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Preface

In the late sixties, Donald Knuth, winner of the 1974 Turing Award, published his landmark
book The Art of Computer Programming: Fundamental Algorithms. This book brought to-
gether a body of knowledge that defined the data structures area. The term data structure,
itself, was defined in this book to be A table of data including structural relationships.
Niklaus Wirth, the inventor of the Pascal language and winner of the 1984 Turing award,
stated that “Algorithms 4+ Data Structures = Programs”. The importance of algorithms
and data structures has been recognized by the community and consequently, every under-
graduate Computer Science curriculum has classes on data structures and algorithms. Both
of these related areas have seen tremendous advances in the decades since the appearance
of the books by Knuth and Wirth. Although there are several advanced and specialized
texts and handbooks on algorithms (and related data structures), there is, to the best of
our knowledge, no text or handbook that focuses exclusively on the wide variety of data
structures that have been reported in the literature. The goal of this handbook is to provide
a comprehensive survey of data structures of different types that are in existence today.

To this end, we have subdivided this handbook into seven parts, each of which addresses
a different facet of data structures. Part I is a review of introductory material. Although
this material is covered in all standard data structures texts, it was included to make the
handbook self-contained and in recognition of the fact that there are many practitioners and
programmers who may not have had a formal education in Computer Science. Parts II, III,
and IV discuss Priority Queues, Dictionary Structures, and Multidimensional structures,
respectively. These are all well-known classes of data structures. Part V is a catch-all used
for well-known data structures that eluded easy classification. Parts I through V are largely
theoretical in nature: they discuss the data structures, their operations and their complex-
ities. Part VI addresses mechanisms and tools that have been developed to facilitate the
use of data structures in real programs. Many of the data structures discussed in previous
parts are very intricate and take some effort to program. The development of data structure
libraries and visualization tools by skilled programmers are of critical importance in reduc-
ing the gap between theory and practice. Finally, Part VII examines applications of data
structures. The deployment of many data structures from Parts I through V in a variety
of applications is discussed. Some of the data structures discussed here have been invented
solely in the context of these applications and are not well-known to the broader commu-
nity. Some of the applications discussed include Internet Routing, Web Search Engines,
Databases, Data Mining, Scientific Computing, Geographical Information Systems, Com-
putational Geometry, Computational Biology, VLSI Floorplanning and Layout, Computer
Graphics and Image Processing.

For data structure and algorithm researchers, we hope that the handbook will suggest
new ideas for research in data structures and for an appreciation of the application contexts
in which data structures are deployed. For the practitioner who is devising an algorithm,
we hope that the handbook will lead to insights in organizing data that make it possible
to solve the algorithmic problem more cleanly and efficiently. For researchers in specific
application areas, we hope that they will gain some insight from the ways other areas have
handled their data structuring problems.

Although we have attempted to make the handbook as complete as possible, it is impos-
sible to undertake a task of this magnitude without some omissions. For this, we apologize
in advance and encourage readers to contact us with information about significant data
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structures or applications that do not appear here. These could be included in future edi-
tions of this handbook. We would like to thank the excellent team of authors, who are at
the forefront of research in data structures, that have contributed to this handbook. The
handbook would not have been possible without their painstaking efforts. We are extremely
saddened by the untimely demise of a prominent data structures researcher, Professor Gisli
R. Hjaltason, who was to write a chapter for this handbook. He will be missed greatly by
the Computer Science community. Finally, we would like to thank our families for their
support during the development of the handbook.

Dinesh P. Mehta
Sartaj Sahni
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The topic “Analysis of Algorithms” is concerned primarily with determining the memory
(space) and time requirements (complexity) of an algorithm. Since the techniques used to
determine memory requirements are a subset of those used to determine time requirements,
in this chapter, we focus on the methods used to determine the time complexity of an

algorithm.

The time complexity (or simply, complexity) of an algorithm is measured as a function
of the problem size. Some examples are given below.

1. The complexity of an algorithm to sort n elements may be given as a function of

n.

2. The complexity of an algorithm to multiply an m x n matrix and an n X p matrix

may be given as a function of m, n, and p.

3. The complexity of an algorithm to determine whether x is a prime number may
be given as a function of the number, n, of bits in z. Note that n = [logs(z+1)].

We partition our discussion of algorithm analysis into the following sections.

1. Operation counts.
2. Step counts.
3. Counting cache misses.

© 2005 by Chapman & Hall/CRC
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1-2 Handbook of Data Structures and Applications

4. Asymptotic complexity.
5. Recurrence equations.

6. Amortized complexity.
7. Practical complexities.

See [1,3-5] for additional material on algorithm analysis.

1.2 Operation Counts

One way to estimate the time complexity of a program or method is to select one or more
operations, such as add, multiply, and compare, and to determine how many of each is
done. The success of this method depends on our ability to identify the operations that
contribute most to the time complexity.

Example 1.1

[Max Element] Figure 1.1 gives an algorithm that returns the position of the largest element
in the array a[0:n-1]. When n > 0, the time complexity of this algorithm can be estimated
by determining the number of comparisons made between elements of the array a. When
n < 1, the for loop is not entered. So no comparisons between elements of a are made.
When n > 1, each iteration of the for loop makes one comparison between two elements of
a, and the total number of element comparisons is n-1. Therefore, the number of element
comparisons is max{n-1, 0}. The method max performs other comparisons (for example,
each iteration of the for loop is preceded by a comparison between i and n) that are not
included in the estimate. Other operations such as initializing positionOfCurrentMax and
incrementing the for loop index i are also not included in the estimate.

int max(int [] a, int n)

{
if (n < 1) return -1; // no max
int positionOfCurrentMax = O;
for (dnt i = 1; i < n; i++)
if (al[positionOfCurrentMax] < a[i]) positionOfCurrentMax = ij;
return positionOfCurrentMax;
}

FIGURE 1.1: Finding the position of the largest element in a[0:n-1].

The algorithm of Figure 1.1 has the nice property that the operation count is precisely
determined by the problem size. For many other problems, however, this is not so. Fig-
ure 1.2 gives an algorithm that performs one pass of a bubble sort. In this pass, the largest
element in a[0:n-1] relocates to position a[n-1]. The number of swaps performed by this
algorithm depends not only on the problem size n but also on the particular values of the
elements in the array a. The number of swaps varies from a low of 0 to a high of n — 1.
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Analysis of Algorithms 1-3

void bubble(int [] a, int n)
{
for (int i = 0; 1 < n - 1; i++)
if (al[i] > al[i+1]) swap(alil, al[i+1]);

FIGURE 1.2: A bubbling pass.

Since the operation count isn’t always uniquely determined by the problem size, we ask
for the best, worst, and average counts.

Example 1.2

[Sequential Search] Figure 1.3 gives an algorithm that searches a[0:n-1] for the first oc-
currence of x. The number of comparisons between x and the elements of a isn’t uniquely
determined by the problem size n. For example, if n = 100 and x = a[0], then only 1
comparison is made. However, if x isn’t equal to any of the a[i]s, then 100 comparisons
are made.

A search is successful when x is one of the a[i]s. All other searches are unsuccessful.
Whenever we have an unsuccessful search, the number of comparisons is n. For successful
searches the best comparison count is 1, and the worst is n. For the average count assume
that all array elements are distinct and that each is searched for with equal frequency. The
average count for a successful search is

%Zi: (n+1)/2

int sequentialSearch(int [] a, int n, int x)

{

// search a[0:n-1] for x

int i;

for (1 =0; 1 < n && x '= al[i]l; i++);

if (i == n) return -1; // not found

else return i;
}

FIGURE 1.3: Sequential search.

Example 1.3

[Insertion into a Sorted Array] Figure 1.4 gives an algorithm to insert an element x into a
sorted array a[0:n-1].

We wish to determine the number of comparisons made between x and the elements of a.
For the problem size, we use the number n of elements initially in a. Assume that n > 1.
The best or minimum number of comparisons is 1, which happens when the new element x
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void insert(int [] a, int n, int x)

{
// find proper place for x
int i;
for (i1 =n-1; 1> 0 && x < alil; i--)
ali+1] = alil;
ali+1] = x; // insert x
}

FIGURE 1.4: Inserting into a sorted array.

is to be inserted at the right end. The maximum number of comparisons is n, which happens
when x is to be inserted at the left end. For the average assume that x has an equal chance
of being inserted into any of the possible n+1 positions. If x is eventually inserted into
position i+1 of a, 1 > 0, then the number of comparisons is n-i. If x is inserted into a[0],
the number of comparisons is n. So the average count is

1 = 1 <& 1 nn+1) n n
n+1(;(n_z)+”):n+1(;j+n):n+1( 5 T =gt

This average count is almost 1 more than half the worst-case count.

1.3 Step Counts

The operation-count method of estimating time complexity omits accounting for the time
spent on all but the chosen operations. In the step-count method, we attempt to account
for the time spent in all parts of the algorithm. As was the case for operation counts, the
step count is a function of the problem size.

A step is any computation unit that is independent of the problem size. Thus 10 additions
can be one step; 100 multiplications can also be one step; but n additions, where n is the
problem size, cannot be one step. The amount of computing represented by one step may
be different from that represented by another. For example, the entire statement

return a+b+b*xc+(a+b-c)/(a+b)+4;

can be regarded as a single step if its execution time is independent of the problem size.
We may also count a statement such as

X =y;

as a single step.

To determine the step count of an algorithm, we first determine the number of steps
per execution (s/e) of each statement and the total number of times (i.e., frequency) each
statement is executed. Combining these two quantities gives us the total contribution of
each statement to the total step count. We then add the contributions of all statements to
obtain the step count for the entire algorithm.
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Statement s/e Frequency Total steps
int sequentialSearch(---) 0 0 0
0 0 0
int i; 1 1 1
for (i = 0; i < n && x !'= al[i]; i++); 1 1 1
if (i == n) return -1; 1 1 1
else return i; 1 1 1
} 0 0 0
Total 4
TABLE 1.1 Best-case step count for Figure 1.3
Statement s/e Frequency  Total steps
int sequentialSearch(---) 0 0 0
{ 0 0 0
int i; 1 1 1
for (i = 0; i < n && x !'= al[i]; i++); 1 n+1 n+1
if (i == n) return -1; 1 1 1
else return i; 1 0 0
} 0 0 0
Total n—+3
TABLE 1.2 Worst-case step count for Figure 1.3
Statement s/e Frequency Total steps
int sequentialSearch(---) 0 0
0 0 0
int i; 1 1 1
for (i = 0; i <n & x != a[il; i++); | 1 j+1 i+1
if (i == n) return -1; 1 1 1
else return i; 1 1 1
} 0 0 0
Total 7 +4

TABLE 1.3 Step count for Figure 1.3 when x = a [J]

Example 1.4

1-5

[Sequential Search] Tables 1.1 and 1.2 show the best- and worst-case step-count analyses

for sequentialSearch (Figure 1.3).

For the average step-count analysis for a successful search, we assume that the n values
in a are distinct and that in a successful search, x has an equal probability of being any one
of these values. Under these assumptions the average step count for a successful search is
the sum of the step counts for the n possible successful searches divided by n. To obtain
this average, we first obtain the step count for the case x = a[j] where j is in the range

[0, n — 1] (see Table 1.3).

Now we obtain the average step count for a successful search:

n—1

D G+4)=n+7)/2

1
n <
Jj=0

This value is a little more than half the step count for an unsuccessful search.

Now suppose that successful searches occur only 80 percent of the time and that each

a[i] still has the same probability of being searched for.

sequentialSearch is

.8 * (average count for successful searches) + .2 * (count for an unsuccessful search)

=8n+7)/2+ .2(n+3)
= .n+34
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1.4 Counting Cache Misses

1.4.1 A Simple Computer Model

Traditionally, the focus of algorithm analysis has been on counting operations and steps.
Such a focus was justified when computers took more time to perform an operation than
they took to fetch the data needed for that operation. Today, however, the cost of per-
forming an operation is significantly lower than the cost of fetching data from memory.
Consequently, the run time of many algorithms is dominated by the number of memory
references (equivalently, number of cache misses) rather than by the number of operations.
Hence, algorithm designers focus on reducing not only the number of operations but also
the number of memory accesses. Algorithm designers focus also on designing algorithms
that hide memory latency.

Consider a simple computer model in which the computer’s memory consists of an L1
(level 1) cache, an L2 cache, and main memory. Arithmetic and logical operations are per-
formed by the arithmetic and logic unit (ALU) on data resident in registers (R). Figure 1.5
gives a block diagram for our simple computer model.

ALU
main
> ) memory

FIGURE 1.5: A simple computer model.

Typically, the size of main memory is tens or hundreds of megabytes; L2 cache sizes are
typically a fraction of a megabyte; L1 cache is usually in the tens of kilobytes; and the
number of registers is between 8 and 32. When you start your program, all your data are
in main memory.

To perform an arithmetic operation such as an add, in our computer model, the data to
be added are first loaded from memory into registers, the data in the registers are added,
and the result is written to memory.

Let one cycle be the length of time it takes to add data that are already in registers.
The time needed to load data from L1 cache to a register is two cycles in our model. If the
required data are not in L1 cache but are in L2 cache, we get an L1 cache miss and the
required data are copied from L2 cache to L1 cache and the register in 10 cycles. When the
required data are not in L2 cache either, we have an L2 cache miss and the required data
are copied from main memory into L2 cache, L1 cache, and the register in 100 cycles. The
write operation is counted as one cycle even when the data are written to main memory
because we do not wait for the write to complete before proceeding to the next operation.
For more details on cache organization, see [2].

1.4.2 Effect of Cache Misses on Run Time

For our simple model, the statement a = b + c is compiled into the computer instructions

load a; load b; add; store c;
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where the load operations load data into registers and the store operation writes the result
of the add to memory. The add and the store together take two cycles. The two loads
may take anywhere from 4 cycles to 200 cycles depending on whether we get no cache miss,
LL1 misses, or 1.2 misses. So the total time for the statement a = b + ¢ varies from 6 cycles
to 202 cycles. In practice, the variation in time is not as extreme because we can overlap
the time spent on successive cache misses.

Suppose that we have two algorithms that perform the same task. The first algorithm
does 2000 adds that require 4000 load, 2000 add, and 2000 store operations and the second
algorithm does 1000 adds. The data access pattern for the first algorithm is such that 25
percent of the loads result in an L1 miss and another 25 percent result in an L2 miss. For
our simplistic computer model, the time required by the first algorithm is 2000 * 2 (for the
50 percent loads that cause no cache miss) 4+ 1000 10 (for the 25 percent loads that cause
an L1 miss) + 1000 % 100 (for the 25 percent loads that cause an L2 miss) + 2000 % 1 (for
the adds) + 2000 * 1 (for the stores) = 118,000 cycles. If the second algorithm has 100
percent L2 misses, it will take 2000 % 100 (L2 misses) + 1000 % 1 (adds) 4+ 1000 x 1 (stores)
= 202,000 cycles. So the second algorithm, which does half the work done by the first,
actually takes 76 percent more time than is taken by the first algorithm.

Computers use a number of strategies (such as preloading data that will be needed in
the near future into cache, and when a cache miss occurs, the needed data as well as data
in some number of adjacent bytes are loaded into cache) to reduce the number of cache
misses and hence reduce the run time of a program. These strategies are most effective
when successive computer operations use adjacent bytes of main memory.

Although our discussion has focused on how cache is used for data, computers also use
cache to reduce the time needed to access instructions.

1.4.3 Matrix Multiplication

The algorithm of Figure 1.6 multiplies two square matrices that are represented as two-
dimensional arrays. It performs the following computation:

c[i]lj]=) ali]k] *bK][j], 1<i<mn, 1<j<n (1.1)
k=1

void squareMultiply(int [J[] a, int [J[] b, int [1[] c, int n)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

{
int sum = O;
for (int k = 0; k < n; k++)
sum += al[i] [k] * b[k][j];
cl[il [j] = sum;
}

FIGURE 1.6: Multiply two n X n matrices.
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Figure 1.7 is an alternative algorithm that produces the same two-dimensional array c as
is produced by Figure 1.6. We observe that Figure 1.7 has two nested for loops that are
not present in Figure 1.6 and does more work than is done by Figure 1.6 with respect to
indexing into the array c. The remainder of the work is the same.

void fastSquareMultiply(int [1[] a, int [I1[] b, int [I1[] c, int n)
{
for (int i = 0; i < mn; i++)
for (int j = 0; j < mn; j++)
clil [j]1 = 0;

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
c[il [j] += alil[k] * bl[k][j];

FIGURE 1.7: Alternative algorithm to multiply square matrices.

You will notice that if you permute the order of the three nested for loops in Figure 1.7,
you do not affect the result array c. We refer to the loop order in Figure 1.7 as ijk order.
When we swap the second and third for loops, we get ikj order. In all, there are 3! = 6
ways in which we can order the three nested for loops. All six orderings result in methods
that perform exactly the same number of operations of each type. So you might think all
six take the same time. Not so. By changing the order of the loops, we change the data
access pattern and so change the number of cache misses. This in turn affects the run time.

In ijk order, we access the elements of a and ¢ by rows; the elements of b are accessed
by column. Since elements in the same row are in adjacent memory and elements in the
same column are far apart in memory, the accesses of b are likely to result in many L2 cache
misses when the matrix size is too large for the three arrays to fit into L2 cache. In ikj
order, the elements of a, b, and ¢ are accessed by rows. Therefore, ikj order is likely to
result in fewer L2 cache misses and so has the potential to take much less time than taken
by ijk order.

For a crude analysis of the number of cache misses, assume we are interested only in L2
misses; that an L2 cache-line can hold w matrix elements; when an L2 cache-miss occurs,
a block of w matrix elements is brought into an L2 cache line; and that L2 cache is small
compared to the size of a matrix. Under these assumptions, the accesses to the elements of
a, b and c in ijk order, respectively, result in n3/w, n3, and n?/w L2 misses. Therefore,
the total number of L2 misses in ijk order is n3(1+w +1/n)/w. In ikj order, the number
of L2 misses for our three matrices is n?/w, n3/w, and n3 /w, respectively. So, in ikj order,
the total number of L2 misses is n%(2 + 1/n)/w. When n is large, the ration of ijk misses
to ikj misses is approximately (1 + w)/2, which is 2.5 when w = 4 (for example when we
have a 32-byte cache line and the data is double precision) and 4.5 when w = 8 (for example
when we have a 64-byte cache line and double-precision data). For a 64-byte cache line and
single-precision (i.e., 4 byte) data, w = 16 and the ratio is approximately 8.5.

Figure 1.8 shows the normalized run times of a Java version of our matrix multiplication
algorithms. In this figure, mult refers to the multiplication algorithm of Figure 1.6. The
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normalized run time of a method is the time taken by the method divided by the time taken
by ikj order.

12,
L1}
1- o 7 7
0
n = 500 n = 1000 n = 2000
77z wit B ik B ik

FIGURE 1.8: Normalized run times for matrix multiplication.

Matrix multiplication using ikj order takes 10 percent less time than does ijk order
when the matrix size is n = 500 and 16 percent less time when the matrix size is 2000.
Equally surprising is that ikj order runs faster than the algorithm of Figure 1.6 (by about
5 percent when n = 2000). This despite the fact that ikj order does more work than is
done by the algorithm of Figure 1.6.

1.5 Asymptotic Complexity

1.5.1 Big Oh Notation (0)

Let p(n) and g(n) be two nonnegative functions. p(n) is asymptotically bigger (p(n)
asymptotically dominates ¢(n)) than the function g(n) iff

lim —— =0 (1.2)

g(n) is asymptotically smaller than p(n) iff p(n) is asymptotically bigger than g(n).
p(n) and g(n) are asymptotically equal iff neither is asymptotically bigger than the other.

Example 1.5

Since
10n+7 10/n+ 7/n?

I - =0/3=0
e ot 6  3xamrom

3n? + 2n + 6 is asymptotically bigger than 10n + 7 and 10n + 7 is asymptotically smaller
than 3n2 +2n +6. A similar derivation shows that 8n* 4+ 9n? is asymptotically bigger than
100n3 — 3, and that 2n? 4 3n is asymptotically bigger than 83n. 12n + 6 is asymptotically
equal to 6n + 2.

In the following discussion the function f(n) denotes the time or space complexity of
an algorithm as a function of the problem size n. Since the time or space requirements of
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a program are nonnegative quantities, we assume that the function f has a nonnegative
value for all values of n. Further, since n denotes an instance characteristic, we assume that
n > 0. The function f(n) will, in general, be a sum of terms. For example, the terms of
f(n) = 9n? + 3n + 12 are 9n?, 3n, and 12. We may compare pairs of terms to determine
which is bigger. The biggest term in the example f(n) is 9n2.

Figure 1.9 gives the terms that occur frequently in a step-count analysis. Although all
the terms in Figure 1.9 have a coefficient of 1, in an actual analysis, the coefficients of these
terms may have a different value.

Term Name

1 constant
logn logarithmic
n linear
nlogn | nlogn

n? quadratic
n® cubic

2m exponential
n! factorial

FIGURE 1.9: Commonly occurring terms.

We do not associate a logarithmic base with the functions in Figure 1.9 that include logn
because for any constants a and b greater than 1, log, n = log,n/log,a. So log,n and
log, n are asymptotically equal.

The definition of asymptotically smaller implies the following ordering for the terms of
Figure 1.9 (< is to be read as “is asymptotically smaller than”):

1 <logn <n<nlogn <n?<n3<2"<n!

Asymptotic notation describes the behavior of the time or space complexity for large
instance characteristics. Although we will develop asymptotic notation with reference to
step counts alone, our development also applies to space complexity and operation counts.

The notation f(n) = O(g(n)) (read as “f(n) is big oh of g(n)”) means that f(n) is
asymptotically smaller than or equal to g(n). Therefore, in an asymptotic sense g(n) is an
upper bound for f(n).

Example 1.6

From Example 1.5, it follows that 10n+7 = O(3n%+2n+6); 100n3 -3 = O(8n* +9n?). We
see also that 12n+6 = O(6n+2); 3n2+2n+6 # O(10n+7); and 8n* +9n? # O(100n> — 3).

Although Example 1.6 uses the big oh notation in a correct way, it is customary to use
g(n) functions that are unit terms (i.e., g(n) is a single term whose coefficient is 1) except
when f(n) = 0. In addition, it is customary to use, for g(n), the smallest unit term for which
the statement f(n) = O(g(n)) is true. When f(n) = 0, it is customary to use g(n) = 0.

Example 1.7

The customary way to describe the asymptotic behavior of the functions used in Example 1.6
is 10n + 7 = O(n); 100n3 — 3 = O(n3); 12n + 6 = O(n); 3n% + 2n + 6 # O(n); and
8nt +9n? £ O(n?).
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In asymptotic complexity analysis, we determine the biggest term in the complexity;
the coefficient of this biggest term is set to 1. The unit terms of a step-count function
are step-count terms with their coefficients changed to 1. For example, the unit terms of
3n? 4 6nlogn + Tn + 5 are n?, nlogn, n, and 1; the biggest unit term is n?. So when the
step count of a program is 3n? + 6nlogn + 7n + 5, we say that its asymptotic complexity
is O(n?).

Notice that f(n) = O(g(n)) is not the same as O(g(n)) = f(n). In fact, saying that
O(g(n)) = f(n) is meaningless. The use of the symbol = is unfortunate, as this symbol
commonly denotes the equals relation. We can avoid some of the confusion that results
from the use of this symbol (which is standard terminology) by reading the symbol = as

[1392)

is” and not as “equals.”

1.5.2 Omega (©2) and Theta (©) Notations

Although the big oh notation is the most frequently used asymptotic notation, the omega
and theta notations are sometimes used to describe the asymptotic complexity of a program.

The notation f(n) = Q(g(n)) (read as “f(n) is omega of g(n)”) means that f(n) is
asymptotically bigger than or equal to g(n). Therefore, in an asymptotic sense, g(n) is a
lower bound for f(n). The notation f(n) = ©(g(n)) (read as “f(n) is theta of g(n)”) means
that f(n) is asymptotically equal to g(n).

Example 1.8

10n+ 7 = Q(n) because 10n + 7 is asymptotically equal to n; 100n3 — 3 = Q(n?); 12n+6 =
Q(n); 3n3+2n+6 = Q(n); 8n*+9n? = Q(n3); 3n3+2n+6 # Q(n’); and 8nt+9n? # Q(n’).

10n + 7 = O(n) because 10n + 7 is asymptotically equal to n; 100n® — 3 = O(n?);
12n +6 = O(n); 3n® +2n + 6 # O(n); 8n* + 9In? # O(n3); 3n + 2n + 6 # O(n°); and
8nt + 9n? £ O(nd).

The best-case step count for sequentialSearch (Figure 1.3) is 4 (Table 1.1), the worst-
case step count is n+3, and the average step count is 0.6n+3.4. So the best-case asymptotic
complexity of sequentialSearchis O(1), and the worst-case and average complexities are
©(n). It is also correct to say that the complexity of sequentialSearchis 2(1) and O(n)
because 1 is a lower bound (in an asymptotic sense) and n is an upper bound (in an
asymptotic sense) on the step count.

When using the Q notation, it is customary to use, for g(n), the largest unit term for
which the statement f(n) = Q(g(n)) is true.

At times it is useful to interpret O(g(n)), 2(g(n)), and ©(g(n)) as being the following
sets:

O(g(n)) = {f(n)|f(n) = O(g(n))}
Qg(n)) = {f(n)|f(n) = Q(g(n))}
O(g(n)) = {f()|f(n) = O(g(n))}
Under this interpretation, statements such as O(gi1(n)) = O(gz2(n)) and O(gi(n)) =

©(g2(n)) are meaningful. When using this interpretation, it is also convenient to read
f(n) = 0O(g(n)) as “fof n is in (or is a member of) big oh of g of n” and so on.
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1.5.3 Little Oh Notation (o)

The little oh notation describes a strict upper bound on the asymptotic growth rate of the
function f. f(n) is little oh of g(n) iff f(n) is asymptotically smaller than g(n). Equivalently,
f(n) =o0(g(n)) (read as “f of n is little oh of g of n”) iff f(n) = O(g(n)) and f(n) # Q(g(n)).

Example 1.9
[Little oh] 3n+2 = o(n?) as 3n+2 = O(n?) and 3n +2 # Q(n?). However, 3n+ 2 # o(n).
Similarly, 10n? + 4n + 2 = o(n?), but is not o(n?).

The little oh notation is often used in step-count analyses. A step count of 3n + o(n)
would mean that the step count is 3n plus terms that are asymptotically smaller than n.
When performing such an analysis, one can ignore portions of the program that are known
to contribute less than ©(n) steps.

1.6 Recurrence Equations

Recurrence equations arise frequently in the analysis of algorithms, particularly in the
analysis of recursive as well as divide-and-conquer algorithms.

Example 1.10

[Binary Search] Consider a binary search of the sorted array all : r], where n =r—1+1 > 0,
for the element x. When n = 0, the search is unsuccessful and when n = 1, we compare x
and a[l]. When n > 1, we compare = with the element a[m] (m = |(I+r)/2]) in the middle
of the array. If the compared elements are equal, the search terminates; if z < a[m], we
search a[l : m — 1]; otherwise, we search a[m + 1 : r]. Let t(n) be the worst-case complexity
of binary search. Assuming that ¢(0) = ¢(1), we obtain the following recurrence.

t(1) n<l1
Hn) = { t(n/2))+¢ n>1 (1.3)

where c is a constant.

Example 1.11

[Merge Sort] In a merge sort of a[0 : n — 1], n > 1, we consider two cases. When n = 1,
no work is to be done as a one-element array is always in sorted order. When n > 1, we
divide a into two parts of roughly the same size, sort these two parts using the merge sort
method recursively, then finally merge the sorted parts to obtain the desired sorted array.
Since the time to do the final merge is ©(n) and the dividing into two roughly equal parts
takes O(1) time, the complexity, ¢(n), of merge sort is given by the recurrence:

[ Vo
) = { t(|n/2])+t([n/2])+en n>1 (1.4)

where c is a constant.
Solving recurrence equations such as Equations 1.3 and 1.4 for ¢(n) is complicated by the

presence of the floor and ceiling functions. By making an appropriate assumption on the
permissible values of n, these functions may be eliminated to obtain a simplified recurrence.
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In the case of Equations 1.3 and 1.4 an assumption such as n is a power of 2 results in the

simplified recurrences:
[ (1) n<l1
Hn) = { t(n/2)+c n>1 (1.5)

and

t(1) n=1
tn) = { 2t(n/2)+cn n>1 (1.6)

Several techniques—substitution, table lookup, induction, characteristic roots, and gen-
erating functions—are available to solve recurrence equations. We describe only the substi-
tution and table lookup methods.

1.6.1 Substitution Method

In the substitution method, recurrences such as Equations 1.5 and 1.6 are solved by re-
peatedly substituting right-side occurrences (occurrences to the right of =) of ¢(z), = > 1,
with expressions involving ¢(y), y < x. The substitution process terminates when the only
occurrences of ¢(x) that remain on the right side have x = 1.

Consider the binary search recurrence of Equation 1.5. Repeatedly substituting for ()
on the right side, we get

ttn) = t(n/2)+c
(t(n/4) +¢) +c
t(n/4) + 2c
= t(n/8)+3c

= (1) +clogyn
= O(logn)

For the merge sort recurrence of Equation 1.6, we get

t(n) = 2t(n/2)+cn
= 2(2t(n/4)+cn/2) +cn
= 4dt(n/4) +2cn
= 4(2t(n/8) +cn/4) + 2cn
= 8t(n/8) + 3cn

nt(1) + enlogy, n
= O(nlogn)

1.6.2 Table-Lookup Method

The complexity of many divide-and-conquer algorithms is given by a recurrence of the form

] t(1) n=1
Hn) = { axt(n/b)+g(n) n>1 (1.7)
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h(n) f(n)
onm), r<0 o(1)

O((logn)'), i > 0 | ©(((logn)*)/(i + 1))
Qn"), r>0 O(h(n))

TABLE 1.4 f(n) values for various h(n) values

where a and b are known constants. The merge sort recurrence, Equation 1.6, is in this
form. Although the recurrence for binary search, Equation 1.5, isn’t exactly in this form,
the n < 1 may be changed to n = 1 by eliminating the case n = 0. To solve Equation 1.7, we
assume that #(1) is known and that n is a power of b (i.e., n = b¥). Using the substitution
method, we can show that

t(n) = n'*= [t(1) + f(n)] (1.8)

where f(n) = 25:1 h(b?) and h(n) = g(n)/n'o% 2.

Table 1.4 tabulates the asymptotic value of f(n) for various values of h(n). This table
allows us to easily obtain the asymptotic value of ¢(n) for many of the recurrences we
encounter when analyzing divide-and-conquer algorithms.

Let us solve the binary search and merge sort recurrences using this table. Comparing
Equation 1.5 with n < 1 replaced by n = 1 with Equation 1.7, we see that a = 1, b = 2, and
g(n) = c. Therefore, log,(a) = 0, and h(n) = g(n)/n'°&? = ¢ = c(logn)® = O((logn)?).
From Table 1.4, we obtain f(n) = ©(logn). Therefore, t(n) = n'°®%(c + O(logn)) =
O(logn).

For the merge sort recurrence, Equation 1.6, we obtain ¢ = 2, b = 2, and g(n) = cn.
So log,a = 1 and h(n) = g(n)/n = ¢ = O((logn)®). Hence f(n) = O(logn) and t(n) =
n(t(1) + ©(logn)) = O(nlogn).

1.7 Amortized Complexity

1.7.1 What is Amortized Complexity?

The complexity of an algorithm or of an operation such as an insert, search, or delete, as
defined in Section 1.1, is the actual complexity of the algorithm or operation. The actual
complexity of an operation is determined by the step count for that operation, and the actual
complexity of a sequence of operations is determined by the step count for that sequence.
The actual complexity of a sequence of operations may be determined by adding together
the step counts for the individual operations in the sequence. Typically, determining the
step count for each operation in the sequence is quite difficult, and instead, we obtain an
upper bound on the step count for the sequence by adding together the worst-case step
count for each operation.

When determining the complexity of a sequence of operations, we can, at times, obtain
tighter bounds using amortized complexity rather than worst-case complexity. Unlike the
actual and worst-case complexities of an operation which are closely related to the step
count for that operation, the amortized complexity of an operation is an accounting artifact
that often bears no direct relationship to the actual complexity of that operation. The
amortized complexity of an operation could be anything. The only requirement is that the
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sum of the amortized complezities of all operations in the sequence be greater than or equal
to the sum of the actual complexities. That is

Z amortized(i) > Z actual (i) (1.9)

1<i<n 1<i<n

where amortized(i) and actual(i), respectively, denote the amortized and actual complexi-
ties of the ith operation in a sequence of n operations. Because of this requirement on the
sum of the amortized complexities of the operations in any sequence of operations, we may
use the sum of the amortized complexities as an upper bound on the complexity of any
sequence of operations.

You may view the amortized cost of an operation as being the amount you charge the
operation rather than the amount the operation costs. You can charge an operation any
amount you wish so long as the amount charged to all operations in the sequence is at least
equal to the actual cost of the operation sequence.

Relative to the actual and amortized costs of each operation in a sequence of n operations,
we define a potential function P(i) as below

P(i) = amortized(i) — actual (i) + P(i — 1) (1.10)

That is, the ith operation causes the potential function to change by the difference be-
tween the amortized and actual costs of that operation. If we sum Equation 1.10 for
1 <9< n, we get

Z P@) = Z (amortized(i) — actual (i) + P(i — 1))

1<i<n 1<i<n

or
> (PG)—P(i—1)) = Y (amortized(i) — actual(i))
1<i<n 1<i<n

or

P(n) — P(0) = Z (amortized(i) — actual(7))

1<i<n

From Equation 1.9, it follows that
P(n)—P(0)>0 (1.11)

When P(0) = 0, the potential P(i) is the amount by which the first ¢ operations have
been overcharged (i.e., they have been charged more than their actual cost).

Generally, when we analyze the complexity of a sequence of n operations, n can be any
nonnegative integer. Therefore, Equation 1.11 must hold for all nonnegative integers.

The preceding discussion leads us to the following three methods to arrive at amortized
costs for operations:

1. Aggregate Method
In the aggregate method, we determine an upper bound for the sum of the actual
costs of the n operations. The amortized cost of each operation is set equal to
this upper bound divided by n. You may verify that this assignment of amortized
costs satisfies Equation 1.9 and is, therefore, valid.
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2. Accounting Method
In this method, we assign amortized costs to the operations (probably by guessing
what assignment will work), compute the P(i)s using Equation 1.10, and show
that P(n) — P(0) > 0.

3. Potential Method
Here, we start with a potential function (probably obtained using good guess
work) that satisfies Equation 1.11 and compute the amortized complexities using
Equation 1.10.

1.7.2 Maintenance Contract

Problem Definition

In January, you buy a new car from a dealer who offers you the following maintenance
contract: $50 each month other than March, June, September and December (this covers
an oil change and general inspection), $100 every March, June, and September (this covers
an oil change, a minor tune-up, and a general inspection), and $200 every December (this
covers an oil change, a major tune-up, and a general inspection). We are to obtain an upper
bound on the cost of this maintenance contract as a function of the number of months.

Worst-Case Method

We can bound the contract cost for the first » months by taking the product of n
and the maximum cost incurred in any month (i.e., $200). This would be analogous to the
traditional way to estimate the complexity—take the product of the number of operations
and the worst-case complexity of an operation. Using this approach, we get $200n as an
upper bound on the contract cost. The upper bound is correct because the actual cost for
n months does not exceed $200n.

Aggregate Method

To use the aggregate method for amortized complexity, we first determine an upper
bound on the sum of the costs for the first n months. As tight a bound as is possible is
desired. The sum of the actual monthly costs of the contract for the first n months is

200 % [n/12] + 100% (|n/3] — |n/12]) + 50 * (n — [n/3])
= 100* [n/12] +50% [n/3] +50*n

100 % n/12+50%n/3 4+ 50 xn

= 50n(1/6+1/3+1)

= 50n(3/2)

= 75n

IA

The amortized cost for each month is set to $75. Table 1.5 shows the actual costs, the
amortized costs, and the potential function value (assuming P(0) = 0) for the first 16
months of the contract.

Notice that some months are charged more than their actual costs and others are charged
less than their actual cost. The cumulative difference between what the operations are
charged and their actual costs is given by the potential function. The potential function
satisfies Equation 1.11 for all values of n. When we use the amortized cost of $75 per month,
we get $75n as an upper bound on the contract cost for n months. This bound is tighter
than the bound of $200n obtained using the worst-case monthly cost.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50 50 100 50 50 100 50 50 100 50 50 200 50 50 100
7575 7575 75 75 75 75 75 75 75 75 75 75 75
25 50 25 50 75 50 75 100 75 100 125 0 25 50 25

actual cost
amortized cost

month
P()

16
50
75
50

TABLE 1.5 Maintenance contract

Accounting Method

When we use the accounting method, we must first assign an amortized cost for each
month and then show that this assignment satisfies Equation 1.11. We have the option to
assign a different amortized cost to each month. In our maintenance contract example, we
know the actual cost by month and could use this actual cost as the amortized cost. It
is, however, easier to work with an equal cost assignment for each month. Later, we shall
see examples of operation sequences that consist of two or more types of operations (for
example, when dealing with lists of elements, the operation sequence may be made up of
search, insert, and remove operations). When dealing with such sequences we often assign
a different amortized cost to operations of different types (however, operations of the same
type have the same amortized cost).

To get the best upper bound on the sum of the actual costs, we must set the amortized
monthly cost to be the smallest number for which Equation 1.11 is satisfied for all n. From
the above table, we see that using any cost less than $75 will result in P(n) — P(0) < 0
for some values of n. Therefore, the smallest assignable amortized cost consistent with
Equation 1.11 is $75.

Generally, when the accounting method is used, we have not computed the aggregate
cost. Therefore, we would not know that $75 is the least assignable amortized cost. So we
start by assigning an amortized cost (obtained by making an educated guess) to each of the
different operation types and then proceed to show that this assignment of amortized costs
satisfies Equation 1.11. Once we have shown this, we can obtain an upper bound on the
cost of any operation sequence by computing

Z [ (i) x amortized(i)

1<i<k

where k is the number of different operation types and f(i) is the frequency of operation
type ¢ (i.e., the number of times operations of this type occur in the operation sequence).

For our maintenance contract example, we might try an amortized cost of $70. When
we use this amortized cost, we discover that Equation 1.11 is not satisfied for n = 12 (for
example) and so $70 is an invalid amortized cost assignment. We might next try $80. By
constructing a table such as the one above, we will observe that Equation 1.11 is satisfied
for all months in the first 12 month cycle, and then conclude that the equation is satisfied
for all n. Now, we can use $80n as an upper bound on the contract cost for n months.

Potential Method

We first define a potential function for the analysis. The only guideline you have
in defining this function is that the potential function represents the cumulative difference
between the amortized and actual costs. So, if you have an amortized cost in mind, you may
be able to use this knowledge to develop a potential function that satisfies Equation 1.11,
and then use the potential function and the actual operation costs (or an upper bound on
these actual costs) to verify the amortized costs.

If we are extremely experienced, we might start with the potential function
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0 nmod 12 =10

25 mnmod12=1or3
50 mnmod12=2, 4, or6
75 nmod12=05,7, or9
100 n mod 12 =8 or 10
125 nmod 12 =11

Without the aid of the table (Table 1.5) constructed for the aggregate method, it would
take quite some ingenuity to come up with this potential function. Having formulated a
potential function and verified that this potential function satisfies Equation 1.11 for all n,
we proceed to use Equation 1.10 to determine the amortized costs.

From Equation 1.10, we obtain amortized(i) = actual(i) + P(i) — P(i — 1). Therefore,

amortized(1l) = actual(l)4+ P(1) — P(0)=50+25—-0=75
amortized(2) = actual(2)+ P(2) — P(1) =50+50—25="75
amortized(3) = actual(3)+ P(3) — P(2) =100+ 25—-50="75

and so on. Therefore, the amortized cost for each month is $75. So, the actual cost for n
months is at most $75n.

1.7.3 The McWidget Company

Problem Definition

The famous McWidget company manufactures widgets. At its headquarters, the com-
pany has a large display that shows how many widgets have been manufactured so far.
Each time a widget is manufactured, a maintenance person updates this display. The cost
for this update is $¢+ dm, where c is a fixed trip charge, d is a charge per display digit that
is to be changed, and m is the number of digits that are to be changed. For example, when
the display is changed from 1399 to 1400, the cost to the company is $c + 3d because 3
digits must be changed. The McWidget company wishes to amortize the cost of maintain-
ing the display over the widgets that are manufactured, charging the same amount to each
widget. More precisely, we are looking for an amount $e = amortized(i) that should levied
against each widget so that the sum of these charges equals or exceeds the actual cost of
maintaining/updating the display ($e*n > actual total cost incurred for first n widgets for
all n > 1). To keep the overall selling price of a widget low, we wish to find as small an e
as possible. Clearly, e > ¢+ d because each time a widget is made, at least one digit (the
least significant one) has to be changed.

Worst-Case Method

This method does not work well in this application because there is no finite worst-case
cost for a single display update. As more and more widgets are manufactured, the number
of digits that need to be changed increases. For example, when the 1000th widget is made,
4 digits are to be changed incurring a cost of ¢ 4+ 4d, and when the 1,000,000th widget is
made, 7 digits are to be changed incurring a cost of ¢+ 7d. If we use the worst-case method,
the amortized cost to each widget becomes infinity.

© 2005 by Chapman & Hall/CRC



Analysis of Algorithms 1-19

widget 1 2 3 4 5 6 7 8 9 10 11 12 13 14
actual cost 1 1 1 1 1 1 1 1 1 2 1 1 1
amortized cost— 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.1 1.12
P() 0.12 024 036 048 0.60 0.72 0.84 0.96 1.08 0.20 0.32 0.44 0.5 0.68
widget 15 16 17 18 19 20 21 22 23 24 25 26 27 28
actual cost 1 1 1 1 1 2 1 1 1 1 1 1 1
amortized cost— 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
P() 0.80 0.92 1.04 1.16 1.28 0.40 0.52 0.64 0.76 0.88 1.00 1.12 1.24 1.36

TABLE 1.6 Data for widgets

Aggregate Method

Let n be the number of widgets made so far. As noted earlier, the least significant
digit of the display has been changed n times. The digit in the ten’s place changes once
for every ten widgets made, that in the hundred’s place changes once for every hundred
widgets made, that in the thousand’s place changes once for every thousand widgets made,
and so on. Therefore, the aggregate number of digits that have changed is bounded by

n(1+1/10+ 1/100 4+ 1/1000 + ...) = (1.11111...)n

So, the amortized cost of updating the display is $¢ + d(1.11111...)n/n < ¢ + 1.12d. If the
McWidget company adds $c+1.12d to the selling price of each widget, it will collect enough
money to pay for the cost of maintaining the display. Each widget is charged the cost of
changing 1.12 digits regardless of the number of digits that are actually changed. Table 1.6
shows the actual cost, as measured by the number of digits that change, of maintaining the
display, the amortized cost (i.e., 1.12 digits per widget), and the potential function. The
potential function gives the difference between the sum of the amortized costs and the sum
of the actual costs. Notice how the potential function builds up so that when it comes
time to pay for changing two digits, the previous potential function value plus the current
amortized cost exceeds 2. From our derivation of the amortized cost, it follows that the
potential function is always nonnegative.

Accounting Method

We begin by assigning an amortized cost to the individual operations, and then we
show that these assigned costs satisfy Equation 1.11. Having already done an amortized
analysis using the aggregate method, we see that Equation 1.11 is satisfied when we assign
an amortized cost of $¢ + 1.12d to each display change. Typically, however, the use of the
accounting method is not preceded by an application of the aggregate method and we start
by guessing an amortized cost and then showing that this guess satisfies Equation 1.11.

Suppose we assign a guessed amortized cost of $¢ + 2d for each display change.

P(n)—P(0) = Z (amortized(i) — actual(i))
= (c_—&j 2d)n — Z actual (i)
1<i<n

(c+2d)n —(c+(14+1/104+1/100+ ...)d)n
(c+2d)n — (c+ 1.12d)n
0

(AVARIVS

This analysis also shows us that we can reduce the amortized cost of a widget to $c+1.12d.
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An alternative proof method that is useful in some analyses involves distributing the
excess charge P(i) — P(0) over various accounting entities, and using these stored excess
charges (called credits) to establish P(i + 1) — P(0) > 0. For our McWidget example, we
use the display digits as the accounting entities. Initially, each digit is 0 and each digit
has a credit of 0 dollars. Suppose we have guessed an amortized cost of $c + (1.111...)d.
When the first widget is manufactured, $¢ + d of the amortized cost is used to pay for the
update of the display and the remaining $(0.111...)d of the amortized cost is retained as
a credit by the least significant digit of the display. Similarly, when the second through
ninth widgets are manufactured, $c + d of the amortized cost is used to pay for the update
of the display and the remaining $(0.111...)d of the amortized cost is retained as a credit
by the least significant digit of the display. Following the manufacture of the ninth widget,
the least significant digit of the display has a credit of $(0.999...)d and the remaining digits
have no credit. When the tenth widget is manufactured, $¢ + d of the amortized cost are
used to pay for the trip charge and the cost of changing the least significant digit. The least
significant digit now has a credit of $(1.111...)d. Of this credit, $d are used to pay for the
change of the next least significant digit (i.e., the digit in the ten’s place), and the remaining
$(0.111...)d are transferred to the ten’s digit as a credit. Continuing in this way, we see
that when the display shows 99, the credit on the ten’s digit is $(0.999...)d and that on the
one’s digit (i.e., the least significant digit) is also $(0.999...)d. When the 100th widget is
manufactured, $c + d of the amortized cost are used to pay for the trip charge and the cost
of changing the least significant digit, and the credit on the least significant digit becomes
$(1.111...)d. Of this credit, $d are used to pay for the change of the ten’s digit from 9 to
0, the remaining $(0.111...)d credit on the one’s digit is transferred to the ten’s digit. The
credit on the ten’s digit now becomes $(1.111...)d. Of this credit, $d are used to pay for
the change of the hundred’s digit from 0 to 1, the remaining $(0.111...)d credit on the ten’s
digit is transferred to the hundred’s digit.

The above accounting scheme ensures that the credit on each digit of the display always
equals $(0.111...)dv, where v is the value of the digit (e.g., when the display is 206 the
credit on the one’s digit is $(0.666...)d, the credit on the ten’s digit is $0, and that on the
hundred’s digit is $(0.222...)d.

From the preceding discussion, it follows that P(n) — P(0) equals the sum of the digit
credits and this sum is always nonnegative. Therefore, Equation 1.11 holds for all n.

Potential Method

We first postulate a potential function that satisfies Equation 1.11, and then use
this function to obtain the amortized costs. From the alternative proof used above for
the accounting method, we can see that we should use the potential function P(n) =
(0.111...)d >, vs, where v; is the value of the ith digit of the display. For example, when the
display shows 206 (at this time n = 206), the potential function value is (0.888...)d. This
potential function satisfies Equation 1.11.

Let ¢ be the number of 9s at the right end of j (i.e., when j = 12903999, ¢ = 3). When
the display changes from j to j + 1, the potential change is (0.111...)d(1 — 9¢) and the
actual cost of updating the display is $¢+ (¢ + 1)d. From Equation 1.10, it follows that the
amortized cost for the display change is

actual cost 4 potential change = ¢ + (¢ + 1)d + (0.111...)d(1 — 9¢) = ¢+ (1.111...)d
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1.7.4 Subset Generation

Problem Definition

The subsets of a set of n elements are defined by the 2" vectors z[1 : n], where each
x[i] is either 0 or 1. x[i] = 1 iff the ith element of the set is a member of the subset. The
subsets of a set of three elements are given by the eight vectors 000, 001, 010, 011, 100, 101,
110, and 111, for example. Starting with an array z[1 : n] has been initialized to zeroes
(this represents the empty subset), each invocation of algorithm nextSubset (Figure 1.10)
returns the next subset. When all subsets have been generated, this algorithm returns null.

public int [] nextSubset()
{// return next subset; return null if no next subset
// generate next subset by adding 1 to the binary number x[1:n]
int 1 = n;
while (i > 0 && x[i] == 1)
{x[i] = 0; i--;}

if (i == 0) return null;
else {x[i] = 1; return x;}

FIGURE 1.10: Subset enumerator.

We wish to determine how much time it takes to generate the first m, 1 < m < 2"
subsets. This is the time for the first m invocations of nextSubset.

Worst-Case Method

The complexity of nextSubset is ©(c), where ¢ is the number of x[i]s that change.
Since all n of the z[i]s could change in a single invocation of nextSubset, the worst-case
complexity of nextSubset is ©(n). Using the worst-case method, the time required to
generate the first m subsets is O(mn).

Aggregate Method

The complexity of nextSubset equals the number of z[i]s that change. When nextSubset
is invoked m times, x[n] changes m times; z[n — 1] changes |m/2] times; x[n — 2] changes
|m/4] times; x[n—3] changes |m/8] times; and so on. Therefore, the sum of the actual costs
of the first m invocations is Zogiguogz m) (m/2%) < 2m. So, the complexity of generating
the first m subsets is actually O(m), a tighter bound than obtained using the worst-case
method.

The amortized complexity of nextSubset is (sum of actual costs)/m < 2m/m = O(1).

Accounting Method

We first guess the amortized complexity of nextSubset, and then show that this amor-
tized complexity satisfies Equation 1.11. Suppose we guess that the amortized complexity
is 2. To verify this guess, we must show that P(m) — P(0) > 0 for all m.

We shall use the alternative proof method used in the McWidget example. In this method,
we distribute the excess charge P(i) — P(0) over various accounting entities, and use these
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stored excess charges to establish P(i + 1) — P(0) > 0. We use the z[j]s as the accounting
entities. Initially, each z[j] is 0 and has a credit of 0. When the first subset is generated, 1
unit of the amortized cost is used to pay for the single z[j] that changes and the remaining 1
unit of the amortized cost is retained as a credit by x[n], which is the z[j] that has changed
to 1. When the second subset is generated, the credit on x[n] is used to pay for changing
x[n] to 0 in the while loop, 1 unit of the amortized cost is used to pay for changing z[n—1] to
1, and the remaining 1 unit of the amortized cost is retained as a credit by z[n — 1], which is
the z[4] that has changed to 1. When the third subset is generated, 1 unit of the amortized
cost is used to pay for changing z[n] to 1, and the remaining 1 unit of the amortized cost
is retained as a credit by z[n], which is the z[j] that has changed to 1. When the fourth
subset is generated, the credit on z[n] is used to pay for changing z[n] to 0 in the while
loop, the credit on 2[n — 1] is used to pay for changing a[n — 1] to 0 in the while loop, 1 unit
of the amortized cost is used to pay for changing z[n — 2] to 1, and the remaining 1 unit of
the amortized cost is retained as a credit by z[n — 2], which is the z[j] that has changed to
1. Continuing in this way, we see that each z[j] that is 1 has a credit of 1 unit on it. This
credit is used to pay the actual cost of changing this z[j] from 1 to 0 in the while loop. One
unit of the amortized cost of nextSubset is used to pay for the actual cost of changing an
x[j] to 1 in the else clause, and the remaining one unit of the amortized cost is retained as
a credit by this z[j].

The above accounting scheme ensures that the credit on each z[j] that is 1 is exactly 1,
and the credit on each x[j] that is 0 is 0.

From the preceding discussion, it follows that P(m) — P(0) equals the number of z[j]s
that are 1. Since this number is always nonnegative, Equation 1.11 holds for all m.

Having established that the amortized complexity of nextSubset is 2 = O(1), we conclude
that the complexity of generating the first m subsets equals m * amortized complexity =
O(m).

Potential Method

We first postulate a potential function that satisfies Equation 1.11, and then use this
function to obtain the amortized costs. Let P(j) be the potential just after the jth subset
is generated. From the proof used above for the accounting method, we can see that we
should define P(j) to be equal to the number of z[és in the jth subset that are equal to 1.

By definition, the Oth subset has all z[i] equal to 0. Since P(0) = 0 and P(j) > 0 for
all j, this potential function P satisfies Equation 1.11. Consider any subset z[1 : n]. Let
g be the number of 1s at the right end of z[| (i.e., z[n], [n — 1], ---, z[n — ¢+ 1], are all
18). Assume that there is a next subset. When the next subset is generated, the potential
change is 1 — q because ¢ 1s are replaced by 0 in the while loop and a 0 is replaced by a 1 in
the else clause. The actual cost of generating the next subset is ¢+ 1. From Equation 1.10,
it follows that, when there is a next subset, the amortized cost for nextSubset is

actual cost + potential change=¢+1+1—¢q¢=2

When there is no next subset, the potential change is —g and the actual cost of nextSubset
is q. From Equation 1.10, it follows that, when there is no next subset, the amortized cost
for nextSubset is

actual cost + potential change =q¢ —q¢=0

Therefore, we can use 2 as the amortized complexity of nextSubset. Consequently, the
actual cost of generating the first m subsets is O(m).
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1.8 Practical Complexities

We have seen that the time complexity of a program is generally some function of the
problem size. This function is very useful in determining how the time requirements vary
as the problem size changes. For example, the run time of an algorithm whose complexity
is ©(n?) is expected to increase by a factor of 4 when the problem size doubles and by a
factor of 9 when the problem size triples.

The complexity function also may be used to compare two algorithms P and @ that
perform the same task. Assume that algorithm P has complexity O(n) and that algorithm
Q has complexity ©(n?). We can assert that algorithm P is faster than algorithm Q for
“sufficiently large” n. To see the validity of this assertion, observe that the actual computing
time of P is bounded from above by cn for some constant ¢ and for all n, n > ny, while
that of @ is bounded from below by dn? for some constant d and all n, n > nsy. Since cn <
dn? for n > c¢/d, algorithm P is faster than algorithm @ whenever n > max{ni,ns,c/d}.

One should always be cautiously aware of the presence of the phrase sufficiently large
in the assertion of the preceding discussion. When deciding which of the two algorithms
to use, we must know whether the n we are dealing with is, in fact, sufficiently large. If
algorithm P actually runs in 1097 milliseconds while algorithm @ runs in n? milliseconds
and if we always have n < 10%, then algorithm Q is the one to use.

To get a feel for how the various functions grow with n, you should study Figures 1.11
and 1.12 very closely. These figures show that 2" grows very rapidly with n. In fact, if a
algorithm needs 2" steps for execution, then when n = 40, the number of steps needed is
approximately 1.1 * 10'2. On a computer performing 1,000,000,000 steps per second, this
algorithm would require about 18.3 minutes. If n = 50, the same algorithm would run for
about 13 days on this computer. When n = 60, about 310.56 years will be required to
execute the algorithm, and when n = 100, about 4 * 10'3 years will be needed. We can
conclude that the utility of algorithms with exponential complexity is limited to small n
(typically n < 40).

logn n nlogn n? n® 2"
0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 || 32 160 1024 32,768  4,204,967.296

FIGURE 1.11: Value of various functions.

Algorithms that have a complexity that is a high-degree polynomial are also of limited
utility. For example, if an algorithm needs n'® steps, then our 1,000,000,000 steps per
second computer needs 10 seconds when n = 10; 3171 years when n = 100; and 3.17 * 1013
years when n = 1000. If the algorithm’s complexity had been n® steps instead, then the
computer would need 1 second when n = 1000, 110.67 minutes when n = 10,000, and 11.57
days when n = 100,000.

Figure 1.13 gives the time that a 1,000,000,000 instructions per second computer needs
to execute an algorithm of complexity f(n) instructions. One should note that currently
only the fastest computers can execute about 1,000,000,000 instructions per second. From a

© 2005 by Chapman & Hall/CRC



1-24

Handbook of Data Structures and Applications

60 -
50 -

40l

nlogn
9]

30

20

w
~
v
ok
=+ O
oo
©
S

FIGURE 1.12: Plot of various functions.

practical standpoint, it is evident that for reasonably large n (say n > 100) only algorithms
of small complexity (such as n, nlogn, n?, and n3) are feasible. Further, this is the case
even if we could build a computer capable of executing 102 instructions per second. In this
case the computing times of Figure 1.13 would decrease by a factor of 1000. Now when n
= 100, it would take 3.17 years to execute n'? instructions and 4 * 10'0 years to execute 2"

instructions.
f(n)

n n nlogy, n n? n> n? n'0 2m
10 .01 ps .03 us 1 pus 1 us 10 ps 10 s 1 us
20 .02 ps .09 pus 4 pus 8 us 160 us 2.84 h 1 ms
30 .03 us 15 ps .9 us 27 us 810 us 6.83 d 1ls
40 .04 ps 21 ps 1.6 ps 64 us 2.56 ms 121 d 18 m
50 .05 us .28 us 2.5 us 125 ps 6.25 ms 3.1y 13d

100 .10 ps .66 us 10 s 1 ms 100 ms 3171 y 4%10% y
10® 1 ps 9.96 us 1 ms 1s 16.67 m | 3.17% 103 y | 32%x10%83 y
10* 10 ps 130 ps 100 ms | 16.67 m 115.7d | 3.17%10%% y
10° 100 ps 1.66 ms 10s | 11.57d 3171y | 3.17%10% y
10° 1ms | 19.92ms | 16.67m | 31.71y | 3.17%107 y | 3.17%10*3 y

ps = microsecond = 1076 seconds; ms = milliseconds = 103 seconds
s = seconds; m = minutes; h = hours; d = days; y = years

FIGURE 1.13: Run times on a 1,000,000,000 instructions per second computer.
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2.1 Introduction

In this chapter, we review several basic structures that are usually taught in a first class
on data structures. There are several text books that cover this material, some of which
are listed here [1-4]. However, we believe that it is valuable to review this material for the
following reasons:

1. In practice, these structures are used more often than all of the other data struc-
tures discussed in this handbook combined.

2. These structures are used as basic building blocks on which other more compli-
cated structures are based.

Our goal is to provide a crisp and brief review of these structures. For a more detailed
explanation, the reader is referred to the text books listed at the end of this chapter. In
the following, we assume that the reader is familiar with arrays and pointers.

