

What they’re saying about Head First

“Java technology is everywhere—If you develop software and haven’t learned Java, it’s definitely
time to dive in—Head First.”

 — Scott McNealy, Sun Microsystems Chairman, President and CEO

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise
for the reader...” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim
and live up to it while also teaching you about object serialization and network launch protocols. ”

 — Dr. Dan Russell, Director of User Sciences and Experience Research
 IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford University)

“Kathy and Bert’s ‘Head First Java’ transforms the printed page into the closest thing to a GUI you’ve
ever seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do
next?’ experience.”

 — Warren Keuffel, Software Development Magazine

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

 — Ken Arnold, former Senior Engineer at Sun Microsystems
 Co-author (with James Gosling, creator of Java), “The Java Programming Language”

Amazon named Head First Java
a Top Ten Editor’s Choice for
Computer Books of 2003
(first edition)

Software Development Magazine named
Head First Java a finalist for the 14th Annual
Jolt Cola/Product Excellence Awards

“...the only way to decide the worth of a tutorial is to decide how well it teaches. Head First Java excels at
teaching. OK, I thought it was silly... then I realized that I was thoroughly learning the topics as I went
through the book.”

“The style of Head First Java made learning, well, easier.”

 — slashdot (honestpuck’s review)

“Head First Java is like Monty Python meets the gang of four... the text is broken up so well by puzzles
and stories, quizzes and examples, that you cover ground like no computer book before.”

 — Douglas Rowe, Columbia Java Users Group

“Read Head First Java and you will once again experience fun in learning...For people who like to learn
new programming languages, and do not come from a computer science or programming background,
this book is a gem... This is one book that makes learning a complex computer language fun. I hope
that there are more authors who are willing to break out of the same old mold of ‘traditional’ writing
styles. Learning computer languages should be fun, not onerous.”

 — Judith Taylor, Southeast Ohio Macromedia User Group

“A few days ago I received my copy of Head First Java by Kathy Sierra and Bert Bates. I’m only part way
through the book, but what’s amazed me is that even in my sleep-deprived state that first evening, I found
myself thinking, ‘OK, just one more page, then I’ll go to bed.’ “

 — Joe Litton

“If you’re relatively new to programming and you are interested in Java, here’s your book...Covering
everything from objects to creating graphical user interfaces (GUI), exception (error) handling to net-
working (sockets) and multithreading, even packaging up your pile of classes into one installation file,
this book is quite complete...If you like the style...I’m certain you’ll love the book and, like me, hope
that the Head First series will expand to many other subjects!”

 — LinuxQuestions.org

“I was ADDICTED to the book’s short stories, annotated code, mock interviews, and brain exercises.”

 — Michael Yuan, author, Enterprise J2ME

Praise for Head First Java

“ ‘Head First Java’... gives new meaning to their marketing phrase `There’s an O Reilly for that.` I
picked this up because several others I respect had described it in terms like ‘revolutionary’ and a
described a radically different approach to the textbook. They were (are) right... In typical O’Reilly
fashion, they’ve taken a scientific and well considered approach. The result is funny, irreverent, topical,
interactive, and brilliant...Reading this book is like sitting in the speakers lounge at a view conference,
learning from – and laughing with – peers... If you want to UNDERSTAND Java, go buy this book.”

 — Andrew Pollack, www.thenorth.com

“If you want to learn Java, look no further: welcome to the first GUI-based technical book! This
perfectly-executed, ground-breaking format delivers benefits other Java texts simply can’t...
Prepare yourself for a truly remarkable ride through Java land.”

 — Neil R. Bauman, Captain & CEO, Geek Cruises (www.GeekCruises.com)

“If anyone in the world is familiar with the concept of ‘Head First,’ it would be me. This
book is so good, I’d marry it on TV!”

 — Rick Rockwell, Comedian
 The original FOX Television “Who Wants to Marry a Millionaire” groom

“This stuff is so fricking good it makes me wanna WEEP! I’m stunned.”

 — Floyd Jones, Senior Technical Writer/Poolboy, BEA

“FINALLY - a Java book written the way I would’a wrote it if I were me.
Seriously though - this book absolutely blows away every other software book I’ve ever read...
A good book is very difficult to write... you have to take a lot of time to make things unfold in a
natural, “reader oriented” sequence. It’s a lot of work. Most authors clearly aren’t up to the challenge.
Congratulations to the Head First EJB team for a first class job!

 — Wally Flint

“I could not have imagined a person smiling while studying an IT book! Using Head First EJB
materials, I got a great score (91%) and set a world record as the youngest SCBCD, 14 years.”

 — Afsah Shafquat (world’s youngest SCBCD)

Praise for other Head First books co-authored by Kathy and Bert

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the Wiki
 and founder of the Hillside Group

“I laughed, I cried, it moved me.”

 — Dan Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest to understand introduction to design patterns that I have seen.”

 — Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State University
 author of more than a dozen books including C++ for Java Programmers

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for prac-
tical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

 — Travis Kalanick, Founder of Scour and Red Swoosh
 Member of the MIT TR100

“This Head First Servlets book is as good as the Head First EJB book, which made me laugh
AND gave me 97% on the exam!”

 — Jef Cumps, J2EE consultant, Cronos

Amazon named Head First Servlets
a Top Ten Editor’s Choice for
Computer Books of 2004
(first edition)

Software Development Magazine named
Head First Servlets and Head First Design
Patterns finalists for the 15th Annual
Product Excellence Awards

Make it Stick

Other Java books from O’Reilly

Head First Design Patterns
Head First Servlets
Head First EJB™

 Ant: The Defi nitive Guide™
Better, Faster, Lighter Java™
Enterprise JavaBeans™
Hibernate: A Developer’s Notebook
Java™ 1.5 Tiger: A Developer’s Notebook
Java™ Cookbook
Java™ in a Nutshell
Java™ Network Programming
Java™ Servlet & JSP Cookbook
Java™ Swing
JavaServer Faces™
JavaServer Pages™
Programming Jakarta Struts
Tomcat: the Defi nitive Guide

Be watching for more books in the Head First series

Head First Java™

Second Edition

Beijing • Cambridge • Köln • Paris • Sebastopol • Taipei • Tokyo

Wouldn’t it be dreamy
if there was a Java book

that was more stimulating
than waiting in line at the
DMV to renew your driver’s
license? It’s probably just a

fantasy...

Kathy Sierra
Bert Bates

Head First Java™

Second Edition

by Kathy Sierra and Bert Bates

Copyright © 2003, 2005 by O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Cover Designer: Edie Freedman

Interior Designers: Kathy Sierra and Bert Bates

Printing History:

May 2003: First Edition.

February 2005: Second Edition.

(You might want to pick up a copy of both editions... for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

In other words, if you use anything in Head First Java™ to, say, run a nuclear power plant or air
traffic control system, you’re on your own.

ISBN: 0596009208

[M]

To our brains, for always being there

(despite shaky evidence)

Creators of the Head First series

Kathy Sierra

Kathy has been interested in learning theory
since her days as a game designer (she wrote
games for Virgin, MGM, and Amblin’). She
developed much of the Head First format while
teaching New Media Authoring for UCLA
Extension’s Entertainment Studies program.
More recently, she’s been a master trainer for Sun
Microsystems, teaching Sun’s Java instructors how
to teach the latest Java technologies, and a lead
developer of several of Sun’s Java programmer
and developer certifi cation exams. Together
with Bert Bates, she has been actively using the
concepts in Head First Java to teach hundreds of
trainers, developers and even non-programmers.
She is also the founder of one of the largest Java
community websites in the world, javaranch.com,
and the Creating Passionate Users blog.

Along with this book, Kathy co-authored Head
First Servlets, Head First EJB, and Head First
Design Patterns.

In her spare time she enjoys her new Icelandic
horse, skiing, running, and the speed of light.

kathy@wickedlysmart.com

Bert is a software developer and architect, but a
decade-long stint in artifi cial intelligence drove
his interest in learning theory and technology-
based training. He’s been teaching programming
to clients ever since. Recently, he’s been a
member of the development team for several of
Sun’s Java Certifi cation exams.

He spent the fi rst decade of his software career
travelling the world to help broadcast clients like
Radio New Zealand, the Weather Channel, and
the Arts & Entertainment Network (A & E). One
of his all-time favorite projects was building a full
rail system simulation for Union Pacifi c Railroad.

Bert is a hopelessly addicted Go player, and has
been working on a Go program for way too long.
He’s a fair guitar player, now trying his hand at
banjo, and likes to spend time skiing, running,
and trying to train (or learn from) his Icelandic
horse Andi.

Bert co-authored the same books as Kathy, and is
hard at work on the next batch of books (check
the blog for updates).

You can sometimes catch him on the IGS Go
server (under the login jackStraw).

terrapin@wickedlysmart.com

Bert Bates

Although Kathy and Bert try to answer as much email as they can, the volume of mail and their travel schedule makes that
difficult. The best (quickest) way to get technical help with the book is at the very active Java beginners forum at javaranch.com.

ix

i Intro
Your brain on Java. Here you are trying to learn something, while here your brain

is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking, “Better

leave room for more important things, like which wild animals to avoid and whether naked

snowboarding is a bad idea.” So how do you trick your brain into thinking that your life

depends on knowing Java?

Who is this book for? xxii

What your brain is thinking xxiii

Metacognition xxv

Bend your brain into submission xxvii

What you need for this book xxviii

Technical editors xxx

Acknowledgements xxxi

Table of Contents (summary)
 Intro xxi

1 Breaking the Surface: a quick dip 1

2 A Trip to Objectville: yes, there will be objects 27

3 Know Your Variables: primitives and references 49

4 How Objects Behave: object state affects method behavior 71

5 Extra-Strength Methods: flow control, operations, and more 95

6 Using the Java Library: so you don’t have to write it all yourself 125

7 Better Living in Objectville: planning for the future 165

8 Serious Polymorphism: exploiting abstract classes and interfaces 197

9 Life and Death of an Object: constructors and memory management 235

10 Numbers Matter: math, formatting, wrappers, and statics 273

11 Risky Behavior: exception handling 315

12 A Very Graphic Story: intro to GUI, event handling, and inner classes 353

13 Work on Your Swing: layout managers and components 399

14 Saving Objects: serialization and I/O 429

15 Make a Connection: networking sockets and multithreading 471

16 Data Structures: collections and generics 529

17 Release Your Code: packaging and deployment 581

18 Distributed Computing: RMI with a dash of servlets, EJB, and Jini 607

A Appendix A: Final code kitchen 649

B Appendix B: Top Ten Things that didn’t make it into the rest of the book 659

 Index 677

Table of Contents (the full version)

x

You Bet

Shoot Me

2 A Trip to Objectville
I was told there would be objects. In Chapter 1, we put all of our code

in the main() method. That’s not exactly object-oriented. So now we’ve got to leave that

procedural world behind and start making some objects of our own. We’ll look at what

makes object-oriented (OO) development in Java so much fun. We’ll look at the difference

between a class and an object. We’ll look at how objects can improve your life.

1 Breaking the Surface
Java takes you to new places. From its humble release to the public as the

(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented

features, memory management, and best of all—the promise of portability. We’ll take a quick

dip and write some code, compile it, and run it. We’re talking syntax, loops, branching, and what

makes Java so cool. Dive in.

The way Java works 2

Code structure in Java 7

Anatomy of a class 8

The main() method 9

Looping 11

Conditional branching (if tests) 13

Coding the “99 bottles of beer” app 14

Phrase-o-matic 16

Fireside chat: compiler vs. JVM 18

Exercises and puzzles 20

Method Party()

 0 aload_0

 1 invokespe-
cial #1 <Method
java.lang.Object()>

 4 return

Compiled
bytecode

 Virtual
Machines

Chair Wars (Brad the OO guy vs. Larry the procedural guy) 28

Inheritance (an introduction) 31

Overriding methods (an introduction) 32

What’s in a class? (methods, instance variables) 34

Making your fi rst object 36

Using main() 38

Guessing Game code 39

Exercises and puzzles 42

xi

pass-by-value means
pass-by-copy

3 Know Your Variables
Variables come in two flavors: primitive and reference.
There’s gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner

object with a Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap

the mysteries of Java types and look at what you can declare as a variable, what you can put

in a variable, and what you can do with a variable. And we’ll finally see what life is truly like

on the garbage-collectible heap.

Dog reference

Dog objec
t

size
24

int

fido

4 How Objects Behave
State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by instance variables and methods. Now we’ll look

at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like, “if dog weight is less than 14

pounds, make yippy sound, else...” Let’s go change some state!

00000111

int

X
00000111

int

Z

copy of x

foo.go(x); void go(int z){ }

Declaring a variable (Java cares about type) 50

Primitive types (“I’d like a double with extra foam, please”) 51

Java keywords 53

Reference variables (remote control to an object) 54

Object declaration and assignment 55

Objects on the garbage-collectible heap 57

Arrays (a fi rst look) 59

Exercises and puzzles 63

Methods use object state (bark different) 73

Method arguments and return types 74

Pass-by-value (the variable is always copied) 77

Getters and Setters 79

Encapsulation (do it or risk humiliation) 80

Using references in an array 83

Exercises and puzzles 88

xii

5 Extra-Strength Methods
Let’s put some muscle in our methods. You dabbled with variables,

played with a few objects, and wrote a little code. But you need more tools. Like

operators. And loops. Might be useful to generate random numbers. And turn

a String into an int, yeah, that would be cool. And why don’t we learn it all by building

something real, to see what it’s like to write (and test) a program from scratch. Maybe a

game, like Sink a Dot Com (similar to Battleship).

6 Using the Java Library
Java ships with hundreds of pre-built classes. You don’t have to

reinvent the wheel if you know how to find what you need from the Java library, commonly

known as the Java API. You’ve got better things to do. If you’re going to write code, you

might as well write only the parts that are custom for your application. The core Java library

is a giant pile of classes just waiting for you to use like building blocks.

A

B

C

D

E

F

G

0 1 2 3 4 5 6

AskMe.com

Pets.comG
o

2
.c

o
m

We’re gonna b
uild the

Sink a Dot Com game

“Good to know there’s an ArrayList in
the java.util package. But by myself, how
would I have fi gured that out?”

- Julia, 31, hand model

Building the Sink a Dot Com game 96

Starting with the Simple Dot Com game (a simpler version) 98

Writing prepcode (pseudocode for the game) 100

Test code for Simple Dot Com 102

Coding the Simple Dot Com game 103

Final code for Simple Dot Com 106

Generating random numbers with Math.random() 111

Ready-bake code for getting user input from the command-line 112

Looping with for loops 114

Casting primitives from a large size to a smaller size 117

Converting a String to an int with Integer.parseInt() 117

Exercises and puzzles 118

Analying the bug in the Simple Dot Com Game 126

ArrayList (taking advantage of the Java API) 132

Fixing the DotCom class code 138

Building the real game (Sink a Dot Com) 140

Prepcode for the real game 144

Code for the real game 146

boolean expressions 151

Using the library (Java API) 154

Using packages (import statements, fully-qualifi ed names) 155

Using the HTML API docs and reference books 158

Exercises and puzzles 161

xiii

Some classes just should not be instantiated 200

Abstract classes (can’t be instantiated) 201

Abstract methods (must be implemented) 203

Polymorphism in action 206

Class Object (the ultimate superclass of everything) 208

Taking objects out of an ArrayList (they come out as type Object) 211

Compiler checks the reference type (before letting you call a method) 213

Get in touch with your inner object 214

Polymorphic references 215

Casting an object reference (moving lower on the inheritance tree) 216

Deadly Diamond of Death (multiple inheritance problem) 223

Using interfaces (the best solution!) 224

Exercises and puzzles 230

7 Better Living in Objectville
Plan your programs with the future in mind. What if you could write

code that someone else could extend, easily? What if you could write code that was flexible,

for those pesky last-minute spec changes? When you get on the Polymorphism Plan, you’ll

learn the 5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make

flexible code, and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

8 Serious Polymorphism
Inheritance is just the beginning. To exploit polymorphism, we need

interfaces. We need to go beyond simple inheritance to flexibility you can get only by

designing and coding to interfaces. What’s an interface? A 100% abstract class. What’s an

abstract class? A class that can’t be instantiated. What’s that good for? Read the chapter...

flexible code, and if you act now—a bonus lesson on the 4 tips for exploiting inheritance

Make it Stick

flexible code, and if you act now—a bonus lesson on the 4 tips for exploiting inheritance

i kkk
Roses are red, violets are blue.Square IS-A Shape, the reverse isn’t true.Roses are red, violets are dear.Beer IS-A Drink, but not all drinks are beer.OK, your turn. Make one that shows the one-

way-ness of the IS-A relationship. And remem-
ber, if X extends Y, X IS-A Y must make sense.

Object o = al.get(id);
Dog d = (Dog) o;

d.bark();

Object

 o
 Dog object

Dog

d

cast the Object back to a Dog we know is there.

Object

Understanding inheritance (superclass and subclass relationships) 168

Designing an inheritance tree (the Animal simulation) 170

Avoiding duplicate code (using inheritance) 171

Overriding methods 172

IS-A and HAS-A (bathtub girl) 177

What do you inherit from your superclass? 180

What does inheritance really buy you? 182

Polymorphism (using a supertype reference to a subclass object) 183

Rules for overriding (don’t touch those arguments and return types!) 190

Method overloading (nothing more than method name re-use) 191

Exercises and puzzles 192

xiv

9 Life and Death of an Object
Objects are born and objects die. You’re in charge. You decide when and

how to construct them. You decide when to abandon them. The Garbage Collector (gc)

reclaims the memory. We’ll look at how objects are created, where they live, and how to

keep or abandon them efficiently. That means we’ll talk about the heap, the stack, scope,

constructors, super constructors, null references, and gc eligibility.

10 Numbers Matter
Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.

But what about formatting? You might want numbers to print exactly two decimal points,

or with commas in all the right places. And you might want to print and manipulate dates,

too. And what about parsing a String into a number? Or turning a number into a String?

We’ll start by learning what it means for a variable or method to be static.

‘d’ is assigned a new Duck object, leaving the

original (first) Duck object abandoned. That

first Duck is toast..

Duck object

Heap
d

Duck object

When someone calls

the go() method, this

Duck is abandoned.
 His

only reference ha
s been

reprogrammed for a

different Duck.

kid instance one
kid instance two

static variable:
iceCream

Static variables
are shared by
all instances of
a class.

instance variables:
one per instance

static variables:
one per class

The stack and the heap, where objects and variables live 236

Methods on the stack 237

Where local variables live 238

Where instance variables live 239

The miracle of object creation 240

Constructors (the code that runs when you say new) 241

Initializing the state of a new Duck 243

Overloaded constructors 247

Superclass constructors (constructor chaining) 250

Invoking overloaded constructors using this() 256

Life of an object 258

Garbage Collection (and making objects eligible) 260

Exercises and puzzles 266

Math class (do you really need an instance of it?) 274

static methods 275

static variables 277

Constants (static fi nal variables) 282

Math methods (random(), round(), abs(), etc.) 286

Wrapper classes (Integer, Boolean, Character, etc.) 287

Autoboxing 289

Number formatting 294

Date formatting and manipulation 301

Static imports 307

Exercises and puzzles 310

xv

11 Risky Behavior
Stuff happens. The file isn’t there. The server is down. No matter how good a

programmer you are, you can’t control everything. When you write a risky method, you need

code to handle the bad things that might happen. But how do you know when a method is

risky? Where do you put the code to handle the exceptional situation? In this chapter, we’re

going to build a MIDI Music Player, that uses the risky JavaSound API, so we better find out.

12 A Very Graphic Story
Face it, you need to make GUIs. Even if you believe that for the rest of your

life you’ll write only server-side code, sooner or later you’ll need to write tools, and you’ll

want a graphical interface. We’ll spend two chapters on GUIs, and learn more language

features including Event Handling and Inner Classes. We’ll put a button on the screen,

we’ll paint on the screen, we’ll display a jpeg image, and we’ll even do some animation.

class with a
risky method
class with a

throws an exception back

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

your codeyour code

class Bar {
 void go() {
 moo();
 }
 int stuff() {
 x.beep();
 }
}

calls risky method
1

2

class MyOuter {

 class MyInner {
 void go() {
 }
 }

}

The outer and inner objects
are now intimately linked.

These two objects on the

heap have a speci
al bond. The

inner can use the
 outer’s

variables (and vic
e-versa).

inner

outer

Your fi rst GUI 355

Getting a user event 357

Implement a listener interface 358

Getting a button’s ActionEvent 360

Putting graphics on a GUI 363

Fun with paintComponent() 365

The Graphics2D object 366

Putting more than one button on a screen 370

Inner classes to the rescue (make your listener an inner class) 376

Animation (move it, paint it, move it, paint it, move it, paint it...) 382

Code Kitchen (painting graphics with the beat of the music) 386

Exercises and puzzles 394

Making a music machine (the BeatBox) 316

What if you need to call risky code? 319

Exceptions say “something bad may have happened...” 320

The compiler guarantees (it checks) that you’re aware of the risks 321

Catching exceptions using a try/catch (skateboarder) 322

Flow control in try/catch blocks 326

The fi nally block (no matter what happens, turn off the oven!) 327

Catching multiple exceptions (the order matters) 329

Declaring an exception (just duck it) 335

Handle or declare law 337

Code Kitchen (making sounds) 339

Exercises and puzzles 348

xvi

13 Work on your Swing
Swing is easy. Unless you actually care where everything goes. Swing code looks

easy, but then compile it, run it, look at it and think, “hey, that’s not supposed to go there.”

The thing that makes it easy to code is the thing that makes it hard to control—the Layout

Manager. But with a little work, you can get layout managers to submit to your will. In

this chapter, we’ll work on our Swing and learn more about widgets.

14 Saving Objects
Objects can be flattened and inflated. Objects have state and behavior.

Behavior lives in the class, but state lives within each individual object. If your program

needs to save state, you can do it the hard way, interrogating each object, painstakingly

writing the value of each instance variable. Or, you can do it the easy OO way—you simply

freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

Components in
the east and
west get their
preferred width.

Things in the
north and
south get their
preferred height.

The center gets whatever’s left.

Swing Components 400

Layout Managers (they control size and placement) 401

Three Layout Managers (border, flow, box) 403

BorderLayout (cares about five regions) 404

FlowLayout (cares about the order and preferred size) 408

BoxLayout (like flow, but can stack components vertically) 411

JTextField (for single-line user input) 413

JTextArea (for multi-line, scrolling text) 414

JCheckBox (is it selected?) 416

JList (a scrollable, selectable list) 417

Code Kitchen (The Big One - building the BeatBox chat client) 418

Exercises and puzzles 424

Saving object state 431

Writing a serialized object to a file 432

Java input and output streams (connections and chains) 433

Object serialization 434

Implementing the Serializable interface 437

Using transient variables 439

Deserializing an object 441

Writing to a text file 447

java.io.File 452

Reading from a text file 454

Splitting a String into tokens with split() 458

CodeKitchen 462

Exercises and puzzles 466

serialized

deserialized
Any questio

ns?

xvii

15 Make a Connection
Connect with the outside world. It’s easy. All the low-level networking

details are taken care of by classes in the java.net library. One of Java’s best features is

that sending and receiving data over a network is really just I/O with a slightly different

connection stream at the end of the chain. In this chapter we’ll make client sockets. We’ll

make server sockets. We’ll make clients and servers. Before the chapter’s done, you’ll have a

fully-functional, multithreaded chat client. Did we just say multithreaded? Socket connection to port 5000 on the server at 196.164.1.103

Socket conn
ection

back to the
 client

at 196.164.1.100,

port 4242

ServerClient

Chat program overview 473

Connecting, sending, and receiving 474

Network sockets 475

TCP ports 476

Reading data from a socket (using BufferedReader) 478

Writing data to a socket (using PrintWriter) 479

Writing the Daily Advice Client program 480

Writing a simple server 483

Daily Advice Server code 484

Writing a chat client 486

Multiple call stacks 490

Launching a new thread (make it, start it) 492

The Runnable interface (the thread’s job) 494

Three states of a new Thread object (new, runnable, running) 495

The runnable-running loop 496

Thread scheduler (it’s his decision, not yours) 497

Putting a thread to sleep 501

Making and starting two threads 503

Concurrency issues: can this couple be saved? 505

The Ryan and Monica concurrency problem, in code 506

Locking to make things atomic 510

Every object has a lock 511

The dreaded “Lost Update” problem 512

Synchronized methods (using a lock) 514

Deadlock! 516

Multithreaded ChatClient code 518

Ready-bake SimpleChatServer 520

Exercises and puzzles 524

xviii

17 Release Your Code
It’s time to let go. You wrote your code. You tested your code. You refined your code.

You told everyone you know that if you never saw a line of code again, that’d be fine. But in

the end, you’ve created a work of art. The thing actually runs! But now what? In these final

two chapters, we’ll explore how to organize, package, and deploy your Java code. We’ll look

at local, semi-local, and remote deployment options including executable jars, Java Web

Start, RMI, and Servlets. Relax. Some of the coolest things in Java are easier than you think.

MyApp.jar

classes

com

foo
101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyApp.class

JWS
Web Server
Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp MyApp.jar
MyApp.jar

Deployment options 582

Keep your source code and class fi les separate 584

Making an executable JAR (Java ARchives) 585

Running an executable JAR 586

Put your classes in a package! 587

Packages must have a matching directory structure 589

Compiling and running with packages 590

Compiling with -d 591

Making an executable JAR (with packages) 592

Java Web Start (JWS) for deployment from the web 597

How to make and deploy a JWS application 600

Exercises and puzzles 601

16 Data Structures
Sorting is a snap in Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms The Java Collections

Framework has a data structure that should work for virtually anything you’ll ever need

to do. Want to keep a list that you can easily keep adding to? Want to find something by

name? Want to create a list that automatically takes out all the duplicates? Sort your co-

workers by the number of times they’ve stabbed you in the back?

Collections 533

Sorting an ArrayList with Collections.sort() 534

Generics and type-safety 540

Sorting things that implement the Comparable interface 547

Sorting things with a custom Comparator 552

The collection API—lists, sets, and maps 557

Avoiding duplicates with HashSet 559

Overriding hashCode() and equals() 560

HashMap 567

Using wildcards for polymorphism 574

Exercises and puzzles 576

0 1 2 3List

Set

Map “Ball” “Fish” “Car”“Ball1” “Ball2” “Fish” “Car”

xix

18 Distributed Computing
Being remote doesn’t have to be a bad thing. Sure, things are easier

when all the parts of your application are in one place, in one heap, with one JVM to rule

them all. But that’s not always possible. Or desirable. What if your application handles

powerful computations? What if your app needs data from a secure database? In this

chapter, we’ll learn to use Java’s amazingly simple Remote Method Invocation (RMI). We’ll

also take a quick peek at Servlets, Enterprise Java Beans (EJB) , and Jini.

Java Remote Method Invocation (RMI), hands-on, very detailed 614

Servlets (a quick look) 625

Enterprise JavaBeans (EJB), a very quick look 631

Jini, the best trick of all 632

Building the really cool universal service browser 636

The End 648

ServerClient

Service object
Client object

Client helper Service helper

RMI STUB RMI SKELETON

B Appendix B

The Top Ten Things that didn’t make it into the book. We can’t send

you out into the world just yet. We have a few more things for you, but this is the end of the

book. And this time we really mean it.

Top Ten List 660

A Appendix A
The final Code Kitchen project. All the code for the full client-server chat

beat box. Your chance to be a rock star.

Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

BeatBoxFinal (client code) 650

MusicServer (server code) 657

i Index 677

xxi

Make it Stick

Intro
how to use this book

I can’t believe they
put that in a Java
programming book!

In this section, we answer the burning ques
tion:

“So, why DID they put that in a
 Java programming book?”

how to use this book

xxii intro

Who is this book for?

1 Have you done some programming?

2 Do you want to learn Java?

this book is for you.

Who should probably back away from this book?

1 Is your programming background limited
to HTML only, with no scripting language
experience?
(If you’ve done anything with looping, or if/then
logic, you’ll do fi ne with this book, but HTML
tagging alone might not be enough.)

3

this book is not for you.

Are you afraid to try something different?
Would you rather have a root canal than
mix stripes with plaid? Do you believe
than a technical book can’t be serious if
there’s a picture of a duck in the memory
management section?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt C++ programmer
looking for a reference book?

[note from marketing: who took out the part about how this book is for anyone with a valid credit card? And what about that “Give the Gift of Java” holiday promotion we discussed... -Fred]

3 Do you prefer stimulating dinner party
conversation to dry, dull, technical
lectures?

This is NOT a reference
book. Head First Java is a
book designed for learning,
not an encyclopedia of
Java facts.

the intro

you are here4 xxiii

“How can this be a serious Java programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizza?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still
looking. You just never know.

So what does your brain do with all the routine, ordinary, normal
things you encounter? Everything it can to stop them from
interfering with the brain’s real job—recording things that matter. It
doesn’t bother saving the boring things; they never make it past the
“this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free
zone. You’re studying. Getting ready for an exam. Or trying to learn
some tough technical topic your boss thinks will take a week, ten days
at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content
doesn’t clutter up scarce resources. Resources that are better
spent storing the really big things. Like tigers. Like the danger of
fire. Like how you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how
little I’m registering on the emotional richter scale right now, I
really do want you to keep this stuff around.”

And we know what your brain is thinking.

your brain thinks THIS is important.

Great. Only
637 more dull, dry,

boring pages.

your brain
thinks

THIS isn’t worth

saving.

how to use this book

xxiv intro

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words

alone, and make learning much more effective (Up to 89%

improvement in recall and transfer studies). It also makes

things more understandable. Put the words within

or near the graphics they relate to, rather than on the

bottom or on another page, and learners will be up to twice

as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t

take yourself too seriously. Which would you pay more attention to: a stimulating

dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head.

A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge.

And for that, you need challenges, exercises, and thought-

provoking questions, and activities that involve both sides

of the brain, and multiple senses.

Get—and keep—the reader’s attention. We’ve all

had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that are out

of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new,

tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No we’re not talking heart-wrenching stories about a boy and his dog.

We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that “I’m more technical than thou” Bob from engineering doesn’t.

We think of a “Head First Java” reader as a learner.

doCalc()

return value

needs to call a method on the server
RMI remote
service

It really sucks to be an

abstract method. You

don’t have a body.

 abstract void roam();

No method b
ody !

End it w
ith a se

micolon.

Does it make sense to

say Tub IS-A Bathroom?

Bathroom IS-A Tub? Or is

it a HAS-A relationship?

the intro

you are here4 xxv

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how
you learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you want to learn Java. And you
probably don’t want to spend a lot of time.

To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on that content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

Metacognition: thinking about thinking.

I wonder how I
can trick my brain
into remembering

this stuff...

So just how DO you get your brain to treat Java like it
was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding
on the same thing. With enough repetition, your brain says, “This doesn’t feel
important to him, but he keeps looking at the same thing over and over and over, so
I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different types
of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor.
For example, studies show that putting words within the pictures they describe (as
opposed to somewhere else in the page, like a caption or in the body text) causes
your brain to try to makes sense of how the words and picture relate, and this
causes more neurons to fire. More neurons firing = more chances for your brain
to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and
hold up their end. The amazing thing is, your brain doesn’t necessarily care that
the “conversation” is between you and a book! On the other hand, if the writing
style is formal and dry, your brain perceives it the same way you experience being
lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

how to use this book

xxvi intro

We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth 1024 words. And when text and pictures
work together, we embedded the text in the pictures because your brain works
more effectively when the text is within the thing the text refers to, as opposed to in
a caption or buried in the text somewhere.

We used repetition, saying the same thing in different ways and with different media
types, and multiple senses, to increase the chance that the content gets coded coded
into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because
your brain is tuned to pay attention to the biochemistry of emotions. That which
causes you to feel something is more likely to be remembered, even if that feeling is
nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively
listening to a presentation. Your brain does this even when you’re reading.

We included more than 50 exercises , because your brain is tuned to learn and
remember more when you do things than when you read about things. And we
made the exercises challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, while someone else
just wants to see a code example. But regardless of your own learning preference,
everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can
stay focused. Since working one side of the brain often means giving the other side
a chance to rest, you can be more productive at learning for a longer period of
time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make
evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has
to work at something (just as you can’t get your body in shape by watching people
at the gym). But we did our best to make sure that when you’re working hard, it’s
on the right things. That you’re not spending one extra dendrite processing a hard-to-
understand example, or parsing difficult, jargon-laden, or extremely terse text.

We used an 80/20 approach. We assume that if you’re going for a PhD in Java,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll
actually use.

Here’s what WE did:

PuzzleVilleThis is

brain barbell
Brain Barbell

Java
Exposed

BE the compiler

Dog

Dog objec
t

size
24

int
fido

Dog

 BULLET POINTS

the intro

you are here4 xxvii

So, we did our part. The rest is up to you. These tips are a
starting point; Listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend your
brain into submission.

1 Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to
the answer. Imagine that someone really is
asking the question. The more deeply you
force your brain to think, the better chance
you have of learning and remembering.

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else
do your workouts for you. And don’t just
look at the exercises. Use a pencil. There’s
plenty of evidence that physical activity
while learning can increase the learning.

3 Read the “There are No Dumb Questions”

That means all of them. They’re not
optional side-bars—they’re part of the core
content! Sometimes the questions are more
useful than the answers.

4 Don’t do all your reading in one place.

Stand-up, stretch, move around, change
chairs, change rooms. It’ll help your brain
feel something, and keeps your learning from
being too connected to a particular place.

5 Make this the last thing you read before
bed. Or at least the last challenging thing.

Part of the learning (especially the transfer
to long-term memory) happens after you put
the book down. Your brain needs time on
its own, to do more processing. If you put in
something new during that processing-time,
some of what you just learned will be lost.

6 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you
ever feel thirsty) decreases cognitive function.

7 Talk about it. Out loud.

Speaking activates a different part of
the brain. If you’re trying to understand
something, or increase your chance of
remembering it later, say it out loud. Better
still, try to explain it out loud to someone
else. You’ll learn more quickly, and you might
uncover ideas you hadn’t known were there
when you were reading about it.

8 Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s
time for a break. Once you go past a certain
point, you won’t learn faster by trying to shove
more in, and you might even hurt the process.

10 Type and run the code.

Type and run the code examples. Then you
can experiment with changing and improving
the code (or breaking it, which is sometimes
the best way to figure out what’s really
happening). For long examples or Ready-bake
code, you can download the source files from
headfirstjava.com

cut this out and stick it on your refridgerator.

✄

9 Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad
joke is still better than feeling nothing at all.

xxviii intro

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you not
use anything but a basic text editor until you complete this book (and
especially not until after chapter 16). An IDE can protect you from some of
the details that really matter, so you’re much better off learning from the
command-line and then, once you really understand what’s happening,
move to a tool that automates some of the process.

What you need for this book:

 SETTING UP JAVA
ß If you don’t already have a 1.5 or greater Java 2 Standard Edition SDK (Software

Development Kit), you need it. If you’re on Linux, Windows, or Solaris, you can get it for free
from java.sun.com (Sun’s website for Java developers). It usually takes no more than two clicks
from the main page to get to the J2SE downloads page. Get the latest non-beta version posted.
The SDK includes everything you need to compile and run Java.
If you’re running Mac OS X 10.4, the Java SDK is already installed. It’s part of OS X, and you
don’t have to do anything else. If you’re on an earlier version of OS X, you have an earlier
version of Java that will work for 95% of the code in this book.
Note: This book is based on Java 1.5, but for stunningly unclear marketing reasons, shortly
before release, Sun renamed it Java 5, while still keeping “1.5” as the version number for the
developer’s kit. So, if you see Java 1.5 or Java 5 or Java 5.0, or "Tiger" (version 5’s original
code-name), they all mean the same thing. There was never a Java 3.0 or 4.0—it jumped from
version 1.4 to 5.0, but you will still find places where it’s called 1.5 instead of 5. Don't ask.
(Oh, and just to make it more entertaining, Java 5 and the Mac OS X 10.4 were both given the
same code-name of “Tiger”, and since OS X 10.4 is the version of the Mac OS you need to run
Java 5, you’ll hear people talk about “Tiger on Tiger”. It just means Java 5 on OS X 10.4).

ß The SDK does not include the API documentation, and you need that! Go back to java.sun.
com and get the J2SE API documentation. You can also access the API docs online, without
downloading them, but that’s a pain. Trust us, it’s worth the download.

ß You need a text editor. Virtually any text editor will do (vi, emacs, pico), including the GUI ones
that come with most operating systems. Notepad, Wordpad, TextEdit, etc. all work, as long as
you make sure they don’t append a “.txt” on to the end of your source code.

ß Once you’ve downloaded and unpacked/zipped/whatever (depends on which version and for
which OS), you need to add an entry to your PATH environment variable that points to the /bin
directory inside the main Java directory. For example, if the J2SDK puts a directory on your
drive called “j2sdk1.5.0”, look inside that directory and you’ll find the “bin” directory where the
Java binaries (the tools) live. Tha bin directory is the one you need a PATH to, so that when you
type:
% javac
at the command-line, your terminal will know how to find the javac compiler.
Note: if you have trouble with you installation, we recommend you go to javaranch.com, and join
the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

Note: much of the code from this book is available at wickedlysmart.com

how to use this book

the intro

you are here4 xxix

This is a learning experience, not a reference book. We deliberately
stripped out everything that might get in the way of learning whatever it
is we’re working on at that point in the book. And the fi rst time through,
you need to begin at the beginning, because the book makes assumptions
about what you’ve already seen and learned.

We use simple UML-like diagrams.

If we’d used pure UML, you’d be seeing something that looks like Java, but
with syntax that’s just plain wrong. So we use a simplifi ed version of UML
that doesn’t confl ict with Java syntax. If you don’t already know UML, you
won’t have to worry about learning Java and UML at the same time.

We don’t worry about organizing and packaging your own
code until the end of the book.

In this book, you can get on with the business of learning Java, without
stressing over some of the organizational or administrative details of
developing Java programs. You will, in the real world, need to know—and
use—these details, so we cover them in depth. But we save them for the end
of the book (chapter 17). Relax while you ease into Java, gently.

The end-of-chapter exercises are mandatory; puzzles are
optional. Answers for both are at the end of each chapter.

One thing you need to know about the puzzles—they’re puzzles. As in logic
puzzles, brain teasers, crossword puzzles, etc. The exercises are here to help
you practice what you’ve learned, and you should do them all. The puzzles
are a different story, and some of them are quite challenging in a puzzle
way. These puzzles are meant for puzzlers, and you probably already know if
you are one. If you’re not sure, we suggest you give some of them a try, but
whatever happens, don’t be discouraged if you can’t solve a puzzle or if you
simply can’t be bothered to take the time to work them out.

The ‘Sharpen Your Pencil’ exercises don’t have answers.

Not printed in the book, anyway. For some of them, there is no right
answer, and for the others, part of the learning experience for the Sharpen
activities is for you to decide if and when your answers are right. (Some of
our suggested answers are available on wickedlysmart.com)

The code examples are as lean as possible

It’s frustrating to wade through 200 lines of code looking for the two lines
you need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and
simple. So don’t expect the code to be robust, or even complete. That’s
your assignment for after you fi nish the book. The book examples are
written specifi cally for learning, and aren’t always fully-functional.

Last-minute things you need to know:

Exercise

Dog

size

bark()
eat()
chaseCat()

We use a simpler,

modified faux
-UML

You should do ALL
of the “Sharpen your
pencil” activities

Sharpen your pencil

Activities marked with the Exercise (running shoe) logo are mandatory! Don’t skip them if you’re serious about learning Java.

If you see the
 Puzzle logo, th

e

activity is opt
ional, and if y

ou

don’t like twisty logic or c
ross-

word puzzles, y
ou won’t like these

either.

xxx intro

Technical Editors

Jess works at Hewlett-Packard on the Self-
Healing Services Team. She has a Bachelor’s
in Computer Engineering from Villanova
University, has her SCPJ 1.4 and SCWCD
certifi cations, and is literally months away
from receiving her Masters in Software
Engineering at Drexel University (whew!)

When she’s not working, studying or
motoring in her MINI Cooper S, Jess can
be found fi ghting her cat for yarn as she
completes her latest knitting or crochet
project (anybody want a hat?) She is
originally from Salt Lake City, Utah (no,
she’s not Mormon... yes, you were too
going to ask) and is currently living near
Philadelphia with her husband, Mendra, and
two cats: Chai and Sake.

You can catch her moderating technical
forums at javaranch.com.

Valentin Valentin Crettaz has a Masters degree
in Information and Computer Science from
the Swiss Federal Institute of Technology in
Lausanne (EPFL). He has worked as a software
engineer with SRI International (Menlo Park,
CA) and as a principal engineer in the Software
Engineering Laboratory of EPFL.

Valentin is the co-founder and CTO of Condris
Technologies, a company specializing in the
development of software architecture solutions.

His research and development interests
include aspect-oriented technologies, design
and architectural patterns, web services, and
software architecture. Besides taking care of
his wife, gardening, reading, and doing some
sport, Valentin moderates the SCBCD and
SCDJWS forums at Javaranch.com. He holds
the SCJP, SCJD, SCBCD, SCWCD, and SCDJWS
certifi cations. He has also had the opportunity
to serve as a co-author for Whizlabs SCBCD
Exam Simulator.

(We’re still in shock from seeing him in a tie.)

Jessica SantJessica’s MINI

 “Credit goes to all, but mistakes are the sole reponsibility of the
author...”. Does anyone really believe that? See the two people on
this page? If you fi nd technical problems, it’s probably their fault. :) Valentin Crettaz

Valentin’s tie

tech editing: Jessica and Valentin

the intro

you are here4 xxxi

Other people to blame:
At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for taking a
chance on this, and helping to shape the Head First concept into
a book (and series). As this second edition goes to print there
are now fi ve Head First books, and he’s been with us all the way.
To Tim O’Reilly, for his willingness to launch into something
completely new and different. Thanks to the clever Kyle Hart for
fi guring out how Head First fi ts into the world, and for launching
the series. Finally, to Edie Freedman for designing the Head First

“emphasize the head” cover.

Our intrepid beta testers and reviewer team:
Our top honors and thanks go to the director of our javaranch
tech review team, Johannes de Jong. This is your fi fth time around
with us on a Head First book, and we’re thrilled you’re still speaking
to us. Jeff Cumps is on his third book with us now and relentless
about fi nding areas where we needed to be more clear or correct.

Corey McGlone, you rock. And we think you give the clearest
explanations on javaranch. You’ll probably notice we stole one or
two of them. Jason Menard saved our technical butts on more
than a few details, and Thomas Paul, as always, gave us expert
feedback and found the subtle Java issues the rest of us missed.
Jane Griscti has her Java chops (and knows a thing or two about
writing) and it was great to have her helping on the new edition
along with long-time javarancher Barry Gaunt.

Marilyn de Queiroz gave us excellent help on both editions of the
book. Chris Jones, John Nyquist, James Cubeta, Terri Cubeta,
and Ira Becker gave us a ton of help on the fi rst edition.

Special thanks to a few of the Head Firsters who’ve been helping
us from the beginning: Angelo Celeste, Mikalai Zaikin, and
Thomas Duff (twduff.com). And thanks to our terrifi c agent, David
Rogelberg of StudioB (but seriously, what about the movie rights?)

credit
Some of our Java
expert reviewers...

Marilym de
Queiroz

John NyquistIra Becker

Rodney J.
Woodruff

Terri CubetaJames Cubeta

Johannes de Jong

Jef Cumps

Johannes de Jong
Johannes de Jong

Corey McGlone

Chris Jones

Marilym de

Thomas Paul

Jason Menard

xxxii intro

Just when you thought there wouldn’t be any
more acknowledgements*.

More Java technical experts who helped out on the first edition (in pseudo-random order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden,
Shweta Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich,
Sunil Palicha, Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste,
Mikalai Zaikin, John Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puzzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong,
and Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton, the javaranch Trail Boss for supporting thousands of Java learners.
Solveig Haugland, mistress of J2EE and author of “Dating Design Patterns”.
Authors Dori Smith and Tom Negrino (backupbrain.com), for helping us navigate the
tech book world.
Our Head First partners in crime, Eric Freeman and Beth Freeman (authors of Head First
Design Patterns), for giving us the Bawls™ to finish this on time.
Sherry Dorris, for the things that really matter.

Brave Early Adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen
Lepp, Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan
Oliphant, Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen,
Bob Thomas, and Mike Bibby (the first).

still more acknowledgements

*The large number of acknowledgements is because we’re testing the theory that everyone mentioned in
a book acknowledgement will buy at least one copy, probably more, what with relatives and everything. If
you’d like to be in the acknowledgement of our next book, and you have a large family, write to us.

this is a new chapter 1

Java takes you to new places. From its humble release to the public as the

(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented features,

memory management, and best of all —the promise of portability. The lure of write-once/run-

anywhere is just too strong. A devoted following exploded, as programmers fought against bugs,

limitations, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you’re just starting in

Java, you’re lucky. Some of us had to walk fi ve miles in the snow, uphill both ways (barefoot), to

get even the most trivial applet to work. But you, why, you get to ride the sleeker, faster, much

more powerful Java of today.

Breaking the Surface

Come on, the water’s
great! We’ll dive right in and

write some code, then compile and
run it. We’re talking syntax, looping

and branching, and a look at what
makes Java so cool. You’ll be

coding in no time.

Make it Stick

1 dive in A Quick Dip

2 chapter 1

You Bet

Shoot Me

The Way Java Works

source code for

the interactive

party invitation.

Method Party()

 0 aload_0

 1 invokespe-
cial #1 <Method
java.lang.Object()>

 4 return

Create a source
document. Use an
established protocol
(in this case, the Java
language).

 Source

1 Compiler

Output
(code)

Virtual
Machines

The goal is to write one application (in this
example, an interactive party invitation) and have
it work on whatever device your friends have.

Run your document
through a source code
compiler. The compiler
checks for errors and
won’t let you compile
until it’s satisfi ed that
everything will run
correctly.

2
The compiler creates a
new document, coded
into Java bytecode.
Any device capable of
running Java will be able
to interpret/translate
this fi le into something
it can run. The compiled
 bytecode is platform-
independent.

3

Your friends don’t have
a physical Java Machine,
but they all have a
virtual Java machine
(implemented in
software) running inside
their electronic gadgets.
The virtual machine reads
and runs the bytecode.

4

the way Java works

you are here4

dive In A Quick Dip

3

What you’ll do in Java

import java.awt.*;

import java.awt.event.*;

class Party {

 public void buildInvite() {

 Frame f = new Frame();
 Label l = new Label(“Party at Tim’s”);
 Button b = new Button(“You bet”);
 Button c = new Button(“Shoot me”);
 Panel p = new Panel();
 p.add(l);
 } // more code here...
}

File Edit Window Help Plead

%javac Party.java

Compile the Party.java
fi le by running javac
(the compiler application).
If you don’t have errors,
you’ll get a second docu-
ment named Party.class

The compiler-generated
Party.class fi le is made up
of bytecodes.

Type your source code.

 Save as: Party.java

Method Party()

 0 aload_0

 1 invokespecial #1 <Method
java.lang.Object()>

 4 return

Method void buildInvite()

 0 new #2 <Class java.awt.Frame>

 3 dup

 4 invokespecial #3 <Method
java.awt.Frame()>

Run the program by
starting the Java Virtual
Machine (JVM) with the
Party.class fi le. The JVM
translates the bytecode
into something the
underlying platform
understands, and runs
your program.

Compiled code: Party.class

File Edit Window Help Swear

%java Party

 Source

1

 Compiler

Output
(code)

Virtual
Machines2

3

4

You’ll type a source code fi le, compile it using the
javac compiler, then run the compiled bytecode
on a Java virtual machine.

(Note: this is not meant to be a tutorial... you’ll be
writing real code in a moment, but for now, we just
want you to get a feel for how it all fits together.)

4 chapter 1

history of Java

A
 very brief history of Java

Java 1.0
2

250 classes

Slow
.

C
u

te n
am

e an
d

 lo
g

o.
Fu

n
 to

 u
se. Lo

ts o
f

b
u

g
s. A

p
p

lets are
th

e B
ig

 Th
in

g.

Java 1.1

500 classes

A
 little faster.

M
o

re cap
ab

le, frien
d

lier.
B

eco
m

in
g

 very p
o

p
u

la
r.

B
etter G

U
I co

d
e.

Java 2
(versions 1.2

 – 1.4
)

2300 classes

M
u

ch
 fa

ster.
C

an
 (so

m
etim

es) ru
n

 at
n

ative sp
eed

s. Serio
u

s,
p

ow
erfu

l. C
o

m
es in

 th
ree

fl avo
rs: M

icro
 Ed

itio
n

 (J2M
E),

Stan
d

ard
 Ed

itio
n

 (J2SE) an
d

En

terp
rise Ed

itio
n

 (J2EE).
B

eco
m

es th
e la

n
g

u
a

g
e o

f
ch

o
ice fo

r n
ew

 en
terp

rise
(esp

ecially w
eb

-b
ased

) an
d

m

o
b

ile ap
p

licatio
n

s.

Classes in the Java standard library

3500

3000

2500

2000

1500

1000

5000

Java 5.0
(versions 1.5

 and up)

3500 classes

M
o

re p
ow

er, ea
sier to

d

evelo
p

 w
ith

.
B

esid
es ad

d
in

g
 m

o
re th

an
 a

th
o

u
san

d
 ad

d
itio

n
al classes,

Java 5.0 (kn
o

w
n

 as “Tig
er”)

ad
d

ed
 m

ajo
r ch

an
g

es to

th
e lan

g
u

ag
e itself, m

akin
g

it easier (at least in

 th
eo

ry)
fo

r p
ro

g
ram

m
ers an

d
 g

ivin
g

it n

ew
 featu

res th
at w

ere
p

o
p

u
lar in

 o
th

er lan
g

u
ag

es.

you are here4

dive In A Quick Dip

5

int size = 27;

String name = “Fido”;

Dog myDog = new Dog(name, size);

x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

 myDog.play();

}

int[] numList = {2,4,6,8};

System.out.print(“Hello”);

System.out.print(“Dog: “ + name);

String num = “8”;

int z = Integer.parseInt(num);

try {

 readTheFile(“myFile.txt”);

}

catch(FileNotFoundException ex) {

 System.out.print(“File not found.”);

}

Sharpen your pencil

 declare an integer variable named ‘size’ and give it the value 27

Try to guess what each line of code is doing...
(answers are on the next page).

Look how easy it
is to write Java.

Q: I see Java 2 and Java 5.0, but was there a Java 3
and 4? And why is it Java 5.0 but not Java 2.0?

 A: The joys of marketing... when the version of Java
shifted from 1.1 to 1.2, the changes to Java were so
dramatic that the marketers decided we needed a whole
new “name”, so they started calling it Java 2, even though
the actual version of Java was 1.2. But versions 1.3 and 1.4
were still considered Java 2. There never was a Java 3 or
4. Beginning with Java version 1.5, the marketers decided

once again that the changes were so dramatic that a
new name was needed (and most developers agreed), so
they looked at the options. The next number in the name
sequence would be “3”, but calling Java 1.5 Java 3 seemed
more confusing, so they decided to name it Java 5.0 to
match the “5” in version “1.5”.
So, the original Java was versions 1.02 (the first official
release) through 1.1 were just “Java”. Versions 1.2, 1.3, and
1.4 were “Java 2”. And beginning with version 1.5, Java is
called “Java 5.0”. But you’ll also see it called “Java 5” (without
the “.0”) and “Tiger” (its original code-name). We have no
idea what will happen with the next release...

why Java is cool

6 chapter 1

int size = 27;

String name = “Fido”;

Dog myDog = new Dog(name, size);

x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

 myDog.play();

}

int[] numList = {2,4,6,8};

System.out.print(“Hello”);

System.out.print(“Dog: “ + name);

String num = “8”;

int z = Integer.parseInt(num);

try {

 readTheFile(“myFile.txt”);

}

catch(FileNotFoundException ex) {

 System.out.print(“File not found.”);

}

Sharpen your pencil

 declare an integer variable named ‘size’ and give it the value 27

Don’t worry about whether you understand any of this yet!
Everything here is explained in great detail in the book, most
within the first 40 pages). If Java resembles a language you’ve
used in the past, some of this will be simple. If not, don’t worry
about it. We’ll get there...

Look how easy it
is to write Java.

declare a string of characters variable named ‘name’ and give it the value “Fido”
declare a new Dog variable ‘myDog’ and make the new Dog using ‘name’ and ‘size’
subtract 5 from 27 (value of ‘size’) and assign it to a variable named ‘x’
if x (value of 22) is less than 15, tell the dog to bark 8 times

keep looping as long as x is greater than 3...
tell the dog to play (whatever THAT means to a dog...)
this looks like the end of the loop -- everything in { } is done in the loop

declare a list of integers variable ‘numList’, and put 2,4,6,8 into the list.
print out “Hello”... probably at the command-line
print out “Hello Fido” (the value of ‘name’ is “Fido”) at the command-line
declare a character string variable ‘num’ and give it the value of “8”
convert the string of characters “8” into an actual numeric value 8

try to do something...maybe the thing we’re trying isn’t guaranteed to work...
read a text file named “myFile.txt” (or at least TRY to read the file...)
must be the end of the “things to try”, so I guess you could try many things...
this must be where you find out if the thing you tried didn’t work...
if the thing we tried failed, print “File not found” out at the command-line
looks like everything in the { } is what to do if the ‘try’ didn’t work...

answers

you are here4

dive In A Quick Dip

7

What goes in a
source file?

public class Dog {

}

What goes in a
class?

public class Dog {

 void bark() {

 }

 }

What goes in a

method?

public class Dog {

 void bark() {

 statement1;

 statement2;

 }

 }

A source code fi le (with the .java
extension) holds one class defi ni-
tion. The class represents a piece
of your program, although a very
tiny application might need just
a single class. The class must go
within a pair of curly braces.

A class has one or more methods.
In the Dog class, the bark method
will hold instructions for how the
Dog should bark. Your methods
must be declared inside a class
(in other words, within the curly
braces of the class).

class

method

Within the curly braces of a
method, write your instructions
for how that method should be
performed. Method code is basi-
cally a set of statements, and for
now you can think of a method
kind of like a function or proce-
dure.

Code structure in Java

statements

Put a class in a source fi le.

Put methods in a class.

Put statements in a method.

8 chapter 1

opening brace of the method

public class MyFirstApp {

 public static void main (String[] args) {

 System.out.print(“I Rule!”);

Anatomy of a class
When the JVM starts running, it looks for the class you give it at the com-
mand line. Then it starts looking for a specially-written method that looks
exactly like:

 public static void main (String[] args) {

 // your code goes here

 }

Next, the JVM runs everything between the curly braces { } of your main
method. Every Java application has to have at least one class, and at least
one main method (not one main per class; just one main per application).

public so everyone
can access it

this is a
class (duh)

the name of this class
opening curly brace of the class

(we’ll cover this
 one later.)

the return type.
void means there’s
no return value.

the name of
this method

arguments to the method. This method must be given an array of Strings, and the array will be called ‘args’

this says print to standard output
(defaults to command-line) the String you

want to print

every statement MUST

end in a semicolon!!

closing brace of the main method

closing brace of the MyFirstApp class
}

}

a Java class

Don’t worry about memorizing anything right now...
this chapter is just to get you started.

you are here4

dive In A Quick Dip

9

MyFirstApp.class

Writing a class with a main
In Java, everything goes in a class. You’ll type your source code fi le (with a
.java extension), then compile it into a new class fi le (with a .class extension).
When you run your program, you’re really running a class.

Running a program means telling the Java Virtual Machine (JVM) to “Load the
Hello class, then start executing its main() method. Keep running ‘til all the
code in main is fi nished.”

In chapter 2, we go deeper into the whole class thing, but for now, all you need to
think is, how do I write Java code so that it will run? And it all begins with main().

The main() method is where your program starts running.

No matter how big your program is (in other words, no matter how many classes
your program uses), there’s got to be a main() method to get the ball rolling.

public class MyFirstApp {

 public static void main (String[] args) {
 System.out.println(“I Rule!”);
 System.out.println(“The World”);
 }

}

■ Save

MyFirstApp.java

■ Compile

javac MyFirstApp.java

■ Run

public class MyFirstApp {

 public static void main
(String[] args) {

 System.out.print(“I Rule!”);

 }

}

MyFirstApp.java

MyFirstApp.class

Method Party() 0 aload_0 1
invokespecial #1 <Method
java.lang.Object()>

 4 return

Method void
main(java.lang.String[])

 0 getstatic #2 <Field

File Edit Window Help Scream

%java MyFirstApp

I Rule!

The World

2

3

1

compiler

10 chapter 1

Once you’re inside main (or any method), the fun
begins. You can say all the normal things that you say
in most programming languages to make the computer
do something.

Your code can tell the JVM to:

1 do something
Statements: declarations, assignments,
method calls, etc.

int x = 3;
String name = “Dirk”;
x = x * 17;
System.out.print(“x is ” + x);
double d = Math.random();
// this is a comment

2 do something again and again
Loops: for and while

while (x > 12) {
 x = x -1;
}

for (int x = 0; x < 10; x = x + 1) {
 System.out.print(“x is now ” + x);
}

3 do something under this condition
Branching: if/else tests

if (x == 10) {

 System.out.print(“x must be 10”);

} else {

 System.out.print(“x isn’t 10”);

}

if ((x < 3) & (name.equals(“Dirk”))) {

 System.out.println(“Gently”);

}

System.out.print(“this line runs no matter what”);

± Each statement must end in a
semicolon.

x = x + 1;

± A single-line comment begins
with two forward slashes.

x = 22;

// this line disturbs me

± Most white space doesn’t matter.

x = 3 ;

± Variables are declared with a
name and a type (you’ll learn about
all the Java types in chapter 3).

int weight;

//type: int, name: weight

± Classes and methods must be
defined within a pair of curly braces.

public void go() {
 // amazing code here

}

What can you say in the main method?
loops

branchingstate
ments

Syntax
 Fun

statements, looping, branching

you are here4

dive In A Quick Dip

11

Looping and looping and...
Java has three standard looping constructs: while,
do-while, and for. You’ll get the full loop scoop later
in the book, but not for awhile, so let’s do while for
now.

The syntax (not to mention logic) is so simple
you’re probably asleep already. As long as some
condition is true, you do everything inside the
loop block. The loop block is bounded by a pair of
curly braces, so whatever you want to repeat needs
to be inside that block.

The key to a loop is the conditional test. In Java, a
conditional test is an expression that results in a
boolean value —in other words, something that is
either true or false.

If you say something like, “While iceCreamInTheTub
is true, keep scooping”, you have a clear boolean
test. There either is ice cream in the tub or there
isn’t. But if you were to say, “While Bob keep
scooping”, you don’t have a real test. To make
that work, you’d have to change it to something
like, “While Bob is snoring...” or “While Bob is not
wearing plaid...”

Simple boolean tests
You can do a simple boolean test by checking
the value of a variable, using a comparison operator
including:

 < (less than)

 > (greater than)

== (equality) (yes, that’s two equals signs)

Notice the difference between the assignment
operator (a single equals sign) and the equals
operator (two equals signs). Lots of programmers
accidentally type = when they want ==. (But not
you.)

int x = 4; // assign 4 to x

while (x > 3) {

 // loop code will run because

 // x is greater than 3

 x = x - 1; // or we’d loop forever

}

int z = 27; //

while (z == 17) {

 // loop code will not run because

 // z is not equal to 17

}

while (moreBalls == true) {
 keepJuggling() ;
}

12 chapter 1

public class Loopy {

 public static void main (String[] args) {

 int x = 1;

 System.out.println(“Before the Loop”);

 while (x < 4) {

 System.out.println(“In the loop”);

 System.out.println(“Value of x is ” + x);

 x = x + 1;

 }

 System.out.println(“This is after the loop”);

 }

}

% java Loopy
Before the Loop
In the loop
Value of x is 1
In the loop
Value of x is 2
In the loop
Value of x is 3
This is after the loop

 BULLET POINTS
ß Statements end in a semicolon ;

ß Code blocks are defined by a pair of curly braces { }

ß Declare an int variable with a name and a type: int x;

ß The assignment operator is one equals sign =

ß The equals operator uses two equals signs ==

ß A while loop runs everything within its block (defined by curly
braces) as long as the conditional test is true.

ß If the conditional test is false, the while loop code block won’t
run, and execution will move down to the code immediately
after the loop block.

ß Put a boolean test inside parentheses:
while (x == 4) { }

Example of a while loop
there are noDumb Questions

Q: Why does everything have
to be in a class?

A: Java is an object-oriented
(OO) language. It’s not like the
old days when you had steam-
driven compilers and wrote one
monolithic source file with a pile
of procedures. In chapter 2 you’ll
learn that a class is a blueprint for
an object, and that nearly every-
thing in Java is an object.

Q: Do I have to put a main in
every class I write?

A: Nope. A Java program
might use dozens of classes (even
hundreds), but you might only
have one with a main method—
the one that starts the program
running. You might write test
classes, though, that have main
methods for testing your other
classes.

Q: In my other language I can
do a boolean test on an integer.
In Java, can I say something like:

int x = 1;

while (x){ }

A: No. A boolean and an
integer are not compatible types in
Java. Since the result of a condi-
tional test must be a boolean, the
only variable you can directly test
(without using a comparison op-
erator) is a boolean. For example,
you can say:

boolean isHot = true;

while(isHot) { }

this is the output

Java basics

you are here4

dive In A Quick Dip

13

Conditional branching
In Java, an if test is basically the same as the boolean test in a
while loop – except instead of saying, “while there’s still beer...”,
you’ll say, “if there’s still beer...”

class IfTest {

 public static void main (String[] args) {

 int x = 3;

 if (x == 3) {

 System.out.println(“x must be 3”);

 }

 System.out.println(“This runs no matter what”);

 }

}

% java IfTest
x must be 3
This runs no matter what

code output

The code above executes the line that prints “x must be 3” only
if the condition (x is equal to 3) is true. Regardless of whether
it’s true, though, the line that prints, “This runs no matter what”
will run. So depending on the value of x, either one statement
or two will print out.

But we can add an else to the condition, so that we can
say something like, “If there’s still beer, keep coding, else
(otherwise) get more beer, and then continue on...”

class IfTest2 {

 public static void main (String[] args) {

 int x = 2;

 if (x == 3) {

 System.out.println(“x must be 3”);

 } else {

 System.out.println(“x is NOT 3”);

 }

 System.out.println(“This runs no matter what”);

 }

}

% java IfTest2
x is NOT 3
This runs no matter what

new output

Sharpen your pencil

Given the output:

% java DooBee
DooBeeDooBeeDo

Fill in the missing code:

public class DooBee {

 public static void main (String[] args) {

 int x = 1;

 while (x < _____) {

 System.out._________(“Doo”);

 System.out._________(“Bee”);

 x = x + 1;

 }

 if (x == ______) {

 System.out.print(“Do”);

 }

 }

}

System.out.print vs.

System.out.println
If you’ve been paying attention (of
course you have) then you’ve noticed us
switching between print and println.

Did you spot the difference?

System.out.println inserts a newline
(think of println as printnewline while
System.out.print keeps printing to
the same line. If you want each thing
you print out to be on its own line, use
println. If you want everything to stick
together on one line, use print.

14 chapter 1

Coding a Serious Business
Application

Let’s put all your new Java skills to good use with
something practical. We need a class with a main(), an int
and a String variable, a while loop, and an if test. A little
more polish, and you’ll be building that business back-
end in no time. But before you look at the code on this
page, think for a moment about how you would code that
classic children’s favorite, “99 bottles of beer.”

public class BeerSong {

 public static void main (String[] args) {

 int beerNum = 99;

 String word = “bottles”;

 while (beerNum > 0) {

 if (beerNum == 1) {

 word = “bottle”; // singular, as in ONE bottle.

 }

 System.out.println(beerNum + “ ” + word + “ of beer on the wall”);

 System.out.println(beerNum + “ ” + word + “ of beer.”);

 System.out.println(“Take one down.”);

 System.out.println(“Pass it around.”);

 beerNum = beerNum - 1;

 if (beerNum > 0) {

 System.out.println(beerNum + “ ” + word + “ of beer on the wall”);

 } else {

 System.out.println(“No more bottles of beer on the wall”);

 } // end else

 } // end while loop

 } // end main method

} // end class

There’s still one little flaw in our
code. It compiles and runs, but the
output isn’t 100% perfect. See if
you can spot the flaw , and fix it.

serious Java app

you are here4

dive In A Quick Dip

15

Bob’s alarm clock rings at 8:30 Monday morning, just like every other weekday.
But Bob had a wild weekend, and reaches for the SNOOZE button.
And that’s when the action starts, and the Java-enabled appliances
come to life.

First, the alarm clock sends a message to the coffee maker* “Hey, the geek’s
sleeping in again, delay the coffee 12 minutes.”

The coffee maker sends a message to the Motorola™
toaster, “Hold the toast, Bob’s snoozing.”

The alarm clock then sends a message to Bob’s
Nokia Navigator™ cell phone, “Call Bob’s 9
o’clock and tell him we’re running a little late.”

Finally, the alarm clock sends a message to
Sam’s (Sam is the dog) wireless collar, with the too-familiar signal that

means, “Get the paper, but don’t expect a walk.”

A few minutes later, the alarm goes off again. And again Bob
hits SNOOZE and the appliances start chattering. Finally,
the alarm rings a third time. But just as Bob reaches for the
snooze button, the clock sends the “jump and bark” signal to Sam’s
collar. Shocked to full consciousness, Bob rises, grateful that his Java
skills and a little trip to Radio Shack™ have enhanced the daily
routines of his life.

His toast is toasted.

His coffee steams.

His paper awaits.

Just another wonderful morning in The Java-Enabled House.

You can have a Java-enabled home. Stick with a sensible solution using Java,
Ethernet, and Jini technology. Beware of imitations using other so-called “plug
and play” (which actually means “plug and play with it for the next three days
trying to get it to work”) or “portable” platforms. Bob’s sister Betty tried one of
those others, and the results were, well, not very appealing, or safe.
Bit of a shame about her dog, too...

Java inside

Java here too

Sam’s collar

has Java

butter here

Java toaster

Monday morning at Bob’s

Could this story be true? Yes and no. While there are versions of Java running in de-
vices including PDAs, cell phones (especially cell phones), pagers, rings, smart cards,
and more –you might not find a Java toaster or dog collar. But even if you can’t
find a Java-enabled version of your favorite gadget, you can still run it as if it were a
Java device by controlling it through some other interface (say, your laptop) that is
running Java. This is known as the Jini surrogate architecture. Yes you can have that
geek dream home.

TV
AS IF ON

*IP multicast if you’re gonna be all picky about protocol

16 chapter 1

let’s write a program

Try my new
phrase-o-matic and

you’ll be a slick talker
just like the boss or
those guys in marketing.

public class PhraseOMatic {
 public static void main (String[] args) {

 // make three sets of words to choose from. Add your own!
 String[] wordListOne = {“24/7”,”multi-
Tier”,”30,000 foot”,”B-to-B”,”win-win”,”front-
end”, “web-based”,”pervasive”, “smart”, “six-
sigma”,”critical-path”, “dynamic”};

 String[] wordListTwo = {“empowered”, “sticky”,
“value-added”, “oriented”, “centric”, “distributed”,
“clustered”, “branded”,”outside-the-box”, “positioned”,
“networked”, “focused”, “leveraged”, “aligned”,
“targeted”, “shared”, “cooperative”, “accelerated”};

 String[] wordListThree = {“process”, “tipping-
point”, “solution”, “architecture”, “core competency”,
“strategy”, “mindshare”, “portal”, “space”, “vision”,
“paradigm”, “mission”};

 // find out how many words are in each list
 int oneLength = wordListOne.length;
 int twoLength = wordListTwo.length;
 int threeLength = wordListThree.length;

 // generate three random numbers
 int rand1 = (int) (Math.random() * oneLength);
 int rand2 = (int) (Math.random() * twoLength);
 int rand3 = (int) (Math.random() * threeLength);

 // now build a phrase
 String phrase = wordListOne[rand1] + “ “ +
wordListTwo[rand2] + “ “ + wordListThree[rand3];

 // print out the phrase
 System.out.println(“What we need is a “ + phrase);
 }
}

1

2

3

4

5

OK, so the beer song wasn’t really a serious
business application. Still need something
practical to show the boss? Check out the
Phrase-O-Matic code.

note: when you type this into an editor, let
the code do its own word/line-wrapping!
Never hit the return key when you’re typing
a String (a thing between “quotes”) or it
won’t compile. So the hyphens you see on
this page are real, and you can type them,
but don’t hit the return key until AFTER
you’ve closed a String.

you are here4

dive In A Quick Dip

17

Phrase-O-Matic
How it works.

In a nutshell, the program makes three lists of words, then randomly picks one word
from each of the three lists, and prints out the result. Don’t worry if you don’t under-
stand exactly what’s happening in each line. For gosh sakes, you’ve got the whole book
ahead of you, so relax. This is just a quick look from a 30,000 foot outside-the-box
targeted leveraged paradigm.

1. The first step is to create three String arrays – the containers that will hold all the
words. Declaring and creating an array is easy; here’s a small one:

String[] pets = {“Fido”, “Zeus”, “Bin”};

Each word is in quotes (as all good Strings must be) and separated by commas.

2. For each of the three lists (arrays), the goal is to pick a random word, so we have
to know how many words are in each list. If there are 14 words in a list, then we need
a random number between 0 and 13 (Java arrays are zero-based, so the first word is at
position 0, the second word position 1, and the last word is position 13 in a 14-element
array). Quite handily, a Java array is more than happy to tell you its length. You just
have to ask. In the pets array, we’d say:

int x = pets.length;

and x would now hold the value 3.

3. We need three random numbers. Java ships out-of-the-box, off-the-shelf, shrink-
wrapped, and core competent with a set of math methods (for now, think of them as
functions). The random() method returns a random number between 0 and not-
quite-1, so we have to multiply it by the number of elements (the array length) in the
list we’re using. We have to force the result to be an integer (no decimals allowed!) so
we put in a cast (you’ll get the details in chapter 4). It’s the same as if we had any float-
ing point number that we wanted to convert to an integer:

int x = (int) 24.6;

4. Now we get to build the phrase, by picking a word from each of the three lists,
and smooshing them together (also inserting spaces between words). We use the “+”
operator, which concatenates (we prefer the more technical ‘smooshes’) the String objects
together. To get an element from an array, you give the array the index number (posi-
tion) of the thing you want using:

String s = pets[0]; // s is now the String “Fido”
s = s + “ “ + “is a dog”; // s is now “Fido is a dog”

5.Finally, we print the phrase to the command-line and... voila! We’re in marketing.

what we need
here is a...

pervasive targeted
process

dynamic outside-
the-box tipping-
point

smart distributed
core competency

24/7 empowered
mindshare

30,000 foot win-win
vision

six-sigma net-
worked portal

18 chapter 1

The Java Virtual Machine
What, are you kidding? HELLO. I am Java.
I’m the guy who actually makes a program
run. The compiler just gives you a file. That’s
it. Just a file. You can print it out and use it
for wall paper, kindling, lining the bird cage
whatever, but the file doesn’t do anything un-
less I’m there to run it.

And that’s another thing, the compiler has
no sense of humor. Then again, if you had to
spend all day checking nit-picky little syntax
violations...

I’m not saying you’re, like, completely useless.
But really, what is it that you do? Seriously. I
have no idea. A programmer could just write
bytecode by hand, and I’d take it. You might
be out of a job soon, buddy.

(I rest my case on the humor thing.) But you
still didn’t answer my question, what do you
actually do?

The Compiler

I don’t appreciate that tone.

Excuse me, but without me, what exactly
would you run? There’s a reason Java was
designed to use a bytecode compiler, for your
information. If Java were a purely interpreted
language, where—at runtime—the virtual
machine had to translate straight-from-a-text-
editor source code, a Java program would
run at a ludicrously glacial pace. Java’s had a
challenging enough time convincing people
that it’s finally fast and powerful enough for
most jobs.

Excuse me, but that’s quite an ignorant (not
to mention arrogant) perspective. While it
is true that—theoretically—you can run any
properly formatted bytecode even if it didn’t
come out of a Java compiler, in practice that’s
absurd. A programmer writing bytecode by
hand is like doing your word processing by
writing raw postscript. And I would appreciate
it if you would not refer to me as “buddy.”

Tonight’s Talk: The compiler and
the JVM battle over the question,
“Who’s more important?”

the compiler and the JVM

you are here4

dive In A Quick Dip

19

But some still get through! I can throw Class-
CastExceptions and sometimes I get people
trying to put the wrong type of thing in an
array that was declared to hold something
else, and—

OK. Sure. But what about security? Look at all
the security stuff I do, and you’re like, what,
checking for semicolons? Oooohhh big security
risk! Thank goodness for you!

Whatever. I have to do that same stuff too,
though, just to make sure nobody snuck in
after you and changed the bytecode before
running it.

Oh, you can count on it. Buddy.

Remember that Java is a strongly-typed lan-
guage, and that means I can’t allow variables
to hold data of the wrong type. This is a
crucial safety feature, and I’m able to stop the
vast majority of violations before they ever get
to you. And I also—

Excuse me, but I wasn’t done. And yes, there
are some datatype exceptions that can emerge
at runtime, but some of those have to be
allowed to support one of Java’s other impor-
tant features—dynamic binding. At runtime,
a Java program can include new objects that
weren’t even known to the original program-
mer, so I have to allow a certain amount of
flexibility. But my job is to stop anything that
would never—could never—succeed at run-
time. Usually I can tell when something won’t
work, for example, if a programmer acciden-
tally tried to use a Button object as a Socket
connection, I would detect that and thus
protect him from causing harm at runtime.

Excuse me, but I am the first line of defense,
as they say. The datatype violations I previous-
ly described could wreak havoc in a program
if they were allowed to manifest. I am also
the one who prevents access violations, such
as code trying to invoke a private method, or
change a method that – for security reasons
– must never be changed. I stop people from
touching code they’re not meant to see,
including code trying to access another class’
critical data. It would take hours, perhaps days
even, to describe the significance of my work.

Of course, but as I indicated previously, if I
didn’t prevent what amounts to perhaps 99%
of the potential problems, you would grind to
a halt. And it looks like we’re out of time, so
we’ll have to revisit this in a later chat.

The Java Virtual Machine The Compiler

20 chapter 1

 if (x == 1) { System.out.print(“d”);
 x = x - 1; }

 if (x == 2) {

 System.out.print(“b c”);

 }

 if (x
> 2) {

 Syst
em.out.print

(“a”);

 }

 int x = 3;

 x = x - 1;
 System.out.print(“-”);

 while
(x > 0) {

class Shuffl e1 {
 public static void main(String [] args) {

File Edit Window Help Sleep

% java Shuffle1
a-b c-d

Exercise Code Magnets
A working Java program is all scrambled up
on the fridge. Can you rearrange the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

Output:

exercise: Code Magnets

you are here4

dive In A Quick Dip

21

 C
class Exercise1b {

 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println(“small x”);

 }

 }

}

 A
class Exercise1b {

 public static void main(String [] args) {

 int x = 1;

 while (x < 10) {

 if (x > 3) {

 System.out.println(“big x”);

 }

 }

 }

}

 B
public static void main(String [] args) {

 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println(“small x”);

 }

 }

}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these

files will compile. If they
won’t compile, how
would you fix them?

BE the compiler

Exercise

22 chapter 1

1 2 3

4 5 6

7

8 9 10 11

12

13

14 15 16

17

18 19

20

21

Let’s give your right brain something to do.

It’s your standard crossword, but almost all
of the solution words are from chapter 1. Just
to keep you awake, we also threw in a few
(non-Java) words from the high-tech world.

Across

4. Command-line invoker

6. Back again?

8. Can’t go both ways

9. Acronym for your laptop’s power

12. number variable type

13. Acronym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What’s a prompt good for?

Down

1. Not an integer (or _____ your boat)

2. Come back empty-handed

3. Open house

5. ‘Things’ holders

7. Until attitudes improve

10. Source code consumer

11. Can’t pin it down

13. Dept. of LAN jockeys

15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

JavaCross 7.0

puzzle: crossword

you are here4

dive In A Quick Dip

23

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left), with the output that you’d see if the block
were inserted. Not all the lines of output will be used, and some
of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching
command-line output. (The answers are at the end of the chapter).

candidate code goes here

Mixed
Messages

match each
candidate with
one of the
possible outputs

class Test {
 public static void main(String [] args) {
 int x = 0;
 int y = 0;
 while (x < 5) {

 System.out.print(x + ““ + y +“ “);
 x = x + 1;
 }
 }
}

y = x - y;

y = y + x;

y = y + 2;
if(y > 4) {
 y = y - 1;
}

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3) {
 x = x - 1;
 }
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

Candidates: Possible output:

24 chapter 1

System.out.print(“ ”);
System.out.print(“a “);
System.out.print(“n “);
System,out,print(“an“);

x = x + 1;

x = x + 2;

x = x - 2;

x = x - 1;

x > 0

x < 1

x > 1

x > 3

x < 4 System.out.print(“noys “);

System.out.print(“oise “);

System.out.print(“ oyster “);

System.out.print(“annoys”);

System.out.print(“noise”);

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use the
same snippet more than once, and
you won’t need to use all the snip-
pets. Your goal is to make a class that

will compile and run and produce the
output listed. Don’t be fooled—this one’s
harder than it looks.

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }
 System.out.println(““);

 }
 }
}

Note: Each snippet
from the pool can be
used only once!

File Edit Window Help Cheat

%java PoolPuzzleOne
a noise
annoys
an oyster

Output

puzzle: Pool Puzzle

you are here4

dive In A Quick Dip

25

File Edit Window Help Poet

% java Shuffle1
a-b c-d

class Shuffle1 {
 public static void main(String [] args) {

 int x = 3;
 while (x > 0) {

 if (x > 2) {
 System.out.print(“a”);
 }

 x = x - 1;
 System.out.print(“-”);

 if (x == 2) {
 System.out.print(“b c”);
 }

 if (x == 1) {
 System.out.print(“d”);
 x = x - 1;
 }
 }
 }
}

class Exercise1b {

 public static void main(String [] args) {

 int x = 1;

 while (x < 10) {

 x = x + 1;
 if (x > 3) {

 System.out.println(“big x”);

 }

 }

 } This will compile and run (no output), but
} without a line added to the program, it
 would run forever in an infinite ‘while’ loop!

class Foo {
 public static void main(String [] args) {

 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println(“small x”);

 }

 } This file won’t compile without a
 } class declaration, and don’t forget
} the matching curly brace !

class Exercise1b {

 public static void main(String [] args) {
 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println(“small x”);

 }

 }

 }
}

A

B

C

Code Magnets:

Exercise Solutions

The ‘while’ loop code must be in-
side a method. It can’t just be
hanging out inside the class.

26 chapter 1

1 2 3

4 5 6

7

8 9 10 11

12

13

14 15 16

17

18 19

20

21

J A V A
R
R
A
Y
S

B A N C H

S
T
A
T
I
C

M
A
I
N

Y T E O U T P R I N T

W

I
L

N T

S R I G D E C L A R E

C O M M A N D

J
V

M

T
H
O

I C

P
U
B
L
I

V
A
R

A
B

E

C
O
M

I
L

R

V
O
I
D

F
L
O
A

O P

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (X < 4) {

 System.out.print(“a”);
 if (x < 1) {
 System.out.print(“ “);
 }
 System.out.print(“n”);

 if (X > 1) {

 System.out.print(“ oyster”);
 x = x + 2;
 }
 if (x == 1) {

 System.out.print(“noys”);
 }
 if (X < 1) {

 System.out.print(“oise”);
 }
 System.out.println(““);

 X = X + 1;
 }
 }
}

File Edit Window Help Cheat

%java PoolPuzzleOne
a noise
annoys
an oyster

class Test {
 public static void main(String [] args) {
 int x = 0;
 int y = 0;
 while (x < 5) {

 System.out.print(x + ““ + y +“ “);
 x = x + 1;
 }
 }
}

y = x - y;

y = y + x;

y = y + 2;
if(y > 4) {
 y = y - 1;
}

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3) {
 x = x - 1;
 }
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

Candidates: Possible output:

puzzle answers

2 classes and objects

this is a new chapter 27

I was told there would be objects. In chapter 1, we put all of our code in the

main() method. That’s not exactly object-oriented. In fact, that’s not object-oriented at all. Well,

we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn’t actually

develop any of our own object types. So now we’ve got to leave that procedural world behind,

get the heck out of main(), and start making some objects of our own. We’ll look at what makes

object-oriented (OO) development in Java so much fun. We’ll look at the difference between

a class and an object. We’ll look at how objects can give you a better life (at least the program-

ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

 A Trip to Objectville

We’re going to
Objectville! We’re

leaving this dusty ol’
procedural town for good.

I’ll send you a postcard.

Make it Stick

once upon a time in Objectville

28 chapter 2

the spec

 nce upon a time in a software shop, two
programmers were given the same spec and told to
“build it”. The Really Annoying Project Manager
forced the two coders to compete,

by promising that whoever delivers
first gets one of those cool Aeron™
chairs all the Silicon Valley guys have.
Larry, the procedural programmer, and
Brad, the OO guy, both knew this would
be a piece of cake.

Larry, sitting in his cube, thought to
himself, “What are the things this program
has to do? What procedures do we need?”.
And he answered himself , “rotate and
playSound.” So off he went to build the
procedures. After all, what is a program if not
a pile of procedures?

Brad, meanwhile, kicked back at the cafe
and thought to himself, “What are the things
in this program... who are the key players?” He
first thought of The Shapes. Of course, there
were other objects he thought of like the User, the Sound,
and the Clicking event. But he already had a library of code
for those pieces, so he focused on building Shapes. Read
on to see how Brad and Larry built their programs, and
for the answer to your burning question, “So, who got the
Aeron?”

Chair Wars
(or How Objects Can Change Your Life)

the chair

At Brad’s laptop at the cafe
Brad wrote a class for each of the three shapes

In Larry’s cube
As he had done a gazillion times before, Larry
set about writing his Important Procedures.
He wrote rotate and playSound in no time.
 rotate(shapeNum) {
 // make the shape rotate 360º

 }

 playSound(shapeNum) {

 // use shapeNum to lookup which

 // AIF sound to play, and play it

 }
}

}

}

O

you are here4

classes and objects

29

There will be an amoeba shape

on the screen, with the others.

When the user clicks on the

amoeba, it will rotate like the

others, and play a .hif sound file

But wait! There’s been a spec change.
“OK, technically you were fi rst, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I’ve heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What’s up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,
dead, carpal-tunnelled hands.

Larry thought he’d nailed it. He could almost feel the rolled
steel of the Aeron beneath his...

what got added to the spec

Back in Larry’s cube
The rotate procedure would still work; the code used
a lookup table to match a shapeNum to an actual
shape graphic. But playSound would have to change.
And what the heck is a .hif fi le?

playSound(shapeNum) {
 // if the shape is not an amoeba,
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 // else
 // play amoeba .hif sound
 }
It turned out not to be such a big deal, but it still
made him queasy to touch previously-tested code. Of
all people, he should know that no matter what the
project manager says, the spec always changes.

At Brad’s laptop at the beach
Brad smiled, sipped his margarita, and wrote one
new class. Sometimes the thing he loved most
about OO was that he didn’t have to touch code
he’d already tested and delivered. “Flexibility,
extensibility,...” he mused, refl ecting on the
benefi ts of OO.

Amoeba

rotate() {
 // code to rotate an amoeba
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

.

once upon a time in Objectville

30 chapter 2

Ameoba rotation point in Larry

and Brad’s version:

Where the ameba rotation

point should be:

What the spec conveniently
forgot to mention

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the
Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not
how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:

 1) determine the rectangle that surrounds the shape

 2) calculate the center of that rectangle, and rotate the shape around that point.

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I’m toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could
just add another if/else to the rotate procedure, and then just hard-code the rotation point
code for the amoeba. That probably won’t break anything.” But the little voice at the back of
his head said, “Big Mistake. Do you honestly think the spec won’t change again?”

Larry snuck in just moments ahead of Brad.

Back in Larry’s cube
He fi gured he better add rotation point arguments
to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.

 rotate(shapeNum, xPt, yPt) {
 // if the shape is not an amoeba,

 // calculate the center point

 // based on a rectangle,

 // then rotate

 // else

 // use the xPt and yPt as

 // the rotation point offset

 // and then rotate

 }

 At Brad’s laptop on his lawn
chair at the Telluride Bluegrass Festival
Without missing a beat, Brad modifi ed the rotate
method, but only in the Amoeba class. He never
touched the tested, working,
compiled code for the other
parts of the program. To
give the Amoeba a rota-
tion point, he added an
attribute that all Amoebas
would have. He modi-
fi ed, tested, and delivered
(wirelessly) the revised
program during a single
Bela Fleck set.

 for the other

that all Amoebas

fi ed, tested, and delivered

Amoeba

int xPoint
int yPoint

rotate() {
 // code to rotate an amoeba
 // using amoeba’s x and y
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

you are here4

classes and objects

31

So, Brad the OO guy got the chair, right?
Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You’ve got duplicated code! The rotate
procedure is in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LARRY: Whatever. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

What Larry wanted
(figured the chair would impress her)

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

rotate()
playSound()

TriangleSquare Circle Amoeba

Shape

rotate()
playSound()

superclass

subclasses

Then I linked the other
four shape classes to
the new Shape class,
in a relationship called
inheritance.

Triangle

rotate()
playSound()

Square

rotate()
playSound()

Circle

rotate()
playSound()

I looked at what all four
classes have in common.

Amoeba

rotate()
playSound()

1

2

3

You can read this as, “Square inherits from Shape”,
“Circle inherits from Shape”, and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

once upon a time in Objectville

32 chapter 2

What about the Amoeba rotate()?
LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if
it “inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows exactly
which rotate() method to run when someone tells the Amoeba to rotate.

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

TriangleSquare Circle Amoeba

rotate()
// amoeba-specific
// rotate code

playSound()
// amoeba-specific
// sound code

Shape

rotate()
playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

LARRY: How do you “tell” an Amoeba to
do something? Don’t you have to call the
procedure, sorry—method, and then tell it
which thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

I can take
care of myself.
I know how an Amoeba

is supposed to rotate
and play a sound.

I know how a Shape is
supposed to behave. Your
job is to tell me what to

do, and my job is to make it happen.
Don’t you worry your little program-
mer head about how I do it.

I made the Amoeba class override
the rotate() and playSound()
methods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.{

{

{

{

you are here4

classes and objects

33

metacognitive tip
If you’re stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates
a different part of your brain. Although it

works best if you have another person to
discuss it with, pets work too. That’s how

our dog learned polymorphism.

The suspense is killing me.
Who got the chair?

Amy from the second fl oor.

