened until something actually has. 

Here’s the resulting code:

class PrettyMenu {
...
std::tr1::shared_ptr<Image> bgImage;
...

};

void PrettyMenu::changeBackground(std::istream& imgSrc)
{

Lock ml(&mutex);

bgImage.reset(new Image(imgSrc)); // replace bgImage’s internal
// pointer with the result of the
// “new Image” expression

++imageChanges;
}

Note that there’s no longer a need to manually delete the old image,
because that’s handled internally by the smart pointer. Furthermore,
the deletion takes place only if the new image is successfully created.
More precisely, the tr1::shared_ptr::reset function will be called only if its
parameter (the result of “new Image(imgSrc)”) is successfully created.
delete is used only inside the call to reset, so if the function is never
entered, delete is never used. Note also that the use of an object (the
tr1::shared_ptr) to manage a resource (the dynamically allocated Image)
has again pared the length of changeBackground. 

As I said, those two changes almost suffice to allow changeBackground
to offer the strong exception safety guarantee. What’s the fly in the
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nt to be familiar with it. The strategy is known as
.” In principle, it’s very simple. Make a copy of the
 to modify, then make all needed changes to the copy.
odifying operations throws an exception, the original
unchanged. After all the changes have been success-
 swap the modified object with the original in a non-
ion (see Item 25).

implemented by putting all the per-object data from
 into a separate implementation object, then giving the
nter to its implementation object. This is often known
diom,” and Item 31 describes it in some detail. For
ould typically look something like this:

l { // PMImpl = “PrettyMenu
red_ptr<Image> bgImage; // Impl.”; see below for
anges; // why it’s a struct

nu {

x;
red_ptr<PMImpl> pImpl;

nu::changeBackground(std::istream& imgSrc)

ap; // see Item 25

utex); // acquire the mutex

red_ptr<PMImpl> // copy obj. data
w PMImpl(*pImpl));

mage.reset(new Image(imgSrc)); // modify the copy

imageChanges;

l, pNew); // swap the new
// data into place

// release the mutex
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In this example, I’ve chosen to make PMImpl a struct instead of a class,
because the encapsulation of PrettyMenu data is assured by pImpl being
private. Making PMImpl a class would be at least as good, though
somewhat less convenient. (It would also keep the object-oriented pur-
ists at bay.) If desired, PMImpl could be nested inside PrettyMenu, but
packaging issues such as that are independent of writing exception-
safe code, which is our concern here.

The copy-and-swap strategy is an excellent way to make all-or-nothing
changes to an object’s state, but, in general, it doesn’t guarantee that
the overall function is strongly exception-safe. To see why, consider
an abstraction of changeBackground, someFunc, that uses copy-and-
swap, but that includes calls to two other functions, f1 and f2:

void someFunc()
{

... // make copy of local state
f1();
f2();
... // swap modified state into place

}

It should be clear that if f1 or f2 is less than strongly exception-safe, it
will be hard for someFunc to be strongly exception-safe. For example,
suppose that f1 offers only the basic guarantee. For someFunc to offer
the strong guarantee, it would have to write code to determine the
state of the entire program prior to calling f1, catch all exceptions from
f1, then restore the original state. 

Things aren’t really any better if both f1 and f2 are strongly exception
safe. After all, if f1 runs to completion, the state of the program may
have changed in arbitrary ways, so if f2 then throws an exception, the
state of the program is not the same as it was when someFunc was
called, even though f2 didn’t change anything.

The problem is side effects. As long as functions operate only on local
state (e.g., someFunc affects only the state of the object on which it’s
invoked), it’s relatively easy to offer the strong guarantee. When func-
tions have side effects on non-local data, it’s much harder. If a side
effect of calling f1, for example, is that a database is modified, it will be
hard to make someFunc strongly exception-safe. There is, in general,
no way to undo a database modification that has already been com-
mitted; other database clients may have already seen the new state of
the database.

Issues such as these can prevent you from offering the strong guaran-
tee for a function, even though you’d like to. Another issue is effi-
ciency. The crux of copy-and-swap is the idea of modifying a copy of an
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object’s data, then swapping the modified data for the original in a
non-throwing operation. This requires making a copy of each object to
be modified, which takes time and space you may be unable or unwill-
ing to make available. The strong guarantee is highly desirable, and
you should offer it when it’s practical, but it’s not practical 100% of
the time.

When it’s not, you’ll have to offer the basic guarantee. In practice,
you’ll probably find that you can offer the strong guarantee for some
functions, but the cost in efficiency or complexity will make it untena-
ble for many others. As long as you’ve made a reasonable effort to
offer the strong guarantee whenever it’s practical, no one should be in
a position to criticize you when you offer only the basic guarantee. For
many functions, the basic guarantee is a perfectly reasonable choice.

Things are different if you write a function offering no exception-safety
guarantee at all, because in this respect it’s reasonable to assume
that you’re guilty until proven innocent. You should be writing excep-
tion-safe code. But you may have a compelling defense. Consider
again the implementation of someFunc that calls the functions f1 and
f2. Suppose f2 offers no exception safety guarantee at all, not even the
basic guarantee. That means that if f2 emits an exception, the pro-
gram may have leaked resources inside f2. It means that f2 may have
corrupted data structures, e.g., sorted arrays might not be sorted any
longer, objects being transferred from one data structure to another
might have been lost, etc. There’s no way that someFunc can compen-
sate for those problems. If the functions someFunc calls offer no excep-
tion-safety guarantees, someFunc itself can’t offer any guarantees.

Which brings me back to pregnancy. A female is either pregnant or
she’s not. It’s not possible to be partially pregnant. Similarly, a soft-
ware system is either exception-safe or it’s not. There’s no such thing
as a partially exception-safe system. If a system has even a single
function that’s not exception-safe, the system as a whole is not excep-
tion-safe, because calls to that one function could lead to leaked
resources and corrupted data structures. Unfortunately, much C++
legacy code was written without exception safety in mind, so many
systems today are not exception-safe. They incorporate code that was
written in an exception-unsafe manner. 

There’s no reason to perpetuate this state of affairs. When writing new
code or modifying existing code, think carefully about how to make it
exception-safe. Begin by using objects to manage resources. (Again,
see Item 13.) That will prevent resource leaks. Follow that by deter-
mining which of the three exception safety guarantees is the strongest
you can practically offer for each function you write, settling for no
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guarantee only if calls to legacy code leave you no choice. Document
your decisions, both for clients of your functions and for future main-
tainers. A function’s exception-safety guarantee is a visible part of its
interface, so you should choose it as deliberately as you choose all
other aspects of a function’s interface.

Forty years ago, goto-laden code was considered perfectly good prac-
tice. Now we strive to write structured control flows. Twenty years ago,
globally accessible data was considered perfectly good practice. Now
we strive to encapsulate data. Ten years ago, writing functions with-
out thinking about the impact of exceptions was considered perfectly
good practice. Now we strive to write exception-safe code. 

Time goes on. We live. We learn. 

Things to Remember

✦ Exception-safe functions leak no resources and allow no data struc-
tures to become corrupted, even when exceptions are thrown. Such
functions offer the basic, strong, or nothrow guarantees.

✦ The strong guarantee can often be implemented via copy-and-swap,
but the strong guarantee is not practical for all functions.

✦ A function can usually offer a guarantee no stronger than the weak-
est guarantee of the functions it calls.

Item 30: Understand the ins and outs of inlining.

Inline functions — what a wonderful idea! They look like functions,
they act like functions, they’re ever so much better than macros (see
Item 2), and you can call them without having to incur the overhead of
a function call. What more could you ask for?

You actually get more than you might think, because avoiding the cost
of a function call is only part of the story. Compiler optimizations are
typically designed for stretches of code that lack function calls, so
when you inline a function, you may enable compilers to perform con-
text-specific optimizations on the body of the function. Most compilers
never perform such optimizations on “outlined” function calls. 

In programming, however, as in life, there is no free lunch, and inline
functions are no exception. The idea behind an inline function is to
replace each call of that function with its code body, and it doesn’t
take a Ph.D. in statistics to see that this is likely to increase the size of
your object code. On machines with limited memory, overzealous
inlining can give rise to programs that are too big for the available
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space. Even with virtual memory, inline-induced code bloat can lead
to additional paging, a reduced instruction cache hit rate, and the
performance penalties that accompany these things.

On the other hand, if an inline function body is very short, the code
generated for the function body may be smaller than the code gener-
ated for a function call. If that is the case, inlining the function may
actually lead to smaller object code and a higher instruction cache hit
rate!

Bear in mind that inline is a request to compilers, not a command. The
request can be given implicitly or explicitly. The implicit way is to
define a function inside a class definition:

class Person {
public:

...
int age() const { return theAge; } // an implicit inline request: age is
... // defined in a class definition

private:
int theAge;

};

Such functions are usually member functions, but Item 46 explains
that friend functions can also be defined inside classes. When they
are, they’re also implicitly declared inline.

The explicit way to declare an inline function is to precede its defini-
tion with the inline keyword. For example, this is how the standard
max template (from <algorithm>) is often implemented:

template<typename T> // an explicit inline
inline const T& std::max(const T& a, const T& b) // request: std::max is
{ return a < b ? b : a; } // preceded by “inline”

The fact that max is a template brings up the observation that both
inline functions and templates are typically defined in header files.
This leads some programmers to conclude that function templates
must be inline. This conclusion is both invalid and potentially harm-
ful, so it’s worth looking into it a bit.

Inline functions must typically be in header files, because most build
environments do inlining during compilation. In order to replace a
function call with the body of the called function, compilers must
know what the function looks like. (Some build environments can
inline during linking, and a few — e.g., managed environments based
on the .NET Common Language Infrastructure (CLI) — can actually
inline at runtime. Such environments are the exception, however, not
the rule. Inlining in most C++ programs is a compile-time activity.) 
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Templates are typically in header files, because compilers need to
know what a template looks like in order to instantiate it when it’s
used. (Again, this is not universal. Some build environments perform
template instantiation during linking. However, compile-time instanti-
ation is more common.) 

Template instantiation is independent of inlining. If you’re writing a
template and you believe that all the functions instantiated from the
template should be inlined, declare the template inline; that’s what’s
done with the std::max implementation above. But if you’re writing a
template for functions that you have no reason to want inlined, avoid
declaring the template inline (either explicitly or implicitly). Inlining
has costs, and you don’t want to incur them without forethought.
We’ve already mentioned how inlining can cause code bloat (a particu-
larly important consideration for template authors — see Item 44), but
there are other costs, too, which we’ll discuss in a moment.

Before we do that, let’s finish the observation that inline is a request
that compilers may ignore. Most compilers refuse to inline functions
they deem too complicated (e.g., those that contain loops or are recur-
sive), and all but the most trivial calls to virtual functions defy inlin-
ing. This latter observation shouldn’t be a surprise. virtual means “wait
until runtime to figure out which function to call,” and inline means
“before execution, replace the call site with the called function.” If
compilers don’t know which function will be called, you can hardly
blame them for refusing to inline the function’s body.

It all adds up to this: whether a given inline function is actually
inlined depends on the build environment you’re using — primarily on
the compiler. Fortunately, most compilers have a diagnostic level that
will result in a warning (see Item 53) if they fail to inline a function
you’ve asked them to.

Sometimes compilers generate a function body for an inline function
even when they are perfectly willing to inline the function. For exam-
ple, if your program takes the address of an inline function, compilers
must typically generate an outlined function body for it. How can they
come up with a pointer to a function that doesn’t exist? Coupled with
the fact that compilers typically don’t perform inlining across calls
through function pointers, this means that calls to an inline function
may or may not be inlined, depending on how the calls are made:

inline void f() {...} // assume compilers are willing to inline calls to f

void (*pf )() = f; // pf points to f

...

f(); // this call will be inlined, because it’s a “normal” call
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pf(); // this call probably won’t be, because it’s through
// a function pointer

The specter of un-inlined inline functions can haunt you even if you
never use function pointers, because programmers aren’t necessarily
the only ones asking for pointers to functions. Sometimes compilers
generate out-of-line copies of constructors and destructors so that
they can get pointers to those functions for use during construction
and destruction of objects in arrays.

In fact, constructors and destructors are often worse candidates for
inlining than a casual examination would indicate. For example, con-
sider the constructor for class Derived below:

class Base {
public:

...

private:
std::string bm1, bm2; // base members 1 and 2

};

class Derived: public Base {
public:

Derived() {} // Derived’s ctor is empty — or is it?
...

private:
std::string dm1, dm2, dm3; // derived members 1–3

};

This constructor looks like an excellent candidate for inlining, since it
contains no code. But looks can be deceiving. 

C++ makes various guarantees about things that happen when
objects are created and destroyed. When you use new, for example,
your dynamically created objects are automatically initialized by their
constructors, and when you use delete, the corresponding destructors
are invoked. When you create an object, each base class of and each
data member in that object is automatically constructed, and the
reverse process regarding destruction automatically occurs when an
object is destroyed. If an exception is thrown during construction of
an object, any parts of the object that have already been fully con-
structed are automatically destroyed. In all these scenarios, C++ says
what must happen, but it doesn’t say how. That’s up to compiler
implementers, but it should be clear that those things don’t happen
by themselves. There has to be some code in your program to make
those things happen, and that code — the code written by compilers
and inserted into your program during compilation — has to go some-
where. Sometimes it ends up in constructors and destructors, so we
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can imagine implementations generating code equivalent to the follow-
ing for the allegedly empty Derived constructor above:

Derived::Derived() // conceptual implementation of
{ // “empty” Derived ctor

Base::Base(); // initialize Base part

try { dm1.std::string::string(); } // try to construct dm1
catch (...) { // if it throws,

Base::~Base(); // destroy base class part and
throw; // propagate the exception

}

try { dm2.std::string::string(); } // try to construct dm2
catch(...) { // if it throws,

dm1.std::string::~string(); // destroy dm1,
Base::~Base(); // destroy base class part, and
throw; // propagate the exception

}

try { dm3.std::string::string(); } // construct dm3
catch(...) { // if it throws,

dm2.std::string::~string(); // destroy dm2,
dm1.std::string::~string(); // destroy dm1, 
Base::~Base(); // destroy base class part, and
throw; // propagate the exception

}
}

This code is unrepresentative of what real compilers emit, because
real compilers deal with exceptions in more sophisticated ways. Still,
this accurately reflects the behavior that Derived’s “empty” constructor
must offer. No matter how sophisticated a compiler’s exception imple-
mentation, Derived’s constructor must at least call constructors for its
data members and base class, and those calls (which might them-
selves be inlined) could affect its attractiveness for inlining.

The same reasoning applies to the Base constructor, so if it’s inlined,
all the code inserted into it is also inserted into the Derived construc-
tor (via the Derived constructor’s call to the Base constructor). And if
the string constructor also happens to be inlined, the Derived construc-
tor will gain five copies of that function’s code, one for each of the five
strings in a Derived object (the two it inherits plus the three it declares
itself). Perhaps now it’s clear why it’s not a no-brain decision whether
to inline Derived’s constructor. Similar considerations apply to
Derived’s destructor, which, one way or another, must see to it that all
the objects initialized by Derived’s constructor are properly destroyed.

Library designers must evaluate the impact of declaring functions
inline, because it’s impossible to provide binary upgrades to the client-
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visible inline functions in a library. In other words, if f is an inline
function in a library, clients of the library compile the body of f into
their applications. If a library implementer later decides to change f,
all clients who’ve used f must recompile. This is often undesirable. On
the other hand, if f is a non-inline function, a modification to f
requires only that clients relink. This is a substantially less onerous
burden than recompiling and, if the library containing the function is
dynamically linked, one that may be absorbed in a way that’s com-
pletely transparent to clients.

For purposes of program development, it is important to keep all these
considerations in mind, but from a practical point of view during cod-
ing, one fact dominates all others: most debuggers have trouble with
inline functions. This should be no great revelation. How do you set a
breakpoint in a function that isn’t there? Although some build envi-
ronments manage to support debugging of inlined functions, many
environments simply disable inlining for debug builds.

This leads to a logical strategy for determining which functions should
be declared inline and which should not. Initially, don’t inline any-
thing, or at least limit your inlining to those functions that must be
inline (see Item 46) or are truly trivial (such as Person::age on
page 135). By employing inlines cautiously, you facilitate your use of a
debugger, but you also put inlining in its proper place: as a hand-
applied optimization. Don’t forget the empirically determined rule of
80-20, which states that a typical program spends 80% of its time
executing only 20% of its code. It’s an important rule, because it
reminds you that your goal as a software developer is to identify the
20% of your code that can increase your program’s overall perfor-
mance. You can inline and otherwise tweak your functions until the
cows come home, but it’s wasted effort unless you’re focusing on the
right functions.

Things to Remember

✦ Limit most inlining to small, frequently called functions. This facili-
tates debugging and binary upgradability, minimizes potential code
bloat, and maximizes the chances of greater program speed.

✦ Don’t declare function templates inline just because they appear in
header files.
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Item 31: Minimize compilation dependencies between 
files.

So you go into your C++ program and make a minor change to the
implementation of a class. Not the class interface, mind you, just the
implementation; only the private stuff. Then you rebuild the program,
figuring that the exercise should take only a few seconds. After all,
only one class has been modified. You click on Build or type make (or
some equivalent), and you are astonished, then mortified, as you real-
ize that the whole world is being recompiled and relinked! Don’t you
just hate it when that happens?

The problem is that C++ doesn’t do a very good job of separating inter-
faces from implementations. A class definition specifies not only a
class interface but also a fair number of implementation details. For
example:

class Person {
public:

Person(const std::string& name, const Date& birthday,
const Address& addr);

std::string name() const;
std::string birthDate() const;
std::string address() const;
...

private:
std::string theName; // implementation detail
Date theBirthDate; // implementation detail
Address theAddress; // implementation detail

};

Here, class Person can’t be compiled without access to definitions for
the classes the Person implementation uses, namely, string, Date, and
Address. Such definitions are typically provided through #include direc-
tives, so in the file defining the Person class, you are likely to find
something like this:

#include <string>
#include "date.h"
#include "address.h"

Unfortunately, this sets up a compilation dependency between the file
defining Person and these header files. If any of these header files is
changed, or if any of the header files they depend on changes, the file
containing the Person class must be recompiled, as must any files that
use Person. Such cascading compilation dependencies have caused
many a project untold grief.
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You might wonder why C++ insists on putting the implementation
details of a class in the class definition. For example, why can’t you
define Person this way, specifying the implementation details of the
class separately? 

namespace std {
class string; // forward declaration (an incorrect

} // one — see below)

class Date; // forward declaration
class Address; // forward declaration

class Person {
public:

Person(const std::string& name, const Date& birthday,
const Address& addr);

std::string name() const;
std::string birthDate() const;
std::string address() const;
...

};

If that were possible, clients of Person would have to recompile only if
the interface to the class changed. 

There are two problems with this idea. First, string is not a class, it’s a
typedef (for basic_string<char>). As a result, the forward declaration for
string is incorrect. The proper forward declaration is substantially more
complex, because it involves additional templates. That doesn’t matter,
however, because you shouldn’t try to manually declare parts of the
standard library. Instead, simply use the proper #includes and be done
with it. Standard headers are unlikely to be a compilation bottleneck,
especially if your build environment allows you to take advantage of
precompiled headers. If parsing standard headers really is a problem,
you may need to change your interface design to avoid using the parts
of the standard library that give rise to the undesirable #includes.

The second (and more significant) difficulty with forward-declaring
everything has to do with the need for compilers to know the size of
objects during compilation. Consider:

int main()
{

int x; // define an int

Person p( params ); // define a Person
...

}

When compilers see the definition for x, they know they must allocate
enough space (typically on the stack) to hold an int. No problem. Each
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compiler knows how big an int is. When compilers see the definition
for p, they know they have to allocate enough space for a Person, but
how are they supposed to know how big a Person object is? The only
way they can get that information is to consult the class definition,
but if it were legal for a class definition to omit the implementation
details, how would compilers know how much space to allocate?

This question fails to arise in languages like Smalltalk and Java,
because, when an object is defined in such languages, compilers allo-
cate only enough space for a pointer to an object. That is, they handle
the code above as if it had been written like this:

int main()
{

int x; // define an int

Person *p; // define a pointer to a Person
...

}

This, of course, is legal C++, so you can play the “hide the object
implementation behind a pointer” game yourself. One way to do that
for Person is to separate it into two classes, one offering only an inter-
face, the other implementing that interface. If the implementation
class is named PersonImpl, Person would be defined like this:

#include <string> // standard library components
// shouldn’t be forward-declared

#include <memory> // for tr1::shared_ptr; see below

class PersonImpl; // forward decl of Person impl. class

class Date; // forward decls of classes used in
class Address; // Person interface

class Person {
public:

Person(const std::string& name, const Date& birthday,
const Address& addr);

std::string name() const;
std::string birthDate() const;
std::string address() const;
...

private: // ptr to implementation;
std::tr1::shared_ptr<PersonImpl> pImpl; // see Item 13 for info on

}; // std::tr1::shared_ptr

Here, the main class (Person) contains as a data member nothing but a
pointer (here, a tr1::shared_ptr — see Item 13) to its implementation
class (PersonImpl). Such a design is often said to be using the pimpl
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idiom (“pointer to implementation”). Within such classes, the name of
the pointer is often pImpl, as it is above. 

With this design, clients of Person are divorced from the details of
dates, addresses, and persons. The implementations of those classes
can be modified at will, but Person clients need not recompile. In addi-
tion, because they’re unable to see the details of Person’s implementa-
tion, clients are unlikely to write code that somehow depends on those
details. This is a true separation of interface and implementation. 

The key to this separation is replacement of dependencies on definitions
with dependencies on declarations. That’s the essence of minimizing
compilation dependencies: make your header files self-sufficient when-
ever it’s practical, and when it’s not, depend on declarations in other
files, not definitions. Everything else flows from this simple design
strategy. Hence:

■ Avoid using objects when object references and pointers will
do. You may define references and pointers to a type with only a
declaration for the type. Defining objects of a type necessitates the
presence of the type’s definition.

■ Depend on class declarations instead of class definitions
whenever you can. Note that you never need a class definition to
declare a function using that class, not even if the function passes
or returns the class type by value:

class Date; // class declaration

Date today(); // fine — no definition
void clearAppointments(Date d); // of Date is needed

Of course, pass-by-value is generally a bad idea (see Item 20), but
if you find yourself using it for some reason, there’s still no justifi-
cation for introducing unnecessary compilation dependencies.

The ability to declare today and clearAppointments without defining
Date may surprise you, but it’s not as curious as it seems. If any-
body calls those functions, Date’s definition must have been seen
prior to the call. Why bother to declare functions that nobody
calls, you wonder? Simple. It’s not that nobody calls them, it’s that
not everybody calls them. If you have a library containing dozens
of function declarations, it’s unlikely that every client calls every
function. By moving the onus of providing class definitions from
your header file of function declarations to clients’ files containing
function calls, you eliminate artificial client dependencies on type
definitions they don’t really need. 
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■ Provide separate header files for declarations and definitions.
In order to facilitate adherence to the above guidelines, header
files need to come in pairs: one for declarations, the other for defi-
nitions. These files must be kept consistent, of course. If a decla-
ration is changed in one place, it must be changed in both. As a
result, library clients should always #include a declaration file in-
stead of forward-declaring something themselves, and library au-
thors should provide both header files. For example, the Date
client wishing to declare today and clearAppointments shouldn’t
manually forward-declare Date as shown above. Rather, it should
#include the appropriate header of declarations:

#include "datefwd.h" // header file declaring (but not
// defining) class Date

Date today(); // as before
void clearAppointments(Date d);

The name of the declaration-only header file “datefwd.h” is based
on the header <iosfwd> from the standard C++ library (see
Item 54). <iosfwd> contains declarations of iostream components
whose corresponding definitions are in several different headers,
including <sstream>, <streambuf>, <fstream>, and <iostream>. 

<iosfwd> is instructive for another reason, and that’s to make clear
that the advice in this Item applies as well to templates as to non-
templates. Although Item 30 explains that in many build environ-
ments, template definitions are typically found in header files,
some build environments allow template definitions to be in non-
header files, so it still makes sense to provide declaration-only
headers for templates. <iosfwd> is one such header.

C++ also offers the export keyword to allow the separation of tem-
plate declarations from template definitions. Unfortunately, com-
piler support for export is scanty, and real-world experience with
export is scantier still. As a result, it’s too early to say what role ex-
port will play in effective C++ programming. 

Classes like Person that employ the pimpl idiom are often called Han-
dle classes. Lest you wonder how such classes actually do anything,
one way is to forward all their function calls to the corresponding
implementation classes and have those classes do the real work. For
example, here’s how two of Person’s member functions could be imple-
mented:

#include "Person.h" // we’re implementing the Person class,
// so we must #include its class definition
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#include "PersonImpl.h" // we must also #include PersonImpl’s class
// definition, otherwise we couldn’t call 
// its member functions; note that 
// PersonImpl has exactly the same public
// member functions as Person — their
// interfaces are identical

Person::Person(const std::string& name, const Date& birthday,
const Address& addr)

: pImpl(new PersonImpl(name, birthday, addr))
{}

std::string Person::name() const
{

return pImpl->name();
}

Note how the Person constructor calls the PersonImpl constructor (by
using new — see Item 16) and how Person::name calls PersonImpl::name.
This is important. Making Person a Handle class doesn’t change what
Person does, it just changes the way it does it.

An alternative to the Handle class approach is to make Person a spe-
cial kind of abstract base class called an Interface class. The purpose
of such a class is to specify an interface for derived classes (see
Item 34). As a result, it typically has no data members, no construc-
tors, a virtual destructor (see Item 7), and a set of pure virtual func-
tions that specify the interface. 

Interface classes are akin to Java’s and .NET’s Interfaces, but C++
doesn’t impose the restrictions on Interface classes that Java and
.NET impose on Interfaces. Neither Java nor .NET allow data members
or function implementations in Interfaces, for example, but C++ for-
bids neither of these things. C++’s greater flexibility can be useful. As
Item 36 explains, the implementation of non-virtual functions should
be the same for all classes in a hierarchy, so it makes sense to imple-
ment such functions as part of the Interface class that declares them.

An Interface class for Person could look like this:

class Person {
public:

virtual ~Person();

virtual std::string name() const = 0;
virtual std::string birthDate() const = 0;
virtual std::string address() const = 0;
...

};
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Clients of this class must program in terms of Person pointers and ref-
erences, because it’s not possible to instantiate classes containing
pure virtual functions. (It is, however, possible to instantiate classes
derived from Person — see below.) Like clients of Handle classes, cli-
ents of Interface classes need not recompile unless the Interface
class’s interface is modified.

Clients of an Interface class must have a way to create new objects.
They typically do it by calling a function that plays the role of the con-
structor for the derived classes that are actually instantiated. Such
functions are typically called factory functions (see Item 13) or virtual
constructors. They return pointers (preferably smart pointers — see
Item 18) to dynamically allocated objects that support the Interface
class’s interface. Such functions are often declared static inside the
Interface class:

class Person {
public:

...

static std::tr1::shared_ptr<Person> // return a tr1::shared_ptr to a new
create(const std::string& name, // Person initialized with the

const Date& birthday, // given params; see Item 18 for
const Address& addr); // why a tr1::shared_ptr is returned

...
};

Clients use them like this:

std::string name;
Date dateOfBirth;
Address address;
...

// create an object supporting the Person interface
std::tr1::shared_ptr<Person> pp(Person::create(name, dateOfBirth, address));

...

std::cout << pp->name() // use the object via the
<< " was born on " // Person interface
<< pp->birthDate()
<< " and now lives at "
<< pp->address();

... // the object is automatically 
// deleted when pp goes out of 
// scope — see Item 13

At some point, of course, concrete classes supporting the Interface
class’s interface must be defined and real constructors must be
called. That all happens behind the scenes inside the files containing
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the implementations of the virtual constructors. For example, the
Interface class Person might have a concrete derived class RealPerson
that provides implementations for the virtual functions it inherits:

class RealPerson: public Person {
public:

RealPerson(const std::string& name, const Date& birthday,
const Address& addr)

: theName(name), theBirthDate(birthday), theAddress(addr)
{}

virtual ~RealPerson() {}

std::string name() const; // implementations of these 
std::string birthDate() const; // functions are not shown, but 
std::string address() const; // they are easy to imagine

private:
std::string theName;
Date theBirthDate;
Address theAddress;

};

Given RealPerson, it is truly trivial to write Person::create:

std::tr1::shared_ptr<Person> Person::create(const std::string& name,
const Date& birthday,
const Address& addr)

{
return std::tr1::shared_ptr<Person>(new RealPerson( name, birthday,

addr));
}

A more realistic implementation of Person::create would create different
types of derived class objects, depending on e.g., the values of addi-
tional function parameters, data read from a file or database, environ-
ment variables, etc.

RealPerson demonstrates one of the two most common mechanisms for
implementing an Interface class: it inherits its interface specification
from the Interface class (Person), then it implements the functions in
the interface. A second way to implement an Interface class involves
multiple inheritance, a topic explored in Item 40.

Handle classes and Interface classes decouple interfaces from imple-
mentations, thereby reducing compilation dependencies between files.
Cynic that you are, I know you’re waiting for the fine print. “What does
all this hocus-pocus cost me?” you mutter. The answer is the usual
one in computer science: it costs you some speed at runtime, plus
some additional memory per object. 
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In the case of Handle classes, member functions have to go through
the implementation pointer to get to the object’s data. That adds one
level of indirection per access. And you must add the size of this
implementation pointer to the amount of memory required to store
each object. Finally, the implementation pointer has to be initialized
(in the Handle class’s constructors) to point to a dynamically allocated
implementation object, so you incur the overhead inherent in dynamic
memory allocation (and subsequent deallocation) and the possibility
of encountering bad_alloc (out-of-memory) exceptions.

For Interface classes, every function call is virtual, so you pay the cost
of an indirect jump each time you make a function call (see Item 7).
Also, objects derived from the Interface class must contain a virtual
table pointer (again, see Item 7). This pointer may increase the
amount of memory needed to store an object, depending on whether
the Interface class is the exclusive source of virtual functions for the
object.

Finally, neither Handle classes nor Interface classes can get much use
out of inline functions. Item 30 explains why function bodies must
typically be in header files in order to be inlined, but Handle and
Interface classes are specifically designed to hide implementation
details like function bodies.

It would be a serious mistake, however, to dismiss Handle classes and
Interface classes simply because they have a cost associated with
them. So do virtual functions, and you wouldn’t want to forgo those,
would you? (If so, you’re reading the wrong book.) Instead, consider
using these techniques in an evolutionary manner. Use Handle
classes and Interface classes during development to minimize the
impact on clients when implementations change. Replace Handle
classes and Interface classes with concrete classes for production use
when it can be shown that the difference in speed and/or size is sig-
nificant enough to justify the increased coupling between classes. 

Things to Remember

✦ The general idea behind minimizing compilation dependencies is to
depend on declarations instead of definitions. Two approaches
based on this idea are Handle classes and Interface classes.

✦ Library header files should exist in full and declaration-only forms.
This applies regardless of whether templates are involved.
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Inheritance and Object-Oriented DesignObject-oriented programming (OOP) has been the rage for almost two
decades, so it’s likely that you have some experience with the ideas of
inheritance, derivation, and virtual functions. Even if you’ve been pro-
gramming only in C, you’ve surely not escaped the OOP hoopla.

Still, OOP in C++ is probably a bit different from what you’re used to.
Inheritance can be single or multiple, and each inheritance link can
be public, protected, or private. Each link can also be virtual or non-
virtual. Then there are the member function options. Virtual? Non-
virtual? Pure virtual? And the interactions with other language
features. How do default parameter values interact with virtual func-
tions? How does inheritance affect C++’s name lookup rules? And
what about design options? If a class’s behavior needs to be modifi-
able, is a virtual function the best way to do that? 

This chapter sorts it all out. Furthermore, I explain what the different
features in C++ really mean — what you are really expressing when
you use a particular construct. For example, public inheritance
means “is-a,” and if you try to make it mean anything else, you’ll run
into trouble. Similarly, a virtual function means “interface must be
inherited,” while a non-virtual function means “both interface and
implementation must be inherited.” Failing to distinguish between
these meanings has caused C++ programmers considerable grief.

If you understand the meanings of C++’s various features, you’ll find
that your outlook on OOP changes. Instead of it being an exercise in
differentiating between language features, it will become a matter of
determining what you want to say about your software system. And
once you know what you want to say, the translation into C++ is not
terribly demanding. 

Chapter 6: Inheritance andObject-Oriented Design

Inheritance and
Object-Oriented Design



ptg7544714

150 Item 32 Chapter 6
Item 32: Make sure public inheritance models “is-a.”

In his book, Some Must Watch While Some Must Sleep (W. H. Freeman
and Company, 1974), William Dement relates the story of his attempt
to fix in the minds of his students the most important lessons of his
course. It is claimed, he told his class, that the average British school-
child remembers little more history than that the Battle of Hastings
was in 1066. If a child remembers little else, Dement emphasized, he
or she remembers the date 1066. For the students in his course,
Dement went on, there were only a few central messages, including,
interestingly enough, the fact that sleeping pills cause insomnia. He
implored his students to remember these few critical facts even if they
forgot everything else discussed in the course, and he returned to
these fundamental precepts repeatedly during the term.

At the end of the course, the last question on the final exam was,
“Write one thing from the course that you will surely remember for the
rest of your life.” When Dement graded the exams, he was stunned.
Nearly everyone had written “1066.”

It is thus with great trepidation that I proclaim to you now that the
single most important rule in object-oriented programming with C++
is this: public inheritance means “is-a.” Commit this rule to memory.