2.2 Arrays

An array is conceptually defined as a collection of <index,value> pairs. The implementation
of the array in modern programming languages such as C++ and Java uses indices starting
at 0. Languages such as Pascal permitted one to define an array on an arbitrary range of
integer indices. In most applications, the array is the most convenient method to store a
collection of objects. In these cases, the index associated with a value is unimportant. For
example, if an array city is being used to store a list of cities in no particular order, it
doesn’t really matter whether city[0] is “Denver” or “Mumbai”. If, on the other hand,
an array name is being used to store a list of student names in alphabetical order, then,

2-1
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although the absolute index values don’t matter, the ordering of names associated with
the ordering of the index does matter: i.e., name [1] must precede name [j] in alphabetical
order, if ¢ < j. Thus, one may distinguish between sorted arrays and unsorted arrays.
Sometimes arrays are used so that the index does matter. For example, suppose we are
trying to represent a histogram: we want to maintain a count of the number of students
that got a certain score on an exam from a scale of 0 to 10. If score[5] = 7, this means that 7
students received a score of 5. In this situation, it is possible that the desired indices are not
supported by the language. For example, C++ does not directly support using indices such
as “blue”, “green”, and “red”. This may be rectified by using enumerated types to assign
integer values to the indices. In cases when the objects in the array are large and unwieldy
and have to be moved around from one array location to another, it may be advantageous
to store pointers or references to objects in the array rather than the objects themselves.

Programming languages provide a mechanism to retrieve the value associated with a
supplied index or to associate a value with an index. Programming languages like C++ do
not explicitly maintain the size of the array. Rather, it is the programmer’s responsibility
to be aware of the array size. Further, C++ does not provide automatic range-checking.
Again, it is the programmer’s responsibility to ensure that the index being supplied is valid.
Arrays are usually allocated contiguous storage in the memory. An array may be allocated
statically (i.e., during compile-time) or dynamically (i.e., during program execution). For
example, in C++, a static array is defined as:

int 1list[20];
while a dynamic one is defined as:

int* list;

list = new int[25];

An important difference between static and dynamic arrays is that the size of a static
array cannot be changed during run time, while that of a dynamic array can (as we will see
in Section 2.2.3).

2.2.1 Operations on an Array

1. Retrieval of an element: Given an array index, retrieve the corresponding value.
This can be accomplished in O(1) time. This is an important advantage of
the array relative to other structures. If the array is sorted, this enables one
to compute the minimum, maximum, median (or in general, the ith smallest
element) essentially for free in O(1) time.

2. Search: Given an element value, determine whether it is present in the array.
If the array is unsorted, there is no good alternative to a sequential search that
iterates through all of the elements in the array and stops when the desired
element is found:

int SequentialSearch(int* array, int n, int x)
// search for x in array[n]

{
for (int i = 0; i < n; i++)
if (array[i] == x) return i; // search succeeded
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return -1; // search failed

}

In the worst case, this requires O(n) time. If, however, the array is sorted, binary
search can be used.

int BinarySearch(int* array, int n, int x)

{
int first = 0, mid, last = n-1;
while (first < last) {
mid = (first + last)/2;
if (array[mid] == x) return mid; // search succeeded
if (x < array[mid]) last = mid-1;
else first = mid+1;
}
return -1; // search failed
}

Binary search only requires O(logn) time.

3. Insertion and Deletion: These operations can be the array’s Achilles heel. First,
consider a sorted array. It is usually assumed that the array that results from
an insertion or deletion is to be sorted. The worst case scenario presents itself
when an element that is smaller than all of the elements currently in the array is
to be inserted. This element will be placed in the leftmost location. However, to
make room for it, all of the existing elements in the array will have to be shifted
one place to the right. This requires O(n) time. Similarly, a deletion from the
leftmost element leaves a “vacant” location. Actually, this location can never be
vacant because it refers to a word in memory which must contain some value.
Thus, if the program accesses a “vacant” location, it doesn’t have any way to
know that the location is vacant. It may be possible to establish some sort of
code based on our knowledge of the values contained in the array. For example,
if it is known that an array contains only positive integers, then one could use
a zero to denote a vacant location. Because of these and other complications,
it is best to eliminate vacant locations that are interspersed among occupied
locations by shifting elements to the left so that all vacant locations are placed
to the right. In this case, we know which locations are vacant by maintaining an
integer variable which contains the number of locations starting at the left that
are currently in use. As before, this shifting requires O(n) time. In an unsorted
array, the efficiency of insertion and deletion depends on where elements are to
be added or removed. If it is known for example that insertion and deletion will
only be performed at the right end of the array, then these operations take O(1)
time as we will see later when we discuss stacks.

2.2.2 Sorted Arrays

We have already seen that there are several benefits to using sorted arrays, namely: search-
ing is faster, computing order statistics (the ith smallest element) is O(1), etc. This is
the first illustration of a key concept in data structures that will be seen several times in
this handbook: the concept of preprocessing data to make subsequent queries efficient. The
idea is that we are often willing to invest some time at the beginning in setting up a data
structure so that subsequent operations on it become faster. Some sorting algorithms such
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as heap sort and merge sort require O(n logn) time in the worst case, whereas other simpler
sorting algorithms such as insertion sort, bubble sort and selection sort require O(n?) time
in the worst case. Others such as quick sort have a worst case time of O(n?), but require
O(nlogn) on the average. Radix sort requires ©(n) time for certain kinds of data. We refer
the reader to [5] for a detailed discussion.

However, as we have seen earlier, insertion into and deletion from a sorted array can take
O(n) time, which is large. It is possible to merge two sorted arrays into a single sorted
array in time linear in the sum of their sizes. However, the usual implementation needs
additional ©(n) space. See [6] for an O(1)-space merge algorithm.

2.2.3 Array Doubling

To increase the length of a (dynamically allocated) one-dimensional array a that contains
elements in positions a[0..n — 1], we first define an array of the new length (say m), then
copy the n elements from a to the new array, and finally change the value of a so that
it references the new array. It takes ©(m) time to create an array of length m because
all elements of the newly created array are initialized to a default value. It then takes an
additional ©(n) time to copy elements from the source array to the destination array. Thus,
the total time required for this operation is ©(m +n). This operation is used in practice to
increase the array size when it becomes full. The new array is usually twice the length of
the original; i.e., m = 2n. The resulting complexity (O(n)) would normally be considered
to be expensive. However, when this cost is amortized over the subsequent n insertions, it
in fact only adds ©(1) time per insertion. Since the cost of an insertion is (1), this does
not result in an asymptotic increase in insertion time. In general, increasing array size by a
constant factor every time its size is to be increased does not adversely affect the asymptotic
complexity. A similar approach can be used to reduce the array size. Here, the array size
would be reduced by a constant factor every time.

2.2.4 Multiple Lists in a Single Array

The array is wasteful of space when it is used to represent a list of objects that changes over
time. In this scenario, we usually allocate a size greater than the number of objects that
have to be stored, for example by using the array doubling idea discussed above. Consider
a completely-filled array of length 8192 into which we are inserting an additional element.
This insertion causes the array-doubling algorithm to create a new array of length 16,384
into which the 8192 elements are copied (and the new element inserted) before releasing
the original array. This results in a space requirement during the operation which is almost
three times the number of elements actually present. When several lists are to be stored, it
is more efficient to store them all in a single array rather than allocating one array for each
list.

Although this representation of multiple lists is more space-efficient, insertions can be
more expensive because it may be necessary to move elements belonging to other lists in
addition to elements in one’s own list. This representation is also harder to implement.

L fofsfafs] [ | [ [ofnfuo] | [ [ [ [ [ [as]26]27]28]o9]

List 1 List 2 List 3

FIGURE 2.1: Multiple lists in a single array.
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2.2.5 Heterogeneous Arrays

The definition of an array in modern programming languages requires all of its elements
to be of the same type. How do we then address the scenario where we wish to use the
array to store elements of different types? In earlier languages like C, one could use the
union facility to artificially coalesce the different types into one type. We could then define
an array on this new type. The kind of object that an array element actually contains is
determined by a tag. The following defines a structure that contains one of three types of
data.

struct Animal{
int id;
union {

Cat c;

Dog d;

Fox f;

The programmer would have to establish a convention on how the id tag is to be used:
for example, that id = 0 means that the animal represented by the struct is actually a cat,
etc. The union allocates memory for the largest type among Cat, Dog, and Fox. This is
wasteful of memory if there is a great disparity among the sizes of the objects. With the
advent of object-oriented languages, it is now possible to define the base type Animal. Cat,
Dog, and Fox may be implemented using inheritance as derived types of Animal. An array
of pointers to Animal can now be defined. These pointers can be used to refer to any of
Cat, Dog, and Fox.

2.2.6 Multidimensional Arrays
Row- or Column Major Representation

Earlier representations of multidimensional arrays mapped the location of each element of
the multidimensional array into a location of a one- dimensional array. Consider a two-
dimensional array with r rows and ¢ columns. The number of elements in the array n = rc.
The element in location [¢][j], 0 < i < r and 0 < j < ¢, will be mapped onto an integer in
the range [0,n — 1]. If this is done in row-major order — the elements of row 0 are listed in
order from left to right followed by the elements of row 1, then row 2, etc. — the mapping
function is ic + j. If elements are listed in column-major order, the mapping function is
jr—+1i. Observe that we are required to perform a multiplication and an addition to compute
the location of an element in an array.

Array of Arrays Representation

In Java, a two-dimensional array is represented as a one-dimensional array in which each
element is, itself, a one-dimensional array. The array

int [J[] x = new int[4][5];

is actually a one-dimensional array whose length is 4. Each element of x is a one-dimensional
array whose length is 5. Figure 2.2 shows an example. This representation can also be used
in C++ by defining an array of pointers. Each pointer can then be used to point to a
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[0] [1] [2] [3] [4]

FIGURE 2.2: The Array of Arrays Representation.

dynamically-created one-dimensional array. The element z[i][j] is found by first retrieving
the pointer z[i]. This gives the address in memory of z[i][0]. Then z[¢][j] refers to the
element j in row i. Observe that this only requires the addition operator to locate an
element in a one-dimensional array.

Irregular Arrays

A two-dimensional array is regular in that every row has the same number of elements.
When two or more rows of an array have different number of elements, we call the array
irregular. Irregular arrays may also be created and used using the array of arrays represen-
tation.

2.2.7 Sparse Matrices

A matrix is sparse if a large number of its elements are 0. Rather than store such a
matrix as a two-dimensional array with lots of zeroes, a common strategy is to save space
by explicitly storing only the non-zero elements. This topic is of interest to the scientific
computing community because of the large sizes of some of the sparse matrices it has to
deal with. The specific approach used to store matrices depends on the nature of sparsity
of the matrix. Some matrices, such as the tridiagonal matrix have a well-defined sparsity
pattern. The tridiagonal matrix is one where all of the nonzero elements lie on one of three
diagonals: the main diagonal and the diagonals above and below it. See Figure 2.3(a).

2 1 0 0 O 1 0 0 0 O 1 3 1 5 8
1 3 4 0 O 2 3 0 0 O 0 1 3 2 4
o1 1 2 0 4 1 2 0 O 0 0 2 3 4
0 0 4 7 4 33 2 1 0 0O 0 0 1 2
| 00 0 3 5 | 2 4 1 3 3 | . 0 0 0 0 4 |
Tridiagonal Matrix Lower Triangular Matrix Upper Triangular Matrix
() (b) ()

FIGURE 2.3: Matrices with regular structures.
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There are several ways to represent this matrix as a one-dimensional array. We could order
elements by rows giving [2,1,1,3,4,1,1,2,4,7,4,3,5] or by diagonals giving [1,1,4,3,2,3,1,7,5,1,4,2,4].
Figure 2.3 shows other special matrices: the upper and lower triangular matrices which
can also be represented using a one-dimensional representation.

Other sparse matrices may have an irregular or unstructured pattern. Consider the matrix
in Figure 2.4(a). We show two representations. Figure 2.4(b) shows a one-dimensional array
of triples, where each triple represents a nonzero element and consists of the row, column,
and value. Figure 2.4(c) shows an irregular array representation. Each row is represented
by a one-dimensional array of pairs, where each pair contains the column number and the
corresponding nonzero value.

6 0 0 2 0 5

4 4 0 0 0 1

01 00 2 0
| 00 0 1 10 row|0[0[O0|1[1]|1|2]2]3

(a) col|0[3[5]0|1[5]|1[|4]|3]|4

=06 [ G [ G ] val|6|2]5|4alal1|1]2]1]1
L O0H [ asH G ] )
=] (L) | 42
] G, [ @1)

(©)

FIGURE 2.4: Unstructured matrices.

2.3 Linked Lists

The linked list is an alternative to the array when a collection of objects is to be stored.
The linked list is implemented using pointers. Thus, an element (or node) of a linked list
contains the actual data to be stored and a pointer to the next node. Recall that a pointer
is simply the address in memory of the next node. Thus, a key difference from arrays is
that a linked list does not have to be stored contiguously in memory.

List

ListNode

oot Lo}~ [ 3L [} D]

FIGURE 2.5: The structure of a linked list.
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The code fragment below defines a linked list data structure, which is also illustrated in
Figure 2.5:

class ListNode {
friend class List;
private:
int data;
ListNode *1link;
}

class List {
public:
// List manipulation operations go here

private:
ListNode *first;
}

A chain is a linked list where each node contains a pointer to the next node in the list.
The last node in the list contains a null (or zero) pointer. A circular list is identical to a
chain except that the last node contains a pointer to the first node. A doubly linked circular
list differs from the chain and the circular list in that each node contains two pointers. One
points to the next node (as before), while the other points to the previous node.

2.3.1 Chains

The following code searches for a key k in a chain and returns true if the key is found and
false, otherwise.

bool List::Search(int k) {
for (ListNode *current = first; current; current = current->next)
if (current->data == k) then return true;
return false;

In the worst case, Search takes ©(n) time. In order to insert a node newnode in a chain
immediately after node current, we simply set newnode’s pointer to the node following
current (if any) and current’s pointer to newnode as shown in the Figure 2.6.

current

U N I T s O B I Y

' 7

newnode

FIGURE 2.6: Insertion into a chain. The dashed links show the pointers after newnode has
been inserted.
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To delete a node current, it is necessary to have a pointer to the node preceding current.
This node’s pointer is then set to current->next and node current is freed. Both insertion
and deletion can be accomplished in O(1) time provided that the required pointers are
initially available. Whether this is true or not depends on the context in which these
operations are called. For example, if you are required to delete the node with key 50, if
it exists, from a linked list, you would first have to search for 50. Your search algorithm
would maintain a trailing pointer so that when 50 is found, a pointer to the previous node
is available. Even though, deletion takes ©(1) time, deletion in this context would require
O(n) time in the worst case because of the search. In some cases, the context depends on
how the list is organized. For example, if the list is to be sorted, then node insertions should
be made so as to maintain the sorted property (which could take ©(n) time). On the other
hand, if the list is unsorted, then a node insertion can take place anywhere in the list. In
particular, the node could be inserted at the front of the list in ©(1) time. Interestingly,
the author has often seen student code in which the insertion algorithm traverses the entire
linked list and inserts the new element at the end of the list!

As with arrays, chains can be sorted or unsorted. Unfortunately, however, many of the
benefits of a sorted array do not extend to sorted linked lists because arbitrary elements
of a linked list cannot be accessed quickly. In particular, it is not possible to carry out
binary search in O(logn) time. Nor is it possible to locate the ith smallest element in O(1)
time. On the other hand, merging two sorted lists into one sorted list is more convenient
than merging two sorted arrays into one sorted array because the traditional implementation
requires space to be allocated for the target array. A code fragment illustrating the merging
of two sorted lists is shown below. This is a key operation in mergesort:

void Merge(List listOne, List listTwo, List& merged) {
ListNode* one = listOne.first;
ListNodex* two = listTwo.first;
ListNode* last = 0;

if (one == 0) {merged.first = two; return;}
if (two == 0) {merged.first = one; return;}

if (one->data < two->data) last = merged.first = one;
else last = merged.first = two;
while (one && two)
if (one->data < two->data) {
last->next = one; last= one; one = one->next;

}
else {

last->next = two; last = two; two = two—->next;
}

if (one) last->next = one;
else last->next = two;

The merge operation is not defined when lists are unsorted. However, one may need
to combine two lists into one. This is the concatenation operation. With chains, the best
approach is to attach the second list to the end of the first one. In our implementation of the
linked list, this would require one to traverse the first list until the last node is encountered
and then set its next pointer to point to the first element of the second list. This requires
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time proportional to the size of the first linked list. This can be improved by maintaining
a pointer to the last node in the linked list.

It is possible to traverse a singly linked list in both directions (i.e., left to right and a
restricted right-to-left traversal) by reversing links during the left-to-right traversal. Fig-
ure 2.7 shows a possible configuration for a list under this scheme.

Y L I e, I B e, B Y

1 r

FIGURE 2.7: Ilustration of a chain traversed in both directions.

As with the heterogeneous arrays described earlier, heterogeneous lists can be imple-
mented in object-oriented languages by using inheritance.

2.3.2 Circular Lists

In the previous section, we saw that to concatenate two unsorted chains efficiently, one
needs to maintain a rear pointer in addition to the first pointer. With circular lists, it is
possible to accomplish this with a single pointer as follows: consider the circular list in
Figure 2.8. The second node in the list can be accessed through the first in O(1) time.

Circlist

ListNode

I TS e S I N S

FIGURE 2.8: A circular list.

Now, consider the list that begins at this second node and ends at the first node. This may
be viewed as a chain with access pointers to the first and last nodes. Concatenation can
now be achieved in O(1) time by linking the last node of one chain to the first node of the
second chain and vice versa.

2.3.3 Doubly Linked Circular Lists

A node in a doubly linked list differs from that in a chain or a singly linked list in that
it has two pointers. One points to the next node as before, while the other points to the
previous node. This makes it possible to traverse the list in both directions. We observe
that this is possible in a chain as we saw in Figure 2.7. The difference is that with a doubly
linked list, one can initiate the traversal from any arbitrary node in the list. Consider the
following problem: we are provided a pointer x to a node in a list and are required to delete
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it as shown in Figure 2.9. To accomplish this, one needs to have a pointer to the previous
node. In a chain or a circular list, an expensive list traversal is required to gain access to
this previous node. However, this can be done in O(1) time in a doubly linked circular list.
The code fragment that accomplishes this is as below:

S e P e Y B e S N = R == N R

~ {
w L T TG T

FIGURE 2.9: Deletion from a doubly linked list.

void DblList::Delete(DblListNode* x)

{
X—->prev->next = x->next;
X->next->prev = x->prev;
delete x;

}

An application of doubly linked lists is to store a list of siblings in a Fibonacci heap
(Chapter 7).

2.3.4 Generalized Lists

A generalized list A is a finite sequence of n > 0 elements, eg, e1, ..., e,—1, where e; is either
an atom or a generalized list. The elements e; that are not atoms are said to be sublists
of A. Consider the generalized list A = ((a,b,c),((d,e), f),g). This list contains three
elements: the sublist (a,b,c), the sublist ((d,e), f) and the atom g. The generalized list
may be implemented by employing a GenListNode type as follows:

private:
GenListNode* next;
bool tag;
union {
char data;
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GenListNode* down;

};

If tag is true, the element represented by the node is a sublist and down points to the
first node in the sublist. If tag is false, the element is an atom whose value is contained
in data. In both cases, next simply points to the next element in the list. Figure 2.10
illustrates the representation.

T T F g |0
F a F b F|c 0 T F f|0
F|d F e |0

FIGURE 2.10: Generalized List for ((a,b,c),((d,e),f),g).

2.4 Stacks and Queues

The stack and the queue are data types that support insertion and deletion operations with
well-defined semantics. Stack deletion deletes the element in the stack that was inserted the
last, while a queue deletion deletes the element in the queue that was inserted the earliest.
For this reason, the stack is often referred to as a LIFO (Last In First Out) data type
and the queue as an FIFO (First In First out) data type. A deque (double ended queue)
combines the stack and the queue by supporting both types of deletions.

Stacks and queues find a lot of applications in Computer Science. For example, a system
stack is used to manage function calls in a program. When a function f is called, the
system creates an activation record and places it on top of the system stack. If function f
calls function g, the local variables of f are added to its activation record and an activation
record is created for g. When ¢ terminates, its activation record is removed and f continues
executing with the local variables that were stored in its activation record. A queue is
used to schedule jobs at a resource when a first-in first-out policy is to be implemented.
Examples could include a queue of print-jobs that are waiting to be printed or a queue of
packets waiting to be transmitted over a wire. Stacks and queues are also used routinely to
implement higher-level algorithms. For example, a queue is used to implement a breadth-
first traversal of a graph. A stack may be used by a compiler to process an expression such
as (a+b) x (c+d).

2.4.1 Stack Implementation

Stacks and queues can be implemented using either arrays or linked lists. Although the
burden of a correct stack or queue implementation appears to rest on deletion rather than
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insertion, it is convenient in actual implementations of these data types to place restrictions
on the insertion operation as well. For example, in an array implementation of a stack,
elements are inserted in a left-to-right order. A stack deletion simply deletes the rightmost
element.

A simple array implementation of a stack class is shown below:

class Stack {
public:
Stack(int maxSize = 100); // 100 is default size

void Insert(int);

int* Delete(int&);
private:

int *stack;

int size;

int top; // highest position in array that contains an element
3

The stack operations are implemented as follows:

Stack: :Stack(int maxSize): size(maxSize)

{
stack = new int[size];
top = -1;
}
void Stack::Insert(int x)
{
if (top == size-1) cerr << "Stack Full" << endl;
else stack[++top] = x;
}
int* Stack::Delete(int& x)
{
if (top == -1) return 0; // stack empty
else {
x = stack[top--];
return &x;
}
}
The operation of the following code fragment is illustrated in Figure 2.11.
Stack s;
int x;
s.Insert(10);
s.Insert(20);
s.Insert(30);
s.Delete(x);
s.Insert (40);
s.Delete(x);

It is easy to see that both stack operations take O(1) time. The stack data type can also
be implemented using linked lists by requiring all insertions and deletions to be made at
the front of the linked list.
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2 30 40 2
1 20 20 20 20 201
0 10 10 10 10 10 100

top = -1 top=0 top=1 top=2 top=1 top=2 top=1

FIGURE 2.11: Stack operations.

2.4.2 Queue Implementation

An array implementation of a queue is a bit trickier than that of a stack. Insertions can
be made in a left-to-right fashion as with a stack. However, deletions must now be made
from the left. Consider a simple example of an array of size 5 into which the integers 10,
20, 30, 40, and 50 are inserted as shown in Figure 2.12(a). Suppose three elements are
subsequently deleted (Figure 2.12(b)).

10120304050 40 (50
¢ ¢ P
front rear front rear

(a) (b)

FIGURE 2.12: Pitfalls of a simple array implementation of a queue.

What if we are now required to insert the integer 60. On one hand, it appears that we
are out of room as there is no more place to the right of 50. On the other hand, there
are three locations available to the left of 40. This suggests that we use a circular array
implementation of a queue, which is described below.

class Queue {
public:
Queue (int maxSize = 100); // 100 is default size
void Insert(int);
int* Delete(int&);
private:
int *queue;
int size;
int front, rear;

};
The queue operations are implemented below:

Queue: :Queue(int maxSize): size(maxSize)
{

queue= new int[sizel;
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front = rear = 0;

}
void Queue::Insert(int x)
{
int k = (rear + 1) Y% size;
if (front == k) cerr << "Queue Full!" <, endl;
else queue[rear = k] = x;
}
int* Queue::Delete(int& x)
{
if (front == rear) return 0; // queue is empty

x = queue[++front %= sizel;
return &x;

Figure 2.13 illustrates the operation of this code on an example. The first figure shows
an empty queue with first = rear = 0. The second figure shows the queue after the integer
10 is inserted. The third figure shows the queue when 20, 30, 40, 50, and 60 have been
inserted. The fourth figure shows the queue after 70 is inserted. Notice that, although one
slot remains empty, the queue is now full because Queue: : Insert will not permit another
element to be inserted. If it did permit an insertion at this stage, rear and front would be
the same. This is the condition that Queue:Delete checks to determine whether the queue
is empty! This would make it impossible to distinguish between the queue being full and
being empty. The fifth figure shows the queue after two integers (10 and 20) are deleted.
The last figure shows a full queue after the insertion of integers 80 and 90.

3 4 3 4 3 4

2 5 2 l l 5 2 : : 5
rear rear
1 6 1 . . 6 1 . . 6
front
front/
rear 0 7 front 0 7 0 7

3 4
) a a 5 5
1 . ! 6 6

fron 0 7
rear rear

FIGURE 2.13: Implementation of a queue in a circular array.
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It is easy to see that both queue operations take O(1) time. The queue data type can

also be implemented using linked lists by requiring all insertions and deletions to be made
at the front of the linked list.
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3.1 Introduction

The tree is a natural representation for hierarchical information. Thus, trees are used to
represent genealogical information (e.g., family trees and evolutionary trees), organizational
charts in large companies, the directory structure of a file system on a computer, parse
trees in compilers and the structure of a knock-out sports tournament. The Dewey decimal
notation, which is used to classify books in a library, is also a tree structure. In addition to
these and other applications, the tree is used to design fast algorithms in computer science
because of its efficiency relative to the simpler data structures discussed in Chapter 2.
Operations that take linear time on these structures often take logarithmic time on an
appropriately organized tree structure. For example, the average time complexity for a
search on a key is linear on a linked list and logarithmic on a binary search tree. Many of
the data structures discussed in succeeding chapters of this handbook are tree structures.
Several kinds of trees have been defined in the literature:

1. Free or unrooted tree: this is defined as a graph (a set of vertices and a set of
edges that join pairs of vertices) such that there exists a unique path between any
two vertices in the graph. The minimum spanning tree of a graph is a well-known
example of a free tree. Graphs are discussed in Chapter 4.

2. Rooted tree: a finite set of one or more nodes such that
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(a) There is a special node called the root.

(b) The remaining nodes are partitioned into n > 0 disjoint sets 71, ..., T,,, where
each of these sets is a tree. 11, ..., T, are called the subtrees of the root.

If the order in which the subtrees are arranged is not important, then the tree is
a rooted, unordered (or oriented) tree. If the order of the subtrees is important,
the tree is rooted and ordered. Figure 3.1 depicts the relationship between the
three types of trees. We will henceforth refer to the rooted, ordered tree simply
as “tree”.

OIOIONENOION0) }9
\
© ©®

FIGURE 3.1: The three trees shown are distinct if they are viewed as rooted, ordered trees.
The first two are identical if viewed as oriented trees. All three are identical if viewed as
free trees.

3. k-ary tree: a finite set of nodes that is either empty or consists of a root and the
elements of k disjoint k-ary trees called the 1st, 2nd, ..., kth subtrees of the root.
The binary tree is a k-ary tree with k = 2. Here, the first and second subtrees
are respectively called the left and right subtrees of the root. Note that binary
trees are not trees. One difference is that a binary tree can be empty, whereas a
tree cannot. Second, the two trees shown in Figure 3.2 are different binary trees
but would be different drawings of the same tree.

FIGURE 3.2: Different binary trees.

Figure 3.3 shows a tree with 11 nodes. The number of subtrees of a node is its degree.
Nodes with degree 0 are called leaf nodes. Thus, node A has degree 3, nodes B, D, and [
have degree 2, node E has degree 1, and nodes C, F', G, H, J, and K have degree 0 (and
are leaves of the tree). The degree of a tree is the maximum of the degree of the nodes
in the tree. The roots of the subtrees of a node X are its children. X is the parent of

© 2005 by Chapman & Hall/CRC



Trees 3-3

its children. Children of the same parent are siblings. In the example, B, C, and D are
each other’s siblings and are all children of A. The ancestors of a node are all the nodes
excluding itself along the path from the root to that node. The level of a node is defined by
letting the root be at level zero. If a node is at level [, then its children are at level [ + 1.
The height of a tree is the maximum level of any node in the tree. The tree in the example
has height 4. These terms are defined in the same way for binary trees. See [1-6] for more
information on trees.

LEVEL

®)
®  © ® !
®) () 2
(1) 3
D ® 4

FIGURE 3.3: An example tree.

3.2 Tree Representation

3.2.1 List Representation

The tree of Figure 3.3 can be written as the generalized list (A (B (E (I (J, K)), F), C,
D(G, H))). The information in the root node comes first followed by a list of subtrees of
the root. This enables us to represent a tree in memory using generalized lists as discussed
in Chapter 2.

3.2.2 Left Child-Right Sibling Representation

Figure 3.4(a) shows the node structure used in this representation. Each node has a pointer
to its leftmost child (if any) and to the sibling on its immediate right (if any). The tree in
Figure 3.3 is represented by the tree in Figure 3.4(b).

3.2.3 Binary Tree Representation

Observe that the left child-right sibling representation of a tree (Figure 3.4(b)) may be
viewed as a binary tree by rotating it clockwise by 45 degrees. This gives the binary tree
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data @

left child | right sibling /
(a) /® @ @
(B)—®)

ol
o8e

(b)

& O~
=)
oo %

(c)

FIGURE 3.4: Tree Representations.

representation shown in Figure 3.4(c). This representation can be extended to represent a
forest, which is defined as an ordered set of trees. Here, the roots of the trees are viewed as
siblings. Thus, a root’s right pointer points to the next tree root in the set. We have

LEMMA 3.1 There is a one-to-one correspondence between the set of forests and the
set of binary trees.

3.3 Binary Trees and Properties

Binary trees were defined in Section 3.1. For convenience, a binary tree is sometimes
extended by adding external nodes. External nodes are imaginary nodes that are added
wherever an empty subtree was present in the original tree. The original tree nodes are
known as internal nodes. Figure 3.5(a) shows a binary tree and (b) the corresponding
extended tree. Observe that in an extended binary tree, all internal nodes have degree 2
while all external nodes have degree 0. (Some authors use the term full binary tree to
denote a binary tree whose nodes have 0 or two children.) The ezternal path length of a
tree is the sum of the lengths of all root-to-external node paths in the tree. In the example,
this is 2 + 2 + 3 + 3 + 2 = 12. The internal path length is similarly defined by adding
lengths of all root-to-internal node paths. In the example, this quantity is 0 + 1 + 1 + 2
=4.

3.3.1 Properties

LEMMA 3.2 A binary tree with n internal nodes has n + 1 external nodes.
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(a) (b)

FIGURE 3.5: (b) shows the extended binary tree corresponding to the binary tree of (a).
External nodes are depicted by squares.

Proof Each internal node in the extended tree has branches leading to two children.
Thus, the total number of branches is 2n. Only n — 1 internal nodes have a single incoming
branch from a parent (the root does not have a parent). Thus, each of the remaining n + 1
branches points to an external node.

LEMMA 3.3 For any non-empty binary tree with ng leaf nodes and ns nodes of degree
2, ng = ng + 1.

Proof Let ny be the number of nodes of degree 1 and n = ng + ny + ne (Eq. 1) be the
total number of nodes. The number of branches in a binary tree is n — 1 since each non-root
node has a branch leading into it. But, all branches stem from nodes of degree 1 and 2.
Thus, the number of branches is n; + 2ns. Equating the two expressions for number of
branches, we get n = n; + 2ns + 1 (Eq. 2). From Eqgs. 1 and 2, we get ng = ng + 1.

LEMMA 3.4 The external path length of any binary tree with n internal nodes is 2n
greater than its internal path length.

Proof The proof is by induction. The lemma clearly holds for n = 0 when the internal
and external path lengths are both zero. Consider an extended binary tree T with n internal
nodes. Let Er and Ip denote the external and internal path lengths of T. Consider the
extended binary tree S that is obtained by deleting an internal node whose children are both
external nodes (i.e., a leaf) and replacing it with an external node. Let the deleted internal
node be at level [. Thus, the internal path length decreases by [ while the external path
length decreases by 2(I1+ 1) —I =1+ 2. From the induction hypothesis, Es = Is+2(n—1).
But, Er = Es+ 1+ 2 and It = Ig + 1. Thus, Eqx — It = 2n.

LEMMA 3.5 The maximum number of nodes on level i of a binary tree is 2%, i > 0.

Proof This is easily proved by induction on 1.
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LEMMA 3.6 The maximum number of nodes in a binary tree of height k is 281 — 1.

Proof Each level 4, 0 < i < k, has 2 nodes. Summing over all i results in Zf:o 2t =
ok+1 1.

LEMMA 3.7 The height of a binary tree with n internal nodes is at least [logy(n + 1)]
and at most n — 1.

Proof The worst case is a skewed tree (Figure 3.6(a)) and the best case is a tree with 2¢
nodes at every level i except possibly the bottom level (Figure 3.6(b)). If the height is h,
then n + 1 < 2", where n + 1 is the number of external nodes.

(b)

FIGURE 3.6: (a) Skewed and (b) complete binary trees.

LEMMA 3.8 The number of distinct binary trees with n nodes is n%rl (2:)

Proof For a detailed proof, we refer the reader to [7]. However, we note that C, =
%_H (2;:”) are known as the Catalan numbers, which occur frequently in combinatorial prob-
lems. The Catalan number C,, also describes the number of trees with n + 1 nodes and the

number of binary trees with 2n 4+ 1 nodes all of which have 0 or 2 children.

3.3.2 Binary Tree Representation

Binary trees are usually represented using nodes and pointers. A TreeNode class may be
defined as:

class TreeNode {
TreeNodex LeftChild;
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TreeNodex RightChild;
KeyType data;
};

In some cases, a node might also contain a parent pointer which facilitates a “bottom-up”
traversal of the tree. The tree is accessed by a pointer root of type TreeNode* to its root.
When the binary tree is complete (i.e., there are 2 nodes at every level i, except possibly
the last level which has nodes filled in from left to right), it is convenient to use an array
representation. The complete binary tree in Figure 3.6(b) can be represented by the array

1 2 3
[A B C

6 7 8 9 10 11 12

4 5
D EF GHTIJIKTUL]

Observe that the children (if any) of a node located at position ¢ of the array can be found

at positions 2¢ and 2i + 1 and its parent at [i/2].

3.4 Binary Tree Traversals

Several operations on trees require one to traverse the entire tree: i.e., given a pointer to the
root of a tree, process every node in the tree systematically. Printing a tree is an example of
an operation that requires a tree traversal. Starting at a node, we can do one of three things:
visit the node (V'), traverse the left subtree recursively (L), and traverse the right subtree
recursively (R). If we adopt the convention that the left subtree will be visited before the
right subtree, we have three types of traversals LV R, VLR, and LRV which are called
inorder, preorder, and postorder, respectively, because of the position of V' with respect to
L and R. In the following, we will use the expression tree in Figure 3.7 to illustrate the
three traversals, which result in infix, prefix, and postfix forms of the expression. A fourth
traversal, the level order traversal, is also studied.

FIGURE 3.7: An expression tree.

3.4.1 Inorder Traversal

The following is a recursive algorithm for an inorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call inorder(root).
When run on the example expression tree, it returns A*B+C*D.

inorder (TreeNode* currentNode)

{
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if (currentNode) {
inorder (currentNode->LeftChild);
cout << currentNode->data;
inorder (currentNode->RightChild) ;

3.4.2 Preorder Traversal

The following is a recursive algorithm for a preorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call preorder(root).
When run on the example expression tree, it returns +*AB*CD.

preorder (TreeNode* currentNode)

{
if (currentNode) {
cout << currentNode->data;
preorder (currentNode->LeftChild) ;
preorder (currentNode->RightChild) ;
}
}

3.4.3 Postorder Traversal

The following is a recursive algorithm for a postorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call postorder(root).
When run on the example expression tree, it prints AB*CD*+.

postorder (TreeNode* currentNode)

{
if (currentNode) {
postorder (currentNode->LeftChild) ;
postorder (currentNode->RightChild) ;
cout << currentNode->data;
}
}

The complexity of each of the three algorithms is linear in the number of tree nodes. Non-
recursive versions of these algorithms may be found in [6]. Both versions require (implicitly
or explicitly) a stack.

3.4.4 Level Order Traversal

The level order traversal uses a queue. This traversal visits the nodes in the order suggested
in Figure 3.6(b). It starts at the root and then visits all nodes in increasing order of their
level. Within a level, the nodes are visited in left-to-right order.

LevelOrder (TreeNode* root)

{
Queue q<TreeNodex*>;
TreeNodex* currentNode = root;
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while (currentNode) {
cout << currentNode->data;
if (currentNode->LeftChild) q.Add(currentNode->LeftChild) ;
if (currentNode->RightChild) q.Add(currentNode->RightChild);
currentNode = q.Delete(); //q.Delete returns a node pointer

3.5 Threaded Binary Trees

3.5.1 Threads

Lemma 3.2 implies that a binary tree with n nodes has n + 1 null links. These null links
can be replaced by pointers to nodes called threads. Threads are constructed using the
following rules:

1. A null right child pointer in a node is replaced by a pointer to the inorder successor
of p (i.e., the node that would be visited after p when traversing the tree inorder).

2. A null left child pointer in a node is replaced by a pointer to the inorder prede-
cessor of p.

Figure 3.8 shows the binary tree of Figure 3.7 with threads drawn as broken lines. In order

FIGURE 3.8: A threaded binary tree.

to distinguish between threads and normal pointers, two boolean fields LeftThread and
RightThread are added to the node structure. If p->LeftThread is 1, then p->LeftChild
contains a thread; otherwise it contains a pointer to the left child. Additionally, we assume
that the tree contains a head node such that the original tree is the left subtree of the head
node. The LeftChild pointer of node A and the RightChild pointer of node D point to
the head node.

3.5.2 Inorder Traversal of a Threaded Binary Tree

Threads make it possible to perform an inorder traversal without using a stack. For any
node p, if p’s right thread is 1, then its inorder successor is p—>RightChild. Otherwise
the inorder successor is obtained by following a path of left-child links from the right child
of p until a node with left thread 1 is reached. Function Next below returns the inorder
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successor of currentNode (assuming that currentNode is not 0). It can be called repeatedly
to traverse the entire tree in inorder in O(n) time. The code below assumes that the last
node in the inorder traversal has a threaded right pointer to a dummy head node.

TreeNode* Next(TreeNodex currentNode)
{
TreeNode* temp = currentNode->RightChild;
if (currentNode->RightThread == 0)
while (temp->LeftThread == 0)
temp = temp->LeftChild;
currentNode = temp;
if (currentNode == headNode)
return O;
else
return currentNode;

Threads simplify the algorithms for preorder and postorder traversal. It is also possible
to insert a node into a threaded tree in O(1) time [6].

3.6 Binary Search Trees

3.6.1 Definition

A binary search tree (BST) is a binary tree that has a key associated with each of its nodes.
The keys in the left subtree of a node are smaller than or equal to the key in the node and
the keys in the right subtree of a node are greater than or equal to the key in the node. To
simplify the discussion, we will assume that the keys in the binary search tree are distinct.
Figure 3.9 shows some binary trees to illustrate the definition.

FIGURE 3.9: Binary trees with distinct keys: (a) is not a BST. (b) and (¢) are BSTs.

(a) (b) (©)

3.6.2 Search

We describe a recursive algorithm to search for a key k in a tree T": first, if T' is empty, the
search fails. Second, if k is equal to the key in T"s root, the search is successful. Otherwise,
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we search T’s left or right subtree recursively for & depending on whether it is less or greater
than the key in the root.

bool Search(TreeNode* b, KeyType k)

{
if (b == 0) return O;
if (k == b->data) return 1;
if (k < b->data) return Search(b->LeftChild,k);
if (k > b->data) return Search(b->RightChild,k);
}

3.6.3 Insert

To insert a key k, we first carry out a search for k. If the search fails, we insert a new node
with k£ at the null branch where the search terminated. Thus, inserting the key 17 into the
binary search tree in Figure 3.9(b) creates a new node which is the left child of 18. The
resulting tree is shown in Figure 3.10(a).

(a) (b)

FIGURE 3.10: Tree of Figure 3.9(b) with (a) 18 inserted and (b) 12 deleted.

typedef TreeNodex* TreeNodePtr;

Node* Insert(TreeNodePtr& b, KeyType k)

{
if (b == 0) {b = new TreeNode; b->data= k; return b;}
if (k == b->data) return 0; // don’t permit duplicates
if (k < b->data) Insert(b->LeftChild, k);
if (k > b->data) Insert(b->RightChild, k);

}

3.6.4 Delete

The procedure for deleting a node = from a binary search tree depends on its degree. If x
is a leaf, we simply set the appropriate child pointer of z’s parent to 0 and delete z. If x
has one child, we set the appropriate pointer of z’s parent to point directly to x’s child and
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then delete x. In Figure 3.9(c), node 20 is deleted by setting the right child of 15 to 25.
If = has two children, we replace its key with the key in its inorder successor y and then
delete node y. The inorder successor contains the smallest key greater than z’s key. This
key is chosen because it can be placed in node x without violating the binary search tree
property. Since y is obtained by first following a RightChild pointer and then following
LeftChild pointers until a node with a null LeftChild pointer is encountered, it follows
that y has degree 0 or 1. Thus, it is easy to delete y using the procedure described above.
Consider the deletion of 12 from Figure 3.9(b). This is achieved by replacing 12 with 14
in the root and then deleting the leaf node containing 14. The resulting tree is shown in
Figure 3.10(b).

3.6.5 Miscellaneous

Although Search, Insert, and Delete are the three main operations on a binary search tree,
there are others that can be defined which we briefly describe below.

o Minimum and Mazimum that respectively find the minimum and maximum
elements in the binary search tree. The minimum element is found by starting
at the root and following LeftChild pointers until a node with a 0 LeftChild
pointer is encountered. That node contains the minimum element in the tree.

e Another operation is to find the kth smallest element in the binary search tree.
For this, each node must contain a field with the number of nodes in its left
subtree. Suppose that the root has m nodes in its left subtree. If &k < m, we
recursively search for the kth smallest element in the left subtree. If k =m + 1,
then the root contains the kth smallest element. If £ > m+1, then we recursively
search the right subtree for the k — m — 1st smallest element.

e The Join operation takes two binary search trees A and B as input such that
all the elements in A are smaller than all the elements of B. The objective is to
obtain a binary search tree C' which contains all the elements originally in A and
B. This is accomplished by deleting the node with the largest key in A. This
node becomes the root of the new tree C. Its LeftChild pointer is set to A and
its RightChild pointer is set to B.

e The Split operation takes a binary search tree C and a key value k as input. The
binary search tree is to be split into two binary search trees A and B such that
all keys in A are less than or equal to k and all keys in B are greater than k.
This is achieved by searching for k in the binary search tree. The trees A and B
are created as the search proceeds down the tree as shown in Figure 3.11.

e An inorder traversal of a binary search tree produces the elements of the binary
search tree in sorted order. Similarly, the inorder successor of a node with key &
in the binary search tree yields the smallest key larger than k in the tree. (Note
that we used this property in the Delete operation described in the previous
section.)

All of the operations described above take O(h) time, where h is the height of the binary
search tree. The bounds on the height of a binary tree are derived in Lemma 3.7. It has
been shown that when insertions and deletions are made at random, the height of the binary
search tree is O(logn) on the average.
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FIGURE 3.11: Splitting a binary search tree with k = 26.

3.7 Heaps

3.7.1 Priority Queues

Heaps are used to implement priority queues. In a priority queue, the element with highest
(or lowest) priority is deleted from the queue, while elements with arbitrary priority are
inserted. A data structure that supports these operations is called a max(min) priority
queue. Henceforth, in this chapter, we restrict our discussion to a max priority queue. A
priority queue can be implemented by a simple, unordered linked list. Insertions can be
performed in O(1) time. However, a deletion requires a search for the element with the
largest priority followed by its removal. The search requires time linear in the length of
the linked list. When a max heap is used, both of these operations can be performed in
O(logn) time.

3.7.2 Definition of a Max-Heap

A max heap is a complete binary tree such that for each node, the key value in the node is
greater than or equal to the value in its children. Observe that this implies that the root
contains the largest value in the tree. Figure 3.12 shows some examples of max heaps.

/.:’» go &

FIGURE 3.12: Max heaps.

We define a class Heap with the following data members.
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private:
Element *heap;
int n; // current size of max heap
int MaxSize; // Maximum allowable size of the heap

The heap is represented using an array (a consequence of the complete binary tree property)
which is dynamically allocated.

3.7.3 Insertion

Suppose that the max heap initially has n elements. After insertion, it will have n + 1
elements. Thus, we need to add a node so that the resulting tree is a complete binary tree
with n 4+ 1 nodes. The key to be inserted is initially placed in this new node. However,
the key may be larger than its parent resulting in a violation of the max property with its
parent. In this case, we swap keys between the two nodes and then repeat the process at
the next level. Figure 3.13 demonstrates two cases of an insertion into a max heap.

@ Insert x @ x=8 @
(1s)  —= () 1) —= () (12)
ONO @ ® ® @ ® ©®

(20)
—= (1
ONON®

FIGURE 3.13: Insertion into max heaps.

The algorithm is described below. In the worst case, the insertion algorithm moves up
the heap from leaf to root spending O(1) time at each level. For a heap with n elements,
this takes O(logn) time.

void MaxHeap::Insert(Element x)

{
if (n == MaxSize) {HeapFull(); return;}
n++;
for (int i =n; i > 1; i =1i/2 ) {
if (x.key <= heapl[i/2].key) break;
heap[i] = heapl[i/2];
}
heap[i] = x;
}
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3.7.4 Deletion

The element to be deleted (i.e., the maximum element in the heap) is removed from the
root node. Since the binary tree must be restructured to become a complete binary tree
on n — 1 elements, the node in position n is deleted. The element in the deleted node is
placed in the root. If this element is less than either of the root’s (at most) two children,
there is a violation of the max property. This is fixed by swapping the value in the root
with its larger child. The process is repeated at the other levels until there is no violation.
Figure 3.14 illustrates deletion from a max heap.

() ()
DeleteMax
(15 1 —= 19 —=
ORO, ONC
(s)
(&)

FIGURE 3.14: Deletion from max heaps.

The deletion algorithm is described below. In the worst case, the deletion algorithm
moves down the heap from root to leaf spending O(1) time at each level. For a heap with
n elements, this takes O(logn) time.

Element* MaxHeap::DeleteMax(Element& x)

{
if (n == 0) {HeapEmpty(); return 0;}
x = heapl[1];
Element last = heapl[n];
n-—-;
for (int i =1, j=2; j<=n; i=3, jx*2){
if (j < n)
if (heap[j]l.key < heapl[j+1].key) j++;
// j points to the larger child
if (last.key >= heap[j].key) break;
heap[i] = heap[jl; // move child up
}
heap[i] = last;
return &x;
}
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3.8 Tournament Trees

Consider the following problem: suppose we have k sequences, each of which is sorted in
nondecreasing order, that are to be merged into one sequence in nondecreasing order. This
can be achieved by repeatedly transferring the element with the smallest key to an output
array. The smallest key has to be found from the leading elements in the k sequences.
Ordinarily, this would require k — 1 comparisons for each element transferred. However,
with a tournament tree, this can be reduced to log, k comparisons per element.

3.8.1 Winner Trees

A winner tree is a complete binary tree in which each node represents the smaller of its two
children. The root represents the smallest node in the tree. Figure 3.15 illustrates a winner
tree with k = 8 sequences. The winner of the tournament is the value 8 from sequence 0.
The winner of the tournament is the smallest key from the 8 sequences and is transferred

19 25 20 50 40 42 21 31
20 30 26 62 50 43 36 38
SO S1 S2 S3 S4 S5 S6 S7

FIGURE 3.15: A winner tree for k = 8. Three keys in each of the eight sequences are
shown. For example, sequence 2 consists of 15, 20, and 26.

to an output array. The next element from sequence 0 is now brought into play and a
tournament is played to determine the next winner. This is illustrated in Figure 3.16. It is
easy to see that the tournament winner can be computed in ©(logn) time.

3.8.2 Loser Trees

The loser tree is an alternative representation that stores the loser of a match at the cor-
responding node. The loser tree corresponding to Figure 3.15 is shown in Figure 3.17. An
advantage of the loser tree is that to restructure the tree after a winner has been output, it
is sufficient to examine nodes on the path from the leaf to the root rather than the siblings
of nodes on this path.
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20 50

20 25 40 42 21 31
30 26 62 50 43 36 38
SO S1 S2 S3 S4 S5 S6 S7

FIGURE 3.16: Winner tree of Figure 3.15 after the next element of sequence 0 plays the
tournament. Matches are played at the shaded nodes.

(.
}
/

e tournament winner

8 5 37 41 18 26
19 25 20 50 40 42 21 31
20 30 26 62 50 43 36 38
SO S1 S2 S3 S4 S5 S6 S7

FIGURE 3.17: Loser tree corresponding to the winner tree of Figure 3.15.
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4.1 Introduction

Trees, as data structures, are somewhat limited because they can only represent relations of
a hierarchical nature, such as that of parent and child. A generalization of a tree so that a
binary relation is allowed between any pair of elements would constitute a graph—formally
defined as follows:

A graph G = (V, E) consists of a finite set of vertices V = {vy,va,...,v,} and a finite
set E of edges E = {e1,ea,...,em} (see Figure 4.1). To each edge e there corresponds a
pair of vertices (u,v) which e is said to be incident on. While drawing a graph we represent
each vertex by a dot and each edge by a line segment joining its two end vertices. A graph
is said to be a directed graph (or digraph for short) (see Figure 4.2) if the vertex pair (u,v)
associated with each edge e (also called arc) is an ordered pair. Edge e is then said to be
directed from vertex u to vertex v, and the direction is shown by an arrowhead on the edge.
A graph is undirected if the end vertices of all the edges are unordered (i.e., edges have no
direction). Throughout this chapter we use the letters n and m to denote the number of
vertices |V| and number of edges |E| respectively, in a graph. A vertex is often referred to
as a node (a term more popular in applied fields).

Two or more edges having the same pair of end vertices are called parallel edges or multi
edges, and a graph with multi edges is sometimes referred to as a multigraph. An edge whose
two end vertices are the same is called a self-loop (or just loop). A graph in which neither

4-1
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FIGURE 4.1: Undirected graph with 5 vertices and 6 edges.

FIGURE 4.2: Digraph with 6 vertices and 11 edges.

parallel edges nor self-loops are allowed is often called a simple graph. If both self-loops and
parallel edges are allowed we have a general graph (also referred to as pseudograph). Graphs
in Figure 4.1 and Figure 4.2 are both simple but the graph in Figure 4.3 is pseudograph.
If the graph is simple we can refer to each edge by its end vertices. The number of edges
incident on a vertex v, with self-loops counted twice, is called the degree, deg(v), of vertex
v. In directed graphs a vertex has in-degree (number of edges going into it) and out-degree
(number of edges going out of it).

In a digraph if there is a directed edge (x,y) from z to y, vertex y is called a successor
of z and vertex x is called a predecessor of y. In case of an undirected graph two vertices
are said to be adjacent or neighbors if there is an edge between them.

A weighted graph is a (directed or undirected) graph in which a real number is assigned to
each edge. This number is referred to as the weight of that edge. Weighted directed graphs
are often referred to as networks. In a practical network this number (weight) may represent
the driving distance, the construction cost, the transit time, the reliability, the transition
probability, the carrying capacity, or any other such attribute of the edge [1, 4,18, 20].

Graphs are the most general and versatile data structures. Graphs have been used to
model and solve a large variety of problems in the discrete domain. In their modeling and
problem solving ability graphs are to the discrete world what differential equations are to
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FIGURE 4.3: A pseudograph of 6 vertices and 10 edges.

the world of the continuum.

4.2 Graph Representations

For a given graph a number of different representations are possible. The ease of imple-
mentation, as well as the efficiency of a graph algorithm depends on the proper choice of
the graph representation. The two most commonly used data structures for representing a
graph (directed or undirected) are adjacency lists and adjacency matriz. In this section we
discuss these and other data structures used in representing graphs.

Adjacency Lists: The adjacency lists representation of a graph G consists of an array
Adj of n linked lists, one for each vertex in G, such that Adj[v] for vertex v consists of all
vertices adjacent to v. This list is often implemented as a linked list. (Sometimes it is also
represented as a table, in which case it is called the star representation [18].)

Adjacency Matrix: The adjacency matrix of a graph G = (V, E) is an n X n matrix
A = [a;;] in which a;; = 1 if there is an edge from vertex ¢ to vertex j in G; otherwise
a;; = 0. Note that in an adjacency matrix a self-loop can be represented by making the
corresponding diagonal entry 1. Parallel edges could be represented by allowing an entry
to be greater than 1, but doing so is uncommon, since it is usually convenient to represent
each element in the matrix by a single bit. The adjacency lists and adjacency matrix of an
undirected graph are shown in Figure 4.4, and the corresponding two representations for a
digraph are shown in Figure 4.5.
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FIGURE 4.4: An undirected graph (a) with four vertices and four edges; (b) its adjacency
lists representation, and (c) its adjacency matrix representation.
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FIGURE 4.5: Two representations: (a) A digraph with five vertices and eight edges; (b) its
adjacency lists representation, and (c) its adjacency matrix representation.
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Clearly the memory required to store a graph of n vertices in the form of adjacency matrix
is O(n?), whereas for storing it in the form of its adjacency lists is O(m + n). In general
if the graph is sparse, adjacency lists are used but if the graph is dense, adjacency matrix
is preferred. The nature of graph processing is an important factor in selecting the data
structure.

There are other less frequently used data structures for representing graphs, such as
forward or backward star, the edge-list, and vertex-edge incidence matriz [1,4,15,18,20].

4.2.1 Weighted Graph Representation

Both adjacency lists and adjacency matrix can be adapted to take into account the weights
associated with each edge in the graph. In the former case an additional field is added in the
linked list to include the weight of the edge; and in the latter case the graph is represented
by a weight matriz in which the (i, 7)th entry is the weight of edge (¢,7) in the weighted
graph. These two representations for a weighted graph are shown in Figure 4.6. The boxed
numbers next to the edges in Figure 4.6(a) are the weights of the corresponding edges.

It should be noted that in a weight matrix, W, of a weighted graph, G, if there is no edge
(¢,7) in G, the corresponding element w;; is usually set to oo (in practice, some very large
number). The diagonal entries are usually set to co (or to some other value depending on
the application and algorithm). It is easy to see that the weight matrix of an undirected
graph (like the adjacency matrix) is symmetric.

vertex weight link

\ S
1| —3]ss] o 5]43]]
2| —pf1 9] {4 [85] ]
3;{1\18\{{2\43\{{4\11M

51— 2]16] {4 ]77]]

(b)

— o0 35 oo 43
19 — oo 8 o0
W = 18 43 — 11 oo
00 0 00 — 00
oo 16 oo 77T —

FIGURE 4.6: Two representations: (a) A weighted digraph with five vertices and nine
edges; (b) its adjacency lists, and (c¢) its weight matrix.
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4.3 Connectivity, Distance, and Spanning Trees

Just as two vertices x and y in a graph are said to be adjacent if there is an edge joining
them, two edges are said to be adjacent if they share (i.e., are incident on) a common
vertex. A simple path, or path for short, is a sequence of adjacent edges (v1,v2), (v2,v3),

oy (Ug—2,Vk-1), (Uk—1,v), sometimes written (vi,vs,...,vx), in which all the vertices
v1, V2, ...,V are distinct except possibly v1 = wvg. In a digraph this path is said to be
directed from vy to vg; in an undirected graph this path is said to be between v and vg.
The number of edges in a path, in this case, k — 1, is called the length of the path. In
Figure 4.3 sequence (vg, v4), (V4,v1), (V1,v2) = (vg, V4, V1, V2) 18 a path of length 3 between
ve and vy. In the digraph in Figure 4.6 sequence (3,1),(1,5),(5,2),(2,4) = (3,1,5,2,4) is
a directed path of length 4 from vertex 3 to vertex 4. A cycle or circuit is a path in which
the first and the last vertices are the same. In Figure 4.3 (vs,vg,v4,v1,v3) is a cycle of
length 4. In Figure 4.6 (3,2,1,3) is a cycle of length 3. A graph that contains no cycle is
called acyclic.

A subgraph of a graph G = (V,E) is a graph whose vertices and edges are in G. A
subgraph ¢ of G is said to be induced by a subset of vertices S C V if g results when the
vertices in V — S and all the edges incident on them are removed from G. For example, in
Figure 4.3, the subgraph induced by {v1,vs,v4} would consists of these three vertices and
four edges {es, €5, €5, €7}

An undirected graph G is said to be connected if there is at least one path between every
pair of vertices v; and v; in G. Graph G is said to be disconnected if it has at least one pair
of distinct vertices v and v such that there is no path between u and v. Two vertices x and
y in an undirected graph G = (V| E) are said to be connected if there exists a path between
x and y. This relation of being connected is an equivalence relation on the vertex set V|
and therefore it partitions the vertices of G into equivalence classes. Each equivalence class
of vertices induces a subgraph of G. These subgraphs are called connected components
of G. In other words, a connected component is a maximal connected subgraph of G. A
connected graph consists of just one component, whereas a disconnected graph consists of
several (connected) components. Each of the graphs in Figures 4.1, 4.3, and 4.4 is connected.
But the graph given in Figure 4.7 is disconnected, consisting of four components.

FIGURE 4.7: A disconnected graph of 10 vertices, 8 edges, and 4 components.
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Notice that a component may consist of just one vertex such as j in Figure 4.7 with no
edges. Such a component (subgraph or graph) is called an isolated vertex. Equivalently,
a vertex with zero degree is called an isolated vertex. Likewise, a graph (subgraph or
component) may consist of just one edge, such as edge (i,d) in Figure 4.7.

One of the simplest and often the most important and useful questions about a given
graph G is: Is G connected? And if GG is not connected what are its connected components?
This question will be taken up in the next section, and an algorithm for determining the
connected components will be provided; but first a few more concepts and definitions.

Connectivity in a directed graph G is more involved. A digraph is said to be connected if
the undirected graph obtained by ignoring the edge directions in G is connected. A directed
graph is said to be strongly connected if for every pair of vertices v; and v; there exists at
least one directed path from v; to v; and at least one from v; to v;. A digraph which is
connected but not strongly connected is called weakly connected. A disconnected digraph
(like a disconnected undirected graph) consists of connected components; and a weakly-
connected digraph consists of strongly-connected components. For example, the connected
digraph in Figure 4.5 consists of four strongly-connected components—induced by each of
the following subsets of vertices {1,2},{3},{4}, and {5}.

Another important question is that of distance from one vertex to another. The distance
from vertex a to b is the length of the shortest path (i.e., a path of the smallest length)
from a to b, if such a path exists. If no path from a to b exists, the distance is undefined
and is often set to oco. Thus, the distance from a vertex to itself is 0; and the distance from
a vertex to an adjacent vertex is 1. In an undirected graph distance from a to b equals the
distance from b to a, i.e., it is symmetric. It is also not difficult to see that the distances in a
connected undirected graph (or a strongly connected digraph) satisfy the triangle inequality.
In a connected, undirected (unweighted) graph G, the maximum distance between any pair
of vertices is called the diameter of G.