(unbeknownst to all, the Project
Manager had given the spec to
three programmers.)

Amy from the second fl oor.

(unbeknownst to all, the Project
Manager had given the spec to
three

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that oper-
ate on that data are together in one class.”
 -Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it fl exible enough to be
used in something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t
written a line of code in 5 years.”
 -Daryl, 44, works for Chris

“Besides the chair?”
 -Amy, 34, programmer

What do you like about OO?
Time to pump some neurons.

You just read a story bout a procedural
programmer going head-to-head with an OO
programmer. You got a quick overview of some
key OO concepts including classes, methods, and
attributes. We’ll spend the rest of the chapter
looking at classes and objects (we’ll return to
inheritance and overriding in later chapters).

Based on what you’ve seen so far (and what you
may know from a previous OO language you’ve
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?
If you could design a checklist to use when
you’re designing a class, what would be on the
checklist?

brain
powerA

34 chapter 2

thinking about objects

ShoppingCart

cartContents

addToCart()
removeFromCart()
checkOut()

knows

does

Button

label
color

setColor()
setLabel()
dePress()
unDepress()

knows

does

Alarm

alarmTime
alarmMode

setAlarmTime()
setAlarm()
isAlarmSet()
snooze()

knows

does

When you design a class, think about the objects that
will be created from that class type. Think about:

 ■ things the object knows

 ■ things the object does

Things an object knows about itself are called

 ■ instance variables

Things an object can do are called

 ■ methods

Song

title
artist

setTitle()
setArtist()
play()

instance
variables
(state)

methods
(behavior)

knows

does

Things an object knows about itself are called instance
variables. They represent an object’s state (the data), and
can have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need
to know about itself, and you also design the methods
that operate on that data. It’s common for an object to
have methods that read or write the values of the instance
variables. For example, Alarm objects have an instance
variable to hold the alarmTime, and two methods for
getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

Sharpen your pencil
Fill in what a television object
might need to know and do.

Alarm

alarmTime
alarmMode

setAlarmTime()
getAlarmTime()
isAlarmSet()
snooze()

knows

does

you are here4

classes and objects

35

What’s the difference between
a class and an object?

 A class is a blueprint for an object. It tells the
virtual machine how to make an object of that
particular type. Each object made from that
class can have its own values for the
instance variables of that class. For
example, you might use the Button
class to make dozens of different
buttons, and each button might have
its own color, size, shape, label, and so on.

A class is not an object.

(but it’s used to construct them)

class

JVM

Look at it this way...
One analogy for objects is a packet of unused Rolodex™ cards.
Each card has the same blank fields (the instance variables). When
you fill out a card you are creating an instance (object), and the
entries you make on that card represent its state.

The methods of the class are the things you do to a particular card;
getName(), changeName(), setName() could all be methods for
class Rolodex.

So, each card can do the same things (getName(), changeName(),
etc.), but each card knows things unique to that particular card.

An object is like one entry in your address book.

36 chapter 2

class DogTestDrive {
 public static void main (String[] args) {

 Dog d = new Dog();

 d.size = 40;
 d.bark();
 }
}

DOG

size
breed
name

bark()

making objects

class Dog {

 int size;
 String breed;
 String name;

 void bark() {
 System.out.println(“Ruff! Ruff!”);
 }
}

Making your first object
So what does it take to create and use an object? You need two classes. One
class for the type of object you want to use (Dog, AlarmClock, Television,
etc.) and another class to test your new class. The tester class is where you put
the main method, and in that main() method you create and access objects
of your new class type. The tester class has only one job: to try out the meth-
ods and variables of your new object class type.

From this point forward in the book, you’ll see two classes in many of
our examples. One will be the real class – the class whose objects we
really want to use, and the other class will be the tester class, which we
call <whateverYourClassNameIs> TestDrive. For example, if we make a
Bungee class, we’ll need a BungeeTestDrive class as well. Only the
<someClassName>TestDrive class will have a main() method, and its sole
purpose is to create objects of your new type (the not-the-tester class), and
then use the dot operator (.) to access the methods and variables of the new
objects. This will all be made stunningly clear by the following examples.

1 Write your class

class DogTestDrive {
 public static void main (String[] args) {
 // Dog test code goes here
 }
}

2 Write a tester (TestDrive) class

3 In your tester, make an object and access
the object’s variables and methods

instance variables

a method

just a main method

(we’re gonn
a put cod

e

in it in t
he next s

tep)

make a Dog object
use the dot operator (.) to set the size of the Dogand to call its bark() method

 dot
operator

The dot operator (.) gives
you access to an object’s
state and behavior (instance
variables and methods).

// make a new object

Dog d = new Dog();

// tell it to bark by using the
// dot operator on the
// variable d to call bark()

d.bark();

// set its size using the
// dot operator

d.size = 40;

The Dot Operator (.)

If you already have some OO savvy,
you’ll know we’re not using encapsulation.
We’ll get there in chapter 4.

you are here4

classes and objects

37

Sharpen your pencil

object 1

object 2

object 3

title

genre

rating

title

genre

rating

title

genre

rating

MOVIE

title
genre
rating

playIt()

class Movie {
 String title;
 String genre;
 int rating;

 void playIt() {
 System.out.println(“Playing the movie”);
 }
}

public class MovieTestDrive {
 public static void main(String[] args) {
 Movie one = new Movie();
 one.title = “Gone with the Stock”;
 one.genre = “Tragic”;
 one.rating = -2;
 Movie two = new Movie();
 two.title = “Lost in Cubicle Space”;
 two.genre = “Comedy”;
 two.rating = 5;
 two.playIt();
 Movie three = new Movie();
 three.title = “Byte Club”;
 three.genre = “Tragic but ultimately uplifting”;
 three.rating = 127;
 }
}

Making and testing Movie objects

The MovieTestDrive class creates objects (instances) of
the Movie class and uses the dot operator (.) to set the
instance variables to a specific value. The MovieTestDrive
class also invokes (calls) a method on one of the objects.
Fill in the chart to the right with the values the three
objects have at the end of main().

38 chapter 2

GuessGame

p1
p2
p3

startGame()startGame()

get the heck out of main

Quick! Get out of main!
As long as you’re in main(), you’re not really in Objectville. It’s fi ne for a test
program to run within the main method, but in a true OO application, you
need objects talking to other objects, as opposed to a static main() method
creating and testing objects.

The two uses of main:

 ■ to test your real class

 ■ to launch/start your Java application

A real Java application is nothing but objects talking to other objects. In this
case, talking means objects calling methods on one another. On the previous
page, and in chapter 4 , we look at using a main() method from a separate
TestDrive class to create and test the methods and variables of another class. In
chapter 6 we look at using a class with a main() method to start the ball rolling
on a real Java application (by making objects and then turning those objects
loose to interact with other objects, etc.)

As a ‘sneak preview’, though, of how a real Java application might behave,
here’s a little example. Because we’re still at the earliest stages of learning Java,
we’re working with a small toolkit, so you’ll fi nd this program a little clunky
and ineffi cient. You might want to think about what you could do to improve
it, and in later chapters that’s exactly what we’ll do. Don’t worry if some of the
code is confusing; the key point of this example is that objects talk to objects.

The Guessing Game

Summary:

The guessing game involves a ‘game’ object and three ‘player’ objects. The game gen-
erates a random number between 0 and 9, and the three player objects try to guess
it. (We didn’t say it was a really exciting game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:

1) The GameLauncher class is where the application starts; it has the main() method.

2) In the main() method, a GuessGame object is created, and its startGame() method
is called.

3) The GuessGame object’s startGame() method is where the entire game plays out.
It creates three players, then “thinks” of a random number (the target for the players
to guess). It then asks each player to guess, checks the result, and either prints out
information about the winning player(s) or asks them to guess again.

Player

number

guess()guess()

instance variablesforthe threeplayers

the numberthis playerguessed

method formaking a guess

GameLauncher

main(String[] args)main(String[] args)

makes a GuessGameobject andtells it tostartGame

you are here4

classes and objects

39

public class GuessGame {
 Player p1;
 Player p2;
 Player p3;

 public void startGame() {
 p1 = new Player();
 p2 = new Player();
 p3 = new Player();

 int guessp1 = 0;
 int guessp2 = 0;
 int guessp3 = 0;

 boolean p1isRight = false;
 boolean p2isRight = false;
 boolean p3isRight = false;

 int targetNumber = (int) (Math.random() * 10);
 System.out.println(“I’m thinking of a number between 0 and 9...”);

 while(true) {
 System.out.println(“Number to guess is “ + targetNumber);

 p1.guess();
 p2.guess();
 p3.guess();

 guessp1 = p1.number;
 System.out.println(“Player one guessed “ + guessp1);

 guessp2 = p2.number;
 System.out.println(“Player two guessed “ + guessp2);

 guessp3 = p3.number;
 System.out.println(“Player three guessed “ + guessp3);

 if (guessp1 == targetNumber) {
 p1isRight = true;
 }
 if (guessp2 == targetNumber) {
 p2isRight = true;
 }
 if (guessp3 == targetNumber) {
 p3isRight = true;
 }

 if (p1isRight || p2isRight || p3isRight) {

 System.out.println(“We have a winner!”);
 System.out.println(“Player one got it right? “ + p1isRight);
 System.out.println(“Player two got it right? “ + p2isRight);
 System.out.println(“Player three got it right? “ + p3isRight);
 System.out.println(“Game is over.”);
 break; // game over, so break out of the loop

 } else {
 // we must keep going because nobody got it right!
 System.out.println(“Players will have to try again.”);
 } // end if/else
 } // end loop
 } // end method
} // end class

GuessGame has three instance variables for the three Player objects

create three Player objects and assign them to the three Player instance variables
declare three variables to hold the three guesses the Players make

declare three variables to hold a true or false based on the player’s answer
make a ‘target’ number that the players have to guess

call each player’s guess() method

get each player’s guess (the result of their guess() method running) by accessing the number variable of each player

check each player’s guess to see if it matches the target number. If a player is right, then set that player’s variable to be true (remember, we set it false by default)

if player one OR player two OR player three is right... (the || operator means OR)

otherwise, stay in the loop and ask the
players for another guess.

40 chapter 2

File Edit Window Help Explode

%java GameLauncher
I’m thinking of a number between 0 and 9...

Number to guess is 7

I’m guessing 1

I’m guessing 9

I’m guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 3

I’m guessing 0

I’m guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 7

I’m guessing 5

I’m guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

Output (it will be different each time you run it)

Running the Guessing Game

Guessing Game

public class Player {
 int number = 0; // where the guess goes

 public void guess() {
 number = (int) (Math.random() * 10);
 System.out.println(“I’m guessing “
 + number);
 }
}

public class GameLauncher {
 public static void main (String[] args) {
 GuessGame game = new GuessGame();
 game.startGame();
 }
}

Java takes out the
Garbage
Each time an object is created
in Java, it goes into an area of

memory known as The Heap.
All objects—no matter when, where,

or how they’re created – live on the
heap. But it’s not just any old memory
heap; the Java heap is actually called the
Garbage-Collectible Heap. When you
create an object, Java allocates memory
space on the heap according to how
much that particular object needs. An
object with, say, 15 instance variables,
will probably need more space than an
object with only two instance variables.
But what happens when you need to
reclaim that space? How do you get an
object out of the heap when you’re done
with it? Java manages that memory
for you! When the JVM can ‘see’ that an
object can never be used again, that
object becomes eligible for garbage
collection. And if you’re running low on
memory, the Garbage Collector will run,
throw out the unreachable objects, and
free up the space, so that the space can
be reused. In later chapters you’ll learn
more about how this works.

you are here4

classes and objects

41

 BULLET POINTS
ß Object-oriented programming lets you extend

a program without having to touch previously-
tested, working code.

ß All Java code is defined in a class.

ß A class describes how to make an object of
that class type. A class is like a blueprint.

ß An object can take care of itself; you don’t
have to know or care how the object does it.

ß An object knows things and does things.

ß Things an object knows about itself are called
instance variables. They represent the state
of an object.

ß Things an object does are called methods.
They represent the behavior of an object.

ß When you create a class, you may also want
to create a separate test class which you’ll
use to create objects of your new class type.

ß A class can inherit instance variables and
methods from a more abstract superclass.

ß At runtime, a Java program is nothing more
than objects ‘talking’ to other objects.

there are noDumb Questions
Q: What if I need global
variables and methods? How
do I do that if everything has to
go in a class?

A: There isn’t a concept of
‘global’ variables and methods in
a Java OO program. In practical
use, however, there are times
when you want a method (or
a constant) to be available
to any code running in any
part of your program. Think
of the random() method in
the Phrase-O-Matic app; it’s a
method that should be callable
from anywhere. Or what about
a constant like pi? You’ll learn
in chapter 10 that marking
a method as public and
static makes it behave much
like a ‘global’. Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public, static, and fi nal
– you have essentially made a
globally-available constant.

Q: Then how is this object-
oriented if you can still make
global functions and global
data?

A: First of all, everything
in Java goes in a class. So the
constant for pi and the method
for random(), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule
in Java. They represent a very
special case, where you don’t
have multiple instances/objects.

Q: What is a Java program?
What do you actually deliver?

A: A Java program is a pile
of classes (or at least one class).
In a Java application, one of
the classes must have a main
method, used to start-up the
program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t
have a JVM, then you’ll also
need to include that with
your application’s classes,
so that they can run your
program. There are a number
of installer programs that
let you bundle your classes
with a variety of JVM’s (say, for
different platforms), and put it all
on a CD-ROM. Then the end-user
can install the correct version of
the JVM (assuming they don’t
already have it on their machine.)

Q: What if I have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver
all those individual fi les?
Can I bundle them into one
Application Thing?

A: Yes, it would be a big
pain to deliver a huge bunch of
individual files to your end-users,
but you won’t have to. You can
put all of your application files
into a Java Archive – a .jar file –
that’s based on the pkzip format.
In the jar file, you can include
a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main() method that
should run.

 a Java program?
deliver?

A Java program is a pile
class).

the classes must have a main

program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t

program. There are a number

with a variety of JVM’s (say, for

Make it Sticki kkk
A class is like a recipe.Objects are like cookies.

42 chapter 2

 A
class TapeDeck {

 boolean canRecord = false;

 void playTape() {
 System.out.println(“tape playing”);
 }

 void recordTape() {
 System.out.println(“tape recording”);
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();

 }

 }

}

 B
class DVDPlayer {

 boolean canRecord = false;

 void recordDVD() {
 System.out.println(“DVD recording”);
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {

 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();

 if (d.canRecord == true) {
 d.recordDVD();

 }

 }

}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and

determine whether each of
these files will compile.
If they won’t compile,
how would you fix them,

and if they do compile,
what would be their output?

BE the compilerExercise

exercise: Be the Compiler

you are here4

classes and objects

43

A Java program is all scrambled up on
the fridge. Can you reconstruct the
code snippets to make a working Java
program that produces the output listed
below? Some of the curly braces fell on
the floor and they were too small to pick
up, so feel free to add as many of those
as you need.

boolean topHat =
 true;

boolean snare =
true;

void playSnare() {

 System.out.println(“bang bang ba-b
ang”);

}

 if (d.snare == true) { d.playSnare(); }

 d.snare = false;

class DrumKitTestDrive {

 d.p
layTopH

at();

 public static void main(String [] args) {

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

 void playTopHat () {
 System.out.println(“ding ding da-ding”); }

class DrumKit {

boolean topHat =
 true;

DrumKit d = new DrumKit();

Code Magnets

DrumKit d = new DrumKit();

d.playSnare();

Exercise

44 chapter 2

x == 3

x == 4

x < 4

x < 5

x > 0

x > 1

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

make classes that will compile and
run and produce the output listed.

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 e1.hello();

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class ____________ {

 int _________ = 0;

 void ___________ {

 System.out.println(“helloooo... “);
 }
 }

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help Implode

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

Output

e1 = e1 + 1;

e1 = count + 1;

e1.count = count + 1;

e1.count = e1.count + 1;

e2 = e1;

Echo e2;

Echo e2 = e1;

Echo e2 = new Echo();

x

y

e2

count

Echo

Tester

echo()

count()

hello()

Bonus Question !

If the last line of output was
24 instead of 10 how would
you complete the puzzle ?

puzzle: Pool Puzzle

you are here4

classes and objects

45

Who am I?

I am compiled from a .java file.

My instance variable values can
be different from my buddy’s
values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object instances.

My state can change.

I declare methods.

I can change at runtime.

class

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one of them, choose all for whom that sentence can
apply. Fill in the blanks next to the sentence with the names of one or
more attendees. The first one’s on us.

Tonight’s attendees:

Class Method Object Instance variable

46 chapter 2

A

B

Code Magnets:

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

class DrumKit {

 boolean topHat = true;
 boolean snare = true;

 void playTopHat() {
 System.out.println(“ding ding da-ding”);
 }

 void playSnare() {
 System.out.println(“bang bang ba-bang”);
 }
}

class DrumKitTestDrive {
 public static void main(String [] args) {

 DrumKit d = new DrumKit();
 d.playSnare();
 d.snare = false;
 d.playTopHat();

 if (d.snare == true) {
 d.playSnare();
 }
 }
}

class TapeDeck {
 boolean canRecord = false;
 void playTape() {
 System.out.println(“tape playing”);
 }
 void recordTape() {
 System.out.println(“tape recording”);
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 TapeDeck t = new TapeDeck();
 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();
 }
 } We’ve got the template, now we have
} to make an object !

class DVDPlayer {
 boolean canRecord = false;
 void recordDVD() {
 System.out.println(“DVD recording”);
 }
 void playDVD () {
 System.out.println(“DVD playing”);
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {
 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();
 if (d.canRecord == true) {
 d.recordDVD();
 }
 } The line: d.playDVD(); wouldn’t
} compile without a method !

Exercise Solutions
Exercise

Be the Compiler:

exercise solutions

you are here4

classes and objects

47

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 Echo e2 = new Echo(); // the correct answer
 - or -
 Echo e2 = e1; // is the bonus answer!
 int x = 0;

 while (x < 4) {
 e1.hello();

 e1.count = e1.count + 1;
 if (x == 3) {
 e2.count = e2.count + 1;

 }

 if (x > 0) {
 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class Echo {
 int count = 0;
 void hello() {
 System.out.println(“helloooo... “);
 }
 }

File Edit Window Help Assimilate

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

I am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object
instances.

My state can change.

I declare methods.

I can change at runtime.

class

object

class

object, method

class, object

instance variable

object, class

method, instance variable

object

class

object, instance variable

class

object, instance variable

Pool Puzzle

Who am I?

Note: both classes and objects are said to have state and behavior.
They’re defined in the class, but the object is also said to ‘have’
them. Right now, we don’t care where they technically live.

Puzzle Solutions

3 primitives and references

this is a new chapter 49

Variables come in two flavors: primitive and reference. So far you’ve

used variables in two places—as object state (instance variables), and as local variables

(variables declared within a method). Later, we’ll use variables as arguments (values sent to a

method by the calling code), and as return types (values sent back to the caller of the method).

You’ve seen variables declared as simple primitive integer values (type int). You’ve seen

variables declared as something more complex like a String or an array. But there’s gotta be

more to life than integers, Strings, and arrays. What if you have a PetOwner object with a Dog

instance variable? Or a Car with an Engine? In this chapter we’ll unwrap the mysteries of Java

types and look at what you can declare as a variable, what you can put in a variable, and what you

can do with a variable. And we’ll finally see what life is truly like on the garbage-collectible heap.

 Know Your Variables

Make it Stick

50 chapter 3

declaring a variable

Declaring a variable
Java cares about type. It won’t let you do
something bizarre and dangerous like stuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbit to hop()? And it won’t let you put a
floating point number into an integer variable,
unless you acknowledge to the compiler that you
know you might lose precision (like, everything
after the decimal point).

The compiler can spot most problems:

Rabbit hopper = new Giraffe();

Don’t expect that to compile. Thankfully.

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitives hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating point
numbers. Object references hold, well, references
to objects (gee, didn’t that clear it up.)

We’ll look at primitives first and then move
on to what an object reference really means.
But regardless of the type, you must follow two
declaration rules:

Besides a type, a variable needs a name, so that
you can use that name in code.

variables must have a type

int count;

type name

Java cares ab
out type.

You can’t put
 a Giraffe

in a Rabbit variab
le.

variables must have a name

Note: When you see a statement like: “an object
of type X”, think of type and class as synonyms.
(We’ll refine that a little more in later chapters.)

you are here4

primitives and references

51

“I’d like a double mocha, no, make it an int.”
When you think of Java variables, think of cups. Coffee cups, tea cups, giant
cups that hold lots and lots of beer, those big cups the popcorn comes in at
the movies, cups with curvy, sexy handles, and cups with metallic trim that
you learned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

It has a size, and a type. In this chapter, we’re going to look first at the
variables (cups) that hold primitives, then a little later we’ll look at cups
that hold references to objects. Stay with us here on the whole cup analogy—as
simple as it is right now, it’ll give us a common way to look at things when
the discussion gets more complex. And that’ll happen soon.

Primitives are like the cups they have at the coffeehouse. If you’ve been to a
Starbucks, you know what we’re talking about here. They come in different
sizes, and each has a name like ‘short’, ‘tall’, and, “I’d like a
‘grande’ mocha half-caff with extra whipped cream”.

You might see the cups displayed on the counter,
so you can order appropriately:

And in Java, primitives come in different sizes, and those sizes
have names. When you declare a variable in Java,

you must declare it with a specific type. The
four containers here are for the four
integer primitives in Java.

Each cup holds a value, so for Java primitives, rather than saying, “I’d like a
tall french roast”, you say to the compiler, “I’d like an int variable with the
number 90 please.” Except for one tiny difference... in Java you also have to
give your cup a name. So it’s actually, “I’d like an int please, with the value
of 2486, and name the variable height.” Each primitive variable has a fixed
number of bits (cup size). The sizes for the six numeric primitives in Java
are shown below:

small short tall grande

long int short byte

byte short int long float double
 8 16 32 64 32 64

Type Bit Depth Value Range

boolean and char

boolean (JVM-specific) true or false

char 16 bits 0 to 65535

numeric (all are signed)

integer

byte 8 bits -128 to 127

short 16 bits -32768 to
 32767

int 32 bits -2147483648

 to 2147483647

long 64 bits -huge to huge

floating point

float 32 bits varies

double 64 bits varies

Primitive declarations
with assignments:

int x;

x = 234;

byte b = 89;

boolean isFun = true;

double d = 3456.98;

char c = ‘f ’;

int z = x;

boolean isPunkRock;

isPunkRock = false;

boolean powerOn;

powerOn = isFun;

long big = 3456789;

float f = 32.5f;

Note the ‘f’. Gotta have that

with a float, becau
se Java thinks

anything with a floating poi
nt is

a double, unless yo
u use ‘f’.

Primitive Types

52 chapter 3

primitive assignment

You really don’t want to spill that...
Be sure the value can fit into the variable.

You can’t put a large value into a
small cup.

Well, OK, you can, but you’ll
lose some. You’ll get, as we say,
spillage. The compiler tries to
help prevent this if it can tell
from your code that something’s
not going to fit in the container
(variable/cup) you’re using.

For example, you can’t pour an
int-full of stuff into a byte-sized
container, as follows:

int x = 24;

byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of x is 24, and 24 is definitely
small enough to fit into a byte. You know that, and we know that, but all the
compiler cares about is that you’re trying to put a big thing into a small thing,
and there’s the possibility of spilling. Don’t expect the compiler to know what the
value of x is, even if you happen to be able to see it literally in your code.

 You can assign a value to a variable in one of several ways including:

 ■ type a literal value after the equals sign (x=12, isGood = true, etc.)

 ■ assign the value of one variable to another (x = y)

 ■ use an expression combining the two (x = y + 43)

In the examples below, the literal values are in bold italics:

int size = 32; declare an int named size, assign it the value 32

char initial = ‘j’; declare a char named initial, assign it the value ‘j’

double d = 456.709; declare a double named d, assign it the value 456.709

boolean isCrazy; declare a boolean named isCrazy (no assignment)

isCrazy = true; assign the value true to the previously-declared isCrazy

int y = x + 456; declare an int named y, assign it the value that is the sum
 of whatever x is now plus 456

Sharpen your pencil

The compiler won’t let you put
a value from a large cup into
a small one. But what about
the other way—pouring a
small cup into a big one? No
problem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren’t.
We haven’t covered all the
rules yet, so on some of these
you’ll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

 1. int x = 34.5;

 2. boolean boo = x;

 3. int g = 17;

 4. int y = g;

 5. y = y + 10;

 6. short s;

 7. s = y;

 8. byte b = 3;

 9. byte v = b;

 10. short n = 12;

 11. v = n;

 12. byte k = 128;

you are here4

primitives and references

53

Make it Sticki kkk

The eight primitive types are:

boolean char byte short int long float double

And here’s a mnemonic for remembering them:

Be Careful! Bears Shouldn’t Ingest Large

Furry Dogs

If you make up your own, it’ll stick even better.

B_ C_ B_ S_ I_ L_ F_ D_

Back away from that keyword!
You know you need a name and a type for your variables.

You already know the primitive types.

But what can you use as names? The rules are simple. You
can name a class, method, or variable according to the
following rules (the real rules are slightly more fl exible,
but these will keep you safe):

■ It must start with a letter, underscore (_), or
dollar sign ($). You can’t start a name with a
number.

■ After the fi rst character, you can use numbers as
well. Just don’t start it with a number.

■ It can be anything you like, subject to those two
rules, just so long as it isn’t one of Java’s reserved
words.

 are keywords (and other things) that the compiler recognizes.
And if you really want to play confuse-a-compiler, then just try
using a reserved word as a name.

You’ve already seen some reserved words when we looked at
writing our fi rst main class:

public static void

And the primitive types are reserved as well:

boolean char byte short int long fl oat double

But there are a lot more we haven’t discussed yet. Even if you don’t
need to know what they mean, you still need to know you can’t use
‘em yourself. Do not–under any circumstances–try to memorize these
now. To make room for these in your head, you’d probably have to
lose something else. Like where your car is parked. Don’t worry, by
the end of the book you’ll have most of them down cold.

don’t use any of these
for your own names.

boolean byte char double fl oat int long short public private

protected abstract fi nal native static strictfp synchronized transient volatile if

else do while switch case default for break continue assert

class extends implements import instanceof interface new package super this

catch fi nally try throw throws return void const goto enum

This table reserved.

Java’s keywords and other reserved words (in no useful order). If you use these for names, the compiler will be very, very upset.

short public private

No matter what
you hear, do not, I repeat,
do not let me ingest

another large furry dog.

54 chapter 3

object references

Controlling your Dog object
You know how to declare a primitive variable and assign it a
value. But now what about non-primitive variables? In other
words, what about objects?

■ There is actually no such thing as an object variable.

■ There’s only an object reference variable.

■ An object reference variable holds bits that represent a
way to access an object.

■ It doesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know what is inside a reference variable. We do
know that whatever it is, it represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff an object into a variable. We often think of
it that way... we say things like, “I passed the String to the
System.out.println() method.” Or, “The method returns a Dog”,
or, “I put a new Foo object into the variable named myFoo.”

But that’s not what happens. There aren’t giant
expandable cups that can grow to the size of any
object. Objects live in one place and one place
only—the garbage collectible heap! (You’ll
learn more about that later in this chapter.)

Although a primitive variable is full of
bits representing the actual value of the
variable, an object reference variable is full
of bits representing a way to get to the
object.

You use the dot operator (.)
on a reference variable to say,
“use the thing before the dot to
get me the thing after the dot.” For
example:

myDog.bark();

means, “use the object referenced by the variable myDog to
invoke the bark() method.” When you use the dot operator on
an object reference variable, think of it like pressing a button
on the remote control for that object.

Dog d = new Dog();
d.bark();

think of this
like this

Think of a Dog
reference variable as
a Dog remote control.

You use it to get the
object to do something

(invoke methods).

you are here4

primitives and references

55

referencebyte short int long
 8 16 32 64 (bit depth not relevant)

An object reference is just
another variable value.
Something that goes in a cup.
Only this time, the value is a remote control.

With primitive variables, the value of the vari-
able is... the value (5, -26.7, ʻaʼ).

With reference variables, the value of the
variable is... bits representing a way to get to
a specific object.

You donʼt know (or care) how any particular
JVM implements object references. Sure, they
might be a pointer to a pointer to... but even
if you know, you still canʼt use the bits for
anything other than accessing an object.

Dog myDog = new Dog();
Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

1 Declare a reference
variable

Dog

myDog

Dog myDog = new Dog();
Tells the JVM to allocate space for a
new Dog object on the heap (we’ll
learn a lot more about that process,
especially in chapter 9.)

2 Create an object

Dog myDog = new Dog();

The 3 steps of object
declaration, creation and
assignment

1 2
3

Dog object

Dog myDog = new Dog();
Assigns the new Dog to the reference
variable myDog. In other words,
programs the remote control.

3 Link the object
and the reference

Dog object

Dog

myDog

We don’t care how many 1’s and 0’s there are in a reference variable.It’s up to each
JVM and the phase of the moon.

byte x = 7;
The bits representing 7 go
into the variable. (00000111).

00000111

Dog myDog = new Dog();
The bits representing a way to get to
the Dog object go into the variable.

The Dog object itself does not go into
the variable!

primitive
value

reference
value

Reference Variable

Primitive Variable

Dog o bj
ec

t

Dog

byte

56 chapter 3

there are noDumb Questions
Q:How big is a reference
variable?

A:You don’t know. Unless
you’re cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented. There are pointers
in there somewhere, but you
can’t access them. You won’t
need to. (OK, if you insist, you
might as well just imagine it
to be a 64-bit value.) But when
you’re talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you’re creating,
and how big they (the objects)
really are.

Q:So, does that mean that
all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A:Yep. All references for a
given JVM will be the same
size regardless of the objects
they reference, but each JVM
might have a different way of
representing references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q:Can I do arithmetic on a
reference variable, increment it,
you know – C stuff?

A:Nope. Say it with me again,
“Java is not C.”

object references

HeadFirst: So, tell us, what’s life like for an object reference?

Reference: Pretty simple, really. I’m a remote control and I can be programmed to
control different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer to a Dog and then five minutes later refer to a Car?

Reference: Of course not. Once I’m declared, that’s it. If I’m a Dog remote control
then I’ll never be able to point (oops – my bad, we’re not supposed to say point) I mean refer
to anything but a Dog.

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer to
some other Dog. As long as it’s a Dog, I can be redirected (like reprogramming your remote
to a different TV) to it. Unless... no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I’ll just give you the short
version – if I’m marked as final, then once I am assigned a Dog, I can never be repro-
grammed to anything else but that one and only Dog. In other words, no other object can
be assigned to me.

HeadFirst: You’re right, we don’t want to talk about that now. OK, so unless you’re
final, then you can refer to one Dog and then refer to a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it.

HeadFirst: Why is that?

Reference: Because it means I’m null, and that’s upsetting to me.

HeadFirst: You mean, because then you have no value?

Reference: Oh, null is a value. I’m still a remote control, but it’s like you brought
home a new universal remote control and you don’t have a TV. I’m not programmed to
control anything. They can press my buttons all day long, but nothing good happens. I
just feel so... useless. A waste of bits. Granted, not that many bits, but still. And that’s not
the worst part. If I am the only reference to a particular object, and then I’m set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because...

Reference: You have to ask? Here I’ve developed a relationship with this object, an
intimate connection, and then the tie is suddenly, cruelly, severed. And I will never see
that object again, because now it’s eligible for [producer, cue tragic music] garbage collection.
Sniff. But do you think programmers ever consider that? Snif. Why, why can’t I be a primi-
tive? I hate being a reference. The responsibility, all the broken attachments...

This week’s interview:
Object Reference

Java Exposed

you are here4

primitives and references

57

Book

b

Book b = new Book();

Book c = new Book();

Book d = c;

Declare two Book reference
variables. Create two new Book
objects. Assign the Book objects to
the reference variables.

The two Book objects are now living
on the heap.

References: 2

Objects: 2

Declare a new Book reference variable.
Rather than creating a new, third Book
object, assign the value of variable c to
variable d. But what does this mean?
It’s like saying, “Take the bits in c, make a
copy of them, and stick that copy into d.”

Both c and d refer to the same
object.

The c and d variables hold
two different copies of the
same value. Two remotes
programmed to one TV.

References: 3

Objects: 2

Book

C

Book object

Book object

Book

b

C

Book object

Book objec

t

Book

dBook

c = b;

Assign the value of variable b to
variable c. By now you know what
this means. The bits inside variable
b are copied, and that new copy is
stuffed into variable c.

Both b and c refer to the
same object.

References: 3

Objects: 2

Book

b

C

Book objec

t

Book objec

t

d

✘

Life on the garbage-collectible heap

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

1

1

2

2

1

2

58 chapter 3

Book

b

Book b = new Book();

Book c = new Book();

b = c;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2

Reachable Objects: 2

Assign the value of variable c to variable b.
The bits inside variable c are copied, and
that new copy is stuffed into variable b.
Both variables hold identical values.

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It’s unreachable.

Book

C

Book object

Book object

Book

b

C

Book objec

t

Book
c = null;

Assign the value null to variable c.
This makes c a null reference, meaning
it doesn’t refer to anything. But it’s still
a reference variable, and another Book
object can still be assigned to it.

Object 2 still has an active
reference (b), and as long
as it does, the object is not
eligible for GC.

Active References: 1

null References: 1

Reachable Objects: 1

Abandoned Objects: 1

Life and death on the heap

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

objects on the heap

This guy is toast.

garbage-collector bait.

C

Book objec

t

Book

Still toast

Book

b ✘

null reference

(not programmed to anything)

Book object

Book object

1

1

2

2

2

1

Not yet toast
(safe as long as

b

refers to it)

you are here4

primitives and references

59

Arrays are objects too
The Java standard library includes
lots of sophisticated data structures
including maps, trees, and sets
(see Appendix B), but arrays are
great when you just want a quick,
ordered, efficient list of things.
Arrays give you fast random
access by letting you use an index
position to get to any element in
the array.

Every element in an array is just
a variable. In other words, one of
the eight primitive variable types
(think: Large Furry Dog) or a

reference variable. Anything you
would put in a variable of that type
can be assigned to an array element
of that type. So in an array of type
int (int[]), each element can hold
an int. In a Dog array (Dog[]) each
element can hold... a Dog? No,
remember that a reference variable
just holds a reference (a remote
control), not the object itself. So
in a Dog array, each element can
hold a remote control to a Dog. Of
course, we still have to make the
Dog objects... and you’ll see all that
on the next page.

Be sure to notice one key thing
in the picture above – the array is
an object, even though it’s an array of
primitives.

Arrays are always objects, whether
they’re declared to hold primitives
or object references. But you can
have an array object that’s declared
to hold primitive values. In other
words, the array object can have
elements which are primitives, but
the array itself is never a primitive.
Regardless of what the array holds,
the array itself is always an object!

int array object (int[])

int[]

nums

nums[0] = 6;
nums[1] = 19;
nums[2] = 44;
nums[3] = 42;
nums[4] = 10;
nums[5] = 20;
nums[6] = 1;

1 Declare an int array variable. An array variable is
a remote control to an array object.

int[] nums;

nums = new int[7];

2 Create a new int array with a length
of 7, and assign it to the previously-
declared int[] variable nums

3 Give each element in the array
an int value.
Remember, elements in an int
array are just int variables.

An array is like a tray of cups

int int int int int int int

Notice that the array itself is an object,
even though the 7 elements are primitives.

7 int variables

7
int

 va
ria

ble
s

60 chapter 3

Dog array object (Dog[])
Dog[]

pets

pets[0] = new Dog();
pets[1] = new Dog();

1 Declare a Dog array variable
Dog[] pets;

pets = new Dog[7];

2 Create a new Dog array with
a length of 7, and assign it to
the previously-declared Dog[]
variable pets

3 Create new Dog objects, and
assign them to the array
elements.
Remember, elements in a Dog
array are just Dog reference
variables. We still need Dogs!

Make an array of Dogs

Dog Dog Dog Dog Dog Dog Dog

an array of objects

What’s missing?
Dogs! We have an array
of Dog references, but no
actual Dog objects!

Dog array object (Dog[])
Dog[]

pets

Dog Dog Dog Dog Dog Dog Dog

Dog ObjectDog Object

Sharpen your pencil

What is the current value of
pets[2]? ___________

What code would make
pets[3] refer to one of the
two existing Dog objects?

you are here4

primitives and references

61

Dog

Dog

name

bark()
eat()
chaseCat()

Control your Dog
(with a reference variable)

Dog fi do = new Dog();

fi do.name = “Fido”;

Dog objec
t

name

StringWe created a Dog object and
used the dot operator on the
reference variable fi do to access
the name variable.*

We can use the fi do reference
to get the dog to bark() or
eat() or chaseCat().

fi do.bark();

fi do.chaseCat();

fido

What happens if the Dog is in
a Dog array?
We know we can access the Dog’s
instance variables and methods using
the dot operator, but on what?

When the Dog is in an array, we don’t
have an actual variable name (like
fi do). Instead we use array notation and
push the remote control button (dot
operator) on an object at a particular
index (position) in the array:

Dog[] myDogs = new Dog[3];

myDogs[0] = new Dog();

myDogs[0].name = “Fido”;

myDogs[0].bark();

*Yes we know we’re not demonstrating encapsulation here, but we’re
trying to keep it simple. For now. We’ll do encapsulation in chapter 4.

Java cares about type.

Once you’ve declared an array, you

can’t put anything in it except things

that are of the declared array type.

For example, you can’t put a Cat into a Dog

array (it would be pretty awful if someone

thinks that only Dogs are in the array, so

they ask each one to bark, and then to their

horror discover there’s a cat lurking.) And

you can’t stick a double into an int array

(spillage, remember?). You can, however,

put a byte into an int array, because a

byte will always fi t into an int-sized cup.

This is known as an implicit widening. We’ll

get into the details
later, for now just

remember that the compiler won’t let you

put the wrong thing in an arra
y, based on

the array’s declared
 type.

62 chapter 3

using references

class Dog {

 String name;

 public static void main (String[] args) {

 // make a Dog object and access it

 Dog dog1 = new Dog();

 dog1.bark();

 dog1.name = “Bart”;

 // now make a Dog array

 Dog[] myDogs = new Dog[3];

 // and put some dogs in it

 myDogs[0] = new Dog();

 myDogs[1] = new Dog();

 myDogs[2] = dog1;

 // now access the Dogs using the array

 // references

 myDogs[0].name = “Fred”;

 myDogs[1].name = “Marge”;

 // Hmmmm... what is myDogs[2] name?

 System.out.print(“last dog’s name is “);

 System.out.println(myDogs[2].name);

 // now loop through the array

 // and tell all dogs to bark

 int x = 0;

 while(x < myDogs.length) {

 myDogs[x].bark();

 x = x + 1;

 }

 }

 public void bark() {

 System.out.println(name + “ says Ruff!”);

 }

 public void eat() { }

 public void chaseCat() { }

}

Dog

name

bark()
eat()
chaseCat()

A Dog example

File Edit Window Help Howl

%java Dog
null says Ruff!
last dog’s name is Bart
Fred says Ruff!
Marge says Ruff!
Bart says Ruff!

Output

 BULLET POINTS
ß Variables come in two flavors: primitive and

reference.

ß Variables must always be declared with a name
and a type.

ß A primitive variable value is the bits representing
the value (5, ‘a’, true, 3.1416, etc.).

ß A reference variable value is the bits
representing a way to get to an object on the
heap.

ß A reference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

ß A reference variable has a value of null when
it is not referencing any object.

ß An array is always an object, even if the array
is declared to hold primitives. There is no such
thing as a primitive array, only an array that
holds primitives.

arrays have a
 variable ‘leng

th’

that gives yo
u the number of

elements in the a
rray

you are here4

primitives and references

63

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these files

will compile. If they won’t
compile, how would you
fix them?

 A
class Books {
 String title;
 String author;
}

class BooksTestDrive {
 public static void main(String [] args) {

 Books [] myBooks = new Books[3];
 int x = 0;
 myBooks[0].title = “The Grapes of Java”;
 myBooks[1].title = “The Java Gatsby”;
 myBooks[2].title = “The Java Cookbook”;
 myBooks[0].author = “bob”;
 myBooks[1].author = “sue”;
 myBooks[2].author = “ian”;

 while (x < 3) {
 System.out.print(myBooks[x].title);
 System.out.print(“ by “);
 System.out.println(myBooks[x].author);
 x = x + 1;
 }
 }
}

 B
class Hobbits {

 String name;

 public static void main(String [] args) {

 Hobbits [] h = new Hobbits[3];
 int z = 0;

 while (z < 4) {
 z = z + 1;
 h[z] = new Hobbits();
 h[z].name = “bilbo”;
 if (z == 1) {
 h[z].name = “frodo”;
 }
 if (z == 2) {
 h[z].name = “sam”;
 }
 System.out.print(h[z].name + “ is a “);
 System.out.println(“good Hobbit name”);
 }
 }
}

Exercise BE the compiler

64 chapter 3

A working Java program is all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

islands[0] = “Bermuda”;islands[1] = “Fiji”;islands[2] = “Azores”;islands[3] = “Cozumel”;

class TestArrays {

 public static void main(String [] args) {

 int ref;

 while (y < 4) {

 String [] islands = new String[4];

System.out.print(“island = “);

 int [] index = new int[4];

 System.out.println(islands[ref]);

File Edit Window Help Bikini

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

index[0] =
1;

index[1] =
3;

index[2] =
0;

index[3] =
2;

y = y + 1;

int y =
0;

ref = index[y];

Exercise Code Magnets

exercise: Code Magnets

you are here4

primitives and references

65

x = x + 1;

x = x + 2;

x = x - 1; x < 4

x < 5

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

make a class that will compile and
run and produce the output listed.

class Triangle {
 double area;
 int height;
 int length;
 public static void main(String [] args) {

 while (__________) {

 ________.height = (x + 1) * 2;

 ________.length = x + 4;

 System.out.print(“triangle “+x+”, area”);

 System.out.println(“ = “ + _______.area);

 }

 x = 27;

 Triangle t5 = ta[2];

 ta[2].area = 343;

 System.out.print(“y = “ + y);

 System.out.println(“, t5 area = “+ t5.area);

 }

 void setArea() {

 ____________ = (height * length) / 2;

 }

} Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help Bermuda

%java Triangle

triangle 0, area = 4.0

triangle 1, area = 10.0

triangle 2, area = 18.0

triangle 3, area = ____

y = ______________________

Output

Triangle [] ta = new Triangle(4);

Triangle ta = new [] Triangle[4];

Triangle [] ta = new Triangle[4];

ta = new Triangle();

ta[x] = new Triangle();

ta.x = new Triangle();

ta[x] = setArea();

ta.x = setArea();

ta[x].setArea();

int x;

int y;

int x = 0;

int x = 1;

int y = x;

area

ta.area

ta.x.area

ta[x].area

ta.x

ta(x)

ta[x]

x

y

Bonus Question!

 For extra bonus points, use snippets
from the pool to fill in the missing
output (above).

28.0

30.0

4, t5 area = 18.0

4, t5 area = 343.0

27, t5 area = 18.0

27, t5 area = 343.0

(Sometimes we don’t use a se
parate

test class, beca
use we’re trying to

save space on t
he page)

66 chapter 3

A short Java program is listed to the
right. When ‘// do stuff ’ is reached, some
objects and some reference variables
will have been created. Your task is
to determine which of the reference
variables refer to which objects. Not all
the reference variables will be used, and
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you’re way smarter than us,
you probably need to draw diagrams
like the ones on page 55 and 56 of this
chapter. Use a pencil so you can draw
and then erase reference links (the
arrows going from a reference remote
control to an object).

A Heap o’ Trouble

match each refe
rence

variable with matching

object(s)

You might not have to

use every refere
nce.

 Reference Variables: HeapQuiz Objects:

id = 0

id = 1

id = 2

class HeapQuiz {
 int id = 0;
 public static void main(String [] args) {
 int x = 0;
 HeapQuiz [] hq = new HeapQuiz[5];
 while (x < 3) {
 hq[x] = new HeapQuiz();
 hq[x].id = x;
 x = x + 1;
 }
 hq[3] = hq[1];
 hq[4] = hq[1];
 hq[3] = null;
 hq[4] = hq[0];
 hq[0] = hq[3];
 hq[3] = hq[2];
 hq[2] = hq[0];
 // do stuff
 }
}

hq[0]

hq[1]

hq[2]

hq[3]

hq[4]

puzzle: Heap o’ Trouble

you are here4

primitives and references

67

The case of the pilfered references

 It was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she
owned the place. She knew that all the programmers would still be hard at work, and she
wanted help. She needed a new method added to the pivotal class that was to be loaded into the
client’s new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was
as tight as Tawny’s top, and everyone knew it. The normally raucous buzz in the bullpen fell to
silence as Tawny eased her way to the white board. She sketched a quick overview of the new
method’s functionality and slowly scanned the room. “Well boys, it’s crunch time”, she purred.
“Whoever creates the most memory efficient version of this method is coming with me to the
client’s launch party on Maui tomorrow... to help me install the new software.”

 The next morning Tawny glided into the bullpen wearing her short Aloha dress.
“Gentlemen”, she smiled, “the plane leaves in a few hours, show me what you’ve
got!”. Bob went first; as he began to sketch his design on the white board Tawny
said, “Let’s get to the point Bob, show me how you handled updating the list of con-

tact objects.” Bob quickly drew a code fragment on the board:

 Contact [] ca = new Contact[10];
 while (x < 10) { // make 10 contact objects

 ca[x] = new Contact();

 x = x + 1;

 }

 // do complicated Contact list updating stuff with ca

 “Tawny I know we’re tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts, this was the best scheme I could
cook up”, said Bob. Kent was next, already imagining coconut cocktails with Tawny, “Bob,”
he said, “your solution’s a bit kludgy don’t you think?” Kent smirked, “Take a look at this
baby”:

 Contact refc;

 while (x < 10) { // make 10 contact objects

 refc = new Contact();

 x = x + 1;

 }

 // do complicated Contact list updating stuff with refc

 “I saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen”, mocked Kent. “Not so fast Kent!”, said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”.

Why did Tawny choose Bob’s method over Kent’s, when Kent’s used less memory?

Five-Minute
Mystery

68 chapter 3

A

B

Code Magnets:

class Books {
 String title;
 String author;
}
class BooksTestDrive {
 public static void main(String [] args) {
 Books [] myBooks = new Books[3];
 int x = 0;
 myBooks[0] = new Books(); Remember: We have to
 myBooks[1] = new Books(); actually make the Books
 myBooks[2] = new Books(); objects !
 myBooks[0].title = “The Grapes of Java”;
 myBooks[1].title = “The Java Gatsby”;
 myBooks[2].title = “The Java Cookbook”;
 myBooks[0].author = “bob”;
 myBooks[1].author = “sue”;
 myBooks[2].author = “ian”;
 while (x < 3) {
 System.out.print(myBooks[x].title);
 System.out.print(“ by “);
 System.out.println(myBooks[x].author);
 x = x + 1;
 }
 }
}

class Hobbits {
 String name;
 public static void main(String [] args) {
 Hobbits [] h = new Hobbits[3];
 int z = -1; Remember: arrays start with
 while (z < 2) { element 0 !
 z = z + 1;
 h[z] = new Hobbits();
 h[z].name = “bilbo”;
 if (z == 1) {
 h[z].name = “frodo”;
 }
 if (z == 2) {
 h[z].name = “sam”;
 }
 System.out.print(h[z].name + “ is a “);
 System.out.println(“good Hobbit name”);
 }
 }
}

class TestArrays {

 public static void main(String [] args) {

 int [] index = new int[4];

 index[0] = 1;

 index[1] = 3;

 index[2] = 0;

 index[3] = 2;

 String [] islands = new String[4];

 islands[0] = “Bermuda”;

 islands[1] = “Fiji”;

 islands[2] = “Azores”;

 islands[3] = “Cozumel”;

 int y = 0;

 int ref;

 while (y < 4) {

 ref = index[y];

 System.out.print(“island = “);

 System.out.println(islands[ref]);

 y = y + 1;

 }

 }

} File Edit Window Help Bikini

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

exercise solutions

Exercise Solutions

you are here4

primitives and references

69

besides 42

class Triangle {
 double area;
 int height;
 int length;
 public static void main(String [] args) {
 int x = 0;
 Triangle [] ta = new Triangle[4];
 while (x < 4) {
 ta[x] = new Triangle();
 ta[x].height = (x + 1) * 2;
 ta[x].length = x + 4;
 ta[x].setArea();
 System.out.print(“triangle “+x+”, area”);

 System.out.println(“ = “ + ta[x].area);
 x = x + 1;
 }

 int y = x;
 x = 27;

 Triangle t5 = ta[2];

 ta[2].area = 343;

 System.out.print(“y = “ + y);

 System.out.println(“, t5 area = “+ t5.area);

 }

 void setArea() {

 area = (height * length) / 2;
 }

}

class Triangle {
 double area;
 int height;
 int length;
 public static void main(String [] args) {
 int x = 0;
 Triangle [] ta = new Triangle[4];
 while (x < 4) {x < 4) {x < 4
 ta[x] = new Triangle();
 ta[x].height = (x + 1) * 2;
 ta[x].length = x + 4;
 ta[x].setArea();
 System.out.print(“triangle “+x+”, area”);

 System.out.println(“ = “ + ta[x].area);
 x = x + 1;
 }

 int y = x;
 x = 27;

 Triangle t5 = ta[2];

 ta[2].area = 343;

 System.out.print(“y = “ + y);

 System.out.println(“, t5 area = “+ t5.area);

 }

 void setArea() {

 area = (height * length) / 2;
 }

} File Edit Window Help Bermuda

%java Triangle
triangle 0, area = 4.0
triangle 1, area = 10.0
triangle 2, area = 18.0
triangle 3, area = 28.0
y = 4, t5 area = 343

 Reference Variables: HeapQuiz Objects:

id = 0

id = 1

id = 2

The case of the pilfered references

 Tawny could see that Kent’s method had a serious
fl aw. It’s true that he didn’t use as many reference
variables as Bob, but there was no way to access any
but the last of the Contact objects that his method cre-
ated. With each trip through the loop, he was assign-
ing a new object to the one reference variable, so the
previously referenced object was abandoned on the
heap – unreachable. Without access to nine of the ten
objects created, Kent’s method was useless.
(The software was a huge success and the client gave Tawny and Bob an extra week
in Hawaii. We’d like to tell you that by finishing this book you too will get stuff like that.)

hq[0]

hq[1]

hq[2]

hq[3]

hq[4]

Puzzle Solutions

4 methods use instance variables

this is a new chapter 71

State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by instance variables and methods. But until now, we

haven’t looked at how state and behavior are related. We already know that each instance of a

class (each object of a particular type) can have its own unique values for its instance variables.

Dog A can have a name “Fido” and a weight of 70 pounds. Dog B is “Killer” and weighs 9 pounds.

And if the Dog class has a method makeNoise(), well, don’t you think a 70-pound dog barks a

bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered

a bark.) Fortunately, that’s the whole point of an object—it has behavior that acts on its state. In

other words, methods use instance variable values. Like, “if dog is less than 14 pounds, make

yippy sound, else...” or “increase weight by 5”. Let’s go change some state.

 How Objects Behave
This oughta

change her state!

Make it Stick

72 chapter 4

objects have state and behavior

A class is the blueprint for an object. When you
write a class, you’re describing how the JVM
should make an object of that type. You already
know that every object of that type can have
different instance variable values. But what about
the methods?

Can every object of that type have different
method behavior?

Well... sort of.*

Every instance of a particular class has the same
methods, but the methods can behave differently
based on the value of the instance variables.

The Song class has two instance variables, title
and artist. The play() method plays a song, but
the instance you call play() on will play the song
represented by the value of the title instance
variable for that instance. So, if you call the play()
method on one instance you’ll hear the song
“Politik”, while another instance plays “Darkstar”.
The method code, however, is the same.

void play() {

 soundPlayer.playSound(title);

}

Song

title
artist

setTitle()
setArtist()
play()

instance
variables
(state)

methods
(behavior)

knows

does

*Yes, another stunningly clear answer!

Remember: a class describes what an
object knows and what an object does

Politik

Coldplay

Sing

Travis

Darkstar

Grateful
Dead

My Way

Sinatra

My Way

Sex Pistols

Song

 t2

t2.play();

Song

 s3

s3.play();Calling play
() on this

 instance

will cause “
Sing” to

play.

Calling play() on this instance will cause “My Way” to play.
(but not the Sinatra one)

Song t2 = new Song();

t2.setArtist(“Travis”);

t2.setTitle(“Sing”);

Song s3 = new Song();

s3.setArtist(“Sex Pistols”);

s3.setTitle(“My Way”);

five insta
nces

of class S
ong

you are here4

methods use instance variables

73

The size affects the bark
A small Dog’s bark is different from a big Dog’s bark.

The Dog class has an instance variable size, that the
bark() method uses to decide what kind of bark sound
to make.

Dog

size
name

bark()bark()

class Dog {

 int size;

 String name;

 void bark() {

 if (size > 60) {

 System.out.println(“Wooof! Wooof!”);

 } else if (size > 14) {

 System.out.println(“Ruff! Ruff!”);

 } else {

 System.out.println(“Yip! Yip!”);

 }

 }

}

class DogTestDrive {

 public static void main (String[] args) {

 Dog one = new Dog();

 one.size = 70;

 Dog two = new Dog();

 two.size = 8;

 Dog three = new Dog();

 three.size = 35;

 one.bark();

 two.bark();

 three.bark();

 }

}

File Edit Window Help Playdead

%java DogTestDrive

Wooof! Wooof!

Yip! Yip!

Ruff! Ruff!

74 chapter 4

00000011

int

method parameters

You can send things to a method
Just as you expect from any programming language, you can pass values into
your methods. You might, for example, want to tell a Dog object how many
times to bark by calling:

d.bark(3);

Depending on your programming background and personal preferences,
you might use the term arguments or perhaps parameters for the values passed
into a method. Although there are formal computer science distinctions that
people who wear lab coats and who will almost certainly not read this book,
make, we have bigger fi sh to fry in this book. So you can call them whatever
you like (arguments, donuts, hairballs, etc.) but we’re doing it like this:

A method uses parameters. A caller passes arguments.

Arguments are the things you pass into the methods. An argument (a value
like 2, “Foo”, or a reference to a Dog) lands face-down into a... wait for it...
parameter. And a parameter is nothing more than a local variable. A variable
with a type and a name, that can be used inside the body of the method.

But here’s the important part: If a method takes a parameter, you must pass
it something. And that something must be a value of the appropriate type.

void bark(int numOfBarks) {

 while (numOfBarks > 0) {

 System.out.println(“ruff”);

 numOfBarks = numOfBarks - 1;
 }
}

Dog d = new Dog();

d.bark(3);

1 Call the bark method on the Dog refer-

ence, and pass in the value 3 (as the
argument to the method).

2 The bits representing the int
value 3 are delivered into the
bark method.

3 The bits land in the numOfBarks
parameter (an int-sized variable).

4 Use the numOfBarks
parameter as a variable in
the method code.

argument

parameter

you are here4

methods use instance variables

75

0010
10

10

int

int theSecret = life.giveSecret();

int giveSecret() {

 return 42;

}

You can get things back from a method.
Methods can return values. Every method is declared with a return
type, but until now we’ve made all of our methods with a void
return type, which means they don’t give anything back.

void go() {

}

But we can declare a method to give a specific type of value
back to the caller, such as:

int giveSecret() {

 return 42;

}

If you declare a method to return a value, you must
return a value of the declared type! (Or a value
that is compatible with the declared type. We’ll get
into that more when we talk about polymorphism
in chapter 7 and chapter 8.)

Whatever you say
you’ll give back, you
better give back!

The compiler won’t let you return the wrong type of thing.

 Cute...
but not exactly what I
 was expecting.

The bits represen
ting 42 are returned f

rom

the giveSecret(
) method, and land

 in the

variable named theSecret.

this must fit
in an int!

These typ
es

must match

76 chapter 4

multiple arguments

The arguments you pass land in the same order you passed them. First argument lands
in the first parameter, second argument in
the second parameter, and so on.

You can send more than one thing
to a method

Methods can have multiple parameters. Separate them
with commas when you declare them, and separate the
arguments with commas when you pass them. Most
importantly, if a method has parameters, you must pass
arguments of the right type and order.

void takeTwo(int x, int y) {

 int z = x + y;

 System.out.println(“Total is ” + z);

}

void go() {

 TestStuff t = new TestStuff();

 t.takeTwo(12, 34);

}

Calling a t wo-parameter method, and sending
it t wo arguments.

void takeTwo(int x, int y) {

 int z = x + y;

 System.out.println(“Total is ” + z);

}

void go() {

 int foo = 7;

 int bar = 3;

 t.takeTwo(foo, bar);

}

You can pass variables into a method, as long as
the variable type matches the parameter type.

The values
of foo a

nd bar la
nd in the

x and y p
arameters. So

 now the bits
 in

x are ide
ntical to

 the bits
 in foo (t

he

bit patte
rn for th

e integer
 ‘7’) and th

e

bits in y
are ident

ical to th
e bits in

bar.

What’s the value of
 z? It’s the same

result you’d get i
f you added foo

+

bar at the time you passed them
 into

the takeTwo method

you are here4

methods use instance variables

77

Java is pass-by-value.

That means pass-by-copy.

int x = 7;
00000111

int

X 1 Declare an int variable and assign it
the value ‘7’. The bit pattern for 7
goes into the variable named x.

void go(int z){ } 2 Declare a method with an int
parameter named z.

int

Z

00000111

int

X

3 Call the go() method, passing
the variable x as the argument.
The bits in x are copied, and
the copy lands in z.

00000111

int

Z

copy of x

foo.go(x); void go(int z){ }

00000111

int

X

4 Change the value of z inside
the method. The value of x
doesn’t change! The argument
passed to the z parameter was
only a copy of x.

The method can’t change the
bits that were in the calling
variable x.

int

Z

void go(int z){

 z = 0;

}

x doesn’t change, even if z does. 00000000
x and z aren

’t

connected

Declare an int variable and assign it

78 chapter 4

there are noDumb Questions
Q:What happens if the argument you want to
pass is an object instead of a primitive?

A:You’ll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything. But... value means
bits inside the variable. And remember, you don’t
stuff objects into variables; the variable is a remote
control—a reference to an object. So if you pass a
reference to an object into a method, you’re passing
a copy of the remote control. Stay tuned, though, we’ll
have lots more to say about this.

Q:Can a method declare multiple return values?
Or is there some way to return more than one
value?

A:Sort of. A method can declare only one return
value. BUT... if you want to return, say, three int values,
then the declared return type can be an int array.
Stuff those ints into the array, and pass it on back. It’s
a little more involved to return multiple values with
different types; we’ll be talking about that in a later
chapter when we talk about ArrayList.

Q:Do I have to return the exact type I declared?

A:You can return anything that can be implicitly
promoted to that type. So, you can pass a byte where
an int is expected. The caller won’t care, because the
byte fits just fine into the int the caller will use for
assigning the result. You must use an explicit cast
when the declared type is smaller than what you’re
trying to return.

Q:Do I have to do something with the return
value of a method? Can I just ignore it?

A:Java doesn’t require you to acknowledge a
return value. You might want to call a method with
a non-void return type, even though you don’t care
about the return value. In this case, you’re calling
the method for the work it does inside the method,
rather than for what the method gives returns. In
Java, you don’t have to assign or use the return value.

arguments and return values

 BULLET POINTS

ß Classes define what an object knows and what an
object does.

ß Things an object knows are its instance variables
(state).

ß Things an object does are its methods (behavior).

ß Methods can use instance variables so that objects
of the same type can behave differently.

ß A method can have parameters, which means you
can pass one or more values in to the method.

ß The number and type of values you pass in must
match the order and type of the parameters
declared by the method.

ß Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

ß The value you pass as an argument to a method
can be a literal value (2, ‘c’, etc.) or a variable of
the declared parameter type (for example, x where
x is an int variable). (There are other things you
can pass as arguments, but we’re not there yet.)

ß A method must declare a return type. A void return
type means the method doesn’t return anything.

ß If a method declares a non-void return type, it must
return a value compatible with the declared return
type.

Reminder: Java
cares about type!

You can’t return a Giraffe when
the return type is declared
as a Rabbit. Same thing with

parameters. You can’t pass a
Giraffe into a method that
takes a Rabbit.

you are here4

methods use instance variables

79

Cool things you can do with parameters
and return types

Now that we’ve seen how parameters and return types work, it’s
time to put them to good use: Getters and Setters. If you’re into
being all formal about it, you might prefer to call them Accessors
and Mutators. But that’s a waste of perfectly good syllables.
Besides, Getters and Setters fi ts the Java naming convention, so
that’s what we’ll call them.

Getters and Setters let you, well, get and set things. Instance vari-
able values, usually. A Getter’s sole purpose in life is to send back,
as a return value, the value of whatever it is that particular Getter
is supposed to be Getting. And by now, it’s probably no surprise
that a Setter lives and breathes for the chance to take an argu-
ment value and use it to set the value of an instance variable.

ElectricGuitar

brand
numOfPickups
rockStarUsesIt

getBrand()

setBrand()

getNumOfPickups()

setNumOfPickups()

getRockStarUsesIt()

setRockStarUsesIt()
class ElectricGuitar {

 String brand;
 int numOfPickups;
 boolean rockStarUsesIt;

 String getBrand() {
 return brand;
 }

 void setBrand(String aBrand) {
 brand = aBrand;
 }

 int getNumOfPickups() {
 return numOfPickups;
 }

 void setNumOfPickups(int num) {
 numOfPickups = num;
 }

 boolean getRockStarUsesIt() {
 return rockStarUsesIt;
 }

 void setRockStarUsesIt(boolean yesOrNo) {
 rockStarUsesIt = yesOrNo;
 }
}

Note: Using these

naming conventions

means you’ll be

following an
important Java

standard!

80 chapter 4

Jen says you’re
well-encapsulated...

Encapsulation
Do it or risk humiliation and
ridicule.
Until this most important moment, we’ve
been committing one of the worst OO
faux pas (and we’re not talking minor
violation like showing up without the ‘B’
in BYOB). No, we’re talking Faux Pas with
a capital ‘F’. And ‘P’.

Our shameful transgression?

Exposing our data!

Here we are, just humming along without
a care in the world leaving our data out
there for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot
operator, as in:

theCat.height = 27;

Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands
of the wrong person, a reference variable
(remote control) is quite a dangerous
weapon. Because what’s to prevent:

theCat.height = 0;

This would be a Bad Thing. We need to
build setter methods for all the instance
variables, and find a way to force other
code to call the setters rather than access
the data directly.

yikes! We can’t

let this happ
en!

real developers encapsulate

public void setHeight(int ht) {

 if (ht > 9) {

 height = ht;

 }

}

By forcing everybo
dy to call a sette

r

method, we can protect the
 cat from

unacceptable size
changes.

We put in checks to guarantee a minimum cat height.

you are here4

methods use instance variables

81

“Sadly, Bill forgot to
encapsulate his Cat class and
ended up with a flat cat.”

(overheard at the water cooler).

Hide the data
Yes it is that simple to go from
an implementation that’s just
begging for bad data to one
that protects your data and
protects your right to modify
your implementation later.

OK, so how exactly do you
hide the data? With the
public and private
access modifiers. You’re
familiar with public–we use
it with every main method.

Here’s an encapsulation
starter rule of thumb (all stan-
dard disclaimers about rules
of thumb are in effect): mark
your instance variables private
and provide public getters
and setters for access control.
When you have more design
and coding savvy in Java, you
will probably do things a little
differently, but for now, this
approach will keep you safe.

Mark instance
variables private.

Mark getters and
setters public.

HeadFirst: What’s the big deal about encapsulation?

Object: OK, you know that dream where you’re giving a talk to 500 people when you
suddenly realize– you’re naked?

HeadFirst: Yeah, we’ve had that one. It’s right up there with the one about the Pilates
machine and... no, we won’t go there. OK, so you feel naked. But other than being a little
exposed, is there any danger?

Object: Is there any danger? Is there any danger? [starts laughing] Hey, did all you other
instances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: What’s funny about that? Seems like a reasonable question.

Object: OK, I’ll explain it. It’s [bursts out laughing again, uncontrollably]

HeadFirst: Can I get you anything? Water?

Object: Whew! Oh boy. No I’m fine, really. I’ll be serious. Deep breath. OK, go on.

HeadFirst: So what does encapsulation protect you from?

Object: Encapsulation puts a force-field around my instance variables, so nobody can set
them to, let’s say, something inappropriate.

HeadFirst: Can you give me an example?

Object: Doesn’t take a PhD here. Most instance variable values are coded with certain
assumptions about the boundaries of the values. Like, think of all the things that would
break if negative numbers were allowed. Number of bathrooms in an office. Velocity of
an airplane. Birthdays. Barbell weight. Cell phone numbers. Microwave oven power.

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if it’s do-able. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Exception (like if it’s a null social security number
for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do anything if your instance variables are public.

HeadFirst: But sometimes I see setter methods that simply set the value without check-
ing anything. If you have an instance variable that doesn’t have a boundary, doesn’t that
setter method create unnecessary overhead? A performance hit?

Object: The point to setters (and getters, too) is that you can change your mind later,
without breaking anybody else’s code! Imagine if half the people in your com-
pany used your class with public instance variables, and one day you suddenly realized,
“Oops– there’s something I didn’t plan for with that value, I’m going to have to switch to a
setter method.” You break everyone’s code. The cool thing about encapsulation is that you
get to change your mind. And nobody gets hurt. The performance gain from using variables
directly is so miniscule and would rarely—if ever— be worth it.

This week’s interview:
An Object gets candid about encapsulation.

Java Exposed

how objects behave

82 chapter 4

class GoodDog {

 private int size;

 public int getSize() {

 return size;

 }

 public void setSize(int s) {

 size = s;

 }

 void bark() {

 if (size > 60) {

 System.out.println(“Wooof! Wooof!”);

 } else if (size > 14) {

 System.out.println(“Ruff! Ruff!”);

 } else {

 System.out.println(“Yip! Yip!”);

 }

 }

}

class GoodDogTestDrive {

 public static void main (String[] args) {

 GoodDog one = new GoodDog();

 one.setSize(70);

 GoodDog two = new GoodDog();

 two.setSize(8);

 System.out.println(“Dog one: “ + one.getSize());

 System.out.println(“Dog two: “ + two.getSize());

 one.bark();

 two.bark();

 }

}

Encapsulating the
GoodDog class

Make the
instance

variable
private.

Make the get
ter and

setter methods publ
ic.

Even though the methods don’t really

add new functionality, the cool thing

is that you can change your mind
later. you can come back and make a

method safer, faster, better.

GoodDog

size

getSize()

setSize()

bark()

size

Any place where a
particular value can
be used, a method
call that returns that
type can be used.

instead of:
int x = 3 + 24;

you can say:
int x = 3 + one.getSize();

you are here4

methods use instance variables

83

How do objects in an array
behave?

Dog array object (Dog[])
Dog[]

pets

pets[0] = new Dog();

pets[1] = new Dog();

Dog[] pets;

pets = new Dog[7];

Create two new Dog objects,
and assign them to the first
two array elements.

Dog Dog Dog Dog Dog Dog Dog

Dog array object (Dog[])
Dog[]

pets

Dog Dog Dog Dog Dog Dog Dog

Dog ObjectDog Object

Declare and create a Dog array,
to hold 7 Dog references.

1

Just like any other object. The only difference is
how you get to them. In other words, how you get
the remote control. Let’s try calling methods on
Dog objects in an array.

2

pets[0].setSize(30);

int x = pets[0].getSize();

pets[1].setSize(8);

Call methods on the two Dog
objects.

3

30

size

8

size

84 chapter 4

You already know that a variable declaration needs at least a name
and a type:

 int size;
 String name;

And you know that you can initialize (assign a value) to the
variable at the same time:

 int size = 420;
 String name = “Donny”;

But when you don’t initialize an instance variable, what happens
when you call a getter method? In other words, what is the value of
an instance variable before you initialize it?

Declaring and init ializing
instance variables

class PoorDog {

 private int size;
 private String name;

 public int getSize() {
 return size;
 }
 public String getName() {
 return name;
 }

}

public class PoorDogTestDrive {
 public static void main (String[] args) {
 PoorDog one = new PoorDog();
 System.out.println(“Dog size is “ + one.getSize());
 System.out.println(“Dog name is “ + one.getName());
 }
}

Instance variables
always get a
default value. If
you don’t explicitly
assign a value
to an instance
variable, or you
don’t call a setter
method, the
instance variable
still has a value!

integers 0

floating points 0.0

booleans false

references null

declare two instance varia
bles,

but don’t assign
 a value

What will these return??

What do yo
u think?

Will

this even
compile?

File Edit Window Help CallVet

% java PoorDogTestDrive

Dog size is 0

Dog name is null

You don’t have to initial
ize instance variables,

because they always have a default valu
e. Number

primitives (including char) g
et 0, booleans get false,

and object reference v
ariables get null.

(Remember, null just means a remote control that

isn’t controlling / prog
rammed to anything. A

reference, but no actu
al object.

initializing instance variables

you are here4

methods use instance variables

85

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a method.

1

class Horse {
 private double height = 15.2;
 private String breed;
 // more code...
}

Local variables are declared within a method.2
class AddThing {
 int a;
 int b = 12;

 public int add() {
 int total = a + b;
 return total;
 }
}

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before
the variable is
initialized.

Local variables MUST be initialized before use!3
class Foo {
 public void go() {

 int x;
 int z = x + 3;
 }
}

Won’t compile!! You can
declare x without a value,

but as soon as you try
to USE it, the compiler
freaks out.

File Edit Window Help Yikes

% javac Foo.java

Foo.java:4: variable x might
not have been initialized

 int z = x + 3;
1 error ^

there are noDumb Questions
Q: What about method parameters?
How do the rules about local variables
apply to them?

A: Method parameters are virtually the
same as local variables—they’re declared
inside the method (well, technically they’re
declared in the argument list of the method
rather than within the body of the method,
but they’re still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you’ll never get
a compiler error telling you that a parameter
variable might not have been initialized.

But that’s because the compiler will give
you an error if you try to invoke a method
without sending arguments that the method
needs. So parameters are ALWAYS initialized,
because the compiler guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
(automatically) to the parameters.

86 chapter 4

object equality

Sometimes you want to know if two primitives are the same. That’s easy
enough, just use the == operator. Sometimes you want to know if two
reference variables refer to a single object on the heap. Easy as well, just use
the == operator. But sometimes you want to know if two objects are equal.
And for that, you need the .equals() method. The idea of equality for
objects depends on the type of object. For example, if two different String
objects have the same characters (say, “expeditious”), they are meaningfully
equivalent, regardless of whether they are two distinct objects on the heap.
But what about a Dog? Do you want to treat two Dogs as being equal if they
happen to have the same size and weight? Probably not. So whether two
different objects should be treated as equal depends on what makes sense for
that particular object type. We’ll explore the notion of object equality again
in later chapters (and appendix B), but for now, we need to understand that
the == operator is used only to compare the bits in two variables. What those
bits represent doesn’t matter. The bits are either the same, or they’re not.

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it
simply compares the bits.

if (a == b) {...} looks at the bits in a and b and returns true if the bit pattern
is the same (although it doesn’t care about the size of the variable, so all the
extra zeroes on the left end don’t matter).

 int a = 3;

 byte b = 3;

 if (a == b) { // true }

To see if two references are the same (which means they
refer to the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the
variable. The rules are the same whether the variable is a reference or
primitive. So the == operator returns true if two reference variables refer to
the same object! In that case, we don’t know what the bit pattern is (because
it’s dependent on the JVM, and hidden from us) but we do know that whatever
it looks like, it will be the same for two references to a single object.

 Foo a = new Foo();

 Foo b = new Foo();

 Foo c = a;

 if (a == b) { // false }

 if (a == c) { // true }

 if (b == c) { // false }

Comparing variables (primitives or references)

00000011

int

a
00000011

byte

b==
(there are

more zeroes
on

the left sid
e of the in

t,

but we don’t car
e about

that here)

the bit patterns are the same, so these two are equal using ==

Foo

a

Foo

 b

Foo

Ca == c is true
a == b is false

the bit patterns are the same for a and c, so they are equal using ==

Use == to compare
two primitives,
or to see if two
references refer to
the same object.

Use the equals()
method to see
if two different
objects are equal.
(Such as two different
String objects that both
represent the characters
in “Fred”)

you are here4

methods use instance variables

87

Sharpen your pencil

What’s legal?
Given the method below, which
of the method calls listed on the
right are legal?

Put a checkmark next to the
ones that are legal. (Some
statements are there to assign
values used in the method calls).

int calcArea(int height, int width) {

 return height * width;

}

int a = calcArea(7, 12);

short c = 7;

calcArea(c,15);

int d = calcArea(57);

calcArea(2,3);

long t = 42;

int f = calcArea(t,17);

int g = calcArea();

calcArea();

byte h = calcArea(4,20);

int j = calcArea(2,3,5);

private

I always
keep my variables

private. If you want to
see them, you have to
talk to my methods.
see them, you have to

Make it Sticki kkk
Roses are red,

this poem is choppy,

passing by value

is passing by copy.

Oh, like you can do better? Try it. Replace our

dumb second line with your own. Better yet,

replace the whole thing with your own words

and you’ll never forget it.

88 chapter 4

 A

class XCopy {

 public static void main(String [] args) {

 int orig = 42;

 XCopy x = new XCopy();

 int y = x.go(orig);

 System.out.println(orig + “ “ + y);
 }

 int go(int arg) {

 arg = arg * 2;

 return arg;
 }
}

 B

class Clock {
 String time;

 void setTime(String t) {
 time = t;
 }

 void getTime() {
 return time;
 }
}

class ClockTestDrive {
 public static void main(String [] args) {

 Clock c = new Clock();

 c.setTime(“1245”);
 String tod = c.getTime();
 System.out.println(“time: “ + tod);
 }
}

Exercise
Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these files

will compile. If they won’t
compile, how would you
fix them, and if they do
compile, what would be

their output?

BE the compiler

exercise: Be the Compiler

you are here4

methods use instance variables

89

Who am I?

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

I prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn’t be used with instance variables.

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one guy, then write down all for whom that sentence
applies. Fill in the blanks next to the sentence with the names of one
or more attendees.

Tonight’s attendees:

instance variable, argument, return, getter, setter,
encapsulation, public, private, pass by value, method

Exercise

90 chapter 4

A short Java program is listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate
blocks of code (below), with the output
that you’d see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Mixed
Messages

x < 9

index < 5

x < 20

index < 5

x < 7

index < 7

x < 19

index < 1

14 7

9 5

19 1

14 1

25 1

7 7

20 1

20 5

Candidates: Possible output:

public class Mix4 {

 int counter = 0;

 public static void main(String [] args) {

 int count = 0;

 Mix4 [] m4a =new Mix4[20];

 int x = 0;

 while () {

 m4a[x] = new Mix4();

 m4a[x].counter = m4a[x].counter + 1;

 count = count + 1;

 count = count + m4a[x].maybeNew(x);

 x = x + 1;

 }

 System.out.println(count + “ “

 + m4a[1].counter);

 }

 public int maybeNew(int index) {

 if () {

 Mix4 m4 = new Mix4();

 m4.counter = m4.counter + 1;
 return 1;

 }

 return 0;

 }

}

puzzle: Mixed Messages

you are here4

methods use instance variables

91

ivar

factor

public

private

Pool Puzzle
Your job is to take code snippets from the
pool and place them into the blank lines

in the code. You may not use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal
is to make a class that will compile and

run and produce the output listed.

public class Puzzle4 {
 public static void main(String [] args) {

 int y = 1;
 int x = 0;
 int result = 0;
 while (x < 6) {

 y = y * 10;

 }
 x = 6;
 while (x > 0) {

 result = result + ___________________
 }
 System.out.println(“result “ + result);
 }
}

class ___________ {

 int ivar;

 ________ ______ doStuff(int _________) {

 if (ivar > 100) {

 return _________________________

 } else {

 return _________________________
 }
 }
}

Note: Each snippet
from the pool can be
used only once!

File Edit Window Help BellyFlop

%java Puzzle4
result 543345

Output

Puzzle4 [] obs = new Puzzle4[6];

Puzzle4b [] obs = new Puzzle4b[6];

Puzzle4b [] obs = new Puzzle4[6];

obs [x] = new Puzzle4b(x);
obs [] = new Puzzle4b();
obs [x] = new Puzzle4b();
obs = new Puzzle4b();

doStuff(x);
obs.doStuff(x);
obs[x].doStuff(factor);
obs[x].doStuff(x);

 ivar = x;
obs.ivar = x;
obs[x].ivar = x;
obs[x].ivar = y;

ivar + factor;
ivar * (2 + factor);
ivar * (5 - factor);
ivar * factor;

x = x + 1;

x = x - 1;

Puzzle4
Puzzle4b
Puzzle4b()

int

short

92 chapter 4

Fast Times in Stim-City

 When Buchanan jammed his twitch-gun into Jai’s side, Jai froze. Jai knew that Buchanan
was as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai
into his boss’s office, but Jai’d done nothing wrong, (lately), so he figured a little chat with
Buchanan’s boss Leveler couldn’t be too bad. He’d been moving lots of neural-stimmers in
the west side lately and he figured Leveler would be pleased. Black market stimmers weren’t
the best money pump around, but they were pretty harmless. Most of the stim-junkies he’d
seen tapped out after a while and got back to life, maybe just a little less focused than before.

 Leveler’s ‘office’ was a skungy looking skimmer, but once Buchanan shoved him in, Jai
could see that it’d been modified to provide all the extra speed and armor that a local boss like
Leveler could hope for. “Jai my boy”, hissed Leveler, “pleasure to see you again”. “Likewise
I’m sure...”, said Jai, sensing the malice behind Leveler’s greeting, “We should be square
Leveler, have I missed something?” “Ha! You’re making it look pretty good Jai, your volume
is up, but I’ve been experiencing, shall we say, a little ‘breach’ lately...” said Leveler.

 Jai winced involuntarily, he’d been a top drawer jack-hacker in his day. Anytime someone
figured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No
way it’s me man”, said Jai, “not worth the downside. I’m retired from hacking, I just move

my stuff and mind my own business”. “Yeah, yeah”, laughed Leveler, “I’m sure you’re
clean on this one, but I’ll be losing big margins until this new jack-hacker is shut

out!” “Well, best of luck Leveler, maybe you could just drop me here and I’ll go
move a few more ‘units’ for you before I wrap up today”, said Jai.

 “I’m afraid it’s not that easy Jai, Buchanan here tells me that word is you’re
current on J37NE”, insinuated Leveler. “Neural Edition? sure I play around a bit, so

what?”, Jai responded feeling a little queasy. “Neural edition’s how I let the stim-junkies
know where the next drop will be”, explained Leveler. “Trouble is, some stim-junkie’s stayed
straight long enough to figure out how to hack into my WareHousing database.” “I need a
quick thinker like yourself Jai, to take a look at my StimDrop J37NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should..”, “HEY!”,
exclaimed Buchanan, “I don’t want no scum hacker like Jai nosin’ around my code!” “Easy
big guy”, Jai saw his chance, “I’m sure you did a top rate job with your access modi.. “Don’t
tell me - bit twiddler!”, shouted Buchanan, “I left all of those junkie level methods public,
so they could access the drop site data, but I marked all the critical WareHousing methods
private. Nobody on the outside can access those methods buddy, nobody!”

 “I think I can spot your leak Leveler, what say we drop Buchanan here off at the corner
and take a cruise around the block”, suggested Jai. Buchanan reached for his twitch-gun but
Leveler’s stunner was already on Buchanan’s neck, “Let it go Buchanan”, sneered Leveler,
“Drop the twitcher and step outside, I think Jai and I have some plans to make”.

What did Jai suspect?

Will he get out of Leveler’s skimmer with all his bones intact?

Five-Minute
Mystery

puzzle: Five Minute Mystery

you are here4

methods use instance variables

93

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

I prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn’t be used with instance variables

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

instance variables, getter, setter,method

return

return, argument

encapsulation

pass by value

instance variables

argument

getter

public

method

setter

getter, setter, public, private

return

 A Class ‘XCopy’ compiles and runs as it stands ! The
output is: ‘42 84’. Remember Java is pass by value, (which
means pass by copy), the variable ‘orig’ is not changed by the
go() method.

B

class Clock {
 String time;
 void setTime(String t) {
 time = t;
 }
 String getTime() {
 return time;
 }
}

class ClockTestDrive {
 public static void main(String [] args) {
 Clock c = new Clock();
 c.setTime(“1245”);
 String tod = c.getTime();
 System.out.println(“time: “ + tod);
 }
} Note: ‘Getter’ methods have a return
 type by definition.

Exercise Solutions

94 chapter 4

public class Puzzle4 {
 public static void main(String [] args) {

 Puzzle4b [] obs = new Puzzle4b[6];
 int y = 1;
 int x = 0;
 int result = 0;
 while (x < 6) {

 obs[x] = new Puzzle4b();
 obs[x] . ivar = y;
 y = y * 10;

 x = x + 1;
 }
 x = 6;
 while (x > 0) {
 x = x - 1;
 result = result + obs[x].doStuff(x);
 }
 System.out.println(“result “ + result);
 }
}

class Puzzle4b {
 int ivar;

 public int doStuff(int factor) {
 if (ivar > 100) {

 return ivar * factor;
 } else {

 return ivar * (5 - factor);
 }
 }
}

File Edit Window Help BellyFlop

%java Puzzle4
result 543345

Output

x < 9

index < 5

x < 20

index < 5

x < 7

index < 7

x < 19

index < 1

14 7

9 5

19 1

14 1

25 1

7 7

20 1

20 5

Candidates: Possible output:

Answer to the 5-minute mystery...

Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never mentioned
his instance variables. Jai suspected that
while Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip up could have easily cost
Leveler thousands.

puzzle answers

Puzzle Solutions

5 writing a program

this is a new chapter 95

Let’s put some muscle in our methods. We dabbled with variables, played

with a few objects, and wrote a little code. But we were weak. We need more tools. Like

operators. We need more operators so we can do something a little more interesting than, say,

bark. And loops. We need loops, but what’s with the wimpy while loops? We need for loops

if we’re really serious. Might be useful to generate random numbers. And turn a String

into an int, yeah, that would be cool. Better learn that too. And why don’t we learn it all by

building something real, to see what it’s like to write (and test) a program from scratch. Maybe

a game, like Battleships. That’s a heavy-lifting task, so it’ll take two chapters to finish. We’ll build

a simple version in this chapter, and then build a more powerful deluxe version in chapter 6.

Extra-Strength Methods

I can lift
heavy objects.

Make it Stick

96 chapter 5

Let’s build a Battleship-style
game: “Sink a Dot Com”
It’s you against the computer, but unlike the real
Battleship game, in this one you don’t place any ships
of your own. Instead, your job is to sink the computer’s
ships in the fewest number of guesses.

Oh, and we aren’t sinking ships. We’re killing Dot
Coms. (Thus establishing business relevancy so you can
expense the cost of this book).

Goal: Sink all of the computer’s Dot Coms in the fewest
number of guesses. You’re given a rating or level, based
on how well you perform.

Setup: When the game program is launched, the
computer places three Dot Coms on a virtual 7 x 7
grid. When that’s complete, the game asks for your fi rst
guess.

How you play: We haven’t learned to build a GUI yet, so
this version works at the command-line. The computer
will prompt you to enter a guess (a cell), that you’ll type
at the command-line as “A3”, “C5”, etc.). In response
to your guess, you’ll see a result at the command-
line, either “Hit”, “Miss”, or “You sunk Pets.com” (or
whatever the lucky Dot Com of the day is). When
you’ve sent all three Dot Coms to that big 404 in the
sky, the game ends by printing out your rating.

7 X 7 grid

File Edit Window Help Sell

%java DotComBust

Enter a guess A3

miss

Enter a guess B2

miss

Enter a guess C4

miss

Enter a guess D2

hit

Enter a guess D3

hit

Enter a guess D4

Ouch! You sunk Pets.com : (

kill

Enter a guess B4

miss

Enter a guess G3

hit

Enter a guess G4

hit

Enter a guess G5

Ouch! You sunk AskMe.com : (

kill

Enter a guess A7

miss

Enter a guess B7

A

B

C

D

E

F

G

0 1 2 3 4 5 6

AskMe.com

Pets.comG
o

2
.c

o
m

starts at zero, like Java arrays

part of a game interaction

You’re going to build the
Sink a Dot Com game, with
a 7 x 7 grid and three
Dot Coms. Each Dot Com
takes up three cells.

each box
is a “cell”

building a real game

you are here4

writing a program

97

First, a high-level design

We know we’ll need classes and methods, but what
should they be? To answer that, we need more
information about what the game should do.

First, we need to figure out the general flow of the
game. Here’s the basic idea:

1 User starts the game

Game creates three Dot Coms

2 Game play begins
Repeat the following until there are
no more Dot Coms:

A

A

Game places the three Dot
Coms onto a virtual grid

B

Prompt user for a guess
(“A2”, “C0”, etc.)

B Check the user guess against
all Dot Coms to look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delete cell
(A2, D4, etc.). If a kill, delete
Dot Com.

3 Game finishes
Give the user a rating based on
the number of guesses.

Start

Game set-up

Get user
guess

Check
guess

hitmiss remove loca-
tion cell

kill

remove
Dot Com

yes

no

still some
Dot Coms

alive?

display user
score/rating

game
over

Whoa. A real flow chart.

Now we have an idea of the kinds of things the
program needs to do. The next step is figuring
out what kind of objects we’ll need to do the
work. Remember, think like Brad rather than
Larry; focus first on the things in the program
rather than the procedures.

1

A B

2
A

B

3

A circle means

start or fin
ish

A rectangle is

used to repr
esent

an action

A diamond
represents a
decision point.

98 chapter 5

SimpleDotComGame

void mainvoid main

SimpleDotCom
int [] locationCells
int numOfHits

String checkYourself(String guess)
void setLocationCells(int[] loc)

The simplifi ed version

A complete game interaction

The “Simple Dot Com Game”
a gentler introduction
It looks like we’re gonna need at least two classes, a
Game class and a DotCom class. But before we build
the full monty Sink a Dot Com game, we’ll start with
a stripped-down, simplifi ed version, Simple Dot Com
Game. We’ll build the simple version in this chapter,
followed by the deluxe version that we build in the
next chapter.

Everything is simpler in this game. Instead of a 2-D
grid, we hide the Dot Com in just a single row. And
instead of three Dot Coms, we use one.