If you write that class D (“Derived”) publicly inherits from class B
(“Base”), you are telling C++ compilers (as well as human readers of
your code) that every object of type D is also an object of type B, but
not vice versa. You are saying that B represents a more general con-
cept than D, that D represents a more specialized concept than B. You
are asserting that anywhere an object of type B can be used, an object
of type D can be used just as well, because every object of type D is an
object of type B. On the other hand, if you need an object of type D, an
object of type B will not do: every D is-a B, but not vice versa.

C++ enforces this interpretation of public inheritance. Consider this
example:

class Person { ... };

class Student: public Person { ... };

We know from everyday experience that every student is a person, but
not every person is a student. That is exactly what this hierarchy
asserts. We expect that anything that is true of a person — for exam-
ple, that he or she has a date of birth — is also true of a student. We
do not expect that everything that is true of a student — that he or
she is enrolled in a particular school, for instance — is true of people
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in general. The notion of a person is more general than is that of a
student; a student is a specialized type of person. 

Within the realm of C++, any function that expects an argument of
type Person (or pointer-to-Person or reference-to-Person) will also take a
Student object (or pointer-to-Student or reference-to-Student):

void eat(const Person& p); // anyone can eat

void study(const Student& s); // only students study

Person p; // p is a Person
Student s; // s is a Student

eat(p); // fine, p is a Person

eat(s); // fine, s is a Student,
// and a Student is-a Person

study(s); // fine

study(p); // error! p isn’t a Student

This is true only for public inheritance. C++ will behave as I’ve
described only if Student is publicly derived from Person. Private inher-
itance means something entirely different (see Item 39), and protected
inheritance is something whose meaning eludes me to this day.

The equivalence of public inheritance and is-a sounds simple, but
sometimes your intuition can mislead you. For example, it is a fact
that a penguin is a bird, and it is a fact that birds can fly. If we naively
try to express this in C++, our effort yields:

class Bird {
public:

virtual void fly(); // birds can fly

...

};

class Penguin: public Bird { // penguins are birds

...

};

Suddenly we are in trouble, because this hierarchy says that pen-
guins can fly, which we know is not true. What happened?

In this case, we are the victims of an imprecise language: English.
When we say that birds can fly, we don’t mean that all types of birds
can fly, only that, in general, birds have the ability to fly. If we were
more precise, we’d recognize that there are several types of non-flying
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birds, and we would come up with the following hierarchy, which
models reality much better:

class Bird {
... // no fly function is declared

};

class FlyingBird: public Bird {
public:

virtual void fly();
...

};

class Penguin: public Bird {

... // no fly function is declared 

};

This hierarchy is much more faithful to what we really know than was
the original design.

Yet we’re not finished with these fowl matters, because for some soft-
ware systems, there may be no need to distinguish between flying and
non-flying birds. If your application has much to do with beaks and
wings and nothing to do with flying, the original two-class hierarchy
might be quite satisfactory. That’s a simple reflection of the fact that
there is no one ideal design for all software. The best design depends
on what the system is expected to do, both now and in the future. If
your application has no knowledge of flying and isn’t expected to ever
have any, failing to distinguish between flying and non-flying birds
may be a perfectly valid design decision. In fact, it may be preferable
to a design that does distinguish between them, because such a dis-
tinction would be absent from the world you are trying to model.

There is another school of thought on how to handle what I call the
“All birds can fly, penguins are birds, penguins can’t fly, uh oh” prob-
lem. That is to redefine the fly function for penguins so that it gener-
ates a runtime error:

void error(const std::string& msg); // defined elsewhere

class Penguin: public Bird {
public:

virtual void fly() { error("Attempt to make a penguin fly!"); }

...

};
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It’s important to recognize that this says something different from
what you might think. This does not say, “Penguins can’t fly.” This
says, “Penguins can fly, but it’s an error for them to actually try to do
it.” 

How can you tell the difference? From the time at which the error is
detected. The injunction, “Penguins can’t fly,” can be enforced by com-
pilers, but violations of the rule, “It’s an error for penguins to actually
try to fly,” can be detected only at runtime. 

To express the constraint, “Penguins can’t fly — period,” you make
sure that no such function is defined for Penguin objects:

class Bird {

... // no fly function is declared

};

class Penguin: public Bird {

... // no fly function is declared

};

If you now try to make a penguin fly, compilers will reprimand you for
your transgression:

Penguin p;

p.fly(); // error!

This is very different from the behavior you get if you adopt the
approach that generates runtime errors. With that methodology, com-
pilers won’t say a word about the call to p.fly. Item 18 explains that
good interfaces prevent invalid code from compiling, so you should
prefer the design that rejects penguin flight attempts during compila-
tion to the one that detects them only at runtime.

Perhaps you’ll concede that your ornithological intuition may be lack-
ing, but you can rely on your mastery of elementary geometry, right? I
mean, how complicated can rectangles and squares be? 

Well, answer this simple question: should class Square publicly inherit
from class Rectangle?

Square

Rectangle

?
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“Duh!” you say, “Of course it should! Everybody knows that a square
is a rectangle, but generally not vice versa.” True enough, at least in
school. But I don’t think we’re in school anymore.

Consider this code:

class Rectangle {
public:

virtual void setHeight(int newHeight);
virtual void setWidth(int newWidth);

virtual int height() const; // return current values
virtual int width() const;

...

};

void makeBigger(Rectangle& r) // function to increase r’s area
{

int oldHeight = r.height();

r.setWidth(r.width() + 10); // add 10 to r’s width

assert(r.height() == oldHeight); // assert that r’s
} // height is unchanged

Clearly, the assertion should never fail. makeBigger only changes r’s
width. Its height is never modified.

Now consider this code, which uses public inheritance to allow
squares to be treated like rectangles:

class Square: public Rectangle { ... };

Square s;

...

assert(s.width() == s.height()); // this must be true for all squares

makeBigger(s); // by inheritance, s is-a Rectangle,
// so we can increase its area

assert(s.width() == s.height()); // this must still be true
// for all squares

It’s just as clear that this second assertion should also never fail. By
definition, the width of a square is the same as its height. 

But now we have a problem. How can we reconcile the following asser-
tions?

■ Before calling makeBigger, s’s height is the same as its width;

■ Inside makeBigger, s’s width is changed, but its height is not;
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■ After returning from makeBigger, s’s height is again the same as its
width. (Note that s is passed to makeBigger by reference, so make-
Bigger modifies s itself, not a copy of s.)

Well?

Welcome to the wonderful world of public inheritance, where the
instincts you’ve developed in other fields of study — including mathe-
matics — may not serve you as well as you expect. The fundamental
difficulty in this case is that something applicable to a rectangle (its
width may be modified independently of its height) is not applicable to
a square (its width and height must be the same). But public inherit-
ance asserts that everything that applies to base class objects —
everything! — also applies to derived class objects. In the case of rect-
angles and squares (as well as an example involving sets and lists in
Item 38), that assertion fails to hold, so using public inheritance to
model their relationship is simply incorrect. Compilers will let you do
it, but as we’ve just seen, that’s no guarantee the code will behave
properly. As every programmer must learn (some more often than oth-
ers), just because the code compiles doesn’t mean it will work.

Don’t fret that the software intuition you’ve developed over the years
will fail you as you approach object-oriented design. That knowledge
is still valuable, but now that you’ve added inheritance to your arsenal
of design alternatives, you’ll have to augment your intuition with new
insights to guide you in inheritance’s proper application. In time, the
notion of having Penguin inherit from Bird or Square inherit from Rect-
angle will give you the same funny feeling you probably get now when
somebody shows you a function several pages long. It’s possibly the
right way to approach things, it’s just not very likely.

The is-a relationship is not the only one that can exist between
classes. Two other common inter-class relationships are “has-a” and
“is-implemented-in-terms-of.” These relationships are considered in
Items 38 and 39. It’s not uncommon for C++ designs to go awry
because one of these other important relationships was incorrectly
modeled as is-a, so you should make sure that you understand the
differences among these relationships and that you know how each is
best modeled in C++.

Things to Remember

✦ Public inheritance means “is-a.” Everything that applies to base
classes must also apply to derived classes, because every derived
class object is a base class object.
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Item 33: Avoid hiding inherited names.

Shakespeare had a thing about names. “What’s in a name?” he asked,
“A rose by any other name would smell as sweet.” The Bard also
wrote, “he that filches from me my good name ... makes me poor
indeed.” Right. Which brings us to inherited names in C++. 

The matter actually has nothing to do with inheritance. It has to do
with scopes. We all know that in code like this,

int x; // global variable

void someFunc()
{

double x; // local variable

std::cin >> x; // read a new value for local x
}

the statement reading into x refers to the local variable x instead of the
global variable x, because names in inner scopes hide (“shadow”)
names in outer scopes. We can visualize the scope situation this way:

When compilers are in someFunc’s scope and they encounter the name
x, they look in the local scope to see if there is something with that
name. Because there is, they never examine any other scope. In this
case, someFunc’s x is of type double and the global x is of type int, but
that doesn’t matter. C++’s name-hiding rules do just that: hide names.
Whether the names correspond to the same or different types is
immaterial. In this case, a double named x hides an int named x. 

Enter inheritance. We know that when we’re inside a derived class
member function and we refer to something in a base class (e.g., a
member function, a typedef, or a data member), compilers can find
what we’re referring to because derived classes inherit the things
declared in base classes. The way that actually works is that the scope
of a derived class is nested inside its base class’s scope. For example:

Global scope

someFunc’s scope
x

x
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This example includes a mix of public and private names as well as
names of both data members and member functions. The member
functions are pure virtual, simple (impure) virtual, and non-virtual.
That’s to emphasize that we’re talking about names. The example
could also have included names of types, e.g., enums, nested classes,
and typedefs. The only thing that matters in this discussion is that
they’re names. What they’re names of is irrelevant. The example uses
single inheritance, but once you understand what’s happening under
single inheritance, C++’s behavior under multiple inheritance is easy
to anticipate.

Suppose mf4 in the derived class is implemented, in part, like this:

void Derived::mf4()
{

...
mf2();
...

}

When compilers see the use of the name mf2 here, they have to figure
out what it refers to. They do that by searching scopes for a declara-
tion of something named mf2. First they look in the local scope (that of
mf4), but they find no declaration for anything called mf2. They then
search the containing scope, that of the class Derived. They still find
nothing named mf2, so they move on to the next containing scope,
that of the base class. There they find something named mf2, so the
search stops. If there were no mf2 in Base, the search would continue,

Base’s scope

Derived’s scope

mf1 (1 function)

x (data member)

class Base {
private:

int x;

public:
virtual void mf1() = 0;
virtual void mf2();
void mf3();
...

};

class Derived: public Base {
public:

virtual void mf1();
void mf4();
...

};

mf1 (1 function)
mf2 (1 function)
mf3 (1 function)

mf4 (1 function)
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first to the namespace(s) containing Derived, if any, and finally to the
global scope.

The process I just described is accurate, but it’s not a comprehensive
description of how names are found in C++. Our goal isn’t to know
enough about name lookup to write a compiler, however. It’s to know
enough to avoid unpleasant surprises, and for that task, we already
have plenty of information.

Consider the previous example again, except this time let’s overload
mf1 and mf3, and let’s add a version of mf3 to Derived. (As Item 36
explains, Derived’s declaration of mf3 — an inherited non-virtual func-
tion — makes this design instantly suspicious, but in the interest of
understanding name visibility under inheritance, we’ll overlook that.)

This code leads to behavior that surprises every C++ programmer the
first time they encounter it. The scope-based name hiding rule hasn’t
changed, so all functions named mf1 and mf3 in the base class are
hidden by the functions named mf1 and mf3 in the derived class. From
the perspective of name lookup, Base::mf1 and Base::mf3 are no longer
inherited by Derived! 

Derived d;
int x;

...

d.mf1(); // fine, calls Derived::mf1
d.mf1(x); // error! Derived::mf1 hides Base::mf1

Base’s scope

Derived’s scope

mf1 (1 function)

x (data member)

class Base {
private:

int x;

public:
virtual void mf1() = 0;
virtual void mf1(int);

virtual void mf2();

void mf3();
void mf3(double);
...

};

class Derived: public Base {
public:

virtual void mf1();
void mf3();
void mf4();
...

};

mf1 (2 functions)
mf2 (1 function)
mf3 (2 functions)

mf3 (1 function)
mf4 (1 function)
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d.mf2(); // fine, calls Base::mf2

d.mf3(); // fine, calls Derived::mf3
d.mf3(x); // error! Derived::mf3 hides Base::mf3

As you can see, this applies even though the functions in the base and
derived classes take different parameter types, and it also applies
regardless of whether the functions are virtual or non-virtual. In the
same way that, at the beginning of this Item, the double x in the func-
tion someFunc hides the int x at global scope, here the function mf3 in
Derived hides a Base function named mf3 that has a different type.

The rationale behind this behavior is that it prevents you from acci-
dentally inheriting overloads from distant base classes when you cre-
ate a new derived class in a library or application framework.
Unfortunately, you typically want to inherit the overloads. In fact, if
you’re using public inheritance and you don’t inherit the overloads,
you’re violating the is-a relationship between base and derived classes
that Item 32 explains is fundamental to public inheritance. That being
the case, you’ll almost always want to override C++’s default hiding of
inherited names. 

You do it with using declarations:

Now inheritance will work as expected:

class Base {
private:

int x;

public:
virtual void mf1() = 0;
virtual void mf1(int);

virtual void mf2();

void mf3();
void mf3(double);
...

};

class Derived: public Base {
public:

using Base::mf1; // make all things in Base named mf1 and mf3
using Base::mf3; // visible (and public) in Derived’s scope

virtual void mf1();
void mf3();
void mf4();
...

};

Base’s scope

Derived’s scope

mf1 (2 functions)

x (data member)
mf1 (2 functions)
mf2 (1 function)
mf3 (2 functions)

mf3 (2 functions)
mf4 (1 function)
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ived d;
;

f1(); // still fine, still calls Derived::mf1
f1(x); // now okay, calls Base::mf1

f2(); // still fine, still calls Base::mf2

f3(); // fine, calls Derived::mf3
f3(x); // now okay, calls Base::mf3 (The int x is 

// implicitly converted to a double so that
// the call to Base::mf3 is valid.)

eans that if you inherit from a base class with overloaded func-
d you want to redefine or override only some of them, you need
de a using declaration for each name you’d otherwise be hiding.
on’t, some of the names you’d like to inherit will be hidden. 

ceivable that you sometimes won’t want to inherit all the func-
om your base classes. Under public inheritance, this should
e the case, because, again, it violates public inheritance’s is-a
ship between base and derived classes. (That’s why the using
tions above are in the public part of the derived class: names
e public in a base class should also be public in a publicly
 class.) Under private inheritance (see Item 39), however, it can
ense. For example, suppose Derived privately inherits from
d the only version of mf1 that Derived wants to inherit is the

ing no parameters. A using declaration won’t do the trick here,
e a using declaration makes all inherited functions with a given
isible in the derived class. No, this is a case for a different tech-
namely, a simple forwarding function:

s Base {
lic:
rtual void mf1() = 0;
rtual void mf1(int);

// as before

s Derived: private Base {
lic:
rtual void mf1() // forwarding function; implicitly
ase::mf1(); } // inline — see Item 30. (For info

// on calling a pure virtual

// function, see Item 34.)

ived d;
;

f1(); // fine, calls Derived::mf1
f1(x); // error! Base::mf1() is hidden
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Another use for inline forwarding functions is to work around ancient
compilers that (incorrectly) don’t support using declarations to import
inherited names into the scope of a derived class.

That’s the whole story on inheritance and name hiding, but when
inheritance is combined with templates, an entirely different form of
the “inherited names are hidden” issue arises. For all the angle-
bracket-demarcated details, see Item 43.

Things to Remember

✦ Names in derived classes hide names in base classes. Under public
inheritance, this is never desirable. 

✦ To make hidden names visible again, employ using declarations or
forwarding functions.

Item 34: Differentiate between inheritance of 
interface and inheritance of implementation.

The seemingly straightforward notion of (public) inheritance turns
out, upon closer examination, to be composed of two separable parts:
inheritance of function interfaces and inheritance of function imple-
mentations. The difference between these two kinds of inheritance
corresponds exactly to the difference between function declarations
and function definitions discussed in the Introduction to this book.

As a class designer, you sometimes want derived classes to inherit
only the interface (declaration) of a member function. Sometimes you
want derived classes to inherit both a function’s interface and imple-
mentation, but you want to allow them to override the implementation
they inherit. And sometimes you want derived classes to inherit a
function’s interface and implementation without allowing them to
override anything. 

To get a better feel for the differences among these options, consider a
class hierarchy for representing geometric shapes in a graphics appli-
cation:

class Shape {
public:

virtual void draw() const = 0;

virtual void error(const std::string& msg);

int objectID() const;
...

};

class Rectangle: public Shape { ... };

class Ellipse: public Shape { ... };
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Shape is an abstract class; its pure virtual function draw marks it as
such. As a result, clients cannot create instances of the Shape class,
only of classes derived from it. Nonetheless, Shape exerts a strong
influence on all classes that (publicly) inherit from it, because

■ Member function interfaces are always inherited. As explained in
Item 32, public inheritance means is-a, so anything that is true of
a base class must also be true of its derived classes. Hence, if a
function applies to a class, it must also apply to its derived
classes.

Three functions are declared in the Shape class. The first, draw, draws
the current object on an implicit display. The second, error, is called
when an error needs to be reported. The third, objectID, returns a
unique integer identifier for the current object. Each function is
declared in a different way: draw is a pure virtual function; error is a
simple (impure?) virtual function; and objectID is a non-virtual func-
tion. What are the implications of these different declarations?

Consider first the pure virtual function draw:

class Shape {
public:

virtual void draw() const = 0;
...

};

The two most salient features of pure virtual functions are that they
must be redeclared by any concrete class that inherits them, and they
typically have no definition in abstract classes. Put these two charac-
teristics together, and you realize that 

■ The purpose of declaring a pure virtual function is to have derived
classes inherit a function interface only.

This makes perfect sense for the Shape::draw function, because it is a
reasonable demand that all Shape objects must be drawable, but the
Shape class can provide no reasonable default implementation for that
function. The algorithm for drawing an ellipse is very different from
the algorithm for drawing a rectangle, for example. The declaration of
Shape::draw says to designers of concrete derived classes, “You must
provide a draw function, but I have no idea how you’re going to imple-
ment it.”

Incidentally, it is possible to provide a definition for a pure virtual
function. That is, you could provide an implementation for Shape::draw,
and C++ wouldn’t complain, but the only way to call it would be to
qualify the call with the class name:
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Shape *ps = new Shape; // error! Shape is abstract

Shape *ps1 = new Rectangle; // fine
ps1->draw(); // calls Rectangle::draw

Shape *ps2 = new Ellipse; // fine
ps2->draw(); // calls Ellipse::draw

ps1->Shape::draw(); // calls Shape::draw

ps2->Shape::draw(); // calls Shape::draw

Aside from helping you impress fellow programmers at cocktail par-
ties, knowledge of this feature is generally of limited utility. As you’ll
see below, however, it can be employed as a mechanism for providing
a safer-than-usual default implementation for simple (impure) virtual
functions.

The story behind simple virtual functions is a bit different from that
behind pure virtuals. As usual, derived classes inherit the interface of
the function, but simple virtual functions provide an implementation
that derived classes may override. If you think about this for a minute,
you’ll realize that

■ The purpose of declaring a simple virtual function is to have de-
rived classes inherit a function interface as well as a default imple-
mentation.

Consider the case of Shape::error:

class Shape {
public:

virtual void error(const std::string& msg);
...

};

The interface says that every class must support a function to be
called when an error is encountered, but each class is free to handle
errors in whatever way it sees fit. If a class doesn’t want to do any-
thing special, it can just fall back on the default error handling pro-
vided in the Shape class. That is, the declaration of Shape::error says to
designers of derived classes, “You’ve got to support an error function,
but if you don’t want to write your own, you can fall back on the
default version in the Shape class.”

It turns out that it can be dangerous to allow simple virtual functions
to specify both a function interface and a default implementation. To
see why, consider a hierarchy of airplanes for XYZ Airlines. XYZ has
only two kinds of planes, the Model A and the Model B, and both are
flown in exactly the same way. Hence, XYZ designs the following hier-
archy:
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class Airport { ... }; // represents airports

class Airplane {
public:

virtual void fly(const Airport& destination);

...

};

void Airplane::fly(const Airport& destination)
{

default code for flying an airplane to the given destination
}

class ModelA: public Airplane { ... };

class ModelB: public Airplane { ... };

To express that all planes have to support a fly function, and in recog-
nition of the fact that different models of plane could, in principle,
require different implementations for fly, Airplane::fly is declared vir-
tual. However, in order to avoid writing identical code in the ModelA
and ModelB classes, the default flying behavior is provided as the body
of Airplane::fly, which both ModelA and ModelB inherit. 

This is a classic object-oriented design. Two classes share a common
feature (the way they implement fly), so the common feature is moved
into a base class, and the feature is inherited by the two classes. This
design makes common features explicit, avoids code duplication, facil-
itates future enhancements, and eases long-term maintenance — all
the things for which object-oriented technology is so highly touted.
XYZ Airlines should be proud.

Now suppose that XYZ, its fortunes on the rise, decides to acquire a
new type of airplane, the Model C. The Model C differs in some ways
from the Model A and the Model B. In particular, it is flown differently.

XYZ’s programmers add the class for Model C to the hierarchy, but in
their haste to get the new model into service, they forget to redefine
the fly function:

class ModelC: public Airplane {

... // no fly function is declared
};

In their code, then, they have something akin to the following:

Airport PDX(...); // PDX is the airport near my home

Airplane *pa = new ModelC;

...

pa->fly(PDX); // calls Airplane::fly!
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This is a disaster: an attempt is being made to fly a ModelC object as if
it were a ModelA or a ModelB. That’s not the kind of behavior that
inspires confidence in the traveling public.

The problem here is not that Airplane::fly has default behavior, but that
ModelC was allowed to inherit that behavior without explicitly saying
that it wanted to. Fortunately, it’s easy to offer default behavior to
derived classes but not give it to them unless they ask for it. The trick
is to sever the connection between the interface of the virtual function
and its default implementation. Here’s one way to do it:

class Airplane {
public:

virtual void fly(const Airport& destination) = 0;

...

protected:
void defaultFly(const Airport& destination);

};

void Airplane::defaultFly(const Airport& destination)
{

default code for flying an airplane to the given destination
}

Notice how Airplane::fly has been turned into a pure virtual function.
That provides the interface for flying. The default implementation is
also present in the Airplane class, but now it’s in the form of an inde-
pendent function, defaultFly. Classes like ModelA and ModelB that want
to use the default behavior simply make an inline call to defaultFly
inside their body of fly (but see Item 30 for information on the interac-
tion of inlining and virtual functions):

class ModelA: public Airplane {
public:

virtual void fly(const Airport& destination)
{ defaultFly(destination); }

...

};

class ModelB: public Airplane {
public:

virtual void fly(const Airport& destination)
{ defaultFly(destination); }

...

};
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For the ModelC class, there is no possibility of accidentally inheriting
the incorrect implementation of fly, because the pure virtual in Air-
plane forces ModelC to provide its own version of fly. 

class ModelC: public Airplane {
public:

virtual void fly(const Airport& destination);

...

};

void ModelC::fly(const Airport& destination)
{

code for flying a ModelC airplane to the given destination
}

This scheme isn’t foolproof (programmers can still copy-and-paste
themselves into trouble), but it’s more reliable than the original
design. As for Airplane::defaultFly, it’s protected because it’s truly an
implementation detail of Airplane and its derived classes. Clients using
airplanes should care only that they can be flown, not how the flying
is implemented. 

It’s also important that Airplane::defaultFly is a non-virtual function.
This is because no derived class should redefine this function, a truth
to which Item 36 is devoted. If defaultFly were virtual, you’d have a cir-
cular problem: what if some derived class forgets to redefine defaultFly
when it’s supposed to?

Some people object to the idea of having separate functions for provid-
ing interface and default implementation, such as fly and defaultFly
above. For one thing, they note, it pollutes the class namespace with a
proliferation of closely related function names. Yet they still agree that
interface and default implementation should be separated. How do
they resolve this seeming contradiction? By taking advantage of the
fact that pure virtual functions must be redeclared in concrete derived
classes, but they may also have implementations of their own. Here’s
how the Airplane hierarchy could take advantage of the ability to define
a pure virtual function:

class Airplane {
public:

virtual void fly(const Airport& destination) = 0;

...

};
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void Airplane::fly(const Airport& destination) // an implementation of
{ // a pure virtual function

default code for flying an airplane to
the given destination

}

class ModelA: public Airplane {
public:

virtual void fly(const Airport& destination)
{ Airplane::fly(destination); }

...

};

class ModelB: public Airplane {
public:

virtual void fly(const Airport& destination)
{ Airplane::fly(destination); }

...

};

class ModelC: public Airplane {
public:

virtual void fly(const Airport& destination);

...

};

void ModelC::fly(const Airport& destination)
{

code for flying a ModelC airplane to the given destination
}

This is almost exactly the same design as before, except that the body
of the pure virtual function Airplane::fly takes the place of the indepen-
dent function Airplane::defaultFly. In essence, fly has been broken into
its two fundamental components. Its declaration specifies its interface
(which derived classes must use), while its definition specifies its
default behavior (which derived classes may use, but only if they
explicitly request it). In merging fly and defaultFly, however, you’ve lost
the ability to give the two functions different protection levels: the
code that used to be protected (by being in defaultFly) is now public
(because it’s in fly). 

Finally, we come to Shape’s non-virtual function, objectID:

class Shape {
public:

int objectID() const;
...

};
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When a member function is non-virtual, it’s not supposed to behave
differently in derived classes. In fact, a non-virtual member function
specifies an invariant over specialization, because it identifies behavior
that is not supposed to change, no matter how specialized a derived
class becomes. As such, 

■ The purpose of declaring a non-virtual function is to have derived
classes inherit a function interface as well as a mandatory imple-
mentation.

You can think of the declaration for Shape::objectID as saying, “Every
Shape object has a function that yields an object identifier, and that
object identifier is always computed the same way. That way is deter-
mined by the definition of Shape::objectID, and no derived class should
try to change how it’s done.” Because a non-virtual function identifies
an invariant over specialization, it should never be redefined in a
derived class, a point that is discussed in detail in Item 36.

The differences in declarations for pure virtual, simple virtual, and
non-virtual functions allow you to specify with precision what you
want derived classes to inherit: interface only, interface and a default
implementation, or interface and a mandatory implementation, respec-
tively. Because these different types of declarations mean fundamen-
tally different things, you must choose carefully among them when you
declare your member functions. If you do, you should avoid the two
most common mistakes made by inexperienced class designers. 

The first mistake is to declare all functions non-virtual. That leaves no
room for specialization in derived classes; non-virtual destructors are
particularly problematic (see Item 7). Of course, it’s perfectly reason-
able to design a class that is not intended to be used as a base class.
In that case, a set of exclusively non-virtual member functions is
appropriate. Too often, however, such classes are declared either out
of ignorance of the differences between virtual and non-virtual func-
tions or as a result of an unsubstantiated concern over the perfor-
mance cost of virtual functions. The fact of the matter is that almost
any class that’s to be used as a base class will have virtual functions
(again, see Item 7). 

If you’re concerned about the cost of virtual functions, allow me to
bring up the empirically-based rule of 80-20 (see also Item 30), which
states that in a typical program, 80% of the runtime will be spent exe-
cuting just 20% of the code. This rule is important, because it means
that, on average, 80% of your function calls can be virtual without
having the slightest detectable impact on your program’s overall per-
formance. Before you go gray worrying about whether you can afford
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the cost of a virtual function, take the simple precaution of making
sure that you’re focusing on the 20% of your program where the deci-
sion might really make a difference.

The other common problem is to declare all member functions virtual.
Sometimes this is the right thing to do — witness Item 31’s Interface
classes. However, it can also be a sign of a class designer who lacks
the backbone to take a stand. Some functions should not be redefin-
able in derived classes, and whenever that’s the case, you’ve got to say
so by making those functions non-virtual. It serves no one to pretend
that your class can be all things to all people if they’ll just take the
time to redefine all your functions. If you have an invariant over spe-
cialization, don’t be afraid to say so!

Things to Remember

✦ Inheritance of interface is different from inheritance of implementa-
tion. Under public inheritance, derived classes always inherit base
class interfaces.

✦ Pure virtual functions specify inheritance of interface only. 

✦ Simple (impure) virtual functions specify inheritance of interface
plus inheritance of a default implementation. 

✦ Non-virtual functions specify inheritance of interface plus inherit-
ance of a mandatory implementation.

Item 35: Consider alternatives to virtual functions.

So you’re working on a video game, and you’re designing a hierarchy
for characters in the game. Your game being of the slash-and-burn
variety, it’s not uncommon for characters to be injured or otherwise in
a reduced state of health. You therefore decide to offer a member func-
tion, healthValue, that returns an integer indicating how healthy the
character is. Because different characters may calculate their health
in different ways, declaring healthValue virtual seems the obvious way
to design things:

class GameCharacter {
public:

virtual int healthValue() const; // return character’s health rating;
... // derived classes may redefine this

};

The fact that healthValue isn’t declared pure virtual suggests that there
is a default algorithm for calculating health (see Item 34).
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This is, indeed, the obvious way to design things, and in some sense,
that’s its weakness. Because this design is so obvious, you may not
give adequate consideration to its alternatives. In the interest of help-
ing you escape the ruts in the road of object-oriented design, let’s con-
sider some other ways to approach this problem.

The Template Method Pattern via the Non-Virtual Interface Idiom

We’ll begin with an interesting school of thought that argues that vir-
tual functions should almost always be private. Adherents to this
school would suggest that a better design would retain healthValue as
a public member function but make it non-virtual and have it call a
private virtual function to do the real work, say, doHealthValue:

class GameCharacter {
public:

int healthValue() const // derived classes do not redefine
{ // this — see Item 36

... // do “before” stuff — see below

int retVal = doHealthValue(); // do the real work 

... // do “after” stuff — see below

return retVal;
}
...

private:
virtual int doHealthValue() const // derived classes may redefine this
{ 

... // default algorithm for calculating
} // character’s health

};

In this code (and for the rest of this Item), I’m showing the bodies of
member functions in class definitions. As Item 30 explains, that
implicitly declares them inline. I’m showing the code this way only to
make it easier to see what is going on. The designs I’m describing are
independent of inlining decisions, so don’t think it’s meaningful that
the member functions are defined inside classes. It’s not. 

This basic design — having clients call private virtual functions indi-
rectly through public non-virtual member functions — is known as
the non-virtual interface (NVI) idiom. It’s a particular manifestation of
the more general design pattern called Template Method (a pattern
that, unfortunately, has nothing to do with C++ templates). I call the
non-virtual function (e.g., healthValue) the virtual function’s wrapper.
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An advantage of the NVI idiom is suggested by the “do ‘before’ stuff”
and “do ‘after’ stuff” comments in the code. Those comments identify
code segments guaranteed to be called before and after the virtual
function that does the real work. This means that the wrapper
ensures that before a virtual function is called, the proper context is
set up, and after the call is over, the context is cleaned up. For exam-
ple, the “before” stuff could include locking a mutex, making a log
entry, verifying that class invariants and function preconditions are
satisfied, etc. The “after” stuff could include unlocking a mutex, veri-
fying function postconditions, reverifying class invariants, etc. There’s
not really any good way to do that if you let clients call virtual func-
tions directly.

It may have crossed your mind that the NVI idiom involves derived
classes redefining private virtual functions — redefining functions
they can’t call! There’s no design contradiction here. Redefining a vir-
tual function specifies how something is to be done. Calling a virtual
function specifies when it will be done. These concerns are indepen-
dent. The NVI idiom allows derived classes to redefine a virtual func-
tion, thus giving them control over how functionality is implemented,
but the base class reserves for itself the right to say when the function
will be called. It may seem odd at first, but C++’s rule that derived
classes may redefine private inherited virtual functions is perfectly
sensible.

Under the NVI idiom, it’s not strictly necessary that the virtual func-
tions be private. In some class hierarchies, derived class implementa-
tions of a virtual function are expected to invoke their base class
counterparts (e.g., the example on page 120), and for such calls to be
legal, the virtuals must be protected, not private. Sometimes a virtual
function even has to be public (e.g., destructors in polymorphic base
classes — see Item 7), but then the NVI idiom can’t really be applied.

The Strategy Pattern via Function Pointers

The NVI idiom is an interesting alternative to public virtual functions,
but from a design point of view, it’s little more than window dressing.
After all, we’re still using virtual functions to calculate each charac-
ter’s health. A more dramatic design assertion would be to say that
calculating a character’s health is independent of the character’s type
— that such calculations need not be part of the character at all. For
example, we could require that each character’s constructor be
passed a pointer to a health calculation function, and we could call
that function to do the actual calculation:
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class GameCharacter; // forward declaration

// function for the default health calculation algorithm
int defaultHealthCalc(const GameCharacter& gc);

class GameCharacter {
public:

typedef int (*HealthCalcFunc)(const GameCharacter&);

explicit GameCharacter(HealthCalcFunc hcf = defaultHealthCalc)
: healthFunc(hcf )
{}

int healthValue() const 
{ return healthFunc(*this); }

...

private:
HealthCalcFunc healthFunc;

};

This approach is a simple application of another common design pat-
tern, Strategy. Compared to approaches based on virtual functions in
the GameCharacter hierarchy, it offers some interesting flexibility:

■ Different instances of the same character type can have different
health calculation functions. For example:

class EvilBadGuy: public GameCharacter {
public:

explicit EvilBadGuy(HealthCalcFunc hcf = defaultHealthCalc)
: GameCharacter(hcf )
{ ... }

...