4.3.1 Spanning Trees

A connected, undirected, acyclic (without cycles) graph is called a tree, and a set of trees
is called a forest. We have already seen rooted trees and forests of rooted trees in the
preceding chapter, but the unrooted trees and forests discussed in this chapter are graphs
of a very special kind that play an important role in many applications.

In a connected undirected graph G there is at least one path between every pair of vertices
and the absence of a cycle implies that there is at most one such path between any pair of
vertices in G. Thus if G is a tree, there is exactly one path between every pair of vertices
in G. The argument is easily reversed, and so an undirected graph G is a tree if and only
if there is exactly one path between every pair of vertices in G. A tree with n vertices has
exactly (n — 1) edges. Since (n — 1) edges are the fewest possible to connect n points, trees
can be thought of as graphs that are minimally connected. That is, removing any edge from
a tree would disconnect it by destroying the only path between at least one pair of vertices.

A spanning tree for a connected graph G is a subgraph of G which is a tree containing
every vertex of G. If G is not connected, a set consisting of one spanning tree for each
component is called a spanning forest of G. To construct a spanning tree (forest) of a given
undirected graph G, we examine the edges of G one at a time and retain only those that
do not not form a cycle with the edges already selected. Systematic ways of examining the
edges of a graph will be discussed in the next section.
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4.4 Searching a Graph

It is evident that for answering almost any nontrivial question about a given graph G we
must examine every edge (and in the process every vertex) of G at least once. For example,
before declaring a graph G to be disconnected we must have looked at every edge in G; for
otherwise, it might happen that the one edge we had decided to ignore could have made the
graph connected. The same can be said for questions of separability, planarity, and other
properties [15, 16].

There are two natural ways of scanning or searching the edges of a graph as we move
from vertex to vertex: (i) once at a vertex v we scan all edges incident on v and then move
to an adjacent vertex w, then from w we scan all edges incident on w. This process is
continued till all the edges reachable from v are scanned. This method of fanning out from
a given vertex v and visiting all vertices reachable from v in order of their distances from
v (i.e. first visit all vertices at a distance one from v, then all vertices at distances two
from v, and so on) is referred to as the breadth-first search (BFS) of the graph. (ii) An
opposite approach would be, instead of scanning every edge incident on vertex v, we move
to an adjacent vertex w (a vertex not visited before) as soon as possible, leaving v with
possibly unexplored edges for the time being. In other words, we trace a path through the
graph going on to a new vertex whenever possible. This method of traversing the graph is
called the depth-first search (DFS). Breadth-first and depth-first searches are fundamental
methods of graph traversal that form the basis of many graph algorithms [7,15,16,19]. The
details of these two methods follow.

4.4.1 Depth-First Search

Depth-first search on an undirected graph G = (V, E) explores the graph as follows. When
we are “visiting” a vertex v € V, we follow one of the edges (v,w) incident on v. If the
vertex w has been previously visited, we return to v and choose another edge. If the vertex
w (at the other end of edge (v, w) from v) has not been previously visited, we visit it and
apply the process recursively to w. If all the edges incident on v have been thus traversed,
we go back along the edge (u,v) that had first led to the current vertex v and continue
exploring the edges incident on u. We are finished when we try to back up from the vertex
at which the exploration began.

Figure 4.8 illustrates how depth-first search examines an undirected graph G represented
as an adjacency lists. We start with a vertex a. From a we traverse the first edge that
we encounter, which is (a,b). Since b is a vertex never visited before, we stay at b and
traverse the first untraversed edge encountered at b, which is (b,¢). Now at vertex ¢, the
first untraversed edge that we find is (¢,a). We traverse (c,a) and find that a has been
previously visited. So we return to ¢, marking the edge (¢,a) in some way (as a dashed
line in Figure 4.8(c)) to distinguish it from edges like (b, ¢), which lead to new vertices and
shown as the thick lines. Back at vertex ¢, we look for another untraversed edge and traverse
the first one that we encounter, which is (¢, d). Once again, since d is a new vertex, we stay
at d and look for an untraversed edge. And so on. The numbers next to the vertices in
Figure 4.8(c) show the order in which they were visited; and the numbers next to the edges
show the order in which they were traversed.
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FIGURE 4.8: A graph (a); its adjacency lists (b); and its depth-first traversal (c). The
numbers are the order in which vertices were visited and edges traversed. Edges whose
traversal led to new vertices are shown with thick lines, and edges that led to vertices that
were already visited are shown with dashed lines.

DepthFirstSearch(G)

for each vertex z € V do
num(z] — 0

end for

TreeEdges < 0

10

for each vertex z € V do
if num[z] = 0 then

DFS-Visit(z)

end if

end for
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DFS-Visit (v)
i—1+1
numlv] « 14
for each vertex w € Adj[v] do
if num[w] = 0 then {// w is new vertex //}
TreeEdges «— TreeEdges U (v,w) {// (v,w) is a tree edge //}
DFS-Visit ()
end if
end for

FIGURE 4.9: Algorithm for depth-first search on an undirected graph G.

Depth-first search performed on a connected undirected graph G = (V, E), partitions the
edge set into two types: (i) Those that led to new vertices during the search constitute the
branches of a spanning tree of G and (ii) the remaining edges in E are called back edges
because their traversal led to an already visited vertex from which we backed down to the
current vertex.

A recursive depth-first search algorithm is given in Figure 4.9. Initially, every vertex x is
marked unvisited by setting num[z] to 0. Note that in the algorithm shown in Figure 4.9,
only the tree edges are kept track of. The time complexity of the depth-first search algorithm
is O(m + n), provided the input is in the form of an adjacency matrix.

4.4.2 Breadth-First Search

In breadth-first search we start exploring from a specified vertex s and mark it “visited”.
All other vertices of the given undirected graph G are marked as “unvisited” by setting
num|] = 0. Then we visit all vertices adjacent to s (i.e., in the adjacency list of s). Next,
we visit all unvisited vertices adjacent to the first vertex in the adjacency list of s. Unlike
the depth-first search, in breadth-first search we explore (fan out) from vertices in order
in which they themselves were visited. To implement this method of search, we maintain
a queue (@) of visited vertices. As we visit a new vertex for the first time, we place it in
(i.e., at the back of) the queue. We take a vertex v from front of the queue and traverse
all untraversed edges incident at v—adding to the list of tree edges those edges that lead
to unvisited vertices from v ignoring the rest. Once a vertex v has been taken out of the
queue, all the neighbors of v are visited and v is completely explored.

Thus, during the execution of a breadth-first search we have three types of vertices: (i)
unvisited, those that have never been in the queue; (ii) completely explored, those that
have been in the queue but are not now in the queue; and (iii) visited but not completely
explored, i.e., those that are currently in the queue.

Since every vertex (reachable from the start vertex s) enters and exits the queue exactly
once and every edge in the adjacency list of a vertex is traversed exactly once, the time
complexity of the breadth-first search is O(n + m).
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BreadthFirstSearch(G, s)
for each vertex x € V — {s} do
visited[z] < 0 {// all vertices unvisited except s //}
end for
TreeEdges «— null
Q — ¢ {// queue of vertices is initially empty //}
visited[s] < 1 {// mark s as visited //}
enqueue(Q, s) {// place s in the queue //}

while Q # ¢ do {// queue is not empty //}
v «— dequeue(Q)

for each w € Adj[v] do
if visited[w] = 0 then {// w is a new vertex //}
visited[w] « 1
TreeEdges — TreeEdges U {(v,w)}
enqueue(Q, w)
end if
end for
end while

FIGURE 4.10: Algorithm for breadth-first search on an undirected graph G from vertex s.

An algorithm for performing a breadth-first search on an undirected connected graph G
from a specified vertex s is given in Figure 4.10. It produces a breadth-first tree in G rooted
at vertex s. For example, the spanning tree produced by BFS conducted on the graph in
Figure 4.8 starting at vertex a, is shown in Figure 4.11. The numbers next to the vertices
show the order in which the vertices were visited during the BFS.

C (3) b (2)

a (1)

%@ d 4 I6)

FIGURE 4.11: Spanning tree produced by breadth-first search on graph in Figure 4.8
starting from vertex a. The numbers show the order in which vertices were visited.
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4.5 Simple Applications of DFS and BFS

In the preceding section we discussed two basic but powerful and efficient techniques for
systematically searching a graph such that every edge is traversed exactly once and every
vertex is visited once. With proper modifications and embellishments these search tech-
niques can be used to solve a variety of graph problems. Some of the simple ones are
discussed in this section.

Cycle Detection: The existence of a back edge (i.e., a nontree edge) during a depth-
first search indicates the existence of cycle. To test this condition we just add an else clause
to the if num[w] = 0 statement in DFS-Visit(v) procedure in Figure 4.9. That is, if
numfw] # 0, (v,w) is a back edge, which forms a cycle with tree edges in the path from w
to v.

Spanning Tree: If the input graph G for the depth-first (or breadth-first) algorithm
is connected, the set TreeEdges at the termination of the algorithm in Figure 4.9 (or in
Figure 4.10, for breadth-first) produces a spanning tree of G.

Connected Components: If, on the other hand, the input graph G = (V, E) is dis-
connected we can use depth-first search to identify each of its connected components by
assigning a unique component number compnum[v] to every vertex belonging to one com-
ponent. The pseudocode of such an algorithm is given below (Figure 4.12)

for each vertex v € V do
compnum|v] < 0
end for
for each vertex v € V do
if compnum[v] = 0 then
c—c+1
COMP (v)
end if
end for

COMP (z)
compnum|z]| «— ¢
for each w € Adj[z] do
if compnum[w] = 0 then
COMP (w)
end if
end for

FIGURE 4.12: Depth-first search algorithm for finding connected components of a graph.

4.5.1 Depth-First Search on a Digraph

Searching a digraph is somewhat more involved because the direction of the edges is an
additional feature that must be taken into account. In fact, a depth-first search on a
digraph produces four kinds of edges (rather than just two types for undirected graphs):
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(i) Tree edges—lead to an unvisited vertex (ii) Back edges—lead to an (visited) ancestor
vertex in the tree (iii) Down-edges (also called forward edges) lead to a (visited) descendant
vertex in the tree, and (iv) Cross edges, lead to a visited vertex, which is neither ancestor
nor descendant in the tree [3,15,16,18,19].

4.5.2 Topological Sorting

The simplest use of the depth-first search technique on digraphs is to determine a labeling
of the vertices of an acyclic digraph G = (V, E') with integers 1,2, ..., |V, such that if there
is a directed edge from vertex 7 to vertex j, then 7 < j; such a labeling is called topological
sort of the vertices of G. For example, the vertices of the digraph in Figure 4.13(a) are
topologically sorted but those of Figure 4.13(b) are not. Topological sorting can be viewed
as the process of finding a linear order in which a given partial order can be embedded. It
is not difficult to show that it is possible to topologically sort the vertices of a digraph if
and only if it is acyclic. Topological sorting is useful in the analysis of activity networks
where a large, complex project is represented as a digraph in which the vertices correspond
to the goals in the project and the edges correspond to the activities. The topological sort
gives an order in which the goals can be achieved [1,9, 18].

1
g 1 2 4
———>
f 5
(a) Topologically sorted. (b) Not topologically sorted.

FIGURE 4.13: Acyclic digraphs.

Topological sorting begins by finding a vertex of G = (V, E') with no outgoing edge (such a
vertex must exist if G is acyclic) and assigning this vertex the highest number—mnamely, |V|.
This vertex is then deleted from G, along with all its incoming edges. Since the remaining
digraph is also acyclic, we can repeat the process and assign the next highest number,
namely |V] — 1, to a vertex with no outgoing edges, and so on. To keep the algorithm
O(|V] + |E|), we must avoid searching the modified digraph for a vertex with no outgoing
edges.

We do so by performing a single depth-first search on the given acyclic digraph G. In
addition to the usual array num, we will need another array, label, of size |V| for recording
the topologically sorted vertex labels. That is, if there is an edge (u, v) in G, then label[u] <
label[v]. The complete search and labeling procedure TOPSORT is given in Figure 4.14.
Use the acyclic digraph in Figure 4.13(a) with vertex set V = {a,b, ¢, d, e, f, g} as the input
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to the topological sort algorithm in Figure 4.14; and verify that the vertices get relabeled 1
to 7, as shown next to the original names—in a correct topological order.

Topological-Sort(G)

for each vertex x € V do
numlz] < 0
label[z] — 0

end for

je—n+1

1+ 0

for each vertex x € V do
if num[z] = 0 then {// x has no labeled ancestor //}

TOPSORT(z)

end if

end for

TOPSORT ()
i—i+1
numlv] « @
for each w € Adj[v] do {// examine all descendants of w //}
if num[w] = 0 then
TOPSORT (w)
else if label[w] = 0 then
Error {// cycle detected //}

end if

Je—=j—-1

label[v] « j
end for

FIGURE 4.14: Algorithm for topological sorting.

4.6 Minimum Spanning Tree

How to connect a given set of points with lowest cost is a frequently-encountered problem,
which can be modeled as the problem of finding a minimum-weight spanning tree 7" in a
weighted, connected, undirected graph G = (V, E). Methods for finding such a spanning
tree, called a minimum spanning tree (MST), have been investigated in numerous studies
and have a long history [8]. In this section we will discuss the bare essentials of the two
commonly used MST algorithms—Kruskal’s and Prim’s—and briefly mention a third one.

4.6.1 Kruskal’s MST Algorithm

An algorithm due to J. B. Kruskal, which employs the smallest-edge-first strategy, works
as follows: First we sort all the edges in the given network by weight, in nondecreasing
order. Then one by one the edges are examined in order, smallest to the largest. If an
edge e;, upon examination, is found to form a cycle (when added to edges already selected)
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it is discarded. Otherwise, e; is selected to be included in the minimum spanning tree 7.
The construction stops when the required n — 1 edges have been selected or when all m
edges have been examined. If the given network is disconnected, we would get a minimum
spanning forest (instead of tree). More formally, Kruskal’s method may be stated as follows:

T— ¢
while |T'| < (n — 1) and E # ¢ do
e < smallest edge in F
E—FE—{e}
if T U {e} has no cycle then
T —TU{e}
end if
end while
if |T| < (n—1) then
write ‘network disconnected’

end if

Although the algorithm just outlined is simple enough, we do need to work out some
implementation details and select an appropriate data structure for achieving an efficient
execution.

There are two crucial implementational details that we must consider in this algorithm.
If we initially sort all m edges in the given network, we may be doing a lot of unnecessary
work. All we really need is to be able to to determine the next smallest edge in the network
at each iteration. Therefore, in practice, the edges are only partially sorted and kept as a
heap with smallest edge at the root of a min heap. In a graph with m edges, the initial
construction of the heap would require O(m) computational steps; and the next smallest
edge from a heap can be obtained in O(log m) steps. With this improvement, the sorting cost
is O(m + plogm), where p is the number of edges examined before an MST is constructed.
Typically, p is much smaller than m.

The second crucial detail is how to maintain the edges selected (to be included in the
MST) so far, such that the next edge to be examined can be efficiently tested for a cycle
formation.

As edges are examined and included in 7', a forest of disconnected trees (i.e., subtrees
of the final spanning tree) is produced. The edge e being examined will form a cycle if
and only if both its end vertices belong to the same subtree in T'. Thus to ensure that the
edge currently being examined does not form a cycle, it is sufficient to check if it connects
two different subtrees in 7. An efficient way to accomplish this is to group the n vertices
of the given network into disjoint subsets defined by the subtrees (formed by the edges
included in T so far). Thus if we maintain the partially constructed MST by means of
subsets of vertices, we can add a new edge by forming the UNION of two relevant subsets,
and we can check for cycle formation by FINDing if the two end vertices of the edge, being
examined, are in the same subset. These subsets can themselves be kept as rooted trees.
The root is an element of the subset and is used as a name to identify that subset. The
FIND subprocedure is called twice—once for each end vertex of edge e—to determine the
sets to which the two end vertices belong. If they are different, the UNION subprocedure
will merge the two subsets. (If they are the same subset, edge e will be discarded.)

The subsets, kept as rooted trees, are implemented by keeping an array of parent pointers
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for each of the n elements. Parent of a root, of course, is null. (In fact, it is useful to assign
parent[root] = -number of vertices in the tree.) While taking the UNION of two subsets,
we merge the smaller subset into the larger one by pointing the parent pointer in the root
of the smaller subset to the root of the larger subset. Some of these details are shown in
Figure 4.15. Note that r1 and r2 are the roots identifying the sets to which vertices u and
v belong.

INITTALIZATION:

set parent array to -1 {// n vertices from singleton sets //}
form initial heap of m edges

ecount < 0 {// number of edges examined so far //}
tcount < 0 {// number of edges in T so far //}

T— ¢

ITERATION:
while tcount < (n — 1) and ecount < m do
e «— edge(u,v) from top of heap
ecount «— ecount + 1
remove e from heap
restore heap
rl «— FIND(u)
r2 «— FIND(v)
if 1 # r2 then
T —TU{e}
tcount «— tcount + 1
UNION(r1,72)
end if
end while
if tcount < (n —1) then
write ‘network disconnected’
end if

FIGURE 4.15: Kruskal’s minimum spanning tree algorithm.

When algorithm in Figure 4.15 is applied to the weighted graph in Figure 4.16, the order in
which edges are included one by one to form the MST are (3, 5), (4,6), (4,5), (4,2),(6,7), (3,1).
After the first five smallest edges are included in the MST, the 6" and 7" and 8! smallest
edges are rejected. Then the 9" smallest edge (1,3) completes the MST and the last two
edges are ignored.

4.6.2 Prim’s MST Algorithm

A second algorithm, discovered independently by several people (Jarnik in 1936, Prim in
1957, Dijkstra in 1959) employs the “nearest neighbor” strategy and is commonly referred
to as Prim’s algorithm. In this method one starts with an arbitrary vertex s and joins it
to its nearest neighbor, say y. That is, of all edges incident on vertex s, edge (s,y), with
the smallest weight, is made part of the MST. Next, of all the edges incident on s or y we
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choose one with minimum weight that leads to some third vertex, and make this edge part
of the MST. We continue this process of “reaching out” from the partially constructed tree
(so far) and bringing in the “nearest neighbor” until all vertices reachable from s have been
incorporated into the tree.

FIGURE 4.16: A connected weighted graph for MST algorithm.

As an example, let us use this method to find the minimum spanning tree of the weighted
graph given in Figure 4.16. Suppose that we start at vertex 1. The nearest neighbor of
vertex 1 is vertex 3. Therefore, edge (1, 3) becomes part of the MST. Next, of all the edges
incident on vertices 1 and 3 (and not included in the MST so far) we select the smallest,
which is edge (3, 5) with weight 14. Now the partially constructed tree consists of two edges
(1,3) and (3,5). Among all edges incident at vertices 1,3, and 5, edge (5,4) is the smallest,
and is therefore included in the MST. The situation at this point is shown in Figure 4.17.
Clearly, (4,6), with weight 18 is the next edge to be included. Finally, edges (4,2) and (6, 7)
will complete the desired MST.

near=10,4,0,0,0,4, 1]
dist =0, 20, 0,0, 0, 18, =]
Vi ={1,3,4,5}, V-V, ={2,6,7}

FIGURE 4.17: Partially constructed MST for the network of Figure 4.16.
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The primary computational task in this algorithm is that of finding the next edge to be
included into the MST in each iteration. For each efficient execution of this task we will
maintain an array nearfu] for each vertex u not yet in the tree (i.e., u € V. — Vp). near|[u]
is that vertex in Vp which is closest to u. (Note that V is the set of all vertices in the
network and Vi is the subset of V included in MST thus far.) Initially, we set near(s] < 0
to indicate that s is in the tree, and for every other vertex v, near[v] < s.

For convenience, we will maintain another array dist[u] of the actual distance (i.e., edge
weight) to that vertex in Vp which is closest to w. In order to determine which vertex
is to be added to the set Vr next, we compare all nonzero values in dist array and pick
the smallest. Thus n — i comparisons are sufficient to identify the ith vertex to be added.
Initially, since s is the only vertex in Vp, dist[u] is set to ws,. As the algorithm proceeds,
these two arrays are updated in each iteration (see Figure 4.17 for an illustration).

A formal description of the nearest-neighbor algorithm is given in Figure 4.18. It is as-
sumed that the input is given in the form of an n x n weight matrix W (in which nonexistent
edges have oo weights). Set V' = {1,2,...,n} is the set of vertices of the graph. Vr and Ep
are the sets of vertices and edges of the partially formed (minimum spanning) tree. Vertex
set Vp is identified by zero entries in array near.

INITTALIZATION:
choose starting vertex s arbitrarily
for every vertex ¢ other than s do
near(i] < s
dist[i] « ws;
end for
Vr «— {s} {// set of vertices in MST so far //}
Er «— ¢ {// set of edges in MST so far //}

ITERATION:
while |Vr| < n do
u «— vertex in (V — Vp) with smallest value of dist(u)
if dist[u] > oo then
write ‘graph disconnected’ and exit
end if
Ep — Ep U {(u,nearlu])}
Vi — VU {u}
for x € (V —Vr) do
if wy, < dist[z] then
dist[z] «— wyy
nearz] — u
end if
end for
end while

FIGURE 4.18: Prim’s minimum spanning tree algorithm.
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4.6.3 Boruvka’s MST Algorithm

There is yet a third method for computing a minimum spanning tree, which was first
proposed by O. Boruvka in 1926 (but rediscovered by G. Chouget in 1938 and G. Sollin in
1961). It works as follows: First, the smallest edge incident on each vertex is found; these
edges form part of the minimum spanning tree. There are at least [n/2] such edges. The
connected components formed by these edges are collapsed into “supernodes”. (There are
no more than |n/2] such vertices at this point.) The process is repeated on “supernodes”
and then on the resulting “supersupernodes,” and so on, until only a single vertex remains.
This will require at most |[log, 1| steps, because at each step the number of vertices is
reduced at least by a factor of 2. Because of its inherent parallelism the nearest-neighbor-
from-each-vertex approach is particularly appealing for parallel implementations.

These three “greedy” algorithms and their variations have been implemented with differ-
ent data structures and their relative performance—both theoretical as well as empirical—
have been studied widely. The results of some of these studies can be found in [2, 13,14, 16].

4.6.4 Constrained MST

In many applications, the minimum spanning tree is required to satisfy an additional con-
straint, such as (i) the degree of each vertex in the MST should be equal to or less than a
specified value; or (ii) the diameter of the MST should not exceed a specified value; or (iii)
the MST must have at least a specified number of leaves (vertices of degree 1 in a tree); and
the like. The problem of computing such a constrained minimum spanning tree is usually
NP-complete. For a discussion of various constrained MST problems and some heuristics
solving them see [6].

4.7 Shortest Paths

In the preceding section we dealt with the problem of connecting a set of points with
smallest cost. Another commonly encountered and somewhat related problem is that of
finding the lowest-cost path (called shortest path) between a given pair of points. There
are many types of shortest-path problems. For example, determining the shortest path
(i.e., the most economical path or fastest path, or minimum-fuel-consumption path) from
one specified vertex to another specified vertex; or shortest paths from a specified vertex
to all other vertices; or perhaps shortest path between all pairs of vertices. Sometimes,
one wishes to find a shortest path from one given vertex to another given vertex that
passes through certain specified intermediate vertices. In some applications, one requires
not only the shortest but also the second and third shortest paths. Thus, the shortest-path
problems constitute a large class of problems; particularly if we generalize it to include
related problems, such as the longest-path problems, the most-reliable-path problems, the
largest-capacity-path problems, and various routing problems. Therefore, the number of
papers, books, reports, dissertations, and surveys dealing with the subject of shortest paths
runs into hundreds [5].

Here we will discuss two very basic and important shortest-path problems: (i) how to
determine the shortest distance (and a shortest path) from a specified vertex s to another
specified vertex ¢, and (ii) how to determine shortest distances (and paths) from every
vertex to every other vertex in the network. Several other problems can be solved using
these two basic algorithms.
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4.7.1 Single-Source Shortest Paths, Nonnegative Weights

Let us first consider a classic algorithm due to Dijkstra for finding a shortest path (and
its weight) from a specified vertex s (source or origin) to another specified vertex t (target
or sink) in a network G in which all edge weights are nonnegative. The basic idea behind
Dijkstra’s algorithm is to fan out from s and proceed toward ¢ (following the directed edges),
labeling the vertices with their distances from s obtained so far. The label of a vertex w is
made permanent once we know that it represents the shortest possible distance from s (to
u). All vertices not permanently labeled have temporary labels.

We start by giving a permanent label 0 to source vertex s, because zero is the distance
of s from itself. All other vertices get labeled oo, temporarily, because they have not been
reached yet. Then we label each immediate successor v of source s, with temporary labels
equal to the weight of the edge (s,v). Clearly, the vertex, say x, with smallest temporary
label (among all its immediate successors) is the vertex closest to s. Since all edges have
nonnegative weights, there can be no shorter path from s to x. Therefore, we make the
label of x permanent. Next, we find all immediate successors of vertex x, and shorten their
temporary labels if the path from s to any of them is shorter by going through z (than it
was without going through z). Now, from among all temporarily labeled vertices we pick
the one with the smallest label, say vertex y, and make its label permanent. This vertex
y is the second closest vertex from s. Thus, at each iteration, we reduce the values of
temporary labels whenever possible (by selecting a shorter path through the most recent
permanently labeled vertex), then select the vertex with the smallest temporary label and
make it permanent. We continue in this fashion until the target vertex ¢ gets permanently
labeled. In order to distinguish the permanently labeled vertices from the temporarily
labeled ones, we will keep a Boolean array final of order n. When the ith vertex becomes
permanently labeled, the ith element of this array changes from false to true. Another
array, dist, of order n will be used to store labels of vertices. A variable recent will be used
to keep track of most recent vertex to be permanently labeled.

Assuming that the network is given in the form of a weight matrix W = [w;;], with co
weights for nonexistent edges, and vertices s and ¢ are specified, this algorithm (which is
called Dijkstra’s shortest-path or the label-setting algorithm) may be described as follows
(Figure 4.19):

INITIALIZATION:
for allveV do
dist[v] « oo
final[v] « false
pred[v] — —1
end for
dist[s] — 0
final[s] « true
recent < s
{// vertex s is permanently labeled with 0. All other vertices are temporarily labeled
with co. Vertex s is the most recent vertex to be permanently labeled //}
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ITERATION:
while final[t] = false do
for every immediate successor v of recent do
if not final[v] then {// update temporary labels //}
newlabel < dist[recent] + Wrecent,v
if newlabel < dist[v] then
dist[v] «— newlabel
pred[v] <« recent
{// relabel v if there is a shorter path via vertex recent and make recent the
predecessor of v on the shortest path from s //}
end if
end if
end for
let y be the vertex with the smallest temporary label, which is # oo
finally] < true
recent <y
{// v, the next closest vertex to s gets permanently labeled //}
end while

FIGURE 4.19: Dijkstra’s shortest-path algorithm.

4.7.2 Single-Source Shortest Paths, Arbitrary Weights

In Dijkstra’s shortest-path algorithm (Figure 4.19), it was assumed that all edge weights w;;
were nonnegative numbers. If some of the edge weights are negative, Dijkstra’s algorithm
will not work. (Negative weights in a network may represent costs and positive ones, profit.)
The reason for the failure is that once the label of a vertex is made permanent, it cannot
be changed in future iterations. In order to handle a network that has both positive and
negative weights, we must ensure that no label is considered permanent until the program
halts. Such an algorithm (called a label-correcting method, in contrast to Dijkstra’s label-
setting method) is described as below.
Like Dijkstra’s algorithm, the label of the starting vertex s is set to zero and that of every
other vertex is set to 0o, a very large number. That is, the initialization consists of
dist(s) < 0
for all v # s do
dist(v) < oo
end for
In the iterative step, dist(v) is always updated to the currently known distance from s to
v, and the predecessor pred(v) of v is also updated to be the predecessor vertex of v on the
currently known shortest path from s to v. More compactly, the iteration may be expressed
as follows:
while 3 an edge (u,v) such that dist(u) + wy, < dist(v) do
dist(v) «— dist(u) + Wy
pred(v) «— u
end while
Several implementations of this basic iterative step have been studied, experimented with,
and reported in the literature. One very efficient implementation, works as follows.
We maintain a queue of “vertices to be examined”. Initially, this queue, Q, contains only
the starting vertex s. The vertex u from the front of the queue is “examined” (as follows)
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and deleted. Examining u consists of considering all edges (u,v) going out of u. If the
length of the path to vertex v (from s) is reduced by going through u, that is,
if dist(u) + wyy < dist(v) then
dist(v) «— dist(u) + wyy {// dist(v) is reset to the smaller value //}
pred(v) «— u
end if
Moreover, this vertex v is added to the queue (if it is not already in the queue) as a
vertex to be examined later. Note that v enters the queue only if dist(v) is decremented as
above and if v is currently not in the queue. Observe that unlike in Dijkstra’s method (the
label-setting method) a vertex may enter (and leave) the queue several times—each time
a shorter path is discovered. It is easy to see that the label-correcting algorithm will not
terminate if the network has a cycle of negative weight.

4.7.3 All-Pairs Shortest Paths

We will now consider the problem of finding a shortest path between every pair of vertices
in the network. Clearly, in an n-vertex directed graph there are n(n — 1) such paths—one
for each ordered pair of distinct vertices—and n(n — 1)/2 paths in an undirected graph.
One could, of course, solve this problem by repeated application of Dijkstra’s algorithm,
once for each vertex in the network taken as the source vertex s. We will instead consider a
different algorithm for finding shortest paths between all pairs of vertices, which is known
as Warshall-Floyd algorithm. It requires computation time proportional to n3, and allows
some of the edges to have negative weights, as long as no cycles of net negative weight exist.

The algorithm works by inserting one or more vertices into paths, whenever it is advanta-
geous to do so. Starting with n x n weight matrix W = [w;;] of direct distances between the
vertices of the given network G, we construct a sequence of n matrices W, W@ W),
Matrix W™, 1 <1 < n, may be thought of as the matrix whose (i, j)th entry w(g
the length of the shortest path among all paths from i to j with vertices 1,2,...,[ allowed
)is constructed as follows:

ij

gives

as intermediate vertices. Matrix W® =

0 _
W = Wi

w(g = min{w(gl), w(ifl) + w(fgl)} for | =1,2,...,n (4.1)
In other words, in iteration 1, vertex 1 is inserted in the path from vertex i to vertex j if
w;; > w1 + wyj. In iteration 2, vertex 2 can be inserted, and so on.
For example, in Figure 4.6 the shortest path from vertex 2 to 4 is 2-1-3—4; and the
following replacements occur:

(0) (0)

Iteration 1: w',, is replaced by (w'y, + w®)

13)

(2) (2 (2)
24 w

Iteration 2 : w",, is replaced by (w 2% +w'yy)

(3)

53, the value of this entry will not be altered in

Once the shortest distance is obtained in w
subsequent operations.

We assume as usual that the weight of a nonexistent edge is 0o, that + 0o = oo, and that
min{z, 00} = x for all 2. Tt can easily be seen that all distance matrices W calculated

from (4.1) can be overwritten on W itself. The algorithm may be stated as follows:
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for [ — 1 ton do
for i +— 1 ton do
if w; # oo then
for j «— 1ton do
Wij min{wij, w; + U)lj}
end for
end if
end for
end for

FIGURE 4.20: All-pairs shortest distance algorithm.

(n)

If the network has no negative-weight cycle, the diagonal entries w",;

represent the length
of shortest cycles passing through vertex ¢. The off-diagonal entries w(?j) are the shortest
distances. Notice that negative weight of an individual edge has no effect on this algorithm
as long as there is no cycle with a net negative weight.

Note that the algorithm in Figure 4.20 does not actually list the paths, it only produces
their costs or weights. Obtaining paths is slightly more involved than it was in algorithm in
Figure 4.19 where a predecessor array pred was sufficient. Here the paths can be constructed
from a path matriz P = [p;;] (also called optimal policy matriz), in which p;; is the second
to the last vertex along the shortest path from i to j—the last vertex being j. The path

matrix P is easily calculated by adding the following steps in Figure 4.20. Initially, we set

pij < 1, if w;; # 0o, and
Dij < O, if wj;; = OQ.
In the Ith iteration if vertex [ is inserted between ¢ and j; that is, if wy + wy; < w;j;, then

we set p;; < pi;. At the termination of the execution, the shortest path (i, v1,v2,. .., vg, j)
from 4 to j can be obtained from matrix P as follows:

Vg = Pij
Vg—1 = DPivg
Vg—2 = pi,vq,l

1= Piv

The storage requirement is 72, no more than for storing the weight matrix itself. Since all
the intermediate matrices as well as the final distance matrix are overwritten on W itself.
Another n? storage space would be required if we generated the path matrix P also. The
computation time for the algorithm in Figure 4.20 is clearly O(n?), regardless of the number
of edges in the network.
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4.8 Eulerian and Hamiltonian Graphs

A path when generalized to include visiting a vertex more than once is called a trail. In
other words, a trail is a sequence of edges (v1,v2), (v2,v3),. .., (Vk—2,Vk—1), (Vk—1,vk) in
which all the vertices (v1,va,...,v;) may not be distinct but all the edges are distinct.
Sometimes a trail is referred to as a (non-simple) path and path is referred to as a simple
path. For example in Figure 4.8(a) (b,a), (a,c), (¢,d), (d,a), (a, f) is a trail (but not a
simple path because vertex a is visited twice.

If the first and the last vertex in a trail are the same, it is called a closed trail, otherwise
an open trail. An Fulerian trail in a graph G = (V, E) is one that includes every edge in F
(exactly once). A graph with a closed Eulerian trail is called a Eulerian graph. Equivalently,
in an Eulerian graph, G, starting from a vertex one can traverse every edge in G exactly
once and return to the starting vertex. According to a theorem proved by Euler in 1736,
(considered the beginning of graph theory), a connected graph is Eulerian if and only if the
degree of its every vertex is even.

Given a connected graph G it is easy to check if G is Eulerian. Finding an actual Eulerian
trail of G is more involved. An efficient algorithm for traversing the edges of G to obtain
an Euler trail was given by Fleury. The details can be found in [20].

A cycle in a graph G is said to be Hamiltonian if it passes through every vertex of
G. Many families of special graphs are known to be Hamiltonian, and a large number of
theorems have been proved that give sufficient conditions for a graph to be Hamiltonian.
However, the problem of determining if an arbitrary graph is Hamiltonian is NP-complete.

Graph theory, a branch of combinatorial mathematics, has been studied for over two
centuries. However, its applications and algorithmic aspects have made enormous advances
only in the past fifty years with the growth of computer technology and operations research.
Here we have discussed just a few of the better-known problems and algorithms. Additional
material is available in the references provided. In particular, for further exploration the
Stanford GraphBase [10], the LEDA [12], and the Graph Boost Library [17] provide valu-
able and interesting platforms with collection of graph-processing programs and benchmark
databases.
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5.1 Introduction

A single-ended priority queue (or simply, a priority queue) is a collection of elements in
which each element has a priority. There are two varieties of priority queues—max and min.
The primary operations supported by a max (min) priority queue are (a) find the element
with maximum (minimum) priority, (b) insert an element, and (c) delete the element whose
priority is maximum (minimum). However, many authors consider additional operations
such as (d) delete an arbitrary element (assuming we have a pointer to the element), (e)
change the priority of an arbitrary element (again assuming we have a pointer to this
element), (f) meld two max (min) priority queues (i.e., combine two max (min) priority
queues into one), and (g) initialize a priority queue with a nonzero number of elements.

Several data structures: e.g., heaps (Chapter 3), leftist trees [2, 5], Fibonacci heaps [7]
(Chapter 7), binomial heaps [1] (Chapter 7), skew heaps [11] (Chapter 6), and pairing heaps
[6] (Chapter 7) have been proposed for the representation of a priority queue. The different
data structures that have been proposed for the representation of a priority queue differ in
terms of the performance guarantees they provide. Some guarantee good performance on
a per operation basis while others do this only in the amortized sense. Max (min) heaps
permit one to delete the max (min) element and insert an arbitrary element into an n
element priority queue in O(logn) time per operation; a find max (min) takes O(1) time.
Additionally, a heap is an implicit data structure that has no storage overhead associated
with it. All other priority queue structures are pointer-based and so require additional
storage for the pointers.

Max (min) leftist trees also support the insert and delete max (min) operations in O(logn)
time per operation and the find max (min) operation in O(1) time. Additionally, they permit
us to meld pairs of priority queues in logarithmic time.

The remaining structures do not guarantee good complexity on a per operation basis.
They do, however, have good amortized complexity. Using Fibonacci heaps, binomial
queues, or skew heaps, find max (min), inserts and melds take O(1) time (actual and
amortized) and a delete max (min) takes O(logn) amortized time. When a pairing heap is

5-1
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(a) A binary tree (b) Extended binary tree

(c) s values (d) w values

FIGURE 5.1: s and w values.

used, the amortized complexity is O(1) for find max (min) and insert (provided no decrease
key operations are performed) and O(logn) for delete max (min) operations [12]. Jones [8]
gives an empirical evaluation of many priority queue data structures.

In this chapter, we focus on the leftist tree data structure. Two varieties of leftist trees—
height-biased leftist trees [5] and weight-biased leftist trees [2] are described. Both varieties
of leftist trees are binary trees that are suitable for the representation of a single-ended
priority queue. When a max (min) leftist tree is used, the traditional single-ended priority
queue operations— find max (min) element, delete/remove max (min) element, and insert an
element—take, respectively, O(1), O(logn) and O(logn) time each, where n is the number
of elements in the priority queue. Additionally, an n-element max (min) leftist tree can be
initialized in O(n) time and two max (min) leftist trees that have a total of n elements may
be melded into a single max (min) leftist tree in O(logn) time.

5.2 Height-Biased Leftist Trees

5.2.1 Definition

Consider a binary tree in which a special node called an external node replaces each
empty subtree. The remaining nodes are called internal nodes. A binary tree with
external nodes added is called an extended binary tree. Figure 5.1(a) shows a binary
tree. Its corresponding extended binary tree is shown in Figure 5.1(b). The external nodes
appear as shaded boxes. These nodes have been labeled a through f for convenience.

Let s(z) be the length of a shortest path from node z to an external node in its sub-
tree. From the definition of s(x), it follows that if = is an external node, its s value is 0.
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Furthermore, if x is an internal node, its s value is

min{s(L),s(R)} +1

where L and R are, respectively, the left and right children of z. The s values for the nodes
of the extended binary tree of Figure 5.1(b) appear in Figure 5.1(c).

DEFINITION 5.1 [Crane [5]] A binary tree is a height-biased leftist tree (HBLT)
iff at every internal node, the s value of the left child is greater than or equal to the s value
of the right child.

The binary tree of Figure 5.1(a) is not an HBLT. To see this, consider the parent of the
external node a. The s value of its left child is 0, while that of its right is 1. All other
internal nodes satisfy the requirements of the HBLT definition. By swapping the left and
right subtrees of the parent of a, the binary tree of Figure 5.1(a) becomes an HBLT.

THEOREM 5.1 Let x be any internal node of an HBLT.

(a) The number of nodes in the subtree with root  is at least 25*) — 1.
(b) If the subtree with root x has m nodes, s(x) is at most logy(m + 1).

(c) The length, rightmost(x), of the right-most path from x to an external node (i.e.,
the path obtained by beginning at x and making a sequence of right-child moves)
is s(x).

Proof From the definition of s(z), it follows that there are no external nodes on the
s(z) — 1 levels immediately below node z (as otherwise the s value of z would be less). The
subtree with root x has exactly one node on the level at which x is, two on the next level,
four on the next, ---, and 2°(*)=1 nodes s(z) — 1 levels below z. The subtree may have
additional nodes at levels more than s(z) — 1 below . Hence the number of nodes in the

subtree z is at least foo)*l 2! = 25(=) 1. Part (b) follows from (a). Part (c) follows from

the definition of s and the fact that, in an HBLT, the s value of the left child of a node is
always greater than or equal to that of the right child.

DEFINITION 5.2 A max tree (min tree) is a tree in which the value in each node is
greater (less) than or equal to those in its children (if any).

Some max trees appear in Figure 5.2, and some min trees appear in Figure 5.3. Although
these examples are all binary trees, it is not necessary for a max tree to be binary. Nodes
of a max or min tree may have an arbitrary number of children.

DEFINITION 5.3 A max HBLT is an HBLT that is also a max tree. A min HBLT
is an HBLT that is also a min tree.

The max trees of Figure 5.2 as well as the min trees of Figure 5.3 are also HBLTS;
therefore, the trees of Figure 5.2 are max HBLTSs, and those of Figure 5.3 are min HBLTs.
A max priority queue may be represented as a max HBLT, and a min priority queue may
be represented as a min HBLT.

© 2005 by Chapman & Hall/CRC



5-4 Handbook of Data Structures and Applications
(b) ()

FIGURE 5.2: Some max trees.
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FIGURE 5.3: Some min trees.

5.2.2 Insertion into a Max HBLT

The insertion operation for max HBLTs may be performed by using the max HBLT meld
operation, which combines two max HBLTSs into a single max HBLT. Suppose we are to
insert an element x into the max HBLT H. If we create a max HBLT with the single
element x and then meld this max HBLT and H, the resulting max HBLT will include all
elements in H as well as the element x. Hence an insertion may be performed by creating
a new max HBLT with just the element that is to be inserted and then melding this max
HBLT and the original.

5.2.3 Deletion of Max Element from a Max HBLT

The max element is in the root. If the root is deleted, two max HBLTSs, the left and right
subtrees of the root, remain. By melding together these two max HBLTSs, we obtain a max
HBLT that contains all elements in the original max HBLT other than the deleted max
element. So the delete max operation may be performed by deleting the root and then
melding its two subtrees.

5.2.4 Melding Two Max HBLTSs

Since the length of the right-most path of an HBLT with n elements is O(logn), a meld
algorithm that traverses only the right-most paths of the HBLT's being melded, spending
O(1) time at each node on these two paths, will have complexity logarithmic in the number
of elements in the resulting HBLT. With this observation in mind, we develop a meld
algorithm that begins at the roots of the two HBLTs and makes right-child moves only.
The meld strategy is best described using recursion. Let A and B be the two max HBLT's
that are to be melded. If one is empty, then we may use the other as the result. So assume
that neither is empty. To perform the meld, we compare the elements in the two roots. The
root with the larger element becomes the root of the melded HBLT. Ties may be broken
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arbitrarily. Suppose that A has the larger root and that its left subtree is L. Let C' be the
max HBLT that results from melding the right subtree of A and the max HBLT B. The
result of melding A and B is the max HBLT that has A as its root and L and C as its
subtrees. If the s value of L is smaller than that of C', then C'is the left subtree. Otherwise,
L is.

Example 5.1

Consider the two max HBLTs of Figure 5.4(a). The s value of a node is shown outside the
node, while the element value is shown inside. When drawing two max HBLTs that are to
be melded, we will always draw the one with larger root value on the left. Ties are broken
arbitrarily. Because of this convention, the root of the left HBLT always becomes the root
of the final HBLT. Also, we will shade the nodes of the HBLT on the right.

Since the right subtree of 9 is empty, the result of melding this subtree of 9 and the tree
with root 7 is just the tree with root 7. We make the tree with root 7 the right subtree of
9 temporarily to get the max tree of Figure 5.4(b). Since the s value of the left subtree of
9 is 0 while that of its right subtree is 1, the left and right subtrees are swapped to get the
max HBLT of Figure 5.4(c).

Next consider melding the two max HBLTSs of Figure 5.4(d). The root of the left subtree
becomes the root of the result. When the right subtree of 10 is melded with the HBLT with
root 7, the result is just this latter HBLT. If this HBLT is made the right subtree of 10, we
get the max tree of Figure 5.4(e). Comparing the s values of the left and right children of
10, we see that a swap is not necessary.

Now consider melding the two max HBLTs of Figure 5.4(f). The root of the left subtree is
the root of the result. We proceed to meld the right subtree of 18 and the max HBLT with
root 10. The two max HBLTSs being melded are the same as those melded in Figure 5.4(d).
The resultant max HBLT (Figure 5.4(e)) becomes the right subtree of 18, and the max tree
of Figure 5.4(g) results. Comparing the s values of the left and right subtrees of 18, we see
that these subtrees must be swapped. Swapping results in the max HBLT of Figure 5.4(h).

As a final example, consider melding the two max HBLTs of Figure 5.4(i). The root of
the left max HBLT becomes the root of the result. We proceed to meld the right subtree of
40 and the max HBLT with root 18. These max HBLTs were melded in Figure 5.4(f). The
resultant max HBLT (Figure 5.4(g)) becomes the right subtree of 40. Since the left subtree
of 40 has a smaller s value than the right has, the two subtrees are swapped to get the max
HBLT of Figure 5.4(k). Notice that when melding the max HBLT of Figure 5.4(i), we first
move to the right child of 40, then to the right child of 18, and finally to the right child of
10. All moves follow the right-most paths of the initial max HBLTs.

5.2.5 Initialization

It takes O(nlogn) time to initialize a max HBLT with n elements by inserting these ele-
ments into an initially empty max HBLT one at a time. To get a linear time initialization
algorithm, we begin by creating n max HBLTs with each containing one of the n elements.
These n max HBLTs are placed on a FIFO queue. Then max HBLTSs are deleted from
this queue in pairs, melded, and added to the end of the queue until only one max HBLT
remains.

Example 5.2

We wish to create a max HBLT with the five elements 7, 1, 9, 11, and 2. Five single-
element max HBLTSs are created and placed in a FIFO queue. The first two, 7 and 1,
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FIGURE 5.4: Melding max HBLTs.

are deleted from the queue and melded. The result (Figure 5.5(a)) is added to the queue.
Next the max HBLTs 9 and 11 are deleted from the queue and melded. The result appears
in Figure 5.5(b). This max HBLT is added to the queue. Now the max HBLT 2 and
that of Figure 5.5(a) are deleted from the queue and melded. The resulting max HBLT
(Figure 5.5(c)) is added to the queue. The next pair to be deleted from the queue consists
of the max HBLTSs of Figures Figure 5.5 (b) and (c). These HBLTs are melded to get the
max HBLT of Figure 5.5(d). This max HBLT is added to the queue. The queue now has
just one max HBLT, and we are done with the initialization.
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For the complexity analysis of of the initialization operation, assume, for simplicity, that
n is a power of 2. The first n/2 melds involve max HBLTs with one element each, the next
n/4 melds involve max HBLTs with two elements each; the next n/8 melds are with trees
that have four elements each; and so on. The time needed to meld two leftist trees with 2°
elements each is O(i + 1), and so the total time for the initialization is

i

O(n/2+ 2 (n/4) +35 (n/8) + ) = OnY o

) =0(n)

5.2.6 Deletion of Arbitrary Element from a Max HBLT

Although deleting an element other than the max (min) element is not a standard operation
for a max (min) priority queue, an efficient implementation of this operation is required when
one wishes to use the generic methods of Cho and Sahni [3] and Chong and Sahni [4] to
derive efficient mergeable double-ended priority queue data structures from efficient single-
ended priority queue data structures. From a max or min leftist tree, we may remove the
element in any specified node theNode in O(logn) time, making the leftist tree a suitable
base structure from which an efficient mergeable double-ended priority queue data structure
may be obtained [3,4].

To remove the element in the node theNode of a height-biased leftist tree, we must do
the following;:

1. Detach the subtree rooted at the Node from the tree and replace it with the meld
of the subtrees of theNode.

2. Update s values on the path from the Node to the root and swap subtrees on this
path as necessary to maintain the leftist tree property.

To update s on the path from theNode to the root, we need parent pointers in each node.
This upward updating pass stops as soon as we encounter a node whose s value does not
change. The changed s values (with the exception of possibly O(logn) values from moves
made at the beginning from right children) must form an ascending sequence (actually, each
must be one more than the preceding one). Since the maximum s value is O(log n) and since
all s values are positive integers, at most O(logn) nodes are encountered in the updating
pass. At each of these nodes, we spend O(1) time. Therefore, the overall complexity of
removing the element in node the Node is O(logn).
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5.3 Weight-Biased Leftist Trees

5.3.1 Definition

We arrive at another variety of leftist tree by considering the number of nodes in a subtree,
rather than the length of a shortest root to external node path. Define the weight w(x) of
node z to be the number of internal nodes in the subtree with root z. Notice that if x is an
external node, its weight is 0. If x is an internal node, its weight is 1 more than the sum
of the weights of its children. The weights of the nodes of the binary tree of Figure 5.1(a)
appear in Figure 5.1(d)

DEFINITION 5.4 [Cho and Sahni [2]] A binary tree is a weight-biased leftist tree
(WBLT) iff at every internal node the w value of the left child is greater than or equal
to the w value of the right child. A max (min) WBLT is a max (min) tree that is also a
WBLT.

Note that the binary tree of Figure 5.1(a) is not a WBLT. However, all three of the binary
trees of Figure 5.2 are WBLTs.

THEOREM 5.2 Let x be any internal node of a weight-biased leftist tree. The length,
rightmost(x), of the right-most path from x to an external node satisfies

rightmost(z) < logy(w(z) + 1).

Proof The proof is by induction on w(xz). When w(z) = 1, rightmost(z) = 1 and
log,(w(x) + 1) = log, 2 = 1. For the induction hypothesis, assume that rightmost(x) <
log, (w(x)+1) whenever w(zx) < n. Let RightChild(x) denote the right child of z (note that
this right child may be an external node). When w(z) = n, w(RightChild(z)) < (n—1)/2
and rightmost(x) = 1+rightmost(RightChild(x)) < 1+logy((n—1)/241) = 1+logy(n+
1) —1=1logy(n +1).

5.3.2 Max WBLT Operations

Insert, delete max, and initialization are analogous to the corresponding max HBLT oper-
ation. However, the meld operation can be done in a single top-to-bottom pass (recall that
the meld operation of an HBLT performs a top-to-bottom pass as the recursion unfolds and
then a bottom-to-top pass in which subtrees are possibly swapped and s-values updated). A
single-pass meld is possible for WBLTSs because we can determine the w values on the way
down and so, on the way down, we can update w-values and swap subtrees as necessary.
For HBLTSs, a node’s new s value cannot be determined on the way down the tree.

Since the meld operation of a WBLT may be implemented using a single top-to-bottom
pass, inserts and deletes also use a single top-to-bottom pass. Because of this, inserts and
deletes are faster, by a constant factor, in a WBLT than in an HBLT [2]. However, from a
WBLT, we cannot delete the element in an arbitrarily located node, theNode, in O(logn)
time. This is because theNode may have O(n) ancestors whose w value is to be updated.
So, WBLTS are not suitable for mergeable double-ended priority queue applications [3, 8].

C++ and Java codes for HBLTs and WBLTs may be obtained from [9] and [10], respec-
tively.
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6.1 Introduction

Priority Queue is one of the most extensively studied Abstract Data Types (ADT) due to
its fundamental importance in the context of resource managing systems, such as operating
systems. Priority Queues work on finite subsets of a totally ordered universal set U. With-
out any loss of generality we assume that U is simply the set of all non-negative integers.
In its simplest form, a Priority Queue supports two operations, namely,

e insert(x,S) : update S by adding an arbitrary x € U to S.
e delete-min(S) : update S by removing from S the minimum element of S.

We will assume for the sake of simplicity, all the items of S are distinct. Thus, we
assume that ¢ S at the time of calling insert(x, S). This increases the cardinality of S,
denoted usually by |S|, by one. The well-known data structure Heaps, provide an elegant
and efficient implementation of Priority Queues. In the Heap based implementation, both
insert(x, S) and delete-min(S) take O(logn) time where n = |S|.

Several extensions for the basic Priority Queues were proposed and studied in response
to the needs arising in several applications. For example, if an operating system maintains
a set of jobs, say print requests, in a priority queue, then, always, the jobs with ‘high
priority’ are serviced irrespective of when the job was queued up. This might mean some
kind of ‘unfairness’ for low priority jobs queued up earlier. In order to straighten up the
situation, we may extend priority queue to support delete-max operation and arbitrarily mix
delete-min and delete-max operations to avoid any undue stagnation in the queue. Such
priority queues are called Double Ended Priority Queues. It is easy to see that Heap is
not an appropriate data structure for Double Ended Priority Queues. Several interesting
alternatives are available in the literature [1] [3] [4]. You may also refer Chapter 8 of this
handbook for a comprehensive discussion on these structures.

In another interesting extension, we consider adding an operation called melding. A meld
operation takes two disjoint sets, S7; and S, and produces the set S = S; U Ss. In terms
of an implementation, this requirement translates to building a data structure for S, given
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the data structures of S; and Sy. A Priority Queue with this extension is called a Meldable
Priority Queue. Consider a scenario where an operating system maintains two different
priority queues for two printers and one of the printers is down with some problem during
operation. Meldable Priority Queues naturally model such a situation.

Again, maintaining the set items in Heaps results in very inefficient implementation of
Meldable Priority Queues. Specifically, designing a data structure with O(logn) bound
for each of the Meldable Priority Queue operations calls for more sophisticated ideas and
approaches. An interesting data structure called Leftist Trees, implements all the operations
of Meldable Priority Queues in O(logn) time. Leftist Trees are discussed in Chapter 5 of
this handbook.

The main objective behind the design of a data structure for an ADT is to implement
the ADT operations as efficiently as possible. Typically, efficiency of a structure is judged
by its worst-case performance. Thus, when designing a data structure, we seek to minimize
the worst case complexity of each operation. While this is a most desirable goal and has
been theoretically realized for a number of data structures for key ADTs, the data structures
optimizing worst-case costs of ADT operations are often very complex and pretty tedious to
implement. Hence, computer scientists were exploring alternative design criteria that would
result in simpler structures without losing much in terms of performance. In Chapter 13 of
this handbook, we show that incorporating randomness provides an attractive alternative
avenue for designers of the data structures. In this chapter we will explore yet another design
goal leading to simpler structural alternatives without any degrading in overall performance.

Since the data structures are used as basic building blocks for implementing algorithms,
a typical execution of an algorithm might consist of a sequence of operations using the data
structure over and again. In the worst case complexity based design, we seek to reduce
the cost of each operation as much as possible. While this leads to an overall reduction
in the cost for the sequence of operations, this poses some constraints on the designer of
data structure. We may relax the requirement that the cost of each operation be minimized
and perhaps design data structures that seek to minimize the total cost of any sequence of
operations. Thus, in this new kind of design goal, we will not be terribly concerned with
the cost of any individual operations, but worry about the total cost of any sequence of
operations. At first thinking, this might look like a formidable goal as we are attempting to
minimize the cost of an arbitrary mix of ADT operations and it may not even be entirely
clear how this design goal could lead to simpler data structures. Well, it is typical of a
novel and deep idea; at first attempt it may puzzle and bamboozle the learner and with
practice one tends to get a good intuitive grasp of the intricacies of the idea. This is one
of those ideas that requires some getting used to. In this chapter, we discuss about a data
structure called Skew heaps. For any sequence of a Meldable Priority Queue operations, its
total cost on Skew Heaps is asymptotically same as its total cost on Leftist Trees. However,
Skew Heaps are a bit simpler than Leftist Trees.

6.2 Basics of Amortized Analysis

We will now clarify the subtleties involved in the new design goal with an example. Consider
a typical implementation of Dictionary operations. The so called Balanced Binary Search
Tree structure (BBST) implements these operations in O(mlogn) worst case bound. Thus,
the total cost of an arbitrary sequence of m dictionary operations, each performed on a
tree of size at most n, will be O(logn). Now we may turn around and ask: Is there a
data structure on which the cost of a sequence of m dictionary operations is O(mlogn) but

© 2005 by Chapman & Hall/CRC



Skew Heaps 6-3

individual operations are not constrained to have O(logn) bound? Another more pertinent
question to our discussion - Is that structure simpler than BBST, at least in principle? An
affirmative answer to both the questions is provided by a data structure called Splay Trees.
Splay Tree is the theme of Chapter 12 of this handbook.

Consider for example a sequence of m dictionary operations Sy, .59, ..., i, performed
using a BBST. Assume further that the size of the tree has never exceeded n during the
sequence of operations. It is also fairly reasonable to assume that we begin with an empty
tree and this would imply n < m. Let the actual cost of executing S; be C;. Then the total
cost of the sequence of operations is Cy + Cy + - - - + C,y,. Since each C; is O(logn) we easily
conclude that the total cost is O(mlogn). No big arithmetic is needed and the analysis is
easily finished. Now, assume that we execute the same sequence of m operations but employ
a Splay Tree in stead of a BBST. Assuming that ¢; is the actual cost of S; in a Splay Tree,
the total cost for executing the sequence of operation turns out to be ¢; +co + ... + ¢
This sum, however, is tricky to compute. This is because a wide range of values are possible
for each of ¢; and no upper bound other than the trivial bound of O(n) is available for ¢;.
Thus, a naive, worst case cost analysis would yield only a weak upper bound of O(nm)
whereas the actual bound is O(mlogn). But how do we arrive at such improved estimates?

This is where we need yet another powerful tool called potential function.

The potential function is purely a conceptual entity and this is introduced only for the
sake of computing a sum of widely varying quantities in a convenient way. Suppose there
is a function f : D — R* U {0}, that maps a configuration of the data structure to a
non-negative real number. We shall refer to this function as potential function. Since the
data type as well as data structures are typically dynamic, an operation may change the
configuration of data structure and hence there may be change of potential value due to
this change of configuration. Referring back to our sequence of operations S1,.Ss, ..., Sn,
let D;_1 denote the configuration of data structure before the executing the operation S;
and D; denote the configuration after the execution of S;. The potential difference due to
this operation is defined to be the quantity f(D;)— f(D;—1). Let ¢; denote the actual cost
of S;. We will now introduce yet another quantity, a;, defined by

a; = ¢i+ f(D;i) — f(Di-1).

What is the consequence of this definition?

