A Brain-Friendly Guide

Head First

2nd Edition
Covers Java 5.0

Learn how threads VR
can change your life el
W,
Faiea ™ % threads ﬁ“
{ o Lt i - | S wait()
15 e i notify0)

Make Java concepts
stick to your brain

Fool around in
the Java Library

Avoid embarassing
00 mistakes

Bend your mind
around 4R
Java puzzles

Make attractive
and useful GUIs

OREILLY* * Kathy Sierra & Bert Bates

Head First Java.

Java

What will you learn from this book?

Head First Java is a complete learning experience in Java and object-
oriented programming. This book helps you learn the Java language
with a unique method that goes beyond syntax and how-to manuals

“... The only way to
decide the worth of a
tutorial is to decide
how well it teaches.
Head First Java excels

at teaching.”
—slashdot.org

and helps you understand how to be a great programmer. You'll
learn language fundamentals, generics, threading, networking,
and distributed programming, and you'll even build a “sink the dot
com” game and networked drum machine chat client along the way.

“...It’s definitely time to

Leavn the diffevente between Use your Java skills to build dive in—Head First.”
a tlass and an objeet. 3 Ba&]cshig:ms{ylg game. i
- v I. P Terkney — —Scott McNealy, Sun
= one lass . . Microsystems, Chairman,
s w | £ P P}:fi\'.’-{'h'.'ﬁ'f, and CEO
I : &
B Sk . . Get in “Head First Java trans-
b 'l sl | < touth with B forms the printed page
®, | - = ' | Lk Jeet into the closest thing
Understand to a GUI you've ever
primitive ’j :.?':’?";:‘:Ef:':‘:,_:‘::: .@ 5 ::FL&EED:; o :(:Y::':PSHE' seen. In a wry, hip
Distover how o ™ I generic r;;;%%ﬁ vcﬁmm manner, the authors
f.rca{ a P_rimi{iu.: s ::..”':"’“‘I{'i'ﬂw'}!‘:"a < of type make learning Java
like an OEJCL‘.‘E. ﬁxgﬁ é é & & ;:,;::.omarm.n f?::thas an engaging, ‘what’'re
they gonna do next?’
experience.”
What's so special about this book? . Varren Keufel,
We thi i ks oo o . . o Software Deve]r‘;pnﬁ%nt
/e think your time is too valuable to waste struggling with new con- i
cepts. Using the latest research in cognitive science and learning 2
theory to craft a multi-sensory learning experience, Head First Java “It’s fast, irreverent,
uses a visually rich format designed for the way your brain works, not fun, and engaging.

a text-heavy approach that puts you to sleep. Be careful—you might
actually learn some-
thing!”

—Ken Arnold, coauthor

US $44.95 CAN $62.95 O! RE I LLY® (with James G
ISBN: 978-0-596-00920-5 creator of Java), Th

54495 Programming Language
NI s vomeieon

780596"009205 www.headfirstlabs.com

9

What they’re saying about Head First

Amazon named Head First Java
a Top Ten Editor’s Choice for
Computer Books of 2003

(first edition) !

software
deveLopment §
1

£ Software Development Magazine named
14th annual -

Head First Java a finalist for the 14th Annual
Jolt Cola/Product Excellence Awards

1538

“Kathy and Bert’s ‘Head First Java’ transforms the printed page into the closest thing to a GUI you've

ever seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do
next?’ experience.”

— Warren Keuffel, Software Development Magazine

“...the only way to decide the worth of a tutorial is to decide how well it teaches. Head First Java excels at

teaching. OK, I thought it was silly... then I realized that I was thoroughly learning the topics as I went
through the book.”

“The style of Head First Java made learning, well, easier.”

— slashdot (honestpuck’s review)

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise
for the reader...” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim
and live up to it while also teaching you about object serialization and network launch protocols. ”

— Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

— Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java), “The Java Programming Language”

“Java technology is everywhere—If you develop software and haven’t learned Java, it’s definitely
time to dive in—Head First.”

— Scott McNealy, Sun Microsystems Chairman, President and CEO

“Head First Java is like Monty Python meets the gang of four... the text is broken up so well by puzzles
and stories, quizzes and examples, that you cover ground like no computer book before.”

— Douglas Rowe, Columbia Java Users Group

Praise for Head First Java

“Read Head First Java and you will once again experience fun in learning...For people who like to learn
new programming languages, and do not come from a computer science or programming background,
this book is a gem... This is one book that makes learning a complex computer language fun. I hope
that there are more authors who are willing to break out of the same old mold of ‘traditional’ writing
styles. Learning computer languages should be fun, not onerous.”

— Judith Taylor, Southeast Ohio Macromedia User Group

“If you want to learn Java, look no further: welcome to the first GUI-based technical book! This
perfectly-executed, ground-breaking format delivers benefits other Java texts simply can’t...
Prepare yourself for a truly remarkable ride through Java land.”

— Neil R. Bauman, Captain & CEO, Geek Cruises (www.GeekCruises.com)

“If you’re relatively new to programming and you are interested in Java, here’s your book...Covering
everything from objects to creating graphical user interfaces (GUI), exception (error) handling to net-
working (sockets) and multithreading, even packaging up your pile of classes into one installation file,
this book is quite complete...If you like the style...I'm certain you’ll love the book and, like me, hope
that the Head First series will expand to many other subjects!”

— LinuxQuestions.org

“I was ADDICTED to the book’s short stories, annotated code, mock interviews, and brain exercises.”

— Michael Yuan, author, Enterprise J2ME

“ ‘Head First Java’... gives new meaning to their marketing phrase "There’s an O Reilly for that.” I
picked this up because several others I respect had described it in terms like ‘revolutionary’ and a
described a radically different approach to the textbook. They were (are) right... In typical O’Reilly
fashion, they’ve taken a scientific and well considered approach. The result is funny, irreverent, topical,
interactive, and brilliant...Reading this book is like sitting in the speakers lounge at a view conference,
learning from — and laughing with — peers... If you want to UNDERSTAND Java, go buy this book.”

— Andrew Pollack, www.thenorth.com

“If anyone in the world is familiar with the concept of ‘Head First,” it would be me. This
book is so good, I'd marry it on TV!”

— Rick Rockwell, Comedian
The original FOX Television “Who Wants to Marry a Millionaire” groom

“This stuff is so fricking good it makes me wanna WEEP! I'm stunned.”

— Floyd Jones, Senior Technical Writer/Poolboy, BEA

“A few days ago I received my copy of Head First Java by Kathy Sierra and Bert Bates. I'm only part way
through the book, but what’s amazed me is that even in my sleep-deprived state that first evening, I found
myself thinking, ‘OK, just one more page, then I'll go to bed.” “

— Joe Litton

Praise for other Head First books co-authored by Kathy and Bert

BEST Amazon named Head First Servlets aiere... 23 Software Development Magazine named
a Top Ten Editor’s Choice for Head First Servlets and Head First Design
Computer Books of 2004 Patterns finalists for the 15th Annual
(first edition) Product Excellence Awards

“I feel like a thousand pounds of books have just been lifted oft of my head.”

— Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“I' laughed, I cried, it moved me.”

— Dan Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest to understand introduction to design patterns that I have seen.”

— Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State University
author of more than a dozen books including C++ for Java Programmers

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for prac-
tical development strategies—gets my brain going without having to slog through a bunch of tired

stale professor-speak.”
— Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“FINALLY - a Java book written the way I would’a wrote it if I were me.

Seriously though - this book absolutely blows away every other software book I've ever read...

A good book is very difficult to write... you have to take a lot of time to make things unfold in a
natural, “reader oriented” sequence. It’s a lot of work. Most authors clearly aren’t up to the challenge.
Congratulations to the Head First EJB team for a first class job!

— Wally Flint

“I could not have imagined a person smiling while studying an I'T book! Using Head First EJB
materials, I got a great score (91%) and set a world record as the youngest SCBCD, 14 years.”

— Afsah Shafquat (world’s youngest SCBCD)

“This Head First Servlets book is as good as the Head First E]B book, which made me laugh
AND gave me 97% on the exam!”

— Jef Cumps, J2EE consultant, Cronos

Other Java books from O’Reilly

Head First Design Patterns
Head First Servlets
Head First EJB™

Ant: The Definitive Guide™

Better, Faster, Lighter Java™
Enterprise JavaBeans™

Hibernate: A Developer’s Notebook
Java™ 1.5 Tiger: A Developer’s Notebook
Java™ Cookbook

Java™ in a Nutshell

Java™ Network Programming
Java™ Servlet & JSP Cookbook
Java™ Swing

JavaServer Faces™

JavaServer Pages™

Programming Jakarta Struts
Tomcat: the Definitive Guide

Be watching for more books in the Head First series

Head First Java:

Second Edition
Wouldn't it be dreamy
if there was a Java book
that was more stimulating
than waiting in line at the
DMV to renew your driver's
license? It's probably just a
fantasy...
Kathy Sierra
Bert Bates
O’REILLY"

Beijing < Cambridge * Kbin + Paris * Sebastopol ¢ Taipei * Tokyo

Head First Java™
Second Edition

by Kathy Sierra and Bert Bates

Copyright © 2003, 2005 by O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Cover Designer: Edie Freedman

Interior Designers: Kathy Sierra and Bert Bates
Printing History:

May 2003: First Edition.

February 2005: Second Edition.

(You might want to pick up a copy of both editions... for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

In other words, if you use anything in Head First Java™ to, say, run a nuclear power plant or air
traffic control system, you’re on your own.

ISBN: 0596009208
(M]

To our brains, for always being there

(despite shaky evidence)

Creators of the Head First series

Kathy Siervd \,

Kathy has been interested in learning theory
since her days as a game designer (she wrote
games for Virgin, MGM, and Amblin’). She
developed much of the Head First format while
teaching New Media Authoring for UCLA
Extension’s Entertainment Studies program.
More recently, she’s been a master trainer for Sun
Microsystems, teaching Sun’s Java instructors how
to teach the latest Java technologies, and a lead
developer of several of Sun’s Java programmer
and developer certification exams. Together

with Bert Bates, she has been actively using the
concepts in Head First Java to teach hundreds of
trainers, developers and even non-programmers.
She is also the founder of one of the largest Java
community websites in the world, javaranch.com,
and the Creating Passionate Users blog.

Along with this book, Kathy co-authored Head
First Servlets, Head First EJB, and Head First
Design Patterns.

In her spare time she enjoys her new Icelandic
horse, skiing, running, and the speed of light.

kathy@wickedlysmart.com

&
Bect Dates

Bert is a software developer and architect, but a
decade-long stint in artificial intelligence drove
his interest in learning theory and technology-
based training. He’s been teaching programming
to clients ever since. Recently, he’s been a
member of the development team for several of
Sun’s Java Certification exams.

He spent the first decade of his software career
travelling the world to help broadcast clients like
Radio New Zealand, the Weather Channel, and
the Arts & Entertainment Network (A & E). One
of his all-time favorite projects was building a full
rail system simulation for Union Pacific Railroad.

Bert is a hopelessly addicted Go player, and has
been working on a Go program for way too long.
He’s a fair guitar player, now trying his hand at
banjo, and likes to spend time skiing, running,
and trying to train (or learn from) his Icelandic
horse Andi.

Bert co-authored the same books as Kathy, and is
hard at work on the next batch of books (check
the blog for updates).

You can sometimes catch him on the IGS Go
server (under the login jackStraw).

terrapin@wickedlysmart.com

Although Kathy and Bert try to answer as much email as they can, the volume of mail and their travel schedule makes that
difficult. The best (quickest) way to get technical help with the book is at the very active Java beginners forum at javaranch.com.

Table of Contenis (summary)

—_

Intro

Breaking the Surface: a quick dip

2 A Trip to Objectville: yes, there will be objects

3 Know Your Variables: primitiwes and references

4 How Objects Behave: object state affects method behavior

5 Extra-Strength Methods: flow control, operations, and more

6 Using the Java Library: so you don’t have to write it all yourself

7 Better Living in Objectville: planning for the future

8 Serious Polymorphism: exploiting abstract classes and interfaces

9 Life and Death of an Object: constructors and memory management
10 Numbers Matter: math, formatting, wrappers, and statics

11 Risky Behavior: exception handling

12 A Very Graphic Story: wntro to GUI, event handling, and inner classes
13 Work on Your Swing: layout managers and components

14 Saving Objects: serialization and 1/0

15 Make a Connection: networking sockets and multithreading

16 Data Structures: collections and generics

17 Release Your Code: packaging and deployment

18 Distributed Computing: RMI with a dash of servlets, EB, and Jini
A Appendix A: Final code kitchen

B Appendix B: Top Ten Things that didn’t make it into the rest of the book

Index

xx1

27

49

71

95
125
165
197
235
273
315
353
399
429
471
529
581
607
649
659
677

Table of Contents (the fu]] version)

@® Intro

Your brain on Java. Here you are trying to learn something, while here your brain
is doing you a favor by making sure the learning doesn't stick. Your brain’s thinking, “Better

leave room for more important things, like which wild animals to avoid and whether naked

snowboarding is a bad idea.” So how do you trick your brain into thinking that your life

depends on knowing Java?

Who is this book for?

What your brain is thinking
Metacognition

Bend your brain into submission
What you need for this book
Technical editors

Acknowledgements

xxil
xxiii
XXV
XxXvil
Xxviil
XXX

XXx1

Breaking the Surface

Java takes you to new places. From its humble release to the public as the
(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented
features, memory management, and best of all—the promise of portability. We'll take a quick
dip and write some code, compile it,and run it. We're talking syntax, loops, branching, and what
makes Java so cool. Dive in.

. The way Java works 2
Vl'rfua' Code structure in Java 7
Machines
Anatomy of a class 8
The main() method 9
Method Party() Looping I
0 éload_o Conditional branching (if tests) 13
1 invokespe-
cial #1 <Method Coding the “99 bottles of beer” app 14
java.lang.Object()> .
Phrase-o-matic 16
4 return
0 . Fireside chat: compiler vs. JVM 18
Ommled Exercises and puzzles 20
bytecode
A Trip to Objectville
| was told there would be objects. in Chapter 1,we putall of our code
in the main() method. That's not exactly object-oriented. So now we've got to leave that
procedural world behind and start making some objects of our own. We'll look at what
makes object-oriented (OO) development in Java so much fun. We'll look at the difference
between a class and an object. We'll look at how objects can improve your life.
DOG Chair Wars (Brad the OO guy vs. Larry the procedural guy) 28
§56 one class Inheritance (an introduction) 31
Opverriding methods (an introduction) 32
What’s in a class? (methods, instance variables) 34
Making your first object 36
Using main() 38
Guessing Game code 39
many objects Exercises and puzzles 42

Know Your Variables

Variables come in two flavors: primitive and reference.

There's gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner
object with a Dog instance variable? Or a Car with an Engine? In this chapter we’'ll unwrap
the mysteries of Java types and look at what you can declare as a variable, what you can put
in a variable, and what you can do with a variable. And we'll finally see what life is truly like
on the garbage-collectible heap.

Declaring a variable (Java cares about type) 50
Primitive types (“I'd like a double with extra foam, please”) 51
Java keywords 53
Reference variables (remote control to an object) 54
Object declaration and assignment 55
Objects on the garbage-collectible heap 57
Arrays (a first look) 59
Exercises and puzzles 63

Dog reference

How Objects Behave

State affects behavior, behavior affects state. we know that objects
have state and behavior, represented by instance variables and methods. Now we'll look
at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like,"if dog weight is less than 14
pounds, make yippy sound, else...” Let’s go change some state!

Methods use object state (bark different) 73
pass_by_va_=L‘ue means Method arguments and return types 74
paSS‘bY‘OO!!y Pass-by-value (the variable is always copied) 77
Getters and Setters 79
4°P)' of Encapsulation (do it or risk humiliation) 80
x . .
Using references in an arra 83
> —"00\\\ s ¥
000 000 Exercises and puzzles 88
int int

foo.go (x); void go(int z){ }

Xi

Extra-Strength Methods

Let’s put some muscle in our methods. You dabbled with variables,
played with a few objects, and wrote a little code. But you need more tools. Like
operators. And loops. Might be useful to generate random numbers. And turn
a String into an int, yeah, that would be cool. And why don’t we learn it all by building
something real, to see what it’s like to write (and test) a program from scratch. Maybe a

, nd puild the game, like Sink a Dot Com (similar to Battleship).

Wc ve %\ ame

. ot Com &

Gk 3 Building the Sink a Dot Com game 96
A Starting with the Simple Dot Com game (a simpler version) 98
B Writing prepcode (pseudocode for the game) 100
c g Test code for Simple Dot Com 102

‘: Coding the Simple Dot Com game 103
DY Pets.com
. Final code for Simple Dot Com 106
. Generating random numbers with Math.random() 111
Ready-bake code for getting user input from the command-line 112
G
Asl}Me.com Looping with for loops 114
0 1 2 3 4 5 6
Casting primitives from a large size to a smaller size 117
Converting a String to an int with Integer.parselnt() 117
Exercises and puzzles 118
Using the Java Library
Java ships with hundreds of pre-built classes. You don't have to
reinvent the wheel if you know how to find what you need from the Java library, commonly
known as the Java APL. You've got better things to do.If you're going to write code, you
might as well write only the parts that are custom for your application.The core Java library
is a giant pile of classes just waiting for you to use like building blocks.
Analying the bug in the Simple Dot Com Game 126
“Good to know there’s an ArrayList in ArrayList (taking advantage of the Java API) 132
the java.util package. But by Wi?)self’ how Fixing the DotCom class code 138
would I have figured that out?
Building the real game (Sink a Dot Com) 140
- Julia, 31, hand model Prepcode for the real game 144
Code for the real game 146
boolean expressions 151
Using the library (Java API) 154
Using packages (import statements, fully-qualified names) 155
Using the HITML API docs and reference books 158
Exercises and puzzles 161

Xii

Better Living in Objectville

Plan your programs with the future in mind. what if you could write
code that someone else could extend, easily? What if you could write code that was flexible,
for those pesky last-minute spec changes? When you get on the Polymorphism Plan, you'll

learn the 5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make

flexible code, and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

Serious Polymorphism

Inheritance is just the beginning. To exploit polymorphism, we need
interfaces.We need to go beyond simple inheritance to flexibility you can get only by
designing and coding to interfaces. What's an interface? A 100% abstract class. What's an
abstract class? A class that can’t be instantiated. What's that good for? Read the chapter...

Some classes just should not be instantiated 200
Abstract classes (can’t be instantiated) 1 201
Abstract methods (must be implemented) 203
Polymorphism in action - 206
Class Object (the ultimate superclass of everything) 208
Taking objects out of an ArrayList (they come out as type Object) 211
Compiler checks the reference type (before letting you call a method) 213
Get in touch with your inner object 214
Polymorphic references 215
Casting an object reference (moving lower on the inheritance tree) 216
Deadly Diamond of Death (multiple inheritance problem) 223
Using interfaces (the best solution!) 224
Exercises and puzzles 230

Xiii

Life and Death of an Object

Objects are born and objects die. You're in charge. You decide when and
how to construct them.You decide when to abandon them. The Garbage Collector (gc)
reclaims the memory. We'll look at how objects are created, where they live, and how to
keep or abandon them efficiently. That means we’'ll talk about the heap, the stack, scope,
constructors, super constructors, null references, and gc eligibility.

¢ talls The stack and the heap, where objects and variables live 236
eon
When som d, this Methods on the stack 237
fhe 000 method, T
Duek is a\)andOV\Cd- s Where local variables live 238
on\‘l VC‘QCTCV\CC has been ‘Where nstance variables live 239
]
"""Bd “EOY The miracle of object creation 240
wek.
Constructors (the code that runs when you say new) 241
Initializing the state of a new Duck 243
ey Overloaded constructors 247
(4 ..

O‘/Ck o‘d\e'b Superclass constructors (constructor chaining) 250
. Invoking overloaded constructors using . 256

‘d’ is assigned @ new Duek 05366£; leaving the roRme o ! neing teis()
! b . bandoned. That Life of an object 258

ovignal (First) Dok bjeet dbandone | N
Fivet Duck is toas t. Garbage Collection (and making objects eligible) 260
Exercises and puzzles 266

Static variables
are shared by
all instances of

10

static vaviable:
iteCream

kid instance on¢

Xiv

Numbers Matter

Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.
But what about formatting? You might want numbers to print exactly two decimal points,
or with commas in all the right places. And you might want to print and manipulate dates,
too. And what about parsing a String into a number? Or turning a number into a String?
We'll start by learning what it means for a variable or method to be static.

Kid instance fwo Math class (do you really need an instance of it?) 274
static methods 275

instante variables: static variables 277
one per instante Constants (static final variables) 282
skatic vaviables: Math methods (random(), round(), abs(), ctc.) 286
one per -{'—laﬁ Wrapper classes (Integer, Boolean, Character, etc.) 287
Autoboxing 289

Number formatting 294

Date formatting and manipulation 301

Static imports 307

Exercises and puzzles 310

Risky Behavior

Stuff happens. The file isn't there. The server is down. No matter how good a
programmer you are, you can’t control everything. When you write a risky method, you need
code to handle the bad things that might happen. But how do you know when a method is
risky? Where do you put the code to handle the exceptional situation? In this chapter, we're
going to build a MIDI Music Player, that uses the risky JavaSound API, so we better find out.

uniir rade class with a
risky method

A Very Graphic Story

Face it, you need to make GUISs. Even if you believe that for the rest of your
life you'll write only server-side code, sooner or later you'll need to write tools, and you'll
want a graphical interface. We'll spend two chapters on GUIs, and learn more language
features including Event Handling and Inner Classes. We'll put a button on the screen,

we'll paint on the screen, we'll display a jpeg image, and we'll even do some animation.

XV

Work on your Swing

Swing is €asSy. Unless you actually care where everything goes. Swing code looks
easy, but then compile it, run it, look at it and think, “hey, that’s not supposed to go there.”
The thing that makes it easy to code is the thing that makes it hard to control—the Layout
Manager. But with a little work, you can get layout managers to submit to your will. In
this chapter, we'll work on our Swing and learn more about widgets.

Swing Components 400
Com\?onC'\Jﬁs n 8ece Layout Managers (they control size and placement) 401
(]
fhe east and- > — Lol = & Three Layout Managers (border, flow, box) 403
west get thew | i | | BorderL. bout five regi 404
\,Yc(:crrcd width. | ‘ orderLayout (cares about five regions)
i | | FlowLayout (cares about the order and preferred size) 408
Thinss in the b west Center East BoxLayout (like flow, but can stack components vertically) 411
north and | T | f ; inole-li -
St | g | e .
PVC‘Fcr\rcd height. | i e : : JTextArea (for multi-line, scrolling text)
{ bA A ‘ JCheckBox (is it selected?) 416
'§ 3
ot A JList (a scrollable, selectable list) 417
Code Kitchen (The Big One - building the BeatBox chat client) 418
Exercises and puzzles 424

Saving Objects

Objects can be flattened and inflated. objects have state and behavior.
Behavior lives in the class, but state lives within each individual object. If your program
needs to save state, you can do it the hard way, interrogating each object, painstakingly
writing the value of each instance variable. Or, you can do it the easy 00 way—you simply
freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

SCV‘iahzgd Saving object state 431
Q Writing a serialized object to a file 432
Java input and output streams (connections and chains) 433
? Object serialization 434
NONS ¢ .
P‘ O\\ACS‘\—"O Implementing the Serializable interface 437
™
Using transient variables 439
Deserializing an object 441
Writing to a text file 447
java.io.File 452
Reading from a text file 454
Splitting a String into tokens with split() 458
CodeKitchen 462
Exercises and puzzles 466

XVi

Socke'(: COnnecfion
Port 5000
on {he server a4

/%,/64-././03

Client
Qotkel OV

“CCE‘O“{;
\iew
v ko the ¢
Yovjc ALy

Make a Connection

Connect with the outside world. it's easy. All the low-level networking
details are taken care of by classes in the java.net library. One of Java's best features is

that sending and receiving data over a network is really just I/O with a slightly different

connection stream at the end of the chain.In this chapter we'll make client sockets. We'll

make server sockets. We'll make clients and servers. Before the chapter’s done, you'll have a

fully-functional, multithreaded chat client. Did we just say multithreaded?

Chat program overview

Connecting, sending, and receiving
Network sockets

TCP ports

Reading data from a socket (using BufferedReader)
Writing data to a socket (using PrintWriter)
Server Writing the Daily Advice Client program

Writing a simple server

Daily Advice Server code

Writing a chat client

Multiple call stacks

Launching a new thread (make it, start it)

The Runnable interface (the thread’s job)

Three states of a new Thread object (new, runnable, running)
The runnable-running loop

Thread scheduler (it’s his decision, not yours)

Putting a thread to sleep

Making and starting two threads

Concurrency issues: can this couple be saved?

The Ryan and Monica concurrency problem, in code
Locking to make things atomic

Every object has a lock

The dreaded “Lost Update” problem

Synchronized methods (using a lock)

Deadlock!

Multithreaded ChatClient code

Ready-bake SimpleChatServer

Exercises and puzzles

473
474
475
476
478
479
480
483
484
486
490
492
494
495
496
497
501
503
505
506
510
511
512
514
516
518
520
524

XVii

Release Your Code

It’s time to let gO0. You wrote your code.You tested your code. You refined your code.
You told everyone you know that if you never saw a line of code again, that'd be fine. But in
the end, you've created a work of art. The thing actually runs! But now what? In these final
two chapters, we'll explore how to organize, package, and deploy your Java code. We'll look
at local, semi-local, and remote deployment options including executable jars, Java Web

Start, RMI, and Servlets. Relax. Some of the coolest things in Java are easier than you think.

MyApp._jar foo

XVviii

Distributed Computing

Being remote doesn’t have to be a bad thing. sure, things are easier
when all the parts of your application are in one place, in one heap, with one JVM to rule
them all. But that’s not always possible. Or desirable. What if your application handles
powerful computations? What if your app needs data from a secure database? In this
chapter, we'll learn to use Java’s amazingly simple Remote Method Invocation (RMI). We'll
also take a quick peek at Servlets, Enterprise Java Beans (EJB) , and Jini.

Java Remote Method Invocation (RMI), hands-on, very detailed 614
Servlets (a quick look) 625
Enterprise JavaBeans (EJB), a very quick look 631
Jini, the best trick of all 632
Building the really cool universal service browser 636
The End 648

Appendix A
The final Code Kitchen project. All the code for the full client-server chat

beat box. Your chance to be a rock star.

BeatBoxFinal (client code) 650

MusicServer (server code) 657

Appendix B
The Top Ten Things that didn’t make it into the book. we can't send

you out into the world just yet. We have a few more things for you, but this is the end of the
book. And this time we really mean it.

Top Ten List 660

i Index 677

Xix

how to use this book

Intro

I can't believe they
programming book!

Csﬁonl

he burning A . 2
‘\:\\:{:c\h 3 Java progrd boo

this settion, we answer

“‘go, why D‘D Jd\c\l \N‘E

XXi

how to use this

Who is this book for?

If you can answer “yes” to all of these: . .
This is NOT a reference

@ Have you done some programming? book. Head First Java is a
book designed for learning,
(@ Do you want to learn Java? not an encyclopedia of

Java facts.

Do you prefer stimulating dinner party
conversation to dry, dull, technical
lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any one of these:

@ Is your programming background limited
to HTML only, with no scripting language
experience?
(If you’ve done anything with looping, or if/then
logic, you’ll do fine with this book, but HTML
tagging alone might not be enough.)

@ Are you a kick-butt C++ programmer
looking for a reference book?

@ Are you afraid to try something different?
Would you rather have a root canal than
mix stripes with plaid? Do you believe
than a technical book can’t be serious if
there’s a picture of a duck in the memory
management section?

this book is not for you.

[note £rom markefingt who took out the Part about how

this book IS for g ith . .
sbout. that “Gue the GirL ot o vy 2rd? frd vhat

discussed.. —Fred] olida\/ promotion we

xXii

the intro

We know what you're thinking.

“How can this be a serious Java programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?” A

“Do I smell pizza?”

Your brain ﬂ)ihks

And we know what your brainis thinking. [] i"”’°“*""f~

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you're less likely to be a tiger snack. But your brain’s still
looking. You just never know.

So what does your brain do with all the routine, ordinary, normal
things you encounter? Everything it can to stop them from
interfering with the brain’s real job—recording things that matter. It
doesn’t bother saving the boring things; they never make it past the
“this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head?

Great. Only
637 more dull, dry,
boring pages.

Neurons fire. Emotions crank up. Chemicals surge.
And that’s how your brain knows...

This must be important! Don’t forget it! o bY@ ks 5
etk wor
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free ™S on &

zone. You're studying. Getting ready for an exam. Or trying to learn savindy
some tough technical topic your boss thinks will take a week, ten days
at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content
doesn’t clutter up scarce resources. Resources that are better
spent storing the really big things. Like tigers. Like the danger of
fire. Like how you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how
little I'm registering on the emotional richter scale right now, I
really do want you to keep this stuff around.”

you are here » XXiii

how to use this book

we fhink of a “Head First Java” reader as a learner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,
learning takes a lot more than texton a page. We know what turns your brain on.

some of the Head First learning principles:

needs to ¢a)) 4

I method
Make it visual. Imagesare far more memorable than words sevvey the RM_:""&“
sevvice

alone, and make learning much more effective (Up to 89%

improvement in recall and transfer studies). It also makes
things more understandable. Put the words within
or near the graphics they relate to, rather than on the

doCalc()

return value

bottom or on another page, and learners will be up to twice

as likely to solve problems related to the content.

Use a conversational and personalized style.In recent studies,

5 X . .
Tt really sucks fo be an students performed up to 40% better on post-learning tests if the content spoke

abstract method. You
don't have a body.

directly to the reader, using a first-person, conversational style rather than

taking a formal tone.Tell stories instead of lecturing. Use casual language. Don't

take yourself too seriously. Which would you pay more attention to:a stimulating

S dinner party companion,ora lecture?
—af Get the learner to think more deeply. In other words, unless .
o o Does it make sense o
. you actively flex your neurons, nothing much happens in your head. say Tub IS-A Bathroom?

Bathroom IS-A Tub? Oris
it a HAS-A relationship?

A reader has to be motivated, engaged, curious, and inspired to

' | | solve problems, draw conclusions, and generate new knowledge.

| § And for that, you need challenges, exercises, and thought-

s111'-‘«'1}ct void roam() ; provoking questlons,and activities that involve both sides

of the brain,and multiple senses.

3 n\‘*'\“)c: 3\1;.«(“,0\""'
End-‘*’ N Get—and keep—the reader’s attention. We've all .
had the "l really want to learn this but | can’'t stay awake past

page one” experience. Your brain pays attention to things that are out /
otk

of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new,

tough,technical topic doesn’t have to be boring.Your brain will learn much more quickly if it's not.

Touch their emotions. We now Kknow that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No we're not talking heart-wrenching stories about a boy and his dog.

We're talking emotions like surprise, curiosity, fun,“what the..?", and the feeling of “! Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that“I'm more technical than thou” Bob from engineering doesn’t.

XXiv

the

Metacognition: thinking about thinking.

T wonder how I
can trick my brain
intfo remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how
you learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn. S
o

But we assume that if you’re holding this book, you want to learn Java. And you
probably don’t want to spend a lot of time.

To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on that content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

So just how DO you get your brain to treat Java like it
was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding

on the same thing. With enough repetition, your brain says, “This doesn’t feel
important to him, but he keeps looking at the same thing over and over and over, so
I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different types
of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor.
For example, studies show that putting words within the pictures they describe (as
opposed to somewhere else in the page, like a caption or in the body text) causes
your brain to try to makes sense of how the words and picture relate, and this
causes more neurons to fire. More neurons firing = more chances for your brain
to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and
hold up their end. The amazing thing is, your brain doesn’t necessarily care that
the “conversation” is between you and a book! On the other hand, if the writing
style is formal and dry, your brain perceives it the same way you experience being
lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

XXV

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth 1024 words. And when text and pictures
work together, we embedded the text in the pictures because your brain works
more effectively when the text is within the thing the text refers to, as opposed to in
a caption or buried in the text somewhere.

We used repetition, saying the same thing in different ways and with different media
types, and multiple senses, to increase the chance that the content gets coded coded
into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because
your brain is tuned to pay attention to the biochemistry of emotions. That which
causes you to feel something is more likely to be remembered, even if that feeling is
nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively
listening to a presentation. Your brain does this even when you're reading.

We included more than 50 exercises , because your brain is tuned to learn and
remember more when you do things than when you read about things. And we
made the exercises challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, while someone else
just wants to see a code example. But regardless of your own learning preference,
everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can
stay focused. Since working one side of the brain often means giving the other side
a chance to rest, you can be more productive at learning for a longer period of
time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make
evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has
to work at something (just as you can’t get your body in shape by watching people

at the gym). But we did our best to make sure that when you’re working hard, it’s
on the right things. That you’re not spending one extra dendrite processing a hard-to-
understand example, or parsing difficult, jargon-laden, or extremely terse text.

We used an 80/20 approach. We assume that if you're going for a PhD in Java,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll
actually use.

XXVi

Fevile

BULLET POIN&

@

®

eut this out and stiek it

on Your rc‘c“dSerafor.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to
the answer. Imagine that someone really is
asking the question. The more deeply you
force your brain to think, the better chance
you have of learning and remembering.

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else

do your workouts for you. And don’t just
look at the exercises. Use a pencil. There’s
plenty of evidence that physical activity
while learning can increase the learning.

Read the “There are No Dumb Questions”
That means all of them. They’re not

optional side-bars—they’re part of the core
content! Sometimes the questions are more
useful than the answers.

Don’t do all your reading in one place.
Stand-up, stretch, move around, change
chairs, change rooms. It’ll help your brain
Jeel something, and keeps your learning from
being too connected to a particular place.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer
to long-term memory) happens after you put
the book down. Your brain needs time on

its own, to do more processing. If you put in
something new during that processing-time,
some of what you just learned will be lost.

®

@

the

Here’s what YOU can do to bend your
brain into submission.

So, we did our part. The rest is up to you. These tips are a
starting point; Listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you
ever feel thirsty) decreases cognitive function.

Talk about it. Out loud.

Speaking activates a different part of

the brain. If you’re trying to understand
something, or increase your chance of
remembering it later, say it out loud. Better
still, try to explain it out loud to someone
else. You’ll learn more quickly, and you might
uncover ideas you hadn’t known were there
when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s
time for a break. Once you go past a certain
point, you won’t learn faster by trying to shove
more in, and you might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad
joke is still better than feeling nothing at all.

Type and run the code.

Type and run the code examples. Then you
can experiment with changing and improving
the code (or breaking it, which is sometimes
the best way to figure out what’s really
happening). For long examples or Ready-bake
code, you can download the source files from
headfirstjava.com

XxXvii

how to use this book

What you need for this book:

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you not
use anything but a basic text editor until you complete this book (and
especially not until after chapter 16). An IDE can protect you from some of
the details that really matter, so you’re much better off learning from the
command-line and then, once you really understand what’s happening,
move to a tool that automates some of the process.

—— SETTING UP JAVA

If you don't already have a 1.5 or greater Java 2 Standard Edition SDK (Software
Development Kit), you need it. If you're on Linux, Windows, or Solaris, you can get it for free
from java.sun.com (Sun’s website for Java developers). It usually takes no more than two clicks
from the main page to get to the J2SE downloads page. Get the latest non-beta version posted.
The SDK includes everything you need to compile and run Java.

If you're running Mac OS X 10.4, the Java SDK is already installed. It's part of OS X, and you
don’t have to do anything else. If you're on an earlier version of OS X, you have an earlier
version of Java that will work for 95% of the code in this book.

Note: This book is based on Java 1.5, but for stunningly unclear marketing reasons, shortly
before release, Sun renamed it Java 5, while still keeping “1.5” as the version number for the
developer’s kit. So, if you see Java 1.5 or Java 5 or Java 5.0, or "Tiger" (version 5's original
code-name), they all mean the same thing. There was never a Java 3.0 or 4.0—it jumped from
version 1.4 to 5.0, but you will still find places where it's called 1.5 instead of 5. Don't ask.

(Oh, and just to make it more entertaining, Java 5 and the Mac OS X 10.4 were both given the
same code-name of “Tiger”, and since OS X 10.4 is the version of the Mac OS you need to run
Java 5, you'll hear people talk about “Tiger on Tiger”. It just means Java 5 on OS X 10.4).

The SDK does not include the APl documentation, and you need that! Go back to java.sun.
com and get the J2SE API documentation. You can also access the API docs online, without
downloading them, but that's a pain. Trust us, it's worth the download.

You need a text editor. Virtually any text editor will do (vi, emacs, pico), including the GUI ones
that come with most operating systems. Notepad, Wordpad, TextEdit, etc. all work, as long as
you make sure they don’t append a “.txt” on to the end of your source code.

Once you've downloaded and unpacked/zipped/whatever (depends on which version and for
which OS), you need to add an entry to your PATH environment variable that points to the /bin
directory inside the main Java directory. For example, if the J2SDK puts a directory on your
drive called “j2sdk1.5.0%, look inside that directory and you'll find the “bin” directory where the
Java binaries (the tools) live. Tha bin directory is the one you need a PATH to, so that when you
type:

% Jjavac

at the command-line, your terminal will know how to find the javac compiler.

Note: if you have trouble with you installation, we recommend you go to javaranch.com, and join
the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

Note: much of the code from this book is available at wickedlysmart.com

xxviii

— d

Sy

Last-minute things you need to know:

This is a learning experience, not a reference book. We deliberately
stripped out everything that might get in the way of learning whatever it

is we’re working on at that point in the book. And the first time through,
you need to begin at the beginning, because the book makes assumptions
about what you've already seen and learned.

We use simple UML-like diagrams.

If we’d used pure UML, you’d be seeing something that looks like Java, but
with syntax that’s just plain wrong. So we use a simplified version of UML
that doesn’t conflict with Java syntax. If you don’t already know UML, you
won’t have to worry about learning Java and UML at the same time.

We don’t worry about organizing and packaging your own
code until the end of the book.
In this book, you can get on with the business of learning Java, without

stressing over some of the organizational or administrative details of
developing Java programs. You will, in the real world, need to know—and

use—these details, so we cover them in depth. But we save them for the end

of the book (chapter 17). Relax while you ease into Java, gently.

The end-of-chapter exercises are mandatory; puzzles are

optional. Answers for both are at the end of each chapter.

One thing you need to know about the puzzles—theyre puzzles. As in logic
puzzles, brain teasers, crossword puzzles, etc. The exercises are here to help
you practice what you’ve learned, and you should do them all. The puzzles
are a different story, and some of them are quite challenging in a puzzle
way. These puzzles are meant for puzzlers, and you probably already know if
you are one. If you're not sure, we suggest you give some of them a try, but
whatever happens, don’t be discouraged if you cant solve a puzzle or if you
simply can’t be bothered to take the time to work them out.

The ‘Sharpen Your Pencil’ exercises don’t have answers.

Not printed in the book, anyway. For some of them, there isno right
answer, and for the others, part of the learning experience for the Sharpen
activities is for you to decide if and when your answers are right. (Some of
our suggested answers are available on wickedlysmart.com)

The code examples are as lean as possible

It’s frustrating to wade through 200 lines of code looking for the two lines
you need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and
simple. So don’t expect the code to be robust, or even complete. That’s
your assignment for after you finish the book. The book examples are
written specifically for learning, and aren’t always fully-functional.

the

\C)
use a simf
We [Tied Lo W)

Dog

size

bark()
eat()
chaseCat()

ou should do ALL
of the “Qhavpen Your
VChL\\ ac{:\w{\cs

@ harpen Your pencil

Xertise (rupp;

are mand ! sh°6) lo
them hEl yafo|r % t skip)

Ure
€arning Java Serious abou{;

XXixX

tech editing: Jessica and Valentin

Technical Editors

“Credit goes to all, but mistakes are the sole reponsibility of the
author...”. Does anyone really believe that? See the two people on

this page? If you find technical problems, it’s probably their fault. :)

Jess works at Hewlett-Packard on the Self-
Healing Services Team. She has a Bachelor’s
in Computer Engineering from Villanova
University, has her SCPJ 1.4 and SCWCD
certifications, and is literally months away
from receiving her Masters in Software
Engineering at Drexel University (whew!)

When she’s not working, studying or
motoring in her MINI Cooper S, Jess can

be found fighting her cat for yarn as she
completes her latest knitting or crochet
project (anybody want a hat?) She is
originally from Salt Lake City, Utah (no,
she’s not Mormon... yes, you were too

going to ask) and is currently living near
Philadelphia with her husband, Mendra, and
two cats: Chai and Sake.

You can catch her moderating technical
forums at javaranch.com.

XXX

Valcnfr Crettaz

Valentin's tie

Valentin Valentin Crettaz has a Masters degree
in Information and Computer Science from

the Swiss Federal Institute of Technology in
Lausanne (EPFL). He has worked as a software
engineer with SRI International (Menlo Park,
CA) and as a principal engineer in the Software
Engineering Laboratory of EPFL.

Valentin is the co-founder and CTO of Condris
Technologies, a company specializing in the
development of software architecture solutions.

His research and development interests
include aspect-oriented technologies, design
and architectural patterns, web services, and
software architecture. Besides taking care of
his wife, gardening, reading, and doing some
sport, Valentin moderates the SCBCD and
SCDJWS forums at Javaranch.com. He holds
the SCJP, SCJD, SCBCD, SCWCD, and SCDJWS
certifications. He has also had the opportunity
to serve as a co-author for Whizlabs SCBCD
Exam Simulator.

(We’re still in shock from seeing him in a tie.)

eeedit
Other people to biydre:

At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for taking a
chance on this, and helping to shape the Head First concept into
a book (and series). As this second edition goes to print there

are now five Head First books, and he’s been with us all the way.
To Tim O’Reilly, for his willingness to launch into something
completely new and different. Thanks to the clever Kyle Hart for
figuring out how Head First fits into the world, and for launching
the series. Finally, to Edie Freedman for designing the Head First
“emphasize the head’ cover.

Our intrepid beta testers and reviewer team:

Our top honors and thanks go to the director of our javaranch
tech review team, Johannes de Jong. This is your fifth time around
with us on a Head First book, and we’re thrilled you’re still speaking
to us. Jeff Cumps is on his third book with us now and relentless
about finding areas where we needed to be more clear or correct.

Corey McGlone, you rock. And we think you give the clearest
explanations on javaranch. You’ll probably notice we stole one or
two of them. Jason Menard saved our technical butts on more
than a few details, and Thomas Paul, as always, gave us expert
feedback and found the subtle Java issues the rest of us missed.
Jane Griscti has her Java chops (and knows a thing or two about
writing) and it was great to have her helping on the new edition
along with long-time javarancher Barry Gaunt.

Marilyn de Queiroz gave us excellent help on both editions of the

book. Chris Jones, John Nyquist, James Cubeta, Terri Cubeta,

and Ira Becker gave us a ton of help on the first edition.

Special thanks to a few of the Head Firsters who’ve been helping
us from the beginning: Angelo Celeste, Mikalai Zaikin, and

Thomas Duff (twduff.com). And thanks to our terrific agent, David

Rogelberg of StudioB (but seriously, what about the movie rights?)

James Cubeta Terri Cubeta

/V'a Bcher

Rodnc\/ o
Woodvuff

John Nyauist

the intro

SOW\C o‘(: our \)ava
C%YCY"{: reviewevrs...
Jef Cumps

== T R—

Marilym de

Queivoz

you are here » XXXi

still more acknowledgements

Just when you thought there wouldn’t be any
wmore acknowledgements®.

More Java technical experts who helped out on the first edition (in pseudo-random order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden,
Shweta Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich,
Sunil Palicha, Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste,
Mikalai Zaikin, John Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puzzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong,
and Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton, the javaranch Trail Boss for supporting thousands of Java learners.

Solveig Haugland, mistress of J2EE and author of “Dating Design Patterns”.

Authors Dori Smith and Tom Negrino (backupbrain.com), for helping us navigate the
tech book world.

Our Head First partners in crime, Eric Freeman and Beth Freeman (authors of Head First
Design Patterns), for giving us the Bawls™ to finish this on time.

Sherry Dorris, for the things that really matter.

Brave Early Adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen
Lepp, Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan
Oliphant, Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen,
Bob Thomas, and Mike Bibby (the first).

*The large number of acknowledgements is because we're testing the theory that everyone mentioned in
a book acknowledgement will buy at least one copy, probably more, what with relatives and everything. If
you'd like to be in the acknowledgement of our next book, and you have a large family, write to us.

XXXii

1 dive in A Quick Dip

Breaking the syrface

Come on, the water's
great! We'll dive right in and
write some code, then compile and
run it. We're talking syntax, looping
and branching, and a look at what
makes Java so cool. You'll be
coding in no time.

Java takes you to new places. From its humble release to the public as the
(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented features,

memory management, and best of all—the promise of portability. The lure of write-once/run-

anywhere is just too strong. A devoted following exploded, as programmers fought against bugs,

limitations, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you're just starting in

Java, you’re lucky. Some of us had to walk five miles in the snow, uphill both ways (barefoot), to

get even the most trivial applet to work. But you, why, you get to ride the sleeker, faster, much

more powerful Java of today.

this is a new chapter

1

the way Java works

The Way Java Works

The goal is to write one application (in this
example, an interactive party invitation) and have
it work on whatever device your friends have.

source code for

the interactive

party invitation.

Source

L

Create a source
document.Use an
established protocol
(in this case, the Java
language).

2 chapter 1

Cowmpiler

12/

Run your document
through a source code
compiler.The compiler
checks for errors and
won't let you compile
until it’s satisfied that
everything will run
correctly.

Method Party()
0 aload_0

1 invokespe-
cial #1 <Method
java.lang.Object()>

4 return

Output
(code)

13/

The compiler creates a
new document, coded
into Java bytecode.

Any device capable of

running Java will be able

to interpret/translate
this file into something
it can run.The compiled
bytecode is platform-
independent.

Machines

o

Your friends don’t have
a physical Java Machine,
but they all have a
virtual Java machine
(implemented in
software) running inside
their electronic gadgets.

The virtual machine reads

and runs the bytecode.

What you'll do in Java

dive In A Quick Dip

You’ll type a source code file, compile it using the
javac compiler, then run the compiled bytecode

on a Java virtual machine.

File Edit Window Help Plead
import java.awt.*;

import java.awt.event.’;
class Party {
public void buildInvite() {

Frame f = new Frame();

Label | = new Label(*Party at Tim's”);
Button b = new Button(“You bet’);
Button ¢ = new Button(“Shoot me”);

Panel p = new Panel(); COWIpller

p.add(l);
} /I more code here... e

Compile the Party.java

%$javac Party.java

}

Source file by running javac
(the compiler application).
o If you don't have errors,
you'll get a second docu-

ment named Party.class

T)
ype your source code The compiler-generated

Party.class file is made up
of bytecodes.

Save as: Party.java

(Note: this is not meant to be a tutovial... \/ou’“ be
writing veal tode in @ moment, but £or now, we Jusf

want you to get a feel for how it all fits together.)

File Edit Window Help Swear

Method Party()

%$java Party
0 aload_0 000

1 invokespecial #1 <Method
java.lang.Object()>

Party at Tim’s!

4 return Gveuni) (soote

Method void buildInvite()

0 new #2 <Class java.awt.Frame>

Virtual
3dup .
4 invokespecial #3 <Method Machmes

java.awt.Frame()> e

Run the program by

starting the Java Virtual
OUprt Machine (JVM) with the
(code) Party.class file.The JYM

translates the bytecode
6 into something the

underlying platform
understands, and runs
your program.

Compiled code: Party.class

you are here »

history of Java

Classes in the Java standard library

3500

3000

2500

2000

1500

1000

500

Java 1.02

250 classes

Slow.

Cute name and logo.
Fun to use. Lots of
bugs. Applets are
the Big Thing.

A very brief history of Java

Clavall

500 classes

A little faster.

More capable, friendlier.

Becoming very popular.
Better GUI code.

Java 2
(versions 1.2 - 14)

2300 classes

Much faster.

Can (sometimes) run at
native speeds. Serious,
powerful. Comes in three
flavors: Micro Edition (J2ME),
Standard Edition (J2SE) and
Enterprise Edition (J2EE).
Becomes the language of
choice for new enterprise
(especially web-based) and
mobile applications.

Java 9.0
(versions 1.5 and up)

3500 classes

More power, easier to
develop with.

Besides adding more than a
thousand additional classes,
Java 5.0 (known as “Tiger”)
added major changes to
the language itself, making
it easier (at least in theory)
for programmers and giving
it new features that were
popular in other languages.

chapter 1

Look how easy it
is to write Java.

@ harpen our pencil
S y

dive In A Quick Dip

Try to guess what each line of code is doing...
(answers are on the next page).

int size = 27;

declare an integer variable named ‘size’ and give it the value 27

String name = “Fido”;

Dog myDog = new Dog(name, size);

X = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

myDog.play();

int[] numList = {2,4,6,8};

System.out.print(“Hello”);

System.out.print(“Dog: “ + name);

String num = “8";

int z = Integer.parselnt(num);

try {

readTheFile(“myFile.txt”);

}

catch(FileNotFoundException ex) {

System.out.print(“File not found.”);

Q,: | see Java 2 and Java 5.0, but was there a Java 3
and 4? And why is it Java 5.0 but not Java 2.0?

A: The joys of marketing... when the version of Java
shifted from 1.1 to 1.2, the changes to Java were so
dramatic that the marketers decided we needed a whole
new “name’ so they started calling it Java 2, even though
the actual version of Java was 1.2. But versions 1.3 and 1.4
were still considered Java 2. There never was a Java 3 or
4.Beginning with Java version 1.5, the marketers decided

once again that the changes were so dramatic that a

new name was needed (and most developers agreed), so
they looked at the options.The next number in the name
sequence would be “3" but calling Java 1.5 Java 3 seemed
more confusing, so they decided to name it Java 5.0 to
match the “5”in version “1.5".

So, the original Java was versions 1.02 (the first official
release) through 1.1 were just “Java” Versions 1.2, 1.3,and
1.4 were “"Java 2" And beginning with version 1.5, Java is
called“Java 5.0” But you'll also see it called “Java 5" (without
the”.0”) and “Tiger” (its original code-name). We have no
idea what will happen with the next release...

you are here »

why Java is cool

@ harpen Your pencil answers
i\

Look how easy it
is to write Java.

int size = 27;

String name = “Fido”;

Dog myDog = new Dog(name, size);
X = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {
myDog.play();

int[] numList = {2,4,6,8};
System.out.print(“Hello”);
System.out.print(“Dog: “ + name);
String num = “8";

int z = Integer.parselnt(num);

try {
readTheFile(“myFile.txt”);

}

catch(FileNotFoundException ex) {

System.out.print(“File not found.”);

Don’t worry about whether you understand any of this yet!
Everything here is explained in great detail in the book, most
within the first 40 pages). If Java resembles a language you've
used in the past, some of this will be simple. If not, don’t worry
about it. We'll get there...

declare an integer variable named ‘size’ and give it the value 27

detlave a string of charatters variable named ‘name’ and give it the value “Fido”

detlare a new Dog variable ‘myDog' and make the new Dog wsing ‘name’ and ‘size’
subtract 5 from 27 (value of ‘size’) and assign it 1o a variable named ‘¥

if x (value of 22) is less than 15, tell the doi 4o bark 8 Limes

keep looping as long as is greater than 3.
Lell the doo to play (whatever THAT means £o a dog..)

this looks like the end of the looi - cvcrihini in { 3 is done in the Iooi

detlave a list of inteaers variable ‘numList, and put 2,468 into the list
print out “Hello”... probably at the command-line

print out “Hello Fido” (the value of ‘name’ is “Fido") at the command-line
detlare a ehavacter string variable ‘wum’ and give it the value of ‘8"
tonvert the string of characters ‘8" into an attual numeric value 8

tey to do something..maybe the thing we've trying isn't quaranteed to work..
vead a text file named “myFiletx " (or at least TRY 4o vead the file..)
must be the end of the “things to try’, so | guess you could try many things..
this must be where you find out if the thing you tried didn't work...

if the thing we tried failed, print ‘File not found” out at the command-line
looks like everything in the { } is what to do if the ‘try’ didn't work..

6

chapter 1

Code structure in Java

class file

method 1
statement

method 2

statement
statement

Put a class in a source file.

Put methods in a class.

Put statements in a method.

What goes in a
source file?

A source code file (with the .java
extension) holds one class defini-
tion. The class represents a piece
of your program, although a very
tiny application might need just
a single class. The class must go
within a pair of curly braces.

What goes in a
class~?

A class has one or more methods.
In the Dog class, the bark method
will hold instructions for how the
Dog should bark. Your methods
must be declared inside a class

(in other words, within the curly
braces of the class).

What goes in a
method?

Within the curly braces of a
method, write your instructions
for how that method should be
performed. Method code is basi-
cally a set of statements, and for
now you can think of a method
kind of like a function or proce-
dure.

dive In A Quick Dip

public class Dog {

public class Dog {

void bark() {

wmethod

public class Dog {
void bark() {
statementl;
statement2;

}

'statements

you are here » 7

a Java class

Anatomy of a class

When the JVM starts running, it looks for the class you give it at the com-
mand line. Then it starts looking for a specially-written method that looks
exactly like:
public static void main (String[] args) {
// your code goes here

}

Next, the JVM runs everything between the curly braces { } of your main
method. Every Java application has to have at least one class, and at least
one main method (not one main per class; just one main per application).

this is a the name of opening turly b
. at.
‘,‘,bhc so cV_C‘f‘f°"c elass (duh) this ¢lass O‘E ‘l‘.hcs Classy e
tan attess !
— | /

public||class||MyFirstApp arguments to the method.

This method must be given

the vetuen type. an array of Styi
(WC'“ tover ‘thls v d means {‘}l\crc,s 'H'\C name O‘F arva \/” ‘{:V'IV\SS)‘ ahd’ 'l:hc
oid me . y will be ¢alled args’ o, .
one later.) no veturn value. his method Pening brae,

\ / fhc "'eﬂiod
public|[static|void|main| [(String[] args)

: A\ " ent MUST
System.out.print|(“*I Rule!)W\, statemert f

end n 3 SCw«'\co\ov_,

|
this says yrin{: to standard output .
(dC‘('\auH:S to Lommand—line) the S‘{:\rmg You

want to Frin{:
clos'mg brate of the main method

I\L|os'm5 brace of the MyFirsthpp class

Don’t worry about memorizing an\/{‘)\ing righ'{: now...
this ehapter is just to get you started.

8 chapter 1

A Quick Dip

Writing a class with a main

In Java, everything goes in a class. You’ll type your source code file (with a
.Java extension), then compile it into a new class file (with a .class extension).
When you run your program, you’re really running a class.

Running a program means telling the Java Virtual Machine (JVM) to “Load the
Hello class, then start executing itsmain () method. Keep running ‘til all the
code in main is finished.”

In chapter 2, we go deeper into the whole class thing, but for now, all you need to
think is, how do I write Java code so that it will run? And it all begins with main().

The main() method is where your program starts running.

No matter how big your program is (in other words, no matter how many classes
your program uses), there’s got to be a main() method to get the ball rolling.

public class MyFirstApp { B Save
public static void main (String[] args) { MyFirstApp.java
piccass Wisiont System.out.println(“I Rule!”);
Mo System.out.println (“The World”);

System ot prin Rl) }

B Compile

javac MyFirstApp.java

}
}

MyFirstApp.java

H Run

MyFirstApp.class

statements, looping, branching

What can you say in the main method?

Once you’re inside main (or any method), the fun
begins. You can say all the normal things that you say
in most programming languages to make the computer
do something.

Your code can tell the JVM to:

o do something

Statements: declarations, assignments,
method calls, etc.

int x = 3;
String name = “Dirk”;
x =x * 17;

System.out.print (“x is ” + x);
double d = Math.random() ;
// this is a comment

Q do something again and again

Loops: for and while

while (x > 12) {
x = x -1;

}

for (int x = 0; x < 10; x = x + 1) {
System.out.print (*x is now ” + x);

}

e do something under this condition

Branching: if/else tests

if (x == 10) {
System.out.print (“*x must be 10”);

} else {
System.out.print (“*x isn’t 107);

}

if ((x < 3) & (name.equals (“Dirk”))) {
System.out.println (“Gently”) ;

}

System.out.print (“this line runs no matter what”);

10 chapter1

% Each statement mustend in a
semicolon.

Xx =x + 17

® Asingle-line comment begins
with two forward slashes.

X = 22;

// this line disturbs me

% Most white space doesn’t matter.