};

int loseHealthQuickly(const GameCharacter&); // health calculation
int loseHealthSlowly(const GameCharacter&); // funcs with different

// behavior

EvilBadGuy ebg1(loseHealthQuickly); // same-type charac-
EvilBadGuy ebg2(loseHealthSlowly); // ters with different

// health-related
// behavior

■ Health calculation functions for a particular character may be
changed at runtime. For example, GameCharacter might offer a
member function, setHealthCalculator, that allowed replacement of
the current health calculation function.

On the other hand, the fact that the health calculation function is no
longer a member function of the GameCharacter hierarchy means that
it has no special access to the internal parts of the object whose
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health it’s calculating. For example, defaultHealthCalc has no access to
the non-public parts of EvilBadGuy. If a character’s health can be cal-
culated based purely on information available through the character’s
public interface, this is not a problem, but if accurate health calcula-
tion requires non-public information, it is. In fact, it’s a potential
issue anytime you replace functionality inside a class (e.g., via a mem-
ber function) with equivalent functionality outside the class (e.g., via a
non-member non-friend function or via a non-friend member function
of another class). This issue will persist for the remainder of this Item,
because all the other design alternatives we’re going to consider
involve the use of functions outside the GameCharacter hierarchy.

As a general rule, the only way to resolve the need for non-member
functions to have access to non-public parts of a class is to weaken
the class’s encapsulation. For example, the class might declare the
non-member functions to be friends, or it might offer public accessor
functions for parts of its implementation it would otherwise prefer to
keep hidden. Whether the advantages of using a function pointer
instead of a virtual function (e.g., the ability to have per-object health
calculation functions and the ability to change such functions at
runtime) offset the possible need to decrease GameCharacter’s encap-
sulation is something you must decide on a design-by-design basis.

The Strategy Pattern via tr1::function

Once you accustom yourself to templates and their use of implicit
interfaces (see Item 41), the function-pointer-based approach looks
rather rigid. Why must the health calculator be a function instead of
simply something that acts like a function (e.g., a function object)? If it
must be a function, why can’t it be a member function? And why must
it return an int instead of any type convertible to an int? 

These constraints evaporate if we replace the use of a function pointer
(such as healthFunc) with an object of type tr1::function. As Item 54
explains, such objects may hold any callable entity (i.e., function
pointer, function object, or member function pointer) whose signature
is compatible with what is expected. Here’s the design we just saw,
this time using tr1::function:

class GameCharacter; // as before
int defaultHealthCalc(const GameCharacter& gc); // as before

class GameCharacter {
public:

// HealthCalcFunc is any callable entity that can be called with
// anything compatible with a GameCharacter and that returns anything
// compatible with an int; see below for details
typedef std::tr1::function<int (const GameCharacter&)> HealthCalcFunc;
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explicit GameCharacter(HealthCalcFunc hcf = defaultHealthCalc)
: healthFunc(hcf )
{}

int healthValue() const 
{ return healthFunc(*this); }

...

private:
HealthCalcFunc healthFunc;

};

As you can see, HealthCalcFunc is a typedef for a tr1::function instantia-
tion. That means it acts like a generalized function pointer type. Look
closely at what HealthCalcFunc is a typedef for:

std::tr1::function<int (const GameCharacter&)>

Here I’ve highlighted the “target signature” of this tr1::function instanti-
ation. That target signature is “function taking a const GameCharacter&
and returning an int.” An object of this tr1::function type (i.e., of type
HealthCalcFunc) may hold any callable entity compatible with the target
signature. To be compatible means that const GameCharacter& either is
or can be converted to the type of the entity’s parameter, and the
entity’s return type either is or can be implicitly converted to int.

Compared to the last design we saw (where GameCharacter held a
pointer to a function), this design is almost the same. The only differ-
ence is that GameCharacter now holds a tr1::function object — a general-
ized pointer to a function. This change is so small, I’d call it
inconsequential, except that a consequence is that clients now have
staggeringly more flexibility in specifying health calculation functions:

short calcHealth(const GameCharacter&); // health calculation
// function; note 
// non-int return type

struct HealthCalculator { // class for health
int operator()(const GameCharacter&) const // calculation function
{ ... } // objects

};

class GameLevel {
public:

float health(const GameCharacter&) const; // health calculation
... // mem function; note

}; // non-int return type

class EvilBadGuy: public GameCharacter { // as before
...

};
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class EyeCandyCharacter: public GameCharacter { // another character
... // type; assume same

}; // constructor as 
// EvilBadGuy

EvilBadGuy ebg1(calcHealth); // character using a
// health calculation
// function

EyeCandyCharacter ecc1(HealthCalculator()); // character using a 
// health calculation
// function object

GameLevel currentLevel;
...

EvilBadGuy ebg2( // character using a
std::tr1::bind(&GameLevel::health, // health calculation

currentLevel, // member function;
_1) // see below for details

);

Personally, I find what tr1::function lets you do so amazing, it makes
me tingle all over. If you’re not tingling, it may be because you’re star-
ing at the definition of ebg2 and wondering what’s going on with the
call to tr1::bind. Kindly allow me to explain.

We want to say that to calculate ebg2’s health rating, the health mem-
ber function in the GameLevel class should be used. Now,
GameLevel::health is a function that is declared to take one parameter
(a reference to a GameCharacter), but it really takes two, because it also
gets an implicit GameLevel parameter — the one this points to. Health
calculation functions for GameCharacters, however, take a single
parameter: the GameCharacter whose health is to be calculated. If we’re
to use GameLevel::health for ebg2’s health calculation, we have to some-
how “adapt” it so that instead of taking two parameters (a GameCharac-
ter and a GameLevel), it takes only one (a GameCharacter). In this
example, we always want to use currentLevel as the GameLevel object
for ebg2’s health calculation, so we “bind” currentLevel as the
GameLevel object to be used each time GameLevel::health is called to
calculate ebg2’s health. That’s what the tr1::bind call does: it specifies
that ebg2’s health calculation function should always use currentLevel
as the GameLevel object. 

I’m skipping over a host of details regarding the call to tr1::bind,
because such details wouldn’t be terribly illuminating, and they’d dis-
tract from the fundamental point I want to make: by using tr1::function
instead of a function pointer, we’re allowing clients to use any compat-
ible callable entity when calculating a character’s health. Is that cool
or what?
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The “Classic” Strategy Pattern

If you’re more into design patterns than C++ coolness, a more conven-
tional approach to Strategy would be to make the health-calculation
function a virtual member function of a separate health-calculation
hierarchy. The resulting hierarchy design would look like this:

If you’re not up on your UML notation, this just says that GameCharac-
ter is the root of an inheritance hierarchy where EvilBadGuy and Eye-
CandyCharacter are derived classes; HealthCalcFunc is the root of an
inheritance hierarchy with derived classes SlowHealthLoser and
FastHealthLoser; and each object of type GameCharacter contains a
pointer to an object from the HealthCalcFunc hierarchy.

Here’s the corresponding code skeleton:

class GameCharacter; // forward declaration

class HealthCalcFunc {
public:

...
virtual int calc(const GameCharacter& gc) const
{ ... }
...

};

HealthCalcFunc defaultHealthCalc;

class GameCharacter {
public:

explicit GameCharacter(HealthCalcFunc *phcf = &defaultHealthCalc)
: pHealthCalc(phcf )
{}

int healthValue() const 
{ return pHealthCalc->calc(*this); }

...

private:
HealthCalcFunc *pHealthCalc;

};

GameCharacter

EvilBadGuy

EyeCandyCharacter

...

HealthCalcFunc

SlowHealthLoser

FastHealthLoser

...
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This approach has the appeal of being quickly recognizable to people
familiar with the “standard” Strategy pattern implementation, plus it
offers the possibility that an existing health calculation algorithm can
be tweaked by adding a derived class to the HealthCalcFunc hierarchy.

Summary

The fundamental advice of this Item is to consider alternatives to vir-
tual functions when searching for a design for the problem you’re try-
ing to solve. Here’s a quick recap of the alternatives we examined:

■ Use the non-virtual interface idiom (NVI idiom), a form of the
Template Method design pattern that wraps public non-virtual
member functions around less accessible virtual functions.

■ Replace virtual functions with function pointer data members, a
stripped-down manifestation of the Strategy design pattern.

■ Replace virtual functions with tr1::function data members, thus
allowing use of any callable entity with a signature compatible with
what you need. This, too, is a form of the Strategy design pattern.

■ Replace virtual functions in one hierarchy with virtual functions
in another hierarchy. This is the conventional implementation of
the Strategy design pattern.

This isn’t an exhaustive list of design alternatives to virtual functions,
but it should be enough to convince you that there are alternatives.
Furthermore, their comparative advantages and disadvantages should
make clear that you should consider them. 

To avoid getting stuck in the ruts of the road of object-oriented design,
give the wheel a good jerk from time to time. There are lots of other
roads. It’s worth taking the time to investigate them.

Things to Remember

✦ Alternatives to virtual functions include the NVI idiom and various
forms of the Strategy design pattern. The NVI idiom is itself an ex-
ample of the Template Method design pattern.

✦ A disadvantage of moving functionality from a member function to a
function outside the class is that the non-member function lacks ac-
cess to the class’s non-public members.

✦ tr1::function objects act like generalized function pointers. Such ob-
jects support all callable entities compatible with a given target sig-
nature.
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Item 36: Never redefine an inherited non-virtual 
function.

Suppose I tell you that a class D is publicly derived from a class B and
that there is a public member function mf defined in class B. The
parameters and return type of mf are unimportant, so let’s just
assume they’re both void. In other words, I say this:

class B {
public:

void mf();
...

};

class D: public B { ... };

Even without knowing anything about B, D, or mf, given an object x of
type D,

D x; // x is an object of type D

you would probably be quite surprised if this,

B *pB = &x; // get pointer to x

pB->mf(); // call mf through pointer

behaved differently from this:

D *pD = &x; // get pointer to x

pD->mf(); // call mf through pointer

That’s because in both cases you’re invoking the member function mf
on the object x. Because it’s the same function and the same object in
both cases, it should behave the same way, right?

Right, it should. But it might not. In particular, it won’t if mf is non-
virtual and D has defined its own version of mf:

class D: public B {
public:

void mf(); // hides B::mf; see Item 33

...

};

pB->mf(); // calls B::mf

pD->mf(); // calls D::mf

The reason for this two-faced behavior is that non-virtual functions
like B::mf and D::mf are statically bound (see Item 37). That means that
because pB is declared to be of type pointer-to-B, non-virtual func-
tions invoked through pB will always be those defined for class B, even
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if pB points to an object of a class derived from B, as it does in this
example.

Virtual functions, on the other hand, are dynamically bound (again,
see Item 37), so they don’t suffer from this problem. If mf were a vir-
tual function, a call to mf through either pB or pD would result in an
invocation of D::mf, because what pB and pD really point to is an object
of type D.

If you are writing class D and you redefine a non-virtual function mf
that you inherit from class B, D objects will likely exhibit inconsistent
behavior. In particular, any given D object may act like either a B or a
D when mf is called, and the determining factor will have nothing to do
with the object itself, but with the declared type of the pointer that
points to it. References exhibit the same baffling behavior as do point-
ers.

But that’s just a pragmatic argument. What you really want, I know,
is some kind of theoretical justification for not redefining inherited
non-virtual functions. I am pleased to oblige.

Item 32 explains that public inheritance means is-a, and Item 34
describes why declaring a non-virtual function in a class establishes
an invariant over specialization for that class. If you apply these
observations to the classes B and D and to the non-virtual member
function B::mf, then

■ Everything that applies to B objects also applies to D objects, be-
cause every D object is-a B object;

■ Classes derived from B must inherit both the interface and the im-
plementation of mf, because mf is non-virtual in B.

Now, if D redefines mf, there is a contradiction in your design. If D
really needs to implement mf differently from B, and if every B object —
no matter how specialized — really has to use the B implementation
for mf, then it’s simply not true that every D is-a B. In that case, D
shouldn’t publicly inherit from B. On the other hand, if D really has to
publicly inherit from B, and if D really needs to implement mf differ-
ently from B, then it’s just not true that mf reflects an invariant over
specialization for B. In that case, mf should be virtual. Finally, if every
D really is-a B, and if mf really corresponds to an invariant over spe-
cialization for B, then D can’t honestly need to redefine mf, and it
shouldn’t try to.

Regardless of which argument applies, something has to give, and
under no conditions is it the prohibition on redefining an inherited
non-virtual function.
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If reading this Item gives you a sense of déjà vu, it’s probably because
you’ve already read Item 7, which explains why destructors in poly-
morphic base classes should be virtual. If you violate that guideline
(i.e., if you declare a non-virtual destructor in a polymorphic base
class), you’ll also be violating this guideline, because derived classes
would invariably redefine an inherited non-virtual function: the base
class’s destructor. This would be true even for derived classes that
declare no destructor, because, as Item 5 explains, the destructor is
one of the member functions that compilers generate for you if you
don’t declare one yourself. In essence, Item 7 is nothing more than a
special case of this Item, though it’s important enough to merit calling
out on its own.

Things to Remember

✦ Never redefine an inherited non-virtual function.

Item 37: Never redefine a function’s inherited default 
parameter value.

Let’s simplify this discussion right from the start. There are only two
kinds of functions you can inherit: virtual and non-virtual. However,
it’s always a mistake to redefine an inherited non-virtual function (see
Item 36), so we can safely limit our discussion here to the situation in
which you inherit a virtual function with a default parameter value.

That being the case, the justification for this Item becomes quite
straightforward: virtual functions are dynamically bound, but default
parameter values are statically bound.

What’s that? You say the difference between static and dynamic bind-
ing has slipped your already overburdened mind? (For the record,
static binding is also known as early binding, and dynamic binding is
also known as late binding.) Let’s review, then.

An object’s static type is the type you declare it to have in the program
text. Consider this class hierarchy:

// a class for geometric shapes
class Shape {
public:

enum ShapeColor { Red, Green, Blue };

// all shapes must offer a function to draw themselves
virtual void draw(ShapeColor color = Red) const = 0;
...

};
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class Rectangle: public Shape {
public:

// notice the different default parameter value — bad!
virtual void draw(ShapeColor color = Green) const;
...

};

class Circle: public Shape {
public:

virtual void draw(ShapeColor color) const;
...

};

Graphically, it looks like this:

Now consider these pointers:

Shape *ps; // static type = Shape*
Shape *pc = new Circle; // static type = Shape*
Shape *pr = new Rectangle; // static type = Shape*

In this example, ps, pc, and pr are all declared to be of type pointer-to-
Shape, so they all have that as their static type. Notice that it makes
absolutely no difference what they’re really pointing to — their static
type is Shape* regardless.

An object’s dynamic type is determined by the type of the object to
which it currently refers. That is, its dynamic type indicates how it will
behave. In the example above, pc’s dynamic type is Circle*, and pr’s
dynamic type is Rectangle*. As for ps, it doesn’t really have a dynamic
type, because it doesn’t refer to any object (yet).

Dynamic types, as their name suggests, can change as a program
runs, typically through assignments:

ps = pc; // ps’s dynamic type is
// now Circle*

ps = pr; // ps’s dynamic type is
// now Rectangle*

Virtual functions are dynamically bound, meaning that the particular
function called is determined by the dynamic type of the object
through which it’s invoked:

Shape

Rectangle Circle
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pc->draw(Shape::Red); // calls Circle::draw(Shape::Red)

pr->draw(Shape::Red); // calls Rectangle::draw(Shape::Red)

This is all old hat, I know; you surely understand virtual functions.
The twist comes in when you consider virtual functions with default
parameter values, because, as I said above, virtual functions are
dynamically bound, but default parameters are statically bound. That
means you may end up invoking a virtual function defined in a
derived class but using a default parameter value from a base class:

pr->draw(); // calls Rectangle::draw(Shape::Red)!

In this case, pr’s dynamic type is Rectangle*, so the Rectangle virtual
function is called, just as you would expect. In Rectangle::draw, the
default parameter value is Green. Because pr’s static type is Shape*,
however, the default parameter value for this function call is taken
from the Shape class, not the Rectangle class! The result is a call con-
sisting of a strange and almost certainly unanticipated combination of
the declarations for draw in both the Shape and Rectangle classes.

The fact that ps, pc, and pr are pointers is of no consequence in this
matter. Were they references, the problem would persist. The only
important things are that draw is a virtual function, and one of its
default parameter values is redefined in a derived class. 

Why does C++ insist on acting in this perverse manner? The answer
has to do with runtime efficiency. If default parameter values were
dynamically bound, compilers would have to come up with a way to
determine the appropriate default value(s) for parameters of virtual
functions at runtime, which would be slower and more complicated
than the current mechanism of determining them during compilation.
The decision was made to err on the side of speed and simplicity of
implementation, and the result is that you now enjoy execution
behavior that is efficient, but, if you fail to heed the advice of this
Item, confusing.

That’s all well and good, but look what happens if you try to follow
this rule and also offer default parameter values to users of both base
and derived classes:

class Shape {
public:

enum ShapeColor { Red, Green, Blue };

virtual void draw(ShapeColor color = Red) const = 0;
...

};
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class Rectangle: public Shape {
public:

virtual void draw(ShapeColor color = Red) const;
...

};

Uh oh, code duplication. Worse yet, code duplication with dependen-
cies: if the default parameter value is changed in Shape, all derived
classes that repeat it must also be changed. Otherwise they’ll end up
redefining an inherited default parameter value. What to do?

When you’re having trouble making a virtual function behave the way
you’d like, it’s wise to consider alternative designs, and Item 35 is
filled with alternatives to virtual functions. One of the alternatives is
the non-virtual interface idiom (NVI idiom): having a public non-virtual
function in a base class call a private virtual function that derived
classes may redefine. Here, we have the non-virtual function specify
the default parameter, while the virtual function does the actual work:

class Shape {
public:

enum ShapeColor { Red, Green, Blue };

void draw(ShapeColor color = Red) const // now non-virtual
{

doDraw(color); // calls a virtual
}

...

private:
virtual void doDraw(ShapeColor color) const = 0; // the actual work is

}; // done in this func

class Rectangle: public Shape {
public:

...

private:
virtual void doDraw(ShapeColor color) const; // note lack of a
... // default param val.

};

Because non-virtual functions should never be redefined by derived
classes (see Item 36), this design makes clear that the default value
for draw’s color parameter should always be Red.

Things to Remember

✦ Never redefine an inherited default parameter value, because default
parameter values are statically bound, while virtual functions — the
only functions you should be redefining — are dynamically bound.
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Item 38: Model “has-a” or “is-implemented-in-terms-
of” through composition.

Composition is the relationship between types that arises when objects
of one type contain objects of another type. For example:

class Address { ... }; // where someone lives

class PhoneNumber { ... };

class Person {
public:

...

private:
std::string name; // composed object
Address address; // ditto
PhoneNumber voiceNumber; // ditto
PhoneNumber faxNumber; // ditto

};

In this example, Person objects are composed of string, Address, and
PhoneNumber objects. Among programmers, the term composition has
lots of synonyms. It’s also known as layering, containment, aggrega-
tion, and embedding. 

Item 32 explains that public inheritance means “is-a.” Composition
has a meaning, too. Actually, it has two meanings. Composition
means either “has-a” or “is-implemented-in-terms-of.” That’s because
you are dealing with two different domains in your software. Some
objects in your programs correspond to things in the world you are
modeling, e.g., people, vehicles, video frames, etc. Such objects are
part of the application domain. Other objects are purely implementa-
tion artifacts, e.g., buffers, mutexes, search trees, etc. These kinds of
objects correspond to your software’s implementation domain. When
composition occurs between objects in the application domain, it
expresses a has-a relationship. When it occurs in the implementation
domain, it expresses an is-implemented-in-terms-of relationship.

The Person class above demonstrates the has-a relationship. A Person
object has a name, an address, and voice and fax telephone numbers.
You wouldn’t say that a person is a name or that a person is an
address. You would say that a person has a name and has an
address. Most people have little difficulty with this distinction, so con-
fusion between the roles of is-a and has-a is relatively rare.

Somewhat more troublesome is the difference between is-a and is-
implemented-in-terms-of. For example, suppose you need a template
for classes representing fairly small sets of objects, i.e., collections
without duplicates. Because reuse is a wonderful thing, your first
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instinct is to employ the standard library’s set template. Why write a
new template when you can use one that’s already been written?

Unfortunately, set implementations typically incur an overhead of
three pointers per element. This is because sets are usually imple-
mented as balanced search trees, something that allows them to guar-
antee logarithmic-time lookups, insertions, and erasures. When speed
is more important than space, this is a reasonable design, but it turns
out that for your application, space is more important than speed. The
standard library’s set thus offers the wrong trade-off for you. It seems
you’ll need to write your own template after all.

Still, reuse is a wonderful thing. Being the data structure maven you
are, you know that of the many choices for implementing sets, one is
to use linked lists. You also know that the standard C++ library has a
list template, so you decide to (re)use it.

In particular, you decide to have your nascent Set template inherit
from list. That is, Set<T> will inherit from list<T>. After all, in your
implementation, a Set object will in fact be a list object. You thus
declare your Set template like this:

template<typename T> // the wrong way to use list for Set
class Set: public std::list<T> { ... };

Everything may seem fine at this point, but in fact there is something
quite wrong. As Item 32 explains, if D is-a B, everything true of B is
also true of D. However, a list object may contain duplicates, so if the
value 3051 is inserted into a list<int> twice, that list will contain two
copies of 3051. In contrast, a Set may not contain duplicates, so if the
value 3051 is inserted into a Set<int> twice, the set contains only one
copy of the value. It is thus untrue that a Set is-a list, because some of
the things that are true for list objects are not true for Set objects.

Because the relationship between these two classes isn’t is-a, public
inheritance is the wrong way to model that relationship. The right way
is to realize that a Set object can be implemented in terms of a list
object:

template<class T> // the right way to use list for Set
class Set {
public:

bool member(const T& item) const;

void insert(const T& item);
void remove(const T& item);

std::size_t size() const;

private:
std::list<T> rep; // representation for Set data 

};
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Set’s member functions can lean heavily on functionality already
offered by list and other parts of the standard library, so the imple-
mentation is straightforward, as long as you’re familiar with the
basics of programming with the STL:

template<typename T>
bool Set<T>::member(const T& item) const
{

return std::find(rep.begin(), rep.end(), item) != rep.end();
}

template<typename T>
void Set<T>::insert(const T& item)
{

if (!member(item)) rep.push_back(item);
}

template<typename T>
void Set<T>::remove(const T& item)
{ 

typename std::list<T>::iterator it = // see Item 42 for info on
std::find(rep.begin(), rep.end(), item); // “typename” here

if (it != rep.end()) rep.erase(it);
}

template<typename T>
std::size_t Set<T>::size() const
{

return rep.size();
}

These functions are simple enough that they make reasonable candi-
dates for inlining, though I know you’d want to review the discussion
in Item 30 before making any firm inlining decisions.

One can argue that Set’s interface would be more in accord with
Item 18’s admonition to design interfaces that are easy to use cor-
rectly and hard to use incorrectly if it followed the STL container con-
ventions, but following those conventions here would require adding a
lot of stuff to Set that would obscure the relationship between it and
list. Since that relationship is the point of this Item, we’ll trade STL
compatibility for pedagogical clarity. Besides, nits about Set’s interface
shouldn’t overshadow what’s indisputably right about Set: the rela-
tionship between it and list. That relationship is not is-a (though it ini-
tially looked like it might be), it’s is-implemented-in-terms-of.

Things to Remember

✦ Composition has meanings completely different from that of public
inheritance. 

✦ In the application domain, composition means has-a. In the imple-
mentation domain, it means is-implemented-in-terms-of.
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Item 39: Use private inheritance judiciously.

Item 32 demonstrates that C++ treats public inheritance as an is-a
relationship. It does this by showing that compilers, when given a
hierarchy in which a class Student publicly inherits from a class Per-
son, implicitly convert Students to Persons when that is necessary for a
function call to succeed. It’s worth repeating a portion of that example
using private inheritance instead of public inheritance:

class Person { ... };

class Student: private Person { ... }; // inheritance is now private

void eat(const Person& p); // anyone can eat

void study(const Student& s); // only students study

Person p; // p is a Person
Student s; // s is a Student

eat(p); // fine, p is a Person

eat(s); // error! a Student isn’t a Person

Clearly, private inheritance doesn’t mean is-a. What does it mean
then?

“Whoa!” you say. “Before we get to the meaning, let’s cover the behav-
ior. How does private inheritance behave?” Well, the first rule govern-
ing private inheritance you’ve just seen in action: in contrast to public
inheritance, compilers will generally not convert a derived class object
(such as Student) into a base class object (such as Person) if the inher-
itance relationship between the classes is private. That’s why the call
to eat fails for the object s. The second rule is that members inherited
from a private base class become private members of the derived
class, even if they were protected or public in the base class. 

So much for behavior. That brings us to meaning. Private inheritance
means is-implemented-in-terms-of. If you make a class D privately
inherit from a class B, you do so because you are interested in taking
advantage of some of the features available in class B, not because
there is any conceptual relationship between objects of types B and D.
As such, private inheritance is purely an implementation technique.
(That’s why everything you inherit from a private base class becomes
private in your class: it’s all just implementation detail.) Using the
terms introduced in Item 34, private inheritance means that imple-
mentation only should be inherited; interface should be ignored. If D
privately inherits from B, it means that D objects are implemented in
terms of B objects, nothing more. Private inheritance means nothing
during software design, only during software implementation.
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The fact that private inheritance means is-implemented-in-terms-of is
a little disturbing, because Item 38 points out that composition can
mean the same thing. How are you supposed to choose between
them? The answer is simple: use composition whenever you can, and
use private inheritance whenever you must. When must you? Prima-
rily when protected members and/or virtual functions enter the pic-
ture, though there’s also an edge case where space concerns can tip
the scales toward private inheritance. We’ll worry about the edge case
later. After all, it’s an edge case.

Suppose we’re working on an application involving Widgets, and we
decide we need to better understand how Widgets are being used. For
example, not only do we want to know things like how often Widget
member functions are called, we also want to know how the call ratios
change over time. Programs with distinct phases of execution can
have different behavioral profiles during the different phases. For
example, the functions used during the parsing phase of a compiler
are largely different from the functions used during optimization and
code generation.

We decide to modify the Widget class to keep track of how many times
each member function is called. At runtime, we’ll periodically examine
that information, possibly along with the values of each Widget and
whatever other data we deem useful. To make this work, we’ll need to
set up a timer of some kind so that we’ll know when it’s time to collect
the usage statistics.

Preferring to reuse existing code over writing new code, we rummage
around in our utility toolkit and are pleased to find the following class:

class Timer {
public:

explicit Timer(int tickFrequency);

 virtual void onTick() const; // automatically called for each tick

...

};

This is just what we’re looking for. A Timer object can be configured to
tick with whatever frequency we need, and on each tick, it calls a vir-
tual function. We can redefine that virtual function so that it exam-
ines the current state of the Widget world. Perfect!

In order for Widget to redefine a virtual function in Timer, Widget must
inherit from Timer. But public inheritance is inappropriate in this
case. It’s not true that a Widget is-a Timer. Widget clients shouldn’t be
able to call onTick on a Widget, because that’s not part of the concep-
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tual Widget interface. Allowing such a function call would make it easy
for clients to use the Widget interface incorrectly, a clear violation of
Item 18’s advice to make interfaces easy to use correctly and hard to
use incorrectly. Public inheritance is not a valid option here.

We thus inherit privately:

class Widget: private Timer {
private:

virtual void onTick() const; // look at Widget usage data, etc.
...

};

By virtue of private inheritance, Timer’s public onTick function
becomes private in Widget, and we keep it there when we redeclare it.
Again, putting onTick in the public interface would mislead clients into
thinking they could call it, and that would violate Item 18. 

This is a nice design, but it’s worth noting that private inheritance
isn’t strictly necessary. If we were determined to use composition
instead, we could. We’d just declare a private nested class inside Wid-
get that would publicly inherit from Timer, redefine onTick there, and
put an object of that type inside Widget. Here’s a sketch of the
approach:

This design is more complicated than the one using only private
inheritance, because it involves both (public) inheritance and compo-
sition, as well as the introduction of a new class (WidgetTimer). To be
honest, I show it primarily to remind you that there is more than one
way to approach a design problem, and it’s worth training yourself to
consider multiple approaches (see also Item 35). Nevertheless, I can
think of two reasons why you might prefer public inheritance plus
composition over private inheritance. 

First, you might want to design Widget to allow for derived classes, but
you might also want to prevent derived classes from redefining onTick.
If Widget inherits from Timer, that’s not possible, not even if the inher-

class Widget {
private:

class WidgetTimer: public Timer {
public:

virtual void onTick() const;
...

};

 WidgetTimer timer;
...

};

Timer

Widget WidgetTimer
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itance is private. (Recall from Item 35 that derived classes may rede-
fine virtual functions even if they are not permitted to call them.) But
if WidgetTimer is private in Widget and inherits from Timer, Widget’s
derived classes have no access to WidgetTimer, hence can’t inherit
from it or redefine its virtual functions. If you’ve programmed in Java
or C# and miss the ability to prevent derived classes from redefining
virtual functions (i.e., Java’s final methods and C#’s sealed ones), now
you have an idea how to approximate that behavior in C++.

Second, you might want to minimize Widget’s compilation dependen-
cies. If Widget inherits from Timer, Timer’s definition must be available
when Widget is compiled, so the file defining Widget probably has to
#include Timer.h. On the other hand, if WidgetTimer is moved out of Wid-
get and Widget contains only a pointer to a WidgetTimer, Widget can get
by with a simple declaration for the WidgetTimer class; it need not
#include anything to do with Timer. For large systems, such decou-
plings can be important. (For details on minimizing compilation
dependencies, consult Item 31.)

I remarked earlier that private inheritance is useful primarily when a
would-be derived class wants access to the protected parts of a would-
be base class or would like to redefine one or more of its virtual func-
tions, but the conceptual relationship between the classes is is-imple-
mented-in-terms-of instead of is-a. However, I also said that there was
an edge case involving space optimization that could nudge you to
prefer private inheritance over composition.

The edge case is edgy indeed: it applies only when you’re dealing with
a class that has no data in it. Such classes have no non-static data
members; no virtual functions (because the existence of such func-
tions adds a vptr to each object — see Item 7); and no virtual base
classes (because such base classes also incur a size overhead — see
Item 40). Conceptually, objects of such empty classes should use no
space, because there is no per-object data to be stored. However,
there are technical reasons for C++ decreeing that freestanding
objects must have non-zero size, so if you do this,

class Empty {}; // has no data, so objects should
// use no memory

class HoldsAnInt { // should need only space for an int
private:

int x;
Empty e; // should require no memory

};

you’ll find that sizeof(HoldsAnInt) > sizeof(int); an Empty data member
requires memory. With most compilers, sizeof(Empty) is 1, because
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C++’s edict against zero-size freestanding objects is typically satisfied
by the silent insertion of a char into “empty” objects. However, align-
ment requirements (see Item 50) may cause compilers to add padding
to classes like HoldsAnInt, so it’s likely that HoldsAnInt objects wouldn’t
gain just the size of a char, they would actually enlarge enough to hold
a second int. (On all the compilers I tested, that’s exactly what hap-
pened.)

But perhaps you’ve noticed that I’ve been careful to say that “free-
standing” objects mustn’t have zero size. This constraint doesn’t apply
to base class parts of derived class objects, because they’re not free-
standing. If you inherit from Empty instead of containing an object of
that type,

class HoldsAnInt: private Empty {
private:

int x;
};

you’re almost sure to find that sizeof(HoldsAnInt) == sizeof(int). This is
known as the empty base optimization (EBO), and it’s implemented by
all the compilers I tested. If you’re a library developer whose clients
care about space, the EBO is worth knowing about. Also worth know-
ing is that the EBO is generally viable only under single inheritance.
The rules governing C++ object layout generally mean that the EBO
can’t be applied to derived classes that have more than one base. 

In practice, “empty” classes aren’t truly empty. Though they never
have non-static data members, they often contain typedefs, enums,
static data members, or non-virtual functions. The STL has many
technically empty classes that contain useful members (usually type-
defs), including the base classes unary_function and binary_function,
from which classes for user-defined function objects typically inherit.
Thanks to widespread implementation of the EBO, such inheritance
rarely increases the size of the inheriting classes. 

Still, let’s get back to basics. Most classes aren’t empty, so the EBO is
rarely a legitimate justification for private inheritance. Furthermore,
most inheritance corresponds to is-a, and that’s a job for public inher-
itance, not private. Both composition and private inheritance mean is-
implemented-in-terms-of, but composition is easier to understand, so
you should use it whenever you can. 

Private inheritance is most likely to be a legitimate design strategy
when you’re dealing with two classes not related by is-a where one
either needs access to the protected members of another or needs to
redefine one or more of its virtual functions. Even in that case, we’ve
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seen that a mixture of public inheritance and containment can often
yield the behavior you want, albeit with greater design complexity.
Using private inheritance judiciously means employing it when, hav-
ing considered all the alternatives, it’s the best way to express the
relationship between two classes in your software.

Things to Remember

✦ Private inheritance means is-implemented-in-terms of. It’s usually
inferior to composition, but it makes sense when a derived class
needs access to protected base class members or needs to redefine
inherited virtual functions.

✦ Unlike composition, private inheritance can enable the empty base
optimization. This can be important for library developers who strive
to minimize object sizes.

Item 40: Use multiple inheritance judiciously.