Note that Z a; = Z ¢i + f(Dy) — f(Do).-

i=1 i=1

Let us introduce one more reasonable assumption that f(Dg) = f(¢) = 0. Since f(D) >0
for all non empty structures, we obtain,

doai=Y i+ (D)= e

If we are able to choose cleverly a ‘good’ potential function so that a;’s have tight, uniform
bound, then we can evaluate the sum ) a; easily and this bounds the actual cost sum Y ¢;.
In other words, we circumvent the difficulties posed by wide variations in ¢; by introducing
new quantities a; which have uniform bounds. A very neat idea indeed! However, care must
be exercised while defining the potential function. A poor choice of potential function will
result in a;s whose sum may be a trivial or useless bound for the sum of actual costs. In
fact, arriving at the right potential function is an ingenious task, as you will understand by
the end of this chapter or by reading the chapter on Splay Trees.
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The description of the data structures such as Splay Trees will not look any different from
the description of a typical data structures - it comprises of a description of the organization
of the primitive data items and a bunch of routines implementing ADT operations. The key
difference is that the routines implementing the ADT operations will not be analyzed for
their individual worst case complexity. We will only be interested in the the cumulative effect
of these routines in an arbitrary sequence of operations. Analyzing the average potential
contribution of an operation in an arbitrary sequence of operations is called amortized
analysis. In other words, the routines implementing the ADT operations will be analyzed
for their amortized cost. Estimating the amortized cost of an operation is rather an intricate
task. The major difficulty is in accounting for the wide variations in the costs of an operation
performed at different points in an arbitrary sequence of operations. Although our design
goal is influenced by the costs of sequence of operations, defining the notion of amortized
cost of an operation in terms of the costs of sequences of operations leads one nowhere. As
noted before, using a potential function to off set the variations in the actual costs is a neat
way of handling the situation.

In the next definition we formalize the notion of amortized cost.

DEFINITION 6.1 [Amortized Cost] Let A be an ADT with basic operations O =
{01,049,--- ,01} and let D be a data structure implementing A. Let f be a potential
function defined on the configurations of the data structures to non-negative real number.
Assume further that f(®) = 0. Let D’ denote a configuration we obtain if we perform an
operation Oy on a configuration D and let ¢ denote the actual cost of performing Oy on D.
Then, the amortized cost of Oy operating on D, denoted as a(Oy, D), is given by

a(Ok, D) = c+ f(D') = f(D)

If a(Ox, D) < g(n) for all configuration D of size n, then we say that the amortized cost
of Oy, is O(g(n)).

THEOREM 6.1 Let D be a data structure implementing an ADT and let s1,82,++ , Sm
denote an arbitrary sequence of ADT operations on the data structure starting from an
empty structure Dy. Let ¢; denote actual cost of the operation s; and D; denote the con-
figuration obtained which s; operated on D;_1, for 1 <i < m. Let a; denote the amortized
cost of s; operating on D;_1 with respect to an arbitrary potential function. Then,

m m
E ¢ < E a;.
i=1 i=1

Proof Since a; is the amortized cost of s; working on the configuration D;_1, we have

a; = a(s;, Di—1) = ¢; + f(D;) — f(Di—1)

Therefore,

© 2005 by Chapman & Hall/CRC



Skew Heaps 6-5

Zai = Zci + (f(Dm) - f(DO))

= f(Dn)+ Zci (since f(Dg) =0)

i=1

v
g
S

REMARK 6.1 The potential function is common to the definition of amortized cost of
all the ADT operations. Since Y./, a; > > ", ¢ holds good for any potential function, a
clever choice of the potential function will yield tight upper bound for the sum of actual
cost of a sequence of operations.

6.3 Meldable Priority Queues and Skew Heaps

DEFINITION 6.2 [Skew Heaps] A Skew Heap is simply a binary tree. Values are stored
in the structure, one per node, satisfying the heap-order property: A value stored at a node
is larger than the value stored at its parent, except for the root (as root has no parent).

REMARK 6.2 Throughout our discussion, we handle sets with distinct items. Thus a
set of n items is represented by a skew heap of n nodes. The minimum of the set is always
at the root. On any path starting from the root and descending towards a leaf, the values
are in increasing order.

6.3.1 Meldable Priority Queue Operations

Recall that a Meldable Priority queue supports three key operations: insert, delete-min and
meld. We will first describe the meld operation and then indicate how other two operations
can be performed in terms of the meld operation.

Let S and S be two sets and Hy and Hy be Skew Heaps storing S; and Ss respectively.
Recall that S1 NSy = ¢. The meld operation should produce a single Skew Heap storing
the values in S; U Se. The procedure meld (Hy, Hy) consists of two phases. In the first
phase, the two right most paths are merged to obtain a single right most path. This phase
is pretty much like the merging algorithm working on sorted sequences. In this phase, the
left subtrees of nodes in the right most paths are not disturbed. In the second phase, we
simply swap the children of every node on the merged path except for the lowest. This
completes the process of melding.

Figures 6.1, 6.2 and 6.3 clarify the phases involved in the meld routine.

Figure 6.1 shows two Skew Heaps Hy and Hs. In Figure 6.2 we have shown the scenario
after the completion of the first phase. Notice that right most paths are merged to obtain
the right most path of a single tree, keeping the respective left subtrees intact. The final
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FIGURE 6.1: Skew Heaps for meld operation.

FIGURE 6.2: Rightmost paths are merged. Left subtrees of nodes in the merged path are
intact.

Skew Heap is obtained in Figure 6.3. Note that left and right child of every node on the
right most path of the tree in Figure 6.2 (except the lowest) are swapped to obtain the
final Skew Heap.
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FIGURE 6.3: Left and right children of nodes (5), (7), (9), (10), (11) of Figure 2 are
swapped. Notice that the children of (15) which is the lowest node in the merged path, are
not swapped.

It is easy to implement delete-min and insert in terms of the meld operation. Since
minimum is always found at the root, delete-min is done by simply removing the root and
melding its left subtree and right subtree. To insert an item x in a Skew Heap H;, we create
a Skew Heap H consisting of only one node containing x and then meld H; and H,. From
the above discussion, it is clear that cost of meld essentially determines the cost of insert
and delete-min. In the next section, we analyze the amortized cost of meld operation.

6.3.2 Amortized Cost of Meld Operation

At this juncture we are left with the crucial task of identifying a suitable potential function.
Before proceeding further, perhaps one should try the implication of certain simple potential
functions and experiment with the resulting amortized cost. For example, you may try the
function f(D) = number of nodes in D( and discover how ineffective it is!).

We need some definitions to arrive at our potential function.

DEFINITION 6.3 For any node z in a binary tree, the weight of x, denoted wt(z), is
the number of descendants of z, including itself. A non-root node x is said to be heavy if
wt(z) > wit(parent(r))/2. A non-root node that is not heavy is called light. The root is
neither light nor heavy.
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The next lemma is an easy consequence of the definition given above. All logarithms in
this section have base 2.

LEMMA 6.1 For any node, at most one of its children is heavy. Furthermore, any root
to leaf path in a n-node tree contains at most |logn| light nodes.

DEFINITION 6.4 [Potential Function] A non-root is called right if it is the right child
of its parent; it is called left otherwise. The potential of a skew heap is the number of right
heavy node it contains. That is, f(H) = number of right heavy nodes in H. We extend the
definition of potential function to a collection of skew heaps as follows: f(Hy, Ha,--- , H;) =

Sty f(HD).

Here is the key result of this chapter.

THEOREM 6.2 Let Hy and Hs be two heaps with n1 and ne nodes respectively. Let
n =ny +ng. The amortized cost of meld (Hy, Hz) is O(logn).

Proof Let h; and ho denote the number of heavy nodes in the right most paths of H; and
H,, respectively. The number of light nodes on them will be at most |logn;| and |logna|
respectively. Since a node other than root is either heavy or light, and there are two root
nodes here that are neither heavy or light, the total number of nodes in the right most
paths is at most

2+ hy + ho + |logny | + |logna| <2+ hy + hy + 2|logn]

Thus we get a bound for actual cost ¢ as

¢ <24 hi + hy + 2[logn] (6.1)

In the process of swapping, the hq + ho nodes that were right heavy, will lose their status
as right heavy. While they remain heavy, they become left children for their parents hence
they do not contribute for the potential of the output tree and this means a drop in potential
by hy1 + he. However, the swapping might have created new heavy nodes and let us say,
the number of new heavy nodes created in the swapping process is hz. First, observe that
all these hg new nodes are attached to the left most path of the output tree. Secondly, by
Lemma 6.1, for each one of these right heavy nodes, its sibling in the left most path is a
light node. However, the number of light nodes in the left most path of the output tree is
less than or equal to [logn| by Lemma 6.1.

Thus hs < |logn|. Consequently, the net change in the potential is hg — h; — hy <
llogn| — hy — ha.

The amortized cost = ¢+ potential difference
< 24 hy + he +2|logn| + |logn] — hy — hs
3llogn] + 2.

Hence, the amortized cost of meld operation is O(logn) and this completes the proof.
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Since insert and delete-min are handled as special cases of meld operation, we conclude

THEOREM 6.3 The amortized cost complexity of all the Meldable Priority Queue op-
erations is O(logn) where n is the number of nodes in skew heap or heaps involved in the
operation.

6.4 Bibliographic Remarks

Skew Heaps were introduced by Sleator and Tarjan [7]. Leftist Trees have O(logn) worst
case complexity for all the Meldable Priority Queue operations but they require heights
of each subtree to be maintained as additional information at each node. Skew Heaps are
simpler than Leftist Trees in the sense that no additional 'balancing’ information need to be
maintained and the meld operation simply swaps the children of the right most path without
any constraints and this results in a simpler code. The bound 3log, n + 2 for melding was
significantly improved to log, n( here ¢ denotes the well-known golden ratio (V54 1)/2
which is roughly 1.6) by using a different potential function and an intricate analysis in [6].
Recently, this bound was shown to be tight in [2]. Pairing Heap, introduced by Fredman
et al. [5], is yet another self-adjusting heap structure and its relation to Skew Heaps is
explored in Chapter 7 of this handbook.
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7.1 Introduction

This chapter presents three algorithmically related data structures for implementing meld-
able priority queues: binomial heaps, Fibonacci heaps, and pairing heaps. What these three
structures have in common is that (a) they are comprised of heap-ordered trees, (b) the
comparisons performed to execute extractmin operations exclusively involve keys stored in
the roots of trees, and (c) a common side effect of a comparison between two root keys is
the linking of the respective roots: one tree becomes a new subtree joined to the other root.

A tree is considered heap-ordered provided that each node contains one item, and the key
of the item stored in the parent p(z) of a node x never exceeds the key of the item stored
in . Thus, when two roots get linked, the root storing the larger key becomes a child of
the other root. By convention, a linking operation positions the new child of a node as its
leftmost child. Figure 7.1 illustrates these notions.

Of the three data structures, the binomial heap structure was the first to be invented
(Vuillemin [13]), designed to efficiently support the operations insert, extractmin, delete,
and meld. The binomial heap has been highly appreciated as an elegant and conceptually
simple data structure, particularly given its ability to support the meld operation. The
Fibonacci heap data structure (Fredman and Tarjan [6]) was inspired by and can be viewed
as a generalization of the binomial heap structure. The raison d’étre of the Fibonacci
heap structure is its ability to efficiently execute decrease-key operations. A decrease-key
operation replaces the key of an item, specified by location, by a smaller value: e.g. decrease-
key(P,knew,H). (The arguments specify that the item is located in node P of the priority
queue H, and that its new key value is kpew.) Decrease-key operations are prevalent in
many network optimization algorithms, including minimum spanning tree, and shortest
path. The pairing heap data structure (Fredman, Sedgewick, Sleator, and Tarjan [5]) was
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(a) before linking.

(b) after linking.

FIGURE 7.1: Two heap-ordered trees and the result of their linking.

devised as a self-adjusting analogue of the Fibonacci heap, and has proved to be more
efficient in practice [11].

Binomial heaps and Fibonacci heaps are primarily of theoretical and historical interest.
The pairing heap is the more efficient and versatile data structure from a practical stand-
point. The following three sections describe the respective data structures. Summaries of
the various algorithms in the form of pseudocode are provided in section 7.5.

7.2 Binomial Heaps

We begin with an informal overview. A single binomial heap structure consists of a forest of
specially structured trees, referred to as binomial trees. The number of nodes in a binomial
tree is always a power of two. Defined recursively, the binomial tree By consists of a single
node. The binomial tree By, for £ > 0, is obtained by linking two trees By_1 together;
one tree becomes the leftmost subtree of the other. In general By has 2* nodes. Figures
7.2(a-b) illustrate the recursion and show several trees in the series. An alternative and
useful way to view the structure of By is depicted in Figure 7.2(c): By consists of a root
and subtrees (in order from left to right) Bx_1, By_2, -+, Bg. The root of the binomial
tree By has k children, and the tree is said to have rank k. We also observe that the height
of B (maximum number of edges on any path directed away from the root) is k. The

name “binomial heap” is inspired by the fact that the root of By has ( j ) descendants

at distance j.
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B; By B3
By
Dt O/O W
Br-1

By

(a) Recursion for binomial trees. (b) Several binomial trees.

AV AV AN

By

(c) An alternative recursion.

FIGURE 7.2: Binomial trees and their recursions.

Because binomial trees have restricted sizes, a forest of trees is required to represent a
priority queue of arbitrary size. A key observation, indeed a motivation for having tree sizes
being powers of two, is that a priority queue of arbitrary size can be represented as a union
of trees of distinct sizes. (In fact, the sizes of the constituent trees are uniquely determined
and correspond to the powers of two that define the binary expansion of n, the size of the
priority queue.) Moreover, because the tree sizes are unique, the number of trees in the
forest of a priority queue of size n is at most lg(n + 1). Thus, finding the minimum key in
the priority queue, which clearly lies in the root of one of its constituent trees (due to the
heap-order condition), requires searching among at most lg(n + 1) tree roots. Figure 7.3
gives an example of binomial heap.

Now let’s consider, from a high-level perspective, how the various heap operations are
performed. As with leftist heaps (cf. Chapter 6), the various priority queue operations are
to a large extent comprised of melding operations, and so we consider first the melding of
two heaps.

The melding of two heaps proceeds as follows: (a) the trees of the respective forests are
combined into a single forest, and then (b) consolidation takes place: pairs of trees having
common rank are linked together until all remaining trees have distinct ranks. Figure 7.4
illustrates the process. An actual implementation mimics binary addition and proceeds in
much the same was as merging two sorted lists in ascending order. We note that insertion
is a special case of melding.
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FIGURE 7.3: A binomial heap (showing placement of keys among forest nodes).

A

Q2 2 4 @ 2 4 A

(a) Forests of two heaps Q1 and Q2 to be (b) Linkings among trees in the combined
melded. forest.

AN A A AN

(c) Forest of meld(Q1,Q2).

FIGURE 7.4: Melding of two binomial heaps. The encircled objects reflect trees of common
rank being linked. (Ranks are shown as numerals positioned within triangles which in turn
represent individual trees.) Once linking takes place, the resulting tree becomes eligible
for participation in further linkings, as indicated by the arrows that identify these linking
results with participants of other linkings.

The extractmin operation is performed in two stages. First, the minimum root, the node
containing the minimum key in the data structure, is found by examining the tree roots of
the appropriate forest, and this node is removed. Next, the forest consisting of the subtrees
of this removed root, whose ranks are distinct (see Figure 7.2(c)) and thus viewable as
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constituting a binomial heap, is melded with the forest consisting of the trees that remain
from the original forest. Figure 7.5 illustrates the process.

minimum root—\

(a) Initial forest.

(b) Forests to be melded.

FIGURE 7.5: Extractmin Operation: The location of the minimum key is indicated in (a).
The two encircled sets of trees shown in (b) represent forests to be melded. The smaller
trees were initially subtrees of the root of the tree referenced in (a).

Finally, we consider arbitrary deletion. We assume that the node v containing the item
to be deleted is specified. Proceeding up the path to the root of the tree containing v, we
permute the items among the nodes on this path, placing in the root the item x originally
in v, and shifting each of the other items down one position (away from the root) along the
path. This is accomplished through a sequence of exchange operations that move x towards
the root. The process is referred to as a sift-up operation. Upon reaching the root r, r is
then removed from the forest as though an extractmin operation is underway. Observe that
the re-positioning of items in the ancestors of v serves to maintain the heap-order property
among the remaining nodes of the forest. Figure 7.6 illustrates the re-positioning of the
item being deleted to the root.

This completes our high-level descriptions of the heap operations. For navigational pur-
poses, each node contains a leftmost child pointer and a sibling pointer that points to the
next sibling to its right. The children of a node are thus stored in the linked list defined
by sibling pointers among these children, and the head of this list can be accessed by the
leftmost child pointer of the parent. This provides the required access to the children of
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0 ° <— root to be deleted

initial location of item
to be deleted

(a) initial item placement. (b) after movement to root.

FIGURE 7.6: Initial phase of deletion — sift-up operation.

a node for the purpose of implementing extractmin operations. Note that when a node
obtains a new child as a consequence of a linking operation, the new child is positioned at
the head of its list of siblings. To facilitate arbitrary deletions, we need a third pointer in
each node pointing to its parent. To facilitate access to the ranks of trees, we maintain in
each node the number of children it has, and refer to this quantity as the node rank. Node
ranks are readily maintained under linking operations; the node rank of the root gaining a
child gets incremented. Figure 7.7 depicts these structural features.

As seen in Figure 7.2(c), the ranks of the children of a node form a descending sequence in
the children’s linked list. However, since the melding operation is implemented by accessing
the tree roots in ascending rank order, when deleting a root we first reverse the list order
of its children before proceeding with the melding.

Each of the priority queue operations requires in the worst case O(logn) time, where n
is the size of the heap that results from the operation. This follows, for melding, from the
fact that its execution time is proportional to the combined lengths of the forest lists being
merged. For extractmin, this follows from the time for melding, along with the fact that
a root node has only O(logn) children. For arbitrary deletion, the time required for the
sift-up operation is bounded by an amount proportional to the height of the tree containing
the item. Including the time required for extractmin, it follows that the time required for
arbitrary deletion is O(logn).

Detailed code for manipulating binomial heaps can be found in Weiss [14].

7.3 Fibonacci Heaps

Fibonacci heaps were specifically designed to efficiently support decrease-key operations.
For this purpose, the binomial heap can be regarded as a natural starting point. Why?
Consider the class of priority queue data structures that are implemented as forests of heap-
ordered trees, as will be the case for Fibonacci heaps. One way to immediately execute a
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(a) fields of a node. (b) a node and its three children.

FIGURE 7.7: Structure associated with a binomial heap node. Figure (b) illustrates the
positioning of pointers among a node and its three children.

decrease-key operation, remaining within the framework of heap-ordered forests, is to simply
change the key of the specified data item and sever its link to its parent, inserting the severed
subtree as a new tree in the forest. Figure 7.8 illustrates the process. (Observe that the
link to the parent only needs to be cut if the new key value is smaller than the key in the
parent node, violating heap-order.) Fibonacci heaps accomplish this without degrading the
asymptotic efficiency with which other priority queue operations can be supported. Observe
that to accommodate node cuts, the list of children of a node needs to be doubly linked.
Hence the nodes of a Fibonacci heap require two sibling pointers.

Fibonacci heaps support findmin, insertion, meld, and decrease-key operations in constant
amortized time, and deletion operations in O(logn) amortized time. For many applications,
the distinction between worst-case times versus amortized times are of little significance. A
Fibonacci heap consists of a forest of heap-ordered trees. As we shall see, Fibonacci heaps
differ from binomial heaps in that there may be many trees in a forest of the same rank, and
there is no constraint on the ordering of the trees in the forest list. The heap also includes
a pointer to the tree root containing the minimum item, referred to as the min-pointer,
that facilitates findmin operations. Figure 7.9 provides an example of a Fibonacci heap and
illustrates certain structural aspects.

The impact of severing subtrees is clearly incompatible with the pristine structure of the
binomial tree that is the hallmark of the binomial heap. Nevertheless, the tree structures
that can appear in the Fibonacci heap data structure must sufficiently approximate binomial
trees in order to satisfy the performance bounds we seek. The linking constraint imposed by
binomial heaps, that trees being linked must have the same size, ensures that the number of
children a node has (its rank), grows no faster than the logarithm of the size of the subtree
rooted at the node. This rank versus subtree size relation is key to obtaining the O(logn)
deletion time bound. Fibonacci heap manipulations are designed with this in mind.

Fibonacci heaps utilize a protocol referred to as cascading cuts to enforce the required
rank versus subtree size relation. Once a node v has had two of its children removed as a
result of cuts, v’s contribution to the rank of its parent is then considered suspect in terms
of rank versus subtree size. The cascading cut protocol requires that the link to v’s parent
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(a) Initial tree. (b) Subtree to be severed.

K<k

(c¢) Resulting changes

FIGURE 7.8: Immediate decrease-key operation. The subtree severing (Figures (b) and
(¢)) is necessary only when k' < j.

be cut, with the subtree rooted at v then being inserted into the forest as a new tree. If v’s
parent has, as a result, had a second child removed, then it in turn needs to be cut, and the
cuts may thus cascade. Cascading cuts ensure that no non-root node has had more than
one child removed subsequent to being linked to its parent.

We keep track of the removal of children by marking a node if one of its children has been
cut. A marked node that has another child removed is then subject to being cut from its
parent. When a marked node becomes linked as a child to another node, or when it gets
cut from its parent, it gets unmarked. Figure 7.10 illustrates the protocol of cascading cuts.

Now the induced node cuts under the cascading cuts protocol, in contrast with those
primary cuts immediately triggered by decrease-key operations, are bounded in number by
the number of primary cuts. (This follows from consideration of a potential function defined
to be the total number of marked nodes.) Therefore, the burden imposed by cascading cuts
can be viewed as effectively only doubling the number of cuts taking place in the absence of
the protocol. One can therefore expect that the performance asymptotics are not degraded
as a consequence of proliferating cuts. As with binomial heaps, two trees in a Fibonacci
heap can only be linked if they have equal rank. With the cascading cuts protocol in place,
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FIGURE 7.9: A Fibonacci heap and associated structure.

we claim that the required rank versus subtree size relation holds, a matter which we address
next.

Let’s consider how small the subtree rooted at a node v having rank k£ can be. Let w
be the mth child of v from the right. At the time it was linked to v, v had at least m — 1
other children (those currently to the right of w were certainly present). Therefore w had
rank at least m — 1 when it was linked to v. Under the cascading cuts protocol, the rank of
w could have decreased by at most one after its linking to v; otherwise it would have been
removed as a child. Therefore, the current rank of w is at least m — 2. We minimize the
size of the subtree rooted at v by minimizing the sizes (and ranks) of the subtrees rooted at
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FIGURE 7.10: Illustration of cascading cuts. In (b) the dashed lines reflect cuts that have
taken place, two nodes marked in (a) get unmarked, and a third node gets marked.

v’s children. Now let F; denote the minimum possible size of the subtree rooted at a node
of rank j, so that the size of the subtree rooted at v is Fi,. We conclude that (for k > 2)

Fp=Fe o+ Fy3+ -+ Fo+1+1

E terms

where the final term, 1, reflects the contribution of v to the subtree size. Clearly, Fp = 1
and F; = 2. See Figure 7.11 for an illustration of this construction. Based on the preceding
recurrence, it is readily shown that Fj, is given by the (k + 2)th Fibonacci number (from
whence the name “Fibonacci heap” was inspired). Moreover, since the Fibonacci numbers
grow exponentially fast, we conclude that the rank of a node is indeed bounded by the
logarithm of the size of the subtree rooted at the node.

We proceed next to describe how the various operations are performed.

Since we are not seeking worst-case bounds, there are economies to be exploited that
could also be applied to obtain a variant of Binomial heaps. (In the absence of cuts, the
individual trees generated by Fibonacci heap manipulations would all be binomial trees.) In
particular we shall adopt a lazy approach to melding operations: the respective forests are
simply combined by concatenating their tree lists and retaining the appropriate min-pointer.
This requires only constant time.

An item is deleted from a Fibonacci heap by deleting the node that originally contains it,
in contrast with Binomial heaps. This is accomplished by (a) cutting the link to the node’s
parent (as in decrease-key) if the node is not a tree root, and (b) appending the list of
children of the node to the forest. Now if the deleted node happens to be referenced by the
min-pointer, considerable work is required to restore the min-pointer — the work previously
deferred by the lazy approach to the operations. In the course of searching among the roots
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Subtree size: Fj_, F._3 E 1

FIGURE 7.11: Minimal tree of rank k. Node ranks are shown adjacent to each node.

of the forest to discover the new minimum key, we also link trees together in a consolidation
process.

Consolidation processes the trees in the forest, linking them in pairs until there are
no longer two trees having the same rank, and then places the remaining trees in a new
forest list (naturally extending the melding process employed by binomial heaps). This can
be accomplished in time proportional to the number of trees in forest plus the maximum
possible node rank. Let max-rank denote the maximum possible node rank. (The preceding
discussion implies that max-rank = O(log heap-size).) Consolidation is initialized by setting
up an array A of trees (initially empty) indexed by the range [0,max-rank]. A non-empty
position A[d] of A contains a tree of rank d. The trees of the forest are then processed
using the array A as follows. To process a tree T of rank d, we insert T into A[d] if this
position of A is empty, completing the processing of T. However, if A[d] already contains a
tree U, then T and U are linked together to form a tree W, and the processing continues
as before, but with W in place of T, until eventually an empty location of A is accessed,
completing the processing associated with T. After all of the trees have been processed in
this manner, the array A is scanned, placing each of its stored trees in a new forest. Apart
from the final scanning step, the total time necessary to consolidate a forest is proportional
to its number of trees, since the total number of tree pairings that can take place is bounded
by this number (each pairing reduces by one the total number of trees present). The time
required for the final scanning step is given by max-rank = log(heap-size).

The amortized timing analysis of Fibonacci heaps considers a potential function defined
as the total number of trees in the forests of the various heaps being maintained. Ignoring
consolidation, each operation takes constant actual time, apart from an amount of time
proportional to the number of subtree cuts due to cascading (which, as noted above, is only
constant in amortized terms). These cuts also contribute to the potential. The children of a
deleted node increase the potential by O(logheap-size). Deletion of a minimum heap node
additionally incurs the cost of consolidation. However, consolidation reduces our potential,
so that the amortized time it requires is only O(log heap-size). We conclude therefore that
all non-deletion operations require constant amortized time, and deletion requires O(logn)
amortized time.

An interesting and unresolved issue concerns the protocol of cascading cuts. How would
the performance of Fibonacci heaps be affected by the absence of this protocol?

Detailed code for manipulating Fibonacci heaps can found in Knuth [9].
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7.4 Pairing Heaps

The pairing heap was designed to be a self-adjusting analogue of the Fibonacci heap, in
much the same way that the skew heap is a self-adjusting analogue of the leftist heap
(See Chapters 5 and 6). The only structure maintained in a pairing heap node, besides
item information, consists of three pointers: leftmost child, and two sibling pointers. (The
leftmost child of a node uses it left sibling pointer to point to its parent, to facilitate updating
the leftmost child pointer its parent.) See Figure 7.12 for an illustration of pointer structure.

FIGURE 7.12: Pointers among a pairing heap node and its three children.

The are no cascading cuts — only simple cuts for decrease-key and deletion operations.
With the absence of parent pointers, decrease-key operations uniformly require a single cut
(removal from the sibling list, in actuality), as there is no efficient way to check whether
heap-order would otherwise be violated. Although there are several varieties of pairing
heaps, our discussion presents the two-pass version (the simplest), for which a given heap
consists of only a single tree. The minimum element is thus uniquely located, and melding
requires only a single linking operation. Similarly, a decrease-key operation consists of a
subtree cut followed by a linking operation. Extractmin is implemented by removing the
tree root and then linking the root’s subtrees in a manner described below. Other deletions
involve (a) a subtree cut, (b) an extractmin operation on the cut subtree, and (c) linking
the remnant of the cut subtree with the original root.

The extractmin operation combines the subtrees of the root using a process referred to
as two-pass pairing. Let x1, -+, xp be the subtrees of the root in left-to-right order. The
first pass begins by linking z; and x2. Then z3 and x4 are linked, followed by x5 and xg,
etc., so that the odd positioned trees are linked with neighboring even positioned trees. Let
Y1, * -+, Yn, b = [k/2], be the resulting trees, respecting left-to-right order. (If k is odd,
then yri/27 is 21.) The second pass reduces these to a single tree with linkings that proceed
from right-to-left. The rightmost pair of trees, y; and y,_1 are linked first, followed by the
linking of y,_o with the result of the preceding linking etc., until finally we link y; with the
structure formed from the linkings of ys, - -+, yx. See Figure 7.13.

Since two-pass pairing is not particularly intuitive, a few motivating remarks are offered.
The first pass is natural enough, and one might consider simply repeating the process on
the remaining trees, until, after logarithmically many such passes, only one tree remains.
Indeed, this is known as the multi-pass variation. Unfortunately, its behavior is less under-
stood than that of the two-pass pairing variation.

The second (right-to-left) pass is also quite natural. Let H be a binomial heap with exactly
2% items, so that it consists of a single tree. Now suppose that an extractmin followed by
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(a) first pass.

(b) second pass.

FIGURE 7.13: Two-pass Pairing. The encircled trees get linked. For example, in (b) trees
A and B get linked, and the result then gets linked with the tree C, etc.

an insertion operation are executed. The linkings that take place among the subtrees of the
deleted root (after the new node is linked with the rightmost of these subtrees) entail the
right-to-left processing that characterizes the second pass. So why not simply rely upon a
single right-to-left pass, and omit the first? The reason, is that although the second pass
preserves existing balance within the structure, it doesn’t improve upon poorly balanced
situations (manifested when most linkings take place between trees of disparate sizes). For
example, using a single-right-to-left-pass version of a pairing heap to sort an increasing
sequence of length n (n insertions followed by n extractmin operations), would result in an
n? sorting algorithm. (Each of the extractmin operations yields a tree of height 1 or less.)
See Section 7.6, however, for an interesting twist.

In actuality two-pass pairing was inspired [5] by consideration of splay trees (Chapter 12).
If we consider the child, sibling representation that maps a forest of arbitrary trees into a
binary tree, then two-pass pairing can be viewed as a splay operation on a search tree path
with no bends [5]. The analysis for splay trees then carries over to provide an amortized
analysis for pairing heaps.

The asymptotic behavior of pairing heaps is an interesting and unresolved matter. Re-
flecting upon the tree structures we have encountered in this chapter, if we view the binomial
trees that comprise binomial heaps, their structure highly constrained, as likened to perfectly
spherical masses of discrete diameter, then the trees that comprise Fibonacci heaps can be
viewed as rather rounded masses, but rarely spherical, and of arbitrary (non-discrete) size.
Applying this imagery to the trees that arise from pairing heap manipulations, we can aptly
liken these trees to chunks of clay subject to repeated tearing and compaction, typically
irregular in form. It is not obvious, therefore, that pairing heaps should be asymptotically
efficient. On the other hand, since the pairing heap design dispenses with the rather com-
plicated, carefully crafted constructs put in place primarily to facilitate proving the time
bounds enjoyed by Fibonacci heaps, we can expect efficiency gains at the level of elemen-

© 2005 by Chapman & Hall/CRC



7-14 Handbook of Data Structures and Applications

tary steps such as linking operations. From a practical standpoint the data structure is
a success, as seen from the study of Moret and Shapiro [11]. Also, for those applications
for which decrease-key operations are highly predominant, pairing heaps provably meet the
optimal asymptotic bounds characteristic of Fibonacci heaps [3]. But despite this, as well
as empirical evidence consistent with optimal efficiency in general, pairing heaps are in
fact asymptotically sub-optimal for certain operation sequences [3]. Although decrease-key
requires only constant worst-case time, its execution can asymptotically degrade the effi-
ciency of extractmin operations, even though the effect is not observable in practice. On
the positive side, it has been demonstrated [5] that under all circumstances the operations
require only O(logn) amortized time. Additionally, Iacono [7] has shown that insertions
require only constant amortized time; significant for those applications that entail many
more insertions than deletions.

The reader may wonder whether some alternative to two-pass pairing might provably
attain the asymptotic performance bounds satisfied by Fibonacci heaps. However, for
information-theoretic reasons no such alternative exists. (In fact, this is how we know
the two-pass version is sub-optimal.) A precise statement and proof of this result appears
in Fredman [3].

Detailed code for manipulating pairing heaps can be found in Weiss [14].

7.5 Pseudocode Summaries of the Algorithms

This section provides pseudocode reflecting the above algorithm descriptions. The proce-
dures, link and insert, are sufficiently common with respect to all three data structures, that
we present them first, and then turn to those procedures having implementations specific
to a particular data structure.

7.5.1 Link and Insertion Algorithms

Function link(x,y){
// x and y are tree roots. The operation makes the root with the
// larger key the leftmost child of the other root. For binomial and
// Fibonacci heaps, the rank field of the prevailing root is
// incremented. Also, for Fibonacci heaps, the node becoming the child
// gets unmarked if it happens to be originally marked. The function
// returns a pointer to the node x or y that becomes the root.

3

Algorithm Insert(x,H){
//Inserts into heap H the item x
I = Makeheap(x)
// Creates a single item heap I containing the item x.
H = Meld(H,I).
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7.5.2 Binomial Heap-Specific Algorithms

Function Meld(H,I){
// The forest lists of H and I are combined and consolidated -- trees
// having common rank are linked together until only trees of distinct
// ranks remain. (As described above, the process resembles binary
// addition.) A pointer to the resulting list is returned. The
// original lists are no longer available.

}

Function Extractmin(H){
//Returns the item containing the minimum key in the heap H.
//The root node r containing this item is removed from H.
r = find-minimum-root (H)
if(r = null){return "Empty"}

else{
Xx = item in r
H = remove(H,r)
// removes the tree rooted at r from the forest of H
I = reverse(list of children of r)
H = Meld(H,I)
return x
}

3

Algorithm Delete(x,H)

//Removes from heap H the item in the node referenced by x.

r = sift-up(x)
// r is the root of the tree containing x. As described above,
// sift-up moves the item information in x to r.

H = remove(H,r)
// removes the tree rooted at r from the forest of H

I = reverse(list of children of r)

H = Meld(H,I)

7.5.3 Fibonacci Heap-Specific Algorithms

Function Findmin (H){
//Return the item in the node referenced by the min-pointer of H
//(or "Empty" if applicable)

b

Function Meld(H,I){
// The forest lists of H and I are concatenated. The keys referenced
// by the respective min-pointers of H and I are compared, and the
// min-pointer referencing the larger key is discarded. The concatenation
// result and the retained min-pointer are returned. The original
// forest lists of H and I are no longer available.
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Algorithm Cascade-Cut(x,H){
//Used in decrease-key and deletion. Assumes parent(x) != null
y = parent (x)
cut (x,H)
// The subtree rooted at x is removed from parent(x) and inserted into
// the forest list of H. The mark-field of x is set to FALSE, and the
// rank of parent(x) is decremented.

xX=y
while(x is marked and parent(x) != null){
y = parent(x)
cut (x,H)
X=y
}
Set mark-field of x = TRUE
}
Algorithm Decrease-key(x,k,H){
key(x) = k
if (key of min-pointer(H) > k){ min-pointer(H) = x}
if (parent(x) != null and key(parent(x)) > k){ Cascade-Cut(x,H)}
}

Algorithm Delete(x,H){
If (parent(x) !'= null){
Cascade-Cut (x,H)
forest-1list(H) = concatenate(forest-list(H), leftmost-child(x))
H = remove(H,x)
// removes the (single node) tree rooted at x from the forest of H

}
elseq{
forest-1list(H) = concatenate(forest-list(H), leftmost-child(x))
H = remove(H,x)
if (min-pointer () = x){
consolidate (H)
// trees of common rank in the forest list of H are linked
// together until only trees having distinct ranks remain. The
// remaining trees then constitute the forest list of H.
// min-pointer is reset to reference the root with minimum key.
}
}

7.5.4 Pairing Heap-Specific Algorithms

Function Findmin(H){
// Returns the item in the node referenced by H (or "empty" if applicable)

3

Function Meld(H,I){
return link(H,I)
}
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Function Decrease-key(x,k,H){
If(x !'= H){
Cut (x)
// The node x is removed from the child list in which it appears
key(x) = k
H = link(H,x)
}
else{ key(H) = k}
X

Function Two-Pass-Pairing(x){
// x is assumed to be a pointer to the first node of a list of tree
// roots. The function executes two-pass pairing to combine the trees
// into a single tree as described above, and returns a pointer to
// the root of the resulting tree.

b

Algorithm Delete(x,H){
y = Two-Pass-Pairing(leftmost-child(x))
if(x = W{ H =y}
elseq{
Cut (x)
// The subtree rooted at x is removed from its list of siblings.
H = link(H,y)

7.6 Related Developments

In this section we describe some results pertinent to the data structures of this chapter.
First, we discuss a variation of the pairing heap, referred to as the skew-pairing heap. The
skew-pairing heap appears as a form of “missing link” in the landscape occupied by pairing
heaps and skew heaps (Chapter 6). Second, we discuss some adaptive properties of pairing
heaps. Finally, we take note of soft heaps, a new shoot of activity emanating from the
primordial binomial heap structure that has given rise to the topics of this chapter.

Skew-Pairing Heaps

There is a curious variation of the pairing heap which we refer to as a skew-pairing heap
— the name will become clear. Aside from the linking process used for combining subtrees
in the extractmin operation, skew-pairing heaps are identical to two-pass pairing heaps.
The skew-pairing heap extractmin linking process places greater emphasis on right-to-left
linking than does the pairing heap, and proceeds as follows.

First, a right-to-left linking of the subtrees that fall in odd numbered positions is executed.
Let Hy,qq denote the result. Similarly, the subtrees in even numbered positions are linked
in right-to-left order. Let Hcyen denote the result. Finally, we link the two trees, H,qq and
Heyern. Figure 7.14 illustrates the process.

The skew-pairing heap enjoys O(logn) time bounds for the usual operations. Moreover,
it has the following curious relationship to the skew heap. Suppose a finite sequence S of
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(a) subtrees before linking.

(b) linkings.

FIGURE 7.14: Skew-pairing heap: linking of subtrees performed by extractmin. As de-
scribed in Figure 7.13, encircled trees become linked.

meld and extractmin operations is executed (beginning with heaps of size 1) using (a) a
skew heap and (b) a skew-pairing heap. Let Cs and Cs_,, be the respective sets of compar-
isons between keys that actually get performed in the course of the respective executions
(ignoring the order of the comparison executions). Then Cs_, C Cs [4]. Moreover, if the
sequence S terminates with the heap empty, then Cs_, = Cs. (This inspires the name
“skew-pairing”.) The relationship between skew-pairing heaps and splay trees is also inter-
esting. The child, sibling transformation, which for two-pass pairing heaps transforms the
extractmin operation into a splay operation on a search tree path having no bends, when
applied to the skew-pairing heap, transforms extractmin into a splay operation on a search
tree path having a bend at each node. Thus, skew-pairing heaps and two-pass pairing heaps
demarcate opposite ends of a spectrum.

Adaptive Properties of Pairing Heaps

Consider the problem of merging k sorted lists of respective lengths ny, ns, -+, ng, with
> m; = n. The standard merging strategy that performs lgk rounds of pairwise list
merges requires nlgk time. However, a merge pattern based upon the binary Huffman
tree, having minimal external path length for the weights n1, no, - -, nk, is more efficient
when the lengths n; are non-uniform, and provides a near optimal solution. Pairing heaps
can be utilized to provide a rather different solution as follows. Treat each sorted list as a
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linearly structured pairing heap. Then (a) meld these k heaps together, and (b) repeatedly
execute extractmin operations to retrieve the n items in their sorted order. The number of
comparisons that take place is bounded by

O(log( nl” . ))

Since the above multinomial coefficient represents the number of possible merge patterns,
the information-theoretic bound implies that this result is optimal to within a constant
factor. The pairing heap thus self-organizes the sorted list arrangement to approximate
an optimal merge pattern. Iacono has derived a “working-set” theorem that quantifies a
similar adaptive property satisfied by pairing heaps. Given a sequence of insertion and
extractmin operations initiated with an empty heap, at the time a given item z is deleted
we can attribute to x a contribution bounded by O(logop(x)) to the total running time of
the sequence, where op(x) is the number of heap operations that have taken place since x
was inserted (see [8] for a slightly tighter estimate). Iacono has also shown that this same
bound applies for skew and skew-pairing heaps [8]. Knuth [10] has observed, at least in
qualitative terms, similar behavior for leftist heaps . Quoting Knuth:

Leftist trees are in fact already obsolete, except for applications with a strong
tendency towards last-in-first-out behavior.

Soft Heaps

An interesting development (Chazelle [1]) that builds upon and extends binomial heaps in
a different direction is a data structure referred to as a soft heap. The soft heap departs
from the standard notion of priority queue by allowing for a type of error, referred to as
corruption, which confers enhanced efficiency. When an item becomes corrupted, its key
value gets increased. Findmin returns the minimum current key, which might or might not
be corrupted. The user has no control over which items become corrupted, this prerogative
belonging to the data structure. But the user does control the overall amount of corruption
in the following sense.

The user specifies a parameter, 0 < € < 1/2, referred to as the error rate, that governs
the behavior of the data structure as follows. The operations findmin and deletion are
supported in constant amortized time, and insertion is supported in O(log1/¢) amortized
time. Moreover, no more than an € fraction of the items present in the heap are corrupted
at any given time.

To illustrate the concept, let = be an item returned by findmin, from a soft heap of size
n. Then there are no more than en items in the heap whose original keys are less than the
original key of x.

Soft heaps are rather subtle, and we won’t attempt to discuss specifics of their design. Soft
heaps have been used to construct an optimal comparison-based minimum spanning tree
algorithm (Pettie and Ramachandran [12]), although its actual running time has not been
determined. Soft heaps have also been used to construct a comparison-based algorithm with
known running time ma(m,n) on a graph with n vertices and m edges (Chazelle [2]), where
a(m,n) is a functional inverse of the Ackermann function. Chazelle [1] has also observed
that soft heaps can be used to implement median selection in linear time; a significant
departure from previous methods.
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8.1 Definition and an Application

A double-ended priority queue (DEPQ) is a collection of zero or more elements. Each
element has a priority or value. The operations performed on a double-ended priority
queue are:

1. getMin() ... return element with minimum priority

2. getMax() ... return element with maximum priority

3. put(z) ... insert the element x into the DEPQ

4. removeMin() ... remove an element with minimum priority and return this
element

5. removeMaz() ... remove an element with maximum priority and return this
element

One application of a DEPQ is to the adaptation of quick sort, which has the the best
expected run time of all known internal sorting methods, to external sorting. The basic
idea in quick sort is to partition the elements to be sorted into three groups L, M, and
R. The middle group M contains a single element called the pivot, all elements in the left
group L are < the pivot, and all elements in the right group R are > the pivot. Following
this partitioning, the left and right element groups are sorted recursively.

In an external sort, we have more elements than can be held in the memory of our
computer. The elements to be sorted are initially on a disk and the sorted sequence is to
be left on the disk. When the internal quick sort method outlined above is extended to an

8-1
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external quick sort, the middle group M is made as large as possible through the use of a
DEPQ. The external quick sort strategy is:

1. Read in as many elements as will fit into an internal DEPQ. The elements in the
DEPQ will eventually be the middle group of elements.

2. Read in the remaining elements. If the next element is < the smallest element
in the DEPQ, output this next element as part of the left group. If the next
element is > the largest element in the DEPQ, output this next element as part
of the right group. Otherwise, remove either the max or min element from the
DEPQ (the choice may be made randomly or alternately); if the max element
is removed, output it as part of the right group; otherwise, output the removed
element as part of the left group; insert the newly input element into the DEPQ.

3. Output the elements in the DEPQ), in sorted order, as the middle group.

4. Sort the left and right groups recursively.

In this chapter, we describe four implicit data structures—symmetric min-max heaps,
interval heaps, min-max heaps, and deaps—for DEPQs. Also, we describe generic methods
to obtain efficient DEPQ data structures from efficient data structures for single-ended
priority queues (PQ).!

8.2 Symmetric Min-Max Heaps

Several simple and efficient implicit data structures have been proposed for the represen-
tation of a DEPQ [1,2,4,5,16,17,21]. All of these data structures are adaptations of the
classical heap data structure (Chapter 2) for a PQ. Further, in all of these DEPQ data struc-
tures, get Max and get Min take O(1) time and the remaining operations take O(log n) time
each (n is the number of elements in the DEPQ). The symmetric min-max heap structure
of Arvind and Pandu Rangan [1] is the simplest of the implicit data structures for DEPQs.
Therefore, we describe this data structure first.

A symmetric min-maz heap (SMMH) is a complete binary tree in which each node other
than the root has exactly one element. The root of an SMMH is empty and the total number
of nodes in the SMMH is n + 1, where n is the number of elements. Let z be any node of
the SMMH. Let elements(x) be the elements in the subtree rooted at x but excluding the
element (if any) in z. Assume that elements(z) # (). x satisfies the following properties:

1. The left child of = has the minimum element in elements(z).
2. The right child of z (if any) has the maximum element in elements(z).

Figure 8.1 shows an example SMMH that has 12 elements. When z denotes the node
with 80, elements(z) = {6,14,30,40}; the left child of « has the minimum element 6 in
elements(x); and the right child of x has the maximum element 40 in elements(x). You
may verify that every node x of this SMMH satisfies the stated properties.

Since an SMMH is a complete binary tree, it is stored as an implicit data structure using
the standard mapping of a complete binary tree into an array. When n = 1, the minimum
and maximum elements are the same and are in the left child of the root of the SMMH.

LA minPQ supports the operations getmin(), put(zx), and removeMin() while a maxzPQ supports the
operations getMazx(), put(x), and removeMazx().
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FIGURE 8.2: The SMMH of Figure 8.1 with a node added.

When n > 1, the minimum element is in the left child of the root and the maximum is in
the right child of the root. So the getMin and getM ax operations take O(1) time.

It is easy to see that an n + 1-node complete binary tree with an empty root and one
element in every other node is an SMMH iff the following are true:

P1: For every node x that has a right sibling, the element in z is less than or equal
to that in the right sibling of x.

P2: For every node z that has a grandparent, the element in the left child of the
grandparent is less than or equal to that in x.

P3: For every node z that has a grandparent, the element in the right child of the
grandparent is greater than or equal to that in x.

Notice that if property P1 is satisfied at node x, then at most one of P2 and P3 may be
violated at z. Using properties P1 through P3 we arrive at simple algorithms to insert and
remove elements. These algorithms are simple adaptations of the corresponding algorithms
for min and max heaps. Their complexity is O(logn). We describe only the insert operation.
Suppose we wish to insert 2 into the SMMH of Figure 8.1. Since an SMMH is a complete
binary tree, we must add a new node to the SMMH in the position shown in Figure 8.2;
the new node is labeled A. In our example, A will denote an empty node.

If the new element 2 is placed in node A, property P2 is violated as the left child of the
grandparent of A has 6. So we move the 6 down to A and obtain Figure 8.3.

Now we see if it is safe to insert the 2 into node A. We first notice that property P1
cannot be violated, because the previous occupant of node A was greater than 2. Similarly,
property P3 cannot be violated. Only P2 can be violated only when x = A. So we check
P2 with x = A. We see that P2 is violated because the left child of the grandparent of A
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FIGURE 8.5: The SMMH of Figure 8.4 with 2 inserted.

has the element 4. So we move the 4 down to A and obtain the configuration shown in
Figure 8.4.

For the configuration of Figure 8.4 we see that placing 2 into node A cannot violate
property P1, because the previous occupant of node A was greater than 2. Also properties
P2 and P3 cannot be violated, because node A has no grandparent. So we insert 2 into
node A and obtain Figure 8.5.

Let us now insert 50 into the SMMH of Figure 8.5. Since an SMMH is a complete binary
tree, the new node must be positioned as in Figure 8.6.

Since A has a right child of its parent, we first check P1 at node A. If the new element
(in this case 50) is smaller than that in the left sibling of A, we swap the new element and
the element in the left sibling. In our case, no swap is done. Then we check P2 and P3.
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FIGURE 8.6: The SMMH of Figure 8.5 with a node added.

FIGURE 8.7: The SMMH of Figure 8.6 with 40 moved down.

We see that placing 50 into A would violate P3. So the element 40 in the right child of the
grandparent of A is moved down to node A. Figure 8.7 shows the resulting configuration.
Placing 50 into node A of Figure 8.7 cannot create a P1 violation because the previous
occupant of node A was smaller. Also, a P2 violation isn’t possible either. So only P3 needs
to be checked at A. Since there is no P3 violation at A, 50 is placed into A.

The algorithm to remove either the min or max element is a similar adaptation of the
trickle-down algorithm used to remove an element from a min or max heap.

8.3 Interval Heaps

The twin heaps of [21], the min-max pair heaps of [17], the interval heaps of [11,16], and the
diamond deques of [5] are virtually identical data structures. In each of these structures,
an n element DEPQ is represented by a min heap with [n/2] elements and a max heap
with the remaining [n/2] elements. The two heaps satisfy the property that each element
in the min heap is < the corresponding element (two elements correspond if they occupy
the same position in their respective binary trees) in the max heap. When the number of
elements in the DEPQ is odd, the min heap has one element (i.e., element [n/2]) that has
no corresponding element in the max heap. In the twin heaps of [21], this is handled as
a special case and one element is kept outside of the two heaps. In min-max pair heaps,
interval heaps, and diamond deques, the case when n is odd is handled by requiring element
[n/2] of the min heap to be < element [n/4] of the max heap.

In the twin heaps of [21], the min and max heaps are stored in two arrays min and max
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FIGURE 8.8: An interval heap.

using the standard array representation of a complete binary tree? [15]. The correspondence
property becomes min[i] < maz[i], 1 <1i < [n/2]. In the min-max pair heaps of [17] and
the interval heaps of [16], the two heaps are stored in a single array minmaz and we have
minmax[i].min being the ¢’th element of the min heap, 1 < i < [n/2] and minmazx[i].mazx
being the i’th element of the max heap, 1 <i < |n/2]. In the diamond deque [5], the two
heaps are mapped into a single array with the min heap occupying even positions (beginning
with position 0) and the max heap occupying odd positions (beginning with position 1).
Since this mapping is slightly more complex than the ones used in twin heaps, min-max
pair heaps, and interval heaps, actual implementations of the diamond deque are expected
to be slightly slower than implementations of the remaining three structures.

Since the twin heaps of [21], the min-max pair heaps of [17], the interval heaps of [16],
and the diamond deques of [5] are virtually identical data structures, we describe only one
of these—interval heaps—in detail. An interval heap is a complete binary tree in which
each node, except possibly the last one (the nodes of the complete binary tree are ordered
using a level order traversal), contains two elements. Let the two elements in node P be a
and b, where a < b. We say that the node P represents the closed interval [a,b]. a is the
left end point of the interval of P, and b is its right end point.

The interval [, d] is contained in the interval [a, ] iff @ < ¢ < d < b. In an interval heap,
the intervals represented by the left and right children (if they exist) of each node P are
contained in the interval represented by P. When the last node contains a single element
¢, then a < ¢ < b, where [a, b] is the interval of the parent (if any) of the last node.

Figure 8.8 shows an interval heap with 26 elements. You may verify that the intervals
represented by the children of any node P are contained in the interval of P.

The following facts are immediate:

1. The left end points of the node intervals define a min heap, and the right end
points define a max heap. In case the number of elements is odd, the last node
has a single element which may be regarded as a member of either the min or
max heap. Figure 8.9 shows the min and max heaps defined by the interval heap
of Figure 8.8.

2. When the root has two elements, the left end point of the root is the minimum
element in the interval heap and the right end point is the maximum. When

2In a full binary tree, every non-empty level has the maximum number of nodes possible for that level.
Number the nodes in a full binary tree 1, 2, --- beginning with the root level and within a level from
left to right. The nodes numbered 1 through n define the unique complete binary tree that has n nodes.
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(a) min heap (b) max heap

FIGURE 8.9: Min and max heaps embedded in Figure 8.8.

FIGURE 8.10: Interval heap of Figure 8.8 after one node is added.

the root has only one element, the interval heap contains just one element. This
element is both the minimum and maximum element.

3. An interval heap can be represented compactly by mapping into an array as is
done for ordinary heaps. However, now, each array position must have space for
two elements.

4. The height of an interval heap with n elements is O(logn).

8.3.1 Inserting an Element

Suppose we are to insert an element into the interval heap of Figure 8.8. Since this heap
currently has an even number of elements, the heap following the insertion will have an
additional node A as is shown in Figure 8.10.

The interval for the parent of the new node A is [6,15]. Therefore, if the new element is
between 6 and 15, the new element may be inserted into node A. When the new element is
less than the left end point 6 of the parent interval, the new element is inserted into the min
heap embedded in the interval heap. This insertion is done using the min heap insertion
procedure starting at node A. When the new element is greater than the right end point
15 of the parent interval, the new element is inserted into the max heap embedded in the
interval heap. This insertion is done using the max heap insertion procedure starting at
node A.

If we are to insert the element 10 into the interval heap of Figure 8.8, this element is put
into the node A shown in Figure 8.10. To insert the element 3, we follow a path from node
A towards the root, moving left end points down until we either pass the root or reach a
node whose left end point is < 3. The new element is inserted into the node that now has
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FIGURE 8.12: The interval heap of Figure 8.8 with 40 inserted.

no left end point. Figure 8.11 shows the resulting interval heap.

To insert the element 40 into the interval heap of Figure 8.8, we follow a path from node
A (see Figure 8.10) towards the root, moving right end points down until we either pass the
root or reach a node whose right end point is > 40. The new element is inserted into the
node that now has no right end point. Figure 8.12 shows the resulting interval heap.

Now, suppose we wish to insert an element into the interval heap of Figure 8.12. Since
this interval heap has an odd number of elements, the insertion of the new element does
not increase the number of nodes. The insertion procedure is the same as for the case when
we initially have an even number of elements. Let A denote the last node in the heap. If
the new element lies within the interval [6, 15] of the parent of A, then the new element is
inserted into node A (the new element becomes the left end point of A if it is less than the
element currently in A). If the new element is less than the left end point 6 of the parent
of A, then the new element is inserted into the embedded min heap; otherwise, the new
element is inserted into the embedded max heap. Figure 8.13 shows the result of inserting
the element 32 into the interval heap of Figure 8.12.

8.3.2 Removing the Min Element

The removal of the minimum element is handled as several cases:

1. When the interval heap is empty, the removeMin operation fails.

2. When the interval heap has only one element, this element is the element to be
returned. We leave behind an empty interval heap.

3. When there is more than one element, the left end point of the root is to be
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FIGURE 8.13: The interval heap of Figure 8.12 with 32 inserted.

FIGURE 8.14: The interval heap of Figure 8.13 with minimum element removed.

returned. This point is removed from the root. If the root is the last node of the
interval heap, nothing more is to be done. When the last node is not the root
node, we remove the left point p from the last node. If this causes the last node to
become empty, the last node is no longer part of the heap. The point p removed
from the last node is reinserted into the embedded min heap by beginning at the
root. As we move down, it may be necessary to swap the current p with the right
end point r of the node being examined to ensure that p < r. The reinsertion is
done using the same strategy as used to reinsert into an ordinary heap.

Let us remove the minimum element from the interval heap of Figure 8.13. First, the
element 2 is removed from the root. Next, the left end point 15 is removed from the last
node and we begin the reinsertion procedure at the root. The smaller of the min heap
elements that are the children of the root is 3. Since this element is smaller than 15, we
move the 3 into the root (the 3 becomes the left end point of the root) and position ourselves
at the left child B of the root. Since, 15 < 17 we do not swap the right end point of B with
the current p = 15. The smaller of the left end points of the children of B is 3. The 3 is
moved from node C into node B as its left end point and we position ourselves at node C.
Since p = 15 > 11, we swap the two and 15 becomes the right end point of node C. The
smaller of left end points of Cs children is 4. Since this is smaller than the current p = 11,
it is moved into node C' as this node’s left end point. We now position ourselves at node D.
First, we swap p = 11 and Ds right end point. Now, since D has no children, the current
p =T is inserted into node D as Ds left end point. Figure 8.14 shows the result.

The max element may removed using an analogous procedure.
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8.3.3 Initializing an Interval Heap

Interval heaps may be initialized using a strategy similar to that used to initialize ordinary
heaps—work your way from the heap bottom to the root ensuring that each subtree is an
interval heap. For each subtree, first order the elements in the root; then reinsert the left
end point of this subtree’s root using the reinsertion strategy used for the removeMin
operation, then reinsert the right end point of this subtree’s root using the strategy used
for the remove M ax operation.

8.3.4 Complexity of Interval Heap Operations

The operations isEmpty(), size(), getMin(), and get Max() take O(1) time each; put(x),
removeMin(), and removeM ax() take O(logn) each; and initializing an n element interval
heap takes O(n) time.

8.3.5 The Complementary Range Search Problem

In the complementary range search problem, we have a dynamic collection (i.e., points are
added and removed from the collection as time goes on) of one-dimensional points (i.e.,
points have only an z-coordinate associated with them) and we are to answer queries of the
form: what are the points outside of the interval [a,b]? For example, if the point collection
is 3,4,5,6,8,12, the points outside the range [5,7] are 3,4, 8,12.

When an interval heap is used to represent the point collection, a new point can be
inserted or an old one removed in O(logn) time, where n is the number of points in the
collection. Note that given the location of an arbitrary element in an interval heap, this
element can be removed from the interval heap in O(logn) time using an algorithm similar
to that used to remove an arbitrary element from a heap.

The complementary range query can be answered in ©(k) time, where k is the number
of points outside the range [a,b]. This is done using the following recursive procedure:

1. If the interval tree is empty, return.

2. If the root interval is contained in [a, b], then all points are in the range (therefore,
there are no points to report), return.

3. Report the end points of the root interval that are not in the range [a, ).

4. Recursively search the left subtree of the root for additional points that are not
in the range [a, b].

5. Recursively search the right subtree of the root for additional points that are not
in the range [a, b].

6. return

Let us try this procedure on the interval heap of Figure 8.13. The query interval is [4, 32].
We start at the root. Since the root interval is not contained in the query interval, we reach
step 3 of the procedure. Whenever step 3 is reached, we are assured that at least one of the
end points of the root interval is outside the query interval. Therefore, each time step 3 is
reached, at least one point is reported. In our example, both points 2 and 40 are outside
the query interval and so are reported. We then search the left and right subtrees of the
root for additional points. When the left subtree is searched, we again determine that the
root interval is not contained in the query interval. This time only one of the root interval
points (i.e., 3) is to be outside the query range. This point is reported and we proceed to
search the left and right subtrees of B for additional points outside the query range. Since
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the interval of the left child of B is contained in the query range, the left subtree of B
contains no points outside the query range. We do not explore the left subtree of B further.
When the right subtree of B is searched, we report the left end point 3 of node C' and
proceed to search the left and right subtrees of C. Since the intervals of the roots of each
of these subtrees is contained in the query interval, these subtrees are not explored further.
Finally, we examine the root of the right subtree of the overall tree root, that is the node
with interval [4,32]. Since this node’s interval is contained in the query interval, the right
subtree of the overall tree is not searched further.