X = 3

Variables are declared with a
name and a type (you'll learn about
all the Java types in chapter 3).

int weight;
//type: int, name: weight

% Classes and methods must be
defined within a pair of curly braces.

public void go() {
// amazing code here

}

A Quick Dip

while (moreBalls == true) {

} keepJuggling();

~
%
\.\"Q

o

- @l

O
Looping and looping and...

Java has three standard looping constructs: while,
do-while, and for. You’ll get the full loop scoop later
in the book, but not for awhile, so let’s do while for
now.

The syntax (not to mention logic) is so simple
you’re probably asleep already. As long as some
condition is true, you do everything inside the
loop block. The loop block is bounded by a pair of
curly braces, so whatever you want to repeat needs
to be inside that block.

The key to a loop is the conditional test. In Java, a
conditional test is an expression that results in a
boolean value—in other words, something that is
either true or false.

If you say something like, “While iceCreamInTheTub
is true, keep scooping”, you have a clear boolean
test. There either isice cream in the tub or there
isn’t. But if you were to say, “While Bob keep
scooping”, you don’t have a real test. To make
that work, you’d have to change it to something
like, “While Bob is snoring...” or “While Bob is not
wearing plaid...”

Simple boolean tests

You can do a simple boolean test by checking
the value of a variable, using a comparison operator
including:
< (less than)
> (greater than)
== (equality) (yes, that’s two equals signs)
Notice the difference between the assignment
operator (a single equals sign) and the equals
operator (two equals signs). Lots of programmers
accidentally type = when they want ==. (But not
you.)
int x = 4; // assign 4 to x
while (x > 3) {

// loop code will run because

// x is greater than 3

x =x - 1; // or we’d loop forever
1
int z = 27; //
while (z == 17) {

// loop code will not run because

// z is not equal to 17

11

Java basics

12

therejare ne o
Dumb Questions

Q; Why does everything have
to bein aclass?

A: Java is an object-oriented
(O0) language.lt’s not like the
old days when you had steam-
driven compilers and wrote one
monolithic source file with a pile
of procedures. In chapter 2 you'll
learn that a class is a blueprint for
an object, and that nearly every-
thing in Java is an object.

Q} Do I have to put a main in
every class | write?

A: Nope. A Java program
might use dozens of classes (even
hundreds), but you might only
have one with a main method—
the one that starts the program
running.You might write test
classes, though, that have main
methods for testing your other
classes.

Q: In my other language | can
do a boolean test on an integer.

In Java, can | say something like:
int x = 1;

while (x){ }

A: No. A boolean and an
integer are not compatible types in
Java. Since the result of a condi-
tional test must be a boolean, the
only variable you can directly test
(without using a comparison op-
erator) is a boolean. For example,
you can say:

boolean isHot = true;

while (isHot) { }

Example of a while loop

public class Loopy {
public static void main (String[] args) {
int x = 1;
System.out.println (“Before the Loop”);
while (x < 4) {
System.out.println(“In the loop”);

System.out.println (“Walue of x is ” + x);

x =x + 1;

}

System.out.println (“This is after the loop”);

}

$ java Loopy thi s the O“{:P" ‘
Before the Loop

In the loop

Value of x is 1

In the loop

Value of x is 2

In the loop

Value of x is 3

This is after the loop

—— BULLET POIN'IZQ

= Statements end in a semicolon ;

= Code blocks are defined by a pair of curly braces { }

= Declare an int variable with a name and a type: int x;
= The assignment operator is one equals sign =

= The equals operator uses fwo equals signs ==

= A while loop runs everything within its block (defined by curly
braces) as long as the conditional test is true.

= |fthe conditional test is false, the while loop code block won't
run, and execution will move down to the code immediately
after the loop block.

® Putaboolean test inside parentheses:
while (x == 4) { }

Conditional branching

In Java, an iftest is basically the same as the boolean test in a
whileloop — except instead of saying, “while there’s still beer...”,
you’ll say, “if there’s still beer...”

class IfTest {
public static void main (String[] args) {
int x = 3;
if (x == 3) {
System.out.println (“x must be 3”);

}

System.out.println (“"This runs no matter what”);

% java IfTest
x must be 3

Code °“fPu ‘
This runs no matter what

The code above executes the line that prints “x must be 3” only
if the condition (xis equal to 3) is true. Regardless of whether
it’s true, though, the line that prints, “This runs no matter what”
will run. So depending on the value of x, either one statement
or two will print out.

But we can add an else to the condition, so that we can
say something like, “Ifthere’s still beer, keep coding, else
(otherwise) get more beer, and then continue on...”

class IfTest2 {
public static void main (String[] args) {
int x = 2;
if (x == 3) {
System.out.println (“x must be 3”);
} else {
System.out.println(“x is NOT 3”);
}

System.out.println (“"This runs no matter what”);

new out?uf
% java IfTest2
x is NOT 3 /

This runs no matter what

A Quick Dip

System.outpl'i"f V8.
System.outprin’rl"

If you've been paying attention (of
course you have) then you've noticed us
switching between print and printin.

Did you spot the difference?

System.out.printin inserts a newline
(think of println as printnewline while
System.out.print keeps printing to

the same line. If you want each thing
you print out to be on its own line, use
println. If you want everything to stick
together on one line, use print.

— harpen our pencil ——
S y

Given the output:

% java DooBee
DooBeeDooBeeDo

Fill in the missing code:

public class DooBee {

public static void main (String[] args) {

intx=1;

while(x<_____){
Systemout.____ | (“Doo”);
Systemout.___ | (“Bee”);
XxX=x+1;

}
ifx==____){
System.out.print("Do");

13

serious Java app

Coding a Serious Business
Application

Let’s put all your new Java skills to good use with
something practical. We need a class with a main(), an int
and a String variable, a whileloop, and an if test. A little
more polish, and you’ll be building that business back-
end in no time. But before you look at the code on this
page, think for a moment about how you would code that
classic children’s favorite, “99 bottles of beer.”

public class BeerSong {

public static void main (String[] args) {

int beerNum = 99;

String word = “bottles”;
while (beerNum > 0) {

if (beerNum == 1) {
word = “bottle”; // singular, as in ONE bottle.

System.out.println (beerNum + “ ” + word + “ of beer on the wall”);

(
System.out.println (beerNum + “ ” + word + “ of beer.”);
System.out.println (“Take one down.”);
System.out.println (“Pass it around.”);

beerNum = beerNum - 1;

if (beerNum > 0) {
System.out.println (beerNum + “ ” + word + “ of beer on the wall”);

} else {
System.out.println (“No more bottles of beer on the wall”);

} // end else

} // end while loop
} // end main method
} // end class

There’s still one little flaw in our
code. It compiles and runs, but the
output isn't 100% perfect. See if
you can spot the flaw , and fix it.

14 chapter1

A Quick Dip

Monday wmorning at Bob’s

Bob’s alarm clock rings at 8:30 Monday morning, just like every other weekday. Java inside
But Bob had a wild weekend, and reaches for the SNOOZE button.

And that’s when the action starts, and the Java-enabled appliances .% } /

come to life.

First, the alarm clock sends a message to the coffee maker* “Hey, the geek’s
sleeping in again, delay the coffee 12 minutes.”

The coffee maker sends a message to the Motorola™ Java hevre too

toaster, “Hold the toast, Bob’s snoozing.”

The alarm clock then sends a message to Bob’s
Nokia Navigator™ cell phone, “Call Bob’s 9
o’clock and tell him we’re running a little late.”

4 Finally, the alarm clock sends a message to o colar
Java Sam’s (Sam is the dog) wireless collar, with the too-familiar signal that Sam Javd
'(:oas-éc,. means, “Get the paper, but don’t expect a walk.” [has
A few minutes later, the alarm goes off again. And again Bob { :
e

hits SNOOZE and the appliances start chattering. Finally,

the alarm rings a third time. But just as Bob reaches for the

snooze button, the clock sends the “jump and bark” signal to Sam’s
collar. Shocked to full consciousness, Bob rises, grateful that his Java
skills and a little trip to Radio Shack™ have enhanced the daily
routines of his life. butter here

His toast is toasted.

His coffee steamns.

His paper awaits.
Just another wonderful morning in The Java-Enabled House.

You can have a Java-enabled home. Stick with a sensible solution using Java,
Ethernet, and Jini technology. Beware of imitations using other so-called “plug
and play” (which actually means “plug and play with it for the next three days
trying to get it to work”) or “portable” platforms. Bob’s sister Betty tried one of
those others, and the results were, well, not very appealing, or safe.

Bit of a shame about her dog, too...

Could this story be true? Yes and no.While there are versions of Java running in de-
vices including PDAs, cell phones (especially cell phones), pagers, rings, smart cards,
and more —-you might not find a Java toaster or dog collar. But even if you can’t
find a Java-enabled version of your favorite gadget, you can still run it as if it were a
Java device by controlling it through some other interface (say, your laptop) that is
running Java.This is known as the Jini surrogate architecture.Yes you can have that
geek dream home.

*IP multicast if you're gonna be all picky about protocol

15

let’s write a program

Try my new
phrase-o-matic and
you'll be a slick talker
just like the boss or

those guys in marketing.

public class PhraseOMatic {
public static void main (String[] args) {

// make three sets of words to choose from. Add your own!

o String[] wordListOne = {“24/7”,”multi-
Tier”,”30,000 foot”,”B-to-B”,”win-win”,”front-
end”, “web-based”,”pervasive”, “smart”, “six-
sigma”,”critical-path”, “dynamic”};

String[] wordListTwo = {“empowered”, “sticky”,
“value-added”, “oriented”, “centric”, “distributed”,
“clustered”, “branded”,”outside-the-box”, “positioned”,
“networked”, “focused”, “leveraged”, “aligned”,
“targeted”, “shared”, “cooperative”, “accelerated”};

String[] wordListThree = {“process”, “tipping-
point”, “solution”, “architecture”, “core competency”,

OK, so the beer song wasn't really a serious

business application. Still need something w P Y N ot
practical to show the boss? Check out the strategy”, “mindshare”, “portal”, “space”, “vision”,

Phrase-O-Matic code. “paradigm”, “mission”};

// find out how many words are in each list

int onelength = wordListOne.length;

int twolength = wordListTwo.length;

int threelength = wordListThree.length;

itor, let // generate three random numbers

6 int randl = (int) (Math.random() * oneLength) ;
(int) (Math.random() * twolLength);
(int) (Math.random() * threeLength);

. wh) . K
9 betweey, « en)’:u)re f.);piy.ﬂ :Lnt rancdiBZ
ori int ran

bu-{: U and ou ¢
, don’t hit he rcfwy o ‘L‘?'Pc them, e // now build a phrase
Fing. String phrase = wordListOne[randl] + ™ “ +
wordListTwo[rand2] + “ “ + wordListThree[rand3];

// print out the phrase

System.out.println(“What we need is a “ + phrase);

}

16

Phrase-0-Matic

How it works.

In a nutshell, the program makes three lists of words, then randomly picks one word
from each of the three lists, and prints out the result. Don’t worry if you don’t under-
stand exactly what’s happening in each line. For gosh sakes, you’ve got the whole book
ahead of you, so relax. This is just a quick look from a 30,000 foot outside-the-box
targeted leveraged paradigm.

1. The first step is to create three String arrays — the containers that will hold all the
words. Declaring and creating an array is easy; here’s a small one:

String[] pets = {“Fido”, “Zeus”, “Bin”};
Each word is in quotes (as all good Strings must be) and separated by commas.

2. For each of the three lists (arrays), the goal is to pick a random word, so we have
to know how many words are in each list. If there are 14 words in a list, then we need

a random number between 0 and 13 (Java arrays are zero-based, so the first word is at
position 0, the second word position 1, and the last word is position 13 in a 14-element
array). Quite handily, a Java array is more than happy to tell you its length. You just
have to ask. In the pets array, we’d say:

int x = pets.length;

and x would now hold the value 3.

3. We need three random numbers. Java ships out-of-the-box, off-the-shelf, shrink-
wrapped, and core competent with a set of math methods (for now, think of them as
functions). The random () method returns a random number between 0 and not-
quite-1, so we have to multiply it by the number of elements (the array length) in the
list we’re using. We have to force the result to be an integer (no decimals allowed!) so
we putin a cast (you’ll get the details in chapter 4). It’s the same as if we had any float-
ing point number that we wanted to convert to an integer:

int x = (int) 24.6;

4’. Now we get to build the phrase, by picking a word from each of the three lists,
and smooshing them together (also inserting spaces between words). We use the “+”
operator, which concatenates (we prefer the more technical ‘smooshes’) the String objects
together. To get an element from an array, you give the array the index number (posi-
tion) of the thing you want using:

String s = pets[0]; // s is now the String “Fido”

s =s+ " " + “is a dog”; // s is now “Fido is a dog”

5. Finally, we print the phrase to the command-line and... voila! We’re in marketing.

A Quick Dip

what we need
here is a...

17

the compiler and the JVM

Fireside Chats
\\l

The Java Virtual Machine

What, are you kidding? HELLO. I am Java.
I’'m the guy who actually makes a program
run. The compiler just gives you a file. That’s
it. Just a file. You can print it out and use it
for wall paper, kindling, lining the bird cage
whatever, but the file doesn’t do anything un-
less I'm there to run it.

And that’s another thing, the compiler has
no sense of humor. Then again, if you had to
spend all day checking nit-picky little syntax
violations...

I’'m not saying you're, like, completely useless.

But really, what is it that you do? Seriously. I

have no idea. A programmer could just write
bytecode by hand, and I’d take it. You might
be out of a job soon, buddy.

(I rest my case on the humor thing.) But you
still didn’t answer my question, what do you
actually do?

Tonight’s Talk: The compiler and
the JVM battle over the question,
“Who’s more important?”

The Compiler

I don’t appreciate that tone.

Excuse me, but without me, what exactly
would you run? There’s a reason Java was
designed to use a bytecode compiler, for your
information. If Java were a purely interpreted
language, where—at runtime—the virtual
machine had to translate straight-from-a-text-
editor source code, a Java program would
run at a ludicrously glacial pace. Java’s had a
challenging enough time convincing people
that it’s finally fast and powerful enough for
most jobs.

Excuse me, but that’s quite an ignorant (not
to mention arrogant) perspective. While it

is true that—~theoretically—you can run any
properly formatted bytecode even if it didn’t
come out of a Java compiler, in practice that’s
absurd. A programmer writing bytecode by
hand is like doing your word processing by
writing raw postscript. And I would appreciate
it if you would not refer to me as “buddy.”

The Java Virtual Machine

But some still get through! I can throw Class-
CastExceptions and sometimes I get people
trying to put the wrong type of thing in an
array that was declared to hold something
else, and—

OK. Sure. But what about security? Look at all
the security stuff I do, and you’re like, what,
checking for semicolons? Oooohhh big security
risk! Thank goodness for you!

Whatever. I have to do that same stuff too,
though, just to make sure nobody snuck in
after you and changed the bytecode before
running it.

Oh, you can count on it. Buddy.

A Quick Dip

The Compiler

Remember that Java is a strongly-typed lan-
guage, and that means I can’t allow variables
to hold data of the wrong type. This is a
crucial safety feature, and I'm able to stop the
vast majority of violations before they ever get
to you. And I also—

Excuse me, but I wasn’t done. And yes, there
are some datatype exceptions that can emerge
at runtime, but some of those have to be
allowed to support one of Java’s other impor-
tant features—dynamic binding. At runtime,
a Java program can include new objects that
weren’t even known to the original program-
mer, so I have to allow a certain amount of
flexibility. But my job is to stop anything that
would never—could never—succeed at run-
time. Usually I can tell when something won’t
work, for example, if a programmer acciden-
tally tried to use a Button object as a Socket
connection, I would detect that and thus
protect him from causing harm at runtime.

Excuse me, but I am the first line of defense,
as they say. The datatype violations I previous-
ly described could wreak havoc in a program
if they were allowed to manifest. I am also

the one who prevents access violations, such
as code trying to invoke a private method, or
change a method that — for security reasons

— must never be changed. I stop people from
touching code they’re not meant to see,
including code trying to access another class’
critical data. It would take hours, perhaps days
even, to describe the significance of my work.

Of course, but as I indicated previously, if I
didn’t prevent what amounts to perhaps 99%
of the potential problems, you would grind to
a halt. And it looks like we’re out of time, so
we’ll have to revisit this in a later chat.

19

exercise: Code Magnets

Code Magnets

A working Java program is all scrambled up
on the fridge. Can you rearrange the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

class Shufflel {

File Edit Window Help Sleep

% java Shufflel
a-b c-d

Output:

20 chapter 1

if (x == 2) {

System.out.print(“b c”);

ubl i i
pPublic statjc void main(string [1 args) {

if

System.out.print(“a)i

BE the compiler

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and

A, determine whether each of these

A files will compile. If they
won’t compile, how
would you fix them?

A

class Exerciselb {

public static void main(String [] args) {
int x = 1;
while (x < 10) {
if (x> 3) {

System.out.println(“big x");

dive In A Quick Dip

B

public static void main(String [] args) {
int x = 5;
while (x> 1) {
X=x-1;
if ((x<3) {

System.out.println(“small x");

C

class Exerciselb {
int x = 5;
while (x > 1) {
X =x-1;
if ((x < 3) {

System.out.println(“small x");

you are here » 21

puzzle:

JavaCress 7.0

Let’s give your right brain something to do.

It's your standard crossword, but almost all
of the solution words are from chapter 1.Just
to keep you awake, we also threw in a few
(non-Java) words from the high-tech world.

Across

4. Command-line invoker

6. Back again?

8. Can't go both ways

9. Acronym for your laptop’s power
12. number variable type

13. Acronym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What's a prompt good for?

22

1 2 3
5 6
7
9 10 "
2
13
4 15 6
17
18 9
20
21
Down
1. Not an integer (or your boat)

2. Come back empty-handed
3. Open house

5.'Things’ holders

7. Until attitudes improve

10. Source code consumer
11. Can't pin it down

13. Dept.of LAN jockeys

15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left), with the output that you'd see if the block

were inserted. Not all the lines of output will be used, and some

Mixed of the lines of output might be used more than once. Draw lines
Messages connecting the candidate blocks of code with their matching
command-line output. (The answers are at the end of the chapter).

class Test {
public static void main (String
int x = 0;
int y = 0;
while (x < 5) {

[]

args)

x =x + 1;

System.out.print(x + ““ + y +%

\\) .
14

{

}
}
Candidates: Possible output:
y =X -Y; 22 46
mateh eath
cand"dak‘ w\‘t\\ = + X
ne of the Yoy 11 34 59
Yoss\b\c O“JffY“‘hs
y=vy+2;
if(y >4) { 02 14 26 38
y=vy-1;
} 02 14 36 48
x=x+1; 00 11 21 32 42
y =Yy + x;
if (y<5) ¢ 11 21 32 42 53
X =x + 1;
if (y<3) { 00 11 23 36 410
X =x - 1;
} 02 14 25 36 47
}
y =Yy * 2;

A Quick Dip

Cahdida.éc Code

_ SOCS hcke

23

puzzle: Pool Puzzle

00] Puzzle

Your job is to take code snippets from the
pool and place them into the blank
lines in the code.You may not use the
same snippet more than once, and
you won't need to use all the snip-
pets.Your goal is to make a class that
will compile and run and produce the
output listed. Don't be fooled—this one’s
harder than it looks.

Output

File Edit Window Help Cheat

%java PoolPuzzleOne

a noise
annoys

an oyster

Note: Each snippet
from the pool can be
used only once!

class PoolPuzzleOne {
public static void main(String [] args) {
int x = 0;

while () {

if (x< 1) {

}

if () A

}
if (x==1) {

it A

}

System.out.println(“*);

u"

System.out.print(“noys “);
System.out.print(“oise ”);

; System.out.print(“ oyster”);
(

(

u

u"

System.out.print(“annoys”);

u"

24 chapter1

x> 3 :
X <4 X=X+2;
System.out.print(” "); X -2
System.out.print(“a”); X=
System.out.print(“n“);
System,out,print(“an”);
__../—_

System.out.print(“noise”);

A Quick Dip
class Exerciselb {

public static void main(String [] args) {

Exercise Solutions int x =1
while (x < 10) {
Xx=x+1
A if (x> 3) {

System.out.println(“big x");

Code Magnets:

class Shufflel {

public static void main(String [] args) { } This will compile and run (no output), but

} without a line added to the program, it
int x = 3; would run forever in an infinite ‘'while' loop!
while (x > 0) {

if (x > 2) {
System.out.print(“a”); CMSSFOO{
4 public static void main(String [] args) {
X =X - 1; intX=5;
System.out.print(“-"); while (x> 1) {
X=x-1;
if(X::Z){ B lf(X<3){
System.out.print(“b c”); System.out.println(“small x”);
' }
if (x == 1) { } This file won't compile without a
System.out.print(“d”); } class declaration, and don't forget
x =x - 1; } the matching curly brace !
}

class Exerciselb {
public static void main(String [] args) {
int x = 5;

while (x> 1) {

File Edit Window Help Poet

% java Shufflel

a-b c-d

X =x-1;
C if (x < 3) {

System.out.println(“small x");

The ‘while’ loop code must be in-
} side a method. It can't just be
} hanging out inside the class.

25

puzzle answers

IF Zv 3P
4 5 6]
aalvial Llololr M
R ‘W o I B
BIRIAN[C H A Dt V| L]
A TIN|T ol |A I
y L MR Tlc
"sly’s TIEMOUTIPRIINT
class PoolPuzzleOne { ;I, j37 AEA, Jﬁ,]
public static void main(String [] args) { A I L B IKA
it x = 0 "s T RITIN6G| DIEICIL ARIE
while (X <4) { I R E T
20
. . C J H
System.out.print("a”); —] P
if (x< 1) { 21 v o
System.out.print("): C O/M M|AN|D
}
System.out.print("n”); class Test |
public static void main(String [] args) {
if (X>1) ¢ ntox = 0;
int y = 0;
. " P while (x < 5) {
System.out.print(" oyster”);
X=X+2;
}
if (x==1) { System.out.print(x + ““ + y +% V),
x =x + 1;
System.out.print(‘noys”): : }
} }
if (x ¢ 1) { Candidates: Possible output:
System.out.print("oise”); veEn S
} Y-y +x 11 34 59
System.out.println(““);
y =y + 2;
- . File Edit Window Help Cheat if(y>4) 02 14 26 38
X=X+1 $java PoolPuzzleOne y=y-1;
} a noise } 02 14 36 48
} } annoys o 9
X =X i 00 11 21 32 42
an oyster v =y + x;

if (y <5) { 11 21 32 42 53

X =x + 1;

if (y<3) { 00 11 23 36 410

} 02 14 25 36 47

26

2 classes and objects

A Trip to Objectville

We're going to
Objectvillel We're
leaving this dusty ol'
procedural town for good.
T'll send you a postcard.

| was told there would be objects. in chapter 1, we put all of our code in the
main() method. That's not exactly object-oriented. In fact, that’s not object-oriented at all. Well,
we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn't actually
develop any of our own object types. So now we've got to leave that procedural world behind,
get the heck out of main(), and start making some objects of our own. We'll look at what makes
object-oriented (O0) development in Java so much fun. We'll look at the difference between

a class and an object. We'll look at how objects can give you a better life (at least the program-
ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

this is a new chapter 27

once upon a time in Objectville

Chair Wars

(or How Objects Can Change Your Life)

. the spec
nce upon a time in a software shop, two
programmers were given the same spec and told to \/
“build it”. The Really Annoying Project Manager

forced the two coders to compete,
by promising that whoever delivers
first gets one of those cool Aeron™
chairs all the Silicon Valley guys have.
Larry, the procedural programmer, and
Brad, the OO guy, both knew this would
be a piece of cake.

Larry, sitting in his cube, thought to
himself, “What are the things this program
has to do? What procedures do we need?”.
And he answered himself , “rotate and
playSound.” So off he went to build the
procedures. After all, what is a program if not
a pile of procedures?

Brad, meanwhile, kicked back at the cafe
and thought to himself, “What are the things
in this program... who are the key players?” He

first thought of The Shapes. Of course, there

were other objects he thought of like the User, the Sound,
and the Clicking event. But he already had a library of code
for those pieces, so he focused on building Shapes. Read ‘\

on to see how Brad and Larry built their programs, and il the chair
for the answer to your burning question, “So, who got the %'I

Aeron?”

, 4
Inlarry’s cube At Brad’s laptop at the cafe
As he had done a gazillion times before, Larry | Brad wrote a class for each of the three shapes
set about writing his Important Procedures.
. . Square
He wrote rotate and playSound in no time.
rotate (shapeNum) { rotate() { Circle
Il code to rotate a sf
// make the shape rotate 360° } rotate() { Triangle
} Il code to rotate a g
playSound() { } rotate() {
playSound (shapeNum) { I code to play the A Il code to rotate a triangle
. Il for a square playSound() { }
// use shapeNum to lookup which } Il code o play the
// AIF sound to play, and play it /I for a circle playSound() {
} Il code to play the AIF file
} ;f for a triangle

28

classes objects
Larry thought he'd nailed it. He could almost feel the rolled
steel of the Aeron beneath his...
But wait! There’s been a spec change.
“OK, technically you were first, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It’ll be no problem for crack programmers like you two.”
“If I had a dime for every time I've heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What's up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,
dead, carpal-tunnelled hands.
— what got added to the spec
Back in Larry’s cube At Brad’s laptop at the beach
The rotate procedure would still work; the code used Brad smiled, sipped his margarita, and wrote one
a lookup table to match a shapeNum to an actual new class. Sometimes the thing he loved most
shape graphic. But playSound would have to change. about OO was that he didn’t have to touch code
And what the heck is a .hif file? he’d already tested and delivered. “Flexibility,
playSound (shapeNum) { extensibility,...” he mused, reflecting on the
// if the shape is not an amoeba, benefits of OO.
// use shapeNum to lookup which Amoeba
// AIF sound to play, and play it rotate() {
// else /I code to rotate an amoeba
// play amoeba .hif sound }
! playSound() {

It turned out not to be such a big deal, but it still Il code to play the new
made him queasy to touch previously-tested code. Of I hif file for an amoeba
all people, heshould know that no matter what the }
project manager says, the spec always changes.

29

once upon a time in Objectville

Larry snuck in just moments ahead of Brad.

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the
Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not

how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:

1) determine the rectangle that surrounds the shape

2) calculate the center of that rectangle, and rotate the shape around that point.

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I'm toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could
just add another if/else to the rotate procedure, and then just hard-code the rotation point
code for the amoeba. That probably won’t break anything.” But the little voice at the back of
his head said, “Big Mistake. Do you honestly think the spec won’t change again?”

Back in Larry’s cube

He figured he better add rotation point arguments
to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.
rotate (shapeNum, xPt, yPt) ({
// if the shape is not an amoeba,
// calculate the center point
// based on a rectangle,
// then rotate
// else
// use the xPt and yPt as
// the rotation point offset
// and then rotate

30

What the spec conveniently
forgot to mention

At Brad’s laptop on his lawn
chair at the Telluride Bluegrass Festival

Without missing a beat, Brad modified the rotate
method, but only in the Amoeba class. He never
touched the tested, working,
compriled code for the other
parts of the program. To
give the Amoeba a rota-
tion point, he added an
attribute that all Amoebas
would have. He modi-
fied, tested, and delivered
(wirelessly) the revised
program during a single
Bela Fleck set.

classes and objects

So, Brad the 00 guy got the chair, right?

Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You've got duplicated code! The rotate
procedure is in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LARRY: Whatever. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

What Larry wanted .’
(figured the chair would impress her)

L

Square Circle Triangle Amoeba I Iooked at whaf a" fOUl’
rotate() rotate() rotate() rotate() c|as ses have in commwon.
playSound() playSound() playSound() playSound() K
They’re Shapes, and they all rotate and Shape
playSound. So | abstracted out the tatel) 6
comwmon features and put thew into a playSound()
hew class called Shape. — shape | Then 1 linked the other
four shape classes to
superclass gy | the new%hape class,
in a relationship called

3 inheritance.
You can read this as, “Square inherits from Shape”, 33 K

“Circle inherits from Shape”, and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain.

Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

you are here » 31

once upon a time in Objectville

What about the Amoeba rotate()?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if

it “inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the

methods of the Shape class. Then at runtime, the JVM knows exactly

which rotate () method to run when someone tells the Amoeba to rotate.

superclass Shape
(more abstract)

rotate()
S playSound()

subclasses
(more specific)
\ Square Circle Triangle Amoeba
rotate() {

/I amoeba-specific
I/ rotate code }

LARRY: How do you “tell” an Amoeba to
do something? Don’t you have to call the
procedure, sorry—method, and then tell it
which thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

32

playSound() {
/I amoeba-specific
/I sound code }

T know how a Shape is
supposed to behave. Your
job is to tell me what to
do, and my job is to make it happen.
Don't you worry your little program-
mer head about how I do it.

| made the Awmoeba class override
the rotate() and playSound()
wmethods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

Overriding methods
& ‘

T can take
care of myself.
T know how an Amoeba
is supposed fo rotate

and play a sound.

The suspense is killing me.
Who got the chair?

Amy from the second floor.

(unbeknownst to all, the Project
Manager had given the spec to
three programmers.)

classes and objects

metacoghitive tip

If you're stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates

a different part of your brain. Although it

works best if you have another person to

discuss it with, pets work too. That's how
our dog learned polymorphism.

you are here » 33

thinking about objects

When you design a class, think about the objects that
will be created from that class type. Think about:

B things the object knows
B things the object does

ShoppingCart Button
cartContents knows I:;EI'. knows
setColor()
addToCart() does setLabel() does
removeFromCart() dePress()
checkOut() unDepress()
Things an object knows about itself are called
B instance variables msta“ce
variables
(state)
Things an object can do are called wethods
(behavior)

B methods

Things an object knows about itself are called instance
variables. They represent an object’s state (the data), and
can have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need
to know about itself, and you also design the methods

that operate on that data. It’'s common for an object to
have methods that read or write the values of the instance
variables. For example, Alarm objects have an instance
variable to hold the alarmTime, and two methods for
getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

34

@a.oharpen vour pencil
i your p

Fill in what a television object
might need to know and do.

Alarm
alarmTime
alarmMode leOWS
setAlarmTime()
getAlarmTime() does
isAlarmSet()
snooze()
Song
title
artist k"OWS
setTitle()
setArtist() does
play()

Television

instance
variables

methods

classes objects

What’s the difference between
a class and an object?

one class

many objects

A class is not an object.
(but it’s used to construet them)

A class is a blueprint for an object. It tells the
virtual machine how to make an object of that
particular type. Each object made from that
class can have its own values for the
instance variables of that class. For
example, you might use the Button
class to make dozens of different
buttons, and each button might have
its own color, size, shape, label, and so on.

Look at it this wav...

| Name Polly Morfism

Phone _555-0243
eMail prw@wickedlysmart

An object is like one entry in your address book.

One analogy for objects is a packet of unused Rolodex™ cards.
Each card has the same blank fields (the instance variables). When
you fill out a card you are creating an instance (object), and the
entries you make on that card represent its state.

The methods of the class are the things you do to a particular card;
getName(), changeName(), setName() could all be methods for
class Rolodex.

So, each card can do the same things (getName(), changeName(),
etc.), but each card knows things unique to that particular card.

making objects

Making your first object

So what does it take to create and use an object? You need {wo classes. One

class for the type of object you want to use (Dog, AlarmClock, Television, The Dot Operator (.)
etc.) and another class to test your new class. The tester class is where you put

the main method, and in that main() method you create and access objects The dot operator (.) gives

of your new class type. The tester class has only one job: to #ry out the meth- you access to an object’s
ods and variables of your new object class type. state and behavior (instance

. . . . variables and methods).
From this point forward in the book, you’ll see two classes in many of

our examples. One will be the real class — the class whose objects we
really want to use, and the other class will be the tester class, which we
call <whateverYourClassNamels> TestDrive. For example, if we make a Dog d = new Dog();
Bungee class, we’ll need a BungeeTestDrive class as well. Only the
<someClassName>TestDrive class will have a main () method, and its sole
purpose is to create objects of your new type (the not-the-tester class), and
then use the dot operator (.) to access the methods and variables of the new
objects. This will all be made stunningly clear by the following examples.

d.bark();
o Write your class
class Dog { .
'"S{:""Ce Variab)es DOG d.size = 40;
int size; size
String breed; breed
String name; a mek name
method bark()
void bark() { &
System.out.println (“Ruff! Ruff!”);
}
} e Write a tester (TestDrive) class
Jc\\od class DogTestDrive {
o public static void main (String[] args) {
ust @ iy tode
e o0 v ks Y) // Dog test code goes here
ve ~
(w: 't 0 } }

In your tester, make an object and access
the object's variables and methods
class DogTestDrive {
public static void main (String[] args) {
Dog d = new Dog(); &— ”‘akea D°3 °ch¢£

d.size = 40

; R use the dot operator ()
dot /d‘. bark() ; to set the size of

oYC"akov } and 4o) the Dog If you alreudY have some 00 savvy, _
n eall its bark() you'll know we're not using encapsulation.
} method We'll get there in chapter 4.

36

classes and objects

Making and testing Movie objects

class Movie {
String title;
String genre;
int rating;

void playIt() {
System.out.println(“Playing the movie”) ;

public class MovieTestDrive {

public static void main(String[] args) {
Movie one = new Movie();
one.title = “Gone with the Stock”;
one.genre = “Tragic”;
one.rating = -2;
Movie two = new Movie();
two.title = “Lost in Cubicle Space”;
two.genre = “Comedy”;
two.rating = 5;
two.playIt()
Movie three new Movie() ;
three.title “Byte Club”;
three.genre = “Tragic but ultimately uplifting”;
three.rating = 127;

~.

}
} 0
@%Iﬁrpen oy pencil
title \
MOVIE
title object 1 genre
genre rating
rating /
laylt
playt) (" tite N
The MovieTestDrive class creates objects (instances) of object 2 genre
the Movie class and uses the dot operator (.) to set the rating
instance variables to a specific value.The MovieTestDrive _ J
class also invokes (calls) a method on one of the objects.
Fill in the chart to the right with the values the three /,mb \\
objects have at the end of main().
object 3 genre
rating

N

you are here » 37

38

chapter 2

GuessGame

startGame()

classes and objects

public class GuessGame { éucsséamc has th .
. ree instane,
Player pl; variables for N
Player p2; e objects the three Player
Player p3;
Pubiic VOidPitart‘??me O treate three Player objects and
= new ayer H .
1132 e Plaier i gssgn them to the ’ch\r\c)c Pla;:r
p3 = new Player(); Instante variables

int guesspl

= 0; declare three variables to hold ¢
in = U7 &
t guessp2 8; S three guesses the Players make

int guessp3

boolean plisRight = false; .
boolean B2ieRight - falecs &— detlare three variables o hold a Lrue or

boolean p3isRight = false; ‘calsc based on the F'a\/CV,S answevr
int targetNumber = (int) (Math.random() * 10); make a ‘target’ number that the
System.out.println(“I’'m thinking of a number between 0 and 9...”); Pla\/crs have to guess

while (true) {
System.out.println (“Number to guess is “ + targetNumber) ;

pl.guess();
02 quees () . é——\ call each player’s quess() method

p3.guess|();

guesspl = pl.number;
System.out.println(“Player one guessed “ + guesspl);

guessp2 = p2.number; 56"’. eath PlaYCV"s quess (the vesult of their
System.out.println(“Player two guessed “ + guessp2); 5uess() mc{;hod V“hhihg)b aéécssina ‘(:hc
guessp3 = p3.number; number variable of eath player
System.out.println (“Player three guessed “ + guessp3);

if (guesspl == targetNumber) {
plisRight = true;

} theck each Pla\/c\r's guess to see if it matehes

if (guessp?2 == targetNumber) { the tar et number-. "F a Pla er is rish{;,

p2isRight = true; then set that player’s variallc to be true
} (remember, we set it false by default)
if (guessp3 == targetNumber) {

p3isRight = true;
}

if (plisRight || p2isRight || p3isRight) |{ ih!’c'vcr one OR ?laycr two OR Pla\/cr three is vight...
operator means OR)
System.out.println(“*We have a winner!”);
System.out.println(“Player one got it right? “ + plisRight);
System.out.println(“Player two got it right? “ + p2isRight);
System.out.println(“Player three got it right? “ + p3isRight);
System.out.println(“Game is over.”);

break;
1 otheryi .
e layers £ 537 in the |
Players for anoth %P and ask ¢},
System.out.println(“Players will have to try again.”); er 9uess. ¢

you are here » 39

Guessing Game

Running the Guessing Game

public class Player {

int number = 0; // where the guess goes
public void guess () {
number = (int) (Math.random() * 10);

w

System.out.println(“I'm guessing
+ number) ;

public class GameLauncher {
public static void main
GuessGame game =
game.startGame () ;

(String[] args)
new GuessGame () ;

Java takes out the
Garbage

Each time an object is created

in Java, it goes into an area of
memory known as The Heap.

All objects—no matter when, where,

or how they're created - live on the
heap. But it's not just any old memory
heap; the Java heap is actually called the
Garbage-Collectible Heap. When you
create an object, Java allocates memory
space on the heap according to how
much that particular object needs. An
object with, say, 15 instance variables,
will probably need more space than an
object with only two instance variables.
But what happens when you need to
reclaim that space? How do you get an
object out of the heap when you're done
with it? Java manages that memory
for you! When the JVM can ‘see’ that an
object can never be used again, that
object becomes eligible for garbage
collection. And if you're running low on
memory, the Garbage Collector will run,
throw out the unreachable objects, and
free up the space, so that the space can
be reused. In later chapters you'll learn
more about how this works.

40 chapter 2

{

Output (it will be different each time you run it)

File Edit Window Help Explode

%java GameLauncher

I'm thinking of a number between 0 and 9...

Number to guess is 7

I'm guessing 1

I'm guessing 9

I'm guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9
Players will have to try again.
Number to guess is 7

I'm guessing 3

I'm guessing 0

I'm guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9
Players will have to try again.
Number to guess is 7

I'm guessing 7

I'm guessing 5

I'm guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

therejare_no

Dumb Questions

Q: What if | need global
variables and methods? How
do | do that if everything has to
goin a class?

A: There isn't a concept of
‘global’ variables and methods in
a Java OO program. In practical
use, however, there are times
when you want a method (or

a constant) to be available

to any code running in any
part of your program.Think

of the random () method in
the Phrase-O-Matic app;it's a
method that should be callable
from anywhere. Or what about
a constant like pi? You'll learn
in chapter 10 that marking
amethod aspublic and
static makes it behave much
like a‘global’ Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public,static,andfinal

- you have essentially made a
globally-available constant.

Q: Then how is this object-
oriented if you can still make
global functions and global
data?

A: First of all, everything

in Java goes in a class. So the
constant for pi and the method
for random (), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule
in Java.They represent a very
special case, where you don't
have multiple instances/objects.

Q: What is a Java program?
What do you actually deliver?

A: A Java program is a pile
of classes (or at least one class).
In a Java application, one of

the classes must have a main
method, used to start-up the
program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t
have a JVM, then you'll also
need to include that with

your application’s classes,

so that they can run your
program.There are a number

of installer programs that

let you bundle your classes

with a variety of JVM'’s (say, for
different platforms), and put it all
on a CD-ROM.Then the end-user
can install the correct version of
the JVM (assuming they don't
already have it on their machine.)

Q: What if | have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver

all those individual files?

Can | bundle them into one
Application Thing?

A: Yes, it would be a big

pain to deliver a huge bunch of
individual files to your end-users,
but you won't have to.You can
put all of your application files
into a Java Archive - a jar file -
that'’s based on the pkzip format.
In the jar file, you can include

a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main() method that
should run.

—— BULLET POIN& —

classes

Object-oriented programming lets you extend
a program without having to touch previously-
tested, working code.

All Java code is defined in a class.

A class describes how to make an object of
that class type. A class is like a blueprint.
An object can take care of itself; you don’t
have to know or care how the object does it.
An object knows things and does things.
Things an object knows about itself are called
instance variables. They represent the state
of an object.

Things an object does are called methods.
They represent the behavior of an object.
When you create a class, you may also want
to create a separate test class which you'll
use to create objects of your new class type.
Aclass can inherit instance variables and
methods from a more abstract superclass.
At runtime, a Java program is nothing more
than objects ‘talking’ to other objects.

objects

41

exercise: Be the Compiler

BE the compiler

* Each of the Java files on this page
‘g represents a complete source file.
\ Your job is to play compiler and
) determine whether each of
these files wil] compile.
If they won’t compile,
how would you fix them,
and if they do compile,
what would he their output?

A
class TapeDeck {
boolean canRecord = false; B
class DVDPlayer {
void playTape() {
System.out.println(“tape playing”); boolean canRecord = false;
}
void recordDVD() {
void recordTape() { System.out.println(“DVD recording”);
System.out.println(“tape recording”); }
} }
}
class DVDPlayerTestDrive {
class TapeDeckTestDrive { public static void main(String [] args) {
public static void main(String [] args) {

DVDPlayer d = new DVDPlayer();
t.canRecord = true; d.canRecord = true;
t.playTape(); d.playDVD();
if (t.canRecord == true) { if (d.canRecord == true) {

t.recordTape(); d.recordDVD();
} }
} }
} }

42

classes and objects

A Java program is all scrambled up on

the fridge. Can you reconstruct the

code snippets to make a working Java

program that produces the output listed

below? Some of the curly braces fell on

the floor and they were too small to pick -

up, so feel free to add as many of those '

as you need.

boolean topHat = true;

boolean snare = true;

void playSnare() {
System.out.println(“bang bang ba-bang”);

public static void main(String [] args) ({ '

d.snare = falsej

class DrumKitTestDrive {

class DrumKit {

F"id PlayTopHat () q

System.out. Printlng

File Edit Window Help Dance

“ding dj .
) 9 ding da-dingr),

% java DrumKitTestDrive

bang bang ba-bang

ding ding da-ding

you are here » 43

puzzle: Pool Puzzle

public class EchoTestDrive {
public static void main(String [] args)
Echo el = new Echo();

P@‘ﬂ PUZZIG int x = 0;

Your job is to take code snippets from

the pool and place them into the

blank lines in the code. You may el.hello();
use the same snippet more than
once, and you won't need to use

while () {

{

all the snippets.Your goal is to I (.
make classes that will compile and e2.count = e2.count + 1;
run and produce the output listed. }
if (0) A
Output e2.count = e2.count + el.count;
File Edit Window Help Implode }
%$java EchoTestDrive X =x + 1;
helloooo. .. }
helloooo. .. System.out.println(e2.count);
helloooo. .. }
helloooo. .. }
10
class {
int = 0;
void {

Bonus Question !

System.out.println(“helloooco... “);
If the last line of output was }

24 instead of 10 how would
you complete the puzzle ?

Note: Each snippet
from the pool can be
used more than once!

Echo

e2 x>0 Tester
count x> 1 echo() e2=el;
el=el+1; count() Echo e2;
el =count+1; hello() Echoe2=el;
el.count=count + 1; Echo e2 = new Echo(); X ==
el.count =el.count + 1; x==4

__../—_

44 chapter 2

classes objects

A bunch of Java components, in full costume, are playing a party
game,“Who am 1?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one of them, choose all for whom that sentence can
Q apply.Fill in the blanks next to the sentence with the names of one or

w& ° more attendees.The first one’s on us.

Tonight’s attendees:

Class Method Object Instance variable

| am compiled from a .java file. elass

My instance variable values can
be different from my buddy’s
values.

| behave like a template.

| like to do stuff.

| can have many methods.

| represent ‘state’.

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object instances.

My state can change.

| declare methods.

| can change at runtime.

45

exercise solutions

Be the Compiler:

RCiSe class TapeDeck {
o o boolean canRecord = false;
EX&YCISE SOIU’H(’JIIS void playTape() {
System.out.println(“tape playing”);
A }
void recordTape() {
System.out.println(“tape recording”);
}
}

Code Magnets: class TapeDeckTestDrive {

public static void main(String [] args) {
class DrumKit {

TapeDeck t = new TapeDeck():
t.canRecord = true;
t.playTape();

boolean topHat = true;
boolean snare = true;

void playTopHat() {

if (t.canRecord == true) {
System.out.println(“ding ding da-ding”);

t.recordTape();

} }
} We've got the template, now we have
void playSnare() { } to make an object !
System.out.println(“bang bang ba-bang”);
}

class DVDPlayer ({
boolean canRecord = false;
void recordDVD() {
System.out.println(“DVD recording”);

class DrumKitTestDrive {
public static void main(String [] args) {

. . }
DrumKit d = new DrumKit(); .
0 void playdVd () {
d.playSnare(); Syst t printl CDVD layi "y
d.snare = false; } ystem.out.printin playing).
d.playTopHat(); }
if (d.snare == true) { .
class DVDPlayerTestDrive {
d.playSnare();
} public static void main(String [] args) {
DVDPlayer d = new DVDPlayer();
} =
} B d.canRecord = true;
d.playDVD();

if (d.canRecord == true) {
d.recordDVD();

File Edit Window Help Dance

% java DrumKitTestDrive

}
bang bang ba-bang . '
ina dina dadin } The line: d.playDVD(); wouldn't
ging ding datding } compile without a method !

46

Puzz]e Solutions

Pool Puzzle

public class EchoTestDrive {
public static void main(String [] args) {
Echo el = new Echo();

Echo e2 = new Echo(); // the correct answer
-or-

Echo e2 =el; // is the bonus answer!
int x = 0;
while (X<4) {

el.hello();

el.count = el.count + 1;

if ((X==3) {

e2.count = e2.count + 1;
}
if (x>0) {

e2.count = e2.count + el.count;

=X + 1;
}
System.out.println(e2.count);

}
}

class Echo {
int count = 0;
void hello() {

System.out.println(“helloooo... “);

}
}

File Edit Window Help Assimilate
% java EchoTestDrive

helloooo. ..

classes objects

Wheo am T2

| am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

| behave like a template.

| like to do stuff.

| can have many methods.
| represent ‘state’.

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object
instances.

My state can change.
| declare methods.

| can change at runtime.

elass

object

tlass

objeet, method

class, object

instance variable

objeet, elass

method, instante vaviable

ohyéf

tlass
ob)ct{, instante variable
elass

ob)ct{, instante variable

Note: both classes and objects are said to have state and behavior.
They're defined in the class, but the object is also said to ‘have’
them. Right now, we don't care where they technically live.

47

3 primitives and references

Know Your Variables

< GHIJKLMNOP(UVWXY
nopqrstuvwxyzg

Dedarations and Assignments |
s

dDCdergh]'jkfm

Variables come in two flavors: primitive and reference. sofaryou've
used variables in two places—as object state (instance variables), and as local variables
(variables declared within a method). Later, we'll use variables as arguments (values sent to a
method by the calling code), and as return types (values sent back to the caller of the method).
You've seen variables declared as simple primitive integer values (type int).You've seen
variables declared as something more complex like a String or an array. But there’s gotta be
more to life than integers, Strings, and arrays. What if you have a PetOwner object with a Dog
instance variable? Or a Car with an Engine? In this chapter we'll unwrap the mysteries of Java
types and look at what you can declare as a variable, what you can putin a variable, and what you

can do with a variable. And we'll finally see what life is truly like on the garbage-collectible heap.

this is a new chapter 49

declaring a variable

50

Peclaring a variable

Java cares about type. It won’t let you do
something bizarre and dangerous like stuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbit to hop () ? And it won’t let you put a
floating point number into an integer variable,
unless you acknowledge to the compiler that you
know you might lose precision (like, everything
after the decimal point).

The compiler can spot most problems:
Rabbit hopper = new Giraffe();
Don’t expect that to compile. Thankfully.

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitives hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating point
numbers. Object references hold, well, references
to objects (gee, didn’t that clear it up.)

We’ll look at primitives first and then move

on to what an object reference really means.
But regardless of the type, you must follow two
declaration rules:

variables must have a type

Besides a type, a variable needs a name, so that
you can use that name in code.

variables must have a name

int count;
N
type name

Note: When you see a statement like: “an object
of type X7, think of typeand class as synonyms.
(We'll refine that a little more in later chapters.)

“I'd like a double mocha, no, make it an int.”

When you think of Java variables, think of cups. Coffee cups, tea cups, giant
cups that hold lots and lots of beer, those big cups the popcorn comes in at
the movies, cups with curvy, sexy handles, and cups with metallic trim that
you learned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

It has a size, and a type. In this chapter, we’re going to look first at the
variables (cups) that hold primitives, then a little later we’ll look at cups
that hold references to objects. Stay with us here on the whole cup analogy—as
simple as it is right now, it’ll give us a common way to look at things when
the discussion gets more complex. And that’ll happen soon.

Primitives are like the cups they have at the coffeehouse. If you've been to a
Starbucks, you know what we’re talking about here. They come in different
sizes, and each has a name like ‘short’, ‘tall’, and, “I’d like a

‘grande’ mocha half-caff with extra whipped cream”.

You might see the cups displayed on the counter,

so you can order appropriately: G ﬁ ﬂ

small short tall grande

And in Java, primitives come in different sizes, and those sizes
have names. When you declare a variable in Java,
you must declare it with a specific type. The
four containers here are for the four
ﬁ integer primitives in Java.

long int short byte

Each cup holds a value, so for Java primitives, rather than saying, “I'd like a
tall french roast”, you say to the compiler, “I'd like an int variable with the
number 90 please.” Except for one tiny difference... in Java you also have to
give your cup a name. So it’s actually, “I’d like an int please, with the value
of 2486, and name the variable height.” Each primitive variable has a fixed
number of bits (cup size). The sizes for the six numeric primitives in Java
are shown below:

Gﬂﬁﬁ

byte short int long float double
8 16 32 64 32 64

primitives references

Primitive Types
Type BitDepth Value Range

boolean and char

boolean (vm-specific) true or false
char 16 bits 0to 65535

numeric (all are signed)

integer
byte 8 bits -128to 127
short 16 bits -32768 to
32767
int 32 bits -2147483648
to 2147483647

long 64 bits -huge to huge

floating point

float 32 bits varies

double 64 bits varies

Primitive declarations
with assignments:

int x;

X =234;

byte b = 89;

boolean isFun = true;
double d = 3456.98;
charc="f;

intz=x;

boolean isPunkRock;
isPunkRock = false;
boolean powerOn;
powerOn = isFun;
long big = 3456789;
floatf= 32.5£

/
Note the . Gotta have ﬂgﬁ“ks
th a float, beeause T)ava e
:n\rh\\'\ng with 3 ‘:\oa‘tmg‘ \:om

a dovble, unless You ¥s€

51

primitive assignment

You really don’t want to spill that...

Be sure the value can fit into the variable.

You can’t put a large value into a
small cup.

Well, OK, you can, but you’ll
lose some. You’ll get, as we say,
spillage. The compiler tries to
help prevent this if it can tell
from your code that something’s
not going to fit in the container
(variable/cup) you're using.

For example, you can’t pour an
intfull of stuff into a byte-sized
container, as follows:

int x = 24;
byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of xis 24, and 24 is definitely
small enough to fit into a byte. You know that, and we know that, but all the
compiler cares about is that you’re trying to put a big thing into a small thing,
and there’s the possibility of spilling. Don’t expect the compiler to know what the
value of xis, even if you happen to be able to see it literally in your code.

You can assign a value to a variable in one of several ways including:
B type a literal value after the equals sign (x=12, isGood = true, etc.)
M assign the value of one variable to another (x =)
B use an expression combining the two (x =y + 43)

In the examples below, the literal values are in bold italics:

int size = 32; declare an int named size, assign it the value 32

char initial = ‘j’; declare a char named initial, assign it the value §’

double d = 456.709; declare a double named d, assign it the value 456.709

boolean isCrazy; declare a boolean named isCrazy (no assignment)

isCrazy = true; assign the value frue to the previously-declared isCrazy

int v = x + 456; declare an int named y, assign it the value that is the sum

of whatever x is now plus 456

52

— harpen our pencil —
S Y

The compiler won't let you put
a value from a large cup into

a small one. But what about
the other way—pouring a
small cup into a big one? No
problem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren't.
We haven't covered all the
rules yet, so on some of these
you'll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

1. int x = 34.5;
2. boolean boo = x;

3. int g = 17;

4. int y g;

5. y=y + 10;

6. short s;

7. s =y;

8. byte b = 3;

9. byte v = b;
10. short n = 12;
11. v = n;

12. byte k = 128;

primitives and references

you are here » 53

object references

Controlling your Dog object

You know how to declare a primitive variable and assign it a
value. But now what about non-primitive variables? In other

words, what about objects? Dog d = new Dog();
d.bark();

B There is actually no such thing as an object variable. \

B There’s only an object reference variable. {hink o(: this

B An object reference variable holds bits that represent a like {:h's
[[

way to access an object.

B Itdoesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know whatis inside a reference variable. We do
know that whatever it is, it represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff an object into a variable. We often think of
it that way... we say things like, “I passed the String to the

System.out.println() method.” Or, “The method returns a Dog”,
or, “I put a new Foo object into the variable named myFoo.”

But that’s not what happens. There aren’t giant
expandable cups that can grow to the size of any
object. Objects live in one place and one place
only—the garbage collectible heap! (You’ll
learn more about that later in this chapter.)

o Think of a Dog
veferente vaviable as
a Dog remote control.
N You use it to get the
ob)ct{ 1o do something
(invoke methods).

Although a primitive variable is full of

bits representing the actual value of the
variable, an object reference variable is full
of bits representing a way to get to the
object.

You use the dot operator (.)
on a reference variable to say,
“use the thing before the dot to
get me the thing after the dot.” For
example:

myDog.bark () ;

means, “use the object referenced by the variable myDog to
invoke the bark() method.” When you use the dot operator on
an object reference variable, think of it like pressing a button
on the remote control for that object.

54 chapter3

ﬂﬂﬁﬂ

byte short int long
8 16 32 64

reference
(bit depth not relevant)

An object reference is just
another variable value.

Something that goes in a cup.
Only this time, the value is a remote control.

Primitive Variable >

&
byte x = 7; I\ "
The bits representing 7 go 5;;:: e

into the variable. (00000111).

byte

Reference Variable .

Q
Dog myDog = new Dog() ; Dog &
The bits representing a way to get to 3 g\
the Dog object go into the variable.

vefecente

The Dog object itself does not go into value

the variable!

Dog

We don't care how many 1’s and 0’s there are in a reference variable.It's up to each
JVM and the phase of the moon.

primitives and references

The 3 steps of object
declaration, creation and

assignment
2
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog = new Dog() ;

Tells the JVM to allocate space for a
reference variable, and names that
variable myDog.The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button D°9
or a Socket.

e Create an object

Dog myDog = new Dog() ;

Tells the JVM to allocate space for a
new Dog object on the heap (we'll
learn a lot more about that process,
especially in chapter 9.)

Dog object

Link the object
and the reference

Dog myDog = new Dog() ;

Assigns the new Dog to the reference
variable myDog. In other words,
programs the remote control.

Dog object

you are here » 65

object references

tberelz)lre no

Dumb Questions

Q: How big is a reference
variable?

A:You don’t know. Unless
you're cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented.There are pointers
in there somewhere, but you
can't access them.You won't
need to. (OK, if you insist, you
might as well just imagine it

to be a 64-bit value.) But when
you're talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you're creating,
and how big they (the objects)
really are.

Q: So, does that mean that

all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A: Yep. All references for a
given JVM will be the same

size regardless of the objects
they reference, but each JVM
might have a different way of
representing references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q,' Can | do arithmeticon a
reference variable, increment it,
you know - C stuff?

A: Nope. Say it with me again,
“Java is not C.”

56

Java Expesed

This week’s interview:
Object Reference

HeadFirst: So, tell us, what's life like for an object reference?

Reference: Pretty simple, really. 'm a remote control and I can be programmed to
control different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer to a Dog and then five minutes later refer to a Car?

Reference: Of course not. Once 'm declared, that’s it. If I'm a Dog remote control
then I'll never be able to point (oops — my bad, we’re not supposed to say point) I mean refer
to anything but a Dog,

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer to
some other Dog. As long as it’s a Dog, I can be redirected (like reprogramming your remote
to a different TV) to it. Unless... no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I'll just give you the short
version — if I'm marked as final, then once I am assigned a Dog, I can never be repro-
grammed to anything else but #at one and only Dog. In other words, no other object can
be assigned to me.

HeadFirst: You’re right, we don’t want to talk about that now. OK, so unless you’re
final, then you can refer to one Dog and then refer to a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it.

HeadFirst: Why is that?