When it comes to multiple inheritance (MI), the C++ community
largely breaks into two basic camps. One camp believes that if single
inheritance (SI) is good, multiple inheritance must be better. The other
camp argues that single inheritance is good, but multiple inheritance
isn’t worth the trouble. In this Item, our primary goal is to understand
both perspectives on the MI question.

One of the first things to recognize is that when MI enters the design-
scape, it becomes possible to inherit the same name (e.g., function,
typedef, etc.) from more than one base class. That leads to new oppor-
tunities for ambiguity. For example:

class BorrowableItem { // something a library lets you borrow
public:

void checkOut(); // check the item out from the library
...

};

class ElectronicGadget {
private:

bool checkOut() const; // perform self-test, return whether
... // test succeeds

};

class MP3Player: // note MI here
public BorrowableItem, // (some libraries loan MP3 players)
public ElectronicGadget

{ ... }; // class definition is unimportant

MP3Player mp;

mp.checkOut(); // ambiguous! which checkOut?
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Note that in this example, the call to checkOut is ambiguous, even
though only one of the two functions is accessible. (checkOut is public
in BorrowableItem but private in ElectronicGadget.) That’s in accord with
the C++ rules for resolving calls to overloaded functions: before seeing
whether a function is accessible, C++ first identifies the function
that’s the best match for the call. It checks accessibility only after
finding the best-match function. In this case, the name checkOut is
ambiguous during name lookup, so neither function overload resolu-
tion nor best match determination takes place. The accessibility of
ElectronicGadget::checkOut is therefore never examined.

To resolve the ambiguity, you must specify which base class’s func-
tion to call:

mp.BorrowableItem::checkOut(); // ah, that checkOut...

You could try to explicitly call ElectronicGadget::checkOut, too, of
course, but then the ambiguity error would be replaced with a “you’re
trying to call a private member function” error.

Multiple inheritance just means inheriting from more than one base
class, but it is not uncommon for MI to be found in hierarchies that
have higher-level base classes, too. That can lead to what is some-
times known as the “deadly MI diamond”:

Any time you have an inheritance hierarchy with more than one path
between a base class and a derived class (such as between File and
IOFile above, which has paths through both InputFile and OutputFile),
you must confront the question of whether you want the data mem-
bers in the base class to be replicated for each of the paths. For exam-
ple, suppose that the File class has a data member, fileName. How
many copies of this field should IOFile have? On the one hand, it inher-
its a copy from each of its base classes, so that suggests that IOFile
should have two fileName data members. On the other hand, simple
logic says that an IOFile object has only one file name, so the fileName
field it inherits through its two base classes should not be replicated.

C++ takes no position on this debate. It happily supports both
options, though its default is to perform the replication. If that’s not
what you want, you must make the class with the data (i.e., File) a vir-

class File { ... };

class InputFile: public File { ... };

class OutputFile: public File { ... };

class IOFile: public InputFile,
public OutputFile

{ ... }; IOFile

InputFile OutputFile

File
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tual base class. To do that, you have all classes that immediately
inherit from it use virtual inheritance:

The standard C++ library contains an MI hierarchy just like this one,
except the classes are class templates, and the names are basic_ios,
basic_istream, basic_ostream, and basic_iostream instead of File, InputFile,
OutputFile, and IOFile.

From the viewpoint of correct behavior, public inheritance should
always be virtual. If that were the only point of view, the rule would be
simple: anytime you use public inheritance, use virtual public inherit-
ance. Alas, correctness is not the only perspective. Avoiding the repli-
cation of inherited fields requires some behind-the-scenes legerdemain
on the part of compilers, and the result is that objects created from
classes using virtual inheritance are generally larger than they would
be without virtual inheritance. Access to data members in virtual base
classes is also slower than to those in non-virtual base classes. The
details vary from compiler to compiler, but the basic thrust is clear:
virtual inheritance costs. 

It costs in other ways, too. The rules governing the initialization of vir-
tual base classes are more complicated and less intuitive than are
those for non-virtual bases. The responsibility for initializing a virtual
base is borne by the most derived class in the hierarchy. Implications
of this rule include (1) classes derived from virtual bases that require
initialization must be aware of their virtual bases, no matter how far
distant the bases are, and (2) when a new derived class is added to the
hierarchy, it must assume initialization responsibilities for its virtual
bases (both direct and indirect).

My advice on virtual base classes (i.e., on virtual inheritance) is sim-
ple. First, don’t use virtual bases unless you need to. By default, use
non-virtual inheritance. Second, if you must use virtual base classes,
try to avoid putting data in them. That way you won’t have to worry
about oddities in the initialization (and, as it turns out, assignment)
rules for such classes. It’s worth noting that Interfaces in Java and
.NET, which are in many ways comparable to virtual base classes in
C++, are not allowed to contain any data.

Let us now turn to the following C++ Interface class (see Item 31) for
modeling persons:

class File { ... };

class InputFile: virtual public File { ... };

class OutputFile: virtual public File { ... };

class IOFile: public InputFile,
public OutputFile

{ ... }; IOFile

InputFile OutputFile

File

{virtual}{virtual}
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class IPerson {
public:

virtual ~IPerson();

virtual std::string name() const = 0;
virtual std::string birthDate() const = 0;

};

IPerson clients must program in terms of IPerson pointers and refer-
ences, because abstract classes cannot be instantiated. To create
objects that can be manipulated as IPerson objects, clients of IPerson
use factory functions (again, see Item 31) to instantiate concrete
classes derived from IPerson:

// factory function to create a Person object from a unique database ID;
// see Item 18 for why the return type isn’t a raw pointer
std::tr1::shared_ptr<IPerson> makePerson(DatabaseID personIdentifier);

// function to get a database ID from the user
DatabaseID askUserForDatabaseID();

DatabaseID id(askUserForDatabaseID());

std::tr1::shared_ptr<IPerson> pp(makePerson(id)); // create an object
// supporting the 
// IPerson interface

... // manipulate *pp via 
// IPerson’s member
// functions

But how does makePerson create the objects to which it returns point-
ers? Clearly, there must be some concrete class derived from IPerson
that makePerson can instantiate. 

Suppose this class is called CPerson. As a concrete class, CPerson must
provide implementations for the pure virtual functions it inherits from
IPerson. It could write these from scratch, but it would be better to
take advantage of existing components that do most or all of what’s
necessary. For example, suppose an old database-specific class Per-
sonInfo offers the essence of what CPerson needs:

class PersonInfo {
public:

explicit PersonInfo(DatabaseID pid);
virtual ~PersonInfo();

virtual const char * theName() const;
virtual const char * theBirthDate() const;
...

private:
virtual const char * valueDelimOpen() const; // see
virtual const char * valueDelimClose() const; // below
...

};
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You can tell this is an old class, because the member functions return
const char*s instead of string objects. Still, if the shoe fits, why not wear
it? The names of this class’s member functions suggest that the result
is likely to be pretty comfortable. 

You come to discover that PersonInfo was designed to facilitate printing
database fields in various formats, with the beginning and end of each
field value delimited by special strings. By default, the opening and
closing delimiters for field values are square brackets, so the field
value “Ring-tailed Lemur” would be formatted this way:

[Ring-tailed Lemur]

In recognition of the fact that square brackets are not universally
desired by clients of PersonInfo, the virtual functions valueDelimOpen
and valueDelimClose allow derived classes to specify their own opening
and closing delimiter strings. The implementations of PersonInfo’s
member functions call these virtual functions to add the appropriate
delimiters to the values they return. Using PersonInfo::theName as an
example, the code looks like this:

const char * PersonInfo::valueDelimOpen() const
{

return "["; // default opening delimiter
}

const char * PersonInfo::valueDelimClose() const
{

return "]"; // default closing delimiter
}

const char * PersonInfo::theName() const
{

// reserve buffer for return value; because this is 
// static, it’s automatically initialized to all zeros
static char value[Max_Formatted_Field_Value_Length];

// write opening delimiter
std::strcpy(value, valueDelimOpen());

append to the string in value this object’s name field (being careful
to avoid buffer overruns!)

// write closing delimiter
std::strcat(value, valueDelimClose());

return value;
}

One might question the antiquated design of PersonInfo::theName (espe-
cially the use of a fixed-size static buffer, something that’s rife for both
overrun and threading problems — see also Item 21), but set such
questions aside and focus instead on this: theName calls valueDeli-
mOpen to generate the opening delimiter of the string it will return,
then it generates the name value itself, then it calls valueDelimClose.
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Because valueDelimOpen and valueDelimClose are virtual functions, the
result returned by theName is dependent not only on PersonInfo but
also on the classes derived from PersonInfo.

As the implementer of CPerson, that’s good news, because while perus-
ing the fine print in the IPerson documentation, you discover that name
and birthDate are required to return unadorned values, i.e., no delim-
iters are allowed. That is, if a person is named Homer, a call to that
person’s name function should return “Homer”, not “[Homer]”.

The relationship between CPerson and PersonInfo is that PersonInfo hap-
pens to have some functions that would make CPerson easier to imple-
ment. That’s all. Their relationship is thus is-implemented-in-terms-
of, and we know that can be represented in two ways: via composition
(see Item 38) and via private inheritance (see Item 39). Item 39 points
out that composition is the generally preferred approach, but inherit-
ance is necessary if virtual functions are to be redefined. In this case,
CPerson needs to redefine valueDelimOpen and valueDelimClose, so sim-
ple composition won’t do. The most straightforward solution is to have
CPerson privately inherit from PersonInfo, though Item 39 explains that
with a bit more work, CPerson could also use a combination of compo-
sition and inheritance to effectively redefine PersonInfo’s virtuals. Here,
we’ll use private inheritance.

But CPerson must also implement the IPerson interface, and that calls
for public inheritance. This leads to one reasonable application of
multiple inheritance: combine public inheritance of an interface with
private inheritance of an implementation:

class IPerson { // this class specifies the 
public: // interface to be implemented

virtual ~IPerson();

virtual std::string name() const = 0;
virtual std::string birthDate() const = 0;

};

class DatabaseID { ... }; // used below; details are
// unimportant

class PersonInfo { // this class has functions
public: // useful in implementing 

explicit PersonInfo(DatabaseID pid); // the IPerson interface
virtual ~PersonInfo();

virtual const char * theName() const;
virtual const char * theBirthDate() const;
...

private:
virtual const char * valueDelimOpen() const;
virtual const char * valueDelimClose() const;
...

};
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class CPerson: public IPerson, private PersonInfo { // note use of MI
public:

explicit CPerson(DatabaseID pid): PersonInfo(pid) {}

virtual std::string name() const // implementations
{ return PersonInfo::theName(); } // of the required

// IPerson member
virtual std::string birthDate() const // functions
{ return PersonInfo::theBirthDate(); }

private: // redefinitions of
const char * valueDelimOpen() const { return ""; } // inherited virtual
const char * valueDelimClose() const { return ""; } // delimiter

}; // functions

In UML, the design looks like this:

This example demonstrates that MI can be both useful and compre-
hensible.

At the end of the day, multiple inheritance is just another tool in the
object-oriented toolbox. Compared to single inheritance, it’s typically
more complicated to use and more complicated to understand, so if
you’ve got an SI design that’s more or less equivalent to an MI design,
the SI design is almost certainly preferable. If the only design you can
come up with involves MI, you should think a little harder — there’s
almost certainly some way to make SI work. At the same time, MI is
sometimes the clearest, most maintainable, most reasonable way to
get the job done. When that’s the case, don’t be afraid to use it. Just
be sure to use it judiciously.

Things to Remember

✦ Multiple inheritance is more complex than single inheritance. It can
lead to new ambiguity issues and to the need for virtual inheritance. 

✦ Virtual inheritance imposes costs in size, speed, and complexity of
initialization and assignment. It’s most practical when virtual base
classes have no data.

✦ Multiple inheritance does have legitimate uses. One scenario in-
volves combining public inheritance from an Interface class with
private inheritance from a class that helps with implementation.

CPerson

IPerson PersonInfo

{private}
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Templates and Generic ProgrammingThe initial motivation for C++ templates was straightforward: to make
it possible to create type-safe containers like vector, list, and map. The
more people worked with templates, however, the wider the variety of
things they found they could do with them. Containers were good, but
generic programming — the ability to write code that is independent of
the types of objects being manipulated — was even better. STL algo-
rithms like for_each, find, and merge are examples of such program-
ming. Ultimately, it was discovered that the C++ template mechanism
is itself Turing-complete: it can be used to compute any computable
value. That led to template metaprogramming: the creation of pro-
grams that execute inside C++ compilers and that stop running when
compilation is complete. These days, containers are but a small part
of the C++ template pie. Despite the breadth of template applications,
however, a set of core ideas underlie all template-based programming.
Those ideas are the focus of this chapter. 

This chapter won’t make you an expert template programmer, but it
will make you a better one. It will also give you information you need
to expand your template-programming boundaries as far as you
desire.

Item 41: Understand implicit interfaces and compile-
time polymorphism.

The world of object-oriented programming revolves around explicit
interfaces and runtime polymorphism. For example, given this (mean-
ingless) class,

class Widget {
public:

Widget();
virtual ~Widget();

Chapter 7: Templates and Generic Programming

Templates and
Generic Programming
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virtual std::size_t size() const;
virtual void normalize();
void swap(Widget& other); // see Item 25

...
};

and this (equally meaningless) function,

void doProcessing(Widget& w)
{

if (w.size() > 10 && w != someNastyWidget) {
Widget temp(w);
temp.normalize();
temp.swap(w);

}
}

we can say this about w in doProcessing:

■ Because w is declared to be of type Widget, w must support the
Widget interface. We can look up this interface in the source code
(e.g., the .h file for Widget) to see exactly what it looks like, so I call
this an explicit interface — one explicitly visible in the source code.

■ Because some of Widget’s member functions are virtual, w’s calls
to those functions will exhibit runtime polymorphism: the specific
function to call will be determined at runtime based on w’s dy-
namic type (see Item 37).

The world of templates and generic programming is fundamentally dif-
ferent. In that world, explicit interfaces and runtime polymorphism
continue to exist, but they’re less important. Instead, implicit inter-
faces and compile-time polymorphism move to the fore. To see how this
is the case, look what happens when we turn doProcessing from a
function into a function template:

template<typename T>
void doProcessing(T& w)
{

if (w.size() > 10 && w != someNastyWidget) {
T temp(w);
temp.normalize();
temp.swap(w);

}
}

Now what can we say about w in doProcessing?

■ The interface that w must support is determined by the operations
performed on w in the template. In this example, it appears that
w’s type (T) must support the size, normalize, and swap member
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functions; copy construction (to create temp); and comparison for
inequality (for comparison with someNastyWidget). We’ll soon see
that this isn’t quite accurate, but it’s true enough for now. What’s
important is that the set of expressions that must be valid in order
for the template to compile is the implicit interface that T must
support.

■ The calls to functions involving w such as operator> and operator!=
may involve instantiating templates to make these calls succeed.
Such instantiation occurs during compilation. Because instantiat-
ing function templates with different template parameters leads to
different functions being called, this is known as compile-time
polymorphism. 

Even if you’ve never used templates, you should be familiar with the
difference between runtime and compile-time polymorphism, because
it’s similar to the difference between the process of determining which
of a set of overloaded functions should be called (which takes place
during compilation) and dynamic binding of virtual function calls
(which takes place at runtime). The difference between explicit and
implicit interfaces is new to templates, however, and it bears closer
examination.

An explicit interface typically consists of function signatures, i.e.,
function names, parameter types, return types, etc. The Widget class
public interface, for example,

class Widget {
public:

Widget();
virtual ~Widget();

virtual std::size_t size() const;
virtual void normalize();
void swap(Widget& other);

};

consists of a constructor, a destructor, and the functions size, normal-
ize, and swap, along with the parameter types, return types, and con-
stnesses of these functions. (It also includes the compiler-generated
copy constructor and copy assignment operator — see Item 5.) It
could also include typedefs and, if you were so bold as to violate
Item 22’s advice to make data members private, data members,
though in this case, it does not.

An implicit interface is quite different. It is not based on function sig-
natures. Rather, it consists of valid expressions. Look again at the
conditional at the beginning of the doProcessing template:
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template<typename T>
void doProcessing(T& w)
{

if (w.size() > 10 && w != someNastyWidget) {
...

The implicit interface for T (w’s type) appears to have these con-
straints:

■ It must offer a member function named size that returns an inte-
gral value.

■ It must support an operator!= function that compares two objects
of type T. (Here, we assume that someNastyWidget is of type T.)

Thanks to the possibility of operator overloading, neither of these con-
straints need be satisfied. Yes, T must support a size member function,
though it’s worth mentioning that the function might be inherited
from a base class. But this member function need not return an inte-
gral type. It need not even return a numeric type. For that matter, it
need not even return a type for which operator> is defined! All it needs
to do is return an object of some type X such that there is an operator>
that can be called with an object of type X and an int (because 10 is of
type int). The operator> need not take a parameter of type X, because it
could take a parameter of type Y, and that would be okay as long as
there were an implicit conversion from objects of type X to objects of
type Y! 

Similarly, there is no requirement that T support operator!=, because it
would be just as acceptable for operator!= to take one object of type X
and one object of type Y. As long as T can be converted to X and some-
NastyWidget’s type can be converted to Y, the call to operator!= would
be valid. 

(As an aside, this analysis doesn’t take into account the possibility
that operator&& could be overloaded, thus changing the meaning of
the above expression from a conjunction to something potentially
quite different.)

Most people’s heads hurt when they first start thinking about implicit
interfaces this way, but there’s really no need for aspirin. Implicit
interfaces are simply made up of a set of valid expressions. The
expressions themselves may look complicated, but the constraints
they impose are generally straightforward. For example, given the con-
ditional,

if (w.size() > 10 && w != someNastyWidget) ...

it’s hard to say much about the constraints on the functions size, oper-
ator>, operator&&, or operator!=, but it’s easy to identify the constraint
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on the expression as a whole. The conditional part of an if statement
must be a boolean expression, so regardless of the exact types
involved, whatever “w.size() > 10 && w != someNastyWidget” yields, it
must be compatible with bool. This is part of the implicit interface the
template doProcessing imposes on its type parameter T. The rest of the
interface required by doProcessing is that calls to the copy constructor,
to normalize, and to swap must be valid for objects of type T.

The implicit interfaces imposed on a template’s parameters are just as
real as the explicit interfaces imposed on a class’s objects, and both
are checked during compilation. Just as you can’t use an object in a
way contradictory to the explicit interface its class offers (the code
won’t compile), you can’t try to use an object in a template unless that
object supports the implicit interface the template requires (again, the
code won’t compile). 

Things to Remember

✦ Both classes and templates support interfaces and polymorphism. 

✦ For classes, interfaces are explicit and centered on function signa-
tures. Polymorphism occurs at runtime through virtual functions. 

✦ For template parameters, interfaces are implicit and based on valid
expressions. Polymorphism occurs during compilation through tem-
plate instantiation and function overloading resolution.

Item 42: Understand the two meanings of typename.

Question: what is the difference between class and typename in the fol-
lowing template declarations?

template<class T> class Widget; // uses “class”

template<typename T> class Widget; // uses “typename”

Answer: nothing. When declaring a template type parameter, class and
typename mean exactly the same thing. Some programmers prefer
class all the time, because it’s easier to type. Others (including me)
prefer typename, because it suggests that the parameter need not be a
class type. A few developers employ typename when any type is
allowed and reserve class for when only user-defined types are accept-
able. But from C++’s point of view, class and typename mean exactly
the same thing when declaring a template parameter.

C++ doesn’t always view class and typename as equivalent, however.
Sometimes you must use typename. To understand when, we have to
talk about two kinds of names you can refer to in a template. 



ptg7544714

204 Item 42 Chapter 7
Suppose we have a template for a function that takes an STL-compat-
ible container holding objects that can be assigned to ints. Further
suppose that this function simply prints the value of its second ele-
ment. It’s a silly function implemented in a silly way, and as I’ve writ-
ten it below, it shouldn’t even compile, but please overlook those
things — there’s a method to my madness:

template<typename C> // print 2nd element in
void print2nd(const C& container) // container;
{ // this is not valid C++!

if (container.size() >= 2) {
C::const_iterator iter(container.begin()); // get iterator to 1st element
++iter; // move iter to 2nd element
int value = *iter; // copy that element to an int
std::cout << value; // print the int

}
}

I’ve highlighted the two local variables in this function, iter and value.
The type of iter is C::const_iterator, a type that depends on the template
parameter C. Names in a template that are dependent on a template
parameter are called dependent names. When a dependent name is
nested inside a class, I call it a nested dependent name. C::const_iterator
is a nested dependent name. In fact, it’s a nested dependent type
name, i.e., a nested dependent name that refers to a type.

The other local variable in print2nd, value, has type int. int is a name
that does not depend on any template parameter. Such names are
known as non-dependent names, (I have no idea why they’re not called
independent names. If, like me, you find the term “non-dependent” an
abomination, you have my sympathies, but “non-dependent” is the
term for these kinds of names, so, like me, roll your eyes and resign
yourself to it.)

Nested dependent names can lead to parsing difficulties. For example,
suppose we made print2nd even sillier by starting it this way:

template<typename C>
void print2nd(const C& container)
{

C::const_iterator * x;
...

}

This looks like we’re declaring x as a local variable that’s a pointer to a
C::const_iterator. But it looks that way only because we “know” that
C::const_iterator is a type. But what if C::const_iterator weren’t a type?
What if C had a static data member that happened to be named
const_iterator, and what if x happened to be the name of a global vari-
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able? In that case, the code above wouldn’t declare a local variable, it
would be a multiplication of C::const_iterator by x! Sure, that sounds
crazy, but it’s possible, and people who write C++ parsers have to
worry about all possible inputs, even the crazy ones.

Until C is known, there’s no way to know whether C::const_iterator is a
type or isn’t, and when the template print2nd is parsed, C isn’t known.
C++ has a rule to resolve this ambiguity: if the parser encounters a
nested dependent name in a template, it assumes that the name is not
a type unless you tell it otherwise. By default, nested dependent
names are not types. (There is an exception to this rule that I’ll get to
in a moment.)

With that in mind, look again at the beginning of print2nd:

template<typename C>
void print2nd(const C& container)
{

if (container.size() >= 2) {
C::const_iterator iter(container.begin()); // this name is assumed to 
... // not be a type

Now it should be clear why this isn’t valid C++. The declaration of iter
makes sense only if C::const_iterator is a type, but we haven’t told C++
that it is, and C++ assumes that it’s not. To rectify the situation, we
have to tell C++ that C::const_iterator is a type. We do that by putting
typename immediately in front of it:

template<typename C> // this is valid C++
void print2nd(const C& container)
{

if (container.size() >= 2) {
typename C::const_iterator iter(container.begin());

...

}
}

The general rule is simple: anytime you refer to a nested dependent
type name in a template, you must immediately precede it by the word
typename. (Again, I’ll describe an exception shortly.)

typename should be used to identify only nested dependent type
names; other names shouldn’t have it. For example, here’s a function
template that takes both a container and an iterator into that con-
tainer:

template<typename C> // typename allowed (as is “class”)
void f(const C& container, // typename not allowed

typename C::iterator iter); // typename required
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C is not a nested dependent type name (it’s not nested inside anything
dependent on a template parameter), so it must not be preceded by
typename when declaring container, but C::iterator is a nested depen-
dent type name, so it’s required to be preceded by typename. 

The exception to the “typename must precede nested dependent type
names” rule is that typename must not precede nested dependent type
names in a list of base classes or as a base class identifier in a mem-
ber initialization list. For example:

template<typename T>
class Derived: public Base<T>::Nested { // base class list: typename not
public: // allowed

explicit Derived(int x)
: Base<T>::Nested(x) // base class identifier in mem.
{ // init. list: typename not allowed

typename Base<T>::Nested temp; // use of nested dependent type
... // name not in a base class list or

} // as a base class identifier in a 
... // mem. init. list: typename 

required
};

Such inconsistency is irksome, but once you have a bit of experience
under your belt, you’ll barely notice it.

Let’s look at one last typename example, because it’s representative of
something you’re going to see in real code. Suppose we’re writing a
function template that takes an iterator, and we want to make a local
copy, temp, of the object the iterator points to. We can do it like this:

template<typename IterT>
void workWithIterator(IterT iter)
{

typename std::iterator_traits<IterT>::value_type temp(*iter);
...

}

Don’t let the std::iterator_traits<IterT>::value_type startle you. That’s just
a use of a standard traits class (see Item 47), the C++ way of saying
“the type of thing pointed to by objects of type IterT.” The statement
declares a local variable (temp) of the same type as what IterT objects
point to, and it initializes temp with the object that iter points to. If
IterT is vector<int>::iterator, temp is of type int. If IterT is list<string>::itera-
tor, temp is of type string. Because std::iterator_traits<IterT>::value_type is
a nested dependent type name (value_type is nested inside
iterator_traits<IterT>, and IterT is a template parameter), we must pre-
cede it by typename.
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If you think reading std::iterator_traits<IterT>::value_type is unpleasant,
imagine what it’s like to type it. If you’re like most programmers, the
thought of typing it more than once is ghastly, so you’ll want to create
a typedef. For traits member names like value_type (again, see Item 47
for information on traits), a common convention is for the typedef
name to be the same as the traits member name, so such a local type-
def is often defined like this:

template<typename IterT>
void workWithIterator(IterT iter)
{

typedef typename std::iterator_traits<IterT>::value_type value_type;

value_type temp(*iter);
...

}

Many programmers find the “typedef typename” juxtaposition initially
jarring, but it’s a logical fallout from the rules for referring to nested
dependent type names. You’ll get used to it fairly quickly. After all, you
have strong motivation. How many times do you want to type type-
name std::iterator_traits<IterT>::value_type?

As a closing note, I should mention that enforcement of the rules sur-
rounding typename varies from compiler to compiler. Some compilers
accept code where typename is required but missing; some accept
code where typename is present but not allowed; and a few (usually
older ones) reject typename where it’s present and required. This
means that the interaction of typename and nested dependent type
names can lead to some mild portability headaches.

Things to Remember

✦ When declaring template parameters, class and typename are inter-
changeable.

✦ Use typename to identify nested dependent type names, except in
base class lists or as a base class identifier in a member initializa-
tion list.

Item 43: Know how to access names in templatized 
base classes.

Suppose we need to write an application that can send messages to
several different companies. Messages can be sent in either encrypted
or cleartext (unencrypted) form. If we have enough information during
compilation to determine which messages will go to which companies,
we can employ a template-based solution: 
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class CompanyA {
public:

...
void sendCleartext(const std::string& msg);
void sendEncrypted(const std::string& msg);
...

};

class CompanyB {
public:

...
void sendCleartext(const std::string& msg);
void sendEncrypted(const std::string& msg);
...

};

... // classes for other companies

class MsgInfo { ... }; // class for holding information
// used to create a message

template<typename Company>
class MsgSender {
public:

... // ctors, dtor, etc.

void sendClear(const MsgInfo& info)
{

std::string msg;
create msg from info;

Company c;
c.sendCleartext(msg);

}

void sendSecret(const MsgInfo& info) // similar to sendClear, except
{ ... } // calls c.sendEncrypted

};

This will work fine, but suppose we sometimes want to log some infor-
mation each time we send a message. A derived class can easily add
that capability, and this seems like a reasonable way to do it:

template<typename Company>
class LoggingMsgSender: public MsgSender<Company> {
public:

... // ctors, dtor, etc.
void sendClearMsg(const MsgInfo& info)
{

write "before sending" info to the log;

sendClear(info); // call base class function;
// this code will not compile!

write "after sending" info to the log;
}
...

};



ptg7544714

Templates and Generic Programming Item 43 209
Note how the message-sending function in the derived class has a dif-
ferent name (sendClearMsg) from the one in its base class (there, it’s
called sendClear). That’s good design, because it side-steps the issue of
hiding inherited names (see Item 33) as well as the problems inherent
in redefining an inherited non-virtual function (see Item 36). But the
code above won’t compile, at least not with conformant compilers.
Such compilers will complain that sendClear doesn’t exist. We can see
that sendClear is in the base class, but compilers won’t look for it
there. We need to understand why.

The problem is that when compilers encounter the definition for the
class template LoggingMsgSender, they don’t know what class it inher-
its from. Sure, it’s MsgSender<Company>, but Company is a template
parameter, one that won’t be known until later (when LoggingMsg-
Sender is instantiated). Without knowing what Company is, there’s no
way to know what the class MsgSender<Company> looks like. In partic-
ular, there’s no way to know if it has a sendClear function.

To make the problem concrete, suppose we have a class CompanyZ
that insists on encrypted communications:

class CompanyZ { // this class offers no
public: // sendCleartext function

...
void sendEncrypted(const std::string& msg);
...

};

The general MsgSender template is inappropriate for CompanyZ, because
that template offers a sendClear function that makes no sense for Com-
panyZ objects. To rectify that problem, we can create a specialized ver-
sion of MsgSender for CompanyZ:

template<> // a total specialization of 
class MsgSender<CompanyZ> { // MsgSender; the same as the
public: // general template, except 

... // sendClear is omitted
void sendSecret(const MsgInfo& info)
{ ... }

};

Note the “template <>” syntax at the beginning of this class definition.
It signifies that this is neither a template nor a standalone class.
Rather, it’s a specialized version of the MsgSender template to be used
when the template argument is CompanyZ. This is known as a total
template specialization: the template MsgSender is specialized for the
type CompanyZ, and the specialization is total — once the type param-
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eter has been defined to be CompanyZ, no other aspect of the tem-
plate’s parameters can vary.

Given that MsgSender has been specialized for CompanyZ, consider
again the derived class LoggingMsgSender:

template<typename Company>
class LoggingMsgSender: public MsgSender<Company> {
public:

...

void sendClearMsg(const MsgInfo& info)
{

write "before sending" info to the log;

sendClear(info); // if Company == CompanyZ,
// this function doesn’t exist!

write "after sending" info to the log;
}

...

};

As the comment notes, this code makes no sense when the base class
is MsgSender<CompanyZ>, because that class offers no sendClear func-
tion. That’s why C++ rejects the call: it recognizes that base class tem-
plates may be specialized and that such specializations may not offer
the same interface as the general template. As a result, it generally
refuses to look in templatized base classes for inherited names. In
some sense, when we cross from Object-Oriented C++ to Template
C++ (see Item 1), inheritance stops working.

To restart it, we have to somehow disable C++’s “don’t look in templa-
tized base classes” behavior. There are three ways to do this. First,
you can preface calls to base class functions with “this->”:

template<typename Company>
class LoggingMsgSender: public MsgSender<Company> {
public:

...

void sendClearMsg(const MsgInfo& info)
{

write "before sending" info to the log;

this->sendClear(info); // okay, assumes that
// sendClear will be inherited

write "after sending" info to the log;
}

...

};
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Second, you can employ a using declaration, a solution that should
strike you as familiar if you’ve read Item 33. That Item explains how
using declarations bring hidden base class names into a derived
class’s scope. We can therefore write sendClearMsg like this:

template<typename Company>
class LoggingMsgSender: public MsgSender<Company> {
public:

using MsgSender<Company>::sendClear; // tell compilers to assume
... // that sendClear is in the

// base class
void sendClearMsg(const MsgInfo& info)
{

...
sendClear(info); // okay, assumes that
... // sendClear will be inherited

}

...

};

(Although a using declaration will work both here and in Item 33, the
problems being solved are different. Here, the situation isn’t that base
class names are hidden by derived class names, it’s that compilers
don’t search base class scopes unless we tell them to.)

A final way to get your code to compile is to explicitly specify that the
function being called is in the base class:

template<typename Company>
class LoggingMsgSender: public MsgSender<Company> {
public:

...
void sendClearMsg(const MsgInfo& info)
{

...
MsgSender<Company>::sendClear(info); // okay, assumes that
... // sendClear will be 

} // inherited

...

};

This is generally the least desirable way to solve the problem, because
if the function being called is virtual, explicit qualification turns off
the virtual binding behavior.

From a name visibility point of view, each of these approaches does
the same thing: it promises compilers that any subsequent specializa-
tions of the base class template will support the interface offered by
the general template. Such a promise is all compilers need when they
parse a derived class template like LoggingMsgSender, but if the prom-
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ise turns out to be unfounded, the truth will emerge during subse-
quent compilation. For example, if the source code later contains this,

LoggingMsgSender<CompanyZ> zMsgSender;

MsgInfo msgData;

... // put info in msgData

zMsgSender.sendClearMsg(msgData); // error! won’t compile

the call to sendClearMsg won’t compile, because at this point, compil-
ers know that the base class is the template specialization Msg-
Sender<CompanyZ>, and they know that class doesn’t offer the
sendClear function that sendClearMsg is trying to call.

Fundamentally, the issue is whether compilers will diagnose invalid
references to base class members sooner (when derived class template
definitions are parsed) or later (when those templates are instantiated
with specific template arguments). C++’s policy is to prefer early diag-
noses, and that’s why it assumes it knows nothing about the contents
of base classes when those classes are instantiated from templates. 

Things to Remember

✦ In derived class templates, refer to names in base class templates
via a “this->” prefix, via using declarations, or via an explicit base
class qualification.

Item 44: Factor parameter-independent code out of 
templates.

Templates are a wonderful way to save time and avoid code replica-
tion. Instead of typing 20 similar classes, each with 15 member func-
tions, you type one class template, and you let compilers instantiate
the 20 specific classes and 300 functions you need. (Member func-
tions of class templates are implicitly instantiated only when used, so
you should get the full 300 member functions only if each is actually
used.) Function templates are similarly appealing. Instead of writing
many functions, you write one function template and let the compilers
do the rest. Ain’t technology grand?

Yes, well...sometimes. If you’re not careful, using templates can lead
to code bloat: binaries with replicated (or almost replicated) code,
data, or both. The result can be source code that looks fit and trim,
yet object code that’s fat and flabby. Fat and flabby is rarely fashion-
able, so you need to know how to avoid such binary bombast.