The goal is the same, though, so the game still needs
to make a DotCom instance, assign it a location
somewhere in the row, get user input, and when all
of the DotCom’s cells have been hit, the game is over.
This simplifi ed version of the
game gives us a big head start
on building the full game.
If we can get this small one
working, we can scale it up to
the more complex one later.

In this simple version, the
game class has no instance
variables, and all the game
code is in the main() method.
In other words, when the
program is launched and
main() begins to run, it will
make the one and only DotCom
instance, pick a location for it (three
consecutive cells on the single virtual
seven-cell row), ask the user for a guess, check the
guess, and repeat until all three cells have been hit.

Keep in mind that the virtual row is... virtual. In other
words, it doesn’t exist anywhere in the program. As
long as both the game and the user know that the
DotCom is hidden in three consecutive cells out of a
possible seven (starting at zero), the row itself doesn’t
have to be represented in code. You might be tempted
to build an array of seven ints and then assign the
DotCom to three of the seven elements in the array,
but you don’t need to. All we need is an array that
holds just the three cells the DotCom occupies.

0 1 2 3 4 5 6

1
Game starts, and creates ONE DotCom
and gives it a location on three cells in
the single row of seven cells.

Instead of “A2”, “C4”, and so on, the
locations are just integers (for example:
1,2,3 are the cell locations in this
picture:

2 Game play begins. Prompt user for
a guess, then check to see if it hit
any of the DotCom’s three cells.
If a hit, increment the numOfHits
variable.

3 Game fi nishes when all three cells have
been hit (the numOfHits variable val-
ue is 3), and tells the user how many
guesses it took to sink the DotCom.

File Edit Window Help Destroy

%java SimpleDotComGame

enter a number 2
hit
enter a number 3
hit
enter a number 4
miss
enter a number 1
kill
You took 4 guesses

a simpler version of the game

you are here4

writing a program

99

A complete game interaction

Developing a Class
As a programmer, you probably have a methodology/
process/approach to writing code. Well, so do we. Our
sequence is designed to help you see (and learn) what
we’re thinking as we work through coding a class. It
isn’t necessarily the way we (or you) write code in the
Real World. In the Real World, of course, you’ll follow
the approach your personal preferences, project, or
employer dictate. We, however, can do pretty much
whatever we want. And when we create a Java class as a
“learning experience”, we usually do it like this:

o Figure out what the class is supposed to do.

o List the instance variables and methods.

o Write prepcode for the methods. (You’ll see
this in just a moment.)

o Write test code for the methods.

o Implement the class.

o Test the methods.

o Debug and reimplement as needed.

o Express gratitude that we don’t have to test
our so-called learning experience app on
actual live users.

The three things we’ll write for
each class:

The project status

prep code
A form of pseudocode, to help you focus on
the logic without stressing about syntax.

test code
A class or methods that will test the real code
and validate that it’s doing the right thing.

real code
The actual implementation of the class. This is
where we write real Java code.where we write real Java code.

 To Do:

SimpleDotCom class

 o write prep code

 o write test code

 o write fi nal Java code

SimpleDotComGame

class

 o write prep code

 write test code [no]

 o write fi nal Java code

 prep code test code real code

This bar is displayed on the next set of pages to tell
you which part you’re working on. For example, if you
see this picture at the top of a page, it means you’re
working on prepcode for the SimpleDotCom class.

 prep code test code real code

SimpleDotCom class

 prep code test code prep code

Flex those dendrites.

How would you decide which class or classes
to build fi rst, when you’re writing a program?
Assuming that all but the tiniest programs
need more than one class (if you’re following
good OO principles and not having one class
do many different jobs), where do you start?

brain
powerA

100 chapter 5

SimpleDotCom

int [] locationCells
int numOfHits

String checkYourself(String guess)

void setLocationCells(int[] loc)

You’ll get the idea of how prepcode (our version of pseudocode) works as you
read through this example. It’s sort of half-way between real Java code and a plain
English description of the class. Most prepcode includes three parts: instance
variable declarations, method declarations, method logic. The most important
part of prepcode is the method logic, because it defi nes what has to happen,
which we later translate into how, when we actually write the method code.

The prepcode stageThe prepcode stage

 prep code test code real code prep code test code prep code

DECLARE an int array to hold the location cells. Call it locationCells.

DECLARE an int to hold the number of hits. Call it numOfHits and SET it to 0.

DECLARE a checkYourself() method that takes a String for the user’s guess (“1”, “3”, etc.),
checks it, and returns a result representing a “hit”, “miss”, or “kill”.

DECLARE a setLocationCells() setter method that takes an int array (which has the three cell
locations as ints (2,3,4, etc.).

METHOD: String checkYourself(String userGuess)

 GET the user guess as a String parameter

 CONVERT the user guess to an int

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “kill” as the result

 ELSE it was not a kill, so RETURN“hit”

 END IF

 ELSE the user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

END METHOD

METHOD: void setLocationCells(int[] cellLocations)

 GET the cell locations as an int array parameter

 ASSIGN the cell locations parameter to the cell locations instance variable

END METHOD

SimpleDotCom class

you are here4

writing a program

101

Writing the method
implementations

let’s write the real
method code now, and get
this puppy working.

Before we start coding the
methods, though, let’s back
up and write some code to
test the methods. That’s right,
we’re writing the test code
before there’s anything to test!

The concept of writing
the test code fi rst is one of
the practices of Extreme
Programming (XP), and
it can make it easier (and
faster) for you to write your
code. We’re not necessarily
saying you should use XP,
but we do like the part about
writing tests fi rst. And XP just
sounds cool.

Oh my! For a minute
there I thought you

weren’t gonna write your
test code fi rst. Whoo!

Don’t scare me like that.

 Extreme Programming(XP) is a newcomer to the software
development methodology world. Considered by many
to be “the way programmers really want to work”, XP
emerged in the late 90’s and has been adopted by
companies ranging from the two-person garage shop
to the Ford Motor Company. The thrust of XP is that the
customer gets what he wants, when he wants it, even
when the spec changes late in the game.

XP is based on a set of proven practices that are all
designed to work together, although many folks do pick
and choose, and adopt only a portion of XP’s rules. These
practices include things like:

Make small, but frequent, releases.

Develop in iteration cycles.

Don’t put in anything that’s not in the spec (no matter
how tempted you are to put in functionality “for the
future”).

Write the test code first.

No killer schedules; work regular hours.

Refactor (improve the code) whenever and wherever you
notice the opportunity.

Don’t release anything until it passes all the tests.

Set realistic schedules, based around small releases.

Keep it simple.

Program in pairs, and move people around so that
everybody knows pretty much everything about the code.

Extreme Programming (XP)

 prep code test code real codetest code real codetest code

102 chapter 5

Writing test code for the SimpleDotCom class

 METHOD String checkYourself(String userGuess)

 GET the user guess as a String parameter

 CONVERT the user guess to an int

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “Kill” as the result

 ELSE it was not a kill, so RETURN“Hit”

 END IF

 ELSE the user guess did not match, so RETURN “Miss”

 END IF

 END REPEAT

 END METHOD

We need to write test code that can make a SimpleDotCom object
and run its methods. For the SimpleDotCom class, we really
care about only the checkYourself() method, although we will have
to implement the setLocationCells() method in order to get the
checkYourself() method to run correctly.

Take a good look at the prepcode below for the checkYourself()
method (the setLocationCells() method is a no-brainer setter method,
so we’re not worried about it, but in a ‘real’ application we might
want a more robust ‘setter’ method, which we would want to test).

Then ask yourself, “If the checkYourself() method were
implemented, what test code could I write that would prove to me
the method is working correctly?”

1. Instantiate a SimpleDotCom object.

2. Assign it a location (an array of 3 ints, like
{2,3,4}).

3. Create a String to represent a user guess
(“2”, “0”, etc.).

4. Invoke the checkYourself() method pass-
ing it the fake user guess.

5. Print out the result to see if it’s correct
(“passed” or “failed”).

Based on this prepcode: Here’s what we should test:

 prep code test code real codetest code real code test code

SimpleDotCom class

you are here4

writing a program

103

public class SimpleDotComTestDrive {

 public static void main (String[] args) {

 SimpleDotCom dot = new SimpleDotCom();

 int[] locations = {2,3,4};

 dot.setLocationCells(locations);

 String userGuess = “2”;

 String result = dot.checkYourself(userGuess);

 String testResult = “failed”;

 if (result.equals(“hit”)) {

 testResult = “passed”;

 }

 System.out.println(testResult);

 }

}

Test code for the SimpleDotCom classthere are noDumb Questions
Q:Maybe I’m missing some-
thing here, but how exactly do
you run a test on something
that doesn’t yet exist!?

A:You don’t. We never said
you start by running the test;
you start by writing the test. At
the time you write the test code,
you won’t have anything to run
it against, so you probably won’t
be able to compile it until you
write ‘stub’ code that can com-
pile, but that will always cause
the test to fail (like, return null.)

Q:Then I still don’t see the
point. Why not wait until the
code is written, and then whip
out the test code?

A:The act of thinking through
(and writing) the test code helps
clarify your thoughts about what
the method itself needs to do.

As soon as your implementation
code is done, you already have
test code just waiting to validate
it. Besides, you know if you don’t
do it now, you’ll never do it.
There’s always something more
interesting to do.

Ideally, write a little test code,
then write only the implementa-
tion code you need in order to
pass that test. Then write a little
more test code and write only
the new implementation code
needed to pass that new test. At
each test iteration, you run all
the previously-written tests, so
that you always prove that your
latest code additions don’t break
previously-tested code.

instantiate
a

SimpleDotCom

object

make an int
 array for

the locatio
n of the d

ot

com (3 consec
utive ints

out of a p
ossible 7).

make a fake
user guess

invoke the checkYourself() method on the dot com object, and pass it the fake guess.

Sharpen your pencil
In the next couple of pages we implement the SimpleDotCom class,
and then later we return to the test class. Looking at our test code
above, what else should be added? What are we not testing in this
code, that we should be testing for? Write your ideas (or lines of
code) below:

 prep code test code real code

noQnQnoQo i

test code real code test code

print out the test result (passed or failed”)

if the fake guess (2) gives
back a “hit”, it’s working

invoke the setter method on the dot com.

104 chapter 5

There isn’t a perfect mapping from prepcode to javacode; you’ll see a few
adjustments. The prepcode gave us a much better idea of what the code needs to
do, and now we have to fi nd the Java code that can do the how.

In the back of your mind, be thinking about parts of this code you might want
(or need) to improve. The numbers are for things (syntax and language
features) you haven’t seen yet. They’re explained on the opposite page.

public String checkYourself(String stringGuess) {

 int guess = Integer.parseInt(stringGuess);

 String result = “miss”;

 for (int cell : locationCells) {

 if (guess == cell) {

 result = “hit”;

 numOfHits++;

 break;

 } // end if

 } // end for

 if (numOfHits == locationCells.length) {

 result = “kill”;

 } // end if

 System.out.println(result);

 return result;

} // end method

The checkYourself() method

convert the String to an int
make a variable to hold the result we’ll return. put “miss” in as the default (i.e. we assume a “miss”)

repeat with each cell in the locationCells
array (each cell location of the object)compare the user guess to this element (cell) in the array

we got a hit!

get out of the loop, no need to test the other cells

we’re out of the loop, but let’s see if we’re now ‘dead’ (hit 3 times) and change the result String to “Kill”

display the result for the user
(“Miss”, unless it was changed to “Hit” or “Kill”)

return the result back to the calling method

GET the user
guess

CONVERT
the user guess to
an int

REPEAT with
each cell in the int
array

IF the user guess
matches

INCREMENT
the number of
hits

// FIND OUT if
it was the last cell

IF number of hits
is 3,

RETURN “kill”
as the result

ELSE it was
not a kill, so
RETURN“hit”

 ELSE

RETURN
“miss”

1

 prep code test code real codereal codereal code

2

3

4

1

SimpleDotCom class

you are here4

writing a program

105

Just the new stuff
The things we haven’t seen before
are on this page. Stop worrying! The
rest of the details are at the end of
the chapter. This is just enough to let
you keep going.

1 Converting a
String to an int

2 The for loop

The post-increment
operator

4 break statement

Integer.parseInt(“3”)

A class that

ships with Java.

A method in the
Integer class that
knows how to “parse”
a String into the int
it represents.

Takes a String.

for (int cell : locationCells) { }

Declare a variable that will hold one element from the array. Each time through the loop, this variable (in this case an int variable named “cell”), will hold a different element from the array, until there are no more elements (or the code does a “break”... see #4 below).

numOfHits++

The ++ means add 1 to
whatever’s there (in other
words, increment by 1).

numOfHits++ is the same (in
this case) as saying numOfHits =
numOfHits + 1, except slightly
more efficient.

break;
Gets you out of a loop. Immediately. Right here.
 No iteration, no boolean test, just get out now!

 prep code test code real codereal codereal code

1

2

3

4

The array t
o iterate o

ver in the
loop.

Each time through t
he loop, th

e next

element in the
array will be assign

ed to

the variabl
e “cell”. (M

ore on this
 at the

end of this
 chapter.)

Read this for loop declaration as “repeat

for each element in the ‘locationCells’
array: take the next element in the array
and assign it to the int variable ‘cell’.”

The colon (:) means “in”, so the whole thing means “for each int
value IN locationCells...”

106 chapter 5

real code stage

there are noDumb Questions
Q:What happens in
Integer.parseInt() if the thing you
pass isn’t a number? And does it
recognize spelled-out numbers,
like “three”?

A:Integer.parseInt() works only
on Strings that represent the ascii
values for digits (0,1,2,3,4,5,6,7,8,9).
If you try to parse something like
“two” or “blurp”, the code will blow
up at runtime. (By blow up, we
actually mean throw an exception,
but we don’t talk about exceptions
until the Exceptions chapter. So for
now, blow up is close enough.)

Q:In the beginning of the
book, there was an example of a
for loop that was really different
from this one—are there two
different styles of for loops?

A:Yes! From the first version of
Java there has been a single kind
of for loop (explained later in this
chapter) that looks like this:

for (int i = 0; i < 10; i++) {

 // do something 10 times

}

You can use this format for any
kind of loop you need. But...
beginning with Java 5.0 (Tiger),
you can also use the enhanced for
loop (that’s the official description)
when your loop needs to iterate
over the elements in an array (or
another kind of collection, as you’ll
see in the next chapter). You can
always use the plain old for loop
to iterate over an array, but the
enhanced for loop makes it easier.

Final code for SimpleDotCom and SimpleDotComTester

public class SimpleDotComTestDrive {

 public static void main (String[] args) {

 SimpleDotCom dot = new SimpleDotCom();

 int[] locations = {2,3,4};

 dot.setLocationCells(locations);

 String userGuess = “2”;

 String result = dot.checkYourself(userGuess);

 }

}

public class SimpleDotCom {

 int[] locationCells;
 int numOfHits = 0;

 public void setLocationCells(int[] locs) {
 locationCells = locs;
 }

 public String checkYourself(String stringGuess) {
 int guess = Integer.parseInt(stringGuess);
 String result = “miss”;
 for (int cell : locationCells) {
 if (guess == cell) {
 result = “hit”;
 numOfHits++;
 break;
 }
 } // out of the loop

 if (numOfHits ==
 locationCells.length) {
 result = “kill”;
 }
 System.out.println(result);
 return result;
 } // close method
} // close class

What should we see
when we run this code?
The test code makes a
SimpleDotCom object
and gives it a location at
2,3,4. Then it sends a fake
user guess of “2” into the
checkYouself() method.
If the code is working
correctly, we should see the
result print out:

java SimpleDotComTestDrive
hit

 prep code test code real codereal codereal code

There’s a little bug lurking here. It compiles and
runs, but sometimes... don’t worry about it for now,
but we will have to face it a little later.

SimpleDotCom class

you are here4

writing a program

107

Sharpen your pencil
We built the test class, and the SimpleDotCom class. But we still haven’t
made the actual game. Given the code on the opposite page, and the spec for
the actual game, write in your ideas for prepcode for the game class. We’ve given
you a few lines here and there to get you started. The actual game code is on the
next page, so don’t turn the page until you do this exercise!

You should have somewhere between 12 and 18 lines (including the ones we wrote,
but not including lines that have only a curly brace).

 METHOD public static void main (String [] args)

 DECLARE an int variable to hold the number of user guesses, named numOfGuesses

 COMPUTE a random number between 0 and 4 that will be the starting location cell position

 WHILE the dot com is still alive :

 GET user input from the command line

The SimpleDotComGame
needs to do this:

1. Make the single
SimpleDotCom Object.

2. Make a location for it (three
consecutive cells on a single
row of seven virtual cells).

3. Ask the user for a guess.

4. Check the guess.

5. Repeat until the dot com is
dead .

6. Tell the user how many
guesses it took.

File Edit Window Help Runaway

%java SimpleDotComGame

enter a number 2
hit
enter a number 3
hit
enter a number 4
miss
enter a number 1
kill
You took 4 guesses

A complete game interaction

 prep code test code real code prep code test code prep code

108 chapter 5

public static void main (String [] args)

 DECLARE an int variable to hold the number of user guesses, named numOfGuesses, set it to 0.

 MAKE a new SimpleDotCom instance

 COMPUTE a random number between 0 and 4 that will be the starting location cell position

 MAKE an int array with 3 ints using the randomly-generated number, that number incremented by 1,
 and that number incremented by 2 (example: 3,4,5)

 INVOKE the setLocationCells() method on the SimpleDotCom instance

 DECLARE a boolean variable representing the state of the game, named isAlive. SET it to true

 WHILE the dot com is still alive (isAlive == true) :

 GET user input from the command line

 // CHECK the user guess

 INVOKE the checkYourself() method on the SimpleDotCom instance

 INCREMENT numOfGuesses variable

 // CHECK for dot com death

 IF result is “kill”

 SET isAlive to false (which means we won’t enter the loop again)

 PRINT the number of user guesses

 END IF

 END WHILE

END METHOD

 prep code test code real code prep code test code prep code

Prepcode for the SimpleDotComGame class
Everything happens in main()

There are some things you’ll have to take on faith. For example, we have one
line of prepcode that says, “GET user input from command-line”. Let me tell
you, that’s a little more than we want to implement from scratch right now. But
happily, we’re using OO. And that means you get to ask some other class/object
to do something for you, without worrying about how it does it. When you write
prepcode, you should assume that somehow you’ll be able to do whatever you
need to do, so you can put all your brainpower into working out the logic.

metacognitive tip
Don’t work one part of the brain for too long a stretch at one time.
Working just the left side of the brain for more than 30 minutes
is like working just your left arm for 30 minutes. Give each side
of your brain a break by switching sides at regular intervals.

When you shift to one side, the other side gets to rest and
recover. Left-brain activities include things like step-by-step
sequences, logical problem-solving, and analysis, while the
right-brain kicks in for metaphors, creative problem-solving,
pattern-matching, and visualizing.

SimpleDotCom class

you are here4

writing a program

109

How many
hits did you get
last month? Including

repeat visitors?

Yes...

3

 BULLET POINTS

ß Your Java program should start with a high-
level design.

ß Typically you’ll write three things when you
create a new class:

 prepcode

 testcode

 real (Java) code

ß Prepcode should describe what to do, not how
to do it. Implementation comes later.

ß Use the prepcode to help design the test
code.

ß Write test code before you implement the
methods.

 Howdy from Ghost Town

ß Choose for loops over while loops when you
know how many times you want to repeat the
loop code.

ß Use the pre/post increment operator to add 1
to a variable (x++;)

ß Use the pre/post decrement to subtract 1 from
a variable (x--;)

ß Use Integer.parseInt() to get the int
value of a String.

ß Integer.parseInt() works only if the
String represents a digit (“0”,”1”,”2”, etc.)

ß Use break to leave a loop early (i.e. even if
the boolean test condition is still true).

110 chapter 5

 public static void main(String[] args) {

 int numOfGuesses = 0;

 GameHelper helper = new GameHelper();

 SimpleDotCom theDotCom = new SimpleDotCom();

 int randomNum = (int) (Math.random() * 5);

 int[] locations = {randomNum, randomNum+1, randomNum+2};

 theDotCom.setLocationCells(locations);

 boolean isAlive = true;

 while(isAlive == true) {

 String guess = helper.getUserInput(“enter a number”);

 String result = theDotCom.checkYourself(guess);

 numOfGuesses++;

 if (result.equals(“kill”)) {

 isAlive = false;

 System.out.println(“You took “ + numOfGuesses + “ guesses”);

 } // close if

 } // close while

 } // close main

Just as you did with the SimpleDotCom class, be thinking about parts of this code
you might want (or need) to improve. The numbered things are for stuff we
want to point out. They’re explained on the opposite page. Oh, if you’re wonder-
ing why we skipped the test code phase for this class, we don’t need a test class for
the game. It has only one method, so what would you do in your test code? Make
a separate class that would call main() on this class? We didn’t bother.

The game’s main() method

make a variable to
 track how

many guesses the u
ser makes

this is a special class we wrote that has
the method for getting user input. for
now, pretend it’s part of Java

DECLARE a vari-
able to hold user
guess count, set it
to 0

MAKE a SimpleDot-
Com object

COMPUTE a
random number
between 0 and 4

MAKE an int array
with the 3 cell loca-
tions, and

INVOKE setLoca-
tionCells on the dot
com object

DECLARE a bool-
ean isAlive

WHILE the dot
com is still alive

GET user input

// CHECK it

INVOKE checkYo-
urself() on dot com

INCREMENT
numOfGuesses

IF result is “kill”

SET gameAlive to
false

PRINT the number
of user guesses

1

 prep code test code real codereal codereal code

2

1

make the dot com object
make a random number for the first cell, and use it to make the cell locations array

give the dot com its locations (the array)

make a boolean variable to track whether the game
is still alive, to use in the while loop test. repeat
while game is still alive.

get user input
 String

ask the dot com to check the guess; save the returned result in a Stringincrement guess count

was it a “kill”? if so, set isAlive to false (so we won’t re-enter the loop) and print user guess count

SimpleDotComGame class

you are here4

writing a program

111

get user input
 String

random() and getUserInput()
Two things that need a bit more
explaining, are on this page. This is
just a quick look to keep you going;
more details on the GameHelper
class are at the end of this chapter.

1
Getting user input
using the GameHelper
class

2 Make a random
number

int randomNum = (int) (Math.random() * 5)

 prep code test code real code

random() and getUserInput()

real codereal code

2

1

This is a ‘cast’, and it forces the thing immediately after it to become the type of the cast (i.e. the type in the parens). Math.random returns a double, so we have to cast it to be an int (we want a nice whole number between 0 and 4). In this case, the cast lops off the fractional part of the double.

We declare an int variable to hold
the random number we get back. A class that comes

with Java.
A method of the
Math class.

The Math.random method
returns a number from zero to
just less than one. So this formula
(with the cast), returns a number
from 0 to 4. (i.e. 0 - 4.999..,
cast to an int)

String guess = helper.getUserInput(“enter a number”);

We declare a String variable to hold the user input String we get back (“3”, “5”, etc.).

An instance we made earlier,
of a class that we built to
help with the game. It’s called
GameHelper and you haven’t
seen it yet (you will).

A method of the GameHelper class
that asks the user for command-
line input, reads it in after the
user hits RETURN, and gives back
the result as a String.

This method takes a String argument that it uses to prompt
the user at the command-line.
Whatever you pass in here gets
displayed in the terminal just
before the method starts looking for user input.

112 chapter 5

One last class: GameHelper

 prep code test code real codereal codereal code

We made the dot com class.

We made the game class.

All that’s left is the helper class— the one with the
getUserInput() method. The code to get command-
line input is more than we want to explain right now.
It opens up way too many topics best left for later.
(Later, as in chapter 14.)

import java.io.*;

public class GameHelper {

 public String getUserInput(String prompt) {

 String inputLine = null;

 System.out.print(prompt + “ “);

 try {

 BufferedReader is = new BufferedReader(

 new InputStreamReader(System.in));

 inputLine = is.readLine();

 if (inputLine.length() == 0) return null;

 } catch (IOException e) {

 System.out.println(“IOException: “ + e);

 }

 return inputLine;

 }

}

I pre-cooked
some code so you
don’t have to make

it yourself.

Ready-bake
Code

Just copy* the code below and compile it into
a class named GameHelper. Drop all three
classes (SimpleDotCom, SimpleDotComGame,
GameHelper) into the same directory, and make it
your working directory.

Whenever you see the logo, you’re see-
ing code that you have to type as-is and take on faith.
Trust it. You’ll learn how that code works later.

Ready-bake
Code

*We know how much you enjoy typing, but for those rare
moments when you’d rather do something else, we’ve made
the Ready-bake Code available on wickedlysmart.com.

GameHelper class (Ready-bake)

you are here4

writing a program

113

File Edit Window Help Smile

%java SimpleDotComGame

enter a number 1

miss

enter a number 2

miss

enter a number 3

miss

enter a number 4

hit

enter a number 5

hit

enter a number 6

kill

You took 6 guesses

A complete game interaction
(your mileage may vary)

Let’s play

Here’s what happens when we
run it and enter the numbers
1,2,3,4,5,6. Lookin’ good.

File Edit Window Help Faint

%java SimpleDotComGame

enter a number 1

hit

enter a number 1

hit

enter a number 1

kill

You took 3 guesses

A different game interaction
(yikes)

Here’s what happens when we
enter 1,1,1.

What’s this? A bug?
Gasp!

Sharpen your pencil

It’s a cliff-hanger!
Will we find the bug?

Will we fix the bug?

Stay tuned for the next chapter, where we answer
these questions and more...

And in the meantime, see if you can come up with
ideas for what went wrong and how to fix it.

114 chapter 5

for(int i = 0; i < 100; i++){ } repeat for 100 reps:

Regular (non-enhanced) for loops

initialization boolean test iteration expression

What it means in plain English: “Repeat 100 times.”

How the compiler sees it:

 * create a variable i and set it to 0.

 * repeat while i is less than 100.

 * at the end of each loop iteration, add 1 to i

Part One: initialization

Use this part to declare and initialize a variable to use within the loop body.
You’ll most often use this variable as a counter. You can actually initialize more
than one variable here, but we’ll get to that later in the book.

Part Two: boolean test

This is where the conditional test goes. Whatever’s in there, it must resolve to a
boolean value (you know, true or false). You can have a test, like (x >= 4), or you
can even invoke a method that returns a boolean.

Part Three: iteration expression

In this part, put one or more things you want to happen with each trip through
the loop. Keep in mind that this stuff happens at the end of each loop.

post-increment operator

for loops

More about for loops
We’ve covered all the game code for this chapter (but we’ll pick it up again
to finish the deluxe version of the game in the next chapter). We didn’t
want to interrupt your work with some of the details and background info,
so we put it back here. We’ll start with the details of for loops, and if you’re
a C++ programmer, you can just skim these last few pages...

the code to repeat goes here (the body)

you are here4

writing a program

115

 ++ --
Pre and Post Increment/Decrement Operator

The shortcut for adding or subtracting 1 from a variable.

 x++;
is the same as:

 x = x + 1;
They both mean the same thing in this context:

“add 1 to the current value of x” or “increment x by 1”

And:

 x--;
is the same as:

 x = x - 1;
Of course that’s never the whole story. The placement of the
operator (either before or after the variable) can affect the re-
sult. Putting the operator before the variable (for example, ++x),
means, “fi rst, increment x by 1, and then use this new value of x.”
This only matters when the ++x is part of some larger expres-
sion rather than just in a single statement.

 int x = 0; int z = ++x;

produces: x is 1, z is 1

But putting the ++ after the x give you a different result:

 int x = 0; int z = x++;

produces: x is 1, but z is 0! z gets the value of x and then x is
incremented.

Difference between for and while

Trips through a loop
for (int i = 0; i < 8; i++) {

 System.out.println(i);

}

System.out.println(“done”);

output:
File Edit Window Help Repeat

%java Test

0
1
2
3
4
5
6
7
done

declare int i
set i to 0

is i < 8?
(the boolean

test)

true enter loop
body

false

print “done”
(jump below loop)

print the value
of i

increment i
(the iteration
expression)

A while loop has only the boolean test; it doesn’t have
a built-in initialization or iteration expression. A while
loop is good when you don’t know how many times to
loop and just want to keep going while some condi-
tion is true. But if you know how many times to loop
(e.g. the length of an array, 7 times, etc.), a for loop is
cleaner. Here’s the loop above rewritten using while:

int i = 0;

while (i < 8) {

 System.out.println(i);

 i++;

}

System.out.println(“done”);

we have to increment the counter

we have to declare and initialize the counter

116 chapter 5

for (String name : nameArray) { }

The elements in the array MUST be compatible with the declared variable type.

With each iteration,
a different element
in the array will
be assigned to the
variable “name”.

What it means in plain English: “For each element in nameArray, assign the
element to the ‘name’ variable, and run the body of the loop.”

How the compiler sees it:

 * Create a String variable called name and set it to null.

 * Assign the first value in nameArray to name.

 * Run the body of the loop (the code block bounded by curly braces).

 * Assign the next value in nameArray to name.

 * Repeat while there are still elements in the array.

Part One: iteration variable declaration

Use this part to declare and initialize a variable to use within the loop body. With each
iteration of the loop, this variable will hold a different element from the collection. The
type of this variable must be compatible with the elements in the array! For example,
you can’t declare an int iteration variable to use with a String[] array.

Part Two: the actual collection

This must be a reference to an array or other collection. Again, don’t worry about the
other non-array kinds of collections yet—you’ll see them in the next chapter.

Declare an iteration variable
that will hold a single element
in the array.

The enhanced for loop
Beginning with Java 5.0 (Tiger), the Java language has a second kind of for loop
called the enhanced for, that makes it easier to iterate over all the elements in an
array or other kinds of collections (you’ll learn about other collections in the next
chapter). That’s really all that the enhanced for gives you—a simpler way to walk
through all the elements in the collection, but since it’s the most common use of a
for loop, it was worth adding it to the language. We’ll revisit the enhanced for loop in
the next chapter, when we talk about collections that aren’t arrays.

The code to repeat goes here (the body).

 enhanced for

The collection of elements that you want to iterate over.

Imagine that somewhere earlier, the code s
aid:

String[] nameArray = {“Fred”, “Mary”, “Bob”};

With the first iteration,
 the name variable has the value

of

“Fred”, and with the second iteration
, a value of “Mary”, etc.

Note: depending on the programming language they’ve used in the past, some people refer to the enhanced for as the “for each” or the “for in” loop, because that’s how it reads: “for EACH thing IN the collection...”

The colon (:) means “IN”.

you are here4

writing a program

117

In chapter 3 we talked about the sizes of the various primitives, and how you
can’t shove a big thing directly into a small thing:
 long y = 42;

 int x = y; // won’t compile

A long is bigger than an int and the compiler can’t be sure where that long has
been. It might have been out drinking with the other longs, and taking on really
big values. To force the compiler to jam the value of a bigger primitive variable
into a smaller one, you can use the cast operator. It looks like this:

 long y = 42; // so far so good

 int x = (int) y; // x = 42 cool!

Putting in the cast tells the compiler to take the value of y, chop it down to int
size, and set x equal to whatever is left. If the value of y was bigger than the
maximum value of x, then what’s left will be a weird (but calculable*) number:

 long y = 40002;

 // 40002 exceeds the 16-bit limit of a short

 short x = (short) y; // x now equals -25534!

Still, the point is that the compiler lets you do it. And let’s say you have a float-
ing point number, and you just want to get at the whole number (int) part of it:

 fl oat f = 3.14f;

 int x = (int) f; // x will equal 3

 And don’t even think about casting anything to a boolean or vice versa—just
walk away.

 *It involves sign bits, binary, ‘two’s complement’ and other geekery, all of which
are discussed at the beginning of appendix B.

int guess = Integer.parseInt(stringGuess);

The user types his guess at the command-
line, when the game prompts him. That
guess comes in as a String (“2”, “0”, etc.) ,
and the game passes that String into the
checkYourself() method.

But the cell locations are simply ints in an
array, and you can’t compare an int to a
String.

For example, this won’t work:

String num = “2”;

int x = 2;

if (x == num) // horrible explosion!

Trying to compile that makes the compiler
laugh and mock you:

 operator == cannot be applied to
 int,java.lang.String

 if (x == num) { }

 ^

So to get around the whole apples and
oranges thing, we have to make the String
“2” into the int 2. Built into the Java class
library is a class called Integer (that’s right,
an Integer class, not the int primitive),
and one of its jobs is to take Strings that
represent numbers and convert them into
actual numbers.

Integer.parseInt(“3”)

a class tha
t ships

with Java

a method in the Integer class that knows how to “parse” a String into the int it represents.

takes a String

Converting a String to an int Casting
primitives
Casting
primitives

long short
can be cast to

01011101 1101but you might
lose something

bits on the left side were cut off

118 chapter 5

The Java file on this page
represents a complete source
file. Your job is to play JVM
and determine what would be

the output when the
program runs?

Exercise BE the JVM

class Output {

 public static void main(String [] args) {

 Output o = new Output();

 o.go();

 }

 void go() {

 int y = 7;

 for(int x = 1; x < 8; x++) {

 y++;

 if (x > 4) {

 System.out.print(++y + “ “);

 }

 if (y > 14) {

 System.out.println(“ x = “ + x);

 break;

 }

 }

 }

}

File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help Believe

% java Output
13 15 x = 6

File Edit Window Help OM

% java Output
12 14

File Edit Window Help Incense

% java Output
12 14 x = 6

-or-

-or-

exercise: Be the JVM

you are here4

writing a program

119

A working Java program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working Java program that
produces the output listed below? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as many of
those as you need!

x++;

 for(int x = 0; x < 4; x++) {

public static void main(String [] args) {

 if (x == 1) {

 System.out.println(x + “ “ + y);

File Edit Window Help Raid

% java MultiFor
0 4
0 3
1 4
1 3
3 4
3 3

class MultiFor {

for(int y = 4;
y > 2; y--) {

Exercise
Code Magnets

120 chapter 5

JavaCross
 How does a crossword puzzle
help you learn Java? Well, all
of the words are Java related.
In addition, the clues provide
metaphors, puns, and the like.
These mental twists and turns
burn alternate routes to Java
knowledge, right into your
brain!

Down

2. Increment type

3. Class’s workhorse

5. Pre is a type of _____

6. For’s iteration ______

7. Establish first value

8. While or For

9. Update an instance variable

12. Towards blastoff

14. A cycle

16. Talkative package

19. Method messenger
(abbrev.)

Across

1. Fancy computer word
for build

4. Multi-part loop

6. Test first

7. 32 bits

10. Method’s answer

11. Prepcode-esque

13. Change

15. The big toolkit

17. An array unit

18. Instance or local

1 2

12

27

5

25

2120

6

29

17

4

10

13

19

28

26

18

11

22

16

9

7

14

2423

3

15

8

20. Automatic toolkit

22. Looks like a primitive,
but..

25. Un-castable

26. Math method

28. Converter method

29. Leave early

21. As if

23. Add after

24. Pi house

26. Compile it and ____

27. ++ quantity

puzzle: JavaCross

you are here4

writing a program

121

JavaCross

class MixFor5 {
 public static void main(String [] args) {
 int x = 0;
 int y = 30;
 for (int outer = 0; outer < 3; outer++) {
 for(int inner = 4; inner > 1; inner--) {

 y = y - 2;
 if (x == 6) {
 break;
 }
 x = x + 3;
 }
 y = y - 2;
 }
 System.out.println(x + “ “ + y);
 }
}

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left), with the output that you’d see if the block
were inserted. Not all the lines of output will be used, and some
of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching
command-line output.

candidate code goes here

Mixed
Messages

match each
candidate with
one of the
possible outputs

x = x + 3;

x = x + 6;

x = x + 2;

x++;

x--;

x = x + 0;

45 6

36 6

54 6

60 10

18 6

6 14

12 14

Candidates: Possible output:

122 chapter 5

class MultiFor {

 public static void main(String [] args) {

 for(int x = 0; x < 4; x++) {

 for(int y = 4; y > 2; y--) {

 System.out.println(x + “ “ + y);

 }

 if (x == 1) { What would happen
 x++; if this code block came
 } before the ‘y’ for loop?
 }

 }

}

class Output {

 public static void main(String [] args) {

 Output o = new Output();

 o.go();

 }

 void go() {

 int y = 7;

 for(int x = 1; x < 8; x++) {

 y++;

 if (x > 4) {

 System.out.print(++y + “ “);

 }

 if (y > 14) {

 System.out.println(“ x = “ + x);

 break;

 }

 }

 }

} Did you remember to factor in the
 break statement? How did that
 affect the output?

File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help MotorcycleMaintenance

% java Output
13 15 x = 6

Be the JVM: Code Magnets:

File Edit Window Help Monopole

% java MultiFor
0 4
0 3
1 4
1 3
3 4
3 3

exercise solutions

Exercise Solutions

you are here4

writing a program

123

x = x + 3;

x = x + 6;

x = x + 2;

x++;

x--;

x = x + 0;

45 6

36 6

54 6

60 10

18 6

6 14

12 14

Candidates: Possible output:

1 2

12

27

5

25

2120

6

29

17

4

10

13

19

28

26

18

11

22

16

9

7

14

2423

3

15

8

 I M P L E M E N T M
 R F O R E
 E X T R E M E P I N T
 X L S R E T U R N H
 P S E U D O C O D E R I O
 R E O T C A S T T D
 E I C A P I J T I
 S T R A O A
 S E L E M E N T V A R I A B L E
 I R M A R I
 O A E J A V A . L A N G Z
 N T N I I E
 I N T E G E R O P M
 O T B O O L E A N
 R A N D O M U S T
 U N P A R S E I N T H
 N B R E A K L

Puzzle Solutions

6 get to know the Java API

this is a new chapter 125

Java ships with hundreds of pre-built classes. You don’t have to

reinvent the wheel if you know how to find what you need in the Java library, known as

the Java API. You’ve got better things to do. If you’re going to write code, you might as well

write only the parts that are truly custom for your application. You know those programmers

who walk out the door each night at 5 PM? The ones who don’t even show up until 10 AM?

They use the Java API. And about eight pages from now, so will you. The core Java library

is a giant pile of classes just waiting for you to use like building blocks, to assemble your own

program out of largely pre-built code. The Ready-bake Java we use in this book is code you

don’t have to create from scratch, but you still have to type it. The Java API is full of code you

don’t even have to type. All you need to do is learn to use it.

Using the Java Library

I can lift
heavy objects.

So it’s true?
We don’t have to

build it ourselves?

Make it Stick

126 chapter 6

In our last chapter, we lef t you
with the cliff-hanger. A bug.

File Edit Window Help Smile

%java SimpleDotComGame

enter a number 1

miss

enter a number 2

miss

enter a number 3

miss

enter a number 4

hit

enter a number 5

hit

enter a number 6

kill

You took 6 guesses

A complete game interaction
(your mileage may vary)

How it’s supposed to look

Here’s what happens when we
run it and enter the numbers
1,2,3,4,5,6. Lookin’ good.

File Edit Window Help Faint

%java SimpleDotComGame

enter a number 2

hit

enter a number 2

hit

enter a number 2

kill

You took 3 guesses

A different game interaction
(yikes)

Here’s what happens when we
enter 2,2,2.

How the bug looks

In the current version, once
you get a hit, you can simply
repeat that hit two more
times for the kill!

we still have a bug

get to know the Java API

you are here4 127

So what happened?

public String checkYourself(String stringGuess) {

 int guess = Integer.parseInt(stringGuess);

 String result = “miss”;

 for (int cell : locationCells) {

 if (guess == cell) {

 result = “hit”;

 numOfHits++;

 break;

 } // end if

 } // end for

 if (numOfHits == locationCells.length) {

 result = “kill”;

 } // end if

 System.out.println(result);

 return result;

} // end method

Convert the String to an int.
Make a variable to hold the result we’ll return. Put “miss” in as the default (i.e. we assume a “miss”).

Repeat with each thing in the array. Compare the user
guess to this element (cell), in the array.we got a hit!

Get out of the loop, no need to test the other cells.

We’re out of the loop, but let’s see if we’re now ‘dead’ (hit 3 times) and change the result String to “kill”.

Display the result for the user
(“miss”, unless it was changed to “hit” or “kill”).

Return the result back to the calling method.

Here’s where it
goes wrong. We
counted a hit every
time the user
guessed a cell
location, even if
that location had
already been hit!

We need a way to
know that when
a user makes
a hit, he hasn’t
previously hit that
cell. If he has, then
we don’t want to
count it as a hit.

128 chapter 6

A ‘true’ in a particular index in the array means that the cell location at that same index in the OTHER array (locationCells) has been hit.

How do we fix it ?

0 1 2 3 4 5 6

We need a way to know whether a cell has already been hit. Let’s run
through some possibilities, but first, we’ll look at what we know so far...

We have a virtual row of 7 cells, and a DotCom will occupy three
consecutive cells somewhere in that row. This virtual row shows a
DotCom placed at cell locations 4,5 and 6.

We could make a second array, and each time the user makes a hit, we
store that hit in the second array, and then check that array each time
we get a hit, to see if that cell has been hit before.

1

The virtual row, with the 3 cell locations for the DotCom object.

The DotCom has an instance variable—an int array—that holds that
DotCom object’s cell locations.

0 1 2

4 5 6
The array instance variable that holds the DotCom’s cell locations. This DotCom holds the 3 values of 4, 5, and 6. Those are the numbers the user needs to guess.

Option one

locationCells
(instance variable of
the DotCom)

0 1 2

false

hitCells array
(this would be a
new boolean array
instance variable of
the DotCom)

This array holds three values representing the ‘state’ of each cell in the DotCom’s location cells array. For example, if the cell at index 2 is hit, then set index 2 in the “hitCells” array to ‘true’.

false true

fixing the bug

get to know the Java API

you are here4 129

We could just keep the one original array, but change the value of any hit
cells to -1. That way, we only have ONE array to check and manipulate

2 Option two

Option one is too clunky
Option one seems like more work than you’d expect. It means that each
time the user makes a hit, you have to change the state of the second
array (the ‘hitCells’ array), oh -- but first you have to CHECK the ‘hitCells’
array to see if that cell has already been hit anyway. It would work, but
there’s got to be something better...

0 1 2

4 5 -1

locationCells
(instance variable of
the DotCom)

a -1 at a particular cell location means that the cell has already been hit, so we’re only looking for non-negative numbers in the array.

Option two is a little less clunky than option one, but it’s not very efficient. You’d
still have to loop through all three slots (index positions) in the array, even if
one or more are already invalid because they’ve been ‘hit’ (and have a -1 value).
There has to be something better...

Option two is a little better, but
still pretty clunky

130 chapter 6

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “kill”

 ELSE it was not a kill, so RETURN“hit”

 END IF

 ELSE user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

 REPEAT with each of the remaining location cells

 // COMPARE the user guess to the location cell

 IF the user guess matches

 REMOVE this cell from the array

 // FIND OUT if it was the last location cell:

 IF the array is now empty, RETURN “kill”

 ELSE it was not a kill, so RETURN“hit”

 END IF

 ELSE user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

The original prepcode for part of the
checkYourself() method:

Life would be good if only we could
change it to:

 prep code test code real code prep code test code prep code

We delete each cell location as it gets hit, and then modify the array to
be smaller. Except arrays can’t change their size, so we have to make a
new array and copy the remaining cells from the old array into the new
smaller array.

3 Option three

0 1 2

4 5

locationCells array
BEFORE any cells
have been hit

The array starts out with a size of 3, and we loop through all 3 cells (positions in the array) to look for a match between the user guess and the cell value (4,5, 6).

When cell ‘5’ is hit, we make a new, smaller array with only the remain-ing cell locations, and assign it to the original locationCells reference.

6

locationCells array
AFTER cell ‘5’, which
was at index 1 in the
array, has been hit

0 1

4 6

Option three would be much better if the array could shrink, so that we wouldn’t have
to make a new smaller array, copy the remaining values in, and reassign the reference.

prep code

get to know the Java API

you are here4 131

If only I could find an array
that could shrink when you remove

something. And one that you didn’t have
to loop through to check each element, but
instead you could just ask it if it contains
what you’re looking for. And it would let you
get things out of it, without having to know

exactly which slot the things are in.
That would be dreamy. But I know it’s

just a fantasy...

when arrays aren’t enough

132 chapter 6

Wake up and smell the library

As if by magic, there really is such a thing.

But it’s not an array, it’s an ArrayList.

A class in the core Java library (the API).

The Java Standard Edition (which is what you have unless you’re work-
ing on the Micro Edition for small devices and believe me, you’d know)
ships with hundreds of pre-built classes. Just like our Ready-Bake code
except that these built-in classes are already compiled.

That means no typing.

Just use ‘em.

One of a gazillion classes in
the Java library.
You can use it in your code
as if you wrote it yourself.

That means no typing.That means no typing.That means no typing

ArrayList

add(Object elem)

remove(int index)

remove(Object elem)

contains(Object elem)

isEmpty()

indexOf(Object elem)

size()

get(int index)

Adds the object parameter to the list.

Removes the object at the index parameter.

Returns ‘true’ if there’s a match for the object parameter

Returns ‘true’ if the list has no elements

Returns either the index of the object parameter, or -1

Returns the number of elements currently in the list

Returns the object currently at the index parameter

Removes this object (if it’s in the ArrayList).

(Note: the add(Object elem) method
actually looks a little stranger than the
one we’ve shown here... we’ll get to the
real one later in the book. For now, just
think of it as an add() method that
takes the object you want to add.)

This is just a sample of SOME of

the methods in ArrayList.

get to know the Java API

you are here4 133

Some things you can do with ArrayList

1 Make one
ArrayList<Egg> myList = new ArrayList<Egg>();

2 Put something in it
Egg s = new Egg();

myList.add(s);

7

Remove something from it
myList.remove(s);

4 Find out how many things are in it
int theSize = myList.size();

5 Find out if it contains something
boolean isIn = myList.contains(s);

6

Find out if it’s empty
boolean empty = myList.isEmpty();

Find out where something is (i.e. its index)
int idx = myList.indexOf(b);

8

3 Put another thing in it
Egg b = new Egg();

myList.add(b);

A new ArrayList object is

created on the
 heap. It’s littl

e

because it’s empty.

Now the ArrayList grows a “box”

to hold the Egg object.

The ArrayList grows again to hold the second Egg object.

The ArrayList is holding 2 objects so

the size() method returns 2

The ArrayList DOES contain the Egg object

referenced by ‘s’, so contains() re
turns true

ArrayList is zero-based (means first index is 0)

and since the object referenced
by ‘b’ was the

second thing in the list, indexOf() returns 1

it’s definitely NOT empty, so isEmpty() returns false

Hey look — it shrank!

Don’t worry about this new <Egg> angle-bracket syntax

right now; it just means “make this a list of Egg objects”.

s

s b

b

when arrays aren’t enough

134 chapter 6

Sharpen your pencil

ArrayList<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = new String(“whoohoo”); String a = new String(“whoohoo”);
myList.add(a);

String b = new String(“Frog”); String b = new String(“Frog”);
myList.add(b);

int theSize = myList.size();

Object o = myList.get(1);

myList.remove(1);

boolean isIn = myList.contains(b);

ArrayList regular array

Fill in the rest of the table below by looking at the ArrayList code
on the left and putting in what you think the code might be if it
were using a regular array instead. We don’t expect you to get all
of them exactly right, so just make your best guess.

get to know the Java API

you are here4 135

there are noDumb Questions
Q:So ArrayList is cool, but
how would I know it exists?

A:The question is really,
“How do I know what’s in the
API?” and that’s the key to your
success as a Java programmer.
Not to mention your key to
being as lazy as possible while
still managing to build software.
You might be amazed at how
much time you can save when
somebody else has already done
most of the heavy lifting, and
all you have to do is step in and
create the fun part.

But we digress... the short
answer is that you spend some
time learning what’s in the core
API. The long answer is at the
end of this chapter, where you’ll
learn how to do that.

Q:But that’s a pretty big
issue. Not only do I need to
know that the Java library
comes with ArrayList, but more
importantly I have to know
that ArrayList is the thing that
can do what I want! So how
do I go from a need-to-do-
something to a-way-to-do-it
using the API?

A:Now you’re really at the
heart of it. By the time you’ve
finished this book, you’ll have
a good grasp of the language,
and the rest of your learning
curve really is about knowing
how to get from a problem to
a solution, with you writing the
least amount of code. If you can
be patient for a few more pages,
we start talking about it at the
end of this chapter.

HeadFirst: So, ArrayLists are like arrays, right?

ArrayList: In their dreams! I am an object thank you very much.

HeadFirst: If I’m not mistaken, arrays are objects too. They live on the heap right
there with all the other objects.

ArrayList: Sure arrays go on the heap, duh, but an array is still a wanna-be
ArrayList. A poser. Objects have state and behavior, right? We’re clear on that. But
have you actually tried calling a method on an array?

HeadFirst: Now that you mention it, can’t say I have. But what method would I
call, anyway? I only care about calling methods on the stuff I put in the array, not
the array itself. And I can use array syntax when I want to put things in and take
things out of the array.

ArrayList: Is that so? You mean to tell me you actually removed something from an
array? (Sheesh, where do they train you guys? McJava’s?)

HeadFirst: Of course I take something out of the array. I say Dog d = dogArray[1]
and I get the Dog object at index 1 out of the array.

ArrayList: Allright, I’ll try to speak slowly so you can follow along. You were not,
I repeat not, removing that Dog from the array. All you did was make a copy of the
reference to the Dog and assign it to another Dog variable.

HeadFirst: Oh, I see what you’re saying. No I didn’t actually remove the Dog
object from the array. It’s still there. But I can just set its reference to null, I guess.

ArrayList: But I’m a first-class object, so I have methods and I can actually, you
know, do things like remove the Dog’s reference from myself, not just set it to null.
And I can change my size, dynamically (look it up). Just try to get an array to do that!

HeadFirst: Gee, hate to bring this up, but the rumor is that you’re nothing more
than a glorified but less-efficient array. That in fact you’re just a wrapper for an
array, adding extra methods for things like resizing that I would have had to write
myself. And while we’re at it, you can’t even hold primitives! Isn’t that a big limitation?

ArrayList: I can’t believe you buy into that urban legend. No, I am not just a less-
efficient array. I will admit that there are a few extremely rare situations where an
array might be just a tad, I repeat, tad bit faster for certain things. But is it worth the
miniscule performance gain to give up all this power. Still, look at all this flexibility. And
as for the primitives, of course you can put a primtive in an ArrayList, as long as it’s
wrapped in a primitive wrapper class (you’ll see a lot more on that in chapter 10).
And as of Java 5.0, that wrapping (and unwrapping when you take the primitive out
again) happens automatically. And allright, I’ll acknowledge that yes, if you’re using an
ArrayList of primitives, it probably is faster with an array, because of all the wrapping
and unwrapping, but still... who really uses primitives these days?

Oh, look at the time! I’m late for Pilates. We’ll have to do this again sometime.

This week’s interview:
ArrayList, on arrays

Java Exposed

136 chapter 6

Comparing ArrayList to a regular array

ArrayList<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = new String(“whoohoo”); String a = new String(“whoohoo”);

myList.add(a); myList[0] = a;

String b = new String(“Frog”); String b = new String(“Frog”);

myList.add(b); myList[1] = b;

int theSize = myList.size(); int theSize = myList.length;

Object o = myList.get(1); String o = myList[1];

myList.remove(1); myList[1] = null;

boolean isIn = myList.contains(b); boolean isIn = false;

 for (String item : myList) {

 if (b.equals(item)) {

 isIn = true;

 break;

 }

 }

Here’s where it

starts to lo
ok

really different...

ArrayList regular array

Notice how with ArrayList, you’re working
with an object of type ArrayList, so you’re just
invoking regular old methods on a regular old
object, using the regular old dot operator.

With an array, you use special array syntax (like
myList[0] = foo) that you won’t use anywhere
else except with arrays. Even though an
array is an object, it lives in its own special
world and you can’t invoke any methods on
it, although you can access its one and only
instance variable, length.

difference between ArrayList and array

get to know the Java API

you are here4 137

1 A plain old array has to know its
size at the time it’s created.

But for ArrayList, you just make an object of
type ArrayList. Every time. It never needs to
know how big it should be, because it grows
and shrinks as objects are added or removed.

2 To put an object in a regular array,
you must assign it to a specific
location.
(An index from 0 to one less than the length of
the array.)
myList[1] = b;

If that index is outside the boundaries of the
array (like, the array was declared with a size of
2, and now you’re trying to assign something
to index 3), it blows up at runtime.

With ArrayList, you can specify an index us-
ing the add(anInt, anObject) method, or you
can just keep saying add(anObject) and the
ArrayList will keep growing to make room for
the new thing.
myList.add(b);

3 Arrays use array syntax that’s not
used anywhere else in Java.

But ArrayLists are plain old Java objects, so
they have no special syntax.

myList[1]

4

new String[2]

new ArrayList<String>()

Needs a size.

No size required (although you can
give it a size if you want to).

Comparing ArrayList to a regular array

Needs an index.

No index.

ArrayLists in Java 5.0 are
parameterized.

We just said that unlike arrays, ArrayLists
have no special syntax. But they do use
something special that was added to Java 5.0
Tiger—parameterized types.

ArrayList<String>

Prior to Java 5.0, there was no way to declare
the type of things that would go in the
ArrayList, so to the compiler, all ArrayLists
were simply heterogenous collections of
objects. But now, using the <typeGoesHere>
syntax, we can declare and create an
ArrayList that knows (and restricts) the
types of objects it can hold. We’ll look at the
details of parameterized types in ArrayLists
in the Collections chapter, so for now, don’t
think too much about the angle bracket <>
syntax you see when we use ArrayLists. Just
know that it’s a way to force the compiler to
allow only a specific type of object (the type in
angle brackets) in the ArrayList.

The array brackets [] are spec
ial

syntax used only for arrays.

The <String> in angle brackets is a “type
parameter”. ArrayList<String> means simply “a
list of Strings”, as opposed to ArrayList<Dog>
which means, “a list of Dogs”.

138 chapter 6

Let’s fix the DotCom code.

 prep code test code real codereal codereal code

public class DotCom {

 int[] locationCells;

 int numOfHits = 0;

 public void setLocationCells(int[] locs) {

 locationCells = locs;

 }

 public String checkYourself(String stringGuess) {

 int guess = Integer.parseInt(stringGuess);

 String result = “miss”;

 for (int cell : locationCells) {

 if (guess == cell) {

 result = “hit”;

 numOfHits++;

 break;

 }

 } // out of the loop

 if (numOfHits == locationCells.length) {

 result = “kill”;

 }

 System.out.println(result);

 return result;

 } // close method

} // close class

Remember, this is how the buggy version looks:

Where it all went wrong. We counted each guess as a hit, without checking whether that cell
had already been hit.

the buggy DotCom code

We’ve renamed the class DotCom now (instead of

SimpleDotCom), for the new advanced version, but this

is the same code you saw in the last chapter.

get to know the Java API

you are here4 139

import java.util.ArrayList;

public class DotCom {

 private ArrayList<String> locationCells;
 // private int numOfHits;
 // don’t need that now

 public void setLocationCells(ArrayList<String> loc) {
 locationCells = loc;
 }

 public String checkYourself(String userInput) {

 String result = “miss”;

 int index = locationCells.indexOf(userInput);

 if (index >= 0) {

 locationCells.remove(index);

 if (locationCells.isEmpty()) {
 result = “kill”;
 } else {
 result = “hit”;
 } // close if

 } // close outer if

 return result;
 } // close method
} // close class

New and improved DotCom class

 prep code test code real codereal codereal code

Change the String array
 to an ArrayList that holds Strings.

Ignore this line for now; we talk about it at the end of the chapter .

Find out if the user gue
ss is in the

ArrayList, by asking for its in
dex.

If it’s not in the list,
then indexOf()

returns a -1.

If index is greater than or equal to zero, the user guess is definitely in the list, so remove it .

If the list is empty, this
was the killing blow!

New and improved arg
ument name.

140 chapter 6

making the DotComBust

Let’s build the REAL game:
“Sink a Dot Com”
We’ve been working on the ‘simple’ version, but now
let’s build the real one. Instead of a single row, we’ll
use a grid. And instead of one DotCom, we’ll use
three.

Goal: Sink all of the computer’s Dot Coms in the
fewest number of guesses. You’re given a rating level
based on how well you perform.

Setup: When the game program is launched, the
computer places three Dot Coms, randomly, on the
virtual 7 x 7 grid. When that’s complete, the game
asks for your fi rst guess.

How you play: We haven’t learned to build a GUI
yet, so this version works at the command-line. The
computer will prompt you to enter a guess (a cell),
which you’ll type at the command-line (as “A3”, “C5”,
etc.). In response to your guess, you’ll see a result at
the command-line, either “hit”, “miss”, or “You sunk
Pets.com” (or whatever the lucky Dot Com of the day
is). When you’ve sent all three Dot Coms to that big
404 in the sky, the game ends by printing out your
rating.

7 X 7 grid

File Edit Window Help Sell

%java DotComBust

Enter a guess A3

miss

Enter a guess B2

miss

Enter a guess C4

miss

Enter a guess D2

hit

Enter a guess D3

hit

Enter a guess D4

Ouch! You sunk Pets.com : (

kill

Enter a guess B4

miss

Enter a guess G3

hit

Enter a guess G4

hit

Enter a guess G5

Ouch! You sunk AskMe.com : (

kill

Enter a guess A7

miss

Enter a guess B7

A

B

C

D

E

F

G

0 1 2 3 4 5 6

AskMe.com

Pets.comG
o

2
.c

o
m

starts at zero, like Java arrays

part of a game interaction

You’re going to build the
Sink a Dot Com game, with
a 7 x 7 grid and three
Dot Coms. Each Dot Com
takes up three cells.

each box
is a “cell”

get to know the Java API

you are here4 141

What needs to change?
We have three classes that need to change: the
DotCom class (which is now called DotCom instead of
SimpleDotCom), the game class (DotComBust) and the
game helper class (which we won’t worry about now).

A DotCom class

§ Add a name variable
to hold the name of the DotCom
(“Pets.com”, “Go2.com”, etc.) so each Dot-
Com can print its name when it’s killed (see
the output screen on the opposite page).

DotComBust class continued...

§ Put the DotComs on a grid rather than
just a single row, and do it for all three
DotComs.
This step is now way more complex than
before, if we’re going to place the DotComs
randomly. Since we’re not here to mess
with the math, we put the algorithm for
giving the DotComs a location into the
GameHelper (Ready-bake) class.

§ Check each user guess with all three
DotComs, instead of just one.

§ Keep playing the game (i.e accepting
user guesses and checking them with the
remaining DotComs) until there are no more
live DotComs.

§ Get out of main. We kept the simple one in
main just to... keep it simple. But that’s not
what we want for the real game.

DotComBust

The game class.
Makes DotComs,
gets user input,
plays until all Dot-
Coms are dead

DotCom

The actual
DotCom objects.
DotComs know their
name, location, and
how to check a user
guess for a match.

3 Classes:

GameHelper

The helper class
(Ready-Bake).
It knows how to
accept user com-
mand-line input,
and make DotCom
locations.

5 Objects:

DotComBust
DotCom

DotCom
DotCom

GameHelper

uses for player input and to make DotCom locations
creates and plays with

B DotComBust class (the game)

§ Create three DotComs instead of one.

§ Give each of the three DotComs a name.
Call a setter method on each DotCom
instance, so that the DotCom can assign the
name to its name instance variable.

Plus 4
ArrayLists: 1 for
the DotComBust
and 1 for each
of the 3 DotCom
objects.

142 chapter 6

Who does what in the DotComBust game
(and when)

1

detailed structure of the game

DotComBust

The game
class.

DotComBust
object

instantiates
The main() method
in the DotComBust
class instantiates the
DotComBust object that
does all the game stuff.

2

instantiates

The DotComBust (game)
object instantiates an
instance of GameHelper,
the object that will help
the game do its work.

helper

DotComBust
object

GameHelper
object

3

ArrayList object (to
hold DotCom objects)

The DotComBust object
instantiates an ArrayList
that will hold the 3 DotCom
objects.

helper dotComsList

DotComBust
object

GameHelper
object

get to know the Java API

you are here4 143

4

ArrayList object to
hold DotCom objects

The DotComBust object
creates three DotCom
objects (and puts them in
the ArrayList)

helper dotComsList

DotComBust
object

GameHelper
object

dotCom
0

dotCom
1

dotCom
2

cells

cells

cells

DotCom
objects

5

ArrayList object to
hold DotCom objects

The DotComBust object asks the
helper object for a location for a
DotCom (does this 3 times, one for
each DotCom)

helper dotComsList

DotComBust
object

GameHelper
object

make location

dotCom
0

dotCom
1

dotCom
2

cells

cells

cells

DotCom
objects

here it is

The DotComBust object gives each of the Dot-
Com objects a location (which the DotComBust
got from the helper object) like “A2”, “B2”,
etc. Each DotCom object puts his own three
location cells in an ArrayList

ArrayList object
(to hold DotCom
cell locations)

cell
0

cell
1

cell
2

ArrayList
object

ArrayList
object

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

6

ArrayList object to
hold DotCom objects

The DotComBust object asks the helper
object for a user guess (the helper
prompts the user and gets input from
the command-line)

helper dotComsList

DotComBust
object

GameHelper
object

get user guess

dotCom
0

dotCom
1

dotCom
2

cells

cells

cells

DotCom
objects

ch
eck this guesshere it is

ArrayList object
(to hold DotCom
cell locations)

cell
0

cell
1

cell
2

ArrayList
object

ArrayList
object

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

“hit”

The DotComBust object loops through the list
of DotComs, and asks each one to check the user
guess for a match. The DotCom checks its locations
ArrayList and returns a result (“hit”, “miss”, etc.)

And so the game continues... get-
ting user input, asking each DotCom
to check for a match, and continuing
until all DotComs are dead

144 chapter 6

GameHelper helper
ArrayList dotComsList
int numOfGuesses

setUpGame()

startPlaying()

checkUserGuess()

finishGame()

 prep code test code real code prep code test code prep code

DECLARE and instantiate the GameHelper instance variable, named helper.

DECLARE and instantiate an ArrayList to hold the list of DotComs (initially three) Call it
dotComsList.

DECLARE an int variable to hold the number of user guesses (so that we can give the user a
score at the end of the game). Name it numOfGuesses and set it to 0.

DECLARE a setUpGame() method to create and initialize the DotCom objects with names
and locations. Display brief instructions to the user.

DECLARE a startPlaying() method that asks the player for guesses and calls the
checkUserGuess() method until all the DotCom objects are removed from play.

DECLARE a checkUserGuess() method that loops through all remaining DotCom objects and
calls each DotCom object’s checkYourself() method.

DECLARE a fi nishGame() method that prints a message about the user’s performance, based
on how many guesses it took to sink all of the DotCom objects.

METHOD: void setUpGame()

 // make three DotCom objects and name them

 CREATE three DotCom objects.

 SET a name for each DotCom.

 ADD the DotComs to the dotComsList (the ArrayList).

 REPEAT with each of the DotCom objects in the dotComsList array

 CALL the placeDotCom() method on the helper object, to get a randomly-selected
 location for this DotCom (three cells, vertically or horizontally aligned, on a 7 X 7 grid).

 SET the location for each DotCom based on the result of the placeDotCom() call.

 END REPEAT

END METHOD

DotComBust

The DotComBust class has three main jobs: set up the game, play the game
until the DotComs are dead, and end the game. Although we could map
those three jobs directly into three methods, we split the middle job (play the
game) into two methods, to keep the granularity smaller. Smaller methods
(meaning smaller chunks of functionality) help us test, debug, and modify
the code more easily.

Prep code for the real DotComBust class

Variable

Declarations

Method

Declarations

Method

Implementations

the DotComBust class (the game)

get to know the Java API

you are here4 145

METHOD: void checkUserGuess(String userGuess)

 // fi nd out if there’s a hit (and kill) on any DotCom

 INCREMENT the number of user guesses in the numOfGuesses variable

 SET the local result variable (a String) to “miss”, assuming that the user’s guess will be a miss.

 REPEAT with each of the DotObjects in the dotComsList array

 EVALUATE the user’s guess by calling the DotCom object’s checkYourself() method

 SET the result variable to “hit” or “kill” if appropriate

 IF the result is “kill”, REMOVE the DotCom from the dotComsList

 END REPEAT

 DISPLAY the result value to the user

END METHOD

METHOD: void fi nishGame()

 DISPLAY a generic “game over” message, then:

 IF number of user guesses is small,

 DISPLAY a congratulations message

 ELSE

 DISPLAY an insulting one

 END IF

END METHOD

 prep code test code real code prep code test code prep code

METHOD: void startPlaying()

 REPEAT while any DotComs exist

 GET user input by calling the helper getUserInput() method

 EVALUATE the user’s guess by checkUserGuess() method

 END REPEAT

END METHOD

Method implementations continued:

Sharpen your pencil
How should we go from prep code to the
final code? First we start with test code, and
then test and build up our methods bit by
bit. We won’t keep showing you test code
in this book, so now it’s up to you to think
about what you’d need to know to test these

methods. And which method do you test
and write first? See if you can work out some
prep code for a set of tests. Prep code or
even bullet points are good enough for this
exercise, but if you want to try to write the
real test code (in Java), knock yourself out.

146 chapter 6

import java.util.*;

public class DotComBust {

 private GameHelper helper = new GameHelper();
 private ArrayList<DotCom> dotComsList = new ArrayList<DotCom>();
 private int numOfGuesses = 0;

 private void setUpGame() {
 // fi rst make some dot coms and give them locations

 DotCom one = new DotCom();

 one.setName(“Pets.com”);

 DotCom two = new DotCom();

 two.setName(“eToys.com”);

 DotCom three = new DotCom();

 three.setName(“Go2.com”);

 dotComsList.add(one);

 dotComsList.add(two);

 dotComsList.add(three);

 System.out.println(“Your goal is to sink three dot coms.”);

 System.out.println(“Pets.com, eToys.com, Go2.com”);

 System.out.println(“Try to sink them all in the fewest number of guesses”);

 for (DotCom dotComToSet : dotComsList) {

 ArrayList<String> newLocation = helper.placeDotCom(3);

 dotComToSet.setLocationCells(newLocation);

 } // close for loop

 } // close setUpGame method

 private void startPlaying() {
 while(!dotComsList.isEmpty()) {

 String userGuess = helper.getUserInput(“Enter a guess”);

 checkUserGuess(userGuess);

 } // close while

 fi nishGame();

 } // close startPlaying method

 prep code test code real codereal codereal code

1

2

3

4

5

6

7
8

10

9

as long as the DotCom
list is NOT empty

get user input

call our own checkUserGuess method

call our own finishGame method

print brief
instructions for
user

declare and ini
tialize

the variables w
e’ll need

repeat with each DotCom in the list

make three DotCom objects, give ‘em

names, and stick ‘em in the ArrayList

ask the helper for a DotCom location

call the setter method on this DotCom to give it the location you just got from the helper

Sharpen your pencil

Annotate the code
yourself!

Match the
annotations at the
bottom of each page
with the numbers
in the code. Write
the number in the
slot in front of the
corresponding
annotation.

You’ll use each
annotation just once,
and you’ll need all of
the annotations.

the DotComBust code (the game)

get to know the Java API

you are here4 147

 private void checkUserGuess(String userGuess) {

 numOfGuesses++;
 String result = “miss”;

 for (DotCom dotComToTest : dotComsList) {

 result = dotComToTest.checkYourself(userGuess);

 if (result.equals(“hit”)) {

 break;

 }

 if (result.equals(“kill”)) {

 dotComsList.remove(dotComToTest);

 break;

 }
 } // close for
 System.out.println(result);
 } // close method

 private void fi nishGame() {
 System.out.println(“All Dot Coms are dead! Your stock is now worthless.”);

 if (numOfGuesses <= 18) {

 System.out.println(“It only took you “ + numOfGuesses + “ guesses.”);

 System.out.println(“ You got out before your options sank.”);

 } else {

 System.out.println(“Took you long enough. “+ numOfGuesses + “ guesses.”);

 System.out.println(“Fish are dancing with your options.”);

 }

 } // close method

 public static void main (String[] args) {
 DotComBust game = new DotComBust();
 game.setUpGame();
 game.startPlaying();

 } // close method

}

increment the number of guesses the user has made
assume it’s a ‘miss’, unless told otherwise

repeat with all DotComs in the list

ask the DotCom to check the user guess,
looking for a hit (or kill)

get out of the loop early, no point in testing the others

this guy’s dead, so take him out of the DotComs list then get out of the loop

print the
result for
the user

print a message telling the user how he did in the game

tell the game object to start the main
game play loop (keeps asking for user input and checking the guess)

 prep code test code real codereal codereal code

12

13

14

15

16

17

18

19
20

21

tell the game object
to set up the game

create the game object

11

Whatever you do,
DON’T turn the
page!

Not until you’ve
fi nished this
exercise.

Our version is on
the next page.

148 chapter 6

import java.util.*;

public class DotComBust {

 private GameHelper helper = new GameHelper();

 private ArrayList<DotCom> dotComsList = new ArrayList<DotCom>();

 private int numOfGuesses = 0;

 private void setUpGame() {
 // fi rst make some dot coms and give them locations

 DotCom one = new DotCom();

 one.setName(“Pets.com”);

 DotCom two = new DotCom();

 two.setName(“eToys.com”);

 DotCom three = new DotCom();

 three.setName(“Go2.com”);

 dotComsList.add(one);

 dotComsList.add(two);

 dotComsList.add(three);

 System.out.println(“Your goal is to sink three dot coms.”);

 System.out.println(“Pets.com, eToys.com, Go2.com”);

 System.out.println(“Try to sink them all in the fewest number of guesses”);

 for (DotCom dotComToSet : dotComsList) {

 ArrayList<String> newLocation = helper.placeDotCom(3);

 dotComToSet.setLocationCells(newLocation);

 } // close for loop

 } // close setUpgame method

 private void startPlaying() {

 while(!dotComsList.isEmpty()) {

 String userGuess = helper.getUserInput(“Enter a guess”);

 checkUserGuess(userGuess);

 } // close while

 fi nishGame();

 } // close startPlaying method

 prep code test code real codereal codereal code

Declare and init
ialize

the variables w
e’ll need.

Make three DotCom objects,

give ‘em names, and stick ‘em

in the ArrayList.

Print brief
instructions for user.

Ask the helper for a
DotCom location (an
ArrayList of Strings).

Call the setter method on this DotCom to give it the location you just got from the helper.

Repeat with each DotCom in the list.

As long as the DotCom list is NOT empty (the ! means NOT, it’s

the same as (dotComsList.isEmpty() == false).

Get user input.

Call our own checkUserGuess method.
Call our own finishGame method.

the DotComBust code (the game)

Make an ArrayList of
DotCom objects (in other
words, a list that will hold
ONLY DotCom objects,
just as DotCom[] would
mean an array of DotCom
objects).

get to know the Java API

you are here4 149

 private void checkUserGuess(String userGuess) {

 numOfGuesses++;

 String result = “miss”;

 for (DotCom dotComToTest : dotComsList) {

 result = dotComToTest.checkYourself(userGuess);

 if (result.equals(“hit”)) {

 break;
 }
 if (result.equals(“kill”)) {

 dotComsList.remove(dotComToTest);
 break;
 }

 } // close for

 System.out.println(result);
 } // close method

 private void fi nishGame() {
 System.out.println(“All Dot Coms are dead! Your stock is now worthless.”);

 if (numOfGuesses <= 18) {

 System.out.println(“It only took you “ + numOfGuesses + “ guesses.”);

 System.out.println(“ You got out before your options sank.”);

 } else {

 System.out.println(“Took you long enough. “+ numOfGuesses + “ guesses.”);

 System.out.println(“Fish are dancing with your options”);

 }

 } // close method

 public static void main (String[] args) {
 DotComBust game = new DotComBust();
 game.setUpGame();
 game.startPlaying();

 } // close method

}

increment the number of guesses the user has made

assume it’s a ‘miss’, unless told otherwise

repeat with all DotComs in the list

ask the DotCom to check the user
guess, looking for a hit (or kill)

get out of the loop early, no point in testing the others

this guy’s dead, so take him out of the DotComs list then get out of the loop

print the result for the user print a message telling the user how he did in the game

create the game objecttell the game object to set up the gametell the game object to start the main
game play loop (keeps asking for user input and checking the guess)

 prep code test code real codereal codereal code

150 chapter 6

import java.util.*;

public class DotCom {

 private ArrayList<String> locationCells;

 private String name;

 public void setLocationCells(ArrayList<String> loc) {

 locationCells = loc;

 }

 public void setName(String n) {

 name = n;

 }

 public String checkYourself(String userInput) {

 String result = “miss”;

 int index = locationCells.indexOf(userInput);

 if (index >= 0) {

 locationCells.remove(index);

 if (locationCells.isEmpty()) {

 result = “kill”;

 System.out.println(“Ouch! You sunk “ + name + “ : (“);

 } else {

 result = “hit”;

 } // close if

 } // close if

 return result;

 } // close method

} // close class

DotCom’s instance variables:

 - an ArrayList of cell locations

 - the DotCom’s name

A setter method that updates
the DotCom’s location.
(Random location provided by
the GameHelper placeDotCom()
method.)

Your basic setter method

The ArrayList indexOf() method in
action! If the user guess is one of the
entries in the ArrayList, indexOf()
will return its ArrayList location. If
not, indexOf() will return -1.

Tell the user when a DotCom has been sunk.

Using the isEmpty() method to see if all
of the locations have been guessed

Using ArrayList’s remove() method to delete an entry.

The final version of the
DotCom class

Return: ‘miss’ or ‘hit’ or ‘kill’.

 prep code test code real code

The final version of the

real codereal code

the DotCom code

get to know the Java API

you are here4 151

Super Powerful Boolean Expressions
So far, when we’ve used boolean expressions for our loops or
if tests, they’ve been pretty simple. We will be using more
powerful boolean expressions in some of the Ready-Bake code
you’re about to see, and even though we know you wouldn’t
peek, we thought this would be a good time to discuss how to
energize your expressions.

‘And’ and ‘Or’ Operators (&&, ||)
Let’s say you’re writing a chooseCamera() method, with lots of rules
about which camera to select. Maybe you can choose cameras
ranging from $50 to $1000, but in some cases you want to limit the
price range more precisely. You want to say something like:

‘If the price range is between $300 and $400 then choose X.’

 if (price >= 300 && price < 400) {

 camera = “X”;

}

Let’s say that of the ten camera brands available, you have some
logic that applies to only a few of the list:

 if (brand.equals(“A”) || brand.equals(“B”)) {

 // do stuff for only brand A or brand B

}

Boolean expressions can get really big and complicated:

 if ((zoomType.equals(“optical”) &&

 (zoomDegree >= 3 && zoomDegree <= 8)) ||

 (zoomType.equals(“digital”) &&

 (zoomDegree >= 5 && zoomDegree <= 12))) {

 // do appropriate zoom stuff

}

If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert
in the arcane world of precedence, we recommend that you use
parentheses to make your code clear.

Not equals (!= and !)

Let’s say that you have a logic like, “of the ten available
camera models, a certain thing is true for all but one. “

 if (model != 2000) {

 // do non-model 2000 stuff

}

or for comparing objects like strings...

 if (!brand.equals(“X”)) {

 // do non-brand X stuff
}

Short Circuit Operators (&& , ||)

The operators we’ve looked at so far, && and ||, are
known as short circuit operators. In the case of &&,
the expression will be true only if both sides of the &&
are true. So if the JVM sees that the left side of a &&
expression is false, it stops right there! Doesn’t even
bother to look at the right side.

Similarly, with ||, the expression will be true if either side is
true, so if the JVM sees that the left side is true, it declares
the entire statement to be true and doesn’t bother to
check the right side.

Why is this great? Let’s say that you have a reference
variable and you’re not sure whether it’s been assigned
to an object. If you try to call a method using this null
reference variable (i.e. no object has been assigned), you’ll
get a NullPointerException. So, try this:

 if (refVar != null &&

 refVar.isValidType()) {

 // do ʻgot a valid typeʼ stuff

}

Non Short Circuit Operators (& , |)

When used in boolean expressions, the & and | operators
act like their && and || counterparts, except that
they force the JVM to always check both sides of the
expression. Typically, & and | are used in another context,
for manipulating bits.

152 chapter 6

import java.io.*;
import java.util.*;

public class GameHelper {

 private static fi nal String alphabet = “abcdefg”;
 private int gridLength = 7;
 private int gridSize = 49;
 private int [] grid = new int[gridSize];
 private int comCount = 0;

 public String getUserInput(String prompt) {
 String inputLine = null;
 System.out.print(prompt + “ “);
 try {
 BufferedReader is = new BufferedReader(
 new InputStreamReader(System.in));
 inputLine = is.readLine();
 if (inputLine.length() == 0) return null;
 } catch (IOException e) {
 System.out.println(“IOException: “ + e);
 }
 return inputLine.toLowerCase();
 }

 public ArrayList<String> placeDotCom(int comSize) {
 ArrayList<String> alphaCells = new ArrayList<String>();
 String [] alphacoords = new String [comSize]; // holds ‘f6’ type coords
 String temp = null; // temporary String for concat
 int [] coords = new int[comSize]; // current candidate coords
 int attempts = 0; // current attempts counter
 boolean success = false; // fl ag = found a good location ?
 int location = 0; // current starting location

 comCount++; // nth dot com to place
 int incr = 1; // set horizontal increment
 if ((comCount % 2) == 1) { // if odd dot com (place vertically)
 incr = gridLength; // set vertical increment
 }

 while (!success & attempts++ < 200) { // main search loop (32)
 location = (int) (Math.random() * gridSize); // get random starting point
 //System.out.print(“ try “ + location);
 int x = 0; // nth position in dotcom to place
 success = true; // assume success
 while (success && x < comSize) { // look for adjacent unused spots
 if (grid[location] == 0) { // if not already used

Ready-bake
Code

This is the helper class for the game. Besides the user input method
(that prompts the user and reads input from the command-line), the
helper’s Big Service is to create the cell locations for the DotComs.
If we were you, we’d just back away slowly from this code, except
to type it in and compile it. We tried to keep it fairly small to you
wouldn’t have to type so much, but that means it isn’t the most
readable code. And remember, you won’t be able to compile the
DotComBust game class until you have this class.

Note: For extra credit, you might
try ‘un-commenting’ the
System.out.print(ln)’s in the
placeDotCom() method, just
to watch it work! These print
statements will let you “cheat”
by giving you the location of the
DotComs, but it will help you test it.

Ready-bake: GameHelper

get to know the Java API

you are here4 153

 coords[x++] = location; // save location
 location += incr; // try ‘next’ adjacent
 if (location >= gridSize){ // out of bounds - ‘bottom’
 success = false; // failure
 }
 if (x>0 && (location % gridLength == 0)) { // out of bounds - right edge
 success = false; // failure
 }
 } else { // found already used location
 // System.out.print(“ used “ + location);
 success = false; // failure
 }
 }
 } // end while

 int x = 0; // turn location into alpha coords
 int row = 0;
 int column = 0;
 // System.out.println(“\n”);
 while (x < comSize) {
 grid[coords[x]] = 1; // mark master grid pts. as ‘used’
 row = (int) (coords[x] / gridLength); // get row value
 column = coords[x] % gridLength; // get numeric column value
 temp = String.valueOf(alphabet.charAt(column)); // convert to alpha

 alphaCells.add(temp.concat(Integer.toString(row)));
 x++;
 // System.out.print(“ coord “+x+” = “ + alphaCells.get(x-1));
 }

 // System.out.println(“\n”);

 return alphaCells;
 }
}

Ready-bake
Code

GameHelper class code continued...

This is the sta
tement that

tells you exac
tly where the

DotCom is located.

154 chapter 6

API packages

Using the Library (the Java API)

In the Java API, classes
are grouped into packages.

To use a class in the API, you
have to know which package
the class is in.

Every class in the Java library belongs to a package.
The package has a name, like javax.swing (a
package that holds some of the Swing GUI classes
you’ll learn about soon). ArrayList is in the package
called java.util, which surprise surprise, holds a
pile of utility classes. You’ll learn a lot more about
packages in chapter 16, including how to put your
own classes into your own packages. For now though,
we’re just looking to use some of the classes that come
with Java.

Using a class from the API, in your own code, is
simple. You just treat the class as though you wrote
it yourself... as though you compiled it, and there it
sits, waiting for you to use it. With one big difference:
somewhere in your code you have to indicate the full
name of the library class you want to use, and that
means package name + class name.

Even if you didn’t know it, you’ve already been using
classes from a package. System (System.out.println),
String, and Math (Math.random()), all belong to the
java.lang package.

You made it all the way through the DotComBust game,
thanks to the help of ArrayList. And now, as promised,
it’s time to learn how to fool around in the Java library.

get to know the Java API

you are here4 155

import java.util.ArrayList;
public class MyClass {... }

You have to know the full name*
of the class you want to use in
your code.

ArrayList is not the full name of ArrayList, just as ‘Kathy’
isn’t a full name (unless it’s like Madonna or Cher, but we
won’t go there). The full name of ArrayList is actually:

java.util.ArrayList

You have to tell Java which ArrayList you
want to use. You have two options:

IMPORT

TYPE

java.util.ArrayList<Dog> list = new java.util.ArrayList<Dog>();

Type the full name everywhere in your code. Each time
you use it. Anywhere you use it.

OR

Put an import statement at the top of your source code file:
A

B

When you declare and/or instantiate it:

public void go(java.util.ArrayList<Dog> list) { }

When you use it as an argument type:

public java.util.ArrayList<Dog> foo() {...}

When you use it as a return type:

package name class name

there are noDumb Questions
Q: Why does there have to
be a full name? Is that the only
purpose of a package?

A: Packages are important
for three main reasons. First, they
help the overall organization of a
project or library. Rather than just
having one horrendously large
pile of classes, they’re all grouped
into packages for specific kinds
of functionality (like GUI, or data
structures, or database stuff, etc.)

Second, packages give you a name-
scoping, to help prevent collisions
if you and 12 other programmers
in your company all decide to
make a class with the same name.
If you have a class named Set and
someone else (including the Java
API) has a class named Set, you
need some way to tell the JVM
which Set class you’re trying to use.

Third, packages provide a level of
security, because you can restrict
the code you write so that only
other classes in the same package
can access it. You’ll learn all about
that in chapter 16.

Q:OK, back to the name
collision thing. How does a full
name really help? What’s to
prevent two people from giving a
class the same package name?

A:Java has a naming convention
that usually prevents this from
happening, as long as developers
adhere to it. We’ll get into that in
more detail in chapter 16.

*Unless the class is in the java.lang package.

156 chapter 6

In the first and second versions of Java (1.02
and 1.1), all classes that shipped with Java (in
other words, the standard library) were in packages
that began with java. There was always java.lang, of course
— the one you don’t have to import. And there was java.net,
java.io, java.util (although there was no such thing as ArrayList
way back then), and a few others, including the java.awt
package that held GUI-related classes.

Looming on the horizon, though, were other packages not
included in the standard library. These classes were known as
extensions, and came in two main flavors: standard, and not
standard. Standard extensions were those that Sun considered
official, as opposed to experimental, early access, or beta
packages that might or might not ever see the light of day.

Standard extensions, by convention, all began with an ‘x’
appended to the regular java package starter. The mother of all
standard extensions was the Swing library. It included several
packages, all of which began with javax.swing.

But standard extensions can get promoted to first-class, ships-
with-Java, standard-out-of-the-box library packages. And that’s
what happened to Swing, beginning with version 1.2 (which
eventually became the first version dubbed ‘Java 2’).

“Cool”, everyone thought (including us). “Now everyone who has
Java will have the Swing classes, and we won’t have to figure
out how to get those classes installed with our end-users.”

Trouble was lurking beneath the surface, however, because
when packages get promoted, well of COURSE they have to
start with java, not javax. Everyone KNOWS that packages in
the standard library don’t have that “x”, and that only extensions
have the “x”. So, just (and we mean just) before version 1.2
went final, Sun changed the package names and deleted the
“x” (among other changes). Books were printed and in stores
featuring Swing code with the new names. Naming conventions
were intact. All was right with the Java world.

Except the 20,000 or so screaming developers who realized
that with that simple name change came disaster! All of their
Swing-using code had to be changed! The horror! Think of all
those import statements that started with javax...

And in the final hour, desperate, as their hopes grew thin, the
developers convinced Sun to “screw the convention, save our
code”. The rest is history. So when you see a package in the
library that begins with javax, you know it started life as an
extension, and then got a promotion.

Where’d that ‘x’ come from?

(or, what does it mean when
a package starts with javax?)

ß ArrayList is a class in the Java API.

ß To put something into an ArrayList, use add().

ß To remove something from an ArrayList use
remove().

ß To find out where something is (and if it is) in an
ArrayList, use indexOf().

ß To find out if an ArrayList is empty, use
isEmpty().

ß To get the size (number of elements) in an
ArrayList, use the size() method.

ß To get the length (number of elements) in a
regular old array, remember, you use the length
variable.

ß An ArrayList resizes dynamically to what-
ever size is needed. It grows when objects
are added, and it shrinks when objects are
removed.

ß You declare the type of the array using a type
parameter, which is a type name in angle
brackets. Example: ArrayList<Button> means
the ArrayList will be able to hold only objects of
type Button (or subclasses of Button as you’ll
learn in the next couple of chapters).

ß Although an ArrayList holds objects and not
primitives, the compiler will automatically “wrap”
(and “unwrap” when you take it out) a primi-
tive into an Object, and place that object in the
ArrayList instead of the primitive. (More on this
feature later in the book.)

ß Classes are grouped into packages.

ß A class has a full name, which is a combina-
tion of the package name and the class name.
Class ArrayList is really java.util.ArrayList.

ß To use a class in a package other than java.
lang, you must tell Java the full name of the
class.

ß You use either an import statement at the top of
your source code, or you can type the full name
every place you use the class in your code.

 BULLET POINTS

when arrays aren’t enough

get to know the Java API

you are here4 157

Make it Sticki kkkRoses are red,
apples are ripe,
if you don’t importyou’ll just have to type

You must tell Java the full name of every class
you use, unless that class is in the java.lang
package. An import statement for the class
or package at the top of your source code is the
easy way. Otherwise, you have to type the full
name of the class, everywhere you use it!

java.util.ArrayList a = new
 java.util.ArrayList();

One more time, in the unlikely
event that you don’t already
have this down:

there are noDumb Questions

Q: Does import make my
class bigger? Does it actually
compile the imported class or
package into my code?

A: Perhaps you’re a C pro-
grammer? An import is not the
same as an include. So the
answer is no and no. Repeat after
me: “an import statement saves
you from typing.” That’s really it.
You don’t have to worry about
your code becoming bloated, or
slower, from too many imports.
An import is simply the way you
give Java the full name of a class.

Q: OK, how come I never had
to import the String class? Or
System?