Reference: Because it means I'm null, and that’s upsetting to me.
HeadFirst: You mean, because then you have no value?

Reference: Oh, null isa value. 'm still a remote control, but it’s like you brought
home a new universal remote control and you don’t have a TV. I'm not programmed to
control anything. They can press my buttons all day long, but nothing good happens. I
just feel so... useless. A waste of bits. Granted, not that many bits, but still. And that’s not
the worst part. If T am the only reference to a particular object, and then I'm set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because...

Reference: You have to ask? Here I've developed a relationship with this object, an
intimate connection, and then the tie is suddenly, cruelly, severed. And I will never see
that object again, because now it’s eligible for [producer, cue tragic music| garbage collection.
Sniff. But do you think programmers ever consider that? Snif. Why, why can’t I be a primi-
tive? [hate being a reference. The responsibility, all the broken attachments...

primitives references

Life on the garbage-collectible heap

Book b

new Book () ;

Book ¢ = new Book() ;

Declare two Book reference
variables. Create two new Book
objects. Assign the Book objects to
the reference variables.

The two Book objects are now living
on the heap.

References: 2
Objects: 2

Book

Book d = c;

Declare a new Book reference variable.
Rather than creating a new, third Book
object, assign the value of variable c to
variable d. But what does this mean?

It's like saying,“Take the bits in ¢, make a
copy of them, and stick that copy into d.”

Both c and d refer to the same
object.

The c and d variables hold
two different copies of the
same value. Two remotes
programmed to one TV.

References: 3
Objects: 2

c = b;

Assign the value of variable b to
variable c¢. By now you know what
this means.The bits inside variable
b are copied, and that new copy is
stuffed into variable c.

Both b and c refer to the
same object.

References: 3
Objects: 2

objects on the heap

Life and death on the heap

Book b

new Book () ;

Book ¢ = new Book() ;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2
Reachable Objects: 2

Book

b =c;

Assign the value of variable c to variable b.
The bits inside variable ¢ are copied, and
that new copy is stuffed into variable b.
Both variables hold identical values.

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).

Active References: 2
Reachable Objects: 1
Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It's unreachable. Book

c = null;

Assign the value null to variable c.
This makes c a null reference, meaning
it doesn't refer to anything. But it’s still
a reference variable, and another Book
object can still be assigned to it.

Object 2 still has an active
reference (b), and as long
as it does, the object is not
eligible for GC.

Active References: 1
null References: 1
Reachable Objects: 1
Abandoned Objects: 1

58

An array is like a tray of cups

Declare an int array variable. An array variable is
a remote control to an array object.

int[] nums;

12

Create a new int array with a length
of 7, and assign it to the previously-

declared int [] variable nums

nums =

©

an int value.

Remember, elements in an int
array are just int variables.

::o” nums[0] = 6;
;‘§ nums[1l] = 19;
¥ nums[2] = 44;
~ nums [3] = 42;
nums [4] = 10;

nums [5] = 20;
nums[6] = 1;

Arrays are objects too

The Java standard library includes
lots of sophisticated data structures
including maps, trees, and sets
(see Appendix B), but arrays are
great when you just want a quick,
ordered, efficient list of things.
Arrays give you fast random

access by letting you use an index
position to get to any element in
the array.

Every element in an array is just
a variable. In other words, one of
the eight primitive variable types
(think: Large Furry Dog) or a

Give each element in the array

new int[7];

references

primitives

7 int vaviables

int int

int[]

AT AT

int

int array object (int[])

int int int int

Notice that the arvay itself is an objett,

even though the 7 elements are primitives.

reference variable. Anything you
would put in a variable of that type
can be assigned to an array element
of that type. So in an array of type
int (int[]), each element can hold
an int. In a Dog array (Dog[]) each
element can hold... a Dog? No,
remember that a reference variable
just holds a reference (a remote
control), not the object itself. So

in a Dog array, each element can
hold a remote control to a Dog. Of
course, we still have to make the
Dog objects... and you’ll see all that
on the next page.

Be sure to notice one key thing

in the picture above — the array is
an object, even though it’s an array of
primitives.

Arrays are always objects, whether
they’re declared to hold primitives
or object references. But you can
have an array object that’s declared
to hold primitive values. In other
words, the array object can have
elements which are primitives, but
the array itself is never a primitive.
Regardless of what the array holds,
the array itself is always an object!

59

an array of objects

Make an array of Dogs

Declare a Dog array variable
Dog[] pets;

Create a new Dog array with
a length of 7, and assign it to
the previously-declared Dog []
variable pets

new Dog ['i],/ﬁ

What's wmissing?

Dogs! We have an array
of Dog references, but no
actual Dog objects!

pets =

Dogl]

Dog

Dog Dog Dog

Dog array object (Dog[])

— harpen your pencil —

Create new Dog objects, and
assign them to the array
elements.

Remember, elements in a Dog
array are just Dog reference
variables. We still need Dogs!

pets[0] = new Dog();
pets[1l] = new Dog();

What is the current value of
pets[2]?

What code would make
pets[3] refer to one of the
two existing Dog objects?

60

<% Objecy

o2 ObJec,

Dog array object (Dog[])

primitives references

Dog Control your Dog

name (with a reference variable)

’ e bark() Dog fido = new Dog() ;
eat() fido.name = “Fido”;
3 chaseCat()

We created a Dog object and
used the dot operator on the
reference variable fido to access
the name variable.*

We can use the fido reference
to get the dog to bark() or
eat() or chaseCat().

fido.bark () ;
fido.chaseCat () ;

Java cares about type-

ray, you
ou’ve declared_ an ar C
g::\:’: :ut anything in it except things

0 P of the declared array type: What happens if the Dog is in
tha an't put a Cat intoa Dog a Vog array?

xample, you ¢ :
F;::;, (it aould be pretty qwful if so:\?azge We know we can access the Dog’s
thinks that only Dogs ar‘ekln 1‘26*?\2:\ ¥c’> T instance variables and methods using
, an

bar
they asl;:zﬁl\rl\eif\fh:ne,s a cat lurking.) And the dot operator, but on what?
horror di

you can't sticka double intoan int array When the Dog is in an array, we don’t

(spillage remember?). You can, hOWGV:ef'/G have an actual variable name (like
pL‘I?f a bylte info an int array, bifl:zc‘:d cup fido). Instead we use array notation and
pyte will always ﬁ".‘l’\“‘)_ 0:: t;;)ccl;ning. we'll push the remote Co-ntrol button (dot
This is known as GY}| "‘:g;:r for now just f)perator) on an object at a particular
get in‘l‘g th:hi?:}l\: compiller won't let you index (position) in the array:

er
;?J:‘?:e wrong thing in an array. based on Dog[] myDogs = new Dog[3];

the array's declared fype- myDogs[0] = new Dog() ;

myDogs[0] .name = “Fido”;

myDogs[0] .bark() ;

*Yes we know we're not demonstrating encapsulation here, but we're
trying to keep it simple. For now. We'll do encapsulation in chapter 4.

61

using references

class Dog {
String name;
public static void main (String[] args) {
// make a Dog object and access it
Dog dogl = new Dog();
dogl.bark() ;

dogl.name = “Bart”;

// now make a Dog array
Dog[] myDogs = new Dogl[3];
// and put some dogs in it
myDogs [0] = new Dog() ;
myDogs[1l] = new Dog() ;
myDogs [2] = dogl;

// now access the Dogs using the array

// references

myDogs [0] .name = “Fred”;
myDogs[1l] .name = “Marge”;
// Hmmmm... what is myDogs[2] name?

System.out.print (“last dog’s name is “);

System.out.println (myDogs[2] .name) ;

// now loop through the array
// and tell all dogs to bark
int x = 0;

while (x < myDogs.length)sz—§\\\\\

. e lenath
myDogs [x] .bark () ; e Va\,‘a\)\c \CV\?)

ber
x =x + 1; . ou&hcnwm

public void bark() {
System.out.println(name + “ says Ruff!”);

}

public void eat() { }

public void chaseCat() { }

62 chapter 3

A Dog example

Dog

name

bark()
eat()
chaseCat()

Output

File Edit Window Help Howl

%java Dog
null says Ruff!
last dog’s name is Bart

Fred says Ruff!

Marge says Ruff!
Bart says Ruff!

— BULLET POIN& —

= Variables come in two flavors: primitive and
reference.

= Variables must always be declared with a name
and a type.

= Aprimitive variable value is the bits representing
the value (5, ‘a’, true, 3.1416, etc.).

= Areference variable value is the bits
representing a way to get to an object on the
heap.

= Areference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

= Areference variable has a value of nul1l when
it is not referencing any object.

= Anarray is always an object, even if the array
is declared to hold primitives. There is no such
thing as a primitive array, only an array that
holds primitives.

primitives references

BE the compiler

_ Each of the Java files on this page

. Tepresents a complete source file.
Your job is to play compiler and
\ determine whether each of these files
A\ wil] compile. If they won’t
compile, how would you

fix them?
A B
class Books { class Hobbits {
String title;
String author; String name;

public static void main(String [] args) {
class BooksTestDrive {

public static void main(String [] args) { Hobbits [] h = new Hobbits[3];
int z = 0;

Books [] myBooks = new Books[3];

int x = 0; while (z < 4) {

myBooks[0].title = “The Grapes of Java”; z=2z+1;

myBooks[1l].title = “The Java Gatsby”; h[z] = new Hobbits();

myBooks[2].title = “The Java Cookbook”; h[z].name = “bilbo”;

myBooks[0].author = “bob”; if (z == 1) {

myBooks[1l].author = “sue”; h{z].name = “frodo”;

myBooks[2].author = “ian”; }

if (z == 2) {

while (x < 3) { h[z].name = “sam”;
System.out.print(myBooks[x].title); }
System.out.print(” by “); System.out.print(h[z].name + “ is a “);
System.out.println(myBooks[x].author); System.out.println(“good Hobbit name”);
X =%+ 1; }

} }

} }

63

exercise: Code Magnets

Code Magnets

A working Java program is all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

File Edit Window Help Bikini

% java TestArrays
island = Fiji

Cozumel
Bermuda
Azores

island
island
island

64 chapter3

class TestArrays {

pPublic static void main(String [1 args) {

ref = index[y];

int ref;

while (y < 4) {
System.out.println(islands[ref]); '

index[0] = 1i

index[1] = 3i

index[2] = 0i
= 23

index([3]

String [] islands = new String[4]; '

System.out.print(“island = “);

00] Puzzle

Your job is to take code snippets from
the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won't need to use
all the snippets.Your goal is to
make a class that will compile and
run and produce the output listed.

Output

File Edit Window Help Bermuda
%$java Triangle

triangle 0, area
triangle area

triangle area

triangle area

y =

Bonus Question!

For extra bonus points, use snippets
from the pool to fill in the missing
output (above).

4, t5area=18.0

4, t5 area = 343.0
area

Triangle ta = new [] Triangle[4]; talx].setArea();
Jriangle [] ta = new Triangle[4];

ta.area 27,t5 area=18.0 int X;
tax.area 27,t5 area =343.0 !nt y; . X=x+1; ta.x
ta[x].area talx] = setArea(); ::: i . z - z Ji 12 ta(x)
’ H = H ta[x] x<4

Triangle [] ta = new Triangle(4); t@-Xx= setArea();

primitives and references

' a sepavate
- es we don t v,sc i
(f o:cz‘a':s petause We v)c feying
S)
s:vc spate on he p39¢

class Triangle {
double area;
int height;
int length;
public static void main(String [] args) {

while () {

.height = (x + 1) * 2;
.length

X + 4;

System.out.print(“triangle “+x+”, area”);

System.out.println(“ = “ + .area);

x = 27;

Triangle t5 = ta[2];
ta[2].area = 343;
System.out.print(“y = “ + y);

System.out.println(”, t5 area = “+ t5.area);
}

void setArea() {

= (height * length) / 2;

Note: Each snippet
from the pool can be
used more than once!

inty=x;
28.0 ta= newTrlan.gIe();
30.0 ta[x] = new Triangle();

x<5

ta.x = new Triangle();

you are here » 65

puzzle: Heap o’ Trouble

A Heap o' Trouble

A short Java program is listed to the
right. When'// do stuff’is reached, some
objects and some reference variables
will have been created. Your task is

to determine which of the reference
variables refer to which objects. Not all
the reference variables will be used, and
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you're way smarter than us,
you probably need to draw diagrams
like the ones on page 55 and 56 of this
chapter. Use a pencil so you can draw
and then erase reference links (the
arrows going from a reference remote
control to an object).

‘CC‘(CV\CC
ﬁihcad\vc
'\:‘a\'\a\)\c with matthing

o\) eet! s)
\(ou m\‘b\\‘h not have to

ce.
use CVCV\’ VC‘QCVCV\

66 chapter3

class HeapQuiz {
int id = 0;
public static void main(String [] args)
int x = 0;
HeapQuiz [] hg = new HeapQuiz[5];
while (x < 3) {

hg[x] = new HeapQuiz();
hgl[x].id = x;
X =x + 1;
}
hg[3] = hgll];
hqgl[4] = hqlll;
hg[3] = null;
hg(4] = hgl0];
hqg[0] = hql3];
hqg[3] = hql2];
hg[2] = hgl0];

// do stuff

Reference Variables: HeapQuiz Objects:

primitives references

The case of the pilfered references

It was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she
owned the place. She knew that all the programmers would still be hard at work, and she
wanted help. She needed a new method added to the pivotal class that was to be loaded into the
client’s new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was
as tight as Tawny’s top, and everyone knew it. The normally raucous buzz in the bullpen fell to
silence as Tawny eased her way to the white board. She sketched a quick overview of the new
method’s functionality and slowly scanned the room. “Well boys, it’s crunch time”, she purred.

Fi\/ e Min u_t e “Whoever creates the most memory efficient version of this method is coming with me to the
- client’s launch party on Maui tomorrow... to help me install the new software.”

Myst el‘y The next morning Tawny glided into the bullpen wearing her short Aloha dress.
“Gentlemen”, she smiled, “the plane leaves in a few hours, show me what you’ve
got!”. Bob went first; as he began to sketch his design on the white board Tawny
said, “Let’s get to the point Bob, show me how you handled updating the list of con-
tact objects.” Bob quickly drew a code fragment on the board:

Contact [] ca = new Contact[10];
while (x < 10) { // make 10 contact objects
cal[x] = new Contact();
x =x + 1;
}
// do complicated Contact list updating stuff with ca

“Tawny I know we’re tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts, this was the best scheme I could
cook up”, said Bob. Kent was next, already imagining coconut cocktails with Tawny, “Bob,”
he said, “your solution’s a bit kludgy don’t you think?”” Kent smirked, “Take a look at this
baby™:

Contact refc;
while (x < 10) { // make 10 contact objects
refc = new Contact () ;
x =x + 1;
}
// do complicated Contact list updating stuff with refc

“I saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen”, mocked Kent. “Not so fast Kent!”, said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”.

Why did Tawny choose Bob’s method over Kent’s, when Kent’s used less memory?

67

exercise solutions

Exercise Solutions

Code Magnets:

class TestArrays {
public static void main(String [] args) {
int [] index = new int[4];

index[0] = 1;

index[1l] = 3;

index[2] = 0;

index[3] = 2;

String [] islands = new String[4];
islands[0] = “Bermuda”;

islands[1l] = “Fiji”;

islands[2] = “Azores”;

islands[3] = “Cozumel”;

int y = 0;

int ref;

while (y < 4) {
ref = index[y];
System.out.print(“island = “);
System.out.println(islands[ref]);

y=y+1;

} File Edit Window Help Bikini

% java TestArrays
island = Fiji

island = Cozumel
island = Bermuda
island = Azores

68 chapter 3

A myBooks[0] = new Books():

class Books {
String title;
String author;
}
class BooksTestDrive {
public static void main(String [] args) {
Books [] myBooks = new Books[3];
int x = 0;

Remember: We have to
myBooks[1] = new Books(): | actually make the Books
myBooks[2] = new Books(): | objects !

myBooks[0].title = “The Grapes of Java”;
myBooks[1].title = “The Java Gatsby”;
myBooks[2].title = “The Java Cookbook”;
].
1.

myBooks[0].author = “bob”;
myBooks[1l].author = “sue”;
myBooks[2].author = “ian”;

while (x < 3) {
System.out.print(myBooks[x].title);
System.out.print(” by “);
System.out.println(myBooks[x].author);
X =x+ 1;

class Hobbits {
String name;
public static void main(String [] args) {
Hobbits [] h = new Hobbits[3];

intz=-1; Remember: arrays start with
while (z < 2) { | element 0!
z=2z+1;

h[z] = new Hobbits();

B h[z].name = “bilbo”;
if (z == 1) {
h{z].name = “frodo”;
}
if (z == 2) {
h[z].name = “sam”;
}

System.out.print(h[z].name + “ is a “);
System.out.println(“good Hobbit name”);

primitives references

class Triangle {
double area;
int height;
int length;
public static void main(String [] args) {
int x = 0;
Triangle [] ta = new Triangle[4];
while (X <4) {
ta[x] = new Triangle():
ta[x].height = (x + 1) * 2;
ta[x].length = x + 4;
ta[x].setArea();
System.out.print(“triangle “+x+”, area”);
System.out.println(“ = “ + ta[x].area);
x=x+1;
}
inty = x;
x = 27;
Triangle t5 = ta[2];
ta[2].area = 343;
System.out.print(“y = “ + y);
System.out.println(”, t5 area = “+ t5.area);
}
void setArea() {

area = (height * length) / 2;

69

4 methods use instance variables

How Objects Behave

This oughta
change her statel

State affects behavior, behavior affects state. we know that objects
have state and behavior, represented by instance variables and methods. But until now, we
haven't looked at how state and behavior are related. We already know that each instance of a
class (each object of a particular type) can have its own unique values for its instance variables.
Dog A can have a name “Fido” and a weight of 70 pounds. Dog B is “Killer” and weighs 9 pounds.
And if the Dog class has a method makeNoise(), well, don’t you think a 70-pound dog barks a
bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered
a bark.) Fortunately, that's the whole point of an object—it has behavior that acts on its state. In
other words, methods use instance variable values. Like,"if dog is less than 14 pounds, make

yippy sound, else...” or “increase weight by 5" Let’s go change some state.

this is a new chapter 71

objects have state and behavior

Rewewmber: a class describes what an
object knows and what an object does

A class is the blueprint for an object. When you Song
write a class, you’re describing how the JVM iVIS‘l'ance title k
should make an object of that type. You already variables |artist nows
know that every object of that type can have (state)
different instance variable values. But what about setTitle()
the methods? methods setArtist() does
Can every object of that type have different (behavior) play()
method behavior?
*
Well... sort of. ms*,a res
Every instance of a particular class has the same we Sov\(5
methods, but the methods can behave difterently OQ L\aSS
based on the value of the instance variables. Politik
The Song class has two instance variables, title Coldplay My Way
and artist. The play() method plays a song, but Sinatra

the instance you call play() on will play the song
represented by the value of the titleinstance
variable for that instance. So, if you call the play()
method on one instance you’ll hear the song
“Politik”, while another instance plays “Darkstar”.
The method code, however, is the same.

void play() {
soundPlayer.playSound (title) ;

}

\\\S‘
Song B2 = mew Song () Calind i \l % ko Y\a‘l
t2.setArtist (“Travis”) ; L avse “Sind

t2.setTitle(“Sing”) ;
Song s3 = new Song() ;
s3.setArtist(“Sex Pistols”) ;

s3.setTitle (“"My Way”);

*Yes, another stunningly clear answer!

72

Darkstar

Grateful
Dead

! Song
Song
t2.play();

s3.play();

N

Callmg Pla\/() on '(:hls instante
will eause “My Way to play.

(but not the Sinatra one)

The size affects the bark

A small Dog’s bark is different from a big Dog’s bark.

The Dog class has an instance variable size, that the
bark() method uses to decide what kind of bark sound
to make.

Dog

size
name

bark()

methods use instance variables

Bark Different.

you are here »

73

method

You can send things to a method

Just as you expect from any programming language, you can pass values into
your methods. You might, for example, want to tell a Dog object how many
times to bark by calling:

d.bark (3) ;

Depending on your programming background and personal preferences,
you might use the term arguments or perhaps parameters for the values passed
into a method. Although there areformal computer science distinctions that
people who wear lab coats and who will almost certainly not read this book,
make, we have bigger fish to fry in this book. So you can call them whatever
you like (arguments, donuts, hairballs, etc.) but we’re doing it like this:

A method uses parameters. A caller passes arguments.

Arguments are the things you pass into the methods. An argument (a value
like 2, “Foo”, or a reference to a Dog) lands face-down into a... wait for it...
parameter. And a parameter is nothing more than a local variable. A variable
with a type and a name, that can be used inside the body of the method.

But here’s the important part: If a method takes a parameter, you must pass
it something. And that something must be a value of the appropriate type.

Dog d = new Dog() ;

Call the bark method on the Dog refer- .
ence, and pass in the value 3 (as the d.bark(3) ;

argument to the method). h_ ar?,‘*"“"{"

The bits representing the int
e value 3 are delivered into the

bark method.
& The bits land in the numOfBark
Param O e bits land in the num arks
cter e parameter (an int-sized variable).

\ int
vold bark (int numOfBarks) {
while (numOfBarks > 0) {

System.out.println (“ruff”);

Use the numOfBarks
parameter as a variable in
the method code.

numOfBarks = numOfBarks - 1;

74

methods use instance variables

You can get things back from a method.

Methods can return values. Every method is declared with a return
type, but until now we’ve made all of our methods with a void
return type, which means they don’t give anything back.

void go () {
}

But we can declare a method to give a specific type of value
back to the caller, such as:

Cute...
but not exactly what I
was expecting.

int giveSecret() {
return 42;

}

If you declare a method to return a value, you maust
return a value of the declared type! (Or avalue
that is compatible with the declared type. We’ll get
into that more when we talk about polymorphism
in chapter 7 and chapter 8.)

Whatever you say
you’ll give back, you
better give back!

oRe
Thes® "l i
- \,s)(« ma‘\'/" \ ace vc‘\:""‘"‘Cd Qvovn
and land the

you are here » 75

multiple arguments

You can send more than one thing
to a method

Methods can have multiple parameters. Separate them
with commas when you declare them, and separate the
arguments with commas when you pass them. Most
importantly, if a method has parameters, you must pass
arguments of the right type and order.

Calling a two-parameter method, and sending
it two arguments.

void go () {
TestStuff t = new TestStuff () ;
t.takeTwo (12, 34); The ar

void takeTwo (int x, int y) {
int z = x + y;

System.out.println(“Total is ” + z);

You can pass variables into a method, as long as
the variable type matches the parameter type.

- e
. \ay\d w) .

VOlf-i 900 . $o0 3"dg‘oa:°w ke ov (*’\\\:

int foo = 7; The U okt gm0 Ty,

int bar = 3; + avd dznkj\ba\ ‘\"O,thr\v&c‘bﬁ \1\3 3"“\ \oar

e\ (4)
t.takeTwo (foo, bar); ;.:Ya’c)cc‘(“f:’;w{\ca\ o Khe
.y av

} \/ ks Y
void takeTwo (int x, int y) { o(: 22 H‘,,S the same

F's the value o
e Y
System.out.println(“Total is ” + z); bac at tre fime Yo¥ "

} the akeTwo methed

int z = x + y;

76

Java is pass-by-valve.

That means pass-by-copy.

instance variables

methods

Call the go() method, passing
the variable x as the argument.
The bits in x are copied, and
the copy lands in z.

Change the value of z inside
the method. The value of x

™
. X o Declare an int variable and assign it
int x = 7; | the value '7'. The bit pattern for 7
int goes into the variable named x.
_ _ ﬁ Z? Declare a method with an int
void go(int z){ } parameter named z.
int
“OPY of x
5
RN
R\ ’L{)OQQ
4 \Z}
int) . int
foo.go (x) ; void go(int z){ }
) O
X dO) \' av.c‘\ 00 e
even '-C_Z'"Z dhange, 00\’\ % and Z 000
[

oes.) comcd'&d !
@ @ z

int
void go(int z) {

doesn't change! The argument
passed to the z parameter was
only a copy of x.

——

The method can't change the
bits that were in the calling
variable x.

77

arguments and return values

78

therejare po
Dum uestions

Q: What happens if the argument you want to
pass is an object instead of a primitive?

A: You'll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything.But... value means
bits inside the variable. And remember, you don't
stuff objects into variables; the variable is a remote
control—a reference to an object. So if you pass a
reference to an object into a method, you're passing
a copy of the remote control. Stay tuned, though, we'll
have lots more to say about this.

L d
Q‘ Can a method declare multiple return values?
Or is there some way to return more than one
value?

A: Sort of. A method can declare only one return
value.BUT... if you want to return, say, three int values,
then the declared return type can be an int array.
Stuff those ints into the array, and pass it on back. It's
a little more involved to return multiple values with
different types; we'll be talking about that in a later
chapter when we talk about ArrayList.

Q} Do | have to return the exact type | declared?

A: You can return anything that can be implicitly
promoted to that type. So, you can pass a byte where
an int is expected.The caller won't care, because the
byte fits just fine into the int the caller will use for
assigning the result. You must use an explicit cast
when the declared type is smaller than what you're
trying to return.

Q: Do | have to do something with the return
value of a method? Can | just ignore it?

A:Java doesn’t require you to acknowledge a
return value.You might want to call a method with

a non-void return type, even though you don't care
about the return value. In this case, you're calling

the method for the work it does inside the method,
rather than for what the method gives returns.In
Java, you don't have to assign or use the return value.

as a Rabbit. Same thing with
parameters. You can’t pass a
U\‘l Giraffe into a method that
»“) < takes a Rabbit.

—— BULLET POIN'IEQ

= Classes define what an object knows and what an
object does.

= Things an object knows are its instance variables
(state).

= Things an object does are its methods (behavior).

= Methods can use instance variables so that objects
of the same type can behave differently.

= Amethod can have parameters, which means you
can pass one or more values in to the method.

= The number and type of values you pass in must
match the order and type of the parameters
declared by the method.

= Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

= The value you pass as an argument to a method
can be a literal value (2, ‘c’, etc.) or a variable of
the declared parameter type (for example, x where
X is an int variable). (There are other things you
can pass as arguments, but we're not there yet.)

= Amethod must declare a return type. A void return
type means the method doesn'’t return anything.

= |fa method declares a non-void return type, it must
return a value compatible with the declared return

type.

Cool things you can do with parameters

and return types

Now that we’ve seen how parameters and return types work, it’s
time to put them to good use: Getters and Setters. If you're into
being all formal about it, you might prefer to call them Accessors
and Mutators. But that’s a waste of perfectly good syllables.
Besides, Getters and Setters fits the Java naming convention, so
that’s what we’ll call them.

Getters and Setters let you, well, get and set things. Instance vari-
able values, usually. A Getter’s sole purpose in life is to send back,
as a return value, the value of whatever it is that particular Getter
is supposed to be Getting. And by now, it’s probably no surprise
that a Setter lives and breathes for the chance to take an argu-
ment value and use it to set the value of an instance variable.

class ElectricGuitar {

String brand;
int numOfPickups;
boolean rockStarUsesIt;

String getBrand() {
return brand;

}

void setBrand(String aBrand) ({
brand = aBrand;

}

int getNumOfPickups () {
return numOfPickups;

}

void setNumOfPickups (int num) {
numOfPickups = num;

}

boolean getRockStarUsesIt() {
return rockStarUsesIt;

}

void setRockStarUsesIt (boolean yesOrNo) {
rockStarUsesIt = yesOrNo;

}

methods use instance variables

ElectricGuitar

brand
numOfPickups
rockStarUseslt

—_

N

getBrand()
setBrand()
getNumOfPickups

—_ =

)
setNumOfPickups()

getRockStarUseslt()
setRockStarUseslt()

you are here »

Note: Usind these
9 tonventions

'\a"\.\h
mcans \’O\A’“ \)C

following an
imortart 1212
sjoa,\davdl.

79

real developers encapsulate

Encapsulation

Do it or risk huwiliation and
ridicule.

Until this most important moment, we’ve
been committing one of the worst OO
faux pas (and we’re not talking minor
violation like showing up without the ‘B’
in BYOB). No, we’re talking Faux Pas with
a capital ‘F’. And ‘P’.

Our shameful transgression?

Exposing our data!

Here we are, just humming along without
a care in the world leaving our data out
there for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot
operator, as in:

theCat.height = 27;

Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands
of the wrong person, a reference variable
(remote control) is quite a dangerous
weapon. Because what’s to prevent:

/—\\Lcsl WC tan ‘\ZI

\ L s hagyen

theCat.height = 0;

This would be a Bad Thing. We need to
build setter methods for all the instance
variables, and find a way to force other
code to call the setters rather than access
the data directly.

80 chapter4

Jen says you're
well-encapsulated...

4y ko call 2 setter

’d\ 4, we tan Fro ect the tat Leom
method,

B Lorting CV“\I {;I

hanoes:
unauc\’w’\‘ sz £h2r

public void setHeight(int ht) {

if (ht > 9) { <_\

height = ht; Ve put i Checks

] 3“8V'ay,-éec a
Minimup, cat "C'ﬂhf

Hide the data

Yes it is that simple to go from
an implementation that’s just
begging for bad data to one
that protects your data and
protects your right to modify
your implementation later.

OK, so how exactly do you
hide the data? With the
public and private
access modifiers. You're
familiar with public—we use
it with every main method.

Here’s an encapsulation
starter rule of thumb (all stan-
dard disclaimers about rules
of thumb are in effect): mark
your instance variables private
and provide public getters
and setters for access control.
When you have more design
and coding savvy in Java, you
will probably do things a little
differently, but for now, this
approach will keep you safe.

Mark instance
variables private.

Mark getters and
setters public.

“Sadly, Bill forgot to
encapsulate his Cat class and
ended up with a flat cat.”

(overheard at the water cooler).

methods instance variables

Java Exposed
This week’s interview:
An Object gets candid about encapsulation.

HeadFirst: What's the big deal about encapsulation?

Object: OK, you know that dream where you’re giving a talk to 500 people when you
suddenly realize— you’re naked?

HeadFirst: Yeah, we've had that one. It’s right up there with the one about the Pilates
machine and... no, we won’t go there. OK, so you feel naked. But other than being a little
exposed, 1s there any danger?

Object: Is there any danger? Is there any danger? [starts laughing] Hey, did all you other
mstances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: What’s funny about that? Seems like a reasonable question.

Object: OK, I'll explain it. It’s [bursts out laughing again, uncontrollably]
HeadFirst: Can I get you anything? Water?

Object: Whew! Oh boy. No I'm fine, really. I'll be serious. Deep breath. OK, go on.
HeadFirst: So what does encapsulation protect you from?

Object: Encapsulation puts a force-field around my instance variables, so nobody can set
them to, let’s say, something wmappropriate.

HeadFirst: Can you give me an example?

Object: Doesn’t take a PhD here. Most instance variable values are coded with certain
assumptions about the boundaries of the values. Like, think of all the things that would

break if negative numbers were allowed. Number of bathrooms in an office. Velocity of
an airplane. Birthdays. Barbell weight. Cell phone numbers. Microwave oven power.

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if it’s do-able. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Exception (like if it’s a null social security number

for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do anything if your instance variables are public.

HeadFirst: But sometimes I sce setter methods that simply set the value without check-
ing anything, If you have an instance variable that doesn’t have a boundary, doesn’t that
setter method create unnecessary overhead? A performance hit?

Object: The point to setters (and getters, too) is that you can change your mind later,
without breaking anybody else’s code! Imagine if half the people in your com-

pany used your class with public instance variables, and one day you suddenly realized,
“Oops— there’s something I didn’t plan for with that value, I'm going to have to switch to a
setter method.” You break everyone’s code. The cool thing about encapsulation is that you
get lo change your mind. And nobody gets hurt. The performance gain from using variables
directly 1s so miniscule and would rarely—if ever— be worth it.

81

how objects behave

E"CﬂpSUla‘l’i“g ‘rhe class GoodDog f{

GoodDog
GoodPog class private int size;
'\“5)(’3“ size
N\a\“‘ the ~\43)Cc~
qyﬂgicﬁﬂf’- public int getSize() {
return size; getSize()
} setSize()
bark()
Make Lhe sc‘bhcv 3;‘\‘36. — public void setSize(int s) {
methods $== size = s;
sekker
}
void bark () {
) if (si > 60) {
Even though {he methods don t "C?"\I tholsize .
add new ‘Cuncflonah{:\/, the Lo?| :)\mg System.out.println (“Wooof! Wooof!”);
; tan thange Yyour win } else if (size > 14) {
is £hat you T % and make 2 |
h{£Y~Y°“La“C°m System.out.println (“Ruff! Ruff!”);

method saker, Laster, better.

} else {

System.out.println(“Yip! Yip!”);

class GoodDogTestDrive {

public static void main (String[] args) {
GoodDog one = new GoodDog () ;
one.setSize (70);
GoodDog two = new GoodDog () ;
two.setSize (8);
System.out.println (“Dog one: “ + one.getSize());
System.out.println (“Dog two: “ + two.getSize());
one.bark() ;

two.bark() ;

82 chapter4

methods use instance variables

How do objects in an array
behave?

Just like any other object. The only difference is
how you get to them. In other words, how you get
the remote control. Let’s try calling methods on
Dog objects in an array.

Declare and create a Dog array,
to hold 7 Dog references.

Dog[] pets;

new Dog[7] ;/

pets =

Dog array object (Dog[])

e Create two new Dog objects,
and assign them to the first
two array elements.
pets[0] = new Dog() ;
pets[1l] = new Dog() ;

6 Call methods on the two Dog
objects.

pets[0] .setSize (30) ;
int x = pets[0] .getSize();
pets[l] .setSize(8) ;

Dog array object (Dog[])

you are here » 83

initializing variables

Peclaring and initializing
instance variables

You already know that a variable declaration needs at least a name
and a type:

int size;

String name;

And you know that you can initialize (assign a value) to the
variable at the same time:

int size = 420;
String name = “Donny”;

But when you don’t initialize an instance variable, what happens
when you call a getter method? In other words, what is the value of
an instance variable before you initialize it?

iables
class PoorDog { instante varavie

detlare two

a \Ja\\AC
private int size; // \)\A‘t don < aSS\SV\

private String name;

i turn??
public int getSize() {<&— What will these veturn

return size; ‘/

public String getName() {
return name;

}
}
public class PoorDogTestDrive {

public static void main (String[] args) {
PoorDog one = new PoorDog() ;

Instance variables
always get a
default value. If
you don’t explicitly
assign a value

to an instance
variable, or you
don’t call a setter

method, the
instance variable
still has a value!

integers 0
floating points 0.0
booleans false

references null

*,\'\'m\(’z- \N-‘\\

what 82 17 ie2

&\\ \S eN CV‘

System.out.println(“Dog size is “ + one.getSize()) ;
System.out.println(“Dog name is “ + one.getName()) ;

} Lance variables,
|‘t\a\‘u ins n
Yo ‘*°“th‘2“§\fi’yl\avc a default V?MSN:&M«:‘“'
betause they L\\A ding ehav) get O booleans 9
‘r\m\‘b"cs " ?t)\cs SC el

: Levente varia
and object ve . vemoke wnjm,\ that

™m mbev, n\A“ MS{: means ‘H“
(E\c{ioni:‘o m(_l)\)/ Vrogramzc J:,o An\l nY:
\rc(:cra\cc, but no attual objee

File Edit Window Help CallVet

% java PoorDogTestDrive

Dog size is 0

Dog name is null

84

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a method.

class Horse {
private double height = 15.2;
private String breed;
// more code...

e Local variables are declared within a method.

class AddThing {
int a;
int b = 12;

public int add() {

int total = a + b;
return total;

e Local variables MUST be initialized before use!

class Foo { |
public void go() f{ Won't Lom\ﬂ\c” You Lav\\uc
I detlare * w\{hou{: 3 value,
int 2 buk as soon as Yo* {'X\(
R to USE it, the compiler
} — freaks ouk.

File Edit Window Help Yikes

% javac Foo.java

Foo.java:4:

variable x might
not have been initialized

X + 3;

A

int z =
1l error

methods instance variables

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before

the variable is
initialized.

therejare no

Dumb Questions

Q: What about method parameters?
How do the rules about local variables
apply to them?

A: Method parameters are virtually the
same as local variables—they're declared
inside the method (well, technically they're
declared in the argument list of the method
rather than within the body of the method,
but they're still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you'll never get
a compiler error telling you that a parameter
variable might not have been initialized.

But that’s because the compiler will give

you an error if you try to invoke a method
without sending arguments that the method
needs. So parameters are ALWAYS initialized,
because the compiler guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
(automatically) to the parameters.

85

object equality

Comparing variables (primitives or references)

Sometimes you want to know if two primitives are the same. That’s easy
enough, just use the == operator. Sometimes you want to know if two
reference variables refer to a single object on the heap. Easy as well, just use
the == operator. But sometimes you want to know if two objects are equal.
And for that, you need the .equals() method. The idea of equality for
objects depends on the type of object. For example, if two different String
objects have the same characters (say, “expeditious”), they are meaningfully
equivalent, regardless of whether they are two distinct objects on the heap.
But what about a Dog? Do you want to treat two Dogs as being equal if they
happen to have the same size and weight? Probably not. So whether two
different objects should be treated as equal depends on what makes sense for
that particular object type. We’ll explore the notion of object equality again
in later chapters (and appendix B), but for now, we need to understand that
the == operator is used only to compare the bits in two variables. What those
bits represent doesn’t matter. The bits are either the same, or they’re not.

Use == to compare
two primitives,

or to see if two
references refer to
the same object.

Use the equals()
method to see

if two different
objects are equal.
(Such as two different
String objects that both

represent the characters
in “Fred”)

To compare two primitives, use the == operator
The == operator can be used to compare two variables of any kind, and it the bit Pat
simply compares the bits. Sdme, o, the €rns e the
S
if (a ==Db) {...} looks at the bits in a and b and returns true if the bit pattern al Using = W are
is the same (although it doesn’t care about the size of the variable, so all the
extra zeroes on the left end don’t matter). o zevots on 000\,\ 000\’\,
int a = 3; (Jd"“e@: e o;; Lhe wh Q J
W 1 i, B
byte b = 3; the le){3 tave e a == b
ek we 897
if (a == b) { // true } khnat hee int byte

To see if two references are the same (which means they
refer to the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the
variable. The rules are the same whether the variable is a reference or
primitive. So the == operator returns true if two reference variables refer to
the same object! In that case, we don’t know what the bit pattern is (because
it’s dependent on the JVM, and hidden from us) but we do know that whatever
it looks like, it will be the same for two references to a single object.

Foo a = new Foo();

Foo b = new Foo();

Foo ¢ = a;

if (a ==b) { // false }

. a==¢is true
if (a==1¢) { // true } _

if (b == c) { // false } a==bis false

86

ﬂ’f bl‘é

Sam

ar, h
e €qual usin ng =

Paf'éerhs are the
So fhcy

T always
keep my variables
private. If you want to
see them, you have to
talk fo my methods.

methods use instance variables

____@.harpen your pencil
i’ your p

What’s legal? K E E P

Given the method below, which
of the method calls listed on the h
right are legal?

Put a checkmark next to the R I G H T

ones that are legal. (Some

statements are there to assign
values used in the method calls).

int calcArea(int height, int width) {

return height * width;

int a = calcArea(7, 12);
short ¢ = 7;
calcArea(c,15);

int d = calcArea(57);
calcArea(2,3);

long t = 42;

int £ = calcArea(t,17);

int g = calcArea();
calcArea() ;
byte h = calcArea(4,20);

int j = calcArea(2,3,5);

you are here »

87

exercise: Be the Compiler

BE the compiler

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
 determine whether each of these files
wil] compile. If they won’t
compile, how would you
fix them, and if they do
compile, what would he
their output?

class XCopy { class Clock {
String time;
public static void main(String [] args) ({

. . void setTime(String t) {
int orig = 42;

time = t;
XCopy x = new XCopy(); }
int y = x.go(orig); void getTime() {
return time;
System.out.println(orig + “ “ + y); }

}

int go(int arg) {
class ClockTestDrive {

arg = arg * 2; public static void main(String [] args) {

return arg;
}
}

Clock ¢ = new Clock();

c.setTime(”1245");
String tod = c.getTime();
System.out.println(“time: “ + tod);

88

methods instance variables

A bunch of Java components, in full costume, are playing a party
game,”Who am I1?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one guy, then write down all for whom that sentence
applies. Fill in the blanks next to the sentence with the names of one
or more attendees.

9 Tonight'’s attendees:
w\-‘_ . instance variable, argument, return, getter, setter,
_ encapsulation, public, private, pass by value, method

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

| prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

| return something by definition.

| shouldn’t be used with instance variables.

| can have many arguments.

By definition, | take one argument.

These help create encapsulation.

| always fly solo.

89

puzzle: Mixed Messages

Mixed
Messages

A short Java program is listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate
blocks of code (below), with the output
that you'd see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Candidates: Possible output:

x <9 14 7
index < 5 9 5

x < 20 19 1
index < 5 14 1
x < 7 25 1
index < 7 7 7

2 2 il 20 1
index < 1 20 5

90

public class Mix4 {
int counter = 0;
public static void main(String [] args)
int count = 0;
Mix4 [] md4a =new Mix4([20];

int x = 0;

while (:l) {

mda[x] = new Mix4();
mé4a[x].counter = m4a[x].counter + 1;
count = count + 1;
count = count + méa[x].maybeNew (x);
Xx =x + 1;
}
System.out.println(count + “ %
+ md4al[l].counter);

public int maybeNew (int index) {

if |) |

Mix4 m4 = new Mix4();
m4.counter = md.counter + 1;

return 1;

}

return 0;

00] Puzzle

Your job is to take code snippets from the
pool and place them into the blank lines
in the code.You may not use the same
snippet more than once, and you won't
need to use all the snippets.Your goal
is to make a class that will compile and
run and produce the output listed.

Output

File Edit Window Help BellyFlop

%$java Puzzle4

result 543345

Note: Each snippet
from the pool can be
used only once!

doStuff(x);
obs.doStuff(x);

ivar = x;

obs.ivar = x; obs[x].doStuff(x);

obs[x].ivar = x; ivar

obs[x].ivar =y; factor
Puzzle4 [] obs = new Puzzle4[6]; public

Puzzleab [] obs = new Puzzle4b[6]; Private
Puzzle4b [] obs = new Puzzle4[6];

obs[x].doStuff(factor);

ivar + factor;
ivar * (2 + factor);
ivar * (5 - factor);
ivar * factor;

methods use instance variables

public class Puzzled {
public static void main(String [] args) {

int y = 1;
int x = 0;
int result = 0;
while (x < 6) {

X = 6;
while (x > 0) {

result = result +

}
System.out.println(“result “ + result);

}

}

class {

int ivar;

doStuff (int) {
if (ivar > 100) {
return
} else {
return

Puzzle4 .
Puzzle4b int
Puzzledb() short

obs [x] = new Puzzle4b(x);
obs [] = new Puzzle4b();
obs [x] = new Puzzledb();

X=x+1;
x=x-1;

obs = new Puzzle4b();

you are here » 91

puzzle: Five Minute Mystery

Five-Minute
Mystery

92

Fast Times in Stim-City

When Buchanan jammed his twitch-gun into Jai’s side, Jai froze. Jai knew that Buchanan
was as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai
into his boss’s office, but Jai’d done nothing wrong, (lately), so he figured a little chat with
Buchanan’s boss Leveler couldn’t be too bad. He’d been moving lots of neural-stimmers in
the west side lately and he figured Leveler would be pleased. Black market stimmers weren’t
the best money pump around, but they were pretty harmless. Most of the stim-junkies he’d
seen tapped out after a while and got back to life, maybe just a little less focused than before.

Leveler’s ‘office’ was a skungy looking skimmer, but once Buchanan shoved him in, Jai
could see that it’d been modified to provide all the extra speed and armor that a local boss like
Leveler could hope for. “Jai my boy”, hissed Leveler, “pleasure to see you again”. “Likewise
I’'m sure...”, said Jai, sensing the malice behind Leveler’s greeting, “We should be square
Leveler, have I missed something?” “Ha! You’re making it look pretty good Jai, your volume
is up, but I’ve been experiencing, shall we say, a little ‘breach’ lately...” said Leveler.

Jai winced involuntarily, he’d been a top drawer jack-hacker in his day. Anytime someone
figured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No
way it’s me man”, said Jai, “not worth the downside. I’m retired from hacking, I just move

my stuff and mind my own business”. “Yeah, yeah”, laughed Leveler, “I’m sure you’re
clean on this one, but I’ll be losing big margins until this new jack-hacker is shut
out!” “Well, best of luck Leveler, maybe you could just drop me here and I’ll go
move a few more ‘units’ for you before I wrap up today”, said Jai.

“I’m afraid it’s not that easy Jai, Buchanan here tells me that word is you’re
current on J37NE”, insinuated Leveler. “Neural Edition? sure I play around a bit, so
what?”, Jai responded feeling a little queasy. ‘“Neural edition’s how I let the stim-junkies
know where the next drop will be”, explained Leveler. “Trouble is, some stim-junkie’s stayed
straight long enough to figure out how to hack into my WareHousing database.” “I need a
quick thinker like yourself Jai, to take a look at my StimDrop J37NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should..”, “HEY!”,
exclaimed Buchanan, “I don’t want no scum hacker like Jai nosin’ around my code!” “Easy
big guy”, Jai saw his chance, “I’m sure you did a top rate job with your access modi.. “Don’t
tell me - bit twiddler!”, shouted Buchanan, “I left all of those junkie level methods public,
so they could access the drop site data, but I marked all the critical WareHousing methods
private. Nobody on the outside can access those methods buddy, nobody!”

“I think I can spot your leak Leveler, what say we drop Buchanan here off at the corner
and take a cruise around the block”, suggested Jai. Buchanan reached for his twitch-gun but
Leveler’s stunner was already on Buchanan’s neck, “Let it go Buchanan”, sneered Leveler,
“Drop the twitcher and step outside, I think Jai and I have some plans to make”.

What did Jai suspect?

Will he get out of Leveler’s skimmer with all his bones intact?

methods instance variables

. . 1 lock
%Exemse Solutions class Clock
String time;
void setTime(String t) {

time = t;

}

String getTime() {
return time;

class ClockTestDrive {
public static void main(String [] args) {
Clock ¢ = new Clock();
c.setTime(“1245");
String tod = c.getTime();
System.out.println(“time: “ + tod);

} } Note: 'Getter' methods have a return
A Class XCopy' compiles and runs as it stands ! The type by definition.
output is: ‘42 84’. Remember Java is pass by value, (which
means pass by copy), the variable ‘orig’ is not changed by the
go() method.
A class can have any number of these. instance variables, getter, setter,method
A method can have only one of these. return
This can be implicitly promoted. return, argument
| prefer my instance variables private. encapsulation
It really means ‘make a copy’. pass by value
Only setters should update these. instance variables
A method can have many of these. argument
| return something by definition. getter
I shouldn’t be used with instance variables public
| can have many arguments. method
By definition, | take one argument. setter
These help create encapsulation. getter, setter, public, private
I always fly solo. return

93

puzzle answers

Puzz]e Solutions

public class Puzzled {
public static void main(String [] args) {
Puzzle4b [] obs = new Puzzle4b[6];
int y = 1;
int x = 0;
int result = 0;
while (x < 6) {
obs[x] = new Puzzle4b();
obs[x] . ivar = y:;
y =y * 10;

x=x+1
}
X = 6;
while (x > 0) {
x=x-1
result = result + obs[x].doStuff(x);
}

System.out.println(“result “ + result);
}
}

class Puzzle4b {
int ivar;
public int dostuff (int factor) {
if (ivar > 100) {
return ivar * factor;

} else {
return ivar * (5 - factor);
} Output
} File Edit Window Help BellyFlop
} %$java Puzzled

result 543345

94

Answer to the 5-minute mystery...

Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never mentioned
his instance variables. Jai suspected that

while Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip up could have easily cost
Leveler thousands.

Candidates:

x <9 14 7
index < 5 9 5

x < 20 19 1
index < 5 14 1
X < 7 25 1
index < 7 7

x < 19 —””’,,——” 20 1
index < 1 20 5

Possible output:

5 writing a program

Extra-Strength Methods

T can lift
A heavy objects.

Let’s put some muscle in our methods. we dabbled with variables, played
with a few objects, and wrote a little code. But we were weak. We need more tools. Like
operators.We need more operators so we can do something a little more interesting than, say,
bark.And loops. We need loops, but what'’s with the wimpy while loops? We need for loops

if we're really serious. Might be useful to generate random numbers. And turn a String
into an int, yeah, that would be cool. Better learn that too. And why don’t we learn it all by
building something real, to see what it’s like to write (and test) a program from scratch. Maybe
a game, like Battleships.That's a heavy-lifting task, so it'll take two chapters to finish. We'll build

a simple version in this chapter, and then build a more powerful deluxe version in chapter 6.

this is a new chapter 95

building a real game

Let’s build a Battleship-style
game: “Sink a Dot Com”

It’s you against the computer, but unlike the real
Battleship game, in this one you don’t place any ships You’re going to build the
of your own. Instead, your job is to sink the computer’s Sink a Dot Com game, with

ships in the fewest number of guesses. a 7 x 7 grid and three

Oh, and we aren’t sinking ships. We’re killing Dot Dot Coms. Each Dot Com
Coms. (Thus establishing business relevancy so you can takes up three cells

expense the cost of this book).

Goal: Sink all of the computer’s Dot Coms in the fewest
number of guesses. You're given a rating or level, based
on how well you perform.

_ part of a game interaction
Setup: When the game program is launched, the

computer places three Dot Coms on a virtual 7 x 7 ile Edit_Window Help Sel
grid. When that’s complete, the game asks for your first %java DotComBust
guess.

Enter a guess A3
How you play: We haven’t learned to build a GUI yet, so
this version works at the command-line. The computer

will prompt you to enter a guess (a cell), that you’ll type
at the command-line as “A3”, “C5”, etc.). In response miss
to your guess, you’'ll see a result at the command-

miss

Enter a guess B2

Enter
line, either “Hit”, “Miss”, or “You sunk Pets.com” (or
whatever the lucky Dot Com of the day is). When B
you’ve sent all three Dot Coms to that big 404 in the Enter a guess
sky, the game ends by printing out your rating. hi
Caf«\‘ b0%)) lt
7 X 7 grid < aitd Enter a guess
A £ hit
Enter a guess
B € Ouch! You sunk
C ::-' kill
D Ue Pets.com Enter a guess
) miss
E Enter a guess
F hit
Enter a guess
G
Asl*Me.c om e

0 1 2 3 4 5 6

A

96 chapter 5

Enter a guess G5

Ouch! You sunk AskMe.com

starts at zevo, like Java arvays

First, a high-level design

We know we’ll need classes and methods, but what
should they be? To answer that, we need more
information about what the game should do.

First, we need to figure out the general flow of the
game. Here’s the basic idea:

0 User starts the game

g Game creates three Dot Coms

Game places the three Dot
Coms onto a virtual grid

Game play begins
Repeat the following until there are
no more Dot Coms:
Prompt user for a guess
(/ ("A2","CQ", etc.)
Check the user guess against
all Dot Coms to look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delete cell

(A2, D4, etc.). If akill, delete
Dot Com.

Game finishes

Give the user a rating based on
the number of guesses.

Now we have an idea of the kinds of things the
program needs to do. The next step is figuring
out what kind of objects we’ll need to do the
work. Remember, think like Brad rather than
Larry; focus first on the things in the program
rather than the procedures.

e display user

writing a program

skart of Kiwish
\e is
Y-C(,'hav\tb
" {):scd o YCY“SC“JC
an a(,‘E\OV\
Game SGT-UP e 6
______________________ oo
e » Getuser |._
> guess Q
remove loca-
tion cell
remove
Dot Com
A diamond
still some rc\wcscnﬁs a

Dot Coms

alive? detision ?oin‘{‘,.

score/rating

game
over

Whoa. A real flow chart.

97

SimpleDotComGame

98 chapter5

Peveloping a Class

As a programmer, you probably have a methodology/
process/approach to writing code. Well, so do we. Our
sequence is designed to help you see (and learn) what
we’re thinking as we work through coding a class. It
isn’t necessarily the way we (or you) write code in the
Real World. In the Real World, of course, you’ll follow
the approach your personal preferences, project, or
employer dictate. We, however, can do pretty much
whatever we want. And when we create a Java class as a

“learning experience”, we usually do it like this:

O
O

O

O O O o o

Figure out what the class is supposed to do.
List the instance variables and methods.

Write prepcode for the methods. (You'll see
this in just a moment.)

Write test code for the methods.
Implement the class.

Test the methods.

Debug and reimplement as needed.

Express gratitude that we don't have to test
our so-called learning experience app on
actual live users.

writing a program

The three things we’ll write for
each class:

prep code tet

prep code
A form of pseudocode, to help you focus on
the logic without stressing about syntax.

test code
A class or methods that will test the real code
and validate that it's doing the right thing.

real code
The actual implementation of the class. This is
wh al Java code.

you are here » 99

p‘est code BRG]

SimpleDotCom

int] locationCells
int numOfHits

String checkYourself(String guess)

void setLocationCells(intf] loc)

You’ll get the idea of how prepcode (our version of pseudocode) works as you
read through this example. It’s sort of half-way between real Java code and a plain
English description of the class. Most prepcode includes three parts: instance
variable declarations, method declarations, method logic. The most important
part of prepcode is the method logic, because it defines what has to happen,
which we later translate into how, when we actually write the method code.

100

chapter 5

o -

Writing the method
implementations

let’s write the real
wmethod code now, and get
this puppy working.

Before we start coding the
methods, though, let’s back
up and write some code to
test the methods. That’s right,
we’re writing the test code
before there’s anything to test!

The concept of writing

the test code first is one of
the practices of Extreme
Programming (XP), and

it can make it easier (and
faster) for you to write your
code. We’re not necessarily
saying you should use XP,
but we do like the part about
writing tests first. And XP just
sounds cool.

writing a program

Oh my! For a minute
there I thought you
weren't gonna write your
test code first. Whoo!
Don't scare me like that.

Extreme Programming (XP)

Extreme Programming(XP) is a newcomer to the software
development methodology world. Considered by many
to be “the way programmers really want to work’, XP
emerged in the late 90’s and has been adopted by
companies ranging from the two-person garage shop

to the Ford Motor Company.The thrust of XP is that the
customer gets what he wants, when he wants it, even
when the spec changes late in the game.

XP is based on a set of proven practices that are all
designed to work together, although many folks do pick
and choose, and adopt only a portion of XP’s rules. These
practices include things like:

Make small, but frequent, releases.

Develop in iteration cycles.

Don't put in anything that’s not in the spec (no matter
how tempted you are to put in functionality “for the
future”).

Write the test code first.
No killer schedules; work regular hours.

Refactor (improve the code) whenever and wherever you
notice the opportunity.

Don't release anything until it passes all the tests.
Set realistic schedules, based around small releases.
Keep it simple.

Program in pairs,and move people around so that
everybody knows pretty much everything about the code.

you are here» 101

Writing test code for the SimplePotCom class

We need to write test code that can make a SimpleDotCom object
and run its methods. For the SimpleDotCom class, we really

care about only the checkYourself() method, although we will have
to implement the setLocationCells() method in order to get the
checkYourself() method to run correctly.

Take a good look at the prepcode below for the checkYourself()
method (the setLocationCells() method is a no-brainer setter method,
so we’re not worried about it, but in a ‘real” application we might
want a more robust ‘setter’ method, which we would want to test).

Then ask yourself, “If the checkYourself() method were
implemented, what test code could I write that would prove to me
the method is working correctly?”

Based on this prepcode: Here's what we should fest:
METHOD String checkYourself(String userGuess) 1. Instantiate a SimpleDotCom object.
GET the user guess as a String parameter 2. Assign it a location (an array of 3 ints, like
CONVERT the user guess to an int {2.3.4}).
REPEAT with each of the location cells in the int array 3. ((i;?afg,’a(ast:;ri)rlg to represent a user guess
/I COMPARE the user guess to the location cell 4. Invoke the checkYourself() method pass-
IF the user guess matches ing it the fake user guess.
INCREMENT the number of hits 5. Print out the result to see if it's correct
// FIND OUT if it was the last location cell: (‘passed” or “failed”).

IF number of hits is 3, RETURN “Kill" as the result
ELSE it was not a kill, so RETURN"Hit”
END IF
ELSE the user guess did not match, so RETURN “Miss”
END IF
END REPEAT
END METHOD

102

prep code test code NCEINT[:]

therejare o
Duml) uestions

Q: Maybe I'm missing some-
thing here, but how exactly do
you run a test on something
that doesn't yet exist!?