The complexity of the above six step procedure is © (number of interval heap nodes visited).
The nodes visited in the preceding example are the root and its two children, node B and
its two children, and node C' and its two children. Thus, 7 nodes are visited and a total of
4 points are reported.

We show that the total number of interval heap nodes visited is at most 3k + 1, where k
is the number of points reported. If a visited node reports one or two points, give the node
a count of one. If a visited node reports no points, give it a count of zero and add one to
the count of its parent (unless the node is the root and so has no parent). The number of
nodes with a nonzero count is at most k. Since no node has a count more than 3, the sum
of the counts is at most 3k. Accounting for the possibility that the root reports no point,
we see that the number of nodes visited is at most 3k + 1. Therefore, the complexity of
the search is ©(k). This complexity is asymptotically optimal because every algorithm that
reports k points must spend at least ©(1) time per reported point.

In our example search, the root gets a count of 2 (1 because it is visited and reports at
least one point and another 1 because its right child is visited but reports no point), node B
gets a count of 2 (1 because it is visited and reports at least one point and another 1 because
its left child is visited but reports no point), and node C' gets a count of 3 (1 because it
is visited and reports at least one point and another 2 because its left and right children
are visited and neither reports a point). The count for each of the remaining nodes in the
interval heap is 0.

8.4 Min-Max Heaps

In the min-max heap structure [2], all n DEPQ elements are stored in an n-node complete
binary tree with alternating levels being min levels and max levels (Figure 8.15, nodes at
max levels are shaded). The root level of a min-max heap is a min level. Nodes on a min
level are called min nodes while those on a max level are max nodes. Every min (max)
node has the property that its value is the smallest (largest) value in the subtree of which
it is the root. Since 5 is in a min node of Figure 8.15, it is the smallest value in its subtree.
Also, since 30 and 26 are in max nodes, these are the largest values in the subtrees of which
they are the root.

The following observations are a direct consequence of the definition of a min-max
heap.

1. When n = 0, there is no min nor max element.
2. When n = 1, the element in the root is both the min and the max element.

3. When n > 1, the element in the root is the min element; the max element is one
of the up to two children of the root.

From these observations, it follows that getMin() and getMaz() can be done in O(1)
time each.

© 2005 by Chapman & Hall/CRC



8-12 Handbook of Data Structures and Applications

° min

- Ol
OO OENOL
@ ®W®EOE

FIGURE 8.15: A 12-element min-max heap.
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FIGURE 8.16: A 13-node complete binary tree.

8.4.1 Inserting an Element

When inserting an element newElement into a min-max heap that has n elements, we go
from a complete binary tree that has n nodes to one that has n+1 nodes. So, for example, an
insertion into the 12-element min-max heap of Figure 8.15 results in the 13-node complete
binary tree of Figure 8.16.

When n = 0, the insertion simply creates a min-max heap that has a single node that con-
tains the new element. Assume that n > 0 and let the element in the parent, parentNode,
of the new node j be parentFElement. If newFElement is placed in the new node j, the
min- and max-node property can be violated only for nodes on the path from the root to
parentNode. So, the insertion of an element need only be concerned with ensuring that
nodes on this path satisfy the required min- and max-node property. There are three cases
to consider.

1. parentElement = newFElement
In this case, we may place newFElement into node j. With such a placement,
the min- and max-node properties of all nodes on the path from the root to
parentNode are satisfied.

2. parentNode > newElement
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FIGURE 8.17: Min-max heap of Figure 8.15 following insertion of 2.

If parentNode is a min node, we get a min-node violation. When a min-node
violation occurs, we know that all max nodes on the path from the root to
parentNode are greater than newFlement. So, a min-node violation may be
fixed by using the trickle-up process used to insert into a min heap; this trickle-
up process involves only the min nodes on the path from the root to parentNode.
For example, suppose that we are to insert newFElement = 2 into the min-max
heap of Figure 8.15. The min nodes on the path from the root to parentNode
have values 5 and 20. The 20 and the 5 move down on the path and the 2 trickles
up to the root node. Figure 8.17 shows the result. When newFElement = 15,
only the 20 moves down and the sequence of min nodes on the path from the
root to j have values 5, 15, 20.
The case when parentNode is a max node is similar.

3. parentNode < newFElement
When parentNode is a min node, we conclude that all min nodes on the path from
the root to parentNode are smaller than newElement. So, we need be concerned
only with the max nodes (if any) on the path from the root to parentNode. A
trickle-up process is used to correctly position newFElement with respect to the
elements in the max nodes of this path. For the example of Figure 8.16, there is
only one max node on the path to parentNode. This max node has the element
26. If newFElement > 26, the 26 moves down to j and newElement trickles up to
the former position of 26 (Figure 8.18 shows the case when newElement = 32).
If newFElement < 26, newFElement is placed in j.
The case when parentNode is a max node is similar.

Since the height of a min-max heap is ©(logn) and a trickle-up examines a single element
at at most every other level of the min-max heap, an insert can be done in O(logn) time.

8.4.2 Removing the Min Element

When n = 0, there is no min element to remove. When n = 1, the min-max heap becomes
empty following the removal of the min element, which is in the root. So assume that
n > 1. Following the removal of the min element, which is in the root, we need to go
from an n-element complete binary tree to an (n — 1)-element complete binary tree. This
causes the element in position n of the min-max heap array to drop out of the min-max
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FIGURE 8.19: Situation following a remove min from Figure 8.15.

heap. Figure 8.17 shows the situation following the removal of the min element, 5, from
the min-max heap of Figure 8.15. In addition to the 5, which was the min element and
which has been removed from the min-max heap, the 22 that was in position n = 12 of
the min-max heap array has dropped out of the min-max heap. To get the dropped-out
element 22 back into the min-max heap, we perform a trickle-down operation that begins
at the root of the min-max heap.

The trickle-down operation for min-max heaps is similar to that for min and max heaps.
The root is to contain the smallest element. To ensure this, we determine the smallest
element in a child or grandchild of the root. If 22 is < the smallest of these children
and grandchildren, the 22 is placed in the root. If not, the smallest of the children and
grandchildren is moved to the root; the trickle-down process is continued from the position
vacated by the just moved smallest element.

In our example, examining the children and grandchildren of the root of Figure 8.19, we
determine that the smallest of these is 10. Since 10 < 22, the 10 moves to the root and
the 22 trickles down (Figure 8.20). A special case arises when this trickle down of the 22
by 2 levels causes the 22 to trickle past a smaller element (in our example, we trickle past
a larger element 30). When this special case arises, we simply exchange the 22 and the
smaller element being trickled past. The trickle-down process applied at the vacant node
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FIGURE 8.20: Situation following one iteration of the trickle-down process.

of Figure 8.20 results in the 22 being placed into the vacant node.

Suppose that droppedElement is the element dropped from minmazHeap[n] when a
remove min is done from an n-element min-max heap. The following describes the trickle-
down process used to reinsert the dropped element.

1. The root has no children.
In this case droppedElement is inserted into the root and the trickle down ter-
minates.

2. The root has at least one child.
Now the smallest key in the min-max heap is in one of the children or grandchil-
dren of the root. We determine which of these nodes has the smallest key. Let
this be node k. The following possibilities need to be considered:

(a) droppedElement < minmaxHeaplk].
droppedElement may be inserted into the root, as there is no smaller ele-
ment in the heap. The trickle down terminates.

(b) droppedElement > minmaxHeap[k] and k is a child of the root.
Since k is a max node, it has no descendants larger than minmax Heapl|k].
Hence, node k has no descendants larger than droppedElement. So, the
minmaxHeap[k] may be moved to the root, and droppedElement placed
into node k. The trickle down terminates.

(¢c) droppedElement > minmaxHeap[k] and k is a grandchild of the root.
minmaxHeap[k] is moved to the root. Let p be the parent of k. If droppedElement
> minmaxHeaplp], then minmaxHeaplp] and droppedElement are inter-
changed. This interchange ensures that the max node p contains the largest
key in the subheap with root p. The trickle down continues with k as the
root of a min-max (sub) heap into which an element is to be inserted.

The complexity of the remove-min operation is readily seen to be O(logn). The remove-
max operation is similar to the remove-min operation, and min-max heaps may be initialized
in ©(n) time using an algorithm similar to that used to initialize min and max heaps [15].
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T

FIGURE 8.21: An 11-element deap.

L

8.5 Deaps

The deap structure of [4] is similar to the two-heap structures of [5,16,17,21]. At the con-
ceptual level, we have a min heap and a max heap. However, the distribution of elements
between the two is not [n/2] and |n/2]. Rather, we begin with an (n + 1)-node complete
binary tree. Its left subtree is the min heap and its right subtree is the max heap (Fig-
ure 8.21, max-heap nodes are shaded). The correspondence property for deaps is slightly
more complex than that for the two-heap structures of [5,16,17,21].

A deap is a complete binary tree that is either empty or satisfies the following condi-
tions:

1. The root is empty.
2. The left subtree is a min heap and the right subtree is a max heap.

3. Correspondence property. Suppose that the right subtree is not empty. For every
node x in the left subtree, define its corresponding node y in the right subtree to
be the node in the same position as x. In case such a y doesn’t exist, let y be the
corresponding node for the parent of x. The element in = is < the element in y.

For the example complete binary tree of Figure 8.21, the corresponding nodes for the
nodes with 3, 7, 5, 9, 15, 11, and 12, respectively, have 20, 18, 16, 10, 18, 16, and 16.

Notice that every node y in the max heap has a unique corresponding node z in the min
heap. The correspondence property for max-heap nodes is that the element in y be > the
element in . When the correspondence property is satisfied for all nodes in the min heap,
this property is also satisfied for all nodes in the max heap.

We see that when n = 0, there is no min or max element, when n = 1, the root of the
min heap has both the min and the max element, and when n > 1, the root of the min heap
is the min element and the root of the max heap is the max element. So, both getMin()
and getMax() may be implemented to work in O(1) time.

8.5.1 Inserting an Element

When an element is inserted into an n-element deap, we go form a complete binary tree
that has n + 1 nodes to one that has n + 2 nodes. So, the shape of the new deap is well
defined. Following an insertion, our 11-element deap of Figure 8.21 has the shape shown in
Figure 8.22. The new node is node j and its corresponding node is node <.
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FIGURE 8.23: Deap of Figure 8.21 with 2 inserted.

To insert newFElement, temporarily place newFElement into the new node j and check
the correspondence property for node j. If the property isn’t satisfied, swap newFElement
and the element in its corresponding node; use a trickle-up process to correctly position
newFElement in the heap for the corresponding node ¢. If the correspondence property
is satisfied, do not swap newFlement; instead use a trickle-up process to correctly place
newFlement in the heap that contains node j.

Consider the insertion of newFlement = 2 into Figure 8.22. The element in the corre-
sponding node i is 15. Since the correspondence property isn’t satisfied, we swap 2 and 15.
Node j now contains 15 and this swap is guaranteed to preserve the max-heap properties of
the right subtree of the complete binary tree. To correctly position the 2 in the left subtree,
we use the standard min-heap trickle-up process beginning at node . This results in the
configuration of Figure 8.23.

To insert newFElement = 19 into the deap of Figure 8.22, we check the correspondence
property between 15 and 19. The property is satisfied. So, we use the trickle-up process
for max heaps to correctly position newFElement in the max heap. Figure 8.24 shows the
result.

Since the height of a deap is ©(logn), the time to insert into a deap is O(logn).
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P

FIGURE 8.25: Deap of Figure 8.21 following a remove min operation.

8.5.2 Removing the Min Element

Assume that n > 0. The min element is in the root of the min heap. Following its removal,
the deap size reduces to n — 1 and the element in position n+ 1 of the deap array is dropped
from the deap. In the case of our example of Figure 8.21, the min element 3 is removed
and the 10 is dropped. To reinsert the dropped element, we first trickle the vacancy in
the root of the min heap down to a leaf of the min heap. This is similar to a standard
min-heap trickle down with oo as the reinsert element. For our example, this trickle down
causes b and 11 to, respectively, move to their parent nodes. Then, the dropped element
10 is inserted using a trickle-up process beginning at the vacant leaf of the min heap. The
resulting deap is shown in Figure 8.25.

Since a removeMin requires a trickle-down pass followed by a trickle-up pass and since
the height of a deap is ©(logn), the time for a removeMin is O(logn). A removeMazx is
similar. Also, we may initialize a deap in ©(n) time using an algorithm similar to that used
to initialize a min or max heap [15].
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min heap max heap

FIGURE 8.26: Dual heap.

8.6 Generic Methods for DEPQs

8.6.1 Dual Priority Queues

General methods [8] exist to arrive at efficient DEPQ data structures from single-ended
priority queue data structures that also provide an efficient implementation of the remove
(theNode) operation (this operation removes the node theNode from the PQ). The simplest
of these methods, dual structure method, maintains both a min PQ (called minPQ) and a
max PQ (called mazPQ) of all the DEPQ elements together with correspondence pointers
between the nodes of the min PQ and the max PQ that contain the same element. Fig-
ure 8.26 shows a dual heap structure for the elements 6,7, 2,5,4. Correspondence pointers
are shown as double-headed arrows.

Although Figure 8.26 shows each element stored in both the min and the max heap, it is
necessary to store each element in only one of the two heaps.

The minimum element is at the root of the min heap and the maximum element is at the
root of the max heap. To insert an element x, we insert = into both the min and the max
heaps and then set up correspondence pointers between the locations of z in the min and
max heaps. To remove the minimum element, we do a removeMin from the min heap and
a remove(theNode), where theNode is the corresponding node for the removed element,
from the max heap. The maximum element is removed in an analogous way.

8.6.2 Total Correspondence

The notion of total correspondence borrows heavily from the ideas used in a twin heap
[21]. In the twin heap data structure n elements are stored in a min heap using an array
minHeap|l : n] and n other elements are stored in a max heap using the array mazHeap|l :
n]. The min and max heaps satisfy the inequality minHeap[i] < maxHeap[i], 1 < i < n.
In this way, we can represent a DEPQ with 2n elements. When we must represent a DEPQ
with an odd number of elements, one element is stored in a buffer, and the remaining
elements are divided equally between the arrays minHeap and maxH eap.

In total correspondence, we remove the positional requirement in the relationship between
pairs of elements in the min heap and max heap. The requirement becomes: for each
element a in minPQ there is a distinct element b in maxPQ@ such that a < b and vice
versa. (a,b) is a corresponding pair of elements. Figure 8.27(a) shows a twin heap with 11
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(a) Twin heap (b) Total correspondence heap

FIGURE 8.27: Twin heap and total correspondence heap.

elements and Figure 8.27(b) shows a total correspondence heap. The broken arrows connect
corresponding pairs of elements.

In a twin heap the corresponding pairs (minH eap|i], maxHeapli]) are implicit, whereas
in a total correspondence heap these pairs are represented using explicit pointers.

In a total correspondence DEPQ, the number of nodes is either n or n — 1. The space
requirement is half that needed by the dual priority queue representation. The time required
is also reduced. For example, if we do a sequence of inserts, every other one simply puts
the element in the buffer. The remaining inserts put one element in maxPQ and one in
minP@. So, on average, an insert takes time comparable to an insert in either mazPQ or
minP@. Recall that when dual priority queues are used the insert time is the sum of the
times to insert into maxPQ and minP(Q. Note also that the size of mazPQ and minPQ
together is half that of a dual priority queue.

If we assume that the complexity of the insert operation for priority queues as well as
2 remove(theNode) operations is no more than that of the delete max or min operation
(this is true for all known priority queue structures other than weight biased leftist trees
[6]), then the complexity of removeMax and removeMin for total correspondence DEPQs
is the same as for the removeMax and removeMin operation of the underlying priority
queue data structure.

Using the notion of total correspondence, we trivially obtain efficient DEPQ structures
starting with any of the known priority queue structures (other than weight biased leftist
trees [6]).

The removeM ax and removeMin operations can generally be programmed to run faster
than suggested by our generic algorithms. This is because, for example, a removeMax/()
and put(r) into a max priority queue can often be done faster as a single operation
changeMax(x). Similarly a remove(theNode) and put(z) can be programmed as a change
(theNode, z) operation.

8.6.3 Leaf Correspondence

In leaf correspondence DEPQs, for every leaf element a in minPQ), there is a distinct
element b in maxPQ such that a < b and for every leaf element ¢ in maxPQ there is a
distinct element d in minP@ such that d < c¢. Figure 8.28 shows a leaf correspondence
heap.

Efficient leaf correspondence DEPQs may be constructed easily from PQs that satisfy the
following requirements [8]:

(a) The PQ supports the operation remove(Q, p) efficiently.

(b) When an element is inserted into the PQ, no nonleaf node becomes a leaf node
(except possibly the node for the newly inserted item).
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buffer =9

FIGURE 8.28: Leaf correspondence heap.

(¢) When an element is deleted (using remove, removeMax or removeMin) from
the PQ, no nonleaf node (except possibly the parent of the deleted node) becomes
a leaf node.

Some of the PQ structures that satisfy these requirements are height-biased leftist trees
(Chapter 5) [9,15,20], pairing heaps (Chapter 7) [12,19], and Fibonacci heaps [13] (Chap-
ter 7). Requirements (b) and (c¢) are not satisfied, for example, by ordinary heaps and
the FMPQ structure of [3]. Although heaps and Brodal’s FMPQ structure do not satisfy
the requirements of our generic approach to build a leaf correspondence DEPQ structure
from a priority queue, we can nonetheless arrive at leaf correspondence heaps and leaf
correspondence FMP Qs using a customized approach.

8.7 Meldable DEPQs

A meldable DEPQ (MDEPQ) is a DEPQ that, in addition to the DEPQ operations listed
above, includes the operation

meld(z,y) ... meld the DEPQs z and y into a single DEPQ

The result of melding the double-ended priority queues z and y is a single double-ended
priority queue that contains all elements of x and y. The meld operation is destructive in
that following the meld, z and y do not remain as independent DEPQs.

To meld two DEPQs in less than linear time, it is essential that the DEPQs be represented
using explicit pointers (rather than implicit ones as in the array representation of a heap)
as otherwise a linear number of elements need to be moved from their initial to their final
locations. Olariu et al. [17] have shown that when the min-max pair heap is represented
in such a way, an n element DEPQ may be melded with a k element one (k < n) in
O(log(n/k) * logk) time. When k = /n, this is O(log®n). Hasham and Sack [14] have
shown that the complexity of melding two min-max heaps of size n and k, respectively, is
Q(n + k). Brodal [3] has developed an MDEPQ implementation that allows one to find
the min and max elements, insert an element, and meld two priority queues in O(1) time.
The time needed to delete the minimum or maximum element is O(logn). Although the
asymptotic complexity provided by this data structure are the best one can hope for [3],
the data structure has practical limitations. First, each element is represented twice using
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a total of 16 fields per element. Second, even though the delete operations have O(logn)
complexity, the constant factors are very high and the data structure will not perform well
unless find, insert, and meld are the primary operations.

Cho and Sahni [7] have shown that leftist trees [9,15,20] may be adapted to obtain a
simple representation for MDEPQs in which meld takes logarithmic time and the remaining
operations have the same asymptotic complexity as when any of the aforementioned DEPQ
representations is used. Chong and Sahni [8] study MDEPQs based on pairing heaps [12,19],
Binomial and Fibonacci heaps [13], and FMPQ [3].

Since leftist heaps, pairing heaps, Binomial and Fibonacci heaps, and FMPQs are meld-
able priority queues that also support the remove(theNode) operation, the MDEPQs of
[7,8] use the generic methods of Section 8.6 to construct an MDEPQ data structure from
the corresponding MPQ (meldable PQ) structure.

It is interesting to note that if we use the FMPQ structure of [3] as the base MPQ
structure, we obtain a total correspondence MDEPQ structure in which removeMax and
removeMin take logarithmic time, and the remaining operations take constant time. This
adaptation is superior to the dual priority queue adaptation proposed in [3] because the
space requirements are almost half. Additionally, the total correspondence adaptation is
faster. Although Brodal’s FMPQ structure does not satisfy the requirements of the generic
approach to build a leaf correspondence MDEPQ structure from a priority queue, we can
nonetheless arrive at leaf correspondence FMPQs using a customized approach.
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9.1 Introduction

A set abstract data type (set ADT) is an abstract data type that maintains a set S under
the following three operations:

1. INSERT(z): Add the key x to the set.
2. DELETE(z): Remove the key = from the set.

(
3. SEARCH(x): Determine if x is contained in the set, and if so, return a pointer to
x.

One of the most practical and widely used methods of implementing the set ADT is with
hash tables.

Note that the three set ADT operations can easily be implemented to run in O(logn)
time per operation using balanced binary search trees (See Chapter 10). If we assume that
the input data are integers in the set U = {0,...,u— 1} then they can even be implemented
to run in sub-logarithmic time using data structures for integer searching (Chapter 39).
However, these data structures actually do more than the three basic operations we require.
In particular if we search for an element x that is not present in S then these data structures
can report the smallest item in S that is larger than x (the successor of x) and/or the largest
item in S that is smaller than z (the predecessor of x).

Hash tables do away with this extra functionality of finding predecessors and successors
and only perform exact searches. If we search for an element x in a hash table and z is
not present then the only information we obtain is that = ¢ S. By dropping this extra
functionality hash tables can give better performance bounds. Indeed, any reasonable hash
table implementation performs each of the three set ADT operations in O(1) expected time.

9-1
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The main idea behind all hash table implementations discussed in this chapter is to store
a set of n = | S| elements in an array (the hash table) A of length m > n. In doing this, we
require a function that maps any element = to an array location. This function is called a
hash function h and the value h(x) is called the hash value of x. That is, the element x gets
stored at the array location A[h(z)]. The occupancy of a hash table is the ratio & = n/m
of stored elements to the length of A.

The study of hash tables follows two very different lines. Many implementations of hash
tables are based on the integer universe assumption: All elements stored in the hash table
come from the universe U = {0, ...,u—1}. In this case, the goal is to design a hash function
h:U — {0,...,m — 1} so that for each i € {0,...,m — 1}, the number of elements = € S
such that h(x) = i is as small as possible. Ideally, the hash function h would be such that
each element of S is mapped to a unique value in {0, ..., m—1}. Most of the hash functions
designed under the integer universe assumption are number-theoretic constructions. Several
of these are described in Section 9.2.

Historically, the integer universe assumption seems to have been justified by the fact that
any data item in a computer is represented as a sequence of bits that can be interpreted
as a binary number. However, many complicated data items require a large (or variable)
number of bits to represent and this make u the size of the universe very large. In many
applications u is much larger than the largest integer that can fit into a single word of
computer memory. In this case, the computations performed in number-theoretic hash
functions become inefficient.

This motivates the second major line of research into hash tables. This research work
is based on the random probing assumptionrandom probing assumption: Each element x
that is inserted into a hash table is a black box that comes with an infinite random probe
sequence T, T1,T2,... where each of the x; is independently and uniformly distributed in
{0,...,m — 1}. Hash table implementations based on the random probing assumption are
described in Section 9.3.

Both the integer universe assumption and the random probing assumption have their place
in practice. When there is an easily computing mapping of data elements onto machine
word sized integers then hash tables for integer universes are the method of choice. When
such a mapping is not so easy to compute (variable length strings are an example) it might
be better to use the bits of the input items to build a good pseudorandom sequence and
use this sequence as the probe sequence for some random probing data structure.

To guarantee good performance, many hash table implementations require that the oc-
cupancy « be a constant strictly less than 1. Since the number of elements in a hash table
changes over time, this requires that the array A be resized periodically. This is easily done,
without increasing the amortized cost of hash table operations by choosing three constants
0 < ag < az < asg <1 so that, whenever n/m is not the interval (a1, as3) the array A is
resized so that its size is n/ag. A simple amortization argument (Chapter 1) shows that
the amortized cost of this resizing is O(1) per update (Insert/Delete) operation.

9.2 Hash Tables for Integer Keys

In this section we consider hash tables under the integer universe assumption, in which the
key values z come from the universe U = {0,...,u — 1}. A hash function h is a function
whose domain is U and whose range is the set {0,...,m — 1}, m < u. A hash function h
is said to be a perfect hash function for a set S C U if, for every x € S, h(x) is unique.
A perfect hash function h for S is minimal if m = |S], i.e., h is a bijection between S
and {0,...,m — 1}. Obviously a minimal perfect hash function for S is desirable since it
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allows us to store all the elements of S in a single array of length n. Unfortunately, perfect
hash functions are rare, even for m much larger than n. If each element of S is mapped
independently and uniformly to a random element of {0,...,m — 1} then the birthday
paradox (See, for example, Feller [27]) states that, if m is much less than n? then there will
almost surely exist two elements of S that have the same hash value.

We begin our discussion with two commonly used hashing schemes that are heuristic in
nature. That is, we can not make any non-trivial statements about the performance of
these schemes when storing an arbitrary set S. We then discuss several schemes that have
provably good performance.

9.2.1 Hashing by Division

In hashing by division, we use the hash function
h(z) = x mod m .

To use this hash function in a data structure, we maintain an array A[0], ..., A[m—1] where
each element of this array is a pointer to the head of a linked list (Chapter 2). The linked
list L; pointed to by the array element A[i] contains all the elements x such that h(z) = i.
This technique of maintaining an array of lists is called hashing with chaining.

In such a hash table, inserting an element x takes O(1) time; we compute i = h(z) and
append (or prepend) z to the list L;. However, searching for and/or deleting an element x
is not so easy. We have to compute ¢ = h(z) and then traverse the list L; until we either
find x or reach the end of the list. The cost of this is proportional to the length of L;.
Obviously, if our set S consists of the elements 0, m,2m, 3m, ..., nm then all elements are
stored in the list Ly and searches and deletions take linear time.

However, one hopes that such pathological cases do not occur in practice. For example,
if the elements of S are uniformly and independently distributed in U and w is a multiple
of m then the expected size of any list L; is only n/m. In this case, searches and deletions
take O(1+«) expected time. To help avoid pathological cases, the choice of m is important.
In particular, m a power of 2 is usually avoided since, in a binary computer, taking the
remainder modulo a power of 2 means simply discarding some high-order bits. Taking m
to be a prime not too close to a power of 2 is recommended [37].

9.2.2 Hashing by Multiplication

The implementation of a hash table using hashing by multiplication is exactly the same as
that of hashing by division except that the hash function

h(z) = [mzA| mod m

is used. Here A is a real-valued constant whose choice we discuss below. The advantage
of the multiplication method is that the value of m is not critical. We can take m to be a
power of 2, which makes it convenient for use on binary computers.

Although any value of A gives a hash function, some values of A are better than others.
(Setting A = 0 is clearly not a good idea.)

Knuth [37] suggests using the golden ratio for A, i.e., setting

A= (V5—1)/2=0.6180339887 . ..
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This choice of A is motivated by a theorem, first conjectured by Oderfeld and later proven
by Swierczkowski [59]. This theorem states that the sequence

mA mod m, 2mA mod m, 3mA mod m, ..., nmA mod m

partitions the interval (0,m) into n + 1 intervals having only three distinct lengths. Fur-
thermore, the next element (n + 1)mA mod m in the sequence is always contained in one
of the largest intervals.!

Of course, no matter what value of A we select, the pigeonhole principle implies that for
u > nm then there will always exist some hash value ¢ and some S C U of size n such that
h(z) =i for all x € S. In other words, we can always find a set S all of whose elements get
stored in the same list L;. Thus, the worst case of hashing by multiplication is as bad as
hashing by division.

9.2.3 Universal Hashing

The argument used at the end of the previous section applies equally well to any hash
function h. That is, if the table size m is much smaller than the universe size u then for
any hash function there is some large (of size at least [u/m]) subset of U that has the
same hash value. To get around this difficulty we need a collection of hash functions from
which we can choose one that works well for S. Even better would be a collection of hash
functions such that, for any given .S, most of the hash functions work well for S. Then we
could simply pick one of the functions at random and have a good chance of it working well.
Let H be a collection of hash functions, i.e., functions from U onto {0,...,m — 1}. We
say that H is wniversal if, for each z,y € U the number of h € H such that h(z) = h(y)
is at most |H|/m. Consider any S C U of size n and suppose we choose a random hash
function h from a universal collection of hash functions. Consider some value x € U. The
probability that any key y € S has the same hash value as z is only 1/m. Therefore, the
expected number of keys in S, not equal to z, that have the same hash value as x is only

f n=1)/m ifzeSs
hiz) = n/m ifz ¢S

Therefore, if we store S in a hash table using the hash function h then the expected time
to search for, or delete, = is O(1 + «).

From the preceding discussion, it seems that a universal collection of hash functions from
which we could quickly select one at random would be very handy indeed. With such a
collection at our disposal we get an implementation of the set ADT that has O(1) insertion
time and O(1) expected search and deletion time.

Carter and Wegman [8] describe three different collections of universal hash functions. If
the universe size u is a prime number? then

H = {hiy ko,m(x) = (k1x + k2) mod w)) mod m : 1 < k; < u,0 < ky <u}

n fact, any irrational number has this property [57]. The golden ratio is especially good because it is
not too close to a whole number.

2This is not a major restriction since, for any u > 1, there always exists a prime number in the set
{u,u+1,...,2u}. Thus we can enforce this assumption by increasing the value of u by a constant
factor.
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is a collection of universal hash functions. Clearly, choosing a function uniformly at random
from H can be done easily by choosing two random values k1 € {1,...,u — 1} and kg €
{0,...,u — 1}. Thus, we have an implementation of the set ADT with O(1) expected time
per operation.

9.2.4 Static Perfect Hashing

The result of Carter and Wegman on universal hashing is very strong, and from a practical
point of view, it is probably the strongest result most people will ever need. The only thing
that could be improved about their result is to make it deterministic, so that the running
times of all operations are O(1) worst-case. Unfortunately, this is not possible, as shown by
Dietzfelbinger et al. [23].

Since there is no hope of getting O(1) worst-case time for all three set ADT operations,
the next best thing would be to have searches that take O(1) worst-case time. In this
section we describe the method of Fredman, Komlds and Szemerédi [28]. This is a static
data structure that takes as input a set S C U and builds a data structure of size O(n) that
can test if an element z is in S in O(1) worst-case time. Like the universal hash functions
from the previous section, this method also requires that v be a prime number. This scheme
uses hash functions of the form

hi,m(z) = (kz mod u)) mod m .3

Let By m (S, 1) be the number of elements x € S such that hy ,(z) = 4, i.e., the number of
elements of S that have hash value ¢ when using the hash function hy ,,. The function By, .,
gives complete information about the distribution of hash values of S. The main lemma
used by Fredman et al. is that, if we choose k € U uniformly at random then

mi:l <B’“’m2(5’i))] < %2 : (9.1)

=0

E

There are two important special cases of this result.

In the sparse case we take m = n?/a, for some constant 0 < o < 1. In this case, the
expectation in (9.1) is less than . Therefore, by Markov’s inequality, the probability that
this sum is greater than or equal to 1 is at most a. But, since this sum is a non-negative
integer, then with probability at least 1 — « it must be equal to 0. In other words, with
probability at least 1 — o, By (S,7) < 1 for all 0 < i < m — 1, i.e., the hash function
hi,m is perfect for S. Of course this implies that we can find a perfect hash function very
quickly by trying a small number of random elements k € U and testing if they result in
perfect hash functions. (The expected number of elements that we will have to try is only
1/(1 — @).) Thus, if we are willing to use quadratic space then we can perform searches in
O(1) worst-case time.

In the dense case we assume that m is close to n and discover that, for many values of
k, the hash values are distributed fairly evenly among the set 1,...,m. More precisely, if
we use a table of size m = n, then

E

m—1
Z Bim (S, i)Q] <3n .
1=0

3 Actually, it turns out that any universal hash function also works in the FKS scheme [16, Section 11.5].

© 2005 by Chapman & Hall/CRC



9-6 Handbook of Data Structures and Applications

By Markov’s inequality this means that

m—1

Pr { Z Bim(S,i)% < 3n/oz} >l—-a . (9.2)
i=0

Again, we can quickly find a value of k satisfying (9.2) by testing a few randomly chosen

values of k.

These two properties are enough to build a two-level data structure that uses linear space
and executes searches in worst-case constant time. We call the following data structure
the FKS-a data structure, after its inventors Fredman, Komldés and Szemerédi. At the top
level, the data structure consists of an array A[0],..., A[m — 1] where m = n. The elements
of this array are pointers to other arrays Ao, ..., A;n_1, respectively. To decide what will
be stored in these other arrays, we build a hash function hy ., that satisfies the conditions
of (9.2). This gives us the top-level hash function Ay, (xz) = (kz mod u) mod m. Each
element x € S gets stored in the array pointed to by A[hgm (x)].

What remains is to describe how we use the arrays Ag,..., Ap—1. Let S; denote the
set of elements x € S such that hy,(s) = i. The elements of S; will be stored in A;.
The size of S; is n; = Bim(5,4). To store the elements of S; we set the size of A; to
m; = n;?/a = By, (9,1)%/a. Observe that, by (9.2), all the A;’s take up a total space of
O(n), i.e., E?i_ol m; = O(n). Furthermore, by trying a few randomly selected integers we
can quickly find a value k; such that the hash function hg, ., is perfect for S;. Therefore,
we store the element x € S; at position A;[hy, m, ()] and z is the unique element stored at
that location. With this scheme we can search for any value z € U by computing two hash
values ¢ = hy m(x) and j = hg, m, (x) and checking if x is stored in A;[j].

Building the array A and computing the values of ng, . . ., n,—1 takes O(n) expected time
since for a given value k we can easily do this in O(n) time and the expected number of
values of k that we must try before finding one that satisfies (9.2) is O(1). Similarly, building
each subarray A; takes O(n;?) expected time, resulting in an overall expected running time
of O(n). Thus, for any constant 0 < o < 1, an FKS-« data structure can be constructed
in O(n) expected time and this data structure can execute a search for any z € U in O(1)
worst-case time.

9.2.5 Dynamic Perfect Hashing

The FKS-a data structure is nice in that it allows for searches in O(1) time, in the worst case.
Unfortunately, it is only static; it does not support insertions or deletions of elements. In
this section we describe a result of Dietzfelbinger et al. [23] that shows how the FKS-a data
structure can be made dynamic with some judicious use of partial rebuilding (Chapter 10).

The main idea behind the scheme is simple: be lazy at both the upper and lower levels
of the FKS-a data structure. That is, rebuild parts of the data structure only when things
go wrong. At the top level, we relax the condition that the size m of the upper array A
is exactly n and allow A to have size anywhere between n and 2n. Similarly, at the lower
level we allow the array A; to have a size m; anywhere between n;? /o and 2,2 /a.

Periodically, we will perform a global rebuilding operation in which we remove all n
elements from the hash table. Some elements which have previously been marked as deleted
will be discarded, thereby reducing the value of n. We put the remaining elements in a list,
and recompute a whole new FKS-(a/2) data structure for the elements in the list. This
data structure is identical to the standard FKS-(a/2) data structure except that, at the
top level we use an array of size m = 2n.
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Searching in this data structure is exactly the same as for the static data structure. To
search for an element x we compute i = hy () and j = hg, m, (x) and look for x at location
A;[j]. Thus, searches take O(1) worst-case time.

Deleting in this data structure is done in the laziest manner possible. To delete an element
we only search for it and then mark it as deleted. We will use the convention that this type
of deletion does not change the value of n since it does not change the number of elements
actually stored in the data structure. While doing this, we also keep track of the number of
elements that are marked as deleted. When this number exceeds n/2 we perform a global
rebuilding operation. The global rebuilding operation takes O(n) expected time, but only
occurs during one out of every n/2 deletions. Therefore, the amortized cost of this operation
is O(1) per deletion.

The most complicated part of the data structure is the insertion algorithm and its analysis.
To insert a key x we know, because of how the search algorithm works, that we must
ultimately store z at location A,;[j] where i = hy ,(z) and j = hy, m, (z). However, several
things can go wrong during the insertion of x:

1. The value of n increases by 1, so it may be that n now exceeds m. In this case
we perform a global rebuilding operation and we are done.

2. We compute i = hy () and discover that Zzi_ol n;2 > 3n/a. In this case, the
hash function hy_,,, used at the top level is no longer any good since it is producing
an overall hash table that is too large. In this case we perform a global rebuilding
operation and we are done.

3. We compute i = hy n(z) and discover that, since the value of n; just increased
by one, n;2/a > m;. In this case, the array A; is too small to guarantee that we
can quickly find a perfect hash function. To handle this, we copy the elements
of A; into a list L and allocate a new array A; with the new size m; = 2n;2/a.
We then find a new value k; such that hg, ,, is a perfect hash function for the
elements of L and we are done.

4. The array location A;[j] is already occupied by some other element y. But in
this case, we know that A, is large enough to hold all the elements (otherwise
we would already be done after Case 3), but the value k; being used in the hash
function hy, m, is the wrong one since it doesn’t give a perfect hash function for
S;. Therefore we simply try new values for k; until we find a find a value k; that
yields a perfect hash function and we are done.

If none of the preceding 4 cases occurs then we can simply place x at location A;[j] and
we are done.

Handling Case 1 takes O(n) expected time since it involves a global rebuild of the entire
data structure. However, Case 1 only happens during one out of every ©(n) insertions, so
the amortized cost of all occurrences of Case 1 is only O(1) per insertion.

Handling Case 2 also takes O(n) expected time. The question is: How often does Case 2
occur? To answer this question, consider the phase that occurs between two consecutive
occurrences of Case 1. During this phase, the data structure holds at most m distinct
elements. Call this set of elements S. With probability at least (1 — «) the hash function
hi.m selected at the beginning of the phase satisfies (9.2) so that Case 2 never occurs during
the phase. Similarly, the probability that Case 2 occurs exactly once during the phase is
at most a1 — «). In general, the probability that Case 2 occurs exactly ¢ times during a
phase is at most ‘(1 — «). Thus, the expected cost of handling all occurrences of Case 2
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during the entire phase is at most
Y a1 - a)ix O(n) = O(n) .
i=0

But since a phase involves ©(n) insertions this means that the amortized expected cost of
handling Case 2 is O(1) per insertion.

Next we analyze the total cost of handling Case 3. Define a subphase as the period of time
between two global rebuilding operations triggered either as a result of a deletion, Case 1
or Case 2. We will show that the total cost of handling all occurrences of Case 3 during a
subphase is O(n) and since a subphase takes ©(n) time anyway this does not contribute to
the cost of a subphase by more than a constant factor. When Case 3 occurs at the array
A; it takes O(m;) time. However, while handling Case 3, m; increases by a constant factor,
so the total cost of handling Case 3 for A; is dominated by the value of m; at the end
of the subphase. But we maintain the invariant that Z?i_ol m; = O(n) during the entire
subphase. Thus, handling all occurrences of Case 3 during a subphase only requires O(n)
time.

Finally, we consider the cost of handling Case 4. For a particular array A;, consider the
subsubphase between which two occurrences of Case 3 cause A; to be rebuilt or a global
rebuilding operation takes place. During this subsubphase the number of distinct elements
that occupy A; is at most a,/m;. Therefore, with probability at least 1 — a any randomly
chosen value of k; € U is a perfect hash function for this set. Just as in the analysis of
Case 2, this implies that the expected cost of handling all occurrences of Case 3 at A; during
a subsubphase is only O(m;). Since a subsubphase ends with rebuilding all of A; or a global
rebuilding, at a cost of Q(m;) all the occurrences of Case 4 during a subsubphase do not
contribute to the expected cost of the subsubphase by more than a constant factor.

To summarize, we have shown that the expected cost of handling all occurrences of Case 4
is only a constant factor times the cost of handling all occurrences of Case 3. The cost of
handling all occurrences of Case 3 is no more than a constant factor times the expected
cost of all global rebuilds. The cost of handling all the global rebuilds that occur as a result
of Case 2 is no more than a constant factor times the cost of handling all occurrences of
global rebuilds that occur as a consequence of Case 1. And finally, the cost of all global
rebuilds that occur as a result of Case 1 or of deletions is O(n) for a sequence of n update
operations. Therefore, the total expected cost of n update operation is O(n).

9.3 Random Probing

Next we consider hash table implementations under the random probing assumption: Each
element x stored in the hash table comes with a random sequence xg,x1,xs,... where
each of the x; is independently and uniformly distributed in {1,...,m}.* We begin with a
discussion of the two basic paradigms: hashing with chaining and open addressing. Both
these paradigms attempt to store the key z at array position A[zg]. The difference between
these two algorithms is their collision resolution strategy, i.e., what the algorithms do when
a user inserts the key value = but array position A[zg] already contains some other key.

4A variant of the random probing assumption, referred to as the uniform hashing assumption, assumes
that zg,...,Tm—1 is a random permutation of 0,...,m — 1.

© 2005 by Chapman & Hall/CRC



Hash Tables 9-9

9.3.1 Hashing with Chaining

In hashing with chaining, a collision is resolved by allowing more than one element to live
at each position in the table. Each entry in the array A is a pointer to the head of a linked
list. To insert the value z, we simply append it to the list Axg]. To search for the element
x, we perform a linear search in the list A[zg]. To delete the element x, we search for x in
the list Afzo] and splice it out.

It is clear that insertions take O(1) time, even in the worst case. For searching and
deletion, the running time is proportional to a constant plus the length of the list stored
at A[zg]. Notice that each of the at most n elements not equal to z is stored in A[zg] with
probability 1/m, so the expected length of A[zg] is either & = n/m (if z is not contained
in the table) or 1 + (n — 1)/m (if = is contained in the table). Thus, the expected cost of
searching for or deleting an element is O(1 + «).

The above analysis shows us that hashing with chaining supports the three set ADT
operations in O(1) expected time per operation, as long as the occupancy, «, is a constant.
It is worth noting that this does not require that the value of « be less than 1.

If we would like more detailed information about the cost of searching, we might also ask
about the worst-case search time defined as

W = max{length of the list stored at A[i]:0<i<m—1} .

It is very easy to prove something quite strong about W using only the fact that the length
of each list A[¢] is a binomial(n,1/m) random variable. Using Chernoff’s bounds on the tail
of the binomial distribution [13], this immediately implies that

Pr{length of A[i] > aclnn} <n~%) |
Combining this with Boole’s inequality (Pr{A or B} < Pr{A} 4+ Pr{B}) we obtain
Pr{W > aclnn} <n x n~) — =)

Thus, with very high probability, the worst-case search time is logarithmic in n. This also
implies that E[W] = O(logn). The distribution of W has been carefully studied and it is
known that, with high probability, i.e., with probability 1 —o(1), W = (14+0(1))Inn/Inlnn
[33,38].> Gonnet has proven a more accurate result that W = I'"(n) — 3/2 + o(1) with
high probability. Devroye [18] shows that similar results hold even when the distribution of
2o is not uniform.

9.3.2 Hashing with Open Addressing

Hashing with open addressing differs from hashing with chaining in that each table position
Ali] is allowed to store only one value. When a collision occurs at table position i, one of
the two elements involved in the collision must move on to the next element in its probe
sequence. In order to implement this efficiently and correctly we require a method of
marking elements as deleted. This method could be an auxiliary array that contains one
bit for each element of A, but usually the same result can be achieved by using a special
key value del that does not correspond to any valid key.

5Here, and throughout this chapter, if an asymptotic notation does not contain a variable then the
variable that tends to infinity is implicitly n. Thus, for example, o(1) is the set of non-negative functions
of n that tend to 0 as n — oo.
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To search for an element z in the hash table we look for x at positions Alzg], A[x1], A[zs],
and so on until we either (1) find z, in which case we are done or (2) find an empty table
position A[z;] that is not marked as deleted, in which case we can be sure that x is not
stored in the table (otherwise it would be stored at position z;). To delete an element x
from the hash table we first search for . If we find z at table location A[z;] we then simply
mark Alz;] as deleted. To insert a value z into the hash table we examine table positions
Alzo], Alx1], A[zs], and so on until we find a table position A[x;] that is either empty or
marked as deleted and we store the value = in A[x;].

Consider the cost of inserting an element x using this method. Let i, denote the smallest
value ¢ such that z;, is either empty or marked as deleted when we insert . Thus, the cost
of inserting x is a constant plus i,. The probability that the table position x( is occupied
is at most « so, with probability at least 1 — «, i, = 0. Using the same reasoning, the
probability that we store z at position x; is at most

Pr{i, =i} < a'(1 —q) (9.3)

since the table locations xg, ..., x;—1 must be occupied, the table location z; must not be
occupied and the z; are independent. Thus, the expected number of steps taken by the
insertion algorithm is

ZiPr{ix =i}=(1 —a)zz'o/—l =1/(1—a)

for any constant 0 < o < 1. The cost of searching for x and deleting x are both proportional
to the cost of inserting z, so the expected cost of each of these operations is O(1/(1 — «)).%

We should compare this with the cost of hashing with chaining. In hashing with chain-
ing,the occupancy « has very little effect on the cost of operations. Indeed, any constant
a, even greater than 1 results in O(1) time per operation. In contrast, open addressing is
very dependent on the value of a. If we take a > 1 then the expected cost of insertion
using open addressing is infinite since the insertion algorithm never finds an empty table
position. Of course, the advantage of hashing with chaining is that it does not require lists
at each of the A[i]. Therefore, the overhead of list pointers is saved and this extra space
can be used instead to maintain the invariant that the occupancy « is a constant strictly
less than 1.

Next we consider the worst case search time of hashing with open addressing. That is,
we study the value W = max{i, : « is stored in the table at location i, }. Using (9.3) and
Boole’s inequality it follows almost immediately that

Pr{W > clogn} < n=%),
Thus, with very high probability, W, the worst case search time, is O(logn). Tighter
bounds on W are known when the probe sequences zg, ..., Z,,_1 are random permutations

of 0,...,m — 1. In this case, Gonnet[29] shows that

E[W] = logl/a n-—- 1Og1/a(10g1/a n) + 0(1)

SNote that the expected cost of searching for or deleting an element x is proportional to the value of
a at the time x was inserted. If many deletions have taken place, this may be quite different than the
current value of a.
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Open addressing under the random probing assumption has many nice theoretical prop-
erties and is easy to analyze. Unfortunately, it is often criticized as being an unrealistic
model because it requires a long random sequences zg, T1, T2, ... for each element x that is
to be stored or searched for. Several variants of open addressing discussed in the next few
sections try to overcome this problem by using only a few random values.

9.3.3 Linear Probing

Linear probing is a variant of open addressing that requires less randomness. To obtain
the probe sequence g, 1, g, ... we start with a random element zg € {0,...,m —1}. The
element z;, ¢ > 0 is given by x; = (i + o) mod m. That is, one first tries to find z at
location x¢ and if that fails then one looks at (o + 1) mod m, (zg + 2) mod m and so on.

The performance of linear probing is discussed by Knuth [37] who shows that the expected
number of probes performed during an unsuccessful search is at most

(1+1/(1—a)?)/2
and the expected number of probes performed during a successful search is at most

14+1/1-aw)/2 .

This is not quite as good as for standard hashing with open addressing, especially in the
unsuccessful case.

Linear probing suffers from the problem of primary clustering. If j consecutive array
entries are occupied then a newly inserted element will have probability j/m of hashing
to one of these entries. This results in j 4+ 1 consecutive array entries being occupied and
increases the probability (to (j + 1)/m) of another newly inserted element landing in this
cluster. Thus, large clusters of consecutive elements have a tendency to grow larger.

9.3.4 Quadratic Probing

Quadratic probing is similar to linear probing; an element = determines its entire probe
sequence based on a single random choice, xy. Quadratic probing uses the probe sequence
xo, (2o + k1 + ko) mod m, (zo + 2k1 + 22k2) mod m, . ... In general, the ith element in the
probe sequence is z; = (xo + ik + i2k2) mod m. Thus, the final location of an element
depends quadratically on how many steps were required to insert it. This method seems
to work much better in practice than linear probing, but requires a careful choice of m, ky
and ko so that the probe sequence contains every element of {0,...,m — 1}.

The improved performance of quadratic probing is due to the fact that if there are two
elements « and y such that x; = y; then it is not necessarily true (as it is with linear
probing) that z;11 = y;j4+1. However, if g = yo then = and y will have exactly the same
probe sequence. This lesser phenomenon is called secondary clustering. Note that this
secondary clustering phenomenon implies that neither linear nor quadratic probing can
hope to perform any better than hashing with chaining. This is because all the elements
that have the same initial hash xg are contained in an implicit chain. In the case of linear
probing, this chain is defined by the sequence g, xo + 1,z + 2,... while for quadratic
probing it is defined by the sequence g, xo + k1 + k2, xo + 2k1 + 4ko, . ..

9.3.5 Double Hashing

Double hashing is another method of open addressing that uses two hash values zy and
x1. Here x¢ is in the set {0,...,m — 1} and =1 is in the subset of {1,...,m — 1} that is
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relatively prime to m. With double hashing, the probe sequence for element z becomes
xo, (xo + 1) mod m, (zg + 221) mod m,.... In general, z; = (xg + ix1) mod m, for i > 0.
The expected number of probes required by double hashing seems difficult to determine ex-
actly. Guibas has proven that, asymptotically, and for occupancy a < .31, the performance
of double hashing is asymptotically equivalent to that of uniform hashing. Empirically,
the performance of double hashing matches that of open addressing with random probing
regardless of the occupancy « [37].

9.3.6 Brent’s Method

Brent’s method [5] is a heuristic that attempts to minimize the average time for a successful
search in a hash table with open addressing. Although originally described in the context of
double hashing (Section 9.3.5) Brent’s method applies to any open addressing scheme. The
age of an element x stored in an open addressing hash table is the minimum value 4 such
that x is stored at A[x;]. In other words, the age is one less than the number of locations
we will probe when searching for x.

Brent’s method attempts to minimize the total age of all elements in the hash table. To
insert the element x we proceed as follows: We find the smallest value i such that Alx;]
is empty; this is where standard open-addressing would insert xz. Consider the element
y stored at location A[x;_2]. This element is stored there because y; = x;_2, for some
Jj > 0. We check if the array location A[y;11] is empty and, if so, we move y to location
Aly;+1] and store z at location Afx;_s]. Note that, compared to standard open addressing,
this decreases the total age by 1. In general, Brent’s method checks, for each 2 < k <
i the array entry Al[z;_j] to see if the element y stored there can be moved to any of
Alyj+1], Alyjt2]s - - -, Alyjrk—1] to make room for x. If so, this represents a decrease in the
total age of all elements in the table and is performed.

Although Brent’s method seems to work well in practice, it is difficult to analyze theo-
retically. Some theoretical analysis of Brent’s method applied to double hashing is given by
Gonnet and Munro [31]. Lyon [44], Munro and Celis [49] and Poblete [52] describe some
variants of Brent’s method.

9.3.7 Multiple-Choice Hashing

It is worth stepping back at this point and revisiting the comparison between hash tables
and binary search trees. For balanced binary search trees, the average cost of searching for
an element is O(logn). Indeed, it easy to see that for at least n/2 of the elements, the cost
of searching for those elements is (logn). In comparison, for both the random probing
schemes discussed so far, the expected cost of search for an element is O(1). However, there
are a handful of elements whose search cost is ©(logn/loglogn) or ©(logn) depending on
whether hashing with chaining or open addressing is used, respectively. Thus there is an
inversion: Most operations on a binary search tree cost O(logn) but a few elements (close
to the root) can be accessed in O(1) time. Most operations on a hash table take O(1) time
but a few elements (in long chains or with long probe sequences) require ©(logn/loglogn)
or O(logn) time to access. In the next few sections we consider variations on hashing with
chaining and open addressing that attempt to reduce the worst-case search time W.
Multiple-choice hashing is hashing with chaining in which, during insertion, the element
x has the choice of d > 2 different lists in which it can be stored. In particular, when we
insert & we look at the lengths of the lists pointed to by A[zg],..., A[zq—1] and append x
to Alx;], 0 < i < d such that the length of the list pointed to by Afx;] is minimum. When
searching for z;, we search for x in each of the lists A[zg], ..., A[zq—1] in parallel. That is, we
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look at the first elements of each list, then the second elements of each list, and so on until
we find x. As before, to delete x we first search for it and then delete it from whichever list
we find it in.

It is easy to see that the expected cost of searching for an element x is O(d) since the
expected length of each the d lists is O(1). More interestingly, the worst case search time
is bounded by O(dW) where W is the length of the longest list. Azar et al. [3] show that

mm:h$y+om. (9.4)

Thus, the expected worst case search time for multiple-choice hashing is O(loglogn) for
any constant d > 2.

9.3.8 Asymmetric Hashing

Asymmetric hashing is a variant of multiple-choice hashing in which the hash table is
split into d blocks, each of size n/d. (Assume, for simplicity, that n is a multiple of d.)
The probe value x;, 0 < i < d is drawn uniformly from {in/d,...,(i + 1)n/d — 1}. As
with multiple-choice hashing, to insert x the algorithm examines the lengths of the lists
Alzo], A[z1],. .., Alzg—1] and appends x to the shortest of these lists. In the case of ties,
it appends x to the list with smallest index. Searching and deletion are done exactly as in
multiple-choice hashing.

Vocking [64] shows that, with asymmetric hashing the expected length of the longest list
is

B[] < Inlnn

< gy T OW

The function ¢4 is a generalization of the golden ratio, so that ¢ = (14 /5)/2. Note that
this improves significantly on standard multiple-choice hashing (9.4) for larger values of d.

9.3.9 LCFS Hashing

LCFS hashing is a form of open addressing that changes the collision resolution strategy.”
Reviewing the algorithm for hashing with open addressing reveals that when two elements
collide, priority is given to the first element inserted into the hash table and subsequent
elements must move on. Thus, hashing with open addressing could also be referred to as
FCFS (first-come first-served) hashing.

With LCFS (last-come first-served) hashing, collision resolution is done in exactly the
opposite way. When we insert an element x, we always place it at location xq. If position
xg is already occupied by some element y because y; = o then we place y at location ¥;1,
possibly displacing some element z, and so on.

Poblete and Munro [53] show that, after inserting n elements into an initially empty table,
the expected worst case search time is bounded above by

1 <301 (1 ) ()

7Amble and Knuth [1] were the first to suggest that, with open addressing, any collision resolution
strategy could be used.
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where I' is the gamma function and

Inn Inlnlnn 1
r-! = 1
(an) Inlnn < * Inlnn +O(1nlnn)>

Historically, LCFS hashing is the first version of open addressing that was shown to have
an expected worst-case search time that is o(logn).

9.3.10 Robin-Hood Hashing

Robin-Hood hashing [9,10,61] is a form of open addressing that attempts to equalize the
search times of elements by using a fairer collision resolution strategy. During insertion, if
we are trying to place element = at position x; and there is already an element y stored at
position y; = x; then the “younger” of the two elements must move on. More precisely, if
i < j then we will try to insert x at position x;41, x;1+2 and so on. Otherwise, we will store
x at position z; and try to to insert y at positions y;41, y;4+2 and so on.

Devroye et al. [20] show that, after performing n insertions on an initially empty table
of size m = an using the Robin-Hood insertion algorithm, the worst case search time has
expected value

E[W] = ©(loglogn)

and this bound is tight. Thus, Robin-Hood hashing is a form of open addressing that has
doubly-logarithmic worst-case search time. This makes it competitive with the multiple-
choice hashing method of Section 9.3.7.

9.3.11 Cuckoo Hashing

Cuckoo hashing [50] is a form of multiple choice hashing in which each element z lives in
one of two tables A or B, each of size m = n/«a. The element x will either be stored at
location Az 4] or Blxg]. There are no other options. This makes searching for  an O(1)
time operation since we need only check two array locations.

The insertion algorithm for cuckoo hashing proceeds as follows:® Store z at location
Alz4]. If Az 4] was previously occupied by some element y then store y at location Blyg].
If Blyp] was previously occupied by some element z then store z at location A[z4], and
so on. This process ends when we place an element into a previously empty table slot or
when it has gone on for more than clogn steps. In the former case, the insertion of z
completes successfully. In the latter case the insertion is considered a failure, and the entire
hash table is reconstructed from scratch using a new probe sequence for each element in
the table. That is, if this reconstruction process has happened ¢ times then the two hash
values we use for an element x are x4 = z9; and rp = T9;41.

Pagh and Rodler [50] (see also Devroye and Morin [19]) show that, during the insertion
of n elements, the probability of requiring a reconstruction is O(1/n). This, combined
with the fact that the expected insertion time is O(1) shows that the expected cost of n
insertions in a Cuckoo hashing table is O(n). Thus, Cuckoo hashing offers a somewhat
simpler alternative to the dynamic perfect hashing algorithms of Section 9.2.5.

8The algorithm takes its name from the large but lazy cuckoo bird which, rather than building its own
nest, steals the nest of another bird forcing the other bird to move on.
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9.4 Historical Notes

In this section we present some of the history of hash tables. The idea of hashing seems
to have been discovered simultaneously by two groups of researchers. Knuth [37] cites an
internal IBM memorandum in January 1953 by H. P. Luhn that suggested the use of hashing
with chaining. Building on Luhn’s work, A. D. Linh suggested a method of open addressing
that assigns the probe sequence g, |zo/10], |20/100], |20/1000], ... to the element z.

At approximately the same time, another group of researchers at IBM: G. M. Amdahl,
E. M. Boehme, N. Rochester and A. L. Samuel implemented hashing in an assembly program
for the IBM 701 computer. Amdahl is credited with the idea of open addressing with linear
probing.

The first published work on hash tables was by A. I. Dumey [24], who described hashing
with chaining and discussed the idea of using remainder modulo a prime as a hash function.
Ershov [25], working in Russia and independently of Amdahl, described open addressing
with linear probing.

Peterson [51] wrote the first major article discussing the problem of searching in large files
and coined the term “open addressing.” Buchholz [7] also gave a survey of the searching
problem with a very good discussion of hashing techniques at the time. Theoretical analyses
of linear probing were first presented by Konheim and Weiss [39] and Podderjugin. Another,
very influential, survey of hashing was given by Morris [47]. Morris’ survey is the first
published use of the word “hashing” although it was already in common use by practitioners
at that time.

9.5 Other Developments

The study of hash tables has a long history and many researchers have proposed methods
of implementing hash tables. Because of this, the current chapter is necessarily incomplete.
(At the time of writing, the hash.bib bibliography on hashing contains over 800 entries.)
We have summarized only a handful of the major results on hash tables in internal memory.
In this section we provide a few references to the literature for some of the other results.
For more information on hashing, Knuth [37], Vitter and Flajolet [63], Vitter and Chen
[62], and Gonnet and Baeza-Yates [30] are useful references.