Your primary tool has the imposing name commonality and variability
analysis, but there’s nothing imposing about the idea. Even if you’ve
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never written a template in your life, you do such analysis all the time.

When you’re writing a function and you realize that some part of the
function’s implementation is essentially the same as another func-
tion’s implementation, do you just replicate the code? Of course not.
You factor the common code out of the two functions, put it into a
third function, and have both of the other functions call the new one.
That is, you analyze the two functions to find the parts that are com-
mon and those that vary, you move the common parts into a new
function, and you keep the varying parts in the original functions.
Similarly, if you’re writing a class and you realize that some parts of
the class are the same as parts of another class, you don’t replicate
the common parts. Instead, you move the common parts to a new
class, then you use inheritance or composition (see Items 32, 38, and
39) to give the original classes access to the common features. The
parts of the original classes that differ — the varying parts — remain
in their original locations.

When writing templates, you do the same analysis, and you avoid rep-
lication in the same ways, but there’s a twist. In non-template code,
replication is explicit: you can see that there’s duplication between
two functions or two classes. In template code, replication is implicit:
there’s only one copy of the template source code, so you have to train
yourself to sense the replication that may take place when a template
is instantiated multiple times.

For example, suppose you’d like to write a template for fixed-size
square matrices that, among other things, support matrix inversion. 

template<typename T, // template for n x n matrices of
std::size_t n> // objects of type T; see below for info

class SquareMatrix { // on the size_t parameter
public:

...
void invert(); // invert the matrix in place

};

This template takes a type parameter, T, but it also takes a parameter
of type size_t — a non-type parameter. Non-type parameters are less
common than type parameters, but they’re completely legal, and, as
in this example, they can be quite natural. 

Now consider this code:

SquareMatrix<double, 5> sm1;
...
sm1.invert(); // call SquareMatrix<double, 5>::invert

SquareMatrix<double, 10> sm2;
...
sm2.invert(); // call SquareMatrix<double, 10>::invert
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Two copies of invert will be instantiated here. The functions won’t be
identical, because one will work on 5 ×5 matrices and one will work on
10 ×10 matrices, but other than the constants 5 and 10, the two func-
tions will be the same. This is a classic way for template-induced code
bloat to arise.

What would you do if you saw two functions that were character-for-
character identical except for the use of 5 in one version and 10 in the
other? Your instinct would be to create a version of the function that
took a value as a parameter, then call the parameterized function with
5 or 10 instead of replicating the code. Your instinct serves you well!
Here’s a first pass at doing that for SquareMatrix:

template<typename T> // size-independent base class for
class SquareMatrixBase { // square matrices
protected:

...
void invert(std::size_t matrixSize); // invert matrix of the given size
...

};

template<typename T, std::size_t n>
class SquareMatrix: private SquareMatrixBase<T> {
private:

using SquareMatrixBase<T>::invert; // make base class version of invert
// visible in this class; see Items 33
// and 43

public:
...
void invert() { invert(n); } // make inline call to base class

}; // version of invert

As you can see, the parameterized version of invert is in a base class,
SquareMatrixBase. Like SquareMatrix, SquareMatrixBase is a template, but
unlike SquareMatrix, it’s templatized only on the type of objects in the
matrix, not on the size of the matrix. Hence, all matrices holding a
given type of object will share a single SquareMatrixBase class. They will
thus share a single copy of that class’s version of invert. (Provided, of
course, you refrain from declaring that function inline. If it’s inlined,
each instantiation of SquareMatrix::invert will get a copy of SquareMatrix-
Base::invert’s code (see Item 30), and you’ll find yourself back in the
land of object code replication.) 

SquareMatrixBase::invert is intended only to be a way for derived classes
to avoid code replication, so it’s protected instead of being public. The
additional cost of calling it should be zero, because derived classes’
inverts call the base class version using inline functions. (The inline is
implicit — see Item 30.) Notice also that the inheritance between
SquareMatrix and SquareMatrixBase is private. This accurately reflects
the fact that the reason for the base class is only to facilitate the
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derived classes’ implementations, not to express a conceptual is-a
relationship between SquareMatrix and SquareMatrixBase. (For informa-
tion on private inheritance, see Item 39.)

So far, so good, but there’s a sticky issue we haven’t addressed yet.
How does SquareMatrixBase::invert know what data to operate on? It
knows the size of the matrix from its parameter, but how does it know
where the data for a particular matrix is? Presumably only the derived
class knows that. How does the derived class communicate that to the
base class so that the base class can do the inversion?

One possibility would be to add another parameter to SquareMatrix-
Base::invert, perhaps a pointer to the beginning of a chunk of memory
with the matrix’s data in it. That would work, but in all likelihood,
invert is not the only function in SquareMatrix that can be written in a
size-independent manner and moved into SquareMatrixBase. If there
are several such functions, all will need a way to find the memory
holding the values in the matrix. We could add an extra parameter to
all of them, but we’d be telling SquareMatrixBase the same information
repeatedly. That seems wrong.

An alternative is to have SquareMatrixBase store a pointer to the mem-
ory for the matrix values. And as long as it’s storing that, it might as
well store the matrix size, too. The resulting design looks like this:

template<typename T>
class SquareMatrixBase {
protected:

SquareMatrixBase(std::size_t n, T *pMem) // store matrix size and a
: size(n), pData(pMem) {} // ptr to matrix values

void setDataPtr(T *ptr) { pData = ptr; } // reassign pData
...

private:
std::size_t size; // size of matrix

T *pData; // pointer to matrix values
};

This lets derived classes decide how to allocate the memory. Some
implementations might decide to store the matrix data right inside the
SquareMatrix object:

template<typename T, std::size_t n>
class SquareMatrix: private SquareMatrixBase<T> {
public:

SquareMatrix() // send matrix size and 
: SquareMatrixBase<T>(n, data) {} // data ptr to base class
...

private:
T data[n*n];

};
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Objects of such types have no need for dynamic memory allocation,
but the objects themselves could be very large. An alternative would
be to put the data for each matrix on the heap:

template<typename T, std::size_t n>
class SquareMatrix: private SquareMatrixBase<T> {
public:

SquareMatrix() // set base class data ptr to null,
: SquareMatrixBase<T>(n, 0), // allocate memory for matrix

pData(new T[n*n]) // values, save a ptr to the
{ this->setDataPtr(pData.get()); } // memory, and give a copy of it
... // to the base class

private:
boost::scoped_array<T> pData; // see Item 13 for info on

}; // boost::scoped_array

Regardless of where the data is stored, the key result from a bloat
point of view is that now many — maybe all — of SquareMatrix’s mem-
ber functions can be simple inline calls to (non-inline) base class ver-
sions that are shared with all other matrices holding the same type of
data, regardless of their size. At the same time, SquareMatrix objects of
different sizes are distinct types, so even though, e.g.,
SquareMatrix<double, 5> and SquareMatrix<double, 10> objects use the
same member functions in SquareMatrixBase<double>, there’s no
chance of passing a SquareMatrix<double, 5> object to a function expect-
ing a SquareMatrix<double, 10>. Nice, no?

Nice, yes, but not free. The versions of invert with the matrix sizes
hardwired into them are likely to generate better code than the shared
version where the size is passed as a function parameter or is stored
in the object. For example, in the size-specific versions, the sizes
would be compile-time constants, hence eligible for such optimiza-
tions as constant propagation, including their being folded into the
generated instructions as immediate operands. That can’t be done in
the size-independent version. 

On the other hand, having only one version of invert for multiple
matrix sizes decreases the size of the executable, and that could
reduce the program’s working set size and improve locality of refer-
ence in the instruction cache. Those things could make the program
run faster, more than compensating for any lost optimizations in size-
specific versions of invert. Which effect would dominate? The only way
to know is to try it both ways and observe the behavior on your partic-
ular platform and on representative data sets. 

Another efficiency consideration concerns the sizes of objects. If
you’re not careful, moving size-independent versions of functions up
into a base class can increase the overall size of each object. For
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example, in the code I just showed, each SquareMatrix object has a
pointer to its data in the SquareMatrixBase class, even though each
derived class already has a way to get to the data. This increases the
size of each SquareMatrix object by at least the size of a pointer. It’s
possible to modify the design so that these pointers are unnecessary,
but, again, there are trade-offs. For example, having the base class
store a protected pointer to the matrix data leads to the loss of encap-
sulation described in Item 22. It can also lead to resource manage-
ment complications: if the base class stores a pointer to the matrix
data, but that data may have been either dynamically allocated or
physically stored inside the derived class object (as we saw), how will
it be determined whether the pointer should be deleted? Such ques-
tions have answers, but the more sophisticated you try to be about
them, the more complicated things become. At some point, a little
code replication begins to look like a mercy.

This Item has discussed only bloat due to non-type template parame-
ters, but type parameters can lead to bloat, too. For example, on many
platforms, int and long have the same binary representation, so the
member functions for, say, vector<int> and vector<long> would likely be
identical — the very definition of bloat. Some linkers will merge identi-
cal function implementations, but some will not, and that means that
some templates instantiated on both int and long could cause code
bloat in some environments. Similarly, on most platforms, all pointer
types have the same binary representation, so templates holding
pointer types (e.g., list<int*>, list<const int*>, list<SquareMatrix<long, 3>*>,
etc.) should often be able to use a single underlying implementation for
each member function. Typically, this means implementing member
functions that work with strongly typed pointers (i.e., T* pointers) by
having them call functions that work with untyped pointers (i.e., void*
pointers). Some implementations of the standard C++ library do this
for templates like vector, deque, and list. If you’re concerned about code
bloat arising in your templates, you’ll probably want to develop tem-
plates that do the same thing.

Things to Remember

✦ Templates generate multiple classes and multiple functions, so any
template code not dependent on a template parameter causes bloat.

✦ Bloat due to non-type template parameters can often be eliminated
by replacing template parameters with function parameters or class
data members.

✦ Bloat due to type parameters can be reduced by sharing implemen-
tations for instantiation types with identical binary representations.
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Item 45: Use member function templates to accept 
“all compatible types.”

Smart pointers are objects that act much like pointers but add func-
tionality pointers don’t provide. For example, Item 13 explains how
the standard auto_ptr and tr1::shared_ptr can be used to automatically
delete heap-based resources at the right time. Iterators into STL con-
tainers are almost always smart pointers; certainly you couldn’t
expect to move a built-in pointer from one node in a linked list to the
next by using “++,” yet that works for list::iterators.

One of the things that real pointers do well is support implicit conver-
sions. Derived class pointers implicitly convert into base class point-
ers, pointers to non-const objects convert into pointers to const
objects, etc. For example, consider some conversions that can occur
in a three-level hierarchy:

class Top { ... };

class Middle: public Top { ... };

class Bottom: public Middle { ... };

Top *pt1 = new Middle; // convert Middle* ⇒ Top*
Top *pt2 = new Bottom; // convert Bottom* ⇒ Top*
const Top *pct2 = pt1; // convert Top* ⇒ const Top*

Emulating such conversions in user-defined smart pointer classes is
tricky. We’d need the following code to compile:

template<typename T>
class SmartPtr {
public: // smart pointers are typically

explicit SmartPtr(T *realPtr); // initialized by built-in pointers 
...

};

SmartPtr<Top> pt1 = // convert SmartPtr<Middle> ⇒
SmartPtr<Middle>(new Middle); // SmartPtr<Top>

SmartPtr<Top> pt2 = // convert SmartPtr<Bottom> ⇒
SmartPtr<Bottom>(new Bottom); // SmartPtr<Top>

SmartPtr<const Top> pct2 = pt1; // convert SmartPtr<Top> ⇒
// SmartPtr<const Top>

There is no inherent relationship among different instantiations of the
same template, so compilers view SmartPtr<Middle> and SmartPtr<Top>
as completely different classes, no more closely related than, say, vec-
tor<float> and Widget. To get the conversions among SmartPtr classes
that we want, we have to program them explicitly. 
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In the smart pointer sample code above, each statement creates a new
smart pointer object, so for now we’ll focus on how to write smart
pointer constructors that behave the way we want. A key observation
is that there is no way to write out all the constructors we need. In the
hierarchy above, we can construct a SmartPtr<Top> from a SmartPtr<Mid-
dle> or a SmartPtr<Bottom>, but if the hierarchy is extended in the
future, SmartPtr<Top> objects will have to be constructible from other
smart pointer types. For example, if we later add

class BelowBottom: public Bottom { ... };

we’ll need to support the creation of SmartPtr<Top> objects from
SmartPtr<BelowBottom> objects, and we certainly won’t want to have to
modify the SmartPtr template to do it.

In principle, the number of constructors we need is unlimited. Since a
template can be instantiated to generate an unlimited number of
functions, it seems that we don’t need a constructor function for
SmartPtr, we need a constructor template. Such templates are exam-
ples of member function templates (often just known as member tem-
plates) — templates that generate member functions of a class:

template<typename T>
class SmartPtr {
public:

template<typename U> // member template 
SmartPtr(const SmartPtr<U>& other); // for a ”generalized
... // copy constructor”

};

This says that for every type T and every type U, a SmartPtr<T> can be
created from a SmartPtr<U>, because SmartPtr<T> has a constructor
that takes a SmartPtr<U> parameter. Constructors like this — ones
that create one object from another object whose type is a different
instantiation of the same template (e.g., create a SmartPtr<T> from a
SmartPtr<U>) — are sometimes known as generalized copy constructors.

The generalized copy constructor above is not declared explicit. That’s
deliberate. Type conversions among built-in pointer types (e.g., from
derived to base class pointers) are implicit and require no cast, so it’s
reasonable for smart pointers to emulate that behavior. Omitting
explicit on the templatized constructor does just that.

As declared, the generalized copy constructor for SmartPtr offers more
than we want. Yes, we want to be able to create a SmartPtr<Top> from a
SmartPtr<Bottom>, but we don’t want to be able to create a
SmartPtr<Bottom> from a SmartPtr<Top>, as that’s contrary to the
meaning of public inheritance (see Item 32). We also don’t want to be
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 create a SmartPtr<int> from a SmartPtr<double>, because there
rresponding implicit conversion from double* to int*. Somehow,
e to cull the herd of member functions that this member tem-
ill generate.

ing that SmartPtr follows the lead of auto_ptr and tr1::shared_ptr
ring a get member function that returns a copy of the built-in
 held by the smart pointer object (see Item 15), we can use the
entation of the constructor template to restrict the conversions
e we want:

plate<typename T>
s SmartPtr {
lic:
mplate<typename U>

martPtr(const SmartPtr<U>& other) // initialize this held ptr
eldPtr(other.get()) { ... } // with other’s held ptr

* get() const { return heldPtr; }

ate: // built-in pointer held
*heldPtr; // by the SmartPtr

 the member initialization list to initialize SmartPtr<T>’s data
r of type T* with the pointer of type U* held by the SmartPtr<U>.
ill compile only if there is an implicit conversion from a U*
 to a T* pointer, and that’s precisely what we want. The net
s that SmartPtr<T> now has a generalized copy constructor that

pile only if passed a parameter of a compatible type.

ility of member function templates isn’t limited to constructors.
r common role for them is in support for assignment. For
le, TR1’s shared_ptr (again, see Item 13) supports construction
ll compatible built-in pointers, tr1::shared_ptrs, auto_ptrs, and
k_ptrs (see Item 54), as well as assignment from all of those
tr1::weak_ptrs. Here’s an excerpt from TR1’s specification for

red_ptr, including its penchant for using class instead of type-
hen declaring template parameters. (As Item 42 explains, they
xactly the same thing in this context.)

plate<class T> class shared_ptr {
lic:
mplate<class Y> // construct from
explicit shared_ptr(Y * p); // any compatible

mplate<class Y> // built-in pointer,
shared_ptr(shared_ptr<Y> const& r); // shared_ptr,
mplate<class Y> // weak_ptr, or
explicit shared_ptr(weak_ptr<Y> const& r); // auto_ptr
mplate<class Y>
explicit shared_ptr(auto_ptr<Y>& r);
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template<class Y> // assign from
shared_ptr& operator=(shared_ptr<Y> const& r); // any compatible

template<class Y> // shared_ptr or
shared_ptr& operator=(auto_ptr<Y>& r); // auto_ptr

...
};

All these constructors are explicit, except the generalized copy con-
structor. That means that implicit conversion from one type of
shared_ptr to another is allowed, but implicit conversion from a built-in
pointer or other smart pointer type is not permitted. (Explicit conver-
sion — e.g., via a cast — is okay.) Also interesting is how the auto_ptrs
passed to tr1::shared_ptr constructors and assignment operators aren’t
declared const, in contrast to how the tr1::shared_ptrs and tr1::weak_ptrs
are passed. That’s a consequence of the fact that auto_ptrs stand alone
in being modified when they’re copied (see Item 13).

Member function templates are wonderful things, but they don’t alter
the basic rules of the language. Item 5 explains that two of the four
member functions that compilers may generate are the copy construc-
tor and the copy assignment operator. tr1::shared_ptr declares a gener-
alized copy constructor, and it’s clear that when the types T and Y are
the same, the generalized copy constructor could be instantiated to
create the “normal” copy constructor. So will compilers generate a
copy constructor for tr1::shared_ptr, or will they instantiate the general-
ized copy constructor template when one tr1::shared_ptr object is con-
structed from another tr1::shared_ptr object of the same type? 

As I said, member templates don’t change the rules of the language,
and the rules state that if a copy constructor is needed and you don’t
declare one, one will be generated for you automatically. Declaring a
generalized copy constructor (a member template) in a class doesn’t
keep compilers from generating their own copy constructor (a non-
template), so if you want to control all aspects of copy construction,
you must declare both a generalized copy constructor as well as the
“normal” copy constructor. The same applies to assignment. Here’s an
excerpt from tr1::shared_ptr’s definition that exemplifies this:

template<class T> class shared_ptr {
public:

shared_ptr(shared_ptr const& r); // copy constructor
template<class Y> // generalized

shared_ptr(shared_ptr<Y> const& r); // copy constructor

shared_ptr& operator=(shared_ptr const& r); // copy assignment
template<class Y> // generalized

shared_ptr& operator=(shared_ptr<Y> const& r); // copy assignment
...

};
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Things to Remember

✦ Use member function templates to generate functions that accept all
compatible types.

✦ If you declare member templates for generalized copy construction
or generalized assignment, you’ll still need to declare the normal
copy constructor and copy assignment operator, too.

Item 46: Define non-member functions inside 
templates when type conversions are desired.

Item 24 explains why only non-member functions are eligible for
implicit type conversions on all arguments, and it uses as an example
the operator* function for a Rational class. I recommend you familiarize
yourself with that example before continuing, because this Item
extends the discussion with a seemingly innocuous modification to
Item 24’s example: it templatizes both Rational and operator*: 

template<typename T>
class Rational {
public:

Rational(const T& numerator = 0, // see Item 20 for why params
const T& denominator = 1); // are now passed by reference

const T numerator() const; // see Item 28 for why return
const T denominator() const; // values are still passed by value,
... // Item 3 for why they’re const

};

template<typename T>
const Rational<T> operator*(const Rational<T>& lhs,

const Rational<T>& rhs)
{ ... }

As in Item 24, we want to support mixed-mode arithmetic, so we want
the code below to compile. We expect that it will, because we’re using
the same code that works in Item 24. The only difference is that Ratio-
nal and operator* are now templates:

Rational<int> oneHalf(1, 2); // this example is from Item 24,
// except Rational is now a template

Rational<int> result = oneHalf * 2; // error! won’t compile

The fact that this fails to compile suggests that there’s something
about the templatized Rational that’s different from the non-template
version, and indeed there is. In Item 24, compilers know what func-
tion we’re trying to call (operator* taking two Rationals), but here, com-
pilers do not know which function we want to call. Instead, they’re
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trying to figure out what function to instantiate (i.e., create) from the
template named operator*. They know that they’re supposed to instan-
tiate some function named operator* taking two parameters of type
Rational<T>, but in order to do the instantiation, they have to figure
out what T is. The problem is, they can’t. 

In attempting to deduce T, they look at the types of the arguments
being passed in the call to operator*. In this case, those types are Ratio-
nal<int> (the type of oneHalf) and int (the type of 2). Each parameter is
considered separately. 

The deduction using oneHalf is easy. operator*’s first parameter is
declared to be of type Rational<T>, and the first argument passed to
operator* (oneHalf) is of type Rational<int>, so T must be int. Unfortu-
nately, the deduction for the other parameter is not so simple. opera-
tor*’s second parameter is declared to be of type Rational<T>, but the
second argument passed to operator* (2) is of type int. How are compil-
ers to figure out what T is in this case? You might expect them to use
Rational<int>’s non-explicit constructor to convert 2 into a Rational<int>,
thus allowing them to deduce that T is int, but they don’t do that. They
don’t, because implicit type conversion functions are never considered
during template argument deduction. Never. Such conversions are
used during function calls, yes, but before you can call a function,
you have to know which functions exist. In order to know that, you
have to deduce parameter types for the relevant function templates (so
that you can instantiate the appropriate functions). But implicit type
conversion via constructor calls is not considered during template
argument deduction. Item 24 involves no templates, so template argu-
ment deduction is not an issue. Now that we’re in the template part of
C++ (see Item 1), it’s the primary issue.

We can relieve compilers of the challenge of template argument deduc-
tion by taking advantage of the fact that a friend declaration in a tem-
plate class can refer to a specific function. That means the class
Rational<T> can declare operator* for Rational<T> as a friend function.
Class templates don’t depend on template argument deduction (that
process applies only to function templates), so T is always known at
the time the class Rational<T> is instantiated. That makes it easy for
the Rational<T> class to declare the appropriate operator* function as a
friend:

template<typename T>
class Rational {
public:

...
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friend // declare operator*
const Rational operator*(const Rational& lhs, // function (see 

const Rational& rhs); // below for details)
};

template<typename T> // define operator*
const Rational<T> operator*(const Rational<T>& lhs, // functions

const Rational<T>& rhs)
{ ... }

Now our mixed-mode calls to operator* will compile, because when the
object oneHalf is declared to be of type Rational<int>, the class Ratio-
nal<int> is instantiated, and as part of that process, the friend func-
tion operator* that takes Rational<int> parameters is automatically
declared. As a declared function (not a function template), compilers
can use implicit conversion functions (such as Rational’s non-explicit
constructor) when calling it, and that’s how they make the mixed-
mode call succeed.

Alas, “succeed” is a funny word in this context, because although the
code will compile, it won’t link. We’ll deal with that in a moment, but
first I want to remark on the syntax used to declare operator* inside
Rational. 

Inside a class template, the name of the template can be used as
shorthand for the template and its parameters, so inside Rational<T>,
we can just write Rational instead of Rational<T>. That saves us only a
few characters in this example, but when there are multiple parame-
ters or longer parameter names, it can both save typing and make the
resulting code clearer. I bring this up, because operator* is declared
taking and returning Rationals instead of Rational<T>s. It would have
been just as valid to declare operator* like this:

template<typename T>
class Rational {
public:

...

friend
const Rational<T> operator*(const Rational<T>& lhs,

const Rational<T>& rhs);
...

};

However, it’s easier (and more common) to use the shorthand form.

Now back to the linking problem. The mixed-mode code compiles,
because compilers know that we want to call a specific function (oper-
ator* taking a Rational<int> and a Rational<int>), but that function is
only declared inside Rational, not defined there. Our intent is to have
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the operator* template outside the class provide that definition, but
things don’t work that way. If we declare a function ourselves (which
is what we’re doing inside the Rational template), we’re also responsi-
ble for defining that function. In this case, we never provide a defini-
tion, and that’s why linkers can’t find one.

The simplest thing that could possibly work is to merge the body of
operator* into its declaration:

template<typename T>
class Rational {
public:

...

friend const Rational operator*(const Rational& lhs, const Rational& rhs)
{

return Rational( lhs.numerator() * rhs.numerator(), // same impl
lhs.denominator() * rhs.denominator()); // as in

} // Item 24

};

Indeed, this works as intended: mixed-mode calls to operator* now
compile, link, and run. Hooray! 

An interesting observation about this technique is that the use of
friendship has nothing to do with a need to access non-public parts of
the class. In order to make type conversions possible on all argu-
ments, we need a non-member function (Item 24 still applies); and in
order to have the proper function automatically instantiated, we need
to declare the function inside the class. The only way to declare a non-
member function inside a class is to make it a friend. So that’s what
we do. Unconventional? Yes. Effective? Without a doubt.

As Item 30 explains, functions defined inside a class are implicitly
declared inline, and that includes friend functions like operator*. You
can minimize the impact of such inline declarations by having opera-
tor* do nothing but call a helper function defined outside of the class.
In the example in this Item, there’s not much point in doing that,
because operator* is already implemented as a one-line function, but
for more complex function bodies, it may be desirable. It’s worth tak-
ing a look at the “have the friend call a helper” approach. 

The fact that Rational is a template means that the helper function will
usually also be a template, so the code in the header file defining
Rational will typically look something like this:

template<typename T> class Rational; // declare
// Rational
// template
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template<typename T> // declare
const Rational<T> doMultiply( const Rational<T>& lhs, // helper

const Rational<T>& rhs); // template

template<typename T>
class Rational {
public:

...

friend
const Rational<T> operator*(const Rational<T>& lhs,

const Rational<T>& rhs) // Have friend
{ return doMultiply(lhs, rhs); } // call helper
...

};

Many compilers essentially force you to put all template definitions in
header files, so you may need to define doMultiply in your header as
well. (As Item 30 explains, such templates need not be inline.) That
could look like this:

template<typename T> // define
const Rational<T> doMultiply(const Rational<T>& lhs, // helper

const Rational<T>& rhs) // template in
{ // header file,

return Rational<T>(lhs.numerator() * rhs.numerator(), // if necessary
lhs.denominator() * rhs.denominator());

}

As a template, of course, doMultiply won’t support mixed-mode multi-
plication, but it doesn’t need to. It will only be called by operator*, and
operator* does support mixed-mode operations! In essence, the func-
tion operator* supports whatever type conversions are necessary to
ensure that two Rational objects are being multiplied, then it passes
these two objects to an appropriate instantiation of the doMultiply tem-
plate to do the actual multiplication. Synergy in action, no?

Things to Remember

✦ When writing a class template that offers functions related to the
template that support implicit type conversions on all parameters,
define those functions as friends inside the class template.

Item 47: Use traits classes for information about types.

The STL is primarily made up of templates for containers, iterators,
and algorithms, but it also has a few utility templates. One of these is
called advance. advance moves a specified iterator a specified distance:
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template<typename IterT, typename DistT> // move iter d units
void advance(IterT& iter, DistT d); // forward; if d < 0,

// move iter backward

Conceptually, advance just does iter += d, but advance can’t be imple-
mented that way, because only random access iterators support the
+= operation. Less powerful iterator types have to implement advance
by iteratively applying ++ or -- d times. 

Um, you don’t remember your STL iterator categories? No problem,
we’ll do a mini-review. There are five categories of iterators, corre-
sponding to the operations they support. Input iterators can move only
forward, can move only one step at a time, can only read what they
point to, and can read what they’re pointing to only once. They’re
modeled on the read pointer into an input file; the C++ library’s
istream_iterators are representative of this category. Output iterators
are analogous, but for output: they move only forward, move only one
step at a time, can only write what they point to, and can write it only
once. They’re modeled on the write pointer into an output file;
ostream_iterators epitomize this category. These are the two least pow-
erful iterator categories. Because input and output iterators can move
only forward and can read or write what they point to at most once,
they are suitable only for one-pass algorithms.

A more powerful iterator category consists of forward iterators. Such
iterators can do everything input and output iterators can do, plus
they can read or write what they point to more than once. This makes
them viable for multi-pass algorithms. The STL offers no singly linked
list, but some libraries offer one (usually called slist), and iterators into
such containers are forward iterators. Iterators into TR1’s hashed
containers (see Item 54) may also be in the forward category.

Bidirectional iterators add to forward iterators the ability to move
backward as well as forward. Iterators for the STL’s list are in this cat-
egory, as are iterators for set, multiset, map, and multimap.

The most powerful iterator category is that of random access iterators.
These kinds of iterators add to bidirectional iterators the ability to per-
form “iterator arithmetic,” i.e., to jump forward or backward an arbi-
trary distance in constant time. Such arithmetic is analogous to
pointer arithmetic, which is not surprising, because random access
iterators are modeled on built-in pointers, and built-in pointers can
act as random access iterators. Iterators for vector, deque, and string
are random access iterators.

For each of the five iterator categories, C++ has a “tag struct” in the
standard library that serves to identify it:
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struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The inheritance relationships among these structs are valid is-a rela-
tionships (see Item 32): it’s true that all forward iterators are also
input iterators, etc. We’ll see the utility of this inheritance shortly.

But back to advance. Given the different iterator capabilities, one way
to implement advance would be to use the lowest-common-denomina-
tor strategy of a loop that iteratively increments or decrements the
iterator. However, that approach would take linear time. Random
access iterators support constant-time iterator arithmetic, and we’d
like to take advantage of that ability when it’s present. 

What we really want to do is implement advance essentially like this:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (iter is a random access iterator) {
iter += d; // use iterator arithmetic

} // for random access iters
else {

if (d >= 0) { while (d--) ++iter; } // use iterative calls to
else { while (d++) --iter; } // ++ or -- for other

} // iterator categories
}

This requires being able to determine whether iter is a random access
iterator, which in turn requires knowing whether its type, IterT, is a
random access iterator type. In other words, we need to get some
information about a type. That’s what traits let you do: they allow you
to get information about a type during compilation.

Traits aren’t a keyword or a predefined construct in C++; they’re a
technique and a convention followed by C++ programmers. One of the
demands made on the technique is that it has to work as well for
built-in types as it does for user-defined types. For example, if advance
is called with a pointer (like a const char*) and an int, advance has to
work, but that means that the traits technique must apply to built-in
types like pointers.

The fact that traits must work with built-in types means that things
like nesting information inside types won’t do, because there’s no way
to nest information inside pointers. The traits information for a type,
then, must be external to the type. The standard technique is to put it
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into a template and one or more specializations of that template. For
iterators, the template in the standard library is named iterator_traits:

template<typename IterT> // template for information about
struct iterator_traits; // iterator types

As you can see, iterator_traits is a struct. By convention, traits are
always implemented as structs. Another convention is that the structs
used to implement traits are known as — I am not making this up —
traits classes. 

The way iterator_traits works is that for each type IterT, a typedef named
iterator_category is declared in the struct iterator_traits<IterT>. This
typedef identifies the iterator category of IterT. 

iterator_traits implements this in two parts. First, it imposes the
requirement that any user-defined iterator type must contain a nested
typedef named iterator_category that identifies the appropriate tag
struct. deque’s iterators are random access, for example, so a class for
deque iterators would look something like this:

template < ... > // template params elided
class deque {
public:

class iterator {
public:

typedef random_access_iterator_tag iterator_category;
...

};
...

};

list’s iterators are bidirectional, however, so they’d do things this way:

template < ... >
class list {
public:

class iterator {
public:

typedef bidirectional_iterator_tag iterator_category;
...

};
...

};

iterator_traits just parrots back the iterator class’s nested typedef:

// the iterator_category for type IterT is whatever IterT says it is;
// see Item 42 for info on the use of “typedef typename”
template<typename IterT>
struct iterator_traits {

typedef typename IterT::iterator_category iterator_category;
...

};
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This works well for user-defined types, but it doesn’t work at all for
iterators that are pointers, because there’s no such thing as a pointer
with a nested typedef. The second part of the iterator_traits implemen-
tation handles iterators that are pointers.

To support such iterators, iterator_traits offers a partial template spe-
cialization for pointer types. Pointers act as random access iterators,
so that’s the category iterator_traits specifies for them:

template<typename T> // partial template specialization
struct iterator_traits<T*> // for built-in pointer types
{

typedef random_access_iterator_tag iterator_category;
...

};

At this point, you know how to design and implement a traits class:

■ Identify some information about types you’d like to make available
(e.g., for iterators, their iterator category).

■ Choose a name to identify that information (e.g., iterator_category).

■ Provide a template and set of specializations (e.g., iterator_traits)
that contain the information for the types you want to support. 

Given iterator_traits — actually std::iterator_traits, since it’s part of C++’s
standard library — we can refine our pseudocode for advance:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (typeid(typename std::iterator_traits<IterT>::iterator_category) ==
typeid(std::random_access_iterator_tag))

...
}

Although this looks promising, it’s not what we want. For one thing, it
will lead to compilation problems, but we’ll explore that in Item 48;
right now, there’s a more fundamental issue to consider. IterT’s type is
known during compilation, so iterator_traits<IterT>::iterator_category can
also be determined during compilation. Yet the if statement is evalu-
ated at runtime (unless your optimizer is crafty enough to get rid of it).
Why do something at runtime that we can do during compilation? It
wastes time (literally), and it bloats our executable. 

What we really want is a conditional construct (i.e., an if...else state-
ment) for types that is evaluated during compilation. As it happens,
C++ already has a way to get that behavior. It’s called overloading. 

When you overload some function f, you specify different parameter
types for the different overloads. When you call f, compilers pick the
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best overload, based on the arguments you’re passing. Compilers
essentially say, “If this overload is the best match for what’s being
passed, call this f; if this other overload is the best match, call it; if
this third one is best, call it,” etc. See? A compile-time conditional
construct for types. To get advance to behave the way we want, all we
have to do is create multiple versions of an overloaded function con-
taining the “guts” of advance, declaring each to take a different type of
iterator_category object. I use the name doAdvance for these functions:

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // random access

std::random_access_iterator_tag) // iterators
{

iter += d;
}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // bidirectional

std::bidirectional_iterator_tag) // iterators
{ 

if (d >= 0) { while (d--) ++iter; }
else { while (d++) --iter; }

}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // input iterators

std::input_iterator_tag)
{

if (d < 0 ) {
throw std::out_of_range("Negative distance"); // see below

}
while (d--) ++iter;

}

Because forward_iterator_tag inherits from input_iterator_tag, the ver-
sion of doAdvance for input_iterator_tag will also handle forward itera-
tors. That’s the motivation for inheritance among the various
iterator_tag structs. (In fact, it’s part of the motivation for all public
inheritance: to be able to write code for base class types that also
works for derived class types.)