A: You don’t. We never said
you start by running the test;
you start by writing the test. At
the time you write the test code,
you won't have anything to run
it against, so you probably won't
be able to compile it until you
write ‘stub’ code that can com-
pile, but that will always cause
the test to fail (like, return null.)

Q:Then I still don’t see the
point. Why not wait until the
code is written, and then whip
out the test code?

A:The act of thinking through
(and writing) the test code helps
clarify your thoughts about what
the method itself needs to do.

As soon as your implementation
code is done, you already have
test code just waiting to validate
it. Besides, you know if you don't
do it now, you'll never do it.
There’s always something more
interesting to do.

Ideally, write a little test code,
then write only the implementa-
tion code you need in order to
pass that test. Then write a little
more test code and write only
the new implementation code
needed to pass that new test. At
each test iteration, you run all
the previously-written tests, so
that you always prove that your
latest code additions don’t break
previously-tested code.

writing a program
Test code for the SimplePotCom class

public class SimpleDotComTestDrive {

; -hah\’;\a‘hc 3
\gm"\ D otCor
public static void main (String[] args) { otk
o\{)d'
SimpleDotCom dot = new SimpleDotCom() ;
for
ake an '\v\‘h a‘(Eal\\c do‘\:
™ {oh° M
e 387 e
int[] locations = {2,3,4}; o & 3 possiole
ow

dot.setLocationCells (locations) ;

\

make a fake
user guess

String userGuess = “2”;

String result = dot.checkYourself (userGuess) ;

invoke the cheekYoursel£()

method on the dot
obieet, and pass iO{: {f,:hocm

daKe guess.

String testResult = “failed”;
if (result.equals(“hit”)) {

testResult = “passed”;

System.out.println (testResult) ;

}
— g dharpen your penci
A In the next couple of pages we implement the SimpleDotCom class,
and then later we return to the test class. Looking at our test code
above, what else should be added? What are we not testing in this

code, that we should be testing for? Write your ideas (or lines of
code) below:

103

prep code test code

The checkYourself() method

There isn’t a perfect mapping from prepcode to javacode; you’ll see a few
adjustments. The prepcode gave us a much better idea of what the code needs to
do, and now we have to find the Java code that can do the how.

In the back of your mind, be thinking about parts of this code you might want
(or need) to improve. The numbers are for things (syntax and language
features) you haven’t seen yet. They're explained on the opposite page.

public String checkYourself (String stringGuess) {

GET the user
guess Lonver .
CONVERT int guess = Integer.parselnt(stringGuess); ¢ Lo an :ﬂ\e S'l:\r'mg
the user guess to
an int String result = “miss”; & ™3Ke a variable 4, hold the vesult we'll
\rtC'l:wn. Pu{: “miss') in as the dc‘c‘;u]{:
(ie. we assume 3 “miss”)
REPEAT with
cach cell in the int for (int cell : locationCells) { repeat with sl
) €ach ¢ell
array an-ay (ell'in the | :
; each . otatio
IF the user guess if (guess == cell) { to cell '°Ca‘{:lon of the b-”CeHs
matches ™Pare the user guess {, th et
o
result = “hit”; clement (zell) ;, he array ’
INCREMENT . we 0'(:8 hit!
the number of numOfHits++; J {:
hits

breaks < el ot 4
to fest the oth

’OOP, no heed
er cells

// FIND OUT if

Lwas the fasteel if (numOfHits == locationCells.length) {

IF number of hits

we're out of the loop, but let’s see if we've

is 3,
result = “kill”; ~—— now ‘dead’ (h: .
RETURN “kil" ead’ (hit 3 times) and ¢thanae th
V‘CSIAH; S«t H {: LYV AT 3 ¢
as the result } ring to “Kill
ELSE it was
not a kill, so i .
RETURN"hit" System.out.println(result); ¢—_ display the vesult for the user
ELSE « re” H W »” wynn
return result; (“Miss”, unless it was thanged to “Hit” or “Kill")
RETURN

O return the result back {o
, the ealling method

“miss”

104 chapter5

writing a program

prep code test code

Just the new stuff
The things we haven’t seen before
are on this page. Stop worrying! The A method in the
rest of the details are at the end of Ln{:cgcr das{: {:‘!\a‘t ,
the chapter. This is just enough to let that nows how to “parse
K ing. t\ass. . aStringinto theint 73
you keep going t\“‘\;s b Javad it vepvesents &sag -
Converting a J/
(1 String to an int Integer.parselInt (¢“3”)
© The for loop for (int cell : locationCells) { }
——
?cclavc a variable that will hold one element
v-.om ﬂ.\c arvay. Each time ‘l:hrough the loop
:chns”vanéblc (in this case an int variable nam;d
eell”), vill hold a different element from the
arvay, until there are no more elements (or Lhe
tode does a “break”... see #4 below).
The ++ means add | to
. whatever’s theve (in other
The post-increment / words, intrement by |).

operator

numOfHits++

huMO‘cHi'{;S‘f“i' is the same (in
this case) as saying numOfHits =
numO£Hits + |, except slightly

movre e("«cicicn{:.

e break statement

break;

Gets you out of a loop. Immediately. Right heve.
No i{cra’cion, no boolean ‘{',CS‘[;, Jus'[; 56{‘, out now!

youare here» 105

prep code test code

therejare no
Dumb Questions

Q: What happens in
Integer.parselnt() if the thing you

pass isn’t a number? And does it
recognize spelled-out numbers,
like “three”?

A: Integer.parselnt() works only
on Strings that represent the ascii
values for digits (0,1,2,3,4,5,6,7,8,9).
If you try to parse something like
“two” or “blurp’, the code will blow
up at runtime. (By blow up, we
actually mean throw an exception,
but we don't talk about exceptions
until the Exceptions chapter. So for
now, blow up is close enough.)

Q: In the beginning of the
book, there was an example of a

for loop that was really different
from this one—are there two
different styles of for loops?

A: Yes! From the first version of
Java there has been a single kind
of for loop (explained later in this
chapter) that looks like this:

for (inti=0;i<10;i++) {
// do something 10 times
}

You can use this format for any
kind of loop you need.But...
beginning with Java 5.0 (Tiger),
you can also use the enhanced for
loop (that's the official description)
when your loop needs to iterate
over the elements in an array (or
another kind of collection, as you'll
see in the next chapter).You can
always use the plain old for loop
to iterate over an array, but the
enhanced for loop makes it easier.

106

Final code for SimplePotCom and SimplePotComTester

public class SimpleDotComTestDrive {

public static void main (String[] args) {
SimpleDotCom dot = new SimpleDotCom() ;
int[] locations = {2,3,4};
dot.setLocationCells (locations);

String userGuess = “2”;

String result = dot.checkYourself (userGuess) ;

public class SimpleDotCom {

int[] locationCells;
int numOfHits = 0;

public void setLocationCells (int[] locs) {
locationCells = locs;

}

public String checkYourself (String stringGuess)

{

int guess = Integer.parselnt (stringGuess) ;
String result = “miss”;
for (int cell locationCells) {
if (guess == cell) {
result = “hit”;
numOfHits++;
break;
} What should we see
} when we run this code?

if (numOfHits ==
locationCells.length) {
result = “kill”;

The test code makes a
SimpleDotCom object
and gives it a location at
2,3,4.Then it sends a fake

} user guess of “2”into the

System.out.println (result);
return result;

checkYouself() method.
If the code is working

} correctly, we should see the

} result print out:

java SimpleDotComTestDrive

hit

p-est code BRI

writing a program

@ harpen Your pencil

We built the & test class, and the SimpleDotCom class. But we still haven't
made the actual game. Given the code on the opposite page, and the spec for
the actual game, write in your ideas for prepcode for the game class. We've given
you a few lines here and there to get you started. The actual game code is on the
next page, so don’t turn the page until you do this exercise!

You should have somewhere between 12 and 18 lines (including the ones we wrote,
but not including lines that have only a curly brace).

METHOD public static void main (String [] args)

DECLARE an int variable to hold the number of user guesses, named numOfGuesses

COMPUTE a random number between 0 and 4 that will be the starting location cell position

WHILE the dot com is still alive :

GET user input from the command line

The SimpleDotComGame
needs to do this:

1.Make the single
SimpleDotCom Object.

2.Make a location for it (three
consecutive cells on a single
row of seven virtual cells).

3. Ask the user for a guess.
4.Check the guess.

5.Repeat until the dot com is
dead .

6.Tell the user how many
guesses it took.

A complete game interaction

File Edit Window Help Runawa

%java SimpleDotComGame

enter a number 2
hit

enter a number 3
hit

enter a number 4
miss

enter a number 1
kill

You took 4 guesses

you are here» 107

p‘st code BRG]

public static void main (String [] args)
DECLARE an int variable to hold the number of user guesses, named numOfGuesses, set it to 0.
MAKE a new SimpleDotCom instance
COMPUTE a random number between 0 and 4 that will be the starting location cell position

MAKE an int array with 3 ints using the randomly-generated number, that number incremented by |,
and that number incremented by 2 (example: 3,4,5)

INVOKE the setlLocationCells() method on the SimpleDotCom instance

DECLARE a boolean variable representing the state of the game, named isAlive. SET it to true

WHILE the dot com is still alive (isAlive == true) :
GET user input from the command line
// CHECK the user guess
INVOKE the checkYourself() method on the SimpleDotCom instance
INCREMENT numOfGuesses variable
// CHECK for dot com death
IF result is “kill”
SET isAlive to false (which means we won't enter the loop again)
PRINT the number of user guesses
END IF
END WHILE
END METHOD

108 chapter5

writing a program

— BULLET POIN‘IEQ

= Your Java program should start with a high-
level design.

= Typically you'll write three things when you
create a new class:

prepcode
testcode
real (Java) code

= Prepcode should describe what to do, not how
to do it. Implementation comes later.

= Use the prepcode to help design the test
code.

= \Write test code before you implement the
methods.

Choose for loops over while loops when you
know how many times you want to repeat the
loop code.

Use the pre/post increment operator to add 1
to a variable (x++;)

Use the pre/post decrement to subtract 1 from
a variable (x--;)

Use Integer.parseInt() togettheint
value of a String.

Integer.parseInt () works only if the
String represents a digit (“0”,"1","2”, etc.)

Use break to leave a loop early (i.e. even if
the boolean test condition is still true).

How many
hits did you get
last month?

Including
repeat visitors?

Fowdy from Ghost Town

you are here »

109

prep code test code

The game’s main() method

Just as you did with the SimpleDotCom class, be thinking about parts of this code
you might want (or need) to improve. The numbered things are for stuff we
want to point out. They’re explained on the opposite page. Oh, if you’re wonder-
ing why we skipped the test code phase for this class, we don’t need a test class for
the game. It has only one method, so what would you do in your test code? Make

a separate class that would call main() on this class? We didn’t bother.

public static void main(String[] args) {

DECLARE a vari-
able to hold user
guess count, set it
to 0

MAKE a SimpleDot
Com object

COMPUTE a
random number
between 0 and 4

MAKE an int array
with the 3 cell loca-
tions, and

INVOKE setlLoca-
tionCells on the dot
com object
DECLARE a bool-
ean isAlive
WHILE the dot
com is still alive
GET user input

// CHECK it
INVOKE checkYo-
urself() on dot com

INCREMENT
numOfGuesses

IF result is "kill”

SET gameAlive to
false

PRINT the number

of user guesses

110

aviable to beatk how

make 2 ¥ Lhe user makes

s
int numOfGuesses = 0; many Quesse

this is a special ¢lass we wrote that has
the method for getting user input. for
now, pretend it's part of Java

GameHelper helper = new GameHelper() ;

SimpleDotCom theDotCom = new SimpleDotCom(); <—

int randomNum = (int) (Math.random() * 5);

int[] locations = {randomNum, randomNum+l, randomNum+2};
theDotCom. setLocationCells (locations) ;

boolean isAlive = true;

while (isAlive == true) {
String guess = helper.getUserInput(“enter a number”) ;
String result = theDotCom.checkYourself (guess) ;
numOfGuesses++;
if (result.equals(“kill”)) {
isAlive = false;

System.out.println(“You took “ + numOfGuesses + “ guesses”);

writing a program

prep code test code

random() and getUserlnput()

Two things that need a bit more
explaining, are on this page. This is
just a quick look to keep you going;
more details on the GameHelper
class are at the end of this chapter.

Make a random
number

int randomNum = (int) (Math.random() * §)

Getting user input
o using the GameHelper
class

111

prep code test code BE=CUGHL!

One last class: GameHelper

112

Let’s play

Here's what happens when we
run it and enter the numbers
1,2,3,4,5,6. Lookin' good.

A complete game inferaction
(your mileage may vary)

File Edit Window Help Smile

% java SimpleDotComGame

enter a number 1
miss

enter

miss

enter

miss

enter

hit

enter

hit

enter a number
kill

You took 6 guesses

writing a program

What's this? A bug?

Gasp!
Here's what happens when we
enter 1,1,1.

A different game interaction
(yikes)

File Edit Window Help Faint
%java SimpleDotComGame

enter a number 1
hit
enter a number 1
hit
enter a number 1
kill

You took 3 guesses

@ harpen our pencil -
S y

It’s a cliff-hanger!
Will we find the bug?
Will we fix the bug?

Stay tuned for the next chapter, where we answer
these questions and more...

And in the meantime, see if you can come up with
ideas for what went wrong and how to fix it.

you are here »

113

for loops

More about for loops

We’ve covered all the game code for this chapter (but we’ll pick it up again
to finish the deluxe version of the game in the next chapter). We didn’t
want to interrupt your work with some of the details and background info,
so we put it back here. We’ll start with the details of for loops, and if you're
a C++ programmer, you can just skim these last few pages...

Regular (non-enhanced) for loops

{ihc Code £°

repeat goes), ere

\’os{:—intrcm:n{: operator he b°d)‘)

v
for (int i = O; w it++){}
P

initialiZation boolean test itevation expression

What it means in plain English: “Repeat 100 times.”
How the compiler sees it:

* create a variable jand set it to 0.

* repeat while i is less than 100.

* at the end of each loop iteration,add 1 to i

Part One:initialization

Use this part to declare and initialize a variable to use within the loop body.
You'll most often use this variable as a counter.You can actually initialize more
than one variable here, but we'll get to that later in the book.

Part Two: boolean test

This is where the conditional test goes. Whatever's in there, it must resolve to a
boolean value (you know, true or false).You can have a test, like (x >=4), or you
can even invoke a method that returns a boolean.

Part Three: iteration expression

In this part, put one or more things you want to happen with each trip through
the loop. Keep in mind that this stuff happens at the end of each loop.

114 chapter 5

repeat for 100 reps:

Trips through aloop o

for (int i = 0; i < 8; i++) {

System.out.println (i) ;

}
System.out.println(“done”) ;
declare int i
setito0

/

enter loop
body

Y
print the value

print “done” of i
(jump below loop)

Y
increment i
(the iteration [—
expression)

Difference between for and while
— —_—

A while loop has only the boolean test; it doesn’t have
a built-in initialization or iteration expression. A while
loop is good when you don’t know how many times to
loop and just want to keep going while some condi-
tion is true. But if you know how many times to loop
(e.g.the length of an array, 7 times, etc.), a for loop is
cleaner.Here's the loop above rewritten using while:

. s = . we havc
int i 0; &ﬁinifialia%hf?’arc and
while (i < 8) { ounter

System.out.println (i) ;
it+; € " have {, iner
the Counte, ement

}

System.out.println(“done”) ;

writing a program

output:

File Edit Window Help

%$java Test

0

++ -

Pre and Post Increment/Decrement Operator

The shortcut for adding or subtracting 1 from a variable.
X++;

is the same as:
x =x + 1;

They both mean the same thing in this context:

“add 1 to the current value of X" or “increment x by 1”

And:

X--j;
is the same as:
x =x - 1;

Of course that’s never the whole story.The placement of the
operator (either before or after the variable) can affect the re-
sult. Putting the operator before the variable (for example, ++x),
means,“first,increment x by 1, and then use this new value of x.”
This only matters when the ++x is part of some larger expres-
sion rather than just in a single statement.
int x = 0; int z = ++x;
produces: xis1,zis 1
But putting the ++ after the x give you a different result:
int x = 0; int z = x++;

produces: xis 1, butzis 0! z gets the value of x and then x is
incremented.

you are here» 115

enhanced for

The enhanced for loop

Beginning with Java 5.0 (Tiger), the Java language has a second kind of forloop
called the enhanced for, that makes it easier to iterate over all the elements in an
array or other kinds of collections (you’ll learn about other collections in the next
chapter). That’s really all that the enhanced for gives you—a simpler way to walk
through all the elements in the collection, but since it’s the most common use of a
forloop, it was worth adding it to the language. We’ll revisit the enhanced for loop in
the next chapter, when we talk about collections that aren’t arrays.

The ¢
Declave an itecation variable The ¢olop, ¢, P ea;::: 71
that will hold a single element means wpm (the body). "' °

in the avrray: \l / é

for (String name : nameArray) {}
With IcELh iteration, ’K

ant o iterate over

The elements in the diffevent element The collection of elements {\'ihi{z:: z; de said:

array MUST be ?h fhe aveay will |magine that somewhere eavclier, . g o1

compatible with the be assigned {o the nol] nameferay = {“Fred”, “‘Mary, DO 2 of
declared variable type. yaviable “pame. - Stringld nam the name vavigble has the value

With the fiest ikevation, e of © Mary', ekt

tevation, 3V
“Fred’, and with the second itevation
What it means in plain English: “For each element in nameArray, assign the
element to the ‘name’variable, and run the body of the loop.”

How the compiler sees it: Note: depending on the
* Create a String variable called name and set it to null. Fv?r.am"i"S '3"5"33‘ fhcy'vc
used in the past, some PCOF'C
* Assign the first value in nameArray to name. reter £o the enhanted for 35

.ﬂ’\)c “for each” or the “for

* Run the body of the loop (the code block bounded by curly braces). in |°o‘:: betause that's how it
* Assign the next value in nameArray to name. reads: “for EACH {:hing IN the
collection...”

* Repeat while there are still elements in the array.

Part One: iteration variable declaration

Use this part to declare and initialize a variable to use within the loop body. With each
iteration of the loop, this variable will hold a different element from the collection.The
type of this variable must be compatible with the elements in the array! For example,
you can't declare an int iteration variable to use with a String[] array.

Part Two: the actual collection

This must be a reference to an array or other collection. Again, don't worry about the
other non-array kinds of collections yet—you'll see them in the next chapter.

116 chapter 5

Converting a String to an int

int guess = Integer.parselnt(stringGuess);

The user types his guess at the command-
line, when the game prompts him.That
guess comes in as a String (“27"07 etc.),
and the game passes that String into the
checkYourself() method.

But the cell locations are simply ints in an
array,and you can’t compare an int to a
String.

For example, this won’t work:
String num ="2";

intx=2;

if (x ==num) // horrible explosion!

Trying to compile that makes the compiler
laugh and mock you:

operator == cannot be applied to
int,java.lang.String

if (x == num) { }

A

So to get around the whole apples and
oranges thing, we have to make the String
“2"into the int 2. Built into the Java class
library is a class called Integer (that’s right,
an Integer class, not the int primitive),

and one of its jobs is to take Strings that
represent numbers and convert them into
actual numbers.

) t\ass *«\‘3{" shigs

it Java takes a S{:ring

l

Integer.parseInt (¢“3”)

3 method in the [nteger
ﬁlass that knows how to
Parse” a String into th
int it rc?rcscn"?s' o

writing a program

Casting
primitives

In chapter 3 we talked about the sizes of the various primitives, and how you
can't shove a big thing directly into a small thing:
long y = 42;
int x = y; // won’t compile

A long is bigger than an int and the compiler can’t be sure where that long has
been. It might have been out drinking with the other longs, and taking on really
big values. To force the compiler to jam the value of a bigger primitive variable
into a smaller one, you can use the cast operator. It looks like this:

long y = 42; // so far so good
int x = (int) y; // x = 42 cool!

Putting in the cast tells the compiler to take the value of y, chop it down to int
size, and set x equal to whatever is left. If the value of y was bigger than the
maximum value of x, then what's left will be a weird (but calculable*) number:

long y = 40002;
// 40002 exceeds the 16-bit limit of a short

short x = (short) y; // x now equals -25534!
Still, the point is that the compiler lets you do it. And let’s say you have a float-
ing point number, and you just want to get at the whole number (int) part of it:

float £ = 3.14f;

int x = (int) £; // x will equal 3

And don’t even think about casting anything to a boolean or vice versa—just
walk away.

*It involves sign bits, binary, ‘two’s complement’ and other geekery, all of which
are discussed at the beginning of appendix B.

117

exercise: Be the JVM

class Output {

public static void main(String [] args) {
Output o = new Output();

0.90();

void go() {
int vy = 7;
for(int x = 1; x < 8; x++) {

yt+;

if (x > 4) {

System.out.print(++y + “ “);

}

if (y > 14) {
System.out.println(” x = “ + x);

break;

}

118 chapter5

BE the JVM

7 The Java file on this page

& represents a complete source
file. Your job is to play JVM
 and determine what would he

- the output when the
program runs?

File Edit Window Help OM

% java Output
12 14

or'

File Edit Window Help Incense

% java Output
1214 x=6

or‘

File Edit Window Help Believe

% java Output
1315x=6

writing a program

Code Magnets

A working Java program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working Java program that
produces the output listed below? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as many of
those as you need!

if(x==1){'

System.out.println(x + “ “ + y);

for(int y = 4i ¥ > 2; y=) 4

for(int x = 0; x < 4; x++) { '

File Edit Window Help Raid

java MultiFor

you are here» 119

puzzle: JavaCross

20 21

22

23 24

25

26 27

28

29

Across

1. Fancy computer word
for build

4. Multi-part loop

6. Test first

7. 32 bits

10. Method’s answer
11. Prepcode-esque
13. Change

15. The big toolkit
17. An array unit

18. Instance or local

120

20. Automatic toolkit

22. Looks like a primitive,
but..

25. Un-castable
26. Math method
28. Converter method

29. Leave early

Down
2. Increment type
3. Class's workhorse

5. Preis a type of

6. For'siteration

7. Establish first value
8. While or For

9. Update an instance variable

12. Towards blastoff
14. A cycle
16. Talkative package

19. Method messenger
(abbrev.)

JovaCrass

How does a crossword puzzle
help you learn Java? Well, all
of the words are Java related.
In addition, the clues provide
metaphors, puns,and the like.
These mental twists and turns
burn alternate routes to Java
knowledge, right into your
brain!

21. Asif

23. Add after

24. Pihouse

26. Compileitand
27. ++ quantity

writing a program
A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left), with the output that you'd see if the block
Mixed were inserted. Not all the lines of output will be used, and some
D’ixe of the lines of output might be used more than once. Draw lines
essages connecting the candidate blocks of code with their matching
command-line output.
class MixFor5 {
public static void main(String [] args) {
int x = 0;
int y = 30;
for (int outer = 0; outer < 3; outer++) {
for(int inner = 4; inner > 1; inner--) {
_ _ [
Y =Y 2/ 3°C$ hey- °dc
. (4
if (x == 6) {
break;
}
be X + 3;
}
y =y - 2;
}
System.out.println(x + “ Y + vy);
}
}
Candidates: Possible output:
x =x+ 3; 45 6 mateh each
(,ahd.‘da*’c W\"Z\\
X =x + 6; 36 6 ok the
one {_'s
x = x + 2 54 6 ?oss.\b\c O\A‘kY\A
X++; 60 10
X—=7 18 6
x =x + 0; 6 14
12 14

121

exercise solutions

l& Exereise Solutions

Be the JVM:

class Output {

public static void main(String [] args) {
Output o = new Output();
0.90();
}
void go() {
int y = 7;
for(int x = 1; x < 8; x++) {
y++;
if (x > 4) {
System.out.print(++y + “ “);
}
if (y > 14) {
System.out.println(” x = “ + xX);

break;

} Did you remember to factor in the
break statement? How did that
affect the output?

File Edit Window Help MotorcycleMaintenance

% java Output
1315 x =6

122 chapter5

Code Magnets:

class MultiFor {
public static void main(String [] args) {
for(int x = 0; x < 4; x++) {

for(int vy = 4; y > 2; y--) {
System.out.println(x + “ “ + y);

What would happen
if this code block came
} before the 'y’ for loop?

if (x == 1) {

File Edit Window Help Monopole

java MultiFor

% Puzz]e Selutions

|

ImPIL[EM[EINIT] M
] R FloRr] _E
ExX[TRIEME] ~ — Ip IIN[T
X] Ll [s| RIEITIVIRIN|] [H
Plslelu[dlolclolblE] IR Lg
R| |E| ol || lclalslT] [T| [D
E| 1| [¢| [AlPT] [T| [T I
s| [T| IR Al O A
's| [E[LIEMEINIT] ['"VIAIR[T|A[B]L |E]
I [R] M A R| |T|
ol (Al E| [T[AV]A].[L|AN]G] |Z]
IN] [T] N I| |I E
"IN|TIE|GIEIR] [Q P i
o) T| B[O|OILE AN
R|AIN[D[O|M] U S T
U N PIAIR[SIEITN|T H]
N| B[R[E|A[K] |L
Candidates: Possible output:
X = x + 3; 45 6
X =X + 6; 36 6
X =x + 2; 54 6
SiARR 60 10
X——; 18 6
x =x + 0; 6 14

12 14

writing a program

123

6 get to know the Java API

Using the Java Library

So it's true?
We don't have to
build it ourselves?

Java ships with hundreds of pre-built classes. You don't have to
reinvent the wheel if you know how to find what you need in the Java library, known as

the Java APL. You've got better things to do.If you're going to write code, you might as well
write only the parts that are truly custom for your application.You know those programmers
who walk out the door each night at 5 PM? The ones who don’t even show up until 10 AM?
They use the Java API. And about eight pages from now, so will you.The core Java library
is a giant pile of classes just waiting for you to use like building blocks, to assemble your own
program out of largely pre-built code. The Ready-bake Java we use in this book is code you
don't have to create from scratch, but you still have to type it. The Java API is full of code you

don't even have to type. All you need to do is learn to use it.

this is a new chapter 125

we still have a bug

In our last chapter, we left you
with the cliff-hanger. A bug.

How it’s supposed to look How the bug looks
Here's what happens when we Here's what happens when we
run it and enter the numbers enter 2,2,2.

1,2,3,4,5,6. Lookin' good.

A complete game inferaction A different game interaction
(your mileage may vary) (yikes)

File Edit Window Help Smile File Edit Window Help Faint

%$java SimpleDotComGame

% java SimpleDotComGame

enter a number 2

hit

enter a number 1
miss
enter a number 2

hit

enter
miss
enter a number 2
kill

enter

miss

You took 3 guesses

enter

hit

enter

hit In the current version, once
enter you get a hit, you can simply
kill repeat that hit two more
You took 6 guesses times for the kill!

126 chapter 6

get to know the Java API

So what happened?

Here’s where it
goes wrong. We

counted a hit every ——»

time the user
guessed a cell
location, even if
that location had
already been hit!

We need a way to
know that when

a user makes

a hit, he hasn’t
previously hit that
cell. If he has, then
we don’t want to
count it as a hit.

public String checkYourself (String stringGuess) {

int guess = Integer.parselnt (stringGuess); ¢— CO"V"{:{H’C S‘l:\ring
an int.

Make a variable 4o hold the vesult we'll
return. Put “iss” in as the default

G.
€. we assume 3 “miss”).

String result = “miss”;

for (int cell : locationCells) ({

T ’E:Peaf with each
ing in ¢
< ComFaV'c ‘l‘,hc usey he a”.a)"

9uess £o +his element
(eell), in the array.

break; ‘6\ 66'6 O(A'é O‘F
to test the other eells.

‘(th ’ooP,

ho need
} // end if

} // end for

if (numOfHits == locationCells.length) { <\Wc'vrc t of the |

e ou e loop, but
let’s see if we've now ‘dead’
(hit 3 times) and changc the
result S{:\ring to “%ill”.

result = “kill”;
} // end if

System.out.println(result); “—_ Disyla\/ the vesult for the user
(“wmiss”, unless it was thanged to “hit” or “kill").
return result;

- Return the vesult back 4o

} // end method the Ca”ihg method.

you are here » 127

fixing the bug

How do we fix it?

We need a way to know whether a cell has already been hit. Let's run
through some possibilities, but first, we'll look at what we know so far...

We have a virtual row of 7 cells, and a DotCom will occupy three
consecutive cells somewhere in that row. This virtual row shows a
DotCom placed at cell locations 4,5 and 6.

&— Thevirgg),
%.% gcdl Io¢;fe;°:ow1,cow,th the

0 1 2 3 4 5 6 ot

The DotCom has an instance variable—an int array—that holds that
DotCom object's cell locations.

4 3 6
The arvay ;

E holds ﬂ,cylj"zfa"c,c variable ¢ha¢
locationCells This Dot otCom’s ¢l lotations
(instance variable of 0 | 1 | 2 |) 5, and 60"",-:0“5 the 3 values op
the DotCom) . he user needs f‘:;:;i the Numbey-

@ Option one
We could make a second array, and each time the user makes a hit, we
store that hit in the second array, and then check that array each time
we get a hit, to see if that cell has been hit before.

avray (locationCells) has bamc i"z:dc>< i the OTH

een hit.
false false true

(this would be a otation cells arr @

new boolean array | eell at ind L
instance variable of the “hite CT’:,,%;;;}"JC% Jcbcn se
the DotCom) Y to ‘true’

A (‘{;ruc' in a pa 'l: .
\(the cell ’oéa{;i':,nra"‘c:uv'ti:éhf S in the arvay means that

) This arvry h ,d
nitcells array Iﬁ |h ﬁ] | T e e s v
0 1

ER

tCom’s

ay. For example, if the
t index 2. in

128

get to know the

Option one is too clunky

Option one seems like more work than you'd expect. It means that each
time the user makes a hit, you have to change the state of the second
array (the 'hitCells’ array), oh -- but first you have to CHECK the 'hitCells’
array to see if that cell has already been hit anyway. It would work, but
there's got to be something better...

@ Option two
We could just keep the one original array, but change the value of any hit
cells to -1. That way, we only have ONE array to check and manipulate

s already been hit

S
U1

the array.

locationCells
(instance variable of 0 | 1 | 2 |
the DotCom)

a-| i
Ve at a particular e lotation means that the cell

)
. SO we v .
=1 negative numbers i f ¢ Oh’y ’°°k'"3 oF non—

Option two is a little better, but
still pretty clunky

Option two is a little less clunky than option one, but it's not very efficient. You'd
still have to loop through all three slots (index positions) in the array, even if
one or more are already invalid because they've been 'hit' (and have a -1 value).
There has to be something better...

129

The original prepcode for part of the
checkYourself() method:

Life would be good if only we could
change it to:

REPEAT with each of the location cells in the int array —} REPEAT with each of the remaining location cells

/I COMPARE the user guess to the location cell
IF the user guess matches

INCREMENT the number of hits

/I COMPARE the user guess to the location cell

IF the user guess matches

// FIND OUT if it was the last location cell:

} REMOVE this cell from the array
// FIND OUT if it was the last location cell:

IF number of hits is 3, RETURN "kill”
ELSE it was not a kill, so RETURN"hit”
END IF
ELSE user guess did not match, so RETURN “miss”
END IF
END REPEAT

130

} IF the array is now empty, RETURN "“kill"
ELSE it was not a kill, so RETURN"hit”
END IF
ELSE user guess did not match, so RETURN “miss”
END IF
END REPEAT

get to know the Java API

If only I could find an array
that could shrink when you remove
something. And one that you didn't have
to loop through to check each element, but
instead you could just ask it if it contains
what you're looking for. And it would let you
get things out of it, without having to know
exactly which slot the things are in.
That would be dreamy. But I know it's
just a fantasy...

you are here» 131

when arrays aren’t enough

Wake up and smell the library

As if by magic, there really is such a thing.
But it’s not an array, it’s an ArraylList.

A class in the core Java library (the API).

The Java Standard Edition (which is what you have unless you’re work-
ing on the Micro Edition for small devices and believe me, you'd know)
ships with hundreds of pre-built classes. Just like our Ready-Bake code
except that these built-in classes are already compiled.

That means no typing.

Just use ‘em.

One of a gazillion ¢lasses in
the Java libvar\/.

You tan use it in your tode

as if You wrote it \/owscll(:.

132 chapter 6

get to know the Java API

Sowe things you can do with Arraylist

@

&)

. anale—bracket syntax
Don't worvy about this new <E2?\: ah?'ns{ o E% ob")t eks.

«
Make one s vight now; it just mears make ,
ArrayList<Egg> myList = new ArrayList<Egg>(); PrvayList Jojett .\s\\H:\c
f hxcd on the heat: It
L\:cecavsc ws empty

Put something in it

Egg s = new Egg(); - —_j

myList.add(s) ;

- “b°$’)
Now the AY'Y‘a\ILlS‘{',. grows 3
d {:: hold the Eog ob\)cch
o |

"

Put another thing in it

The Avvaylist

he secohdy E33 2;;’::{ .aSain to hold

Egg b = new Egg();

myList.add (b) ;

Find out how many things are in it The AvrayList is holding L objetts so
int theSize = myList.size(); H fhe size() method vetums &

List DOES tontain the Egg ob\')cd:

Find out if it contains something The Arvay Laims) vetuens true
ns

)
. . . ¢
boolean isIn = mylList.contains (s) vefeented by s, so ton

. fiest index is 0)
. ayList is uro——baSCd (means ‘,
Find out where something is (i.e. its index) ﬁ\:; chc the dbjeck vebevenced by ‘b’ vas the

int idx = myList.indexOf (b); setond thing in the hist, index0f0) vetuens L

Find out if it's empty it's dc«cinifely NoT CmP'l;\/,

. . so isEmpty()
boolean empty = myList.isEmpty () ; (chwns alse

Remove something from it

myList.remove (s) ;

you are here» 133

when arrays aren’t enough

@wSharpen your pencil
i’ your p

Fill in the rest of the table below by looking at the ArrayList code
on the left and putting in what you think the code might be if it
were using a regular array instead. We don't expect you to get all

of them exactly right, so just make your best guess.

Arraylist

regular array

ArrayList<String> myList = new
ArrayList<String>();

S‘{;\ring (] m\/Lis{: = new S{:ring[l],’

String a = new String(“whoohoo”);

S‘{:ring a = new S{:ring(“whoohoo"),‘

myList.add(a);

String b = new String (“Frog”);

String b = new S{:v-ing(“Frog"),’

nyList.add (b) ;

int theSize = myList.size();

Object o = myList.get(1l);

myList.remove (1) ;

boolean isIn = myList.contains (b);

134

therejare no
Dumb uestions

Q: So ArrayList is cool, but
how would | know it exists?

A:The question is really,
“How do | know what's in the

API?” and that’s the key to your
success as a Java programmer.
Not to mention your key to
being as lazy as possible while
still managing to build software.
You might be amazed at how
much time you can save when
somebody else has already done
most of the heavy lifting, and

all you have to do is step in and
create the fun part.

But we digress... the short
answer is that you spend some
time learning what's in the core
API. The long answer is at the
end of this chapter, where you'll
learn how to do that.

Q: But that’s a pretty big
issue. Not only do | need to
know that the Java library
comes with ArrayList, but more
importantly | have to know
that ArrayList is the thing that
can do what | want! So how

do | go from a need-to-do-
something to a-way-to-do-it
using the API?

A: Now you're really at the
heart of it. By the time you've
finished this book, you'll have

a good grasp of the language,
and the rest of your learning
curve really is about knowing
how to get from a problem to

a solution, with you writing the
least amount of code. If you can
be patient for a few more pages,
we start talking about it at the
end of this chapter.

get to know the

Java Exposed
This week’s interview:
ArrayList, on arrays

HeadFirst: So, ArrayLists are like arrays, right?
ArrayList: In their dreams! I am an object thank you very much.

HeadFirst: If I'm not mistaken, arrays are objects too. They live on the heap right
there with all the other objects.

ArrayList: Sure arrays go on the heap, duh, but an array is still a wanna-be
ArrayList. A poser. Objects have state and behavior, right? We’re clear on that. But
have you actually tried calling a method on an array?

HeadFirst: Now that you mention it, can’t say I have. But what method would I
call, anyway? I only care about calling methods on the stuff I put i the array, not
the array itself. And I can use array syntax when I want to put things in and take
things out of the array.

ArrayList: Is that so? You mean to tell me you actually removed something from an
array? (Sheesh, where do they train you guys? McJava’s?)

HeadFirst: Of cowrse I take something out of the array. I say Dog d = dogArray|[1]
and I get the Dog object at index 1 out of the array.

ArrayList: Allright, I'll try to speak slowly so you can follow along. You were not,
I repeat not, removing that Dog from the array. All you did was make a copy of the
reference to the Dog and assign it to another Dog variable.

HeadFirst: Oh, I see what you’re saying. No I didn’t actually remove the Dog
object from the array. It’s still there. But I can just set its reference to null, I guess.

ArrayList: But 'm a first-class object, so I have methods and I can actually, you
know, do things like remove the Dog’s reference from myself, not just set it to null.
And I can change my size, dynamically (look it up). Just try to get an array to do that!

HeadFirst: Gee, hate to bring this up, but the rumor is that you’re nothing more
than a glorified but less-efficient array. That in fact you’re just a wrapper for an
array, adding extra methods for things like resizing that I would have had to write
myself. And while we’re at it, you can’t even hold primitives! Isn’t that a big limitation?

ArrayList: T can’t belicve you buy into that urban legend. No, I am not just a less-
efficient array. I will admit that there are a few extremely rare situations where an
array might be just a tad, I repeat, lad bit faster for certain things. But is it worth the
miniscule performance gain to give up all this power. Still, look at all this flexibility. And
as for the primitives, of course you can put a primtive in an ArrayList, as long as it’s
wrapped in a primitive wrapper class (you’ll see a lot more on that in chapter 10).
And as of Java 5.0, that wrapping (and unwrapping when you take the primitive out
again) happens automatically. And allright, I'll acknowledge that yes, if you’re using an
ArrayList of primitives, it probably is faster with an array, because of all the wrapping
and unwrapping, but still... who really uses primitives these days?

Oh, look at the time! I’m late for Pilates. We’ll have to do this again sometime.

135

difference between ArrayList and array

Comparing Arraylist to a reqular array

Arraylist

regular array

ArrayList<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = new String(“whoohoo”);

String a = new String(“whoohoo”) ;

myList.add(a);

myList[0] = a;

String b = new String(“Frog”);

String b = new String(“Frog”);

myList.add (b) ;

myList[1l] = b;

int theSize = myList.size();

int theSize = myList.length;

ece's wheve i

Object o = myList.get(1l);

\ook

String o = myList[1]; \skavkﬁ*ﬁ

\ ‘(ca\\\[d'\ucvm’c...

myList.remove (1) ;

myList[1l] = null;

boolean isIn = myList.contains (b);

boolean isIn = false;
for (String item : myList) {
if (b.equals(item)) {

isIn = true;

break;

Notice how with ArrayList, you’re working
with an object of type ArrayList, so you’re just
invoking regular old methods on a regular old
object, using the regular old dot operator.

136

With an array, you use special array syntax (like
myList[0] = foo) that you won’t use anywhere
else except with arrays. Even though an

array is an object, it lives in its own special
world and you can’t invoke any methods on
it, although you can access its one and only
instance variable, length.

@ A plain old array has to know its

size at the time it’s created.

But for ArrayList, you just make an object of
type ArrayList. Every time. It never needs to
know how big it should be, because it grows

get to know the

Cowmparing Arraylist to a reqular array

@ Arrays use array syntax that’s not

used anywhere else in Java.

But ArrayLists are plain old Java objects, so
they have no special syntax.

and shrinks as objects are added or removed. myList[1]

v\ .)

e e The avray bratkets [] ave spetid
S\/n{:a% used only £or avvays:

new ArrayList<String> ()

No size required (although You ean
givc it a size 'vc Yyou want to).

@ ArrayLists in Java 5.0 are
@ To put an object in a regular array, parameterized.

you must assign it to a specific We just said that unlike arrays, ArrayLists

location. .
. have no special syntax. But they do use
(An index from 0 to one less than the length of something special that was added to Java 5.0
the array.) Tiger—parameterized types.
myList[1l] = b;

Q ArrayList<String>

Needs an index- The <String> in angle brackets is a “type

parameter”. AvvayList<String> means simply “a

list of S{:\rings", as opposed to Arra\/Lis{:<Dog>
which means, “a list of Dogs".

Prior to Java 5.0, there was no way to declare
the #ype of things that would go in the
ArrayList, so to the compiler, all ArrayLists
were simply heterogenous collections of
objects. But now, using the <typeGoesHere>

If that index is outside the boundaries of the
array (like, the array was declared with a size of
2, and now you’re trying to assign something
to index 3), it blows up at runtime.

With ArrayList, you can specify an index us-
ing the add(anint, anObject) method, or you
can just keep saying add(anObject) and the
ArrayList will keep growing to make room for
the new thing. syntax, we can declare and create an
myList.add (b); ArrayList that knows (and restricts) the

/& types of objects it can hold. We’ll look at the
details of parameterized types in ArrayLists
in the Collections chapter, so for now, don’t
think too much about the angle bracket <>
syntax you see when we use ArrayLists. Just
know that it’s a way to force the compiler to
allow only a specific type of object (the type in
angle brackets) in the ArrayList.

No index.

137

prep code test code BEEUGTHLL

Let’s fix the PotCom code.

138

get to know the

prep code test code

New and improved DotCom class

import java.util.ArrayList;

public class DotCom {

private ArrayList<String> locationCells;
// private int numOfHits;
// don’t need that now

public void setLocationCells (ArrayList<String> loc) {
locationCells = loc;

}

public String checkYourself (String userInput) {

String result = “miss”;
int index = locationCells.indexOf (userInput) ;

if (index >= 0) {

locationCells. remove (index) ;

if (locationCells.isEmpty()) {

result = “kill”;
} else {
result = “hit”;

} // close if
} // close outer if
return result;

} // close method
} // close class

139

making the DotComBust

Let’s build the REAL gawe:
“Sink a Dot Com”

We’ve been working on the ‘simple’ version, but now
let’s build the real one. Instead of a single row, we’ll
use a grid. And instead of one DotCom, we’ll use
three.

Goal: Sink all of the computer’s Dot Coms in the
fewest number of guesses. You’re given a rating level
based on how well you perform.

Setup: When the game program is launched, the
computer places three Dot Coms, randomly, on the
virtual 7 x 7 grid. When that’s complete, the game
asks for your first guess.

How you play: We haven’t learned to build a GUI
yet, so this version works at the command-line. The
computer will prompt you to enter a guess (a cell),
which you’ll type at the command-line (as “A3”, “C5”,
etc.). In response to your guess, you’ll see a result at
the command-line, either “hit”, “miss”, or “You sunk
Pets.com” (or whatever the lucky Dot Com of the day
is). When you’ve sent all three Dot Coms to that big
404 in the sky, the game ends by printing out your
rating.

eaC\‘ bo*))
T X7 grid < aitd

A 4//
Bl g
| o

")
D| U Pets.com
E
F
G Asl*Me.com

0 1 2 3 4 5 6

’K starts at zevo, like Java avrays

140 chapter 6

You’re going to build the
Sink a Dot Com game, with
a7 x7 grid and three
Dot Coms. Each Dot Com
takes up three cells.

part of a game interaction

File Edit Window Help Sell

%$java DotComBust
Enter a guess A3
miss

Enter guess
miss

Enter a guess
miss

Enter guess

hit

Enter a guess D3

hit

Enter a guess D4
Ouch! You sunk Pets.com
kill

Enter a guess
miss

Enter a guess

hit

Enter a guess

hit

Enter a guess G5

Ouch! You sunk AskMe.com

What needs to change?

We have three classes that need to change: the ®
DotCom class (which is now called DotCom instead of
SimpleDotCom), the game class (DotComBust) and the

game helper class (which we won’t worry about now).

Q DotCom class

® Add a name variable
to hold the name of the DotCom
(“Pets.com”, “Go2.com”, etc.) so each Dot-
Com can print its name when it’s killed (see
the output screen on the opposite page). ®©

G DotComBust class (the game)

® Create three DotComs instead of one.

® Give each of the three DotComs a name.
Call a setter method on each DotCom
instance, so that the DotCom can assign the ©
name to its name instance variable.

get to know the

DotComBust class continued...

Put the DotComs on a grid rather than

just a single row, and do it for all three
DotComs.

This step is now way more complex than
before, if we’re going to place the DotComs
randomly. Since we’re not here to mess
with the math, we put the algorithm for
giving the DotComs a location into the
GameHelper (Ready-bake) class.

Check each user guess with all three
DotComs, instead of just one.

Keep playing the game (i.e accepting

user guesses and checking them with the
remaining DotComs) until there are no more
live DotComs.

Get out of main. We kept the simple one in
main just to... keep it simple. But that’s not
what we want for the real game.

3 Classes:

DotCom

DotComBust

GameHelper

The game class. The actual

Makes DotComs,

The helper class
(Ready-Bake).

5 Objects:

gets user input,
plays until all Dot-
Coms are dead

DotComBust

DotCom objects.
DotComs know their
name, location, and
how to check a user
guess for a match.

It knows how to
accept user com-
mand-line input,
and make DotCom
locations.

Do\
Do
DotCom

GameHelper

Plus 4
ArraylLists: 1 for
the DotComBust
and 1 for each
of the 3 DotCom
objects.

141

detailed structure of the game

Who does what in the DotComBust game

(and when)

DotComBust

The game instantiates N
o class. Vd

— DotComBust

instantiates

GameHelper
object

DotComBust
object

GameHelper
object

DotComBust
object

object

ArrayList object (to
hold DotCom objects)

142

The main() method

in the DotComBust

class instantiates the
DotComBust object that
does all the game stuff.

The DotComBust (game)
object instantiates an
instance of GameHelper,
the object that will help
the game do its work.

The DotComBust object
instantiates an ArrayList
that will hold the 3 DotCom
objects.

get to know the Java API

The DotComBust object
creates three DotCom
objects (and puts them in
the ArrayList)

GameHelper
object

DotComBust - .
object ArrayList object to
. DotCom
hold DotCom objects objects
The DotComBust object asks the The DotComBust object gives each of the Dot-

Com objects a location (which the DotComBust
got from the helper object) like "A2", "B2",
etc. Each DotCom object puts his own three
location cells in an ArrayList

helper object for a location for a
DotCom (does this 3 times, one for
each DotCom)

e W
GameHelper
object

ArraylList object
(to hold DotCom
cell locations)

ArrayList
object

DotComBust
object
Arraylist
ArrayList object to D object
. otCom
hold DotCom objects objects

The DotComBust object asks the helper The DotComBust object loops through the list
object for a user guess (the helper . of DotComs, and asks each one to check the user
prompts the user and gets input from guess for a match. The DotCom checks its locations

the command-line) ArrayList and returns a result (“hit", “miss”, etc.)

ArrayList object
(to hold DotCom
cell locations)

ArrayList
object

DotComBust
object

ArrayList
object

And so the game continues... get-
ting user input, asking each DotCom ArrayList object to
to check for a match, and continuing hold DotCom objects
until all DotComs are dead

DotCom
objects

you are here» 143

p‘s': o

GameHelper helper
ArrayList dotComsList
int numOfGuesses

setUpGame()
startPlaying()
checkUserGuess()
finishGame()

144 chapter 6

get to know the

METHOD: void checkUserGuess(String userGuess)
/I find out if there's a hit (and kill) on any DotCom
INCREMENT the number of user guesses in the numOfGuesses variable
SET the local result variable (a String) to “miss”, assuming that the user’s guess will be a miss.
REPEAT with each of the DotObjects in the dotComsList array
EVALUATE the user's guess by calling the DotCom object’s checkYourself() method
SET the result variable to “hit"” or “kill” if appropriate
IF the result is “kill”, REMOVE the DotCom from the dotComsList
END REPEAT
DISPLAY the result value to the user
END METHOD

METHOD: void finishGame()
DISPLAY a generic “game over’ message, then:
IF number of user guesses is small,
DISPLAY a congratulations message
ELSE
DISPLAY an insulting one
END IF
END METHOD

145

prep code test code

import java.util.*;
public class DotComBust {

private GameHelper helper = new GameHelper () ;
private ArrayList<DotCom> dotComsList = new ArrayList<DotCom> () ;
private int numOfGuesses = 0;

private void setUpGame () {
// first make some dot coms and give them locations
DotCom one = new DotCom() ;
one.setName (“Pets.com”) ;
DotCom two = new DotCom() ;
two.setName (“eToys.com”) ;
DotCom three = new DotCom() ;
three.setName (“"Go2.com”) ;
dotComsList.add (one) ;
dotComsList.add (two) ;
dotComsList.add (three) ;

System.out.println (“Your goal is to sink three dot coms.”);
System.out.println (“Pets.com, eToys.com, Go2.com”);
System.out.println(“Try to sink them all in the fewest number of guesses”);

for (DotCom dotComToSet : dotComsList) {
ArrayList<String> newLocation = helper.placeDotCom(3) ;
dotComToSet.setLocationCells (newLocation) ;
} // close for loop
} // close setUpGame method

private void startPlaying() ¢
while (!dotComsList.isEmpty()) {
String userGuess = helper.getUserInput (“Enter a guess”);
checkUserGuess (userGuess) ;
} // close while
finishGame () ;

} // close startPlaying method

146 chapter 6

get to know the Java API

prep code test code

private void checkUserGuess (String userGuess) {

numOfGuesses++;

String result = “miss”;

for (DotCom dotComToTest : dotComsList) {

result = dotComToTest.checkYourself (userGuess) ;

if (result.equals (“hit”)) {
break;

}

if (result.equals (“kill”)) {
dotComsList.remove (dotComToTest) ;
break;

}

} // close for
System.out.println(result) ;

} // close method

private void finishGame () ¢
System.out.println(“All Dot Coms are dead!

if (numOfGuesses <= 18) {
System.out.println(“It only took you “ + numOfGuesses + “ guesses.”);

System.out.println(“ You got out before your options sank.”);

Your stock i1s now worthless.”);

} else {
System.out.println (“Took you long enough.
System.out.println(“Fish are dancing with your options.”);

“+ numOfGuesses + “ guesses.”);

}
} // close method

public static void main (Stringl[] args) {
DotComBust game = new DotComBust () ;
game.setUpGame () ;
game.startPlaying() ;

} // close method

rcvca{: with all DotComs in e hsi print the
o, . Print a message telling th |
this 9uy's dead, so take him out of the user how he did in Jch2 Sa:\c Z:Scu u{-;iov-

Do'l:Coms list then gc{: out of the looF

intvement the number of quesses the user has made

¢ it's 3 ‘miss), unless +old otherwise

assum
tell the
9ame obies DotCom 4o thetk the user guess,
2;{',' out of #hgloop 9ame play loop (ﬁ):c tto ffakf the mai, i;skk?:hc(:o: ! ;{ o el
rly, no point in ftsfing nput gnd ¢heckip, Ps ask,,,s for vy ooking

9 the 9uess)

he others

you are here» 147

prep code test code

import java.util.*;
public class DotComBust {

private GameHelper helper = new GameHelper () ;
private ArrayList<DotCom> dotComsList = new ArrayList<DotCom> () ;
private int numOfGuesses = 0;

private void setUpGame () {
// first make some dot coms and give them locations
DotCom one = new DotCom() ;
one.setName (“Pets.com”) ;
DotCom two = new DotCom () ;
two.setName (“eToys.com”) ;
DotCom three = new DotCom() ;
three.setName (“Go2.com”) ;
dotComsList.add (one) ;
dotComsList.add (two) ;
dotComsList.add (three) ;

System.out.println (“Your goal is to sink three dot coms.”);
System.out.println (“Pets.com, eToys.com, GoZ2.com”);

System.out.println (“Try to sink them all in the fewest number of guesses”);

for (DotCom dotComToSet : dotComsList) {
ArrayList<String> newLocation = helper.placeDotCom(3) ;

dotComToSet.setLocationCells (newLocation) ;

} // close for loop
} // close setUpgame method

private void startPlaying() ¢
while (!dotComsList.isEmpty()) {

String userGuess = helper.getUserInput (“Enter a guess”);
checkUserGuess (userGuess) ;

} // close while

finishGame () ;

} // close startPlaying method

148 chapter 6

get to know the Java API

prep code test code

private void checkUserGuess (String userGuess) {
of quesses the user has made

numOfGuesses++; { intrement the numbev

. _— 1S
String result = “miss”; &— assume s a ‘miss, unless told otherwise

. in the list
for (DotCom dotComToTest : dotComsList) { (-_/ rc‘?ca{: with all DO{ZCO"‘S in the li

result = dotComToTest.checkYourself (userGuess); &— ask the Do{;Com to thetk the user
quess, looking for a hit (or kil
if (result.equals(“hit”)) {

get out of the | .
} (i des ‘l:ing the Co J;tscarly, nho Pom‘{:

if (result.equals (“kill”)) {

: this auy’ dead .
dotComsList.remove (dotComToTest) ; 9uy's dead, so take him out of +h
Droak: & DotComs list then get out of the loo;

break;

} // close for

System.out.println(result); K Prm-l: the vesult for the user
} // close method

Print a message telling the
user how he did in the game

private void finishGame () ¢ [
System.out.println(“All Dot Coms are dead! Your stock is now worthless.”);
if (numOfGuesses <= 18) {
System.out.println(“It only took you “ + numOfGuesses + “ guesses.”);
System.out.println(“ You got out before your options sank.”);
} else {
System.out.println (“Took you long enough. “+ numOfGuesses + “ guesses.”);
System.out.println (“Fish are dancing with your options”);
}
} // close method

public static void main (String[] args) {
DotComBust game = new DotComBust () ;
game . setUpGame () ;

treate {), 9ame objec{

game.startPlaying () ; ﬁd’fhe .
} // close method Lell o Jame ob\)“‘é to set up the 9ame
} € 9ame obiep
Jame play | op (IEJ:CPE §°k§£arf the maiy,
input and theckip, the ;u':sﬂ)‘por usey
s,

you are here» 149

prep code test code

The tinal version of the
PotCom class

import java.util.*;

DotCom's instante vaviables:
public class DotCom {

—an Arra\/Lis{: of cell lotations
private ArrayList<String> locationCells;

)
(4
private String name; — the DotCom's nam

public void setLocationCells (ArraylList<String> loc) { &—— A setter me}ihod {:ha{: updates
the DotCom'’s lotation.
e (Random lotation provided by
| the Gamettelper placeDotCom()
method.)

public void setName (String n) ¢—— \{ow basic setter method
name = n;

The AvrayList index0£() method I\h
ionl |£ the user guess is one e
iit::s in the AvrayList, indch(:()(:
{ will veturn its A\r\ra\/Lis{: lotation. |
not, index0£() will vetuen |-

public String checkYourself (String userInput)

String result = “miss”;

int index = locationCells.indexOf (userInput); K
if (index >= 0) {

Using AvrayList’s vemove() method to delete an entry.
locationCells.remove (index) ;K 9 !

if (locationCells.isEmpty()) { R Using the isE’“?'t\/() method to see if all

result = “kill”; of the lotations have been 5ucsscd
System.out.println (“Ouch! You sunk “ + name + O
} else {
result = “hit”; T
ell 'l:he usey
. whe
}// close if ha Do'l:c"”‘ has been sunk.
} // close if

return result; &
Rc{:wh:

miss” or hit’ op kill’
} // close method

} // close class

160 chapter 6

Super Powerful Boolean Expressions

So far, when we've used boolean expressions for our loops or
if tests, they've been pretty simple. We will be using more
powerful boolean expressions in some of the Ready-Bake code
you're about to see, and even though we know you wouldn't
peek, we thought this would be a good time to discuss how to

energize your expressions.