Brent’s method (Section 9.3.6) is a collision resolution strategy for open addressing that
reduces the expected search time for a successful search in a hash table with open addressing.
Several other methods exist that either reduce the expected or worst-case search time.
These include binary tree hashing [31,45], optimal hashing [31,54,55], Robin-Hood hashing
(Section 9.3.10), and min-maz hashing [9,29]. One interesting method, due to Celis [9],
applies to any open addressing scheme. The idea is to study the distribution of the ages of
elements in the hash table, i.e., the distribution give by

D; = Pr{z is stored at position z; }

and start searching for x at the locations at which we are most likely to find it, rather than
searching the table positions xg, 21,22 ... in order.

Perfect hash functions seem to have been first studied by Sprugnoli [58] who gave some
heuristic number theoretic constructions of minimal perfect hash functions for small data
sets. Sprugnoli is responsible for the terms “perfect hash function” and “minimal perfect
hash function.” A number of other researchers have presented algorithms for discovering
minimal and near-minimal perfect hash functions. Examples include Anderson and Ander-
son [2], Cichelli [14, 15], Chang [11, 12], Gori and Soda [32], and Sager [56]. Berman et al. [4]
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and Korner and Marton [40] discuss the theoretical limitations of perfect hash functions. A
comprehensive, and recent, survey of perfect hashing and minimal perfect hashing is given
by Czech et al. [17].

Tarjan and Yao [60] describe a set ADT implementation that gives O(logu/ logn) worst-
case access time. It is obtained by combining a trie (Chapter 28) of degree n with a
compression scheme for arrays of size n? that contain only n non-zero elements. (The trie
has O(n) nodes each of which has n pointers to children, but there are only a total of
O(n) children.) Although their result is superseded by the results of Fredman et al. [28]
discussed in Section 9.2.4, they are the first theoretical results on worst-case search time for
hash tables.

Dynamic perfect hashing (Section 9.2.5) and cuckoo hashing (Section 9.3.11) are methods
of achieving O(1) worst case search time in a dynamic setting. Several other methods have
been proposed [6, 21, 22].

Yao [65] studies the membership problem. Given a set S C U, devise a data structure that
can determine for any x € U whether z is contained in S. Yao shows how, under various
conditions, this problem can be solved using a very small number of memory accesses per
query. However, Yao’s algorithms sometimes derive the fact that an element x is in S
without actually finding x. Thus, they don’t solve the set ADT problem discussed at the
beginning of this chapter since they can not recover a pointer to x.

The “power of two random choices,” as used in multiple-choice hashing, (Section 9.3.7)
has many applications in computer science. Karp, Luby and Meyer auf der Heide [34, 35]
were the first to use this paradigm for simulating PRAM computers on computers with fewer
processors. The book chapter by Mitzenmacher et al. [46] surveys results and applications
of this technique.

A number of table implementations have been proposed that are suitable for managing
hash tables in external memory. Here, the goal is to reduce the number of disk blocks
that must be accessed during an operation, where a disk block can typically hold a large
number of elements. These schemes include linear hashing [43], dynamic hashing [41],
virtual hashing [42], extendible hashing [26], cascade hashing [36], and spiral storage [48].
In terms of hashing, the main difference between internal memory and external memory
is that, in internal memory, an array is allocated at a specific size and this can not be
changed later. In contrast, an external memory file may be appended to or be truncated
to increase or decrease its size, respectively. Thus, hash table implementations for external
memory can avoid the periodic global rebuilding operations used in internal memory hash
table implementations.

Acknowledgment

The author is supported by a grant from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

© 2005 by Chapman & Hall/CRC



Hash Tables

References

[1] O. Amble and D. E. Knuth. Ordered hash tables. The Computer Journal, 17(2):135-
142, 1974.

[2] M.R. Anderson and M. G. Anderson. Comments on perfect hashing functions: A single
probe retrieving method for static sets. Communications of the ACM, 22(2):104, 1979.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180-200, 1999.

[4] F. Berman, M. E. Bock, E. Dittert, M. J. O’Donnell, and D. Plank. Collections of
functions for perfect hashing. SIAM Journal on Computing, 15(2):604-618, 1986.

[5] R.P.Brent. Reducing the storage time of scatter storage techniques. Communications
of the ACM, 16(2):105-109, 1973.

[6] A. Brodnik and J. I. Munro. Membership in constant time and almost minimum space.
SIAM Journal on Computing, 28:1627-1640, 1999.

[7] W. Buchholz. File organization and addressing. IBM Systems Journal, 2(1):86-111,
1963.

[8] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143-154, 1979.

[9] P. Celis. Robin Hood hashing. Technical Report CS-86-14, Computer Science Depart-
ment, University of Waterloo, 1986.

[10] P. Celis, P.-A. Larson, and J. I. Munro. Robin Hood hashing. In Proceedings of the
26th Annual IEEE Symposium on Foundations of Computer Science (FOCS’85),
pages 281-288. IEEE Press, 1985.

[11] C.C. Chang. An ordered minimal perfect hashing scheme based upon Euler’s theorem.
Information Sciences, 32(3):165-172, 1984.

[12] C. C. Chang. The study of an ordered minimal perfect hashing scheme. Communica-
tions of the ACM, 27(4):384-387, 1984.

[13] H. Chernoff. A measure of the asymptotic efficient of tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493-507, 1952.

[14] R. J. Cichelli. Minimal perfect hash functions made simple. Communications of the
ACM, 23(1):17-19, 1980.

[15] R.J. Cichelli. On Cichelli’s minimal perfect hash functions method. Communications
of the ACM, 23(12):728-729, 1980.

[16] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, Massachussetts, 2nd edition, 2001.

[17] Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theoretical Computer
Science, 182(1-2):1-143, 1997.

[18] L. Devroye. The expected length of the longest probe sequence when the distribution
is not uniform. Journal of Algorithms, 6:1-9, 1985.

[19] L. Devroye and P. Morin. Cuckoo hashing: Further analysis. Information Processing
Letters, 86(4):215-219, 2002.

[20] L. Devroye, P. Morin, and A. Viola. On worst case Robin-Hood hashing. SIAM
Journal on Computing. To appear.

[21] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash func-
tions and dynamic hashing in real time. In Proceedings of the 17th International
Colloguium on Automata, Languages, and Programming (ICALP’90), pages 6-19,
1990.

[22] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions

are reliable. In Proceedings of the 19th International Colloguium on Automata,
Languages, and Programming (ICALP’92), pages 235-246, 1992.

© 2005 by Chapman & Hall/CRC



9-18 Handbook of Data Structures and Applications

[23] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal
on Computing, 23(4):738-761, 1994.

[24] A. I. Dumey. Indexing for rapid random access memory systems. Computers and
Automation, 5(12):6-9, 1956.

[25] A. P. Ershov. On programming of arithmetic operations. Doklady Akademii Nauk
SSSR, 118(3):427-430, 1958.

[26] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing — a fast
access method for dynamic files. ACM Transactions on Database Systems, 4(3):315—
344, 1979.

[27] W. Feller. An Introduction to Probability Theory and its Applications. John Wiley
& Sons, New York, 1968.

[28] M. L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. Journal of the ACM, 31(3):538-544, 1984.

[29] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching.
Journal of the ACM, pages 289-304, 1981.

[30] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures:
in Pascal and C. Addison-Wesley, Reading, MA, USA, 2nd edition, 1991.

[31] G. H. Gonnet and J. I. Munro. Efficient ordering of hash tables. SIAM Journal on
Computing, 8(3):463-478, 1979.

[32] M. Gori and G. Soda. An algebraic approach to Cichelli’s perfect hashing. Bit, 29(1):2—
13, 1989.

[33] N.L. Johnson and S. Kotz. Urn Models and Their Applications. John Wiley & Sons,
New York, 1977.

[34] R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a
distributed memory machine. Technical Report TR-93-040, International Computer
Science Institute, Berkeley, CA, USA, 1993.

[35] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a
distributed memory machine. In Proceedings of the 24th ACM Symposium on the
Theory of Computing (STOC’92), pages 318-326. ACM Press, 1992.

[36] P. Kjellberg and T. U. Zahle. Cascade hashing. In Proceedings of the 10th Interna-
tional Conference on Very Large Data Bases (VLDB’80), pages 481-492. Morgan
Kaufmann, 1984.

[37] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 2nd
edition, 1997.

[38] V. F. Kolchin, B. A. Sevastyanov, and V. P. Chistyakov. Random Allocations. John
Wiley & Sons, New York, 1978.

[39] A. G. Konheim and B. Weiss. An occupancy discipline and its applications. SIAM
Journal of Applied Mathematics, 14:1266-1274, 1966.

[40] J. Korner and K. Marton. New bounds for perfect hashing via information theory.
European Journal of Combinatorics, 9(6):523-530, 1988.

[41] P.-A. Larson. Dynamic hashing. Bit, 18(2):184-201, 1978.

[42] W. Litwin. Virtual hashing: A dynamically changing hashing. In Proceedings of
the 4th International Conference on Very Large Data Bases (VLDB’80), pages
517-523. IEEE Computer Society, 1978.

[43] W. Litwin. Linear hashing: A new tool for file and table addressing. In Proceedings
of the 6th International Conference on Very Large Data Bases (VLDB’80), pages
212-223. IEEE Computer Society, 1980.

[44] G. E. Lyon. Packed scatter tables. Communications of the ACM, 21(10):857-865,
1978.

© 2005 by Chapman & Hall/CRC



Hash Tables

[45]

[46]

[47]

(48]

E. G. Mallach. Scatter storage techniques: A unifying viewpoint and a method for
reducing retrieval times. The Computer Journal, 20(2):137-140, 1977.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random choices:
A survey of techniques and results. In P. Pardalos, S. Rajasekaran, and J. Rolim,
editors, Handbook of Randomized Computing, volume 1, chapter 9. Kluwer, 2001.
R. Morris. Scatter storage techniques. Communications of the ACM, 11(1):38-44,
1968.

J. K. Mullin. Spiral storage: Efficient dynamic hashing with constant performance.
The Computer Journal, 28(3):330-334, 1985.

J. I. Munro and P. Celis. Techniques for collision resolution in hash tables with open
addressing. In Proceedings of 1986 Fall Joint Computer Conference, pages 601-610.
ACM Press, 1999.

R. Pagh and F. F. Rodler. Cuckoo hashing. In Proceedings of the 9th Annual
European Symposium on Algorithms (ESA 2001), volume 2161 of Lecture Notes in
Computer Science, pages 121-133. Springer-Verlag, 2001.

W. W. Peterson. Addressing for random-access storage. IBM Journal of Research
and Development, 1(2):130-146, 1957.

P. V. Poblete. Studies on hash coding with open addressing. M. Math Essay, University
of Waterloo, 1977.

P. V. Poblete and J. Ian Munro. Last-come-first-served hashing. Journal of Algo-
rithms, 10:228-248, 1989.

G. Poonan. Optimal placement of entries in hash tables. In ACM Computer Science
Conference (Abstract Only), volume 25, 1976. (Also DEC Internal Tech. Rept. LRD-
1, Digital Equipment Corp. Maynard Mass).

R. L. Rivest. Optimal arrangement of keys in a hash table. Journal of the ACM,
25(2):200-209, 1978.

T. J. Sager. A polynomial time generator for minimal perfect hash functions. Com-
munications of the ACM, 28(5):523-532, 1985.

V. T. Sés. On the theory of diophantine approximations. i. Acta Mathematica Bu-
dapest, 8:461-471, 1957.

R. Sprugnoli. Perfect hashing functions: A single probe retrieving method for static
sets. Communications of the ACM, 20(11):841-850, 1977.

S. Swierczkowski. On successive settings of an arc on the circumference of a circle.
Fundamenta Mathematica, 46:187-189, 1958.

R. E. Tarjan and A. C.-C. Yao. Storing a sparse table. Communications of the ACM,
22(11):606-611, 1979.

A. Viola and P. V. Poblete. Analysis of linear probing hashing with buckets. Algo-
rithmica, 21:37-71, 1998.

J. S. Vitter and W.-C. Chen. The Design and Analysis of Coalesced Hashing. Oxford
University Press, Oxford, UK, 1987.

J. S. Vitter and P. Flajolet. Analysis of algorithms and data structures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A: Algorithms
and Complexity, chapter 9, pages 431-524. North Holland, 1990.

B. Vicking. How asymmetry helps load balancing. In Proceedings of the 40th Annual
IEEFE Symposium on Foundations of Computer Science (FOCS’99), pages 131-140.
IEEE Press, 1999.

A. C.-C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615-628, 1981.

© 2005 by Chapman & Hall/CRC

9-19



10

Balanced Binary Search Trees

10.1  Introduction...............ccoviiiiiiiiiiiiiinn.. 10-1
10.2 Basic Definitions ..............ccooiiiiii 10-2

Trees ® Binary Trees as Dictionaries ®
Implementation of Binary Search Trees

10.3  Generic Discussion of Balancing ................. 10-4
Balance Definitions ® Rebalancing Algorithms ©
Complexity Results

10.4  Classic Balancing Schemes........................ 10-7
AVL-Trees * Weight-Balanced Trees ® Balanced
Binary Trees Based on Multi-Way Trees.

10.5 Rebalancing a Tree to Perfect Balance.......... 10-11
Arne Andersson 10.6  Schemes with no Balance Information .......... 10-12
Uppsala University Implicit Representation of Balance Information
General Balanced Trees ® Application to

Rolf Fagerberg Multi-Dimensional Search Trees
University of Southern Denmark 10.7 Low Height Schemes .....................oool. 10-17

) 10.8 Relaxed Balance.......................ooo 10-20
Kim S. Larsen Red-Black Trees ®* AVL-Trees * Multi-Way Trees ®
University of Southern Denmark Other Results

10.1 Introduction

Balanced binary search trees are among the most important data structures in Computer
Science. This is because they are efficient, versatile, and extensible in many ways. They
are used as a black-box in numerous algorithms and even other data structures.

The main virtue of balanced binary search trees is their ability to maintain a dynamic
set in sorted order, while supporting a large range of operations in time logarithmic in the
size of the set. The operations include search, insertion, deletion, predecessor/successor
search, range search, rank search, batch update, split, meld, and merge. These operations
are described in more detail in Section 10.2 below.

Data structures supporting the operations search, insertion, deletion, and predecessor
(and/or successor) search are often denoted ordered dictionaries. In the comparison based
model, the logarithmic performance of balanced binary search trees is optimal for ordered
dictionaries, whereas in the RAM model, faster operations are possible [13,18]. If one
considers unordered dictionaries, i.e., only the operations search, insertion, and deletion,
expected constant time is possible by hashing.

10-1
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10.2 Basic Definitions

10.2.1 Trees

There are many ways to define trees. In this section, we define a tree as a hierarchical
organization of a collection of nodes. For alternatives to our exposition, see the chapter on
trees.

A tree can be empty. If it is not empty, it consists of one node, which is referred to as
the root of the tree, and a collection of trees, referred to as subtrees. Thus, a tree consists
of many smaller trees, each with their own root. We use r to denote the single node which
is the root of the entire tree.

We only consider finite trees, i.e., every collection of subtrees is finite, and there are no
infinite chains of nonempty subtrees. Furthermore, we only consider ordered trees, meaning
that the collection of subtrees of a node is an ordered sequence rather than just a set. If
every nonempty tree has exactly two subtrees, then the tree is called binary. In this case,
we refer to the two subtrees as the left and right subtrees.

We use u, v, w, etc. to denote nodes and T to denote trees, applying apostrophes, index,
etc. to increase the name space. For a node u, we use u.l and u.r to denote the left and
right subtree, respectively, of the tree rooted by u. However, when no confusion can occur,
we do not necessarily distinguish between nodes and subtrees. Thus, by the subtree v, we
mean the subtree rooted at the node v and by 7" we mean the entire tree or the root of the
tree.

We use the standard genealogical terminology to denote nodes in the vicinity of a desig-
nated node. Thus, if u is the root of a tree and v is the root of a subtree of u, then v is
referred to as a child of u. By analogy, this defines grandchildren, parent, grandparent, and
sibling.

The set of nodes belonging to a nonempty tree is its root, along with all the nodes
belonging to its subtrees. For an empty tree, this set is of course empty. If a node v belongs
to the subtree of u, then v is a descendant of u, and u is an ancestor of v. An ancestor or
descendant v of a node u is proper if u # v.

Quite often, it is convenient to refer to empty subtrees as real nodes, in which case they
are referred to as external nodes (or leaves). The remaining nodes are then referred to as
internal nodes. It is easy to prove by induction that the number of external nodes is always
one larger than the number of internal nodes.

The number of nodes belonging to a tree is referred to as its size (or its weight). In some
applications, we define the size of the tree to be the number of internal nodes in the tree,
but more often it is convenient to define the size of the tree to be the number of external
nodes. We use n to denote the size of the tree rooted by r, and |u| to denote the size of the
subtree rooted by w.

A path in a tree is a sequence of nodes uy, us, . .., ug, k > 1, such that fori € {1,...,k—1},
ui+1 is a child of u;. Note that the length of such a path is k¥ — 1. The depth of a node u
in the tree T is the length of the path from the root of T' to u, and the height of a tree T is
the maximal depth of any external node.

10.2.2 Binary Trees as Dictionaries

When trees are used to implement the abstract data type dictionary, nodes have associated
values. A dictionary basically organizes a set of keys, which must be elements drawn from
a total ordering, and must usually supply at least the operations search, insertion, and
deletion. There may be additional information associated with each key, but this does not

© 2005 by Chapman & Hall/CRC



Balanced Binary Search Trees 10-3

lead to any conceptual complications, so here we simply focus on the keys.

When a tree is used as a dictionary, each node stores one key, and we impose the following
ordering invariant (the in-order invariant): for each node u in the tree, every key in u.l is
strictly smaller than u.k, and every key in u.r is strictly larger than u.k. A tree organized
according to this invariant is referred to as a binary search tree.

An important implication of this ordering invariant is that a sorted list of all the keys in
the tree can be produced in linear time using an in-order traversal defined recursively as
follows. On an empty tree, do nothing. Otherwise, recurs on the left subtree, report the
root key, and then recurs on the right subtree.

Many different operations can be supported by binary search tree implementations. Here,
we discuss the most common. Using the ordering invariant, we can devise a searching
procedure of asymptotic time complexity proportional to the height of the tree. Since
searching turns out to be at the heart of most of the operations of interest to us, unless we
stipulate otherwise, all the operations in the following inherit the same complexity.

Simple Searching

To search for x in a tree rooted by u, we first compare x to u.k. If they are equal, a
positive response is given. Otherwise, if  is smaller than w.k, we search recursively in u.l,
and if x is larger, we search in u.r. If we arrive at an empty tree, a negative response is
given. In this description, we have used ternary comparisons, in that our decisions regarding
how to proceed depend on whether the search key is less than, equal to, or greater than
the root key. For implementation purposes, it is possible to use the more efficient binary
comparisons [12].

A characteristic feature of search trees is that when a searching fails, a nearest neigh-
bor can be provided efficiently. Dictionaries supporting predecessor/successor queries are
referred to as ordered. This is in contrast to hashing (described in a chapter of their own)
which represents a class of unordered dictionaries. A predecessor search for x must return
the largest key less than or equal to . This operation as well as the similar successor search
are simple generalizations of the search strategy outlined above. The case where x is found
on the way is simple, so assume that x is not in the tree. Then the crucial observation is
that if the last node encountered during the search is smaller than x, then this node is the
predecessor. Otherwise, the predecessor key is the largest key in the left subtree of the last
node on the search path containing a key smaller than x. A successor search is similar.

Simple Updates

An insertion takes a tree T and a key x not belonging to 7" as arguments and adds a
node containing x and two empty subtrees to T'. The node replaces the empty subtree in
T where the search for = terminates.

A deletion takes a tree T' and a key z belonging to T' as arguments and removes the node
u containing x from the tree. If u’s children are empty trees, u is simply replaced by an
empty tree. If u has exactly one child which is an internal node, then this child is replacing
u. Finally, if u has two internal nodes as children, u’s predecessor node v is used. First, the
key in w is overwritten by the key of v, after which v is deleted. Note that because of the
choice of v, the ordering invariant is not violated. Note also that v has at most one child
which is an internal node, so one of the simpler replacing strategies described above can be
used to remove v.
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More Searching Procedures

A range search takes a tree T' and two key values k1 < ko as arguments and returns all
keys x for which k1 < x < ks. A range search can be viewed as an in-order traversal, where
we do not recurs down the left subtree and do not report the root key if k1 should be in
the right subtree; similarly, we do not recurs down the right subtree and do not report the
root key if k5 should be in the left subtree. The complexity is proportional to the height of
the tree plus the size of the output.

A useful technique for providing more complex operations efficiently is to equip the nodes
in the tree with additional information which can be exploited in more advanced searching,
and which can also be maintained efficiently. A rank search takes a tree T' and an integer d
between one and n as arguments, and returns the dth smallest key in T". In order to provide
this functionality efficiently, we store in each node the size of the subtree in which it is the
root. Using this information during a search down the tree, we can at each node determine
in which subtree the node must be located and we can appropriately adjust the rank that
we search for recursively. If the only modifications made to the tree are small local changes,
this extra information can be kept up-to-date efficiently, since it can always be recomputed
from the information in the children.

Operations Involving More Trees

The operation split takes a key value x and tree T as arguments and returns two trees;
one containing all keys from 7T less than or equal to x and one with the remaining keys. The
operations is destructive, meaning that the argument tree 7' will not be available after the
operation. The operation meld takes two trees as arguments, where all keys in one tree are
smaller than all keys in the other, and combines the trees into one containing all the keys.
This operation is also destructive. Finally, merge combines the keys from two argument
trees, with no restrictions on keys, into one. Also this operation is destructive.

10.2.3 Implementation of Binary Search Trees

In our discussion of time and space complexities, we assume that some standard implemen-
tation of trees are used. Thus, in analogy with the recursive definition, we assume that a
tree is represented by information associated with its root, primarily the key, along with
pointers (references) to its left and right subtrees, and that this information can be accessed
in constant time.

In some situations, we may assume that additional pointers are present, such as parent-
pointers, giving a reference from a node to its parent. We also sometimes use level-pointers.
A level consists of all nodes of the same depth, and a level-pointer to the right from a node
with key k points to the node at the same level with the smallest key larger than k. Similar
for level-pointers to the left.

10.3 Generic Discussion of Balancing

As seen in Section 10.2, the worst case complexity of almost all operations on a binary search
tree is proportional to its height, making the height its most important single characteristic.

Since a binary tree of height h contains at most 2" — 1 nodes, a binary tree of n nodes
has a height of at least [log(n + 1)]. For static trees, this lower bound is achieved by a tree
where all but one level is completely filled. Building such a tree can be done in linear time
(assuming that the sorted order of the keys is known), as discussed in Section 10.5 below.
In the dynamic case, however, insertions and deletions may produce a very unbalanced

© 2005 by Chapman & Hall/CRC



Balanced Binary Search Trees 10-5

tree—for instance, inserting elements in sorted order will produce a tree of height linear in
the number of elements.

The solution is to rearrange the tree after an insertion or deletion of an element, if the
operation has made the tree unbalanced. For this, one needs a definition of balance and a
rebalancing algorithm describing the rearrangement leading to balance after updates. The
combined balance definition and rebalancing algorithm we denote a rebalancing scheme. In
this section, we discuss rebalancing schemes at a generic level.

The trivial rebalancing scheme consists of defining a balanced tree as one having the
optimal height [log(n + 1)], and letting the rebalancing algorithm be the rebuilding of the
entire tree after each update. This costs linear time per update, which is exponentially
larger than the search time of the tree. It is one of the basic results of Computer Science,
first proved by Adel’son-Vel’skii and Landis in 1962 [1], that logarithmic update cost can
be achieved simultaneously with logarithmic search cost in binary search trees.

Since the appearance of [1], many other rebalancing schemes have been proposed. Almost
all reproduce the result of [1] in the sense that they, too, guarantee a height of ¢-log(n) for
some constant ¢ > 1, while handling updates in O(log n) time. The schemes can be grouped
according to the ideas used for definition of balance, the ideas used for rebalancing, and the
exact complexity results achieved.

10.3.1 Balance Definitions

The balance definition is a structural constraint on the tree ensuring logarithmic height.
Many schemes can viewed as belonging to one of the following three categories: schemes
with a constraint based on the heights of subtrees, schemes with a constraint based on
the sizes of subtrees, and schemes which can be seen as binarizations of multi-way search
tree schemes and which have a constraint inherited from these. The next section will give
examples of each.

For most schemes, balance information is stored in the nodes of the tree in the form of
single bits or numbers. The structural constraint is often expressed as an invariant on this
information, and the task of the rebalancing algorithm is to reestablish this invariant after
an update.

10.3.2 Rebalancing Algorithms

The rebalancing algorithm restores the structural constraint of the scheme if it is violated
by an update. It uses the balance information stored in the nodes to guide its actions.

The general form of the algorithm is the same in almost all rebalancing schemes—balance
violations are removed by working towards the root along the search path from the leaf where
the update took place. When removing a violation at one node, another may be introduced
at its parent, which is then handled, and so forth. The process stops at the root at the
latest.

The violation at a node is removed in O(1) time by a local restructuring of the tree
and/or a change of balance information, giving a total worst case update time proportional
to the height of the tree. The fundamental restructuring operation is the rotation, shown in
Figure 10.1. It was introduced in [1]. The crucial feature of a rotation is that it preserves
the in-order invariant of the search tree while allowing one subtree to be moved upwards in
the tree at the expense of another.

A rotation may be seen as substituting a connected subgraph T’ consisting of two nodes
with a new connected subgraph 7" on the same number of nodes, redistributing the keys
(here z and y) in T" according to in-order, and redistributing the subtrees rooted at leaves
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FIGURE 10.1: Rotation.

of T by attaching them as leaves of T" according to in-order. Described in this manner, it
is clear that in-order will be preserved for any two subgraphs T and T’ having an equal
number of nodes. One particular case is the double rotation shown in Figure 10.2, so named
because it is equivalent to two consecutive rotations.

FIGURE 10.2: Double rotation.

Actually, any such transformation of a connected subgraph T to another 77 on the same
number of nodes can be executed through a series of rotations. This can be seen by noting
that any connected subgraph can be converted into a right-path, i.e., a tree where all
left children are empty trees, by repeated rotations (in Figure 10.1, if y but not = is on
the rightmost path in the tree, the rotation will enlarge the rightmost path by one node).
Using the right-path as an intermediate state and running one of the conversions backwards
will transform 7" into 7”. The double rotation is a simple case of this. In a large number
of rebalancing schemes, the rebalancing algorithm performs at most one rotation or double
rotation per node on the search path.

We note that rebalancing schemes exist [34] where the rebalancing along the search path
is done in a top-down fashion instead of the bottom-up fashion described above. This is
useful when several processes concurrently access the tree, as discussed in Section 10.8.

In another type of rebalancing schemes, the restructuring primitive used is the rebuilding
of an entire subtree to perfect balance, where perfect balance means that any node is the
median among the nodes in its subtree. This primitive is illustrated in Figure 10.3. In these
rebalancing schemes, the restructuring is only applied to one node on the search path for
the update, and this resolves all violations of the balance invariant.

The use of this rebalancing technique is sometimes termed local or partial rebuilding (in
contrast to global rebuilding of data structures, which designates a periodically rebuilding
of the entire structure). In Section 10.5, we discuss linear time algorithms for rebalancing
a (sub-)tree to perfect balance.

10.3.3 Complexity Results

Rebalancing schemes can be graded according to several complexity measures. One such
measure is how much rebalancing work is needed after an update. For this measure, typical
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FIGURE 10.3: Rebuilding a subtree.

values include amortized O(logn), worst case O(logn), amortized O(1), and worst case O(1).
Values below logarithmic may at first sight seem useless due to the logarithmic search time
of balanced search trees, but they are relevant in a number of settings. One setting is finger
search trees (described in a chapter of their own in this book), where the search for the
update point in the tree does not start at the root and hence may take sub-logarithmic time.
Another setting is situations where the nodes of the tree are annotated with information
which is expensive to update during restructuring of the tree, such that rotations may take
non-constant time. This occurs in Computational Geometry, for instance. A third setting
is concurrent access to the tree by several processes. Searching the tree concurrently is not
a problem, whereas concurrent updates and restructuring may necessitate lockings of nodes
in order to avoid inconsistencies. This makes restructuring more expensive than searches.

Another complexity measure is the exact height maintained. The majority of schemes
maintain a height bounded by c - logn for some constant ¢ > 1. Of other results, splay
trees [70] have no sub-linear bound on the height, but still perform searches in amortized
O(logn) time. Splay trees are described in a chapter of their own in this book. In the other
direction, a series of papers investigate how close ¢ can get to the optimal value one, and
at what rebalancing cost. We discuss these results in Section 10.7.

One may also consider the exact amount of balance information stored in each node.
Some schemes store an integer, while some only need one or two bits. This may effect the
space consumption of nodes, as a single bit may be stored implicitly, e.g., as the sign bit
of a pointer, or by storing subtrees out of order when the bit is set. Schemes even exist
which do not need to store any information at all in nodes. We discuss these schemes in
Section 10.6

Finally, measures such as complexity of implementation and performance in practice can
also be considered. However, we will not discuss these here, mainly because these measures
are harder to quantify.

10.4 Classic Balancing Schemes

10.4.1 AVL-Trees

AVL-trees where introduced in 1962 in [1], and are named after their inventors Adel’son-
Vel’ski and Landis. They proposed the first dictionary structure with logarithmic search
and update times, and also introduced the rebalancing technique using rotations.

The balance definition in AVL-trees is based on the height of subtrees. The invariant
is that for any node, the heights of its two subtrees differ by at most one. Traditionally,
the balance information maintained at each node is +1, 0, or —1, giving the difference in
heights between the right subtree and the left subtree. This information can be represented
by two bits. Another method is to mark a node when its height is larger than its siblings.
This requires only one bit per node, but reading the balance of a node now involves visiting
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its children. In the other direction, storing the height of each node requires loglogn bits
of information per node, but makes the rebalancing algorithms simpler to describe and
analyze.

By induction on h, it is easily proved that for an AVL-tree of height h, the minimum
number of nodes is Fp49 — 1, where F; denotes the i'th Fibonacci number, defined by
Fy = F, =1and Fjyo = Fj41 + F;. A well-known fact for Fibonacci numbers is that
F; > &2 where ® is the golden ratio (v/5 + 1)/2 ~ 1.618. This shows that the height of
an AVL-tree with n nodes is at most logg(n + 1), i.e., AVL-trees have a height bound of
the type c-logn with ¢ = 1/log ® =~ 1.440.

After an update, violations of the balance invariant can only occur at nodes on the
search path from the root to the update point, as only these nodes have subtrees changed.
The rebalancing algorithm resolves these in a bottom-up fashion. At each node, it either
performs a rotation, performs a double rotation, or just updates balance information, with
the choice depending on the balance of its child and grandchild on the search path. The
algorithm stops when it can guarantee that no ancestor has a balance problem, or when the
root is reached.

In AVL-trees, the rebalancing algorithm has the following properties: After an insertion,
change of balance information may take place any number of steps towards the root, but
as soon as a rotation or double rotation takes place, no further balance problems remain.
Hence, only O(1) structural change is made. In contrast, after a deletion it may happen
that rotations are performed at all nodes on the search path. If only insertions take place,
the amortized amount of rebalancing work, including updating of balance information, can
be shown [58] to be O(1). The same is true if only deletions take place [75]. It is not true
in the fully dynamic case, as it is easy to find an AVL-tree where alternating insertions
and deletions of the same key require rebalancing along the entire search path after each
update.

10.4.2 Weight-Balanced Trees

Weight-balanced trees were proposed in 1973 by Nievergelt and Reingold [62], and have
a balance definition based on the sizes of subtrees. Here, the size of a subtree is most
conveniently defined as the number of external nodes (empty trees) in the subtree, and the
size, also denoted the weight, of a node is the size of its subtree. The balance invariant of
weight-balanced trees states that for any node, the ratio between its own weight and the
weight of its right child (or left) is in the interval [, 1 — ] for some fixed value o > 0.
This ratio is denoted the balance of the node. Since a node of weight three must have
subtrees of weight two and one, we must have o < 1/3. Weight-balanced trees are also
called BB|aJ-trees, which stands for trees of bounded balance with parameter a.

By the balance criterion, for any node v the weight of the parent of v is at least a factor
1/(1 — ) larger than the weight of v. A tree of height k therefore has a root of weight at
least 1/(1 — a)*, which shows that the height of a weight-balanced tree with n nodes is at
most 10gy /(1_q)(n + 1), i.e., weight-balanced trees have a height bound of the type c-logn
with ¢ = —1/log(1 — a) > 1.709.

The balance information stored in each node is its weight, for which log n bits are needed.
After an update, this information must be updated for all nodes on the search path from
the root to the update point. Some of these nodes may now violate the balance criterion.
The rebalancing algorithm proposed in [62] resolves this unbalance in a bottom-up fashion
along the search path using either a rotation or a double rotation at each violating node.
The choice of rotation depends on the weight of the children and the grandchildren of the
node.
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In [62], the rebalancing algorithm was claimed to work for « in the interval [0, 1—1/v/2],
but Blum and Mehlhorn [20] later observed that the correct interval is (2/11, 1 —1/v/2].
They also showed that for « strictly inside this interval, the rebalancing of an unbalanced
node restores its balance to a value in [(14 §)a, 1 — (1 + d)a], where ¢ depends on the
choice of a. This implies that when the node becomes unbalanced again, the number of
updates which have taken place below it since it was last rebalanced is at least a fraction
(depending on «) of its current weight. This feature, unique to weight-balanced trees, has
important applications, e.g., for data structures in Computational Geometry. A number
of these structures are binary search trees where each node has an associated secondary
structure built on the elements in the subtree of the node. When a rotation takes place, the
structures of the nodes taking part in the rotation will have to be rebuilt. If we attribute
the cost of this rebuilding evenly to the updates which have taken place below the node
since it was last involved in a rotation, then, as an example, a linear rebuilding cost of
the secondary structure will amount to a constant attribution to each of these updates.
As the search path for an update contains O(logn) nodes, any single update can at most
receive this many attributions, which implies an amortized O(logn) update complexity for
the entire data structure.

The same analysis allows BB[a]-trees to be maintained by local rebuilding instead of
rotations in amortized O(logn) time, as first noted by Overmars and van Leeuwen [69]:
After an update, the subtree rooted at the highest unbalanced node (if any) on the search
path is rebuilt to perfect balance. Since a rebuilding of a subtree leaves all nodes in it
with balance close to 1/2, the number of updates which must have taken place below the
node since it was last part of a rebuilding is a constant fraction of its current weight. The
rebuilding uses work linear in this weight, which can be covered by attributing a constant
amount of work to each of these updates. Again, each update is attributed O(logn) work.
This scheme will work for any a < 1/3.

For the original rebalancing algorithm using rotations, a better analysis can be made
for o chosen strictly inside the interval (2/11, 1 — 1/4/2]: The total work per rebalancing
operation is now O(1), so the work to be attributed to each update below a node is O(1/w),
where w is the weight of the node. As noted above in the proof of the height bound of
weight-balanced trees, w is exponentially increasing along the search path from the update
point to the root. This implies that each update is attributed only O(1) work in total, and
also that the number of rotations taking place at a given height decreases exponentially
with the height. This result from [20] seems to be the first on O(1) amortized rebalancing
in binary search trees. The actual time spent after an update is still logarithmic in weight-
balanced trees, though, as the balance information needs to be updated along the entire
search path, but this entails no structural changes.

Recently, the idea of balancing by weight has been applied to multi-way search trees [14],
leading to trees efficient in external memory which posses the same feature as weight-
balanced binary trees, namely that between each rebalancing at a node, the number of
updates which have taken place below the node is proportional to the weight of the node.

10.4.3 Balanced Binary Trees Based on Multi-Way Trees.

The B-tree [17], which is treated in another chapter of this book, is originally designed to
handle data stored on external memory. The basic idea is to associate a physical block with
a high-degree node in a multi-way tree. A B-tree is maintained by merging and splitting
nodes, and by increasing and decreasing the number of layers of multi-way nodes. The
smallest example of a B-tree is the 2-3-tree [2], where the nodes have degree 2 or 3. In a
typical B-tree implementation, the degree of a node is much larger, and it varies roughly
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within a factor of 2.

The concept of multi-way nodes, splitting, and merging, has also proven to be very fruitful
in the design of balancing schemes for binary trees. The first such example is the binary
B-tree [15], a binary implementation of 2-3-trees. Here, the idea is to organize binary nodes
into larger chunks of nodes, here called pseudo-nodes. In the binary version of a 2-3-tree, a
node of degree 2 is represented by one binary node, while a node of degree 3 is represented
as two binary nodes (with the additional constraint that one of the two nodes is the right
child of the other). In the terms of binary nodes grouped into pseudo-nodes, it is convenient
to say that edges within a pseudo-node are horizontal while edges between pseudo-nodes
are vertical.

As a natural extension of binary B-trees, Bayer invented Symmetric Binary Trees, or SBB-
trees [16]. The idea was that, instead of only allowing a binary node to have one horizontal
outgoing edge to its right child, we can allow both left- and right-edges to be horizontal. For
both binary B-trees and Symmetric Binary B-trees, Bayer designed maintenance algorithms,
where the original B-tree operations split, merge, and increase/decrease number of levels
were implemented for the pseudo-nodes.

Today, SBB-trees mostly appear under the name red-black trees [34]. Here, the horizontal
and vertical edges are represented by one “color” per node. (Both notations can be rep-
resented by one bit per node.) SBB/red-black trees are binary implementations of B-trees
where each node has degree between 2 and 4.

One advantage with SBB-trees/red-black trees is that a tree can be updated with only
a constant number of rotations per insertion or deletion. This property is important for
example when maintaining priority search trees [56] where each rotation requires ©(logn)
time.

The first binary search tree with O(1) rotations per update was the half-balanced trees
by Olivié [66]. Olivié’s idea was to use path-balancing, where the quotient between the
shortest and longest path from each node is restricted to be at most 1/2, and he showed
that this path-balance could be maintained with O(1) rotations per update. It turns out
to be the case that half-balanced trees and SBB/red-black trees are structurally equivalent,
although their maintenance algorithms are different. It has also been proven by Tarjan [73]
that SBB/red-black trees can be maintained by O(1) rotations. These algorithms can
also be generalized to maintain pseudo-nodes of higher degree, resulting in binary B-tree
implementations with lower height [8], still requiring O(1) rotations per update.

The mechanism behind the constant number of rotations per update can be explained in
a simple way by examining three cases of what can happen during insertion and deletion in
a binary B-tree representation.

e When a pseudo-node becomes too large, it can be split into two pseudo-nodes
without any rotation; we just need to change the balance information.

e Also, when a pseudo-node becomes too small and its sibling has minimal size,
these two nodes can be merged without any rotation; we just change balance
information.

e In all other cases, when a pseudo-node becomes too small or too large, this will
be resolved by moving nodes between the pseudo-node and its sibling and no
splitting or merging will take place.

From these three basic facts, it can be shown that as soon as the third case above occurs,

no more rebalancing will be done during the same update. Hence, the third case, requiring

rotations, will only occur once per update. For details, we refer to the literature [8,73].
Binary B-trees can also be used to design very simple maintenance algorithms that are
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easy to code. This is illustrated by AA-trees [5,77]. AA-trees are actually the same as
Bayer’s binary version of 2-3-trees, but with design focused on simplicity. Compared with
normal red-black tree implementations, AA-trees require very few different cases in the
algorithm and much less code for implementation.

While binary B-trees and SBB/red-black trees deal with small pseudo-nodes, the stratified
trees by van Leeuwen and Overmars [76] use large pseudo-nodes arranged in few layers. The
concept of stratification does not imply that all pseudo-nodes have similar size; it is mainly
a way to conceptually divide the tree into layers, using the notion of merging and splitting.

10.5 Rebalancing a Tree to Perfect Balance

A basic operation is the rebalancing operation, which takes a binary tree as input and
produces a balanced tree. This operation is important in itself, but it is also used as a
subroutine in balancing schemes (see Section 10.6).

It is quite obvious that one can construct a perfectly balanced tree from an ordered tree,
or a sorted list, in linear time. The most straightforward way is to put the elements in
sorted order into an array, take the median as the root of the tree, and construct the left
and right subtrees recursively from the upper and lower halves of the array. However, this
is unnecessarily cumbersome in terms of time, space, and elegance.

A number of restructuring algorithms, from the type mentioned above to more elegant
and efficient ones based on rotations, can be found in the literature [26,27,33,54,72]. Of
these, the one by Stout and Warren [72] seems to be most efficient. It uses the following
principle:

1. Skew. Make right rotations at the root until no left child remains. Continue
down the right path making right rotations until the entire tree becomes one
long rightmost path (a “vine”).

2. Split. Traverse down the vine a number of times, each time reducing the length
of the vine by left rotations.

If we start with a vine of length 2P — 1, for some integer p, and make one rotation per
visited node, the resulting vine will be of length 2P~! — 1 after the first pass, 2772 — 1
after the second pass, etc., until the vine is reduced to a single node; the resulting tree is a
perfectly balanced tree. If the size of the tree is 2P — 1 , this will work without any problem.
If, however, the size is not a power of two, we have to make some special arrangements
during the first pass of left rotations. Stout and Warren solved the problem of how to
make evenly distributed rotations along the vine in a rather complicated way, but there is
a simpler one. It has never before been published in itself, but has been included in demo
software and in published code [6,11].

The central operation is a split operation that takes as parameters two numbers p; and
p2 and compresses a right-skewed path of p; nodes into a path of ps nodes (2p2 > p1). The
simple idea is to use a counter stepping from p; — p2 to p2(p1 — p2) with increment p; — ps.
Every time this counter reaches or exceeds a multiple of ps, a rotation is performed. In
effect, the operation will make p; — ps evenly distributed left rotations.

With this split operation available, we can do as follows to rebalance a tree of size n (n
internal nodes): First, skew the tree. Next, find the largest integer b such that b is an even
power of 2 and b — 1 < n. Then, if b — 1 < n, call Split with parameters n and b — 1. Now,
the vine will have proper length and we can traverse it repeatedly, making a left rotation
at each visited node, until only one node remains.

© 2005 by Chapman & Hall/CRC



10-12 Handbook of Data Structures and Applications

In contrast to the Stout-Warren algorithm, this algorithm is straightforward to imple-
ment. We illustrate it in Figure 10.4. We describe the five trees, starting with the top-
most:

1. A tree with 12 internal nodes to be balanced.

2. After Skew.

3. With n = 12 and b = 8, we call split with parameters 12 and 7, which implies
that five evenly distributed rotations will be made. As the result, the vine will
be of length 7, which fulfills the property of being 2P — 1.

4. The next split can be done by traversing the vine, making one left rotation at
each node. As a result, we get a vine of length 3 (nodes 3, 6, and 10).

5. After the final split, the tree is perfectly balanced.

10.6 Schemes with no Balance Information

As discussed above, a balanced binary search tree is typically maintained by local constraints
on the structure of the tree. By keeping structure information in the nodes, these constraints
can be maintained during updates.

In this section, we show that a plain vanilla tree, without any local balance information,
can be maintained efficiently. This can be done by coding the balance information implicitly
(Section 10.6.1) or by using global instead of local balance criteria, hereby avoiding the need
for balance information (Section 10.6.2). Splay trees [70] also have no balance information.
They do not have a sub-linear bound on their height, but still perform searches in amortized
O(logn) time. Splay trees are described in a chapter of their own in this book.

10.6.1 Implicit Representation of Balance Information

One idea of how to remove the need for local balance information is to store the information
implicitly. There are two main techniques for this: coding information in the way empty
pointers are located or coding information by changing the order between left and right
children.

In both cases, we can easily code one bit implicitly at each internal node, but not at
external nodes. Therefore, we weed to use balance schemes that can do with only one bit
per internal node and no balance information at external nodes.

As an example, we may use the AVL-tree. At each node, we need to keep track of whether
the two subtrees have the same height or if one of them is one unit higher than its sibling.
We can do this with one bit per internal node by letting the bit be 1 if and only if the node
is higher than its sibling. For external nodes we know the height, so no balance information
is needed there.

The assumption that we only need one bit per internal node is used in the two construc-
tions below.

Using Empty Pointers

As pointed out by Brown [24,25], the explicitly stored balance information may in
some classes of balanced trees be eliminated by coding the information through the location
of empty pointers. We use a tree of pseudo-nodes, where a pseudo-node contains two
consecutive elements, stored in two binary nodes. The pseudo-node will have three outgoing
pointers, and since the two binary nodes are consecutive, one of the three pointers will be
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FIGURE 10.4: Rebalancing a binary search tree.

empty. By varying which of the two nodes become parent, we can arrange the pseudo-
node in two ways. These two different structures is used to represent bit values 0 and 1,
respectively; by checking the position of the empty pointer, we can compute the bit value.
In order for this to work, we allow the pseudo-nodes at the bottom of the tree to contain
one or two binary nodes.

During insertion, we traverse down the tree. If the inserted element lies between the two
keys in a visited pseudo-node, we replace it by one of the elements in the pseudo-node and
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continue down the tree with that element instead. At the bottom of the tree, if we find a
pseudo-node with only one key, we just add the new key. If, on the other hand, we find a
pseudo-node with two keys, we split it into two pseudo-nodes which will cause an insertion in
the tree of pseudo-nodes. Rotations etc. can be done with pseudo-nodes instead of ordinary
binary nodes. (If a rotation involves the lowest level of the tree of pseudo-nodes, some care
has to be taken in order to maintain the invariant that only the lowest pseudo-nodes may
contain a single node.)

Deletions are handled correspondingly. If the deleted element is contained in an internal
pseudo-node, we replace it by its predecessor or successor, which resides at the bottom
of the tree; in this way we ensure that the deletion occurs at the bottom. If the deletion
occurs at a pseudo-node with two binary nodes, we just remove the node, if the pseudo-node
contains only one node, a deletion occurs in the tree of pseudo-nodes.

Despite the pseudo-nodes, the tree is really just a binary search tree where no balance
information is explicitly stored. Since each pseudo-node has internal height 2, and the
number of pseudo-nodes is less than n, the height of the binary tree is O(logn). A drawback
is that the height of the underlying binary tree will become higher by the use of pseudo-
nodes. Instead of n internal nodes we will have roughly n/2 pseudo-nodes, each of height 2.
In the worst case, the height of the binary tree will be doubled.

Swapping Pointers

Another possibility for coding information into a structure is to use the ordering of
nodes. If we redefine binary search trees, such that the left and right subtree of a node are
allowed to change place, we can use this possibility to encode one bit per node implicitly. By
comparing the keys of the two children of a node, the one-bit information can be extracted.
During search, we have to make one comparison extra at each node. This idea has been
used by Munro and Suwanda [59-61] to achieve implicit implementation of binary search
trees, but it can of course also be used for traditional pointer-based tree structures.

10.6.2 General Balanced Trees

In the following, we use |T'| to denote the weight (number of leaves) in a tree T. We also
use |v| to denote the weight of a subtree rooted at node v. It should be noted that for a
tree T storing n keys in internal nodes, |T'| =n + 1

Instead of coding balance information into the structure of the tree, we can let the tree
take any shape, as long as its height is logarithmic. Then, there is no local balance criterion
to maintain, and we need no balance information in the nodes, not even implicitly coded.
As we show below, the tree can still be maintained efficiently.

When maintaining trees this way, we use the technique of partial rebuilding. This tech-
nique was first introduced by Overmars and van Leeuwen [68,69] for maintaining weight-
balanced trees. By making a partial rebuilding at node v, we mean that the subtree rooted
at v is rebuilt into a perfectly balanced tree. The cost of such rebalancing is ©(|v|). In Sec-
tion 10.5, we discuss linear time algorithms for rebalancing a (sub-)tree to perfect balance.

Apart from the advantage of requiring no balance information in the nodes, it can be
shown [7] that the constant factor for general balanced trees is lower than what has been
shown for the maintenance of weight-balanced trees by partial rebuilding.

The main idea in maintaining a general balanced tree is to let the tree take any shape
as long as its height does not exceed log |T'| by more than a specified constant factor. The
key observation is that whenever the tree gets too high by an insertion, we can find a node
where partial rebuilding can be made at a low amortized cost. (Since deletions do not
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increase the height of the tree, we can handle deletions efficiently by rebuilding the entire
tree after a large number of elements have been deleted.)

We use two constants ¢ > 1, and b > 0, and we maintain a balanced tree T' with maximum
height [clog |T| + b].

No balance information is used, except two global integers, containing |7'|, the number of
leaves in T, and d(T"), the number of deletions made since the last time the entire tree T'
was rebalanced.

Updates are performed in the following way:

Insertion: If the depth of the new leaf exceeds [clog(|T'|+d(T))], we back up along the
insertion path until we find the lowest node v, such that h(v) > [clog|v|]. The
subtree v is then rebuilt to perfect balance. The node v is found by explicitly
traversing the subtrees below the nodes on the path from the inserted leaf to
v, while counting the number of leaves. The cost for this equals the cost for
traversing the subtree below v once, which is O(|v]).

Deletion: d(T) increases by one. If d(T) > (2°/¢ —1)|T|, we rebuild T to perfect
balance and set d(T") = 0.

First, we show that the height is low enough. Since deletions do not increase the height
of T', we only need to show that the height is not increased too much by an insertion. We
prove this by induction. Assume that

MT) < [elog(|T| + d(T))] (10.1)

holds before an insertion. (Note that the height of an empty tree is zero.) During the
insertion, the height condition can only be violated by the new node. However, if such
a violation occurs, the partial rebuilding will ensure that Inequality 10.1 holds after the
insertion. Hence, Inequality 10.1 holds by induction. Combining this with the fact that
d(T) < (2°/¢ —1)|T|, we get that h(T) < [clog |T|+ b].

Next, we show that the maintenance cost is low enough. Since the amortized cost for
the rebuilding of the entire tree caused by deletions is obviously O(1) per deletion, we only
need to consider insertions.

In fact, by the way we choose where to perform rebuilding, we can guarantee that when
a partial rebuilding occurs at node v, Q(v) updates have been made below v since the last
time v was involved in a partial rebuilding. Indeed, this observation is the key observation
behind general balanced trees.

Let vy be v’s child on the path to the inserted node. By the way v is selected by the
algorithm, we know the following about v and v:

h(v) > [eclog|vl] (10.2)
h(ve) < [cloglvgl] (10.3)
h(v) = h(vn)+1 (10.4)
Combining these, we get
[clog|v|] < h(v) = h(vh) +1 < [clog|vm|] +1 (10.5)

and, thus

loglv] < loglug|+1/c
logr| > 27Y¢) (10.6)
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FIGURE 10.5: Upper tree: A GB(1.2)-tree which requires rebalancing. Lower tree: After
partial rebuilding.

Since 271/¢ > 1/2, we conclude that the weight of v is ©(v) larger than the weight of v’s
other child. The only way this difference in weight between the two children can occur is
by insertions or deletion below v. Hence, Q(v) updates must have been made below v since
the last time v was involved in a partial rebuilding. In order for the amortized analysis to
hold, we need to reserve a constant cost at v for each update below v. At each update,
updates are made below O(logn) nodes, so the total reservation per update is O(logn).

Since the tree is allowed to take any shape as long as its height is low enough, we call this
type of balanced tree general balanced trees [7]. We use the notation GB-trees or GB(c)-
trees, where ¢ is the height constant above. (The constant b is omitted in this notation.)
(The idea of general balanced trees have also been rediscovered under the name scapegoat
trees [33].)

Example. The upper tree in Figure 10.5 illustrates a GB(1.2)-tree where five deletions
and some insertions have been made since the last global rebuilding. When inserting 10,
the height becomes 7, which is too high, since 7 > [clog(|T'|+d(T"))] = [1.21og(20+5)] = 6.
We back up along the path until we find the node 14. The height of this node is 5 and
the weight is 8. Since 5 > [1.21log8], we can make a partial rebuilding at that node. The
resulting tree is shown as the lower tree in Figure 10.5.

10.6.3 Application to Multi-Dimensional Search Trees

The technique of partial rebuilding is an attractive method in the sense that it is useful
not only for ordinary binary search trees, but also for more complicated data structures,
such as multi-dimensional search trees, where rotations cannot be used efficiently. For
example, partial rebuilding can be used to maintain logarithmic height in k-d trees [19]
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under updates [57,68,69]. A detailed study of the use of partial rebuilding can be found
in Mark Overmars’ Ph.D. thesis [68]. For the sake of completeness, we just mention that
if the cost of rebalancing a subtree v is O(P(|v|)), the amortized cost of an update will

be O (%") log n) For example, applied to k-d trees, we get an amortized update cost of
O(log® n).

10.7 Low Height Schemes

Most rebalancing schemes reproduce the result of AVL-trees [1] in the sense that they
guarantee a height of ¢ - log(n) for some constant ¢ > 1, while doing updates in O(logn)
time. Since the height determines the worst-case complexity of almost all operations, it may
be reasonable to ask exactly how close to the best possible height [log(n+1)] a tree can be
maintained during updates. Presumably, the answer depends on the amount of rebalancing
work we are willing to do, so more generally the question is: given a function f, what is the
best possible height maintainable with O(f(n)) rebalancing work per update?

This question is of practical interest—in situations where many more searches than up-
dates are performed, lowering the height by factor of (say) two will improve overall perfor-
mance, even if it is obtained at the cost of a larger update time. It is also of theoretical
interest, since we are asking about the inherent complexity of maintaining a given height
in binary search trees. In this section, we review the existing answers to the question.

Already in 1976, Maurer et al. [55] proposed the k-neighbor trees, which guarantee a
height of ¢ - log(n), where ¢ can be chosen arbitrarily close to one. These are unary-
binary trees, with all leaves having the same depth and with the requirement that between
any two unary nodes on the same level, at least £k — 1 binary nodes appear. They may
be viewed as a type of (1,2)-trees where the rebalancing operations exchange children,
not only with neighboring nodes (as in standard (a,b)-tree or B-tree rebalancing), but
with nodes a horizontal distance k£ away. Since at each level, at most one out of k nodes
is unary, the number of nodes increases by a factor of (2(k — 1) +1)/k = 2 — 1/k for
each level. This implies a height bound of log, ;,,n = log(n)/log(2 — 1/k). By first
order approximation, log(l + z) = O(z) and 1/(1+z) = 1 — O(z) for = close to zero, so
1/log(2 —1/k) =1/(1 +log(1 — 1/2k)) = 1 + ©(1/k). Hence, k-trees maintain a height of
(14 6(1/k))logn in time O(klogn) per update.

Another proposal [8] generalizes the red-black method of implementing (2, 4)-trees as
binary trees, and uses it to implement (a, b)-trees as binary trees for @ = 2¥ and b = 2++1,
Each (a,b)-tree node is implemented as a binary tree of perfect balance. If the underlying
(a,b)-tree has t levels, the binary tree has height at most ¢(k+1) and has at least (2%)t = 2kt
nodes. Hence, logn > tk, so the height is at most (k + 1)/klogn = (14 1/k)logn. As in
red-black trees, a node splitting or fusion in the (a, b)-tree corresponds to a constant amount
of recoloring. These operations may propagate along the search path, while the remaining
rebalancing necessary takes place at a constant number of (a, b)-tree nodes. In the binary
formulation, these operations involve rebuilding subtrees of size ©(2*) to perfect balance.
Hence, the rebalancing cost is O(log(n)/k + 2*) per update.

Choosing k = |loglogn] gives a tree with height bound logn + log(n)/loglog(n) and
update time O(logn). Note that the constant for the leading term of the height bound
is now one. To accommodate a non-constant k, the entire tree is rebuilt when |loglogn |
changes. Amortized this is O(1) work, which can be made a worst case bound by using
incremental rebuilding [68].

Returning to k-trees, we may use the method of non-constant k also there. One possibility
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is k = ©(logn), which implies a height bound as low as logn + O(1), maintained with
O(log2 n) rebalancing work per update. This height is O(1) from the best possible. A
similar result can be achieved using the general balanced trees described in Section 10.6: In
the proof of complexity in that section, the main point is that the cost |v| of a rebuilding at
a node v can be attributed to at least (2-1/¢ — 1/2)|v| updates, implying that each update
is attributed at most (1/(27'/¢ —1/2)) cost at each of the at most O(logn) nodes on the
search path. The rebalancing cost is therefore O(1/(27/¢ — 1/2)logn) for maintaining
height ¢ - logn. Choosing ¢ = 1+ 1/logn gives a height bound of logn + O(1), maintained
in O(log? n) amortized rebalancing work per update, since (271/(1+1/10g7)) _ 1/9) can be
shown to be ©(1/logn) using the first order approximations 1/(1 + z) = 1 — ©(z) and
2% =1+ O(x) for x close to zero.

We note that a binary tree with a height bound of logn + O(1) in a natural way can be
embedded in an array of length O(n): Consider a tree T with a height bound of logn + &
for an integer k, and consider n ranging over the interval [2¢;2¢F1[ for an integer i. For
n in this interval, the height of T never exceeds ¢ + k, so we can think of 7" as embedded
in a virtual binary tree T” with 7 + k completely full levels. Numbering nodes in 7" by
an in-order traversal and using these numbers as indexes in an array A of size 2/T% — 1
gives an embedding of T into A. The keys of T' will appear in sorted order in A, but
empty array entries may exist between keys. An insertion into 7" which violates the height
bound corresponds to an insertion into the sorted array A at a non-empty position. If
T is maintained by the algorithm based on general balanced trees, rebalancing due to the
insertion consists of rebuilding some subtree in T to perfect balance, which in A corresponds
to an even redistribution of the elements in some consecutive segment of the array. In
particular, the redistribution ensures an empty position at the insertion point.

In short, the tree rebalancing algorithm can be used as a maintenance algorithm for a
sorted array of keys supporting insertions and deletions in amortized O(log® n) time. The
requirement is that the array is never filled to more than some fixed fraction of its capacity
(the fraction is 1/2F~1 in the example above). Such an amortized O(log® n) solution, phrased
directly as a maintenance algorithm for sorted arrays, first appeared in [38]. By the converse
of the embedding just described, [38] implies a rebalancing algorithm for low height trees
with bounds as above. This algorithm is similar, but not identical, to the one arising from
general balanced trees (the criteria for when to rebuild /redistribute are similar, but differ in
the details). A solution to the sorted array maintenance problem with worst case O(log® n)
update time was given in [78]. Lower bounds for the problem appear in [28,29], with one
of the bounds stating that for algorithms using even redistribution of the elements in some
consecutive segment of the array, O(log®n) time is best possible when the array is filled up
to some constant fraction of its capacity.