A: Remember, you get the
java.lang package sort of “pre-
imported” for free. Because
the classes in java.lang are so
fundamental, you don’t have to
use the full name. There is only
one java.lang.String class, and one
java.lang.System class, and Java
darn well knows where to find
them.

Q: Do I have to put my own
classes into packages? How do I
do that? Can I do that?

A: In the real world (which
you should try to avoid), yes, you
will want to put your classes into
packages. We’ll get into that in
detail in chapter 16. For now, we
won’t put our code examples in a
package.

import

or

158 chapter 6

How to play with the API

getting to know the API

“Good to know there’s an ArrayList in
the java.util package. But by myself, how
would I have fi gured that out?”

Two things you want to know:

- Julia, 31, hand model

1 Browse a Book

2 Use the HTML API docs

1 What classes are in the library?

Once you fi nd a class, how do
you know what it can do?

2

get to know the Java API

you are here4 159

1 Browse a Book

Flipping through a
reference book is the
best way to fi nd out
what’s in the Java
library. You can easily
stumble on a class that
looks useful, just by
browsing pages.

package name

class name

class descriptio
n

methods (and other things we’ll talk about later)

160 chapter 6

using the Java API documentation

2 Use the HTML API docs

Scroll through the packages and select one (click it) to restrict the list in the lower frame to only classes from that package.

Java comes with a fabulous set of online docs
called, strangely, the Java API. They’re part of
a larger set called the Java 5 Standard Edition
Documentation (which, depending on what
day of the week you look, Sun may be refer-
ring to as “Java 2 Standard Edition 5.0”), and
you have to download the docs separately;
they don’t come shrink-wrapped with the Java
5 download. If you have a high-speed internet
connection, or tons of patience, you can also
browse them at java.sun.com. Trust us, you
probably want these on your hard drive.

The API docs are the best reference for get-
ting more details about a class and its methods.
Let’s say you were browsing through the refer-
ence book and found a class called Calendar,
in java.util. The book tells you a little about it,
enough to know that this is indeed what you
want to use, but you still need to know more
about the methods.

The reference book, for example, tells you
what the methods take, as arguments, and what
they return. Look at ArrayList, for example.
In the reference book, you’ll fi nd the method
indexOf(), that we used in the DotCom class.
But if all you knew is that there is a method
called indexOf() that takes an object and re-
turns the index (an int) of that object, you still
need to know one crucial thing: what happens
if the object is not in the ArrayList? Looking
at the method signature alone won’t tell you
how that works. But the API docs will (most of
the time, anyway). The API docs tell you that
the indexOf() method returns a -1 if the object
parameter is not in the ArrayList. That’s how
we knew we could use it both as a way to check
if an object is even in the ArrayList, and to get
its index at the same time, if the object was
there. But without the API docs, we might have
thought that the indexOf() method would
blow up if the object wasn’t in the ArrayList.

Scroll throu
gh the class

es

and select o
ne (click it)

 to

choose the c
lass that will fill

the main browser frame.

This is where all the

good stuff i
s. You can

scroll throug
h the

methods for a
 brief

summary, or click
on

a method to get
 full

details.

1

2

get to know the Java API

you are here4 161

Can you reconstruct the code snippets to make a
working Java program that produces the output
listed below? NOTE: To do this exercise, you need
one NEW piece of info—if you look in the API for
ArrayList, you’ll find a second add method that takes
two arguments:

add(int index, Object o)

It lets you specify to the
ArrayList where to put the object you’re adding.

Exercise
Code Magnets

if (a.contains(“three”)) {
 a.add(“four”);
}

import java.util.*;

}}
public class ArrayListMagnet {

ArrayList<String> a = new ArrayLis
t<String>();

 public static void main (String[] args) {

a.add(0,”zero”);a.add(1,”one”);

 public static void main (String[] args) {

 a.add(2,”two”);

a.add(3,”thr
ee”);

printAL(a);

a.add(0,”zero”);

a.remove(2);

import java.util.*;

if (a.indexOf(“four”) != 4) {
 a.add(4, “4.2”);
}

 a.add(2,”two”); a.add(2,”two”);

if (a.contains(“two”)) { a.add(“2.2”);}

 to put the object you’re adding. if (a.contains(“two”)) {

 public static void printAL(ArrayList<Stri
ng> al) {

for (String element : al) {

if (a.contains(“three”)) {

System.out.print(element + “ “);

}
System.out.println(“ “);

}

}

}

printAL(a);

ArrayList<String> a = new ArrayLis
t<String>();

printAL(a);

printAL(a);

printAL(a);

File Edit Window Help Dance

% java ArrayListMagnet
zero one two three
zero one three four
zero one three four 4.2
zero one three four 4.2

162 chapter 6

JavaCross 7.0

How does this crossword puzzle help you learn
Java? Well, all of the words are Java related
(except one red herring).

Hint: When in doubt, remember ArrayList.

Down

2. Where the Java action is.

3. Addressable unit

4. 2nd smallest

5. Fractional default

8. Library’s grandest

10. Must be low density

11. He’s in there somewhere

15. As if

16. dearth method

18. What shopping and arrays have in common

20. Library acronym

21. What goes around

17

24

12

8

21

16

11

19

22

18

13

10

15

2

23

9

31

6

14

5

4

20

Across

1. I can’t behave

6. Or, in the courtroom

7. Where it’s at baby

9. A fork’s origin

12. Grow an ArrayList

13. Wholly massive

14. Value copy

16. Not an object

17. An array on steroids

19. Extent

21. 19’s counterpart

22. Spanish geek snacks (Note: This has
nothing to do with Java.)

23. For lazy fingers

24. Where packages roam

7

More Hints:

Across Down
1. 8 varieties 2. What’s overridable?
7. Think ArrayList 3. Think ArrayList
16. Common primitive 4. & 10. Primitive
21. Array’s extent 16. Think ArrayList
22. Not about Java - Spanish appetizers 18. He’s making a ______

puzzle: crossword

get to know the Java API

you are here4 163

File Edit Window Help Dance

% java ArrayListMagnet
zero one two three
zero one three four
zero one three four 4.2
zero one three four 4.2

Exercise Solutions

if (a.contains(“three”)) {
 a.add(“four”);
}

import java.util.*;

public class ArrayListMagnet {

ArrayList<String> a = new ArrayList<String>();ArrayList<String> a = new ArrayList<String>();

 public static void main (String[] args) {

a.add(0,”zero”);
a.add(1,”one”);

 a.add(2,”two”);

if (a.contains(“three”)) {

a.add(3,”three”);
printAL(a);

a.remove(2);

if (a.indexOf(“four”) != 4) {
 a.add(4, “4.2”);
}

if (a.contains(“two”)) {
 a.add(“2.2”);
}

 public static void printAL(ArrayList<String> al) {

for (String element : al) {

System.out.print(element + “ “);
}
System.out.println(“ “);

 public static void printAL(ArrayList<String> al) {

}

}
}

if (a.contains(“two”)) {

printAL(a);

printAL(a);

if (a.indexOf(“four”) != 4) {

printAL(a);

164 chapter 6

17

24

12

8

21

16

11

19

22

18

13

10

15

2

23

9

31

6

14

5

4

20

7

 P R I M I T I V E S
 D E L H
 O B J E C T I N D E X O F
 U H M R
 B P O I F E T C
 L A D D L O N G O
 G E T C O T N
 K V A I N T
 A R R A Y L I S T L S A
 G R S I Z E I
 A L E N G T H S M N
 P O U T A P A S
 I M P O R T A T
 P L I B R A R Y

JavaCross
answers

Sharpen your pencil

Down

2. ___________________________________

3. ___________________________________

4. ___________________________________

5. ___________________________________

8. ___________________________________

10. ___________________________________

11. ___________________________________

15. ___________________________________

16. ___________________________________

18. ___________________________________

20. ___________________________________

21. ___________________________________

Across

1. ___________________________________

6. ___________________________________

7. ___________________________________

9. ___________________________________

12. ___________________________________

13. ___________________________________

14. ___________________________________

16. ___________________________________

17. ___________________________________

19. ___________________________________

21. ___________________________________

22. ___________________________________

23. ___________________________________

24. ___________________________________

Write your OWN set of clues! Look at each word, and try to
write your own clues. Try making them easier, or harder, or
more technical than the ones we have.

puzzle answers

this is a new chapter 165

7 inheritance and polymorphism

Plan your programs with the future in mind. If there were a way to write

Java code such that you could take more vacations, how much would it be worth to you? What

if you could write code that someone else could extend, easily? And if you could write code

that was flexible, for those pesky last-minute spec changes, would that be something you’re

interested in? Then this is your lucky day. For just three easy payments of 60 minutes time, you

can have all this. When you get on the Polymorphism Plan, you’ll learn the 5 steps to better class

design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act now—a

bonus lesson on the 4 tips for exploiting inheritance. Don’t delay, an offer this good will give

you the design freedom and programming flexibility you deserve. It’s quick, it’s easy, and it’s

available now. Start today, and we’ll throw in an extra level of abstraction!

Better Living in
Objectville

We were underpaid,
overworked coders ‘till we

tried the Polymorphism Plan. But
thanks to the Plan, our future is

bright. Yours can be too!

Make it Stick

166 chapter 7

Chair Wars Revisited...

Remember way back in chapter 2, when Larry (procedural guy)
and Brad (OO guy) were vying for the Aeron chair? Let’s look at
a few pieces of that story to review the basics of inheritance.

LARRY: You’ve got duplicated code! The rotate procedure
is in all four Shape things. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

rotate()
playSound()

TriangleSquare Circle Amoeba

Shape

rotate()
playSound()

superclass

subclasses

Then I linked the other
four shape classes to
the new Shape class,
in a relationship called
inheritance.

Triangle

rotate()
playSound()

Square

rotate()
playSound()

Circle

rotate()
playSound()

I looked at what all four
classes have in common.

Amoeba

rotate()
playSound()

1

2

3

You can read this as, “Square inherits from Shape”,
“Circle inherits from Shape”, and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

the power of inheritance

inheritance and polymorphism

you are here4 167

What about the Amoeba rotate()?
LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

How can amoeba do something different if it inherits its
functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows
exactly which rotate() method to run when someone tells the
Amoeba to rotate.

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

TriangleSquare Circle Amoeba

rotate()
// amoeba-specific
// rotate code

playSound()
// amoeba-specific
// sound code

Shape

rotate()
playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

How would you represent a house cat and a tiger, in an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superclass? Or are they both
subclasses to some other class?

How would you design an inheritance structure? What
methods would be overridden?

Think about it. Before you turn the page.

I made the Amoeba class override the
rotate() and playSound() methods
of the superclass Shape. Overriding
just means that a subclass redefines
one of its inherited methods when
it needs to change or extend the
behavior of that method.

brain
powerA

168 chapter 7

Understanding Inheritance
When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.
In Java, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits
the members of the superclass. When we say “members of
a class” we mean the instance variables and methods.
For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automatically inherits the instance variables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPowers(), and
so on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

SuperHero

suit
tights
specialPower

useSpecialPower()
putOnSuit()

superclass
(more abstract)

subclasses
(more specific)

Overriding
methods

PantherMan

useSpecialPower()

putOnSuit()

instance variables
(state, attributes)

methods
(behavior)

FriedEggMan doesn’t need any behavior that’s unique,
so he doesn’t override any methods. The methods and

instance variables in SuperHero are sufficient.
PantherMan, though, has specific requirements for his suit
and special powers, so useSpecialPower() and
putOnSuit() are both overridden in the PantherMan
class.
Instance variables are not overridden because they
don’t need to be. They don’t define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inherited tights to
purple, while FriedEggMan sets his to white.

FriedEggMan

the way inheritance works

()

inheritance and polymorphism

you are here4 169

superclass

Doctor

worksAtHospital

treatPatient ()

Adds one new
instance variable

Adds one new method

subclasses

Overrides the inherited
treatPatient() method

Adds one new method

Surgeon

treatPatient ()

makeIncision()

FamilyDoctor

makesHouseCalls

giveAdvice ()

one instance variable

one method

Sharpen your pencil

How many instance variables does
Surgeon have?

How many instance variables does
FamilyDoctor have?

How many methods does Doctor have?

How many methods does Surgeon have?

How many methods does FamilyDoctor
have?

Can a FamilyDoctor do treatPatient()?

Can a FamilyDoctor do makeIncision()?

public class Doctor {

 boolean worksAtHospital;

 void treatPatient() {
 // perform a checkup

 }
}

public class FamilyDoctor extends Doctor {

 boolean makesHouseCalls;
 void giveAdvice() {
 // give homespun advice
 }

}

public class Surgeon extends Doctor{

 void treatPatient() {
 // perform surgery
 }

 void makeIncision() {
 // make incision (yikes!)
 }
}

I inherited my
procedures so I didn’t

bother with medical school.
Relax, this won’t hurt a bit.
(now where did I put that

power saw...)

An inheritance example:

170 chapter 7

What do these six types have in
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (step 4-5)

Let’s design the inheritance tree for
an Animal simulation program
Imagine you’re asked to design a simulation program that
lets the user throw a bunch of different animals into an
environment to see what happens. We don’t have to code the
thing now, we’re mostly interested in the design.

We’ve been given a list of some of the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do.

And we want other programmers to be able to add new
kinds of animals to the program at any time.
First we have to figure out the common, abstract
characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

1 Look for objects that have common
attributes and behaviors.

designing for inheritance

inheritance and polymorphism

you are here4 171

These objects are all animals, so
we’ll make a common superclass
called Animal.
We’ll put in methods and instance
variables that all animals might
need.

2
Design a class that represents
the common state and behavior.

Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

We have fi ve instance variables:
picture – the fi le name representing the JPEG of this animal

food – the type of food this animal eats. Right now, there
can be only two values: meat or grass.

hunger – an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries – values representing the height and width of
the ‘space’ (for example, 640 x 480) that the animals will
roam around in.

location – the X and Y coordinates for where the animal is
in the space.

We have four methods:
makeNoise () – behavior for when the animal is supposed to
make noise.

eat() – behavior for when the animal encounters its
preferred food source, meat or grass.

sleep() – behavior for when the animal is considered asleep.

roam() – behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary).

Using inheritance to avoid
duplicating code in subclasses

size
picture
food
prey

Dog

size
picture
food
prey

Wolf

size
picture
food
prey

Cat

size
picture
food
prey

Tiger

size
picture
food
prey

Hippo

size
picture
food
prey

Lion

172 chapter 7

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will
have his own value for picture, food (we’re thinking
meat), hunger, boundaries, and location. A hippo
will have different values for his instance variables,
but he’ll still have the same variables that the other
Animal types have. Same with dog, tiger, and so on.
But what about behavior?

Which methods should we override?
Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in your version, but
in ours, eating and making noise are Animal-type-
specifi c. We can’t fi gure out how to code those
methods in such a way that they’d work for any
animal. OK, that’s not true. We could write the
makeNoise() method, for example, so that all it does
is play a sound fi le defi ned in an instance variable
for that type, but that’s not very specialized. Some
animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba
overriding the Shape class rotate()
method, to get more amoeba-specifi c (in
other words, unique) behavior, we’ll have
to do the same for our Animal subclasses.

Do all animals eat the same way?

Animal

I’m one bad*ss
plant-eater.

In the dog
community, barking is an

important part of our cultural
identity. We have a unique sound,

and we want that diversity to
be recognized and respected.

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

We better override these two methods, eat()

and makeNoise(), so that each animal type can

define its own specific behavior for eating a
nd

making noise. For now, it looks like sleep() and

roam() can stay generic.

Looking at the Animal class,
we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

3 Decide if a subclass
needs behaviors (method
implementations) that are specifi c
to that particular subclass type.

designing for inheritance

inheritance and polymorphism

you are here4 173

We look at our classes and see
that Wolf and Dog might have some
behavior in common, and the same goes
for Lion, Tiger, and Cat.

4
Look for more opportunities to use
abstraction, by fi nding two or more
subclasses that might need common
behavior.

The class hierarchy is starting to shape up. We
have each subclass override the makeNoise() and
eat() methods, so that there’s no mistaking a Dog
bark from a Cat meow (quite insulting to both
parties). And a Hippo won’t eat like a Lion.

But perhaps there’s more we can do. We have to
look at the subclasses of Animal, and see if two
or more can be grouped together in some way,
and given code that’s common to only that new
group. Wolf and Dog have similarities. So do
Lion, Tiger, and Cat.

Looking for more inheritance
opportunities

Animal

size
picture
food
prey

Dog

size
picture
food
prey

Wolf

size
picture
food
prey

Cat

size
picture
food
prey

Tiger

size
picture
food
prey

Hippo

size
picture
food
prey

Lion

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

Hmmm... I wonder if
 Lion,

Tiger, and
 Cat would have

something in
 common.

Wolf and Dog are both canines... maybe there’s something that BOTH classes could use...

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

174 chapter 7

Finish the class hierarchy

Animal

Feline

roam()

Canine

size
picture
food
prey

Lion

size
picture
food
prey

size
picture
food
prey

Tiger
size
picture
food
prey

size
picture
food
prey

Cat

size
picture
food
prey

size
picture
food
prey

Wolf

size
picture
food
prey

size
picture
food
prey

Dog

Since animals already have an organizational
hierarchy (the whole kingdom, genus, phylum
thing), we can use the level that makes the most
sense for class design. We’ll use the biological
“families” to organize the animals by making a
Feline class and a Canine class.
We decide that Canines could use a common
roam() method, because they tend to move in
packs. We also see that Felines could use a
common roam() method, because they tend to
avoid others of their own kind. We’ll let Hippo
continue to use its inherited roam() method—
the generic one it gets from Animal.
So we’re done with the design for now; we’ll
come back to it later in the chapter.

5

size
picture
food
prey

size
picture
food
prey

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing for inheritance

inheritance and polymorphism

you are here4 175

Wolf w = new Wolf();

w.makeNoise();

w.roam();

w.eat();

w.sleep();

Which method is called?
The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version of a method in class Animal), and
two overridden in the Wolf class. When
you create a Wolf object and assign it to
a variable, you can use the dot operator
on that reference variable to invoke all
four methods. But which version of those
methods gets called?

make a new Wolf object

calls the version in Wolf

calls the version in Canine

calls the version in Wolf

calls the version in Animal

size
picture
food
prey

size
picture
food
prey

Wolf

Canine

roam()

makeNoise()
eat()

Animal

makeNoise()
eat()
sleep()
roam()

When you call a method on an object
reference, you’re calling the most specifi c
version of the method for that object type.

 In other words, the lowest one wins!

“Lowest” meaning lowest on the
inheritance tree. Canine is lower than
Animal, and Wolf is lower than Canine,
so invoking a method on a reference
to a Wolf object means the JVM starts
looking fi rst in the Wolf class. If the JVM
doesn’t fi nd a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it fi nds a
match.

176 chapter 7

Draw an inheritance diagram here.

practice designing an inheritance tree

there are noDumb Questions
Q: You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the previous page). But what
happens if the JVM doesn’t ever find
a match?

A: Good question! But you don’t
have to worry about that. The compiler
guarantees that a particular method
is callable for a specific reference type,
but it doesn’t say (or care) from which
class that method actually comes from
at runtime. With the Wolf example, the
compiler checks for a sleep() method,
but doesn’t care that sleep() is actually
defined in (and inherited from) class
Animal. Remember that if a class
inherits a method, it has the method.

Where the inherited method is defined
(in other words, in which superclass
it is defined) makes no difference to
the compiler. But at runtime, the JVM
will always pick the right one. And
the right one means, the most specific
version for that particular object.

Sharpen your pencil

inheritance and polymorphism

you are here4 177

Using IS-A and HAS-A
Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.

Cat IS-A Feline, that works too.

Surgeon IS-A Doctor, still good.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A test.

To know if you’ve designed your types
correctly, ask, “Does it make sense to
say type X IS-A type Y?” If it doesn’t,
you know there’s something wrong
with the design, so if we apply the IS -A
test, Tub IS-A Bathroom is defi nitely
false.

What if we reverse it to Bathroom
extends Tub? That still doesn’t work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom are related, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say “Bathroom HAS-A Tub”? If yes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend Tub and
vice-versa.

Does it make sense to
say a Tub IS-A Bathroom? Or a

Bathroom IS-A Tub? Well it doesn’t to
me. The relationship between my Tub
and my Bathroom is HAS-A. Bathroom
HAS-A Tub. That means Bathroom

h a s a Tub instance variable.

Bathroom
Tub bathtub;
Sink theSink;

Tub
int size;
Bubbles b;

Bubbles
int radius;
int colorAmt;

Bathroom HAS-A Tub and Tub HAS-A Bubbles.
But nobody inherits from (extends) anybody else.

exploiting the power of objects

178 chapter 7

But wait! There’s more!
The IS-A test works anywhere in the inheritance tree. If your
inheritance tree is well-designed, the IS-A test should make
sense when you ask any subclass if it IS-A any of its supertypes.

If class B extends class A, class B IS-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

size
picture
food
prey

size
picture
food
prey

Wolf

Canine

roam()

makeNoise()
eat()

Animal

makeNoise()
eat()
sleep()
roam()

Canine extends Animal

Wolf extends Canine

Wolf extends Animal

Canine IS-A Animal

Wolf IS-A Canine

Wolf IS-A Animal

With an inheritance tree like the
one shown here, you’re always
allowed to say “Wolf extends
Animal” or “Wolf IS-A Animal”.
It makes no difference if Animal
is the superclass of the superclass
of Wolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can do
anything a Canine can do. And
Wolf IS-A Animal, so Wolf can do
anything an Animal can do.”

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. How he does them,
or in which class they’re overridden
makes no difference. A Wolf can
makeNoise(), eat(), sleep(), and
roam() because a Wolf extends
from class Animal.

inheritance and polymorphism

you are here4 179

Hint: apply the IS-A test

Put a check next to the relationships that
make sense.

Oven extends Kitchen

Guitar extends Instrument

Person extends Employee

Ferrari extends Engine

FriedEgg extends Food

Beagle extends Pet

Container extends Jar

Metal extends Titanium

GratefulDead extends Band

Blonde extends Smart

Beverage extends Martini

Sharpen your pencil

How do you know if you’ve got
your inheritance right?

There’s obviously more to it than what we’ve
covered so far, but we’ll look at a lot more OO
issues in the next chapter (where we eventually
refi ne and improve on some of the design work
we did in this chapter).

For now, though, a good guideline is to use the
IS-A test. If “X IS-A Y” makes sense, both classes
(X and Y) should probably live in the same
 inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance IS-A relationship
works in only one direction!
Triangle IS-A Shape makes sense, so you can
have Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does
not make sense, so Shape should not extend
Triangle. Remember that the IS-A relationship
implies that if X IS-A Y, then X can do anything
a Y can do (and possibly more).

How do you know if you’ve got

Make it Sticki kkk

Roses are red, violets are blue.

Square is-a Shape, the reverse isn’t true.

Roses are red, violets are dear.

Beer is-a Drink, but not all drinks are beer.

OK, your turn. Make one that shows the one-

way-ness of the IS-A relationship. Remember, if

X extends Y, X IS-A Y must make sense.

180 chapter 7

Access levels control who sees what, and are crucial
to having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
example, Square inherited the rotate() and
playSound() methods and to the outside world (other
code) the Square class simply has a rotate() and
playSound() method.
The members of a class include the variables and
methods defined in the class plus anything inherited
from a superclass.

public members are inherited

private members are not inherited

Who gets the Porsche, who gets the porcelain?
(how to know what a subclass can
inherit from it’s superclass)

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in
this book we’ll look at other inherited members. A
superclass can choose whether or not it wants a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access levels that we’ll cover in this book.
Moving from most restrictive to least, the four access
levels are:

private default protected public

who inherits what

there are noDumb Questions
Q: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

A:A superclass won’t necessarily
know about any of its subclasses.
You might write a class and much
later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backwards
inheritance. Think about it, children
inherit from parents, not the other way
around.

Q: In a subclass, what if I want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, I don’t want
to completely replace the superclass
version, I just want to add more stuff
to it.

A:You can do this! And it’s an
important design feature. Think of the
word “extends” as meaning, “I want
to extend the functionality of the
superclass”.

You can design your superclass
methods in such a way that they
contain method implementations
that will work for any subclass, even
though the subclasses may still need
to ‘append’ more code. In your subclass
overriding method, you can call the
superclass version using the keyword
super. It’s like saying, “first go run the
superclass version, then come back and
finish with my own code...”

public void roam() {
 super.roam();
 // my own roam stuff
}

this calls the inherited version of

roam(), then comes back to do
your own subclass-specific code

Note: get more details about default and protected in chapter
16 (deployment) and appendix B.

(how to know what a subclass can
inherit from its superclass)

inheritance and polymorphism

you are here4 181

 BULLET POINTS
ß A subclass extends a superclass.

ß A subclass inherits all public instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superclass.

ß Inherited methods can be overridden; instance
variables cannot be overridden (although they
can be redefined in the subclass, but that’s
not the same thing, and there’s almost never a
need to do it.)

ß Use the IS-A test to verify that your
inheritance hierarchy is valid. If X extends Y,
then X IS-A Y must make sense.

ß The IS-A relationship works in only one
direction. A Hippo is an Animal, but not all
Animals are Hippos.

ß When a method is overridden in a subclass,
and that method is invoked on an instance of
the subclass, the overridden version of the
method is called. (The lowest one wins.)

ß If class B extends A, and C extends B, class
B IS-A class A, and class C IS-A class B, and
class C also IS-A class A.

Although some of the reasons behind these rules won’t be
revealed until later in this book, for now, simply knowing a
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
of a superclass. Example: Willow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putting that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it’s not necessarily the best way to achieve behavior reuse.
It’ll get you started, and often it’s the right design choice,
but design patterns will help you see other more subtle
and flexible options. If you don’t know about design
patterns, a good follow-on to this book would be Head First
Design Patterns.

DO NOT use inheritance just so that you can reuse
code from another class, if the relationship between the
superclass and subclass violate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano is not a more specific type of Alarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage of via a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass. Example: Tea IS-
A Beverage makes sense. Beverage IS-A Tea does not.

When designing with inheritance,
are you using or abusing?

exploiting the power of objects

182 chapter 7

So what does all this
inheritance really buy you?

You get a lot of OO mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
in a superclass. That way, when you need to
modify it, you have only one place to update,
and the change is magically reflected in all the
classes that inherit that behavior. Well, there’s
no magic involved, but it is pretty simple:
make the change and compile the class
again. That’s it. You don’t have to touch the
subclasses!

Just deliver the newly-changed superclass, and
all classes that extend it will automatically use
the new version.

A Java program is nothing but a pile of classes,
so the subclasses don’t have to be recompiled
in order to use the new version of the
superclass. As long as the superclass doesn’t
break anything for the subclass, everything’s
fine. (We’ll discuss what the word ‘break’
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method’s arguments or
return type, or method name, etc.)

1 You avoid duplicate
code.
Put common code in one place, and let
the subclasses inherit that code from a
superclass. When you want to change that
behavior, you have to modify it in only
one place, and everybody else (i.e. all the
subclasses) see the change.

2 You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

inheritance and polymorphism

you are here4 183

Inheritance lets you guarantee that
all classes grouped under a certain
supertype have all the methods that
the supertype has.*
In other words, you define a common protocol for a
set of classes related through inheritance.

When you defi ne methods in a superclass, that can be
inherited by subclasses, you’re announcing a kind of
protocol to other code that says, “All my subtypes (i.e.
subclasses) can do these things, with these methods
that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all
Animal subtypes:

Animal

makeNoise()
eat()
sleep()
roam()

You’re telling the world that

any Animal can do these four

things. That includes the method

arguments and return types.

*When we say “all the methods” we mean “all the inheritable methods”, which
for now actually means, “all the public methods”, although later we’ll refine that
definition a bit more.

And remember, when we say any Animal, we mean
Animal and any class that extends from Animal. Which
again means, any class that has Animal somewhere above it
in the inheritance hierarchy.

But we’re not even at the really cool part yet, because
we saved the best—polymorphism—for last.

When you defi ne a supertype for a group of classes,
any subclass of that supertype can be substituted where the
supertype is expected.

Say, what?

Don’t worry, we’re nowhere near done explaining it.
Two pages from now, you’ll be an expert.

And I care because...

Because you get to take advantage of
polymorphism.

Which matters to me
because...

Because you get to refer to a subclass
object using a reference declared as the
supertype.

And that means to me...

You get to write really fl exible code.
Code that’s cleaner (more effi cient,
simpler). Code that’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You’ll see how it works on the next page.

We don’t know about you, but
personally, we fi nd the whole
tropical vacation thing
particularly motivating.

184 chapter 7

the way polymorphism works

Dog myDog = new Dog();
Tells the JVM to allocate space for a
reference variable. The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

1 Declare a reference
variable

Dog

myDog

Dog myDog = new Dog();
Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

2 Create an object

Dog myDog = new Dog();

The 3 steps of object
declaration and assignment

1 2
3

Dog object

Dog myDog = new Dog();
Assigns the new Dog to the refer-
ence variable myDog. In other words,
program the remote control.

3 Link the object
and the reference

Dog object

Dog

myDog

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

inheritance and polymorphism

you are here4 185

The important point is that the
reference type AND the object
type are the same.

In this example, both are Dog.

Dog

myDog Dog object

These two are the same type. The reference
variable type is declared as Dog, and the object
is created as new Dog().

But with polymorphism, the
reference and the object can
be different.

Animal myDog = new Dog();

Animal

myDog Dog object

These two are NOT the same type. The
reference variable type is declared as Animal,
but the object is created as new Dog().

186 chapter 7

With polymorphism, the reference
type can be a superclass of the
actual object type. uh... nope.

Still not gettin’ it.

OK, OK maybe an example will help.

polymorphism in action

Animal[] animals = new Animal[5];

animals [0] = new Dog();

animals [1] = new Cat();

animals [2] = new Wolf();

animals [3] = new Hippo();

animals [4] = new Lion();

for (int i = 0; i < animals.length; i++) {

 animals[i].eat();

 animals[i].roam();

}

Declare an arr
ay of type A

nimal. In other
words,

an array tha
t will hold objec

ts of type A
nimal.

But look what you get to do... you can put ANY
subclass of Animal in the Animal array!

And here’s the best polymorphic part (the
raison d’être for the whole example), you
get to loop through the array and call one
of the Animal-class methods, and every
object does the right thing!

When ‘i’ is 0, a Dog is at index 0 in the array, so
you get the Dog’s eat() method. When ‘i’ is 1, you
get the Cat’s eat() method

Same with roam().

When you declare a reference variable,
any object that passes the IS-A test for the
declared type of the reference variable
can be assigned to that reference. In
other words, anything that extends the
declared reference variable type can
be assigned to the reference
variable. This lets you do
things like make polymorphic
arrays.

inheritance and polymorphism

you are here4 187

a

But wait! There’s more!

You can have polymorphic
arguments and return types.

If you can declare a reference variable
of a supertype, say, Animal, and assign a
subclass object to it, say, Dog, think of how
that might work when the reference is an
argument to a method...

class Vet {

 public void giveShot(Animal a) {

 // do horrible things to the Animal at

 // the other end of the ‘a’ parameter

 a.makeNoise();

 }

}

class PetOwner {

 public void start() {

 Vet v = new Vet();
 Dog d = new Dog();

 Hippo h = new Hippo();

 v.giveShot(d);

 v.giveShot(h);

 }

}

The Animal parameter can take ANY Animal type as the argument. And when the Vet is done giving the shot, it tells the Animal to makeNoise(), and whatever Animal is really out there on the heap, that’s whose makeNoise() method will run.

The Vet’s giveShot() method can take any

Animal you give it. As long as the object

you pass in as the argument is a subclass of

Animal, it will work.

Dog’s makeNoise() runs

Hippo’s makeNoise() runs

188 chapter 7

NOW I get it! If I write
my code using polymorphic arguments,

where I declare the method parameter as a
superclass type, I can pass in any subclass object at
runtime. Cool. Because that also means I can write my
code, go on vacation, and someone else can add new

subclass types to the program and my methods will
still work... (the only downside is I’m just making life

easier for that idiot Jim).

exploiting the power of polymorphism

With polymorphism, you can write code that doesn’t
have to change when you introduce new subclass
types into the program.

Remember that Vet class? If you write that Vet class using
arguments declared as type Animal, your code can handle any
Animal subclass. That means if others want to take advantage of
your Vet class, all they have to do is make sure their new Animal
types extend class Animal. The Vet methods will still work, even
though the Vet class was written without any knowledge of the
new Animal subtypes the Vet will be working on.

Why is polymorphism guaranteed to work this way? Why is

it always safe to assume that any subclass type will have the

methods you think you’re calling on the superclass type (the

superclass reference type you’re using the dot operator on)?

brain
powerA

inheritance and polymorphism

you are here4 189

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A: If you look in the Java API,
you’ll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes). You’ll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn’t a hard limit (well, not one
that you’d ever run into).

Q: Hey, I just thought of
something... if you don’t have
access to the source code for a class,
but you want to change the way a
method of that class works, could
you use subclassing to do that? To
extend the “bad” class and override
the method with your own better
code?

A: Yep. That’s one cool feature
of OO, and sometimes it saves you
from having to rewrite the class
from scratch, or track down the
programmer who hid the source code.

Q: Can you extend any class? Or
is it like class members where if the
class is private you can’t inherit it...

A: There’s no such thing as a
private class, except in a very special
case called an inner class, that we
haven’t looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is access control. Even though
a class can’t be marked private, a
class can be non-public (what you
get if you don’t declare the class as
public). A non-public class can be
subclassed only by classes in the
same package as the class. Classes in
a different package won’t be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it’s the end of the inheritance
line. Nobody, ever, can extend a final
class.

The third issue is that if a class has
only private constructors (we’ll
look at constructors in chapter 9), it
can’t be subclassed.

Q: Why would you ever want to
make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won’t make your
classes final. But if you need security
— the security of knowing that the
methods will always work the way
that you wrote them (because they
can’t be overridden), a final class
will give you that. A lot of classes in
the Java API are final for that reason.
The String class, for example, is final
because, well, imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

A: If you want to protect a specific
method from being overridden, mark
the method with the finalmodifier.
Mark the whole class as final if you
want to guarantee that none of the
methods in that class will ever be
overridden.

there are noDumb Questions

190 chapter 7

When you override a method from a superclass, you’re agreeing to
fulfi ll the contract. The contract that says, for example, “I take no
arguments and I return a boolean.” In other words, the arguments
and return types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work, the Toaster’s version of the
overridden method from Appliance has to work at runtime.
Remember, the compiler looks at the reference type to decide
whether you can call a particular method on that reference. With
an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you’re invoking on an Appliance reference.
But at runtime, the JVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already
approved the method call, the only way it can work is if the overriding
method has the same arguments and return types. Otherwise,
someone with an Appliance reference will call turnOn() as a no-
arg method, even though there’s a version in Toaster that takes an
int. Which one is called at runtime? The one in Appliance. In other
words, the turnOn(int level) method in Toaster is not an override!

Keeping the contract: rules for overriding

Toaster

boolean turnOn(int level)

This is NOT an

override !

Can’t change
the

arguments in an

overriding m
ethod!

Appliance

boolean turnOn()

boolean turnOff()

1 Arguments must be the same, and return
types must be compatible.
The contract of superclass defi nes how other code can use a method.
Whatever the superclass takes as an argument, the subclass over-
riding the method must use that same argument. And whatever the
superclass declares as a return type, the overriding method must de-
clare either the same type, or a subclass type. Remember, a subclass
object is guaranteed to be able to do anything its superclass declares,
so it’s safe to return a subclass where the superclass is expected.

2 The method can’t be less accessible.
That means the access level must be the same, or friendlier. That
means you can’t, for example, override a public method and make
it private. What a shock that would be to the code invoking what it
thinks (at compile time) is a public method, if suddenly at runtime
the JVM slammed the door shut because the overriding version
called at runtime is private!

So far we’ve learned about two access levels: private and public.
The other two are in the deployment chapter (Release your Code)
and appendix B. There’s also another rule about overriding related
to exception handling, but we’ll wait until the chapter on exceptions
(Risky Behavior) to cover that.

This is actually a legal overLOAD, but not an overRIDE.

Toaster

private boolean turnOn()

Appliance

public boolean turnOn()

public boolean turnOn()

NOT LEGAL!

It’s not a legal
override becaus

e you

restricted the
access

level. Nor is it a legal

overLOAD, because

you didn’t chan
ge

arguments.

overriding methods

inheritance and polymorphism

you are here4 191

Method overloading is nothing more than having
two methods with the same name but different
argument lists. Period. There’s no polymorphism
involved with overloaded methods!

Overloading lets you make multiple versions
of a method, with different argument lists, for
convenience to the callers. For example, if you
have a method that takes only an int, the calling
code has to convert, say, a double into an int
before calling your method. But if you overloaded
the method with another version that takes a
double, then you’ve made things easier for the
caller. You’ll see more of this when we look into
constructors in the object lifecycle chapter.

Since an overloading method isn’t trying to
fulfill the polymorphism contract defined by its
superclass, overloaded methods have much more
flexibility.

Overloading a method

1 The return types can be
different.
You’re free to change the return types in
overloaded methods, as long as the argument lists
are different.

2 You can’t change ONLY the
return type.
If only the return type is different, it’s not a
valid overload—the compiler will assume
you’re trying to override the method. And even
that won’t be legal unless the return type is
a subtype of the return type declared in the
superclass. To overload a method, you MUST
change the argument list, although you can
change the return type to anything.

3 You can vary the access
levels in any direction.
You’re free to overload a method with a method
that’s more restrictive. It doesn’t matter, since the
new method isn’t obligated to fulfill the contract of
the overloaded method.

public class Overloads {

 String uniqueID;

 public int addNums(int a, int b) {
 return a + b;
 }

 public double addNums(double a, double b) {
 return a + b;
 }

 public void setUniqueID(String theID) {
 // lots of validation code, and then:
 uniqueID = theID;
 }

 public void setUniqueID(int ssNumber) {
 String numString = “” + ssNumber;
 setUniqueID(numString);
 }
}

Legal examples of method
overloading:

An overloaded method is
just a different method that
happens to have the same
method name. It has nothing
to do with inheritance and
polymorphism. An overloaded
method is NOT the same as
an overridden method.

192 chapter 7

 a = 6; 56
 b = 5; 11
 a = 5; 65

the program:

A short Java program is listed below. One block of
the program is missing! Your challenge is to match
the candidate block of code (on the left), with the
output that you’d see if the block were inserted.
Not all the lines of output will be used, and some of
the lines of output might be used more than once.
Draw lines connecting the candidate blocks of
code with their matching command-line output.

candidate code
goes here

(three lines)

class A {
 int ivar = 7;
 void m1() {
 System.out.print(“Aʼs m1, “);
 }
 void m2() {
 System.out.print(“Aʼs m2, “);
 }
 void m3() {
 System.out.print(“Aʼs m3, “);
 }
}

class B extends A {
 void m1() {
 System.out.print(“Bʼs m1, “);
 }
}

class C extends B {
 void m3() {
 System.out.print(“Cʼs m3, “+(ivar + 6));
 }
}

public class Mixed2 {
 public static void main(String [] args) {
 A a = new A();
 B b = new B();
 C c = new C();
 A a2 = new C();

 }

}

code
candidates:

output:b.m1();
c.m2();
a.m3();

c.m1();
c.m2();
c.m3();

a.m1();
b.m2();
c.m3();

a2.m1();
a2.m2();
a2.m3();

Aʼs m1, Aʼs m2, Cʼs m3, 6

Bʼs m1, Aʼs m2, Aʼs m3,

Aʼs m1, Bʼs m2, Aʼs m3,

Bʼs m1, Aʼs m2, Cʼs m3, 13

Bʼs m1, Cʼs m2, Aʼs m3,

Bʼs m1, Aʼs m2, Cʼs m3, 6

Aʼs m1, Aʼs m2, Cʼs m3, 13}

}
}

}

Exercise

exercise: Mixed Messages

 Mixed
Messages

inheritance and polymorphism

you are here4 193

Which of the A-B pairs of methods listed on the right, if
inserted into the classes on the left, would compile and
produce the output shown? (The A method inserted into
class Monster, the B method inserted into class Vampire.)

BE the Compiler

public class MonsterTestDrive {

 public static void main(String [] args) {

 Monster [] ma = new Monster[3];

 ma[0] = new Vampire();

 ma[1] = new Dragon();

 ma[2] = new Monster();

 for(int x = 0; x < 3; x++) {

 ma[x].frighten(x);

 }

 }

}

class Monster {

}

class Vampire extends Monster {

}

class Dragon extends Monster {

 boolean frighten(int degree) {

 System.out.println(“breath fire”);

 return true;

 }

}
File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help SaveYourself

% java MonsterTestDrive
a bite?
breath fire
arrrgh

boolean frighten(int d) {

 System.out.println(“arrrgh”);

 return true;

}

boolean frighten(int x) {

 System.out.println(“a bite?”);

 return false;

}

boolean frighten(int x) {

 System.out.println(“arrrgh”);

 return true;

}

int frighten(int f) {

 System.out.println(“a bite?”);

 return 1;

}

boolean frighten(int x) {

 System.out.println(“arrrgh”);

 return false;

}

boolean scare(int x) {

 System.out.println(“a bite?”);

 return true;

}

boolean frighten(int z) {

 System.out.println(“arrrgh”);

 return true;

}

boolean frighten(byte b) {

 System.out.println(“a bite?”);

 return true;

}

A

B

A

A

A

A

B

B

B

B

1

2

3

4

Exercise

194 chapter 7

Rowboat
Sailboat

Boat

subclasses

int length
int b1

extends

stroke natasha

Testboats
drift

return
int len

publicint b2

private

hoist sail

continue

int b2

int b3
break

length

b1

b2 b3
len

move
rowTheBoat

setLength

getLength

String

int
void

static

Pool Puzzle
Your job is to take code snippets from the pool and place them into

the blank lines in the code. You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled – this one’s harder than it looks.

public class Rowboat ________ ________ {

 public ___________ rowTheBoat() {

 System.out.print(“stroke natasha”);

 }
}

public class ________ {

 private int __________ ;

 _______ void _________ (______) {

 length = len;

 }

 public int getLength() {

 ________ _________ ;

 }

 public ___________ move() {

 System.out.print(“___________”);

 }
}

public class TestBoats {

 ______ ______ _______ main(String[] args){

 _________ b1 = new Boat();

 Sailboat b2 = new __________();

 Rowboat ________ = new Rowboat();

 b2.setLength(32);

 b1.__________();

 b3.__________();

 _______.move();

 }
}

public class __________ ________ Boat {

 public _______ _________() {

 System.out.print(“___________”);

 }
}

 drift drift hoist sail OUTPUT:

puzzle: Pool Puzzle

inheritance and polymorphism

you are here4 195

code
candidates: output:b.m1();

c.m2();
a.m3();

c.m1();
c.m2();
c.m3();

a.m1();
b.m2();
c.m3();

a2.m1();
a2.m2();
a2.m3();

Aʼs m1, Aʼs m2, Cʼs m3, 6

Bʼs m1, Aʼs m2, Aʼs m3,

Aʼs m1, Bʼs m2, Aʼs m3,

Bʼs m1, Aʼs m2, Cʼs m3, 13

Bʼs m1, Cʼs m2, Aʼs m3,

Bʼs m1, Aʼs m2, Cʼs m3, 6

Aʼs m1, Aʼs m2, Cʼs m3, 13

}

}

}

Set 1 will work.

Set 2 will not compile because of Vampire’s return
type (int).

The Vampire’s frighten() method (B) is not a legal
override OR overload of Monster’s frighten() method.
Changing ONLY the return type is not enough
to make a valid overload, and since an int is not
compatible with a boolean, the method is not a valid
override. (Remember, if you change ONLY the return
type, it must be to a return type that is compatible
with the superclass version’s return type, and then it’s
an override.

Sets 3 and 4 will compile, but produce:

arrrgh

breath fire

arrrgh

Remember, class Vampire did not override class
Monster’s frighten() method. (The frighten() method
in Vampire’s set 4 takes a byte, not an int.)

BE the Compiler

 Mixed
Messages

Exercise
Solutions

196 chapter 7

public class Rowboat extends Boat {

 public void rowTheBoat() {
 System.out.print(“stroke natasha”);

 }
}

public class Boat {

 private int length ;

 public void setLength (int len) {
 length = len;

 }

 public int getLength() {

 return length ;
 }

 public void move() {

 System.out.print(“drift ”);
 }
}

public class TestBoats {

 public static void main(String[] args){

 Boat b1 = new Boat();

 Sailboat b2 = new Sailboat();

 Rowboat b3 = new Rowboat();

 b2.setLength(32);

 b1.move();

 b3.move();

 b2.move();
 }
}

public class Sailboat extends Boat {

 public void move() {

 System.out.print(“hoist sail ”);
 }
}

 drift drift hoist sail OUTPUT:

puzzle answers

this is a new chapter 197

8 interfaces and abstract classes

Inheritance is just the beginning. To exploit polymorphism, we need interfaces

(and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and

extensibility you can get only by designing and coding to interface specifications. Some of the

coolest parts of Java wouldn’t even be possible without interfaces, so even if you don’t design

with them yourself, you still have to use them. But you’ll want to design with them. You’ll need

to design with them. You’ll wonder how you ever lived without them. What’s an interface? It’s

a 100% abstract class. What’s an abstract class? It’s a class that can’t be instantiated. What’s that

good for? You’ll see in just a few moments. But if you think about the end of the last chapter,

and how we used polymorphic arguments so that a single Vet method could take Animal

subclasses of all types, well, that was just scratching the surface. Interfaces are the poly in

polymorphism. The ab in abstract. The caffeine in Java.

Serious Polymorphism

Make it Stick

198 chapter 8

Animal

Feline

roam()

Canine

size
picture
food
prey

size
picture
food
prey

Lion

size
picture
food
prey

size
picture
food
prey

Tiger
size
picture
food
prey

size
picture
food
prey

Cat

size
picture
food
prey

size
picture
food
prey

Wolf

size
picture
food
prey

size
picture
food
prey

Dog

size
picture
food
prey

size
picture
food
prey

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing with inheritance

Did we forget about something
when we designed this?
The class structure isn’t too bad. We’ve designed
it so that duplicate code is kept to a minimum,
and we’ve overridden the methods that we think
should have subclass-specifi c implementations.
We’ve made it nice and fl exible from a
polymorphic perspective, because we can design
Animal-using programs with Animal arguments
(and array declarations), so that any Animal
subtype—including those we never imagined at the
time we wrote our code—can be passed in and used
at runtime. We’ve put the common protocol for
all Animals (the four methods that we want the
world to know all Animals have) in the Animal
superclass, and we’re ready to start making new
Lions and Tigers and Hippos.

interfaces and polymorphism

you are here4 199

Wolf aWolf = new Wolf();

We know we can say:

A Wolf reference to a
Wolf object. Wolf

aWolf
 Wolf object

These two are the same type.

Animal aHippo = new Hippo();

And we know we can say:

Animal reference to
a Hippo object.

Animal

aHippo
Hippo object

These two are NOT the same type.

Animal anim = new Animal();

But here’s where it gets weird:

Animal reference to
an Animal object.

Animal

anim
Animal object

These two are the same type, but...
what the heck does an Animal object look like?

?

200 chapter 8

scary objects

What does a new Animal() object
look like?

when objects go bad

It makes sense to create a Wolf object or a Hippo
object or a Tiger object, but what exactly is an
Animal object? What shape is it? What color, size,
number of legs...

Trying to create an object of type Animal is like a
nightmare Star Trek™ transporter accident. The
one where somewhere in the beam-me--up process
something bad happened to the buffer.

But how do we deal with this? We need an Animal
class, for inheritance and polymorphism. But we
want programmers to instantiate only the less
abstract subclasses of class Animal, not Animal itself.
We want Tiger objects and Lion objects, not Animal
objects.

Fortunately, there’s a simple way to prevent a class
from ever being instantiated. In other words, to stop
anyone from saying “new” on that type. By marking
the class as abstract, the compiler will stop any
code, anywhere, from ever creating an instance of
that type.

You can still use that abstract type as a reference type.
In fact,that’s a big part of why you have that abstract
class in the fi rst place (to use it as a polymorphic
argument or return type, or to make a polymorphic
array).

When you’re designing your class inheritance
structure, you have to decide which classes are
abstract and which are concrete. Concrete classes are
those that are specifi c enough to be instantiated. A
concrete class just means that it’s OK to make objects
of that type.

Making a class abstract is easy—put the keyword
abstract before the class declaration:

abstract class Canine extends Animal {

 public void roam() { }

}

What are the instance variable values?

Some classes just should not be
instantiated!

interfaces and polymorphism

you are here4 201

The compiler won’t let you instantiate
an abstract class
An abstract class means that nobody can ever make a new
instance of that class. You can still use that abstract class as a
declared reference type, for the purpose of polymorphism, but
you don’t have to worry about somebody making objects of that
type. The compiler guarantees it.

abstract public class Canine extends Animal
{

 public void roam() { }

}

public class MakeCanine {

 public void go() {

 Canine c;

 c = new Dog();

 c = new Canine();

 c.roam();

 }

}

File Edit Window Help BeamMeUp

% javac MakeCanine.java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated
 c = new Canine();
 ^
1 error

class Canine is marked abstract,so the compiler will NOT let you do this.

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class.

This is OK, because you c
an always assign

a subclass obje
ct to a superc

lass reference
,

even if the su
perclass is abs

tract.

*There is an exception to this—an abstract class can
have static members (see chapter 10).

202 chapter 8

Abstract vs. Concrete
A class that’s not abstract is called
a concrete class. In the Animal
inheritance tree, if we make
Animal, Canine, and Feline
abstract, that leaves Hippo, Wolf,
Dog, Tiger, Lion, and Cat as the
concrete subclasses.

Flip through the Java API and
you’ll fi nd a lot of abstract classes,
especially in the GUI library. What
does a GUI Component look
like? The Component class is the
superclass of GUI-related classes
for things like buttons, text areas,
scrollbars, dialog boxes, you name
it. You don’t make an instance of
a generic Component and put it on
the screen, you make a JButton. In
other words, you instantiate only a
concrete subclass of Component, but
never Component itself.

Tiger

Animal

Canine

abstract

abstract

abstract
Hippo

concrete

Dog

Wolf

concrete
Cat

Lion

concrete

Hmmmm... do I
feel like red or
white tonight?

 Hmmmm... the Camelot
Vineyards 1997 Pinot
Noir was a pretty
decent year...

How do you know when a class should be

abstract? Wine is probably abstract. But what

about Red and White? Again probably abstract

(for some of us, anyway). But at what point in the

hierarchy do things become concrete?

Do you make PinotNoir concrete, or is it abstract

too? It looks like the Camelot Vineyards 1997

Pinot Noir is probably concrete no matter what.

But how do you know for sure?

Look at the Animal inheritance tree above. Do the

choices we’ve made for which classes are abstract

and which are concrete seem appropriate?

Would you change anything about the Animal

inheritance tree (other than adding more Animals,

of course)?

abstract or concrete?

concrete

concrete

abstract and concrete classes

Feline

concrete

brain
powerA

interfaces and polymorphism

you are here4 203

Abstract methods

Besides classes, you can mark methods abstract, too. An abstract
class means the class must be extended; an abstract method means
the method must be overridden. You might decide that some (or all)
behaviors in an abstract class don’t make any sense unless they’re
implemented by a more specific subclass. In other words, you can’t
think of any generic method implementation that could possibly be
useful for subclasses. What would a generic eat() method look like?

An abstract method has no body!

Because you’ve already decided there isn’t any code that would make
sense in the abstract method, you won’t put in a method body. So no
curly braces— just end the declaration with a semicolon.

public abstract void eat();

No method body !
End it with a semicolon.

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to
make the class abstract. But you can mix both abstract and non-
abstract methods in the abstract class.

Q: What is the point of an abstract method? I thought
the whole point of an abstract class was to have common
code that could be inherited by subclasses.

A: Inheritable method implementations (in other words,
methods with actual bodies) are A Good Thing to put in a
superclass. When it makes sense. And in an abstract class, it
often doesn’t make sense, because you can’t come up with
any generic code that subclasses would find useful. The
point of an abstract method is that even though you haven’t
put in any actual method code, you’ve still defined part of
the protocol for a group of subtypes (subclasses).

Q: Which is good because...

A: Polymorphism! Remember, what you want is the
ability to use a superclass type (often abstract) as a method
argument, return type, or array type. That way, you get to
add new subtypes (like a new Animal subclass) to your
program without having to rewrite (or add) new methods
to deal with those new types. Imagine how you’d have to
change the Vet class, if it didn’t use Animal as its argument
type for methods. You’d have to have a separate method
for every single Animal subclass! One that takes a Lion, one
that takes a Wolf, one that takes a... you get the idea. So with
an abstract method, you’re saying, “All subtypes of this type
have THIS method.” for the benefit of polymorphism.

there are noDumb Questions

It really sucks to
be an abstract method.
You don’t have a body.

204 chapter 8

you must implement abstract methods

You MUST implement all abstract methods

Abstract methods don’t have a body; they exist solely for polymorphism. That
means the first concrete class in the inheritance tree must implement all abstract
methods.

You can, however, pass the buck by being abstract yourself. If both Animal and
Canine are abstract, for example, and both have abstract methods, class Canine
does not have to implement the abstract methods from Animal. But as soon as we
get to the first concrete subclass, like Dog, that subclass must implement all of the
abstract methods from both Animal and Canine.

But remember that an abstract class can have both abstract and non-abstract
methods, so Canine, for example, could implement an abstract method from
Animal, so that Dog didn’t have to. But if Canine says nothing about the abstract
methods from Animal, Dog has to implement all of Animal’s abstract methods.

Implementing an abstract
method is just like
overriding a method.

When we say “you must implement the abstract method”, that means you must
provide a body. That means you must create a non-abstract method in your class
with the same method signature (name and arguments) and a return type that is
compatible with the declared return type of the abstract method. What you put in
that method is up to you. All Java cares about is that the method is there, in your
concrete subclass.

 I have wonderful news,
mother. Joe finally implemented
all his abstract methods! Now
everything is working just the
way we planned...

interfaces and polymorphism

you are here4 205

Sharpen your pencil
Let’s put all this abstract rhetoric into some concrete use. In the middle
column we’ve listed some classes. Your job is to imagine applications
where the listed class might be concrete, and applications where the listed
class might be abstract. We took a shot at the first few to get you going.
For example, class Tree would be abstract in a tree nursery program, where
differences between an Oak and an Aspen matter. But in a golf simulation
program, Tree might be a concrete class (perhaps a subclass of Obstacle),
because the program doesn’t care about or distinguish between different
types of trees. (There’s no one right answer; it depends on your design.)

Concrete Sample class Abstract

golf course simulation Tree tree nursery application

____________________ House architect application

satellite photo application Town _____________________

____________________ Football Player coaching application

____________________ Chair _____________________

____________________ Customer _____________________

____________________ Sales Order _____________________

____________________ Book _____________________

____________________ Store _____________________

____________________ Supplier _____________________

____________________ Golf Club _____________________

____________________ Carburetor _____________________

____________________ Oven _____________________

Abstract vs. Concrete Classes

206 chapter 8

polymorphism examples

Polymorphism in action
Let’s say that we want to write our own kind of list class, one that will hold
Dog objects, but pretend for a moment that we don’t know about the
ArrayList class. For the fi rst pass, we’ll give it just an add() method. We’ll use
a simple Dog array (Dog []) to keep the added Dog objects, and give it a
length of 5. When we reach the limit of 5 Dog objects, you can still call the
add() method but it won’t do anything. If we’re not at the limit, the add()
method puts the Dog in the array at the next available index position, then
increments that next available index (nextIndex).

public class MyDogList {

 private Dog [] dogs = new Dog[5];

 private int nextIndex = 0;

 public void add(Dog d) {

 if (nextIndex < dogs.length) {

 dogs[nextIndex] = d;

 System.out.println(“Dog added at “ + nextIndex);

 nextIndex++;

 }
 }
}

MyDogList

Dog[] dogs
int nextIndex

add(Dog d)

Dog[] dogs

add(Dog d)

Use a plain old Dog array

behind the scene
s.

We’ll increment this each
time a new Dog is added.

If we’re not already at the limit

of the dogs array, add the
Dog

and print a message.

increment, to give us the next index to use

Building our own Dog-specifi c list
(Perhaps the world’s worst attempt at making our
own ArrayList kind of class, from scratch.)

ve
rsion

1

interfaces and polymorphism

you are here4 207

public class MyAnimalList {

 private Animal[] animals = new Animal[5];
 private int nextIndex = 0;

 public void add(Animal a) {
 if (nextIndex < animals.length) {
 animals[nextIndex] = a;
 System.out.println(“Animal added at “ + nextIndex);
 nextIndex++;

 }
 }
}

MyAnimalList

Animal[] animals
int nextIndex

add(Animal a)

Building our own Animal-specifi c list

ve
rsion

2

Uh-oh, now we need to keep Cats, too.
We have a few options here:

1) Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2) Make a single class, DogAndCatList, that keeps two different arrays as instance
variables and has two different add() methods: addCat(Cat c) and addDog(Dog
d). Another clunky solution.

3) Make heterogeneous AnimalList class, that takes any kind of Animal subclass
(since we know that if the spec changed to add Cats, sooner or later we’ll have
some other kind of animal added as well). We like this option best, so let’s change
our class to make it more generic, to take Animals instead of just Dogs. We’ve
highlighted the key changes (the logic is the same, of course, but the type has
changed from Dog to Animal everywhere in the code.

public class AnimalTestDrive{
 public static void main (String[] args) {
 MyAnimalList list = new MyAnimalList();
 Dog a = new Dog();
 Cat c = new Cat();
 list.add(a);
 list.add(c);
 }
}
 File Edit Window Help Harm

% java AnimalTestDrive

Animal added at 0

Animal added at 1

Don’t panic. We’re not making a

new Animal object; we’re making a

new array object, o
f type Animal.

(Remember, you cannot
make a new

instance of an a
bstract type, bu

t

you CAN make an array obj
ect

declared to HOLD that type.)

208 chapter 8

You know where this is heading. We want to change the
type of the array, along with the add() method argument, to
something above Animal. Something even more generic, more
abstract than Animal. But how can we do it? We don’t have a
superclass for Animal.

Then again, maybe we do...

Remember those methods of ArrayList?
Look how the remove, contains, and
indexOf method all use an object of type...
Object!

Every class in Java extends
class Object.

Class Object is the mother of all classes; it’s
the superclass of everything.

ve
rsion

3

What about non-Animals? Why not make
a class generic enough to take anything?

Many of the ArrayList methods use the

ultimate polymorphic type, Object. Since

every class in Java is a subclass of Object,

these ArrayList methods can take anythi
ng!

(Note: as of Java 5.0, the get() and add()

methods actually look a l
ittle different

than the ones shown here, but for now this

is the way to think about it. W
e’ll get into

the full story a little l
ater.)

the ultimate superclass: Object

ArrayList

(These are just a fe
w of the

methods in ArrayList...there

are many more.)

Even if you take advantage of polymorphism,
you still have to create a class with methods
that take and return your polymorphic type.
Without a common superclass for everything
in Java, there’d be no way for the developers
of Java to create classes with methods that
could take your custom types... types they never
knew about when they wrote the ArrayList class.

So you were making subclasses of class Object
from the very beginning and you didn’t even
know it. Every class you write extends Object,
without your ever having to say it. But you can
think of it as though a class you write looks like
this:

public class Dog extends Object { }

But wait a minute, Dog already extends something, Canine.
That’s OK. The compiler will make Canine extend Object
instead. Except Canine extends Animal. No problem, then the
compiler will just make Animal extend Object.

Any class that doesn’t explicitly extend another
class, implicitly extends Object.

So, since Dog extends Canine, it doesn’t directly extend Object
(although it does extend it indirectly), and the same is true
for Canine, but Animal does directly extend Object.

Removes the object at the index parameter. Returns

‘true’ if the element was in the list.

Returns ‘true’ if there’s a match for the object parameter.

Returns ‘true’ if the list has no elements.

Returns either the index of the object parameter, or -1.

Returns the element at this position in the list.

Adds the element to the list (returns ‘true’).

boolean remove(Object elem)

boolean contains(Object elem)

boolean isEmpty()

int indexOf(Object elem)

Object get(int index)

boolean add(Object elem)

// more

interfaces and polymorphism

you are here4 209

So what’s in this ultra-super-megaclass Object?

Object

boolean equals()

Class getClass()

int hashCode()

String toString()

If you were Java, what behavior would you want every
object to have? Hmmmm... let’s see... how about a
method that lets you fi nd out if one object is equal
to another object? What about a method that can
tell you the actual class type of that object? Maybe a
method that gives you a hashcode for the object, so
you can use the object in hashtables (we’ll talk about
Java’s hashtables in chapter 17 and appendix B).
Oh, here’s a good one—a method that prints out a
String message for that object.

And what do you know? As if by magic, class Object
does indeed have methods for those four things.
That’s not all, though, but these are the ones we
really care about.

Just SOME of the methods

of class Object.

Dog a = new Dog();
Cat c = new Cat();

if (a.equals(c)) {
 System.out.println(“true”);
} else {
 System.out.println(“false”);
}

equals(Object o)1

Cat c = new Cat();
System.out.println(c.getClass());

getClass()2

File Edit Window Help Stop

% java TestObject

false

File Edit Window Help Faint

% java TestObject

class Cat

Cat c = new Cat();
System.out.println(c.hashCode());

hashCode()3

File Edit Window Help Drop

% java TestObject

8202111

Cat c = new Cat();
System.out.println(c.toString());

toString()4

File Edit Window Help LapseIntoComa

% java TestObject

Cat@7d277f

Prints out a hashco
de

for the object (fo
r

now, think of it as a

unique ID).

Tells you if two objects are
considered ‘equal’ (we’ll talk
about what ‘equal’ really
means in appendix B).

Gives you back the
class that object was
instantiated from.

Prints out a String
 message

with the name of the class

and some other number we

rarely care about.

YourClassHere Every class you write inherits all the methods of class Object. The classes you’ve written inherited methods you didn’t even know you had.

210 chapter 8

there are noDumb Questions
Q: Is class Object abstract?

A: No. Well, not in the formal
Java sense anyway. Object is a
non-abstract class because it’s
got method implementation
code that all classes can inherit
and use out-of-the-box, without
having to override the methods.

Q: Then can you override

the methods in Object?

A: Some of them. But some of
them are marked final, which
means you can’t override them.
You’re encouraged (strongly) to
override hashCode(), equals(),
and toString() in your own
classes, and you’ll learn how to
do that a little later in the book.
But some of the methods, like
getClass(), do things that must
work in a specific, guaranteed
way.

Q: If ArrayList methods are
generic enough to use Object,
then what does it mean to say
ArrayList<DotCom>? I thought
I was restricting the ArrayList to
hold only DotCom objects?

A: You were restricting it.
Prior to Java 5.0, ArrayLists
couldn’t be restricted. They
were all essentially what you
get in Java 5.0 today if you write
ArrayList<Object>. In other
words, an ArrayList restricted
to anything that’s an Object,
which means any object in Java,
instantiated from any class type!
We’ll cover the details of this new
<type> syntax later in the book.

Q: OK, back to class Object
being non-abstract (so I guess
that means it’s concrete), HOW
can you let somebody make an
Object object? Isn’t that just
as weird as making an Animal

object?

A: Good question! Why is
it acceptable to make a new
Object instance? Because
sometimes you just want a
generic object to use as, well, as
an object. A lightweight object.
By far, the most common use of
an instance of type Object is for
thread synchronization (which
you’ll learn about in chapter 15).
For now, just stick that on the
back burner and assume that
you will rarely make objects of
type Object, even though you
can.

Q: So is it fair to say that the
main purpose for type Object
is so that you can use it for a
polymorphic argument and
return type? Like in ArrayList?

A: The Object class serves
two main purposes: to act as a
polymorphic type for methods
that need to work on any class
that you or anyone else makes,
and to provide real method code
that all objects in Java need at
runtime (and putting them in
class Object means all other
classes inherit them). Some of
the most important methods in
Object are related to threads,
and we’ll see those later in the
book.

Q: If it’s so good to use
polymorphic types, why
don’t you just make ALL your
methods take and return type
Object?

A: Ahhhh... think about what
would happen. For one thing,
you would defeat the whole
point of ‘type-safety’, one
of Java’s greatest protection
mechanisms for your code. With
type-safety, Java guarantees that
you won’t ask the wrong object
to do something you meant to
ask of another object type. Like,
ask a Ferrari (which you think is a
Toaster) to cook itself.
But the truth is, you don’t have
to worry about that fiery Ferrari
scenario, even if you do use
Object references for everything.
Because when objects are
referred to by an Object
reference type, Java thinks it’s
referring to an instance of type
Object. And that means the
only methods you’re allowed to
call on that object are the ones
declared in class Object! So if
you were to say:

Object o = new Ferrari();
o.goFast(); //Not legal!

You wouldn’t even make it past
the compiler.

Because Java is a strongly-typed
language, the compiler checks
to make sure that you’re calling
a method on an object that’s
actually capable of responding.
In other words, you can call a
method on an object reference
only if the class of the reference
type actually has the method.
We’ll cover this in much greater
detail a little later, so don’t worry
if the picture isn’t crystal clear.

Object and abstract classes

interfaces and polymorphism

you are here4 211

Before you run off and start using type Object for all your ultra-fl exible argument and return
types, you need to consider a little issue of using type Object as a reference. And keep in mind
that we’re not talking about making instances of type Object; we’re talking about making
instances of some other type, but using a reference of type Object.

When you put an object into an ArrayList<Dog>, it goes in as a Dog, and comes out as a Dog:

ArrayList<Dog> myDogArrayList = new ArrayList<Dog>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

Dog d = myDogArrayList.get(0);

But what happens when you declare it as ArrayList<Object>? If you want to make an ArrayList
that will literally take any kind of Object, you declare it like this:

ArrayList<Object> myDogArrayList = new ArrayList<Object>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

But what happens when you try to get the Dog object and assign it to a Dog reference?

Dog d = myDogArrayList.get(0);

Everything comes out of an ArrayList<Object> as a reference of type Object, regardless of what the
actual object is, or what the reference type was when you added the object to the list.

Using polymorphic references of type Object has a price...

Objects come out of
an ArrayList<Object>
acting like they’re
generic instances
of class Object. The
Compiler cannot
assume the object
that comes out is of
any type other than
Object.

ArrayList<Object>

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

Object Object Object Object

Make an ArrayList declared

to hold Dog objects.
Make a Dog.

Add the Dog to the list.
Assign the Dog from the list to a new Dog reference variable.

(Think of it as though the get() m
ethod declares a Dog return

type because you used ArrayList<Dog>.)

Make an ArrayList declared

to hold any type of Object.
Make a Dog.

Add the Dog to the list.
(These two steps are the same.)

NO!! Won’t compile!! When you use ArrayList<Object>, the get() method
returns type Object. The Compiler knows only that the object inherits from
Object (somewhere in its inheritance tree) but it doesn’t know it’s a Dog !!

Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);

But they come
OUT as though
they were of type
Object.

212 chapter 8

 public void go() {

 Dog aDog = new Dog();

 Object sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

 public void go() {

 Dog aDog = new Dog();

 Dog sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

The problem with having everything treated
polymorphically as an Object is that the objects
appear to lose (but not permanently) their
true essence. The Dog appears to lose its dogness.
Let’s see what happens when we pass a Dog to
a method that returns a reference to the same
Dog object, but declares the return type as type
Object rather than Dog.

When a Dog won’t act like a Dog

This line won’t work! Even though th
e method

returned a re
ference to th

e very same Dog the

argument referred
 to, the retu

rn type Object

means the compiler won’t let you a
ssign the retu

rned

reference to
anything but

Object.

File Edit Window Help Remember

DogPolyTest.java:10: incompatible types

found : java.lang.Object

required: Dog

 Dog sameDog = takeObjects(aDog);
1 error ^

The compiler doesn’t know that the
thing returned from the method is
actually a Dog, so it won’t let you
assign it to a Dog reference. (You’ll
see why on the next page.)

BAD

This works (although it may not be very
useful, as you’ll see in a moment) because you
can assign ANYTHING to a reference of type
Object, since every class passes the IS-A test
for Object. Every object in Java is an instance
of type Object, because every class in Java has
Object at the top of its inheritance tree.

GOOD

L

J

I don’t know what you’re
talking about. Sit? Stay?
bark? Hmmmm... I don’t

recall knowing those.

When a Dog loses its Dogness

 Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog);

We’re returning a reference to
 the same Dog, but as a

return type of Object. This part is perfectly legal. Note:

this is similar to how the get() method works when you have

an ArrayList<Object> rather than an ArrayList<Dog>.

interfaces and polymorphism

you are here4 213

So now we know that when an object is
referenced by a variable declared as type
Object, it can’t be assigned to a variable
declared with the actual object’s type.
And we know that this can happen when
a return type or argument is declared
as type Object, as would be the case,
for example, when the object is put
into an ArrayList of type Object using
ArrayList<Object>. But what are the
implications of this? Is it a problem to
have to use an Object reference variable
to refer to a Dog object? Let’s try to call
Dog methods on our Dog-That-Compiler-
Thinks-Is-An-Object:

Objects don’t bark.

Object o = al.get(index);

int i = o.hashCode();

o.bark();

This is fine. C
lass Object has a

hashCode() method, so yo
u can call

that method on A
NY object in J

ava.

Can’t do this!! The Object class has no idea what
it means to bark(). Even though YOU know it’s
really a Dog at that index, the compiler doesn’t..

Object

 o
 Dog object

When you get an object reference from
an ArrayList<Object> (or any method
that declares Object as the return type),
it comes back as a polymorphic reference
type of Object. So you have an Object
reference to (in this case) a Dog instance.

Won’t compile!

The compiler decides whether
you can call a method based
on the reference type, not the
actual object type.

Even if you know the object is capable
(“...but it really is a Dog, honest...”), the
compiler sees it only as a generic Object.
For all the compiler knows, you put a
Button object out there. Or a Microwave
object. Or some other thing that really
doesn’t know how to bark.
The compiler checks the class of the
reference type—not the object type—to
see if you can call a method using that
reference.

Object

 o
 Dog object

Object

equals()

getClass()

hashCode()

toString()

The method you’re calling on a
reference MUST be in the class of
that reference type. Doesn’t matter
what the actual object is.

o.hashCode();

The “o” reference was declared as type
Object, so you can call methods only if
those methods are in class Object..

o.bark(); o.bark(); o.bark(); o.bark();

hashCode()

214 chapter 8

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object.That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard(), you get a single object on the
heap—a Snowboard object—but that Snowboard wraps
itself around an inner core representing the Object
(capital “O”) portion of itself.

Get in touch with your inner Object.

There is only ONE object on the heap here. A Snowboard
object. But it contains both the Snowboard class parts of
itself and the Object class parts of itself.

objects are Objects

Object

equals()

getClass()

hashCode()

toString()

Snowboard

equals()

getClass()

hashCode()

toString()

turn()

shred()

getAir()

loseControl()

Snowboard inherits methods
from superclass Object, and
adds four more.

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

Snowboard object

He treats me like an
Object. But I can do so

much more...if only he’d see
me for what I really am.

A single object
on the heap.

interfaces and polymorphism

you are here4 215

Snowboard s = new Snowboard();
Object o = s;

to
St

rin
g() hashCode()

getA
ir()

turn()
sh

re
d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

The Object reference can see only the
Object parts of the Snowboard object.
It can access only the methods of class
Object. It has fewer buttons than the
Snowboard remote control.

o

s

The Snowboard remote control
(reference) has more buttons than
an Object remote control. The
Snowboard remote can see the full
Snowboardness of the Snowboard
object. It can access all the methods
in Snowboard, including both the
inherited Object methods and the
methods from class Snowboard.

Snowboard object

If a reference is like a remote control, the
remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has
only a few buttons—the buttons for the exposed
methods of class Object. But a remote control
of type Snowboard includes all the buttons from
class Object, plus any new buttons (for new
methods) of class Snowboard. The more specific
the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to the Snowboard object can’t see
the Snowboard-specific methods.

‘Polymorphism’ means
‘many forms’.

You can treat a Snowboard as a
Snowboard or as an Object.

When you put
an object in an
ArrayList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

fewer methods here...

216 chapter 8

Wait a minute... what good
is a Dog if it comes out of an

ArrayList<Object> and it can’t do
any Dog things? There’s gotta be a

way to get the Dog back to a state
of Dogness...

I hope it doesn’t hurt.
And what’s so wrong with

staying an Object? OK, I can’t
fetch, sure, but I can give you

a real nice hashcode.

casting objects

Casting an object reference
back to its real type.

Object

 o

It’s really still a Dog object, but if you want to call
Dog-specific methods, you need a reference declared
as type Dog. If you’re sure* the object is really a
Dog, you can make a new Dog reference to it by
copying the Object reference, and forcing that
copy to go into a Dog reference variable, using a
cast (Dog). You can use the new Dog reference to
call Dog methods.

Object o = al.get(index);
Dog d = (Dog) o;
d.roam();

Object

 o Dog object

Dog

d

*If you’re not sure it’s a Dog, you can use the
instanceof operator to check. Because if
you’re wrong when you do the cast, you’ll get a
ClassCastException at runtime and come to a
grinding halt.

 if (o instanceof Dog) {
 Dog d = (Dog) o;
 }

 Dog object

cast the Object back to

a Dog we know is there.

Cast the so-called ‘Object’ (but
we know he’s actually a Dog) to
type Dog, so that you can treat
him like the Dog he really is.

interfaces and polymorphism

you are here4 217

When you write a class, you almost always expose some
of the methods to code outside the class. To expose a
method means you make a method accessible, usually by
marking it public.

Imagine this scenario: you’re writing code for a small
business accounting program. A custom application
for “Simon’s Surf Shop”. The good re-
user that you are, you found an Account
class that appears to meet your needs
perfectly, according to its documentation,
anyway. Each account instance represents
an individual customer’s account with the
store. So there you are minding your own
business invoking the credit() and debit()
methods on an account object when you realize you
need to get a balance on an account. No problem—
there’s a getBalance() method that should do nicely.

Except... when you invoke the getBalance() method,
the whole thing blows up at runtime. Forget the
documentation, the class does not have that method.
Yikes!

But that won’t happen to you, because everytime you
use the dot operator on a reference (a.doStuff()), the
compiler looks at the reference type (the type ‘a’ was
declared to be) and checks that class to guarantee the
class has the method, and that the method does indeed
take the argument you’re passing and return the kind of
value you’re expecting to get back.

Just remember that the compiler checks the class of the
reference variable, not the class of the actual object at the
other end of the reference.

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

business accounting program. A custom application

Account

debit(double amt)

credit(double amt)

double getBalance()

So now you’ve seen how much Java
cares about the methods in the
class of the reference variable.

You can call a method on an object only if
the class of the reference variable has that
method.

218 chapter 8

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of
your superclasses.

True, your Dog class defines a contract.

But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of
those things—Canine, Animal, and Object.

But what if the person who designed your
class had in mind the Animal simulation
program, and now he wants to use you (class
Dog) for a Science Fair Tutorial on Animal
objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a
PetShop program? You don’t have any Pet
behaviors. A Pet needs methods like beFriendly()
and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add
some more methods to the Dog class. You
won’t be breaking anyone else’s code by
adding methods, since you aren’t touching
the existing methods that someone else’s code
might be calling on Dog objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

What if you need to change
the contract?

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won’t break anyone else’s code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you’d like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

modifying a class tree

brain
powerA

interfaces and polymorphism

you are here4 219

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about
whether Java can actually do what we come up with.
We’ll cross that bridge once we have a good idea of
some of the tradeoffs.

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program.

We take the easy path, and put pet
methods in class Animal.

1 Option one

All the Animals will instantly inherit
the pet behaviors. We won’t have to
touch the existing Animal subclasses
at all, and any Animal subclasses
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

Pros:

So... when was the last time you
saw a Hippo at a pet shop? Lion?
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs
and Cats tend to imple-
ment pet behaviors
VERY differently.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put all
the pet

method c
ode up

here

for inhe
ritance.

220 chapter 8

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

2 Option two

That would give us all the benefi ts of Option One, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it’s in class Animal), but
because it’s abstract the non-pet Animal classes won’t
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings”.

Pros:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the fi rst concrete subclass
down the inheritance tree.) What a waste of time!
You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet
class would be announcing to the
world that it, too, has those
pet methods, even though
the methods wouldn’t
actually DO anything
when called.

This approach doesn’t
look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put all
the pet

 methods

up here
, but with no

implementatio
ns. Make all

pet methods
abstrac

t.

Ask me to be friendly.
No, seriously... ask me.

I have the method.

modifying existing classes

interfaces and polymorphism

you are here4 221

Put the pet methods ONLY in the
classes where they belong.

3 Option three

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Pros:

Two Big Problems with this approach. First off, you’d
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have
to KNOW about the protocol. By protocol, we mean
the exact methods that we’ve decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn’t in a contract,
the compiler has no way to check you to see if you’ve
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and fi nd that not all of them work
quite right.

And second, you don’t get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,
you can’t use Animal
as the polymorphic
type now, because the
compiler won’t let you call
a Pet method on an Animal
reference (even if it’s really a
Dog object) because class Animal
doesn’t have the method.

Cons:

Put the pet methods ONLY in the

Animal classes that
 can be pets,

instead of in
Animal.

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

222 chapter 8

So what we REALLY need is:

Æ A way to have pet behavior in just the pet classes

Æ A way to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

Æ A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

It looks like we need TWO
superclasses at the top

We make a n
ew abstra

ct

supercla
ss calle

d Pet, and

give it
all the

pet methods.

Cat now extends

from both Animal

AND Pet, so it gets

the methods of both
.

Dog extends both Pet and Animal

The non-pet Animals
don’t have any inherited
Pet stuff.

multiple inheritance?

interfaces and polymorphism

you are here4 223

It’s called “multiple inheritance”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn’t, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

There’s just one problem with the “two superclasses” approach...

CDBurner

burn()

DVDBurner

DigitalRecorder
int i

burn()

burn()

ComboDrive

CDBurner and DVDBurner both

inherit from DigitalRecorder,

and both ove
rride the bur

n()

method. Both inherit t
he “i”

instance varia
ble.

Deadly Diamond of Death

Problem with multiple inheritance. Which burn() method runs when you call burn() on the ComboDrive?

Imagine that
 the “i” in

stance

variable is
used by bo

th CDBurner

and DVDBurner, with differ
ent

values. What happen
s if ComboDrive

needs to u
se both va

lues of “i”
?

A language that allows the Deadly Diamond of Death can lead to
some ugly complexities, because you have to have special rules to
deal with the potential ambiguities. And extra rules means extra
work for you both in learning those rules and watching out for
those “special cases”. Java is supposed to be simple, with consistent
rules that don’t blow up under some scenarios. So Java (unlike
C++) protects you from having to think about the Deadly Dia-
mond of Death. But that brings us back to the original problem!
How do we handle the Animal/Pet thing?

224 chapter 8

Interface to the rescue!

Pet

abstract void beFriendly();

abstract void play();

A Java interface is like a
100% pure abstract class.

All methods in an int
erface are

abstract, so an
y class that IS-

A

Pet MUST implement (i.e. overrid
e)

the methods of Pet.

Java gives you a solution. An interface. Not a GUI interface, not the generic
use of the word interface as in, “That’s the public interface for the Button
class API,” but the Java keyword interface.

A Java interface solves your multiple inheritance problem by giving you
much of the polymorphic benefi ts of multiple inheritance without the pain
and suffering from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple: make
all the methods abstract! That way, the subclass must implement the methods
(remember, abstract methods must be implemented by the fi rst concrete
subclass), so at runtime the JVM isn’t confused about which of the two
inherited versions it’s supposed to call.

To DEFINE an interface:

To IMPLEMENT an interface:

public interface Pet {...}

public class Dog extends Canine implements Pet {...}

Use the keyword “interface” instead of “class”

Use the keyword “implements” followed

by the interface
name. Note that

when you implement an interface y
ou

still get to extend
 a class

interfaces

interfaces and polymorphism

you are here4 225

Making and Implementing
the Pet interface

public interface Pet {

 public abstract void beFriendly();

 public abstract void play();

}

public class Dog extends Canine implements Pet {

 public void beFriendly() {...}

 public void play() {..}

 public void roam() {...}

 public void eat() {...}

}

All interface methods are

abstract, so th
ey MUST end in

semicolons. Remember, they have

no body!

You say ‘interfac
e’ instead

of ‘class’ here

You say ‘implements’
followed by the name
of the interface.

You SAID you are a Pet, so you MUST
implement the Pet methods. It’s your
contract. Notice the curly braces instead of semicolons.

Dog IS-A Animal

and Dog IS-A Pet

These are just normal overriding methods.

there are noDumb Questions
Q:Wait a minute, interfaces don’t
really give you multiple inheritance,
because you can’t put any
implementation code in them. If all
the methods are abstract, what does
an interface really buy you?

A:Polymorphism, polymorphism,
polymorphism. Interfaces are the
ultimate in flexibility, because if you
use interfaces instead of concrete
subclasses (or even abstract superclass
types) as arguments and return

types, you can pass anything that
implements that interface. And think
about it—with an interface, a class
doesn’t have to come from just one
inheritance tree. A class can extend
one class, and implement an interface.
But another class might implement
the same interface, yet come from a
completely different inheritance tree!
So you get to treat an object by the
role it plays, rather than by the class
type from which it was instantiated.

In fact, if you wrote your code to use
interfaces, you wouldn’t even have to
give anyone a superclass that they had

to extend. You could just give them
the interface and say, “Here,’ I don’t
care what kind of class inheritance
structure you come from, just
implement this interface and you’ll be
good to go.”

The fact that you can’t put in
implementation code turns out not to
be a problem for most good designs,
because most interface methods
wouldn’t make sense if implemented
in a generic way. In other words, most
interface methods would need to
be overridden even if the methods
weren’t forced to be abstract.

interface methods are implicitly public and abstract, so typing in ‘public’ and ‘abstract’ is optional (in fact, it’s not considered ‘good style’ to type the words in, but we did here just to reinforce it, and because we’ve never been slaves to fashion...)

226 chapter 8

Classes from different inheritance trees
can implement the same interface.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

RoboDog

Robot

Agent

Class RoboDog doesn’t come from the Animal inheritance tree, but it still gets to be a Pet!

When you use a class as a polymorphic type (like an
array of type Animal or a method that takes a Canine
argument), the objects you can stick in that type
must be from the same inheritance tree. But not just
anywhere in the inheritance tree; the objects must be
from a class that is a subclass of the polymorphic type.
An argument of type Canine can accept a Wolf and a
Dog, but not a Cat or a Hippo.

But when you use an interface as a polymorphic
type (like an array of Pets), the objects can be
from anywhere in the inheritance tree. The only
requirement is that the objects are from a class that
implements the interface. Allowing classes in different
inheritance trees to implement a common interface
is crucial in the Java API. Do you want an object
to be able to save its state to a fi le? Implement the
Serializable interface. Do you need objects to run

their methods in a separate thread of execution?
Implement Runnable. You get the idea. You’ll
learn more about Serializable and Runnable in later
chapters, but for now, remember that classes from
any place in the inheritance tree might need to
implement those interfaces. Nearly any class might
want to be saveable or runnable.

Better still, a class can implement
multiple interfaces!

A Dog object IS-A Canine, and IS-A Animal, and
IS-A Object, all through inheritance. But a Dog IS-A
Pet through interface implementation, and the Dog
might implement other interfaces as well. You could
say:

public class Dog extends Animal implements
Pet, Saveable, Paintable { ... }

interface polymorphism

interfaces and polymorphism

you are here4 227

Make it Sticki kkk

Roses are red, violets are blue.

Extend only one, but implement two.

Java weighs in on family values:

Single Parents Only!! A Java class can have

only one parent (superclass), and that parent

class defines who you are. But you can imple-

ment multiple interfaces, and those interfaces

define roles you can play.

How do you know whether to make a
class, a subclass, an abstract class, or
an interface?

$ Make a class that doesn’t extend anything
(other than Object) when your new class doesn’t
pass the IS-A test for any other type.

$ Make a subclass (in other words, extend a class)
only when you need to make a more specifi c
version of a class and need to override or add
new behaviors.

$ Use an abstract class when you want to defi ne
a template for a group of subclasses, and you
have at least some implementation code that all
subclasses could use. Make the class abstract
when you want to guarantee that nobody can
make objects of that type.

$ Use an interface when you want to defi ne a role
that other classes can play, regardless of where
those classes are in the inheritance tree.

228 chapter 8

class BuzzwordsReport extends Report {

 void runReport() {
 super.runReport();
 buzzwordCompliance();
 printReport();

 }
 void buzzwordCompliance() {...}
}

using super

Q: What if you make a concrete subclass

and you need to override a method, but you

want the behavior in the superclass version of

the method? In other words, what if you don’t

need to replace the method with an override,

but you just want to add to it with some

additional specific code.

A: Ahhh... think about the meaning of the
word ‘extends’. One area of good OO design looks
at how to design concrete code that’s meant to
be overridden. In other words, you write method
code in, say, an abstract class, that does work
that’s generic enough to support typical concrete
implementations. But, the concrete code isn’t
enough to handle all of the subclass-specific
work. So the subclass overrides the method
and extends it by adding the rest of the code.
The keyword super lets you invoke a superclass
version of an overridden method, from within the
subclass.

Invoking the superclass
version of a method

super.runReport();

BuzzwordReport

subclass method (over
rides

the supercla
ss version)

super.runReport();

The super keyword is really a reference
to the superclass portion of an object.
When subclass code uses super, as in
super.runReport(), the superclass version of
the method will run.

abstract class Report {
 void runReport() {
 // set-up report
 }
 void printReport() {
 // generic printing
 }
}

Report

runReport()
printReport()

runReport()
buzzwordCompliance() superclass methods

(including the overridden

runReport()

A reference to the subclass object
(BuzzwordReport) will always call
the subclass version of an overridden
method. That’s polymorphism.
But the subclass code can call
super.runReport() to invoke the
superclass version.

If method code inside a
BuzzwordReport subclass says:

the runReport() method inside
the superclass Report will run

superclass ver
sion of the

method does im
portant stuf

f

that subclass
es could use

call superclass
 version,

then come back and

do some subclass-

specific stuff

interfaces and polymorphism

you are here4 229

 BULLET POINTS

$ When you don’t want a class to be instantiated (in other words, you don’t
want anyone to make a new object of that class type) mark the class with the
abstract keyword.

$ An abstract class can have both abstract and non-abstract methods.

$ If a class has even one abstract method, the class must be marked abstract.

$ An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

$ All abstract methods must be implemented in the first concrete subclass in the
inheritance tree.

$ Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

$ Methods can be declared with Object arguments and/or return types.

$ You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference variable of type Object can be used only to call methods defined in class
Object, regardless of the type of the object to which the reference refers.

$ A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.
Example: Dog d = (Dog) x.getObject(aDog);

$ All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

$ Multiple inheritance is not allowed in Java, because of the problems associated with
the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you
can have only one immediate superclass).

$ An interface is like a 100% pure abstract class. It defines only abstract methods.

$ Create an interface using the interface keyword instead of the word class.

$ Implement an interface using the keyword implements
Example: Dog implements Pet

$ Your class can implement multiple interfaces.

$ A class that implements an interface must implement all the methods of the
interface, since all interface methods are implicitly public and abstract.

$ To invoke the superclass version of a method from a subclass that’s overridden the
method, use the super keyword. Example: super.runReport();

Q:There’s still something
strange here... you never
explained how it is that
ArrayList<Dog> gives back Dog
references that don’t need to be
cast, yet the ArrayList class uses
Object in its methods, not Dog
(or DotCom or anything else).
What’s the special trick going on
when you say ArrayList<Dog>?

A: You’re right for calling it a
special trick. In fact it is a special
trick that ArrayList<Dog> gives
back Dogs without you having
to do any cast, since it looks like
ArrayList methods don’t know
anything about Dogs, or any type
besides Object.

The short answer is that the
compiler puts in the cast for you!
When you say ArrayList<Dog>,
there is no special class that has
methods to take and return Dog
objects, but instead the <Dog>
is a signal to the compiler that
you want the compiler to let
you put ONLY Dog objects in
and to stop you if you try to add
any other type to the list. And
since the compiler stops you
from adding anything but Dogs
to the ArrayList, the compiler
also knows that its safe to cast
anything that comes out of that
ArrayList do a Dog reference. In
other words, using ArrayList<Dog>
saves you from having to cast
the Dog you get back. But it’s
much more important than that...
because remember, a cast can
fail at runtime, and wouldn’t you
rather have your errors happen
at compile time rather than, say,
when your customer is using it for
something critical?

But there’s a lot more to this story,
and we’ll get into all the details in
the Collections chapter.

230 chapter 8

1)

2)

3)

4)

5)

Given:

public interface Foo { }

public class Bar implements Foo { }

public interface Vinn { }

public abstract class Vout implements Vinn { }

public abstract class Muffie implements Whuffie { }

public class Fluffie extends Muffie { }

public interface Whuffie { }

public class Zoop { }

public class Boop extends Zoop { }

public class Goop extends Boop { }

public class Gamma extends Delta implements Epsilon { }

public interface Epsilon { }

public interface Beta { }

public class Alpha extends Gamma implements Beta { }

public class Delta { }

What’s the Picture ?

(interface)
Foo

Bar

1)

2)

3)

4)

5)

Here’s your chance to demonstrate your artistic abilities. On the left you’ll
find sets of class and interface declarations. Your job is to draw the associated
class diagrams on the right. We did the first one for you. Use a dashed line for
“implements” and a solid line for “extends”.

Exercise

exercise: What’s the Picture?

interfaces and polymorphism

you are here4 231

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta

Alpha

Delta

1

2

3

4

5

Given:
What’s the Declaration ?

1)

2)

3)

4)

5)

public class Click { }
public class Clack extends Click { }

On the left you’ll fi nd sets of class diagrams. Your job is to turn
these into valid Java declarations. We did number 1 for you
(and it was a tough one).

Clack

Clack

Clack

extends

implements

class

interface

abstract class

 KEY

Exercise

232 chapter 8

public int iMethod() ;
public int iMethod { }
public int iMethod () {
public int iMethod () { }

class
extends
interface
implements

Your job is to take code snippets from the pool and
place them into the blank lines in the code and out-

put. You may use the same snippet more than once,
and you won’t need to use all the snippets. Your
goal is to make a set of classes that will compile
and run and produce the output listed.

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help BeAfraid

%java ______________
5 class Acts
7 class Clowns
________Of76

Output

____________ Nose {

}

abstract class Picasso implements ______{

 return 7;

 }

}

class _________ ________ __________ { }

class _________ ________ __________ {

 return 5;

 }

}

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for(int x = 0; x < 3; x++) {

 System.out.println(__________________

 + “ “ + _______.getClass());

 }

 }

}

Acts();
Nose();
Of76();
Clowns();
Picasso();

Acts
Nose
Of76
Clowns
Picasso

i
i()
i(x)
i[x]

i.iMethod(x)
i(x).iMethod[]
i[x].iMethod()
i[x].iMethod[]

Of76 [] i = new Nose[3];
Of76 [3] i;
Nose [] i = new Nose();
Nose [] i = new Nose[3];

class
5 class
7 class
7 public class

Pool
Puzzle

puzzle: Pool Puzzle

interfaces and polymorphism

you are here4 233

(interface)
Vinn

public abstract class Top { }
public class Tip extends Top { }

What’s the Declaration ?

What’s the Picture ?

2)
3)

4)

5)

Fluffie

(interface)
Epsilon

(interface)
Beta

(interface)
Whuffie

Vout

Muffie

Boop

Goop

Alpha

Zoop

Delta

Gamma

public abstract class Fee { }
public abstract class Fi extends Fee { }

public interface Foo { }
public class Bar implements Foo { }
public class Baz extends Bar { }

public interface Zeta { }
public class Alpha implements Zeta { }
public interface Beta { }
public class Delta extends Alpha implements Beta { }

2)

3)

4)

5)

 Exercise Solutions

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for(int x = 0; x < 3; x++) {

 System.out.println(__________________

 + “ “ + _______.getClass());

 }

 }

}

234 chapter 8

public class Of76 extends Clowns {
 public static void main(String [] args) {

 Nose [] i = new Nose [3] ;
 i[0] = new Acts() ;
 i[1] = new Clowns() ;
 i[2] = new Of76() ;
 for(int x = 0; x < 3; x++) {

 System.out.println(i [x] . iMethod()
 + “ “ + i [x].getClass());
 }

 }

}

File Edit Window Help KillTheMime

%java Of76
5 class Acts
7 class Clowns
7 class Of76

Output

interface Nose {
 public int iMethod() ;
}

abstract class Picasso implements Nose {
 public int iMethod() {
 return 7;

 }

}

class Clowns extends Picasso { }

class Acts extends Picasso {
 public int iMethod() {
 return 5;

 }

}

puzzle solution

this is a new chapter 235

9 constructors and garbage collection

Objects are born and objects die. You’re in charge of an object’s lifecycle.

You decide when and how to construct it. You decide when to destroy it. Except you don’t

actually destroy the object yourself, you simply abandon it. But once it’s abandoned, the

heartless Garbage Collector (gc) can vaporize it, reclaiming the memory that object was

using. If you’re gonna write Java, you’re gonna create objects. Sooner or later, you’re gonna

have to let some of them go, or risk running out of RAM. In this chapter we look at how objects

are created, where they live while they’re alive, and how to keep or abandon them efficiently.

That means we’ll talk about the heap, the stack, scope, constructors, super constructors, null

references, and more. Warning: this chapter contains material about object death that some

may find disturbing. Best not to get too attached.

Life and Death
of an Object

...then he said,
“I can’t feel my legs!” and

I said “Joe! Stay with me Joe!”
But it was... too late. The garbage
collector came and... he was gone.

Best object I ever had.

Make it Stick

236 chapter 9

The Stack and the Heap: where things live
Before we can understand what really happens when
you create an object, we have to step back a bit. We
need to learn more about where everything lives
(and for how long) in Java. That means we need to
learn more about the Stack and the Heap. In Java, we
(programmers) care about two areas of memory—the
one where objects live (the heap), and the one
where method invocations and local variables live
(the stack). When a JVM starts up, it gets a chunk of
memory from the underlying OS, and uses it to run
your Java program. How much memory, and whether
or not you can tweak it, is dependent on which
version of the JVM (and on which platform) you’re

running. But usually you won’t have anything to say
about it. And with good programming, you probably
won’t care (more on that a little later).

We know that all objects live on the garbage-collectible
heap, but we haven’t yet looked at where variables
live. And where a variable lives depends on what kind
of variable it is. And by “kind”, we don’t mean type
(i.e. primitive or object reference). The two kinds of
variables whose lives we care about now are instance
variables and local variables. Local variables are also
known as stack variables, which is a big clue for where
they live.

The Stack

Where method invocations
and local variables live

main()
doStuff()

go()

Button object

Duck object Snowboard ob
je

ct

The Heap
also known as

“The Garbage-

Collectible
Heap”

Where ALL objects live

Instance Variables Local Variables

Instance variables are declared inside a class but not

inside a method. They represent the “fields” that each

individual object has (which can be filled with different

values for each instance of the class). Instance variables

live inside the object they belong to.

public class Duck {

 int size;

}
Every Duck has a “si

ze”

instance vari
able.

Local variables are declared inside a method, including

method parameters. They’re temporary, and live only as

long as the method is on the stack (in other words, as long as

the method has not reached the closing curly brace).

public void foo(int x) {

 int i = x + 3;

 boolean b = true;

}

The parameter x and

the variables
 i and b

are all local
variables.

the stack and the heap

constructors and gc

you are here4 237

 public void doStuff() {
 boolean b = true;
 go(4);
 }

 public void go(int x) {
 int z = x + 24;
 crazy();
 // imagine more code here
 }

 public void crazy() {
 char c = ‘a’;
 }

Methods are stacked
When you call a method, the method lands on
the top of a call stack. That new thing that’s
actually pushed onto the stack is the stack
frame, and it holds the state of the method
including which line of code is executing, and
the values of all local variables.

The method at the top of the stack is always
the currently-running method for that stack
(for now, assume there’s only one stack,but in
chapter 14 we’ll add more.) A method stays on
the stack until the method hits its closing curly
brace (which means the method’s done). If
method foo() calls method bar(), method bar() is
stacked on top of method foo().

bar()
foo()

stack fram
es

bottom of the stack

top of the stack

local variables
(including
parameter x)

A call stack with two methods

1 Code from another
class calls doStuff(),
and doStuff() goes
into a stack frame
at the top of the
stack.The boolean
variable named ‘b’
goes on the doStuff()
stack frame.

s

bx i

doStuff() b

go()
doStuff() b

x z

2 doStuff() calls go(),
go() is pushed on
top of the stack.
Variables ‘x’ and ‘z’
are in the go() stack
frame.

crazy() c

doStuff() b

go() x z go()
doStuff() b

x z

3 go() calls crazy(),
crazy() is now on the
top of the stack,
with variable ‘c’ in
the frame.

4 crazy() completes,
and its stack frame is
popped off the stack.
Execution goes back
to the go() method,
and picks up at the
line following the call
to crazy().

The code on the left is a snippet (we don’t care what the rest of the
class looks like) with three methods. The first method (doStuff()) calls
the second method (go()), and the second method calls the third
(crazy()). Each method declares one local variable within the body
of the method, and method go() also declares a parameter variable
(which means go() has two local variables).

A stack scenario

The method on the top of the
stack is always the currently-
executing method.

238 chapter 9

What about local variables that are objects?
Remember, a non-primitive variable holds a reference to an
object, not the object itself. You already know where objects
live—on the heap. It doesn’t matter where they’re declared or
created. If the local variable is a reference to an object, only
the variable (the reference/remote control) goes on the stack.

The object itself still goes in the heap.

Duck object
 barf()

foof()

public class StackRef {
 public void foof() {
 barf();
 }

 public void barf() {
 Duck d = new Duck(24);
 }
}

d

barf() dec
lares and

creates a
new

Duck refere
nce variab

le ‘d’ (sinc
e it’s

declared i
nside the

method, it’s
 a local

variable an
d goes on

the stack.

object references on the stack

 BULLET POINTS

$ Java has two areas of memory we care about:
the Stack and the Heap.

$ Instance variables are variables declared
inside a class but outside any method.

$ Local variables are variables declared inside a
method or method parameter.

$ All local variables live on the stack, in the
frame corresponding to the method where the
variables are declared.

$ Object reference variables work just like primi-
tive variables—if the reference is declared as a
local variable, it goes on the stack.

$ All objects live in the heap, regardless of
whether the reference is a local or instance
variable.

there are noDumb Questions
Q: One more time, WHY are we learning the
whole stack/heap thing? How does this help me?
Do I really need to learn about it?

A: Knowing the fundamentals of the Java
Stack and Heap is crucial if you want to understand
variable scope, object creation issues, memory
management, threads, and exception handling.
We cover threads and exception handling in later
chapters but the others you’ll learn in this one. You
do not need to know anything about how the Stack
and Heap are implemented in any particular JVM
and/or platform. Everything you need to know
about the Stack and Heap is on this page and the
previous one. If you nail these pages, all the other
topics that depend on your knowing this stuff will
go much, much, much easier. Once again, some day
you will SO thank us for shoving Stacks and Heaps
down your throat.

Heap

No matter WHERE the object reference variable is declared (inside a method vs. as an instance variable of a class) the object always always always goes on the heap.

constructors and gc

you are here4 239

If local variables live on the stack,
where do instance variables live?
When you say new CellPhone(), Java has to make
space on the Heap for that CellPhone. But how much
space? Enough for the object, which means enough to
house all of the object’s instance variables. That’s right,
instance variables live on the Heap, inside the object
they belong to.

Remember that the values of an object’s instance
variables live inside the object. If the instance variables
are all primitives, Java makes space for the instance
variables based on the primitive type. An int needs
32 bits, a long 64 bits, etc. Java doesn’t care about the
value inside primitive variables; the bit-size of an int
variable is the same (32 bits) whether the value of the
int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CellPhone HAS-A Antenna? In other words, CellPhone
has a reference variable of type Antenna.

When the new object has instance variables that are
object references rather than primitives, the real
question is: does the object need space for all of
the objects it holds references to? The answer is, not
exactly. No matter what, Java has to make space for the
instance variable values. But remember that a reference
variable value is not the whole object, but merely a remote
control to the object. So if CellPhone has an instance
variable declared as the non-primitive type Antenna,
Java makes space within the CellPhone object only for
the Antenna’s remote control (i.e. reference variable) but
not the Antenna object.

Well then when does the Antenna object get space on
the Heap? First we have to find out when the Antenna
object itself is created. That depends on the instance
variable declaration. If the instance variable is declared
but no object is assigned to it, then only the space for
the reference variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless
or until the reference variable is assigned a new
Antenna object.

private Antenna ant = new Antenna();

int long

Object with two primitive instance variables.
Space for the variables lives in the object.

Object with one non-primitive instance variable—
a reference to an Antenna object, but no actual
Antenna object This is what you get if you
declare the variable but don’t initialize it with
an actual Antenna object.

Antenna

ant

public class CellPhone {
 private Antenna ant;
}

public class CellPhone {
 private Antenna ant = new Antenna();
}

Object with one non-primitive instance variable,
and the Antenna variable is assigned a new
Antenna object.

x y

Antenna

ant

CellPhone object

CellPhone object Antenna object

CellPhone object

240 chapter 9

object creation

The miracle of object creation
Now that you know where variables and objects live, we can dive into
the mysterious world of object creation. Remember the three steps
of object declaration and assignment: declare a reference variable,
create an object, and assign the object to the reference.

But until now, step two—where a miracle occurs and the new object
is “born”—has remained a Big Mystery. Prepare to learn the facts of
object life. Hope you’re not squeamish.

1 Declare a reference
variable

Duck reference

myDuck

Duck myDuck = new Duck();

Create an object

Review the 3 steps of object
declaration, creation and assignment:

Duck object

Duck myDuck = new Duck();

Duck myDuck = new Duck();

2

Link the object and
the reference

3

Duck reference

myDuck

Duck object

Make a new reference

variable of
 a class or

interface
type.

A miracle
occurs her

e.

Assign the n
ew

object to
the

reference.

constructors and gc

you are here4 241

Are we calling a method named Duck()?
Because it sure looks like it.

A constructor does look and feel a lot like a method, but it’s not
a method. It’s got the code that runs when you say new. In other
words, the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name. The JVM finds that class and invokes
the constructor in that class. (OK, technically this isn’t the only
way to invoke a constructor. But it’s the only way to do it from
outside a constructor. You can call a constructor from within
another constructor, with restrictions, but we’ll get into all that
later in the chapter.)

Duck myDuck = new Duck();
It looks like w

e’re calling

a method named Duck(),

because of th
e parentheses

.

No.

We’re calling the Duck constructor.

But where is the constructor?

If we didn’t write it, who did?

You can write a constructor for your class (we’re about to do
that), but if you don’t, the compiler writes one for you!

Here’s what the compiler’s default constructor looks like:

public Duck() {

}

Where’s the return type? If this were a method, you’d need a return type between “public” and “Duck()”.

Notice something missing? How is this
different from a method?

public Duck() {
 // constructor code goes here
}

Its name is the same as the

class name. That’s mandatory.

A constructor has the
code that runs when you
instantiate an object. In
other words, the code that
runs when you say new on
a class type.

Every class you create has
a constructor, even if you
don’t write it yourself.

242 chapter 9

constructing a new Duck

Construct a Duck

The key feature of a constructor is that it runs
before the object can be assigned to a reference.
That means you get a chance to step in and
do things to get the object ready for use. In
other words, before anyone can use the remote
control for an object, the object has a chance to
help construct itself. In our Duck constructor,
we’re not doing anything useful, but it still
demonstrates the sequence of events.

If it Quacks like a
constructor...

public class UseADuck {

 public static void main (String[] args) {
 Duck d = new Duck();
 }
}

public class Duck {

 public Duck() {
 System.out.println(“Quack”);
 }
}

File Edit Window Help Quack

% java UseADuck

Quack

Constructor c
ode.

This calls the Duck constructor.

The constructor gives
you a chance to step into
the middle of new.

Sharpen your pencil
A constructor lets you jump into the middle

of the object creation step—into the middle

of new. Can you imagine conditions where

that would be useful? Which of these might

be useful in a Car class constructor, if the Car

is part of a Racing Game? Check off the ones

that you came up with a scenario for.

® Increment a counter to track how many objects of this class type
have been made.

® Assign runtime-specific state (data about what’s happening NOW).

® Assign values to the object’s important instance variables.

® Get and save a reference to the object that’s creating the new object.

® Add the object to an ArrayList.

® Create HAS-A objects.

® __ (your idea here)

constructors and gc

you are here4 243

Initializing the state of a new Duck
Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object’s
instance variables.

public Duck() {
 size = 34;
}

That’s all well and good when the Duck class developer knows
how big the Duck object should be. But what if we want the
programmer who is using Duck to decide how big a particular
Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new
Duck. How could you do it?

Well, you could add a setSize() setter method to the class. But
that leaves the Duck temporarily without a size*, and forces the
Duck user to write two statements—one to create the Duck, and
one to call the setSize() method. The code below uses a setter
method to set the initial size of the new Duck.

public class Duck {
 int size;

 public Duck() {
 System.out.println(“Quack”);
 }

 public void setSize(int newSize) {
 size = newSize;
 }
}

public class UseADuck {

 public static void main (String[] args){
 Duck d = new Duck();

 d.setSize(42);
 }
}

constructor

instance varia
ble

setter method

There’s a bad thing here. The Duck is alive at
this point in the code, but without a size!*
And then you’re relying on the Duck-user
to KNOW that Duck creation is a two-part
process: one to call the constructor and one
to call the setter.

there are noDumb Questions
Q: Why do you need to write
a constructor if the compiler
writes one for you?

A: If you need code to help
initialize your object and get
it ready for use, you’ll have to
write your own constructor. You
might, for example, be depen-
dent on input from the user
before you can finish making
the object ready. There’s another
reason you might have to write
a constructor, even if you don’t
need any constructor code
yourself. It has to do with your
superclass constructor, and we’ll
talk about that in a few minutes.

Q: How can you tell a con-
structor from a method? Can
you also have a method that’s
the same name as the class?

A: Java lets you declare a
method with the same name as
your class. That doesn’t make it
a constructor, though. The thing
that separates a method from a
constructor is the return type.
Methods must have a return
type, but constructors cannot
have a return type.

Q: Are constructors inher-
ited? If you don’t provide a
constructor but your superclass
does, do you get the superclass
constructor instead of the
default?

A: Nope. Constructors are
not inherited. We’ll look at that in
just a few pages.

*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

244 chapter 9

Using the constructor to initialize
important Duck state*
If an object shouldn’t be used until one or
more parts of its state (instance variables) have
been initialized, don’t let anyone get ahold of
a Duck object until you’re fi nished initializing!
It’s usually way too risky to let someone make—
and get a reference to—a new Duck object that
isn’t quite ready for use until that someone turns
around and calls the setSize() method. How will
the Duck-user even know that he’s required to call
the setter method after making the new Duck?

The best place to put initialization code is in the
constructor. And all you need to do is make a
constructor with arguments.

public class Duck {
 int size;

 public Duck(int duckSize) {
 System.out.println(“Quack”);

 size = duckSize;

 System.out.println(“size is “ + size);
 }
}

public class UseADuck {

 public static void main (String[] args) {
 Duck d = new Duck(42);
 }
}

File Edit Window Help Honk

% java UseADuck

Quack

size is 42

Add an i
nt para

meter to
 the

Duck con
structo

r.

Use the argument value to set

the size instance variable.

Pass a value to the constructor.

Add an i
nt para

meter to
 the

This time there
’s only

one sta
tement. We make

the new
 Duck and

 set

its size
 in one

statement.

Let the user make a new Duck
and set the Duck’s size all in

one call. The call to new.
The call to the Duck

constructor.

*Not to imply that not all Duck state is not unimportant.

initializing object state

constructors and gc

you are here4 245

Make it easy to make a Duck
Be sure you have a no-arg constructor

What happens if the Duck constructor takes an argument?
Think about it. On the previous page, there’s only one Duck
constructor—and it takes an int argument for the size of the
Duck. That might not be a big problem, but it does make it
harder for a programmer to create a new Duck object, especially
if the programmer doesn’t know what the size of a Duck should
be. Wouldn’t it be helpful to have a default size for a Duck, so
that if the user doesn’t know an appropriate size, he can still
make a Duck that works?

Imagine that you want Duck users to have TWO options
for making a Duck—one where they supply the Duck
size (as the constructor argument) and one where they
don’t specify a size and thus get your default Duck size.

You can’t do this cleanly with just a single constructor.
Remember, if a method (or constructor—same rules) has
a parameter, you must pass an appropriate argument when
you invoke that method or constructor. You can’t just say, “If
someone doesn’t pass anything to the constructor, then use
the default size”, because they won’t even be able to compile
without sending an int argument to the constructor call. You
could do something clunkly like this:

But that means the programmer making a new Duck object has
to know that passing a “0” is the protocol for getting the default
Duck size. Pretty ugly. What if the other programmer doesn’t
know that? Or what if he really does want a zero-size Duck?
(Assuming a zero-sized Duck is allowed. If you don’t want
zero-sized Duck objects, put validation code in the constructor
to prevent it.) The point is, it might not always be possible
to distinguish between a genuine “I want zero for the size”
constructor argument and a “I’m sending zero so you’ll give
me the default size, whatever that is” constructor argument.

public class Duck2 {
 int size;

 public Duck2() {
 // supply default size
 size = 27;
 }

 public Duck2(int duckSize) {
 // use duckSize parameter
 size = duckSize;
 }
}

To make a Duck when you know the size:

Duck2 d = new Duck2(15);

To make a Duck when you do not know
the size:

Duck2 d2 = new Duck2();

You really want TWO ways to
make a new Duck:

public class Duck {
 int size;

 public Duck(int newSize) {
 if (newSize == 0) {
 size = 27;
 } else {
 size = newSize;
 }
 }
}

So this two-options-to-make-a-Duck idea
needs two constructors. One that takes
an int and one that doesn’t. If you have
more than one constructor in a class,
it means you have overloaded
constructors.

If the par
ameter value

 is

zero, give
the new Duck a

default si
ze, otherw

ise use

the param
eter value

 for

the size. N
OT a very go

od

solution.

246 chapter 9

You might think that if you write only
a constructor with arguments, the
compiler will see that you don’t have a
no-arg constructor, and stick one in for
you. But that’s not how it works. The
compiler gets involved with constructor-
making only if you don’t say anything at all
about constructors.

If you write a constructor that
takes arguments, and you still
want a no-arg constructor,
you’ll have to build the no-arg
constructor yourself!

As soon as you provide a constructor,
ANY kind of constructor, the compiler
backs off and says, “OK Buddy, looks like
you’re in charge of constructors now.”

If you have more than one
constructor in a class, the
constructors MUST have
different argument lists.

The argument list includes the order
and types of the arguments. As long as
they’re different, you can have more
than one constructor. You can do this
with methods as well, but we’ll get to that
in another chapter.

overloaded and default constructors

Doesn’t the compiler always
make a no-arg constructor
for you?

OK, let’s see here... “You
have the right to your own
constructor.” Makes sense.

“If you cannot afford a constructor,
one will be provided for you by the

compiler.” Good to know.

No !

constructors and gc

you are here4 247

 BULLET POINTS

$ Instance variables live within the object they belong to, on
the Heap.

$ If the instance variable is a reference to an object, both
the reference and the object it refers to are on the Heap.

$ A constructor is the code that runs when you say new on
a class type.

$ A constructor must have the same name as the class, and
must not have a return type.

$ You can use a constructor to initialize the state (i.e. the
instance variables) of the object being constructed.

$ If you don’t put a constructor in your class, the compiler
will put in a default constructor.

$ The default constructor is always a no-arg constructor.

$ If you put a constructor—any constructor—in your class,
the compiler will not build the default constructor.

$ If you want a no-arg constructor, and you’ve already put
in a constructor with arguments, you’ll have to build the
no-arg constructor yourself.

$ Always provide a no-arg constructor if you can, to make it
easy for programmers to make a working object. Supply
default values.

$ Overloaded constructors means you have more than one
constructor in your class.

$ Overloaded constructors must have different argument
lists.

$ You cannot have two constructors with the same
argument lists. An argument list includes the order and/or
type of arguments.

$ Instance variables are assigned a default value, even
when you don’t explicitly assign one. The default values
are 0/0.0/false for primitives, and null for references.

Four different constructors
means four different ways to
make a new mushroom.

public class Mushroom {

 public Mushroom(int size) { }

 public Mushroom() { }

 public Mushroom(boolean isMagic) { }

 public Mushroom(boolean isMagic, int size) { }

 public Mushroom(int size, boolean isMagic) { }

}

when you know the size, but you

don’t know if it’s magic

when you don’t know anything

when you know if it’s magic or not,

but don’t know the size

when you know
whether or not it’s
magic, AND you know

the size as well

public class Mushroom {

 public Mushroom

 public Mushroom

 public Mushroom

Overloaded constructors means you have
more than one constructor in your class.

To compile, each constructor must have a
different argument list!

The class below is legal because all four constructors have
different argument lists. If you had two constructors that took
only an int, for example, the class wouldn’t compile. What you
name the parameter variable doesn’t count. It’s the variable
type (int, Dog, etc.) and order that matters. You can have two
constructors that have identical types, as long as the order is
different. A constructor that takes a String followed by an int, is
not the same as one that takes an int followed by a String.

these two have the

same args, but in
different order,

so

it’s OK

248 chapter 9

Q: Earlier you said that it’s good to have a no-argu-
ment constructor so that if people call the no-arg con-
structor, we can supply default values for the “missing”
arguments. But aren’t there times when it’s impossible to
come up with defaults? Are there times when you should
not have a no-arg constructor in your class?

A: You’re right. There are times when a no-arg construc-
tor doesn’t make sense. You’ll see this in the Java API—some
classes don’t have a no-arg constructor. The Color class, for
example, represents a... color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button. When you make a Color instance, that instance is
of a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red, etc.). If you
make a Color object, you must specify the color in some way.

Color c = new Color(3,45,200);

(We’re using three ints for RGB values here. We’ll get into
using Color later, in the Swing chapters.) Otherwise, what
would you get? The Java API programmers could have de-
cided that if you call a no-arg Color constructor you’ll get a
lovely shade of mauve. But good taste prevailed.
If you try to make a Color without supplying an argument:

Color c = new Color();

The compiler freaks out because it can’t find a matching no-
arg constructor in the Color class.

File Edit Window Help StopBeingStupid

cannot resolve symbol
:constructor Color()
location: class
java.awt.Color
Color c = new Color();
 ^
1 error

public class TestDuck {

 public static void main(String[] args){

 int weight = 8;
 float density = 2.3F;
 String name = “Donald”;
 long[] feathers = {1,2,3,4,5,6};
 boolean canFly = true;
 int airspeed = 22;

 Duck[] d = new Duck[7];

 d[0] = new Duck();

 d[1] = new Duck(density, weight);

 d[2] = new Duck(name, feathers);

 d[3] = new Duck(canFly);

 d[4] = new Duck(3.3F, airspeed);

 d[5] = new Duck(false);

 d[6] = new Duck(airspeed, density);
 }
}

class Duck {

 int pounds = 6;
 float floatability = 2.1F;
 String name = “Generic”;
 long[] feathers = {1,2,3,4,5,6,7};
 boolean canFly = true;
 int maxSpeed = 25;

 public Duck() {
 System.out.println(“type 1 duck”);
 }

 public Duck(boolean fly) {
 canFly = fly;
 System.out.println(“type 2 duck”);
 }

 public Duck(String n, long[] f) {
 name = n;
 feathers = f;
 System.out.println(“type 3 duck”);
 }

 public Duck(int w, float f) {
 pounds = w;
 floatability = f;
 System.out.println(“type 4 duck”);
 }

 public Duck(float density, int max) {
 floatability = density;
 maxSpeed = max;
 System.out.println(“type 5 duck”);
 }
}

Sharpen your pencil
Match the new Duck() call with the constructor

that runs when that Duck is instantiated. We did

the easy one to get you started.

overloaded constructors

constructors and gc

you are here4 249

What about superclasses?

When you make a Dog,
should the Canine
constructor run too?

If the superclass is abstract,
should it even have a
constructor?

We’ll look at this on the next
few pages, so stop now and
think about the implications of
constructors and superclasses.

Nanoreview: four things to
remember about constructors

1 A constructor is the code that runs when
somebody says new on a class type

2 A constructor must have the same name
as the class, and no return type

3 If you don’t put a constructor in your class,
the compiler puts in a default constructor.
The default constructor is always a no-arg
constructor.

4 You can have more than one constructor in your class,
as long as the argument lists are different. Having
more than one constructor in a class means you have
overloaded constructors.

Duck d = new Duck();

public Duck(int size) { }

public Duck() { }

public Duck() { }

public Duck(int size) { }

public Duck(String name) { }

public Duck(String name, int size) { }

Doing all the Brain Barbells has been shown to produce a 42% increase in
neuron size. And you know what they say, “Big neurons...”

there are noDumb Questions
Q: Do constructors have to be public?

A: No. Constructors can be public,
private, or default (which means no access
modifier at all). We’ll look more at default
access in chapter 16 and appendix B.

Q: How could a private constructor
ever be useful? Nobody could ever call it,
so nobody could ever make a new object!

A: But that’s not exactly right. Marking
something private doesn’t mean nobody
can access it, it just means that nobody
outside the class can access it. Bet you’re
thinking “Catch 22”. Only code from the
same class as the class-with-private-con-
structor can make a new object from that
class, but without first making an object,
how do you ever get to run code from that
class in the first place? How do you ever get
to anything in that class? Patience grasshop-
per. We’ll get there in the next chapter.

brain
powerA

class Duck {

 int pounds = 6;
 float floatability = 2.1F;
 String name = “Generic”;
 long[] feathers = {1,2,3,4,5,6,7};
 boolean canFly = true;
 int maxSpeed = 25;

 public Duck() {
 System.out.println(“type 1 duck”);
 }

 public Duck(boolean fly) {
 canFly = fly;
 System.out.println(“type 2 duck”);
 }

 public Duck(String n, long[] f) {
 name = n;
 feathers = f;
 System.out.println(“type 3 duck”);
 }

 public Duck(int w, float f) {
 pounds = w;
 floatability = f;
 System.out.println(“type 4 duck”);
 }

 public Duck(float density, int max) {
 floatability = density;
 maxSpeed = max;
 System.out.println(“type 5 duck”);
 }
}

250 chapter 9

Wait a minute... we never DID talk about
superclasses and inheritance and how that all
fits in with constructors.

Here’s where it gets fun. Remember from the last chapter, the part where we looked at
the Snowboard object wrapping around an inner core representing the Object portion
of the Snowboard class? The Big Point there was that every object holds not just its own
declared instance variables, but also everything from its superclasses (which, at a minimum,
means class Object, since every class extends Object).

So when an object is created (because somebody said new; there is no other way to create
an object other than someone, somewhere saying new on the class type), the object
gets space for all the instance variables, from all the way up the inheritance tree. Think
about it for a moment... a superclass might have setter methods encapsulating a private
variable. But that variable has to live somewhere. When an object is created, it’s almost as
though multiple objects materialize—the object being new’d and one object per each
superclass. Conceptually, though, it’s much better to think of it like the picture below,
where the object being created has layers of itself representing each superclass.

There is only ONE object on the heap here. A
Snowboard object. But it contains both the
Snowboard parts of itself and the Object parts of
itself. All instance variables from both classes have
to be here.

Snowboard also has instance
variables of its own, so to make
a Snowboard object we need
space for the instance variables
of both classes.

Object

Snowboard

Snowboard object

A single
object on
the heap

Object has instance variables
encapsulated by access methods.
Those instance variables are
created when any subclass is
instantiated. (These aren’t the
REAL Object variables, but we
don’t care what they are since
they’re encapsulated)

Object

Foo a;

int b;

int c;

equals()

getClass()

hashCode()

toString()

Snowboard

Foo x

Foo y

int z

turn()

shred()

getAir()

loseControl()

b Ca

Z
YX

space for an object’s superclass parts

constructors and gc

you are here4 251

The role of superclass constructors
in an object’s life.

All the constructors in an object’s inheritance
tree must run when you make a new object.
Let that sink in.

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the
whole constructor chain reaction. And yes,
even abstract classes have constructors.
Although you can never say new on an
abstract class, an abstract class is still
a superclass, so its constructor runs
when someone makes an instance of a
concrete subclass.

The super constructors run to build
out the superclass parts of the object.
Remember, a subclass might inherit
methods that depend on superclass state
(in other words, the value of instance variables
in the superclass). For an object to be fully-
formed, all the superclass parts of itself must be
fully-formed, and that’s why the super constructor
must run. All instance variables from every class
in the inheritance tree have to be declared and
initialized. Even if Animal has instance variables
that Hippo doesn’t inherit (if the variables are
private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls its
superclass constructor, all the way up the chain
until you get to the class Object constructor.

On the next few pages, you’ll learn how superclass
constructors are called, and how you can call
them yourself. You’ll also learn what to do if your
superclass constructor has arguments!

A new Hippo object also IS-A Animal
and IS-A Object. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens in a process called
Constructor Chaining.

Hippo

A single Hippo object on the heap

Object

a

YX

k VS

C
b

Animal

Animal

Object

HIppo

252 chapter 9

1 Code from another
class says new
Hippo()and the
Hippo() constructor
goes into a stack
frame at the top of
the stack.

Hippo()
Animal()
Hippo()

2 Hippo() invokes
the superclass
constructor which
pushes the Animal()
constructor onto the
top of the stack.

Object()

Hippo()

Animal()

3 4 Object() completes,
and its stack frame
is popped off the
stack. Execution goes
back to the Animal()
constructor, and
picks up at the line
following Animal’s
call to its superclass
constructor

Animal() invokes
the superclass
constructor which
pushes the Object()
constructor onto
the top of the stack,
since Object is the
superclass of Animal.

Animal()
Hippo()

Making a Hippo means making the
Animal and Object parts too...

public class Animal {
 public Animal() {
 System.out.println(“Making an Animal”);
 }
}

public class Hippo extends Animal {
 public Hippo() {
 System.out.println(“Making a Hippo”);
 }
}

public class TestHippo {
 public static void main (String[] args) {
 System.out.println(“Starting...”);
 Hippo h = new Hippo();
 }
}

File Edit Window Help Swear

% java TestHippo
Starting...
Making an Animal

Making a Hippo

File Edit Window Help Swear

% java TestHippo
Starting...
Making a Hippo
Making an Animal

Sharpen your pencil

A

B

What’s the real output? Given the
code on the left, what prints out
when you run TestHippo? A or B?

(the answer is at the bottom of the page)

object construction

The first one, A. The Hippo() constructor is invoked first, but
it’s the Animal constructor that finishes first.

constructors and gc

you are here4 253

How do you invoke a superclass constructor?

And how is it that we’ve
gotten away without
doing it?

You might think that somewhere in, say, a Duck constructor,
if Duck extends Animal you’d call Animal(). But that’s not
how it works:

public class Duck extends Animal {

 int size;

 public Duck(int newSize) {

 Animal();
 size = newSize;

 }

}

NO! This is not legal!
BAD!

The only way to call a super constructor is by calling super().
That’s right—super() calls the super constructor.

What are the odds?

public class Duck extends Animal {

 int size;

 public Duck(int newSize) {

 super();
 size = newSize;

 }

}

you just say super()

A call to super() in your constructor puts the superclass
constructor on the top of the Stack. And what do you
think that superclass constructor does? Calls its superclass
constructor. And so it goes until the Object constructor is
on the top of the Stack. Once Object() finishes, it’s popped
off the Stack and the next thing down the Stack (the
subclass constructor that called Object()) is now on top.
That constructor finishes and so it goes until the original
constructor is on the top of the Stack, where it can now
finish.

You probably figured that out.

Our good friend the compiler
puts in a call to super() if you
don’t.
So the compiler gets involved in
constructor-making in two ways:

The compiler puts one in that looks like:

 public ClassName() {

 super();

 }

The compiler will put a call to super() in
each of your overloaded constructors.*
The compiler-supplied call looks like:

super();

It always looks like that. The compiler-
inserted call to super() is always a no-arg
call. If the superclass has overloaded
constructors, only the no-arg one is called.

1

2

If you don’t provide a constructor

If you do provide a constructor
but you do not put in the call to
super()

*Unless the constructor calls another overloaded
constructor (you’ll see that in a few pages).

object lifecycle

254 chapter 9

Can the child exist before
the parents?
If you think of a superclass as the parent to the subclass child,
you can figure out which has to exist first. The superclass parts
of an object have to be fully-formed (completely built) before the
subclass parts can be constructed. Remember,
the subclass object might depend on things it
inherits from the superclass, so it’s important
that those inherited things be finished. No
way around it. The superclass constructor
must finish before its subclass constructor.

Look at the Stack series on page 248 again,
and you can see that while the Hippo
constructor is the first to be invoked (it’s
the first thing on the Stack), it’s the last one
to complete! Each subclass constructor
immediately invokes its own superclass
constructor, until the Object constructor
is on the top of the Stack. Then Object’s
constructor completes and we bounce
back down the Stack to Animal’s
constructor. Only after Animal’s constructor completes
do we finally come back down to finish the rest of the Hippo
constructor. For that reason:

The call to super() must be the first statement
in each constructor!*

Eewwww... that
is SO creepy. There’s
no way I could have been
born before my parents.

That’s just wrong.

*There’s an exception to this rule; you’ll learn it on page 252.

Possible constructors for class Boop

public Boop() {

 super();

}

public Boop(int i) {

 super();

 size = i;

}

These are OK because the programmer ex-plicitly coded the call to super(), as the first statement.

public Boop() {

}

public Boop(int i) {

 size = i;

}

public Boop(int i) {

 size = i;

 super();

}

These are OK because the compiler will put a call to super() in as the first statement.

BAD!! This won’t compile! You can’t explicitly put the call to super() below anything else.

˛

˛

˛

˛

constructors and gc

you are here4 255

Superclass constructors with arguments
What if the superclass constructor has arguments? Can you pass something in to
the super() call? Of course. If you couldn’t, you’d never be able to extend a class
that didn’t have a no-arg constructor. Imagine this scenario: all animals have a
name. There’s a getName() method in class Animal that returns the value of the
name instance variable. The instance variable is marked private, but the subclass
(in this case, Hippo) inherits the getName() method. So here’s the problem:
Hippo has a getName() method (through inheritance), but does not have the name
instance variable. Hippo has to depend on the Animal part of himself to keep the
name instance variable, and return it when someone calls getName() on a Hippo
object. But... how does the Animal part get the name? The only reference Hippo
has to the Animal part of himself is through super(), so that’s the place where
Hippo sends the Hippo’s name up to the Animal part of himself, so that the
Animal part can store it in the private name instance variable.

Animal

private String name

Animal(String n)

String getName()

Animal(String n)

String getName()

Hippo

Hippo(String n)

[other Hippo-spe-
cific methods]

Hippo(String n)

[other Hippo-spe-

public abstract class Animal {

 private String name;

 public String getName() {

 return name;

 }

 public Animal(String theName) {

 name = theName;

 }

}

A getter method that Hippo inherits

The constructor that takes the name and assigns it the name instance variable

All animals (including
subclasses) have a name

public class Hippo extends Animal {

 public Hippo(String name) {

 super(name);

 }

}

public class MakeHippo {

 public static void main(String[] args) {

 Hippo h = new Hippo(“Buffy”);

 System.out.println(h.getName());
 }
}

Hippo constructor
 takes a name

it sends the name up the Stack to the Animal constructor

The Animal part of
me needs to know my name,

so I take a name in my own
Hippo constructor, then pass

the name to super()

Make a Hippo, passing the name “Buffy” to the Hippo constructor. Then call the Hippo’s inherited getName()

File Edit Window Help Hide

%java MakeHippo

Buffy

256 chapter 9

Invoking one overloaded constructor
from another

What if you have overloaded constructors that, with
the exception of handling different argument types,
all do the same thing? You know that you don’t want
duplicate code sitting in each of the constructors (pain
to maintain, etc.), so you’d like to put the bulk of the
constructor code (including the call to super()) in only
one of the overloaded constructors. You want whichever
constructor is fi rst invoked to call The Real Constructor
and let The Real Constructor fi nish the job of
construction. It’s simple: just say this(). Or this(aString).
Or this(27, x). In other words, just imagine that the
keyword this is a reference to the current object

You can say this() only within a constructor, and it must
be the fi rst statement in the constructor!

But that’s a problem, isn’t it? Earlier we said that
super() must be the fi rst statement in the constructor.
Well, that means you get a choice.

Every constructor can have a call to super()
or this(), but never both!

calling overloaded constructors

class Mini extends Car {

 Color color;

 public Mini() {
 this(Color.Red);
 }

 public Mini(Color c) {
 super(“Mini”);
 color = c;
 // more initialization
 }

 public Mini(int size) {
 this(Color.Red);
 super(size);

 }
}

Use this() to call a

constructor from another

overloaded constructor in

the same class.

The call to this()

can be used only in a

constructor, and must be

the f irst statement in a

constructor.

A constructor can have a

call to super() OR this(),

but never both!

The no-arg constructor
supplies a default Color and

calls the overloaded Real
Constructor (the one th

at

calls super()).

This is The Real Constructor that does The Real Work of initializing the object (including the call to super())
File Edit Window Help Drive

javac Mini.java

Mini.java:16: call to super must
be first statement in constructor

 super();
 ^

Won’t work!! Can’t have super() and this() in the same constructor, because they each must be the first statement!

constructors and gc

you are here4 257

Sharpen your pencil

public class Boo {

 public Boo(int i) { }

 public Boo(String s) { }

 public Boo(String s, int i) { }

}

class SonOfBoo extends Boo {

 public SonOfBoo() {
 super(“boo”);
 }

 public SonOfBoo(int i) {
 super(“Fred”);
 }

 public SonOfBoo(String s) {
 super(42);
 }

 public SonOfBoo(int i, String s) {
 }

 public SonOfBoo(String a, String b, String c) {
 super(a,b);
 }

 public SonOfBoo(int i, int j) {
 super(“man”, j);
 }

 public SonOfBoo(int i, int x, int y) {
 super(i, “star”);
 }
}

Some of the constructors in the SonOfBoo class will not

compile. See if you can recognize which constructors are

not legal. Match the compiler errors with the SonOfBoo

constructors that caused them, by drawing a line from the

compiler error to the “bad” constructor.

File Edit Window Help ImNotListening

%javac SonOfBoo.java

cannot resolve symbol

symbol:constructor Boo()

File Edit Window Help

%javac SonOfBoo.java

cannot resolve symbol

symbol : constructor Boo
(java.lang.String,java.la
ng.String)

File Edit Window Help Yadayadayada

%javac SonOfBoo.java

cannot resolve symbol

symbol : constructor Boo
(int,java.lang.String)

File Edit Window Help

Make it Sticki kkk
Roses are red, violets are blue.

Your parents come first, way before you.
The superclass parts of an object must be fully-

formed before the new subclass object can

exist. Just like there’s no way you could have

been born before your parents.

258 chapter 9

Now we know how an object is born,
but how long does an object live ?

An object’s life depends entirely on the life of references
referring to it. If the reference is considered “alive”, the
object is still alive on the Heap. If the reference dies
(and we’ll look at what that means in just a moment), the
object will die.

So if an object’s life depends on the reference
variable’s life, how long does a variable live?
That depends on whether the variable is a local variable
or an instance variable. The code below shows the life of a
local variable. In the example, the variable is a primitive,
but variable lifetime is the same whether it’s a primitive
or reference variable.

sleep()
read() s

public class TestLifeOne {

 public void read() {
 int s = 42;
 sleep();
 }

 public void sleep() {
 s = 7;
 }
}

A local variable lives only
within the method that
declared the variable.

Variable ‘s’ can be used only within the
read() method. In other words, the variable
is in scope only within its own method. No
other code in the class (or any other class)
can see ‘s’.

1

2
‘s’ is scoped to the read()
method, so it can’t be used
anywhere else

An instance variable lives
as long as the object
does. If the object is still
alive, so are its instance
variables.

public void read() {
 int s = 42;
 // ‘s’ can be used only
 // within this method.
 // When this method ends,
 // ‘s’ disappears completely.
}

public class Life {
 int size;

 public void setSize(int s) {
 size = s;
 // ‘s’ disappears at the
 // end of this method,
 // but ‘size’ can be used
 // anywhere in the class
 }
}

Variable ‘s’ (this time a method parameter)
is in scope only within the setSize()
method. But instance variable size is
scoped to the life of the object as opposed
to the life of the method.

BAD!! Not legal
 to

use ‘s’ h
ere!

The variable ‘s’ is alive, but in scope only within the

read() method. When sleep() completes and read() is

on top of the Stack and running again, read() can

still see ‘s’. When read() completes and is popped off

the Stack, ‘s’ is dead. Pushing up digital daisies.

sleep() can’t
see the ‘s’ va

riable. Since

it’s not in sle
ep()’s own Stack fram

e,

sleep() doesn’
t know anything abo

ut it.

object lifespan

constructors and gc

you are here4 259

 public void doStuff() {
 boolean b = true;
 go(4);
 }

 public void go(int x) {
 int z = x + 24;
 crazy();
 // imagine more code here
 }

 public void crazy() {
 char c = ‘a’;
 }

doStuff() b

go()
doStuff() b

x z
crazy() c

doStuff() b

go() x z go()
doStuff() b

x z

1 doStuff() goes on the
Stack. Variable ‘b’ is
alive and in scope.

go() plops on top of
the Stack. ‘x’ and ‘z’
are alive and in scope,
and ‘b’ is alive but not
in scope.

crazy() is pushed onto
the Stack, with ‘c’ now
alive and in scope. The
other three variables
are alive but out of
scope.

crazy() completes and
is popped off the Stack,
so ‘c’ is out of scope
and dead. When go()
resumes where it left
off, ‘x’ and ‘z’ are both
alive and back in scope.
Variable ‘b’ is still alive
but out of scope (until
go() completes).

Life

Scope

A local variable is alive as long as its Stack
frame is on the Stack. In other words,
until the method completes.

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the
variable is alive, but not in scope until its
method resumes. You can use a variable only
when it is in scope.

The difference between life and
scope for local variables:

2 3 4

While a local variable is alive, its state persists.
As long as method doStuff() is on the Stack, for
example, the ‘b’ variable keeps its value. But the
‘b’ variable can be used only while doStuff()’s
Stack frame is at the top. In other words, you can
use a local variable only while that local variable’s
method is actually running (as opposed to
waiting for higher Stack frames to complete).

object lifecycle

260 chapter 9

The rules are the same for primtives and references. A reference
variable can be used only when it’s in scope, which means you can’t use
an object’s remote control unless you’ve got a reference variable that’s
in scope. The real question is,

“How does variable life affect object life?”
An object is alive as long as there are live references to it. If a reference
variable goes out of scope but is still alive, the object it refers to is still
alive on the Heap. And then you have to ask... “What happens when the
Stack frame holding the reference gets popped off the Stack at the end
of the method?”

If that was the only live reference to the object, the object is now
abandoned on the Heap. The reference variable disintegrated with
the Stack frame, so the abandoned object is now, offi cially, toast. The
trick is to know the point at which an object becomes eligible for garbage
collection.

Once an object is eligible for garbage collection (GC), you don’t have
to worry about reclaiming the memory that object was using. If your
program gets low on memory, GC will destroy some or all of the eligible
objects, to keep you from running out of RAM. You can still run out of
memory, but not before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you’re done with them, so that the garbage
collector has something to reclaim. If you hang on to objects, GC can’t
help you and you run the risk of your program dying a painful
out-of-memory death.

What about reference variables?

before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you’re done with them, so that the garbage
collector has something to reclaim. If you hang on to objects, GC can’t
help you and you run the risk of your program dying a painful

An object’s life has no
value, no meaning, no
point, unless somebody
has a reference to it.

If you can’t get to it,
you can’t ask it to do
anything and it’s just a
big fat waste of bits.

But if an object is
unreachable, the
Garbage Collector will
fi gure that out. Sooner
or later, that object’s
goin’ down.

An object becomes
eligible for GC when
its last live reference
disappears.

Three ways to get rid of an object’s reference:

1 The reference goes out of scope, permanently

2 The reference is assigned another object

3 The reference is explicitly set to null

void go() {
 Life z = new Life();
}

Life z = new Life();
z = new Life();

Life z = new Life();
z = null;

reference ‘z’ d
ies at

end of method

the first obje
ct is abandone

d

when z is ‘repro
grammed’ to

a new object.

the first obje
ct is abandone

d

when z is ‘depro
grammed’.

constructors and gc

you are here4 261

public class StackRef {
 public void foof() {
 barf();
 }

 public void barf() {
 Duck d = new Duck();
 }
}

Duck object
 barf()

foof()

Heap

foof()foof() is pushed onto the
Stack, no variables are
declared.

1

barf() is pushed onto the
Stack, where it declares
a reference variable, and
creates a new object as-
signed to that reference.
The object is created on
the Heap, and the refer-
ence is alive and in scope.

2

foof()

barf() completes and pops
off the Stack. Its frame
disintegrates, so ‘d’ is now
dead and gone. Execution
returns to foof(), but foof()
can’t use ‘d’ .

3

Duck object

d

Heap

d

The new Duck goes on
 the

Heap, and as
long as barf

()

is running, t
he ‘d’ refer

ence

is alive and
in scope, so

the

Duck is consid
ered alive.

Uh-oh. The ‘d’ variable
went away when the barf()
Stack frame was blown
off the stack, so the Duck
is abandoned. Garbage-
collector bait.

I don’t like where
this is headed.

Object-killer #1

Reference goes
out of scope,
permanently.

-killer #1

Reference goes
out of scope,
permanently.

object lifecycle

262 chapter 9

Object-killer #2

Assign the reference
to another object

-killer #2

Assign the reference
to another object

Dude, all you
had to do was reset

the reference. Guess
they didn’t have memory

management back then.

public class ReRef {

 Duck d = new Duck();

 public void go() {
 d = new Duck();
 }
}

The new Duck goes on the Heap, referenced

by ‘d’. Since ‘d’ is an instance variable, the

Duck will live as long as the ReRef object

that instantiated it is alive. Unless...

Duck object

Heap

1

‘d’ is assigned a new Duck object, leaving the

original (first) Duck object abandoned. That

first Duck is now as good as dead.

d

Duck object

Heap

2

d

Duck object

When someone calls the

go() method, this Duck is

abandoned. His only reference

has been reprogra
mmed for a

different Duck

ReRef object

ReRef object

constructors and gc

you are here4 263

Object-killer #3

Explicitly set the
reference to null

-killer #3

Explicitly set the
to null

public class ReRef {

 Duck d = new Duck();

 public void go() {
 d = null;
 }
}

The new Duck goes on the Heap, referenced

by ‘d’. Since ‘d’ is an instance variable, the

Duck will live as long as the ReRef object

that instantiated it is alive. Unless...

Duck object

Heap

1

d

‘d’ is set to null, which is just like having a remote

control that isn’t programmed to anything. You’re not

even allowed to use the dot operator on ‘d’ until it’s

reprogrammed (assigned an object).

Duck object

Heap

2

d

This Duck is abandoned.

His only reference
has been

set to null.

The meaning of null

When you set a reference to null, you’re

deprogramming the remote control.

In other words, you’ve got a remote

control, but no TV at the other end. A null

reference has bits representing ‘null’ (we

don’t know or care what those bits are, as

long as the JVM knows).

If you have an unprogrammed remote

control, in the real world, the buttons don’t

do anything when you press them. But

in Java, you can’t press the buttons (i.e.

use the dot operator) on a null reference,

because the JVM knows (this is a runtime

issue, not a compiler error) that you’re

expecting a bark but there’s no Dog there

to do it!

If you use the dot operator on

a null reference, you’ll get a

NullPointerException at runtime. You’ll

learn all about Exceptions in the Risky

Behavior chapter.

ReRef object

ReRef object

object lifecycle

264 chapter 9

Instance Variable
I’d like to go first, because I tend to be more
important to a program than a local variable.
I’m there to support an object, usually
throughout the object’s entire life. After all,
what’s an object without state? And what is
state? Values kept in instance variables.

No, don’t get me wrong, I do understand your
role in a method, it’s just that your life is so
short. So temporary. That’s why they call you
guys “temporary variables”.

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you’re waiting for your frame to
be the top of the Stack again?

Local Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all,
but I don’t want folks to be misled. Local
variables are really important. To use your
phrase, “After all, what’s an object without
behavior?” And what is behavior? Algorithms
in methods. And you can bet your bits there’ll
be some local variables in there to make those
algorithms work.

Within the local-variable community, the
phrase “temporary variable” is considered
derogatory. We prefer “local”, “stack”, “auto-
matic”, or ”Scope-challenged”.

Anyway, it’s true that we don’t have a long
life, and it’s not a particularly good life either.
First, we’re shoved into a Stack frame with
all the other local variables. And then, if the
method we’re part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com-
plete so that our method can run again.

Nothing. Nothing at all. It’s like being in
stasis—that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
still there, we’re safe and the value we hold
is secure, but it’s a mixed blessing when our

Tonight’s Talk: An instance variable and
a local variable discuss life and death
(with remarkable civility)

constructors and gc

you are here4 265

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blown off the Stack! Now
that’s gotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I’m an instance
variable of the Collar and the Collar gets
GC’d, then the Collar’s instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
the closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term popped as in “the frame was popped
off the Stack”. That makes it sound fun, or
maybe like an extreme sport. But, well, you
saw the footage. So why don’t we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog
object with a Collar instance variable. Imagine
you’re an instance variable of the Collar object,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collar object
who’s all happy inside the Dog object. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you’re an instance variable inside the Collar,
and the whole Collar is abandoned, what
happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re
an instance variable inside an object, and that
object is referenced only by a local variable? If
I’m the only reference to the object you’re in,
when I go, you’re coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

Instance Variable Local Variable

266 chapter 9

Which of the lines of code on the right, if added
to the class on the left at point A, would cause
exactly one additional object to be eligible for the

Garbage Collector? (Assume that point A (//call
more methods) will execute for a long time, giving the
Garbage Collector time to do its stuff.)

Exercise
BE the Garbage Collector

public class GC {

 public static GC doStuff() {

 GC newGC = new GC();

 doStuff2(newGC);

 return newGC;

 }

 public static void main(String [] args) {

 GC gc1;

 GC gc2 = new GC();

 GC gc3 = new GC();

 GC gc4 = gc3;

 gc1 = doStuff();

 // call more methods

 }

 public static void doStuff2(GC copyGC) {

 GC localGC = copyGC;

 }

}

File Edit Window Help Sleep

A

1

2

3

4

5

6

7

8

9

copyGC = null;

gc2 = null;

newGC = gc3;

gc1 = null;

newGC = null;

gc4 = null;

gc3 = gc2;

gc1 = gc4;

gc3 = null;

exercise: Be the Garbage Collector

constructors and gc

you are here4 267

class Bees {
 Honey [] beeHA;
}

class Raccoon {
 Kit k;
 Honey rh;
}

class Kit {
 Honey kh;
}

class Bear {
 Honey hunny;
}

public class Honey {
 public static void main(String [] args) {
 Honey honeyPot = new Honey();
 Honey [] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
 Bees b1 = new Bees();
 b1.beeHA = ha;
 Bear [] ba = new Bear[5];
 for (int x=0; x < 5; x++) {
 ba[x] = new Bear();
 ba[x].hunny = honeyPot;
 }
 Kit k = new Kit();
 k.kh = honeyPot;
 Raccoon r = new Raccoon();

 r.rh = honeyPot;
 r.k = k;
 k = null;
 } // end of main
}

Popular
 Objects

In this code example, several new objects are created.
Your challenge is to find the object that is ‘most popular’,
i.e. the one that has the most reference variables referring
to it. Then list how many total references there are for
that object, and what they are! We’ll start by pointing out
one of the new objects, and its reference variable.

Good Luck !

Here’s a new
Raccoon object!

Here’s its reference
variable ‘r’.

Exercise

268 chapter 9

Five-Minute
Mystery

 “Weʼve run the simulation four times, and the main moduleʼs temperature consistently
drifts out of nominal towards cold”, Sarah said, exasperated. “We installed the new temp-bots last
week. The readings on the radiator bots, designed to cool the living quarters, seem to be within
spec, so weʼve focused our analysis on the heat retention bots, the bots that help to warm the quar-
ters.” Tom sighed, at first it had seemed that nano-technology was going to really put them ahead
of schedule. Now, with only five weeks left until launch, some of the orbiterʼs key life support
systems were still not passing the simulation gauntlet.

 “What ratios are you simulating?”, Tom asked.

 “Well if I see where youʼre going, we already thought of that”, Sarah replied. “Mis-
sion control will not sign off on critical systems if we run them out of spec. We are

required to run the v3 radiator botʼs SimUnits in a 2:1 ratio with the v2 radiatorʼs
SimUnits”, Sarah continued. “Overall, the ratio of retention bots to radiator bots is

supposed to run 4:3.”

 “Howʼs power consumption Sarah?”, Tom asked. Sarah paused, “Well thatʼs
another thing, power consumption is running higher than anticipated. Weʼve got a team

tracking that down too, but because the nanos are wireless itʼs been hard to isolate the power
consumption of the radiators from the retention bots.” “Overall power consumption ratios”, Sarah
continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

 “OK Sarah”, Tom said “Letʼs take a look at some of the simulation initiation code.
Weʼve got to find this problem, and find it quick!”

import java.util.*;

class V2Radiator {

 V2Radiator(ArrayList list) {

 for(int x=0; x<5; x++) {

 list.add(new SimUnit(“V2Radiator”));

 }

 }

}

class V3Radiator extends V2Radiator {

 V3Radiator(ArrayList lglist) {

 super(lglist);

 for(int g=0; g<10; g++) {

 lglist.add(new SimUnit(“V3Radiator”));

 }

 }

}

class RetentionBot {

 RetentionBot(ArrayList rlist) {

 rlist.add(new SimUnit(“Retention”));

 }

}

puzzle: Five Minute Mystery

constructors and gc

you are here4 269

public class TestLifeSupportSim {

 public static void main(String [] args) {

 ArrayList aList = new ArrayList();

 V2Radiator v2 = new V2Radiator(aList);

 V3Radiator v3 = new V3Radiator(aList);

 for(int z=0; z<20; z++) {

 RetentionBot ret = new RetentionBot(aList);

 }

 }

}

class SimUnit {

 String botType;

 SimUnit(String type) {

 botType = type;

 }

 int powerUse() {

 if (“Retention”.equals(botType)) {

 return 2;

 } else {

 return 4;

 }

 }

}

 Tom gave the code a quick look and a small smile creeped across his lips. I think Iʼve
found the problem Sarah, and I bet I know by what percentage your power usage readings are off
too!

 What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

Five-Minute
Mystery
continued...

object lifecycle

270 chapter 9

public class Honey {
 public static void main(String [] args) {
 Honey honeyPot = new Honey();
 Honey [] ha = {honeyPot, honeyPot,
 honeyPot, honeyPot};
 Bees b1 = new Bees();
 b1.beeHA = ha;
 Bear [] ba = new Bear[5];
 for (int x=0; x < 5; x++) {
 ba[x] = new Bear();
 ba[x].hunny = honeyPot;
 }
 Kit k = new Kit();
 k.kh = honeyPot;
 Raccoon r = new Raccoon();

 r.rh = honeyPot;
 r.k = k;
 k = null;
 } // end of main}

Honey

 Object

(ends up null)

Popular
 Objects

It probably wasn’t too hard to figure out that the Honey object first referred to by the honeyPot variable is by
far the most ‘popular’ object in this class. But maybe it was a little trickier to see that all of the variables that
point from the code to the Honey object refer to the same object! There are a total of 12 active references to
this object right before the main() method completes. The k.kh variable is valid for a while, but k gets nulled
at the end. Since r.k still refers to the Kit object, r.k.kh (although never explicity declared), refers to the object!

1

2

3

4

5

6

7

8

9

copyGC = null;

gc2 = null;

newGC = gc3;

gc1 = null;

newGC = null;

gc4 = null;

gc3 = gc2;

gc1 = gc4;

gc3 = null;

No - this line attempts to access a variable
that is out of scope.
OK - gc2 was the only reference variable
referring to that object.
No - another out of scope variable.

OK - gc1 had the only reference because
newGC is out of scope.
No - newGC is out of scope.

No - gc3 is still referring to that object.

No - gc4 is still referring to that object.

OK - Reassigning the only reference to
that object.
No - gc4 is still referring to that object.

G.C.

Exercise Solutions

constructors and gc

you are here4 271

Five-Minute Mystery Solution
 Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its super() call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarahʼs expected ratios
predicted.

 Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, that printed out a line everytime a SimUnit was created,
would have quickly highlighted the problem!

this is a new chapter 273

10 numbers and statics

Numbers Matter

Make it Stick

Do the Math. But there’s more to working with numbers than just doing primitive

arithmetic. You might want to get the absolute value of a number, or round a number, or find

the larger of two numbers. You might want your numbers to print with exactly two decimal

places, or you might want to put commas into your large numbers to make them easier to read.

And what about working with dates? You might want to print dates in a variety of ways, or even

manipulate dates to say things like, “add three weeks to today’s date”. And what about parsing

a String into a number? Or turning a number into a String? You’re in luck. The Java API is full of

handy number-tweaking methods ready and easy to use. But most of them are static, so we’ll

start by learning what it means for a variable or method to be static, including constants in

Java—static final variables.

274 chapter 10

Math methods

Methods in the Math class
don’t use any instance
variable values. And because
the methods are ‘static’,
you don’t need to have an
instance of Math. All you
need is the Math class.

MATH methods: as close as you’ll
ever get to a global method
Except there’s no global anything in Java. But think about
this: what if you have a method whose behavior doesn’t
depend on an instance variable value. Take the round()
method in the Math class, for example. It does the same
thing every time—rounds a floating point number(the
argument to the method) to the nearest integer. Every
time. If you had 10,000 instances of class Math, and ran
the round(42.2) method, you’d get an integer value of
42. Every time. In other words, the method acts on the
argument, but is never affected by an instance variable
state. The only value that changes the way the round()
method runs is the argument passed to the method!

Doesn’t it seem like a waste of perfectly good heap space
to make an instance of class Math simply to run the
round() method? And what about other Math methods
like min(), which takes two numerical primitives and
returns the smaller of the two. Or max(). Or abs(), which
returns the absolute value of a number.

These methods never use instance variable values. In fact the
Math class doesn’t have any instance variables. So there’s
nothing to be gained by making an instance of class
Math. So guess what? You don’t have to. As a matter of
fact, you can’t.

This error shows that the Math constructor is marked private! That means you can NEVER say ‘new’ on the Math class to make a new Math object.

File Edit Window Help IwasToldThereWouldBeNoMath

%javac TestMath

TestMath.java:3: Math() has private
access in java.lang.Math

 Math mathObject = new Math();
 ^

1 error

Math mathObject = new Math();

If you try to make an instance of
class Math:

You’ll get this error:

int x = Math.round(42.2);
int y = Math.min(56,12);
int z = Math.abs(-343);

These methods never use instance variables, so their behavior doesn’t need to know about a specific object.

numbers and statics

you are here4 275

The difference between regular
(non-static) and static methods
Java is object-oriented, but once in a while you have a special case,
typically a utility method (like the Math methods), where there is
no need to have an instance of the class. The keyword static lets
a method run without any instance of the class. A static method means
“behavior not dependent on an instance variable, so no instance/object
is required. Just the class.”

Politik

Coldplay

Song

 s2

s2.play();
s3.play();

Calling play() on this
reference will cause

“Politik” to play.

Calling play() on this
reference will cause
“My Way” to play.

My Way

Sex Pistols

Song

 s3

Song ob

je
c t

public class Song {

 String title;

 public Song(String t) {

 title = t;

 }

 public void play() {

 SoundPlayer player = new SoundPlayer();

 player.playSound(title);

 }

public static int min(int a, int b){

 //returns the lesser of a and b

}

Math

min()
max()
abs()
...Song

title

play()

regular (non-static) method static method

The current value
of the ‘title’

instance variable
is the song that

plays when you call play(
).

No instance variables.

The method behavior

doesn’t change with

instance variable sta
te.

Math.min(42,36);

NO OBJECTS!!
Absolutely NO OBJECTS anywhere in this picture !

Use the Class name, rather

than a reference va
riable

name.

two instanc
es

of class S
ong

Instance variable
value affects

the behavior of t
he play()

method.

Song ob

je
c t

static methods

276 chapter 10

Math.min(88,86);

Call a static method using a
class name

Math

min()
max()
abs()
...

Call a non-static method using a
reference variable name

 t2

Song t2 = new Song();

t2.play();

What it means to have a
class with static methods.
Often (although not always), a class with static
methods is not meant to be instantiated. In Chapter
8 we talked about abstract classes, and how marking
a class with the abstract modifi er makes it
impossible for anyone to say ‘new’ on that class type.
In other words, it’s impossible to instantiate an abstract
class.

But you can restrict other code from instantiating
a non-abstract class by marking the constructor
private. Remember, a method marked private means
that only code from within the class can invoke
the method. A constructor marked private means
essentially the same thing—only code from within
the class can invoke the constructor. Nobody can
say ‘new’ from outside the class. That’s how it works
with the Math class, for example. The constructor
is private, you cannot make a new instance of Math.
The compiler knows that your code doesn’t have
access to that private constructor.

This does not mean that a class with one or more
static methods should never be instantiated. In fact,
every class you put a main() method in is a class with
a static method in it!

Typically, you make a main() method so that you
can launch or test another class, nearly always by
instantiating a class in main, and then invoking a
method on that new instance.

So you’re free to combine static and non-static
methods in a class, although even a single non-static
method means there must be some way to make an
instance of the class. The only ways to get a new
object are through ‘new’ or deserialization (or
something called the Java Refl ection API that we
don’t go into). No other way. But exactly who says new
can be an interesting question, and one we’ll look at
a little later in this chapter.

numbers and statics

you are here4 277

Static methods can’t use non-static
(instance) variables!
Static methods run without knowing about any particular
instance of the static method’s class. And as you saw on
the previous pages, there might not even be any instances
of that class. Since a static method is called using the class
(Math.random()) as opposed to an instance reference (t2.play()),
a static method can’t refer to any instance variables of the
class. The static method doesn’t know which instance’s variable
value to use.

If you try to use an
instance variable from
inside a static method,
the compiler thinks,
“I don’t know which
object’s instance variable
you’re talking about!”
If you have ten Duck
objects on the heap, a
static method doesn’t
know about any of them.

public class Duck {

 private int size;

 public static void main (String[] args) {
 System.out.println(“Size of duck is “ + size);
 }

 public void setSize(int s) {
 size = s;
 }
 public int getSize() {
 return size;
 }
}

If you try to compile this code:

I’m sure they’re
talking about MY
size variable.

No, I’m pretty sure
they’re talking about
MY size variable.

Which Duck?

Whose size?

You’ll get this error:

File Edit Window Help Quack

% javac Duck.java

Duck.java:6: non-static variable
size cannot be referenced from a
static context

 System.out.println(“Size
of duck is “ + size);

 ^

If there’s a Duck on the heap somewhere, we don’t know about it.

static methods

278 chapter 10

Static methods can’t use non-static
methods, either!

What do non-static methods do? They usually use instance
variable state to affect the behavior of the method. A getName()
method returns the value of the name variable. Whose name?
The object used to invoke the getName() method.

public class Duck {

 private int size;

 public static void main (String[] args) {
 System.out.println(“Size is “ + getSize());
 }

 public void setSize(int s) {
 size = s;
 }
 public int getSize() {
 return size;
 }
}

This won’t compile: Calling getSize() just postpones the inevitable—getSize() uses the size instance variable.

File Edit Window Help Jack-in

% javac Duck.java

Duck.java:6: non-static method
getSize() cannot be referenced
from a static context

 System.out.println(“Size
of duck is “ + getSize());

 ^

Back to the same problem...

whose size?

there are noDumb Questions

Q: What if you try to call a non-static
method from a static method, but the
non-static method doesn’t use any in-
stance variables. Will the compiler allow
that?

A: No. The compiler knows that
whether you do or do not use instance
variables in a non-static method, you can.
And think about the implications... if you
were allowed to compile a scenario like
that, then what happens if in the future
you want to change the implementation
of that non-static method so that one day
it does use an instance variable? Or worse,
what happens if a subclass overrides the
method and uses an instance variable in
the overriding version?

Q: I could swear I’ve seen code that
calls a static method using a reference
variable instead of the class name.

A: You can do that, but as your mother
always told you, “Just because it’s legal
doesn’t mean it’s good.” Although it works
to call a static method using any instance
of the class, it makes for misleading (less-
readable) code. You can say,

Duck d = new Duck();
String[] s = {};
d.main(s);

This code is legal, but the compiler just
resolves it back to the real class anyway
(“OK, d is of type Duck, and main() is static,
so I’ll call the static main() in class Duck”).
In other words, using d to invoke main()
doesn’t imply that main() will have any
special knowledge of the object that d is
referencing. It’s just an alternate way to
invoke a static method, but the method is
still static!

DateForm
at.getDa

teTimeIn
stance()

;

DateForm
at.getTi

meInstan
ce();

NumberFo
rmat.get

PercentI
nstance(

);

 System.out.println(“Size
of duck is “ + getSize());

NumberFo
rmat.get

PercentI
nstance(

);
Make it Sticki kkk

Roses are red,

and known to bloom late

Statics can’t see

instance variable state

numbers and statics

you are here4 279

Each Duck object has its own size variable, but there’s only one copy of the duckCount variable—the one in the class.

Static variable:

value is the same for ALL
instances of the class
Imagine you wanted to count how many Duck
instances are being created while your program is
running. How would you do it? Maybe an instance
variable that you increment in the constructor?

class Duck {
 int duckCount = 0;
 public Duck() {
 duckCount++;
 }
}

No, that wouldn’t work because duckCount is an
instance variable, and starts at 0 for each Duck. You
could try calling a method in some other class, but
that’s kludgey. You need a class that’s got only a single
copy of the variable, and all instances share that one
copy.

That’s what a static variable gives you: a value shared
by all instances of a class. In other words, one value
per class, instead of one value per instance.

this would always set duckCount to 1 each time a Duck was made

public class Duck {

 private int size;
 private static int duckCount = 0;

 public Duck() {
 duckCount++;
 }

 public void setSize(int s) {
 size = s;
 }
 public int getSize() {
 return size;
 }
}

Now it will keep incrementing each time the Duck constructor runs, because duckCount is static and won’t be reset to 0.

The static d
uckCount

variable is
initialized

ONLY

when the cla
ss is first

loaded, NOT each time a

new instance i
s made.

A Duck object
 doesn’t ke

ep its own copy

of duckCount.

Because duc
kCount is sta

tic, Duck object
s

all share a
 single copy

 of it. You can thin
k

of a static
 variable a

s a variable
 that lives

in a CLASS instead
 of in an o

bject.

Duck object

size: 12

duckCount: 4

Duck object

size: 22

duckCount: 4

Duck object

size: 8

duckCount: 4

Duck object

size: 20

duckCount: 4

Duck

size
static duckCount

getSize()
setSize()

there are noDumb Questions

280 chapter 10

Earlier in this chapter, we saw that a private

constructor means that the class can’t be instantiated

from code running outside the class. In other words,

only code from within the class can make a new

instance of a class with a private constructor. (There’s

a kind of chicken-and-egg problem here.)

What if you want to write a class in such a way that

only ONE instance of it can be created, and anyone

who wants to use an instance of the class will always

use that one, single instance?

Static variables are shared.

All instances of the same
class share a single copy of
the static variables.

Static variables are shared.

All instances of the same
class share a single copy of
the static variables.

instance variables: 1 per instance
static variables: 1 per class

brain barbellBrain Barbell

kid instance one
kid instance twostatic variable:

iceCream

static variables

numbers and statics

you are here4 281

Initializing a static variable

Static variables are initialized when a class is loaded. A class is
loaded because the JVM decides it’s time to load it. Typically,
the JVM loads a class because somebody’s trying to make a
new instance of the class, for the first time, or use a static
method or variable of the class. As a programmer, you also
have the option of telling the JVM to load a class, but you’re
not likely to need to do that. In nearly all cases, you’re better
off letting the JVM decide when to load the class.

And there are two guarantees about static initialization:

Static variables in a class are initialized before any object of that
class can be created.

Static variables in a class are initialized before any static method
of the class runs.

class Player {

 static int playerCount = 0;

 private String name;

 public Player(String n) {

 name = n;

 playerCount++;

 }

}

public class PlayerTestDrive {

 public static void main(String[] args) {

 System.out.println(Player.playerCount);

 Player one = new Player(“Tiger Woods”);

 System.out.println(Player.playerCount);

 }

}

Static variables are initialized when the class is loaded. If you
don’t explicitly initialize a static variable (by assigning it a
value at the time you declare it), it gets a default value, so int
variables are initialized to zero, which means we didn’t need
to explicitly say “playerCount = 0”. Declaring, but not initial-
izing, a static variable means the static variable will get the de-
fault value for that variable type, in exactly the same way that
instance variables are given default values when declared.

All static variables
in a class are
initialized before
any object of
that class can be
created.

The playerCount is initialized when the class is loaded.

We explicitly initialized it to 0, but we don’t need
to since 0 is the default value for ints. Static vari-

ables get default values just like instance varia
bles.

Default values for declared but uninitialized static and instance variables are the same:primitive integers (long, short, etc.): 0primitive floating points (float, double): 0.0boolean: false
object references: null

File Edit Window Help What?

% java PlayerTestDrive

0

1
before any instances are made

after an object is created

Access a static variable just like a static
method—with the class name.

282 chapter 10

static final variables are constants

A variable marked finalmeans that—once initialized—it can
never change. In other words, the value of the static final variable
will stay the same as long as the class is loaded. Look up Math.PI
in the API, and you’ll find:

public static final double PI = 3.141592653589793;

The variable is marked public so that any code can access it.

The variable is marked static so that you don’t need an
instance of class Math (which, remember, you’re not allowed to
create).

The variable is marked final because PI doesn’t change (as far as
Java is concerned).

There is no other way to designate a variable as a constant, but
there is a naming convention that helps you to recognize one.
Constant variable names should be in all caps!

Initialize a final static variable:

At the time you declare it:1

public class Foo {
 public static final int FOO_X = 25;
}

In a static initializer:2

public class Bar {
 public static final double BAR_SIGN;

 static {
 BAR_SIGN = (double) Math.random();
 }
}

OR

A static initializer is a block
of code that runs when a
class is loaded, before any
other code can use the
class, so it’s a great place
to initialize a static final
variable.
class Foo {

 final static int x;

 static {

 x = 42;

 }

}

this code runs as soon as the class
is loaded, before any static method
is called and even before any static
variable can be used.

notice the naming convention -- static
final variables are constants, so the
name should be all uppercase, with an
underscore separating the words

File Edit Window Help Jack-in

% javac Bar.java

Bar.java:1: variable BAR_SIGN
might not have been initialized

1 error

public class Bar {
 public static final double BAR_SIGN;

}

If you don’t give a value to a final variable
in one of those two places:

The compiler will catch it:

static final constants

no initialization!

numbers and statics

you are here4 283

A f inal variable means you
can’t change its value.

A f inal method means you
can’t override the method.

A f inal class means you
can’t extend the class (i.e.
you can’t make a subclass).

non-static final variables

final isn’t just for static
variables...
You can use the keyword final to modify non-
static variables too, including instance variables,
local variables, and even method parameters. In
each case, it means the same thing: the value can’t
be changed. But you can also use final to stop
someone from overriding a method or making a
subclass.

class Foof {
 final int size = 3;
 final int whuffie;

 Foof() {
 whuffie = 42;
 }

 void doStuff(final int x) {
 // you can’t change x
 }

 void doMore() {
 final int z = 7;
 // you can’t change z
 }
}

final method
class Poof {
 final void calcWhuffie() {
 // important things
 // that must never be overridden
 }
}

final class

final class MyMostPerfectClass {
 // cannot be extended
}

It’s all so... so final.
I mean, if I’d known

I wouldn’t be able to
change things...

now you can’t change size

now you can’t change whuffie

284 chapter 10

there are noDumb Questions

Q: A static method can’t access a
non-static variable. But can a non-static
method access a static variable?

A: Of course. A non-static method in a
class can always call a static method in the
class or access a static variable of the class.

Q: Why would I want to make a class
final? Doesn’t that defeat the whole
purpose of OO?

A: Yes and no. A typical reason for
making a class final is for security. You
can’t, for example, make a subclass of the
String class. Imagine the havoc if someone
extended the String class and substituted
their own String subclass objects,
polymorphically, where String objects
are expected. If you need to count on a
particular implementation of the methods
in a class, make the class final.

Q: Isn’t it redundant to have to mark
the methods final if the class is final?

A: If the class is final, you don’t need to
mark the methods final. Think about it—if
a class is final it can never be subclassed,
so none of the methods can ever be
overridden.

On the other hand, if you do want to allow
others to extend your class, and you want
them to be able to override some, but not
all, of the methods, then don’t mark the
class final but go in and selectively mark
specific methods as final. A final method
means that a subclass can’t override that
particular method.

 BULLET POINTS

ß A static method should be called using the class
name rather than an object reference variable:
Math.random() vs. myFoo.go()

ß A static method can be invoked without any instances
of the method’s class on the heap.

ß A static method is good for a utility method that does
not (and will never) depend on a particular instance
variable value.

ß A static method is not associated with a particular
instance—only the class—so it cannot access any
instance variable values of its class. It wouldn’t know
which instance’s values to use.

ß A static method cannot access a non-static method,
since non-static methods are usually associated with
instance variable state.

ß If you have a class with only static methods, and you
do not want the class to be instantiated, you can mark
the constructor private.

ß A static variable is a variable shared by all members
of a given class. There is only one copy of a static
variable in a class, rather than one copy per each
individual instance for instance variables.

ß A static method can access a static variable.

ß To make a constant in Java, mark a variable as both
static and final.

ß A final static variable must be assigned a value either
at the time it is declared, or in a static initializer.
static {

 DOG_CODE = 420;
}

ß The naming convention for constants (final static
variables) is to make the name all uppercase.

ß A final variable value cannot be changed once it has
been assigned.

ß Assigning a value to a final instance variable must be
either at the time it is declared, or in the constructor.

ß A final method cannot be overridden.

ß A final class cannot be extended (subclassed).

static and final

numbers and statics

you are here4 285

Sharpen your pencil

What’s Legal?
Given everything you’ve just

learned about static and final,

which of these would compile?

1 public class Foo {
 static int x;

 public void go() {
 System.out.println(x);
 }
}

public class Foo2 {
 int x;

 public static void go() {
 System.out.println(x);
 }
}

public class Foo3 {
 final int x;

 public void go() {
 System.out.println(x);
 }
}

public class Foo4 {
 static final int x = 12;

 public void go() {
 System.out.println(x);
 }
}

public class Foo5 {
 static final int x = 12;

 public void go(final int x) {
 System.out.println(x);
 }
}

public class Foo6 {
 int x = 12;

 public static void go(final int x) {
 System.out.println(x);
 }
}

2

3

4

5

6

286 chapter 10

Math methods
Now that we know how static
methods work, let’s look
at some static methods in
class Math. This isn’t all of
them, just the highlights.
Check your API for the rest
including sqrt(), tan(), ceil(),
floor(), and asin().

Math.random()
Returns a double between 0.0 through (but
not including) 1.0.
double r1 = Math.random();
int r2 = (int) (Math.random() * 5);

Math.abs()
Returns a double that is the absolute value of
the argument. The method is overloaded, so
if you pass it an int it returns an int. Pass it a
double it returns a double.

int x = Math.abs(-240); // returns 240
double d = Math.abs(240.45); // returns 240.45

Math.round()
Returns an int or a long (depending on
whether the argument is a float or a double)
rounded to the nearest integer value.

int x = Math.round(-24.8f); // returns -25
int y = Math.round(24.45f); // returns 24

Remember, floating point literals are assumed to be doubles unless you add the ‘f’.
Math.min()

Returns a value that is the minimum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.
int x = Math.min(24,240); // returns 24
double y = Math.min(90876.5, 90876.49); // returns 90876.49

Math.max()
Returns a value that is the maximum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.max(24,240); // returns 240
double y = Math.max(90876.5, 90876.49); // returns 90876.5

Math methods

numbers and statics

you are here4 287

object

primitive

Wrapping a primitive
Sometimes you want to treat a primitive like
an object. For example, in all versions of Java
prior to 5.0, you cannot put a primitive directly
into a collection like ArrayList or HashMap:

When you need to treat
a primitive like an object,
wrap it. If you’re using any
version of Java before 5.0,
you’ll do this when you
need to store a primitive
value inside a collection like
ArrayList or HashMap.

int x = 32;
ArrayList list = new ArrayList();
list.add(x);

This won’t work unless you’re using Java 5.0 or
greater!! There’s no add(int) method in ArrayList
that takes an int! (ArrayList only has add() methods

that take object references, not primitives.)

wrapping a value
int i = 288;
Integer iWrap = new Integer(i);

Boolean

Character

Byte

Short

Integer

Long

Float

Double

There’s a wrapper class for every primitive type,
and since the wrapper classes are in the java.
lang package, you don’t need to import them.
You can recognize wrapper classes because
each one is named after the primitive type it
wraps, but with the first letter capitalized to
follow the class naming convention.

Oh yeah, for reasons absolutely nobody on the
planet is certain of, the API designers decided
not to map the names exactly from primitive
type to class type. You’ll see what we mean:

unwrapping a value
int unWrapped = iWrap.intValue();

Give the primitive to the
wrapper constructor. That’s it.

All the wrappers work
like this. Boolean has a
booleanValue(), Character
has a charValue(), etc.

Watch out! The names aren’t
mapped exactly to the primitive
types. The class names are fully
spelled out.

Integer obje
ct

int

int primitive

Integer object

Note: the picture at the top is a chocolate in a foil wrapper. Get
it? Wrapper? Some people think it looks like a baked potato, but
that works too.

static methods

288 chapter 10

Before Java 5.0, YOU had to do the work...
She’s right. In all versions of Java prior to 5.0, primitives were primitives
and object references were object references, and they were NEVER
treated interchangeably. It was always up to you, the programmer, to do
the wrapping and unwrapping. There was no way to pass a primitive to a
method expecting an object reference, and no way to assign the result of a
method returning an object reference directly to a primitive variable—even
when the returned reference is to an Integer and the primitive variable is
an int. There was simply no relationship between an Integer and an int,
other than the fact that Integer has an instance variable of type int (to hold
the primitive the Integer wraps). All the work was up to you.

This is stupid. You mean I can’t
just make an ArrayList of ints??? I

have to wrap every single frickin’ one in a new
Integer object, then unwrap it when I try

to access that value in the ArrayList?
That’s a waste of time and an error

waiting to happen...

An ArrayList of primitive ints

public void doNumsOldWay() {

 ArrayList listOfNumbers = new ArrayList();

 listOfNumbers.add(new Integer(3));

 Integer one = (Integer) listOfNumbers.get(0);

 int intOne = one.intValue();
}

Without autoboxing (Java versions before 5.0)

Make an ArrayList. (Remember, before 5.0 you could not

specify the TYPE, so all ArrayLists were lists of Objects.)

You can’t add the primitive ‘3’ to the list,

so you have to wrap it in an Integer firs
t.

It comes out as type
Object, but you can cast

the Object to an Integer.

Finally you can get the primitive out of the Integer.

numbers and statics

you are here4 289

public void doNumsNewWay() {

 ArrayList<Integer> listOfNumbers = new ArrayList<Integer>();

 listOfNumbers.add(3);

 int num = listOfNumbers.get(0);
}

With autoboxing (Java versions 5.0 or greater)

Make an ArrayList of type Integer.

Just add it! Although there is NOT a method in ArrayList
for add(int), the compiler does all the wrapping
(boxing) for you. In other words, there really IS
an Integer object stored in the ArrayList, but
you get to “pretend” that the ArrayList takes
ints. (You can add both ints and Integers to an
ArrayList<Integer>.)

And the compiler automatically unwraps (unboxes) the Integer object so you can assign the int value directly to a primitive without having to call the intValue() method on the Integer object.

Autoboxing: blurring the line
between primitive and object

The autoboxing feature added to Java 5.0 does
the conversion from primitive to wrapper object
automatically!

Let’s see what happens when we want to make an
ArrayList to hold ints.

An ArrayList of primitive ints

Q: Why not declare an ArrayList<int> if you want to
hold ints?

A: Because... you can’t. Remember, the rule for generic
types is that you can specify only class or interface types, not
primitives. So ArrayList<int> will not compile. But as you can
see from the code above, it doesn’t really matter, since the
compiler lets you put ints into the ArrayList<Integer>. In fact,
there’s really no way to prevent you from putting primitives
into an ArrayList where the type of the list is the type of that
primitive’s wrapper, if you’re using a Java 5.0-compliant com-
piler, since autoboxing will happen automatically. So, you can
put boolean primitives in an ArrayList<Boolean> and chars
into an ArrayList<Character>.

static methods

290 chapter 10

void takeNumber(Integer i) { }

int

3

Integer objec
t

3

int giveNumber() {
 return x;
}

int

3

Integer objec
t

3

if (bool) {
 System.out.println(“true”);
}

boolean

true

boolean objec
t

true

Autoboxing works almost everywhere

Autoboxing lets you do more than just the obvious wrapping and
unwrapping to use primitives in a collection... it also lets you use
either a primitive or its wrapper type virtually anywhere one or the
other is expected. Think about that!