The specification for advance allows both positive and negative dis-
tances for random access and bidirectional iterators, but behavior is
undefined if you try to move a forward or input iterator a negative dis-
tance. The implementations I checked simply assumed that d was
non-negative, thus entering a very long loop counting “down” to zero if
a negative distance was passed in. In the code above, I’ve shown an
exception being thrown instead. Both implementations are valid.
That’s the curse of undefined behavior: you can’t predict what will
happen.
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Given the various overloads for doAdvance, all advance needs to do is
call them, passing an extra object of the appropriate iterator category
type so that the compiler will use overloading resolution to call the
proper implementation:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

doAdvance( // call the version
iter, d, // of doAdvance 
typename // that is 

std::iterator_traits<IterT>::iterator_category() // appropriate for
); // iter’s iterator

} // category

We can now summarize how to use a traits class:

■ Create a set of overloaded “worker” functions or function tem-
plates (e.g., doAdvance) that differ in a traits parameter. Implement
each function in accord with the traits information passed.

■ Create a “master” function or function template (e.g., advance) that
calls the workers, passing information provided by a traits class.

Traits are widely used in the standard library. There’s iterator_traits, of
course, which, in addition to iterator_category, offers four other pieces
of information about iterators (the most useful of which is value_type
— Item 42 shows an example of its use). There’s also char_traits, which
holds information about character types, and numeric_limits, which
serves up information about numeric types, e.g., their minimum and
maximum representable values, etc. (The name numeric_limits is a bit
of a surprise, because the more common convention is for traits
classes to end with “traits,” but numeric_limits is what it’s called, so
numeric_limits is the name we use.)

TR1 (see Item 54) introduces a slew of new traits classes that give infor-
mation about types, including is_fundamental<T> (whether T is a built-in
type), is_array<T> (whether T is an array type), and is_base_of<T1, T2>
(whether T1 is the same as or is a base class of T2). All told, TR1 adds
over 50 traits classes to standard C++.

Things to Remember

✦ Traits classes make information about types available during com-
pilation. They’re implemented using templates and template special-
izations. 

✦ In conjunction with overloading, traits classes make it possible to
perform compile-time if...else tests on types.
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Item 48: Be aware of template metaprogramming.

Template metaprogramming (TMP) is the process of writing template-
based C++ programs that execute during compilation. Think about
that for a minute: a template metaprogram is a program written in
C++ that executes inside the C++ compiler. When a TMP program fin-
ishes running, its output — pieces of C++ source code instantiated
from templates — is then compiled as usual.

If this doesn’t strike you as just plain bizarre, you’re not thinking
about it hard enough.

C++ was not designed for template metaprogramming, but since TMP
was discovered in the early 1990s, it has proven to be so useful,
extensions are likely to be added to both the language and its stan-
dard library to make TMP easier. Yes, TMP was discovered, not
invented. The features underlying TMP were introduced when tem-
plates were added to C++. All that was needed was for somebody to
notice how they could be used in clever and unexpected ways.

TMP has two great strengths. First, it makes some things easy that
would otherwise be hard or impossible. Second, because template
metaprograms execute during C++ compilation, they can shift work
from runtime to compile-time. One consequence is that some kinds of
errors that are usually detected at runtime can be found during com-
pilation. Another is that C++ programs making use of TMP can be
more efficient in just about every way: smaller executables, shorter
runtimes, lesser memory requirements. (However, a consequence of
shifting work from runtime to compile-time is that compilation takes
longer. Programs using TMP may take much longer to compile than
their non-TMP counterparts.) 

Consider the pseudocode for STL’s advance introduced on page 228.
(That’s in Item 47. You may want to read that Item now, because in
this Item, I’ll assume you are familiar with the material in that one.)
As on page 228, I’ve highlighted the pseudo part of the code:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (iter is a random access iterator) {
iter += d; // use iterator arithmetic

} // for random access iters
else {

if (d >= 0) { while (d--) ++iter; } // use iterative calls to
else { while (d++) --iter; } // ++ or -- for other

} // iterator categories
}
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We can use typeid to make the pseudocode real. That yields a “normal”
C++ approach to this problem — one that does all its work at runtime:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if ( typeid(typename std::iterator_traits<IterT>::iterator_category) ==
typeid(std::random_access_iterator_tag)) {

iter += d; // use iterator arithmetic
} // for random access iters

else {
if (d >= 0) { while (d--) ++iter; } // use iterative calls to
else { while (d++) --iter; } // ++ or -- for other

} // iterator categories
}

Item 47 notes that this typeid-based approach is less efficient than the
one using traits, because with this approach, (1) the type testing
occurs at runtime instead of during compilation, and (2) the code to
do the runtime type testing must be present in the executable. In fact,
this example shows how TMP can be more efficient than a “normal”
C++ program, because the traits approach is TMP. Remember, traits
enable compile-time if...else computations on types.

I remarked earlier that some things are easier in TMP than in “nor-
mal” C++, and advance offers an example of that, too. Item 47 men-
tions that the typeid-based implementation of advance can lead to
compilation problems, and here’s an example where it does:

std::list<int>::iterator iter;

...

advance(iter, 10); // move iter 10 elements forward;
// won’t compile with above impl.

Consider the version of advance that will be generated for the above
call. After substituting iter’s and 10’s types for the template parame-
ters IterT and DistT, we get this:

void advance(std::list<int>::iterator& iter, int d)
{

if (typeid(std::iterator_traits<std::list<int>::iterator>::iterator_category) ==
typeid(std::random_access_iterator_tag)) {

iter += d; // error! won’t compile
}
else {

if (d >= 0) { while (d--) ++iter; }
else { while (d++) --iter; }

}
}
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The problem is the highlighted line, the one using +=. In this case,
we’re trying to use += on a list<int>::iterator, but list<int>::iterator is a
bidirectional iterator (see Item 47), so it doesn’t support +=. Only ran-
dom access iterators support +=. Now, we know we’ll never try to exe-
cute the += line, because the typeid test will always fail for
list<int>::iterators, but compilers are obliged to make sure that all
source code is valid, even if it’s not executed, and “iter += d” isn’t valid
when iter isn’t a random access iterator. Contrast this with the traits-
based TMP solution, where code for different types is split into sepa-
rate functions, each of which uses only operations applicable to the
types for which it is written. 

TMP has been shown to be Turing-complete, which means that it is
powerful enough to compute anything. Using TMP, you can declare
variables, perform loops, write and call functions, etc. But such con-
structs look very different from their “normal” C++ counterparts. For
example, Item 47 shows how if...else conditionals in TMP are expressed
via templates and template specializations. But that’s assembly-level
TMP. Libraries for TMP (e.g., Boost’s MPL — see Item 55) offer a
higher-level syntax, though still not something you’d mistake for “nor-
mal” C++.

For another glimpse into how things work in TMP, let’s look at loops.
TMP has no real looping construct, so the effect of loops is accom-
plished via recursion. (If you’re not comfortable with recursion, you’ll
need to address that before venturing into TMP. It’s largely a func-
tional language, and recursion is to functional languages as TV is to
American pop culture: inseparable.) Even the recursion isn’t the nor-
mal kind, however, because TMP loops don’t involve recursive func-
tion calls, they involve recursive template instantiations. 

The “hello world” program of TMP is computing a factorial during com-
pilation. It’s not a very exciting program, but then again, neither is
“hello world,” yet both are helpful as language introductions. TMP fac-
torial computation demonstrates looping through recursive template
instantiation. It also demonstrates one way in which variables are cre-
ated and used in TMP. Look:

template<unsigned n> // general case: the value of 
struct Factorial { // Factorial<n> is n times the value

// of Factorial<n-1>

enum { value = n * Factorial<n-1>::value };

};

template<> // special case: the value of
struct Factorial<0> { // Factorial<0> is 1

The problem is the highlighted line, the one using +=. In this case,
we’re trying to use += on a list<int>::iterator, but list<int>::iterator is a
bidirectional iterator (see Item 47), so it doesn’t support +=. Only ran-
dom access iterators support +=. Now, we know we’ll never try to exe-
cute the += line, because the typeid test will always fail for
list<int>::iterators, but compilers are obliged to make sure that all
source code is valid, even if it’s not executed, and “iter += d” isn’t valid
when iter isn’t a random access iterator. Contrast this with the traits-
based TMP solution, where code for different types is split into sepa-
rate functions, each of which uses only operations applicable to the
types for which it is written. 

TMP has been shown to be Turing-complete, which means that it is
powerful enough to compute anything. Using TMP, you can declare
variables, perform loops, write and call functions, etc. But such con-
structs look very different from their “normal” C++ counterparts. For
example, Item 47 shows how if...else conditionals in TMP are expressed
via templates and template specializations. But that’s assembly-level
TMP. Libraries for TMP (e.g., Boost’s MPL — see Item 55) offer a
higher-level syntax, though still not something you’d mistake for “nor-
mal” C++.

For another glimpse into how things work in TMP, let’s look at loops.
TMP has no real looping construct, so the effect of loops is accom-
plished via recursion. (If you’re not comfortable with recursion, you’ll
need to address that before venturing into TMP. It’s largely a func-
tional language, and recursion is to functional languages as TV is to
American pop culture: inseparable.) Even the recursion isn’t the nor-
mal kind, however, because TMP loops don’t involve recursive func-
tion calls, they involve recursive template instantiations. 

The “hello world” program of TMP is computing a factorial during com-
pilation. It’s not a very exciting program, but then again, neither is
“hello world,” yet both are helpful as language introductions. TMP fac-
torial computation demonstrates looping through recursive template
instantiation. It also demonstrates one way in which variables are cre-
ated and used in TMP. Look:

template<unsigned n> // general case: the value of 
struct Factorial { // Factorial<n> is n times the value

// of Factorial<n-1>

enum { value = n * Factorial<n-1>::value };

};

template<> // special case: the value of
struct Factorial<0> { // Factorial<0> is 1

enum { value = 1 };
};
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Given this template metaprogram (really just the single template
metafunction Factorial), you get the value of factorial(n) by referring to
Factorial<n>::value. 

The looping part of the code occurs where the template instantiation
Factorial<n> references the template instantiation Factorial<n-1>. Like
all good recursion, there’s a special case that causes the recursion to
terminate. Here, it’s the template specialization Factorial<0>. 

Each instantiation of the Factorial template is a struct, and each struct
uses the enum hack (see Item 2) to declare a TMP variable named
value. value is what holds the current value of the factorial computa-
tion. If TMP had a real looping construct, value would be updated each
time around the loop. Since TMP uses recursive template instantia-
tion in place of loops, each instantiation gets its own copy of value,
and each copy has the proper value for its place in the “loop.” 

You could use Factorial like this:

int main()
{

std::cout << Factorial<5>::value; // prints 120
std::cout << Factorial<10>::value; // prints 3628800

}

If you think this is cooler than ice cream, you’ve got the makings of a
template metaprogrammer. If the templates and specializations and
recursive instantiations and enum hacks and the need to type things
like Factorial<n-1>::value make your skin crawl, well, you’re a pretty
normal C++ programmer. 

Of course, Factorial demonstrates the utility of TMP about as well as
“hello world” demonstrates the utility of any conventional program-
ming language. To grasp why TMP is worth knowing about, it’s impor-
tant to have a better understanding of what it can accomplish. Here
are three examples:

■ Ensuring dimensional unit correctness. In scientific and engi-
neering applications, it’s essential that dimensional units (e.g.,
mass, distance, time, etc.) be combined correctly. Assigning a vari-
able representing mass to a variable representing velocity, for ex-
ample, is an error, but dividing a distance variable by a time
variable and assigning the result to a velocity variable is fine. Us-
ing TMP, it’s possible to ensure (during compilation) that all di-
mensional unit combinations in a program are correct, no matter
how complex the calculations. (This is an example of how TMP can
be used for early error detection.) One interesting aspect of this
use of TMP is that fractional dimensional exponents can be sup-
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ported. This requires that such fractions be reduced during compi-
lation so that compilers can confirm, for example, that the unit
time1/2 is the same as time4/8.

■ Optimizing matrix operations. Item 21 explains that some func-
tions, including operator*, must return new objects, and Item 44
introduces the SquareMatrix class, so consider the following code:

typedef SquareMatrix<double, 10000> BigMatrix;

BigMatrix m1, m2, m3, m4, m5; // create matrices and
... // give them values

BigMatrix result = m1 * m2 * m3 * m4 * m5; // compute their product

Calculating result in the “normal” way calls for the creation of four
temporary matrices, one for the result of each call to operator*.
Furthermore, the independent multiplications generate a se-
quence of four loops over the matrix elements. Using an advanced
template technology related to TMP called expression templates,
it’s possible to eliminate the temporaries and merge the loops, all
without changing the syntax of the client code above. The result-
ing software uses less memory and runs dramatically faster.

■ Generating custom design pattern implementations. Design
patterns like Strategy (see Item 35), Observer, Visitor, etc. can be
implemented in many ways. Using a TMP-based technology called
policy-based design, it’s possible to create templates representing
independent design choices (“policies”) that can be combined in
arbitrary ways to yield pattern implementations with custom be-
havior. For example, this technique has been used to allow a few
templates implementing smart pointer behavioral policies to gen-
erate (during compilation) any of hundreds of different smart
pointer types. Generalized beyond the domain of programming ar-
tifacts like design patterns and smart pointers, this technology is
a basis for what’s known as generative programming.

TMP is not for everybody. The syntax is unintuitive, and tool support
is weak. (Debuggers for template metaprograms? Ha!) Being an “acci-
dental” language that was only relatively recently discovered, TMP
programming conventions are still somewhat experimental. Neverthe-
less, the efficiency improvements afforded by shifting work from runt-
ime to compile-time can be impressive, and the ability to express
behavior that is difficult or impossible to implement at runtime is
attractive, too. 

TMP support is on the rise. It’s likely that the next version of C++ will
provide explicit support for it, and TR1 already does (see Item 54).
Books are beginning to come out on the subject, and TMP information
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on the web just keeps getting richer. TMP will probably never be main-
stream, but for some programmers — especially library developers —
it’s almost certain to be a staple. 

Things to Remember

✦ Template metaprogramming can shift work from runtime to com-
pile-time, thus enabling earlier error detection and higher runtime
performance.

✦ TMP can be used to generate custom code based on combinations of
policy choices, and it can also be used to avoid generating code in-
appropriate for particular types.
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Customizing new and deleteIn these days of computing environments boasting built-in support for
garbage collection (e.g., Java and .NET), the manual C++ approach to
memory management can look rather old-fashioned. Yet many devel-
opers working on demanding systems applications choose C++
because it lets them manage memory manually. Such developers
study the memory usage characteristics of their software, and they
tailor their allocation and deallocation routines to offer the best possi-
ble performance (in both time and space) for the systems they build. 

Doing that requires an understanding of how C++’s memory manage-
ment routines behave, and that’s the focus of this chapter. The two
primary players in the game are the allocation and deallocation rou-
tines (operator new and operator delete), with a supporting role played
by the new-handler — the function called when operator new can’t sat-
isfy a request for memory. 

Memory management in a multithreaded environment poses chal-
lenges not present in a single-threaded system, because both the heap
and the new-handler are modifiable global resources, subject to the
race conditions that can bedevil threaded systems. Many Items in this
chapter mention the use of modifiable static data, always something
to put thread-aware programmers on high alert. Without proper syn-
chronization, the use of lock-free algorithms, or careful design to pre-
vent concurrent access, calls to memory routines can lead to baffling
behavior or to corrupted heap management data structures. Rather
than repeatedly remind you of this danger, I’ll mention it here and
assume that you keep it in mind for the rest of the chapter. 

Something else to keep in mind is that operator new and operator delete
apply only to allocations for single objects. Memory for arrays is allo-
cated by operator new[] and deallocated by operator delete[]. (In both
cases, note the “[]” part of the function names.) Unless indicated oth-

Chapter 8: Customizingnew and delete

Customizing
new and delete
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erwise, everything I write about operator new and operator delete also
applies to operator new[] and operator delete[].

Finally, note that heap memory for STL containers is managed by the
containers’ allocator objects, not by new and delete directly. That
being the case, this chapter has nothing to say about STL allocators.

Item 49: Understand the behavior of the new-handler.

When operator new can’t satisfy a memory allocation request, it throws
an exception. Long ago, it returned a null pointer, and some older
compilers still do that. You can still get the old behavior (sort of), but
I’ll defer that discussion until the end of this Item.

Before operator new throws an exception in response to an unsatisfi-
able request for memory, it calls a client-specifiable error-handling
function called a new-handler. (This is not quite true. What operator
new really does is a bit more complicated. Details are provided in
Item 51.) To specify the out-of-memory-handling function, clients call
set_new_handler, a standard library function declared in <new>:

namespace std {

typedef void (*new_handler)();
new_handler set_new_handler(new_handler p) throw();

}

As you can see, new_handler is a typedef for a pointer to a function
that takes and returns nothing, and set_new_handler is a function that
takes and returns a new_handler. (The “throw()” at the end of
set_new_handler’s declaration is an exception specification. It essen-
tially says that this function won’t throw any exceptions, though the
truth is a bit more interesting. For details, see Item 29.)

set_new_handler’s parameter is a pointer to the function operator new
should call if it can’t allocate the requested memory. The return value
of set_new_handler is a pointer to the function in effect for that pur-
pose before set_new_handler was called.

You use set_new_handler like this:

// function to call if operator new can’t allocate enough memory
void outOfMem()
{

std::cerr << "Unable to satisfy request for memory\n";
std::abort();

}
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int main()
{

std::set_new_handler(outOfMem);

int *pBigDataArray = new int[100000000L];
...

}

If operator new is unable to allocate space for 100,000,000 integers,
outOfMem will be called, and the program will abort after issuing an
error message. (By the way, consider what happens if memory must
be dynamically allocated during the course of writing the error mes-
sage to cerr....)

When operator new is unable to fulfill a memory request, it calls the
new-handler function repeatedly until it can find enough memory. The
code giving rise to these repeated calls is shown in Item 51, but this
high-level description is enough to conclude that a well-designed new-
handler function must do one of the following:

■ Make more memory available. This may allow the next memory
allocation attempt inside operator new to succeed. One way to im-
plement this strategy is to allocate a large block of memory at pro-
gram start-up, then release it for use in the program the first time
the new-handler is invoked.

■ Install a different new-handler. If the current new-handler can’t
make any more memory available, perhaps it knows of a different
new-handler that can. If so, the current new-handler can install
the other new-handler in its place (by calling set_new_handler). The
next time operator new calls the new-handler function, it will get
the one most recently installed. (A variation on this theme is for a
new-handler to modify its own behavior, so the next time it’s in-
voked, it does something different. One way to achieve this is to
have the new-handler modify static, namespace-specific, or global
data that affects the new-handler’s behavior.)

■ Deinstall the new-handler, i.e., pass the null pointer to
set_new_handler. With no new-handler installed, operator new will
throw an exception when memory allocation is unsuccessful.

■ Throw an exception of type bad_alloc or some type derived from
bad_alloc. Such exceptions will not be caught by operator new, so
they will propagate to the site originating the request for memory. 

■ Not return, typically by calling abort or exit.

These choices give you considerable flexibility in implementing new-
handler functions.
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Sometimes you’d like to handle memory allocation failures in different
ways, depending on the class of the object being allocated:

class X {
public:

static void outOfMemory();
...

};

class Y {
public:

static void outOfMemory();
...

};

X* p1 = new X; // if allocation is unsuccessful,
// call X::outOfMemory

Y* p2 = new Y; // if allocation is unsuccessful,
// call Y::outOfMemory

C++ has no support for class-specific new-handlers, but it doesn’t need
any. You can implement this behavior yourself. You just have each
class provide its own versions of set_new_handler and operator new. The
class’s set_new_handler allows clients to specify the new-handler for the
class (exactly like the standard set_new_handler allows clients to specify
the global new-handler). The class’s operator new ensures that the
class-specific new-handler is used in place of the global new-handler
when memory for class objects is allocated.

Suppose you want to handle memory allocation failures for the Widget
class. You’ll have to keep track of the function to call when operator
new can’t allocate enough memory for a Widget object, so you’ll declare
a static member of type new_handler to point to the new-handler func-
tion for the class. Widget will look something like this:

class Widget {
public:

static std::new_handler set_new_handler(std::new_handler p) throw();
static void* operator new(std::size_t size) throw(std::bad_alloc);

private:
static std::new_handler currentHandler;

};

Static class members must be defined outside the class definition
(unless they’re const and integral — see Item 2), so:

std::new_handler Widget::currentHandler = 0; // init to null in the class
// impl. file
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The set_new_handler function in Widget will save whatever pointer is
passed to it, and it will return whatever pointer had been saved prior
to the call. This is what the standard version of set_new_handler does:

std::new_handler Widget::set_new_handler(std::new_handler p) throw()
{

std::new_handler oldHandler = currentHandler;
currentHandler = p;
return oldHandler;

}

Finally, Widget’s operator new will do the following:

1. Call the standard set_new_handler with Widget’s error-handling
function. This installs Widget’s new-handler as the global new-
handler. 

2. Call the global operator new to perform the actual memory allo-
cation. If allocation fails, the global operator new invokes Widget’s
new-handler, because that function was just installed as the glo-
bal new-handler. If the global operator new is ultimately unable
to allocate the memory, it throws a bad_alloc exception. In that
case, Widget’s operator new must restore the original global new-
handler, then propagate the exception. To ensure that the origi-
nal new-handler is always reinstated, Widget treats the global
new-handler as a resource and follows the advice of Item 13 to
use resource-managing objects to prevent resource leaks.

3. If the global operator new was able to allocate enough memory for
a Widget object, Widget’s operator new returns a pointer to the al-
located memory. The destructor for the object managing the glo-
bal new-handler automatically restores the global new-handler
to what it was prior to the call to Widget’s operator new.

Here’s how you say all that in C++. We’ll begin with the resource-han-
dling class, which consists of nothing more than the fundamental
RAII operations of acquiring a resource during construction and
releasing it during destruction (see Item 13):

class NewHandlerHolder {
public:

explicit NewHandlerHolder(std::new_handler nh) // acquire current
: handler(nh) {} // new-handler 

~NewHandlerHolder() // release it
{ std::set_new_handler(handler); }

private:
std::new_handler handler; // remember it

NewHandlerHolder(const NewHandlerHolder&); // prevent copying
NewHandlerHolder& // (see Item 14)

operator=(const NewHandlerHolder&);
};
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This makes implementation of Widget’s operator new quite simple:

void* Widget::operator new(std::size_t size) throw(std::bad_alloc)
{

NewHandlerHolder // install Widget’s
h(std::set_new_handler(currentHandler)); // new-handler

return ::operator new(size); // allocate memory
// or throw

} // restore global
// new-handler

Clients of Widget use its new-handling capabilities like this:

void outOfMem(); // decl. of func. to call if mem. alloc.
// for Widget objects fails

Widget::set_new_handler(outOfMem); // set outOfMem as Widget’s
// new-handling function

Widget *pw1 = new Widget; // if memory allocation
// fails, call outOfMem

std::string *ps = new std::string; // if memory allocation fails,
// call the global new-handling
// function (if there is one)

Widget::set_new_handler(0); // set the Widget-specific
// new-handling function to 
// nothing (i.e., null)

Widget *pw2 = new Widget; // if mem. alloc. fails, throw an 
// exception immediately. (There is
// no new- handling function for
// class Widget.)

The code for implementing this scheme is the same regardless of the
class, so a reasonable goal would be to reuse it in other places. An easy
way to make that possible is to create a “mixin-style” base class, i.e., a
base class that’s designed to allow derived classes to inherit a single
specific capability — in this case, the ability to set a class-specific new-
handler. Then turn the base class into a template, so that you get a dif-
ferent copy of the class data for each inheriting class. 

The base class part of this design lets derived classes inherit the
set_new_handler and operator new functions they all need, while the
template part of the design ensures that each inheriting class gets a
different currentHandler data member. That may sound a bit compli-
cated, but the code looks reassuringly familiar. In fact, the only real
difference is that it’s now available to any class that wants it:
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template<typename T> // “mixin-style” base class for 
class NewHandlerSupport { // class-specific set_new_handler
public: // support

static std::new_handler set_new_handler(std::new_handler p) throw();
static void* operator new(std::size_t size) throw(std::bad_alloc);

... // other versions of op. new — 
// see Item 52

private:
static std::new_handler currentHandler;

};

template<typename T>
std::new_handler
NewHandlerSupport<T>::set_new_handler(std::new_handler p) throw()
{

std::new_handler oldHandler = currentHandler;
currentHandler = p;
return oldHandler;

}

template<typename T>
void* NewHandlerSupport<T>::operator new(std::size_t size)

throw(std::bad_alloc)
{

NewHandlerHolder h(std::set_new_handler(currentHandler));
return ::operator new(size);

}

// this initializes each currentHandler to null
template<typename T>
std::new_handler NewHandlerSupport<T>::currentHandler = 0;

With this class template, adding set_new_handler support to Widget is
easy: Widget just inherits from NewHandlerSupport<Widget>. (That may
look peculiar, but I’ll explain in more detail below exactly what’s going
on.)

class Widget: public NewHandlerSupport<Widget> {
... // as before, but without declarations for

}; // set_new_handler or operator new

That’s all Widget needs to do to offer a class-specific set_new_handler. 

But maybe you’re still fretting over Widget inheriting from NewHandler-
Support<Widget>. If so, your fretting may intensify when you note that
the NewHandlerSupport template never uses its type parameter T. It
doesn’t need to. All we need is a different copy of NewHandlerSupport —
in particular, its static data member currentHandler — for each class
that inherits from NewHandlerSupport. The template parameter T just
distinguishes one inheriting class from another. The template mecha-
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nism itself automatically generates a copy of currentHandler for each T
with which NewHandlerSupport is instantiated. 

As for Widget inheriting from a templatized base class that takes Wid-
get as a type parameter, don’t feel bad if the notion makes you a little
woozy. It initially has that effect on everybody. However, it turns out to
be such a useful technique, it has a name, albeit one that reflects the
fact that it looks natural to no one the first time they see it. It’s called
the curiously recurring template pattern (CRTP). Honest.

At one point, I published an article suggesting that a better name
would be “Do It For Me,” because when Widget inherits from NewHan-
dlerSupport<Widget>, it’s really saying, “I’m Widget, and I want to
inherit from the NewHandlerSupport class for Widget.” Nobody uses my
proposed name (not even me), but thinking about CRTP as a way of
saying “do it for me” may help you understand what the templatized
inheritance is doing.

Templates like NewHandlerSupport make it easy to add a class-specific
new-handler to any class that wants one. Mixin-style inheritance,
however, invariably leads to the topic of multiple inheritance, and
before starting down that path, you’ll want to read Item 40.

Until 1993, C++ required that operator new return null when it was
unable to allocate the requested memory. operator new is now speci-
fied to throw a bad_alloc exception, but a lot of C++ was written before
compilers began supporting the revised specification. The C++ stan-
dardization committee didn’t want to abandon the test-for-null code
base, so they provided alternative forms of operator new that offer the
traditional failure-yields-null behavior. These forms are called
“nothrow” forms, in part because they employ nothrow objects (defined
in the header <new>) at the point where new is used:

class Widget { ... };

Widget *pw1 = new Widget; // throws bad_alloc if
// allocation fails

if (pw1 == 0) ... // this test must fail

Widget *pw2 = new (std::nothrow) Widget; // returns 0 if allocation for
// the Widget fails

if (pw2 == 0) ... // this test may succeed

Nothrow new offers a less compelling guarantee about exceptions than
is initially apparent. In the expression “new (std::nothrow) Widget,” two
things happen. First, the nothrow version of operator new is called to
allocate enough memory for a Widget object. If that allocation fails,
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operator new returns the null pointer, just as advertised. If it succeeds,
however, the Widget constructor is called, and at that point, all bets are
off. The Widget constructor can do whatever it likes. It might itself new
up some memory, and if it does, it’s not constrained to use nothrow
new. Although the operator new call in “new (std::nothrow) Widget” won’t
throw, then, the Widget constructor might. If it does, the exception will
be propagated as usual. Conclusion? Using nothrow new guarantees
only that operator new won’t throw, not that an expression like “new
(std::nothrow) Widget” will never yield an exception. In all likelihood, you
will never have a need for nothrow new.

Regardless of whether you use “normal” (i.e., exception-throwing) new
or its somewhat stunted nothrow cousin, it’s important that you
understand the behavior of the new-handler, because it’s used with
both forms.

Things to Remember

✦ set_new_handler allows you to specify a function to be called when
memory allocation requests cannot be satisfied.

✦ Nothrow new is of limited utility, because it applies only to memory
allocation; associated constructor calls may still throw exceptions.

Item 50: Understand when it makes sense to replace 
new and delete.

Let’s return to fundamentals for a moment. Why would anybody want
to replace the compiler-provided versions of operator new or operator
delete in the first place? These are three of the most common reasons:

■ To detect usage errors. Failure to delete memory conjured up by
new leads to memory leaks. Using more than one delete on newed
memory yields undefined behavior. If operator new keeps a list of
allocated addresses and operator delete removes addresses from
the list, it’s easy to detect such usage errors. Similarly, a variety of
programming mistakes can lead to data overruns (writing beyond
the end of an allocated block) and underruns (writing prior to the
beginning of an allocated block). Custom operator news can overal-
locate blocks so there’s room to put known byte patterns (“signa-
tures”) before and after the memory made available to clients.
operator deletes can check to see if the signatures are still intact. If
they’re not, an overrun or underrun occurred sometime during the
life of the allocated block, and operator delete can log that fact,
along with the value of the offending pointer.
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■ To improve efficiency. The versions of operator new and operator
delete that ship with compilers are designed for general-purpose
use. They have to be acceptable for long-running programs (e.g.,
web servers), but they also have to be acceptable for programs that
execute for less than a second. They have to handle series of re-
quests for large blocks of memory, small blocks, and mixtures of
the two. They have to accommodate allocation patterns ranging
from the dynamic allocation of a few blocks that exist for the dura-
tion of the program to constant allocation and deallocation of a
large number of short-lived objects. They have to worry about
heap fragmentation, a process that, if unchecked, eventually leads
to the inability to satisfy requests for large blocks of memory, even
when ample free memory is distributed across many small blocks. 

Given the demands made on memory managers, it’s no surprise
that the operator news and operator deletes that ship with compilers
take a middle-of-the-road strategy. They work reasonably well for
everybody, but optimally for nobody. If you have a good under-
standing of your program’s dynamic memory usage patterns, you
can often find that custom versions of operator new and operator de-
lete outperform the default ones. By “outperform,” I mean they
run faster — sometimes orders of magnitude faster — and they re-
quire less memory — up to 50% less. For some (though by no
means all) applications, replacing the stock new and delete with
custom versions is an easy way to pick up significant performance
improvements.

■ To collect usage statistics. Before heading down the path of writ-
ing custom news and deletes, it’s prudent to gather information
about how your software uses its dynamic memory. What is the
distribution of allocated block sizes? What is the distribution of
their lifetimes? Do they tend to be allocated and deallocated in
FIFO (“first in, first out”) order, LIFO (“last in, first out”) order, or
something closer to random order? Do the usage patterns change
over time, e.g., does your software have different allocation/deallo-
cation patterns in different stages of execution? What is the maxi-
mum amount of dynamically allocated memory in use at any one
time (i.e., its “high water mark”)? Custom versions of operator new
and operator delete make it easy to collect this kind of information.

In concept, writing a custom operator new is pretty easy. For example,
here’s a quick first pass at a global operator new that facilitates the
detection of under- and overruns. There are a lot of little things wrong
with it, but we’ll worry about those in a moment.

static const int signature = 0xDEADBEEF;
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typedef unsigned char Byte;

// this code has several flaws — see below
void* operator new(std::size_t size) throw(std::bad_alloc)
{

using namespace std;

size_t realSize = size + 2 * sizeof(int); // increase size of request so 2
// signatures will also fit inside

void *pMem = malloc(realSize); // call malloc to get the actual
if (!pMem) throw bad_alloc(); // memory

// write signature into first and last parts of the memory
*(static_cast<int*>(pMem)) = signature;
*(reinterpret_cast<int*>(static_cast<Byte*>(pMem)+realSize-sizeof(int))) =

signature;

// return a pointer to the memory just past the first signature
return static_cast<Byte*>(pMem) + sizeof(int);

}

Most of the shortcomings of this operator new have to do with its fail-
ure to adhere to the C++ conventions for functions of that name. For
example, Item 51 explains that all operator news should contain a loop
calling a new-handling function, but this one doesn’t. However,
Item 51 is devoted to such conventions, so I’ll ignore them here. I
want to focus on a more subtle issue now: alignment.

Many computer architectures require that data of particular types be
placed in memory at particular kinds of addresses. For example, an
architecture might require that pointers occur at addresses that are a
multiple of four (i.e., be four-byte aligned) or that doubles must occur at
addresses that are a multiple of eight (i.e., be eight-byte aligned). Fail-
ure to follow such constraints could lead to hardware exceptions at
runtime. Other architectures are more forgiving, though they may offer
better performance if alignment preferences are satisfied. For example,
doubles may be aligned on any byte boundary on the Intel x86 archi-
tecture, but access to them is a lot faster if they are eight-byte aligned.