We note that the correspondence between the tree formulation and the array formulation
only holds when using partial rebuilding to rebalance the tree—only then is the cost of
the redistribution the same in the two versions. In contrast, a rotation in the tree will
shift entire subtrees up and down at constant cost, which in the array version entails cost
proportional to the size of the subtrees. Thus, for pointer based implementation of trees,
the above Q(log2 n) lower bound does not hold, and better complexities can be hoped for.

Indeed, for trees, the rebalancing cost can be reduced further. One method is by applying
the idea of bucketing: The subtrees on the lowest O(log K) levels of the tree are changed
into buckets holding O(K) keys. This size bound is maintained by treating the buckets
as (a, b)-tree nodes, i.e., by bucket splitting, fusion, and sharing. Updates in the top tree
only happen when a bucket is split or fused, which only happens for every ©(K) updates
in the bucket. Hence, the amortized update time for the top tree drops by a factor K. The
buckets themselves can be implemented as well-balanced binary trees—using the schemes
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above based on k-trees or general balanced trees for both top tree and buckets, we arrive
at a height bound of logn + O(1), maintained with O(log log? n) amortized rebalancing
work. Applying the idea recursively inside the buckets will improve the time even further.
This line of rebalancing schemes was developed in [3,4,9, 10,42, 43], ending in a scheme [10]
maintaining height [log(n + 1)] 4+ 1 with O(1) amortized rebalancing work per update.

This rather positive result is in contrast to an observation made in [42] about the cost of
maintaining exact optimal height [log(n + 1)]: When n = 2¢ — 1 for an integer i, there is
only one possible tree of height [log(n+1)], namely a tree of ¢ completely full levels. By the
ordering of keys in a search tree, the keys of even rank are in the lowest level, and the keys
of odd rank are in the remaining levels (where the rank of a key k is defined as the number
of keys in the tree that are smaller than k). Inserting a new smallest key and removing the
largest key leads to a tree of same size, but where all elements previously of odd rank now
have even rank, and vice versa. If optimal height is maintained, all keys previously in the
lowest level must now reside in the remaining levels, and vice versa—in other words, the
entire tree must be rebuilt. Since the process can be repeated, we obtain a lower bound of
Q(n), even with respect to amortized complexity. Thus, we have the intriguing situation
that a height bound of [log(n+1)] has amortized complexity ©(n) per update, while raising
the height bound a trifle to [log(n + 1)] + 1 reduces the complexity to ©(1).

Actually, the papers [3,4,9,10, 42, 43] consider a more detailed height bound of the form
[log(n 4+ 1) + €], where € is any real number greater than zero. For e less than one, this
expression is optimal for the first integers n above 2¢ — 1 for any i, and optimal plus one
for the last integers before 2i*1 — 1. In other words, the smaller an ¢, the closer to the next
power of two is the height guaranteed to be optimal. Considering tangents to the graph of
the logarithm function, it is easily seen that e is proportional to the fraction of integers n
for which the height is non-optimal.

Hence, an even more detailed formulation of the question about height bound versus
rebalancing work is the following: Given a function f, what is the smallest possible £ such
that the height bound [log(n + 1) + £] is maintainable with O(f(n)) rebalancing work per
update?

In the case of amortized complexity, the answer is known. In [30], a lower bound is given,
stating that no algorithm using o( f(n)) amortized rebuilding work per update can guarantee
a height of [log(n + 1) + 1/f(n)] for all n. The lower bound is proved by mapping trees
to arrays and exploiting a fundamental lemma on density from [28]. In [31], a balancing
scheme was given which maintains height [log(n+ 1)+ 1/f(n)] in amortized O(f(n)) time
per update, thereby matching the lower bound. The basic idea of the balancing scheme
is similar to k-trees, but a more intricate distribution of unary nodes is used. Combined,
these results show that for amortized complexity, the answer to the question above is

e(n) € ©(1/f(n)).

We may view this expression as describing the inherent amortized complexity of rebal-
ancing a binary search tree, seen as a function of the height bound maintained. Using the
observation above that for any i, [log(n + 1) + €] is equal to [log(n + 1)] for n from 2¢ — 1
to (1—0(e))2+L, the result may alternatively be viewed as the cost of maintaining optimal
height when n approaches the next power of two: for n = (1 — £)2i*!, the cost is ©(1/¢).
A graph depicting this cost appears in Figure 10.6.

This result holds for the fully dynamic case, where one may keep the size at (1 — g)2¢+!
by alternating between insertions and deletions. In the semi-dynamic case where only
insertions take place, the amortized cost is smaller—essentially, it is the integral of the
function in Figure 10.6, which gives ©(nlogn) for n insertions, or ©(logn) per insertion.
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FIGURE 10.6: The cost of maintaining optimal height as a function of tree size.

More concretely, we may divide the insertions causing n to grow from 2° to 2! into i
segments, where segment one is the first 27! insertions, segment two is the next 2¢~2
insertions, and so forth. In segment j, we employ the rebalancing scheme from [31] with
f(n) = ©(27), which will keep optimal height in that segment. The total cost of insertions
is O(2%) inside each of the i segments, for a combined cost of O(i2%), which is O(logn)
amortized per insertion. By the same reasoning, the lower bound from [30] implies that this
is best possible for maintaining optimal height in the semi-dynamic case.

Considering worst case complexity for the fully dynamic case, the amortized lower bound
stated above of course still applies. The best existing upper bound is height [log(n + 1) +
min{1/4/f(n),log(n)/f(n)}], maintained in O(f(n)) worst case time, by a combination of
results in [4] and [30]. For the semi-dynamic case, a worst case cost of ©(n) can be enforced
when n reaches a power of two, as can be seen by the argument above on odd and even
ranks of nodes in a completely full tree.

10.8 Relaxed Balance

In the classic search trees, including AVL-trees [1] and red-black trees [34], balancing is
tightly coupled to updating. After an insertion or deletion, the updating procedure checks
to see if the structural invariant is violated, and if it is, the problem is handled using the
balancing operations before the next operation may be applied to the tree. This work is
carried out in a bottom-up fashion by either solving the problem at its current location using
rotations and/or adjustments of balance variables, or by carrying out a similar operation
which moves the problem closer to the root, where, by design, all problems can be solved.

In relaxed balancing, the tight coupling between updating and balancing is removed.
Basically, any restriction on when rebalancing is carried out and how much is done at a
time is removed, except that the smallest unit of rebalancing is typically one single or double
rotation. The immediate disadvantage is of course that the logarithmic height guarantee
disappears, unless other methods are used to monitor the tree height.

The advantage gained is flexibility in the form of extra control over the combined process
of updating and balancing. Balancing can be “turned off” during periods with frequent
searching and updating (possibly from an external source). If there is not too much correla-
tion between updates, the tree would likely remain fairly balanced during that time. When
the frequency drops, more time can be spend on balancing. Furthermore, in multi-processor
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environments, balancing immediately after an update is a problem because of the locking
strategies with must be employed. Basically, the entire search path must be locked because
it may be necessary to rebalance all the way back up to the root. This problem is discussed
as early as in [34], where top-down balancing is suggested as a means of avoiding having to
traverse the path again bottom-up after an update. However, this method generally leads
to much more restructuring than necessary, up to O(logn) instead of O(1). Additionally,
restructuring, especially in the form of a sequence of rotations, is generally significantly
more time-consuming than adjustment of balance variables. Thus, it is worth considering
alternative solutions to this concurrency control problem.

The advantages outlined above are only fully obtained if balancing is still efficient. That is
the challenge: to define balancing constraints which are flexible enough that updating with-
out immediate rebalancing can be allowed, yet at the same time sufficiently constrained that
balancing can be handled efficiently at any later time, even if path lengths are constantly
super-logarithmic.

The first partial result, dealing with insertions only, is from [41]. Below, we discuss the
results which support insertion as well as deletion.

10.8.1 Red-Black Trees

In standard red-black trees, the balance constraints require that no two consecutive nodes
are red and that for any node, every path to a leaf has the same number of black nodes.
In the relaxed version, the first constraint is abandoned and the second is weakened in the
following manner: Instead of a color variable, we use an integer variable, referred to as the
weight of a node, in such a way that zero can be interpreted as red and one as black. The
second constraint is then changed to saying that for any node, every path to a leaf has the
same sum of weights. Thus, a standard red-black tree is also a relaxed tree; in fact, it is the
ideal state of a relaxed tree. The work on red-black trees with relaxed balance was initiated
in [64,65].

Now, the updating operations must be defined so that an update can be performed in
such a way that updating will leave the tree in a well-defined state, i.e., it must be a relaxed
tree, without any subsequent rebalancing. This can be done as shown in Fig. 10.7. The
operations are from [48].

The trees used here, and depicted in the figure, are assumed to be leaf-oriented. This
terminology stems from applications where it is convenient to treat the external nodes
differently from the remaining nodes. Thus, in these applications, the external nodes are
not empty trees, but real nodes, possibly of another type than the internal nodes. In
database applications, for instance, if a sequence of sorted data in the form of a linked list
is already present, it is often desirable to build a tree on top of this data to facilitate faster
searching. In such cases, it is often convenient to allow copies of keys from the leaves to also
appear in the tree structure. To distinguish, we then refer to the key values in the leaves
as keys, and refer to the key values in the tree structure as routers, since they merely guide
the searching procedure. The ordering invariant is then relaxed, allowing keys in the left
subtree of a tree rooted by u to be smaller than or equal to u.k, and the size of the tree is
often defined as the number of leaves. When using the terminology outlined here, we refer
to the trees as leaf-oriented trees.

The balance problems in a relaxed tree can now be specified as the relations between bal-
ance variables which prevent the tree from being a standard red-black tree, i.e., consecutive
red nodes (nodes of weight zero) and weights greater than one. Thus, the balancing scheme
must be targeted at removing these problems. It is an important feature of the design that
the global constraint on a standard red-black tree involving the number of black nodes is
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U)1—1 w1
gwy >1 — -  owitws
1 1 w2 w3

(insert) (delete)

FIGURE 10.7: Update operations.

not lost after an update. Instead, the information is captured in the second requirement
and as soon as all weight greater than one has been removed, the standard constraint holds
again.

The strategy for the design of balancing operations is the same as for the classical search
trees. Problems are removed if this is possible, and otherwise, the problem is moved closer
to the root, where all problems can be resolved. In Fig. 10.8, examples are shown of how
consecutive red nodes and weight greater than one can be eliminated, and in Fig. 10.9,
examples are given of how these problems may be moved closer to the root, in the case
where they cannot be eliminated immediately.

w > 1 w1 w1 w1
((%\1@21 — O/\\(i w2>1</\xlj — }//\1
0 Wy 0 w2—1

(consecutive red nodes) (weight greater than one)

FIGURE 10.8: Example operations eliminating balance problems.

w; > 1 w1 —1 w1 wi1+1
0 0 — 1 1 woe>1 1 — we—1 0
0 0 w3z >0 wyq >0 ws Wy
(consecutive red nodes) (weight greater than one)

FIGURE 10.9: Example operations moving balance problems closer to the root.

It is possible to show complexity results for relaxed trees which are similar to the ones
which can be obtained in the classical case. A logarithmic bound on the number of balancing
operations required to balance the tree in response to an update was established in [23].
Since balancing operations can be delayed any amount of time, the usual notion of n as
the number of elements in the tree at the time of balancing after an update is not really
meaningful, so the bound is logarithmic in /N, which is the maximum number of elements
in the tree since it was last in balance. In [22], amortized constant bounds were obtained
and in [45], a version is presented which has fewer and smaller operations, but meets the
same bounds. Also, restructuring of the tree is worst-case constant per update. Finally,
[48] extends the set of operations with a group insertion, such that an entire search tree

© 2005 by Chapman & Hall/CRC



Balanced Binary Search Trees 10-23

can be inserted in between two consecutive keys in amortized time O(logm), where m is
the size of the subtree.

The amortized bounds as well as the worst case bounds are obtained using potential
function techniques [74]. For group insertion, the results further depend on the fact that
trees with low total potential can build [40], such that the inserted subtree does not increase
the potential too dramatically.

10.8.2 AVL-Trees

The first relaxed version of AVL-trees [1] is from [63]. Here, the standard balance con-
straint of requiring that the heights of any two subtrees differ by at most one is relaxed by
introducing a slack parameter, referred to as a tag value. The tag value, t,,, of any node u
must be an integer greater than or equal to —1, except that the tag value of a leaf must be
greater than or equal to zero. The constraint that heights may differ by at most one is then
imposed on the relazed height instead. The relaxed height rh(u) of a node u is defined as

h(u) = tu, if u is a leaf
T = max(rh(u.l),rh(u.r)) +1+t,, otherwise

As for red-black trees, enough flexibility is introduced by this definition that updates can
be made without immediate rebalancing while leaving the tree in a well-defined state. This
can be done by adjusting tag values appropriately in the vicinity of the update location. A
standard AVL-tree is the ideal state of a relaxed AVL-tree, which is obtained when all tag
values are zero. Thus, a balancing scheme aiming at this is designed.

In [44], it is shown that a scheme can be designed such that the complexities from the
sequential case are met. Thus, only a logarithmic number of balancing operations must be
carried out in response to an update before the tree is again in balance. As opposed to
red-black trees, the amortized constant rebalancing result does not hold in full generality
for AVL-trees, but only for the semi-dynamic case [58]. This result is matched in [46].

A different AVL-based version was treated in [71]. Here, rotations are only performed
if the subtrees are balanced. Thus, violations of the balance constraints must be dealt
with bottom-up. This is a minimalistic approach to relaxed balance. When a rebalancing
operation is carried out at a given node, the children do not violate the balance constraints.
This limits the possible cases, and is asymptotically as efficient as the structure described
above [52,53].

10.8.3 Multi-Way Trees

Multi-way trees are usually described either as (a,b)-trees or B-trees, which are treated in
another chapter of this book. An (a,b)-tree [37,57] consists of nodes with at least a and at
most b children. Usually, it is required that a > 2 to ensure logarithmic height, and in order
to make the rebalancing scheme work, b must be at least 2a — 1. Searching and updating
including rebalancing is O(log, n). If b > 2a, then rebalancing becomes amortized O(1).
The term B-trees [17] is often used synonymously, but sometimes refers to the variant where
b =2a — 1 or the variant where b = 2a.

For (a, b)-trees, the standard balance constraints for requiring that the number of children
of each node is between a and b and that every leaf is at the same depth are relaxed as
follows. First, nodes are allowed to have fewer than a children. This makes it possible to
perform a deletion without immediate rebalancing. Second, nodes are equipped with a tag
value, which is a non-positive integer value, and leaves are only required to have the same
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relaxed depth, which is the usual depth, except that all tag values encountered from the root
to the node in question are added. With this relaxation, it becomes possible to perform an
insertion locally and leave the tree in a well-defined state.

Relaxed multi-way trees were first considered in [63], and complexity results matching the
standard case were established in [50]. Variations with other properties can be found in [39)].
Finally, a group insertion operation with a complexity of amortized O(log, m), where m is
the size of the group, can be added while maintaining the already achieved complexities for
the other operations [47,49]. The amortized result is a little stronger than usual, where it
is normally assumed that the initial structure is empty. Here, except for very small values
of a and b, zero-potential trees of any size can be constructed such the amortized results
starting from such a tree hold immediately [40].

10.8.4 Other Results

Even though there are significant differences between the results outlined above, it is pos-
sible to establish a more general result giving the requirements for when a balanced search
tree scheme can be modified to give a relaxed version with corresponding complexity prop-
erties [51]. The main requirements are that rebalancing operations in the standard scheme
must be local constant-sized operations which are applied bottom-up, but in addition, bal-
ancing operation must also move the problems of imbalance towards the root. See [35] for
an example of how these general ideas are expressed in the concrete setting of red-black
trees.

In [32], it is demonstrated how the ideas of relaxed balance can be combined with meth-
ods from search trees of near-optimal height, and [39] contains complexity results made
specifically for the reformulation of red-black trees in terms of layers based on black height
from [67].

Finally, performance results from experiments with relaxed structures can be found in [21,
36].
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11.1 Finger Searching

One of the most studied problems in computer science is the problem of maintaining a
sorted sequence of elements to facilitate efficient searches. The prominent solution to the
problem is to organize the sorted sequence as a balanced search tree, enabling insertions,
deletions and searches in logarithmic time. Many different search trees have been developed
and studied intensively in the literature. A discussion of balanced binary search trees can
be found in Chapter 10.

This chapter is devoted to finger search trees, which are search trees supporting fingers,
i.e., pointers to elements in the search trees and supporting efficient updates and searches
in the vicinity of the fingers.

If the sorted sequence is a static set of n elements then a simple and space efficient
representation is a sorted array. Searches can be performed by binary search using 1+ |logn |
comparisons (we throughout this chapter let log = to denote log, max{2, x}). A finger search
starting at a particular element of the array can be performed by an exponential search by
inspecting elements at distance 2° — 1 from the finger for increasing i followed by a binary
search in a range of 21984 _ 1 elements, where d is the rank difference in the sequence
between the finger and the search element. In Figure 11.1 is shown an exponential search
for the element 42 starting at 5. In the example d = 20. An exponential search requires

[3]4]5]6]8]9]13[14[17[19]20[22][23]24]27]29]30[32[34]37]40[4 1(a2)43[45]46]48]51]53]54]57]59]60]6 1]63]65]

!

finger

FIGURE 11.1: Exponential search for 42.
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2 4 2|logd| comparisons.
Bentley and Yao [5] gave a close to optimal static finger search algorithm which performs

(i41)

Ei‘fl =1 og® g + O(log* d) comparisons, where log™!) z = log z, log z = log(log® z),

and log* z = min{i | log®” z < 1}.

11.2 Dynamic Finger Search Trees

A dynamic finger search data structure should in addition to finger searches also support the
insertion and deletion of elements at a position given by a finger. This section is devoted to
an overview of existing dynamic finger search data structures. Section 11.3 and Section 11.4
give details concerning how three constructions support efficient finger searches: The level
linked (2,4)-trees of Huddleston and Mehlhorn [26], the randomized skip lists of Pugh [36, 37]
and the randomized binary search trees, treaps, of Seidel and Aragon [39].

Guibas et al. [21] introduced finger search trees as a variant of B-trees [4], supporting
finger searches in O(log d) time and updates in O(1) time, assuming that only O(1) movable
fingers are maintained. Moving a finger d positions requires O(logd) time. This work was
refined by Huddleston and Mehlhorn [26]. Tsakalidis [42] presented a solution based on
AVL-trees, and Kosaraju [29] presented a generalized solution. Tarjan and van Wyk [41]
presented a solution based on red-black trees.

The above finger search tree constructions either assume a fixed constant number of fin-
gers or only support updates in amortized constant time. Constructions supporting an
arbitrary number of fingers and with worst case update have been developed. Levcopoulos
and Overmars [30] presented a search tree that supported updates at an arbitrary posi-
tion in worst case O(1) time, but only supports searches in O(logn) time. Constructions
supporting O(logd) time searches and O(log™ n) time insertions and deletions were devel-
oped by Harel [22,23] and Fleischer [19]. Finger search trees with worst-case constant
time insertions and O(log™ n) time deletions were presented by Brodal [7], and a construc-
tion achieving optimal worst-case constant time insertions and deletions were presented by
Brodal et al. [9].

Belloch et al. [6] developed a space efficient alternative solution to the level linked (2,4)-
trees of Huddleston and Mehlhorn, see Section 11.3. Their solution allows a single finger,
that can be moved by the same performance cost as (2,4)-trees. In the solution no level links
and parent pointers are required, instead a special O(logn) space data structure, hand, is
created for the finger that allows the finger to be moved efficiently.

Sleator and Tarjan introduced splay trees as a class of self-adjusting binary search trees
supporting searches, insertions and deletions in amortized O(logn) time [40]. That splay
trees can be used as efficient finger search trees was later proved by Cole [15,16]: Given an
O(n) initialization cost, the amortized cost of an access at distance d from the preceding
access in a splay tree is O(log d) where accesses include searches, insertions, and deletions.
Notice that the statement only applies in the presence of one finger, which always points to
the last accessed element.

All the above mentioned constructions can be implemented on a pointer machine where
the only operation allowed on elements is the comparison of two elements. For the Random
Access Machine model of computation (RAM), Dietz and Raman [17, 38] developed a finger
search tree with constant update time and O(logd) search time. This result is achieve by
tabulating small tree structures, but only performs the comparison of elements. In the same
model of computation, Andersson and Thorup [2] have surpassed the logarithmic bound in

logd
log log d

the search procedure by achieving O ( ) query time. This result is achieved by
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considering elements as bit-patterns/machine words and applying techniques developed for

the RAM to surpass lower bounds for comparison based data structures. A survey on RAM
dictionaries can be found in Chapter 39.

11.3 Level Linked (2,4)-Trees

In this section we discuss how (2,4)-trees can support efficient finger searches by the intro-
duction of level links. The ideas discussed in this section also applies to the more general
class of height-balanced trees denoted (a, b)-trees, for b > 2a. A general discussion of height
balanced search trees can be found in Chapter 10. A throughout treatment of level linked
(a, b)-trees can be found in the work of Huddleston and Mehlhorn [26, 32].

A (2,4)-tree is a height-balanced search tree where all leaves have the same depth and all
internal nodes have degree two, three or four. Elements are stored at the leaves, and internal
nodes only store search keys to guide searches. Since each internal node has degree at least
two, it follows that a (2,4)-tree has height O(logn) and supports searches in O(logn) time.

An important property of (2,4)-trees is that insertions and deletions given by a finger
take amortized O(1) time (this property is not shared by (2, 3)-trees, where there exist
sequences of n insertions and deletions requiring ©(nlogn) time). Furthermore a (2,4)-tree
with n leaves can be split into two trees of size ny and ng in amortized O(log min(ny,ng))
time. Similarly two (2,4)-trees of size ny and ny can be joined (concatenated) in amortized
O(log min(ni,ng)) time.

To support finger searches (2,4)-trees are augmented with level links, such that all nodes
with equal depth are linked together in a double linked list. Figure 11.2 shows a (2,4)-tree
augmented with level links. Note that all edges represent bidirected links. The additional
level links are straightforward to maintain during insertions, deletions, splits and joins of
(2,4)-trees.

To perform a finger search from x to y we first check whether y is to the left or right of x.
Assume without loss of generality that y is to the right of . We then traverse the path
from z towards the root while examining the nodes v on the path and their right neighbors
until it has been established that y is contained within the subtree rooted at v or v’s right
neighbor. The upwards search is then terminated and at most two downwards searches for
y is started at respectively v and/or v’s right neighbor. In Figure 11.2 the pointers followed
during a finger search from J to T are depicted by thick lines.

®
-----------------------------------------------
fffffffffffffffffffffffff ------------------ ffffffffffff fffffffffff

(B]-[c]{DHEHE}G]HH] v}n]-{oH{PHa R s HTHUFV]-wi{x}Hy|-[z]-{z}{o]
x Yy

FIGURE 11.2: Level linked (2,4)-trees.

The O(logd) search time follows from the observation that if we advance the upwards
search to the parent of node v then y is to the right of the leftmost subtree of v's right
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neighbor, i.e. d is at least exponential in the height reached so far. In Figure 11.2 we advance
from the internal node labeled “L N” to the node labeled “H” because from “S” we know
that y is to the right of the subtree rooted at the node “Q R”.

The construction for level linked (2,4)-trees generalizes directly to level linked (a, b)-trees
that can be used in external memory. By choosing a = 2b and b such that an internal
node fits in a block in external memory, we achieve external memory finger search trees
supporting insertions and deletions in O(1) memory transfers, and finger searches with
O(log, n) memory transfers.

11.4 Randomized Finger Search Trees

Two randomized alternatives to deterministic search trees are the randomized binary search
trees, treaps, of Seidel and Aragon [39] and the skip lists of Pugh [36,37]. Both treaps and
skip lists are elegant data structures, where the randomization facilitates simple and efficient
update operations.

In this section we describe how both treaps and skip lists can be used as efficient fin-
ger search trees without altering the data structures. Both data structures support finger
searches in expected O(log d) time, where the expectations are taken over the random choices
made by the algorithm during the construction of the data structure. For a general intro-
duction to randomized dictionary data structures see Chapter 13.

11.4.1 Treaps

A treap is a rooted binary tree where each node stores an element and where each element
has an associated random priority. A treap satisfies that the elements are sorted with
respect to an inorder traversal of tree, and that the priorities of the elements satisfy heap
order, i.e., the priority stored at a node is always smaller than or equal to the priority
stored at the parent node. Provided that the priorities are distinct, the shape of a treap is
uniquely determined by its set of elements and the associated priorities. Figure 11.3 shows
a treap storing the elements A B,...,T and with random integer priorities between one and
hundred.

The most prominent properties of treaps are that they have expected O(logn) height,
implying that they provide searches in expected O(logn) time. Insertions and deletions
of elements can be performed in expected at most two rotations and expected O(1) time,
provided that the position of insertion or deletion is known, i.e. insertions and deletions
given by a finger take expected O(1) time [39].

The essential property of treaps enabling expected O(logd) finger searches is that for
two elements  and y whose ranks differ by d in the set stored, the expected length of the
path between x and y in the treap is O(logd). To perform a finger search for y starting
with a finger at x, we ideally start at x and traverse the ancestor path of z until we reach
the least common ancestor of x and y, LCA(z,y), and start a downward tree search for
y. If we can decide if a node is LCA(z,y), this will traverse exactly the path from z to y.
Unfortunately, it is nontrivial to decide if a node is LCA(z,y). In [39] it is assumed that a
treap is extended with additional pointers to facilitate finger searches in expected O(log d)
time. Below an alternative solution is described not requiring any additional pointers than
the standard left, right and parent pointers.

Assume without loss of generality that we have a finger at x and have to perform a finger
search for y > x present in the tree. We start at x and start traversing the ancestor path
of z. During this traversal we keep a pointer ¢ to the last visited node that can potentially
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FIGURE 11.3: Performing finger searches on treaps.

be LCA(z,y). Whenever we visit a node v on the path from z to the root there are three
cases:

(1) v <z, then z is in the right subtree of v and cannot be LCA(z,y); we advance
to the parent of v.

(2) z < v <y, then z is in the left subtree of v and LCA(x,y) is either y or an
ancestor of y; we reset / = v and advance to the parent of v.

(3) * <y < v, then LCA(z,y) is in the left subtree of v and equals .

Unfortunately, after LCA(z, y) has been visited case (1) can happen w(logd) times before
the search is terminated at the root or by case (3). Seidel and Aragon [39] denote these
extra nodes visited above LCA(z,y) the excess path of the search, and circumvent this
problem by extending treaps with special pointers for this.

To avoid visiting long excess paths we extend the above upward search with a concurrent
downward search for y in the subtree rooted at the current candidate ¢ for LCA(z,y). In
case (1) we always advance the tree search for y one level down, in case (2) we restart the
search at the new ¢, and in (3) we finalize the search. The concurrent search for y guarantees
that the distance between LCA(z,y) and y in the tree is also an upper bound on the nodes
visited on the excess path, i.e. we visit at most twice the number of nodes as is on the path
between x and y, which is expected O(logd). It follows that treaps support finger searches
in O(logd) time. In Figure 11.3 is shown the search for x = I, y = P, LCA(z,y) = K, the
path from z to y is drawn with thick lines, and the excess path is drawn with dashed lines.

11.4.2 Skip Lists

A skip list is a randomized dictionary data structure, which can be considered to consists of
expected O(logn) levels. The lowest level being a single linked list containing the elements
in sorted order, and each succeeding level is a random sample of the elements of the previous
level, where each element is included in the next level with a fixed probability, e.g. 1/2. The
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pointer representation of a skip is illustrated in Figure 11.4.

TINN

FIGURE 11.4: Performing finger searches on skip list.

The most prominent properties of skip lists are that they require expected linear space,
consist of expected O(logn) levels, support searches in expected O(logn) time, and support
insertions and deletions at a given position in expected O(1) time [36, 37].

Pugh in [36] elaborates on the various properties and extensions of skip lists, including
pseudo-code for how skip lists support finger searches in expected O(log d) time. To facilitate
backward finger searches, a finger to a node v is stored as an expected O(logn) space finger
data structure that for each level i stores a pointer to the node to the left of v where the
level ¢ pointer either points to v or a node to the right of v. Moving a finger requires this
list of pointers to be updated correspondingly.

A backward finger search is performed by first identifying the lowest node in the fin-
ger data structure that is to the left of the search key y, where the nodes in the finger
data structure are considered in order of increasing levels. Thereafter the search proceeds
downward from the identified node as in a standard skip list search.

Figure 11.4 shows the situation where we have a finger to H, represented by the thick
(solid or dashed) lines, and perform a finger search for the element D to the left of H. Dashed
(thick and thin) lines are the pointers followed during the finger search. The numbering
indicate the other in which the pointers are traversed.

If the level links of a skip list are maintained as double-linked lists, then finger searches
can be performed in expected O(log d) time by traversing the existing links, without having
a separate O(logn) space finger data structure

11.5 Applications

Finger search trees have, e.g., been used in algorithms within computational geometry
[3,8,20,24,28,41] and string algorithms [10, 11]. In the rest of this chapter we give examples
of the efficiency that can be obtained by applying finger search trees. These examples
typically allow one to save a factor of O(logn) in the running time of algorithms compared
to using standard balanced search trees supporting O(log n) time searches.

11.5.1 Optimal Merging and Set Operations

Consider the problem of merging two sorted sequences X and Y of length respectively n
and m, where n < m, into one sorted sequence of length n + m. The canonical solution is
to repeatedly insert each x € X in Y. This requires that Y is searchable and that there can
be inserted new elements, i.e. a suitable representation of Y is a balanced search tree. This
immediately implies an O(nlogm) time bound for merging. In the following we discuss
how finger search trees allow this bound to be improved to O(nlog ™).
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Hwang and Lin [27] presented an algorithm for merging two sorted sequence using op-
timal O(nlog ) comparisons, but did not discuss how to represent the sets. Brown and
Tarjan [12] described how to achieve the same bound for merging two AVL trees [1]. Brown
and Tarjan subsequently introduced level linked (2,3)-trees and described how to achieve
the same merging bound for level linked (2,3)-trees [13].

Optimal merging of two sets also follows as an application of finger search trees [26].
Assume that the two sequences are represented as finger search trees, and that we repeatedly
insert the n elements from the shorter sequence into the larger sequence using a finger
that moves monotonically from left to right. If the ith insertion advances the finger d;
positions, we have that the total work of performing the n finger searches and insertions is
O(E?Zl logd;), where Y7 | d; < m. By convexity of the logarithm the total work becomes
bounded by O(nlog 2).

Since sets can be represented as sorted sequences, the above merging algorithm gives
immediately raise to optimal, i.e. O (log (”':lm)) = O(nlog ™) time, algorithms for set
union, intersection, and difference operations [26]. For a survey of data structures for set
representations see Chapter 33.

11.5.2 Arbitrary Merging Order

A classical O(nlogn) time sorting algorithm is binary merge sort. The algorithm can be
viewed as the merging process described by a balanced binary tree: Each leaf corresponds
to an input element and each internal node corresponds to the merging of the two sorted
sequences containing respectively the elements in the left and right subtree of the node.
If the tree is balanced then each element participates in O(logn) merging steps, i.e. the
O(nlogn) sorting time follows.

Many divide-and-conquer algorithms proceed as binary merge sort, in the sense that the
work performed by the algorithm can be characterized by a treewise merging process. For
some of these algorithms the tree determining the merges is unfortunately fixed by the input
instance, and the running time using linear merges becomes O(n - h), where h is the height
of the tree. In the following we discuss how finger search trees allow us to achieve O(nlogn)
for unbalanced merging orders to.

Consider an arbitrary binary tree 7 with n leaves, where each leaf stores an element. We
allow 7 to be arbitrarily unbalanced and that elements are allowed to appear at the leaves
in any arbitrary order. Associate to each node v of 7 the set S, of elements stored at the
leaves of the subtree rooted at v. If we for each node v of 7 compute S, by merging the
two sets of the children of v using finger search trees, cf. Section 11.5.1, then the total time
to compute all the sets S, is O(nlogn).

The proof of the total O(nlogn) bound is by structural induction where we show that in
a tree of size n, the total merging cost is O(log(n!)) = O(nlogn). Recall that two sets of

ni+nz
ni

size n1 and mo can be merged in O (log ( )) time. By induction we get that the total

merging in a subtree with a root with two children of size respectively n; and ns becomes:

n1 + no
ni

log(nq!) + log(na!) + log <

= log(n!) +log(na!) 4 log((n1 4 n2)!) —log(n1!) —log(nz!)
= log((ny +n2)!) .

The above approach of arbitrary merging order was applied in [10, 11] to achieve O(nlogn)
time algorithms for finding repeats with gaps and quasiperiodicities in strings. In both these
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algorithms 7 is determined by the suffix-tree of the input string, and the S, sets denote
the set of occurrences (positions) of the substring corresponding to the path label of v.

11.5.3 List Splitting

Hoffmann et al. [25] considered how finger search trees can be used for solving the following
list splitting problem, that e.g. also is applied in [8,28]. Assume we initially have a sorted
list of n elements that is repeatedly split into two sequences until we end up with n sequences
each containing one element. If the splitting of a list of length %k into two lists of length &y
and ko is performed by performing a simultaneous finger search from each end of the list,
followed by a split, the searching and splitting can be performed in O(log min(k1, k2)) time.
Here we assume that the splitting order is unknown in advance.

By assigning a list of k elements a potential of k — logk > 0, the splitting into two lists
of size k1 and ks releases the following amount of potential:

(k — log k‘) — (k‘l — 10g kl) — (kg — log k‘g)
= —logk + logmin(ky, k2) + logmax(kq, k2)
> —1+logmin(kq,ke) ,

since max(k1, k2) > k/2. The released potential allows each list splitting to be performed
in amortized O(1) time. The initial list is charged n — logn potential. We conclude that
starting with a list of n elements, followed by a sequence of at most n — 1 splits requires
total O(n) time.

11.5.4 Adaptive Merging and Sorting

The area of adaptive sorting addresses the problem of developing sorting algorithms which
perform o(nlogn) comparisons for inputs with a limited amount of disorder for various
definitions of measures of disorder, e.g. the measure INV counts the number of pairwise
insertions in the input. For a survey of adaptive sorting algorithms see [18].

An adaptive sorting algorithm that is optimal with respect to the disorder measure INV
has running time O(n log INTV) A simple adaptive sorting algorithm optimal with respect to
INV is the insertion sort algorithm, where we insert the elements of the input sequence from
left to right into a finger search tree. Insertions always start at a finger on the last element
inserted. Details on applying finger search trees in insertion sort can be found in [13, 31, 32].

Another adaptive sorting algorithm based on applying finger search trees is obtained by
replacing the linear merging in binary merge sort by an adaptive merging algorithm [14, 33—
35]. The classical binary merge sort algorithm alway performs 2(nlogn) comparisons, since
in each merging step where two lists each of size k£ is merged the number of comparisons
performed is between k and 2k — 1.

(o [m] s [E] 4 [l 2 I
(o] 4 [ 4 fu] 4[] (][ = | 2 [ ]

FIGURE 11.5: Adaptive merging.
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The idea of the adaptive merging algorithm is to identify consecutive blocks from the input
sequences which are also consecutive in the output sequence, as illustrated in Figure 11.5.
This is done by repeatedly performing a finger search for the smallest element of the two
input sequences in the other sequence and deleting the identified block in the other sequence
by a split operation. If the blocks in the output sequence are denoted Z1, ..., Zy, it follows
from the time bounds of finger search trees that the total time for this adaptive merging
operation becomes O(Zle log|Z;|). From this merging bound it can be argued that merge
sort with adaptive merging is adaptive with respect to the disorder measure INv (and several
other disorder measures). See [14,33,34] for further details.

Acknowledgment

This work was supported by the Carlsberg Foundation (contract number ANS-0257/20),
BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation), and the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

References

[1] G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm for the organization of infor-
mation. Doklady Akademii Nauk SSSR, 146:263-266, 1962. English translation in
Soviet Math. Dokl., 3:1259-1262.

[2] A. Anderson and M. Thorup. Tight(er) worst case bounds on dynamic searching and
priority queues. In Proc. 32nd Annual ACM Symposium On Theory of Computing,
pages 335-342, 2000.

[3] M. Atallah, M. Goodrich, and K.Ramaiyer. Biased finger trees and three-dimensional
layers of maxima. In Proc. 10th ACM Symposium on Computational Geometry,
pages 150-159, 1994.

[4] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1:173-189, 1972.

[5] J.L.Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching.
Information Processing Letters, 5(3):82-87, 1976.

[6] G. E. Blelloch, B. M. Maggs, and S. L. M. Woo. Space-efficient finger search on
degree-balanced search trees. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 374-383. Society for Industrial and Applied
Mathematics, 2003.

[7] G.S. Brodal. Finger search trees with constant insertion time. In Proc. 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 540-549, 1998.

[8] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd Annual
Symposium on Foundations of Computer Science, pages 617-626, 2002.

[9] G.S.Brodal, G. Lagogiannis, C. Makris, A. Tsakalidis, and K. Tsichlas. Optimal finger
search trees in the pointer machine. Journal of Computer and System Sciences,
Special issue on STOC 2002, 67(2):381-418, 2003.

[10] G. S. Brodal, R. B. Lyngsg, C. N. S. Pedersen, and J. Stoye. Finding maximal pairs
with bounded gap. Journal of Discrete Algorithms, Special Issue of Matching Pat-
terns, 1(1):77-104, 2000.

[11] G. S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities in strings. In
Proc. 11th Annual Symposium on Combinatorial Pattern Matching, volume 1848
of Lecture Notes in Computer Science, pages 397-411. Springer-Verlag, 2000.

© 2005 by Chapman & Hall/CRC


http://www.brics.dk

11-10 Handbook of Data Structures and Applications

[12] M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211-226, 1979.

[13] M. R. Brown and R. E. Tarjan. Design and analysis of a data structure for representing
sorted lists. SIAM Journal of Computing, 9:594-614, 1980.

[14] S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge-
sort. Algorithmica, 9(6):629-648, 1993.

[15] R. Cole. On the dynamic finger conjecture for splay trees. part II: The proof. SIAM
Journal of Computing, 30(1):44-85, 2000.

[16] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for
splay trees. part I: Splay sorting log n-block sequences. SIAM Journal of Computing,
30(1):1-43, 2000.

[17] P. F. Dietz and R. Raman. A constant update time finger search tree. Information
Processing Letters, 52:147-154, 1994.

[18] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys, 24:441-476, 1992.

[19] R. Fleischer. A simple balanced search tree with O(1) worst-case update time. Inter-
national Journal of Foundations of Computer Science, 7:137-149, 1996.

[20] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms
for visibility and shortest path problems inside simple polygons. Algorithmica, 2:209—
233, 1987.

[21] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation
for linear lists. In Proc. 9th Ann. ACM Symp. on Theory of Computing, pages
49-60, 1977.

[22] D. Harel. Fast updates of balanced search trees with a guaranteed time bound per
update. Technical Report 154, University of California, Irvine, 1980.

[23] D. Harel and G. S. Lueker. A data structure with movable fingers and deletions.
Technical Report 145, University of California, Irvine, 1979.

[24] J. Hershberger. Finding the visibility graph of a simple polygon in time proportional
to its size. In Proc. 8rd ACM Symposium on Computational Geometry, pages 11-20,
1987.

[25] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan. Sorting Jordan sequences
in linear time using level/linked search trees. Information and Control, 68(1-3):170-
184, 1986.

[26] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

[27] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly ordered
sets. SIAM Journal of Computing, 1(1):31-39, 1972.

[28] R. Jacob. Dynamic Planar Conver Hull. PhD thesis, University of Aarhus, Denmark,
2002.

[29] S. R. Kosaraju. Localized search in sorted lists. In Proc. 13th Ann. ACM Symp. on
Theory of Computing, pages 62—69, 1981.

[30] C. Levcopoulos and M. H. Overmars. A balanced search tree with O(1) worst-case
update time. Acta Informatica, 26:269-277, 1988.

[31] H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans-
actions on Computers, C-34:318-325, 1985.

[32] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-
Verlag, 1984.

[33] A. Moffat. Adaptive merging and a naturally natural merge sort. In Proceedings of
the 14th Australian Computer Science Conference, pages 08.1-08.8, 1991.

[34] A. Moffat, O. Petersson, and N. Wormald. Further analysis of an adaptive sorting

© 2005 by Chapman & Hall/CRC



Finger Search Trees

algorithm. In Proceedings of the 15th Australian Computer Science Conference,
pages 603-613, 1992.

A. Moffat, O. Petersson, and N. C. Wormald. Sorting and/by merging finger trees. In
Algorithms and Computation: Third International Symposium, ISAAC ’92, volume
650 of Lecture Notes in Computer Science, pages 499-508. Springer-Verlag, 1992.
W. Pugh. A skip list cookbook. Technical Report CS-TR-2286.1, Dept. of Computer
Science, University of Maryland, College Park, 1989.

W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM, 33(6):668-676, 1990.

R. Raman. FEliminating Amortization: On Data Structures with Guaranteed Re-
sponse Time. PhD thesis, University of Rochester, New York, 1992. Computer Science
Dept., U. Rochester, tech report TR-439.

R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464-497,
1996.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652-686, 1985.

R. Tarjan and C. van Wyk. An o(nloglogn) algorithm for triangulating a simple
polygon. SIAM Journal of Computing, 17:143-178, 1988.

A. K. Tsakalidis. AVL-trees for localized search. Information and Control, 67(1-
3):173-194, 1985.

© 2005 by Chapman & Hall/CRC

11-11



12

Splay Trees

12.1  Inmtroduction................coiiiiiiiiiiii . 12-1

122 Splay Trees.....oovviiiiiiiiii i 12-2

123 Analysis........ooooiiiiii 12-4
Access and Update Operations

12.4  Optimality of Splay Trees................c.oouuee. 12-7

Static Optimality ® Static Finger Theorem ¢ Working
Set Theorem ® Other Properties and Conjectures

12.5  Linking and Cutting Trees........................ 12-10
Data Structure ® Solid Trees ® Rotation ® Splicing ®
Splay in Virtual Tree ® Analysis of Splay in Virtual
Tree * Implementation of Primitives for Linking and
Cutting Trees

12.6  Case Study: Application to Network Flows .... 12-16

12.7  Implementation Without Linking and Cutting

Trees ..o 12-19
Sanjeev Saxena 12.8  FIFO: Dynamic Tree Implementation ........... 12-20
Indian Institute of Technology, Kanpur 12.9 Variants of Splay Trees and TOp-DOWIl Splaying 12-23

12.1 Introduction

In this chapter we discuss following topics:

Introduction to splay trees and their applications

Splay Trees—description, analysis, algorithms and optimality of splay trees.
Linking and Cutting Trees

Case Study: Application to Network Flows

BN e A

Variants of Splay Trees.

There are various data structures like AVL-trees, red-black trees, 2-3-trees (Chapter 10)
which support operations like insert, delete (including deleting the minimum item), search
(or membership) in O(logn) time (for each operation). Splay trees, introduced by Sleator
and Tarjan [13,15] support all these operations in O(logn) amortized time, which roughly
means that starting from an empty tree, a sequence of m of these operations will take
O(mlogn) time (deterministic), an individual operation may take either more time or less
time (see Theorem 12.1). We discuss some applications in the rest of this section.

Assume that we are searching for an item in a “large” sorted file, and if the item is in
the kth position, then we can search the item in O(log k) time by exponential and binary
search. Similarly, finger search trees (Chapter 11) can be used to search any item at distance
f from a finger in O(log f) time. Splay trees can search (again in amortized sense) an item

12-1
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from any finger (which need not even be specified) in O(log f) time, where f is the distance
from the finger (see Section 12.4.2). Since the finger is not required to be specified, the time
taken will be minimum over all possible fingers (time, again in amortized sense).

If we know the frequency or probability of access of each item, then we can construct
an optimum binary search tree (Chapter 14) for these items; total time for all access will
be the smallest for optimal binary search trees. If we do not know the probability (or
access frequency), and if we use splay trees, even then the total time taken for all accesses
will still be the same as that for a binary search tree, up to a multiplicative constant (see
Section 12.4.1).

In addition, splay trees can be used almost as a “black box” in linking and cutting trees
(see Section 12.5). Here we need the ability to add (or subtract) a number to key values of
all ancestors of a node z.

Moreover, in practice, the re-balancing operations (rotations) are very much simpler
than those in height balanced trees. Hence, in practice, we can also use splay trees as an
alternative to height balanced trees (like AVL-trees, red-black trees, 2-3-trees), if we are
interested only in the total time. However, some experimental studies [3] suggest, that for
random data, splay trees outperform balanced binary trees only for highly skewed data; and
for applications like “vocabulary accumulation” of English text [16], even standard binary
search trees, which do not have good worst case performance, outperform both balanced
binary trees (AVL trees) and splay trees. In any case, the constant factor and the algorithms
are not simpler than those for the usual heap, hence it will not be practical to use splay trees
for sorting (say as in heap sort), even though the resulting algorithm will take O(nlogn)
time for sorting, unless the data has some degree of pre-sortedness, in which case splay sort
is a practical alternative [10]. Splay trees however, can not be used in real time applications.

Splay trees can also be used for data compression. As splay trees are binary search trees,
they can be used directly [4] with guaranteed worst case performance. They are also used
in data compression with some modifications [9]. Routines for data compression can be
shown to run in time proportional to the entropy of input sequence [7] for usual splay trees
and their variants.

12.2 Splay Trees

Let us assume that for each node x, we store a real number key(z).

In any binary search tree left subtree of any node = contains items having “key” values
less than the value of key(z) and right subtree of the node z contains items with “key”
values larger than the value of key(z).

In splay trees, we first search the query item, say x as in the usual binary search trees—
compare the query item with the value in the root, if smaller then recursively search in
the left subtree else if larger then, recursively search in the right subtree, and if it is equal
then we are done. Then, informally speaking, we look at every disjoint pair of consecutive
ancestors of x, say y =parent(z) and z =parent(y), and perform certain pair of rotations.
As a result of these rotations, x comes in place of z.

In case x has an odd number of proper ancestors, then the ancestor of = (which is child
of the root), will also have to be dealt separately, in terminal case— we rotate the edge
between x and the root. This step is called zig step (see Figure 12.1).

If z and y are both left or are both right children of their respective parents, then we first
rotate the edge between y and its parent z and then the edge between x and its parent y.
This step is called zig-zig step (see Figure 12.2).

If = is a left (respectively right) child and y is a right (respectively left) child, then we
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20 452

FIGURE 12.1: parent(z) is the root— edge zy is rotated (Zig case).

5,

FIGURE 12.2: z and parent(z) are both right children (Zig-Zig case) —first edge yz is
rotated then edge zy.

FIGURE 12.3: z is a right child while parent(x) is a left child (Zig-Zag case)— first edge
xy is rotated then edge zz.

first rotate the edge between x and y and then between x and z, this step is called zig-zag
step (see Figure 12.3).

These rotations (together) not only make = the new root, but also, roughly speaking
halve the depth (length of path to root) of all ancestors of = in the tree. If the node z is at
depth “d”, splay(z) will take O(d) time, i.e., time proportional to access the item in node
x.

Formally, splay(z) is a sequence of rotations which are performed (as follows) until =
becomes a root:

e If parent(z) is root, then we carry out usual rotation, see Figure 12.1.

e If x and parent(z) are both left (or are both right) children of their parents, then
we first rotate at y =parent(z) (i.e., the edge between y and its parent) and then
rotate at z, see Figure 12.2.

o If x is left (or respectively right) child but parent(x) is right (respectively left)
child of its parent, then first rotate at = and then again rotate at z, see Fig-
ure 12.3.
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12.3 Analysis

We will next like to look at the “amortized” time taken by splay operations. Amortized
time is the average time taken over a worst case sequence of operations.

For the purpose of analysis, we give a positive weight w(z) to (any) item z in the tree.
The weight function can be chosen completely arbitrarily (as long it is strictly positive).
For analysis of splay trees we need some definitions (or nomenclature) and have to fix some
parameters.

Weight of item z: For each item x, an arbitrary positive weight w(x) is associated
(see Section 12.4 for some examples of function w(x)).

Size of node x: Size(x) is the sum of the individual weights of all items in the sub-
tree rooted at the node x.

Rank of node z: Rank of a node «x is log,(size(x)).

Potential of a tree: Let a be some positive constant (we will discuss choice of «
later), then the potential of a tree T' is taken to be
a(Sum of rank(z) for all nodes x € T') = a ) ,rank(z).

Amortized Time: As always,
Amortized time = Actual Time + New Potential — Old Potential.

Running Time of Splaying: Let 8 be some positive constant, choice of 3 is also
discussed later but 8 < «, then the running time for splaying is
BxNumber of rotations.
If there are no rotations, then we charge one unit for splaying.

We also need a simple result from algebra. Observe that 4zy = (z +y)? — (z — y)?. Now
if  +y <1, then 4oy < 1 — (x — y)? < 1 or taking logarithms!, logz + logy < —2. Note

that the maximum value occurs when x =y = %

FACT 12.1 [Result from Algebra] If x +y < 1 then logz + logy < —2. The mazimum
value occurs when r =1y = %

LEMMA 12.1 [Access Lemma] The amortized time to splay a tree (with root “t”) at a
node “z” is at most

3a(rank(t) — rank(z)) + 6 = O (10% (sSIIZZS((i)) ))

Proof We will calculate the change in potential, and hence the amortized time taken in
each of the three cases.

Let s( ) denote the sizes before rotation(s) and s’( ) be the sizes after rotation(s). Let
r( ) denote the ranks before rotation(s) and r'( ) be the ranks after rotation(s).

Case 1- z and parent(z) are both left (or both right) children

LAll logarithms in this chapter are to base two.
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Please refer to Figure 12.2. Here, s(z) + s'(z) < s'(x), or SS/(E) + % < 1. Thus,

(2)
by Fact 12.1,

~22 o S log 5 = (@) +1'(2) - 2(0),

r'(z) < 2r'(x) —r(x) — 2.

Observe that two rotations are performed and only the ranks of x,y and z are
changed. Further, as r/(x) = r(z), the Amortized Time is

=20+ a((r'(x) + E (2)) = (r(x) +r(y) +7(2)))

y) +
=208+ a((r'(y) +1'(2)) — (r(z) +r(y)))
<28+ a((r'(y) +1'(2) — 2r(x)), (as r(y) = r(z)).
As 7' (z) > r'(y), amortized time
<28+ a((r'(z) +1'(2)) — 2r(z))
<28+ a((r'(z) +{2r'(z) — r(z) — 2} — 2r(2)))
<3a(r'(z) —r(z)) —2a+ 208

(
< 3a(r'(z) —r(z)) (as o = B).
Case 2— z is a left child, parent(z) is a right child
Please refer to Figure 12.3. s'(y) + s'(2) < s/(z), or z,gz; + :/Efc; < 1. Thus, by
Fact 12.1,
—2>log : Ey; +log 2 EZ% =1'(y) +1'(z) — 21’ (), or,
P (y) +1(2) < 207(z) — 2
Now Amortized Time= 26+ a((r' (x) +r'(y) +7'(2)) — (r(x) +r(y) +r(2))). But,
as r’'(z) = r(z), Amortized time = 208 + a((r'(y) + r'(2)) — (r(z) + r(y))). Using
r(y) > r(z), Amortized time
<26+ a((r(y) + () — 2r(x)
< 2a(r'(z) —r(x)) — 2a+ 28
< 3a(r'(z) —r(z)) - 2(a = B) < 3a(r'(z) — r(z))
Case 3— parent(z) is a root
Please refer to Figure 12.1. There is only one rotation, Amortized Time
=B+a((r(z)+7'(y) — (r(z) +r(y))).
But as, 7'(x) = r(y), Amortized time is
B+a(r'(y) — r(z))
< B+a(r(z) - r(z))
< B+ 3a(r(x) — r(z)).
As case 3, occurs only once, and other terms vanish by telescopic cancellation,
the lemma follows.

THEOREM 12.1 Time for m accesses on a tree having at most n nodes is O((m +
n)logn)

Proof Let the weight of each node x be fixed as 1/n. As there are n nodes in the entire
tree, the total weight of all nodes in the tree is 1.

If ¢ is the root of the tree then, size(t) = 1 and as each node x has at least one node (z
itself) present in the subtree rooted at = (when z is a leaf, exactly one node will be present),
for any node z, size(x) > (1/n). Thus, we have following bounds for the ranks— r(¢) <0
and r(z) > —logn.
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Or, from Lemma 12.1, amortized time per splay is at most 1 + 3logn. As maximum
possible value of the potential is n logn, maximum possible potential drop is also O(nlogn),
the theorem follows.

We will generalize the result of Theorem 12.1 in Section 12.4, where we will be choosing
some other weight functions, to discuss other optimality properties of Splay trees.

12.3.1 Access and Update Operations
We are interested in performing following operations:

1. Access(z)— z is a key value which is to be searched.

2. Insert(z)— a node with key value z is to be inserted, if a node with this key
value is not already present.

3. Delete(xz)— node containing key value z is to be deleted.

4. Join(ty1,t2)— t1 and to are two trees. We assume that all items in tree ¢; have
smaller key values than the key value of any item in the tree 2. The two trees
are to be combined or joined into a single tree as a result, the original trees t;
and to get “destroyed”.

5. Split(z,t)— the tree ¢ is split into two trees (say) t; and to (the original tree
is “lost”). The tree t; should contain all nodes having key values less than (or
equal to) = and tree to should contain all nodes having key values strictly larger
than z.

We next discuss implementation of these operations, using a single primitive operation—
splay. We will show that each of these operations, for splay trees can be implemented using
O(1) time and with one or two “splay” operations.

Access(z,t) Search the tree t for key value z, using the routines for searching in a
“binary search tree” and splay at the last node— the node containing value x,
in case the search is successful, or the parent of “failure” node in case the search
is unsuccessful.

Join(t1,t2) Here we assume that all items in splay tree ¢; have key values which are

smaller than key values of items in splay tree t5, and we are required to combine
these two splay trees into a single splay tree.
Access largest item in t¢;, formally, by searching for “4+o00”, i.e., a call to
Access(4+00,t1). As a result the node containing the largest item (say r) will
become the root of the tree t;. Clearly, now the root r of the splay tree t; will
not have any right child. Make the root of the splay tree t2 the right child of r,
the root of t1, as a result, t5 will become the right sub-tree of the root r and r
will be the root of the resulting tree.

Split(z,t) We are required to split the tree ¢ into two trees, ¢; containing all items
with key values less than (or equal to) x and t2, containing items with key values
greater than x.

If we carry out Access(z,t), and if a node with key value x is present, then the
node containing the value x will become the root. We then remove the link from
node containing the value z to its right child (say node containing value y); the
resulting tree with root, containing the value x, will be ¢1, and the tree with root,
containing the value y, will be the required tree t,.

And if the item with key value x is not present, then the search will end at a node
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(say) containing key value z. Again, as a result of splay, the node with value z
will become the root. If z > z, then ¢; will be the left subtree of the root and
the tree to will be obtained by removing the edge between the root and its left
child.

Otherwise, z < z, and to will be the right subtree of the root and t; will be the
resulting tree obtained by removing the edge between the root and its right child.

Insert(x,t) We are required to insert a new node with key value z in a splay tree
t. We can implement insert by searching for x, the key value of the item to be
inserted in tree ¢ using the usual routine for searching in a binary search tree.
If the item containing the value x is already present, then we splay at the node
containing x and return. Otherwise, assume that we reach a leaf (say) containing
key y, y # x. Then if x < y, then add the new node containing value x as a left
child of node containing value y, and if x > y, then the new node containing the
value x is made the right child of the node containing the value y, in either case
we splay at the new node (containing the value x) and return.

Delete(x,t) We are required to delete the node containing the key value x from the
splay tree t. We first access the node containing the key value x in the tree t—
Access(x,t). If there is a node in the tree containing the key value x, then that
node becomes the root, otherwise, after the access the root will be containing a
value different from z and we return(—1)— value not found. If the root contains
value x, then let ¢; be the left subtree and to be the right subtree of the root.
Clearly, all items in ¢; will have key values less than = and all items in ¢5 will
have key values greater than x. We delete the links from roots of ¢; and ¢y to
their parents (the root of ¢, the node containing the value x). Then, we join these
two subtrees — Join(t1,t2) and return.

Observe that in both “Access” and “Insert”, after searching, a splay is carried out.
Clearly, the time for splay will dominate the time for searching. Moreover, except for
splay, everything else in “Insert” can be easily done in O(1) time. Hence the time taken for
“Access” and “Insert” will be of the same order as the time for a splay. Again, in “Join”,
“Split” and “Delete”, the time for “Access” will dominate, and everything else in these
operations can again be done in O(1) time, hence “Join”, “Split” and “Delete” can also be
implemented in same order of time as for an “Access” operation, which we just saw is, in
turn, of same order as the time for a splay. Thus, each of above operations will take same
order of time as for a splay. Hence, from Theorem 12.1, we have

THEOREM 12.2 Time for m update or access operations on a tree having at most n
nodes is O((m + n)logn).

Observe that, at least in amortized sense, the time taken for first m operations on a tree
which never has more than n nodes is the same as the time taken for balanced binary search
trees like AVL trees, 2-3 trees, etc.

12.4 Optimality of Splay Trees

If w(7) the weight of node i is independent of the number of descendants of node i, then the
maximum value of size(i) will be W = > w(i) and minimum value of size(i) will be w(7).
As size of the root t, will be W, and hence rank log W, so by Lemma 12.1, the amortized
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time to splay at a node “z” will be O <log (S;ZZ:((;)))) 0 (log (Swe(ﬁ))) 0 (log w(ﬁ))

Also observe that the maximum possible change in the rank (for just node i) will be
log W —log w(i) = log(W/w(i)) or the total maximum change in all ranks (the potential of
the tree, with a = 1) will be bounded by Y log(W/w(i)).