‘And’ and ‘Or’ Operators (&&, ||)

Let's say you're writing a chooseCamera() method, with lots of rules
about which camera to select. Maybe you can choose cameras
ranging from $50 to $1000, but in some cases you want to limit the

price range more precisely. You want to say something like:

If the price range is between $300 and $400 then choose X.'

if (price >= 300 && price < 400) {

camera = “X";

Let’s say that of the ten camera brands available, you have some

logic that applies to only a few of the list:

if (brand.equals(“A”) || brand.equals(“B”)) {
// do stuff for only brand A or brand B

Boolean expressions can get really big and complicated:

if ((zoomType.equals(“optical”) &&

(zoomDegree >= 3 && zoomDegree <= 8)) ||

(zoomType.equals(“digital”) &&

(zoomDegree >= 5 && zoomDegree <= 12))) {

// do appropriate zoom stuff

}

If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert
in the arcane world of precedence, we recommend that you use

parentheses to make your code clear.

get to know the

Not equals (!= and !)
Let's say that you have a logic like,“of the ten available
camera models, a certain thing is true for all but one.”
if (model != 2000) {

// do non-model 2000 stuff

}

or for comparing objects like strings...
if (!brand.equals(“X")) {
// do non-brand X stuff

}

Short Circuit Operators (&&,||)

The operators we've looked at so far, & and ||, are
known as short circuit operators. In the case of &&,
the expression will be true only if both sides of the &&
are true. So if the JVM sees that the left side of a &&
expression is false, it stops right there! Doesn't even
bother to look at the right side.

Similarly, with ||, the expression will be true if either side is
true, so if the JVM sees that the left side is true, it declares
the entire statement to be true and doesn't bother to
check the right side.

Why is this great? Let's say that you have a reference
variable and you're not sure whether it's been assigned

to an object. If you try to call a method using this null
reference variable (i.e.no object has been assigned), you'll
get a NullPointerException. So, try this:

if (refvar != null &&
refVar.isValidType()) {
// do ‘got a valid type’ stuff

}
Non Short Circuit Operators (&, |)

When used in boolean expressions, the & and | operators
act like their & and || counterparts, except that

they force the JVM to always check both sides of the
expression. Typically, & and | are used in another context,
for manipulating bits.

151

Ready-bake: GameHelper

(S =\

This is the helper class for the game. Besides the user input method
Read"'bake (that prompts the user and reads input from the command-line), the
J c (’ helper's Big Service is to create the cell locations for the DotComs.
[Lade If we were you, we'd just back away slowly from this code, except
to type it in and compile it. We tried to keep it fairly small to you
wouldn't have to type so much, but that means it isn't the most

import java.io.*; readable code. And remember, you won't be able to compile the
import java.util.*; DotComBust game class until you have this class.

public class GameHelper {

private static final String alphabet = “abcdefg”;

Note: For extra evedit, you migh{:

private int gridLength = 7; {*Y m“’£°"“‘“£mﬁlthc

private int gridSize = 49; Syﬂxmoutyﬂn£“nysin£hc

private int [] grid = new int[gridSize]; Phtho{Com() mcﬂwd,)u{

private int comCount = 0; £owa£d\ﬂ:wmk!Thucyrm£

public String getUserInput (String prompt) { statements wM|c£you“dwa€'
String inputLine = null; b\/ giving You the lotation of the
System.out.print (prompt + “ “); DofCom;bu{fﬁwﬂlhdpyouﬁa{ib
try {

}

BufferedReader is = new BufferedReader (
new InputStreamReader (System.in));
inputLine = is.readLine();

if (inputLine.length() == 0) return null;
catch (IOException e) {

System.out.println (“IOException: “ + e);

return inputLine.toLowerCase();

public ArrayList<String> placeDotCom(int comSize) {

152

ArrayList<String> alphaCells = new ArrayList<String>();

String [] alphacoords = new String [comSize]; // holds ‘f6’ type coords

String temp = null; // temporary String for concat

int [] coords = new int[comSize]; // current candidate coords

int attempts = 0; // current attempts counter

boolean success = false; // flag = found a good location ?

int location = 0; // current starting location

comCount++; // nth dot com to place

int incr = 1; // set horizontal increment

if ((comCount % 2) == 1) { // 1f odd dot com (place vertically)
incr = gridLength; // set vertical increment

while (!success & attempts++ < 200) { // main search loop (32)
location = (int) (Math.random() * gridSize); // get random starting point
//System.out.print (“ try “ + location) ;
int x = 0; // nth position in dotcom to place
success = true; // assume success
while (success && x < comSize) { // look for adjacent unused spots
if (grid[location] == 0) { // 1f not already used

get to know the Java API

Gamelelper class code continved...

coords [x++] = location; // save location
location += incr; // try ‘next’ adjacent
if (location >= gridSize) { // out of bounds - ‘bottom’
success = false; // failure
}
if (x>0 && (location % gridLength == 0)) { // out of bounds - right edge
success = false; // failure
}
} else { // found already used location
// System.out.print (" used “ + location);
success = false; // failure
}
}
} // end while
int x = 0; // turn location into alpha coords

int row = 0;
int column = 0;

// System.out.println(“\n”) ;
while (x < comSize) {

grid[coords[x]] = 1; // mark master grid pts. as ‘used’
row = (int) (coords[x] / gridLength); // get row value
column = coords[x] % gridLength; // get numeric column value

temp = String.valueOf (alphabet.charAt (column)) ; // convert to alpha

alphaCells.add(temp.concat (Integer.toString(row))); kkhﬂ;
) < This s the skatemen Y
// System.out.print (" coord “+x+” = “ + alphaCells.get (x-1)); e s o
} DotCom is \otaked:

// System.out.println(“\n”) ;

return alphaCells;

you are here» 153

APl packages

Using the Library (the Java API)

You made it all the way through the DotComBust game,
thanks to the help of ArrayList. And now, as promised,
it’s time to learn how to fool around in the Java library.

In the Java API, classes
are grouped into packages.

To use a class in the API, you
have to know which package
the class is in.

Every class in the Java library belongs to a package.
The package has a name, like javax.swing (a
package that holds some of the Swing GUI classes
you’ll learn about soon). ArrayList is in the package
called java.util, which surprise surprise, holds a

pile of utility classes. You’ll learn a lot more about
packages in chapter 16, including how to put your
own classes into your own packages. For now though,
we’re just looking to usesome of the classes that come
with Java.

Using a class from the API, in your own code, is
simple. You just treat the class as though you wrote

it yourself... as though you compiled it, and there it
sits, waiting for you to use it. With one big difference:
somewhere in your code you have to indicate the full
name of the library class you want to use, and that
means package name + class name.

Even if you didn’t know it, you’ve already been using
classes from a package. System (System.out.println),
String, and Math (Math.random()), all belong to the
java.lang package.

154

You have to know the full name*
of the class you want to use in
your code.

ArrayList is not the full name of ArrayList, just as ‘Kathy’
isn’t a full name (unless it’s like Madonna or Cher, but we
won’t go there). The full name of ArrayList is actually:

java.util.ArrayLlist
‘—/\—_/ \’\/_/

Package name tass name

You have to tell Java which ArraylList you
want to use. You have two options:

e IMPORT

Put an import statement at the top of your source code file:
import java.util.ArrayLlist;
public class MyClass {... }

OR

Q TYPE

Type the full name everywhere in your code. Each time
you use it. Anywhere you use it.

When you declare and/or instantiate it:

java.util.ArraylList<Dog> list = new java.util.ArrayList<Dog>() ;

When you use it as an argument type:
public void go(java.util.ArrayList<Dog> list) { }

When you use it as a return type:
public java.util.ArrayList<Dog> foo() {...}

*Unless the class is in the java.lang package.

get to know the

therejare no |
Dumb Questions

Q: Why does there have to
be a full name? Is that the only
purpose of a package?

A: Packages are important
for three main reasons. First, they
help the overall organization of a
project or library. Rather than just
having one horrendously large
pile of classes, they’re all grouped
into packages for specific kinds
of functionality (like GUI, or data
structures, or database stuff, etc.)

Second, packages give you a name-
scoping, to help prevent collisions
if you and 12 other programmers
in your company all decide to
make a class with the same name.
If you have a class named Set and
someone else (including the Java
API) has a class named Set, you
need some way to tell the JVM
which Set class you're trying to use.

Third, packages provide a level of
security, because you can restrict
the code you write so that only
other classes in the same package
can access it. You'll learn all about
that in chapter 16.

Q‘ OK, back to the name
collision thing. How does a full
name really help? What's to
prevent two people from giving a
class the same package name?

A:Java has a naming convention
that usually prevents this from
happening, as long as developers
adhere to it. We'll get into that in
more detail in chapter 16.

155

when arrays aren’t enough

Where’d that ‘x’ come from?

(or, what does it mean when
a package starts with javax?)

In the first and second versions of Java (1.02
and 1.1), all classes that shipped with Java (in
other words, the standard library) were in packages

that began with java.There was always java.lang, of course

— the one you don't have to import. And there was java.net,
java.io, java.util (although there was no such thing as ArrayList
way back then), and a few others, including the java.awt
package that held GUI-related classes.

Looming on the horizon, though, were other packages not
included in the standard library.These classes were known as
extensions, and came in two main flavors: standard, and not
standard. Standard extensions were those that Sun considered
official, as opposed to experimental, early access, or beta
packages that might or might not ever see the light of day.

Standard extensions, by convention, all began with an ‘x’
appended to the regular java package starter. The mother of all
standard extensions was the Swing library. It included several
packages, all of which began with javax.swing.

But standard extensions can get promoted to first-class, ships-
with-Java, standard-out-of-the-box library packages. And that'’s
what happened to Swing, beginning with version 1.2 (which
eventually became the first version dubbed Java 2’).

“Cool’ everyone thought (including us).”“Now everyone who has
Java will have the Swing classes, and we won't have to figure
out how to get those classes installed with our end-users.”

Trouble was lurking beneath the surface, however, because
when packages get promoted, well of COURSE they have to
start with java, not javax. Everyone KNOWS that packages in
the standard library don’t have that “x’ and that only extensions
have the “x" So, just (and we mean just) before version 1.2

went final, Sun changed the package names and deleted the
“x” (among other changes). Books were printed and in stores
featuring Swing code with the new names. Naming conventions
were intact. All was right with the Java world.

Except the 20,000 or so screaming developers who realized
that with that simple name change came disaster! All of their
Swing-using code had to be changed! The horror! Think of all
those import statements that started with javax...

And in the final hour, desperate, as their hopes grew thin, the
developers convinced Sun to “screw the convention, save our
code” The rest is history. So when you see a package in the
library that begins with javax, you know it started life as an
extension, and then got a promotion.

156

BULLET POIN'IEQ .

ArrayList is a class in the Java API.
To put something into an ArrayList, use add|().

To remove something from an ArrayList use
remove().

To find out where something is (and if itis) in an
ArrayList, use indexOf().

To find out if an ArrayList is empty, use
isEmpty().

To get the size (number of elements) in an
ArrayList, use the size() method.

To get the length (number of elements) in a
regular old array, remember, you use the length
variable.

An ArrayList resizes dynamically to what-

ever size is needed. It grows when objects

are added, and it shrinks when objects are
removed.

You declare the type of the array using a type
parameter, which is a type name in angle
brackets. Example: ArrayList<Button> means
the ArrayList will be able to hold only objects of
type Button (or subclasses of Button as you'll
learn in the next couple of chapters).

Although an ArrayList holds objects and not
primitives, the compiler will automatically “wrap’
(and “unwrap” when you take it out) a primi-
tive into an Object, and place that object in the
ArrayList instead of the primitive. (More on this
feature later in the book.)

Classes are grouped into packages.

Aclass has a full name, which is a combina-
tion of the package name and the class name.
Class ArrayList is really java.util. ArrayList.

To use a class in a package other than java.
lang, you must tell Java the full name of the
class.

You use either an import statement at the top of
your source code, or you can type the full name
every place you use the class in your code.

get to know the

157

getting to know the API

How to play with the API

Two things you want to know:
o What classes are in the library?

Once you find a class, how do
you know what it can do?

e Browse a Book

r tton
ractCalEdion
AbstractColorChooserPan:
!;ﬂ:lﬂm]
siractDocument. Attribul
A]A»A S
bsiractinteruptiblsChane
A
.

A Desktop Quick Reference

O'REILLY"

il Flernagan

168 chapter 6

“Good to know there’s an ArrayList in
the java.util package. But by myself, how

would I have figured that out?”

- Julia, 31, hand model

e Use the HTML API docs

0 mwmmmmwmm

O ERANES

Java™ 2 Platform Standard Edition 5.0

| IN A NUTSHELL W= v

API Specification
“This document is the API specificaion fior the Java 2 Plaform Sundard Edition 5.0,
See:
Description
| Provides the classes necessary 1o create an applel and the
|Javaapplet | classes an applet nses o communicate with its applet
coniext.
j [Contains all of the classes for creating vser inerfaces and for
painting graphics and inuges.
lavaawt.color Provides classes for color spaces. L
j fat & | Provides interfaces and classes for ransferring data berween ::

o Browse a Book

Flipping through a
reference book is the
best way to find out
what's in the Java
library. You can easily
stumble on a class that

get to know the Java API

looks useful, just by
browsing pages.

elass name
—_—

package name |

class destription -

methods (3nd oth :
el alk bt gy

a

Java il Currency

Returned By: javatext.DecimalFormat.getCurrency(), java.text. DecimalFormatSymbols. getCurrency().
java.text.NumberFormat.getCumency(), Currency.getinstance()

—> Date Java 1.0
/7 java.util cloneable serializable comparable

This class represents dates and times and lets you work with them in a system-indepen-
dent way. You can create a Date by specifying the number of milliseconds from the
epoch (midnight GMT, January 1st, 1970) or the year, month, date, and, optionally, the
hour, minute, and second. Years are specified as the number of years since 1900, If you
call the Date constructor with no arguments, the Date is initalized to the current lime
and date. The instance methods of the class allow you 1o get and set the various date
and time fields, to compare dates and times, and to convent dates to and from string
representations. As of Java 1.1, many of the date methods have been deprecated in
favor of the methods of the Calendar class.

[Objet ——{ Date]

public class Date implements Cloneable, C ble, Serializable |
/i Public Constructors
public Date();
public Dateflong date);
public Date(String 5);
public Date(int year, int month, int date);
public Date(int year, int manth, int date, int Ars, int min);
public Date(int year, int month, int date, int hrs, int min, int sec);
/i Property Accessor Methods (by property name)
public long getTime():
public void setTimedlong time);
/i Public Instance Methods
public boolean after(java.util. Date when);
public boolean before(java.util. Date when);
1.2 public int compareTo(java util. Date anotherDate);
// Methods Implementing Comparable
1.2 public int compareTo(Object o);
/i Public Methods Overriding Object
1.2 public Object clone();
public boolean equals{Object oby);
publicint hashCode();
public String toStringy);
// Deprecated Public Methods
public int getDate();
publicint getDay();
public int getHours();
public int getMinutes|);
public int getMonth();
public int getSeconds();
public int getTimezoneOffset();
public int getYear|);
public static long parse(String 5);
public void setDate(int date);
public void setHours(int hours);
public void setMinutes{int minutes);
public vaid setMonth(int month);

you are here »

159

using the Java AP| documentation

e Use the HTML API docs

Java comes with a fabulous set of online docs
called, strangely, the Java API. They’re part of
a larger set called the Java 5 Standard Edition
Documentation (which, depending on what
day of the week you look, Sun may be refer-
ring to as “Java 2 Standard Edition 5.0”), and
you have to download the docs separately;
they don’t come shrink-wrapped with the Java
5 download. If you have a high-speed internet
connection, or tons of patience, you can also
browse them at java.sun.com. Trust us, you
probably want these on your hard drive.

The API docs are the best reference for get-

ting more details about a class and its methods.

Let’s say you were browsing through the refer-
ence book and found a class called Calendar,
in java.util. The book tells you a little about it,
enough to know that this is indeed what you
want to use, but you still need to know more
about the methods.

800

The reference book, for example, tells you
what the methods take, as arguments, and what
they return. Look at ArrayList, for example.

In the reference book, you’ll find the method
indexOf(), that we used in the DotCom class.
But if all you knew is that there is a method
called indexOf() that takes an object and re-
turns the index (an int) of that object, you still
need to know one crucial thing: what happens
if the object is not in the ArrayList? Looking

at the method signature alone won'’t tell you
how that works. But the API docs will (most of
the time, anyway). The API docs tell you that
the indexOf() method returns a -1 if the object
parameter is not in the ArrayList. That’s how
we knew we could use it both as a way to check
if an object is even in the ArrayList, and to get
its index at the same time, if the object was
there. But without the API docs, we might have
thought that the indexOf() method would
blow up if the object wasn’t in the ArrayList.

ArrayList (Java 2 Platform SE 5.0)

5(Qr Google

@ @ £ hitp: //java.sun.com/j2se/1.5.0/docs/api/

Fields inherited from class java.util. AbstractList

modCount

Sevoll through £he Packages
and select one (olick it)

ava.util.concurrent
Java.util.concurrent.at

to vestriet the list in the

Constructor Summary

ava.util.concurrent.loc
ava.util.jar

OWEr Tram
¢ 'l:o °”’Y c’aSSCS ava.util.logging

ArrayList()
Constructs an empty list with an initial capacity of *

exe all the

‘FV‘om {:ha‘l', PaCkaSC %H nrafe T :

Queuea
RandomAccess

ArrayList(Collection<? extends E> c)
Constructs a Il»t_corll:_nn:ng the elements of the spet 500
returned by the collection's iterator.

This 16 WO % tam
££ s You
d st \ the

Set
@ C\ aSSCS SortedMap

ArrayList(int initialCapacity) SLY

all ety F br'\cQ

SoriedSet

Constructs an empty list with the specified initial caj ;OT
Py pe p me.\.‘\\ods

Classes
AbstractCollection

Method Summary

click on
%e{; Qv\\

s\m\"\a"\l’ o

Abstractlist

AbstractMap
Qva"\'-' AbstractQueue

boolean|zdd(E o)

F me‘\:\\Od ‘\')O

Appends the specified element to the end of ‘\',a\\s'
WSeY AbstractSequentiall st void|gaatint index, E.elemest) de
Inserts the specified element at the specified |

boolean|addmll (Collection<? extends E> c)

160 chapter 6

Calendar
Collections
Currency
Date
Dictionary

Appends all of the elements in the specified Collection to the end of this list, in
the order that they are returned by the specified Collection's Iterator.

boolean|addall (int index, Collection<? extends E> c)
Inserts all of the elements in the specified Collection into this list, starting at the
snecified nosition

get to know the

Code Magnets

Can you reconstruct the code snippets to make a

working Java program that produces the output printAL (a’
listed below? NOTE: To do this exercise, you need =

one NEW piece of info—if you look in the API for

| ArrayList, you'll find a second add method that takes

two arguments:

add(int index, Object o)

It lets you specify to the i
ArrayList where to put the object you're adding. I i

a.add(2,”two”) ;

P I X, FEPSULI]

if (a.contains(“three”)) {
a.add (“four”) ;

import java. util.*;

new ArravList<

161

puzzle: crossword

JavaCross 7.0

How does this crossword puzzle help you learn
Java? Well,all of the words are Java related
(except one red herring).

Hint: When in doubt, remember ArrayList.

Across

1. I can't behave

6. Or,in the courtroom
7. Where it's at baby

9. Afork’s origin

12. Grow an ArrayList
13. Wholly massive

14. Value copy

16. Not an object

17. An array on steroids
19. Extent

21. 19's counterpart

22. Spanish geek snacks (Note: This has
nothing to do with Java.)

23. For lazy fingers

24. Where packages roam

More Hints:

T ebupjewsaH ‘gl
1sIAeay UYL ‘9L
AW 0L B Y

Isikeny juiyL ‘g
£9]GePIUBAO S1RYM T
umoq

162

20

21

22

23

24

Down

2. Where the Java action is.
3. Addressable unit

4. 2nd smallest

5. Fractional default

8. Library’s grandest

10. Must be low density

11. He's in there somewhere
15. Asif

16. dearth method

18. What shopping and arrays have in common
20. Library acronym

21. What goes around

s1azipadde ysiueds - eAer inoge 10N ‘7T

1URIXd S, ALY LT

aAwd uowwo) ‘9|
Isiheny uiyL 2

sanaLeA g °|

ss0.y

get to know the Java API

import java.util.¥*; .

public class ArrayListMagnet ({

Exercise SoJutions

ArrayList<String> a = new ArrayList<String>();

File Edit Window Help Dance

% java ArrayListMagnet
zero one two three
zero one three four

zero one three four
zero one three four

if (a.contains(“three”)) {
a.add (“four”) ;

A fF [a anAdavnN-

- £ o mmemdmm s

youare here» 163

puzzle answers

=

wlz|—[=[1]=]=]

_ plR [[m[]t]v]El [s]
NDNERERANNERDG
_ oBlo[elc|T] [I [v][D]E[x]0
JavaCross | [tmen e mae
Bl [Pl lo] D%l €] [T
anSwers U [alp[D ‘ "L o[v] ¢
Gle[t] e b lof [1]
% viAL
"AIRIRIAY[L] s]T] L] s
o 4 R HIE
A "LIEN[g]T[#] s| [m
P 0 " TIA|P
Ciimlplo|RIT] [A] T
P “LII[BIRI[AIR]Y

wadharpen your penci
& Write your OWN set of clues! Look at each word, and try to
write your own clues.Try making them easier, or harder, or

Across more technical than the ones we have.
1.

6. Down
7. 2

9. 3

12. 4.

13. 5

14. 8

16. 10.

17. 11.

19. 15.

21. 16.

22. 18.

23. 20.

24, 21.

164

7 inheritance and polymorphism

We were underpaid,

Better L iVi ng i n overworked coders 'till we

tried the Polymorphism Plan. But

o bj ectVi I Ie thanks to the Plan, our future is

bright. Yours can be too!

Plan your programs with the future in mind. if there were a way to write
Java code such that you could take more vacations, how much would it be worth to you? What
if you could write code that someone else could extend, easily? And if you could write code
that was flexible, for those pesky last-minute spec changes, would that be something you're
interested in? Then this is your lucky day. For just three easy payments of 60 minutes time, you
can have all this.When you get on the Polymorphism Plan, you'll learn the 5 steps to better class
design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act now—a
bonus lesson on the 4 tips for exploiting inheritance. Don’t delay, an offer this good will give
you the design freedom and programming flexibility you deserve.It's quick, it's easy, and it’s

available now. Start today, and we'll throw in an extra level of abstraction!

this is a new chapter 165

the power of

Chair Wars Revisited...

Remember way back in chapter 2, when Larry (procedural guy)
and Brad (OO guy) were vying for the Aeron chair? Let’s look at
a few pieces of that story to review the basics of inheritance.

LARRY: You've got duplicated code! The rotate procedure
is in all four Shape things. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

Square Circle Triangle Amoeba I looked at whaf a" fOUY
rotate() rotate() rotate() rotate() classes have in comwon.
playSound() playSound() playSound() playSound() ?

2

They’re Shapes, and they all rotate and Shape
playSound. Solabstracted out the

. rotate()
comwmon features and put thew into a playSound()
new class called Shape. —_ Shape Then | linked the other
superclass [ouep four shape classes to
oaysoundy | The new Shape class,
in a relationship called
inheritance.
You can read this as, “Square inherits from Shape”, ﬂ R
“Circle inherits from Shape”, and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain.) -
Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

166

What about the Amoeba rotate()?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

How can amoeba do something different if it inherits its

functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows

exactly which rotate() method to run when someone tells the

Amoeba to rotate.

superclass

(more abstract)

~

subclasses
(wore specific)

Shape

rotate()
playSound()

\ Square

Circle

Triangle

Amoeba

rotate()
/I amoeba-specific
I/ rotate code

playSound()
/I amoeba-specific
/I sound code

inheritance and

| made the Awmoeba class override the
rotate() and playSound() methods

of the superclass Shape. Overriding
just means that a subclass redefines
one of its inherited methods when

it needs to change or extend the
behavior of that method.

Overriding methods
& ‘

-

RANVN

How would you represent a house cat and a tiger, in an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superclass? Or are they both

subclasses to some other class?

How would you design an inheritance structure? What

methods would be overridden?

Think about it. Before you turn the page.

167

the way

168

works

Understanding Inheritance

When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.

In Java, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits
the members of the superclass. When we say “members of
a class” we mean the instance variables and methods.

For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automatically inherits the instance variables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
so on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

superclass SuperHero
(more abstract) o instance variables
3 | seciaPower (state, attributes)
useSpecialPower() methods
putOnSuit() (behavior)
subclasses K
(more specific)
S FriedEggMan PantherMan 0verriding

useSpecialPower() methods

putOnSuit() “

IriedEggMan doesn’t need any behavior that’s unique,
so he doesn’t override any methods. The methods and
1mtance variables in SuperHero are sufficient.
PantherMan, though, has specific requirements for his suit
and special powers, so useSpecialPower () and
putOnSuit () are both overridden in the PantherMan
class.

Instance variables are not overridden because they
don’t need to be. They don’t define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inherited tights to
purple, while FriedEggMan sets his to white.

An inheritance example:

public class Doctor {
boolean worksAtHospital;
void treatPatient () {

// perform a checkup

}

public class FamilyDoctor extends Doctor {

boolean makesHouseCalls;
void giveAdvice () {
// give homespun advice

}

}

public class Surgeon extends Doctor({

void treatPatient() {
// perform surgery

}

void makeIncision () {
// make incision (yikes!)

}

inheritance and polymorphism

I inherited my
procedures so I didn't
bother with medical school.
Relax, this won't hurt a bit.
(now where did I put that
power saw...)

superclass

Doctor

worksAtHospital

treatPatient ()

subclasses

Surgeon FamilyDoctor

Overrides the inherited makesHouseCalls

treatPatient() method | treatPatient ()
giveAdvice ()

Adds one new method | makelncision()

one instance variable

one method

Adds one new
instance variable

Adds one new method

@@m your pencil —

How many instance variables does
Surgeon have?

How many instance variables does
FamilyDoctor have?

How many methods does Doctor have?

How many methods does Surgeon have?

How many methods does FamilyDoctor
have?

Can a FamilyDoctor do treatPatient()?

Can a FamilyDoctor do makelncision()?

169

you are here »

designing for inheritance

Let’s design the inheritance tree for
an Animal simulation program

Imagine you’re asked to design a simulation program that
lets the user throw a bunch of different animals into an
environment to see what happens. We don’t have to code the
thing now, we’re mostly interested in the design.

We’ve been given a list of some of the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do.

And we want other programmers to be able to add new
kinds of animals to the program at any time.

First we have to figure out the common, abstract
characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

Look for objects that have common
attributes and behaviors.

What do these six types have in
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (step 4-5)

170 chapter7

Using inheritance to avoid
duplicating code in subclasses

We have five instance variables:
picture — the file name representing the JPEG of this animal

Jood — the type of food this animal eats. Right now, there
can be only two values: meat or grass.

hunger — an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries — values representing the height and width of
the ‘space’ (for example, 640 x 480) that the animals will
roam around in.

inheritance and

2

Design a class that represents
the common state and behavior.

These objects are all animals, so
we'll make a common superclass
called Animal.

We'll put in methods and instance
variables that all animals might
need.

location — the X and Y coordinates for where the animal is Animal
in the space.
picture
We have four methods: food
makeNoise () — behavior for when the animal is supposed to Egzgzgries
make noise. location
eat() — behavior for when the animal encounters its _
preferred food source, meat or grass. matl(()eN0|se()
ea
sleep () — behavior for when the animal is considered asleep. sleep()
roam() — behavior for when the animal is not eating or roam()
sleeping (probably just wandering around waiting to bump
into a food source or a boundary).
Lion
Wolf
Cat
" < Tiger
Hippo
Dog

171

designing for inheritance

Do all animals eat the same way?

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will
have his own value for picture, food (we’re thinking
meat), hunger, boundaries, and location. A hippo
will have different values for his instance variables,
but he’ll still have the same variables that the other
Animal types have. Same with dog, tiger, and so on.
But what about behavior?

Which methods should we override?

Does a lion make the same noise as a dog? Does

a cat eat like a hippo? Maybe in your version, but

in ours, eating and making noise are Animal-type-
specific. We can’t figure out how to code those
methods in such a way that they’d work for any
animal. OK, that’s not true. We could write the
makeNoise () method, for example, so that all it does
is play a sound file defined in an instance variable
for that type, but that’s not very specialized. Some
animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

I'm one bad*ss
plant-eater.

So just as with the Amoeba

overriding the Shape class rotate ()
method, to get more amoeba-specific (in
other words, unique) behavior, we’ll have
to do the same for our Animal subclasses.

172

community, barking is an

important part of our cultural
identity. We have a unique sound,
and we want that diversity to
be recognized and respected.

noise. For now, i
tan S{',a\/ SCnan.

Animal
picture
food
hunger
boundaries We better overvide
location and makeNoise(), so ¢
Line its own spetitit
makeNoise() K/ iz\;:
eat() roam8
sleep()
roam()

Decide if a subclass

needs behaviors (method
implementations) that are specific
to that particular subclass type.

Looking at the Animal class,

we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

In the dog

Lhese two methods, eat()
fhat eath animal type can

behavior Yor €ating and
1 looks like sleep() and

Looking for more inheritance
opportunities

The class hierarchy is starting to shape up. We
have each subclass override the makeNoise() and
eat() methods, so that there’s no mistaking a Dog
bark from a Cat meow (quite insulting to both
parties). And a Hippo won’t eat like a Lion.

But perhaps there’s more we can do. We have to
look at the subclasses of Animal, and see if two
or more can be grouped together in some way,
and given code that’s common to only that new
group. Wolf and Dog have similarities. So do
Lion, Tiger, and Cat.

inheritance and polymorphism

O

Look for more opportunities to use

abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see

that Wolf and Dog might have some
behavior in common, and the same goes
for Lion, Tiger, and Cat.

Animal
picture
food
hunger
boundaries
location
makeNoise()
eat()
sleep()
. Lom
e U roam() Wolf and Doy o1,
Voot (‘/aJC wov ”‘3)’bc '{:hckc)s oth Canines
o el OTH elpes. omething £),3(
T onind ** sses could se...
som
Lion
Wolf
makeNoise()
eat()
Cat makeNoise()
— — eat()
Dog makeNoise()
: makeNoise() eat()
21;I(()<3N0|se() eat()
makeNoise()
eat()
o

you are here »

173

Finish the class hierarchy

Feline

Canine

size
picture
food

PR

Lion

size
size picture
picture food
food
size
picture .
food f

b wm

174 chapter7

inheritance and polymorphism

Which method is called?

The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version of a method in class Animal), and
two overridden in the Wolf class. When
you create a Wolf object and assign it to

a variable, you can use the dot operator

on that reference variable to invoke all
four methods. But which version of those
methods gets called?

make a new Wolf obJCC{ Wolf w = new Wolf();
¢alls the vevsion in Wolf w.makeNoise () ;

calls the version in Canine w.roam() ;

calls the version in Wolf w.eat () ;

calls the version in Animal w.sleep();

youarehere» 175

practice designing an inheritance tree

Pesigning an Inheritance Tree

Inheritance Table

Sharpen your pencil

Find the relationships that make sense. F|I| in the last two columns

Class Superclasses

Subclasses

Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: not everything can be connected to something else.
Hint: you're allowed to add to or change the classes listed.

superclass
(more abstract) Clothi
Jlothing
Class Superelasses Subelasses -~
Clothing --- Boxers, Shirt subclasses
_ (more specific)
Boxers Clothing N
Shirt Clothing Boxers Shirt

Inheritance Class Diagram

Draw an inheritance diagram here.

tbere are no

Dumb Questions

Q‘ You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the previous page). But what
happens if the JVM doesn’t ever find
a match?

176

A: Good question! But you don't
have to worry about that. The compiler
guarantees that a particular method

is callable for a specific reference type,
but it doesn't say (or care) from which
class that method actually comes from
at runtime. With the Wolf example, the
compiler checks for a sleep() method,
but doesn’t care that sleep() is actually
defined in (and inherited from) class
Animal. Remember that if a class
inherits a method, it has the method.

Where the inherited method is defined
(in other words, in which superclass

it is defined) makes no difference to
the compiler.But at runtime, the JVM
will always pick the right one. And
the right one means, the most specific
version for that particular object.

Using IS-A and HAS-A

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.
Cat IS-A Feline, that works too.
Surgeon IS-A Doctor, still good.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A test.

To know if you’ve designed your types

correctly, ask, “Does it make sense to
say type X IS-A type Y?” Ifit doesn’t,
you know there’s something wrong

with the design, so if we apply the IS-A

test, Tub IS-A Bathroom is definitely
false.

What if we reverse it to Bathroom
extends Tub? That still doesn’t work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom are related, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A

relationship. Does it make sense to
say “Bathroom HAS-A Tub”? If yes,
then it means that Bathroom has a

Tub instance variable. In other words,

Bathroom has a reference to a Tub, but
Bathroom does not extend Tub and
vice-versa.

int size;
Bubbles b;

Bathroom

Tub bathtub;
Sink theSink;

Bathroom HAS-A Tub and Tub HAS-A Bubbles.
But nobody inherits from (extends) anybody else.

Bubbles

int radius;
int colorAmt;

inheritance and polymorphism

Does it make sense to
say a Tub IS-A Bathroom? Or a

Bathroom IS-A Tub? Well it doesn't to

me. The relationship between my Tub

and my Bathroom is HAS-A. Bathroom

HAS-A Tub. That means Bathroom
has a Tub instance variable.

you are here »

177

exploiting the power of objects

178

But wait! There’s more!

The IS-A test works anywhere in the inheritance tree. If your
inheritance tree is well-designed, the IS-A test should make
sense when you ask any subclass if it IS-A any of its supertypes.

If class B extends class A, class B IS-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

How do you know if you've got
your inheritance right?

There’s obviously more to it than what we’ve
covered so far, but we’ll look at a lot more OO
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in this chapter).

For now, though, a good guideline is to use the
IS-A test. If “X IS-A'Y” makes sense, both classes
(X'and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance IS-A relationship
works in only one direction!

Triangle IS-A Shape makes sense, so you can
have Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does
not make sense, so Shape should not extend
Triangle. Remember that the IS-A relationship
implies that if X IS-AY, then X can do anything
a'Y can do (and possibly more).

inheritance and

Sharpen your pencil ———

Put a check next to the relationships that
make sense.

Oven extends Kitchen
Guitar extends Instrument
Person extends Employee
Ferrari extends Engine
FriedEgg extends Food
Beagle extends Pet
Container extends Jar
Metal extends Titanium

GratefulDead extends Band

OOoooodoood

Blonde extends Smart

[] Beverage extends Martini

Hint: apply the IS-A test

179

who inherits

therejare no

Dumb Questions

Q,: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

. , .
A.A superclass won't necessarily

Q: In a subclass, what if | want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, | don’t want
to completely replace the superclass
version, | just want to add more stuff
toiit.

You can design your superclass
methods in such a way that they
contain method implementations

that will work for any subclass, even
though the subclasses may still need
to ‘append’ more code. In your subclass

know about any of its subclasses.

You might write a class and much

later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backwards
inheritance.Think about it, children
inherit from parents, not the other way
around.

superclass”

A: You can do this! And it's an
important design feature. Think of the
word “extends” as meaning,”l want

to extend the functionality of the

public void roam() {
super.roam() ;
// my own roam stuff

overriding method, you can call the
superclass version using the keyword
super. It’s like saying,“first go run the
superclass version, then come back and
finish with my own code...”

this ealls the inhevited version of
voam(), then tomes batk to do
Your own subclass—sycci(:ic tode

Who gets the Porsche, who gets the porcelain?
(how to know what a subclass can /S
inherit from its superclass) i =

A subclass inherits members of the
superclass. Members include instance ‘g
variables and methods, although later in

this book we’ll look at other inherited members. A
superclass can choose whether or not it wants a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access levels that we’ll cover in this book.
Moving from most restrictive to least, the four access
levels are:

private default protected public

180

Access levels control who sees what, and are crucial
to having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

public members’aLe inherited
private members are not inherited

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
example, Square inherited the rotate () and
playSound () methods and to the outside world (other
code) the Square class simply fas a rotate () and
playSound () method.

The members of a class include the variables and
methods defined in the class plus anything inherited
from a superclass.

Note: get more details about default and protected in chapter
16 (dcylo\/mcn{) and appendix B.

When designing with inheritance,
are you USIQ or abusing?

Although some of the reasons behind these rules won’t be
revealed until later in this book, for now, simply knowing a
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
of a superclass. Example: Willow is @ more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putting that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it’s not necessarily the best way to achieve behavior reuse.
It’ll get you started, and often it’s the right design choice,
but design patterns will help you see other more subtle
and flexible options. If you don’t know about design
patterns, a good follow-on to this book would be Head First
Design Patterns.

DO NOT use inheritance just so that you can reuse

code from another class, if the relationship between the
superclass and subclass violate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano is not a more specific type of Alarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage of via a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass. Example: Tea IS-
A Beverage makes sense. Beverage IS-A Tea does not.

inheritance and

—— BULLET POINT?Q —_—

A subclass extends a superclass.

A subclass inherits all public instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superclass.

Inherited methods can be overridden; instance
variables cannot be overridden (although they
can be redefined in the subclass, but that's
not the same thing, and there’s almost never a
need to do it.)

Use the IS-A test to verify that your
inheritance hierarchy is valid. If X extends'Y,
then X IS-A'Y must make sense.

The IS-A relationship works in only one
direction. A Hippo is an Animal, but not all
Animals are Hippos.

When a method is overridden in a subclass,
and that method is invoked on an instance of
the subclass, the overridden version of the
method is called. (The lowest one wins.)

If class B extends A, and C extends B, class
B IS-Aclass A, and class C IS-A class B, and
class C also IS-A class A.

181

exploiting the power of objects

So what does all this
inheritance really buy you?

You get a lot of OO mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
in a superclass. That way, when you need to
modify it, you have only one place to update,
and the change is magically reflected in all the
classes that inherit that behavior. Well, there’s
no magic involved, but it is pretty simple:
make the change and compile the class
again. That’s it. You don’t have to touch the
subclasses!

Just deliver the newly-changed superclass, and
all classes that extend it will automatically use
the new version.

A Java program is nothing but a pile of classes,
so the subclasses don’t have to be recompiled
in order to use the new version of the
superclass. As long as the superclass doesn’t
break anything for the subclass, everything’s
fine. (We’ll discuss what the word ‘break’
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method’s arguments or
return type, or method name, etc.)

182

@® You avoid duplicate
code.
Put common code in one place, and let
the subclasses inherit that code from a
superclass. When you want to change that
behavior, you have to modify it in only
one place, and everybody else (i.e. all the
subclasses) see the change.

® You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

Inheritance lets you guarantee that
all classes grouped under a certain

supertype have all the methods that

the supertype has.*

In other words, you define a comwon protocol for a
set of classes related through inheritance.

When you define methods in a superclass, that can be
inherited by subclasses, you’re announcing a kind of
protocol to other code that says, “All my subtypes (i.e.
subclasses) can do these things, with these methods
that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all
Animal subtypes:

Animal
Youve telling the world fhat
makeNoise() any Animal €an do these tour
eat() T That intludes the method
sleep() things. | ha Lypes
roam() avgumcv\{'ﬁ and vetwen TyPES

And remember, when we say any Animal, we mean
Animal and any class that extends from Animal. Which
again means, any class that has Animal somewhere above it
in the inheritance hierarchy.

But we’re not even at the really cool part yet, because
we saved the best—polymorphism—for last.

When you define a supertype for a group of classes,
any subclass of that supertype can be substituted where the
supertype is expected.

Say, what?

Don’t worry, we’re nowhere near done explaining it.
Two pages from now, you’ll be an expert.

*When we say “all the methods” we mean “all the inheritable methods”, which

for now actually means, “all the public methods”, although later we'll refine that

definition a bit more.

inheritance and

And | care because...

Because you get to take advantage of
polymorphism.

Which matters to me
because...

Because you get to refer to a subclass
object using a reference declared as the
supertype.

And that means to me...

You get to write really flexible code.
Code that's cleaner (more efficient,
simpler). Code that’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page.

We don't know about you, but
personally, we find the whole
tropical vacation thing
particularly motivating.

183

the way polymorphism works

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

184

The 3 steps of object
declaration and assignment

1 3
N/\ /\/\/\
Dog myDog = new Dog() ;

2

Declare a reference
variable

Dog myDog

Tells the JVM to allocate space for a
reference variable.The reference variable
is, forever, of type Dog. In other words,

a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

e Create an object

Dog myDog = new Dog() ;

Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

new Dog() ;

€

og

Dog object

Link the object
and the reference

3

Dog myDog = new Dog() ;

Assigns the new Dog to the refer-
ence variable myDog. In other words,
program the remote control.

Dog object

inheritance and

The important point is that the
reference type AND the object
type are the same.

In this example, both are Dog.

Dog

\‘\

These two are the same type. The veference
variable type is detlaved as Dog, and the object
is ereated as new Dog().

But with polymorphism, the
reference and the object can
be different.

Animal myDog = new Dog() ;

Animal
C—

\‘\

These two'are NOT the same type. The
veferente variable type is detlared as Animal,
but the object is eveated as new Dog0).

185

polymorphism in action

With polymorphism, the reference

type can be a superclass of the
actual object type.

When you declare a reference variable,
any object that passes the IS-A test for the
declared type of the reference variable
can be assigned to that reference. In
other words, anything that extends the
declared reference variable type can
be assigned to the reference

variable. This lets you do

things like make polymorphic

arrays.

uh... nope.
Still not gettin' it.

other words)

. 'ma\' \“ . .
OK, OK maybe an example will help. ceay oF e P"“,Cs Lyre Prima!
Detlare 20 % hald o0y
an avedy tha
Animal[] animals = new Animal[5];
animals [0] = new Dog();
animals [1l] = new Cat(); But look what you SCJC +o d?__, you cay\l put ANY
animals [2] = new Wolf(); ; subtlass of Animal in the Animal arvay!
animals [3] = new Hippo();
animals [4] = new Lion(); fAnd here’s 4 best pol
rais A olym
st g, j’ooﬁ*zfor he whole T:ai:f e
Lo ¢/,
for (int i = 0; i < animals.length; i++) { the Ahimal—cj?h & array and cally:u
object 4, 3ss mefhods, and he
es the ns;,.(: ﬂiinﬂ/ CVev-y

186

animals[i] .eat(); &

animals[i].roam() ;

When 5 is 0, a Dog is at index O in the array, so
you get the Dog’s eat() method. When i is |, you
get the Cat's eat() method

Same with voam().

inheritance and polymorphism

But wait! There’s more!

You can have polymorphic
arguments and return types.

If you can declare a reference variable
of a supertype, say, Animal, and assign a

subclass object to it, say, Dog, think of how .
that might work when the reference is an i m
¢

argument to a method...

class Vet {

public void giveShot (Animal a) {

T .
// do horrible things to the Animal at Arﬁiﬁh{,;ma' Pa‘fzmc\‘:cr ¢an take ANy
YPe as the 4
// the other end of the ‘a’ parameter X“ Vet is done S;V;ngaz:;e::' f"i when
H O
i) finimal £o makeNoise(), and wha’fl tells .'ch
a.makeNoise () ; is really out there on the hea 'l:ehvc-z Prinal
€ap, that'’s

whose makeNoise() meth

od will vup.

class PetOwner {

public void start() { The Vet's chgho{() method iin {:E\.(cc{a:n\/
. e it. s long as the obye
Vet v = new ver(); i‘:\‘nm;a\sztz: g‘svic\:\c ar‘j\mcn{: is a subtlass
Dog d = new Dog() ; é‘ Pnimal, it will work.

Hippo h = new Hippo() ; l/

v.giveShot(d) ; & Dog’s makeNoise() vuns

v.giveShot (h) ; S HiPP°'5 makeNoise() runs

you are here» 187

exploiting the power of polymorphism

NOW I get it! If I write
my code using polymorphic arguments,
where I declare the method parameter as a
superclass type, I can pass in any subclass object at
runtime. Cool. Because that also means I can write my
code, go on vacation, and someone else can add new
subclass types to the program and my methods will
still work... (the only downside is I'm just making life
easier for that idiot Jim).

With polymorphiswm, you can write code that doesn’t
have to change when you introduce new subclass
types into the program.

Remember that Vet class? If you write that Vet class using
arguments declared as type Animal, your code can handle any
Animal subclass. That means if others want to take advantage of
your Vet class, all they have to do is make sure their new Animal
types extend class Animal. The Vet methods will still work, even
though the Vet class was written without any knowledge of the
new Animal subtypes the Vet will be working on.

@y wAIN

PQAQWEWR
Why is polymorphism guaranteed to work this way? Why is
it always safe to assume that any subclass type will have the

methods you think you're calling on the superclass type (the
superclass reference type you're using the dot operator on)?

188

tberelz)u‘e no

Dumb Questions

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A: If you look in the Java API,
you'll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes).You'll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn’t a hard limit (well, not one
that you'd ever run into).

Q: Hey, | just thought of
something... if you don’t have
access to the source code for a class,
but you want to change the way a
method of that class works, could
you use subclassing to do that? To
extend the “bad” class and override
the method with your own better
code?

A: Yep.That's one cool feature
of 00, and sometimes it saves you
from having to rewrite the class
from scratch, or track down the

programmer who hid the source code.

Q: Can you extend any class? Or
is it like class members where if the
class is private you can't inherit it...

A: There's no such thing as a
private class, except in a very special
case called an inner class, that we
haven't looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is access control. Even though
a class can’t be marked private,a
class can be non-public (what you

get if you don't declare the class as
public).A non-public class can be
subclassed only by classes in the
same package as the class. Classes in

a different package won't be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it's the end of the inheritance
line.Nobody, ever, can extend a final
class.

The third issue is that if a class has
only private constructors (we'll
look at constructors in chapter 9), it
can't be subclassed.

inheritance and

Q: Why would you ever want to

make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won't make your
classes final. But if you need security

— the security of knowing that the
methods will always work the way
that you wrote them (because they
can't be overridden), a final class
will give you that. A lot of classes in
the Java API are final for that reason.
The String class, for example, is final
because, well,imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

A: If you want to protect a specific
method from being overridden, mark
the method with the fina1modifier.
Mark the whole class as final if you
want to guarantee that none of the
methods in that class will ever be
overridden.

189

overriding methods

Keeping the contract: rules for overriding

When you override a method from a superclass, you're agreeing to
fulfill the contract. The contract that says, for example, “I take no

arguments and I return a boolean.” In other words, the arguments

Appliance

and return types of your overriding method must look to the outside

world exactly like the overridden method in the superclass. boolean turnOn()

The methods are the contract. boolean turnOff()

If polymorphism is going to work, the Toaster’s version of the
overridden method from Appliance has to work at runtime.
Remember, the compiler looks at the reference type to decide
whether you can call a particular method on that reference. With
an Appliance reference to a Toaster, the compiler cares only if class

Appliance has the method you’re invoking on an Appliance reference.

Toaster

But at runtime, the JVM looks not at the reference type (Appliance) but
at the actual Zoaster object on the heap. So if the compiler has already ~— N\
approved the method call, the only way it can work is if the overriding This 1 NOT an

boolean turnOn(int level)

method has the same arguments and return types. Otherwise, overeide!

someone with an Appliance reference will call turnOn() as a no- L hangt the

arg method, even though there’s a version in Toaster that takes an Cant t ks n a0

int. Which one is called at runtime? The one in Appliance. In other 3*‘2:':\‘ (;‘\“‘5 mc‘\:\\od!
oV

words, the turnOn(int level) method in Toaster is not an override!

This is actually 3 legal

overLOAD, but not an

@ Arguments must be the same, and return
types must be compatible.
The contract of superclass defines how other code can use a method.

Whatever the superclass takes as an argument, the subclass over-
riding the method must use that same argument. And whatever the

overR|DE.

superclass declares as a return type, the overriding method must de-

Appliance

clare either the same type, or a subclass type. Remember, a subclass
object is guaranteed to be able to do anything its superclass declares,
so it's safe to return a subclass where the superclass is expected.

@ The method can’t be less accessible.

That means the access level must be the same, or friendlier. That
means you can’t, for example, override a public method and make
it private. What a shock that would be to the code invoking what it

thinks (at compile time) is a public method, if suddenly at runtime NOT LE&N/'. x

the JVM slammed the door shut because the overriding version

called at runtime is private! ' not a 1€99!
p |ts \r\odC betavse Yo
So far we've learned about two access levels: private and public. d the ateess

The other two are in the deployment chapter (Release your Code) rcs{:\v'\t oc\' sika \cga\
and appendix B. There’s also another rule about overriding related \eve .LO D, betavse
to exception handling, but we’ll wait until the chapter on exceptions ~ ©V€© d\dvx’{’a thange

w

(Risky Behavior) to cover that. Yo
av(_;)umCV\ .

overv

190

public boolean turnOn()

public boolean turnOn()

Toaster

private boolean turnOn()

Overloading a method

Method overloading is nothing more than having
two methods with the same name but different
argument lists. Period. There’s no polymorphism
involved with overloaded methods!

Overloading lets you make multiple versions

of a method, with different argument lists, for
convenience to the callers. For example, if you
have a method that takes only an int, the calling
code has to convert, say, a double into an int
before calling your method. But if you overloaded
the method with another version that takes a
double, then you’ve made things easier for the
caller. You’ll see more of this when we look into
constructors in the object lifecycle chapter.

Since an overloading method isn’t trying to
fulfill the polymorphism contract defined by its
superclass, overloaded methods have much more
flexibility.

@ The return types can be
different.

You're free to change the return types in
overloaded methods, as long as the argument lists
are different.

@ You can’t change ONLY the
return type.

If only the return type is different, it's not a
valid overload—the compiler will assume
you're trying to override the method. And even
that won’t be legal unless the return type is

a subtype of the return type declared in the
superclass. To overload a method, you MUST
change the argument list, although you can
change the return type to anything.

@ You can vary the access
levels in any direction.

You're free to overload a method with a method
that’'s more restrictive. It doesn’t matter, since the
new method isn’t obligated to fulfill the contract of
the overloaded method.

inheritance and

An over]oaded method is

just a different method that
happens to have the same
method name. It has nothing
to do with inheritance and
polymorphism. An over]oaded
method is NOT the same as
an overridden method.

Legal examples of method
overloading:

public class Overloads {

String uniquelD;

public int addNums (int a, int b) {
return a + b;

}

public double addNums (double a, double b) {
return a + b;

}

public void setUniqueID(String theID) ({
// lots of validation code, and then:
uniqueID = thelD;

}

public void setUniquelID(int ssNumber) {
String numString = “” + ssNumber;
setUniquelD (numString) ;

191

exercise:

Mixed

MeSsag €S

A short Java program is listed below. One block of
the program is missing! Your challenge is to match
the candidate block of code (on the left), with the
output that you'd see if the block were inserted.
Not all the lines of output will be used, and some of

a=6; 56 the lines of output might be used more than once.
b =5; 11 Draw lines connecting the candidate blocks of
a =5 65 code with their matching command-line output.
the program:
class A { class C extends B {
int ivar = 7; void m3() {
void ml() { System.out.print(“C’s m3, “+(ivar + 6));
System.out.print(“A’s ml, “); }
} }
void m2() {
System.out.print(“A’s m2, “); public class Mixed2 {
} public static void main(String [] args) {
void m3() { A a = new A();
System.out.print(“A’s m3, “); B b = new B();
} C c = new C();
} A a2 = new C(); candidate code
goes here
1 B tends A .
class B extends A { (three lines)
void ml() {
System.out.print(“B’s ml, “);
} }
} }
code b.ml(); ovtput:
: . c.m2();
candidates: a.m3(); A's ml, A’'s m2, C's m3, 6
c.ml(); B’s ml, A’'s m2, A’s m3,
c.m2(); } A’s ml, B’s m2, A’s m3,
c.m3();
B’s ml, A's m2, C’s m3, 13
a.ml();
bm2();} B’s ml, C's m2, A’s m3,
c.m3(); B’s ml, A’s m2, C's m3, 6
az.ml(); A’s ml, A’s m2, C's m3, 13
az.m2();
az.m3();

192

inheritance and

BE the Compiler

Which of the A-B pairs of methods listed on the right, if
inserted into the classes on the left, would compile and
produce the output shown? (The A method inserted into
class Monster, the B method inserted into class Vampire.)

public class MonsterTestDrive { . .
boolean frighten(int d) {

public static void main(String [] args) { 1 System.out.println(“arrrgh”);
Monster [] ma = new Monster[3]; e return true;
ma[0] = new Vampire(); }
ma[l] = new Dragon(); boolean frighten(int x) {
ma[2] = new Monster(); e System.out.println(“a bite?”);
for(int x = 0; x < 3; x++) { return false;
ma[x].frighten(x); }
}
) 2 boolean frighten(int x) {
N e System.out.println(“arrrgh”);
return true;
}
class Monster { int frighten(int f) {
Q 9 System.out.println(“a bite?”);
return 1;
} }
class Vampire extends Monster { 3 boolean frighten(int x) {
System.out.println(“arrrgh”);
Q Q return false;
}
}

boolean scare(int x) {
e System.out.println(“a bite?”);

class Dragon extends Monster { return true;

boolean frighten(int degree) { }
System.out.println(“breath fire”);
return true; 4 boolean frighten(int z) {
System.out.println(“arrrgh”);
' o

File Edit Window Help SaveYourself

return true;

% java MonsterTestDrive }

a bite? boolean frighten(byte b) {
breath fire e System.out.println(“a bite?");
arrrgh return true;

193

puzzle: Pool Puzzle

public class Rowboat

public rowTheBoat () {

System.out.print(“stroke natasha”);

Pool Puzzle

Your job is to take code snippets from the pool and place them into
the blank lines in the code.You may use the same snippet more
than once, and you might not need to use all the snippets. Your

goal is to make a set of classes that will compile and run together
as a program.Don't be fooled - this one’s harder than it looks.

public class TestBoats {

main(String[] args)({

bl = new Boat();

} Sailboat b2 = new ()s
} Rowboat _ = new Rowboat();
public class __ | b2.setLength(32);

private int 7 bl. ();
void () A b3. Q)

length = len; .move();
} }
public int getLength() { }

; public class Boat {

} public O A
public move() { System.out.print (“ ")

System.out.print (“ ") ; }
) }

}

Rowboat
Sailboat

subclasses

IV drift drift hoist sail

Boat Testboats

t int len drift hoist sail S
return . stroke natasha rowTheBoat
continue) int length String move
break intb1 .
b1 . void . setLength
) int b2 intb3 . public
in i
b3 IeIﬁnguth b2 static private getLength
__/-_

extends

194 chapter 7

3

= Solutions

P Exercise

\

inheritance and

BE the Compiler

Set 1 will work.

Set 2 will not compile because of Vampire’s return
type (int).

The Vampire’s frighten() method (B) is not a legal
override OR overload of Monster’s frighten() method.
Changing ONLY the return type is not enough

to make a valid overload, and since an int is not
compatible with a boolean, the method is not a valid
override. (Remember, if you change ONLY the return
type, it must be to a return type that is compatible
with the superclass version’s return type, and then it's
an override.

Sets 3 and 4 will compile, but produce:
arrrgh

breath fire

arrrgh

Remember, class Vampire did not override class
Monster’s frighten() method. (The frighten() method
in Vampire’s set 4 takes a byte, not an int.)

code
candidates:

Mixed

MeSsag €S

b.ml();

c.m2(); }}
a.m3();

c.ml();

a.ml();
b.m2();
c.m3();
a2.ml();}+
a2.m2();
a2.m3();

\ A’'s ml, A’'s m2, C’s m3, 6
B’s ml, A'’s m2, A’'s m3,
C-m2();} A’s ml, B’s m2, A’s m3,
c.m3();

- B’s ml, A’s m2, C’s m3, 13

B’s ml, C's m2, A’'s m3,

B’s ml, A’'s m2, C’s m3, 6

A'’s ml, A’/s m2, C’'s m3, 13

195

puzzle answers

public class Rowboat extends Boat {

public void rowTheBoat() {

System.out.print(“stroke natasha”);

}
public class Boat {
private int length ;
public void setlLength (intlen) {
length = len;
}
public int getLength() {
return length ;

}
public void move() {

System.out.print (“drift ~);

public class TestBoats {
public static void main(String[] args){
Boat bl = new Boat();
Sailboat b2 = new Sailboat();
Rowboat b3 = new Rowboat();
b2.setLength(32);
bl.move();
b3.move();
b2 .move();

}
public class Sailboat extends Boat {
public void move() {

System.out.print (“hoist sail 7);

[l drift drift hoist sail

196

8 interfaces and abstract classes

Serious Polymorphism

Inheritance is just the beginning. To exploit polymorphism, we need interfaces
(and not the GUI kind).We need to go beyond simple inheritance to a level of flexibility and
extensibility you can get only by designing and coding to interface specifications. Some of the
coolest parts of Java wouldn't even be possible without interfaces, so even if you don't design
with them yourself, you still have to use them. But you'll want to design with them.You'll need
to design with them. You’ll wonder how you ever lived without them.What's an interface? It's
a 100% abstract class.What's an abstract class? It's a class that can’t be instantiated. What's that
good for? You'll see in just a few moments. But if you think about the end of the last chapter,
and how we used polymorphic arguments so that a single Vet method could take Animal
subclasses of all types, well, that was just scratching the surface. Interfaces are the poly in

polymorphism.The ab in abstract.The caffeine in Java.