Alignment is relevant here, because C++ requires that all operator news
return pointers that are suitably aligned for any data type. malloc
labors under the same requirement, so having operator new return a
pointer it gets from malloc is safe. However, in operator new above, we’re
not returning a pointer we got from malloc, we’re returning a pointer we
got from malloc offset by the size of an int. There is no guarantee that
this is safe! If the client called operator new to get enough memory for a
double (or, if we were writing operator new[], an array of doubles) and we
were running on a machine where ints were four bytes in size but dou-
bles were required to be eight-byte aligned, we’d probably return a
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pointer with improper alignment. That might cause the program to
crash. Or it might just cause it to run more slowly. Either way, it’s
probably not what we had in mind.

Details like alignment are the kinds of things that distinguish profes-
sional-quality memory managers from ones thrown together by pro-
grammers distracted by the need to get on to other tasks. Writing a
custom memory manager that almost works is pretty easy. Writing
one that works well is a lot harder. As a general rule, I suggest you not
attempt it unless you have to. 

In many cases, you don’t have to. Some compilers have switches that
enable debugging and logging functionality in their memory manage-
ment functions. A quick glance through your compilers’ documenta-
tion may eliminate your need to consider writing new and delete. On
many platforms, commercial products can replace the memory man-
agement functions that ship with compilers. To avail yourself of their
enhanced functionality and (presumably) improved performance, all
you need do is relink. (Well, you also have to buy them.)

Another option is open source memory managers. They’re available for
many platforms, so you can download and try those. One such open
source allocator is the Pool library from Boost (see Item 55). The Pool
library offers allocators tuned for one of the most common situations
in which custom memory management is helpful: allocation of a large
number of small objects. Many C++ books, including earlier editions
of this one, show the code for a high-performance small-object alloca-
tor, but they usually omit such pesky details as portability and align-
ment considerations, thread safety, etc. Real libraries tend to have
code that’s a lot more robust. Even if you decide to write your own
news and deletes, looking at open source versions is likely to give you
insights into the easy-to-overlook details that separate almost working
from really working. (Given that alignment is one such detail, it’s
worth noting that TR1 (see Item 54) includes support for discovering
type-specific alignment requirements.)

The topic of this Item is knowing when it can make sense to replace
the default versions of new and delete, either globally or on a per-class
basis. We’re now in a position to summarize when in more detail than
we did before. 

■ To detect usage errors (as above).

■ To collect statistics about the use of dynamically allocated
memory (also as above).
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■ To increase the speed of allocation and deallocation. General-
purpose allocators are often (though not always) a lot slower than
custom versions, especially if the custom versions are designed for
objects of a particular type. Class-specific allocators are an exam-
ple application of fixed-size allocators such as those offered by
Boost’s Pool library. If your application is single-threaded, but
your compilers’ default memory management routines are thread-
safe, you may be able to win measurable speed improvements by
writing thread-unsafe allocators. Of course, before jumping to the
conclusion that operator new and operator delete are worth speed-
ing up, be sure to profile your program to confirm that these func-
tions are truly a bottleneck.

■ To reduce the space overhead of default memory manage-
ment. General-purpose memory managers are often (though not
always) not just slower than custom versions, they often use more
memory, too. That’s because they often incur some overhead for
each allocated block. Allocators tuned for small objects (such as
those in Boost’s Pool library) essentially eliminate such overhead.

■ To compensate for suboptimal alignment in the default alloca-
tor. As I mentioned earlier, it’s fastest to access doubles on the x86
architecture when they are eight-byte aligned. Alas, the operator
news that ship with some compilers don’t guarantee eight-byte
alignment for dynamic allocations of doubles. In such cases, re-
placing the default operator new with one that guarantees eight-
byte alignment could yield big increases in program performance.

■ To cluster related objects near one another. If you know that
particular data structures are generally used together and you’d
like to minimize the frequency of page faults when working on the
data, it can make sense to create a separate heap for the data
structures so they are clustered together on as few pages as possi-
ble. Placement versions of new and delete (see Item 52) can make it
possible to achieve such clustering.

■ To obtain unconventional behavior. Sometimes you want opera-
tors new and delete to do something that the compiler-provided
versions don’t offer. For example, you might want to allocate and
deallocate blocks in shared memory, but have only a C API
through which to manage that memory. Writing custom versions
of new and delete (probably placement versions — again, see
Item 52) would allow you to drape the C API in C++ clothing. As
another example, you might write a custom operator delete that
overwrites deallocated memory with zeros in order to increase the
security of application data. 
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Things to Remember

✦ There are many valid reasons for writing custom versions of new and
delete, including improving performance, debugging heap usage er-
rors, and collecting heap usage information.

Item 51: Adhere to convention when writing new and 
delete.

Item 50 explains when you might want to write your own versions of
operator new and operator delete, but it doesn’t explain the conventions
you must follow when you do it. The rules aren’t hard to follow, but
some of them are unintuitive, so it’s important to know what they are.

We’ll begin with operator new. Implementing a conformant operator new
requires having the right return value, calling the new-handling func-
tion when insufficient memory is available (see Item 49), and being
prepared to cope with requests for no memory. You’ll also want to
avoid inadvertently hiding the “normal” form of new, though that’s
more a class interface issue than an implementation requirement; it’s
addressed in Item 52.

The return value part of operator new is easy. If you can supply the
requested memory, you return a pointer to it. If you can’t, you follow
the rule described in Item 49 and throw an exception of type bad_alloc.

It’s not quite that simple, however, because operator new actually tries
to allocate memory more than once, calling the new-handling function
after each failure. The assumption here is that the new-handling func-
tion might be able to do something to free up some memory. Only
when the pointer to the new-handling function is null does operator
new throw an exception. 

Curiously, C++ requires that operator new return a legitimate pointer
even when zero bytes are requested. (Requiring this odd-sounding
behavior simplifies things elsewhere in the language.) That being the
case, pseudocode for a non-member operator new looks like this:

void* operator new(std::size_t size) throw(std::bad_alloc)
{  // your operator new might

using namespace std; // take additional params

if (size == 0) { // handle 0-byte requests
size = 1; // by treating them as

} // 1-byte requests

while (true) {
attempt to allocate size bytes;
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if (the allocation was successful)
return (a pointer to the memory);

// allocation was unsuccessful; find out what the
// current new-handling function is (see below)
new_handler globalHandler = set_new_handler(0);
set_new_handler(globalHandler);

if (globalHandler) (*globalHandler)();
else throw std::bad_alloc();

}
}

The trick of treating requests for zero bytes as if they were really
requests for one byte looks slimy, but it’s simple, it’s legal, it works,
and how often do you expect to be asked for zero bytes, anyway?

You may also look askance at the place in the pseudocode where the
new-handling function pointer is set to null, then promptly reset to
what it was originally. Unfortunately, there is no way to get at the
new-handling function pointer directly, so you have to call
set_new_handler to find out what it is. Crude, yes, but also effective, at
least for single-threaded code. In a multithreaded environment, you’ll
probably need some kind of lock to safely manipulate the (global) data
structures behind the new-handling function.

Item 49 remarks that operator new contains an infinite loop, and the
code above shows that loop explicitly; “while (true)” is about as infinite
as it gets. The only way out of the loop is for memory to be success-
fully allocated or for the new-handling function to do one of the things
described in Item 49: make more memory available, install a different
new-handler, deinstall the new-handler, throw an exception of or
derived from bad_alloc, or fail to return. It should now be clear why the
new-handler must do one of those things. If it doesn’t, the loop inside
operator new will never terminate.

Many people don’t realize that operator new member functions are
inherited by derived classes. That can lead to some interesting compli-
cations. In the pseudocode for operator new above, notice that the
function tries to allocate size bytes (unless size is zero). That makes
perfect sense, because that’s the argument that was passed to the
function. However, as Item 50 explains, one of the most common rea-
sons for writing a custom memory manager is to optimize allocation
for objects of a specific class, not for a class or any of its derived
classes. That is, given an operator new for a class X, the behavior of
that function is typically tuned for objects of size sizeof(X) — nothing
larger and nothing smaller. Because of inheritance, however, it is pos-
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sible that the operator new in a base class will be called to allocate
memory for an object of a derived class:

class Base {
public:

static void* operator new(std::size_t size) throw(std::bad_alloc);
...

};

class Derived: public Base // Derived doesn’t declare 
{ ... }; // operator new

Derived *p = new Derived; // calls Base::operator new!

If Base’s class-specific operator new wasn’t designed to cope with this
— and chances are that it wasn’t — the best way for it to handle the
situation is to slough off calls requesting the “wrong” amount of mem-
ory to the standard operator new, like this:

void* Base::operator new(std::size_t size) throw(std::bad_alloc)
{

if (size != sizeof(Base)) // if size is “wrong,”
return ::operator new(size); // have standard operator

// new handle the request

... // otherwise handle
// the request here

}

“Hold on!” I hear you cry, “You forgot to check for the pathological-
but-nevertheless-possible case where size is zero!” Actually, I didn’t,
and please stop using hyphens when you cry out. The test is still
there, it’s just been incorporated into the test of size against
sizeof(Base). C++ works in some mysterious ways, and one of those
ways is to decree that all freestanding objects have non-zero size (see
Item 39). By definition, sizeof(Base) can never be zero, so if size is zero,
the request will be forwarded to ::operator new, and it will become that
function’s responsibility to treat the request in a reasonable fashion.

If you’d like to control memory allocation for arrays on a per-class
basis, you need to implement operator new’s array-specific cousin,
operator new[]. (This function is usually called “array new,” because
it’s hard to figure out how to pronounce “operator new[]”.) If you decide
to write operator new[], remember that all you’re doing is allocating a
chunk of raw memory — you can’t do anything to the as-yet-nonexist-
ent objects in the array. In fact, you can’t even figure out how many
objects will be in the array. First, you don’t know how big each object
is. After all, a base class’s operator new[] might, through inheritance,
be called to allocate memory for an array of derived class objects, and
derived class objects are usually bigger than base class objects.
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Hence, you can’t assume inside Base::operator new[] that the size of
each object going into the array is sizeof(Base), and that means you
can’t assume that the number of objects in the array is (bytes
requested)/sizeof(Base). Second, the size_t parameter passed to operator
new[] may be for more memory than will be filled with objects,
because, as Item 16 explains, dynamically allocated arrays may
include extra space to store the number of array elements.

So much for the conventions you need to follow when writing operator
new. For operator delete, things are simpler. About all you need to
remember is that C++ guarantees it’s always safe to delete the null
pointer, so you need to honor that guarantee. Here’s pseudocode for a
non-member operator delete:

void operator delete(void *rawMemory) throw()
{

if (rawMemory == 0) return; // do nothing if the null
// pointer is being deleted

deallocate the memory pointed to by rawMemory;
}

The member version of this function is simple, too, except you’ve got
to be sure to check the size of what’s being deleted. Assuming your
class-specific operator new forwards requests of the “wrong” size to
::operator new, you’ve got to forward “wrongly sized” deletion requests
to ::operator delete:

class Base { // same as before, but now
public: // operator delete is declared

static void* operator new(std::size_t size) throw(std::bad_alloc);
static void operator delete(void *rawMemory, std::size_t size) throw();
...

};

void Base::operator delete(void *rawMemory, std::size_t size) throw()
{

if (rawMemory == 0) return; // check for null pointer

if (size != sizeof(Base)) { // if size is “wrong,”
::operator delete(rawMemory); // have standard operator
return; // delete handle the request

}

deallocate the memory pointed to by rawMemory;

return;
}

Interestingly, the size_t value C++ passes to operator delete may be
incorrect if the object being deleted was derived from a base class
lacking a virtual destructor. This is reason enough for making sure
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your base classes have virtual destructors, but Item 7 describes a sec-
ond, arguably better reason. For now, simply note that if you omit vir-
tual destructors in base classes, operator delete functions may not
work correctly.

Things to Remember

✦ operator new should contain an infinite loop trying to allocate mem-
ory, should call the new-handler if it can’t satisfy a memory request,
and should handle requests for zero bytes. Class-specific versions
should handle requests for larger blocks than expected.

✦ operator delete should do nothing if passed a pointer that is null.
Class-specific versions should handle blocks that are larger than ex-
pected.

Item 52: Write placement delete if you write placement 
new.

Placement new and placement delete aren’t the most commonly
encountered beasts in the C++ menagerie, so don’t worry if you’re not
familiar with them. Instead, recall from Items 16 and 17 that when
you write a new expression such as this,

Widget *pw = new Widget;

two functions are called: one to operator new to allocate memory, a
second to Widget’s default constructor. 

Suppose that the first call succeeds, but the second call results in an
exception being thrown. In that case, the memory allocation per-
formed in step 1 must be undone. Otherwise we’ll have a memory
leak. Client code can’t deallocate the memory, because if the Widget
constructor throws an exception, pw is never assigned. There’d be no
way for clients to get at the pointer to the memory that should be deal-
located. The responsibility for undoing step 1 must therefore fall on
the C++ runtime system.

The runtime system is happy to call the operator delete that corre-
sponds to the version of operator new it called in step 1, but it can do
that only if it knows which operator delete — there may be many — is
the proper one to call. This isn’t an issue if you’re dealing with the ver-
sions of new and delete that have the normal signatures, because the
normal operator new,

void* operator new(std::size_t) throw(std::bad_alloc);

corresponds to the normal operator delete: 
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void operator delete(void *rawMemory) throw(); // normal signature
// at global scope

void operator delete(void *rawMemory, // typical normal
std::size_t size) throw(); // signature at class

// scope

When you’re using only the normal forms of new and delete, then, the
runtime system has no trouble finding the delete that knows how to
undo what new did. The which-delete-goes-with-this-new issue does
arise, however, when you start declaring non-normal forms of operator
new — forms that take additional parameters.

For example, suppose you write a class-specific operator new that
requires specification of an ostream to which allocation information
should be logged, and you also write a normal class-specific operator
delete:

class Widget {
public:

...

static void* operator new(std::size_t size, // non-normal
std::ostream& logStream) // form of new

throw(std::bad_alloc);

static void operator delete(void *pMemory, // normal class-
std::size_t size) throw(); // specific form

// of delete
...

};

This design is problematic, but before we see why, we need to make a
brief terminological detour. 

When an operator new function takes extra parameters (other than the
mandatory size_t argument), that function is known as a placement
version of new. The operator new above is thus a placement version. A
particularly useful placement new is the one that takes a pointer spec-
ifying where an object should be constructed. That operator new looks
like this:

void* operator new(std::size_t, void *pMemory) throw(); // “placement
// new”

This version of new is part of C++’s standard library, and you have
access to it whenever you #include <new>. Among other things, this
new is used inside vector to create objects in the vector’s unused
capacity. It’s also the original placement new. In fact, that’s how this
function is known: as placement new. Which means that the term
“placement new” is overloaded. Most of the time when people talk
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about placement new, they’re talking about this specific function, the
operator new taking a single extra argument of type void*. Less com-
monly, they’re talking about any version of operator new that takes
extra arguments. Context generally clears up any ambiguity, but it’s
important to understand that the general term “placement new”
means any version of new taking extra arguments, because the phrase
“placement delete” (which we’ll encounter in a moment) derives
directly from it.

But let’s get back to the declaration of the Widget class, the one whose
design I said was problematic. The difficulty is that this class will give
rise to subtle memory leaks. Consider this client code, which logs allo-
cation information to cerr when dynamically creating a Widget:

Widget *pw = new (std::cerr) Widget; // call operator new, passing cerr as
// the ostream; this leaks memory
// if the Widget constructor throws

Once again, if memory allocation succeeds and the Widget constructor
throws an exception, the runtime system is responsible for undoing
the allocation that operator new performed. However, the runtime sys-
tem can’t really understand how the called version of operator new
works, so it can’t undo the allocation itself. Instead, the runtime sys-
tem looks for a version of operator delete that takes the same number
and types of extra arguments as operator new, and, if it finds it, that’s
the one it calls. In this case, operator new takes an extra argument of
type ostream&, so the corresponding operator delete would have this
signature:

void operator delete(void*, std::ostream&) throw();

By analogy with placement versions of new, versions of operator delete
that take extra parameters are known as placement deletes. In this
case, Widget declares no placement version of operator delete, so the
runtime system doesn’t know how to undo what the call to placement
new does. As a result, it does nothing. In this example, no operator
delete is called if the Widget constructor throws an exception! 

The rule is simple: if an operator new with extra parameters isn’t
matched by an operator delete with the same extra parameters, no
operator delete will be called if a memory allocation by the new needs to
be undone. To eliminate the memory leak in the code above, Widget
needs to declare a placement delete that corresponds to the logging
placement new:

class Widget {
public:

...
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static void* operator new(std::size_t size, std::ostream& logStream)
throw(std::bad_alloc);

static void operator delete(void *pMemory) throw();

static void operator delete(void *pMemory, std::ostream& logStream)
throw();

...
};

With this change, if an exception is thrown from the Widget construc-
tor in this statement, 

Widget *pw = new (std::cerr) Widget; // as before, but no leak this time

the corresponding placement delete is automatically invoked, and that
allows Widget to ensure that no memory is leaked. 

However, consider what happens if no exception is thrown (which will
usually be the case) and we get to a delete in client code:

delete pw; // invokes the normal
// operator delete

As the comment indicates, this calls the normal operator delete, not
the placement version. Placement delete is called only if an exception
arises from a constructor call that’s coupled to a call to a placement
new. Applying delete to a pointer (such as pw above) never yields a call
to a placement version of delete. Never.

This means that to forestall all memory leaks associated with place-
ment versions of new, you must provide both the normal operator
delete (for when no exception is thrown during construction) and a
placement version that takes the same extra arguments as operator
new does (for when one is). Do that, and you’ll never lose sleep over
subtle memory leaks again. Well, at least not these subtle memory
leaks.

Incidentally, because member function names hide functions with the
same names in outer scopes (see Item 33), you need to be careful to
avoid having class-specific news hide other news (including the nor-
mal versions) that your clients expect. For example, if you have a base
class that declares only a placement version of operator new, clients
will find that the normal form of new is unavailable to them:

class Base {
public:

...

static void* operator new(std::size_t size, // this new hides
std::ostream& logStream) // the normal

throw(std::bad_alloc); // global forms
...

};
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Base *pb = new Base; // error! the normal form of 
// operator new is hidden

Base *pb = new (std::cerr) Base; // fine, calls Base’s
// placement new

Similarly, operator news in derived classes hide both global and inher-
ited versions of operator new:

class Derived: public Base { // inherits from Base above
public:

...

static void* operator new(std::size_t size) // redeclares the normal
throw(std::bad_alloc); // form of new

...
};

Derived *pd = new (std::clog) Derived; // error! Base’s placement
// new is hidden

Derived *pd = new Derived; // fine, calls Derived’s
// operator new

Item 33 discusses this kind of name hiding in considerable detail, but
for purposes of writing memory allocation functions, what you need to
remember is that by default, C++ offers the following forms of operator
new at global scope:

void* operator new(std::size_t) throw(std::bad_alloc); // normal new

void* operator new(std::size_t, void*) throw(); // placement new

void* operator new(std::size_t, // nothrow new —
const std::nothrow_t&) throw(); // see Item 49

If you declare any operator news in a class, you’ll hide all these stan-
dard forms. Unless you mean to prevent class clients from using these
forms, be sure to make them available in addition to any custom oper-
ator new forms you create. For each operator new you make available,
of course, be sure to offer the corresponding operator delete, too. If you
want these functions to behave in the usual way, just have your class-
specific versions call the global versions. 

An easy way to do this is to create a base class containing all the nor-
mal forms of new and delete:

class StandardNewDeleteForms {
public:

// normal new/delete
static void* operator new(std::size_t size) throw(std::bad_alloc)
{ return ::operator new(size); }
static void operator delete(void *pMemory) throw()
{ ::operator delete(pMemory); }
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// placement new/delete
static void* operator new(std::size_t size, void *ptr) throw()
{ return ::operator new(size, ptr); }
static void operator delete(void *pMemory, void *ptr) throw()
{ return ::operator delete(pMemory, ptr); }

// nothrow new/delete
static void* operator new(std::size_t size, const std::nothrow_t& nt) throw()
{ return ::operator new(size, nt); }
static void operator delete(void *pMemory, const std::nothrow_t&) throw()
{ ::operator delete(pMemory); }

};

Clients who want to augment the standard forms with custom forms
can then just use inheritance and using declarations (see Item 33) to
get the standard forms:

class Widget: public StandardNewDeleteForms { // inherit std forms
public:

using StandardNewDeleteForms::operator new; // make those 
using StandardNewDeleteForms::operator delete; // forms visible 

static void* operator new(std::size_t size, // add a custom
std::ostream& logStream) // placement new

throw(std::bad_alloc);

static void operator delete(void *pMemory, // add the corres-
std::ostream& logStream) // ponding place-

throw(); // ment delete
...

};

Things to Remember

✦ When you write a placement version of operator new, be sure to write
the corresponding placement version of operator delete. If you don’t,
your program may experience subtle, intermittent memory leaks.

✦ When you declare placement versions of new and delete, be sure not
to unintentionally hide the normal versions of those functions.
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MiscellanyWelcome to the catch-all “Miscellany” chapter. There are only three
Items here, but don’t let their diminutive number or unglamorous set-
ting fool you. They’re important. 

The first Item emphasizes that compiler warnings are not to be trifled
with, at least not if you want your software to behave properly. The
second offers an overview of the contents of the standard C++ library,
including the significant new functionality being introduced in TR1.
Finally, the last Item provides an overview of Boost, arguably the most
important general-purpose C++-related web site. Trying to write effec-
tive C++ software without the information in these Items is, at best, an
uphill battle.

Item 53: Pay attention to compiler warnings.

Many programmers routinely ignore compiler warnings. After all, if
the problem were serious, it would be an error, right? This thinking
may be relatively harmless in other languages, but in C++, it’s a good
bet compiler writers have a better grasp of what’s going on than you
do. For example, here’s an error everybody makes at one time or
another:

class B {
public:

virtual void f() const;
};

class D: public B {
public:

virtual void f();
};

Chapter 9: Miscellany

Miscellany
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The idea is for D::f to redefine the virtual function B::f, but there’s a
mistake: in B, f is a const member function, but in D it’s not declared
const. One compiler I know says this about that:

warning: D::f() hides virtual B::f()

Too many inexperienced programmers respond to this message by
saying to themselves, “Of course D::f hides B::f — that’s what it’s sup-
posed to do!” Wrong. This compiler is trying to tell you that the f
declared in B has not been redeclared in D; instead, it’s been hidden
entirely (see Item 33 for a description of why this is so). Ignoring this
compiler warning will almost certainly lead to erroneous program
behavior, followed by a lot of debugging to discover something this
compiler detected in the first place.

After you gain experience with the warning messages from a particu-
lar compiler, you’ll learn to understand what the different messages
mean (which is often very different from what they seem to mean,
alas). Once you have that experience, you may choose to ignore a
whole range of warnings, though it’s generally considered better prac-
tice to write code that compiles warning-free, even at the highest
warning level. Regardless, it’s important to make sure that before you
dismiss a warning, you understand exactly what it’s trying to tell you.

As long as we’re on the topic of warnings, recall that warnings are
inherently implementation-dependent, so it’s not a good idea to get
sloppy in your programming, relying on compilers to spot your mis-
takes for you. The function-hiding code above, for instance, goes
through a different (but widely used) compiler with nary a squawk.

Things to Remember

✦ Take compiler warnings seriously, and strive to compile warning-
free at the maximum warning level supported by your compilers.

✦ Don’t become dependent on compiler warnings, because different
compilers warn about different things. Porting to a new compiler
may eliminate warning messages you’ve come to rely on.

Item 54: Familiarize yourself with the standard 
library, including TR1.

The standard for C++ — the document defining the language and its
library — was ratified in 1998. In 2003, a minor “bug-fix” update was
issued. The standardization committee continues its work, however,
and a “Version 2.0” C++ standard is expected in 2009 (though all sub-
stantive work is likely to be completed by the end of 2007). Until
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recently, the expected year for the next version of C++ was undecided,
and that explains why people usually refer to the next version of C++
as “C++0x” — the year 200x version of C++.

C++0x will probably include some interesting new language features,
but most new C++ functionality will come in the form of additions to
the standard library. We already know what some of the new library
functionality will be, because it’s been specified in a document known
as TR1 (“Technical Report 1” from the C++ Library Working Group).
The standardization committee reserves the right to modify TR1 func-
tionality before it’s officially enshrined in C++0x, but significant
changes are unlikely. For all intents and purposes, TR1 heralds the
beginning of a new release of C++ — what we might call standard C++
1.1. You can’t be an effective C++ programmer without being familiar
with TR1 functionality, because that functionality is a boon to virtu-
ally every kind of library and application. 

Before surveying what’s in TR1, it’s worth reviewing the major parts of
the standard C++ library specified by C++98:

■ The Standard Template Library (STL), including containers (vec-
tor, string, map, etc.); iterators; algorithms (find, sort, transform,
etc.); function objects (less, greater, etc.); and various container and
function object adapters (stack, priority_queue, mem_fun, not1, etc.).

■ Iostreams, including support for user-defined buffering, interna-
tionalized IO, and the predefined objects cin, cout, cerr, and clog.

■ Support for internationalization, including the ability to have
multiple active locales. Types like wchar_t (usually 16 bits/char)
and wstring (strings of wchar_ts) facilitate working with Unicode.

■ Support for numeric processing, including templates for com-
plex numbers (complex) and arrays of pure values (valarray).

■ An exception hierarchy, including the base class exception, its
derived classes logic_error and runtime_error, and various classes
that inherit from those.

■ C89’s standard library. Everything in the 1989 C standard library
is also in C++.

If any of the above is unfamiliar to you, I suggest you schedule some
quality time with your favorite C++ reference to rectify the situation. 

TR1 specifies 14 new components (i.e., pieces of library functionality).
All are in the std namespace, more precisely, in the nested namespace
tr1. The full name of the TR1 component shared_ptr (see below) is thus
std::tr1::shared_ptr. In this book, I customarily omit the std:: when dis-
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cussing components of the standard library, but I always prefix TR1
components with tr1::.

This book shows examples of the following TR1 components: 

■ The smart pointers tr1::shared_ptr and tr1::weak_ptr. tr1::shared_ptrs
act like built-in pointers, but they keep track of how many
tr1::shared_ptrs point to an object. This is known as reference count-
ing. When the last such pointer is destroyed (i.e., when the refer-
ence count for an object becomes zero), the object is automatically
deleted. This works well in preventing resource leaks in acyclic
data structures, but if two or more objects contain tr1::shared_ptrs
such that a cycle is formed, the cycle may keep each object’s refer-
ence count above zero, even when all external pointers to the cycle
have been destroyed (i.e., when the group of objects as a whole is
unreachable). That’s where tr1::weak_ptrs come in. tr1::weak_ptrs
are designed to act as cycle-inducing pointers in otherwise acyclic
tr1::shared_ptr-based data structures. tr1::weak_ptrs don’t partici-
pate in reference counting. When the last tr1::shared_ptr to an ob-
ject is destroyed, the object is deleted, even if tr1::weak_ptrs
continue to point there. Such tr1::weak_ptrs are automatically
marked as invalid, however.

tr1::shared_ptr may be the most widely useful component in TR1. I
use it many times in this book, including in Item 13, where I ex-
plain why it’s so important. (The book contains no uses of
tr1::weak_ptr, sorry.) 

■ tr1::function, which makes it possible to represent any callable en-
tity (i.e., any function or function object) whose signature is con-
sistent with a target signature. If we wanted to make it possible to
register callback functions that take an int and return a string, we
could do this:

void registerCallback(std::string func(int)); // param type is a function
// taking an int and
// returning a string

The parameter name func is optional, so registerCallback could be
declared this way, instead:

void registerCallback(std::string (int)); // same as above; param
// name is omitted

Note here that “std::string (int)” is a function signature. 
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tr1::function makes it possible to make registerCallback much more
flexible, accepting as its argument any callable entity that takes
an int or anything an int can be converted into and that returns a
string or anything convertible to a string. tr1::function takes as a tem-
plate parameter its target function signature:

void registerCallback(std::tr1::function<std::string (int)> func);
// the param “func” will
// take any callable entity
// with a sig consistent
// with “std::string (int)”

This kind of flexibility is astonishingly useful, something I do my
best to demonstrate in Item 35.

■ tr1::bind, which does everything the STL binders bind1st and
bind2nd do, plus much more. Unlike the pre-TR1 binders, tr1::bind
works with both const and non-const member functions. Unlike the
pre-TR1 binders, tr1::bind works with by-reference parameters.
Unlike the pre-TR1 binders, tr1::bind handles function pointers
without help, so there’s no need to mess with ptr_fun, mem_fun, or
mem_fun_ref before calling tr1::bind. Simply put, tr1::bind is a sec-
ond-generation binding facility that is significantly better than its
predecessor. I show an example of its use in Item 35.

I divide the remaining TR1 components into two sets. The first group
offers fairly discrete standalone functionality:

■ Hash tables used to implement sets, multisets, maps, and multi-
maps. Each new container has an interface modeled on that of its
pre-TR1 counterpart. The most surprising thing about TR1’s hash
tables are their names: tr1::unordered_set, tr1::unordered_multiset,
tr1::unordered_map, and tr1::unordered_multimap. These names em-
phasize that, unlike the contents of a set, multiset, map, or multi-
map, the elements in a TR1 hash-based container are not in any
predictable order.

■ Regular expressions, including the ability to do regular expres-
sion-based search and replace operations on strings, to iterate
through strings from match to match, etc.

■ Tuples, a nifty generalization of the pair template that’s already in
the standard library. Whereas pair objects can hold only two ob-
jects, however, tr1::tuple objects can hold an arbitrary number. Ex-
pat Python and Eiffel programmers, rejoice! A little piece of your
former homeland is now part of C++.
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■ tr1::array, essentially an “STLified” array, i.e., an array supporting
member functions like begin and end. The size of a tr1::array is fixed
during compilation; the object uses no dynamic memory.

■ tr1::mem_fn, a syntactically uniform way of adapting member
function pointers. Just as tr1::bind subsumes and extends the ca-
pabilities of C++98’s bind1st and bind2nd, tr1::mem_fn subsumes
and extends the capabilities of C++98’s mem_fun and mem_fun_ref.

■ tr1::reference_wrapper, a facility to make references act a bit more
like objects. Among other things, this makes it possible to create
containers that act as if they hold references. (In reality, contain-
ers can hold only objects or pointers.)

■ Random number generation facilities that are vastly superior to
the rand function that C++ inherited from C’s standard library.

■ Mathematical special functions, including Laguerre polynomi-
als, Bessel functions, complete elliptic integrals, and many more.

■ C99 compatibility extensions, a collection of functions and tem-
plates designed to bring many new C99 library features to C++.

The second set of TR1 components consists of support technology for
more sophisticated template programming techniques, including tem-
plate metaprogramming (see Item 48):

■ Type traits, a set of traits classes (see Item 47) to provide com-
pile-time information about types. Given a type T, TR1’s type traits
can reveal whether T is a built-in type, offers a virtual destructor,
is an empty class (see Item 39), is implicitly convertible to some
other type U, and much more. TR1’s type traits can also reveal the
proper alignment for a type, a crucial piece of information for pro-
grammers writing custom memory allocation functions (see
Item 50).

■ tr1::result_of, a template to deduce the return types of function
calls. When writing templates, it’s often important to be able to re-
fer to the type of object returned from a call to a function (tem-
plate), but the return type can depend on the function’s parameter
types in complex ways. tr1::result_of makes referring to function re-
turn types easy. tr1::result_of is used in several places in TR1 itself. 

Although the capabilities of some pieces of TR1 (notably tr1::bind and
tr1::mem_fn) subsume those of some pre-TR1 components, TR1 is a
pure addition to the standard library. No TR1 component replaces an
existing component, so legacy code written with pre-TR1 constructs
continues to be valid.
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TR1 itself is just a document.† To take advantage of the functionality it
specifies, you need access to code that implements it. Eventually, that
code will come bundled with compilers, but as I write this in 2005,
there is a good chance that if you look for TR1 components in your
standard library implementations, at least some will be missing. For-
tunately, there is someplace else to look: 10 of the 14 components in
TR1 are based on libraries freely available from Boost (see Item 55), so
that’s an excellent resource for TR1-like functionality. I say “TR1-like,”
because, though much TR1 functionality is based on Boost libraries,
there are places where Boost functionality is currently not an exact
match for the TR1 specification. It’s possible that by the time you read
this, Boost not only will have TR1-conformant implementations for
the TR1 components that evolved from Boost libraries, it will also offer
implementations of the four TR1 components that were not based on
Boost work.

If you’d like to use Boost’s TR1-like libraries as a stopgap until compil-
ers ship with their own TR1 implementations, you may want to avail
yourself of a namespace trick. All Boost components are in the
namespace boost, but TR1 components are supposed to be in std::tr1.
You can tell your compilers to treat references to std::tr1 the same as
references to boost. This is how:

namespace std {
namespace tr1 = ::boost; // namespace std::tr1 is an alias 

} // for namespace boost

Technically, this puts you in the realm of undefined behavior,
because, as Item 25 explains, you’re not allowed to add anything to
the std namespace. In practice, you’re unlikely to run into any trouble.
When your compilers provide their own TR1 implementations, all
you’ll need to do is eliminate the above namespace alias; code refer-
ring to std::tr1 will continue to be valid.

Probably the most important part of TR1 not based on Boost libraries
is hash tables, but hash tables have been available for many years
from several sources under the names hash_set, hash_multiset,
hash_map, and hash_multimap. There is a good chance that the librar-
ies shipping with your compilers already contain these templates. If
not, fire up your favorite search engine and search for these names (as
well as their TR1 appellations), because you’re sure to find several
sources for them, both commercial and freeware. 