Fun with autoboxing

Method arguments

If a method takes a wrapper type, you
can pass a reference to a wrapper or
a primitive of the matching type. And
of course the reverse is true—if a
method takes a primitive, you can
pass in either a compatible primitive
or a reference to a wrapper of that
primitive type.

Return values

If a method declares a primitive
return type, you can return either a
compatible primitive or a reference
to the wrapper of that primitive type.
And if a method declares a wrapper
return type, you can return either a
reference to the wrapper type or a
primitive of the matching type.

Boolean expressions

Any place a boolean value is expected,
you can use either an expression that
evaluates to a boolean (4 > 2), or a
primitive boolean, or a reference to a
Boolean wrapper.

numbers and statics

you are here4 291

i++;

int

3

Integer objec
t

3

Double d = x;

int

3

Integer objec
t

3

Operations on numbers

This is probably the strangest one—yes, you
can now use a wrapper type as an operand
in operations where the primitive type is
expected. That means you can apply, say,
the increment operator against a reference
to an Integer object!

But don’t worry—this is just a compiler trick.
The language wasn’t modified to make the
operators work on objects; the compiler
simply converts the object to its primitive
type before the operation. It sure looks
weird, though.

Integer i = new Integer(42);
i++;

And that means you can also do things like:

Integer j = new Integer(5);
Integer k = j + 3;

Assignments

You can assign either a wrapper or primitive
to a variable declared as a matching wrapper
or primitive. For example, a primitive int
variable can be assigned to an Integer
reference variable, and vice-versa—a
reference to an Integer object can be
assigned to a variable declared as an int
primitive.

Sharpen your pencil
public class TestBox {

 Integer i;
 int j;

 public static void main (String[] args) {
 TestBox t = new TestBox();
 t.go();
 }

 public void go() {
 j=i;
 System.out.println(j);
 System.out.println(i);
 }
}

Will this code compile? Will it run? If it runs,
what will it do?

Take your time and think about this one; it
brings up an implication of autoboxing that
we didn’t talk about.

You’ll have to go to your compiler to find
the answers. (Yes, we’re forcing you to
experiment, for your own good of course.)

int giveNumber() {
 return x;
}

if (bool) {
 System.out.println(“true”);
}

boolean

true

boolean objec
t

true

292 chapter 10

But wait! There’s more! Wrappers
have static utility methods too!
Besides acting like a normal class, the wrappers have a
bunch of really useful static methods. We’ve used one in
this book before—Integer.parseInt().

The parse methods take a String and give you back a
primitive value.

String s = “2”;
int x = Integer.parseInt(s);
double d = Double.parseDouble(“420.24”);

boolean b = new Boolean(“true”).booleanValue();

Converting a String to a
primitive value is easy:

No problem to parse
“2” into 2.

Uh-oh. This compiles just fine, but
at runtime it blows up. Anything
that can’t be parsed as a number
will cause a NumberFormatException

File Edit Window Help Clue

% java Wrappers

Exception in thread “main”

java.lang.NumberFormatException: two

at java.lang.Integer.parseInt(Integer.java:409)

at java.lang.Integer.parseInt(Integer.java:458)

at Wrappers.main(Wrappers.java:9)

String t = “two”;
int y = Integer.parseInt(t);

But if you try to do this:

You’ll get a runtime exception:

You’d think there would be a

Boolean.parseBoolean() wouldn’t you? But there

isn’t. Fortunately there’s a B
oolean constructor

that takes (and parse
s) a String, and then

you

just get the primitive value by unwrapping it.

Every method or
constructor that parses
a String can throw a
NumberFormatException.
It’s a runtime exception,
so you don’t have to
handle or declare it.
But you might want to.

wrapper methods

(We’ll talk about Exceptions in the
next chapter.)

numbers and statics

you are here4 293

And now in reverse... turning a
primitive number into a String
There are several ways to turn a number into a String.
The easiest is to simply concatenate the number to an
existing String.

double d = 42.5;
String doubleString = “” + d;

double d = 42.5;
String doubleString = Double.toString(d);

Remember the ‘+’ operator is overloade
d

in Java (the only overload
ed operator) as a

String concatenator.
Anything added to a

String becomes Stringified.

Another way to do it using a static method in class Double.
Yeah,

but how do I make it
look like money? With a dollar
sign and two decimal places
like $56.87 or what if I want
commas like 45,687,890 or

what if I want it in...

Where’s my printf
like I have in C? Is
number formatting part of
the I/O classes?

294 chapter 10

Number formatting
In Java, formatting numbers and dates doesn’t have to be coupled with I/O. Think
about it. One of the most typical ways to display numbers to a user is through a
GUI. You put Strings into a scrolling text area, or maybe a table. If formatting was
built only into print statements, you’d never be able to format a number into a nice
String to display in a GUI. Before Java 5.0, most formatting was handled through
classes in the java.text package that we won’t even look at in this version of the
book, now that things have changed.

In Java 5.0, the Java team added more powerful and flexible formatting through a
Formatter class in java.util. But you don’t need to create and call methods on the
Formatter class yourself, because Java 5.0 added convenience methods to some of
the I/O classes (including printf()) and the String class. So it’s a simple matter of
calling a static String.format() method and passing it the thing you want formatted
along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and
that takes a little effort unless you’re familiar with the printf() function in C/C++.
Fortunately, even if you don’t know printf() you can simply follow recipes for the
most basic things (that we’re showing in this chapter). But you will want to learn
how to format if you want to mix and match to get anything you want.

We’ll start here with a basic example, then look at how it works. (Note: we’ll revisit
formatting again in the I/O chapter.)

public class TestFormats {

 public static void main (String[] args) {

 String s = String.format(“%, d”, 1000000000);
 System.out.println(s);
 }
}

Formatting a number to use commas

The number to format (we

want it to have commas).

Now we get commas inserted into the number.

 1,000,000,000

number formatting

The formatting instructions for how to format the second argument (which in this case is an int value). Remember, there are only two arguments to this method here—the first comma is INSIDE the String literal, so it isn’t separating arguments to the format method.

numbers and statics

you are here4 295

Formatting deconstructed...

format(“%, d”, 1000000000);

At the most basic level, formatting consists of two main parts
(there is more, but we’ll start with this to keep it cleaner):

Formatting instructions1

The argument to be formatted.2

1 2

Use these instructions... on this argument.

You use special format specifiers that describe how
the argument should be formatted.

Although there can be more than one argument, we’ll
start with just one. The argument type can’t be just
anything... it has to be something that can be formatted
using the format specifiers in the formatting instructions.
For example, if your formatting instructions specify a
floating point number, you can’t pass in a Dog or even a
String that looks like a floating point number.

What do these instructions actually say?

“Take the second argument to this method, and
format it as a decimal integer and insert commas.”

How do they say that?

On the next page we’ll look in more detail at what the syntax “%,
d” actually means, but for starters, any time you see the percent
sign (%) in a format String (which is always the first argument
to a format() method), think of it as representing a variable,
and the variable is the other argument to the method. The rest
of the characters after the percent sign describe the formatting
instructions for the argument.

Do this... to this.

Note: if you already know
 printf()

from c/C++, you can probably just

skim the next few pages. Otherwise,

read carefully!

296 chapter 10

the format() method

The percent (%) says, “insert argument here”
(and format it using these instructions)

The first argument to a format() method is called the format String, and it
can actually include characters that you just want printed as-is, without extra
formatting. When you see the % sign, though, think of the percent sign as a
variable that represents the other argument to the method.

format(“I have %.2f bugs to fix.”, 476578.09876);

Output

Argument to be formatted.

Format specifiers for the second argument to the method (the number). Characters to include in

the final String retur
ned

from format().

I have 476578.10 bugs to fix.

More characters to include in the String after the second argument is formatted and inserted.

The “%” sign tells the formatter to insert the other method argument (the
second argument to format(), the number) here, AND format it using the

“.2f” characters after the percent sign. Then the rest of the format String,
“bugs to fix”, is added to the final output.

Notice we lost some of the numbers after the decimal point. Can you guess what the “.2f” means?

Adding a comma

format(“I have %,.2f bugs to fix.”, 476578.09876);

I have 476,578.10 bugs to fix.

By changing the format instructions
from “%.2f” to %,.2f”, we got a
comma in the formatted number.

numbers and statics

you are here4 297

The format String uses its
own little language syntax
You obviously can’t put just anything after the “%”
sign. The syntax for what goes after the percent
sign follows very specific rules, and describes
how to format the argument that gets inserted at
that point in the result (formatted) String.

You’ve already seen two examples:

%, d means “insert commas and format the
number as a decimal integer.”

and

%.2f means “format the number as a floating
point with a precision of two decimal places.”

and

%,.2f means “insert commas and format the
number as a floating point with a precision of
two decimal places.”

The real question is really, “How do I know what
to put after the percent sign to get it to do what
I want?” And that includes knowing the symbols
(like “d” for decimal and “f” for floating point)
as well as the order in which the instructions
must be placed following the percent sign. For
example, if you put the comma after the “d” like
this: “%d,” instead of “%,d” it won’t work!

Or will it? What do you think this will do:

But how does it even KNOW
where the instructions end and the

rest of the characters begin? How come
it doesn’t print out the “f” in “%.2f”? Or

the “2”? How does it know that the .2f
was part of the instructions and NOT

part of the String?

String.format(“I have %.2f, bugs to fix.”, 476578.09876);

(We’ll answer that on the next page.)

298 chapter 10

The format specifier
Everything after the percent sign up to and including the type indicator (like

“d” or “f”) are part of the formatting instructions. After the type indicator, the
formatter assumes the next set of characters are meant to be part of the output
String, until or unless it hits another percent (%) sign. Hmmmm... is that even
possible? Can you have more than one formatted argument variable? Put that
thought on hold for right now; we’ll come back to it in a few minutes. For now,
let’s look at the syntax for the format specifiers—the things that go after the
percent (%) sign and describe how the argument should be formatted.

A format specifier can have up to five different parts (not
including the “%”). Everything in brackets [] below is optional, so
only the percent (%) and the type are required. But the order is
also mandatory, so any parts you DO use must go in this order.

%[argument number][flags][width][.precision]type

We’ll get to this later... it lets you say WHICH argument if there’s more than one. (Don’t worry about it just yet.)

These are for
special formatting
options like insertin

g
commas, or putting
negative numbers in
parentheses, or to
make the numbers
left justified.

This defines the
MINIMUM number
of characters that
will be used. That’s
minimum not
TOTAL. If the number
is longer than the
width, it’ll still be used
in full, but if it’s less
than the width, it’ll be
padded with zeroes.

You already know
this one...it defines
the precision. In
other words, it
sets the number
of decimal places.
Don’t forget to
include the “.” in
there.

Type is mandatory
(see the next page)
and will usually be
“d” for a decimal
integer or “f” for
a floating point
number.

%[argument number][flags][width][.precision]type

format(“%,6.1f”, 42.000);

There’s no “argument number” specified in this format String, but all the other pieces are there.

format specifier

numbers and statics

you are here4 299

The only required specifier is for TYPE
Although type is the only required specifier, remember that if you do put
in anything else, type must always come last! There are more than a dozen
different type modifiers (not including dates and times; they have their own
set), but most of the time you’ll probably use %d (decimal) or %f (floating
point). And typically you’ll combine %f with a precision indicator to set the
number of decimal places you want in your output.

format(“%d”, 42);

The TYPE is mandatory, everything else is optional.

42

%d decimal

format(“%.3f”, 42.000000);

42.000

%f floating point

format(“%x”, 42);

2a

%x hexadecimal

format(“%c”, 42);

*

%c character

The argument must be compatible with an int, so that means
only byte, short, int, and char (or their wrapper types).

The argument must be of a floating point type, so that
means only a float or double (primitive or wrapper) as well
as something called BigDecimal (which we don’t look at in
this book).

A 42.25 would not work! It would be the same as trying to directly assign a double to an int variable.

Here we combined the “f”
with a precision indicator
“.3” so we ended up with
three zeroes.

The argument must be a byte, short, int, long (including
both primitive and wrapper types), and BigInteger.

You must include a
type in your format
instructions, and if you
specify things besides
type, the type must
always come last.
Most of the time,
you’ll probably format
numbers using either
“d” for decimal or “f”
for f loating point.

The argument must be a byte, short, char, or int (including
both primitive and wrapper types).

The number 42 represents
the char “*”.

300 chapter 10

What happens if I have more than one argument?

Imagine you want a String that looks like this:

“The rank is 20,456,654 out of 100,567,890.24.”

But the numbers are coming from variables. What do you do? You simply add two
arguments after the format String (first argument), so that means your call to format()
will have three arguments instead of two. And inside that first argument (the format
String), you’ll have two different format specifiers (two things that start with “%”). The
first format specifier will insert the second argument to the method, and the second
format specifier will insert the third argument to the method. In other words, the
variable insertions in the format String use the order in which the other arguments are
passed into the format() method.

int one = 20456654;
double two = 100567890.248907;

String s = String.format(“The rank is %,d out of %,.2f”, one, two);

When you have more than one argument, they’re inserted using the order in which you pass them to the format() method.

As you’ll see when we get to date formatting, you might actually want to apply different
formatting specifiers to the same argument. That’s probably hard to imagine until you
see how date formatting (as opposed to the number formating we’ve been doing) works.
Just know that in a minute, you’ll see how to be more specific about which format
specifiers are applied to which arguments.

The rank is 20,456,654 out of 100,567,890.25

We added commas to both variables,
and restricted the floating point
number (the second variable) to two
decimal places.

Q: Um, there’s something REALLY strange going on here. Just how many arguments can I
pass? I mean, how many overloaded format() methods are IN the String class? So, what happens
if I want to pass, say, ten different arguments to be formatted for a single output String?

A: Good catch. Yes, there is something strange (or at least new and different) going on, and
no there are not a bunch of overloaded format() methods to take a different number of possible
arguments. In order to support this new formatting (printf-like) API in Java, the language needed
another new feature—variable argument lists (called varargs for short). We’ll talk about varargs
only in the appendix because outside of formatting, you probably won’t use them much in a well-
designed system.

format arguments

numbers and statics

you are here4 301

So much for numbers, what about dates?

Imagine you want a String that looks like this: “Sunday, Nov 28 2004”

Nothing special there, you say? Well, imagine that all you have to start with is a variable
of type Date—A Java class that can represent a timestamp, and now you want to take that
object (as opposed to a number) and send it through the formatter.

The main difference between number and date formatting is that date formats use a
two-character type that starts with “t” (as opposed to the single character “f” or “d”, for
example). The examples below should give you a good idea of how it works:

String.format(“%tc”, new Date());

Sun Nov 28 14:52:41 MST 2004

The complete date and time %tc

String.format(“%tr”, new Date());

03:01:47 PM

Just the time %tr

Date today = new Date();
String.format(“%tA, %tB %td”,today,today,today);

Sunday, November 28

Day of the week, month and day %tA %tB %td

Date today = new Date();

String.format(“%tA, %<tB %<td”,today);

Same as above, but without duplicating the arguments %tA %tB %td

There isn’t a single format specifier that will do exactly what we
want, so we have to combine three of them for day of the week
(%tA), month (%tB), and day of the month (%td).

But that means we have to pass the Date object in three times, one for each part of the format that we want. In other words, the %tA will give us just the day of the week, but then we have to do it again to get just the month and again for the day.of the month.

The comma is not part of the formatting... it’s
just the character we want printed after the
first inserted formatted argument.

The angle-bracket “<” is just another
flag in the specifier that tells the
formatter to “use the previous argument
again.” So it saves you from repeating the
arguments, and instead you format the
same argument three different ways.

You can think of this as kind of like calling three
different getter methods on the Date object, to get three different pieces of data from it.

302 chapter 10

Working with Dates
You need to do more with dates than just get
today’s date. You need your programs to adjust
dates, find elapsed times, prioritize schedules,
heck, make schedules. You need industrial
strength date manipulation capabilities.

You could make your own date routines of
course... (and don’t forget about leap years!)
And, ouch, those occasional, pesky leap-
seconds. Wow, this could get complicated. The
good news is that the Java API is rich with
classes that can help you manipulate dates.
Sometimes it feels a little too rich...

Let’s see... how many work
days will there be if the

project starts on Feb 27th and
ends on August 5th?

manipulating dates

numbers and statics

you are here4 303

Moving backward and forward in time
Let’s say your company’s work schedule is Monday through Friday.
You’ve been assigned the task of figuring out the last work day in
each calendar month this year...

For a time-stamp of “now”,
use Date. But for everything
else, use Calendar.

It seems that java.util.Date is actually... out of date

Earlier we used java.util.Date to find today’s date, so it seems
logical that this class would be a good place to start looking for
some handy date manipulation capabilities, but when you check
out the API you’ll find that most of Date’s methods have been
deprecated!

The Date class is still great for getting a “time stamp”—an object
that represents the current date and time, so use it when you want
to say, “give me NOW”.

The good news is that the API recommends java.util.Calendar
instead, so let’s take a look:

Use java.util.Calendar for your date manipulation

The designers of the Calendar API wanted to think globally,
literally. The basic idea is that when you want to work with dates,
you ask for a Calendar (through a static method of the Calendar
class that you’ll see on the next page), and the JVM hands you back
an instance of a concrete subclass of Calendar. (Calendar is actually
an abstract class, so you’re always working with a concrete subclass.)

More interesting, though, is that the kind of calendar you get
back will be appropriate for your locale. Much of the world uses the
Gregorian calendar, but if you’re in an area that doesn’t use a
Gregorian calendar you can get Java libraries to handle other
calendars such as Buddhist, or Islamic or Japanese.

The standard Java API ships with java.util.GregorianCalendar, so
that’s what we’ll be using here. For the most part, though, you
don’t even have to think about the kind of Calendar subclass you’re
using, and instead focus only on the methods of the Calendar class.

304 chapter 10

Getting an object that extends Calendar
How in the world do you get an “instance” of an abstract class?
Well you don’t of course, this won’t work:

This WON’T work:

Calendar cal = new Calendar();

Instead, use the static “getInstance()” method:

Calendar cal = Calendar.getInstance();

Wait a minute.
If you can’t make an

instance of the Calendar
class, what exactly are you
assigning to that Calendar

reference?

You can’t get an instance of Calendar,
but you can can get an instance of a
concrete Calendar subclass.

Obviously you can’t get an instance of Calendar, because
Calendar is abstract. But you’re still free to call static methods
on Calendar, since static methods are called on the class,
rather than on a particular instance. So you call the static
getInstance() on Calendar and it gives you back... an instance
of a concrete subclass. Something that extends Calendar
(which means it can be polymorphically assigned to Calendar)
and which—by contract—can respond to the methods of class
Calendar.

In most of the world, and by default for most versions of Java,
you’ll be getting back a java.util.GregorianCalendar instance.

The compiler won’t allow this !

This syntax should look familiar at this
point - we’re invoking a static method.

getting a Calendar

numbers and statics

you are here4 305

Working with Calendar objects
There are several key concepts you’ll need to understand in
 order to work with Calendar objects:

ß Fields hold state - A Calendar object has many fields that are used to
represent aspects of its ultimate state, its date and time. For instance, you
can get and set a Calendar’s year or month.

ß Dates and Times can be incremented - The Calendar class has methods that
allow you to add and subtract values from various fields, for example “add
one to the month”, or “subtract three years”.

ß Dates and Times can be represented in milliseconds - The Calendar class
lets you convert your dates into and out of a millisecond representation.
(Specifically, the number of milliseconds that have occured since January
1st, 1970.) This allows you to perform precise calculations such as “elapsed
time between two times” or “add 63 hours and 23 minutes and 12 seconds
to this time”.

An example of working with a Calendar object:

 Calendar c = Calendar.getInstance();

 c.set(2004,0,7,15,40);

 long day1 = c.getTimeInMillis();

 day1 += 1000 * 60 * 60;

 c.setTimeInMillis(day1);

 System.out.println(“new hour “ + c.get(c.HOUR_OF_DAY));

 c.add(c.DATE, 35);

 System.out.println(“add 35 days “ + c.getTime());

 c.roll(c.DATE, 35);

 System.out.println(“roll 35 days “ + c.getTime());

 c.set(c.DATE, 1);

 System.out.println(“set to 1 “ + c.getTime());

File Edit Window Help Time-Flies

new hour 16
add 35 days Wed Feb 11 16:40:41 MST 2004
roll 35 days Tue Feb 17 16:40:41 MST 2004
set to 1 Sun Feb 01 16:40:41 MST 2004

Convert this to a big ol’
amount of milliseconds.

Set time to Jan. 7, 2004 at 15:40.

(Notice the month is zero-
based.)

Add 35 days to the date, which should move us into February.

“Roll” 35 days onto this date. This “rolls” the date ahead 35 days, but DOES NOT change the month !

We’re not incrementing here, just doing a “set” of the date.

Add an hour’s worth of millis, then update the time.
(Notice the “+=”, it’s like day1 = day1 + ...).

This output confirms how millis,
add, roll, and set work.

306 chapter 10

Highlights of the Calendar API
We just worked through using a few of the fi elds and
methods in the Calendar class. This is a big API, so
we’re showing only a few of the most common fi elds
and methods that you’ll use. Once you get a few of
these it should be pretty easy to bend the rest of the
this API to your will.

Key Calendar Methods

add(int fi eld, int amount)

get(int fi eld)

getInstance()

getTimeInMillis()

roll(int fi eld, boolean up)

set(int fi eld, int value)

set(year, month, day, hour, minute) (all ints)

setTimeInMillis(long millis)

// more...

Adds or subtracts time from the calendar’s field.

Returns the value of the given calendar field.

Returns this Calendar’s time in millis, as a long.

Adds or subtracts time without changing larger fields.

Sets the value of a given Calendar field.

A common variety of set to set a complete time.

Sets a Calendar’s time based on a long milli-time.

Returns a Calendar, you can specify a locale.

Adds or subtracts time without changing larger fields.

Key Calendar Fields

DATE / DAY_OF_MONTH

HOUR / HOUR _OF_DAY

MILLISECOND

MINUTE

MONTH

YEAR

ZONE_OFFSET

// more...

Get / set the day of month

Get / set the 12 hour or 24 hour value.

Get / set the minute.

Get / set the month.

Get / set the year.

Get / set raw offset of GMT in millis.

Get / set the milliseconds.

Calendar API

numbers and statics

you are here4 307

Even more Statics!... static imports
New to Java 5.0... a real mixed blessing. Some people love
this idea, some people hate it. Static imports exist only to save
you some typing. If you hate to type, you might just like this
feature. The downside to static imports is that - if you’re not
careful - using them can make your code a lot harder to read.

The basic idea is that whenever you’re using a static class, a
static variable, or an enum (more on those later), you can
import them, and save yourself some typing.

Some old-fashioned code:

import java.lang.Math;

class NoStatic {

 public static void main(String [] args) {

 System.out.println(“sqrt “ + Math.sqrt(2.0));

 System.out.println(“tan “ + Math.tan(60));

 }

}

Same code, with static imports:

import static java.lang.System.out;

import static java.lang.Math.*;

class WithStatic {

 public static void main(String [] args) {

 out.println(“sqrt “ + sqrt(2.0));

 out.println(“tan “ + tan(60));

 }

}

ß If you’re only going to use a static member
a few times, we think you should avoid
static imports, to help keep the code more
readable.

ß If you’re going to use a static member a lot,
(like doing lots of Math calculations), then
it’s probably OK to use the static import.

ß Notice that you can use wildcards (.*), in
your static import declaration.

ß A big issue with static imports is that it’s
not too hard to create naming conflicts. For
example, if you have two different classes
with an “add()” method, how will you and
the compiler know which one to use?

 Caveats & Gotchas

The syntax
 to use w

hen

declaring
 static im

ports.

Static imports in action.

Use Carefully:
static imports can
make your code
confusing to read

308 chapter 10

Instance Variable
I don’t even know why we’re doing this.
Everyone knows static variables are just used
for constants. And how many of those are
there? I think the whole API must have, what,
four? And it’s not like anybody ever uses
them.

Full of it. Yeah, you can say that again. OK,
so there are a few in the Swing library, but
everybody knows Swing is just a special case.

Ok, but besides a few GUI things, give me an
example of just one static variable that anyone
would actually use. In the real world.

Well, that’s another special case. And nobody
uses that except for debugging anyway.

Static Variable

You really should check your facts. When
was the last time you looked at the API? It’s
frickin’ loaded with statics! It even has entire
classes dedicated to holding constant values.
There’s a class called SwingConstants, for
example, that’s just full of them.

It might be a special case, but it’s a really
important one! And what about the Color
class? What a pain if you had to remember the
RGB values to make the standard colors? But
the color class already has constants defined
for blue, purple, white, red, etc. Very handy.

How’s System.out for starters? The out in
System.out is a static variable of the System
class. You personally don’t make a new
instance of the System, you just ask the System
class for its out variable.

Oh, like debugging isn’t important?

And here’s something that probably never
crossed your narrow mind—let’s face it, static
variables are more efficient. One per class
instead of one per instance. The memory
savings might be huge!

Tonight’s Talk: An instance variable
takes cheap shots at a static variable

static vs. instance

numbers and statics

you are here4 309

Um, aren’t you forgetting something?

Static variables are about as un-OO as it gets!!
Gee why not just go take a giant backwards
step and do some procedural programming
while we’re at it.

You’re like a global variable, and any
programmer worth his PDA knows that’s
usually a Bad Thing.

Yeah you live in a class, but they don’t call
it Class-Oriented programming. That’s just
stupid. You’re a relic. Something to help the
old-timers make the leap to java.

Well, OK, every once in a while sure, it makes
sense to use a static, but let me tell you, abuse
of static variables (and methods) is the mark
of an immature OO programmer. A designer
should be thinking about object state, not class
state.

Static methods are the worst things of all,
because it usually means the programmer is
thinking procedurally instead of about objects
doing things based on their unique object
state.

Riiiiiight. Whatever you need to tell yourself...

What?

What do you mean un-OO?

I am NOT a global variable. There’s no such
thing. I live in a class! That’s pretty OO you
know, a CLASS. I’m not just sitting out there
in space somewhere; I’m a natural part of the
state of an object; the only difference is that
I’m shared by all instances of a class. Very
efficient.

Alright just stop right there. THAT is
definitely not true. Some static variables are
absolutely crucial to a system. And even the
ones that aren’t crucial sure are handy.

Why do you say that? And what’s wrong with
static methods?

Sure, I know that objects should be the focus
of an OO design, but just because there are
some clueless programmers out there... don’t
throw the baby out with the bytecode. There’s
a time and place for statics, and when you
need one, nothing else beats it.

Instance Variable Static Variable

310 chapter 10

Exercise

BE the compiler
The Java file on this page represents a
complete program. Your job is to play
compiler and determine whether this
file will compile. If it won’t compile,
how would you fix it, and
if it does compile, what
would be its output?class StaticSuper{

 static {

 System.out.println(“super static block”);

 }

 StaticSuper{

 System.out.println(

 “super constructor”);

 }

}

public class StaticTests extends StaticSuper {

 static int rand;

 static {

 rand = (int) (Math.random() * 6);

 System.out.println(“static block “ + rand);

 }

 StaticTests() {

 System.out.println(“constructor”);

 }

 public static void main(String [] args) {

 System.out.println(“in main”);

 StaticTests st = new StaticTests();

 }

}

File Edit Window Help Cling

%java StaticTests

static block 4

in main

super static block

super constructor

constructor

Possible Output

File Edit Window Help Electricity

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

Possible Output

If it compiles, which of these is
the output?

be the compiler

numbers and statics

you are here4 311

This chapter explored the wonderful, static, world
of Java. Your job is to decide whether each of the
following statements is true or false.

1. To use the Math class, the first step is to make an instance of it.

2. You can mark a constructor with the static keyword.

3. Static methods don’t have access to instance variable state of the ‘this’ object.

4. It is good practice to call a static method using a reference variable.

5. Static variables could be used to count the instances of a class.

6. Constructors are called before static variables are initialized.

7. MAX_SIZE would be a good name for a static final variable.

8. A static initializer block runs before a class’s constructor runs.

9. If a class is marked final, all of its methods must be marked final.

10. A final method can only be overridden if its class is extended.

11. There is no wrapper class for boolean primitives.

12. A wrapper is used when you want to treat a primitive like an object.

13. The parseXxx methods always return a String.

14. Formatting classes (which are decoupled from I/O), are in the java.format

 package.

CTrue or FalseD

Exercise

312 chapter 10

This one might actually be useful! In addition to what you’ve learned in the last few
pages about manipulating dates, you’ll need a little more information... First, full
moons happen every 29.52 days or so. Second, there was a full moon on Jan. 7th,
2004. Your job is to reconstruct the code snippets to make a working Java program
that produces the output listed below (plus more full moon dates). (You might not
need all of the magnets, and add all the curly braces you need.) Oh, by the way, your
output will be different if you don’t live in the mountain time zone.

File Edit Window Help Howl

% java FullMoons
full moon on Fri Feb 06 04:09:35 MST 2004
full moon on Sat Mar 06 16:38:23 MST 2004
full moon on Mon Apr 05 06:07:11 MDT 2004

 Lunar Code Magnets

static import java.lang.System.out;

import java.util.*;

 println

import static ja
va.lang.System.o

ut;

(“full moon on %tc”, c));

(c.format

import java.util.*;

(“full moon on %t”, c));

(String.format

Calendar c = Calendar.getInstance();

public static void main(String [] args) {

 import java.io.*;

out.println

public static void main(String [] args) {

 class FullMoons
{

Calendar c = Calendar.getInstance();

 c.setTimeInMillis(day1);

 println

 import java.io.*; import java.io.*;

static int DAY_IM = 1000 * 60 * 60 * 24;

(“full moon on %tc”, c));

static int DAY_IM = 60 *
 60 * 24;

static int DAY_IM = 1000 * 60 * 60 * 24;

for (int x = 0; x < 60; x++) {

long day1 = c.getTimeInMillis();

import static ja
va.lang.System.o

ut;

c.set(2004,1,7,15,40);

 c.setTimeInMillis(day1);

c.set(2004,0,7,15,40);

for (int x = 0; x < 60; x++) {

 day1 += (DAY_IM * 29.52);

(c.format

 class FullMoons
{

 class FullMoons
{

 class FullMoons
{

 class FullMoons
{

Calendar c = new Calendar();

code magnets

numbers and statics

you are here4 313

Exercise Solutions

 StaticSuper() {
 System.out.println(

 “super constructor”);

 }

File Edit Window Help Cling

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

Possible Output

BE the compiler

StaticSuper is a constructor, and must
have () in its signature. Notice that as
the output below demonstrates, the static
blocks for both classes run before either
of the constructors run.

1. To use the Math class, the first step is to

make an instance of it.

2. You can mark a constructor with the key-

word ‘static’.

3. Static methods don’t have access to an

object’s instance variables.

4. It is good practice to call a static method

using a reference variable.

5. Static variables could be used to count the

instances of a class.

6. Constructors are called before static vari-

ables are initialized.

7. MAX_SIZE would be a good name for a

static final variable.

8. A static initializer block runs before a class’s

constructor runs.

9. If a class is marked final, all of its methods

must be marked final.

10. A final method can only be overridden if

its class is extended.

11. There is no wrapper class for boolean

primitives.

12. A wrapper is used when you want to treat a

primitive like an object.

13. The parseXxx methods always return a

String.

14. Formatting classes (which are decoupled

from I/O), are in the java.format package.

False

False

True

False

True

False

True

True

False

False

False

True

False

False

True or False

314 chapter 10

Exercise Solutions

import java.util.*;

import static java.lang.System.out;

class FullMoons {

 static int DAY_IM = 1000 * 60 * 60 * 24;

 public static void main(String [] args) {

 Calendar c = Calendar.getInstance();

 c.set(2004,0,7,15,40);

 long day1 = c.getTimeInMillis();

 for (int x = 0; x < 60; x++) {

 day1 += (DAY_IM * 29.52)

 c.setTimeInMillis(day1);

 out.println(String.format(“full moon on %tc”, c));

 }

 }

}

File Edit Window Help Howl

% java FullMoons
full moon on Fri Feb 06 04:09:35 MST 2004
full moon on Sat Mar 06 16:38:23 MST 2004
full moon on Mon Apr 05 06:07:11 MDT 2004

Notes on the Lunar Code Magnet:

You might discover that a few of the
dates produced by this program are
off by a day. This astronomical stuff
is a little tricky, and if we made it
perfect, it would be too complex to
make an exercise here.

Hint: one problem you might try to
solve is based on differences in time
zones. Can you spot the issue?

code magnets solution

11 exception handling

this is a new chapter 315

Stuff happens. The file isn’t there. The server is down. No matter how

good a programmer you are, you can’t control everything. Things can go wrong. Very wrong.

When you write a risky method, you need code to handle the bad things that might happen.

But how do you know when a method is risky? And where do you put the code to handle the

exceptional situation? So far in this book, we haven’t really taken any risks. We’ve certainly had

things go wrong at runtime, but the problems were mostly flaws in our own code. Bugs. And

those we should fix at development time. No, the problem-handling code we’re talking about

here is for code that you can’t guaranatee will work at runtime. Code that expects the file to be

in the right directory, the server to be running, or the Thread to stay asleep. And we have to do

this now. Because in this chapter, we’re going to build something that uses the risky JavaSound

API. We’re going to build a MIDI Music Player.

 Risky Behavior
Sure it’s risky,

but I can handle it if
something goes wrong.

Make it Stick

316 chapter 11

building the MIDI Music Player

Let’s make a Music Machine
Over the next three chapters, we’ll build a few different sound
applications, including a BeatBox Drum Machine. In fact,
before the book is done, we’ll have a multi-player version so
you can send your drum loops to another player, kind of like
a chat room. You’re going to write the whole thing, although
you can choose to use Ready-bake code for the GUI parts.
OK, so not every IT department is looking for a new BeatBox
server, but we’re doing this to learn more about Java. Building
a BeatBox is just a way to have fun while we’re learning Java.

The finished BeatBox looks something like this:

your message, that g
ets

sent to the ot
her players,

along with your curre
nt

beat pattern,
 when you

hit “SendIt”
Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

incoming messages from other players. Click one to load the pattern that goes with it, and then click ‘Start’ to play it.Put checkmarks in the boxes for each of the 16 ‘beats’. For example, on beat
1 (of 16) the Bass drum and the Maracas will play, on beat 2 nothing, and
on beat 3 the Maracas and Closed Hi-Hat... you get the idea. When you hit
‘Start’, it plays your pattern in a loop until you hit ‘Stop’. At any time, you
can “capture” one of your own patterns by sending it to the BeatBox server
(which means any other players can listen to it). You can also load any of the
incoming patterns by clicking on the message that goes with it.

You make a beatbox loop (a 16-beat drum pattern) by putting checkmarks in the boxes.

you are here4

exception handling

317

We’ll start with the basics

MIDI file has in
formation

about how a song shou
ld be

played, but
it doesn’t h

ave any

actual sound
 data. It’s k

ind of

like sheet m
usic instruc

tions

for a playe
r-piano.

MIDI file

MIDI-capable I
nstrument

Obviously we’ve got a few things to learn before the whole
program is finished, including how to build a Swing GUI, how
to connect to another machine via networking, and a little I/O
so we can send something to the other machine.

Oh yeah, and the JavaSound API. That’s where we’ll start in this
chapter. For now, you can forget the GUI, forget the networking
and the I/O, and focus only on getting some MIDI-generated
sound to come out of your computer. And don’t worry if you
don’t know a thing about MIDI, or a thing about reading or
making music. Everything you need to learn is covered here.
You can almost smell the record deal.

The JavaSound API

JavaSound is a collection of classes and interfaces added to
Java starting with version 1.3. These aren’t special add-ons;
they’re part of the standard J2SE class library. JavaSound is split
into two parts: MIDI and Sampled. We use only MIDI in this
book. MIDI stands for Musical Instrument Digital Interface,
and is a standard protocol for getting different kinds of
electronic sound equipment to communicate. But for
our BeatBox app, you can think of MIDI as a kind of
sheet music that you feed into some device you can think
of like a high-tech ‘player piano’. In other words, MIDI
data doesn’t actually include any sound, but it does
include the instructions that a MIDI-reading instrument
can play back. Or for another analogy, you can think of
a MIDI file like an HTML document, and the instrument
that renders the MIDI file (i.e. plays it) is like the Web
browser.

MIDI data says what to do (play middle C, and here’s how hard
to hit it, and here’s how long to hold it, etc.) but it doesn’t say
anything at all about the actual sound you hear. MIDI doesn’t
know how to make a flute, piano, or Jimmy Hendrix guitar
sound. For the actual sound, we need an instrument (a MIDI
device) that can read and play a MIDI file. But the device is
usually more like an entire band or orchestra of instruments. And
that instrument might be a physical device, like the electronic
keyboard synthesizers the rock musicians play, or it could
even be an instrument built entirely in software, living in your
computer.

For our BeatBox, we use only the built-in, software-only
instrument that you get with Java. It’s called a synthesizer (some
folks refer to it as a software synth) because it creates sound.
Sound that you hear.

Speaker

MIDI device knows how to
‘read’ a MIDI file and play back
the sound. The device might
be a synthesizer keyboard or
some other kind of instrument.
Usually, a MIDI instrument
can play a LOT of different
sounds (piano, drums, violin,
etc.), and all at the same time.
So a MIDI file isn’t like sheet
music for just one musician in
the band -- it can hold the
parts for ALL the musicians
playing a particular song.

318 chapter 11

First we need a Sequencer
Before we can get any sound to play, we need a Sequencer object. The
sequencer is the object that takes all the MIDI data and sends it to the right
instruments. It’s the thing that plays the music. A sequencer can do a lot of
different things, but in this book, we’re using it strictly as a playback device. Like
a CD-player on your stereo, but with a few added features. The Sequencer class
is in the javax.sound.midi package (part of the standard Java library as of version
1.3). So let’s start by making sure we can make (or get) a Sequencer object.

but it looked so simple

import javax.sound.midi.*;

public class MusicTest1 {

 public void play() {

 Sequencer sequencer = MidiSystem.getSequencer();

 System.out.println(“We got a sequencer”);

 } // close play

 public static void main(String[] args) {

 MusicTest1 mt = new MusicTest1();

 mt.play();

 } // close main

} // close class

import the jav
ax.sound.midi package

We need a Sequencer objec
t. It’s the

main part of the MIDI device/instrument

we’re using. It’s the thing
that, well,

sequences all the MIDI information into

a ‘song’. But we don’t make a brand

new one ourselves -- we have to ask the

MidiSystem to give us one.

File Edit Window Help SayWhat?

% javac MusicTest1.java

MusicTest1.java:13: unreported exception javax.sound.midi.
MidiUnavailableException; must be caught or declared to be
thrown

 Sequencer sequencer = MidiSystem.getSequencer();

 ^

1 errors

This code won’t compile! The compiler says there’s an ‘unreported exception’ that must be caught or declared.

Something’s wrong!

you are here4

exception handling

319

1 Let’s say you want
to call a method in a
class that you didn’t
write.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know
that the method
you’re calling is
risky.

What happens when a method you want to call
(probably in a class you didn’t write) is risky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

you
class you

didn’t write
class you

write

that uses methods in

void moo() {
 if (serverDown) {
 explode();
 }
}

you

your codeyour code

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

class you
didn’t write

class you

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

class you
didn’t write

class you

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

I wonder if
that method

could blow up...

My moo()
method will

explode if the
server is down.

you

write safely

Now that I
know, I can take

precautions.

your codeyour code

class Bar {
 void go() {
 moo();
 }
 int stuff() {
 x.beep();
 }
}

class Bar {
 void go() {
 try{
 moo();
 }catch(MX m){
 cry();
 }
 }
}

320 chapter 11

The API docs tell you
that getSequencer()
can throw an exception:
MidiUnavailableException.
A method has to declare
the exceptions it might
throw.

The API docs tell you
that getSequencer()
can throw an exception:
MidiUnavailableException.
A method has to declare
the exceptions it might
throw.

This part tells you WHEN you might get that exception -- in this case, because of resource restrictions (which could just means the sequencer is already being used).

Java’s exception-handling mechanism is a clean, well-lighted way to handle “exceptional
situations” that pop up at runtime; it lets you put all your error-handling code in one
easy-to-read place. It’s based on you knowing that the method you’re calling is risky
(i.e. that the method might generate an exception), so that you can write code to deal
with that possibility. If you know you might get an exception when you call a particular
method, you can be prepared for—possibly even recover from—the problem that caused
the exception.

So, how do you know if a method throws an exception? You fi nd a throws clause in the
risky method’s declaration.

The getSequencer() method takes a risk. It can fail at runtime.
So it must ‘declare’ the risk you take when you call it.

when things might go wrong

Methods in Java use exceptions to tell the calling code,

“Something Bad Happened. I failed.”

you are here4

exception handling

321

The compiler needs to know
that YOU know you’re calling
a risky method.

If you wrap the risky code in something called a
try/catch, the compiler will relax.

A try/catch block tells the compiler that you
know an exceptional thing could happen in the
method you’re calling, and that you’re prepared
to handle it. That compiler doesn’t care how you
handle it; it cares only that you say you’re taking
care of it.

import javax.sound.midi.*;

public class MusicTest1 {

 public void play() {

 try {
 Sequencer sequencer = MidiSystem. getSequencer();

 System.out.println(“Successfully got a sequencer”);

 } catch(MidiUnavailableException ex) {
 System.out.println(“Bummer”);
 }
 } // close play

 public static void main(String[] args) {

 MusicTest1 mt = new MusicTest1();

 mt.play();

 } // close main

} // close class

put the risky th
ing

in a ‘try’ block.

make a ‘catch’ block for what to
do if the exceptional situation
happens -- in other words, a
MidiUnavailableException is thrown
by the call to getSequencer().

 know you’re calling

method you’re calling, and that you’re prepared
you

put the risky th
ing

Dear Compiler, I know I’m taking a risk here, but don’t you think it’s worth it? What should I do?
 signed, geeky in Waikiki

Dear geeky,
 Life is short (especially on the heap). Take the risk. try it. But just in case things don’t work out, be sure to catch any problems before all hell breaks loose.

322 chapter 11

I’m gonna

TRY this risky thing
and I’m gonna

CATCH myself if I fall.

Don’t try this at home.

try {

 // do risky thing

} catch(Exception ex) {

 // try to recover

}

An exception is an object...

of type Exception.

Which is fortunate, because it would be much harder
to remember if exceptions were of type Broccoli.

Remember from your polymorphism chapters that
an object of type Exception can be an instance of any
subclass of Exception.

Because an Exception is an object, what you catch is an
object. In the following code, the catch argument
is declared as type Exception, and the parameter
reference variable is ex.

it’s just like
 declaring

a method argum
ent.

This code only runs if an Exception is thrown.
InterruptedException

Throwable

Exception

IOException

getMessage()

printStackTrace()

Part of the Exception

class hierarchy. They all

extend class Throwable

and inherit two key

methods.

exceptions are objects

What you write in a catch block depends on the
exception that was thrown. For example, if a server
is down you might use the catch block to try another
server. If the fi le isn’t there, you might ask the user
for help fi nding it.

you are here4

exception handling

323

If it’s your code that catches the exception,

then whose code throws it?
You’ll spend much more of your Java coding time handling
exceptions than you’ll spend creating and throwing them yourself.
For now, just know that when your code calls a risky method—a
method that declares an exception—it’s the risky method that
throws the exception back to you, the caller.

In reality, it might be you who wrote both classes. It really
doesn’t matter who writes the code... what matters is knowing
which method throws the exception and which method catches it.

When somebody writes code that could throw an exception, they
must declare the exception.

One method will
catch what another
method throws. An
exception is always
thrown back to the
caller.

The method that
throws has to declare
that it might throw
the exception.

 public void takeRisk() throws BadException {

 if (abandonAllHope) {

 throw new BadException();

 }

 }
create a new Exception
object and throw it.

this method MUST tell the world (by

declaring) th
at it throws a BadException

 public void crossFingers() {

 try {

 anObject.takeRisk();

 } catch (BadException ex) {

 System.out.println(“Aaargh!”);

 ex.printStackTrace();

 }

If you can’t recover from the exception, at LEAST get a stack trace using the printStackTrace() method that all exceptions inherit.

class with a
risky method
class with a

throws an exception back

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

your codeyour code

class Bar {
 void go() {
 moo();
 }
 int stuff() {
 x.beep();
 }
}

calls risky method
1

2

Risky, exception-throwing code:

Your code that calls the risky method:

1

2

324 chapter 11

there are noDumb Questions

Q: Wait just a minute! How come this is the FIRST time
we’ve had to try/catch an Exception? What about the
exceptions I’ve already gotten like NullPointerException
and the exception for DivideByZero. I even got a
NumberFormatException from the Integer.parseInt()
method. How come we didn’t have to catch those?

A: The compiler cares about all subclasses of Exception,
unless they are a special type, RuntimeException. Any
exception class that extends RuntimeException gets a
free pass. RuntimeExceptions can be thrown anywhere,
with or without throws declarations or try/catch blocks.
The compiler doesn’t bother checking whether a method
declares that it throws a RuntimeException, or whether the
caller acknowledges that they might get that exception at
runtime.

Q: I’ll bite. WHY doesn’t the compiler care about those
runtime exceptions? Aren’t they just as likely to bring the
whole show to a stop?

A: Most RuntimeExceptions come from a problem in
your code logic, rather than a condition that fails at runtime
in ways that you cannot predict or prevent. You cannot
guarantee the file is there. You cannot guarantee the server
is up. But you can make sure your code doesn’t index off the
end of an array (that’s what the .length attribute is for).

You WANT RuntimeExceptions to happen at development
and testing time. You don’t want to code in a try/catch, for
example, and have the overhead that goes with it, to catch
something that shouldn’t happen in the first place.

A try/catch is for handling exceptional situations, not flaws
in your code. Use your catch blocks to try to recover from
situations you can’t guarantee will succeed. Or at the very
least, print out a message to the user and a stack trace, so
somebody can figure out what happened.

The compiler checks for everything
except RuntimeExceptions.

The compiler guarantees:

RuntimeExceptions are NOT checked by the

compiler. They’re known as (big surprise h
ere)

“unchecked excepti
ons”. You can throw, catch,

and declare RuntimeExceptions, but you
don’t

have to, and the co
mpiler won’t check.

InterruptedException

Exception

IOException RuntimeException

NullPointerExceptionClassCastException

Exceptions that are NOT subclasses of RuntimeException are checked for by the compiler. They’re called “checked exceptions”
If you throw an exception in your code you must declare it using
the throws keyword in your method declaration.

If you call a method that throws an exception (in other words,
a method that declares it throws an exception), you must
acknowledge that you’re aware of the exception possibility.
One way to satisfy the compiler is to wrap the call in a try/catch.
(There’s a second way we’ll look at a little later in this chapter.)

checked and unchecked exceptions

1

2

you are here4

exception handling

325

 BULLET POINTS
ß A method can throw an exception when something fails at runtime.

ß An exception is always an object of type Exception. (Which, as you
remember from the polymorphism chapters means the object is from a
class that has Exception somewhere up its inheritance tree.)

ß The compiler does NOT pay attention to exceptions that are of
type RuntimeException. A RuntimeException does not have to be
declared or wrapped in a try/catch (although you’re free to do either or
both of those things)

ß All Exceptions the compiler cares about are called ‘checked
exceptions’ which really means compiler-checked exceptions. Only
RuntimeExceptions are excluded from compiler checking. All other
exceptions must be acknowledged in your code, according to the
rules.

ß A method throws an exception with the keyword throw, followed by
a new exception object:

 throw new NoCaffeineException();

ß Methods that might throw a checked exception must announce it with
a throws Exception declaration.

ß If your code calls a checked-exception-throwing method, it must
reassure the compiler that precautions have been taken.

ß If you’re prepared to handle the exception, wrap the call in a try/catch,
and put your exception handling/recovery code in the catch block.

ß If you’re not prepared to handle the exception, you can still make the
compiler happy by officially ‘ducking’ the exception. We’ll talk about
ducking a little later in this chapter.

Which of these do you think
might throw an exception that
the compiler would care about?
We’re only looking for the
things that you can’t control in
your code. We did the first one.

(Because it was the easiest.)

__ connect to a remote server

__ access an array beyond its length

__ display a window on the screen

__ retrieve data from a database

__ see if a text file is where you think it is

__ create a new file

__ read a character from the command-line

Sharpen your pencil
Things you want to do

What might go wrong

the server is down

metacognitive tip
If you’re trying to learn something new,

make that the last thing you try to learn

before going to sleep. So, once you put this

book down (assuming you can tear yourself

away from it) don’t read anything else more

challenging than the back of a Cheerios™

box. Your brain needs time to process what

you’ve read and learned. That could take

a few hours. If you try to shove something

new in right on top of your Java, some of the

Java might not ‘stick.’

Of course, this doesn’t rule out learning

a physical skill. Working on your latest

Ballroom KickBoxing routine

probably won’t affect your

Java learning.

For the best results, read this

book (or at least look at

the pictures) right before

going to sleep.

326 chapter 11

try {

 Foo f = x.doRiskyThing();

 int b = f.getNum();

} catch (Exception ex) {
 System.out.println(“failed”);

}

System.out.println(“We made it!”);

exceptions and flow control

First the try block
 runs,

then the code bel
ow the

catch runs.

File Edit Window Help RiskAll

%java Tester

We made it!

When you call a risky method, one of two things can hap-
pen. The risky method either succeeds, and the try block
completes, or the risky method throws an exception back to
your calling method.

Flow control in try/catch blocks

If the try succeeds
(doRiskyThing() does not
throw an exception)

1

try {

 Foo f = x.doRiskyThing();

 int b = f.getNum();

} catch (Exception ex) {
 System.out.println(“failed”);

}

System.out.println(“We made it!”);

The try block
 runs, but th

e

call to doRiskyThing() throw
s

an exception
, so the rest

 of

the try bloc
k doesn’t run

.

The catch blo
ck runs, then

the method contin
ues on.

File Edit Window Help RiskAll

%java Tester

failed

We made it!

If the try fails
(because doRiskyThing()
does throw an exception)

The rest of
 the try bl

ock nev-

er runs, w
hich is a G

ood Thing

because th
e rest of

the try

depends on
 the succe

ss of

the call to
 doRiskyThing().

2

1

2

3

The code in the
catch block never
runs.

you are here4

exception handling

327

If you try to cook something, you start by turning on
the oven.

If the thing you try is a complete failure,
you have to turn off the oven.

If the thing you try succeeds,
you have to turn off the oven.

You have to turn off the oven no matter what!

Are you sure
you want to try

this?

No matter what, do NOT let
me forget to turn off the

oven! Last time I torched half
the neighborhood.

Finally: for the things you want
to do no matter what.

A finally block is where you put
code that must run regardless
of an exception.

 try {

 turnOvenOn();

 x.bake();

 turnOvenOff();

 } catch (BakingException ex) {

 ex.printStackTrace();

 turnOvenOff();

 }

Without finally, you have to put the
turnOvenOff() in both the try and the catch
because you have to turn off the oven no matter
what. A finally block lets you put all your
important cleanup code in one place instead of
duplicating it like this:

 try {

 turnOvenOn();

 x.bake();

 } catch (BakingException ex) {

 ex.printStackTrace();

 } finally {
 turnOvenOff();

 }

If the try block fails (an exception), flow

control immediately moves to the catch block.

When the catch block completes, the finally

block runs. When the finally block completes,

the rest of the method continues on.

If the try block succeeds (no exception),

flow control skips over the catch block and

moves to the finally block. When the finally

block completes, the rest of the method

continues on.

If the try or catch block has a return

statement, finally will still run! Flow

jumps to the finally, then back to the return.

File Edit Window Help RiskAll

%java Tester

We made it!

328 chapter 11

Look at the code to the left. What do you think the
output of this program would be? What do you think
it would be if the third line of the program were
changed to: String test = “yes”; ?
Assume ScaryException extends Exception.

Sharpen your pencil

public class TestExceptions {

 public static void main(String [] args) {

 String test = “no”;
 try {
 System.out.println(“start try”);
 doRisky(test);
 System.out.println(“end try”);
 } catch (ScaryException se) {
 System.out.println(“scary exception”);
 } finally {
 System.out.println(“finally”);
 }
 System.out.println(“end of main”);
 }

 static void doRisky(String test) throws ScaryException {
 System.out.println(“start risky”);
 if (“yes”.equals(test)) {

 throw new ScaryException();

 }

 System.out.println(“end risky”);

 return;

 }

}

 Output when test = “no”

 Output when test = “yes”

When test = “no”: start try - start risky - end risky - end try - finally - end of main
When test = “yes”: start try - start risky - scary exception - finally - end of main

Flow Control

flow control exercise

you are here4

exception handling

329

public class Foo {

 public void go() {

 Laundry laundry = new Laundry();

 try {

 laundry.doLaundry();

 } catch(PantsException pex) {

 // recovery code

 } catch(LingerieException lex) {

 // recovery code

 }
 }
}

} catch(LingerieException lex) {

} catch(PantsException pex) {

A method can throw multiple exceptions if it darn well needs to. But
a method’s declaration must declare all the checked exceptions it can
throw (although if two or more exceptions have a common superclass, the
method can declare just the superclass.)

Did we mention that a method can
throw more than one exception?

The compiler will make sure that you’ve handled all the checked excep-
tions thrown by the method you’re calling. Stack the catch blocks under
the try, one after the other. Sometimes the order in which you stack the
catch blocks matters, but we’ll get to that a little later.

Catching multiple exceptions

public class Laundry {

 public void doLaundry() throws PantsException, LingerieException {

 // code that could throw either exception

 }

} This method declar
es two, count ‘em,

TWO exceptions.

LingerieException

if doLaundry() throws a
PantsException, it lands in the
PantsException catch block.

if doLaundry() throws a

LingerieException, it land
s in the

LingerieException catch
block.

330 chapter 11

Exceptions are objects, remember. There’s nothing all that
special about one, except that it is a thing that can be thrown.
So like all good objects, Exceptions can be referred to
polymorphically. A LingerieException object, for example,
could be assigned to a ClothingException reference. A
PantsException could be assigned to an Exception reference.
You get the idea. The benefi t for exceptions is that a method
doesn’t have to explicitly declare every possible exception it
might throw; it can declare a superclass of the exceptions.
Same thing with catch blocks—you don’t have to write a catch
for each possible exception as long as the catch (or catches)
you have can handle any exception thrown.

Exceptions are polymorphic

You can DECLARE exceptions using
a supertype of the exceptions you
throw.

All exceptions have

Exception as a
superclass.

Exception

IOException

1

 public void doLaundry() throws ClothingException {

 Declaring a ClothingException lets you throw any subclass of ClothingException . That means doLaundry() can throw a PantsException, LingerieException, TeeShirtException, and DressShirtException without explicitly declaring them
individually.

You can CATCH exceptions using a
supertype of the exception thrown.

2

try {

 laundry.doLaundry();

} catch(ClothingException cex) {

 // recovery code

}

try {

 laundry.doLaundry();

} catch(ShirtException sex) {

 // recovery code

}

can catch on
ly

TeeShirtException and

DressShirtException can catch an
y

ClothingException

subclass

ClothingException

PantsException LingerieException ShirtExceptionPantsException

TeeShirtException
DressShirtException

laundry.doLaundry();

} catch(ShirtException sex) {

 {

polymorphic exceptions

you are here4

exception handling

331

You could write your exception-handling code so that
you specify only one catch block, using the supertype
Exception in the catch clause, so that you’ll be able to
catch any exception that might be thrown.

Just because you CAN catch everything
with one big super polymorphic catch,
doesn’t always mean you SHOULD.

try {

 laundry.doLaundry();

} catch(Exception ex) {

 // recovery code...

}

Recovery from WHAT? This catch block will

catch ANY and all exceptions,
so you won’t

automatically know what went wrong.

For example, if your code deals with (or recovers
from) a TeeShirtException differently than it handles a
LingerieException, write a catch block for each. But if you
treat all other types of ClothingException in the same way,
then add a ClothingException catch to handle the rest.

Write a different catch block for each
exception that you need to handle
uniquely.

try {

 laundry.doLaundry();

} catch(TeeShirtException tex) {

 // recovery from TeeShirtException

} catch(LingerieException lex) {

 // recovery from LingerieException

} catch(ClothingException cex) {

 // recovery from all others

}

} catch(LingerieException lex) {

TeeShirtExceptions a
nd

LingerieExceptions n
eed differ

ent

recovery c
ode, so you

 should use

different
catch bloc

ks.

All other ClothingExceptions are caught here.} catch(ClothingException cex) {

332 chapter 11

The higher up the inheritance tree, the bigger the
catch ‘basket’. As you move down the inheritance
tree, toward more and more specialized Exception
classes, the catch ‘basket’ is smaller. It’s just plain old
polymorphism.

A ShirtException catch is big enough to take
a TeeShirtException or a DressShirtException
(and any future subclass of anything that extends
ShirtException). A ClothingException is even bigger
(i.e. there are more things that can be referenced
using a ClothingException type). It can take an
exception of type ClothingException(duh), and
any ClothingException subclasses: PantsException,
UniformException, LingerieException, and
ShirtException. The mother of all catch arguments
is type Exception; it will catch any exception,
including runtime (unchecked) exceptions, so you
probably won’t use it outside of testing.

Multiple catch blocks must be ordered
from smallest to biggest

UniformException

ClothingException

PantsException LingerieException ShirtExceptionPantsException

TeeShirtException DressShirtException

UniformExceptionUniformException

catch(TeeShirtException tex)

catch(ShirtException sex)

catch(ClothingException cex)

TeeShirtExceptions
 are

caught he
re, but no

 other

exception
s will fit.

TeeShirtExceptions
 will

never get
 here, but

 all

other Shi
rtException

subclasses
 are caug

ht here.

All ClothingExceptions

are caugh
t here, al

though

TeeShirtException
and

ShirtException
will never

get this f
ar.

order of multiple catch blocks

you are here4

exception handling

333

try {

 laundry.doLaundry();

 } catch(ClothingException cex) {

 // recovery from ClothingException

 } catch(LingerieException lex) {

 // recovery from LingerieException

 } catch(ShirtException sex) {

 // recovery from ShirtException

 }

laundry.doLaundry();

 } catch(ClothingException cex) {

 } catch(LingerieException lex) {

 } catch(ShirtException sex) {

Size matters when
you have multiple catch

blocks. The one with the biggest
basket has to be on the bottom.

Otherwise, the ones with
smaller baskets are useless.

You can’t put bigger baskets
above smaller baskets.
Well, you can but it won’t compile. Catch
blocks are not like overloaded methods
where the best match is picked. With catch
blocks, the JVM simply starts at the fi rst one
and works its way down until it fi nds a catch
that’s broad enough (in other words, high
enough on the inheritance tree) to handle
the exception. If your fi rst catch block is
catch(Exception ex), the compiler
knows there’s no point in adding any
others—they’ll never be reached.

Siblings can be in any order, because they
can’t catch one another’s exceptions.

You could put ShirtException above

LingerieException and nobody would mind.

Because even though ShirtException is a bigger

(broader) type because it can catch other classes

(its own subclasses), ShirtException can’t catch a

LingerieException so there’s no problem.

Don’t do t
his!

334 chapter 11

polymorphic puzzle

BiffEx

FooEx

BarEx

try {

 x.doRisky();

} catch(AlphaEx a) {

 // recovery from AlphaEx

} catch(BetaEx b) {

 // recovery from BetaEx

} catch(GammaEx c) {

 // recovery from GammaEx

} catch(DeltaEx d) {

 // recovery from DeltaEx

}

BazEx

BoinkEx

Assume the try/catch block here is legally coded. Your task is to draw
two different class diagrams that can accurately refl ect the Exception
classes. In other words, what class inheritance structures would make the
try/catch blocks in the sample code legal?

Your task is to create two different legal try / catch structures (similar to
the one above left), to accurately represent the class diagram shown on
the left. Assume ALL of these exceptions might be thrown by the method
with the try block.

Sharpen your pencil

you are here4

exception handling

335

The art of ducking an exception

When you don’t want to handle
an exception...

If you don’t want to handle an
exception, you can duck it by
declaring it.
When you call a risky method, the compiler
needs you to acknowledge it. Most of the time,
that means wrapping the risky call in a try/
catch. But you have another alternative, simply
duck it and let the method that called you catch
the exception.

It’s easy—all you have to do is declare that
you throw the exceptions. Even though,
technically, you aren’t the one doing the
throwing, it doesn’t matter. You’re still the one
letting the exception whiz right on by.

But if you duck an exception, then you don’t
have a try/catch, so what happens when the
risky method (doLaundry()) does throw the
exception?

When a method throws an exception, that
method is popped off the stack immediately,
and the exception is thrown to the next
method down the stack—the caller. But if the
caller is a ducker, then there’s no catch for it so
the caller pops off the stack immediately, and
the exception is thrown to the next method
and so on... where does it end? You’ll see a
little later.

an exception...

just duck it What the...?

There is NO way I’m
catching that thing. I’m gettin’

out of the way-- somebody
behind me can handle it.

public void foo() throws ReallyBadException {

 // call risky method without a try/catch

 laundry.doLaundry();

}

You don’t REALLY throw it, but

since you do
n’t have a t

ry/catch

for the risk
y method you c

all,

YOU are now the “risky m
ethod”.

Because now, whoever calls
YOU

has to deal
with the exce

ption.

336 chapter 11

handle or declare

Ducking (by declaring) only
delays the inevitable

Sooner or later, somebody has to
deal with it. But what if main()
ducks the exception?

public class Washer {
 Laundry laundry = new Laundry();

 public void foo() throws ClothingException {
 laundry.doLaundry();
 }

 public static void main (String[] args) throws ClothingException {
 Washer a = new Washer();
 a.foo();
 }
}

Both methods d
uck the

exceptio
n

(by decla
ring it) so ther

e’s nobod
y to

handle it
! This compiles just

 fine.

mainmain
foo

doLaundry

main
foo

1

main() calls foo()

foo() calls doLaundry()

doLaundry() is
running and throws a
ClothingException

2

doLaundry() pops off the
stack immediately and
the exception is thrown
back to foo().

But foo() doesn’t have a
try/catch, so...

doLaundry() throws a
ClothingException

foo() ducks the
exception 3 main() ducks the

exception

foo() pops off the
stack immediately and
the exception is thrown
back to... who? What?
There’s nobody left
but the JVM, and it’s
thinking, “Don’t expect
ME to get you out of
this.”

4 The JVM
shuts down

We’re using the tee-shirt to represent a Clothing

Exception. We know, we know... you would

have preferred the blue jeans.

you are here4

exception handling

337

So now we’ve seen both ways to satisfy the compiler
when you call a risky (exception-throwing) method.

Handle or Declare. It’s the law.

HANDLE1

try {
 laundry.doLaundry();

} catch(ClothingException cex) {
 // recovery code

}

Wrap the risky call in a try/catch
This had better be a big enough catch to handle all exceptions that doLaundry() might throw. Or else the compiler will still complain that you’re not catching all of the exceptions.

DECLARE (duck it)2

void foo() throws ClothingException {
 laundry.doLaundry();
}

Declare that YOUR method throws the same exceptions
as the risky method you’re calling.

But now this means that whoever calls the foo() method
has to follow the Handle or Declare law. If foo() ducks
the exception (by declaring it), and main() calls foo(), then
main() has to deal with the exception.

public class Washer {
 Laundry laundry = new Laundry();

 public void foo() throws ClothingException {
 laundry.doLaundry();
 }

 public static void main (String[] args) {
 Washer a = new Washer();
 a.foo();
 }
} Because the foo() method ducks the ClothingException thrown by doLaundry(), main() has to wrap a.foo() in a try/catch, or main() has to declare that it, too, throws ClothingException!

Now main() won’t compile, and we

get an “unre
ported exce

ption” error
.

As far as the
 compiler’s conce

rned,

the foo() m
ethod throw

s an

exception.

TROUBLE!!

The doLaundry() method throws a

ClothingException, but b
y declaring the

exception, the
foo() method gets to

duck the excep
tion. No try/catch.

338 chapter 11

fixing the Sequencer code

public void play() {

 try {

 Sequencer sequencer = MidiSystem.getSequencer();

 System.out.println(“Successfully got a sequencer”);

 } catch(MidiUnavailableException ex) {
 System.out.println(“Bummer”);

 }
 } // close play

Now that you’ve completely forgotten, we started this chapter
with a first look at some JavaSound code. We created a Se-
quencer object but it wouldn’t compile because the method
Midi.getSequencer() declares a checked exception (MidiUnavail-
ableException). But we can fix that now by wrapping the call in a
try/catch.

Getting back to our music code...

No problem calling getS
equencer(),

now that we’ve wrapped it in
a try/

catch block.

The catch parameter has to be
the ‘right’ exception. If we said
‘catch(FileNot FoundException f), the

code would not compile, because poly-
morphically a MidiUnavilableException
won’t fit into a FileNotFoundException.

Remember it’s not enough to have a
catch block... you have to catch the
thing being thrown!

You cannot have a catch or finally
without a try

Exception Rules

void go() {

 Foo f = new Foo();

 f.foof();

 catch(FooException ex) { }

 }

NOT LEGAL!

Where’s the tr
y?

You cannot put code between the
try and the catch

try {

 x.doStuff();

}

int y = 43;

} catch(Exception ex) { }

NOT LEGAL! You can’t put code between the try and the catch.

A try MUST be followed by either a
catch or a finally

try {

 x.doStuff();

} finally {

 // cleanup

}

LEGAL because you have a finally, even though there’s no catch. But you cannot have a try by itself.

1

2

3

A try with only a finally (no catch)
must still declare the exception.

void go() throws FooException {

 try {

 x.doStuff();

 } finally { }

}

4

A try without a cat
ch

doesn’t satis
fy the

handle or de
clare law

you are here4

exception handling

339

Code Kitchen

There is NO way
I’m letting Betty win the

code-off this year, so I’m
gonna make it myself from
scratch.

But why don’t
you just use

Ready-bake code?

You don’t have to do it
yourself, but it’s a lot
more fun if you do.
The rest of this chapter
is optional; you can use
Ready-bake code for all
the music apps.
But if you want to learn
more about JavaSound,
turn the page.

340 chapter 11

Remember near the beginning of the chapter, we looked at how MIDI data holds
the instructions for what should be played (and how it should be played) and we
also said that MIDI data doesn’t actually create any sound that you hear. For sound
to come out of the speakers, the MIDI data has to be sent through some kind of
MIDI device that takes the MIDI instructions and renders them in sound, either
by triggering a hardware instrument or a ‘virtual’ instrument (software synthe-
sizer). In this book, we’re using only software devices, so here’s how it works in
JavaSound:

Making actual sound

You need FOUR things:

Sequencer
plays has a

Midi
Event

Midi
Event

Midi
Event

Sequence Track

Midi
Eventholds

The Sequencer is the thing
that actually causes a song
to be played. Think of it like
a music CD player.

The Sequence is the
song, the musical piece
that the Sequencer will
play. For this book, think
of the Sequence as a
music CD, but the whole
CD plays just one song.

For this book, we only
need one Track, so just
imagine a a music CD
with only one song. A
single Track. This Track
is where all the song
data (MIDI information)
lives.

1 The thing that
plays the music

2 The music to be
played...a song.

3 The part of the
Sequence that
holds the actual
information

4 The actual music
information:
notes to play,
how long, etc.

A MIDI event is a message
that the Sequencer can
understand. A MIDI event
might say (if it spoke
English), “At this moment
in time, play middle C, play
it this fast and this hard,
and hold it for this long. “

A MIDI event might
also say something like,
“Change the current
instrument to Flute.”

For this boo
k, think of

 the Seque
nce as a

single-song CD (has only
one Track). The

information abou
t how to play th

e song

lives on th
e Track, and t

he Track is par
t

of the Seq
uence.

JavaSound MIDI classes

you are here4

exception handling

341

And you need FIVE steps:

2 Make a new Sequence

3 Get a new Track from the Sequence

4 Fill the Track with MidiEvents and
give the Sequence to the Sequencer

1 Get a Sequencer and open it
Sequencer player = MidiSystem.getSequencer();
player.open();

Sequence seq = new Sequence(timing,4);

Track t = seq.createTrack();

t.add(myMidiEvent1);
player.setSequence(seq);

Uh, hate to break it
to you, but that’s only

FOUR steps.

Ahhhh. We
forgot to push the

PLAY button. You have to
start() the Sequencer!

player.start();

342 chapter 11

import javax.sound.midi.*;

public class MiniMiniMusicApp {

 public static void main(String[] args) {
 MiniMiniMusicApp mini = new MiniMiniMusicApp();
 mini.play();
 } // close main

 public void play() {

 try {

 Sequencer player = MidiSystem.getSequencer();
 player.open();

 Sequence seq = new Sequence(Sequence.PPQ, 4);

 Track track = seq.createTrack();

 ShortMessage a = new ShortMessage();
 a.setMessage(144, 1, 44, 100);
 MidiEvent noteOn = new MidiEvent(a, 1);
 track.add(noteOn);

 ShortMessage b = new ShortMessage();
 b.setMessage(128, 1, 44, 100);
 MidiEvent noteOff = new MidiEvent(b, 16);
 track.add(noteOff);

 player.setSequence(seq);

 player.start();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 } // close play
} // close class

get a Seq
uencer and

 open it

(so we can use
it... a Seq

uencer

doesn’t co
me already

open)

Don’t worry about the
 arguments to the

Sequence constr
uctor. Just copy these

(think

of ‘em as Ready-bake arguments).

Ask the Sequence for a Track. Remember, the Track lives in the Sequence, and the MIDI data lives in the Track.

Put some MidiEvents into the Track. This part is mostly Ready-bake code. The only thing you’ll have to care about are the arguments to the setMessage() method, and the arguments to the MidiEvent constructor. We’ll look at those arguments on the next page.

Start() the Sequencer (like pushing PLAY)

 MidiEvent noteOn = new MidiEvent(a, 1);
 track.add(noteOn);

Don’t forget to import the midi package

Your very first sound player app

1

2

3

4

Type it in and run it. You’ll hear the sound of someone playing a
single note on a piano! (OK, maybe not someone, but something.)

Give the Sequence to the Sequencer (like
putting the CD in the CD player)

a sound application

you are here4

exception handling

343

ShortMessage a = new ShortMessage();

A MidiEvent is an instruction for part of a song. A series of MidiEvents is
kind of like sheet music, or a player piano roll. Most of the MidiEvents we
care about describe a thing to do and the moment in time to do it. The moment
in time part matters, since timing is everything in music. This note follows
this note and so on. And because MidiEvents are so detailed, you have to say
at what moment to start playing the note (a NOTE ON event) and at what
moment to stop playing the notes (NOTE OFF event). So you can imagine
that firing the “stop playing note G” (NOTE OFF message) before the “start
playing Note G” (NOTE ON) message wouldn’t work.

The MIDI instruction actually goes into a Message object; the MidiEvent is
a combination of the Message plus the moment in time when that message
should ‘fire’. In other words, the Message might say, “Start playing Middle
C” while the MidiEvent would say, “Trigger this message at beat 4”.

So we always need a Message and a MidiEvent.

The Message says what to do, and the MidiEvent says when to do it.

Making a MidiEvent (song data)

1 Make a Message

2 Put the Instruction in the Message
a.setMessage(144, 1, 44, 100);

3 Make a new MidiEvent using the Message
MidiEvent noteOn = new MidiEvent(a, 1);

4 Add the MidiEvent to the Track
track.add(noteOn);

This message says, “s
tart playing n

ote 44”

(we’ll look at th
e other numbers on the

next page)

The instructions are in the message, but the Midi-Event adds the moment in time when the instruction should be triggered. This MidiEvent says to trigger message ‘a’ at the first beat (beat 1).

A MidiEvent says
what to do and
when to do it.

Every instruction
must include the
timing for that
instruction.

In other words, at
which beat that
thing should happen.

A Track holds all the MidiEvent objects. The Sequence organizes

them according to when each event is supposed to ha
ppen, and then

the Sequencer plays them back in that order. You can have lots of

events happening at the exact sa
me moment in time. For example,

you might want two notes played simultaneously, or even different

instruments playing different sounds at
 the same time.

344 chapter 11

A MIDI message holds the part of the event that says what to do. The actual instruction
you want the sequencer to execute. The first argument of an instruction is always the type
of the message.The values you pass to the other three arguments depend on the type of
message. For example, a message of type 144 means “NOTE ON”. But in order to carry
out a NOTE ON, the sequencer needs to know a few things. Imagine the sequencer saying,
“OK, I’ll play a note, but which channel? In other words, do you want me to play a Drum
note or a Piano note? And which note? Middle-C? D Sharp? And while we’re at it, at which
velocity should I play the note?

To make a MIDI message, make a ShortMessage instance and invoke setMessage(), passing
in the four arguments for the message. But remember, the message says only what to do, so
you still need to stuff the message into an event that adds when that message should ‘fire’.

MIDI message: the heart of a MidiEvent

a.setMessage(144, 1, 44, 100);
mess

age
type

chan
nel

note
 to

play

veloc
ity

Anatomy of a message

144 means
NOTE ON

Channel
Think of a channel like a musician in
a band. Channel 1 is musician 1 (the
keyboard player), channel 9 is the
drummer, etc.

Velocity
How fast and hard did
you press the key? 0 is so soft you
probably won’t hear anything, but 100 is a
good default.

128 means
NOTE OFF

1

10 2 3 4 5 6 7 8
127

Note to play
A number from 0 to 127, going
from low to high notes.1 Message type

2

3

4

star
t pla

ying

stop
 play

ing

contents of a Midi event

The first argument to setMessage() always
represents the message ‘type’, while the other
three arguments represent different things
depending on the message type.

The last 3 args vary depending on the message
type. This is a NOTE ON message, so the
other args are for things the Sequencer needs
to know in order to play a note.

The Message says what to do, the
MidiEvent says when to do it.

you are here4

exception handling

345

b.setMessage(128, 1, 44, 100);

MidiEvent noteOff = new MidiEvent(b, 3);

Now that you know what’s in a Midi message, you can start experimenting. You
can change the note that’s played, how long the note is held, add more notes,
and even change the instrument.

Change a message

Change the note
Try a number between 0 and 127 in the note
on and note off messages.

1

a.setMessage(144, 1, 20, 100);

Change the duration of the note
Change the note off event (not the message) so
that it happens at an earlier or later beat.

2

10 2 3 4 5 6 7 8
127

fi rst.setMessage(192, 1, 102, 0);

Change the instrument
Add a new message, BEFORE the note-playing message,
that sets the instrument in channel 1 to something other
than the default piano. The change-instrument message
is ‘192’, and the third argument represents the actual
instrument (try a number between 0 and 127)

3

chan
ge-i

nstr
ument

messag
e

in ch
anne

l 1 (
musici

an 1)

to in
stru

ment
102

346 chapter 11

This version still plays just a single note, but you get to use command-line argu-
ments to change the instrument and note. Experiment by passing in two int values
from 0 to 127. The first int sets the instrument, the second int sets the note to play.

Version 2: Using command-line args to experiment with sounds

import javax.sound.midi.*;

public class MiniMusicCmdLine { // this is the first one

 public static void main(String[] args) {
 MiniMusicCmdLine mini = new MiniMusicCmdLine();
 if (args.length < 2) {
 System.out.println(“Don’t forget the instrument and note args”);
 } else {
 int instrument = Integer.parseInt(args[0]);
 int note = Integer.parseInt(args[1]);
 mini.play(instrument, note);
 }
 } // close main

 public void play(int instrument, int note) {

 try {

 Sequencer player = MidiSystem.getSequencer();
 player.open();
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 MidiEvent event = null;

 ShortMessage first = new ShortMessage();
 first.setMessage(192, 1, instrument, 0);
 MidiEvent changeInstrument = new MidiEvent(first, 1);
 track.add(changeInstrument);

 ShortMessage a = new ShortMessage();
 a.setMessage(144, 1, note, 100);
 MidiEvent noteOn = new MidiEvent(a, 1);
 track.add(noteOn);

 ShortMessage b = new ShortMessage();
 b.setMessage(128, 1, note, 100);
 MidiEvent noteOff = new MidiEvent(b, 16);
 track.add(noteOff);
 player.setSequence(seq);
 player.start();

 } catch (Exception ex) {ex.printStackTrace();}
 } // close play
} // close class

change the instrument and note

File Edit Window Help Attenuate

%java MiniMusicCmdLine 102 30

%java MiniMusicCmdLine 80 20

%java MiniMusicCmdLine 40 70

Run it with two int args from 0
to 127. Try these for starters:

you are here4

exception handling

347

When we’re done, we’ll have a working
BeatBox that’s also a Drum Chat Client.
We’ll need to learn about GUIs (includ-
ing event handling), I/O, networking, and
threads. The next three chapters (12, 13,
and 14) will get us there.

Where we’re headed with the rest
of the CodeKitchens

Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

Chapter 15: the goal

beat one beat two beat three beat four ...

This CodeKitchen lets us build a little
“music video” (bit of a stretch to call it
that...) that draws random rectangles to
the beat of the MIDI music. We’ll learn
how to construct and play a lot of MIDI
events (instead of just a couple, as we do
in the current chapter).

Chapter 12: MIDI events

Now we’ll actually build the real BeatBox,
GUI and all. But it’s limited—as soon as you
change a pattern, the previous one is lost.
There’s no Save and Restore feature, and
it doesn’t communicate with the network.
(But you can still use it to work on your
drum pattern skills.)

Chapter 13: Stand-alone
BeatBox

You’ve made the perfect pattern, and
now you can save it to a file, and reload it
when you want to play it again. This gets
us ready for the final version (chapter 15),
where instead of writing the pattern to a
file, we send it over a network to the chat
server.

Chapter 14: Save and
Restore

348 chapter 11

CTrue or FalseD
Exercise

This chapter explored the wonderful world of
exceptions. Your job is to decide whether each of the
following exception-related statements is true or false.

1. A try block must be followed by a catch and a finally block.

2. If you write a method that might cause a compiler-checked exception, you
must wrap that risky code in a try / catch block.

3. Catch blocks can be polymorphic.

4. Only ‘compiler checked’ exceptions can be caught.

5. If you define a try / catch block, a matching finally block is optional.

6. If you define a try block, you can pair it with a matching catch or finally block,
or both.

7. If you write a method that declares that it can throw a compiler-checked ex-
ception, you must also wrap the exception throwing code in a try / catch block.

8. The main() method in your program must handle all unhandled exceptions
thrown to it.

9. A single try block can have many different catch blocks.

10. A method can only throw one kind of exception.

11. A finally block will run regardless of whether an exception is thrown.

12. A finally block can exist without a try block.

13. A try block can exist by itself, without a catch block or a finally block.

14. Handling an exception is sometimes referred to as ‘ducking’.

15. The order of catch blocks never matters.

16. A method with a try block and a finally block, can optionally declare the
exception.

17. Runtime exceptions must be handled or declared.

exercise: True or False

you are here4

exception handling

349

A working Java program is scrambled up on the fridge. Can you
reconstruct all the code snippets to make a working Java program
that produces the output listed below? Some of the curly braces fell
on the floor and they were too small to pick up, so feel free to add as
many of those as you need!

 try {

public static void m
ain(String [] args)

{

 String test = args
[0];

System.out.print(“o“);

class MyEx extends Exception { }

public class ExTestDrive {

File Edit Window Help ThrowUp

% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

if (“yes”.equals(t)) {

Code Magnets

System.out.print(“r“
);

System.out.print(“t“);

static void doRisky(String t) throws MyEx {

 System.out.print(“h”);

} catch (MyEx e) {

System.out.print(“a“);

System.out.print
(“w“);

System.out.println(“s“);

doRisky(test);

} fi nally {

throw new MyEx();

Exercise

350 chapter 11

JavaCross 7.0

You know what to do!

Down

2. Currently usable

3. Template’s creation

4. Don’t show the kids

5. Mostly static API class

7. Not about behavior

9. The template

11. Roll another one off
 the line

Across

1. To give value

4. Flew off the top

6. All this and more!

8. Start

10. The family tree

13. No ducking

15. Problem objects

18. One of Java’s ‘49’

More Hints:

Across 20. Also a type of collection
6. A Java child 21. Quack
8. Start a method 27. Starts a problem
13. Instead of declare 28. Not Abstract

1 2 3

121110

87

15

4

24

27

5

6

18

21

14

28

17

9

13

16

19

22

25

20

23

26

29

20. Class hierarchy

21. Too hot to handle

24. Common primitive

25. Code recipe

27. Unruly method action

28. No Picasso here

29. Start a chain of events

12. Javac saw it coming

14. Attempt risk

16. Automatic acquisition

17. Changing method

19. Announce a duck

22. Deal with it

23. Create bad news

26. One of my roles

Down 9. Only public or default
2. Or a mouthwash 16. _____ the family fortune
3. For ______ (not example) 17. Not a ‘getter’
5. Numbers . . .

puzzle: crossword

you are here4

exception handling

351

class MyEx extends Exception { }

public class ExTestDrive {

 public static void main(String [] args) {
 String test = args[0];
 try {

 System.out.print(“t”);

 doRisky(test);

 System.out.print(“o”);

 } catch (MyEx e) {

 System.out.print(“a”);

 } finally {

 System.out.print(“w”);
 }
 System.out.println(“s”);
 }

 static void doRisky(String t) throws MyEx {
 System.out.print(“h”);

 if (“yes”.equals(t)) {

 throw new MyEx();
 }

 System.out.print(“r”);

 }
} File Edit Window Help Chill

% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

1. False, either or both.

2. False, you can declare the exception.

3. True.

4. False, runtime exception can be caught.

5. True.

6. True, both are acceptable.

7. False, the declaration is sufficient.

8. False, but if it doesn’t the JVM may shut
down.

9. True.

10. False.

11. True. It’s often used to clean-up partially
completed tasks.

12. False.

13. False.

14. False, ducking is synonomous with declar-
ing.

15. False, broadest exceptions must be caught
by the last catch blocks.

16. False, if you don’t have a catch block, you
must declare.

17. False.

True or False

Exercise Solutions

Code Magnets

352 chapter 11

 A S S I G N M E N T1 2 3

121110

87

15

4

24

27

5

6

18

21

14

28

17

9

13

16

19

22

25

20

23

26

29

 A S S I G N M E N T P O P P E D
 M C N R
 A O S U B C L A S S I N V O K E
 T P T T V C
 H I E R A R C H Y A H A N D L E L
 N N H T T A
 S C E T E X C E P T I O N S
 T E C R N S
 A S K E Y W O R D H
 N E E E T R E E
 T T D U C K C R T
 I N T A A L G O R I T H M
 A E I T A T R
 T H R O W S C O N C R E T E O
 E A H E N E W

JavaCross Answers

puzzle answers

this is a new chapter 353

12 getting gui

Face it, you need to make GUIs. If you’re building applications that other

people are going to use, you need a graphical interface. If you’re building programs for yourself,

you want a graphical interface. Even if you believe that the rest of your natural life will be

spent writing server-side code, where the client user interface is a web page, sooner or later

you’ll need to write tools, and you’ll want a graphical interface. Sure, command-line apps are

retro, but not in a good way. They’re weak, inflexible, and unfriendly. We’ll spend two chapters

working on GUIs, and learn key Java language features along the way including Event

Handling and Inner Classes. In this chapter, we’ll put a button on the screen, and make it do

something when you click it. We’ll paint on the screen, we’ll display a jpeg image, and we’ll even

do some animation.

A Very Graphic
Story

I heard your
ex-wife could only cook
command-line meals.

Wow! This looks great.
I guess presentation
really is everything.

Make it Stick

354 chapter 12

You don’t add things to the frame directly.Think of the frame as the trim around the window, and you add things to the window pane.

“If I see one more
command-line app,
you’re fired.”

A JFrame is the object that represents
a window on the screen. It’s where you
put all the interface things like buttons,
checkboxes, text fields, and so on. It can
have an honest-to-goodness menu bar
with menu items. And it has all the little
windowing icons for whatever platform
you’re on, for minimizing, maximizing, and
closing the window.

The JFrame looks different depending on
the platform you’re on. This is a JFrame on
Mac OS X:

a JFrame with a menu bar

and two ‘widgets’ (a b
utton

and a radio
 button)

Making a GUI is easy:

your first gui

It all starts with a window

JFrame frame = new JFrame();

Once you have a JFrame, you can put
things (‘widgets’) in it by adding them
to the JFrame. There are a ton of Swing
components you can add; look for them
in the javax.swing package. The most
common include JButton, JRadioButton,
JCheckBox, JLabel, JList, JScrollPane,
JSlider, JTextArea, JTextField, and
JTable. Most are really simple to use, but
some (like JTable) can be a bit more
complicated.

Put widgets in the window

Make a frame (a JFrame)

JButton button = new JButton(“click me”);

frame.getContentPane().add(button);

1

Make a widget (button, text field, etc.)2

Add the widget to the frame3

frame.setSize(300,300);
frame.setVisible(true);

Display it (give it a size and make it visible)4

getting gui

you are here4 355

import javax.swing.*;

public class SimpleGui1 {
 public static void main (String[] args) {

 JFrame frame = new JFrame();
 JButton button = new JButton(“click me”);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(button);

 frame.setSize(300,300);

 frame.setVisible(true);
 }
}

Whoa! That’s a
Really Big Button.
The button fills all the
available space in the frame.
Later we’ll learn to control
where (and how big) the
button is on the frame.

Your first GUI: a button on a frame

don’t forget to import this
swing package

(you can pass the button con
structor

the text you want on the button)

give the frame a size, in pixels

finally, make it visible!! (if you forget this step, you won’t see anything when you run this code)

add the button to the frame’s content pane

Let’s see what happens when we run it:
%java SimpleGui1

make a frame and a but
ton

this line makes the program quit as soon as you close the window (if you leave this out it will just sit there on the screen forever)

356 chapter 12

That’s not exactly true. When you press the button it shows that
‘pressed’ or ‘pushed in’ look (which changes depending on the
platform look and feel, but it always does something to show when
it’s being pressed).

The real question is, “How do I get the button to do something
specifi c when the user clicks it?”

But nothing happens when I click it...

We need two things:

A method to be called when the user
clicks (the thing you want to happen as
a result of the button click).

1

A way to know when to trigger
that method. In other words, a way
to know when the user clicks the
button!

2

When the user clicks, we want
to know.