197

Feline

Canine

size
picture
food

PR

size
) picture
size food
picture
size food .
picture size
food picture -
food f

198 chapter 8

interfaces and polymorphism

We know we can say:

Wolf aWolf = new Wolf();

A Wolf veferente to a

| % / 2 @C‘
Wolf object. Wolf / e
=

These two are the same type.

And we know we can say:

Animal aHippo = new Hippo () ;

| A
b C

These two are NOT the same type.

Animal veferente to
a Hi\??o objcc‘t.

But here’s where it gets weird:

Animal anim = new Animal ();
A —

| 4’7/’ - 06\
Animal \ / ™al do3

These two are the same type, but..
what the heck does an Animal obJCC£ look like?

Animal veferente to
an Anima| objc(:b

you are here» 199

when objects go bad

What does a new Animal() object

look like?

seary objects

What are the instance variable values?

Some classes just should not be
instantiated!

It makes sense to create a Wolf object or a Hippo
object or a Tiger object, but what exactly is an
Animal object? What shape is it? What color, size,
number of legs...

Trying to create an object of type Animal is like a
nightmare Star Trek™ transporter accident. The
one where somewhere in the beam-me-up process
something bad happened to the buffer.

But how do we deal with this? We need an Animal
class, for inheritance and polymorphism. But we
want programmers to instantiate only the less
abstract subclasses of class Animal, not Animal itself.
We want Tiger objects and Lion objects, not Animal
objects.

Fortunately, there’s a simple way to prevent a class
from ever being instantiated. In other words, to stop
anyone from saying “new” on that type. By marking
the class as abstract, the compiler will stop any
code, anywhere, from ever creating an instance of

that type.

200 chapter8

You can still use that abstract type as a reference type.
In fact,that’s a big part of why you have that abstract
class in the first place (to use it as a polymorphic
argument or return type, or to make a polymorphic
array).

When you’re designing your class inheritance
structure, you have to decide which classes are
abstract and which are concrete. Concrete classes are
those that are specific enough to be instantiated. A
concrete class just means that it’s OK to make objects
of that type.

Making a class abstract is easy—put the keyword
abstract before the class declaration:

abstract class Canine extends Animal {

public void roam() { }

interfaces and polymorphism

The compiler won't let you instantiate
an abstract class

An abstract class means that nobody can ever make a new
instance of that class. You can still use that abstract class as a
declared reference type, for the purpose of polymorphism, but
you don’t have to worry about somebody making objects of that
type. The compiler guarantees it.

abstract public class Canine extends Animal

{
public void roam() { }
}
public class MakeCanine { always ass\on
w Lan
public void go() { Tyes 0% b-cw:;o\’: pertlass cefecentts
Canine c;) subtass dbjet <is a\)s{raffc-
ik the S‘*\’C""’\as
c = new Dog() ; even !
c = new Canine();
_W_l__ & CI&SS Cahihc .
c.roam() ; so 4h IS marked abst,
€ Compiler v NoT | aet,
} et You do this.
}

File Edit Window Help BeamMeUp

% javac MakeCanine. java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated

¢ = new Canine();
A

1l error

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class.

¥Theve is an exteption to this—an abstract class can
have static members (see chapter 10).

you are here »

201

abstract and concrete classes

Abstract vs. Conerete

A class that’s not abstract is called
a concrele class. In the Animal
inheritance tree, if we make
Animal, Canine, and Feline
abstract, that leaves Hippo, Wolf,
Dog, Tiger, Lion, and Cat as the
concrete subclasses.

Flip through the Java API and
you’ll find a lot of abstract classes,
especially in the GUI library. What
does a GUI Component look

like? The Component class is the
superclass of GUI-related classes
for things like buttons, text areas,
scrollbars, dialog boxes, you name
it. You don’t make an instance of
a generic Component and put it on
the screen, you make a JButton. In
other words, you instantiate only a
concrete subclass of Component, but
never Component itself.

COv\L\rC‘[:c

abstvact

| Animal

abstract

Canine

\

tontrete

COV\LV‘C'{ZC

Hippo j

abstract

COm‘xc‘(:c

§ COnch{:c

|

"B

Loncv-c{',c

;!!«L'
f -Lm"._;

@?RA“«
ToawWE®w

Hmmmm... do T
feel like red or
white tonight?

202

Hmmmm... the Camelot
Vineyards 1997 Pinot
Noir was a pretty
decent year...

abstract or concrete?

How do you know when a class should be
abstract? Wine is probably abstract. But what
about Red and White? Again probably abstract
(for some of us, anyway). But at what point in the
hierarchy do things become concrete?

Do you make PinotNoir concrete, or is it abstract
too? It looks like the Camelot Vineyards 1997
Pinot Noir is probably concrete no matter what.
But how do you know for sure?

Look at the Animal inheritance tree above.Do the
choices we've made for which classes are abstract
and which are concrete seem appropriate?

Would you change anything about the Animal
inheritance tree (other than adding more Animals,

of course)?

Abstract methods

Besides classes, you can mark methods abstract, too. An abstract
class means the class must be extended; an abstract method means
the method must be overridden. You might decide that some (or all)
behaviors in an abstract class don’t make any sense unless they’re
implemented by a more specific subclass. In other words, you can’t
think of any generic method implementation that could possibly be
useful for subclasses. What would a generic eat() method look like?

An abstract method has no body!

Because you’ve already decided there isn’t any code that would make
sense in the abstract method, you won’t put in a method body. So no
curly braces— just end the declaration with a semicolon.

interfaces and

It really sucks to
be an abstract method.
You don't have a body.

public abstract void eat();

|
m {:\\od \Jod\l. .
g:\d \c‘h with 3 semitolon

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to
make the class abstract. But you can mix both abstract and non-

abstract methods in the abstract class.

there

Q: What is the point of an abstract method? | thought
the whole point of an abstract class was to have common
code that could be inherited by subclasses.

A: Inheritable method implementations (in other words,
methods with actual bodies) are A Good Thing to putin a
superclass. When it makes sense. And in an abstract class, it
often doesn’t make sense, because you can’t come up with
any generic code that subclasses would find useful. The
point of an abstract method is that even though you haven't
put in any actual method code, you've still defined part of
the protocol for a group of subtypes (subclasses).

areno
Dumb uestions

/

Q: Which is good because...

A: Polymorphism! Remember, what you want is the
ability to use a superclass type (often abstract) as a method
argument, return type, or array type.That way, you get to
add new subtypes (like a new Animal subclass) to your
program without having to rewrite (or add) new methods
to deal with those new types.Imagine how you'd have to
change the Vet class, if it didn’t use Animal as its argument
type for methods. You'd have to have a separate method
for every single Animal subclass! One that takes a Lion, one
that takes a Wolf, one that takes a...you get the idea. So with
an abstract method, you're saying,“All subtypes of this type
have THIS method.” for the benefit of polymorphism.

203

you must implement abstract methods

204

You MUST implement all abstract methods

I have wonderful news,
mother. Joe finally implemented
all his abstract methods! Now

everything is working just the
way we planned...

Implementing an abstract
method is just like
overriding a method.

Abstract methods don’t have a body; they exist solely for polymorphism. That
means the first concrete class in the inheritance tree must implement a/l abstract
methods.

You can, however, pass the buck by being abstract yourself. If both Animal and
Canine are abstract, for example, and both have abstract methods, class Canine
does not have to implement the abstract methods from Animal. But as soon as we
get to the first concrete subclass, like Dog, that subclass must implement all of the
abstract methods from both Animal and Canine.

But remember that an abstract class can have both abstract and non-abstract
methods, so Canine, for example, could implement an abstract method from
Animal, so that Dog didn’t have to. But if Canine says nothing about the abstract
methods from Animal, Dog has to implement all of Animal’s abstract methods.

When we say “you must implement the abstract method”, that means you maust
provide a body. That means you must create a non-abstract method in your class
with the same method signature (name and arguments) and a return type that is
compatible with the declared return type of the abstract method. What you put in
that method is up to you. All Java cares about is that the method is there, in your
concrete subclass.

@a.0harpen your pencil
narpen o

Concrete

golf course simulation

satellite photo application

interfaces and

Abstract vs. Concrete Classes

Let’s put all this abstract rhetoric into some concrete use. In the middle
column we've listed some classes. Your job is to imagine applications
where the listed class might be concrete, and applications where the listed
class might be abstract. We took a shot at the first few to get you going.
For example, class Tree would be abstract in a tree nursery program, where
differences between an Oak and an Aspen matter. But in a golf simulation
program, Tree might be a concrete class (perhaps a subclass of Obstacle),
because the program doesn't care about or distinguish between different
types of trees. (There’s no one right answer; it depends on your design.)

Sample class Abstract
Tree tree nursery application
House architect application

Town

Football Player coaching application

Chair

Customer

Sales Order

Book

Store

Supplier

Golf Club

Carburetor

Oven

205

polymorphism examples

Polyworphism in action

Let’s say that we want to write our own kind of list class, one that will hold
Dog objects, but pretend for a moment that we don’t know about the
ArrayList class. For the first pass, we’ll give it just an add() method. We’ll use
a simple Dog array (Dog []) to keep the added Dog objects, and give it a
length of 5. When we reach the limit of 5 Dog objects, you can still call the
add() method but it won’t do anything. If we’re not at the limit, the add()
method puts the Dog in the array at the next available index position, then
increments that next available index (nextlndex).

MyDogList

Dog[] dogs
int nextindex

add(Dog d)

206

public class MyDogList {
private Dog [] dogs = new Dog[5];

private int nextIndex = 0;

public void add(Dog d) {
if (nextIndex < dogs.length) ({
dogs[nextIndex] = d;
System.out.println(“Dog added at “ + nextIndex) ;

nextIndex++;

interfaces and polymorphism

Uh-oh, now we need to keep Cats, too.

We have a few options here:
1) Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2) Make a single class, DogAndCatList, that keeps two different arrays as instance
variables and has two different add () methods: addCat(Cat c¢) and addDog(Dog
d). Another clunky solution.

3) Make heterogeneous AnimalList class, that takes any kind of Animal subclass
(since we know that if the spec changed to add Cats, sooner or later we’ll have
some other kind of animal added as well). We like this option best, so let’s change
our class to make it more generic, to take Animals instead of just Dogs. We've
highlighted the key changes (the logic is the same, of course, but the type has
changed from Dog to Animal everywhere in the code.

Building our own Animal-specific list .

]
Dok ane Were et 70
public class MyAnimalList { new A,,;ma\ o\{)C" ’0}"};’? . Pm""‘a\'
<o, ‘/_\ new a3y ob‘)et‘b make @ new
private Animal[] animals = new Animal[5]; R cm\)t"x \’o\, £anno . \w{_’
private int nextIndex = 0; C‘C‘a e 0£ an abs’cvad: ‘t\[")
instan

MyAnimalList . i :
public void add(Animal a) {

if (nextIndex < animals.length) { ch\aVCd OHO
animals|[nextIndex] = a;

Animal[] animals

int nextindex
System.out.println(“Animal added at “ + nextIndex) ;
add(Animal a) nextIndex++;

public class AnimalTestDrive{
public static void main (String[] args) {
MyAnimalList list = new MyAnimalList();
Dog a = new Dog() ;
Cat ¢ = new Cat();
list.add(a) ;
list.add(c);

File Edit Window Help

% java AnimalTestDrive

Animal added at O

Animal added at 1

you are here» 207

the ultimate superclass: Object

What about non-Animals? Why not make
a class generic enough to take anything?

You know where this is heading. We want to change the

type of the array, along with the add() method argument, to
something above Animal. Something even more generic, more
abstract than Animal. But how can we do it? We don’t havea
superclass for Animal.

Then again, maybe we do...

Remember those methods of ArrayList?

few of the

(These ave \-).,s“: : List.-there

etiods n Pred)

ove.

(S
&0

&)

are many ™

ArraylList

Look how the remove, contains, and

indexOf method all use an object of type... iect elem)
: ve(Objec turns
Object! boolean remt:e ot(aject at the index parameter: Re
Removes in the list.
) t was in
Every class in Java extends e fhe Sl lem)
- : m
class Object. ins(Object elé act parameter.
: boolean CO“t:’ if there's a match for the object p
Returns ‘tru

Class Object is the mother of all classes; it’s
the superclass of everything.

Even if you take advantage of polymorphism, Returns ‘true’if the listha
you still have to create a class with methods . f(Object elem) . ameter, or 1.
that take and return your polymorphic type. int indexO (‘:the index of the object par

Without a common superclass for everything
in Java, there’d be no way for the developers
of Java to create classes with methods that
could take your custom types... types they never
knew about when they wrote the ArrayList class.

Object get(i

Return

poolean ad

So you were making subclasses of class Object
from the very beginning and you didn’t even
know it. Every class you write extends Object,
without your ever having to say it. But you can
think of it as though a class you write looks like
this:

/| more

public class Dog extends Object { }

But wait a minute, Dog already extends something, Canine.
That’s OK. The compiler will make Canine extend Object
instead. Except Canine extends Animal. No problem, then the
compiler will just make Animal extend Object.

Any class that doesn’t explicitly extend another
class, implicitly extends Object.

So, since Dog extends Canine, it doesn’t directly extend Object
(although it does extend it indirectly), and the same is true
for Canine, but Animal does directly extend Object.

208

poolean isEmP

Returns eithe

s the element atthisp

d(object ele
t to the

Adds the elemen

ty()

< no elements.

indeX .
ntind) osition in the list.

m) 1 U
list (returns true’).

thods use the

Obiect. Sinte
) of Ob")eﬁ‘b

of the AveayList me
hie type
vbelass :
fake anything

the get() and add0)

Man\/

uH:'\ma{:c Yo\\[mj\r\? cor
tlass in ava \s

j:\r\c:l Arvayl,is{: methods ean

(Note: as of Java 2.0,
methods actually \ookha
than the ones shown here, §
is {:v\\\c way to Lhink about \{’,)
fhe full story 3 little later.

little diffevent

but for now this

el aet into

So what’s in this ultra-super-wmegaclass Object?

If you were Java, what behavior would you want every
object to have? Hmmmm... let’s see... how about a
method that lets you find out if one object is equal
to another object? What about a method that can
tell you the actual class type of that object? Maybe a
method that gives you a hashcode for the object, so
you can use the object in hashtables (we’ll talk about
Java’s hashtables in chapter 17 and appendix B).
Oh, here’s a good one—a method that prints out a
String message for that object.

And what do you know? As if by magic, class Object
does indeed have methods for those four things.
That’s not all, though, but these are the ones we
really care about.

(@ equals(Object o)

Dog a
Cat c

new Dog() ;
new Cat();

if (a.equals(c)) {
System.out.println(“true”) ;

} else {
System.out.println(“false”) ;

}

means in appendix B)-

@ getClass()

Cat c = new Cat();
System.out.println(c.getClass()) ;

File Edit Window Help

$ java TestObject [CIEEEH bac\'(the
class that ob Jcc{', was
ciass Cat instantiated Lrom.

Object

interfaces and polymorphism

boolean equals()
Class getClass()
int hashCode()
String toString()

—r—

YourClassHere

Just SOME of the methods

ok tlass 0\'{')3('*"

Every elass you write inherits all the
mcfhods of ¢lass Object. The classes
Youve written inherited methods You
didn’t even know You had.

(® hashCode()

Cat c =
System.

new Cat();
out.println(c.hashCode()) ;

File Edit Window Help Drop

s owt 3 hasheode

o = . Prin

¥ java TestObject for the Ob\')cc{: (for

8202111 ow, think of it as 2
unique ‘D)

Java TestObject iR you f two ob)ccjc,s are
considered ‘cqual' (we'll £alk
about what ‘ct\ua\' veally @

toString()

Cat ¢ = new Cat();
System.out.println(c.toString())

File Edit Window Help LapselntoComa

% java TestObject

Cat@7d277f

Shring messade
of the tlass

mber We

Prints out 3
with the name
and some other ™V

varely cave about.

you are here » 209

Object and

therejare no

Dumb Questions

Q: Is class Object abstract?

A: No.Well, not in the formal
Java sense anyway. Object is a
non-abstract class because it's
got method implementation
code that all classes can inherit
and use out-of-the-box, without
having to override the methods.

. Then can you override
the methods in Object?

A: Some of them. But some of
them are marked final, which
means you can’t override them.
You're encouraged (strongly) to
override hashCode(), equals(),
and toString() in your own
classes,and you'll learn how to
do that a little later in the book.
But some of the methods, like
getClass(), do things that must
work in a specific, guaranteed
way.

- If ArrayList methods are
generic enough to use Object,
then what does it mean to say
ArrayList<DotCom>? | thought
| was restricting the ArrayList to
hold only DotCom objects?

A: You were restricting it.
Prior to Java 5.0, ArrayLists

couldn’t be restricted. They

were all essentially what you

get in Java 5.0 today if you write
ArrayList<Object>.In other
words, an ArraylList restricted

to anything that’s an Object,
which means any object in Java,
instantiated from any class type!
We'll cover the details of this new
<type> syntax later in the book.

210

Q: OK, back to class Object
being non-abstract (so | guess
that means it’s concrete), HOW
can you let somebody make an
Object object? Isn’t that just
as weird as making an Animal

object?

A: Good question! Why is

it acceptable to make a new
Object instance? Because
sometimes you just want a
generic object to use as, well, as
an object. A lightweight object.
By far, the most common use of
an instance of type Object is for
thread synchronization (which
you'll learn about in chapter 15).
For now, just stick that on the
back burner and assume that
you will rarely make objects of
type Object, even though you
can.

Q: Sois it fair to say that the
main purpose for type Object

is so that you can use it for a
polymorphic argument and
return type? Like in ArrayList?

A: The Object class serves
two main purposes:to actas a
polymorphic type for methods
that need to work on any class
that you or anyone else makes,
and to provide real method code
that all objects in Java need at
runtime (and putting them in
class Object means all other
classes inherit them). Some of
the most important methods in
Object are related to threads,
and we'll see those later in the
book.

Q: If it's so good to use
polymorphic types, why

don’t you just make ALL your
methods take and return type
Object?

AI Ahhhh... think about what
would happen. For one thing,
you would defeat the whole
point of ‘type-safety’, one

of Java's greatest protection
mechanisms for your code. With
type-safety, Java guarantees that
you won't ask the wrong object
to do something you meant to
ask of another object type. Like,
ask a Ferrari (which you think is a
Toaster) to cook itself.

But the truth is, you don’t have
to worry about that fiery Ferrari
scenario, even if you do use
Object references for everything.
Because when objects are
referred to by an Object
reference type, Java thinks it's
referring to an instance of type
Object. And that means the

only methods you're allowed to
call on that object are the ones
declared in class Object! So if
you were to say:

Object o = new Ferrari();
o.goFast(); //Not legal!

You wouldn't even make it past
the compiler.

Because Java is a strongly-typed
language, the compiler checks
to make sure that you're calling
a method on an object that’s
actually capable of responding.
In other words, you can call a
method on an object reference
only if the class of the reference
type actually has the method.
We'll cover this in much greater
detail a little later, so don't worry
if the picture isn’t crystal clear.

interfaces and

Using polymorphic references of type Object has a price...

Before you run off and start using type Object for all your ultra-flexible argument and return
types, you need to consider a little issue of using type Object as a reference. And keep in mind
that we’re not talking about making instances of type Object; we’re talking about making
instances of some other type, but using a reference of type Object.

When you put an object into an ArrayList<Dog>, it goes in as a Dog, and comes out as a Dog:

Make an AveayList detlaved
ArrayList<Dog> myDogArrayList = new ArrayList<Dog> () P Lo hold Dog ob\‘)cc{:&

Dog aDog = new Dog () ; <—Make aDos-

myDogArrayList.add (aDog) ; €— fdd the DOSAJC‘). Jd\;;‘.‘:%oﬁ from the list to 3 new Do reﬁercnclcj var:j:l:r-“
ssign
Dog d = myDogArrayList.get (0); &— (Th?nk of it as though the 5:{() method detlaves a VoY

Lype because you used Arva\/Lis{xDo‘_y.)

But what happens when you declare it as ArrayList<Object>? If you want to make an ArrayList
that will literally take any kind of Object, you declare it like this:

.] Make an AveayList declared
ArrayList<Object> myDogArraylList = new ArrayList<Object>(); & e v any yee % Ougect

Dog abog = new Dog(); &—Make a D°3~ 4 (These two steps are the same.)
myDogArrayList.add (aDog); e— Add the Dog to the list

But what happens when you try to get the Dog object and assign it to a Dog reference?

NO!l Won't Com‘?ilc_” When you use ArrayLis£<Ochc£>, the 5:{-,() method
veturns type Ob\)cc{:. The Compiler knows only that the ob\)cc't inherits from
Objcci (somewhere in its inheritante tree) but it doesn't know it's a Dog I

Everything comes out of an ArrayList<Object> as a reference of type Object, regardless of what the
actual object is, or what the reference type was when you added the object to the list.

Dog ' d = myDogArrayList.get(0) ;

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

R Objects come out of

S0 an ArrayList<Object>
acting like they’re

l l generic instances

of class Object. The
ArrayList<Object> Compiler cannot
assume the object
that comes out is of
any type other than

Object.

But they come
OUT as though

they were of type
Object.

211

When a Dog loses its Dogness

When a Dog won't act like a Dog

The problem with having everything treated o
polymorphically as an Object is that the objects
appear to lose (but not permanently) their

true essence. The Dog appears to lose its dogness.
Let’s see what happens when we pass a Dog to
a method that returns a reference to the same
Dog object, but declares the return type as type
Object rather than Dog.

T don't know what you're
talking about. Sit? Stay?
bark? Hmmmm... T don't
recall knowing those.

hod
h the wet

public void go() { e w0 'L wo IEvcn‘h::‘z‘:-:)_\’ N ;5 {;,':c

X N
B AD Dog aDog = new Dog() ; T\‘J:,\-y\cd 3 vekecen the cekuen ‘\3\!\" g\‘ CYC&,WV\C d
® Dog sameDogmetObject (aDog) ; 4/ ve C“Jc vcﬁcv\'cd o L \c‘\’, You ass\n
s~ 4 roum . i
} Yga“s k\\ et W\Y\\CV“\:\ bu‘\: O\)\)CC

public Object getObject(Object o) {
return o; .
} We've veturning
vetuen {‘,\[?c o‘c {O
Lhis is similar +o how the 9¢ ot
an AwayLis‘«Ob)eLb vather than

but as 3
Levente Lo the same Doo, .
3\;;;. This part is pecfectly legal. Note:
; method works when you have

Awa\/Lis{:<Dog>~

File Edit Window Help Remember

The Lom\?ilcr doesn't know that the
thing veturned £rom the method is
ac{:uall\/ a Dog, so it won't let you
assign it to a Dog veferente. (You'll
see why on the next page.)

DogPolyTest.java:10: incompatible types
found : java.lang.Object

required: Dog

Dog sameDog = takeObjects (aDog) ;
1 error A

public void go() { This works (although it may not be very
éooD Do? aDog = new Dog() ; . / useful, as you'll see in a moment) because you
o Object sameDog = getObject (aDog) ; tan assign AN‘/TH'ING to a veferente of {:\/Pc
} Object, since every class passes the [S—A test
for Object. Every object in Java is an instante
of type Object, because every elass in Java has
return o; 0b3cc£ at the top of its inhevitance tree.

}
212 chapter 8

public Object getObject (Object o) {

Objects dont bark.

So now we know that when an object is
referenced by a variable declared as type
Object, it can’t be assigned to a variable
declared with the actual object’s type.
And we know that this can happen when
a return type or argument is declared

as type Object, as would be the case,

for example, when the object is put

into an ArrayList of type Object using
ArrayList<Object>. But what are the
implications of this? Is it a problem to
have to use an Object reference variable
to refer to a Dog object? Let’s try to call
Dog methods on our Dog-That-Compiler-
Thinks-Is-An-Object:

Object o =

interfaces and

0o 'e,f"
Object 9 0by

When you get an ob\’)cc{: vefevente from
an AvrayList<Object> (or any method
that declares Object as the veturn type),
it comes back as a polymorphic vefevente
type of Object. So you have an Object
veferente to (in this case) a D03 instante.

<otk aS
al.get(index) ; Tis fine. Clas® ;)\J)ct\i gan 3l
\ so
0 methodh 2 Y% 1% o
int i = o.hashCode(); <« \‘CS\\EOd:Jg\\od on ANY ob
hat ™

Won’{ com\f\\c! — © ‘bark () ; «_

The compiler decides whether
you can call a method based

on the reference type, not the
actual object type.

Even if you know the object is capable
(“...but it really is a Dog, honest...”), the
compiler sees it only as a generic Object.
For all the compiler knows, you put a
Button object out there. Or a Microwave
object. Or some other thing that really
doesn’t know how to bark.

The compiler checks the class of the
reference type—not the object type—to

see if you can call a method using that
reference.

Can't do this!l The Ob\)cc{: tlass has no idea what
it means to bark(). Even though YOU know it's
veally a Dog at that index, the compiler doesn’t.

hashCode()

OO . e'c‘\
Object 9 oby
Object ,
The method you've ¢alling on a
equals() veference MUST be in the ¢lass of
getClass() that veference type. Doesn't matter
hashCode() what the actual ob\)cd‘, is.
toString() K
\ o.hashCode () ;

The “o” veferente was detlared as {:\/Ec
Objcci, so You ean ¢all methods only i
those methods ave in elass Objeet.

213

objects are Objects

Object

equals()
getClass()
hashCode()
toString()

Snowboard

equals()
getClass()
hashCode()
toString()

turn()
shred()
getAir()
loseControl()

214 chapter 8

He treats me like an
Object. But T can do so
much more...if only he'd see
me for what I really am.

Get in fouch with your inner Object.

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object. That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard (), you get a single object on the
heap—a Snowboard object—but that Snowboard wraps

itself around an inner core representing the Object
(capital “O”) portion of itself.

Snowboard inhevits methods
from superelass Object, and
adds four more.

A single object
on the hea\\g.

Snowboard

S e
OoWbo ard %)

Theve is on|\/ ONE ob\)cé{‘, on the hcaP heve. A Showboard
ob")cd:- But it contains both the Snowboard ¢lass ?a\r'(:s of
itself and the Ob')cc{: class parts of itself.

‘Polymorphism’ means
‘many forms’.

You can treat a Snowboard as a
Snowboard or as an Object.

If a reference is like a remote control, the
remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has
only a few buttons—the buttons for the exposed
methods of class Object. But a remote control
of type Snowboard includes all the buttons from
class Object, plus any new buttons (for new
methods) of class Snowboard. The more specific
the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to the Snowboard object can’t see
the Snowboard-specific methods.

Snowboard S_= new Snowboard() ;

Object o0 = s;

interfaces and

When you put

an object in an
ArraylList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

The Snowboard remote control
(veferente) has more buttons than \
an Object vemote eontrol. The o
Snowboard remote can see the full
Snowboardness of the Snowboard

object. [t ean aceess all the methods

in Snowboard, including both the

inherited Object methods and the

methods from ¢lass Snowboard.

fewer methods here...

The Objecf veferente tan see > only the
OchC'{: parts of the Snowboard ob\')cc‘(:-
[£ ean aceess only the methods of class
Ob\)cc{;‘ [t has fewer buttons than the

Showboard remote tontrol.

215

casting objects

Wait a minute... what good
is a Dog if it comes out of an
ArrayList<Object> and it can't do
any Dog things? There's gotta be a
way to get the Dog back to a state
of Dogness...

Casting an object reference
back to its real type.

-
OOg obsezc
Object

T hope it doesn't hurt.
And what's so wrong with
staying an Object? OK, I can't
fetch, sure, but I can give you

It’s really still a Dog object, but if you want to call
Dog-specific methods, you need a reference declared
as type Dog. If you're sure* the object is really a
Dog, you can make a new Dog reference to it by
copying the Object reference, and forcing that
copy to go into a Dog reference variable, using a
cast (Dog). You can use the new Dogreference to
call Dog methods.

a real nice hashcode.

Object o = al.get (index) ; . ek Lo
Dog d = (Dog) o;hcas‘t {:\\c O\)\)Cﬁ‘hba

kow\s
d.roam() ; a Dog we &

Cast the so—called ‘Ob\)c(,{:' (but
we know he’s actually a Dog) to
type Dog, so that you can treat
him like the Dog he veally is.

Dog

*If you’re not sure it’s a Dog, you can use the
instanceof operator to check. Because if
you’re wrong when you do the cast, you’ll geta
ClassCastException at runtime and come to a
grinding halt.

if (o instanceof Dog) ({
Dog d = (Dog) o;
}

216 chapter 8

interfaces and polymorphism

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

When you write a class, you almost always expose some
of the methods to code outside the class. To expose a
method means you make a method accessible, usually by
marking it public.

Imagine this scenario: you’re writing code for a small

business accounting program. A custom application

for “Simon’s Surf Shop”. The good re- [
user that you are, you found an Account
class that appears to meet your needs
pertfectly, according to its documentation,
anyway. Each account instance represents
an individual customer’s account with the
store. So there you are minding your own
business invoking the credit() and debit()
methods on an account object when you realize you
need to get a balance on an account. No problem—
there’s a getBalance() method that should do nicely.

Except... when you invoke the getBalance() method,
the whole thing blows up at runtime. Forget the
documentation, the class does not have that method.
Yikes!

But that won’t happen to you, because everytime you
use the dot operator on a reference (a.doStuff()), the
compiler looks at the reference type (the type ‘a’ was
declared to be) and checks that class to guarantee the
class has the method, and that the method does indeed
take the argument you’re passing and return the kind of
value you’re expecting to get back.

Just remember that the compiler checks the class of the
reference variable, not the class of the actual object at the
other end of the reference.

you are here» 217

modifying a class tree

218

What if you need to change
the contract?

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of
your superclasses.

True, your Dog class defines a contract.
But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of
those things—Canine, Animal, and Object.

But what if the person who designed your
class had in mind the Animal simulation
program, and now he wants to use you (class
Dog) for a Science Fair Tutorial on Animal
objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a
PetShop program? You don’t have any Pet
behaviors. A Pet needs methods like beFriendly()

and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add
some more methods to the Dog class. You
won’t be breaking anyone else’s code by
adding methods, since you aren’t touching
the existing methods that someone else’s code
might be calling on Dog objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

.@RAn«
TOAWEWR

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won't break anyone else’s code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you'd like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think abouft it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

interfaces and

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program.

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about
whether Java can actually do what we come up with.
We’ll cross that bridge once we have a good idea of
some of the tradeoffs.

@ Option one
We take the easy path, and put pet
methods in class Animal.

Pros: Y“’“

O
All the Animals will instantly inherit e et
the pet behaviors. We won't have to [foc W
touch the existing Animal subclasses
at all, and any Animal subclasses Animal
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets Canine

)
2\ Xne ;: W nere

Lo
e

Cons:

So... when was the last time you
saw a Hippo at a pet shop? Lion? Feline
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs

and Cats tend to imple-
ment pet behaviors

VERY differently.

219

modifying existing classes

@ Option two
We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

Pros:

That would give us all the benefits of Option One, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it's in class Animal), but
because it's abstract the non-pet Animal classes won't
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings”.

Cons:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the first concrete subclass
down the inheritance tree.) What a waste of time!

You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things

(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet

class would be announcing to the

world that it, too, has those

pet methods, even though

the methods wouldn't

actually DO anything %

when called.

This approach doesn't

look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

nod®
xne ¥ "C)C“oo
wb A\ v ‘N.\)('\“ N\a\LC A\

Wee® | oS |k
"\Y\w\m . a\os’da

Animal

Canine

Ask me to be friendly.
No, seriously... ask me.
I have the method.

220

interfaces and

® Option three
Put the pet methods ONLY in the
classes where they belong.

Pros:

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Cons:

Two Big Problems with this approach. First off, you'd
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have

to KNOW about the protocol. By protocol, we mean
the exact methods that we've decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn't in a contract,
the compiler has no way to check you to see if you've
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and find that not all of them work

quite right.

And second, you don't get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,

you can't use Animal

as the polymorphic

type now, because the
compiler won't let you call

a Pet method on an Animal
reference (even if it's really a
Dog object) because class Animal
doesn't have the method.

Canine

221

multiple inheritance?

So what we REALLY need is:

Away to have pet behavior in just the pet classes

Away to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

#* Away to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

It looks like we need TWO
superclasses at the top

. | Animal

Canine

Cat vow extend®
,cy-ow\ \70&\\ P‘h‘ma\
‘P‘ND PCJ\',) so .‘{-‘ ?)c%i\‘
he mebecs ok The nov\—?c{: Animals
don't have any inhevited

Pet s{:u-(:‘(:~

222 chapter 8

interfaces and polymorphism

There's just one problem with the "two superclasses” approach...

It’s called “multiple inheritance”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn't, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

Deadly Diamond of Death

DVDBurner both M
|
CDB\.AY“EY a '\S\ha\P\cLOVd“’
mherit X" 7 h uen0) burn()
) d both 0“““"dc ¢ W
3
a“c-hhod- Poth nhert
'.“v\s{',ahtc Va‘r'\a\)\c' “.‘n NS nte
v CDBurner DVDBurner e ‘_‘\\a\; i o C’D%wwx
\ > ble s Y€ aikkever
vanad \/DEW"“' £ Co \ooD\’“"'
3“d D S ‘h) ch\s ' OQ \\-‘”?
va\“cs'\f ° L values
us
eeds °

ComboDrive

Whieh bw_y:() mmuH:iPIc ihhc”{:ath.

od
call bwn() on the Comv::ls): hc; e
ve<

A language that allows the Deadly Diamond of Death can lead to
some ugly complexities, because you have to have special rules to
deal with the potential ambiguities. And extra rules means extra
work for you both in learning those rules and watching out for
those “special cases”. Java is supposed to be simple, with consistent
rules that don’t blow up under some scenarios. So Java (unlike
C++) protects you from having to think about the Deadly Dia-
mond of Death. But that brings us back to the original problem!
How do we handle the Animal/Pet thing?

you are here» 223

interfaces

Interface to the rescue!

Java gives you a solution. An interface. Not a GUI interface, not the generic
use of the word interface as in, “That’s the public interface for the Button

class APL,” but the Java keyword interface.

A Java interface solves your multiple inheritance problem by giving you
much of the polymorphic benefits of multiple inheritance without the pain
and suffering from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple: make
all the methods abstract! That way, the subclass must implement the methods
(remember, abstract methods must be implemented by the first concrete
subclass), so at runtime the JVM isn’t confused about which of the two

inherited versions it’s supposed to call.

Pet

abstract void beFriendly();

abstract void play();

To DEFINE an interface:

A Java interface is like a
100% pure abstract class.

public interface Pet {...}

-MSC {:hc kc
"'Sfcad

To IMPLEMENT an interface:

public class Dog extends Canine implements Pet {...

224

yWOV‘ d «

0“‘ (‘c’as)]

! Wécr-pac e”
S

}\mcwtsﬂ £ ollowed

“im \
Use the keyword 0 ot

[Qacc name.
b\’h{hc\lc‘;:ﬁc:\?\cmh{: an 'm’r,ev‘cacc Jou
when

<l 5:{: Lo exkend 3 ¢lass

Making and Implementing
the Pet inferface

interfaces and

interface meth
abstract, s { ;‘is ?:c;;:"ﬁ"‘:'“Y Public. and

is °P£-onal (in L3¢ g it” and abs{raa{’

style’ 4o ¢ not tonsidered od
i“s'(" i rc'Z' e 'Ehe words in, but \e dnd }?ﬂ_c

een sfavcs to 1('as hion.. eCause we’ ve never

eckate methods 37¢

public interface Pet ({ N\ wn the MST end n
Jbstratts 0 \I\, v, they have
public abstract void beFriendly() ; 4 scm\bo\o'\s Remembe
public abstract void play() ; é_/ no b"d\l
}
\cmcn{'}
\ma\ ow 53 “irw
DOS \S’P‘ P\V\ f “ Cd b\l {-th name
3 Doo |S-A Pet oz z;,c by

public class Dog extends

Canine implements Pet {
—_—

public void beFriendly () {...}

public void play() {.

public void roam() {..

public void eat() {..

You SA

ID
-} —i implemen L {;yo Jrea

Pet, s
e) ou MUST
,iozfracf Notice Jch:e:c | ; o
stead of Semitolops. Y 5*3“5

-}

™~ Th
.} &—— "heseare 'AS‘(: norma|

ovcr\mdm3 "'C'(:hods

th o
Dum‘nﬁbl%rﬂuestlons

Q:Wait a minute, interfaces don’t
really give you multiple inheritance,
because you can’t put any
implementation code in them. If all
the methods are abstract, what does
an interface really buy you?

A: Polymorphism, polymorphism,
polymorphism.Interfaces are the
ultimate in flexibility, because if you
use interfaces instead of concrete
subclasses (or even abstract superclass
types) as arguments and return

types, you can pass anything that
implements that interface. And think
about it—with an interface, a class
doesn’t have to come from just one
inheritance tree. A class can extend
one class, and implement an interface.
But another class might implement
the same interface, yet come from a
completely different inheritance tree!
So you get to treat an object by the
role it plays, rather than by the class
type from which it was instantiated.

In fact, if you wrote your code to use
interfaces, you wouldn't even have to
give anyone a superclass that they had

to extend. You could just give them
the interface and say,“Here,’| don't
care what kind of class inheritance
structure you come from, just
implement this interface and you'll be
good to go.”

The fact that you can’t put in
implementation code turns out not to
be a problem for most good designs,
because most interface methods
wouldn't make sense if implemented
in a generic way. In other words, most
interface methods would need to

be overridden even if the methods
weren't forced to be abstract.

225

interface polymorphism

Classes from different inheritance trees
can implement the same interface.

Robot

Pet l | Animal

Canine

C’aSS RoboD d)
tome from fﬁg A‘:::;f

inheritanee 4 Lo
gete b b:a v’-)ccu:{,:/bu{: it stil)

When you use a class as a polymorphic type (like an their methods in a separate thread of execution?
array of type Animal or a method that takes a Canine Implement Runnable. You get the idea. You’ll
argument), the objects you can stick in that type learn more about Serializable and Runnable in later
must be from the same inheritance tree. But not just chapters, but for now, remember that classes from
anywhere in the inheritance tree; the objects must be any place in the inheritance tree might need to
from a class that is a subclass of the polymorphic type. implement those interfaces. Nearly any class might
An argument of type Canine can accept a Wolf and a want to be saveable or runnable.

Dog, but nota Cat ora Hippo. Better still, a class can implement

But when you use an interface as a polymorphic multiple interfaces!

type (like an array of Pets), the objects can be) .)
f . . . A Dog object IS-A Canine, and IS-A Animal, and
rom anywherein the inheritance tree. The only :))

IS-A Object, all through inheritance. But a Dog IS-A

requirement is that the objects are from a class that Pet th b f ol - dthe D
implements the interface. Allowing classes in different f‘tt t r-oug Intertace 1er ementation, and the Dog
might implement other interfaces as well. You could

inheritance trees to implement a common interface

is crucial in the Java API. Do you want an object say:
to be able to save its state to a file? Implement the public class Dog extends Animal implements
Serializable interface. Do you need objects to run Pet, Saveable, Paintable { ... }

226

interfaces and polymorphism

you are here » 227

using super

Invoking the superclass
version of a method

. What if you make a concrete subclass
and you need to override a method, but you
want the behavior in the superclass version of
the method? In other words, what if you don’t
need to replace the method with an override,
but you just want to add to it with some
additional specific code. }

A: Ahhh...think about the meaning of the
word ‘extends’. One area of good OO design looks
at how to design concrete code that’s meant to
be overridden.In other words, you write method
code in, say, an abstract class, that does work
that’s generic enough to support typical concrete
implementations. But, the concrete code isn't
enough to handle all of the subclass-specific
work. So the subclass overrides the method }
and extends it by adding the rest of the code.

The keyword super lets you invoke a superclass

version of an overridden method, from within the
subclass.

[£ method eode inside a
Buz.z.wordRc?or'l: subtlass says:

super.runReport () ;

the vunReport() method inside
the supertlass Report will vun

super.runReport();

A veferente to the subclass objeet
(Buz.z.wo\rdRc\?or{') will alwa\/s call

abstract class Report {

.ok the
su\wrc\asz V:: S‘\: ockant s‘cu“
thod 49 T ould use

void runReport() {
// set-up report

}

void printReport() {
// generic printing

}

class BuzzwordsReport extends Report {

ectlass versiom

void runReport() { \| sup
super . runReport () ; é cf\\c tome batk and
buzzwordCompliance () ; do some su\)t,\ass
rintReport() ;
P P () SYCL\‘Q\L S W
}
void buzzwordCompliance() {...}
hod chYV\dCS
ot\ass "‘c\ yersion
Lne svpert

runReport()

buzzwordCompliance() su\vevc\ass methods

('mc\ud'mg the OVCY‘Y"\ddCV\
runRt\?ow\:()

5 runReport() §
printReport()

Report

BuzzwordReport

the subtlass version of an ovevvidden

method. That's polymorphism.
But the subtlass eode ean call
super-runReport() to invoke the

superelass version.

228

The super keyword is veally a veferente
to the supertlass portion of an object.
When subtlass tode uses super, as in
super-runReport(), the supertlass version of
the method will vun.

— BULLET POIN'IEQ

vvy

\ 2 4

vVvyYy

\ 2 4

When you don’t want a class to be instantiated (in other words, you don't
want anyone to make a new object of that class type) mark the class with the
abstract keyword.

An abstract class can have both abstract and non-abstract methods.
If a class has even one abstract method, the class must be marked abstract.

An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

All abstract methods must be implemented in the first concrete subclass in the
inheritance tree.

Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

Methods can be declared with Object arguments and/or return types.

You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference variable of type Object can be used only to call methods defined in class
Object, regardless of the type of the object to which the reference refers.

A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.

Example: Dog d = (Dog) x.getObject (aDog) ;

All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

Multiple inheritance is not allowed in Java, because of the problems associated with
the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you
can have only one immediate superclass).

An interface is like a 100% pure abstract class. It defines only abstract methods.
Create an interface using the interface keyword instead of the word class.

Implement an interface using the keyword implements
Example: Dog implements Pet

Your class can implement multiple interfaces.

A class that implements an interface must implement all the methods of the
interface, since all interface methods are implicitly public and abstract.

To invoke the superclass version of a method from a subclass that's overridden the
method, use the super keyword. Example: super . runReport () ;

interfaces and

Q:There’s still something
strange here... you never
explained how it is that
ArrayList<Dog> gives back Dog
references that don’t need to be
cast, yet the ArrayList class uses
Object in its methods, not Dog
(or DotCom or anything else).
What'’s the special trick going on
when you say ArrayList<Dog>?

A: You're right for calling it a
special trick. In fact it is a special

trick that ArrayList<Dog> gives
back Dogs without you having

to do any cast, since it looks like
ArrayList methods don’'t know
anything about Dogs, or any type
besides Object.

The short answer is that the
compiler puts in the cast for you!
When you say ArrayList<Dog>,
there is no special class that has
methods to take and return Dog
objects, but instead the <Dog>

is a signal to the compiler that
you want the compiler to let

you put ONLY Dog objects in

and to stop you if you try to add
any other type to the list. And
since the compiler stops you
from adding anything but Dogs
to the ArrayList, the compiler
also knows that its safe to cast
anything that comes out of that
ArrayList do a Dog reference. In
other words, using ArrayList<Dog>
saves you from having to cast
the Dog you get back. But it's
much more important than that...
because remember, a cast can

fail at runtime, and wouldn't you
rather have your errors happen
at compile time rather than, say,
when your customer is using it for
something critical?

But there’s a lot more to this story,
and we'll get into all the details in
the Collections chapter.

229

exercise: What's the Picture?

1)

2)

3

4)

9)

e

Given:

public
public

public
public

public
public
public

public
public
public

public
public
public
public
public

ReiSe

Here's your chance to demonstrate your artistic abilities. On the left you'll
find sets of class and interface declarations. Your job is to draw the associated
class diagrams on the right. We did the first one for you.Use a dashed line for
“implements”and a solid line for “extends”.

What$ the Picture ?
P
(interface)
1) Foo
interface Foo { } -
class Bar implements Foo { }
. . 2) 0
interface vinn { } i
—
abstract class Vout implements Vinn { } Bar
abstract class Muffie implements Whuffie { }
class Fluffie extends Muffie { } 3)
interface Whuffie { }
class Zoop { } 4)
class Boop extends Zoop { }
class Goop extends Boop { }
class Gamma extends Delta implements Epsilon { }
interface Epsilon { }
9)

interface Beta { }
class Alpha extends Gamma implements Beta { }

class Delta { }

230

interfaces and polymorphism

On the left you'll find sets of class diagrams. Your job is to turn
these into valid Java declarations. We did number 1 for you
(and it was a tough one).
What$ the Declaration ?
Given:
| Ciick 1) public elass Cliek { }
publie elass Clack extends Click { }
Top
2
2)
Clack
e 3)
Fee
3
4)
Foo
f 4
Fi
Bar 9)
T
Zeta
5
Baz
Beta i
KEY
T extends
E implements
class
interface
abstract class

you are here» 231

puzzle: Pool Puzzle

Your job is to take code snippets from the pool and

place them into the blank lines in the code and out-

put.You may use the same snippet more than once,
and you won't need to use all the snippets. Your
goal is to make a set of classes that will compile
and run and produce the output listed.

7\
7

Nose {

public extends Clowns {
} public static void main(String [] args) {
abstract class Picasso implements {
i[0] = new
return 7; i[1] = new
} i[2] = new
} for(int x = 0; x < 3; x++) {
System.out.println(
class {1} + 4w 4 .getClass());
}
class { }
} Output | Fie Edit Window Help BeAfraid
return 5; % java
} 5 class Acts
} 7 class Clowns

0f76
Note: Each snippet
from the pool can be
used more than once!

class
Acts(); extends i
Nose(); interface i0)

of76(); implements i(x)
Clowns(); ix] class
Picasso(); 5 class
7 class Acts
. . public int iMethod() ; 7 public class Nose
0;76 [1i=newNosel3l; pyplicintiMethod {} 0f76
Of76 [3.]2 . publicint iMethod () { i.iMethod(x) Clowns
Nose []i=newNose(); pyplicintiMethod () {} i(x).iMethod[] Picasso
Nose []i=new Nose[3]; ixl.iMethod()
" ix].iMethod]]

232 chapter 8

interfaces and polymorphism

Exercise Solutions

What$ the Picture ?

J—
interf.
2) (m'ble/vri" :Le)

3)"?@

WhufFie

What$ the Declaration ?

1
Muffie
% 2 public abstract elass Top { }

Vout

/N publie ¢lass Tip extends Top { }
o [it
3) public abstract class Fee {1}
: public abstract class Fi extends Fee {1
’-_’B:OF
4_) ?ub|ic infcrﬁa(,e Foo { }
N public ¢lass Bar implements Foo {1}
Goop public ¢lass Baz extends Bar { }

5) public intecface Zeta { }

s rkerfaco public class Alpha implements Zeta { }
elta Epsilon
publie interface Beta { }

public ¢lass Delta extends Alyha implements Beta {1

b

W

¢ in{er«cac:)
Beta

éamma

I

A1

N\ _Z
Alpha

/l

you are here» 233

puzzle solution

R

interface Nose { public class Of76 extends Clowns {

pubHcinTiAAeThod(); public static void main(String [] args) {
} Nose []i = new Nose [3]:
abstract class Picasso implements Nose { i[0] = new ACTS();

public int iMethod() { i[1] = new Clowns();

) return 7; i[2] = new Of76():
} for(int x = 0; x < 3; xt++) {
class Clowns extends Picasso { } System.out.println(i[x].iMethod()

+ # “ + i[Xx].getClass());

class Acts extends Picasso { }

public int iMethod() { }

return 5; }
¥

Output | File Edit Window Help KillTheMime
%$java 0Of76
5 class Acts

7 class Clowns
7 class O0Of76

234 chapter 8

9 constructors and garbage collection

Life and Death
of an Object

...Then he said,
"I can't feel my legs!” and

I said "Joe! Stay with me Joe!"
But it was... too late. The garbage
collector came and... he was gone.
Best object I ever had.

I

Objects are born and objects die. You're in charge of an object’s lifecycle.

You decide when and how to construct it. You decide when to destroy it. Except you don't
actually destroy the object yourself, you simply abandon it. But once it's abandoned, the
heartless Garbage Collector (gc) can vaporize it, reclaiming the memory that object was
using. If you're gonna write Java, you're gonna create objects. Sooner or later, you're gonna
have to let some of them go, or risk running out of RAM. In this chapter we look at how objects
are created, where they live while they're alive,and how to keep or abandon them efficiently.
That means we'll talk about the heap, the stack, scope, constructors, super constructors, null
references, and more. Warning: this chapter contains material about object death that some

may find disturbing. Best not to get too attached.

this is a new chapter 235

the stack and the heap

The Stack and the Heap: where things live

Before we can understand what really happens when
you create an object, we have to step back a bit. We
need to learn more about where everything lives
(and for how long) in Java. That means we need to
learn more about the Stack and the Heap. In Java, we
(programmers) care about two areas of memory—the
one where objects live (the heap), and the one
where method invocations and local variables live
(the stack). When a JVM starts up, it gets a chunk of
memory from the underlying OS, and uses it to run
your Java program. How much memory, and whether
or not you can tweak it, is dependent on which
version of the JVM (and on which platform) you’re

The Stack

Where method invocations
and local variables live

running. But usually you won t have anything to say
about it. And with good programming, you probably
won’t care (more on that a little later).

We know that all objects live on the garbage-collectible
heap, but we haven’t yet looked at where variables
live. And where a variable lives depends on what kind
of variable it is. And by “kind”, we don’t mean type
(i.e. primitive or object reference). The two kinds of
variables whose lives we care about now are instance
variables and local variables. Local variables are also
known as stack variables, which is a big clue for where
they live.

The Heap

also \now? o
Where ALL objects live “The éav\)ascz ,
Co\\c.l'f{'v"\’\C heat
d
Yck do? 90%0“ l &
e"ffoy«\ Q‘O\é‘;

Instance Variables

Instance variables are declared inside a class but not
inside a method.They represent the “fields” that each
individual object has (which can be filled with different
values for each instance of the class). Instance variables
live inside the object they belong to.

public class Duck {

»
. . Ysize
int size;_ Ereey Dutk has 3 s
} nstante vavidble
\

Local Variables

Local variables are declared inside a method, including
method parameters. They're temporary, and live only as
long as the method is on the stack (in other words, as long as
the method has not reached the closing curly brace).

public void foo(int x) {

The \’a‘famc\:c* » and

s i and ®
boolean b = true; ihe vavidoles ! bles:
- \otal variaoic

} avc a\\ ’e'

int 1 = x + 3;

236

Methods are stacked

When you call a method, the method lands on
the top of a call stack. That new thing that’s
actually pushed onto the stack is the stack
Jrame, and it holds the state of the method
including which line of code is executing, and
the values of all local variables.

The method at the top of the stack is always
the currently-running method for that stack
(for now, assume there’s only one stack,but in
chapter 14 we’ll add more.) A method stays on
the stack until the method hits its closing curly
brace (which means the method’s done). If

method foo() calls method bar(), method bar() is

stacked on top of method foo().

constructors and

A call stack with two methods

bottom of the stack

L —tor of the stack

&,'ocal variables
& (ihdludins
Parameter x)

The method on the top of the
stack is always the currently-

executing method.

public void doStuff() { A stack scenario
boolean b = true;
go(4) ; The code on the left is a snippet (we don’t care what the rest of the
} class looks like) with three methods. The first method (doStuff{()) calls

public void go(int x) {

int z = x + 24;

crazy () ;

// imagine more code here
}
public void crazy () {

char ¢ = ‘a’;

}

Code from another @ doStuff() calls go(),

class calls doStuff(),
and doStuff() goes
into a stack frame

at the top of the
stack.The boolean
variable hamed 'b’
goes on the doStuff()
stack frame.

go() is pushed on
top of the stack.
Variables 'x' and 'z’
are in the go() stack
frame.

@ go() calls crazy(),

crazy() is now on the
top of the stack,
with variable ‘¢’ in
the frame.

the second method (go()), and the second method calls the third
(crazy()). Each method declares one local variable within the body
of the method, and method go() also declares a parameter variable
(which means go() has two local variables).

@ crazy() completes,

and its stack frame is
popped of f the stack.
Execution goes back
to the go() method,
and picks up at the
line following the call
to crazy().

237

object references on the stack

What about local variables that are objects?

—
Remember, a non-primitive variable holds a reference to an
object, not the object itself. You already know where objects
live—on the heap. It doesn’t matter where they’re declared or
created. If the local variable is a reference to an object, only
the variable (the reference/remote control) goes on the stack.

The object itself still goes in the heap.

public class StackRef {
public void foof () {
barf () ;
}

public void barf() {
Duck d = new Duck (24) ;
}

therejare no
Dumb Questions

- One more time, WHY are we learning the
whole stack/heap thing? How does this help me?
Do I really need to learn about it?

A: Knowing the fundamentals of the Java
Stack and Heap is crucial if you want to understand
variable scope, object creation issues, memory
management, threads, and exception handling.

We cover threads and exception handling in later
chapters but the others you'll learn in this one.You
do not need to know anything about how the Stack
and Heap are implemented in any particular JYM
and/or platform. Everything you need to know
about the Stack and Heap is on this page and the
previous one. If you nail these pages, all the other
topics that depend on your knowing this stuff will
go much, much, much easier.Once again, some day
you will SO thank us for shoving Stacks and Heaps
down your throat.

238

akes @ nev .
es and 700 (gnee
packO dzc\a:.\cc Javido\e ¢ 1’5 3 \otd\
Dutk ve C.Ys\ he Jc),ac\c.
dcb\aﬂ‘d " d opes O ke €

vav'\a\’\" an

— BULLET POIN& _

» Java has two areas of memory we care about:
the Stack and the Heap.

» Instance variables are variables declared
inside a class but outside any method.

> Local variables are variables declared inside a
method or method parameter.

» Alllocal variables live on the stack, in the
frame corresponding to the method where the
variables are declared.

» Object reference variables work just like primi-
tive variables—if the reference is declared as a
local variable, it goes on the stack.

» Al objects live in the heap, regardless of
whether the reference is a local or instance
variable.

If local variables live on the stack,
where do instance variables live?

When you say new CellPhone(), Java has to make
space on the Heap for that CellPhone. But how much
space? Enough for the object, which means enough to
house all of the object’s instance variables. That’s right,
instance variables live on the Heap, inside the object
they belong to.

Remember that the values of an object’s instance
variables live inside the object. If the instance variables
are all primitives, Java makes space for the instance
variables based on the primitive type. An int needs

32 bits, a long 64 bits, etc. Java doesn’t care about the
value inside primitive variables; the bit-size of an int
variable is the same (32 bits) whether the value of the
int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CellPhone HAS-A Antenna? In other words, CellPhone
has a reference variable of type Antenna.

When the new object has instance variables that are
object references rather than primitives, the real
question is: does the object need space for all of

the objects it holds references to? The answer is, not
exactly. No matter what, Java has to make space for the
instance variable values. But remember that a reference
variable value is not the whole object, but merely a remote
control to the object. So if CellPhone has an instance
variable declared as the non-primitive type Antenna,
Java makes space within the CellPhone object only for
the Antenna’s remote control (i.e. reference variable) but
not the Antenna object.

Well then when does the Antenna object get space on
the Heap? First we have to find out when the Antenna
object itself is created. That depends on the instance
variable declaration. If the instance variable is declared
but no object is assigned to it, then only the space for
the reference variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless
or until the reference variable is assigned a new
Antenna object.

private Antenna ant = new Antenna();

constructors and

CellPhone object

Object with two primitive instance variables.
Spate £or the variables lives in the object.

CellPhone object

Ob\')cc{: with one non—primitive instante variable—
a \rc-ccvcn(:c to an An{cnna ob‘)cd‘{:, but no actual
Antenna ob\)cc{: This is what Yyou gc{: if You
detlave the vaviable but don't initialize it with
an attual An‘[:cvma ob\)cc{:-

public class CellPhone {
private Antenna ant;

}

CellPhone object ~ Antenna object

Ob\')cc{: with one non—primitive instance variable,
and the Antenna variable is assigned a new
An‘f:tnna ob\)cc{'f

public class CellPhone {
private Antenna ant = new Antenna();

}
239

object creation

The wiracle of object creation

Now that you know where variables and objects live, we can dive into
the mysterious world of object creation. Remember the three steps
of object declaration and assignment: declare a reference variable,
create an object, and assign the object to the reference.