† As I write this in early 2005, the document has not been finalized, and its URL is sub-
ject to change. I therefore suggest you consult the Effective C++ TR1 Information Page,
http://aristeia.com/EC3E/TR1_info.html. That URL will remain stable.

http://aristeia.com/EC3E/TR1_info.html
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Things to Remember

✦ The primary standard C++ library functionality consists of the STL,
iostreams, and locales. The C89 standard library is also included.

✦ TR1 adds support for smart pointers (e.g., tr1::shared_ptr), general-
ized function pointers (tr1::function), hash-based containers, regular
expressions, and 10 other components.

✦ TR1 itself is only a specification. To take advantage of TR1, you need
an implementation. One source for implementations of TR1 compo-
nents is Boost.

Item 55: Familiarize yourself with Boost.

Searching for a collection of high-quality, open source, platform- and
compiler-independent libraries? Look to Boost. Interested in joining a
community of ambitious, talented C++ developers working on state-of-
the-art library design and implementation? Look to Boost. Want a
glimpse of what C++ might look like in the future? Look to Boost.

Boost is both a community of C++ developers and a collection of freely
downloadable C++ libraries. Its web site is http://boost.org. You should
bookmark it now. 

There are many C++ organizations and web sites, of course, but Boost
has two things going for it that no other organization can match. First,
it has a uniquely close and influential relationship with the C++ stan-
dardization committee. Boost was founded by committee members,
and there continues to be strong overlap between the Boost and com-
mittee memberships. In addition, Boost has always had as one of its
goals to act as a testing ground for capabilities that could be added to
Standard C++. One result of this relationship is that of the 14 new
libraries introduced into C++ by TR1 (see Item 54), more than two-
thirds are based on work done at Boost.

The second special characteristic of Boost is its process for accepting
libraries. It’s based on public peer review. If you’d like to contribute a
library to Boost, you start by posting to the Boost developers mailing
list to gauge interest in the library and initiate the process of prelimi-
nary examination of your work. Thus begins a cycle that the web site
summarizes as “Discuss, refine, resubmit. Repeat until satisfied.”

Eventually, you decide that your library is ready for formal submis-
sion. A review manager confirms that your library meets Boost’s mini-
mal requirements. For example, it must compile under at least two
compilers (to demonstrate nominal portability), and you have to attest

http://boost.org
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that the library can be made available under an acceptable license
(e.g., the library must allow free commercial and non-commercial
use). Then your submission is made available to the Boost community
for official review. During the review period, volunteers go over your
library materials (e.g., source code, design documents, user documen-
tation, etc.) and consider questions such as these:

■ How good are the design and implementation?

■ Is the code portable across compilers and operating systems?

■ Is the library likely to be of use to its target audience, i.e., people
working in the domain the library addresses?

■ Is the documentation clear, complete, and accurate?

These comments are posted to a Boost mailing list, so reviewers and
others can see and respond to one another’s remarks. At the end of
the review period, the review manager decides whether your library is
accepted, conditionally accepted, or rejected.

Peer reviews do a good job of keeping poorly written libraries out of
Boost, but they also help educate library authors in the consider-
ations that go into the design, implementation, and documentation of
industrial-strength cross-platform libraries. Many libraries require
more than one official review before being declared worthy of accep-
tance.

Boost contains dozens of libraries, and more are added on a continu-
ing basis. From time to time, some libraries are also removed, typi-
cally because their functionality has been superseded by a newer
library that offers greater functionality or a better design (e.g., one
that is more flexible or more efficient). 

The libraries vary widely in size and scope. At one extreme are librar-
ies that conceptually require only a few lines of code (but are typically
much longer after support for error handling and portability is added).
One such library is Conversion, which provides safer or more conve-
nient cast operators. Its numeric_cast function, for example, throws an
exception if converting a numeric value from one type to another leads
to overflow or underflow or a similar problem, and lexical_cast makes it
possible to cast any type supporting operator<< into a string — very
useful for diagnostics, logging, etc. At the other extreme are libraries
offering such extensive capabilities, entire books have been written
about them. These include the Boost Graph Library (for program-
ming with arbitrary graph structures) and the Boost MPL Library
(“metaprogramming library”). 
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Boost’s bevy of libraries addresses a cornucopia of topics, grouped
into over a dozen general categories. Those categories include:

■ String and text processing, including libraries for type-safe
printf-like formatting, regular expressions (the basis for similar
functionality in TR1 — see Item 54), and tokenizing and parsing.

■ Containers, including libraries for fixed-size arrays with an STL-
like interface (see Item 54), variable-sized bitsets, and multidimen-
sional arrays.

■ Function objects and higher-order programming, including sev-
eral libraries that were used as the basis for functionality in TR1.
One interesting library is the Lambda library, which makes it so
easy to create function objects on the fly, you’re unlikely to realize
that’s what you’re doing:

using namespace boost::lambda; // make boost::lambda
// functionality visible

std::vector<int> v;

...

std::for_each(v.begin(), v.end(), // for each element x in
std::cout << _1 * 2 + 10 << "\n"); // v, print x*2+10; 

// “_1” is the Lambda 
// library’s placeholder
// for the current element

■ Generic programming, including an extensive set of traits
classes. (See Item 47 for information on traits).

■ Template metaprogramming (TMP — see Item 48), including a li-
brary for compile-time assertions, as well as the Boost MPL Li-
brary. Among the nifty things in MPL is support for STL-like data
structures of compile-time entities like types, e.g., 

// create a list-like compile-time container of three types (float,
// double, and long double) and call the container “floats”
typedef boost::mpl::list<float, double, long double> floats;

// create a new compile-time list of types consisting of the types in
// “floats” plus “int” inserted at the front; call the new container “types”
typedef boost::mpl::push_front<floats, int>::type types;

Such containers of types (often known as typelists, though they
can also be based on an mpl::vector as well as an mpl::list) open the
door to a wide range of powerful and important TMP applications.

■ Math and numerics, including libraries for rational numbers; oc-
tonions and quaternions; greatest common divisor and least com-
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mon multiple computations; and random numbers (yet another
library that influenced related functionality in TR1).

■ Correctness and testing, including libraries for formalizing im-
plicit template interfaces (see Item 41) and for facilitating test-first
programming.

■ Data structures, including libraries for type-safe unions (i.e.,
storing variant “any” types) and the tuple library that led to the
corresponding TR1 functionality.

■ Inter-language support, including a library to allow seamless in-
teroperability between C++ and Python.

■ Memory, including the Pool library for high-performance fixed-
size allocators (see Item 50); and a variety of smart pointers (see
Item 13), including (but not limited to) the smart pointers in TR1.
One such non-TR1 smart pointer is scoped_array, an auto_ptr-like
smart pointer for dynamically allocated arrays; Item 44 shows an
example use.

■ Miscellaneous, including libraries for CRC checking, date and
time manipulations, and traversing file systems.

Remember, that’s just a sampling of the libraries you’ll find at Boost.
It’s not an exhaustive list.

Boost offers libraries that do many things, but it doesn’t cover the
entire programming landscape. For example, there is no library for
GUI development, nor is there one for communicating with databases.
At least there’s not now — not as I write this. By the time you read it,
however, there might be. The only way to know for sure is to check. I
suggest you do it right now: http://boost.org. Even if you don’t find
exactly what you’re looking for, you’re certain to find something inter-
esting there.

Things to Remember

✦ Boost is a community and web site for the development of free, open
source, peer-reviewed C++ libraries. Boost plays an influential role
in C++ standardization.

✦ Boost offers implementations of many TR1 components, but it also
offers many other libraries, too.

http://boost.org
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Effective C++ covers what I consider to be the most important general
guidelines for practicing C++ programmers, but if you’re interested in
more ways to improve your effectiveness, I encourage you to examine
my other C++ books, More Effective C++ and Effective STL. 

More Effective C++ covers additional programming guidelines and in-
cludes extensive treatments of topics such as efficiency and program-
ming with exceptions. It also describes important C++ programming
techniques like smart pointers, reference counting, and proxy objects.

Effective STL is a guideline-oriented book like Effective C++, but it fo-
cuses exclusively on making effective use of the Standard Template
Library.

Tables of contents for both books are summarized below.

Contents of More Effective C++

Basics

Item 1: Distinguish between pointers and references
Item 2: Prefer C++-style casts
Item 3: Never treat arrays polymorphically
Item 4: Avoid gratuitous default constructors

Operators

Item 5: Be wary of user-defined conversion functions
Item 6: Distinguish between prefix and postfix forms of 

increment and decrement operators
Item 7: Never overload &&, ||, or ,
Item 8: Understand the different meanings of new and delete

Appendix A: Beyond Effective C++

Beyond Effective C++

http://www.amazon.com/gp/product/0201749629?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201749629
http://www.amazon.com/gp/product/020163371X?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020163371X
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Exceptions

Item 9: Use destructors to prevent resource leaks
Item 10: Prevent resource leaks in constructors
Item 11: Prevent exceptions from leaving destructors
Item 12: Understand how throwing an exception differs from 

passing a parameter or calling a virtual function
Item 13: Catch exceptions by reference
Item 14: Use exception specifications judiciously
Item 15: Understand the costs of exception handling

Efficiency

Item 16: Remember the 80-20 rule
Item 17: Consider using lazy evaluation
Item 18: Amortize the cost of expected computations
Item 19: Understand the origin of temporary objects
Item 20: Facilitate the return value optimization
Item 21: Overload to avoid implicit type conversions
Item 22: Consider using op= instead of stand-alone op
Item 23: Consider alternative libraries
Item 24: Understand the costs of virtual functions, multiple 

inheritance, virtual base classes, and RTTI

Techniques

Item 25: Virtualizing constructors and non-member functions
Item 26: Limiting the number of objects of a class
Item 27: Requiring or prohibiting heap-based objects
Item 28: Smart pointers
Item 29: Reference counting
Item 30: Proxy classes
Item 31: Making functions virtual with respect to more

than one object

Miscellany

Item 32: Program in the future tense
Item 33: Make non-leaf classes abstract
Item 34: Understand how to combine C++ and C in the same 

program
Item 35: Familiarize yourself with the language standard
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Contents of Effective STL

Chapter 1: Containers

Item 1: Choose your containers with care.
Item 2: Beware the illusion of container-independent code.
Item 3: Make copying cheap and correct for objects

in containers.
Item 4: Call empty instead of checking size() against zero.
Item 5: Prefer range member functions to their single-element 

counterparts.
Item 6: Be alert for C++’s most vexing parse.
Item 7: When using containers of newed pointers, remember to 

delete the pointers before the container is destroyed.
Item 8: Never create containers of auto_ptrs.
Item 9: Choose carefully among erasing options.
Item 10: Be aware of allocator conventions and restrictions.
Item 11: Understand the legitimate uses of custom allocators.
Item 12: Have realistic expectations about the thread safety

of STL containers.

Chapter 2: vector and string

Item 13: Prefer vector and string to dynamically allocated arrays.
Item 14: Use reserve to avoid unnecessary reallocations.
Item 15: Be aware of variations in string implementations.
Item 16: Know how to pass vector and string data to legacy APIs.
Item 17: Use “the swap trick” to trim excess capacity.
Item 18: Avoid using vector<bool>.

Chapter 3: Associative Containers

Item 19: Understand the difference between equality and 
equivalence.

Item 20: Specify comparison types for associative containers
of pointers.

Item 21: Always have comparison functions return false for
equal values.

Item 22: Avoid in-place key modification in set and multiset.
Item 23: Consider replacing associative containers with

sorted vectors.
Item 24: Choose carefully between map::operator[] and

map::insert when efficiency is important.
Item 25: Familiarize yourself with the nonstandard hashed 

containers.
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Chapter 4: Iterators

Item 26: Prefer iterator to const_iterator, reverse_iterator, and 
const_reverse_iterator.

Item 27: Use distance and advance to convert a container’s 
const_iterators to iterators.

Item 28: Understand how to use a reverse_iterator’s base iterator.
Item 29: Consider istreambuf_iterators for character-by-character 

input.

Chapter 5: Algorithms

Item 30: Make sure destination ranges are big enough.
Item 31: Know your sorting options.
Item 32: Follow remove-like algorithms by erase if you really

want to remove something.
Item 33: Be wary of remove-like algorithms on containers of 

pointers.
Item 34: Note which algorithms expect sorted ranges.
Item 35: Implement simple case-insensitive string

comparisons via mismatch or lexicographical_compare.
Item 36: Understand the proper implementation of copy_if.
Item 37: Use accumulate or for_each to summarize ranges.

Chapter 6: Functors, Functor Classes, Functions, etc.

Item 38: Design functor classes for pass-by-value.
Item 39: Make predicates pure functions.
Item 40: Make functor classes adaptable.
Item 41: Understand the reasons for ptr_fun, mem_fun, and 

mem_fun_ref.
Item 42: Make sure less<T> means operator<.

Chapter 7: Programming with the STL

Item 43: Prefer algorithm calls to hand-written loops.
Item 44: Prefer member functions to algorithms with the

same names.
Item 45: Distinguish among count, find, binary_search,

lower_bound, upper_bound, and equal_range.
Item 46: Consider function objects instead of functions as 

algorithm parameters.
Item 47: Avoid producing write-only code.
Item 48: Always #include the proper headers.
Item 49: Learn to decipher STL-related compiler diagnostics.
Item 50: Familiarize yourself with STL-related web sites.
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This third edition of Effective C++ differs from the second edition in
many ways, most significantly in that it includes lots of new informa-
tion. However, most of the second edition’s content remains in the
third edition, albeit often in a modified form and location. In the tables
on the pages that follow, I show where information in second edition
Items may be found in the third edition and vice versa. 

The tables show a mapping of information, not text. For example, the
ideas in Item 39 of the second edition (“Avoid casts down the inherit-
ance hierarchy”) are now found in Item 27 of the current edition
(“Minimize casting”), even though the third edition text and examples
for that Item are entirely new. A more extreme example involves the
second edition’s Item 18 (“Strive for class interfaces that are complete
and minimal”). One of the primary conclusions of that Item was that
prospective member functions that need no special access to the non-
public parts of the class should generally be non-members. In the
third edition, that same result is reached via different (stronger) rea-
soning, so Item 18 in the second edition maps to Item 23 in the third
edition (“Prefer non-member non-friend functions to member func-
tions”), even though about the only thing the two Items have in com-
mon is their conclusion.

Appendix B: Item Mappings Between Second and Third Editions

Item Mappings
Between Second

and Third Editions
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Second Edition to Third Edition

2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed.

1 2 18 23 35 32

2 — 19 24 36 34

3 — 20 22 37 36

4 — 21 3 38 37

5 16 22 20 39 27

6 13 23 21 40 38

7 49 24 — 41 41

8 51 25 — 42 39, 44

9 52 26 — 43 40

10 50 27 6 44 —

11 14 28 — 45 5

12 4 29 28 46 18

13 4 30 28 47 4

14 7 31 21 48 53

15 10 32 26 49 54

16 12 33 30 50 —

17 11 34 31
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Third Edition to Second Edition

3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed.

1 — 20 22 39 42

2 1 21 23, 31 40 43

3 21 22 20 41 41

4 12, 13, 47 23 18 42 —

5 45 24 19 43 —

6 27 25 — 44 42

7 14 26 32 45 —

8 — 27 39 46 —

9 — 28 29, 30 47 —

10 15 29 — 48 —

11 17 30 33 49 7

12 16 31 34 50 10

13 6 32 35 51 8

14 11 33 9 52 9

15 — 34 36 53 48

16 5 35 — 54 49

17 — 36 37 55 —

18 46 37 38

19 pp. 77–79 38 40
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operator<<, not under <<, etc. 

Example classes, structs, and class or struct templates are indexed
under example classes/templates. Example function and function
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3rd edition of this book
compared to 2nd edition xv–xvi, 277–279
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80-20 rule 139, 168
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Abrahams, David xvii, xviii, xix
abstract classes 43
accessibility

control over data members’ 95
name, multiple inheritance and 193

accessing names, in templatized 
bases 207–212

addresses
inline functions 136
objects 118

aggregation, see composition
Alexandrescu, Andrei xix
aliasing 54
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allocators, in the STL 240

alternatives to virtual functions 169–177
ambiguity

multiple inheritance and 192
nested dependent names and types 205

Arbiter, Petronius vii
argument-dependent lookup 110
arithmetic, mixed-mode 103, 222–226
array layout, vs. object layout 73
array new 254–255
array, invalid index and 7
ASPECT_RATIO 13
assignment

see also operator=
chaining assignments 52
copy-and-swap and 56
generalized 220
to self, operator= and 53–57
vs. initialization 6, 27–29, 114

assignment operator, copy 5
auto_ptr, see std::auto_ptr
automatically generated functions 34–37

copy constructor and copy assignment 
operator 221

disallowing 37–39
avoiding code duplication 50, 60

B
Bai, Yun xix
Barry, Dave, allusion to 229
Bartolucci, Guido xix
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base classes
copying 59
duplication of data in 193
lookup in, this-> and 210
names hidden in derived classes 263
polymorphic 44
polymorphic, destructors and 40–44
templatized 207–212
virtual 193

basic guarantee, the 128
Battle of Hastings 150
Berck, Benjamin xix
bidirectional iterators 227
bidirectional_iterator_tag 228
binary upgradeability, inlining and 138
binding

dynamic, see dynamic binding
static, see static binding

birds and penguins 151–153
bitwise const member functions 21–22
books

C++ Programming Language, The xvii
C++ Templates xviii
Design Patterns xvii
Effective STL 273, 275–276
Exceptional C++ xvii
Exceptional C++ Style xvii, xviii
More Effective C++ 273, 273–274
More Exceptional C++ xvii
Satyricon vii
Some Must Watch While Some Must 

Sleep 150
Boost 10, 269–272

containers 271
Conversion library 270
correctness and testing support 272
data structures 272
function objects and higher-order pro-

gramming utilities 271
functionality not provided 272
generic programming support 271
Graph library 270
inter-language support 272
Lambda library 271
math and numerics utilities 271
memory management utilities 272
MPL library 270, 271
noncopyable base class 39
Pool library 250, 251
scoped_array 65, 216, 272
shared_array 65
shared_ptr implementation, costs 83
smart pointers 65, 272

web page xvii
string and text utilities 271
template metaprogramming 

support 271

TR1 and 9–10, 268, 269
typelist support 271
web site 10, 269, 272

boost, as synonym for std::tr1 268
Bosch, Derek xviii
breakpoints, and inlining 139
Buffy the Vampire Slayer xx
bugs, reporting xvi
built-in types 26–27

efficiency and passing 89
incompatibilities with 80

C
C standard library and C++ standard 

library 264
C# 43, 76, 97, 100, 116, 118, 190

see also .NET
C++ Programming Language, The xvii
C++ standard library 263–269

<iosfwd> and 144
array replacements and 75
C standard library and 264
C89 standard library and 264
header organization of 101
list template 186
logic_error and 113
set template 185
vector template 75

C++ Templates xviii
C++, as language federation 11–13
C++0x 264
C++-style casts 117
C, as sublanguage of C++ 12
C99 standard library, TR1 and 267
caching

const and 22
mutable and 22

Cai, Steve xix
calling swap 110
calls to base classes, casting and 119
Cargill, Tom xviii
Carrara, Enrico xix
Carroll, Glenn xviii
casting 116–123

see also const_cast, static_cast, 
dynamic_cast, and reinterpret_cast

base class calls and 119
constness away 24–25
encapsulation and 123
grep and 117
syntactic forms 116–117
type systems and 116
undefined behavior and 119

chaining assignments 52
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Chang, Brandon xix
Clamage, Steve xviii
class definitions

artificial client dependencies, 
eliminating 143

class declarations vs. 143
object sizes and 141

class design, see type design
class names, explicitly specifying 162
class, vs. typename 203
classes

see also class definitions, interfaces
abstract 43, 162
base

see also base classes
duplication of data in 193
polymorphic 44
templatized 207–212
virtual 193

defining 4
derived

see also inheritance
virtual base initialization of 194

Handle 144–145
Interface 145–147
meaning of no virtual functions 41
RAII, see RAII
specification, see interfaces
traits 226–232

client 7
clustering objects 251
code

bloat 24, 135, 230
avoiding, in templates 212–217

copy assignment operator 60
duplication, see duplication
exception-safe 127–134
factoring out of templates 212–217
incorrect, efficiency and 90
reuse 195
sharing, see duplication, avoiding

Cohen, Jake xix
Comeau, Greg xviii

URL for his C/C++ FAQ xviii
common features and inheritance 164
commonality and variability analysis 212
compatibility, vptrs and 42
compatible types, accepting 218–222
compilation dependencies 140–148

minimizing 140–148, 190
pointers, references, and objects 

and 143
compiler warnings 262–263

calls to virtuals and 50
inlining and 136
partial copies and 58

compiler-generated functions 34–37
disallowing 37–39
functions compilers may generate 221

compilers
parsing nested dependent names 204
programs executing within, see tem-

plate metaprogramming
register usage and 89
reordering operations 76
typename and 207
when errors are diagnosed 212

compile-time polymorphism 201
composition 184–186

meanings of 184
replacing private inheritance with 189
synonyms for 184
vs. private inheritance 188

conceptual constness, see const, logical
consistency with the built-in types 19, 86
const 13, 17–26

bitwise 21–22
caching and 22
casting away 24–25
function declarations and 18
logical 22–23
member functions 19–25

duplication and 23–25
members, initialization of 29
overloading on 19–20
pass by reference and 86–90
passing std::auto_ptr and 220
pointers 17
return value 18
uses 17
vs. #define 13–14

const_cast 25, 117
see also casting

const_iterator, vs. iterators 18
constants, see const
constraints on interfaces, from 

inheritance 85
constructors 84

copy 5
default 4
empty, illusion of 137
explicit 5, 85, 104
implicitly generated 34
inlining and 137–138
operator new and 137
possible implementation in derived 

classes 138
relationship to new 73
static functions and 52
virtual 146, 147
virtual functions and 48–52
with vs. without arguments 114

containers, in Boost 271



ptg7544714

Effective C++ Index 283
containment, see composition
continue, delete and 62
control over data members’ 

accessibility 95
convenience functions 100
Conversion library, in Boost 270
conversions, type, see type conversions
copies, partial 58
copy assignment operator 5

code in copy constructor and 60
derived classes and 60

copy constructors
default definition 35
derived classes and 60
generalized 219
how used 5
implicitly generated 34
pass-by-value and 6

copy-and-swap 131
assignment and 56
exception-safe code and 132

copying
base class parts 59
behavior, resource management 

and 66–69
functions, the 57
objects 57–60

correctness
designing interfaces for 78–83
testing and, Boost support 272

corresponding forms of new and 
delete 73–75

corrupt data structures, exception-safe 
code and 127

cows, coming home 139
crimes against English 39, 204
cross-DLL problem 82
CRTP 246
C-style casts 116
ctor 8
curiously recurring template pattern 246

D
dangling handles 126
Dashtinezhad, Sasan xix
data members

adding, copying functions and 58
control over accessibility 95
protected 97
static, initialization of 242
why private 94–98

data structures
exception-safe code and 127
in Boost 272

Davis, Tony xviii

deadly MI diamond 193
debuggers

#define and 13
inline functions and 139

declarations 3
inline functions 135
replacing definitions 143
static const integral members 14

default constructors 4
construction with arguments vs. 114
implicitly generated 34

default implementations
for virtual functions, danger of 163–167
of copy constructor 35
of operator= 35

default initialization, unintended 59
default parameters 180–183

impact if changed 183
static binding of 182

#define
debuggers and 13
disadvantages of 13, 16
vs. const 13–14
vs. inline functions 16–17

definitions 4
classes 4
deliberate omission of 38
functions 4
implicitly generated functions 35
objects 4
pure virtual functions 162, 166–167
replacing with declarations 143
static class members 242
static const integral members 14
templates 4
variable, postponing 113–116

delete
see also operator delete
forms of 73–75
operator delete and 73
relationship to destructors 73
usage problem scenarios 62

delete [], std::auto_ptr and tr1::shared_ptr
and 65

deleters
std::auto_ptr and 68
tr1::shared_ptr and 68, 81–83

Delphi 97
Dement, William 150
dependencies, compilation 140–148
dependent names 204
dereferencing a null pointer, undefined 

behavior of 6
derived classes

copy assignment operators and 60
copy constructors and 60
hiding names in base classes 263
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efficiency
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dynamic_cast 120
Handle classes 147
incorrect code and 90, 94
init. with vs. without args 114
Interface classes 147
macros vs. inline functions 16
member init. vs. assignment 28
minimizing compilation 

dependencies 147
operator new/operator delete and 248
pass-by-reference and 87
pass-by-value and 86–87
passing built-in types and 89
runtime vs. compile-time tests 230
template metaprogramming and 233
template vs. function parameters 216
unused objects 113
virtual functions 168

Eiffel 100
embedding, see composition
empty base optimization (EBO) 190–191
encapsulation 95, 99

casts and 123
design patterns and 173
handles and 125
measuring 99
protected members and 97
RAII classes and 72

enum hack 15–16, 236
errata list, for this book xvi
errors

detected during linking 39, 44
runtime 152

evaluation order, of parameters 76
example classes/templates

A 4
ABEntry 27
AccessLevels 95
Address 184
Airplane 164, 165, 166
Airport 164
AtomicClock 40
AWOV 43
B 4, 178, 262
Base 54, 118, 137, 157, 158, 159, 160, 254, 

255, 259

rrectly 78–83
 empty base optimization
C++, compared to More Effective 
and Effective STL 273
STL 273, 275–276
red to Effective C++ 273

BelowBottom 219
bidirectional_iterator_tag 228
Bird 151, 152, 153
Bitmap 54
BorrowableItem 192
Bottom 218
BuyTransaction 49, 51
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C 5
Circle 181
CompanyA 208
CompanyB 208
CompanyZ 209
CostEstimate 15
CPerson 198
CTextBlock 21, 22, 23
Customer 57, 58
D 178, 262
DatabaseID 197
Date 58, 79
Day 79
DBConn 45, 47
DBConnection 45
deque 229
deque::iterator 229
Derived 54, 118, 137, 157, 158, 159, 160, 

206, 254, 260
Directory 31
ElectronicGadget 192
Ellipse 161
Empty 34, 190
EvilBadGuy 172, 174
EyeCandyCharacter 175
Factorial 235
Factorial<0> 235
File 193, 194
FileSystem 30
FlyingBird 152
Font 71
forward_iterator_tag 228
GameCharacter 169, 170, 172, 173, 176
GameLevel 174
GamePlayer 14, 15
GraphNode 4
GUIObject 126
HealthCalcFunc 176
HealthCalculator 174
HoldsAnInt 190, 191
HomeForSale 37, 38, 39
input_iterator_tag 228
input_iterator_tag<Iter*> 230
InputFile 193, 194
Investment 61, 70
IOFile 193, 194
IPerson 195, 197
iterator_traits 229

see also std::iterator_traits
list 229
list::iterator 229
Lock 66, 67, 68
LoggingMsgSender 208, 210, 211
Middle 218
ModelA 164, 165, 167
ModelB 164, 165, 167
ModelC 164, 166, 167
Month 79, 80
MP3Player 192

MsgInfo 208
MsgSender 208
MsgSender<CompanyZ> 209
NamedObject 35, 36
NewHandlerHolder 243
NewHandlerSupport 245
output_iterator_tag 228
OutputFile 193, 194
Penguin 151, 152, 153
Person 86, 135, 140, 141, 142, 145, 146, 

150, 184, 187
PersonInfo 195, 197
PhoneNumber 27, 184
PMImpl 131
Point 26, 41, 123
PrettyMenu 127, 130, 131
PriorityCustomer 58
random_access_iterator_tag 228
Rational 90, 102, 103, 105, 222, 223, 224, 

225, 226
RealPerson 147
Rectangle 124, 125, 154, 161, 181, 183
RectData 124
SellTransaction 49
Set 185
Shape 161, 162, 163, 167, 180, 182, 183
SmartPtr 218, 219, 220
SpecialString 42
SpecialWindow 119, 120, 121, 122
SpeedDataCollection 96
Square 154
SquareMatrix 213, 214, 215, 216
SquareMatrixBase 214, 215
StandardNewDeleteForms 260
Student 86, 150, 187
TextBlock 20, 23, 24
TimeKeeper 40, 41
Timer 188
Top 218
Transaction 48, 50, 51
Uncopyable 39
WaterClock 40
WebBrowser 98, 100, 101
Widget 4, 5, 44, 52, 53, 54, 56, 107, 108, 

109, 118, 189, 199, 201, 242, 245, 246, 
257, 258, 261

Widget::WidgetTimer 189
WidgetImpl 106, 108
Window 88, 119, 121, 122
WindowWithScrollBars 88
WristWatch 40
X 242
Y 242
Year 79

example functions/templates
ABEntry::ABEntry 27, 28
AccessLevels::getReadOnly 95
AccessLevels::getReadWrite 95
AccessLevels::setReadOnly 95
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AccessLevels::setWriteOnly 95
advance 228, 230, 232, 233, 234
Airplane::defaultFly 165
Airplane::fly 164, 165, 166, 167
askUserForDatabaseID 195
AWOV::AWOV 43
B::mf 178
Base::operator delete 255
Base::operator new 254
Bird::fly 151
BorrowableItem::checkOut 192
boundingBox 126
BuyTransaction::BuyTransaction 51
BuyTransaction::createLogString 51
calcHealth 174
callWithMax 16
changeFontSize 71
Circle::draw 181
clearAppointments 143, 144
clearBrowser 98
CPerson::birthDate 198
CPerson::CPerson 198
CPerson::name 198
CPerson::valueDelimClose 198
CPerson::valueDelimOpen 198
createInvestment 62, 70, 81, 82, 83
CTextBlock::length 22, 23
CTextBlock::operator[] 21
Customer::Customer 58
Customer::operator= 58
D::mf 178
Date::Date 79
Day::Day 79
daysHeld 69
DBConn::~DBConn 45, 46, 47
DBConn::close 47
defaultHealthCalc 172, 173
Derived::Derived 138, 206
Derived::mf1 160
Derived::mf4 157
Directory::Directory 31, 32
doAdvance 231
doMultiply 226
doProcessing 200, 202
doSomething 5, 44, 54, 110
doSomeWork 118
eat 151, 187
ElectronicGadget::checkOut 192
Empty::~Empty 34
Empty::Empty 34
Empty::operator= 34
encryptPassword 114, 115
error 152
EvilBadGuy::EvilBadGuy 172
f 62, 63, 64
FlyingBird::fly 152
Font::~Font 71
Font::Font 71
Font::get 71

Font::operator FontHandle 71
GameCharacter::doHealthValue 170
GameCharacter::GameCharacter 172, 174, 

176
GameCharacter::healthValue 169, 170, 

172, 174, 176
GameLevel::health 174
getFont 70
hasAcceptableQuality 6
HealthCalcFunc::calc 176
HealthCalculator::operator() 174
lock 66
Lock::~Lock 66
Lock::Lock 66, 68
logCall 57
LoggingMsgSender::sendClear 208, 210, 

211
loseHealthQuickly 172
loseHealthSlowly 172
main 141, 142, 236, 241
makeBigger 154
makePerson 195
max 135
ModelA::fly 165, 167
ModelB::fly 165, 167
ModelC::fly 166, 167
Month::Dec 80
Month::Feb 80
Month::Jan 80
Month::Month 79, 80
MsgSender::sendClear 208
MsgSender::sendSecret 208
MsgSender<CompanyZ>::sendSecret 209
NewHandlerHolder::~NewHandlerHolder 243
NewHandlerHolder::NewHandlerHolder 243
NewHandlerSupport::operator new 245
NewHandlerSupport::set_new_handler 245
numDigits 4
operator delete 255
operator new 249, 252
operator* 91, 92, 94, 105, 222, 224, 225, 

226
operator== 93
outOfMem 240
Penguin::fly 152
Person::age 135
Person::create 146, 147
Person::name 145
Person::Person 145
PersonInfo::theName 196
PersonInfo::valueDelimClose 196
PersonInfo::valueDelimOpen 196
PrettyMenu::changeBackground 127, 128, 

130, 131
print 20
print2nd 204, 205
printNameAndDisplay 88, 89
priority 75
PriorityCustomer::operator= 59
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Rectangle::draw 181
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releaseFont 70
Set::insert 186
Set::member 186
Set::remove 186
Set::size 186
Shape::doDraw 183
Shape::draw 161, 16
Shape::error 161, 16
Shape::objectID 161
SmartPtr::get 220
SmartPtr::SmartPtr
someFunc 132, 156
SpecialWindow::blin
SpecialWindow::onR
SquareMatrix::invert
SquareMatrix::setDa
SquareMatrix::Squar
StandardNewDelete

delete 260, 26
StandardNewDelete

new 260, 261
std::swap 109
std::swap<Widget>
study 151, 187
swap 106, 109
tempDir 32
TextBlock::operator[
tfs 32
Timer::onTick 188
Transaction::init 50
Transaction::Transac
Uncopyable::operat
Uncopyable::Uncop
unlock 66
validateStudent 87
Widget::onTick 189
Widget::operator ne
Widget::operator+=
Widget::operator= 5
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Widget::swap 108
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workWithIterator 20
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destructors and 44–48
member swap and 112
standard hierarchy for 264
swallowing 46
unused objects and 114

exception-safe code 127–134
copy-and-swap and 132
legacy code and 133
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side effects and 132

exception-safety guarantees 128–129
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Fehér, Attila F. xix
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final methods, in Java 190
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French, Donald xx
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225
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rights 225
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