We’re interested in the user-
takes-action-on-a-button event.

there are noDumb Questions
Q: Will a button look like a
Windows button when you run on
Windows?

A: If you want it to. You can
choose from a few “look and
feels”—classes in the core library
that control what the interface looks
like. In most cases you can choose
between at least two different looks:
the standard Java look and feel, also
known as Metal, and the native look
and feel for your platform. The Mac
OS X screens in this book use either
the OS X Aqua look and feel, or the
Metal look and feel.

Q: Can I make a program look
like Aqua all the time? Even when
it’s running under Windows?

A: Nope. Not all look and feels
are available on every platform. If
you want to be safe, you can either
explicitly set the look and feel to
Metal, so that you know exactly what
you get regardless of where the app
is running, or don’t specify a look
and feel and accept the defaults.

Q: I heard Swing was dog-slow
and that nobody uses it.

A: This was true in the past,
but isn’t a given anymore. On weak
machines, you might feel the pain of
Swing. But on the newer desktops,
and with Java version 1.3 and be-
yond, you might not even notice the
difference between a Swing GUI and
a native GUI. Swing is used heavily
today, in all sorts of applications.

user interface events

getting gui

you are here4 357

Imagine you want the text on the button to
change from click me to I’ve been clicked when
the user presses the button. First we can write a
method that changes the text of the button (a
quick look through the API will show you the
method):

Getting a user event

public void changeIt() {
 button.setText(“I’ve been clicked!”);
}

But now what? How will we know when this
method should run? How will we know when the
button is clicked?

In Java, the process of getting and handling a
user event is called event-handling. There are
many different event types in Java, although
most involve GUI user actions. If the user clicks
a button, that’s an event. An event that says
“The user wants the action of this button to
happen.” If it’s a “Slow Tempo” button, the user
wants the slow-tempo action to occur. If it’s a
Send button on a chat client, the user wants the
send-my-message action to happen. So the most
straightforward event is when the user clicked
the button, indicating they want an action to
occur.

With buttons, you usually don’t care about any
intermediate events like button-is-being-pressed
and button-is-being-released. What you want to
say to the button is, “I don’t care how the user
plays with the button, how long they hold the
mouse over it, how many times they change their
mind and roll off before letting go, etc. Just tell
me when the user means business! In other words,
don’t call me unless the user clicks in a way that
indicates he wants the darn button to do what it
says it’ll do!”

First, the button needs to know
that we care.

your code
button objec

t

Hey button, I care about
what happens to you.

1

2 The user clicked me!

Second, the button needs a way
to call us back when a button-
clicked event occurs.

1) How could you tell a button object that you
care about its events? That you’re a concerned
listener?

2) How will the button call you back? Assume
that there’s no way for you to tell the button the
name of your unique method (changeIt()). So
what else can we use to reassure the button that
we have a specific method it can call when the
event happens? [hint: think Pet]

brain
powerA

there are noDumb Questions

358 chapter 12

event listeners

A listener interface is the bridge between the
listener (you) and event source (the button).

<<interface>>KeyListener
keyPressed(KeyEvent ev)keyReleased(KeyEvent ev)keyTyped(KeyEvent ev)

<<interface>>

<<interface>>

ItemListener

itemStateChanged(ItemEvent ev)

<<interface>>

<<interface>>ActionListener
actionPerformed(ActionEvent ev)

The Swing GUI components are event sources. In Java terms,
an event source is an object that can turn user actions (click
a mouse, type a key, close a window) into events. And like
virtually everything else in Java, an event is represented as an
object. An object of some event class. If you scan through the
java.awt.event package in the API, you’ll see a bunch of event
classes (easy to spot—they all have Event in the name). You’ll
fi nd MouseEvent, KeyEvent, WindowEvent, ActionEvent, and
several others.

An event source (like a button) creates an event object when the
user does something that matters (like click the button). Most
of the code you write (and all the code in this book) will receive
events rather than create events. In other words, you’ll spend
most of your time as an event listener rather than an event source.

Every event type has a matching listener interface. If you want
MouseEvents, implement the MouseListener interface. Want
WindowEvents? Implement WindowListener. You get the idea.
And remember your interface rules—to implement an interface
you declare that you implement it (class Dog implements Pet),
which means you must write implementation methods for every
method in the interface.

Some interfaces have more than one method because the
event itself comes in different fl avors. If you implement
MouseListener, for example, you can get events for
mousePressed, mouseReleased, mouseMoved, etc. Each of
those mouse events has a separate method in the interface,
even though they all take a MouseEvent. If you implement
MouseListener, the mousePressed() method is called when the
user (you guessed it) presses the mouse. And when the user lets
go, the mouseReleased() method is called. So for mouse events,
there’s only one event object, MouseEvent, but several different
event methods, representing the different types of mouse events.

If you care about the button’s events,

implement an interface that says,

“I’m listening for your events.”

When you implement a
listener interface, you give
the button a way to call
you back. The interface is
where the call-back method
is declared.

getting gui

you are here4 359

“Button, please add me to
your list of listeners and call
my actionPerformed() method
when the user clicks you.”

How the listener and source
communicate:

The Listener The Event Source
If your class wants to know about

a button’s ActionEvents, you

implement the ActionListener

interface. The button needs to

know you’re interested, so you

register with the button by calling its

addActionListener(this) and passing an

ActionListener reference to it (in this case,

you are the ActionListener so you pass

this).The button needs a way to call you

back when the event happens, so it calls

the method in the listener interface. As an

ActionListener, you must implement the

interface’s sole method, actionPerformed().

The compiler guarantees it.

A button is a source of ActionEvents,

so it has to know which objects are

interested listeners. The button has an

addActionListener() method to give

interested objects (listeners) a way to

tell the button they’re interested.

When the button’s

addActionListener() runs (because

a potential listener invoked it), the

button takes the parameter (a

reference to the listener object) and

stores it in a list. When the user clicks

the button, the button ‘fires’ the event

by calling the actionPerformed()

method on each listener in the list.

“OK, you’re an ActionListener,
so I know how to call you back
when there’s an event -- I’ll call
the actionPerformed() method
that I know you have.”

actionPerformed(the Event)

bu

tto
n.addActionListener(this)

360 chapter 12

import javax.swing.*;
import java.awt.event.*;

public class SimpleGui1B implements ActionListener {
 JButton button;

 public static void main (String[] args) {
 SimpleGui1B gui = new SimpleGui1B();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 button = new JButton(“click me”);

 button.addActionListener(this);

 frame.getContentPane().add(button);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300,300);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 button.setText(“I’ve been clicked!”);
 }
}

Implement the in
terface. T

his says,

“an instan
ce of Sim

pleGui1B IS-A

ActionListener”.

(The button
 will give eve

nts only t
o

ActionListener im
plementers)

register yo
ur interest

 with the bu
tton. This says

to the but
ton, “Add me to your

list of list
eners”.

The argument you pa
ss MUST be an obje

ct from a

class that
implements ActionListener!!

a new import statement for the package
that

ActionListener and ActionEvent are in.

Implement the ActionListener interfa
ce’s

actionPerformed() method.. This is the

actual event-handling method!

The button calls this method to let you know an event happened. It sends you an ActionEvent object as the argument, but we don’t need it. Knowing the event happened is enough info for us.

2

3

1

Implement the ActionListener interface1

Register with the button (tell it you
want to listen for events)

2

Define the event-handling method (implement
the actionPerformed() method from the
ActionListener interrface)

3

getting events

Getting a button’s ActionEvent

getting gui

you are here4 361

As an event source, my job is to
accept registrations (from listeners),

get events from the user. and
call the listener’s event-handling
method (when the user clicks me)

For most of your stellar Java career, you will not be the source
of events.

(No matter how much you fancy yourself the center of your social
universe.)

Get used to it. Your job is to be a good listener.

(Which, if you do it sincerely, can improve your social life.)

Listeners, Sources, and Events

As a listener, my job is to
implement the interface,

register with the button, and
provide the event-handling.

Listener GETS the
event

Source SENDS
the event

Event object
HOLDS DATA
about the event

Event object

Hey, what about me? I’m a player too, you
know! As an event object, I’m the argument

to the event call-back method (from the
interface) and my job is to carry data about

the event back to the listener.

362 chapter 12

there are noDumb Questions
Q: Why can’t I be a source of events?

A: You CAN. We just said that most of the time
you’ll be the receiver and not the originator of the
event (at least in the early days of your brilliant Java
career). Most of the events you might care about
are ‘fired’ by classes in the Java API, and all you have
to do is be a listener for them. You might, however,
design a program where you need a custom event, say,
StockMarketEvent thrown when your stock market
watcher app finds something it deems important. In
that case, you’d make the StockWatcher object be an
event source, and you’d do the same things a button
(or any other source) does—make a listener interface
for your custom event, provide a registration method
(addStockListener()), and when somebody calls it, add
the caller (a listener) to the list of listeners. Then, when
a stock event happens, instantiate a StockEvent object
(another class you’ll write) and send it to the listeners
in your list by calling their stockChanged(StockEvent
ev) method. And don’t forget that for every event type
there must be a matching listener interface (so you’ll
create a StockListener interface with a stockChanged()
method).

Q: I don’t see the importance of the event object
that’s passed to the event call-back methods. If
somebody calls my mousePressed method, what
other info would I need?

A: A lot of the time, for most designs, you don’t
need the event object. It’s nothing more than a little
data carrier, to send along more info about the event.
But sometimes you might need to query the event for
specific details about the event. For example, if your
mousePressed() method is called, you know the mouse
was pressed. But what if you want to know exactly
where the mouse was pressed? In other words, what if
you want to know the X and Y screen coordinates for
where the mouse was pressed?

Or sometimes you might want to register the same
listener with multiple objects. An onscreen calculator,
for example, has 10 numeric keys and since they all do
the same thing, you might not want to make a separate
listener for every single key. Instead, you might
register a single listener with each of the 10 keys, and
when you get an event (because your event call-back
method is called) you can call a method on the event
object to find out who the real event source was. In
other words, which key sent this event.

Sharpen your pencil

windowClosing()

actionPerformed()

itemStateChanged()

mousePressed()

keyTyped()

mouseExited()

focusGained()

check box

text field

scrolling list

button

dialog box

radio button

menu item

Widgets Event methods

Each of these widgets (user interface objects) are the
source of one or more events. Match the widgets with
the events they might cause. Some widgets might be a
source of more than one event, and some events can be
generated by more than one widget.

How do you KNOW if
an object is an event
source?
Look in the API.

OK. Look for what?
A method that starts with

‘add’, ends with ‘Listener’,

and takes a listener inter-

face argument. If you see:

addKeyListener(KeyListener k)

you know that a class

with this method is a

source of KeyEvents.

There’s a naming pattern.

event handling

getting gui

you are here4 363

Now that we know a little about how events work (we’ll learn
more later), let’s get back to putting stuff on the screen.
We’ll spend a few minutes playing with some fun ways to get
graphic, before returning to event handling.

Getting back to graphics...

Three ways to put things on your GUI:

Put widgets on a frame
 Add buttons, menus, radio buttons, etc.
frame.getContentPane().add(myButton);

The javax.swing package has more than a dozen
widget types.

1

Put a JPEG on a widget
You can put your own images on a widget.

graphics.drawImage(myPic,10,10,this);

3

Draw 2D graphics on a widget
Use a graphics object to paint shapes.
graphics.fillOval(70,70,100,100);

You can paint a lot more than boxes and circles;
the Java2D API is full of fun, sophisticated
graphics methods.

2
Number of Head
First Java books
mistakenly
bought by coffee
house baristas.

art, games, simulations, etc.

charts,
business
graphics,
etc.

364 chapter 12

If you want to put your own graphics on the screen, your best
bet is to make your own paintable widget. You plop that widget
on the frame, just like a button or any other widget, but when it
shows up it will have your images on it. You can even make those
images move, in an animation, or make the colors on the screen
change every time you click a button.

It’s a piece of cake.

Make a subclass of JPanel and override one
method, paintComponent().

All of your graphics code goes inside the paintComponent()
method. Think of the paintComponent() method as the method
called by the system to say, “Hey widget, time to paint yourself.”
If you want to draw a circle, the paintComponent() method will
have code for drawing a circle. When the frame holding your
drawing panel is displayed, paintComponent() is called and your
circle appears. If the user iconifies/minimizes the window, the
JVM knows the frame needs “repair” when it gets de-iconified,
so it calls paintComponent() again. Anytime the JVM thinks the
display needs refreshing, your paintComponent() method will be
called.

One more thing, you never call this method yourself! The argument
to this method (a Graphics object) is the actual drawing canvas
that gets slapped onto the real display. You can’t get this by
yourself; it must be handed to you by the system. You’ll see
later, however, that you can ask the system to refresh the display
(repaint()), which ultimately leads to paintComponent() being
called.

Make your own drawing widget

making a drawing panel

import java.awt.*;

import javax.swing.*;

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {

 g.setColor(Color.orange);

 g.fillRect(20,50,100,100);

 }

}

you need
 both of

 these

Make a subclass
of JPanel, a widget

that you can a
dd to a frame just like

anything else.
Except this one

 is your

own customized widget.

This is the Big Important Graphics method.

You will NEVER call this yourself
. The

system calls it and says,
“Here’s a nice

fresh drawing surface, of ty
pe Graphics,

that you may paint on now.”.

Imagine that ‘g’ is a painting machine. You’re telling it what color to paint with and then what shape to paint (with coordinates for where it goes and how big it is)

getting gui

you are here4 365

Let’s look at a few more things you can do in paintComponent().
The most fun, though, is when you start experimenting yourself.
Try playing with the numbers, and check the API for class
Graphics (later we’ll see that there’s even more you can do besides
what’s in the Graphics class).

Fun things to do in paintComponent()

public void paintComponent(Graphics g) {

 Image image = new ImageIcon(“catzilla.jpg”).getImage();

 g.drawImage(image,3,4,this);

}

 public void paintComponent(Graphics g) {

 g.fillRect(0,0,this.getWidth(), this.getHeight());

 int red = (int) (Math.random() * 255);
 int green = (int) (Math.random() * 255);
 int blue = (int) (Math.random() * 255);

 Color randomColor = new Color(red, green, blue);
 g.setColor(randomColor);
 g.fillOval(70,70,100,100);
 }

fill the en
tire panel

 with black

(the defa
ult color)

The first two args define the (x,y) upper left corner, relative to the panel, for where drawing starts, so 0, 0 means “start 0 pixels from the left edge and 0 pixels from the top edge.” The other two args say, “Make the width of this rectangle as wide as the panel (this.width()), and make the height as tall as the panel (this.height)”

your file n
ame goes her

e

The x,y coordinates for where the picture’s top
left corner should go. This says “3 pixels from the left edge of the panel and 4 pixels from the
top edge of the panel”. These numbers are always
relative to the widget (in this case your JPanel subclass), not the entire frame.

start 70 pixels from the left, 70 from
the top, make it 100 pixels wide, and
100 pixels tall.

You can make a color by passing in 3 ints
to represent the RGB values.

Display a JPEG

Paint a randomly-colored circle
on a black background

366 chapter 12

The argument to paintComponent() is declared as type
Graphics (java.awt.Graphics).

Behind every good Graphics reference
is a Graphics2D object.

drawing gradients with Graphics2D

public void paintComponent(Graphics g) { } Methods you can call on a
Graphics reference:

drawImage()

drawLine()

drawPolygon

drawRect()

drawOval()

fillRect()

fillRoundRect()

setColor()

So the parameter ‘g’ IS-A Graphics object. Which means it
could be a subclass of Graphics (because of polymorphism).
And in fact, it is.

The object referenced by the ‘g’ parameter is actually an
instance of the Graphics2D class.
Why do you care? Because there are things you can do with
a Graphics2D reference that you can’t do with a Graphics
reference. A Graphics2D object can do more than a Graphics
object, and it really is a Graphics2D object lurking behind the
Graphics reference.

Remember your polymorphism. The compiler decides which
methods you can call based on the reference type, not the
object type. If you have a Dog object referenced by an Animal
reference variable:

Animal a = new Dog();

You can NOT say:

a.bark();

Even though you know it’s really a Dog back there. The
compiler looks at ‘a’, sees that it’s of type Animal, and finds
that there’s no remote control button for bark() in the Animal
class. But you can still get the object back to the Dog it really is
by saying:

Dog d = (Dog) a;
d.bark();

So the bottom line with the Graphics object is this:

If you need to use a method from the Graphics2D class, you
can’t use the the paintComponent parameter (‘g’) straight
from the method. But you can cast it with a new Graphics2D
variable.

Graphics2D g2d = (Graphics2D) g;

Methods you can call on
a Graphics2D reference:

fill3DRect()

draw3DRect()

rotate()

scale()

shear()

transform()

setRenderingHints()

(these are not complete method lists,
check the API for more)

To cast the Graphics2D object to
a Graphics2D reference:

Graphics2D g2d = (Graphics2D) g;

getting gui

you are here4 367

public void paintComponent(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 GradientPaint gradient = new GradientPaint(70,70,Color.blue, 150,150, Color.orange);

 g2d.setPaint(gradient);

 g2d.fi llOval(70,70,100,100);

}

Because life’s too short to paint the
circle a solid color when there’s a
gradient blend waiting for you.

public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;

 int red = (int) (Math.random() * 255);
 int green = (int) (Math.random() * 255);
 int blue = (int) (Math.random() * 255);
 Color startColor = new Color(red, green, blue);

 red = (int) (Math.random() * 255);
 green = (int) (Math.random() * 255);
 blue = (int) (Math.random() * 255);
 Color endColor = new Color(red, green, blue);

 GradientPaint gradient = new GradientPaint(70,70,startColor, 150,150, endColor);
 g2d.setPaint(gradient);
 g2d.fi llOval(70,70,100,100);
}

it’s really a G
raphics2D object

masquerading a
s a mere Graphics

object.

cast it so we can call something that
Graphics2D has but Graphics doesn’t

this sets the virtual paint brush to a gradient instead of a solid color

starting point
starting color ending point

ending color

the fillOval() method really means “fill

the oval with whatever is loaded
 on your

paintbrush (i.e. t
he gradient)”

this is just li
ke the one ab

ove,

except it makes random colors for

the start an
d stop colors

 of the

gradient. Try it!

368 chapter 12

events and graphics

ß To make a GUI, start with a window, usually a JFrame
JFrame frame = new JFrame();

ß You can add widgets (buttons, text fields, etc.) to the
JFrame using:
frame.getContentPane().add(button);

ß Unlike most other components, the JFrame doesn’t let
you add to it directly, so you must add to the JFrame’s
content pane.

ß To make the window (JFrame) display, you must give it
a size and tell it be visible:
frame.setSize(300,300);
frame.setVisible(true);

ß To know when the user clicks a button (or takes some
other action on the user interface) you need to listen for
a GUI event.

ß To listen for an event, you must register your interest
with an event source. An event source is the thing (but-
ton, checkbox, etc.) that ‘fires’ an event based on user
interaction.

ß The listener interface gives the event source a way
to call you back, because the interface defines the
method(s) the event source will call when an event
happens.

ß To register for events with a source, call the source’s
registration method. Registration methods always take
the form of: add<EventType>Listener. To register for a
button’s ActionEvents, for example, call:
button.addActionListener(this);

ß Implement the listener interface by implementing all of
the interface’s event-handling methods. Put your event-
handling code in the listener call-back method. For
ActionEvents, the method is:
public void actionPerformed(ActionEvent

 event) {
 button.setText(“you clicked!”);
 }

ß The event object passed into the event-handler method
carries information about the event, including the source
of the event.

 BULLET POINTS
 GRAPHICS

ß You can draw 2D graphics directly on to a widget.

ß You can draw a .gif or .jpeg directly on to a widget.

ß To draw your own graphics (including a .gif or .jpeg),
make a subclass of JPanel and override the paintCom-
ponent() method.

ß The paintComponent() method is called by the GUI
system. YOU NEVER CALL IT YOURSELF. The argu-
ment to paintComponent() is a Graphics object that
gives you a surface to draw on, which will end up on
the screen. You cannot construct that object yourself.

ß Typical methods to call on a Graphics object (the paint-
Component paramenter) are:
graphics.setColor(Color.blue);
g.fillRect(20,50,100,120);

ß To draw a .jpg, construct an Image using:
Image image = new ImageIcon(“catzilla.
jpg”).getImage();
 and draw the imagine using:
g.drawImage(image,3,4,this);

ß The object referenced by the Graphics parameter
to paintComponent() is actually an instance of the
Graphics2D class. The Graphics 2D class has a variety
of methods including:
fill3DRect(), draw3DRect(), rotate(), scale(), shear(),
transform()

ß To invoke the Graphics2D methods, you must cast the
parameter from a Graphics object to a Graphics2D
object:
Graphics2D g2d = (Graphics2D) g;

 EVENTS

getting gui

you are here4 369

Let’s hook up an event to a change in our drawing panel. We’ll make the circle
change colors each time you click the button. Here’s how the program flows:

We can get an event.
We can paint graphics.

But can we paint graphics when we get an event?

1

2

Voila! A new color is painted because
paintComponent() runs again, filling the
circle with a random color.

The frame is built with the two widgets
(your drawing panel and a button). A
listener is created and registered with
the button. Then the frame is displayed
and it just waits for the user to click.

Start the app

The user clicks the button and the
button creates an event object and
calls the listener’s event handler.

3

4

The event handler calls repaint() on the
frame. The system calls paintComponent()
on the drawing panel.

370 chapter 12

building a GUI frame

Wait a minute...how
do you put TWO

things on a frame?

We cover GUI layouts in the next chapter, but we’ll do a
quickie lesson here to get you going. By default, a frame
has five regions you can add to. You can add only one thing
to each region of a frame, but don’t panic! That one thing
might be a panel that holds three other things including a
panel that holds two more things and... you get the idea. In
fact, we were ‘cheating’ when we added a button to the frame
using:

GUI layouts: putting more than one
widget on a frame

frame.getContentPane().add(button);

This isn’t really the way you’re supposed
to do it (the one-arg add method).

frame.getContentPane().add(BorderLayout.CENTER, button);

This is the bett
er (and usually

mandatory) way to add to
a frame’s

default conte
nt pane. Always specify

WHERE (which region) y
ou want the

widget to go.

When you call t
he single-arg add

method (the on
e we shouldn’t use

)

the widget will automatically land i
n

the center re
gsion.

we call the two-argument add method, that takes a region (using a constant) and the widget to add to that region.

Sharpen your pencil
Given the pictures on page 351, write the

code that adds the button and the panel to

the frame.

default region

north

south

east
west center

getting gui

you are here4 371

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleGui3C implements ActionListener {

 JFrame frame;

 public static void main (String[] args) {
 SimpleGui3C gui = new SimpleGui3C();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton(“Change colors”);
 button.addActionListener(this);

 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(BorderLayout.SOUTH, button);
 frame.getContentPane().add(BorderLayout.CENTER, drawPanel);
 frame.setSize(300,300);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
}

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {
 // Code to fill the oval with a random color
 // See page 347 for the code
 }

}

The circle changes color each time you
click the button.

Button is in t
he

SOUTH region of

the frame

The custom drawing panel (instance of MyDrawPanel) is in the CENTER region of the frame.

Add the listen
er (this)

to the butto
n.

Add the two widgets (but-ton and drawing panel) to the two regions of the frame.

When the user clicks, t
ell the frame

to repaint() itself. T
hat means

paintComponent() is called on
every

widget in the frame!

The drawing panel’s paintComponent()
method is called every time the user clicks.

372 chapter 12

east

The south button will act as it does now, simply calling repaint on the
frame. The second button (which we’ll stick in the east region) will
change the text on a label. (A label is just text on the screen.)

Let’s try it with TWO buttons

multiple listeners

So now we need FOUR widgets

color-changing
button will go here

label will
go here

drawing panel goes
in the center

label-changing

button
will be he

re

north

south

west center

Uh-oh.

Is that even possible? How do
you get two events when you
have only one actionPerformed()
method?

And we need to get
TWO events

This button changes the text
on the opposite side

This button changes the color of the circle

getting gui

you are here4 373

How do you get action events for two different buttons,
when each button needs to do something different?

1 option one
Implement two actionPerformed() methods

Flaw: You can’t! You can’t implement the same method twice in a Java class. It won’t compile.
And even if you could, how would the event source know which of the two methods to call?

class MyGui implements ActionListener {
 // lots of code here and then:

 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }

 public void actionPerformed(ActionEvent event) {
 label.setText(“That hurt!”);
 }
}

2 option two
Register the same listener with both buttons.

Flaw: this does work, but in most cases it’s not very OO. One event handler
doing many different things means that you have a single method doing many different things.
If you need to change how one source is handled, you have to mess with everybody’s event
handler. Sometimes it is a good solution, but usually it hurts maintainability and extensibility.

Register the same listener with both buttons

class MyGui implements ActionListener {
 // declare a bunch of instance variables here

 public void go() {
 // build gui
 colorButton = new JButton();
 labelButton = new JButton();
 colorButton.addActionListener(this);
 labelButton.addActionListener(this);
 // more gui code here ...
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == colorButton) {
 frame.repaint();
 } else {
 label.setText(“That hurt!”);
 }
 }
}

Query the event obje
ct

to find out which button

actually fired it, a
nd use

that to decide what to do.

But this is impossible!

374 chapter 12

3 option three
Create two separate ActionListener classes

Flaw: these classes won’t have access to the variables they need
to act on, ‘frame’ and ‘label’. You could fix it, but you’d have to give each of the
listener classes a reference to the main GUI class, so that inside the actionPerformed()
methods the listener could use the GUI class reference to access the variables of the GUI
class. But that’s breaking encapsulation, so we’d probably need to make getter methods
for the gui widgets (getFrame(), getLabel(), etc.). And you’d probably need to add a
constructor to the listener class so that you can pass the GUI reference to the listener at
the time the listener is instantiated. And, well, it gets messier and more complicated.

There has got to be a better way!

class MyGui {
 JFrame frame;
 JLabel label;
 void gui() {
 // code to instantiate the two listeners and register one
 // with the color button and the other with the label button
 }
} // close class

class ColorButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
}

class LabelButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText(“That hurt!”);
 }
} Problem! This class has no reference to the variable ‘label’

Won’t work! This class doesn’t have a reference to
the ‘frame’ variable of the MyGui class

multiple listeners

How do you get action events for two different buttons,
when each button needs to do something different?

getting gui

you are here4 375

Wouldn’t it be wonderful if you
could have two different listener classes,
but the listener classes could access the
instance variables of the main GUI class,
almost as if the listener classes belonged
to the other class. Then you’d have the best
of both worlds. Yeah, that would be dreamy.

But it’s just a fantasy...

376 chapter 12

You can have one class nested inside another. It’s easy.
Just make sure that the definition for the inner class is
inside the curly braces of the outer class.

Inner class to the rescue!

class MyOuterClass {

 class MyInnerClass {
 void go() {
 }
 }

}

Simple inner class:

class MyOuterClass {

 private int x;

 class MyInnerClass {
 void go() {
 x = 42;
 }
 } // close inner class

} // close outer class

use ‘x’ as if it were a variable
of the inner class!

Inner class using an outer class variable

An inner class gets a special pass to use the outer class’s stuff. Even
the private stuff. And the inner class can use those private variables
and methods of the outer class as if the variables and members
were defined in the inner class. That’s what’s so handy about inner
classes—they have most of the benefits of a normal class, but with
special access rights.

An inner class can
use all the methods
and variables of the
outer class, even the
private ones.
The inner class gets
to use those variables
and methods just
as if the methods
and variables were
declared within the
inner class.

inner classes

Inner class
 is fully

enclosed b
y outer cl

ass

getting gui

you are here4 377

MyInner object

Remember, when we talk about an inner class accessing
something in the outer class, we’re really talking about an
instance of the inner class accessing something in an instance of
the outer class. But which instance?

Can any arbitrary instance of the inner class access the methods
and variables of any instance of the outer class? No!

An inner object must be tied to a specifi c outer object on
the heap.

An inner class instance must be tied to
an outer class instance*.

An inner object must be tied to a specifi c outer object on An inner object must be tied to a specifi c outer object on
the heap.

Getting in

touch with

your inner

class

Over 65,536 copies sold!

The new bestseller from the

author of “Who Moved my Char?”
Dr. Poly Morphism

1

MyOuter objec
t

Make an instance of
the outer class

2 Make an instance of
the inner class, by
using the instance
of the outer class.

inner

3 The outer and inner objects
are now intimately linked.

outerThese two objects on the
 heap

have a special bo
nd. The inner

can use the oute
r’s variables

(and vice-versa).

An inner object
shares a special
bond with an
outer object.

int x

String s

*There’s an exception to this, for a very special case—an inner class defi ned
within a static method. But we’re not going there, and you might go your entire
Java life without ever encountering one of these.

378 chapter 12

class MyOuter {

 private int x;

 MyInner inner = new MyInner();

 public void doStuff() {
 inner.go();
 }

 class MyInner {
 void go() {
 x = 42;
 }
 } // close inner class

} // close outer class

The outer class ha
s a private

instance variable
‘x’

Make an instance of the inner class

The method in the inner class uses the
outer class instance variable ‘x’, as if ‘x’
belonged to the inner class.

If you instantiate an inner class from code within an outer class, the instance
of the outer class is the one that the inner object will ‘bond’ with. For
example, if code within a method instantiates the inner class, the inner
object will bond to the instance whose method is running.

Code in an outer class can instantiate one of its own inner classes, in exactly
the same way it instantiates any other class... new MyInner()

How to make an instance of an inner class

MyOuter

outer

MyInner

inner

int

x

MyOuter

outer

int

x

special
bond

You can instantiate an inner instance from code running outside the outer class, but you
have to use a special syntax. Chances are you’ll go through your entire Java life and never
need to make an inner class from outside, but just in case you’re interested...

 class Foo {
 public static void main (String[] args) {
 MyOuter outerObj = new MyOuter();
 MyOuter.MyInner innerObj = outerObj.new MyInner();
 }
 }

inner class instances

 Side bar

call a method on the
inner class

getting gui

you are here4 379

public class TwoButtons {

 JFrame frame;
 JLabel label;

 public static void main (String[] args) {
 TwoButtons gui = new TwoButtons ();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton labelButton = new JButton(“Change Label”);
 labelButton.addActionListener(new LabelListener());

 JButton colorButton = new JButton(“Change Circle”);
 colorButton.addActionListener(new ColorListener());

 label = new JLabel(“I’m a label”);
 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(BorderLayout.SOUTH, colorButton);
 frame.getContentPane().add(BorderLayout.CENTER, drawPanel);
 frame.getContentPane().add(BorderLayout.EAST, labelButton);
 frame.getContentPane().add(BorderLayout.WEST, label);

 frame.setSize(300,300);
 frame.setVisible(true);
 }

 class LabelListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText(“Ouch!”);
 }
 } // close inner class

 class ColorListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
 } // close inner class

}

the main GUI class doesn’t
implement ActionListener now

instead of passin
g (this) to the

button’s listener
 registration

method, pass a new
 instance of

the appropriate
listener class.

Now we get to have
TWO ActionListeners
in a single class !

the inner class gets to use the ‘frame’ instance variable, without having an explicit reference to the outer class object.

inner class knows about ‘label’

Now we can get the two-button
code working

TwoButtons
object

ColorListener
object

LabelListener
object

outer

inner
inner

380 chapter 12

inner classes

HeadFirst: What makes inner classes important?

Inner object: Where do I start? We give you a chance to
implement the same interface more than once in a class.
Remember, you can’t implement a method more than
once in a normal Java class. But using inner classes, each
inner class can implement the same interface, so you can
have all these different implementations of the very same
interface methods.

HeadFirst: Why would you ever want to implement the
same method twice?

Inner object: Let’s revisit GUI event handlers. Think
about it... if you want three buttons to each have a
different event behavior, then use three inner classes, all
implementing ActionListener—which means each class
gets to implement its own actionPerformed method.

HeadFirst: So are event handlers the only reason to use
inner classes?

Inner object: Oh, gosh no. Event handlers are just an
obvious example. Anytime you need a separate class, but
still want that class to behave as if it were part of another
class, an inner class is the best—and sometimes only—way
to do it.

HeadFirst: I’m still confused here. If you want the inner
class to behave like it belongs to the outer class, why have
a separate class in the first place? Why wouldn’t the inner
class code just be in the outer class in the first place?

Inner object: I just gave you one scenario, where you
need more than one implementation of an interface. But
even when you’re not using interfaces, you might need
two different classes because those classes represent two
different things. It’s good OO.

HeadFirst: Whoa. Hold on here. I thought a big part of
OO design is about reuse and maintenance. You know, the
idea that if you have two separate classes, they can each
be modified and used independently, as opposed to stuffing
it all into one class yada yada yada. But with an inner class,
you’re still just working with one real class in the end, right?
The enclosing class is the only one that’s reusable and

separate from everybody else. Inner classes aren’t exactly
reusable. In fact, I’ve heard them called “Reuseless—
useless over and over again.”

Inner object: Yes it’s true that the inner class is not as
reusable, in fact sometimes not reusable at all, because it’s
intimately tied to the instance variables and methods of
the outer class. But it—

HeadFirst: —which only proves my point! If they’re not
reusable, why bother with a separate class? I mean, other
than the interface issue, which sounds like a workaround
to me.

Inner object: As I was saying, you need to think about
IS-A and polymorphism.

HeadFirst: OK. And I’m thinking about them because...

Inner object: Because the outer and inner classes
might need to pass different IS-A tests! Let’s start with the
polymorphic GUI listener example. What’s the declared
argument type for the button’s listener registration
method? In other words, if you go to the API and check,
what kind of thing (class or interface type) do you have to
pass to the addActionListener() method?

HeadFirst: You have to pass a listener. Something that
implements a particular listener interface, in this case
ActionListener. Yeah, we know all this. What’s your point?

Inner object: My point is that polymorphically, you have
a method that takes only one particular type. Something
that passes the IS-A test for ActionListener. But—and
here’s the big thing—what if your class needs to be an IS-
A of something that’s a class type rather than an interface?

HeadFirst: Wouldn’t you have your class just extend the
class you need to be a part of ? Isn’t that the whole point
of how subclassing works? If B is a subclass of A, then
anywhere an A is expected a B can be used. The whole
pass-a-Dog-where-an-Animal-is-the-declared-type thing.

Inner object: Yes! Bingo! So now what happens if you
need to pass the IS-A test for two different classes? Classes
that aren’t in the same inheritance hierarchy?

This weeks interview:
Instance of an Inner Class

Java Exposed

getting gui

you are here4 381

HeadFirst: Oh, well you just... hmmm. I think I’m get-
ting it. You can always implement more than one interface,
but you can extend only one class. You can only be one kind
of IS-A when it comes to class types.

Inner object: Well done! Yes, you can’t be both a Dog
and a Button. But if you’re a Dog that needs to some-
times be a Button (in order to pass yourself to methods
that take a Button), the Dog class (which extends Animal
so it can’t extend Button) can have an inner class that acts
on the Dog’s behalf as a Button, by extending Button,
and thus wherever a Button is required the Dog can
pass his inner Button instead of himself. In other words,
instead of saying x.takeButton(this), the Dog object calls
x.takeButton(new MyInnerButton()).

HeadFirst: Can I get a clear example?

Inner object: Remember the drawing panel we used,
where we made our own subclass of JPanel? Right now,
that class is a separate, non-inner, class. And that’s fine,
because the class doesn’t need special access to the instance
variables of the main GUI. But what if it did? What if
we’re doing an animation on that panel, and it’s getting its
coordinates from the main application (say, based on some-
thing the user does elsewhere in the GUI). In that case, if
we make the drawing panel an inner class, the drawing
panel class gets to be a subclass of JPanel, while the outer
class is still free to be a subclass of something else.

HeadFirst: Yes I see! And the drawing panel isn’t reus-
able enough to be a separate class anyway, since what it’s
actually painting is specific to this one GUI application.

Inner object: Yes! You’ve got it!

HeadFirst: Good. Then we can move on to the nature of
the relationship between you and the outer instance.

Inner object: What is it with you people? Not enough
sordid gossip in a serious topic like polymorphism?

HeadFirst: Hey, you have no idea how much the public is
willing to pay for some good old tabloid dirt. So, someone
creates you and becomes instantly bonded to the outer
object, is that right?

Inner object: Yes that’s right. And yes, some have
compared it to an arranged marriage. We don’t have a say
in which object we’re bonded to.

HeadFirst: Alright, I’ll go with the marriage analogy.
Can you get a divorce and remarry something else?

Inner object: No, it’s for life.

HeadFirst: Whose life? Yours? The outer object? Both?

Inner object: Mine. I can’t be tied to any other outer
object. My only way out is garbage collection.

HeadFirst: What about the outer object? Can it be
associated with any other inner objects?

Inner object: So now we have it. This is what you really
wanted. Yes, yes. My so-called ‘mate’ can have as many
inner objects as it wants.

HeadFirst: Is that like, serial monogamy? Or can it have
them all at the same time?

Inner object: All at the same time. There. Satisfied?

HeadFirst: Well, it does make sense. And let’s not
forget, it was you extolling the virtues of “multiple
implementations of the same interface”. So it makes sense
that if the outer class has three buttons, it would need
three different inner classes (and thus three different inner
class objects) to handle the events. Thanks for everything.
Here’s a tissue.

He thinks he’s
got it made, having two

inner class objects. But we
have access to all his private
data, so just imagine the damage
we could do...

382 chapter 12

We saw why inner classes are handy for event listeners, because
you get to implement the same event-handling method more
than once. But now we’ll look at how useful an inner class is when
used as a subclass of something the outer class doesn’t extend. In
other words, when the outer class and inner class are in different
inheritance trees!

Our goal is to make a simple animation, where the circle moves
across the screen from the upper left down to the lower right.

Using an inner class for animation

start finish

How simple animation works

1 Paint an object at a particular x and y coordinate
g.fillOval(20,50,100,100);

20 pixels from the left,
50 pixels from the top

2 Repaint the object at a different x and y coordinate
g.fillOval(25,55,100,100);

25 pixels from the left, 55
pixels from the top
(the object moved a little
down and to the right)

 3 Repeat the previous step with changing x and y values
for as long as the animation is supposed to continue.

there are noDumb Questions
Q:Why are we learning about
animation here? I doubt if I’m
going to be making games.

A:You might not be making
games, but you might be
creating simulations, where
things change over time to show
the results of a process. Or you
might be building a visualization
tool that, for example, updates
a graphic to show how much
memory a program is using,
or to show you how much
traffic is coming through
your load-balancing server.
Anything that needs to take a
set of continuously-changing
numbers and translate them into
something useful for getting
information out of the numbers.

Doesn’t that all sound business-
like? That’s just the “official
justification”, of course. The real
reason we’re covering it here is
just because it’s a simple way
to demonstrate another use
of inner classes. (And because
we just like animation, and our
next Head First book is about
J2EE and we know we can’t get
animation in that one.)

inner classes

getting gui

you are here4 383

What we really want is something like...

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {

 g.setColor(Color.orange);

 g.fillOval(x,y,100,100);

 }

} each time paintComponent() is

called, the oval g
ets painted at a

different locati
on

But where do we get the new x and y
coordinates?

And who calls repaint()?

Sharpen your pencil

See if you can design a simple solution to get the ball to animate from the top left of the

drawing panel down to the bottom right. Our answer is on the next page, so don’t turn

this page until you’re done!

Big Huge Hint: make the drawing panel an inner class.

Another Hint: don’t put any kind of repeat loop in the paintComponent() method.

Write your ideas (or the code) here:

there are noDumb Questions

384 chapter 12

animation using an inner class

import javax.swing.*;
import java.awt.*;

public class SimpleAnimation {

 int x = 70;
 int y = 70;

 public static void main (String[] args) {
 SimpleAnimation gui = new SimpleAnimation ();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(drawPanel);
 frame.setSize(300,300);
 frame.setVisible(true);

 for (int i = 0; i < 130; i++) {

 x++;
 y++;

 drawPanel.repaint();

 try {
 Thread.sleep(50);
 } catch(Exception ex) { }
 }

 }// close go() method

 class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {
 g.setColor(Color.green);
 g.fillOval(x,y,40,40);

 }
 } // close inner class
} // close outer class

make two instance variab
les in the

main GUI class, for the
x and y

coordinates of t
he circle.

This is where the

action is!

Nothing new here. Make the widgets and put them in the frame.

repeat this 130 times

increment the x and y coordinates
tell the panel to

repaint itself (so
 we

can see the circle
 in the new location)

Slow it down a little (otherwise it will move so quickly you won’t SEE it move). Don’t worry, you weren’t supposed to already know this. We’ll get to threads in chapter 15.

Use the continually-updated x and y coordinates of the outer class.

Now it’s an

inner c
lass.

The complete simple animation code

getting gui

you are here4 385

Uh-oh. It didn’t move... it smeared.

Not exactly the look we were going for.

What did we do wrong?

There’s one little flaw in the paintComponent()
method.

We forgot to erase what was
already there! So we got trails.

To fix it, all we have to do is fill in the entire panel with
the background color, before painting the circle each
time. The code below adds two lines at the start of the
method: one to set the color to white (the background
color of the drawing panel) and the other to fill the
entire panel rectangle with that color. In English, the
code below says, “Fill a rectangle starting at x and y of
0 (0 pixels from the left and 0 pixels from the top) and
make it as wide and as high as the panel is currently.

 public void paintComponent(Graphics g) {
 g.setColor(Color.white);
 g.fillRect(0,0,this.getWidth(), this.getHeight());

 g.setColor(Color.green);
 g.fillOval(x,y,40,40);

 }

getWidth() and getHeight() are methods inherited from JPanel.

Sharpen your pencil (optional, just for fun)
What changes would you make to the x and y coordinates to produce the animations below?
(assume the first one example moves in 3 pixel increments)

1

start finish

3

start finish

X +3
Y +3

start finish

2 X
Y

X
Y

1

start finish

3

start finish

X
Y

start finish

2 X
Y

X
Y

386 chapter 12

Code Kitchen

Let’s make a music video. We’ll use Java-generated random
graphics that keep time with the music beats.
Along the way we’ll register (and listen for) a new kind of
non-GUI event, triggered by the music itself.

beat one beat two beat three beat four ...

Remember, this part is all optional. But we think it’s good for you.
And you’ll like it. And you can use it to impress people.
(Ok, sure, it might work only on people who are really easy to impress,
but still...)

Code Kitchen

getting gui

you are here4 387

OK, maybe not a music video, but we will make
a program that draws random graphics on the
screen with the beat of the music. In a nutshell,
the program listens for the beat of the music
and draws a random graphic rectangle with each
beat.

That brings up some new issues for us. So far,
we’ve listened for only GUI events, but now
we need to listen for a particular kind of MIDI
event. Turns out, listening for a non-GUI event is
just like listening for GUI events: you implement
a listener interface, register the listener with an
event source, then sit back and wait for the event
source to call your event-handler method (the
method defined in the listener interface).

The simplest way to listen for the beat of the
music would be to register and listen for the
actual MIDI events, so that whenever the
sequencer gets the event, our code will get it
too and can draw the graphic. But... there’s a
problem. A bug, actually, that won’t let us listen
for the MIDI events we’re making (the ones for
NOTE ON).

So we have to do a little work-around. There
is another type of MIDI event we can listen
for, called a ControllerEvent. Our solution
is to register for ControllerEvents, and then
make sure that for every NOTE ON event,
there’s a matching ControllerEvent fired at
the same ‘beat’. How do we make sure the
ControllerEvent is fired at the same time? We
add it to the track just like the other events! In
other words, our music sequence goes like this:

BEAT 1 - NOTE ON, CONTROLLER EVENT

BEAT 2 - NOTE OFF

BEAT 3 - NOTE ON, CONTROLLER EVENT

BEAT 4 - NOTE OFF

and so on.

Before we dive into the full program, though,
let’s make it a little easier to make and add MIDI
messages/events since in this program, we’re
gonna make a lot of them.

Listening for a non-GUI event

1 Make a series of MIDI messages/
events to play random notes on a piano
(or whatever instrument you choose)

What the music art program
needs to do:

2 Register a listener for the events

3 Start the sequencer playing

4 Each time the listener’s event
handler method is called, draw a
random rectangle on the drawing
panel, and call repaint.

1 Version One: Code that simplifies mak-
ing and adding MIDI events, since we’ll
be making a lot of them.

We’ll build it in three iterations:

2 Version Two: Register and listen for
the events, but without graphics.
Prints a message at the command-line
with each beat.

4 Version Three: The real deal. Adds
graphics to version two.

388 chapter 12

ShortMessage a = new ShortMessage();
a.setMessage(144, 1, note, 100);
MidiEvent noteOn = new MidiEvent(a, 1);
track.add(noteOn);

ShortMessage b = new ShortMessage();
b.setMessage(128, 1, note, 100);
MidiEvent noteOff = new MidiEvent(b, 16);
track.add(noteOff);

Right now, making and adding messages and
events to a track is tedious. For each message,
we have to make the message instance (in this
case, ShortMessage), call setMessage(), make a
MidiEvent for the message, and add the event
to the track. In last chapter’s code, we went
through each step for every message. That
means eight lines of code just to make a note
play and then stop playing! Four lines to add a
NOTE ON event, and four lines to add a NOTE
OFF event.

An easier way to make
messages / events

1 Make a message instance
ShortMessage first = new ShortMessage();

Things that have to happen for
each event:

2 Call setMessage() with the instructions
first.setMessage(192, 1, instrument, 0)

3 Make a MidiEvent instance for the message
MidiEvent noteOn = new MidiEvent(first, 1);

4 Add the event to the track
track.add(noteOn);

 public static MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {

 MidiEvent event = null;

 try {

 ShortMessage a = new ShortMessage();

 a.setMessage(comd, chan, one, two);

 event = new MidiEvent(a, tick);

 }catch(Exception e) { }

 return event;

 }

Let’s build a static utility method that
makes a message and returns a MidiEvent the four ar

guments

for the message

The event ‘tick’ for WHEN this message should happen

make the message and the event, using
the method parameters

whoo! A method with five parameters.

return the event (a MidiEvent all
loaded up with the message)

utility method for events

getting gui

you are here4 389

import javax.sound.midi.*;

public class MiniMusicPlayer1 {

 public static void main(String[] args) {

 try {

 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();

 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 for (int i = 5; i < 61; i+= 4) {

 track.add(makeEvent(144,1,i,100,i));
 track.add(makeEvent(128,1,i,100,i + 2));

 } // end loop

 sequencer.setSequence(seq);
 sequencer.setTempoInBPM(220);
 sequencer.start();
 } catch (Exception ex) {ex.printStackTrace();}
 } // close main

 public static MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 }catch(Exception e) { }
 return event;
 }
} // close class

make (and ope
n) a sequenc

er

make a sequence
and a track

make a bunch of events to make the notes keep
going up (from piano note 5 to piano note 61)

don’t forget the import

call our new makeEvent() method to make the message and event, then add the result (the MidiEvent returned from makeEvent()) to the track. These are NOTE ON (144) and NOTE OFF (128) pairsstart it running

There’s no event handling or graphics here, just a sequence of 15
notes that go up the scale. The point of this code is simply to learn
how to use our new makeEvent() method. The code for the next
two versions is much smaller and simpler thanks to this method.

Example: how to use the new static
makeEvent() method

390 chapter 12

import javax.sound.midi.*;
public class MiniMusicPlayer2 implements ControllerEventListener {

 public static void main(String[] args) {
 MiniMusicPlayer2 mini = new MiniMusicPlayer2();
 mini.go();
 }
 public void go() {

 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();

 int[] eventsIWant = {127};
 sequencer.addControllerEventListener(this, eventsIWant);

 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 for (int i = 5; i < 60; i+= 4) {
 track.add(makeEvent(144,1,i,100,i));

 track.add(makeEvent(176,1,127,0,i));

 track.add(makeEvent(128,1,i,100,i + 2));
 } // end loop

 sequencer.setSequence(seq);
 sequencer.setTempoInBPM(220);
 sequencer.start();
 } catch (Exception ex) {ex.printStackTrace();}
 } // close

 public void controlChange(ShortMessage event) {
 System.out.println(“la”);
 }

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 }catch(Exception e) { }
 return event;
 }
} // close class

Code that’s different from the previous
version is highlighted in gray. (and we’re
not running it all within main() this time)

We need to listen for ControllerEvents,
so we implement the listener interface

Register for events w
ith the sequencer.

The event registration
 method takes the

listener AND an int array represe
nting

the list of ControllerEvents you want.

We want only one event, #
127.

Here’s how we pick up the beat -- we insert our OWN ControllerEvent (176 says the event type is ControllerEvent) with an argument for event number #127. This event will do NOTH-ING! We put it in JUST so that we can get an event each time a note is played. In other words, its sole purpose is so that something will fire that WE can listen for (we can’t listen for NOTE ON/OFF events). Note that we’re making this event happen at the SAME tick as the NOTE ON. So when the NOTE ON event happens, we’ll know about it because OUR event will fire at the same time.

The event handler method (from the Controller-

Event listener interfa
ce). Each time we get the

event, we’ll print “la” to the
 command-line.

Version Two: registering and getting ControllerEvents

controller events

getting gui

you are here4 391

This final version builds on version two by adding the GUI parts. We build a
frame, add a drawing panel to it, and each time we get an event, we draw a
new rectangle and repaint the screen. The only other change from version
two is that the notes play randomly as opposed to simply moving up the
scale.

The most important change to the code (besides building a simple GUI)
is that we make the drawing panel implement the ControllerEventListener
rather than the program itself. So when the drawing panel (an inner class)
gets the event, it knows how to take care of itself by drawing the rectangle.

Complete code for this version is on the next page.

Version Three: drawing graphics in time with the music

 class MyDrawPanel extends JPanel implements ControllerEventListener {

 boolean msg = false;

 public void controlChange(ShortMessage event) {
 msg = true;
 repaint();
 }

 public void paintComponent(Graphics g) {
 if (msg) {

 Graphics2D g2 = (Graphics2D) g;

 int r = (int) (Math.random() * 250);
 int gr = (int) (Math.random() * 250);
 int b = (int) (Math.random() * 250);

 g.setColor(new Color(r,gr,b));

 int ht = (int) ((Math.random() * 120) + 10);
 int width = (int) ((Math.random() * 120) + 10);
 int x = (int) ((Math.random() * 40) + 10);
 int y = (int) ((Math.random() * 40) + 10);
 g.fillRect(x,y,ht, width);
 msg = false;

 } // close if
 } // close method
 } // close inner class

The drawing panel inner class:

The drawing panel is a listener

We set a flag to false, and we’ll set it to true only when we get an event.

We got an event, so we set the flag to true and call repaint()

We have to use a flag because OTHER things might trigger a repaint(), and we want to paint ONLY when there’s a ControllerEvent

The rest is code to generate a random color and paint a semi-random rectangle.

392 chapter 12

import javax.sound.midi.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;

public class MiniMusicPlayer3 {

 static JFrame f = new JFrame(“My First Music Video”);
 static MyDrawPanel ml;

 public static void main(String[] args) {
 MiniMusicPlayer3 mini = new MiniMusicPlayer3();
 mini.go();
 } // close method

 public void setUpGui() {
 ml = new MyDrawPanel();
 f.setContentPane(ml);
 f.setBounds(30,30, 300,300);
 f.setVisible(true);
 } // close method

 public void go() {
 setUpGui();

 try {

 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequencer.addControllerEventListener(ml, new int[] {127});
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 int r = 0;
 for (int i = 0; i < 60; i+= 4) {

 r = (int) ((Math.random() * 50) + 1);
 track.add(makeEvent(144,1,r,100,i));
 track.add(makeEvent(176,1,127,0,i));
 track.add(makeEvent(128,1,r,100,i + 2));
 } // end loop

 sequencer.setSequence(seq);
 sequencer.start();
 sequencer.setTempoInBPM(120);
 } catch (Exception ex) {ex.printStackTrace();}
 } // close method

Sharpen your pencil
This is the complete code listing for Version
Three. It builds directoy on Version Two. Try
to annotate it yourself, without looking at the
previous pages.

MiniMusicPlayer3 code

getting gui

you are here4 393

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 }catch(Exception e) { }
 return event;
 } // close method

 class MyDrawPanel extends JPanel implements ControllerEventListener {
 boolean msg = false;

 public void controlChange(ShortMessage event) {
 msg = true;
 repaint();
 }

 public void paintComponent(Graphics g) {
 if (msg) {

 Graphics2D g2 = (Graphics2D) g;

 int r = (int) (Math.random() * 250);
 int gr = (int) (Math.random() * 250);
 int b = (int) (Math.random() * 250);

 g.setColor(new Color(r,gr,b));

 int ht = (int) ((Math.random() * 120) + 10);
 int width = (int) ((Math.random() * 120) + 10);

 int x = (int) ((Math.random() * 40) + 10);
 int y = (int) ((Math.random() * 40) + 10);

 g.fillRect(x,y,ht, width);
 msg = false;

 } // close if
 } // close method
 } // close inner class

} // close class

394 chapter 12

Who am I?

A bunch of Java hot-shots, in full costume, are playing the party game “Who
am I?” They give you a clue, and you try to guess who they are, based on
what they say. Assume they always tell the truth about themselves. If they
happen to say something that could be true for more than one guy, then
write down all for whom that sentence applies. Fill in the blanks next to the
sentence with the names of one or more attendees.

Tonight’s attendees:

Any of the charming personalities from this chapter just
might show up!

I got the whole GUI, in my hands.

Every event type has one of these.

The listener’s key method.

This method gives JFrame its size.

You add code to this method but never call it.

When the user actually does something, it’s an _____ .

Most of these are event sources.

I carry data back to the listener.

An addXxxListener() method says an object is an _____ .

How a listener signs up.

The method where all the graphics code goes.

I’m typically bound to an instance.

The ‘g’ in (Graphics g), is really of class.

The method that gets paintComponent() rolling.

The package where most of the Swingers reside.

Exercise

exercise: Who Am I

getting gui

you are here4 395

The Java file on this page represents a
complete source file. Your job is to play
compiler and determine whether this file
will compile. If it won’t compile, how

would you fix it, and if it does
compile, what would it do?

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class InnerButton {

 JFrame frame;
 JButton b;

 public static void main(String [] args) {
 InnerButton gui = new InnerButton();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 b = new JButton(“A”);
 b.addActionListener();

 frame.getContentPane().add(
 BorderLayout.SOUTH, b);
 frame.setSize(200,100);
 frame.setVisible(true);
 }

 class BListener extends ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (b.getText().equals(“A”)) {
 b.setText(“B”);
 } else {
 b.setText(“A”);
 }
 }
 }
}

Exercise
BE the compiler

Pool Puzzle
Your job is to take code snippets from
the pool and place them into the blank

lines in the code. You may use the
same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make a
class that will compile and run

and produce the output listed.

Note: Each snippet
from the pool can be
used more than once!

Output

drawP.setSize(500,270)

frame.setSize(500,270)

panel.setSize(500,270)

x++

y++

The Amazing, Shrinking, Blue Rectangle.
This program will produce a blue
rectangle that will shrink and shrink and
disappear into a field of white.

g.setColor(blue)

g.setColor(white)

g.setColor(Color.blue)

g.setColor(Color.white)

g.fillRect(x,y,x-500,y-250)

g.fillRect(x,y,500-x*2,250-y*2)

g.fillRect(500-x*2,250-y*2,x,y)

g.fillRect(0,0,250,500)

g.fillRect(0,0,500,250)

g

draw

frame

panel

i++

i++, y++

i++, y++, x++

Animate frame = new Animate()

MyDrawP drawP = new MyDrawP()

ContentPane drawP = new ContentPane()drawP.paint()

draw.repaint()

drawP.repaint()

puzzle: Pool Puzzle import javax.swing.*;
import java.awt.*;
public class Animate {
 int x = 1;
 int y = 1;
 public static void main (String[] args) {
 Animate gui = new Animate ();
 gui.go();
 }
 public void go() {

 JFrame _________ = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 ______________________________________;
 _________.getContentPane().add(drawP);

 __________________________;
 _________.setVisible(true);

 for (int i=0; i<124; _______________) {

 _____________________;

 _____________________;
 try {
 Thread.sleep(50);
 } catch(Exception ex) { }
 }
 }
 class MyDrawP extends JPanel {

 public void paintComponent (Graphic
 _________) {

 __________________________________;

 __________________________________;

 __________________________________;

 __________________________________;
 }
 }
}

396 chapter 12

getting gui

you are here4 397

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class InnerButton {

 JFrame frame;
 JButton b;

 public static void main(String [] args) {
 InnerButton gui = new InnerButton();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 b = new JButton(“A”);
 b.addActionListener(new BListener());

 frame.getContentPane().add(
 BorderLayout.SOUTH, b);
 frame.setSize(200,100);
 frame.setVisible(true);
 }

 class BListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (b.getText().equals(“A”)) {
 b.setText(“B”);
 } else {
 b.setText(“A”);
 }
 }
 }
}

The addActionListener()
method takes a class that
implements the ActionLis-
tener interface

ActionListener is an
interface, interfaces
are implemented, not
extended

BE the compiler
Once this code
is fixed, it will
create a GUI with
a button that
toggles between
A and B when you
click it.

I got the whole GUI, in my hands. JFrame

Every event type has one of these. listener interface

The listener’s key method. actionPerformed()

This method gives JFrame its size. setSize()

You add code to this method but
never call it. paintComponent()

When the user actually does
something, it’s an ____ event

Most of these are event sources. swing components

I carry data back to the listener. event object

An addXxxListener() method
says an object is an ___ event source

How a listener signs up. addActionListener()

The method where all the
graphics code goes. paintComponent()

I’m typically bound to an instance. inner class

The ‘g’ in (Graphics g), is
 really of this class. Graphics2d

The method that gets
 paintComponent() rolling. repaint()

The package where most of the
Swingers reside. javax.swing

Who am I?

Exercise Solutions

398 chapter 12

Pool Puzzle

import javax.swing.*;

import java.awt.*;

public class Animate {

 int x = 1;

 int y = 1;

 public static void main (String[] args) {

 Animate gui = new Animate ();

 gui.go();

 }

 public void go() {

 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 MyDrawP drawP = new MyDrawP();
 frame.getContentPane().add(drawP);
 frame.setSize(500,270);
 frame.setVisible(true);
 for (int i = 0; i < 124; i++,x++,y++) {
 x++;
 drawP.repaint();
 try {

 Thread.sleep(50);

 } catch(Exception ex) { }

 }

 }

 class MyDrawP extends JPanel {

 public void paintComponent(Graphics g) {
 g.setColor(Color.white);
 g.fillRect(0,0,500,250);
 g.setColor(Color.blue);
 g.fillRect(x,y,500-x*2,250-y*2);
 }

 }

}

The Amazing, Shrinking, Blue
Rectangle.

puzzle answers

this is a new chapter 399

13 using swing

Swing is easy. Unless you actually care where things end up on the screen. Swing code

looks easy, but then you compile it, run it, look at it and think, “hey, that’s not supposed to go

there.” The thing that makes it easy to code is the thing that makes it hard to control—the

Layout Manager. Layout Manager objects control the size and location of the widgets in a

Java GUI. They do a ton of work on your behalf, but you won’t always like the results. You want

two buttons to be the same size, but they aren’t. You want the text field to be three inches long,

but it’s nine. Or one. And under the label instead of next to it. But with a little work, you can get

layout managers to submit to your will. In this chapter, we’ll work on our Swing and in addition

to layout managers, we’ll learn more about widgets. We’ll make them, display them (where we

choose), and use them in a program. It’s not looking too good for Suzy.

Why won’t
the ball go where I want

it to go? (like, smack in Suzy
Smith’s face) I’ve gotta learn

to control it.

Work on Your
Swing

Make it Stick

400 chapter 13

Component is the more correct term for what we’ve been calling a widget.
The things you put in a GUI. The things a user sees and interacts with. Text
fields, buttons, scrollable lists, radio buttons, etc. are all components. In
fact, they all extend javax.swing.JComponent.

components and containers

Swing components

In Swing, virtually all components are capable of holding other
components. In other words, you can stick just about anything into anything
else. But most of the time, you’ll add user interactive components such as
buttons and lists into background components such as frames and panels.
Although it’s possible to put, say, a panel inside a button, that’s pretty
weird, and won’t win you any usability awards.

With the exception of JFrame, though, the distinction between interactive
components and background components is artificial. A JPanel, for
example, is usually used as a background for grouping other components,
but even a JPanel can be interactive. Just as with other components, you
can register for the JPanel’s events including mouse clicks and keystrokes.

Components can be nested

Four steps to making a GUI (review)

JFrame frame = new JFrame();
Make a window (a JFrame)

JButton button = new JButton(“click me”);

frame.getContentPane().add(BorderLayout.EAST, button);

1

Make a component (button, text field, etc.)2

Add the component to the frame3

frame.setSize(300,300);
frame.setVisible(true);

Display it (give it a size and make it visible)4

Put interactive components: Into background components:

JButton

JCheckBox

JTextField

JFrame JPanel

A widget is technically
a Swing Component.
Almost every thing
you can stick in a
GUI extends from
javax.swing.JComponent.

using swing

you are here4 401

Layout Managers

Panel A’s layout manager controls the size and placement of Panel B.

As a layout manager,
I’m in charge of the size

and placement of your components.
In this GUI, I’m the one who decided

how big these buttons should be, and
where they are relative to each

other and the frame.

A layout manager is a Java object associated
with a particular component, almost always a
background component. The layout manager
controls the components contained within the
component the layout manager is associated
with. In other words, if a frame holds a panel,
and the panel holds a button, the panel’s layout
manager controls the size and placement of
the button, while the frame’s layout manager
controls the size and placement of the
panel. The button, on the other hand,
doesn’t need a layout manager because the
button isn’t holding other components.

If a panel holds five things, even if those
five things each have their own layout
managers, the size and location of the five
things in the panel are all controlled by the
panel’s layout manager. If those five things,
in turn, hold other things, then those other
things are placed according to the layout
manager of the thing holding them.

When we say hold we really mean add as in, a
panel holds a button because the button was
added to the panel using something like:

myPanel.add(button);

Layout managers come in several flavors, and
each background component can have its own
layout manager. Layout managers have their
own policies to follow when building a layout.
For example, one layout manager might insist
that all components in a panel must be the same
size, arranged in a grid, while another layout
manager might let each component choose its
own size, but stack them vertically. Here’s an
example of nested layouts:

Panel A

Panel B

button 1

button 2

button 3

Panel B’s layout
manager

controls t
he size an

d placement

of the th
ree butto

ns.

Panel A’s layout manager has NOTHING to say about the three buttons. The hierarchy of control is only one level—Panel A’s layout manager controls only the things added directly to Panel A, and does not control anything nested within those added components.

JPanel panelA = new JPanel();

JPanel panelB = new JPanel();

panelB.add(new JButton(“button 1”));

panelB.add(new JButton(“button 2”));

panelB.add(new JButton(“button 3”));

panelA.add(panelB);

402 chapter 13

Different layout managers have different policies for arranging
components (like, arrange in a grid, make them all the same size,
stack them vertically, etc.) but the components being layed out do
get at least some small say in the matter. In general, the process of
laying out a background component looks something like this:

How does the layout manager decide?

Different layout managers have different policies

Make a panel and add three buttons to it.1

The panel’s layout manager asks each button how big
that button prefers to be.

Add the panel to a frame.4

2

The panel’s layout manager uses its layout policies to decide
whether it should respect all, part, or none of the buttons’
preferences.

3

The frame’s layout manager asks the panel how big the panel
prefers to be.

5

The frame’s layout manager uses its layout policies to decide
whether it should respect all, part, or none of the panel’s
preferences.

6

Let’s see here... the
first button wants to be

30 pixels wide, and the text field
needs 50, and the frame is 200 pixels

wide and I’m supposed to arrange
everything vertically...

layout manager

A layout scenario:

Some layout managers respect the size the component wants to
be. If the button wants to be 30 pixels by 50 pixels, that’s what the
layout manager allocates for that button. Other layout managers
respect only part of the component’s preferred size. If the button
wants to be 30 pixels by 50 pixels, it’ll be 30 pixels by however
wide the button’s background panel is. Still other layout managers
respect the preference of only the largest of the components
being layed out, and the rest of the components in that panel
are all made that same size. In some cases, the work of the layout
manager can get very complex, but most of the time you can
figure out what the layout manager will probably do, once you get
to know that layout manager’s policies.

layout managers

using swing

you are here4 403

The Big Three layout managers:
border, flow, and box.

BorderLayout

A BorderLayout manager divides a background
component into five regions. You can add only one
component per region to a background controlled
by a BorderLayout manager. Components laid out
by this manager usually don’t get to have their
preferred size. BorderLayout is the default layout
manager for a frame!

FlowLayout

A FlowLayout manager acts kind of like a word
processor, except with components instead of
words. Each component is the size it wants to be,
and they’re laid out left to right in the order that
they’re added, with “word-wrap” turned on. So
when a component won’t fit horizontally, it drops
to the next “line” in the layout. FlowLayout is the
default layout manager for a panel!

BoxLayout

A BoxLayout manager is like FlowLayout in that
each component gets to have its own size, and
the components are placed in the order in which
they’re added. But, unlike FlowLayout, a BoxLayout
manager can stack the components vertically (or
horizontally, but usually we’re just concerned with
vertically). It’s like a FlowLayout but instead of
having automatic ‘component wrapping’, you can
insert a sort of ‘component return key’ and force
the components to start a new line.

one component
per region

components added left to right, wrapping to a new line when needed

components added top

to bottom, one per ‘line’

404 chapter 13

BorderLayout cares
about five regions:
east, west, north,
south, and center

import javax.swing.*;
import java.awt.*;

public class Button1 {

 public static void main (String[] args) {
 Button1 gui = new Button1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton(“click me”);
 frame.getContentPane().add(BorderLayout.EAST, button);
 frame.setSize(200,200);
 frame.setVisible(true);
 }
}

BorderLayout is in java.awt package

specify the
 region

Let’s add a button to the east region:

border layout

brain barbellBrain Barbell
How did the BorderLayout manager come up with
this size for the button?

What are the factors the layout manager has to
consider?

Why isn’t it wider or taller?

using swing

you are here4 405

Since it’s in the east
region of a border layout,

I’ll respect its preferred width. But
I don’t care how tall it wants to be;
it’s gonna be as tall as the frame,

because that’s my policy.

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton(“click like you mean it”);
 frame.getContentPane().add(BorderLayout.EAST, button);
 frame.setSize(200,200);
 frame.setVisible(true);
 }

Watch what happens when we give
the button more characters...

We changed o
nly the tex

t

on the butt
on

Button object

First, I ask the
button for its

preferred size. I have a lot of words
now, so I’d prefer to be
60 pixels wide and 25

pixels tall.

Button object

Next time
I’m goin’ with flow
layout. Then I get
EVERYTHING I

want.

The button g
ets

its preferre
d width,

but not hei
ght.

406 chapter 13

border layout

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton(“There is no spoon...”);
 frame.getContentPane().add(BorderLayout.NORTH, button);
 frame.setSize(200,200);
 frame.setVisible(true);
 }

Let’s try a button in the NORTH region

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton(“Click This!”);
 Font bigFont = new Font(“serif”, Font.BOLD, 28);
 button.setFont(bigFont);
 frame.getContentPane().add(BorderLayout.NORTH, button);
 frame.setSize(200,200);
 frame.setVisible(true);
 }

Now let’s make the button ask to be taller

How do we do that? The button is already as wide
as it can ever be—as wide as the frame. But we
can try to make it taller by giving it a bigger font.

The button i
s as tall as

it

wants to be,
but as wide as

the frame.

The width stays the same, but now

the button is taller.
The north

region stretched to
accomodate

the button’s new preferred height.

A bigger fon
t will force th

e

frame to allocat
e more space

for the but
ton’s height

.

using swing

you are here4 407

 public void go() {
 JFrame frame = new JFrame();

 JButton east = new JButton(“East”);
 JButton west = new JButton(“West”);
 JButton north = new JButton(“North”);
 JButton south = new JButton(“South”);
 JButton center = new JButton(“Center”);

 frame.getContentPane().add(BorderLayout.EAST, east);
 frame.getContentPane().add(BorderLayout.WEST, west);
 frame.getContentPane().add(BorderLayout.NORTH, north);
 frame.getContentPane().add(BorderLayout.SOUTH, south);
 frame.getContentPane().add(BorderLayout.CENTER, center);

 frame.setSize(300,300);
 frame.setVisible(true);
 }

The center region gets whatever’s left!
(except in one special case we’ll look at later)

Button object

I think I’m getting it... if I’m in east or
west, I get my preferred width but the
height is up to the layout manager. And

if I’m in north or south, it’s just the
opposite—I get my preferred height, but

not width.

But what happens
in the center region?

Components in the east a
nd

west get their prefer
red width.

Components in the north
 and

south get their pref
erred

height.

Components in the center get whatever space is left over, based on the frame dimensions (300 x 300 in this code).

300 pixels

30
0

pix
els

When you put something in the north or south, it goes all the way across the frame, so the things in the east and west won’t be as tall as they would be if the north and south regions were empty.

408 chapter 13

flow layout

FlowLayout cares
about the flow of the
components:

left to right, top to bottom, in
the order they were added.

import javax.swing.*;
import java.awt.*;

public class Panel1 {

 public static void main (String[] args) {
 Panel1 gui = new Panel1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);
 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(200,200);
 frame.setVisible(true);
 }
}

Let’s add a panel to the east region:

The panel doesn’t have
 anything

in it, so it doesn’t as
k for much

width in the east regi
on.

A JPanel’s layout manager is FlowLayout, by default. When we add
a panel to a frame, the size and placement of the panel is still
under the BorderLayout manager’s control. But anything inside the
panel (in other words, components added to the panel by calling
panel.add(aComponent)) are under the panel’s FlowLayout
manager’s control. We’ll start by putting an empty panel in the frame’s
east region, and on the next pages we’ll add things to the panel.

Make the panel gray so we can see where it is on the frame.

using swing

you are here4 409

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 JButton button = new JButton(“shock me”);

 panel.add(button);
 frame.getContentPane().add(BorderLayout.EAST, panel);

 frame.setSize(250,200);
 frame.setVisible(true);
 }

Let’s add a button to the panel

Add the button to th
e panel and add the

panel to the frame. The panel’s layout manager

(flow) controls the butto
n, and the frame’s

layout manager (border) cont
rols the panel.

The panel expanded!
And the button got its preferred size in both dimensions, because the panel uses flow layout, and the button is part of the panel (not the frame).

Panel object

I have a button now,
so my layout manager’s
gonna have to figure out
how big I need to be...

Button object

The frame’s
BorderLayout manager

Based on my font size
and the number of

characters, I want to be 70
pixels wide and 20 pixels tall.

Ok... I need to
know how big the
panel wants to be...

The panel’s
FlowLayout manager

I need
to know how big the
button wants to

controls controls

panel panel

410 chapter 13

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 JButton button = new JButton(“shock me”);
 JButton buttonTwo = new JButton(“bliss”);

 panel.add(button);
 panel.add(buttonTwo);

 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(250,200);
 frame.setVisible(true);
 }

What happens if we add TWO buttons
to the panel?

make TWO buttons

add BOTH to the panel

what we wanted: what we got:

We want the but
tons

stacked on
top of each

other

The panel expanded to fit both buttons side by side.

notice that t
he ‘bliss’ butt

on is smaller than

the ‘shock me’ button... th
at’s how flow

layout works. The button get
s just what it

needs (and no
 more).

Sharpen your pencil

JButton button = new JButton(“shock me”);
JButton buttonTwo = new JButton(“bliss”);
JButton buttonThree = new JButton(“huh?”);
panel.add(button);
panel.add(buttonTwo);
panel.add(buttonThree);

If the code above were modified to the code below,
what would the GUI look like?

Draw what you
think the GUI would
look like if you ran
the code to the left.

(Then try it!)

flow layout

using swing

you are here4 411

BoxLayout to the rescue!

It keeps components
stacked, even if there’s room
to put them side by side.

Unlike FlowLayout, BoxLayout can force a
‘new line’ to make the components wrap to
the next line, even if there’s room for them
to fit horizontally.

But now you’ll have to change the panel’s layout manager from the
default FlowLayout to BoxLayout.

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

 JButton button = new JButton(“shock me”);
 JButton buttonTwo = new JButton(“bliss”);
 panel.add(button);
 panel.add(buttonTwo);
 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(250,200);
 frame.setVisible(true);
 }

Change the lay
out manager to be

a new

instance of B
oxLayout.

The BoxLayout constructor needs to know the component its laying out (i.e., the panel) and which axis to use (we use Y_AXIS for a vertical stack).

Notice how the panel is n
arrower again,

because it doe
sn’t need to f

it both butto
ns

horizontally.
So the panel

told the fram
e

it needed eno
ugh room for only the

 largest

button, ‘shock
 me’.

412 chapter 13

layout managers

there are noDumb Questions
Q: How come you can’t add directly to a frame the way
you can to a panel?

A: A JFrame is special because it’s where the rubber
meets the road in making something appear on the screen.
While all your Swing components are pure Java, a JFrame
has to connect to the underlying OS in order to access the
display. Think of the content pane as a 100% pure Java layer
that sits on top of the JFrame. Or think of it as though JFrame
is the window frame and the content pane is the... glass. You
know, the window pane. And you can even swap the content
pane with your own JPanel, to make your JPanel the frame’s
content pane, using,

myFrame.setContentPane(myPanel);

Q: Can I change the layout manager of the frame?
What if I want the frame to use flow instead of border?

A:The easiest way to do this is to make a panel, build
the GUI the way you want in the panel, and then make that
panel the frame’s content pane using the code in the previ-
ous answer (rather than using the default content pane).

Q: What if I want a different preferred size? Is there a
setSize() method for components?

A:Yes, there is a setSize(), but the layout managers will
ignore it. There’s a distinction between the preferred size of
the component and the size you want it to be. The preferred
size is based on the size the component actually needs
(the component makes that decision for itself). The layout
manager calls the component’s getPreferredSize() method,
and that method doesn’t care if you’ve previously called
setSize() on the component.

Q:Can’t I just put things where I want them? Can I turn
the layout managers off?

A:Yep. On a component by component basis, you can call
setLayout(null) and then it’s up to you to hard-code
the exact screen locations and dimensions. In the long run,
though, it’s almost always easier to use layout managers.

 BULLET POINTS

ß Layout managers control the size and location of
components nested within other components.

ß When you add a component to another component
(sometimes referred to as a background component,
but that’s not a technical distinction), the added
component is controlled by the layout manager of the
background component.

ß A layout manager asks components for their
preferred size, before making a decision about
the layout. Depending on the layout manager’s
policies, it might respect all, some, or none of the
component’s wishes.

ß The BorderLayout manager lets you add a
component to one of five regions. You must specify
the region when you add the component, using the
following syntax:
add(BorderLayout.EAST, panel);

ß With BorderLayout, components in the north and
south get their preferred height, but not width.
Components in the east and west get their preferred
width, but not height. The component in the center
gets whatever is left over (unless you use pack()).

ß The pack() method is like shrink-wrap for the
components; it uses the full preferred size of the
center component, then determines the size of the
frame using the center as a starting point, building
the rest based on what’s in the other regions.

ß FlowLayout places components left to right, top to
bottom, in the order they were added, wrapping to a
new line of components only when the components
won’t fit horizontally.

ß FlowLayout gives components their preferred size in
both dimensions.

ß BoxLayout lets you align components stacked
vertically, even if they could fit side-by-side. Like
FlowLayout, BoxLayout uses the preferred size of
the component in both dimensions.

ß BorderLayout is the default layout manager for a
frame; FlowLayout is the default for a panel.

ß If you want a panel to use something other than flow,
you have to call setLayout() on the panel.

using swing

you are here4 413

Playing with Swing components
You’ve learned the basics of layout managers, so now let’s try out a
few of the most common components: a text field, scrolling text area,
checkbox, and list. We won’t show you the whole darn API for each of
these, just a few highlights to get you started.

JTextField

Constructors

JTextField field = new JTextField(20);

How to use it

Get text out of it
System.out.println(field.getText());

1

Put text in it
field.setText(“whatever”);
field.setText(““);

2

Get an ActionEvent when the user
presses return or enter

field.addActionListener(myActionListener);

3 You can also register for key events if you really want to hear about it every time the user presses a key.

20 means 20 columns, not 20 pixels.

This defines the
 preferred width of

the text field
.

JTextField field = new JTextField(“Your name”);

Select/Highlight the text in the field
field.selectAll();

4

Put the cursor back in the field (so the user
can just start typing)

field.requestFocus();

5

JTextField

JLabel

This clears the field

414 chapter 13

JTextArea

Constructor

JTextArea text = new JTextArea(10,20);

How to use it

Make it have a vertical scrollbar only
JScrollPane scroller = new JScrollPane(text);
text.setLineWrap(true);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

panel.add(scroller);

1

Replace the text that’s in it
text.setText(“Not all who are lost are wandering”);

2

Make a JScrollPane and give
 it the

text area t
hat it’s goin

g to scroll f
or.

10 means 10 lines (sets the
 preferred hei

ght)

Select/Highlight the text in the field
text.selectAll();

4

Put the cursor back in the field (so the user
can just start typing)
text.requestFocus();

5

20 means 20 columns (sets the pr
eferred width)

Unlike JTextField, JTextArea can have more than one line of text. It
takes a little configuration to make one, because it doesn’t come out of
the box with scroll bars or line wrapping. To make a JTextArea scroll, you
have to stick it in a ScrollPane. A ScrollPane is an object that really loves
to scroll, and will take care of the text area’s scrolling needs.

Append to the text that’s in it
text.append(“button clicked”);

3

Turn on line wrapping
Tell the scroll pane to use only a vertical scrollbar

Important!! You give the text area to the scroll pane (through the
scroll pane constructor), then add the scroll pane to the panel. You
don’t add the text area directly to the panel!

text area

using swing

you are here4 415

JTextArea example

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TextArea1 implements ActionListener {

 JTextArea text;

 public static void main (String[] args) {
 TextArea1 gui = new TextArea1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 JButton button = new JButton(“Just Click It”);
 button.addActionListener(this);
 text = new JTextArea(10,20);
 text.setLineWrap(true);

 JScrollPane scroller = new JScrollPane(text);
 scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

 panel.add(scroller);

 frame.getContentPane().add(BorderLayout.CENTER, panel);
 frame.getContentPane().add(BorderLayout.SOUTH, button);

 frame.setSize(350,300);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent ev) {
 text.append(“button clicked \n ”);
 }
}

Insert a new line so the words go on a separate line each time the button is clicked. Otherwise, they’ll run together.

416 chapter 13

JCheckBox

Constructor

JCheckBox check = new JCheckBox(“Goes to 11”);

How to use it

Listen for an item event (when it’s selected or deselected)
check.addItemListener(this);

1

Handle the event (and find out whether or not it’s selected)

 public void itemStateChanged(ItemEvent ev) {
 String onOrOff = “off”;
 if (check.isSelected()) onOrOff = “on”;
 System.out.println(“Check box is “ + onOrOff);
 }

2

Select or deselect it in code
check.setSelected(true);
check.setSelected(false);

3

check box

there are noDumb Questions
Q: Aren’t the layout manag-
ers just more trouble than they’re
worth? If I have to go to all this
trouble, I might as well just hard-
code the size and coordinates for
where everything should go.

A: Getting the exact layout
you want from a layout man-
ager can be a challenge. But think
about what the layout manager
is really doing for you. Even the
seemingly simple task of figuring
out where things should go on
the screen can be complex. For
example, the layout manager takes
care of keeping your components
from overlapping one another.
In other words, it knows how to
manage the spacing between
components (and between the
edge of the frame). Sure you can
do that yourself, but what happens
if you want components to be
very tightly packed? You might get
them placed just right, by hand,
but that’s only good for your JVM!

Why? Because the components
can be slightly different from
platform to platform, especially if
they use the underlying platform’s
native ‘look and feel’. Subtle things
like the bevel of the buttons can
be different in such a way that
components that line up neatly
on one platform suddenly squish
together on another.

And we’re still not at the really Big
Thing that layout managers do.
Think about what happens when
the user resizes the window! Or
your GUI is dynamic, where com-
ponents come and go. If you had
to keep track of re-laying out all
the components every time there’s
a change in the size or contents of
a background component...yikes!

using swing

you are here4 417

JList

Constructor

String [] listEntries = {“alpha”, “beta”, “gamma”, “delta”,
 “epsilon”, “zeta”, “eta”, “theta “};

list = new JList(listEntries);

How to use it

Make it have a vertical scrollbar
JScrollPane scroller = new JScrollPane(list);
scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

panel.add(scroller);

1

Restrict the user to selecting only ONE thing at a time

 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

3

Register for list selection events
list.addListSelectionListener(this);

4

Handle events (find out which thing in the list was selected)
public void valueChanged(ListSelectionEvent lse) {
 if(!lse.getValueIsAdjusting()) {
 String selection = (String) list.getSelectedValue();
 System.out.println(selection);
 }
 }

5

Set the number of lines to show before scrolling
list.setVisibleRowCount(4);

2

This is just like with JTextArea -- you make a

JScrollPane (and give it
the list), then a

dd the

scroll pane (NOT the list) to the
 panel.

You’ll get the event TWICE if you don’t

put in this if test.

getSelectedValue() actually returns an Object. A list isn’t limited to only String objects.

JList constructor takes an array of any object type. They don’t have to be Strings, but a String representation will appear in the list.

there are noDumb Questions

418 chapter 13

Code Kitchen

This part’s optional. We’re making the full BeatBox, GUI
and all. In the Saving Objects chapter, we’ll learn how to
save and restore drum patterns. Finally, in the networking
chapter (Make a Connection), we’ll turn the BeatBox into a
working chat client.

Code Kitchen

using swing

you are here4 419

This is the full code listing for this version of the BeatBox, with buttons for starting,
stopping, and changing the tempo. The code listing is complete, and fully-
annotated, but here’s the overview:

Making the BeatBox

1

2

3

4

Build a GUI that has 256 checkboxes (JCheckBox) that start out
unchecked, 16 labels (JLabel) for the instrument names, and four
buttons.

Register an ActionListener for each of the four buttons. We don’t
need listeners for the individual checkboxes, because we aren’t
trying to change the pattern sound dynamically (i.e. as soon as the
user checks a box). Instead, we wait until the user hits the ‘start’
button, and then walk through all 256 checkboxes to get their state
and make a MIDI track.

Set-up the MIDI system (you’ve done this before) including getting
a Sequencer, making a Sequence, and creating a track. We are using
a sequencer method that’s new to Java 5.0, setLoopCount(). This
method allows you to specify how many times you want a sequence
to loop. We’re also using the sequence’s tempo factor to adjust the
tempo up or down, and maintain the new tempo from one iteration of
the loop to the next.

When the user hits ‘start’, the real action begins. The event-handling
method for the ‘start’ button calls the buildTrackAndStart() method.
In that method, we walk through all 256 checkboxes (one row at
a time, a single instrument across all 16 beats) to get their state,
then use the information to build a MIDI track (using the handy
makeEvent() method we used in the previous chapter). Once the track
is built, we start the sequencer, which keeps playing (because we’re
looping it) until the user hits ‘stop’.

420 chapter 13

import java.awt.*;
import javax.swing.*;
import javax.sound.midi.*;
import java.util.*;
import java.awt.event.*;

public class BeatBox {

 JPanel mainPanel;
 ArrayList<JCheckBox> checkboxList;
 Sequencer sequencer;
 Sequence sequence;
 Track track;
 JFrame theFrame;

 String[] instrumentNames = {“Bass Drum”, “Closed Hi-Hat”,
 “Open Hi-Hat”,”Acoustic Snare”, “Crash Cymbal”, “Hand Clap”,
 “High Tom”, “Hi Bongo”, “Maracas”, “Whistle”, “Low Conga”,
 “Cowbell”, “Vibraslap”, “Low-mid Tom”, “High Agogo”,
 “Open Hi Conga”};
 int[] instruments = {35,42,46,38,49,39,50,60,70,72,64,56,58,47,67,63};

 public static void main (String[] args) {
 new BeatBox2().buildGUI();
 }

 public void buildGUI() {
 theFrame = new JFrame(“Cyber BeatBox”);
 theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 BorderLayout layout = new BorderLayout();
 JPanel background = new JPanel(layout);
 background.setBorder(BorderFactory.createEmptyBorder(10,10,10,10));

 checkboxList = new ArrayList<JCheckBox>();
 Box buttonBox = new Box(BoxLayout.Y_AXIS);

 JButton start = new JButton(“Start”);
 start.addActionListener(new MyStartListener());
 buttonBox.add(start);

 JButton stop = new JButton(“Stop”);
 stop.addActionListener(new MyStopListener());
 buttonBox.add(stop);

 JButton upTempo = new JButton(“Tempo Up”);
 upTempo.addActionListener(new MyUpTempoListener());
 buttonBox.add(upTempo);

 JButton downTempo = new JButton(“Tempo Down”);

BeatBox code

We store the checkboxes in an ArrayList

These are the names of the instruments, as a String array, for building the GUI labels (on each row)

These represent the actual drum ‘keys’. The drum channel is like a piano, except each ‘key’ on the piano is a different drum. So the number ‘35’ is the key for the Bass drum, 42 is Closed Hi-Hat, etc.

Nothing special here, just lots o
f GUI

code. You’ve seen most of it before.

An ‘empty border’ gives us a margin between the edges of the panel and where the components are placed. Purely aesthetic.

using swing

you are here4 421

 downTempo.addActionListener(new MyDownTempoListener());
 buttonBox.add(downTempo);

 Box nameBox = new Box(BoxLayout.Y_AXIS);
 for (int i = 0; i < 16; i++) {
 nameBox.add(new Label(instrumentNames[i]));
 }

 background.add(BorderLayout.EAST, buttonBox);
 background.add(BorderLayout.WEST, nameBox);

 theFrame.getContentPane().add(background);

 GridLayout grid = new GridLayout(16,16);
 grid.setVgap(1);
 grid.setHgap(2);
 mainPanel = new JPanel(grid);
 background.add(BorderLayout.CENTER, mainPanel);

 for (int i = 0; i < 256; i++) {
 JCheckBox c = new JCheckBox();
 c.setSelected(false);
 checkboxList.add(c);
 mainPanel.add(c);
 } // end loop

 setUpMidi();

 theFrame.setBounds(50,50,300,300);
 theFrame.pack();
 theFrame.setVisible(true);
 } // close method

 public void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequence = new Sequence(Sequence.PPQ,4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(120);

 } catch(Exception e) {e.printStackTrace();}
 } // close method

Still more GUI set-up code.
Nothing remarkable.

Make the checkboxes, set them to ‘false’ (so they aren’t checked) and add them to the ArrayList AND to the GUI panel.

The usual MIDI set-up stuff for getting the Sequencer, the Sequence, and the Track. Again, nothing special.