But until now, step two—where a miracle occurs and the new object
is “born”—has remained a Big Mystery. Prepare to learn the facts of
object life. Hope you're not squeamish.

Review the 3 steps of object
declaration, creation and assignment:

Declare a reference

variable
chf-“""

Make 3 “:; ; t\ass °° Duck myDuck = new Duck() ;

qav'\a\) ¢ re LR

'\V\‘\'zcrg 3

e Create an object
~cat\e Duck myDuck = new Duck () ;
P‘ ':\;Y‘S h Duck object

Yhe ne¥ e Link the object and

: 3
P‘::“b:,c Lo the the reference

00)¢)

;(;)QC‘(C“LC Duck myDuck @new Duck () ;

Duck object

Duck reference

240

Are we calling a method named Duck()?
Because it sure looks like it.

becavse
No.

We’re calling the Duck constructor.

A constructor does look and feel a lot like a method, but it’s not
amethod. It’s got the code that runs when you say new. In other
words, the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name. The JVM finds that class and invokes
the constructor in that class. (OK, technically this isn’t the only
way to invoke a constructor. But it’s the only way to do it from
outside a constructor. You can call a constructor from within
another constructor, with restrictions, but we’ll get into all that
later in the chapter.)

But where is the constructor?

If we didn’t write it, who did?

You can write a constructor for your class (we’re about to do
that), but if you don’t, the compiler writes one for you!

Here’s what the compiler’s default constructor looks like:
public Duck() {

}
Notice something missing? How is this

different from a method? ¢ is the

&s naw

¢\ass name:

public Duck() {

o£ Yhe pave

3
ai:’s mandatory

constructors and

ntheses:

A constructor has the
code that runs when you
instantiate an object. In
other words, the code that
runs when you say new on
a class type.

Every class you create has
a constructor, even if you
don’t write it yourself.

me as the

// constructor code goes here

241

constructing a new Duck

Construet a Duck

The key feature of a constructor is that it runs
before the object can be assigned to a reference.
That means you get a chance to step in and

do things to get the object ready for use. In
other words, before anyone can use the remote
control for an object, the object has a chance to
help construct itself. In our Duck constructor,
we’re not doing anything useful, but it still
demonstrates the sequence of events.

If it Quacks like a
constructor...

public class Duck {

public Duck() {
System.out.println (“Quack”) ;

} The constructor gives
} S~ de you a chance to step into
thor Lo .
Constrv the middle of new.

R File Edit Window Help Quack
public class UseADuck ({

% java UseADuck

public static void main (String[] args) { Quack
Duck d = new Duck() ;

b F——This cq)); t

} Constyy, for"c Duck

Increment a counter to track how many objects of this class type
have been made.

Assign runtime-specific state (data about what's happening NOW).
Assign values to the object’s important instance variables.

Get and save a reference to the object that's creating the new object.
Add the object to an ArrayList.

Create HAS-A objects.

- @ harpen our pencil
S y

A constructor lets you jump into the middle
of the object creation step—into the middle
of new. Can you imagine conditions where

that would be useful? Which of these might
be useful in a Car class constructor, if the Car
is part of a Racing Game? Check off the ones

oOooooo 0O

(your idea here)

that you came up with a scenario for.

242

Initializing the state of a new Duck

Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object’s
instance variables.

public Duck() {
size = 34;

}

That’s all well and good when the Duck class developer knows
how big the Duck object should be. But what if we want the
programmer who is using Duck to decide how big a particular
Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new
Duck. How could you do it?

Well, you could add a setSize () setter method to the class. But
that leaves the Duck temporarily without a size*, and forces the
Duck user to write {wo statements—one to create the Duck, and
one to call the setSize () method. The code below uses a setter
method to set the initial size of the new Duck.

public class Duck { .
int size; . e Va“‘ab\c
N \V\S‘ba“c

public Duck() {
System.out.println (“Quack”) ; P co“s{'xvﬂ'tdf
}

ubli id tSi int Si d
P J..C VSJ. se. ize (int newSize) { ‘\sc{i‘tﬂ mC‘\:\\o
size = newSize;

}

public class UseADuck {

public static void main (String[] args) {
Duck d = new Duck() ;

d.setSize (42) ;

*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

constructors and

therejare po
Dumb Questions

= Why do you need to write
a constructor if the compiler
writes one for you?

A: If you need code to help
initialize your object and get

it ready for use, you'll have to
write your own constructor. You
might, for example, be depen-
dent on input from the user
before you can finish making
the object ready.There’s another
reason you might have to write
a constructor, even if you don't
need any constructor code
yourself. It has to do with your
superclass constructor, and we'll
talk about that in a few minutes.

- How can you tell a con-
structor from a method? Can
you also have a method that’s
the same name as the class?

A: Java lets you declare a
method with the same name as

your class. That doesn't make it
a constructor, though.The thing
that separates a method from a
constructor is the return type.
Methods must have a return
type, but constructors cannot
have a return type.

- Are constructors inher-
ited? If you don’t provide a
constructor but your superclass
does, do you get the superclass
constructor instead of the
default?

A: Nope. Constructors are
not inherited. We'll look at that in

just a few pages.

243

Using the constructor to initialize
important Duck state*

If an object shouldn’t be used until one or

more parts of its state (instance variables) have
been initialized, don’t let anyone get ahold of

a Duck object until you’re finished initializing!
It’s usually way too risky to let someone make—
and get a reference to—a new Duck object that
isn’t quite ready for use until that someone turns
around and calls the setSize() method. How will
the Duck-user even know that he’s required to call
the setter method after making the new Duck?

The best place to put initialization code is in the
constructor. And all you need to do is make a
constructor with arguments.

public class Duck {
int size;

public Duck (int duckSize) {
System.out.println (“Quack”) ;

size = duckSize;

ko< ko e

(A
\ X gava"‘
o " et
Dot

or®

Use the avgumcn{: value £o set
fhe size instance vaviable.

System.out.println(“size is “ + size);

public class UseADuck {

public static void main (String[] args) {

Duck d = new Duck(42) ;

}

File Edit Window Help

% java UseADuck

Quack

size is 42

244 chapter 9

Pass a val,
et
Constretor o the

Make it easy to make a Duck

Be sure you have a no-arg constructor

What happens if the Duck constructor takes an argument?
Think about it. On the previous page, there’s only one Duck
constructor—and it takes an int argument for the size of the
Duck. That might not be a big problem, but it does make it
harder for a programmer to create a new Duck object, especially
if the programmer doesn’t know what the size of a Duck should
be. Wouldn’t it be helpful to have a default size for a Duck, so
that if the user doesn’t know an appropriate size, he can still
make a Duck that works?

Imagine that you want Duck users to have TWO options
for making a Duck—one where they supply the Duck
size (as the constructor argument) and one where they
don’t specify a size and thus get your default Duck size.

You can’t do this cleanly with just a single constructor.
Remember, if a method (or constructor—same rules) has

a parameter, you must pass an appropriate argument when
you invoke that method or constructor. You can’t just say, “If
someone doesn’t pass anything to the constructor, then use
the default size”, because they won’t even be able to compile
without sending an int argument to the constructor call. You
could do something clunkly like this:

public class Duck { .
int size; valve s

public Duck (int newSize) { owe nerwist use

O)
if (newSize == 0) { 4/ 7:;:};3\,\& Szl “: alve Lor
size = 27; e Yavaw\COT a very 90°
} else { khcguL'N
size = newSize; debow
}

}

But that means the programmer making a new Duck object has
to know that passing a “0” is the protocol for getting the default
Duck size. Pretty ugly. What if the other programmer doesn’t
know that? Or what if he really does want a zero-size Duck?
(Assuming a zero-sized Duck is allowed. If you don’t want
zero-sized Duck objects, put validation code in the constructor
to prevent it.) The point is, it might not always be possible

to distinguish between a genuine “I want zero for the size”
constructor argument and a “I’'m sending zero so you’ll give
me the default size, whatever that is” constructor argument.

constructors and

You really want TWO ways to
make a new Duck:

public class Duck2 ({
int size;

public Duck2() {
// supply default size
size = 27;

}

public Duck2 (int duckSize) {
// use duckSize parameter
size = duckSize;

To make a Duck when you know the size:
Duck2 d = new Duck2(15) ;

To make a Duck when you do not know
the size:

Duck2 d2 = new Duck2();

So this two-options-to-make-a-Duck idea
needs two constructors. One that takes
an int and one that doesn't. If you have
more than one constructor in a class,

it means you have overloaded
constructors.

245

overloaded and default constructors

Poesn’t the compiler always

make a no-arg constructor OK, let's see here... "You
have the right t

for you? N/Ol ave the right to your own

constructor.” Makes sense.
You might think that if you write only
a constructor with arguments, the
compiler will see that you don’t have a
no-arg constructor, and stick one in for
you. But that’s not how it works. The
compiler gets involved with constructor-
making only if you don’t say anything at all
about constructors.

"If you cannot afford a constructor,
one will be provided for you by the
compiler.” Good to know.

If you write a constructor that
takes arguments, and you still
want a no-arg constructor,
you’ll have to build the no-arg
constructor yourself!

As soon as you provide a constructor,
ANY kind of constructor, the compiler
backs off and says, “OK Buddy, looks like

you’re in charge of constructors now.”

If you have more than one
constructor in a class, the
constructors MUST have
different argument lists.

The argument list includes the order
and types of the arguments. As long as
they’re different, you can have more
than one constructor. You can do this
with methods as well, but we’ll get to that
in another chapter.

246 chapter9

public class Mushroom ({

public Mushroom() { }

public Mushroom (boolean isMagic, int size) { }

public Mushroom(int size, boolean isMagic) { }

BULLET POIN'IEQ

Instance variables live within the object they belong to, on
the Heap.

If the instance variable is a reference to an object, both
the reference and the object it refers to are on the Heap.

A constructor is the code that runs when you say new on
a class type.

A constructor must have the same name as the class, and
must not have a return type.

You can use a constructor to initialize the state (i.e. the
instance variables) of the object being constructed.

If you don’t put a constructor in your class, the compiler
will put in a default constructor.

The default constructor is always a no-arg constructor.

If you put a constructor—any constructor—in your class,
the compiler will not build the default constructor.

public Mushroom (boolean isMagic) { }

constructors and

when Yyov know the siz& but you

(—\ don t know £ it's magit

public Mushroom(int size) { } .
L T when you don £ know an\[{:\\m5

) . {_‘,
know if it s magit or no
gti“dii:‘{: know the siz¢

when you know

whether or not its
magjc, AND you knov

Lhe size as We

» [fyou wanta no-arg constructor, and you've already put
in a constructor with arguments, you'll have to build the
no-arg constructor yourself.

» Always provide a no-arg constructor if you can, to make it
easy for programmers to make a working object. Supply
default values.

» Overloaded constructors means you have more than one
constructor in your class.

» Overloaded constructors must have different argument
lists.

» You cannot have two constructors with the same
argument lists. An argument list includes the order and/or
type of arguments.

» Instance variables are assigned a default value, even
when you don't explicitly assign one. The default values
are 0/0.0/false for primitives, and null for references.

247

overloaded constructors

0 harpen your pencil

Match the new Duck () call with the constructor
that runs when that Duck is instantiated. We did
the easy one to get you started.

public class TestDuck {
public static void main(String[] args) {

int weight = 8;
float density = 2.3F;
String name = “Donald”;
long[] feathers = {1,2,3,4,5,6};
boolean canFly = true;
int airspeed = 22;
Duck[] d = new Duck[7];
d[0] = new Duck();

d[1]

new Duck (density, weight) ;
d[2] = new Duck (name, feathers);
d[3] = new Duck (canFly) ;
d[4] = new Duck(3.3F, airspeed);
d[5] = new Duck (false) ;

d[6] = new Duck(airspeed, density);

class Duck {

int pounds = 6;

float floatability = 2.1F;

String name = “Generic”;

long[] feathers = {1,2,3,4,5,6,7};
boolean canFly = true;

int maxSpeed = 25;

public Duck () {
System.out.println(“type 1 duck”);
}

public Duck (boolean fly) {
canFly = fly;
System.out.println(“type 2 duck”);
}

public Duck(String n, long[] £f) {
name = n;
feathers = £;
System.out.println (“type 3 duck”);
}

public Duck (int w, float f) {
pounds = w;
floatability = £;
System.out.println(“type 4 duck”);
}

public Duck (float density, int max) {
floatability = density;
maxSpeed = max;
System.out.println(“type 5 duck”);
}
}

Q: Earlier you said that it’s good to have a no-argu-
ment constructor so that if people call the no-arg con-
structor, we can supply default values for the “missing”
arguments. But aren’t there times when it’s impossible to
come up with defaults? Are there times when you should
not have a no-arg constructor in your class?

A: You're right. There are times when a no-arg construc-
tor doesn’t make sense.You'll see this in the Java APl—some
classes don’t have a no-arg constructor. The Color class, for
example, represents a... color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button.When you make a Color instance, that instance is

of a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red, etc.). If you

make a Color object, you must specify the color in some way.

Color ¢ = new Color(3,45,200);

248

(We're using three ints for RGB values here.We'll get into
using Color later, in the Swing chapters.) Otherwise, what
would you get? The Java API programmers could have de-
cided that if you call a no-arg Color constructor you'll get a
lovely shade of mauve. But good taste prevailed.

If you try to make a Color without supplying an argument:

Color ¢ = new Color();

The compiler freaks out because it can’t find a matching no-
arg constructor in the Color class.

File Edit Window Help StopBeingStupid

cannot resolve symbol
:constructor Color()
location: class

java.awt.Color
Color c = new Color();
A

1 error

Nanoreview: four things to
remewmber about constructors

@ A constructor is the code that runs when

somebody says new on a class type
Duck d = new Duck() ;

—————ca—

A constructor must have the same name
as the class, and no return type

public Duck (int size) { }

===

If you don't put a constructor in your class,
the compiler puts in a default constructor.
The default constructor is always a no-arg
constructor.

public Duck() { }

You can have more than one constructor in your class,
as long as the argument lists are different. Having
more than one constructor in a class means you have

overloaded constructors.

public Duck() { }
public Duck(int size) { }

public Duck(String name) { }

public Duck(String name, int size) { }

Doing all the Brain Barbells has been shown to produce a 42% increase in
neuron size. And you know what they say, “Big neurons...”

constructors and

@3 RANN
‘PQOQWEWR
What about superclasses?

When you make a Dog,
should the Canine
constructor run too?

If the superclass is abstract,
should it even havea
constructor?

We'll look at this on the next
few pages, so stop now and
think about the implications of
constructors and superclasses.

therejare no
Dumb Questions

Q: Do constructors have to be public?

A: No. Constructors can be public,
private, or default (which means no access
modifier at all). We'll look more at default
access in chapter 16 and appendix B.

- How could a private constructor
ever be useful? Nobody could ever call it,
so nobody could ever make a new object!

A: But that’s not exactly right. Marking
something private doesn’t mean nobody
can access it, it just means that nobody
outside the class can access it. Bet you're
thinking “Catch 22" Only code from the
same class as the class-with-private-con-
structor can make a new object from that
class, but without first making an object,
how do you ever get to run code from that
class in the first place? How do you ever get
to anything in that class? Patience grasshop-
per. We'll get there in the next chapter.

249

space for an object’s superclass parts

Wait a minute... we never PIP talk about
superclasses and inheritance and how that all
fits in with constructors.

Here’s where it gets fun. Remember from the last chapter, the part where we looked at

the Snowboard object wrapping around an inner core representing the Object portion

of the Snowboard class? The Big Point there was that every object holds not just its own

declared instance variables, but also everything from its superclasses (which, at a minimum,
means class Object, since every class extends Object).

So when an object is created (because somebody said new; there is no other way to create
an object other than someone, somewhere saying new on the class type), the object
gets space for all the instance variables, from all the way up the inheritance tree. Think
about it for a moment... a superclass might have setter methods encapsulating a private
variable. But that variable has to live somewhere. When an object is created, it’s almost as

though multiple objects materialize—the object being new’d and one object per each
superclass. Conceptually, though, it’s much better to think of it like the picture below,
where the object being created has layers of itself representing each superclass.

A single
Object Ob\')ct'l: has instante variables ob‘)cc{: on
Fooa, encapsulated by aceess methods. the heap
::: E_’ Those instante variables are
: ¢treated when any subelass is
equals() instantiated. (These aren't the
ﬁ:ﬁ;zz(e)() REAL Ob\')cd: vaviables, but we
toString() don't eare what ‘[:hcy are sinte
‘T 'Ehe\/'\rc entapsulated)
Snowboard Showboard also has instance
Foo variables of its own, so to make Snowboard
Fooy a Snowboard objebl: we need 9
nz space for the instance vaviables SOOWboa(3 ooe®
tumn() of both classes.
shred() . .
getAir() Thevre is onl\/ ONE ob\)té‘(‘, on the hcay hevre. A
loseControl() Snowboard ob")cc{:- But it tontains both the

250

Snowboard parts of itself and the Object parts of
iksell. ANl instante variables from both classes have
+o be here.

The role of superclass constructors

in an object’s life.

All the constructors in an object’s inheritance
tree must run when you make a new object.

Let that sink in.

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the
whole constructor chain reaction. And yes,
even abstract classes have constructors.
Although you can never say new on an
abstract class, an abstract class is still

a superclass, so its constructor runs

when someone makes an instance of a
concrete subclass.

The super constructors run to build

out the superclass parts of the object.
Remember, a subclass might inherit

methods that depend on superclass state

(in other words, the value of instance variables
in the superclass). For an object to be fully-
formed, all the superclass parts of itself must be
fully-formed, and that’s why the super constructor
must run. All instance variables from every class

in the inheritance tree have to be declared and
initialized. Even if Animal has instance variables
that Hippo doesn’t inherit (if the variables are
private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls its
superclass constructor, all the way up the chain
until you get to the class Object constructor.

On the next few pages, you’ll learn how superclass
constructors are called, and how you can call
them yourself. You’ll also learn what to do if your
superclass constructor has arguments!

constructors and

Object

0

Animal

4?

Hlppo

A single Hippo objc6£ on the heap

A new Hippo object also IS-A Animal
and IS-A Object. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens in a process called
Constructor Chaining.

251

object construction

Making a Hippo means making the
Animal and Object parts too...

public class Animal {

public Animal () {
System.out.println(“Making an Animal”);

}

— @harpen your pencil ——
i’ your p

What's the real output? Given the
code on the left, what prints out
when you run TestHippo? A or B?

(the answer is at the bottom of the page)

[}
<

public class Hippo extends Animal {
public Hippo() {

System.out.println(“Making a Hippo”) ;

}

File Edit Window Help

java TestHippo

A Starting. ..
Making an Animal

Making a Hippo

public class TestHippo {

public static void main (String[] args) {
System.out.println(“Starting...”);

Hippo h = new Hippo() ;

@ Code from another
class says new
Hippo () and the
Hippo() constructor
goes into a stack
frame at the top of
the stack.

@

Hippo() invokes

the superclass
constructor which
pushes the Animal()
constructor onto the
top of the stack.

252 chapter9

%

File Edit Window Help Swear

java TestHippo

B Starting. ..
Making a Hippo
Making an Animal

@ Animal() invokes
the superclass
constructor which
pushes the Object()
constructor onto
the top of the stack,
since Object is the
superclass of Animal.

@

Object() completes,
and its stack frame
is popped of f the
stack. Execution goes
back to the Animal()
constructor, and
picks up at the line
following Animal's
call to its superclass
constructor

1811} SBUSIUL JBY} J0JONASUOD [BWIUY 8Y) S
Inq ‘}sa14 paYOAU SI Jojonuisuod (JoddiH 8yl "V ‘Buo isil 8y

How do you invoke a superclass constructor?

You might think that somewhere in, say, a Duck constructor,
if Duck extends Animal you’d call Animal(). But that’s not
how it works:

public class Duck extends Animal {

int size;

public Duck(int newSize) {

pppt 2 Animall) i e—y,
size = newSize; 'S not legal/

}

The only way to call a super constructor is by calling super().
That’s right—super() calls the super constructor.

What are the odds?

public class Duck extends Animal ({

int size;

public Duck (int newSize) ({
Super () ;o YOuJuS{:

size = newSize;

5y super()

A call to super() in your constructor puts the superclass
constructor on the top of the Stack. And what do you
think that superclass constructor does? Calls its superclass
constructor. And so it goes until the Object constructor is
on the top of the Stack. Once Object() finishes, it’s popped
off the Stack and the next thing down the Stack (the
subclass constructor that called Object()) is now on top.
That constructor finishes and so it goes until the original
constructor is on the top of the Stack, where it can now
finish.

constructors and

And how is it that we’ve
gotten away without
doing it?

You probably figured that out.

Our good friend the compiler
puts in a call to super() if you
don’t.

So the compiler gets involved in
constructor-making in two ways:

@ If you don’t provide a constructor
The compiler puts one in that looks like:

public ClassName() {

super () ;

@ If you do provide a constructor
but you do not put in the call to
super()

The compiler will put a call to super() in
each of your overloaded constructors.*
The compiler-supplied call looks like:

super () ;

It always looks like that. The compiler-
inserted call to super() is always a no-arg
call.If the superclass has overloaded
constructors, only the no-arg one is called.

*Unless the constructor calls another overloaded
constructor (you'll see that in a few pages).

253

object lifecycle

Can the child exist before
the parents?

If you think of a superclass as the parent to the subclass child,
you can figure out which has to exist first. The superclass parts
of an object have to be fully-formed (completely built) before the

subclass parts can be constructed. Remember,
the subclass object might depend on things it
inherits from the superclass, so it’s important
that those inherited things be finished. No
way around it. The superclass constructor

must finish before its subclass constructor.

Look at the Stack series on page 248 again,
and you can see that while the Hippo
constructor is the first to be invoked (it’s
the first thing on the Stack), it’s the last one
to complete! Each subclass constructor
immediately invokes its own superclass
constructor, until the Object constructor

is on the top of the Stack. Then Object’s
constructor completes and we bounce

back down the Stack to Animal’s

constructor. Only after Animal’s constructor completes

do we finally come back down to finish the rest of the Hippo

constructor. For that reason:

The call to super() must be the first statement

in each constructor!*

Eewwww... that
is SO creepy. There's
no way I could have been
born before my parents.

That's just wrong.

Possible constructors for class Boop

|Z[public Boop() {

Sl S
hes
} " ¢ are OK bemuSe

- c P!roalra
[leitly odeg gy v,

O supey(
cloteneny * the Frst

super () ’ 6\—

size = 1i;

[] public Boop(int i) {

[] public Boop() {

} N Thcsc dre oK

[] public Boop(int i) {

size = 1i;

@public Boop (int i) {
size = i;

super () ;

BﬁDc_/_/ This won’t Compile/|
Je ca?[h f cxplicif/y Pu"z)
ghy{;h,‘hg CTS SUPEr() beloy,

€.

*There’s an exception to this rule; you'll learn it on page 252.

254 chapter9

Superclass constructors with arguments

What if the superclass constructor has arguments? Can you pass something in to
the super() call? Of course. If you couldn’t, you’d never be able to extend a class
that didn’t have a no-arg constructor. Imagine this scenario: all animals have a
name. There’s a getName() method in class Animal that returns the value of the
name instance variable. The instance variable is marked private, but the subclass
(in this case, Hippo) inherits the getName() method. So here’s the problem:
Hippo has a getName() method (through inheritance), but does not have the name
instance variable. Hippo has to depend on the Animal part of himself to keep the
name instance variable, and return it when someone calls getName() on a Hippo
object. But... how does the Animal part get the name? The only reference Hippo
has to the Animal part of himself is through super(), so that’s the place where
Hippo sends the Hippo’s name up to the Animal part of himself, so that the
Animal part can store it in the private name instance variable.

constructors and

Animal

private String name
Animal(String n)

String getName()

HinnA/Qtrin~ n)

FTatlhme Llimian A

255

calling overloaded

Invoking one overloaded constructor
from another

What if you have overloaded constructors that, with

the exception of handling different argument types,

all do the same thing? You know that you don’t want
duplicate code sitting in each of the constructors (pain
to maintain, etc.), so you'd like to put the bulk of the
constructor code (including the call to super()) in only
one of the overloaded constructors. You want whichever
constructor is first invoked to call The Real Constructor
and let The Real Constructor finish the job of
construction. It’s simple: just say this(). Or this(aString).
Or this(27, x). In other words, just imagine that the
keyword this is a reference to the current object

You can say this() only within a constructor, and it must
be the first statement in the constructor!

But that’s a problem, isn’t it? Earlier we said that
super () must be the first statement in the constructor.
Well, that means you get a choice.

Every constructor can have a call to super()
or this(), but never both!

class Mini extends Car {

Color color; The no—arg o

ies a de
public Mini() { supplies

} calls S“\’“m‘

public Mini (Color c) { This is Th
e

“S{',Y\AL{',OY
£ault Color and

he overloaded Rea
this (Color.Red) ; &— (gl\:stv:c{-pv (4he one tha

Use tlﬁ&) 10 ca\\ a
constructor
over\oaJe
the same c\ass.

The call o this()

can be used only in

from anoﬂlet'
J constructor mn

! be
constructor, anJ mus

ina
the first statement mn
constructor.
can have a

OR this(),

A constructor

call to superl)
Lut never hoth!

super (“Mini”) ; <ﬁ does The RcRca, Cons{:\ruc'l:or that

color = c;
// more initialization

}

public Mini (int size) {
this (Color.Red) ;&

super (size) ; (f Won't W°"k.l./ Can’t have

256

\ ‘ al Wovrk 01c
ochc{: (mcluding the call 4o super())

super() and +his() in the sa
: construttor, because +h e
} must be the first s{:a'l:c;yc:z;:h

ihi'l:ializing the

File Edit Window Help Drive
javac Mini.java

Mini.java:16: call to super must
be first statement in constructor

super () ;
A

constructors and gc

@ dharpen vour pencil
darpen yor g

Some of the constructors in the SonOfBoo class will not
compile. See if you can recognize which constructors are
not legal. Match the compiler errors with the SonOfBoo
constructors that caused them, by drawing a line from the

compiler error to the “bad” constructor.

public class Boo {
public Boo(int i) { }
public Boo(String s) { }
public Boo(String s, int i) { }

class SonOfBoo extends Boo { File Edit _Window Help

%¥javac SonOfBoo.java

public SonOfBoo() {

super (“boo”) ; cannot resolve symbol

}

symbol : constructor Boo
public SonOfBoo (int i) { (java.lang.String, java.la
super (“Fred”) ; ng.String)
}
public SonOfBoo (String s) { File Edit Window Help Yadayadayada
) super (42) ; %$javac SonOfBoo.java

cannot resolve symbol
public SonOfBoo (int i, String s) {

} symbol : constructor Boo

(int,java.lang.String)
public SonOfBoo (String a, String b, String c) {
super (a,b) ;

}

- File Edit Window Help ImNotListening

public SonOfBoo(int i, int j) {))
super (“man”, j); $javac SonOfBoo. java

} cannot resolve symbol

public SonOfBoo (int i, int x, int y) { symbol:constructor Boo()
super (i, “star”);

}

you are here» 257

object lifespan

Now we know how an object is born,
but how long does an object five?

An object’s life depends entirely on the life of references
referring to it. If the reference is considered “alive”, the
object is still alive on the Heap. If the reference dies

(and we’ll look at what that means in just a moment), the
object will die.

So if an object’s life depends on the reference
variable’s life, how long does a variable live?

That depends on whether the variable is a local variable
or an instance variable. The code below shows the life of a
local variable. In the example, the variable is a primitive,
but variable lifetime is the same whether it’s a primitive
or reference variable.

public class TestLifeOne {

public void read() ({
int s = 42; S s

sleep(); meﬂw;oPcd. to the r
} anywh 0 it ean’y bead()
cre el ¢ used
public void sleep() {
s =17; ko
a\
} ﬂ§ ‘>“.Nok\6%
\.) \\c\'c.
wst ®
1 ‘s vav'\a\)\csé Sinte
see ame)
‘\:' S\CCYO) ¢ OWN S{',af,\(a\tou{_’ "‘{-,.
T (;“ snk kno¥ anyEhiny
oesn

n .
* Whe g agq
the Stack, ¢ is :;:::dg C:-MP’Cfcs g ™ read() Can

258

@ A local variable lives only
within the method that
declared the variable.

public void read() {

int s = 42;

// ‘s’ can be used only

// within this method.

// When this method ends,

// ‘s’ disappears completely.
}

Variable s’ can be used only within the
read() method. In other words, the variable
is in scope only within its own method.No
other code in the class (or any other class)
can see’s’.

@ An instance variable lives
as long as the object
does. If the object is still
alive, so are its instance
variables.

public class Life {
int size;

public void setSize(int s) {
size = s;
// ‘s’ disappears at the
// end of this method,
// but ‘size’ can be used
// anywhere in the class

}

Variable ‘s’ (this time a method parameter)
is in scope only within the setSize()
method. But instance variable size is
scoped to the life of the object as opposed
to the life of the method.

The difference between life and
scope for local variables:

Life
A local variable is alive as long as its Stack

frame is on the Stack. In other words,
until the method completes.

Scope

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the
variable is alive, but not in scope until its
method resumes. You can use a variable only
when it is in scope.

l‘dosaﬂ'

o doStuff() goes on the e go() plops on top of
Stack. Variable ‘b’ is the Stack. ‘x’ and ‘2’

alive and in scope. are alive and in scope,
and ‘b’ is alive but not
in scope.

While a local variable is alive, its state persists.
As long as method doStuff() is on the Stack, for
example, the ‘b’ variable keeps its value. But the
‘b’ variable can be used only while doStuff()’s

Stack frame is at the top. In other words, you can
use a local variable only while that local variable’s

method is actually running (as opposed to
waiting for higher Stack frames to complete).

©

crazy() is pushed onto
the Stack, with ‘c’ now

constructors and

public void doStuff () ({
boolean b = true;
go(4);
}
public void go(int x) {
int z = x + 24;
crazy() ;
// imagine more code here

}

public void crazy () {
char ¢ = ‘a’;

}

o crazy() completes and
is popped off the Stack,

alive and in scope. The
other three variables
are alive but out of

scope.

so ‘¢’ is out of scope
and dead. When go()
resumes where it left
off, ‘x’ and ‘z’ are both

alive and back in scope.
Variable ‘b’ is still alive
but out of scope (until
go() completes).

259

object lifecycle

What about reference variables?

The rules are the same for primtives and references. A reference
variable can be used only when it’s in scope, which means you can’t use
an object’s remote control unless you’ve got a reference variable that’s
in scope. The real question is,

“How does variable life affect object life?”

An object is alive as long as there are live references to it. If a reference
variable goes out of scope but is still alive, the object it refers to is still
alive on the Heap. And then you have to ask... “What happens when the
Stack frame holding the reference gets popped off the Stack at the end
of the method?”

If that was the only live reference to the object, the object is now
abandoned on the Heap. The reference variable disintegrated with

the Stack frame, so the abandoned object is now, officially, toast. The
trick is to know the point at which an object becomes eligible for garbage
collection.

Once an object is eligible for garbage collection (GC), you don’t have
to worry about reclaiming the memory that object was using. If your
program gets low on memory, GC will destroy some or all of the eligible
objects, to keep you from running out of RAM. You can still run out of
memory, but not before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you’re done with them, so that the garbage
collector has something to reclaim. If you hang on to objects, GC can’t
help you and you run the risk of your program dying a painful
out-of-memory death.

260

constructors and gc

Object-killer #1

Reference goes
out of scope,
permanently.

public class StackRef {
public void foof () {
barf () ;

T don't like where
this is headed.

}

public void barf () {
Duck d = new Duck() ;

}

}
foof{) is pushed onto the 3
a Stack, no variables are ‘!‘.‘.‘;"’ %

declared.

e barf() is pushed onto the
Stack, where it declares

a reference variable, and
creates a new object as-
signed to that reference.
The object is created on
the Heap, and the refer-
ence is alive and in scope.

Uh—oh. The ‘d’ variable
went away when the barf()
Staek 'Framc was blown
of £ the staek, so the Duck
is abandoned. éarbagc—
eolleetor bait.

e barf() completes and pops
off the Stack. Its frame

disintegrates, so ‘d’ is now
dead and gone. Execution

returns to foof(), but foof{()
can’tuse ‘d’.

you are here » 261

object lifecycle

Object-killer #2

Assign the reference
to another object

262 chapter9

constructors and gc

Object-killer #3

Explicitly set the
reference to null

you are here» 263

object lifecycle

Fireside Chats
\\l

Instance Variable

I'd like to go first, because I tend to be more
important to a program than a local variable.
I'm there to support an object, usually
throughout the object’s entire life. After all,
what’s an object without state? And what is
state? Values kept in instance variables.

No, don’t get me wrong, I do understand your
role in a method, it’s just that your life is so
short. So temporary. That’s why they call you
guys “temporary variables”.

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you’re waiting for your frame to
be the top of the Stack again?

264

Tonight’s Talk: An instance variable and
a local variable discuss life and death
(with remarkable civility)

Local Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all,
but I don’t want folks to be misled. Local
variables are really important. To use your
phrase, “After all, what’s an object without
behavior?”” And what is behavior? Algorithms
in methods. And you can bet your bits there’ll
be some local variables in there to make those
algorithms work.

Within the local-variable community, the
phrase “temporary variable” is considered
derogatory. We prefer “local”, “stack”, “auto-
matic”, or ”Scope-challenged”.

Anyway, it’s true that we don’t have a long
life, and it’s not a particularly good life either.
First, we’re shoved into a Stack frame with

all the other local variables. And then, if the
method we’re part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com-
plete so that our method can run again.

Nothing. Nothing at all. It’s like being in
stasis—that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
still there, we’re safe and the value we hold

is secure, but it’s a mixed blessing when our

Instance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blown off the Stack! Now
that’s gotta hurt.

I'live on the Heap, with the objects. Well, not
with the objects, actually iz an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC’d, then the Collar’s instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
the closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term popped as in “the frame was popped
off the Stack”. That makes it sound fun, or
maybe like an extreme sport. But, well, you
saw the footage. So why don’t we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog
object with a Collar instance variable. Imagine
you re an instance variable of the Collar object,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collar object
who’s all happy inside the Dog object. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you’re an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re
an instance variable inside an object, and that
object is referenced only by a local variable? If
I’'m the only reference to the object you're in,
when I go, you’re coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

265

exercise: Be the Garbage Collector

BE the Garbage Collector

Which of the lines of code on the Fight, if added

to the class on the left at point A, would cause
exact]y one additiona] ohject to be eligible for the
Garbage Collector? (Assume that point A (//call
more methods) will execute for a Jong time, giving the
Garbage Collector time fo do its stuff.)

public class GC {
public static GC doStuff () {

GC newGC = new GC(); 1 copyGC = null;
doStuff2 (newGC) ;

return newGC; 2 gc2 = null;

3 newGC = gc3;

public static void main(String [] args) {

GC gcl; 4 gcl = null;
GC gc2 = new GC();

GC gc3 = new GC(); o) newGC = null;

GC gc4 = gc3;

gcl = doStuff(); 6 gcd = null;

A

// call more methods

} 8 gcl gc4;

public static void doStuff2 (GC copyGC) { 9 gc3 = null;

GC localGC

266

constructors and

In this code example, several new objects are created.
Your challenge is to find the object that is ‘most popular,
OPu i.e.the one that has the most reference variables referring
to it. Then list how many total references there are for
that object, and what they are! We'll start by pointing out
O N ects one of the new objects, and its reference variable.

Good Luck!

class Bees {
Honey [] beeHA;

class Raccoon {
Kit k;
Honey rh;

class Kit {
Honey kh;

class Bear {
Honey hunny;

public class Honey {
public static void main(String [] args) {
Honey honeyPot = new Honey();
Honey [] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
Bees bl = new Bees();
bl.beeHA = ha;
Bear [] ba = new Bear[5];
for (int x=0; x < 5; x++) {
ba[x] = new Bear();
ba[x].hunny = honeyPot;

} .
Here's a new

Kit k = new Kit(); R biect!
k.kh = honeyPot; accoon object:
Raccoon r = new Raccoon();

)_/ Here's its reference

r.rh = honeyPot; variable 'r’.
r.k = k;
k = null;

} // end of main

267

puzzle: Five Minute Mystery

“We’ve run the simulation four times, and the main module’s temperature consistently
drifts out of nominal towards cold”, Sarah said, exasperated. “We installed the new temp-bots last
week. The readings on the radiator bots, designed to cool the living quarters, seem to be within
spec, so we’ve focused our analysis on the heat retention bots, the bots that help to warm the quar-
ters.” Tom sighed, at first it had seemed that nano-technology was going to really put them ahead
of schedule. Now, with only five weeks left until launch, some of the orbiter’s key life support
systems were still not passing the simulation gauntlet.

] 2
c-Mimnuye
FN Ml ut “What ratios are you simulating?”, Tom asked.

M}'Ster y “Well if I see where you’re going, we already thought of that”, Sarah replied. “Mis-
sion control will not sign off on critical systems if we run them out of spec. We are
required to run the v3 radiator bot’s SimUnits in a 2:1 ratio with the v2 radiator’s
SimUnits”, Sarah continued. “Overall, the ratio of retention bots to radiator bots is
supposed to run 4:3.”

“How’s power consumption Sarah?”, Tom asked. Sarah paused, “Well that’s
another thing, power consumption is running higher than anticipated. We’ve got a team
tracking that down too, but because the nanos are wireless it’s been hard to isolate the power
consumption of the radiators from the retention bots.” “Overall power consumption ratios”, Sarah
continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

“OK Sarah”, Tom said “Let’s take a look at some of the simulation initiation code.
We’ve got to find this problem, and find it quick!”

import java.util.*;
class V2Radiator {
V2Radiator (ArrayList list) {
for(int x=0; x<5; x++) {

list.add(new SimUnit(“V2Radiator”));

class V3Radiator extends V2Radiator {
V3Radiator (ArrayList 1lglist) {
super (lglist);
for(int g=0; g<10; g++) {
lglist.add(new SimUnit(“V3Radiator”));

class RetentionBot {
RetentionBot (ArrayList rlist) {

rlist.add(new SimUnit(“Retention”));

268

constructors and

public class TestLifeSupportSim {

o e}
]?1Vf}l\111]11t(3 public static void main(String [] args) {
ArrayList aList = new ArrayList();

lyl)ﬁstfipjy V2Radiator v2 = new V2Radiator(alList);
_ o) V3Radiator v3 = new V3Radiator(alList);
c@lltlnuedo e e

for(int z=0; 2z<20; z++) {

RetentionBot ret = new RetentionBot(alList);

class SimUnit {
String botType;
SimUnit(String type) {
botType = type;
}
int powerUse() {
if (“Retention”.equals(botType)) {
return 2;
} else {

return 4;

Tom gave the code a quick look and a small smile creeped across his lips. I think I’ve

found the problem Sarah, and I bet I know by what percentage your power usage readings are off
too!

What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

269

object lifecycle

1 copyGC = null; No - this line attempts to access a variable
that is out of scope.
Exercise Solul;ions 2 gc2 = null; OK - gc2 was the only reference variable
referring to that object.
3 newGC = gc3; No - another out of scope variable.

4 gcl = null; OK - gcl had the only reference because
G.C. newGC is out of scope.

5 newGC = null; No - newGC is out of scope.

6 ogc4 = null; No - gc3 is still referring to that object.

7 9c3 = gc2; No - gc4 is still referring to that object.

8 gcl = ged; OK - Reassigning the only reference to

that object.
9 gc3 = null; No - gc4 is still referring to that object.

It probably wasn't too hard to figure out that the Honey object first referred to by the honeyPot variable is by
P@Plﬂ&r far the most ‘popular’ object in this class. But maybe it was a little trickier to see that all of the variables that
R point from the code to the Honey object refer to the same object! There are a total of 12 active references to
Olalects this object right before the main() method completes. The k.kh variable is valid for a while, but k gets nulled
at the end. Since r.k still refers to the Kit object, r.k.kh (although never explicity declared), refers to the object!

public class Honey {
public static void main(String [] args)

Honey honeyPot = new Honey();
Honey [] ha = {honeyPot, honeyPot,
T honeyPot, honeyPot};

Bees bl = new Bees();
——— Dbl.beeHA = ha;

Bear [] ba = new Bear[5];

for (int x=0; x < 5; x++) {
Honey
— ba[x] = new Bear();
— Object ba[x].hunny = honeyPot;
T

- - — — —

}
|(—endﬂjp nall) __ Kit k = new Kit();

k.kh = honeyPot;
Raccoon r = new Raccoon();

r.rh = honeyPot;
r.k = k;

k = null;

} } // end of main

270

constructors and

Five-Minute Mystery olution

Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its super() call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarah’s expected ratios
predicted.

Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, that printed out a line everytime a SimUnit was created,
would have quickly highlighted the problem!

271

10 numbers and statics

Numbers Matter

Do the Math. But there’s more to working with numbers than just doing primitive
arithmetic. You might want to get the absolute value of a number, or round a number, or find
the larger of two numbers. You might want your numbers to print with exactly two decimal
places, or you might want to put commas into your large numbers to make them easier to read.
And what about working with dates? You might want to print dates in a variety of ways, or even
manipulate dates to say things like,“add three weeks to today’s date” And what about parsing
a String into a number? Or turning a number into a String? You're in luck.The Java API is full of
handy number-tweaking methods ready and easy to use. But most of them are static, so we'll
start by learning what it means for a variable or method to be static, including constants in

Java—static final variables.

this is a new chapter 273

Math methods

MATH wmethods: as close as you'll
ever get to a global method

Except there’s no global anything in Java. But think about
this: what if you have a method whose behavior doesn’t
depend on an instance variable value. Take the round()
method in the Math class, for example. It does the same
thing every time—rounds a floating point number(the
argument to the method) to the nearest integer. Every
time. If you had 10,000 instances of class Math, and ran
the round(42.2) method, you’d get an integer value of
42. Every time. In other words, the method acts on the
argument, but is never affected by an instance variable
state. The only value that changes the way the round()
method runs is the argument passed to the method!

Doesn’t it seem like a waste of perfectly good heap space
to make an instance of class Math simply to run the
round () method? And what about other Math methods
like min(), which takes two numerical primitives and
returns the smaller of the two. Or max(). Or abs(), which
returns the absolute value of a number.

These methods never use instance variable values. In fact the
Math class doesn’t have any instance variables. So there’s
nothing to be gained by making an instance of class
Math. So guess what? You don’t have to. As a matter of
fact, you can’t.

If you try to make an instance of
class Math:

Math mathObject = new Math() ;

You’ll get this error:

File Edit Window Help IwasToldThereWouldBeNoMath

%javac TestMath

access in java.lang.Math

Math mathObject = new Math() ;

1 error

274 chapter10

TestMath.java:3: Math() has private [N ¥ ervor sh
S

tonstruetor s marked
means

" Math

Methods in the Math class
don’t use any instance
variahle values. And hecause
the methods are ‘static’,

you don’t need to have an
instance of Math. All you
need is the Math class.

int x = Math.round(42.2);
int y = Math.min (56,12) ;
int z = Math.abs (-343);
Thcsc methods nevey use
ms'l:av_\cc variables, so Lheir
kchavwr doesn’t need 4o
now about a spccific ob\jcc{:.
ows that {he Math

Private! That
s3Y new’ on the

ew Math object.

You tan NEVER

elass to make 3 5

The difference between regular
(hon-static) and static methods

numbers statics

Java is object-oriented, but once in a while you have a special case,

typically a utility method (like the Math methods), where there is

no need to have an instance of the class. The keyword static lets
a method run without any instance of the class. A static method means
“behavior not dependent on an instance variable, so no instance/object

is required. Just the class.”

regular (non-static) method

. ets
public class Song { |nstance vaviable va\uc\ag(gc
String title; (/ I‘:\\C bc\\av'\or O‘C he \73\[
public Song(String t), {thod-
title = t;
}
public void play() {
SoundPlayer player = new SoundPlayer() ;
player.playSound(title) ;

| Yitle
value of the
Son —'\l;\\s\’:,a{:;,vcvz;i\ab\c is Jc,\\r\c (s;ng fhat
fte = plays when you call play
|

play() Politik

[e)
Sec t

Song

s
ong s3.play () ;

s2.play() ;

G,
J P
*‘cf d () :
« /e;-ehcc 3;// on f/us Callmg Flay() on Q\-u;
litign y o> reterente will cause
@y, “My Way” to play.

static method

public static int min(int a, int b) {

//returns the lesser of a and b

}

Math "
min() No instante vanab'cs.
maxi) The method bchéV\ov
el doesn £ thanae with .
7\ instante vaviable state:

Math.min (42, 36) ;
Use the Class name, r.a%,\ncr
than @ vekecente vaviable
name.
0 0BJECTg)
Abso,u-é
ely No
Snyywhere fh.oB_‘)ECTS
Is P:c.éw_ /

275

static methods

Call a static method using a

class name

S

min()
max()
abs()

Math Math.min (88,86) ;

Call a non-static method using a
reference variable name

What it means to have a
class with static methods.

Often (although not always), a class with static
methods is not meant to be instantiated. In Chapter
8 we talked about abstract classes, and how marking
a class with the abstract modifier makes it
impossible for anyone to say ‘new’ on that class type.
In other words, it’s impossible to instantiate an abstract
class.

But you can restrict other code from instantiating

a non-abstract class by marking the constructor
private. Remember, a method marked private means
that only code from within the class can invoke

the method. A consiructor marked private means
essentially the same thing—only code from within
the class can invoke the constructor. Nobody can
say ‘new’ from outside the class. That’s how it works
with the Math class, for example. The constructor
is private, you cannot make a new instance of Math.
The compiler knows that your code doesn’t have
access to that private constructor.

276

Song t2
t2.play() ;

= new Song() ;

This does not mean that a class with one or more
static methods should never be instantiated. In fact,
every class you put a main() method in is a class with
a static method in it!

Typically, you make a main() method so that you
can launch or test another class, nearly always by
instantiating a class in main, and then invoking a
method on that new instance.

So you’re free to combine static and non-static
methods in a class, although even a single non-static
method means there must be some way to make an
instance of the class. The only ways to get a new
object are through ‘new’ or deserialization (or
something called the Java Reflection API that we
don’t go into). No other way. But exactly who says new
can be an interesting question, and one we’ll look at
a little later in this chapter.

Static methods can’t use non-static
(instance) variables!

Static methods run without knowing about any particular
instance of the static method’s class. And as you saw on

the previous pages, there might not even be any instances

of that class. Since a static method is called using the class
(Math.random ()) as opposed to an instance reference (t2.play()),
a static method can’t refer to any instance variables of the
class. The static method doesn’t know which instance’s variable
value to use.

If you try to compile this code:

2
public class Duck { W\\"ff\‘ D"b\;’
Whse 2%

private int size; -

public static void main (String[] args) {

System.out.println(“Size of duck is “ + size);

}

I‘f ‘(:"":Crcls a DMC’(on

public void setSize(int s) { d €,Neap somewhere, we
size = s; o't know about. it

}

public int getSize() {
return size;

}

You’ll get this error:

File Edit Window Help

)

% javac Duck. java

Duck.java:6: non-static variable
size cannot be referenced from a
static context

System.out.println(“Size
of duck is “ + size);

A

T'm sure they're
talking about MY
size variable.

numbers and statics

I you try to use an
instance variable from
inside a static method,
the compiler thinks,

“T don’t know which
object’s instance variable
you're talking about!”

If you have ten Duck
objects on the heap, a
static method doesn’t
know about any of them.

No, I'm pretty sure
they're talking about
MY size variable.

you are here» 277

static methods

Static methods can’t use non-static
wmethods, either!

What do non-static methods do? They usually use instance
variable state to affect the behavior of the method. A getName ()
method returns the value of the name variable. Whose name?
The object used to invoke the getName () method.

This won’t compile: . =~
I.hﬂ 9etSize() ; +
public class Duck { ‘U‘c 'f‘cv;tab’e_ﬂc\igzc?;sﬁoms
€ size instance variable °
private int size; .

public static void main (String[] args) {
System.out.println(“Size is “ + getSize());
}

public void setSize(int s) {
size = s;

}

public int getSize() |

return size; ame YYO\)\C""'

Batk Lo the s

} whose s'\u?.
—

File Edit Window Help Jack-in

% javac Duck. java

Duck.java:6: non-static method
getSize () cannot be referenced
from a static context

System.out.println(“Size
of duck is “ + getSize());

A

)
,

iy rance ()7
rmat getDa"-e“memsce \E
Dateﬁi"ormat getTime-[nstar—\ e)
pateFormat -IETTT

278 chapter10

th o
Duﬂn%ﬁre uestions

Q: What if you try to call a non-static
method from a static method, but the
non-static method doesn’t use any in-
stance variables. Will the compiler allow
that?

A: No.The compiler knows that
whether you do or do not use instance
variables in a non-static method, you can.
And think about the implications...if you
were allowed to compile a scenario like
that, then what happens if in the future
you want to change the implementation
of that non-static method so that one day
it does use an instance variable? Or worse,
what happens if a subclass overrides the
method and uses an instance variable in
the overriding version?

Q,' I could swear I've seen code that
calls a static method using a reference
variable instead of the class name.

A: You can do that, but as your mother
always told you,“Just because it's legal
doesn’t mean it's good.” Although it works
to call a static method using any instance
of the class, it makes for misleading (less-
readable) code.You can say,

Duck d = new Duck() ;
String[] s = {};
d.main(s) ;

This code is legal, but the compiler just
resolves it back to the real class anyway
(“"OK, dis of type Duck, and main() is static,
so I'll call the static main() in class Duck”).
In other words, using d to invoke main()
doesn’t imply that main() will have any
special knowledge of the object that d is
referencing. It's just an alternate way to
invoke a static method, but the method is
still static!

Static variable:

value is the same for ALL
instances of the class

Imagine you wanted to count how many Duck
instances are being created while your program is
running. How would you do it? Maybe an instance
variable that you increment in the constructor?

class Duck {
int duckCount = 0;
public Duck () {
duckCount++;

thi
} S~ “Cig::,{i alwaYS set

No, that wouldn’t work because duckCount is an
instance variable, and starts at 0 for each Duck. You
could try calling a method in some other class, but
that’s kludgey. You need a class that’s got only a single
copy of the variable, and all instances share that one

copy.
That’s what a static variable gives you: a value shared

by all instances of a class. In other words, one value
per class, instead of one value per instance.

public class Duck {

numbers and statics

X
¢ quekCoMmE o
The s*ij":i’ 'm"\"\i‘ a\-‘-’i'd S?C N
1 ke
L\aSSC:L\\ Lime 3

ade:

private int size;
private static int duckCount = 0;

public Duck() | Now it will k
} duckCountt ; <_incremen‘(:in3 :35'1 ti
{::;Duck ::ons{:v-uc{::ev-u
e use ,dw:kCoun{: is sfaz's’
won’t be reset to0 -
public void setSize(int s) { |

size = s;

}
public int getSize() ({
return size;

}

Duck

size

tatic duckCount (‘
ROHR

getSize()
setSize()

Each Dyek
: ob'c i
::;cé:arial:z‘e, g:ffftj:c,'fsoorn
h
va..;abliy ot the duckCoun{: !

~the one in the ¢z

279

you are here »

280

chapter 10

Static variables are shared.

All instances of the same
class share a single copy of
the static variables.

Earlier in this chapter, we saw that a private
constructor means that the class can’t be instantiated
from code running outside the class. In other words,
only code from within the class can make a new
instance of a class with a private constructor. (There’s
a kind of chicken-and-egg problem here.)

What if you want to write a class in such a way that
only ONE instance of it can be created, and anyone
who wants to use an instance of the class will always
use that one, single instance?

numbers and statics

Initializing a static variable

Static variables are initialized when a class is loaded. A class is

loaded because the JVM decides it’s time to load it. Typically, All static variables
thelVM loads a class because somebody’s trying to mak.e a in a class are

new instance of the class, for the first time, or use a static

method or variable of the class. As a programmer, you also initialized before
have the option of telling the JVM to load a class, but you're any object of
not likely to need to do that. In nearly all cases, you’re better that class can be

off letting the JVM decide when to load the class.
i created.

And there are two guarantees about static initialization:

Static variables in a class are initialized before any object of that
class can be created.

Static variables in a class are initialized before any static method
of the class runs.

class Player { v~ The Vla\ICYCoum{: s inikialized when the elass is loaded.

]] -, L) £ {.‘ O) bch we don"{; Y\CCd
static int playerCount = 0; focs?::ch%{t/ E:f jlc?:ﬂl{‘: valic for ints. Statie vari—

private String name; ables ae t dc‘(:avl 4 values \')us{‘, like instante vaviables.

public Player (String n) {
name = n;

DC‘an"E Va,UCS ‘FOV‘ dCC,

playerCount++; statie and insta

ared but uninitigl;
nce variables ave 'l:?\l: 'i;if':Cd

| Primitive integers (long, short, ete.): 0

Primitive £loating points (Float, double): 0.0

public class PlayerTestDrive { boolean: ‘palsc

public static void main(String[] args) { .
i object references: null
System.out.println (Player.playerCount) ;
Player one = new Player (“Tiger Woods”) ;
System.out.println(Player.playerCount) ;

} ,i Aetess a statie variable just like a static
: method—with the tlass name.

File Edit Window Help What?

Static variables are initialized when the class is loaded. If you

don’t explicitly initialize a static variable (by assigning it a % java PlayerTestDrive

value at the time you declare it), it gets a default value, so int 0 ¢ before any instances are made
variables are initialized to zero, which means we didn’t need 1
to explicitly say “playerCount = 0”. Declaring, but not initial- \

after an obJet{ is ereated

izing, a static variable means the static variable will get the de-
fault value for that variable type, in exactly the same way that
instance variables are given default values when declared.

you are here » 281

static final constants

static final variables are constants

A variable marked finalmeans that—once initialized—it can
never change. In other words, the value of the static final variable
will stay the same as long as the class is loaded. Look up Math.PI

in the API, and you’ll find:
public static final double PI

The variable is marked public so that any code can access it.

The variable is marked static so that you don’t need an
instance of class Math (which, remember, you’re not allowed to

create).

The variable is marked final because PI doesn’t change (as far as

Java is concerned).

There is no other way to designate a variable as a constant, but
there is a naming convention that helps you to recognize one.

Constant variable names should be in all caps!

= 3.141592653589793;

static initializer

Initialize a final static variable:

@ At the time you declare it:

public class Foo {
public static final int FOO_X = 25;

} notice the n3 ,\

inal va '“3 ‘:Ohveh«é'
hdme shsﬁjlb ‘:7, :Ohsfah.zn —= statie

Underse
Ore SCPQ

OR

@ In a static initializer:

public class Bar {
public static final double BAR_SIGN;

static {
BAR SIGN = (double) Math.random() ;
}
}
this ¢ode v,

is |, Funs s ¢
is c;zd;d ore O;nz; the Class
Variable ¢, and ‘ tie method
Jhy 5{:3'(::4

282 chapter10

If you don't give a value to a final variable
in one of those two places:

public class Bar {
public static final double BAR SIGN;

| no ini'(:ializa'(:ion/

The compiler will catch it:

File Edit Window Help Jack-in

% javac Bar. java

Bar.java:1l: variable BAR_ SIGN
might not have been initialized

1l error

numbers statics

final isn't just for static
variables...

You can use the keyword final to modify non- A ‘[inal var ial)le means you
static variables too, including instance variables, y .
local variables, and even method parameters. In can t Cllange lts Value.

each case, it means the same thing: the value can’t
be changed. But you can also use final to stop
someone from overriding a method or making a
subclass.

A final method means you

non-static final variables .
can't override the method.

class Foof {
final int siz
final int whuffie;

3, — oW You tan't thange size
e = ;

Foo:}(lzlff{ie - 42 e ow you can't thange whutfie A {lnal Class means you

} can't extend the class (ie.

void doStuff (final int x) {

} // you can’t change x you can't make a subclass).

void doMore () {
final int z = 7;
// you can’t change z

It's all so... so final.
I mean, if I'd known

I wouldn't be able to
change things...

final method

class Poof {
final void calcWhuffie () {
// important things
// that must never be overridden

final class

final class MyMostPerfectClass ({
// cannot be extended

}

283

static and

therejare no o
Dumb Questions

Q} A static method can’t access a
non-static variable. But can a non-static
method access a static variable?