Note that, as ) = w() 1, > | log )| < nlogn (the maximum occurs when all (%z))s

are equal to 1/n), hence maximum change in potential is always bounded by O(nlogn).
As a special case, in Theorem 12.1, we had fixed w(i) = 1/n and as a result, the amortized

time per operation is bounded by O(logn), or time for m operations become O((m +

n)logn). We next fix w(i)’s in some other cases.

12.4.1 Static Optimality

On any sequence of accesses, a splay tree is as efficient as the optimum binary search tree,
up to a constant multiplicative factor. This can be very easily shown.

Let ¢(i) be the number of times the ith node is accessed, we assume that each item is
accessed at least once, or ¢(i) > 1. Let m = >_ ¢(¢) be the total number of times we access
any item in the splay tree. Assign a weight of ¢(i)/m to item i. We call ¢(i)/m the access
frequency of the ith item. Observe that the total (or maximum) weight is 1 and hence the
rank of the root r(¢) = 0.

Thus .
r(t) —r(z)=0—r(z) = —log< Z %) < —log (%)
€T,

Hence, from Lemma 12.1, with o = § = 1, the amortized time per splay (say at node

[P}

x”) is at most
a(r(t) —r(z)) + 6
=1+ 3(—log(g(z)/m))
=1+ 3log(m/q(z)).
As ith item is accessed ¢(i) times, amortized total time for all accesses of the ith item is

O(q(@) + q(i) log(%)) hence total amortized time will be O(m + 3 q(i )10g(q(i) ). More-
over as the maximum value of potential of the tree is ) max{r(z)} < > log(jt5) =

O(Zlog(w";))) the total time will be O(m + 3 ¢(i) log( ’8)))

THEOREM 12.3 Time for m update or access operations on an n-node tree is O(m +
> q(t) log(q(z) ), where q(i) is the total number of times item i is accessed, here m = q(i).

REMARK 12.1 The total time, for this analysis is the same as that for the (static)
optimal binary search tree.

12.4.2 Static Finger Theorem

We first need a result from mathematics. Observe that, in the interval £k — 1 < z < k,

1 1 1 1 : o 1 E dz : _
7 = % Or =3 > 5. Hence, in this 1nterval we have, 7z < fk_l 27 summing from k = 2 to

Y om Sl E=l-gor i m <2

If f is an integer between 0 and n, then we assign a weight of 1/(|i — f| + 1)? to item i.
Then W < 23777 7 < 4 = O(1). Consider a particular access pattern (i.e. a snapshot
or history or a run). Let the sequence of accessed items be iy, -+ ,i,,, some i;’s may occur
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more than once. Then, by the discussion at the beginning of this section, amortized time
for the jth access is O(log(]i; — f| + 1). Or the total amortized time for all access will be
O(m + Z;nzl log(|i; — fI+1)). As weight of any item is at least 1/n?, the maximum value
of potential is nlogn. Thus, total time is at most O(nlogn +m + Z;nzl log(|i; — f] +1)).

REMARK 12.2 f can be chosen as any fixed item (finger). Thus, this out-performs
finger-search trees, if any fixed point is used as a finger; but here the finger need not be
specified.

12.4.3 Working Set Theorem

Splay trees also have the working set property, i.e., if only ¢ different items are being
repeatedly accessed, then the time for access is actually O(logt) instead of O(logn). In
fact, if ¢; different items were accessed since the last access of 7;th item, then the amortized
time for access of i;th item is only O(log(t; +1)).

This time, we number the accesses from 1 to m in the order in which they occur. Assign
weights of 1,1/4,1/9,---,1/n? to items in the order of the first access. Item accessed
earliest gets the largest weight and those never accessed get the smallest weight. Total
weight W = Y (1/k%) <2 = O(1).

It is useful to think of item having weight 1/k? as being in the kth position in a (some
abstract) queue. After an item is accessed, we will be putting it in front of the queue, i.e.,
making its weight 1 and “pushing back” items which were originally ahead of it, i.e., the
weights of items having old weight 1/s2 (i.e., items in sth place in the queue) will have a
new weight of 1/(s+ 1)? (i.e., they are now in place s + 1 instead of place s). The position
in the queue, will actually be the position in the “move to front” heuristic.

Less informally, we will be changing the weights of items after each access. If the weight
of item i; during access j is 1/k?, then after access j, assign a weight 1 to item 7;. And an
item having weight 1/s2, s < k gets weight changed to 1/(s + 1)2.

Effectively, item i; has been placed at the head of queue (weight becomes 1/1%); and
weights have been permuted. The value of W, the sum of all weights remains unchanged.

If ¢; items were accessed after last access of item i;, then the weight of item i; would
have been 1/t, or the amortized time for jth access is O(log(t; + 1)).

After the access, as a result of splay, the i;th item becomes the root, thus the new size of
ijth item is the sum of all weights W— this remains unchanged even after changing weights.
As weights of all other items, either remain the same or decrease (from 1/s% to 1/(s+ 1)),
size of all other items also decreases or remains unchanged due to permutation of weights.
In other words, as a result of weight reassignment, size of non-root nodes can decrease
and size of the root remains unchanged. Thus, weight reassignment can only decrease the
potential, or amortized time for weight reassignment is either zero or negative.

Hence, by discussions at the beginning of this section, total time for m accesses on a tree
of size at most n is O(nlogn+3 log(t;+1)) where t; is the number of different items which
were accessed since the last access of i;th item (or from start, if this is the first access).

12.4.4 Other Properties and Conjectures

Splay trees are conjectured [13] to obey “Dynamic Optimality Conjecture” which roughly
states that cost for any access pattern for splay trees is of the same order as that of the best
possible algorithm. Thus, in amortized sense, the splay trees are the best possible dynamic
binary search trees up to a constant multiplicative factor. This conjecture is still open.
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However, dynamic finger conjecture for splay trees which says that access which are close
to previous access are fast has been proved by Cole[5]. Dynamic finger theorem states that
the amortized cost of an access at a distance d from the preceding access is O(log(d + 1));
there is however O(n) initialization cost. The accesses include searches, insertions and
deletions (but the algorithm for deletions is different)([5].

Splay trees also obey several other optimality properties (see e.g. [8]).

12.5 Linking and Cutting Trees

Tarjan [15] and Sleator and Tarjan [13] have shown that splay trees can be used to implement
linking and cutting trees.

We are given a collection of rooted trees. Each node will store a value, which can be any
real number. These trees can “grow” by combining with another tree link and can shrink by
losing an edge cut. Less informally, the trees are “dynamic” and grow or shrink by following
operations (we assume that we are dealing with a forest of rooted trees).

link If z is root of a tree, and y is any node, not in the tree rooted at x, then make y
the parent of x.

cut Cut or remove the edge between a non-root node x and its parent.
Let us assume that we want to perform operations like

e Add (or subtract) a value to all ancestors of a node.
e Find the minimum value stored at ancestors of a query node x.

More formally, following operations are to be supported:

find_cost(v): return the value stored in the node v.
find_root(v): return the root of the tree containing the node wv.

find_min(v): return the node having the minimum value, on the path from v till
find_root(v), the root of the tree containing v. In case of ties, choose the node
closest to the root.

add_cost(v,d): Add a real number ¢ to the value stored in every node on the path
from v to the root (i.e., till find_root(v)).

find _size(v) find the number of nodes in the tree containing the node v.

link(v, w) Here v is a root of a tree. Make the tree rooted at v a child of node w. This
operation does nothing if both vertices v and w are in the same tree, or v is not
a root.

cut(v) Delete the edge from node v to its parent, thus making v a root. This operation
does nothing if v is a root.

12.5.1 Data Structure

For the given forest, we make some of the given edges “dashed” and the rest of them are
kept solid. Each non-leaf node will have only one “solid” edge to one of its children. All
other children will be connected by a dashed edge. To be more concrete, in any given tree,
the right-most link (to its child) is kept solid, and all other links to its other children are
made “dashed”.

As a result, the tree will be decomposed into a collection of solid paths. The roots of solid
paths will be connected to some other solid path by a dashed edge. A new data structure
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(a) (b)

FIGURE 12.4: (a) Original Tree (b) Virtual Trees: Solid and dashed children.

called a “virtual tree” is constructed. Each linking and cutting tree T is represented by a
virtual tree V', containing the same set of nodes. But each solid path of the original tree is
modified or converted into a binary tree in the virtual tree; binary trees are as balanced as
possible. Thus, a virtual tree has a (solid) left child, a (solid) right child and zero or more
(dashed) middle children.

In other words, a virtual tree consists of a hierarchy of solid binary trees connected by
dashed edges. Each node has a pointer to its parent, and to its left and right children (see
Figure 12.4).

12.5.2 Solid Trees

Recall that each path is converted into a binary tree. Parent (say y) of a node (say x)
in the path is the in-order (symmetric order) successor of that node (z) in the solid tree.
However, if x is the last node (in symmetric order) in the solid sub-tree then its parent path
will be the parent of the root of the solid sub-tree containing it (see Figure 12.4). Formally,
Parentpatn(v) =Node(Inorder(v) + 1).

Note that for any node v, all nodes in the left sub-tree will have smaller inorder numbers
and those in the right sub-tree will have larger inorder numbers. This ensures that all nodes
in the left subtree are descendants and all nodes in the right sub-tree are ancestors. Thus,
the parent (in the binary tree) of a left child will be an ancestor (in the original tree). But,
parent (in the binary tree) of a right child is a descendant (in the original tree). This order,
helps us to carry out add_cost effectively.

We need some definitions or notation to proceed.

Let mincost(z) be the cost of the node having the minimum key value among all descen-
dants of z in the same solid sub-tree. Then in each node we store two fields dcost(x) and
omin(x). We define,
omin(z) =cost(z)—mincost(x). And,
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dashed children of v

Gished children of w

FIGURE 12.5: Rotation in Solid Trees— rotation of edge (v, w).

Scost(z) = cost(x) — cost(parent(z)) if x has a solid parent
| cost(x) otherwise (z is a solid tree root)

We will also store, size(z), the number of descendants (both solid and dashed) in virtual
tree in incremental manner.

size(parent(x)) — size(x) if = is not the root of a virtual tree
size(x) otherwise

Ssize(z) = {

Thus, dsize(x) is number of descendants of parent(x), not counting the descendants of x.

FACT 12.2 émin(x) — dcost(x) =cost(parent(x) )- mincost(x).

Thus, if v and v are solid children of node z, then

mincost(z) = min{cost(z),mincost(v),mincost(w)}, or,

dmin(z) =cost(z)—mincost(z) = max{0,cost(z)—mincost(v),cost(z)—mincost(w).}
Using Fact 12.2, and the fact z =parent(u) =parent(v), we have

FACT 12.3 Ifu and v are children of z, then
dmin(z) = max{0, dmin(u) — dcost(u), dmin(v) — dcost(v)}.

For linking and cutting trees, we need two primitive operations— rotation and splicing.

12.5.3 Rotation

Let us discuss rotation first (see Figure 12.5).

Let w be the parent of v in the solid tree, then rotation of the solid edge (v, p(v)) = (v, w)
will make w = p(v) a child of v. Rotation does not have any effect on the middle children.
Let a be the left solid child of w and v be the right solid child of w.

Let “non-primes” denote the values before the rotation and “primes” the values after the
rotation of the solid edge (v, w). We next show that the new values dcost’, dmin’ and Jsize’,
can be calculated in terms of old known values.

We assume that b is the left solid child of v and ¢ is the right solid child of v.

First we calculate the new dcost’ values in terms of old dcost values. From Figure 12.5,
dcost’ (v) =cost(v)—cost(parent’(v))
=cost(v)—cost(parent(w))
=cost(v)—cost(w)+cost (w)—cost(parent(w))
= dcost(v) + dcost(w).
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deost’ (w) =cost(w)—cost(v)
= —dcost/(v).

dcost’ (b) =cost(b)—cost(w)
=cost(b)-cost(v)+cost(v)—cost(w)
= dcost(b) + dcost(v).

Finally,
deost’ (a) = deost(a) and deost’(¢) = deost(c).

We next compute dmin’ values in terms of dmin and dcost.

dmin’ (v) =cost(v)—mincost’ (v)
=cost(v)—mincost(w)
=cost(v)—cost(w)+cost(w)—mincost(w)
= dcost(v) + dmin(w).

omin( ) of all nodes other than w will remain same, and for w, from Fact 12.3, we have,
dmin’(w) = max{0, dmin’(a) — dcost’(a), dmin’(b) — dcost’(b)}
= max{0, dmin(a) — dcost(a), dmin(b) — dcost(b) — dcost(v)}

We finally compute dsize’ in terms of dsize.
osize’ (w) =size’ (parent’ (w))—size’ (w)
=size’ (v)—size’ (w) (see Figure 12.5)
=size(v)—size(b) (see Figure 12.5)
=Jsize(b).

If z is parent(w), then size(z) is unchanged.
dsize’ (v) =size’ (parent(v))-size’ (v)
=size(z)—size' (v)
=size(z)—size(w) as size’ (v) =size(w)
=Jsize(w).
For all other nodes (except v and w), the number of descendants remains the same, hence,
size’(x) =size(z). Hence, for all = ¢ {v,w},
size’(x) =size(z) or
size(parent(z))—dsize(x) =size' (parent’(z))—dsize’(z) or
dsize’ (x) = —size(parent(x))+dsize(z)+size’ (parent’(z)).

Observe that for any child = of v or w, size of parent changes. In particular,
dsize’ (a) = —size(w) + dsize(a)—+size’ (w)
= —size'(v) + dsize(a)+size’ (w)
= —{size’ (w) + dsize(a) = dsize(a) — dsize’ (w)
= Jsize(a) — Osize(b)

dsize’ (c) = —size(v) + dsize(c)+size’ (v)
=size(w)—size(v) + Jsize(c) as size’ (v) =size(w)
= osize(v) + dsize(c).

And finally,
osize’ (b) = —size(v) + dsize(b)+size’ (w)
=size(w)—size(v) + Jsize(b)+size’ (w)—size(w)
=dsize(v) + dsize(b)+size’ (w)—size’ (v)
=dsize(v) + dsize(b) — dsize’ (w)
=Jsize(v).
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12.5.4 Splicing

Let us next look at the other operation, splicing. Let w be the root of a solid tree. And let
v be a child of w connected by a dashed edge. If u is the left most child of w, then splicing
at a dashed child v, of a solid root w, makes v the left child of w. Moreover the previous
left-child u, now becomes a dashed child of w. Thus, informally speaking splicing makes a
node the leftmost child of its parent (if the parent is root) and makes the previous leftmost
child of parent as dashed.

We next analyse the changes in “cost” and “size” of various nodes after splicing at a
dashed child v of solid root w (whose leftmost child is u). As before, “non-primes” denote
the values before the splice and “primes” the values after the splice.

As v was a dashed child of its parent, it was a root earlier (in some solid tree). And as
w is also a root,
deost! (v) =cost(v)—cost(w)
= dcost(v) — dcost(w).

And as u is now the root of a solid tree,
dcost’ (u) =cost(u)
= Jcost(u)+cost(w)
= dcost(u) + dcost(w).
Finally, dmin’(w) = max{0, dmin(v) — dcost’(v), dmin(right(w))-dcost(right(w))}
All other values are clearly unaffected.
As no rotation is performed, dsize( ) also remains unchanged, for all nodes.

12.5.5 Splay in Virtual Tree

In virtual tree, some edges are solid and some are dashed. Usual splaying is carried out only
in the solid trees. To splay at a node x in the virtual tree, following method is used. The
algorithm looks at the tree three times, once in each pass, and modifies it. In first pass, by
splaying only in the solid trees, starting from the node z, the path from x to the root of the
overall tree, becomes dashed. This path is made solid by splicing. A final splay at node x
will now make x the root of the tree. Less informally, the algorithm is as follows:

Algorithm for Splay(z)

Pass 1 Walk up the virtual tree, but splaying is done only within solid sub-tree. At
the end of this pass, the path from x to root becomes dashed.

Pass 2 Walk up from node z, splicing at each proper ancestor of x. After this step,
the path from z to the root becomes solid. Moreover, the node x and all its
children in the original tree (the one before pass 1) now become left children.

Pass 3 Walk up from node z to the root, splaying in the normal fashion.

12.5.6 Analysis of Splay in Virtual Tree

Weight of each node in the tree is taken to be the same (say) 1. Size of a node is total number
of descendants— both solid and dashed. And the rank of a node as before is rank(xz) =
log(size(z)). We choose av = 2, and hence the potential becomes, potential= 2" rank(z).
We still have to fix 3. Let us analyze the complexity of each pass.

Pass 1 We fix § = 1. Thus, from Lemma 12.1, the amortized cost of single splaying
is at most 6(r(t) — r(z)) + 1. Hence, the total cost of all splays in this pass will
be
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<6(r(ty) —7(x)) + 1+ 6(r(t2) —r(p(ty)) + 14 -+ 6(r(te) — r(p(tp-1))) +1
< (6(r(t1) — r(2)) + +6(r(tr) — r(p(ter)))) + k.

Here, k is number of solid trees in path from x to root. Or the total cost

< k+ (6(r(root) —r(x))) = 6(r(p(tp—1)) = r(te—1) + -+ r(p(t1)) — r(t1)))
Recall that the size includes those of virtual descendants, hence each term in the
bracket is non-negative. Or the total cost

< k+ 6(r(root) — r(x))

Note that the depth of node x at end of the first pass will be k.

Pass 2 As no rotations are performed, actual time is zero. Moreover as there are
no rotations, there is no change in potential. Hence, amortized time is also
zero. Alternatively, time taken to traverse k-virtual edges can be accounted by
incorporating that in 3 in pass 3.

REMARK 12.3 This means, that in effect, this pass can be done together
with Pass 1.

Pass 3 In pass 1, k extra rotations are performed, (there is a +k factor), thus, we can
take this into account, by charging, 2 units for each of the k rotation in pass 3,
hence we set 8 = 2. Clearly, the number of rotations, is exactly “k”. Cost will
be 6logn 4 2. Thus, in effect we can now neglect the +k term of pass 1.

Thus, total cost for all three passes is 12logn + 2.

12.5.7 Implementation of Primitives for Linking and Cutting Trees

We next show that various primitives for linking and cutting trees described in the beginning
of this section can be implemented in terms of one or two calls to a single basic operation—
“splay”. We will discuss implementation of each primitive, one by one.

find_cost(v) We are required to find the value stored in the node v. If we splay at
node v, then node v becomes the root, and dcost(v) will give the required value.
Thus, the implementation is

splay(v) and return the value at node v

find_root(v) We have to find the root of the tree containing the node v. Again, if we
splay at v, then v will become the tree root. The ancestors of v will be in the right
subtree, hence we follow right pointers till root is reached. The implementation
is:

splay(v), follow right pointers till last node of solid tree, say w is
reached, splay(w) and return(w).

find_min(v) We have to find the node having the minimum value, on the path from v
till the root of the tree containing v; in case of ties, we have to choose the node
closest to the root. We again splay at v to make v the root, but, this time, we
also keep track of the node having the minimum value. As these values are stored
in incremental manner, we have to compute the value by an “addition” at each
step.

splay(v), use dcost( ) and dmin( ) fields to walk down to the last mini-
mum cost node after v, in the solid tree, say w, splay(w) and return(w).
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add_cost(v, dz) We have to add a real number Jz to the values stored in each and
every ancestors of node v. If we splay at node v, then v will become the root and
all ancestors of v will be in the right subtree. Thus, if we add dz to dcost(v),
then in effect, we are adding this value not only to all ancestors (in right subtree)
but also to the nodes in the left subtree. Hence, we subtract dz from dcost( )
value of left child of v. Implementation is:

splay(v), add dzx to dcost(v), subtract dz from dcost(LCHILD(v)) and
return

find _size(v) We have to find the number of nodes in the tree containing the node v.
If we splay at the node v, then v will become the root and by definition of dsize,
dsize(v) will give the required number.

splay(v) and return(dsize(v)).

link(v, w) If v is a root of a tree, then we have to make the tree rooted at v a child of
node w.

Splay(w), and make v a middle (dashed) child of w. Update dsize(v)
and Jsize(w), etc.

cut(v) If v, is not a root, then we have to delete the edge from node v to its parent,
thus making v a root. The implementation of this is also obvious:

splay(v), add dcost(v) to dcost(RCHILD(v)), and break link between
RCHILD(v) and v. Update dmin(v), dsize(v) etc.

12.6 Case Study: Application to Network Flows

We next discuss application of linking and cutting trees to the problem of finding maximum
flow in a network. Input is a directed graph G = (V, E). There are two distinguished
vertices s (source) and ¢ (sink). We need a few definitions and some notations|[1, 6]. Most
of the results in this case-study are from[1, 6].
PreFlow g(x,x*) is a real valued function having following properties:
Skew-Symmetry: g(u,v) = —g(v, u)
Capacity Constraint: g(u,v) < ¢(u,v)
Positive-Flow Excess: e(v) =Y ' _ g(v,w) >0 for v #s
Flow-Excess Observe that flow-excess at node v is e(v) = Y. _; g(w,v) if v # s and
flow excess at source s is e(s) = 0o
Flow f(x,x) is a real valued function having following additional property
Flow Conservation: > _, f(v,w) =0 for v ¢ {s,t}
Preflow: f is a preflow.

Value of flow: |f|=>""_, f(s,w), the net low out of source.

REMARK 12.4 If (u,v) ¢ E, then c(u,v) = c¢(v,u) = 0. Thus, f(u,v) <
c(u,v) =0 and f(v,u) < 0. By skew-symmetry, f(u,v) =0

Cut Cut (S,S) is a partition of vertex set, such that s € S and t € S
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_ Vertices
Vertices which can '
reachable reach t =

FIGURE 12.6: s —t Cut.

Capacity of Cut ¢(S,S5) = > veswes (v, w)

Pre-Flow across a Cut ¢(S,S) = > veswes 90 W)

Residual Capacity If g is a flow or preflow, then the residual capacity of an edge
(v,w) is r4(v, w) = c(v,w) — g(v, w).

Residual Graph G, contains same set of vertices as the original graph G, but only
those edges for which residual capacity is positive; these are either the edges of
the original graph or their reverse edges.

Valid Labeling A valid labeling d( ) satisfies following properties:
1. d(t) =0
2. dlv) >0ifv#t
3. if (v, w) is an edge in residual graph then d(w) > d(v) — 1.
A trivial labeling is d(t) = 0 and d(v) = 1 if v # ¢.

REMARK 12.5 As for each edge (v,w), d(v) < d(w) + 1, dist(u,t) > d(u).
Thus, label of every vertex from which ¢ is reachable, is at most n — 1.
Active Vertex A vertex v # s is said to be active if e(v) > 0.

The initial preflow is taken to be g(s,v) = ¢(s,v) and g(u,v) = 0 if u # s.

Flow across a Cut Please refer to Figure 12.6. Observe that flow conservation is true
for all vertices except s and t. In particular sum of flow (total flow) into vertices in set
S — {s} (set shown between s and cut) is equal to |f| which must be the flow going out of
these vertices (into the cut). And this is the flow into vertices (from cut) in set S — {t} (set
after cut before ¢) which must be equal to the flow out of these vertices into ¢. Thus, the
flow into ¢ is |f| which is also the flow through the cut.

FACT 12.4 A37 |f| = f(S7 g) = ZveS,w%S f(U, U)) < EvES,wQS’ C(Ua w) = C(S7 g)

Thus, maximum value of flow is less than minimum capacity of any cut.

THEOREM 12.4 [Max-Flow Min-Cut Theorem] max |f| = minimum cut
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Proof Consider a flow f for which | f| is maximum. Delete all edges for which (f(u,v) ==
c(u,v)) to get the residual graph. Let S be the set of vertices reachable from s in the
residual graph. Now, t ¢ S, otherwise there is a path along which flow can be increased,
contradicting the assumption that flow is maximum. Let S be set of vertices not reachable
from s. S is not empty as t € S. Thus, (S,5) is an s — ¢ cut and as all edges (v, w) of cut
have been deleted, c¢(v,w) = f(v,w) for edges of cut.

|f| = ZveS,wﬁS f(v,w) = ZUGS,wQS c(v,w) = C(S’ g)

Push(v, w)

/* v is an active vertex and (v, w) an edge in residual graph with d(w) = d(v)—1
*/

Try to move excess from v to w, subject to capacity constraints, i.e., send
0 = min{e(v), r4(v, w)) units of flow from v to w.

/* g(v,w) = g(v,w) +6; e(v) = e(v) = § and e(w) = e(w) +6; */

If § = ry(v, w), then the push is said to be saturating.

Relabel(v)

For v # s, the new distance label is

d(v) = min{d(w) + 1|(v,w) is a residual edge }

Preflow-Push Algorithms
Following are some of the properties of preflow-push algorithms:

1. If relabel v results in a new label, d(v) = d(w*) + 1, then as initial labeling was
valid, doia(v) < dola(w*) + 1. Thus labels can only increase. Moreover, the new
labeling is clearly valid.

2. If push is saturating, edge (v, w) may get deleted from the graph and edge (w, v)
will get added to the residual graph, as d(w) = d(v) — 1, d(v) = d(w) + 1 >
d(w) — 1, thus even after addition to the residual graph, conditions for labeling
to be valid are satisfied.

3. As a result of initialization, each node adjacent to s gets a positive excess. More-
over all arcs out of s are saturated. In other words in residual graph there is no
path from s to ¢t. As distances can not decrease, there can never be a path from
s to t. Thus, there will be no need to push flow again out of s.

4. By definition of pre-flow, flow coming into a node is more than flow going out.
This flow must come from source. Thus, all vertices with positive excess are
reachable from s (in the original network). Thus, as s is initially the only node,
at any stage of the algorithm, there is a path P, to a vertex v (in the original
network) along which pre-flow has come from s to v. Thus, in the residual graph,
there is reverse path from v to s.

5. Consider a vertex v from which there is a path till a vertex X. As we trace back
this path from X, then distance label d( ) increases by at most one. Thus, d(v)
can be at most dist(v, X) larger than d(X). That is d(v) < d(X)+ dist(v, X)

6. As for vertices from which ¢ is not reachable, s is reachable, d(v) < d(s)+ dist(s,v) =
n+(n—1)=2n—-1 (as d(s) =n).
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Thus, maximum label of any node is 2n — 1.

FACT 12.5 As label of t remains zero, and label of other vertices only increase, the
number of Relabels, which result in change of labels is (n —1)%. In each relabel operation we
may have to look at degree(v) vertices. As, each vertex can be relabeled at most O(n) times,
time for relabels is Y O(n)xdegree(v) = O(n) x > degree(v) = O(n) x O(m) = O(nm)

FACT 12.6 If a saturating push occurs from u to v, then d(u) = d(v) +1 and edge (u,v)
gets deleted, but edge (v,u) gets added. Edge (u,v) can be added again only if edge (v,u)
gets saturated, i.e., dpow(V) = dpow(u) +1 > d(u) +1 = d(v) + 2. Thus, the edge gets added
only if label increases by 2. Thus, for each edge, number of times saturating push can occur
is O(n). So the total number of saturating pushes is O(nm).

REMARK 12.6 Increase in label of d(u) can make a reverse flow along all arcs (z,u)
possible, and not just (v,u); in fact there are at most degree(u) such arcs. Thus, number
of saturating pushes are O(nm) and not O(n?).

FACT 12.7 Consider the point in time when the algorithm terminates, i.e., when pushes
or relabels can no longer be applied. As excess at s is 0o, excess at s could not have been
exhausted. The fact that push/relabels can not be applied means that there is no path from
s tot. Thus, gg, the set of vertices from which t is reachable, and Sy, set of vertices from
which s is reachable, form an s —t cut.

Consider an edge (u,v) with u € S; and v € §g. As t is reachable from v, there is no
excess at v. Moreover, by definition of cut, the edge is not present in residual graph, or
in other words, flow in this edge is equal to capacity. By Theorem 12.4, the flow is the
maximum possible.

12.7 Implementation Without Linking and Cutting Trees

Each vertex will have a list of edges incident at it. It also has a pointer to current edge
(candidate for pushing flow out of that node). Each edge (u,v) will have three values
associated with it ¢(u,v), ¢(v,u) and g(u,v).

Push/Relabel(v)
Here we assume that v is an active vertex and (v, w) is current edge of v.

If (d(w) == d(v) —1)&& (r¢(v,w) > 0 ) then send § = min{e(v), r4(v,w)} units
of flow from v to w.

Else if v has no next edge, make first edge on edge list the current edge and
Relabel(v): d(v) = min{d(w) + 1|(v,w) is a residual edge} /* this causes
d(v) to increase by at least one */

Else make the next edge out of v, the current edge.

Relabeling v, requires a single scan of v’s edge list. As each relabeling of v, causes d(v)
to go up by one, the number of relabeling steps (for v) are at most O(n), each step takes
O(degree(v)) time. Thus, total time for all relabellings will be:
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O(>_ ndegree(v)) = O(nY_ degree) = O(n x 2m) = O(nm). Each non-saturating push
clearly takes O(1) time, thus time for algorithm will be O(nm)+O(#non saturating pushes).

Discharge(v)
Keep on applying Push/Relabel(v) until either

1. entire excess at v is pushed out, OR,
2. label(v) increases.

FIFO/Queue

Initialize a queue “Queue” to contain s.

Let v be the vertex in front of Queue. Discharge(v), if a push causes excess of a vertex
w to become non-zero, add w to the rear of the Queue.

Let phase 1, consist of discharge operations applied to vertices added to the queue by
initialization of pre-flow.

Phase (i + 1) consists of discharge operations applied to vertices added to the queue
during phase 1.

Let ® = max{d(v)|v is active }, with maximum as zero, if there are no active vertices. If
in a phase, no relabeling is done, then the excess of all vertices which were in the queue has
been moved. If v is any vertex which was in the queue, then excess has been moved to a node
w, with d(w) = d(v) — 1. Thus, max{d(w)|w has now become active} < max{d(v)—1|v was
active } = ® — 1.

Thus, if in a phase, no relabeling is done, ® decreases by at least one. Moreover, as
number of relabeling steps are bounded by 2n2, number of passes in which relabeling takes
place is at most 2n2.

Only way in which ® can increase is by relabeling. Since the maximum value of a label
of any active vertex is n — 1, and as a label never decreases, the total of all increases in ¢
is (n —1)2.

As ® decreases by at least one in a pass in which there is no relabeling, number of passes
in which there is no relabeling is (n — 1)% + 2n? < 3n?.

FACT 12.8 Number of passes in FIFO algorithm is O(n?).

12.8 FIFO: Dynamic Tree Implementation

Time for non-saturating push is reduced by performing a succession of pushes along a single
path in one operation. After a non-saturating push, the edge continues to be admissible,
and we know its residual capacity. [6]

Initially each vertex is made into a one vertex node. Arc of dynamic trees are a subset of
admissible arcs. Value of an arc is its admissible capacity (if (u,parent(u)) is an arc, value
of arc will be stored at u). Each active vertex is a tree root.

Vertices will be kept in a queue as in FIFO algorithm, but instead of discharge(v), Tree-
Push(v), will be used. We will further ensure that tree size does not exceed k (k is a
parameter to be chosen later). The Tree-Push procedure is as follows:
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Tree-Push(v)
/* v is active vertex and (v, w) is an admissible arc */

1. /* link trees rooted at v and the tree containing w by making w the parent of v,
if the tree size doesn’t exceed k */.
if v is root and (find_size(v)+find_size(w))< k, then link v and w. Arc (v,w) gets
the value equal to the residual capacity of edge (v, w)

2. if v is root but find_size(v)+find_size(w) > k, then push flow from v to w.

3. if v is not a tree root, then send § = min{e(v),find_cost(find-min(v))} units of
flow from v, by add_cost(v, —9) /* decrease residual capacity of all arcs */ and
while v is not a root and find_cost(find_min(v))== 0 do

{ z := find_min(v); cut(z); /* delete saturated edge */
f(z,parent(z)) := ¢(z,parent(z));

/* in saturated edge, flow=capacity */

f(parent(z), z) :== —c(z,parent(z));

4. But, if arc(v,w) is not admissible, replace (v, w), as current edge by next edge
on v’s list. If v has no next-edge, then make the first edge, the current edge and
cut-off all children of v, and relabel(v).

Analysis

1. Total time for relabeling is O(nm).

2. Only admissible edges are present in the tree, and hence if an edge (u,v) is cut
in step (3) or in step (4) then it must be admissible, i.e., d(u) = d(v) + 1. Edge
(v, u) can become admissible and get cut, iff, dipen(v) = dinen(v) +1 > d(u)+1 =
d(v) + 2. Thus, the edge gets cut again only if label increases by 2. Thus, for
each edge, number of times it can get cut is O(n). So total number of cuts are
O(nm).

3. As initially, there are at most n-single node trees, number of links are at most
n+#no_of_cuts= n + O(nm) = O(nm).

Moreover, there is at most one tree operation for each relabeling, cut or link. Further, for
each item in queue, one operation is performed. Thus,

LEMMA 12.2 The time taken by the algorithm is
O(log k x (nm + #No_of_times_an_item_is_added_to_the_queue))

Root-Nodes Let T, denote the tree containing node v. Let r be a tree root whose excess
has become positive. It can become positive either due to:

1. push from a non-root vertex w in Step 3 of the tree-push algorithm.
2. push from a root w in Step 2 /* find_size(w)+find_size(r) > k */

REMARK 12.7 Push in Step 3 is accompanied by a cut (unless first push is non-
saturating). As the number of cuts is O(nm), number of times Step 3 (when first push
is saturating) can occur is O(nm). Thus, we need to consider only the times when first
push was non-saturating, and the excess has moved to the root as far as push in Step 3 is
concerned.
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In either case let i be the pass in which this happens (i.e., w was added to the queue in
pass (i — 1)). Let I be the interval from beginning of pass (i — 1) to the time when e(r)
becomes positive.

Case 1: (Ty, changes during I) T,, can change either due to link or cut. But number
of times a link or a cut can occur is O(nm). Thus, this case occurs at most
O(nm) time. Thus, we may assume that T, does not change during interval I.
Vertex w is added to the queue either because of relabeling of w, or because of a
push in Step 2 from (say) a root v to w.

Case 2: (w is added because of relabeling) Number of relabeling steps are O(n?).
Thus number of times this case occurs is O(n?). Thus, we may assume that w
was added to queue because of push from root v to w in Step 2.

Case 3: (push from w was saturating) As the number of saturating pushes is O(nm),
this case occurs O(nm) times. Thus we may assume that push from w was
non-saturating.

Case 4: (edge (v,w) was not the current edge at beginning of pass (i — 1)). Edge
(v,w) will become the current edge, only because either the previous current
edge (v, z) got saturated, or because of relabel(v), or relabel(z). Note, that if
entire excess out of v was moved, then (v, w) will remain the current edge.

As number of saturating pushes are O(nm) and number of relabeling are O(n?),
this case can occur at most O(nm) times. Thus, we may assume that (v, w) was
the current edge at beginning of pass (i — 1).

Case 5: (T, changes during interval I) T, can change either due to link or cut. But
the number of times a link or a cut can occur is O(nm). Thus, this case occurs at
most O(nm) time. Thus, we may assume that T, has not changed during interval
I

Remaining Case: Vertex w was added to the queue because of a non-saturating push
from v to w in Step 2 and (v, w) is still the current edge of v. Moreover, T, and
T, do not change during the interval I.

A tree at beginning of pass (¢ — 1) can participate in only one pair (T, T,) as
T, because this push was responsible for adding w to the queue. Observe that
vertex w is uniquely determined by r.

And, a tree at beginning of pass (i — 1) can participate in only one pair (T, T})
as T, because (v, w) was the current edge out of root v, at beginning of pass
(1 —1) (and is still the current edge). Thus, choice of T, will uniquely determine
T, (and conversely).

Thus, as a tree T, can participate once in a pair as T, and once as T,, and the
two trees are unchanged, we have }°, .y [Ty|+ [Tw| < 2n (a vertex is in at most
one tree). As push from v to w was in Step 2, find_size(v)+find_size(w) > k, or
|T,| + |Tw| > k. Thus, the number of such pairs is at most 2n/k.

But from Fact 12.8, as there are at most O(n?) passes, the number of such pairs
are O(n/k).

Non-Root-Nodes Let us count the number of times a non-root can have its excess made
positive. Its excess can only be made positive as a result of push in Step 2. As the number
of saturating pushes is O(nm), clearly, O(nm) pushes in Step 2 are saturating.

If the push is non-saturating, then entire excess at that node is moved out, hence it can
happen only once after a vertex is removed from Queue. If v was not a root when it was
added to the queue, then it has now become a root only because of a cut. But number of
cuts is O(nm). Thus, we only need to consider the case when v was a root when it was
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added to the queue. The root was not earlier in queue, because either its excess was then
zero, or because its distance label was low. Thus, now either

1. distance label has gone up— this can happen at most O(n?) times, or

2. now its excess has become positive. This by previous case can happen at most
O(nm + (n®/k)) times.

Summary If k is chosen such that nm = n?®/k, or k = n?/m, time taken by the algorithm
is O(nmlog(n?/m)).

12.9 Variants of Splay Trees and Top-Down Splaying

Various variants, modifications and generalization of Splay trees have been studied, see for
example [2,11,12,14]. Two of the most popular “variants” suggested by Sleator and Tarjan
[13] are “semi-splay” and “simple-splay” trees. In simple splaying the second rotation in
the “zig-zag” case is done away with (i.e., we stop at the middle figure in Figure 12.3).
Simple splaying can be shown to have a larger constant factor both theoretically [13] and
experimentally [11]. In semi-splay [13], in the zig-zig case (see Figure 12.2) we do only the
first rotation (i.e., stop at the middle figure) and continue splaying from node y instead
of x. Sleator and Tarjan observe that for some access sequences “semi-splaying” may be
better but for some others the usual splay is better.

“Top-down” splay trees [13] are another way of implementing splay trees. Both the trees
coincide if the node being searched is at an even depth [11], but if the item being searched
is at an odd depth, then the top-down and bottom-up trees may differ ([11, Theorem 2]).

Some experimental evidence suggests [3] that top-down splay trees [11,13] are faster in
practice as compared to the normal splay trees, but some evidence suggests otherwise [16].

In splay trees as described, we first search for an item, and then restructure the tree.
These are called “bottom-up” splay trees. In “top-down” splay trees, we look at two nodes
at a time, while searching for the item, and also keep restructuring the tree until the item
we are looking for has been located.

Basically, the current tree is divided into three trees, while we move down two nodes at
a time searching for the query item

left tree: Left tree consists of items known to be smaller than the item we are search-
ing.

right tree: Similarly, the right tree consists of items known to be larger than the item
we are searching.

middle tree: this is the subtree of the original tree rooted at the current node.

Basically, the links on the access path are broken and the node(s) which we just saw are
joined to the bottom right (respectively left) of the left (respectively right) tree if they
contain item greater (respectively smaller) than the item being searched. If both nodes are
left children or if both are right children, then we make a rotation before breaking the link.
Finally, the item at which the search ends is the only item in the middle tree and it is made
the root. And roots of left and right trees are made the left and right children of the root.
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13.1 Introduction

In the last couple of decades, there has been a tremendous growth in using randomness as
a powerful source of computation. Incorporating randomness in computation often results
in a much simpler and more easily implementable algorithms. A number of problem do-
mains, ranging from sorting to stringology, from graph theory to computational geometry,
from parallel processing system to ubiquitous internet, have benefited from randomization
in terms of newer and elegant algorithms. In this chapter we shall see how randomness
can be used as a powerful tool for designing simple and efficient data structures. Solving a
real-life problem often involves manipulating complex data objects by variety of operations.
We use abstraction to arrive at a mathematical model that represents the real-life objects
and convert the real-life problem into a computational problem working on the mathe-
matical entities specified by the model. Specifically, we define Abstract Data Type (ADT)
as a mathematical model together with a set of operations defined on the entities of the
model. Thus, an algorithm for a computational problem will be expressed in terms of the
steps involving the corresponding ADT operations. In order to arrive at a computer based
implementation of the algorithm, we need to proceed further taking a closer look at the
possibilities of implementing the ADTs. As programming languages support only a very
small number of built-in types, any ADT that is not a built-in type must be represented
in terms of the elements from built-in type and this is where the data structure plays a
critical role. One major goal in the design of data structure is to render the operations of
the ADT as efficient as possible. Traditionally, data structures were designed to minimize
the worst-case costs of the ADT operations. When the worst-case efficient data structures
turn out to be too complex and cumbersome to implement, we naturally explore alternative

13-1
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design goals. In one of such design goals, we seek to minimize the total cost of a sequence
of operations as opposed to the cost of individual operations. Such data structures are said
to be designed for minimizing the amortized costs of operations. Randomization provides
yet another avenue for exploration. Here, the goal will be to limit the expected costs of
operations and ensure that costs do not exceed certain threshold limits with overwhelming
probability.

In this chapter we discuss about the Dictionary ADT which deals with sets whose elements
are drawn from a fixed universe U and supports operations such as insert, delete and search.
Formally, we assume a linearly ordered universal set U and for the sake of concreteness we
assume U to be the set of all integers. At any time of computation, the Dictionary deals only
with a finite subset of U. We shall further make a simplifying assumption that we deal only
with sets with distinct values. That is, we never handle a multiset in our structure, though,
with minor modifications, our structures can be adjusted to handle multisets containing
multiple copies of some elements. With these remarks, we are ready for the specification of
the Dictionary ADT.

DEFINITION 13.1 [Dictionary ADT] Let U be a linearly ordered universal set and S
denote a finite subset of U. The Dictionary ADT, defined on the class of finite subsets of
U, supports the following operations.

Insert (x, S) : For an « € U, S C U, generate the set S| J{z}.

Delete (x, S) : For an z € U, S C U, generate the set S — {x}.

Search (x, S) : For an x € U, S C U, return TRUE if z € S and return FALSE if = € S.

Remark : When the universal set is evident in a context, we will not explicitly mention
it in the discussions. Notice that we work with sets and not multisets. Thus, Insert (z,5)
does not produce new set when z is in the set already. Similarly Delete (z, S) does not
produce a new set when x &€ S.

Due to its fundamental importance in a host of applications ranging from compiler design
to data bases, extensive studies have been done in the design of data structures for dictio-
naries. Refer to Chapters 3 and 10 for data structures for dictionaries designed with the
worst-case costs in mind, and Chapter 12 of this handbook for a data structure designed
with amortized cost in mind. In Chapter 15 of this book, you will find an account of B-Trees
which aim to minimize the disk access. All these structures, however, are deterministic. In
this sequel, we discuss two of the interesting randomized data structures for Dictionaries.
Specifically

e We describe a data structure called Skip Lists and present a comprehensive prob-
abilistic analysis of its performance.

e We discuss an interesting randomized variation of a search tree called Randomized
Binary Search Tree and compare and contrast the same with other competing
structures.

© 2005 by Chapman & Hall/CRC



Randomized Dictionary Structures 13-3

13.2 Preliminaries

In this section we collect some basic definitions, concepts and the results on randomized
computations and probability theory. We have collected only the materials needed for the
topics discussed in this chapter. For a more comprehensive treatment of randomized algo-
rithms, refer to the book by Motwani and Raghavan [9].

13.2.1 Randomized Algorithms

Every computational step in an execution of a deterministic algorithm is uniquely deter-
mined by the set of all steps executed prior to this step. However, in a randomized algorithm,
the choice of the next step may not be entirely determined by steps executed previously;
the choice of next step might depend on the outcome of a random number generator. Thus,
several execution sequences are possible even for the same input. Specifically, when a ran-
domized algorithm is executed several times, even on the same input, the running time may
vary from one execution to another. In fact, the running time is a random variable depend-
ing on the random choices made during the execution of the algorithm. When the running
time of an algorithm is a random variable, the traditional worst case complexity measure
becomes inappropriate. In fact, the quality of a randomized algorithm is judged from the
statistical properties of the random variable representing the running time. Specifically, we
might ask for bounds for the expected running time and bounds beyond which the running
time may exceed only with negligible probability. In other words, for the randomized algo-
rithms, there is no bad input; we may perhaps have an unlucky execution.

The type of randomized algorithms that we discuss in this chapter is called Las Vegas type
algorithms. A Las Vegas algorithm always terminates with a correct answer although the
running time may be a random variable exhibiting wide variations. There is another im-
portant class of randomized algorithms, called Monte Carlo algorithms, which have fixed
running time but the output may be erroneous. We will not deal with Monte Carlo algo-
rithms as they are not really appropriate for basic building blocks such as data structures.
We shall now define the notion of efficiency and complexity measures for Las Vegas type
randomized algorithms.

Since the running time of a Las Vegas randomized algorithm on any given input is a
random variable, besides determining the expected running time it is desirable to show
that the running time does not exceed certain threshold value with very high probability.
Such threshold values are called high probability bounds or high confidence bounds. As is
customary in algorithmics, we express the estimation of the expected bound or the high-
probability bound as a function of the size of the input. We interpret an execution of a
Las Vegas algorithm as a failure if the running time of the execution exceeds the expected
running time or the high-confidence bound.

DEFINITION 13.2 [Confidence Bounds] Let «, 8 and ¢ be positive constants. A ran-
domized algorithm A requires resource bound f(n) with

1. n—exponential probability or very high probability, if for any input of size n, the
amount of the resource used by A is at most «f(n) with probability 1 — O(8~"),
B > 1. In this case f(n) is called a very high confidence bound.

2. n — polynomial probability or high probability, if for any input of size n, the
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amount of the resource used by A is at most af(n) with probability 1 — O(n~°).
In this case f(n) is called a high confidence bound.

3. n—Ilog probability or very good probability, if for any input of size n, the amount
of the resource used by A is at most «f(n) with probability 1 — O((logn)~¢). In
this case f(n) is called a very good confidence bound.

4. high — constant probability, if for any input of size n, the amount of the resource
used by A is at most «f (n) with probability 1 — O(5~%), 8 > 1.

The practical significance of this definition can be understood from the following discus-
sions. For instance, let A be a Las Vegas type algorithm with f(n) as a high confidence
bound for its running time. As noted before, the actual running time 7'(n) may vary from
one execution to another but the definition above implies that, for any execution, on any
input, Pr(T(n) > f(n)) = O(n~°). Even for modest values of n and ¢, this bound implies
an extreme rarity of failure. For instance, if n = 1000 and ¢ = 4, we may conclude that
the chance that the running time of the algorithm A exceeding the threshold value is one
in zillion.

13.2.2 Basics of Probability Theory

We assume that the reader is familiar with basic notions such as sample space, event and
basic azioms of probability. We denote as Pr(E) the probability of the event E. Several
results follow immediately from the basic axioms, and some of them are listed in Lemma
13.1.

LEMMA 13.1 The following laws of probability must hold:

1. Pr(¢) =0

2. Pr(E®)=1- Pr(E)

3. Pr(E,) < Pr(E,) it E, C E;

4. Pr(Ey U Es) = Pr(Ey) + Pr(Ez) — Pr(Ey N Es) < Pr(Ey) + Pr(E2)

Extending item 4 in Lemma 13.1 to countable unions yields the property known as sub
additivity. Also known as Boole’s Inequality, it is stated in Theorem 13.1.

THEOREM 13.1 [Boole’s Inequality] Pr(U2, E;) < Y2, Pr(E;)

A probability distribution is said to be discrete if the sample space S is finite or countable.
If £ = {ej,ea,...,er} is an event, Pr(E) = Zle Pr({e;}) because all elementary events
are mutually exclusive. If |S| = n and Pr({e}) = 1 for every elementary event e in S, we
call the distribution a uniform distribution of S. In this case,

Pr(E) = ZPr(e)
eeE
1
= P&Z;n

= [El/IS]
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which agrees with our intuitive and a well-known definition that probability is the ratio of
the favorable number of cases to the total number of cases, when all the elementary events
are equally likely to occur.

13.2.3 Conditional Probability

In several situations, the occurrence of an event may change the uncertainties in the oc-
currence of other events. For instance, insurance companies charge higher rates to various
categories of drivers, such as those who have been involved in traffic accidents, because the
probabilities of these drivers filing a claim is altered based on these additional factors.

DEFINITION 13.3 [Conditional Probability] The conditional probability of an event F;
given that another event Fy has occurred is defined by Pr(E;/FEs2) (“Pr(Eq1/Es)” is read
as “the probability of F; given E5.”).

LEMMA 13.2 Pr(E;/Ey) = {808 provided Pr(E,) # 0.

Lemma 13.2 shows that the conditional probability of two events is easy to compute.
When two or more events do not influence each other, they are said to be independent. There
are several notions of independence when more than two events are involved. Formally,

DEFINITION 13.4 [Independence of two events] Two events are independent if Pr(E; N
E5) = Pr(E1)Pr(E2), or equivalently, Pr(E,/Es) = Pr(E;).

DEFINITION 13.5 [Pairwise independence] Events F1, Es, . .. E}, are said to be pairwise
independent if Pr(E; N E;) = Pr(E;)Pr(E;), 1 <i#j<n.

Given a partition Si, ..., Sk of the sample space S, the probability of an event E may be
expressed in terms of mutually exclusive events by using conditional probabilities. This is
known as the law of total probability in the conditional form.

LEMMA 13.3 [Law of total probability in the conditional form] For any partition Si, ..., Sk
of the sample space S, Pr(E) = Zle Pr(E/S;) Pr(S;).

The law of total probability in the conditional form is an extremely useful tool for cal-
culating the probabilities of events. In general, to calculate the probability of a complex
event E, we may attempt to find a partition S7,S2,..., Sk of S such that both Pr(E/S;)
and Pr(S;) are easy to calculate and then apply Lemma 13.3. Another important tool is
Bayes’ Rule.

THEOREM 13.2 [Bayes’ Rule] For events with non-zero probabilities,
Pr(Ey/E1)Pr(E
1. Pr(E1/E5) = %

2. If 51,54, ..., Sk is a partition, Pr(S;/E) = z:fg/(%/)gfigﬁzs»
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Proof Part (1) is immediate by applying the definition of conditional probability; Part
(2) is immediate from Lemma 13.3.

Random Variables and Expectation

Most of the random phenomena are so complex that it is very difficult to obtain detailed
information about the outcome. Thus, we typically study one or two numerical parameters
that we associate with the outcomes. In other words, we focus our attention on certain
real-valued functions defined on the sample space.

DEFINITION 13.6 A random wvariable is a function from a sample space into the set of
real numbers. For a random variable X, R(X) denotes the range of the function X.

Having defined a random variable over a sample space, an event of interest may be
studied through the values taken by the random variables on the outcomes belonging to the
event. In order to facilitate such a study, we supplement the definition of a random variable
by specifying how the probability is assigned to (or distributed over) the values that the
random variable may assume. Although a rigorous study of random variables will require
a more subtle definition, we restrict our attention to the following simpler definitions that
are sufficient for our purposes.

A random variable X is a discrete random variable if its range R(X) is a finite or countable
set (of real numbers). This immediately implies that any random variable that is defined
over a finite or countable sample space is necessarily discrete. However, discrete random
variables may also be defined on uncountable sample spaces. For a random variable X, we
define its probability mass function (pmf) as follows:

DEFINITION 13.7 [Probability mass function] For a random variable X, the probability
mass function p(x) is defined as p(z) = Pr(X = x), Vo € R(X).

The probability mass function is also known as the probability density function. Certain
trivial properties are immediate, and are given in Lemma 13.4.

LEMMA 13.4 The probability mass function p(x) must satisfy
1. p(z) >0, Vz € R(X)
2. ZmER(X)p(x) =1

Let X be a discrete random variable with probability mass function p(z) and range R(X).
The ezpectation of X (also known as the ezpected value or mean of X) is its average value.
Formally,

DEFINITION 13.8 [Expected value of a discrete random variable] The expected value
of a discrete random variable X with probability mass function p(z) is given by E(X) =

Bx = ZIGR(X) zp().

LEMMA 13.5 The expected value has the following properties:

1. E(cX) =cE(X) if ¢ is a constant
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2. (Linearity of expectation) E(X +Y) = E(X)+ E(Y), provided the expectations
of X and Y exist

Finally, a useful way of computing the expected value is given by Theorem 13.3.
THEOREM 13.3 If R(X)={0,1,2,...}, then E(X) =7, Pr(X >1i).

Proof

o0

E(X) = Y iPr(X =i
=0
= ii(Pr(X >i)— Pr(X >i+1))
=0

= iPr(X > 1)

13.2.4 Some Basic Distributions
Bernoulli Distribution

We have seen that a coin flip is an example of a random experiment and it has two possible
outcomes, called success and failure. Assume that success occurs with probability p and
that failure occurs with probability ¢ = 1 — p. Such a coin is called p-biased coin. A
coin flip is also known as Bernoulli Trial, in honor of the mathematician who investigated
extensively the distributions that arise in a sequence of coin flips.

DEFINITION 13.9 A random variable X with range R(X) = {0,1} and probability
mass function Pr(X =1) =p, Pr(X =0) =1 — p is said to follow the Bernoulli Distribu-
tion. We also say that X is a Bernoulli random variable with parameter p.

Binomial Distribution

k
Recall that ( Z ) = ﬁlk), and ( g ) = 1 since 0! = 1. ( Z ) denotes the binomial

Let < n ) denote the number of k-combinations of elements chosen from a set of n elements.

coefficients because they arise in the expansion of (a + b)".
Define the random variable X to be the number of successes in n flips of a p-biased coin.

The variable X satisfies the binomial distribution. Specifically,

DEFINITION 13.10 [Binomial distribution] A random variable with range R(X) =
{0,1,2,...,n} and probability mass function

Pr(X =k) =blk,n,p) = < Z )pkq”k, for k=0,1,....n

satisfies the binomial distribution. The random variable X is called a binomial random
variable with parameters n and p.
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THEOREM 13.4  For a binomial random variable X, with parameters n and p, E(X) =
np and Var(X) = npq.

Geometric Distribution

Let X be a random variable X denoting the number of times we toss a p-biased coin until
we get a success. Then, X satisfies the geometric distribution. Specifically,

DEFINITION 13.11 [Geometric distribution] A random variable with range R(X) =
{1,2,...,00} and probability mass function Pr(X = k) = ¢*p, for k = 1,2,...,00
satisfies the geometric distribution. We also say that X is a geometric random variable with
parameter p.

The probability mass function is based on k—1 failures followed by a success in a sequence
of k independent trials. The mean and variance of a geometric distribution are easy to
compute.

THEOREM 13.5 For a geometrically distributed random variable X, E(X) = 1—1) and
Var(X) = ]%,
Negative Binomial distribution

Fix an integer n and define a random variable X denoting the number of flips of a p-
biased coin to obtain n successes. The variable X satisfies a negative binomial distribution.
Specifically,

DEFINITION 13.12 A random variable X with R(X) = {0,1,2,...} and probability
mass function defined by

PrX =k) = (k_1>p%“" if k>n

n—1
= 0 if0<k<n (13.1)

is said to be a negative binomial random variable with parameters n and p.

Equation (13.1) follows because, in order for the n** success to occur in the k** flip there
should be n — 1 successes in the first k¥ — 1 flips and the k" flip should also result in a
success.

DEFINITION 13.13 Given n identically distributed independent random variables
X1, Xo,...,X,, the sum

defines a new random variable. If n is a finite, fixed constant then S,, is known as the
deterministic sum of n random variables.
On the other hand, if n itself is a random variable, .S, is called a random sum.

THEOREM 13.6 Let X = X1 + Xo + -+ 4+ X, be a deterministic sum of n identical
independent random variables. Then
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1. If X; is a Bernoulli random variable with parameter p then X is a binomial
random variable with parameters n and p.

2. If X; is a geometric random variable with parameter p, then X is a negative
binomial with parameters n and p.

3. If X; is a (negative) binomial random variable with parameters r and p then X
is a (negative) binomial random variable with parameters nr and p.

Deterministic sums and random sums may have entirely different characteristics as the
following theorem shows.

THEOREM 13.7 Let X = X1+ ---+ Xy be a random sum of N geometric random
variables with parameter p. Let N be a geometric random variable with parameter o. Then
X is a geometric random variable with parameter ap.

13.2.5 Tail Estimates

Recall that the running time of a Las Vegas type randomized algorithm is a random vari-
able and thus we are interested in the probability of the running time exceeding a certain
threshold value.

Typically we would like this probability to be very small so that the threshold value may
be taken as the figure of merit with high degree of confidence. Thus we often compute or
estimate quantities of the form Pr(X > k) or Pr(X < k) during the analysis of randomized
algorithms. Estimates for the quantities of the form Pr(X > k) are known as tail estimates.
The next two theorems state some very useful tail estimates derived by Chernoff. These
bounds are popularly known as Chernoff bounds. For simple and elegant proofs of these
and other related bounds you may refer [1].

THEOREM 13.8 Let X be a sum of n independent random variables X; with R(X;) C
[0,1). Let E(X) = p. Then,

n—k
PrX >k) < (%)k (Z - Z) fork>p (13.2)
< (%)k ek=n fork>u (13.3)
PrX>(1+ep < {Q%Z(He)]u fore>0 (13.4)

THEOREM 13.9 Let X be a sum of n independent random variables X; with R(X;) C
[0,1). Let E(X) = p. Then,

n—k
PrX <k) < (%)k (Z:‘]:) k<p (13.5)
< (%)k ek=n k<u (13.6)
PrX<(—au) < e, foree(0,1) (13.7)
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Recall that a deterministic sum of several geometric variables results in a negative bino-
mial random variable. Hence, intuitively, we may note that only the upper tail is meaningful
for this distribution. The following well-known result relates the upper tail value of a neg-
ative binomial distribution to a lower tail value of a suitably defined binomial distribution.
Hence all the results derived for lower tail estimates of the binomial distribution can be used
to derive upper tail estimates for negative binomial distribution. This is a very important
result because finding bounds for the right tail of a negative binomial distribution directly
from its definition is very difficult.

THEOREM 13.10 Let X be a negative binomial random variable with parameters r and
p. Then, Pr(X >n) = Pr(Y <r) where Y is a binomial random variable with parameters
n and p.

13.3 Skip Lists

Linked list is the simplest of all dynamic data structures implementing a Dictionary. How-
ever, the complexity of Search operation is O(n) in a Linked list. Even the Insert and Delete
operations require O(n) time if we do not specify the exact position of the item in the list.
Skip List is a novel structure, where using randomness, we construct a number of progres-
sively smaller lists and maintain this collection in a clever way to provide a data structure
that is competitive to balanced tree structures. The main advantage offered by skip list
is that the codes implementing the dictionary operations are very simple and resemble list
operations. No complicated structural transformations such as rotations are done and yet
the expected time complexity of Dictionary operations on Skip Lists are quite comparable
to that of AVL trees or splay trees. Skip Lists are introduced by Pugh [6].

Throu