A: Of course. A non-static method in a
class can always call a static method in the
class or access a static variable of the class.

Q: Why would | want to make a class
final? Doesn't that defeat the whole
purpose of 00?

A: Yes and no. A typical reason for
making a class final is for security. You
can't, for example, make a subclass of the
String class. Imagine the havoc if someone
extended the String class and substituted
their own String subclass objects,
polymorphically, where String objects

are expected. If you need to count on a
particular implementation of the methods
in a class, make the class final.

Q} Isn’t it redundant to have to mark
the methods final if the class is final?

A: If the class is final, you don’t need to
mark the methods final. Think about it—if
a class is final it can never be subclassed,
so none of the methods can ever be
overridden.

On the other hand, if you do want to allow
others to extend your class, and you want
them to be able to override some, but not
all, of the methods, then don’t mark the
class final but go in and selectively mark
specific methods as final. A final method
means that a subclass can't override that
particular method.

284

— BULLET POIN& _—

A static method should be called using the class
name rather than an object reference variable:
Math.random () vS. myFoo.go ()

A static method can be invoked without any instances
of the method’s class on the heap.

A static method is good for a utility method that does
not (and will never) depend on a particular instance
variable value.

A static method is not associated with a particular
instance—only the class—so it cannot access any
instance variable values of its class. It wouldn’t know
which instance’s values to use.

A static method cannot access a non-static method,
since non-static methods are usually associated with
instance variable state.

If you have a class with only static methods, and you
do not want the class to be instantiated, you can mark
the constructor private.

A static variable is a variable shared by all members
of a given class. There is only one copy of a static
variable in a class, rather than one copy per each
individual instance for instance variables.

A static method can access a static variable.

To make a constant in Java, mark a variable as both
static and final.

Afinal static variable must be assigned a value either
at the time it is declared, or in a static initializer.
static {

DOG_CODE = 420;
}
The naming convention for constants (final static
variables) is to make the name all uppercase.

Afinal variable value cannot be changed once it has
been assigned.

Assigning a value to a final instance variable must be
either at the time it is declared, or in the constructor.

A final method cannot be overridden.
Afinal class cannot be extended (subclassed).

numbers statics

harpen your pencil
e Jherpen your pec
What’s Legal? KEEP

Given everything you've just

learned about static and final, h
which of these would compile? R I G H T

(:) public class Foo {
static int x;

public void go() { public class Foo4d {
System.out.println(x) ; static final int x = 12;
}
} public void go() {

System.out.println(x) ;
}

(:) public class Foo2 {

int x;
public static void go() { (:) public class Foo5 {
System.out.println(x); static final int x = 12;
}
} public void go (final int x) {

System.out.println(x) ;
}

public class Foo3 {

final int x;
public class Foo6 {

public void go() { int x = 12;
System.out.println(x) ;
} public static void go(final int x) {
} System.out.println(x) ;

}

285

Math

Math methods

Now that we know how static
methods work, let’s look

at some static methods in
class Math. This isn’t all of
them, just the highlights.
Check your API for the rest
including sqrt(), tan(), ceil(),
floor(), and asin().

286

Math.random()
Returns a double between 0.0 through (but

not including) 1.0.

double rl = Math.random() ;
int r2 = (int) (Math.random() * 5);

Math.abs()
Returns a double that is the absolute value of
the argument. The method is overloaded, so
if you pass it an int it returns an int. Pass it a
double it returns a double.

int x = Math.abs(-240); // returns 240
double d = Math.abs (240.45); // returns

Math.round()
Returns an int or a long (depending on
whether the argument is a float or a double)
rounded fo the nearest integer value.

240.45

point literals are assumed
You add the ‘.

int x = Math.round(-24.8£f); // returns -25
int y = Math.round(24.45f); // returns 24
Remember, floating
to be doubles unless
Math.min()

Returns a value that is the minimum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.min(24,240); // returns 24
double y = Math.min(90876.5, 90876.49) ;

Math.max()
Returns a value that is the maximum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.max(24,240); // returns 240
double y = Math.max(90876.5, 90876.49) ;

// returns 90876.49

// returns 90876.5

numbers and statics

Wrapping a primitive

Sometimes you want to treat a primitive like
an object. For example, in all versions of Java
prior to 5.0, you cannot put a primitive directly
into a collection like ArrayList or HashMap:
int x = 32;
ArrayList list = new ArrayLlist();
list.add(x);f\

i ’ k unless You're usin Java 9.0 or _ I'imitive
This et work ke o et m Aevayiist P

hat takes an int! (Arra\/Lis{: only ha; Qdd() methods
that take ob)cc{: veferentes, not \vrim{:wcs.)

ol)ject

When you need to treat
There’s a wrapper class for every primitive type, o ey . .
and since the wrapper classes are in the java. a Pr imitive llke an OL]eCtv

lang package, you don’t need to import them.
You can recognize wrapper classes because

wrap it. [you’re using any

each one is I'lamed after the primi'tiV§ type it VeI'SiOIl 0{ Java l)e{ore 5.0’
wraps, but with the first letter capitalized to

follow the class naming convention. you,ll C[O tllls W11en you

Oh yeah, for reasons absolutely nobody on the e ey
planet is certain of, the API designers decided neecI tO StOI' ¢a Prmutlve

not to map the names exactly from primitive
type to class type. You’ll see what we mean:

Boolean Al‘l'ayLiSt or HaSLMaP.

value inside a collection like

Character
Byte Wateh out! The names aren't L
Short mappe dodéc{:l\/ %o the primitive " YYW\‘CNC
Lypes. The tlass names are ully
:-nteger spelled out. In{eaer OBJCC{:
ong
Float t
Double 'bee » 0‘0‘?
Give the primitive {o the {o]

i wrapper tonstructor. That's it.
wrapping a value

int i = 288; /
Integer iWrap = new Integer(i);

All £he wrappers wovk
like this. Boolean has a

nw i booleanValue(), Chavatter
unwrapping a value has a tharValue(), ete. e e i o et s hocetete i ol wrapper. Get

int unWrapped = iWrap.intValue() ; it? Wrapper? Some people think it looks like a baked potato, but
that works too.

you are here» 287

static methods

This is stupid. You mean I can't
Jjust make an ArrayList of ints??? T
have to wrap every single frickin' one in a new
Integer object, then unwrap it when I try
to access that value in the ArrayList?
That's a waste of time and an error
waiting to happen...

Before Java 5.0, YOU had to do the work...

She’s right. In all versions of Java prior to 5.0, primitives were primitives
and object references were object references, and they were NEVER
treated interchangeably. It was always up to you, the programmer, to do

the wrapping and unwrapping. There was no way to pass a primitive to a
method expecting an object reference, and no way to assign the result of a
method returning an object reference directly to a primitive variable—even
when the returned reference is to an Integer and the primitive variable is
an int. There was simply no relationship between an Integer and an int,
other than the fact that Integer has an instance variable of type int (to hold
the primitive the Integer wraps). All the work was up to you.

An ArraylList of primitive ints

Without autoboxing (Java versions before 5.0)

288

Lou\d V\O{'f

Lore 5.0 You
List. (Remember, be I oF Obiects)
public void doNumsOldWay () { Ma\:cﬁlhtt‘:v‘lé\lvgﬁ, <o all AvraylLists weve lists o U0)
spect w
ArrayList listOfNumbers = new ArrayList();)
2 Lo the list,

) add {-‘\\c YY'IM.I‘E\VC .)

listOfNumbers.add (new Integer(3)); €— YO\:I:SY;\J;V ¢ Lo wrap it in an |nteaer fiest
SO

Integer one = (Integer) listOfNumbers.get(0); £ [5y out as type

Objct)c, but you ean cast
int intOne = one.intValue(); Ok Ob_)c& e |n1w5“

Fina” You ¢a
o + -
out of the /ntheg:r. the prinitiv

numbers

Autoboxing: blurring the line
between primitive and object

The autoboxing feature added to Java 5.0 does
the conversion from primitive to wrapper object
automatically!

Let’s see what happens when we want to make an
ArrayList to hold ints.

An Arraylist of primitive ints

With autoboxing (Java versions 5.0 or greater)

public void doNumsNewWay () {

ArrayList<Integer> listOfNumbers = new ArraylList<Integer>();

Make an AvcayList of type |nteger-

statics

listOfNumbers.add (3); Just 344 it! Although there is NOT a method in AvrayList
' for add(int), the compiler does all the wrapping
int num = listOfNumbers.get (0); (boxing) for you. [n other words, there really [S
} an Integer ob\)ec{: stored in the Arra\/Lis{;, but

And the ompiler automaties
the In’ccgcr ochC{: so
diveetly to a primitiv
intValue() method on

You tan assign the int value ArvaylList<integers.)
€ ithout having 4o ¢al] £he
the Integer object.

Q; Why not declare an ArrayList<int> if you want to
hold ints?

A: Because...you can’t. Remember, the rule for generic
types is that you can specify only class or interface types, not
primitives. So ArrayList<int> will not compile. But as you can
see from the code above, it doesn’t really matter, since the
compiler lets you put ints into the ArrayList<Integer>.In fact,
there’s really no way to prevent you from putting primitives
into an ArrayList where the type of the list is the type of that
primitive’s wrapper, if you're using a Java 5.0-compliant com-
piler, since autoboxing will happen automatically. So, you can
put boolean primitives in an ArrayList<Boolean> and chars
into an ArrayList<Character>.

you get to “pretend” that the ArvaylList takes
“y unwraps (unboxes) ints. (You tan add both ints and ln{cgcrs £o an

289

static methods

Autoboxing works almost everywhere

Autoboxing lets you do more than just the obvious wrapping and
unwrapping to use primitives in a collection... it also lets you use
either a primitive or its wrapper type virtually anywhere one or the

other is expected. Think about that!

Fun with autoboxing

Method arguments

If a method takes a wrapper type, you
can pass a reference to a wrapper or
a primitive of the matching type. And
of course the reverse is true—if a
method takes a primitive, you can
pass in either a compatible primitive
or a reference to a wrapper of that
primitive type.

3

~ ﬁ
X9 & i
Ofeger 0‘0?\/ / int

void takeNumber (Integer i) { }

Return values

If a method declares a primitive
return type, you can return either a
compatible primitive or a reference
to the wrapper of that primitive type.
And if a method declares a wrapper
return type, you can return either a
reference to the wrapper type or a
primitive of the matching type.

int giveNumber () {
return x;

Boolean expressions

Any place a boolean value is expected,
you can use either an expression that
evaluates to a boolean (4 > 2), or a
primitive boolean, or a reference to a
Boolean wrapper.

290

true
60/an oo? flean
if (bool) {

System.out.println (“true”);

numbers

statics

Operations on numbers

This is probably the strangest one—yes, you
can now use a wrapper type as an operand

in operations where the primitive type is
expected. That means you can apply, say,
the increment operator against a reference

to an Integer object!

But don't worry—this is just a compiler trick. \/
The language wasn't modified to make the

operators work on objects; the compiler
simply converts the object to its primitive

type before the operation. I't sure looks

weird, though.
Integer i = new Integer(42):

++;

And that means you can also do things like:

Integer j = new Integer(5);
Integer k=j+3;

Assignments
You can assigh either a wrapper or primitive
to a variable declared as a matching wrapper J,‘” b.\qy
or primitive. For example, a primitive int €ger © int

variable can be assigned to an Integer
reference variable, and vice-versa—a
reference to an Integer object can be
assigned to a variable declared as an int

primitive.

N

Double d = x;

@s.harpen your pencil
i’ your p

Will this code compile? Will it run? If it runs,
what will it do?

Take your time and think about this one; it
brings up an implication of autoboxing that
we didn't talk about.

You'll have to go to your compiler to find
the answers. (Yes, we're forcing you to
experiment, for your own good of course.)

public class TestBox {

Integer i;
int j;

public static void main (String[] args) {
TestBox t = new TestBox();
t.go();

}

public void go () {
j=i;
System.out.println(j) ;
System.out.println(i) ;

291

wrapper methods

292

But wait! There’s more! Wrappers
have static utility methods too!

Besides acting like a normal class, the wrappers have a
bunch of really useful static methods. We’ve used one in
this book before—Integer.parselnt().

The parse methods take a String and give you back a
primitive value.

Converting a String to a No problem {o parse
primitive value is easy: «2” into 2-

String s = “2”;
int x = Integer.parselnt(s)

double d = Double.parseDouble (“420.24") ;

boolean b = new Boolean(“true”) .booleanValue() ;

But if you try to do this:

eve would be 3 , Bt there
() wouldn £ yous DV

BodeararBodenl) 373 o crstrctor

nt {:Z\: s (and Varscs) 3 Shying, and T N

'ﬂ‘atjcgc{: i)nc vvim\’cwc value by unwrapping

\)\AS

Youd Ahink £h

_ . . Uh—oh. This compiles just fine, but

String t = “two”; \[_ at vuntime it blows u{v). Anything

int y = Integer.parselnt(t); that can't be parsed as a number
will cause a NumbchormafE%cc‘?{Zion

You’ll get a runtime exception:

File Edit Window Help Clue

% java Wrappers
Exception in thread “main”

java.lang.NumberFormatException: two

Every method or
constructor that parses

a String can throw a
NumberFormatException.

at java.lang.Integer.parseInt(Integer.java:409) It’s a runtime exception,
at java.lang.Integer.parselnt(Integer.java:458) so you don’t have to

at Wrappers.main (Wrappers.java:9)

chapter 10

handle or declare it.
But you might want to.

(We'll talk about Exceptions in the
next chapter.)

And now in reverse... turning a
primitive number into a String

There are several ways to turn a number into a String.

The easiest is to simply concatenate the number to an
existing String. Remenber £he ‘} operator is ovc;\z:f;:s ,
m
. C’\')‘a\,a (4he only chv\oadc: o\’carddcd i
double d = 425 E{W\h(_&) tontatenator: Anything

String doubleString = 17 + & Shring becomes Stringitied:

double d = 42.5;
String doubleString = Double.toString(d) ;

’(Aho{‘)\cr way to do it usi i
method in Jass D:ublc. g 3 statie

Yeah,
but how do I make it
look like money? With a dollar
sign and two decimal places

like $56.87 or what if I want
commas like 45,687,890 or
what if T want it in...

like I have in C? Is

the I/0 classes?

Where's my printf

number formatting part of

numbers

statics

293

number formatting

Number formatting

In Java, formatting numbers and dates doesn’t have to be coupled with I/O. Think
about it. One of the most typical ways to display numbers to a user is through a
GULI You put Strings into a scrolling text area, or maybe a table. If formatting was
built only into print statements, you’d never be able to format a number into a nice
String to display in a GUI. Before Java 5.0, most formatting was handled through
classes in the java.text package that we won’t even look at in this version of the
book, now that things have changed.

In Java 5.0, the Java team added more powerful and flexible formatting through a
Formatter class in java.util. But you don’t need to create and call methods on the
Formatter class yourself, because Java 5.0 added convenience methods to some of
the I/O classes (including printf()) and the String class. So it’s a simple matter of
calling a static String.format() method and passing it the thing you want formatted
along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and
that takes a little effort unless you’re familiar with the printf() function in C/C++.
Fortunately, even if you don’t know printf() you can simply follow recipes for the
most basic things (that we’re showing in this chapter). But you will want to learn
how to format if you want to mix and match to get anything you want.

We’ll start here with a basic example, then look at how it works. (Note: we’ll revisit
formatting again in the 1/O chapter.)

Formatting a number to use commas

public class TestFormats { The Nmbcr ‘o ‘CO‘rma{: (we

want it Lo have tommas/:
public static void main (String[] args) ({

String s = String.format(“%, d4”, 1000000000) ;
System.out.println(s); S~V T— N

: The \Coma{:fin i
9 instruetions £
setond argument (whieh in '(:hisoc:ar: vivs {:: f:{:':jﬁ '%"*C
e/.

Remember there ar
’ ly tw
_ ,000,000,000 heve—the First coner st e 3rguments Lo this meth
it isn'{; SCPa\lraS{;i:om a is INSIDE the S‘brihg 'i{:cr:f sood

9 argumcn{:s 'l:o ‘l‘)\e “:o\rma{: mc*(:hod-

ow w; CO”‘"\as Insey ed Into hc ’IU”\bCV

294

Formatting deconstructed...

At the most basic level, formatting consists of two main parts
(there is more, but we’ll start with this to keep it cleaner):

@ Formatting instructions

You use special format specifiers that describe how
the argument should be formatted.

@ The argument to be formatted.

Although there can be more than one argument, we'll
start with just one. The argument type can’t be just
anything... it has to be something that can be formatted
using the format specifiers in the formatting instructions.
For example, if your formatting instructions specify a
floating point number, you can't pass in a Dog or even a
String that looks like a floating point number.

Do Lhis- to this.
@ @

format (“%, 4”7, 1000000000) ;
e~ N~ —

Use these instructions... on this argument.

What do these instructions actually say?

“Take the second argument to this method, and

format it as a decimal integer and insert commas.”

How do they say that?

On the next page we’ll look in more detail at what the syntax “%,
d” actually means, but for starters, any time you see the percent
sign (%) in a format String (which is always the first argument

to a format() method), think of it as representing a variable,

and the variable is the other argument to the method. The rest
of the characters after the percent sign describe the formatting
instructions for the argument.

numbers statics

W \w'm{:(: 0

Ob ab\\’ 305{',
Otherwise,

- ik you a\rcady kno
EI:::\ (‘,/ (_:,,++, you tan P¥
okim the next few pages-

vead CaVC‘(:““\,-

295

the format() method

The percent (%) says, “insert argument here”
(and format it using these instructions)

The first argument to a format() method is called the format String, and it
can actually include characters that you just want printed as-is, without extra
formatting. When you see the % sign, though, think of the percent sign as a
variable that represents the other argument to the method.

More charaet,

. st\rma/c speciqciers 1Cor the intlude in the egrzki{:, 3 1(3 t

Chavatters 4o ntlude md mc J:}:‘d a?umcn-l; to the he setond argument i er

fhe Linal String veturne ethod (£he numbey-). ormatted and inserted. Argumch{ {0 be

from format()-)/ (\[1{"°V""3f‘l:cd.
format ("I have %.2f bugs to fix.”, 476578.09876) ;
W\/

Y

Oukpvt I have 476578.10 bugs to fix.

atter the deei : the numbeys

The “%” sign tells the formatter to insert the other method argument (the
second argument to format(), the number) here, AND format it using the
“.2f” characters after the percent sign. Then the rest of the format String,
“bugs to fix”, is added to the final output.

Adding a comma

format ("I have %, .2f bugs to fix.”, 476578.09876) ;

hanaing the format instruttions
%;/ofn ag?;\- " to %,l(:", we 50{', a
Comma in the formatted number.

296

numbers statics

But how does it even KNOW
where the instructions end and the

rest of the characters begin? How come
it doesn't print out the “f" in *%.2f"? Or
the "2"? How does it know that the .2f
was part of the instructions and NOT
part of the String?

The format String uses its
own little language syntax

You obviously can’t put just anything after the “%”
sign. The syntax for what goes after the percent
sign follows very specific rules, and describes
how to format the argument that gets inserted at
that point in the result (formatted) String.

You’ve already seen two examples:

%, d means “insert commas and format the
number as a decimal integer.”

and

%.2f means “format the number as a floating
point with a precision of two decimal places.”

and

%,.2f means “insert commas and format the
number as a floating point with a precision of
two decimal places.”

The real question is really, “How do I know what
to put after the percent sign to get it to do what
I want?” And that includes knowing the symbols
(like “d” for decimal and “t” for floating point)
as well as the order in which the instructions
must be placed following the percent sign. For
example, if you put the comma after the “d” like
this: “%d,” instead of “%,d” it won’t work!

Or will it? What do you think this will do:
String.format (I have %.2f, bugs to fix.”, 476578.09876) ;

(We’ll answer that on the next page.)

297

format specifier

The format specifier

Everything after the percent sign up to and including the type indicator (like
“d” or “t”) are part of the formatting instructions. After the type indicator, the
formatter assumes the next set of characters are meant to be part of the output
String, until or unless it hits another percent (%) sign. Hmmmm... is that even
possible? Can you have more than one formatted argument variable? Put that
thought on hold for right now; we’ll come back to it in a few minutes. For now,
let’s look at the syntax for the format specifiers—the things that go after the
percent (%) sign and describe how the argument should be formatted.

A format specifier can have up to five different parts (not
including the “%”). Everything in brackets [] below is optional, so
only the percent (%) and the type are required. But the order is
also mandatory, so any parts you DO use must go in this order.

% [argument number] [flags] [width] [.precision] type

A T N

WC,” ﬂe‘l: to this later... This defines the ou a\rca(ﬂ know is ma,\da{;or\/
You say WHICH Tyece are for MINIUA e e one i defines TITE2 P8 0
a*S“MChJc if there’s mor . sial Sormatting of thavacters that fhe pretision- In N d will usually be
pan one. (Don't t worr svc‘c ons like nsertng will be used. That's other words; « d';’ for a detimal
about l‘l:Jus-l; yet.) ! ° ‘mas or \;\,{; in9 F*minimum¥ not sets the num ber integer or “f for
Loma’cw,c pumbers in TOTAL. [£ the number of dccma\ \3“5 " (:\ ating \mm{:
“Ca?cv\{-,\\cscsr ov {’,0 is IOV\SCY tha“ ‘{:"IC DOV\,‘{; orgt“ » . umbCY
! ake the numbers width, it'll still be used jpelude the
'\nc(: Iy Jus{:\{:‘c in full, but if it's less theve.

than the width, it'll be
padded with zeroes.

% [argument number] [flags] [width] [.precision] type

— Nl

format (,6.1£7, 42.000)

There'’s no “4
gument numbey”
spcu-plcd in £his ‘porm:zmgg:;h

ut all the other Pietes are there.

298 chapter10

numbers statics

The only required specifier is for TYPE

Although type is the only required specifier, remember that if you do put

in anything else, type must always come last! There are more than a dozen
different type modifiers (not including dates and times; they have their own
set), but most of the time you’ll probably use %d (decimal) or %f (floating
point). And typically you’ll combine %f with a precision indicator to set the
number of decimal places you want in your output.

The TYPE is mandatory, everything else is optional. You must lnClUJe a
type in your format
%d decimal Das
2 . . .
format (“&d”, 42); would lf; 5&“"‘ not work/ |4 mstructions, and if you

di
;nchaﬂgfif'an 3 double 1o, spe(:lfy tlungs hesides

The argument must be compatible with an int, so that means type, tlle type must

only byte, short, int, and char (or their wrapper types).
o pperbp always come last,

teve we tombined the o MOSt 0 ,[tlle time,

with a pretision indicator

€37 <o we ended P with you’ll Pr()l)al)ly {Ormat
42 .000 jd\rcc zevoes-

%f floating point
format (“%$.3£”, 42.000000);

numbers using either
The argument must be of a floating point type, so that et I . o0 P99
means only a float or double (primitive or wrapper) as well CI ‘[01‘ JeCImal or {

as something called BigDecimal (which we don’t look at in

this book). for J}loating point.

%X hexadecimal
format (“SxX”, 42);

The argument must be a byte, short, int, long (including
both primitive and wrapper types), and BigInteger.

%c character

A ” .
format (“%$¢”, 42); The number ﬁ,—?‘ vc\wcscv&s
«

the thar

I

The argument must be a byte, short, char, or int (including
both primitive and wrapper types).

299

2

format arguments

What happens if | have wmore than one argument?

Imagine you want a String that looks like this:
‘The rank is 20,456,654 out of 100,567,890.24.”

But the numbers are coming from variables. What do you do? You simply add two
arguments after the format String (first argument), so that means your call to format()
will have three arguments instead of two. And inside that first argument (the format
String), you’ll have two different format specifiers (two things that start with “%”). The
first format specifier will insert the second argument to the method, and the second
format specifier will insert the third argument to the method. In other words, the
variable insertions in the format String use the order in which the other arguments are
passed into the format() method.

int one = 20456654;
double two = 100567890.248907;

String s = String.format (“The rank is %,d out of %,.2f”, one, two);

~_

The rank is 20,456,654 out of 100,567,890.25 [EEEMULLTIRTANESETINS
o B o
e order ; .
We added commas to both variables, Pass them o ‘éh;nﬁ:tf:-{;(;u
and restricted the floating point method.

number (the setond vaviable) £o two
detimal ?laccs.

As you’ll see when we get to date formatting, you might actually want to apply different
formatting specifiers to the same argument. That’s probably hard to imagine until you
see how date formatting (as opposed to the number formating we’ve been doing) works.
Just know that in a minute, you’ll see how to be more specific about which format
specifiers are applied to which arguments.

Q: Um, there’s something REALLY strange going on here. Just how many arguments can |
pass? I mean, how many overloaded format() methods are IN the String class? So, what happens
if | want to pass, say, ten different arguments to be formatted for a single output String?

A: Good catch. Yes, there is something strange (or at least new and different) going on, and

no there are not a bunch of overloaded format() methods to take a different number of possible
arguments. In order to support this new formatting (printf-like) APl in Java, the language needed
another new feature—variable argument lists (called varargs for short). We'll talk about varargs
only in the appendix because outside of formatting, you probably won’t use them much in a well-
designed system.

300

numbers

So much for numbers, what about dates?

Imagine you want a String that looks like this: “Sunday, Nov 28 2004”

Nothing special there, you say? Well, imagine that all you have to start with is a variable
of type Date—A Java class that can represent a timestamp, and now you want to take that
object (as opposed to a number) and send it through the formatter.

The main difference between number and date formatting is that date formats use a
two-character type that starts with “t” (as opposed to the single character “” or “d”, for
example). The examples below should give you a good idea of how it works:

The complete date and time %tc

String.format (“$te”, new Date());

Sun Nov 28 14:52:41 MST 2004

Just the time Y%tr
String.format (“%tr”, new Date());

03:01:47 PM

Day of the week, month and day %tA %tB %td

There isn’t a single format specifier that will do exactly what we
want, so we have to combine three of them for day of the week But that means
(%tA), month (%tB), and day of the month (%td). ass the Date o

statics

we have {,

b\je‘:'{: in ‘U’Irce

imCS, one tor Caﬂh 3 '{:
Date today = new Date(); w::;‘af '(:haof we Wa"";brlh Zﬁhﬁtc
String.format (“%tA, %tB %td”,today,today,today) ¢}, dzyfh«ef flfA il give us just

B ° e WCC‘(, bu'l:

The tomma is not part of the formatting... it's .‘:":'(:hz;e to do it 493in to {::{fn
Jjust the character we want printed after the \313 L ¢ month and a9ain for {)
Fivst inserted formatted argument. Y:oF the month, ‘
Sunday, November 28
Same as above, but without duplicating the arguments %tA %tB %td
Date today = new Date(); The angle—bracket “<” is just another

String.format (“$tAa, %<tB %<td”,today); ﬂag in the SF‘Ci‘Ci"’ that tells the

formatter to “use the Ercvious aroument

\/ou ¢an think of this as kind of like eallin three agaih'” So it saves You trom repeating the
diffevent getter methods on the Date obiect, Lo arguments, and instead zou format the
get three diffevent pietes of data from i{). same argument three ditferent ways.

301

manipulating dates

Let's see... how many work
days will there be if the

project starts on Feb 27th and
ends on August 5th?

Working with Pates

You need to do more with dates than just get
today’s date. You need your programs to adjust
dates, find elapsed times, prioritize schedules,
heck, make schedules. You need industrial
strength date manipulation capabilities.

You could make your own date routines of
course... (and don’t forget about leap years!)
And, ouch, those occasional, pesky leap-
seconds. Wow, this could get complicated. The
good news is that the Java API is rich with
classes that can help you manipulate dates.
Sometimes it feels a little too rich...

302 chapter10

Moving backward and forward in time

Let’s say your company’s work schedule is Monday through Friday.
You've been assigned the task of figuring out the last work day in
each calendar month this year...

It seems that java.util.Date is actually... out of date

Earlier we used java.util.Date to find today’s date, so it seems
logical that this class would be a good place to start looking for
some handy date manipulation capabilities, but when you check
out the API you’ll find that most of Date’s methods have been
deprecated!

The Date class is still great for getting a “time stamp”—an object
that represents the current date and time, so use it when you want
to say, “give me NOW”.

The good news is that the API recommends java.util. Calendar
instead, so let’s take a look:

Use java.util.Calendar for your date manipulation

The designers of the Calendar API wanted to think globally,
literally. The basic idea is that when you want to work with dates,
you ask for a Calendar (through a static method of the Calendar
class that you’ll see on the next page), and the JVM hands you back
an instance of a concrete subclass of Calendar. (Calendar is actually
an abstract class, so you’re always working with a concrete subclass.)

More interesting, though, is that the kind of calendar you get
back will be appropriate for your locale. Much of the world uses the
Gregorian calendar, but if you're in an area that doesn’t use a
Gregorian calendar you can get Java libraries to handle other
calendars such as Buddhist, or Islamic or Japanese.

The standard Java API ships with java.util. GregorianCalendar, so
that’s what we’ll be using here. For the most part, though, you
don’t even have to think about the kind of Calendar subclass you're
using, and instead focus only on the methods of the Calendar class.

numbers

statics

For a time-stamp of "now”,
use Date. But for everytlting

else, use Calendar.

303

getting a Calendar

Getting an object that extends Calendar

How in the world do you get an “instance” of an abstract class?
Well you don’t of course, this won’t work:

H L) -
This WON’T work: K_\ The compiler won't allow this I

Calendar cal = new Calendar():;

Instead, use the static “getinstance()” method:

Calendar cal = Calendar.getInstance() ;

Wait a minute.
If you can't make an

instance of the Calendar
class, what exactly are you
assigning to that Calendar
reference?

Calendar.

304

This syn{:ax should look familiar at this
?o'm{: — we've 'mvok'mg a statie method.

You can’t get an instance of Calendar,
but you can can get an instance of a
concrete Calendar subclass.

Obviously you can’t get an instance of Calendar, because
Calendar is abstract. But you’re still free to call static methods
on Calendar, since static methods are called on the class,
rather than on a particular instance. So you call the static
getInstance () on Calendar and it gives you back... an instance
of a concrete subclass. Something that extends Calendar
(which means it can be polymorphically assigned to Calendar)
and which—by contract—can respond to the methods of class

In most of the world, and by default for most versions of Java,
you’ll be getting back a java.util. GregorianCalendar instance.

numbers and statics

Working with Calendar objects

There are several key concepts you’ll need to understand in
order to work with Calendar objects:

® Fields hold state - A Calendar object has many fields that are used to
represent aspects of its ultimate state, its date and time. For instance, you
can get and set a Calendar’s year or month.

® Dates and Times can be incremented - The Calendar class has methods that
allow you to add and subtract values from various fields, for example “add
one to the month”, or “subtract three years”.

" Dates and Times can be represented in milliseconds - The Calendar class
lets you convert your dates into and out of a millisecond representation.
(Specifically, the number of milliseconds that have occured since January
1st, 1970.) This allows you to perform precise calculations such as “elapsed
time between two times” or “add 63 hours and 23 minutes and 12 seconds
to this time”.

An example of working with a Calendar object: 4120 at \6:3(
. \)av’\) | cd
Calendar c = Calendar.getInstance(); Qek time e onkh 18 26 bas
(Nokice the ™
c.set(2004,0,7,15,40); Convc\'{: Lhis Lo a big ol

long dayl = c.getTimeInMillis(); be—" amount of milliseconds-

dayl += 1000 * 60 * 60; Add an hour's worth of millis, then update '(:)hc time.
. WP o) = + ...
c.setTimeInMillis(dayl); & — (Notice the “+=", it's like dayl = dayl

System.out.println(“new hour “ + c.get(c.HOUR OF DAY)) ;

c.add(c.DATE, 35); <— Add 35 days to the date, which
should move us into February.

System.out.println(“Yadd 35 days “ + c.getTime())

c.roll (c.DATE, 35); @

“Roll” 35 days onto this date. This

System.out.println(“roll 35 days “ + c.getTime()); “volls” the date ahead 35 days, but
DOES NOT changc £he month!

c.set(c.DATE, 1); é\ ’

System.out.println(“set to 1 “ + c.getTime()) We've not inCremen

doiha a “SC{:" O.F -l:hﬁ'yd\?afh:kc, JVS{:

File Edit Window Help Time-Flies
new hour 16

add 35 days Wed Feb 11 16:40:41 MST 2004 This output confirms how milli,
roll 35 days Tue Feb 17 16:40:41 MST 2004 add, voll, and set work.

set to 1 Sun Feb 01 16:40:41 MST 2004

you are here» 305

Highlights of the Calendar APl

We just worked through using a few of the fields and
me’thods in the Calendar class. This is a big API, so
we’re showing only a few of the most common éelds
and methods that you’ll use. Once you get a few of

th.ese it should be pretty easy to bend the rest of the
this API to your will.

Key Calendar Methods

add(int field, int amount)
Adds or subtracts time from the calendar’s field.

get(int field)

Returns the value of the given calendar field.

getinstance()
Returns a Calendar, you can specify a locale.

getTimelnMillis()

Returns this Calendar’s time in millis, as a long.

roll(int field, boolean up)
Adds or subtracts time without changing larger fields.

set(int field, int value)
Sets the value of a given Calendar field.

set(year, month, day, hour, minute) (all ints)
A common variety of setto seta complete time.

setTimelnMillis(long millis)
Sets a Calendar’s time based on a long milli-time.

/] more...

306 chapter 10

Even more Statics!... static imports

New to Java 5.0... a real mixed blessing. Some people love
this idea, some people hate it. Static imports exist only to save
you some typing. If you hate to type, you might just like this
feature. The downside to static imports is that - if you're not
careful - using them can make your code a lot harder to read.

The basic idea is that whenever you're using a static class, a
static variable, or an enum (more on those later), you can
import them, and save yourself some typing.

Some old-fashioned code:

import java.lang.Math;
class NoStatic {
public static void main(String [] args) {

System.out.println(“sgrt “ + Math.sqrt(2.0));

System.out.println(“tan “ + Math.tan(60));

) The 2%
dd’\a\(\"?)
Same code, with static imports:
import static java.lang.System.out; Z:///////
import static java.lang.Math.*;
class WithStatic {
public static void main(String [] args) {

out.println(“sgrt “ + sqrt(2.0));

out.println(“tan “ + tan(60));

Statie imports in action.

Q - Caveats & Gotchas

numbers statics

Use Carefully:

static imports can
make your code
confusing to read

If you're only going to use a static member
a few times, we think you should avoid
static imports, to help keep the code more
readable.

If you're going to use a static member a lot,
(like doing lots of Math calculations), then
it's probably OK to use the static import.

Notice that you can use wildcards (.*), in
your static import declaration.

A big issue with static imports is that it's
not too hard to create naming conflicts. For
example, if you have two different classes
with an “add()” method, how will you and
the compiler know which one to use?

307

static vs. instance

308

Fireside Chats

ay

)
|4

Instance Variable

I don’t even know why we’re doing this.
Everyone knows static variables are just used
for constants. And how many of those are
there? I think the whole API must have, what,
four? And it’s not like anybody ever uses
them.

Full of it. Yeah, you can say that again. OK,
so there are a few in the Swing library, but
everybody knows Swing is just a special case.

Ok, but besides a few GUI things, give me an
example of just one static variable that anyone
would actually use. In the real world.

Well, that’s another special case. And nobody
uses that except for debugging anyway.

Tonight’s Talk: An instance variable
takes cheap shots at a static variable

Static Variable

You really should check your facts. When
was the last time you looked at the API? It’s
frickin’ loaded with statics! It even has entire
classes dedicated to holding constant values.
There’s a class called SwingConstants, for
example, that’s just full of them.

It might be a special case, but it’s a really
important one! And what about the Color
class? What a pain if you had to remember the
RGB values to make the standard colors? But
the color class already has constants defined
for blue, purple, white, red, etc. Very handy.

How’s System.out for starters? The out in
System.out is a static variable of the System
class. You personally don’t make a new
instance of the System, you just ask the System
class for its out variable.

Oh, like debugging isn’t important?

And here’s something that probably never
crossed your narrow mind—Ilet’s face it, static
variables are more efficient. One per class
instead of one per instance. The memory
savings might be huge!

Instance Variable

Um, aren’t you forgetting something?

Static variables are about as un-OO as it gets!!
Gee why not just go take a giant backwards
step and do some procedural programming
while we’re at it.

You’re like a global variable, and any
programmer worth his PDA knows that’s
usually a Bad Thing.

Yeah you live in a class, but they don’t call

it Class-Oriented programming. That’s just
stupid. You’re a relic. Something to help the
old-timers make the leap to java.

Well, OK, every once in a while sure, it makes
sense to use a static, but let me tell you, abuse
of static variables (and methods) is the mark
of an immature OO programmer. A designer
should be thinking about object state, not class
state.

Static methods are the worst things of all,
because it usually means the programmer is
thinking procedurally instead of about objects
doing things based on their unique object
state.

numbers statics

Static Variable

What?

What do you mean un-OO?

I am NOT a global variable. There’s no such
thing. I live in a class! That’s pretty OO you
know, a CLASS. I'm not just sitting out there
in space somewhere; I’'m a natural part of the
state of an object; the only difference is that
I'm shared by all instances of a class. Very
efficient.

Alright just stop right there. THAT is
definitely not true. Some static variables are
absolutely crucial to a system. And even the
ones that aren’t crucial sure are handy.

Why do you say that? And what’s wrong with
static methods?

Sure, I know that objects should be the focus
of an OO design, but just because there are
some clueless programmers out there... don’t
throw the baby out with the bytecode. There’s
a time and place for statics, and when you
need one, nothing else beats it.

309

be the compiler

BE the compiler

The Java file on this page represents a
complete program. Your job is to play
compiler and determine whether this
file will compile. If it won’t compile,
how would you fix it, and
if it does compile, what
would be its output?

class StaticSuper{

static {

System.out.println(“super static block”);

}
StaticSuper{ If it compiles, which of these is
System.out.println(the output?
“super constructor”);
} Possible Output

File Edit Window Help Cling
%$java StaticTests

static block 4

public class StaticTests extends StaticSuper {
L in main
static int rand;
super static block

super constructor

tati
static { constructor
rand = (int) (Math.random() * 6);

System.out.println(“static block “ + rand);

}

StaticTests() { Possible Output

System.out.println(”constructor”); File Edit Window Help Electricit
} %$java StaticTests

super static block

public static void main(String [] args) { static block 3
System.out.println(“in main”); in main
. . super constructor
StaticTests st = new StaticTests(); P
constructor

310 chapter 10

10

11.

12.

13.

14.

numbers statics

This chapter explored the wonderful, static, world
of Java. Your job is to decide whether each of the
following statements is true or false.

©Trve or FaLse

. To use the Math class, the first step is to make an instance of it.

. You can mark a constructor with the static keyword.

. Static methods don’t have access to instance variable state of the ‘this’ object.
. Itis good practice to call a static method using a reference variable.

. Static variables could be used to count the instances of a class.

. Constructors are called before static variables are initialized.

. MAX_SIZE would be a good name for a static final variable.

. A static initializer block runs before a class’s constructor runs.

. If a class is marked final, all of its methods must be marked final.

. A final method can only be overridden if its class is extended.
There is no wrapper class for boolean primitives.

A wrapper is used when you want to treat a primitive like an object.
The parseXxx methods always return a String.

Formatting classes (which are decoupled from I/O), are in the java.format

package.

311

Lunar Code Magnets

This one might actually be useful! In addition to what you've learned in the last few
pages about manipulating dates, you'll need a little more information... First, full
moons happen every 29.52 days or so. Second, there was a full moon on Jan. 7th,
2004.Your job is to reconstruct the code snippets to make a working Java program
that produces the output listed below (plus more full moon dates). (You might not
need all of the magnets, and add all the curly braces you need.) Oh, by the way, your
output will be different if you don't live in the mountain time zone.

t;
import static java. lang.System.ou

(“full moon on %$tc”,

c)); F .I

cl

N+ nae.

println

import java.util, * .
static import java.lang.System.out; .

File Edit Window Help Howl
% java FullMoons

full moon on Fri Feb 06 04:09:35 MST 2004
full moon on Sat Mar 06 16:38:23 MST 2004

full moon on Mon Apr 05 06:07:11 MDT 2004

Calandar ~ = Ca

312 chapter 10

Exercise SoJutions

BE the compiler

StaticSuper() {
System.out.println(

“super constructor”);

StaticSuper is a constructor, and must
have () in its signature. Notice that as
the output below demonstrates, the static
blocks for both classes run before either
of the constructors run.

Possible Output

File Edit Window Help Cling
%$java StaticTests

super static block

static block 3
in main
super constructor

constructor

numbers and statics

True or False

1. To use the Math class, the first step is to
make an instance of it.

2. You can mark a constructor with the key-
word ‘static’.

3. Static methods don’t have access to an
object’s instance variables.

4. Itis good practice to call a static method
using a reference variable.

5. Static variables could be used to count the
instances of a class.

6. Constructors are called before static vari-
ables are initialized.

7. MAX_SIZE would be a good name for a
static final variable.

8. A static initializer block runs before a class’s
constructor runs.

9. If a class is marked final, all of its methods
must be marked final.

10. A final method can only be overridden if
its class is extended.

11. There is no wrapper class for boolean
primitives.

12. A wrapper is used when you want to treat a
primitive like an object.

13. The parseXxx methods always return a
String.

14. Formatting classes (which are decoupled

from 1/0), are in the java.format package.

you are here »

False

False

True

False

True

False

True

True

False

False

False

True

False

False

313

code magnets solution

Exercise Solutions

import java.util.*;
import static java.lang.System.out;
class FullMoons {
static int DAY _IM = 1000 * 60 * 60 * 24;
public static void main(String [] args) {
Calendar c = Calendar.getInstance() ;
c.set(2004,0,7,15,40);
long dayl = c.getTimeInMillis() ;
for (int x = 0; x < 60; x++) {
dayl += (DAY _IM * 29.52)

c.setTimeInMillis (dayl) ;

Notes on the Lunar Code Magnet:

You might discover that a few of the
dates produced by this program are
off by a day. This astronomical stuff
is a little tricky, and if we made it
perfect, it would be too complex to
make an exercise here.

Hint: one problem you might try to
solve is based on differences in time
zones. Can you spot the issue?

out.println(String.format (“full moon on %$tc”, c));

File Edit Window Help Howl

% java FullMoons
full moon on Fri Feb 06 04:09:35 MST 2004
full moon on Sat Mar 06 16:38:23 MST 2004

full moon on Mon Apr 05 06:07:11 MDT 2004

314 chapter 10

11 exception handling

Risky Behavior

Sure it's risky,
but I can handle it if
something goes wrong.

Stuff happens. The file isn’t there. The server is down. No matter how
good a programmer you are, you can't control everything. Things can go wrong. Very wrong.
When you write a risky method, you need code to handle the bad things that might happen.
But how do you know when a method is risky? And where do you put the code to handle the
exceptional situation? So far in this book, we haven't really taken any risks.We've certainly had
things go wrong at runtime, but the problems were mostly flaws in our own code. Bugs. And
those we should fix at development time. No, the problem-handling code we're talking about
here is for code that you can’t guaranatee will work at runtime. Code that expects the file to be
in the right directory, the server to be running, or the Thread to stay asleep. And we have to do
this now. Because in this chapter, we're going to build something that uses the risky JavaSound

API. We're going to build a MIDI Music Player.

this is a new chapter 315

building the MIDI Music Player

Let’s make a Music Machine

Over the next three chapters, we’ll build a few different sound
applications, including a BeatBox Drum Machine. In fact,
before the book is done, we’ll have a multi-player version so
you can send your drum loops to another player, kind of like
a chat room. You’re going to write the whole thing, although
you can choose to use Ready-bake code for the GUI parts.

OK, so not every IT department is looking for a new BeatBox
server, but we’re doing this to learn more about Java. Building
a BeatBox is just a way to have fun while we’re learning Java.

The finished BeatBox looks something like this:

You make a beatbox loop (a |6—beat drum patiern)

b\/ ?“JCJC"‘S thetkmarks in the boxes.
ens6 Cyber BeatBox
Bassbnm MODOMOIO0OMOOCO8SO000 € sarr)

Open Hi-Hat
Acoustic Snare [][]

Closed Hi-Hat JOM O O0OMMOOMO OO MM

(Stop “

AT e
‘_(Tempo Up |

Put checkmarks in the boxes for each of the 16 ‘beats’. For example, on beat

1 (of 16) the Bass drum and the Maracas will play, on beat 2 nothing, and
on beat 3 the Maracas and Closed Hi-Hat... you get the idea. When you hit
‘Start’, it plays your pattern in a loop until you hit ‘Stop’. At any time, you
can “capture” one of your own patterns by sending it to the BeatBox server
(which means any other players can listen to it). You can also load any of the
incoming patterns by clicking on the message that goes with it.

316

________________ f (S
T T T T T T Tt T Tempo Down
Crash Cymbal ekl i e
LEE ymbal OO0 OO OO U ’{T\ ess Sc, ‘h\\a{-’ ‘5&}
Hand Clap ekl Jowr " th her \,\3\’&‘5:
. _— e o
Sy dance beat & sent -ho. L your ewever
Hi Bongo 3\0“5 WY \’ hen \!ov
Maracas bca{_/ Ya{—kc\:,v\, W
'&E.fhlstle \\-‘.\: “gChdH-/
ow Conga
Cowbell Andy: groove #2
Vibraslap Chris: groove2 revised €
-mid Tom (][] inComi
;?wh :I = == Nigel: dance beat 'Zio'""‘ﬂ messages i
igh Agogo oThey I 3) m
Open Hi Conga] MMM 1] to loadeZ:r;' {:C{:I'Ck one
: ern th
oes . a{
(g_éa W)I'{:h l‘é; and .éheh CI
rt Pla ' itk

We'll start with the basics

Obviously we’ve got a few things to learn before the whole
program is finished, including how to build a Swing GUI, how
to connect to another machine via networking, and a little I/O
so we can send something to the other machine.

Oh yeah, and the JavaSound API. That’s where we’ll start in this
chapter. For now, you can forget the GUI, forget the networking
and the I/0, and focus only on getting some MIDI-generated
sound to come out of your computer. And don’t worry if you
don’t know a thing about MIDI, or a thing about reading or
making music. Everything you need to learn is covered here.
You can almost smell the record deal.

miDI file

hit it hard
and ho‘d ﬂ'-
The JavaSound APl

JavaSound is a collection of classes and interfaces added to
Java starting with version 1.3. These aren’t special add-ons;
they’re part of the standard J2SE class library. JavaSound is split

into two parts: MIDI and Sampled. We use only MIDI in this

book. MIDI stands for Musical Instrument Digital Interface,
and is a standard protocol for getting different kinds of
electronic sound equipment to communicate. But for

our BeatBox app, you can think of MIDI as a kind of

sheet music that you feed into some device you can think

of like a high-tech ‘player piano’. In other words, MIDI
data doesn’t actually include any sound, but it does

include the instructions that a MIDI-reading instrument

can play back. Or for another analogy, you can think of

a MIDI file like an HTML document, and the instrument \L
that renders the MIDI file (i.e. plays it) is like the Web

browser.

. Sredke!
MIDI data says what to do (play middle C, and here’s how hard

to hit it, and here’s how long to hold it, etc.) but it doesn’t say
anything at all about the actual sound you hear. MIDI doesn’t
know how to make a flute, piano, or Jimmy Hendrix guitar
sound. For the actual sound, we need an instrument (a MIDI
device) that can read and play a MIDI file. But the device is
usually more like an entire band or orchestra of instruments. And
that instrument might be a physical device, like the electronic
keyboard synthesizers the rock musicians play, or it could
even be an instrument built entirely in software, living in your
computer.

For our BeatBox, we use only the built-in, software-only
instrument that you get with Java. It’s called a synthesizer (some
folks refer to it as a software synth) because it creates sound.
Sound that you hear.

s ko
T Rt
?\a\’ high C)

‘FO\' ik bca{,s

@)

exception

mation
\\o\l\d \)C
oesn ‘\3 have 3""
L. \,\.‘5 \Lmd

soovt how 3
Y\a\lCd) bov *’ ‘td
atkual sound
s\ncc’ﬁ
\I\; . v\a\l“""a"

MID| devite knows how to
‘read’ a MID| file and play back
the sound. The device might
be a synthesizer keyboard or
some other kind of instrument.
Usually, a MID| instrument

can play a LOT of different
sounds (?iaho, dvums, violin,
ete), and all at the same time.
So a MID| file isn't like sheet
musi¢ for Jus{: one musitian in
the band —— it ¢an hold the
parts for ALL the musicians
ylaying a yar{:iwlar song.

317

but it looked so simple

First we need a Sequencer

Before we can get any sound to play, we need a Sequencer object. The
sequencer is the object that takes all the MIDI data and sends it to the right
instruments. It’s the thing that plays the music. A sequencer can do a lot of
different things, but in this book, we’re using it strictly as a playback device. Like
a CD-player on your stereo, but with a few added features. The Sequencer class
is in the javax.sound.midi package (part of the standard Java library as of version
1.3). So let’s start by making sure we can make (or get) a Sequencer object.

*sou,\d-""d‘ Yat,\ia‘bc L |'s the

. . . . PYELS)) s

import Javax.sound.midi.*; — '\"‘Y"V*‘ the We need 3 SC”\“C“L/\C/;[STJ;LVtc/ ins{'xumcnjc

. the et
public class MusicTestl { wmamn Ya&' of I the Lhin that, well
wee vy H:; /;“Dl 'Sgormaﬁov\ into
ublic void play() { cauentes all the : "
’ o Sat\son?),. But we don L make a brand

Kk the
K/ new one ourselves —— We have to as
System.out.println(“We got a sequencer”); M;dig\ls{.‘cm t gwc e

} // close play

Sequencer sequencer = MidiSystem.getSequencer () ;

public static void main(String[] args) {
MusicTestl mt = new MusicTestl() ;
mt.play() ;

} // close main

} // close class Something’s wrong!

:rhis tode won't compile! The tompiler says theve’s an
wnreported exteption’ that must be eaught or declared.

File Edit Window Help SayWhat? \

% javac MusicTestl. java

MusicTestl.java:13: unreported exception javax.sound.midi.
MidiUnavailableException; must be caught or declared to be

thrown

Sequencer sequencer = MidiSystem.getSequencer() ;

A

1l errors

318 chapter 11

exception handling

What happens when a method you want to call
(probably in a class you didn’t write) is risky?

@ Let’s say you want
to call a method in a
class that you didn’t
write.

vattr rade class you
you didn't write

@ That method does
something risky,
something that might
not work at runtime. rlace van

@ You need to know
that the method
you’re calling is
risky.

class vou

@ You then write code
that can handle the
failure if it does
happen. You need to be

prepared, just in case.
vour code

you are here» 319

320 chapter11

The AP| does tell You
that getSequencer()

tan throw an exteption:
MidiunavaﬂablcEchF‘fzion.
A method has £o declare
the exteptions it might
throw.

The compiler needs to know
that YOU know youe calling
a risky method.

If you wrap the risky code in something called a
try/catch, the compiler will relax.

A try/catch block tells the compiler that you
know an exceptional thing could happen in the
method you’re calling, and that you’re prepared
to handle it. That compiler doesn’t care how you
handle it; it cares only that you say you're taking
care of it.

import javax.sound.midi.*;

public class MusicTestl {
public void play() {

try {
Sequencer sequencer = MidiSystem.getSequencer() ; Q—

Y \A‘h

nad
System.out.println (“Successfully got a sequencer”); "

} catch(MidiUnavailableException ex) ({

System.out.println (“Bummer”) ;

}
} // close play make 2"
é)
do if ¢ h
h or
public static void main(String[] args) { haPPChs ¢ ef‘“Pfiona/ S:f,,::af to
MusicTestl mt = new MusicTestl (), Midib{..ava;all:l’ °£ Words -
CE .) 8
mt.play() ; y ‘H)c ca” fo € 'élon is ﬁhk
} // close main Je Cquehcc %) Own

} // close class

exception handling

Ehe visky ThinY
‘{-x\f blotk

you are here »

321

exceptions are objects

Don't try this at home.

Throwable

‘Elo'\
Park of the Excep
tlass hievarthy: They all

getMessage()

printStackTrace()

extend tlass T\\vowa\)\c

Exception

and \n\\cr\‘l'. two \(C‘[
mc‘h\\Ods'

I0Exception

I'm gonna
TRY t+his risky thing
and I'm gonna

CATCH myself if I fall.

322 chapter 11

InterruptedException

An exception is an object...
of type Exception.

Which is fortunate, because it would be much harder
to remember if exceptions were of type Broccoli.

Remember from your polymorphism chapters that
an object of type Exception can be an instance of any
subclass of Exception.

Because an Exception is an object, what you catch is an
object. In the following code, the catch argument
is declared as type Exception, and the parameter
reference variable is ex.

try {
// do risky thing Xs 3\,51(, \ike detlavind
od Avopmer™

/ a weth

} catch (Exception ex) {

// try to recover

} R T‘NS ﬁode ohl
*eptiop, Y runs if an

is 'H"‘oWh

‘What you write in a catch block depends on the
exception that was thrown. For example, if a server
is down you might use the catch block to try another
server. If the file isn’t there, you might ask the user
for help finding it.

exception handling

If it’s your code that catches the exception,
then whose code throws it?

You’ll spend much more of your Java coding time handling
exceptions than you’ll spend creating and throwing them yourself.

For now, just know that when your code calls a risky method—a
method that declares an exception—it’s the risky method that

throws the exception back to you, the caller.

vatr rado class with a
risky method

In reality, it might be you who wrote both classes. It really
doesn’t matter who writes the code... what matters is knowing
which method throws the exception and which method catches it.

When somebody writes code that could throw an exception, they
must declare the exception.

s method w
/ detlaring
public void takeRisk() throws BadException { One method will
if (abandonAllHope) {
throw new BadException () ; ,Oi_d’ what another
| } ,\creafe a method throws. An
object an;;“‘"rf:chfion exception is aJWays
* thrown back to the
caller.
The method that
throws has to declare
pubt:; \:oid crossFingers () { ,d]at i m‘igbt tIﬂ‘QW
anObject. takeRisk () ; the exception.

} catch (BadException ex) {
System.out.println (“Aaargh!”) ;
ex.printStackTrace() ;

Sct a stack trace usin th . ~J
} Q/ that all exteptions ihhirite printStack Teace() method

you are here» 323

checked and unchecked exceptions

The compiler checks for everything
except RuntimeExceptions.

Exteptions that are NOT subelasses of The compiler guarantees:

RuntimeExteption are thetked for by
the compiler. They've called “checked @

exeeptions”
Exception @

T T——

If you throw an exception in your code you must declare it using
the throws keyword in your method declaration.

If you call a method that throws an exception (in other words,

a method that declares it throws an exception), you must
acknowledge that you're aware of the exception possibility.

One way to satisfy the compiler is to wrap the call in a try/catch.
(There’s a second way we'll look at a little later in this chapter.)

I0Exception InterruptedException RuntimeException

OT thetked by the

A ions ave N .
Rv“t\'\niﬁfrt’:ii‘:: s\(V\OWV\ as (b\s S\AY':‘(\S‘: \';C;‘Cc\\,
(:‘om‘,\‘\ CL\.(cd c*CC\?{:'\ons". \{ov tan t! ;o o,u do“,{

T Rvn’c'\meEucv{','\ons, but Y
and declare S

/'-\ have Lo, and the tompiler won

ClassCastException

NullPointerException

tbere are no o
Dumb Questions

< Wait just a minute! How come this is the FIRST time
we've had to try/catch an Exception? What about the
exceptions I've already gotten like NullPointerException
and the exception for DivideByZero. | even got a
NumberFormatException from the Integer.parseint()
method. How come we didn’t have to catch those?

A: The compiler cares about all subclasses of Exception,
unless they are a special type, RuntimeException. Any
exception class that extends RuntimeException gets a

free pass. RuntimeExceptions can be thrown anywhere,
with or without throws declarations or try/catch blocks.
The compiler doesn't bother checking whether a method
declares that it throws a RuntimeException, or whether the
caller acknowledges that they might get that exception at
runtime.

324

< I'll bite. WHY doesn’t the compiler care about those
runtime exceptions? Aren’t they just as likely to bring the
whole show to a stop?

A: Most RuntimeExceptions come from a problem in
your code logic, rather than a condition that fails at runtime
in ways that you cannot predict or prevent.You cannot
guarantee the file is there.You cannot guarantee the server
is up. But you can make sure your code doesn