422 chapter 13

 public void buildTrackAndStart() {
 int[] trackList = null;

 sequence.deleteTrack(track);
 track = sequence.createTrack();

 for (int i = 0; i < 16; i++) {
 trackList = new int[16];

 int key = instruments[i];

 for (int j = 0; j < 16; j++) {

 JCheckBox jc = (JCheckBox) checkboxList.get(j + (16*i));
 if (jc.isSelected()) {
 trackList[j] = key;
 } else {
 trackList[j] = 0;
 }
 } // close inner loop

 makeTracks(trackList);
 track.add(makeEvent(176,1,127,0,16));
 } // close outer

 track.add(makeEvent(192,9,1,0,15));
 try {

 sequencer.setSequence(sequence);
 sequencer.setLoopCount(sequencer.LOOP_CONTINUOUSLY);
 sequencer.start();
 sequencer.setTempoInBPM(120);
 } catch(Exception e) {e.printStackTrace();}
 } // close buildTrackAndStart method

 public class MyStartListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 buildTrackAndStart();
 }
 } // close inner class

We’ll make a 16-element array to ho
ld the values fo

r

one instrument, across all 1
6 beats. If the

instrument is

supposed to play
 on that beat, t

he value at that
 element

will be the key. If
 that instrument is NOT supposed to

play on that be
at, put in a zer

o.

Is the checkbox at this beat selected? If yes, put
the key value in this slot in the array (the slot that
represents this beat). Otherwise, the instrument is
NOT supposed to play at this beat, so set it to zero.

do this for each of the 16 ROWS (i.e. Bass, Congo, etc.)

Set the ‘key’. that represents
 which instrument this

is (Bass, Hi-Hat, etc. The instruments array holds the

actual MIDI numbers for each instrument.)

NOW PLAY THE THING!!

First of the inner classes, listeners for the buttons. Nothing special here.

This is where it all happens! Where we

turn checkbox state into MIDI events,

and add them to the Track.

BeatBox code

Do this for each of the BEATS for this row

For this instrument, and for all 16 beats,
make events and add them to the track.

We always want to make sure that there IS an event at
beat 16 (it goes 0 to 15). Otherwise, the BeatBox might
not go the full 16 beats before it starts over.

get rid of the old track, make a fresh one.

Let’s you specify the number
of loop iterations, or in this
case, continuous looping.

using swing

you are here4 423

 public class MyStopListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 sequencer.stop();
 }
 } // close inner class

 public class MyUpTempoListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor((float)(tempoFactor * 1.03));
 }
 } // close inner class

 public class MyDownTempoListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor((float)(tempoFactor * .97));
 }
 } // close inner class

 public void makeTracks(int[] list) {

 for (int i = 0; i < 16; i++) {
 int key = list[i];

 if (key != 0) {
 track.add(makeEvent(144,9,key, 100, i));
 track.add(makeEvent(128,9,key, 100, i+1));
 }
 }
 }

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 } catch(Exception e) {e.printStackTrace(); }
 return event;
 }

} // close class

The other inner class listeners for the buttons

Make the NOTE ON and
NOT OFF events, and
add them to the Track.

This is the utility method from last chapter’s CodeKitchen. Nothing new.

This makes events for one instrument at a time, for

all 16 beats. So it might get an int[] for the Bass

drum, and each index in the array will hold either

the key of that instrument, or a zero. If it’s a zero,

the instrument isn’t supposed to play at that
beat.

Otherwise, make an event and add it to the tra
ck.

The Tempo Factor scales
the sequencer’s tempo by
the factor provided. The
default is 1.0, so we’re
adjusting +/- 3% per
click.

424 chapter 13

1

3

2
4

5

6

?

Exercise Which code goes with
which layout?

Five of the six screens below were made from one

of the code fragments on the opposite page. Match

each of the five code fragments with the layout that

fragment would produce.

exercise: Which Layout?

using swing

you are here4 425

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
frame.getContentPane().add(BorderLayout.NORTH,panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER,button);

D

 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);
 JButton button = new JButton(“tesuji”);
 JButton buttonTwo = new JButton(“watari”);
 panel.add(buttonTwo);
 frame.getContentPane().add(BorderLayout.CENTER,button);
 frame.getContentPane().add(BorderLayout.EAST, panel);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER,button);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
panel.add(button);
frame.getContentPane().add(BorderLayout.NORTH,buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
frame.getContentPane().add(BorderLayout.SOUTH,panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.NORTH,button);

E

A

C

B

Code Fragments

426 chapter 13

GUI-Cross 7.0

You can do it.

Down

2. Swing’s dad

3. Frame’s purview

5. Help’s home

6. More fun than text

7. Component slang

8. Romulin command

9. Arrange

10. Border’s top

Across

1. Artist’s sandbox

4. Border’s catchall

5. Java look

9. Generic waiter

11. A happening

12. Apply a widget

15. JPanel’s default

16. Polymorphic test

17. Shake it baby

21. Lots to say

23. Choose many

25. Button’s pal

26. Home of
 actionPerformed

13. Manager’s rules

14. Source’s behavior

15. Border by default

18. User’s behavior

19. Inner’s squeeze

20. Backstage widget

22. Mac look

24. Border’s right

1 2

15

17

24

18 19

10

25

5

11

4

9

22

26

16

12

21

23

8

3

6

14

13

7

20

puzzle: crossword

using swing

you are here4 427

1

3

2

4

6 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);
 JButton button = new JButton(“tesuji”);
 JButton buttonTwo = new JButton(“watari”);
 panel.add(buttonTwo);
 frame.getContentPane().add(BorderLayout.CENTER,button);
 frame.getContentPane().add(BorderLayout.EAST, panel);

B

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER,button);

C

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
panel.add(button);
frame.getContentPane().add(BorderLayout.NORTH,buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

A

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
frame.getContentPane().add(BorderLayout.SOUTH,panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.NORTH,button);

E

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton(“tesuji”);
JButton buttonTwo = new JButton(“watari”);
frame.getContentPane().add(BorderLayout.NORTH,panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER,button);

D

Exercise Solutions

428 chapter 13

GUI-Cross 7.0
1 2

15

17

24

18 19

10

25

5

11

4

9

22

26

16

12

21

23

8

3

6

14

13

7

20

Puzzle Answers

 D R A W P A N E L S
 W C E N T E R
 M E T A L T G W
 S E L I S T E N E R I
 E V E N T A I O A D D
 T U P Y Z R P G
 V C F L O W O E T H E
 I S A R L U H I T
 S L A N I M A T I O N C
 I L M C C U P
 B B E Y T E X T A R E A A
 L A I E Q N
 E C H E C K B O X R U E
 K A N L A B E L
 S
 A C T I O N L I S T E N E R

puzzle answers

this is a new chapter 429

14 serialization and file I/O

Objects can be flattened and inflated. Objects have state and behavior.

Behavior lives in the class, but state lives within each individual object. So what happens when

it’s time to save the state of an object? If you’re writing a game, you’re gonna need a Save/

Restore Game feature. If you’re writing an app that creates charts, you’re gonna need a Save/

Open File feature. If your program needs to save state, you can do it the hard way, interrogating

each object, then painstakingly writing the value of each instance variable to a file, in a

format you create. Or, you can do it the easy OO way—you simply freeze-dry/flatten/persist/

dehydrate the object itself, and reconstitute/inflate/restore/rehydrate it to get it back. But you’ll

still have to do it the hard way sometimes, especially when the file your app saves has to be read

by some other non-Java application, so we’ll look at both in this chapter.

If I have to read
one more fi le full of

data, I think I’ll have to kill him. He
knows I can save whole objects, but

does he let me? NO, that would be
too easy. Well, we’ll just see how

he feels after I...

Saving Objects

Make it Stick

430 chapter 14

You’ve made the perfect pattern. You want to save the pattern.
You could grab a piece of paper and start scribbling it down, but
instead you hit the Save button (or choose Save from the File
menu). Then you give it a name, pick a directory,
and exhale knowing that your masterpiece won’t go
out the window with the blue screen of death.

You have lots of options for how to save the state of
your Java program, and what you choose will probably
depend on how you plan to use the saved state. Here
are the options we’ll be looking at in this chapter.

saving objects

Capture the Beat

Use serialization

Write a fi le that holds fl attened (serialized)
objects. Then have your program read the
serialized objects from the fi le and infl ate them
back into living, breathing, heap-inhabiting objects.

1

the pattern.
You could grab a piece of paper and start scribbling it down, but

 button (or choose Save from the File

serialized objects from the fi le and infl ate them

If your data will be used by only the Java
program that generated it:

These aren’t the only options, of course. You can save data in any
format you choose. Instead of writing characters, for example,
you can write your data as bytes. Or you can write out any kind
of Java primitive as a Java primitive—there are methods to write
ints, longs, booleans, etc. But regardless of the method you use,
the fundamental I/O techniques are pretty much the same:
write some data to something, and usually that something is either
a fi le on disk or a stream coming from a network connection.
Reading the data is the same process in reverse: read some data
from either a fi le on disk or a network connection. And of course
everything we talk about in this part is for times when you aren’t
using an actual database.

If your data will be used by other programs:

Write a plain text fi le

Write a fi le, with delimiters that other programs can parse.
For example, a tab-delimited fi le that a spreadsheet or
database application can use.

2

serialization and file I/O

you are here4 431

Option two

Write a plain text fi le

Create a fi le and write three lines of text,
one per character, separating the pieces
of state with commas:

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

2

The serialized file is much harder for humans to read,
but it’s much easier (and safer) for your program to
restore the three objects from serialization than from
reading in the object’s variable values that were saved
to a text file. For example, imagine all the ways in which
you could accidentally read back the values in the wrong
order.! The type might become “dust” instead of “Elf”,
while the Elf becomes a weapon...

Imagine you have three game characters to save...

Saving State
Imagine you have a program, say, a fantasy
adventure game, that takes more than one
session to complete. As the game progresses,
characters in the game become stronger, weaker,
smarter, etc., and gather and use (and lose)
weapons. You don’t want to start from scratch
each time you launch the game—it took you
forever to get your characters in top shape for
a spectacular battle. So, you need a way to save
the state of the characters, and a way to restore
the state when you resume the game. And since
you’re also the game programmer, you want the
whole save and restore thing to be as easy (and
foolproof) as possible.

GameCharacter

int power
String type
Weapon[] weapons

getWeapon()
useWeapon()
increasePower()
// more

 object

power: 50
type: Elf
weapons: bow,
sword, dust

Option one

Write the three serialized
character objects to a fi le

Create a fi le and write three serialized
character objects. The fi le won’t make
sense if you try to read it as text:

 ̈ÌsrGameCharacter
%̈gê8MÛIpowerLjava/lang/
String;[weaponst[Ljava/lang/
String;xp2tlfur[Ljava.lang.String;≠“VÁ
È{Gxptbowtswordtdustsq~»tTrolluq~tb
are handstbig axsq~xtMagicianuq~tspe
llstinvisibility

1

power: 200
type: Troll
weapons: bare
hands, big ax

power: 120
type: Magician
weapons: spells,
invisibility

 object

 object

saving objects

432 chapter 14

Here are the steps for serializing (saving) an object. Don’t bother
memorizing all this; we’ll go into more detail later in this chapter.

Writing a serialized object to a file

FileOutputStream fileStream = new FileOutputStream(“MyGame.ser”);

Make a FileOutputStream object. FileOutputStream
knows how to connect to (and create) a file.

1 Make a FileOutputStream

os.writeObject(characterOne);
os.writeObject(characterTwo);
os.writeObject(characterThree);

3 Write the object

os.close();

4 Close the ObjectOutputStream

serializes the objects r
eferenced by characte

r-

One, characterTwo, and characterThree, and

writes them to the file “MyGame.ser”.

Closing the stream at the top closes the ones underneath, so the FileOutputStream (and the file) will close automatically.

If the file “MyGame.ser” doesn’t

exist, it will be created automatically.

ObjectOutputStream os = new ObjectOutputStream(fileStream);

2 Make an ObjectOutputStream

ObjectOutputStream lets you write objects,

but it can’t directly c
onnect to a file. It

needs to be fed a ‘help
er’. This is actually

called ‘chaining’ one str
eam to another.

serialization and file I/O

you are here4 433

The Java I/O API has connection streams, that represent connections to destinations and
sources such as fi les or network sockets, and chain streams that work only if chained to
other streams.

Often, it takes at least two streams hooked together to do something useful—one to
represent the connection and another to call methods on. Why two? Because connection
streams are usually too low-level. FileOutputStream (a connection stream), for example,
has methods for writing bytes. But we don’t want to write bytes! We want to write objects, so
we need a higher-level chain stream.

OK, then why not have just a single stream that does exactly what you want? One that lets
you write objects but underneath converts them to bytes? Think good OO. Each class
does one thing well. FileOutputStreams write bytes to a fi le. ObjectOutputStreams turn
objects into data that can be written to a stream. So we make a FileOutputStream that lets
us write to a fi le, and we hook an ObjectOutputStream (a chain stream) on the end of it.
When we call writeObject() on the ObjectOutputStream, the object gets pumped into the
stream and then moves to the FileOutputStream where it ultimately gets written as bytes
to a fi le.

The ability to mix and match different combinations of connection and chain streams
gives you tremendous fl exibility! If you were forced to use only a single stream class, you’d
be at the mercy of the API designers, hoping they’d thought of everything you might ever
want to do. But with chaining, you can patch together your own custom chains.

Data moves in streams from one place to another.

Source

Destination

Object ObjectOutputStream
(a chain stream)

is written to

object is fl attened (serialized)

FileOutputStream
(a connection stream)

011010010110111001

object is written as bytes to
01101001

01101110

01

File

destination

Connection
streams represent
a connection
to a source or
destination (file,
socket, etc.) while
chain streams
can’t connect on
their own and must
be chained to a
connection stream.

is chained to

434 chapter 14

Objects on the heap have state—the
value of the object’s instance
variables. These values make one
instance of a class different from
another instance of the same class.

What really happens to an object
when it’s serialized?

Foo myFoo = new Foo();
myFoo.setWidth(37);
myFoo.setHeight(70);

FileOutputStream fs = new FileOutputStream(“foo.ser”);
ObjectOutputStream os = new ObjectOutputStream(fs);
os.writeObject(myFoo);

1 Object on the heap 2 Object serialized

serialized objects

00100101

width

01000110

height

00100101

01000110

Serialized objects save the values
of the instance variables, so that
an identical instance (object) can be
brought back to life on the heap.

The instance variable values for width and height are saved to the file “foo.ser”, along with a little more info the JVM needs to restore the object (like what its class type is).foo.ser

Object with two primitive

instance v
ariables.

The values are suc
ked

out and pumped into

the stream.

Make a FileOutputStream that connects to the file “foo.ser”, then chain an ObjectOutputStream to it, and tell the ObjectOutputStream to write the object.

serialization and file I/O

you are here4 435

But what exactly IS an object’s state?
What needs to be saved?
Now it starts to get interesting. Easy enough to save the primitive
values 37 and 70. But what if an object has an instance variable
that’s an object reference? What about an object that has five
instance variables that are object references? What if those object
instance variables themselves have instance variables?

Think about it. What part of an object is potentially unique?
Imagine what needs to be restored in order to get an object that’s
identical to the one that was saved. It will have a different memory
location, of course, but we don’t care about that. All we care about
is that out there on the heap, we’ll get an object that has the same
state the object had when it was saved.

Engine

eng

Tire []

tires

Tire [] array obje
ct

Engine object

Car object

The Car object has two
instance variables that
reference two other
objects.

brain barbellBrain Barbell
What has to happen for the Car

object to be saved in such a way

that it can be restored back to its

original state?

Think of what—and how—you

might need to save the Car.

And what happens if an Engine

object has a reference to a

Carburator? And what’s inside the

Tire [] array object?

What does it take to
save a Car object?

436 chapter 14

When an object is serialized, all the objects
it refers to from instance variables are also
serialized. And all the objects those objects
refer to are serialized. And all the objects those
objects refer to are serialized... and the best
part is, it happens automatically!

Dog

foof

Dog

barf

Collar object

String object

Dog[] array objec

t

int

String

name

Collar

col

Dog object

size

“Fido”

Collar object

String object

int

String

name

Collar

col

Dog object

size

“Spike”

This Kennel object has a reference to a Dog [] array object. The
Dog [] holds references to two Dog objects. Each Dog object holds
a reference to a String and a Collar object. The String objects
have a collection of characters and the Collar objects have an int.

When you save the Kennel, all of this is saved!

Kennel object

Dog []

dogs

Serialization saves the
entire object graph.
All objects referenced
by instance variables,
starting with the
object being serialized.

serialized objects

Everything
has to

be saved i
n order to

restore th
e Kennel back

to this st
ate.

serialization and file I/O

you are here4 437

If you want your class to be serializable,
implement Serializable
The Serializable interface is known as a marker or tag interface,
because the interface doesn’t have any methods to implement. Its
sole purpose is to announce that the class implementing it is, well,
serializable. In other words, objects of that type are saveable through
the serialization mechanism. If any superclass of a class is serializable,
the subclass is automatically serializable even if the subclass doesn’t
explicitly declare implements Serializable. (This is how interfaces always
work. If your superclass “IS-A” Serializable, you are too).

objectOutputStream.writeObject(myBox); Whatever goes
here MUST implement

Serializable o
r it will fail at run

time.

import java.io.*;

public class Box implements Serializable {

 private int width;
 private int height;

 public void setWidth(int w) {
 width = w;
 }

 public void setHeight(int h) {
 height = h;
 }

public static void main (String[] args) {

 Box myBox = new Box();
 myBox.setWidth(50);
 myBox.setHeight(20);

 try {
 FileOutputStream fs = new FileOutputStream(“foo.ser”);
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(myBox);
 os.close();
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Serializable is
 in the java.io

 package, so

you need the
import.

No methods to implement, but when you say

“implements Serializable”, it say
s to the JVM,

“it’s OK to serialize objects of
 this type.”

I/O operations can throw exceptions.

these two values will be saved

Connect to a f
ile named “foo.ser”

if it exists. I
f it doesn’t,

make a

new file named “foo.ser”.

Make an ObjectOutputStream chained to the connection stream.Tell it to write the object.

438 chapter 14

serialized objects

Serialization is all or nothing.

Can you imagine what would
happen if some of the object’s
state didn’t save correctly?

Either the entire
object graph is
 serialized correctly
or serialization fails.

You can’t serialize
a Pond object if
its Duck instance
variable refuses to
be serialized (by
not implementing
Serializable).

Eeewww! That
creeps me out just thinking

about it! Like, what if a Dog comes
back with no weight. Or no ears. Or
the collar comes back size 3 instead
of 30. That just can’t be allowed!

import java.io.*;

public class Pond implements Serializable {

 private Duck duck = new Duck();

 public static void main (String[] args) {
 Pond myPond = new Pond();
 try {
 FileOutputStream fs = new FileOutputStream(“Pond.ser”);
 ObjectOutputStream os = new ObjectOutputStream(fs);

 os.writeObject(myPond);
 os.close();

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Class Pond has one instance

variable, a Duck.

When you serialize myPond (a Pond object), its Duck instance variable automatically gets serialized.

public class Duck {
 // duck code here
}

Yikes!! Duck is not serializable! It doesn’t implement Serializable, so when you try to serialize a Pond object, it fails because the Pond’s Duck instance variable can’t be saved.

Pond objects can be serialized.

File Edit Window Help Regret

% java Pond

java.io.NotS
erializableE

xception: Du
ck

 at Po
nd.main(Pon

d.java:13)

When you try to run the
main in class Pond:

serialization and file I/O

you are here4 439

Mark an instance variable as transient
if it can’t (or shouldn’t) be saved.

If you want an instance variable to be skipped by the
serialization process, mark the variable with the transient
keyword.

import java.net.*;
class Chat implements Serializable {
 transient String currentID;

 String userName;

 // more code
}

transient say
s, “don’t

save this var
iable during

serialization,
 just skip it.

”

userName variable will be saved as part of the object’s state during serialization.

It’s hopeless,
then? I’m completely

screwed if the idiot who
wrote the class for my instance

variable forgot to make it
Serializable?

If you have an instance variable that can’t be saved because
it isn’t serializable, you can mark that variable with the
transient keyword and the serialization process will skip right
over it.

So why would a variable not be serializable? It could be
that the class designer simply forgot to make the class
implement Serializable. Or it might be because the object
relies on runtime-specific information that simply can’t be
saved. Although most things in the Java class libraries are
serializable, you can’t save things like network connections,
threads, or file objects. They’re all dependent on (and
specific to) a particular runtime ‘experience’. In other words,
they’re instantiated in a way that’s unique to a particular run
of your program, on a particular platform, in a particular
JVM. Once the program shuts down, there’s no way to bring
those things back to life in any meaningful way; they have to
be created from scratch each time.

440 chapter 14

Q: If serialization is so important,
why isn’t it the default for all classes?
Why doesn’t class Object implement
Serializable, and then all subclasses
will be automatically Serializable.

A: Even though most classes will,
and should, implement Serializable,
you always have a choice. And you
must make a conscious decision on
a class-by-class basis, for each class
you design, to ‘enable’ serialization
by implementing Serializable.
First of all, if serialization were the
default, how would you turn it off?
Interfaces indicate functionality, not
a lack of functionality, so the model
of polymorphism wouldn’t work
correctly if you had to say, “implements
NonSerializable” to tell the world that
you cannot be saved.

Q: Why would I ever write a class
that wasn’t serializable?

A: There are very few reasons, but
you might, for example, have a security
issue where you don’t want a password
object stored. Or you might have an
object that makes no sense to save,
because its key instance variables are
themselves not serializable, so there’s
no useful way for you to make your
class serializable.

Q: If a class I’m using isn’t
serializable, but there’s no good
reason (except that the designer just
forgot or was stupid), can I subclass
the ‘bad’ class and make the subclass
serializable?

A: Yes! If the class itself is
extendable (i.e. not final), you can
make a serializable subclass, and just
substitute the subclass everywhere
your code is expecting the superclass
type. (Remember, polymorphism
allows this.) Which brings up another
interesting issue: what does it mean if
the superclass is not serializable?

Q: You brought it up: what does it
mean to have a serializable subclass
of a non-serializable superclass?

A: First we have to look at what
happens when a class is deserialized,
(we’ll talk about that on the next few
pages). In a nutshell, when an object
is deserialized and its superclass is not
serializable, the superclass constructor
will run just as though a new object of
that type were being created. If there’s
no decent reason for a class to not
be serializable, making a serializable
subclass might be a good solution.

Q: Whoa! I just realized
something big... if you make a
variable ‘transient’, this means the
variable’s value is skipped over
during serialization. Then what
happens to it? We solve the problem
of having a non-serializable instance
variable by making the instance
variable transient, but don’t we NEED
that variable when the object is
brought back to life? In other words,
isn’t the whole point of serialization
to preserve an object’s state?

A: Yes, this is an issue, but
fortunately there’s a solution. If you
serialize an object, a transient reference
instance variable will be brought back

as null, regardless of the value it had
at the time it was saved. That means
the entire object graph connected to
that particular instance variable won’t
be saved. This could be bad, obviously,
because you probably need a non-null
value for that variable.

You have two options:

1) When the object is brought back,
reinitialize that null instance variable
back to some default state. This
works if your deserialized object isn’t
dependent on a particular value for
that transient variable. In other words,
it might be important that the Dog
have a Collar, but perhaps all Collar
objects are the same so it doesn’t
matter if you give the resurrected Dog
a brand new Collar; nobody will know
the difference.

2) If the value of the transient variable
does matter (say, if the color and design
of the transient Collar are unique for
each Dog) then you need to save the
key values of the Collar and use them
when the Dog is brought back to
essentially re-create a brand new Collar
that’s identical to the original.

Q: What happens if two objects in
the object graph are the same object?
Like, if you have two different Cat
objects in the Kennel, but both Cats
have a reference to the same Owner
object. Does the Owner get saved
twice? I’m hoping not.

A: Excellent question! Serialization
is smart enough to know when two
objects in the graph are the same. In
that case, only one of the objects is
saved, and during deserialization, any
references to that single object are
restored.

serialized objects

there are noDumb Questions

serialization and file I/O

you are here4 441

Deserialization: restoring an object
The whole point of serializing an object is so that you can
restore it back to its original state at some later date, in a
different ‘run’ of the JVM (which might not even be the same
JVM that was running at the time the object was serialized).
Deserialization is a lot like serialization in reverse.

FileInputStream fileStream = new FileInputStream(“MyGame.ser”);

Make a FileInputStream object. The FileInputStream
knows how to connect to an existing file.

1 Make a FileInputStream

Object one = os.readObject();
Object two = os.readObject();
Object three = os.readObject();

3 read the objects

os.close();

5 Close the ObjectInputStream

Closing the stream at the top closes the ones underneath, so the FileInputStream (and the file) will close automatically.

If the file “MyGame.ser” doesn’t

exist, you’ll get an exc
eption.

ObjectInputStream os = new ObjectInputStream(fileStream);

2 Make an ObjectInputStream

ObjectInputStream lets you read objects,

but it can’t directly c
onnect to a file.

It needs to be chained
 to a connection

stream, in this case a FileInputStream.

GameCharacter elf = (GameCharacter) one;
GameCharacter troll = (GameCharacter) two;
GameCharacter magician = (GameCharacter) three;

4 Cast the objects

Each time you say readObject(), you get the next object in the stream. So you’ll read them back in the same order in which they were written. You’ll get a big fat exception if you try to read more objects than you wrote.

The return value of
readObject() is type Object

(just like with ArrayList), so

you have to cast it ba
ck to

the type you know it really is.

serialized
deserialized

442 chapter 14

What happens during deserialization?
When an object is deserialized, the JVM attempts to bring
the object back to life by making a new object on the heap
that has the same state the serialized object had at the time it
was serialized. Well, except for the transient variables, which
come back either null (for object references) or as default
primitive values.

deserializing objects

1 The object is read from the stream.

2 The JVM determines (through info stored with
the serialized object) the object’s class type.

3 The JVM attempts to fi nd and load the ob-
ject’s class. If the JVM can’t fi nd and/or load
the class, the JVM throws an exception and
the deserialization fails.

4 A new object is given space on the heap, but
the serialized object’s constructor does
NOT run! Obviously, if the constructor ran, it
would restore the state of the object back
to its original ‘new’ state, and that’s not what
we want. We want the object to be restored
to the state it had when it was serialized, not
when it was fi rst created.

This step will throw an exception
 if the JVM

can’t find or
load the class

!

ObjectObjectInputStream
(a chain stream)

is read by

class is found and loaded, saved
instance variables reassigned

FileInputStream
(a connection stream)

011010010110111001

object is read as bytes01101001

01101110

01

File

is chained to

serialization and file I/O

you are here4 443

5 If the object has a non-serializable class
somewhere up its inheritance tree, the
constructor for that non-serializable class
will run along with any constructors above
that (even if they’re serializable). Once the
constructor chaining begins, you can’t stop it,
which means all superclasses, beginning with
the first non-serializable one, will reinitialize
their state.

6 The object’s instance variables are given the
values from the serialized state. Transient
variables are given a value of null for object
references and defaults (0, false, etc.) for
primitives.

there are noDumb Questions
Q:Why doesn’t the class get saved as part of the ob-
ject? That way you don’t have the problem with whether
the class can be found.

A:Sure, they could have made serialization work that
way. But what a tremendous waste and overhead. And
while it might not be such a hardship when you’re using
serialization to write objects to a file on a local hard drive,
serialization is also used to send objects over a network
connection. If a class was bundled with each serialized
(shippable) object, bandwidth would become a much larger
problem than it already is.

For objects serialized to ship over a network, though, there
actually is a mechanism where the serialized object can be
‘stamped’ with a URL for where its class can be found. This
is used in Java’s Remote Method Invocation (RMI) so that
you can send a serialized object as part of, say, a method

argument, and if the JVM receiving the call doesn’t have
the class, it can use the URL to fetch the class from the
network and load it, all automatically. (We’ll talk about RMI
in chapter 17.)

Q:What about static variables? Are they serialized?

A:Nope. Remember, static means “one per class” not
“one per object”. Static variables are not saved, and when an
object is deserialized, it will have whatever static variable
its class currently has. The moral: don’t make serializable ob-
jects dependent on a dynamically-changing static variable!
It might not be the same when the object comes back.

444 chapter 14

Saving and restoring the game characters

import java.io.*;

public class GameSaverTest {
 public static void main(String[] args) {
 GameCharacter one = new GameCharacter(50, “Elf”, new String[] {“bow”, “sword”, “dust”});
 GameCharacter two = new GameCharacter(200, “Troll”, new String[] {“bare hands”, “big ax”});
 GameCharacter three = new GameCharacter(120, “Magician”, new String[] {“spells”, “invisibility”});

 // imagine code that does things with the characters that might change their state values

 try {
 ObjectOutputStream os = new ObjectOutputStream(new FileOutputStream(“Game.ser”));
 os.writeObject(one);
 os.writeObject(two);
 os.writeObject(three);
 os.close();
 } catch(IOException ex) {
 ex.printStackTrace();
 }
 one = null;
 two = null;
 three = null;

 try {
 ObjectInputStream is = new ObjectInputStream(new FileInputStream(“Game.ser”));
 GameCharacter oneRestore = (GameCharacter) is.readObject();
 GameCharacter twoRestore = (GameCharacter) is.readObject();
 GameCharacter threeRestore = (GameCharacter) is.readObject();

 System.out.println(“One’s type: “ + oneRestore.getType());
 System.out.println(“Two’s type: “ + twoRestore.getType());
 System.out.println(“Three’s type: “ + threeRestore.getType());
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 } File Edit Window Help Resuscitate

% java GameSaver

Elf

Troll

Magician

 object

power: 50
type: Elf
weapons: bow,
sword, dust

power: 120
type: Magician
weapons: spells,
invisibility

 object

power: 200
type: Troll
weapons: bare
hands, big ax

 object

serialization example

We set them to null so we can’t

access the objects on the hea
p.

Make some characters...

Now read them back in from the file...

Check to see if it worked.

serialization and file I/O

you are here4 445

import java.io.*;

public class GameCharacter implements Serializable {
 int power;
 String type;
 String[] weapons;

 public GameCharacter(int p, String t, String[] w) {
 power = p;
 type = t;
 weapons = w;
 }

 public int getPower() {
 return power;
 }

 public String getType() {
 return type;
 }

 public String getWeapons() {
 String weaponList = “”;

 for (int i = 0; i < weapons.length; i++) {
 weaponList += weapons[i] + “ “;
 }
 return weaponList;
 }
}

The GameCharacter class

This is a basic class just for te
sting

Serialization, and we don’t have an

actual game, but we’ll leave that to

you to experiment.

Check to see if it worked.

saving objects

446 chapter 14

 BULLET POINTS
$ You can save an object’s state by serializing the object.

$ To serialize an object, you need an ObjectOutputStream (from the
java.io package)

$ Streams are either connection streams or chain streams

$ Connection streams can represent a connection to a source or
destination, typically a file, network socket connection, or the
console.

$ Chain streams cannot connect to a source or destination and must
be chained to a connection (or other) stream.

$ To serialize an object to a file, make a FileOuputStream and chain it
into an ObjectOutputStream.

$ To serialize an object, call writeObject(theObject) on the
ObjectOutputStream. You do not need to call methods on the
FileOutputStream.

$ To be serialized, an object must implement the Serializable interface.
If a superclass of the class implements Serializable, the subclass will
automatically be serializable even if it does not specifically declare
implements Serializable.

$ When an object is serialized, its entire object graph is serialized. That
means any objects referenced by the serialized object’s instance
variables are serialized, and any objects referenced by those
objects...and so on.

$ If any object in the graph is not serializable, an exception will be
thrown at runtime, unless the instance variable referring to the object
is skipped.

$ Mark an instance variable with the transient keyword if you want
serialization to skip that variable. The variable will be restored as null
(for object references) or default values (for primitives).

$ During deserialization, the class of all objects in the graph must be
available to the JVM.

$ You read objects in (using readObject()) in the order in which they
were originally written.

$ The return type of readObject() is type Object, so deserialized
objects must be cast to their real type.

$ Static variables are not serialized! It doesn’t make sense to save
a static variable value as part of a specific object’s state, since all
objects of that type share only a single value—the one in the class.

Object Serialization

serialization and file I/O

you are here4 447

Writing a String to a Text File
Saving objects, through serialization, is the easiest way to save and
restore data between runnings of a Java program. But sometimes you
need to save data to a plain old text fi le. Imagine your Java program
has to write data to a simple text fi le that some other (perhaps non-
Java) program needs to read. You might, for example, have a servlet
(Java code running within your web server) that takes form data the
user typed into a browser, and writes it to a text fi le that somebody else
loads into a spreadsheet for analysis.

Writing text data (a String, actually) is similar to writing an object,
except you write a String instead of an object, and you use a
FileWriter instead of a FileOutputStream (and you don’t chain it to an
ObjectOutputStream).

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

What the game character data
might look like if you wrote it
out as a human-readable text file.

To write a serialized object:
objectOutputStream.writeObject(someObject);

To write a String:
fi leWriter.write(“My fi rst String to save”);

import java.io.*;

class WriteAFile {
 public static void main (String[] args) {

 try {
 FileWriter writer = new FileWriter(“Foo.txt”);

 writer.write(“hello foo!”);

 writer.close();

 } catch(IOException ex) {
 ex.printStackTrace();
 }
 }
}

We need the jav
a.io package fo

r FileWriter

ALL the I/O stuff

must be in a t
ry/catch.

Everything ca
n throw an

IOException!!

If the file “
Foo.txt” does

 not

exist, FileWriter will create it
.

The write() method takes a String
Close it when you’re done!

448 chapter 14

writing a text file

Text File Example: e-Flashcards
Remember those fl ashcards you used in school? Where you
had a question on one side and the answer on the back?
They aren’t much help when you’re trying to understand
something, but nothing beats ‘em for raw drill-and-practice
and rote memorization. When you have to burn in a fact. And
they’re also great for trivia games.

We’re going to make an electronic version that has three
classes:

1) QuizCardBuilder, a simple authoring tool for creating and
saving a set of e-Flashcards.

2) QuizCardPlayer, a playback engine that can load a
fl ashcard set and play it for the user.

3) QuizCard, a simple class representing card data. We’ll
walk through the code for the builder and the player, and
have you make the QuizCard class yourself, using this

What’s the f
irst

foreign cou
ntry due

south of D
etroit

Michigan?
south of D

etroit

Michigan? Canada (Ontario)

front

back

old-fashioned 3 x 5 index flashcards

QuizCardBuilder

Has a File menu with a “Save” option for saving
the current set of cards to a text fi le.

QuizCardPlayer

Has a File menu with a “Load” option for loading a
set of cards from a text fi le.

QuizCard

QuizCard(q, a)

question
answer

getQuestion()
getAnswer()

.

serialization and file I/O

you are here4 449

Quiz Card Builder (code outline)

public class QuizCardBuilder {

 public void go() {

 // build and display gui

 }

 private class NextCardListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // add the current card to the list and clear the text areas

 }

 }

 private class SaveMenuListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // bring up a file dialog box

 // let the user name and save the set

 }

 }

 private class NewMenuListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // clear out the card list, and clear out the text areas

 }

 }

 private void saveFile(File file) {

 // iterate through the list of cards, and write each one out to a text file

 // in a parseable way (in other words, with clear separations between parts)

 }

}

Builds and displays the GUI, including

making and registering eve
nt listeners.

Triggered when user hits ‘Next Card’ button;

means the user wants to store that card
 in

the list and start a ne
w card.

Triggered when use chooses ‘Save’ from the File menu; means the user wants to save all the cards in the current list as a ‘set’ (like, Quantum Mechanics Set, Hollywood Trivia, Java Rules, etc.).

Triggered by cho
osing ‘New’ from the File

menu; means the user w
ants to start a

brand new set (so we clear out the
 card

list and the tex
t areas).

Called by the SaveMenuListener;
does the actual file writing.

Inner class

Inner class

Inner class

450 chapter 14

Quiz Card Builder code

import java.util.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.*;
import java.io.*;

public class QuizCardBuilder {

 private JTextArea question;
 private JTextArea answer;
 private ArrayList<QuizCard> cardList;
 private JFrame frame;

 public static void main (String[] args) {
 QuizCardBuilder builder = new QuizCardBuilder();
 builder.go();
 }

 public void go() {
 // build gui

 frame = new JFrame(“Quiz Card Builder”);
 JPanel mainPanel = new JPanel();
 Font bigFont = new Font(“sanserif”, Font.BOLD, 24);
 question = new JTextArea(6,20);
 question.setLineWrap(true);
 question.setWrapStyleWord(true);
 question.setFont(bigFont);

 JScrollPane qScroller = new JScrollPane(question);
 qScroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 qScroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

 answer = new JTextArea(6,20);
 answer.setLineWrap(true);
 answer.setWrapStyleWord(true);
 answer.setFont(bigFont);

 JScrollPane aScroller = new JScrollPane(answer);
 aScroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 aScroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

 JButton nextButton = new JButton(“Next Card”);

 cardList = new ArrayList<QuizCard>();

 JLabel qLabel = new JLabel(“Question:”);
 JLabel aLabel = new JLabel(“Answer:”);

 mainPanel.add(qLabel);
 mainPanel.add(qScroller);
 mainPanel.add(aLabel);
 mainPanel.add(aScroller);
 mainPanel.add(nextButton);
 nextButton.addActionListener(new NextCardListener());
 JMenuBar menuBar = new JMenuBar();
 JMenu fileMenu = new JMenu(“File”);
 JMenuItem newMenuItem = new JMenuItem(“New”);

This is all GUI code here. Nothing special, although you might want to look at the MenuBar, Menu, and MenuItems code.

serialization and file I/O

you are here4 451

 JMenuItem saveMenuItem = new JMenuItem(“Save”);
 newMenuItem.addActionListener(new NewMenuListener());

 saveMenuItem.addActionListener(new SaveMenuListener());
 fileMenu.add(newMenuItem);
 fileMenu.add(saveMenuItem);
 menuBar.add(fileMenu);
 frame.setJMenuBar(menuBar);
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(500,600);
 frame.setVisible(true);
 }

 public class NextCardListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {

 QuizCard card = new QuizCard(question.getText(), answer.getText());
 cardList.add(card);
 clearCard();
 }
 }

 public class SaveMenuListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 QuizCard card = new QuizCard(question.getText(), answer.getText());
 cardList.add(card);

 JFileChooser fileSave = new JFileChooser();
 fileSave.showSaveDialog(frame);
 saveFile(fileSave.getSelectedFile());
 }
 }

 public class NewMenuListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 cardList.clear();
 clearCard();
 }
 }

 private void clearCard() {
 question.setText(“”);
 answer.setText(“”);
 question.requestFocus();
 }

 private void saveFile(File file) {
 try {
 BufferedWriter writer = new BufferedWriter(new FileWriter(file));

 for(QuizCard card:cardList) {
 writer.write(card.getQuestion() + “/”);
 writer.write(card.getAnswer() + “\n”);
 }
 writer.close();

 } catch(IOException ex) {
 System.out.println(“couldn’t write the cardList out”);
 ex.printStackTrace();
 }
 }
}

Brings up a file
 dialog box an

d waits on this

line until the
user chooses ‘S

ave’ from the

dialog box. All the file dia
log navigation

 and

selecting a fil
e, etc. is done

 for you by t
he

JFileChooser! It rea
lly is this easy

.

The method that d
oes the actua

l file writing

(called by the
 SaveMenuListener’s event

 handler).

The argument is the ‘File’ object the
 user is saving

.

We’ll look at th
e File class on th

e next page.

We chain a BufferedWriter on to a new FileWriter to make writing more efficient. (We’ll talk about that in a few pages).
Walk through the ArrayList of cards and write them out, one card per line, with the question and an-swer separated by a “/”, and then add a newline character (“\n”)

We make a menu bar, make a File menu, then put ‘new’ and ‘save’ menu items into the File menu. We add the menu to the menu bar, then tell the frame to use this menu bar. Menu items can fire an ActionEvent

452 chapter 14

The java.io.File class
The java.io.File class represents a fi le on disk, but doesn’t
actually represent the contents of the fi le. What? Think of
a File object as something more like a pathname of a fi le
(or even a directory) rather than The Actual File Itself.
The File class does not, for example, have methods for
reading and writing. One VERY useful thing about a File
object is that it offers a much safer way to represent a
fi le than just using a String fi le name. For example, most
classes that take a String fi le name in their constructor
(like FileWriter or FileInputStream) can take a File
object instead. You can construct a File object, verify
that you’ve got a valid path, etc. and then give that File
object to the FileWriter or FileInputStream.

writing files

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

 A File object represents the name
and path of a fi le or directory on
disk, for example:

/Users/Kathy/ Data/GameFile.txt

But it does NOT represent, or give
you access to, the data in the fi le!

Some things you can do with a File object:

GameFile.txt

A File object does N
OT

represent (or gi
ve you

direct access to
) the

data inside the
file!

A File object repres
ents the

filename “GameFile.txt”

File f = new File(“MyCode.txt”);

Make a File object representing an
existing fi le

1

File dir = new File(“Chapter7”);
dir.mkdir();

Make a new directory2

if (dir.isDirectory()) {
 String[] dirContents = dir.list();
 for (int i = 0; i < dirContents.length; i++) {
 System.out.println(dirContents[i]);
 }
}

List the contents of a directory3

System.out.println(dir.getAbsolutePath());
Get the absolute path of a fi le or directory4

boolean isDeleted = f.delete();

Delete a fi le or directory (returns true if
successful)

5

An address is NOT the

same as the actual
house ! A File object is

like a street address
...

it represents the nam
e

and location of a par
-

ticular file, but it isn
’t

the file itself.

serialization and file I/O

you are here4 453

String
BufferedWriter
(a chain stream that
works with characters)

is written to

String is put into a buffer
with other Strings

FileWriter
(a connection stream
that writes characters
as opposed to bytes)

“Aspen Denver Boulder”

When the buffer is full, the
Strings are all written to

Aspen
Denver
Boulder

File

destination

is chained to
“Boulder” “Boulder”

“Denver”
“Aspen”

The beauty of buffers
If there were no buffers, it would be like
shopping without a cart. You’d have to
carry each thing out to your car, one soup
can or toilet paper roll at a time.

The cool thing about buffers is that they’re much more effi cient than
working without them. You can write to a fi le using FileWriter alone, by
calling write(someString), but FileWriter writes each and every thing you
pass to the fi le each and every time. That’s overhead you don’t want or
need, since every trip to the disk is a Big Deal compared to manipulating
data in memory. By chaining a BufferedWriter onto a FileWriter, the
BufferedWriter will hold all the stuff you write to it until it’s full. Only when
the buffer is full will the FileWriter actually be told to write to the fi le on disk.

If you do want to send data before the buffer is full, you do have control.
 Just Flush It. Calls to writer.fl ush() say, “send whatever’s in the buffer, now!”

buffers give you a temporary holding place to group things until the holder (like the cart) is full. You get to make far fewer trips when you use a buffer.

BufferedWriter writer = new BufferedWriter(new FileWriter(aFile));
Notice that we don’t even need to keep a reference to the FileWriter object. The only thing we care about is the BufferedWriter, because that’s the object we’ll call methods on, and when we close the BufferedWriter, it will take care of the rest of the chain.

454 chapter 14

Reading from a Text File
Reading text from a fi le is simple, but this time we’ll use a File
object to represent the fi le, a FileReader to do the actual reading,
and a BufferedReader to make the reading more effi cient.

The read happens by reading lines in a while loop, ending the loop
when the result of a readLine() is null. That’s the most common
style for reading data (pretty much anything that’s not a Serialized
object): read stuff in a while loop (actually a while loop test),
terminating when there’s nothing left to read (which we know
because the result of whatever read method we’re using is null).

What’s 2 + 2?/4

What’s 20+22/42

A file with two lines of text.

import java.io.*;

class ReadAFile {
 public static void main (String[] args) {

 try {
 File myFile = new File(“MyText.txt”);
 FileReader fi leReader = new FileReader(myFile);

 BufferedReader reader = new BufferedReader(fi leReader);

 String line = null;

 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 reader.close();

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Don’t forget th
e import.

Chain the FileReader to a

BufferedReader for m
ore

efficient re
ading. It’ll g

o back

to the file
to read only

 when

the buffer
is empty (because

 the

program has read ev
erything in i

t).

A FileReader is a connection stream for characters, that connects to a text file

Make a String variab
le to hold

each line as the line
 is read

reading files

MyText.txt

This says, “Read a line of text, and assign it to the String variable ‘line’. While that variable is not null (because there WAS something to read) print out the line that was just read.”
Or another way of saying it, “While there are still lines
to read, read them and print them.”

serialization and file I/O

you are here4 455

Quiz Card Player (code outline)

public class QuizCardPlayer {

 public void go() {

 // build and display gui

 }

 class NextCardListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // if this is a question, show the answer, otherwise show next question

 // set a flag for whether we’re viewing a question or answer

 }

 }

 class OpenMenuListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // bring up a file dialog box

 // let the user navigate to and choose a card set to open

 }

 }

 private void loadFile(File file) {

 // must build an ArrayList of cards, by reading them from a text file

 // called from the OpenMenuListener event handler, reads the file one line at a time

 // and tells the makeCard() method to make a new card out of the line

 // (one line in the file holds both the question and answer, separated by a “/”)

 }

 private void makeCard(String lineToParse) {

 // called by the loadFile method, takes a line from the text file

 // and parses into two pieces—question and answer—and creates a new QuizCard

 // and adds it to the ArrayList called CardList

 }

}

456 chapter 14

Quiz Card Player code

import java.util.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.*;
import java.io.*;

public class QuizCardPlayer {

 private JTextArea display;
 private JTextArea answer;
 private ArrayList<QuizCard> cardList;
 private QuizCard currentCard;
 private int currentCardIndex;
 private JFrame frame;
 private JButton nextButton;
 private boolean isShowAnswer;

 public static void main (String[] args) {
 QuizCardPlayer reader = new QuizCardPlayer();
 reader.go();
 }

 public void go() {

 // build gui

 frame = new JFrame(“Quiz Card Player”);
 JPanel mainPanel = new JPanel();
 Font bigFont = new Font(“sanserif”, Font.BOLD, 24);

 display = new JTextArea(10,20);
 display.setFont(bigFont);

 display.setLineWrap(true);
 display.setEditable(false);

 JScrollPane qScroller = new JScrollPane(display);
 qScroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 qScroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 nextButton = new JButton(“Show Question”);
 mainPanel.add(qScroller);
 mainPanel.add(nextButton);
 nextButton.addActionListener(new NextCardListener());

 JMenuBar menuBar = new JMenuBar();
 JMenu fileMenu = new JMenu(“File”);
 JMenuItem loadMenuItem = new JMenuItem(“Load card set”);
 loadMenuItem.addActionListener(new OpenMenuListener());
 fileMenu.add(loadMenuItem);
 menuBar.add(fileMenu);
 frame.setJMenuBar(menuBar);
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(640,500);
 frame.setVisible(true);

 } // close go

Just GUI code on this page; nothing special

serialization and file I/O

you are here4 457

 public class NextCardListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 if (isShowAnswer) {
 // show the answer because they’ve seen the question
 display.setText(currentCard.getAnswer());
 nextButton.setText(“Next Card”);
 isShowAnswer = false;
 } else {
 // show the next question
 if (currentCardIndex < cardList.size()) {

 showNextCard();

 } else {
 // there are no more cards!
 display.setText(“That was last card”);
 nextButton.setEnabled(false); } } }
 }

 public class OpenMenuListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 JFileChooser fileOpen = new JFileChooser();
 fileOpen.showOpenDialog(frame);
 loadFile(fileOpen.getSelectedFile());
 }
 }

 private void loadFile(File file) {

 cardList = new ArrayList<QuizCard>();
 try {
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line = reader.readLine()) != null) {
 makeCard(line);
 }
 reader.close();

 } catch(Exception ex) {
 System.out.println(“couldn’t read the card file”);
 ex.printStackTrace();
 }

 // now time to start by showing the first card
 showNextCard();
 }

 private void makeCard(String lineToParse) {
 String[] result = lineToParse.split(“/”);
 QuizCard card = new QuizCard(result[0], result[1]);
 cardList.add(card);
 System.out.println(“made a card”);
 }

 private void showNextCard() {
 currentCard = cardList.get(currentCardIndex);
 currentCardIndex++;
 display.setText(currentCard.getQuestion());
 nextButton.setText(“Show Answer”);
 isShowAnswer = true;
 }
} // close class

Check the isShowAnswer boolean flag to see if they’re currently viewing a question or an answer, and do the appropriate thing depending on the answer.

Bring up the file di
alog box and let t

hem

navigate to and c
hoose the file to

open.

Make a BufferedReader chained

to a new FileReader, giving the

FileReader the File object the user

chose from the open file dia
log.

Read a line at a tim
e, passing the

line to the makeCard() method

that parses it and
 turns it into a

real QuizCard and adds it t
o the

ArrayList.

Each line of text corresponds to a single
flashcard, but we have to parse out the
question and answer as separate pieces. We
use the String split() method to break the
line into two tokens (one for the question
and one for the answer). We’ll look at the
split() method on the next page.

458 chapter 14

parsing Strings with split()

Parsing with String split()

Imagine you have a fl ashcard like this:

What is blue + yellow?

 green

question

answer

What is blue + yellow?/green
What is red + blue?/purple

Saved in a question fi le like this:

How do you separate the question and answer?

When you read the fi le, the question and answer are smooshed
together in one line, separated by a forward slash “/” (because
that’s how we wrote the fi le in the QuizCardBuilder code).

String split() lets you break a String into pieces.

The split() method says, “give me a separator, and I’ll break out all
the pieces of this String for you and put them in a String array.”

token 1 token 2separator

String toTest = “What is blue + yellow?/green”;

String[] result = toTest.split(“/”);

for (String token:result) {

 System.out.println(token);

}

In the QuizCardPlayer app, this

is what a single line looks l
ike

when it’s read in from the file.

Loop through the array and print each token (piece). In this example, there are only two tokens: “What is blue + yellow?” and “green”.

The split() method takes the “/” and uses it to break apart the String into (in this case) two pieces. (Note: split() is FAR more powerful than what we’re using it for here. It can do extremely complex parsing with filters, wildcards, etc.)

serialization and file I/O

you are here4 459

there are noDumb Questions
Q:OK, I look in the API and there are about fi ve
million classes in the java.io package. How the heck do
you know which ones to use?

A:The I/O API uses the modular ‘chaining’ concept so
that you can hook together connection streams and chain
streams (also called ‘filter’ streams) in a wide range of
combinations to get just about anything you could want.

The chains don’t have to stop at two levels; you can hook
multiple chain streams to one another to get just the right
amount of processing you need.

Most of the time, though, you’ll use the same
small handful of classes. If you’re writing text files,
BufferedReader and BufferedWriter (chained to FileReader
and FileWriter) are probably all you need. If you’re writing
serialized objects, you can use ObjectOutputStream and
ObjectInputStream (chained to FileInputStream and
FileOutputStream).

In other words, 90% of what you might typically do with
Java I/O can use what we’ve already covered.

Q:What about the new I/O nio classes added in 1.4?

A:The java.nio classes bring a big performance
improvement and take greater advantage of native
capabilities of the machine your program is running
on. One of the key new features of nio is that you have
direct control of buffers. Another new feature is non-
blocking I/O, which means your I/O code doesn’t just sit
there, waiting, if there’s nothing to read or write. Some
of the existing classes (including FileInputStream and
FileOutputStream) take advantage of some of the new
features, under the covers. The nio classes are more
complicated to use, however, so unless you really need the
new features, you might want to stick with the simpler
versions we’ve used here. Plus, if you’re not careful, nio can
lead to a performance loss. Non-nio I/O is probably right
for 90% of what you’ll normally do, especially if you’re just
getting started in Java.

But you can ease your way into the nio classes, by using
FileInputStream and accessing its channel through the
getChannel() method (added to FileInputStream as of
version 1.4).

 BULLET POINTS

ß To write a text file, start with a FileWriter
connection stream.

ß Chain the FileWriter to a BufferedWriter for
efficiency.

ß A File object represents a file at a particular
path, but does not represent the actual
contents of the file.

ß With a File object you can create, traverse,
and delete directories.

ß Most streams that can use a String filename
can use a File object as well, and a File object
can be safer to use.

ß To read a text file, start with a FileReader
connection stream.

ß Chain the FileReader to a BufferedReader for
efficiency.

ß To parse a text file, you need to be sure the
file is written with some way to recognize the
different elements. A common approach is to
use some kind of character to separate the
individual pieces.

ß Use the String split() method to split a String
up into individual tokens. A String with one
separator will have two tokens, one on each
side of the separator. The separator doesn’t
count as a token.

million classes in the java.io package. How the heck do

that you can hook together connection streams and chain

combinations to get just about anything you could want.

The chains don’t have to stop at two levels; you can hook
multiple chain streams to one another to get just the right

BufferedReader and BufferedWriter (chained to FileReader BULLET POINTS

Make it Sticki kkk

Roses are first, violets are next.

Readers and Writers are only for text.

saving objects

460 chapter 14

Version ID: A Big Serialization Gotcha
Now you’ve seen that I/O in Java is actually pretty simple, especially if
you stick to the most common connection/chain combinations. But
there’s one issue you might really care about.

Version Control is crucial!

If you serialize an object, you must have the class in order to
deserialize and use the object. OK, that’s obvious. But what might
be less obvious is what happens if you change the class in the
meantime? Yikes. Imagine trying to bring back a Dog object when
one of its instance variables (non-transient) has changed from a
double to a String. That violates Java’s type-safe sensibilities in a Big
Way. But that’s not the only change that might hurt compatibility.
Think about the following:

Changes to a class that can hurt deserialization:

Deleting an instance variable

Changing the declared type of an instance variable

Changing a non-transient instance variable to transient

Moving a class up or down the inheritance hierarchy

Changing a class (anywhere in the object graph) from Serializable
to not Serializable (by removing ‘implements Serializable’ from a
class declaration)

Changing an instance variable to static

Changes to a class that are usually OK:

Adding new instance variables to the class (existing objects will
deserialize with default values for the instance variables they didn’t
have when they were serialized)

Adding classes to the inheritance tree

Removing classes from the inheritance tree

Changing the access level of an instance variable has no affect on
the ability of deserialization to assign a value to the variable

Changing an instance variable from transient to non-transient
(previously-serialized objects will simply have a default value for the
previously-transient variables)

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

Dog.class

1 You write a Dog class

2 You serialize a Dog object
using that class

Dog object

class version I
D

#343

Dog object

Object is
stamped with
version #343

101101
101101
101000010
1010 10 0
01010 1
100001 1010
0 00110101
1 0 1 10 10

101101
101101
101000010

Dog.class

3 You change the Dog class

class version ID

#728

4 You deserialize a Dog object
using the changed class

Dog object

Object is
stamped with
version #343

101101
101101
101000010
1010 10 0
01010 1
100001 1010
0 00110101
1 0 1 10 10

101101
101101
101000010

Dog.class

class version i
s

#728

5 Serailization fails!!

The JVM says, “you can’t
teach an old Dog new code”.

serialization and file I/O

you are here4 461

Each time an object is serialized, the object (including
every object in its graph) is ‘stamped’ with a version
ID number for the object’s class. The ID is called
the serialVersionUID, and it’s computed based on
information about the class structure. As an object is
being deserialized, if the class has changed since the
object was serialized, the class could have a different
serialVersionUID, and deserialization will fail! But you
can control this.

If you think there is ANY possibility that
your class might evolve, put a serial version
ID in your class.

When Java tries to deserialize an object, it compares
the serialized object’s serialVersionUID with that of the
class the JVM is using for deserializing the object. For
example, if a Dog instance was serialized with an ID of,
say 23 (in reality a serialVersionUID is much longer),
when the JVM deserializes the Dog object it will first
compare the Dog object serialVersionUID with the
Dog class serialVersionUID. If the two numbers don’t
match, the JVM assumes the class is not compatible
with the previously-serialized object, and you’ll get an
exception during deserialization.

So, the solution is to put a serialVersionUID
in your class, and then as the class evolves, the
serialVersionUID will remain the same and the JVM
will say, “OK, cool, the class is compatible with this
serialized object.” even though the class has actually
changed.

This works only if you’re careful with your class
changes! In other words, you are taking responsibility
for any issues that come up when an older object is
brought back to life with a newer class.

To get a serialVersionUID for a class, use the serialver
tool that ships with your Java development kit.

Using the serialVersionUID

File Edit Window Help serialKiller

% serialver Dog

Dog: static final long
serialVersionUID = -
5849794470654667210L;

public class Dog {

 static final long serialVersionUID =
 -6849794470754667710L;

 private String name;
 private int size;

 // method code here
}

File Edit Window Help serialKiller

% serialver Dog

Dog: static final long
serialVersionUID = -
5849794470654667210L;

1 Use the serialver command-line tool
to get the version ID for your class

2 Paste the output into your class

3 Be sure that when you make changes to
the class, you take responsibility in your
code for the consequences of the changes
you made to the class! For example, be
sure that your new Dog class can deal with
an old Dog being deserialized with default
values for instance variables added to the
class after the Dog was serialized.

When you think your class
might evolve after someone has
serialized objects from it...

462 chapter 14

Code Kitchen

Let’s make the BeatBox save and
restore our favorite pattern

When you click “s
erializeIt”,

the current pa
ttern will

be saved.

“restore” loads the saved pattern back in, and resets the checkboxes.

Code Kitchen

serialization and file I/O

you are here4 463

Remember, in the BeatBox, a drum pattern is nothing more than a bunch of
checkboxes. When it’s time to play the sequence, the code walks through the
checkboxes to figure out which drums sounds are playing at each of the 16
beats. So to save a pattern, all we need to do is save the state of the checkboxes.

We can make a simple boolean array, holding the state of each of the 256
checkboxes. An array object is serializable as long as the things in the array are
serializable, so we’ll have no trouble saving an array of booleans.

To load a pattern back in, we read the single boolean array object (deserialize
it), and restore the checkboxes. Most of the code you’ve already seen, in the
Code Kitchen where we built the BeatBox GUI, so in this chapter, we look at
only the save and restore code.

This CodeKitchen gets us ready for the next chapter, where instead of writing
the pattern to a file, we send it over the network to the server. And instead of
loading a pattern in from a file, we get patterns from the server, each time a
participant sends one to the server.

Serializing a pattern

Saving a BeatBox pattern

public class MySendListener implements ActionListener {

 public void actionPerformed(ActionEvent a) {

 boolean[] checkboxState = new boolean[256];

 for (int i = 0; i < 256; i++) {

 JCheckBox check = (JCheckBox) checkboxList.get(i);
 if (check.isSelected()) {
 checkboxState[i] = true;
 }
 }

 try {
 FileOutputStream fileStream = new FileOutputStream(new File(“Checkbox.ser”));
 ObjectOutputStream os = new ObjectOutputStream(fileStream);
 os.writeObject(checkboxState);
 } catch(Exception ex) {
 ex.printStackTrace();
 }

 } // close method
 } // close inner class

It all happens when the user clicks the
button and the ActionEvent fires.

This is an inner class inside
the BeatBox code.

Make a boolean array to hold the state of each checkbox.

Walk through the checkboxList (ArrayList of checkboxes), and get the state of each one, and add it to the boolean array.

This part’s a piece of cake. Just write/serialize the one boolean array!

464 chapter 14

This is pretty much the save in reverse... read the boolean array and use it
to restore the state of the GUI checkboxes. It all happens when the user hits
the “restore” ‘button.

Restoring a pattern

Restoring a BeatBox pattern

public class MyReadInListener implements ActionListener {

 public void actionPerformed(ActionEvent a) {
 boolean[] checkboxState = null;
 try {
 FileInputStream fileIn = new FileInputStream(new File(“Checkbox.ser”));
 ObjectInputStream is = new ObjectInputStream(fileIn);
 checkboxState = (boolean[]) is.readObject();

 } catch(Exception ex) {ex.printStackTrace();}

 for (int i = 0; i < 256; i++) {
 JCheckBox check = (JCheckBox) checkboxList.get(i);
 if (checkboxState[i]) {
 check.setSelected(true);
 } else {
 check.setSelected(false);
 }
 }

 sequencer.stop();
 buildTrackAndStart();

 } // close method
 } // close inner class

This is another inner class
inside the BeatBox class.

Read the single object in the file
(the

boolean array) and cast it back
to a

boolean array (remember, readObject()

returns a reference of type Object.

Now restore the state of each of the checkboxes in the ArrayList of actual JCheckBox objects (checkboxList).

Now stop whatever is currently playing,
and rebuild the sequence using the new
state of the checkboxes in the ArrayList.

deserializing the pattern

Sharpen your pencil
This version has a huge limitation! When you hit the “serializeIt” button, it
serializes automatically, to a file named “Checkbox.ser” (which gets created if it
doesn’t exist). But each time you save, you overwrite the previously-saved file.

Improve the save and restore feature, by incorporating a JFileChooser so that
you can name and save as many different patterns as you like, and load/restore
from any of your previously-saved pattern files.

serialization and file I/O

you are here4 465

Which of these do you think are, or should be,

serializable? If not, why not? Not meaningful?

Security risk? Only works for the current

execution of the JVM? Make your best guess,

without looking it up in the API.

Can they be saved?

Object type Serializable? If not, why not?

Object Yes / No ______________________________________

String Yes / No ______________________________________

File Yes / No ______________________________________

Date Yes / No ______________________________________

OutputStream Yes / No ______________________________________

JFrame Yes / No ______________________________________

Integer Yes / No ______________________________________

System Yes / No ______________________________________

What’s Legal?
Circle the code fragments

that would compile (assuming

they’re within a legal class).

FileReader fileReader = new FileReader();
BufferedReader reader = new BufferedReader(fileReader);

FileOutputStream f = new FileOutputStream(new File(“Foo.ser”));
ObjectOutputStream os = new ObjectOutputStream(f);

BufferedReader reader = new BufferedReader(new FileReader(file));
String line = null;
while ((line = reader.readLine()) != null) {
 makeCard(line);
}

ObjectInputStream is = new ObjectInputStream(new FileOutputStream(“Game.ser”));
GameCharacter oneAgain = (GameCharacter) is.readObject();

Sharpen your pencil

466 chapter 14

Exercise

This chapter explored the wonerful world of
Java I/O. Your job is to decide whether each
of the following I/O-related statements is
true or false.

1. Serialization is appropriate when saving data for non-Java programs to use.

2. Object state can be saved only by using serialization.

3. ObjectOutputStream is a class used to save serialized objects.

4. Chain streams can be used on their own or with connection streams.

5. A single call to writeObject() can cause many objects to be saved.

6. All classes are serializable by default.

7. The transient modifier allows you to make instance variables serializable.

8. If a superclass is not serializable then the subclass can’t be serializable.

9. When objects are deserialized, they are read back in last-in, first out sequence.

10. When an object is deserialized, its constructor does not run.

11. Both serialization and saving to a text file can throw exceptions.

12. BufferedWriters can be chained to FileWriters.

13. File objects represent files, but not directories.

14. You can’t force a buffer to send its data before it’s full.

15. Both file readers and file writers can be buffered.

16. The String split() method includes separators as tokens in the result array.

17. Any change to a class breaks previously serialized objects of that class.

CTrue or FalseD

exercise: True or False

serialization and file I/O

you are here4 467you are here

This one’s tricky, so we promoted it from an Exercise to full Puzzle status.
Reconstruct the code snippets to make a working Java program that
produces the output listed below? (You might not need all of the magnets,
and you may reuse a magnet more than once.)

public static void m
ain(String [] args)

{

 DungeonGame d = ne
w DungeonGame();

int getX() {

 return x;

public int x = 3;

transient long y = 4;

private short z = 5;

File Edit Window Help Torture

% java DungeonTest
12
8

class DungeonTest {

Code Magnets

long getY() {

 return y;

short getZ() {

 return z;

d = (DungeonGame) ois.readObject();

} catch (Exception e) {

ois.close();

class DungeonGam
e implements Ser

ializable {

e.printStackTrace();

FileOutputStre
am fos = new

 FileOutputS
tream(“dg.ser”

);

oos.close();

fos.writeObject(d);

ObjectOutputStream oos = new

 ObjectOutputStream(fos);

ObjectInputStream ois = new

 ObjectInputStream(fi s);

public static void m
ain(String [] args)

{

oos.writeObject(d)
;

short getZ() {

 try {

System.out.println(d.getX()+d.getY()+d.getZ());

public int x = 3;

transient long y = 4;

private short z = 5;

FileInputStream fi s = new

 FileInputStream(“dg.ser”);

 import java.io.*;

468 chapter 14

Exercise Solutions

1. Serialization is appropriate when saving data for non-Java programs to use.

2. Object state can be saved only by using serialization.

3. ObjectOutputStream is a class used to save serialized objects.

4. Chain streams can be usedon their own or with connection streams.

5. A single call to writeObject() can cause many objects to be saved.

6. All classes are serializable by default.

7. The transient modifier allows you to make instance variables serializable.

8. If a superclass is not serializable then the subclass can’t be serializable.

9. When objects are deserialized they are read back in last-in, first out sequence.

10. When an object is deserialized, its constructor does not run.

11. Both serialization and saving to a text file can throw exceptions.

12. BufferedWriters can be chained to FileWriters.

13. File objects represent files, but not directories.

14. You can’t force a buffer to send its data before it’s full.

15. Both file readers and file writers can optionally be buffered.

16. The String split() method includes separators as tokens in the result array.

17. Any change to a class breaks previously serialized objects of that class.

False

False

True

False

True

False

False

False

False

True

True

True

False

False

True

False

False

exercise solutions

serialization and file I/O

you are here4 469

File Edit Window Help Escape

% java DungeonTest
12
8

import java.io.*;

class DungeonGame implements Serializable {
 public int x = 3;
 transient long y = 4;
 private short z = 5;
 int getX() {
 return x;
 }
 long getY() {
 return y;
 }
 short getZ() {
 return z;
 }
}

class DungeonTest {
 public static void main(String [] args) {
 DungeonGame d = new DungeonGame();
 System.out.println(d.getX() + d.getY() + d.getZ());
 try {
 FileOutputStream fos = new FileOutputStream(“dg.ser”);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(d);
 oos.close();
 FileInputStream fis = new FileInputStream(“dg.ser”);
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (DungeonGame) ois.readObject();
 ois.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println(d.getX() + d.getY() + d.getZ());
 }
}

Good thing we’re
finally at the answers.

I was gettin’ kind of
tired of this chapter.

Make a Connection

Make it Stick

15 networking and threads

Connect with the outside world. Your Java program can reach out and touch a

program on another machine. It’s easy. All the low-level networking details are taken care of by

classes in the java.net library. One of Java’s big benefits is that sending and receiving data over

a network is just I/O with a slightly different connection stream at the end of the chain. If you’ve

got a BufferedReader, you can read. And the BufferedReader could care less if the data came

out of a file or flew down an ethernet cable. In this chapter we’ll connect to the outside world

with sockets. We’ll make client sockets. We’ll make server sockets. We’ll make clients and servers.

And we’ll make them talk to each other. Before the chapter’s done, you’ll have a fully-functional,

multithreaded chat client. Did we just say multithreaded? Yes, now you will learn the secret of

how to talk to Bob while simultaneously listening to Suzy.

this is a new chapter 471

472 chapter 15

skyler4: fast and funky, good for sequence 12

evster2: like skyler2, but more Oakenfoldish

skyler5: you WISH! Too perky

try this one... it’s better for sequence 8

beat box chat

Real-time Beat Box Chat

You’re working on a computer game. You and your team
are doing the sound design for each part of the game.
Using a ‘chat’ version of the Beat Box, your team can
collaborate—you can send a beat pattern along with
your chat message, and everybody in the Beat Box Chat
gets it. So you don’t just get to read the other
participants’ messages, you get to load and
play a beat pattern simply by clicking the
message in the incoming messages area.

In this chapter we’re going to learn what it
takes to make a chat client like this. We’re
even going to learn a little about making a
chat server. We’ll save the full Beat Box Chat
for the Code Kitchen, but in this chapter you
will write a Ludicrously Simple Chat Client and
Very Simple Chat Server that send and receive
text messages.

clicking on a received message
loads the pattern that went
with it

Type a message and

press the send
It button

to send your m
essage

AND your current
beat

pattern

collaborate—you can send a beat pattern along with
your chat message, and everybody in the Beat Box Chat

write a Ludicrously Simple Chat Client and
Very Simple Chat Server that send and receive

with it

You can have completely authentic, intellectually stimulating chat conversations. Every message is sent to all participants.
Send your message to the server

networking and threads

you are here4 473

Why am I
here? Don’t
expect ME to
answer that.

Why am I
here? Don’t
expect ME to
answer that.

Why am I
here? Don’t
expect ME to
answer that.

The Client has to know
about the Server.
The Server has to know
about ALL the Clients.

Chat Program Overview

1 Client connects to the server

2 The server makes a
connection and adds the client
to the list of participants

3 Another client connects

4 Client A sends a message to
the chat service

Client A

Client B

Client C

Server

there are currently
3 participants in
this chat session:
Client A, Client B
and Client C

ServerClient A

Server, I’d like to connect
to the chat service

ServerClient A

OK, you’re in.
Participants:
 1. Client A

Server

Why am I here?
Don’t expect
ME to answer
that. So, why am

Client B

Participants:
 1. Client A
 2. Client B

Server

Why am I here?
Don’t expect
ME to answer
that. So, why am

Client A

How it Works:

Message
received

5 The server distributes the
message to ALL participants
(including the original sender) Server

Why am I here?
Don’t expect
ME to answer
that. So, why am

Client A

Message
distributed to
all participantsWhy am I here?

Don’t expect
ME to answer
that. So, why am

Client B

Waiting for
client requests

OK, you’re in.

Server, I’d like to connect
to the chat service

“Who took the lava lamp
from my dorm room?”

“Who took the lava lamp
from my dorm room?”

socket connections

474 chapter 15

Connecting, Sending, and Receiving

The three things we have to learn to get the client working are :

1) How to establish the initial connection between the client and server

2) How to send messages to the server

3) How to receive messages from the server

There’s a lot of low-level stuff that has to happen for these things to work. But we’re
lucky, because the Java API networking package (java.net) makes it a piece of cake
for programmers. You’ll see a lot more GUI code than networking and I/O code.

And that’s not all.

Lurking within the simple chat client is a problem we haven’t faced so far in this
book: doing two things at the same time. Establishing a connection is a one-time
operation (that either works or fails). But after that, a chat participant wants to
send outgoing messages and simultaneously receive incoming messages from the other
participants (via the server). Hmmmm... that one’s going to take a little thought, but
we’ll get there in just a few pages.

Connect1

Client connects to the server by
establishing a Socket connection.

Client A

chat server at
196.164.1.103,
port 5000

Make a socket connection to
196.164.1.103 at port 5000

Server

Send2

Client sends a message to the server

Client A

Server
machine at
196.164.1.103

writer.println(aMessage)

Server

Receive3

Client gets a message from the server

Client A

Server
machine at
196.164.1.103

String s = reader.readLine()

Server

networking and threads

you are here4 475

Make a network Socket connection

To connect to another machine, we need a Socket connection.
A Socket (java.net.Socket class) is an object that represents
a network connection between two machines. What’s a
connection? A relationship between two machines, where two
pieces of software know about each other. Most importantly,
those two pieces of software know how to communicate with
each other. In other words, how to send bits to each other.

We don’t care about the low-level details, thankfully, because
they’re handled at a much lower place in the ‘networking
stack’. If you don’t know what the ‘networking stack’ is, don’t
worry about it. It’s just a way of looking at the layers that
information (bits) must travel through to get from a Java
program running in a JVM on some OS, to physical hardware
(ethernet cables, for example), and back again on some other
machine. Somebody has to take care of all the dirty details.
But not you. That somebody is a combination of OS-specific
software and the Java networking API. The part that you have
to worry about is high-level—make that very high-level—and
shockingly simple. Ready?

Socket chatSocket = new Socket(“196.164.1.103”, 5000);

IP address for the serve
r

To make a Socket
connection, you need
to know two things
about the server: who
it is, and which port
it’s running on.
In other words,
IP address and TCP
port number.

TCP port number

Socket connection to port 5000 on the server at 196.164.1.103

Socket conn
ection

back to the
 client at

196.164.1.100, port

4242

A Socket connection means the two machines have
information about each other, including network
location (IP address) and TCP port.

ServerClient

This client is at
196.164.1.100, port 4242.
When I need to talk to
him, that’s where I’ll send

the message.

The chat server is at
196.164.1.103, port 5000.
When I need to talk to him,

that’s where I’ll send
the message.

476 chapter 15

A TCP port is just a number.

A 16-bit number that identifies
a specific program on the server.

Your internet web (HTTP) server runs on port 80. That’s a
standard. If you’ve got a Telnet server, its running on port
23. FTP? 20. POP3 mail server? 110. SMTP? 25. The Time
server sits at 37. Think of port numbers as unique identifiers.
They represent a logical connection to a particular piece of
software running on the server. That’s it. You can’t spin your
hardware box around and find a TCP port. For one thing,
you have 65536 of them on a server (0 - 65535). So they
obviously don’t represent a place to plug in physical devices.
They’re just a number representing an application.

Without port numbers, the server would have no way of
knowing which application a client wanted to connect to.
And since each application might have its own unique
protocol, think of the trouble you’d have without these
identifiers. What if your web browser, for example, landed
at the POP3 mail server instead of the HTTP server? The
mail server won’t know how to parse an HTTP request! And
even if it did, the POP3 server doesn’t know anything about
servicing the HTTP request.

When you write a server program, you’ll include code that
tells the program which port number you want it to run on
(you’ll see how to do this in Java a little later in this chapter).
In the Chat program we’re writing in this chapter, we picked
5000. Just because we wanted to. And because it met the
criteria that it be a number between 1024 and 65535. Why
1024? Because 0 through 1023 are reserved for the well-
known services like the ones we just talked about.

And if you’re writing services (server programs) to run on
a company network, you should check with the sys-admins
to find out which ports are already taken. Your sys-admins
might tell you, for example, that you can’t use any port
number below, say, 3000. In any case, if you value your limbs,
you won’t assign port numbers with abandon. Unless it’s
your home network. In which case you just have to check with
your kids.

2320 25
37

110

FTP
Telnet

POP3

SMTP

Time

80443

HTTPHTTPS

Server

Well-known TCP port numbers
for common server applications

The TCP port
numbers from 0 to 1023
are reserved for well-
known services. Don’t
use them for your own
server programs!*
The chat server we’re
writing uses port
5000. We just picked a
number between 1024
and 65535.

*Well, you might be able to use one of
these, but the sys-admin where you
work will probably kill you.

A server can have up to 65536
different server apps running,
one per port.

well-known ports

networking and threads

you are here4 477

IP address is like specifying a
particular shopping mall, say,

“Flatirons Marketplace”

Port number is like naming
a specifi c store, say,

“Bob’s CD Shop”

IP address is the mall
Port number is the specific store in the mall

ServerClient

Chat server
program

brain barbellBrain Barbell
OK, you got a Socket connection. The client and the

server know the IP address and TCP port number for

each other. Now what? How do you communicate

over that connection? In other words, how do you

move bits from one to the other? Imagine the kinds of

messages your chat client needs to send and receive.

How do these two
actually talk to
each other?

there are noDumb Questions

Q: How do you know the port
number of the server program you
want to talk to?

A: That depends on whether the
program is one of the well-known
services. If you’re trying to connect
to a well-known service, like the ones
on the opposite page (HTTP, SMTP,
FTP, etc.) you can look these up on
the internet (Google “Well-Known
TCP Port”). Or ask your friendly
neighborhood sys-admin.

But if the program isn’t one of the
well-known services, you need to
find out from whoever is deploying
the service. Ask him. Or her. Typically,
if someone writes a network service
and wants others to write clients for
it, they’ll publish the IP address, port
number, and protocol for the service.
For example, if you want to write a
client for a GO game server, you can
visit one of the GO server sites and
find information about how to write a
client for that particular server.

Q: Can there ever be more than
one program running on a single
port? In other words, can two
applications on the same server have
the same port number?

A: No! If you try to bind a program
to a port that is already in use, you’ll
get a BindException. To bind a program
to a port just means starting up a
server application and telling it to run
on a particular port. Again, you’ll learn
more about this when we get to the
server part of this chapter.

478 chapter 15

To communicate over a Socket connection, you use streams.
Regular old I/O streams, just like we used in the last chapter. One
of the coolest features in Java is that most of your I/O work won’t
care what your high-level chain stream is actually connected to. In
other words, you can use a BufferedReader just like you did when
you were writing to a file, the difference is that the underlying
connection stream is connected to a Socket rather than a File!

To read data from a Socket, use a
BufferedReader

Socket chatSocket = new Socket(“127.0.0.1”, 5000);
127.0.0.1 is the IP address for “localhost”, in
other words, the one this code is running on. You
can use this when you’re testing your client and
server on a single, stand-alone machine.

1 Make a Socket connection to the server

BufferedReader reader = new BufferedReader(stream);
String message = reader.readLine();

3 Make a BufferedReader and read!
Chain the BufferedReader to the

InputStreamReader(which was chained to the low-

level connection stream
 we got from the Socket.)

The port number, which you know

because we TOLD you that 5000 is

the port number for our chat serve
r.

InputStreamReader stream = new InputStreamReader(chatSocket.getInputStream());

2 Make an InputStreamReader chained to the Socket’s
low-level (connection) input stream

InputStreamReader is a ‘bridge’ betw
een a low-

level byte stream (like the one coming from the

Socket) and a high-level character stream
 (like

the BufferedReader we’re after as our top
of

the chain stream).

Client
Socket’s input stream
(we don’t need to know

the actual class)

011010011

bytes from server

source

chained to

All we have to do is ASK the socket for an input stream! It’s a low-level connection stream, but we’re just gonna chain it to something more text-friendly.

Data on the
servercharacters

destination

InputStreamReader
chained to

buffered
characters

BufferedReader

converted to charactersbuffered characters

Server

input and output streams
to and from the Socket
connections

reading from a socket

networking and threads

you are here4 479

We didn’t use PrintWriter in the last chapter, we used BufferedWriter. We have
a choice here, but when you’re writing one String at a time, PrintWriter is the
standard choice. And you’ll recognize the two key methods in PrintWriter,
print() and println()! Just like good ol’ System.out.

To write data to a Socket, use a
PrintWriter

Socket chatSocket = new Socket(“127.0.0.1”, 5000);

1 Make a Socket connection to the server

writer.println(“message to send”);
writer.print(“another message”);

3 Write (print) something

println() adds a new line at the end of what it sends.

print() doesn’t add th
e new line.

this part’s the same as it was on the

opposite page -- to write to the

server, we still have to connect
 to it.

PrintWriter writer = new PrintWriter(chatSocket.getOutputStream());

2 Make a PrintWriter chained to the Socket’s low-level
(connection) output stream

PrintWriter acts as its own bridge between

character data and th
e bytes it gets from the

Socket’s low-level output stream. By chaining a

PrintWriter to the Socket’s
output stream, we

can write Strings to the So
cket connection.

Client
Socket’s output

stream (we don’t need
to know the actual class)

011010011

bytes to server

destination

chained to

The Socket gives us a low-level connection stream and we chain it to the PrintWriter by giving it to the PrintWriter constructor.

Chat server
program

source

“message...”

PrintWriter

characters

Server

source

480 chapter 15

Before we start building the Chat app,
let’s start with something a little smaller.
The Advice Guy is a server program that
offers up practical, inspirational tips
to get you through those long days of
coding.

We’re building a client for The Advice
Guy program, which pulls a message
from the server each time it connects.

What are you waiting for? Who knows
what opportunities you’ve missed
without this app.

The DailyAdviceClient
Treat yourself to
a cold one! You
deserve it!

Tell your boss
the report will

have to wait. There’s
powder at Aspen!

That shade of
green isn’t really

workin’ for you...

The Advice Guy
Connect1

Client connects to the server and gets an
input stream from it

Client

advice server
at 190.165.1.103,
port 4242

Make a socket connection to
190.165.1.103 at port 4242

Server

Read2

Client reads a message from the server

Client A

advice server
composes
advice and
sends it

advice = reader.readLine()

Server

socket.getInputStream()

writing a client

networking and threads

you are here4 481

import java.io.*;

import java.net.*;

public class DailyAdviceClient {

 public void go() {

 try {

 Socket s = new Socket(“127.0.0.1”, 4242);

 InputStreamReader streamReader = new InputStreamReader(s.getInputStream());

 BufferedReader reader = new BufferedReader(streamReader);

 String advice = reader.readLine();

 System.out.println(“Today you should: “ + advice);

 reader.close();

 } catch(IOException ex) {

 ex.printStackTrace();

 }

 }

 public static void main(String[] args) {

 DailyAdviceClient client = new DailyAdviceClient();

 client.go();

 }

}

DailyAdviceClient code

class Socket is in ja
va.net

make a Socket conne
ction to whatever is

running on port 4242, on the same host

this code is running
 on. (The ‘localhost’)

a lot can go wrong here

chain a BufferedReader to
an InputStreamReader to
the input stream from the
Socket.

this readLine() is EXACTLY the same as if you were using a BufferedReader chained to a FILE..
In other words, by the time you call a BufferedWriter method, the
writer doesn’t know or care where the characters came from.

this closes ALL the streams

This program makes a Socket, makes a BufferedReader (with the
help of other streams), and reads a single line from the server
application (whatever is running at port 4242).

socket connections

482 chapter 15

Sharpen your pencil
Test your memory of the streams/classes for reading and writing from a

Socket. Try not to look at the opposite page!

Client
Server

To read text from a Socket:
source

write/draw in the chain of streams the client
uses to read from the server

Client
Server

To send text to a Socket:
destination

write/draw in the chain of streams the client
uses to send something to the server

Sharpen your pencil

What two pieces of information does the client need in order to make a

Socket connection with a server?

Fill in the blanks:

Which TCP port numbers are reserved for ‘well-known services’ like HTTP and FTP?

TRUE or FALSE: The range of valid TCP port numbers can be represented

by a short primitive?

networking and threads

you are here4 483

Writing a simple server
So what’s it take to write a server application? Just a
couple of Sockets. Yes, a couple as in two. A ServerSocket,
which waits for client requests (when a client makes a
new Socket()) and a plain old Socket socket to use for
communication with the client.

ServerSocket
1 Server application makes a ServerSocket, on a specific port

How it Works:

 ServerSocket serverSock = new ServerSocket(4242);

4242

ServerSocket
2 Client makes a Socket connection to the server application
 Socket sock = new Socket(“190.165.1.103”, 4242);

4242

Socket

ServerSocket
 (waiting

for the next
 client)

3 Server makes a new Socket to communicate with this client
 Socket sock = serverSock.accept();

4242

Socket

Socket

This starts the server application listening
for client requests coming in for port 4242.

Client knows the IP address and port number
(published or given to him by whomever
configures the server app to be on that port)

The accept() method blocks (just sits there) while
it’s waiting for a client Socket connection. When a
client finally tries to connect, the method returns
a plain old Socket (on a different port) that knows
how to communicate with the client (i.e., knows the
client’s IP address and port number). The Socket is on
a different port than the ServerSocket, so that the
ServerSocket can go back to waiting for other clients.

2789

484 chapter 15

import java.io.*;
import java.net.*;

public class DailyAdviceServer {

 String[] adviceList = {“Take smaller bites”, “Go for the tight jeans. No they do NOT
make you look fat.”, “One word: inappropriate”, “Just for today, be honest. Tell your
boss what you *really* think”, “You might want to rethink that haircut.”};

 public void go() {

 try {
 ServerSocket serverSock = new ServerSocket(4242);

 while(true) {

 Socket sock = serverSock.accept();

 PrintWriter writer = new PrintWriter(sock.getOutputStream());
 String advice = getAdvice();
 writer.println(advice);
 writer.close();
 System.out.println(advice);
 }

 } catch(IOException ex) {
 ex.printStackTrace();
 }
 } // close go

 private String getAdvice() {
 int random = (int) (Math.random() * adviceList.length);
 return adviceList[random];
 }

 public static void main(String[] args) {
 DailyAdviceServer server = new DailyAdviceServer();
 server.go();
 }
}

DailyAdviceServer code
This program makes a ServerSocket and waits for client requests. When it gets
a client request (i.e. client said new Socket() for this application), the server
makes a new Socket connection to that client. The server makes a PrintWriter
(using the Socket’s output stream) and sends a message to the client.

remember the imports

daily advice comes from this array

ServerSocket makes this server application ‘listen’ for client requests on port 4242 on the machine this code is running on.
The server goes into a permanent loop,

waiting for (and servicing) clien
t requests

the accept method blocks (just sits there) until a
request comes in, and then the method returns a
Socket (on some anonymous port) for communicating
with the client

now we use the Socket connection to the client to make a PrintWriter and send it (println()) a String advice message. Then we close the Socket because we’re done with this client.

writing a server

(remember, these Strings
were word-wrapped by
the code editor. Never
hit return in the middle
of a String!)

networking and threads

you are here4 485

 BULLET POINTS

ß Client and server applications communicate over a Socket
connection.

ß A Socket represents a connection between two applications
which may (or may not) be running on two different physical
machines.

ß A client must know the IP address (or domain name) and
TCP port number of the server application.

ß A TCP port is a 16-bit unsigned number assigned to a
specific server application. TCP port numbers allow different
clients to connect to the same machine but communicate
with different applications running on that machine.

ß The port numbers from 0 through 1023 are reserved for
‘well-known services’ including HTTP, FTP, SMTP, etc.

ß A client connects to a server by making a Server socket
Socket s = new Socket(“127.0.0.1”, 4200);

 ß Once connected, a client can get input and output streams
from the socket. These are low-level ‘connection’ streams.
sock.getInputStream();

ß To read text data from the server, create a BufferedReader,
chained to an InputStreamReader, which is chained to the
input stream from the Socket.

ß InputStreamReader is a ‘bridge’ stream that takes in
bytes and converts them to text (character) data. It’s used
primarily to act as the middle chain between the high-level
BufferedReader and the low-level Socket input stream.

ß To write text data to the server, create a PrintWriter chained
directly to the Socket’s output stream. Call the print() or
println() methods to send Strings to the server.

ß Servers use a ServerSocket that waits for client requests on
a particular port number.

ß When a ServerSocket gets a request, it ‘accepts’ the request
by making a Socket connection with the client.

HeadFirst: Can you tell us the difference between a ServerSocket
and a plain old Socket?

ServerSocket: You’re serious? As a ServerSocket, I AM the
server. Without me, the application is just a piece of code running
inside a JVM with no way for any clients to connect.

HeadFirst: But don’t regular Sockets connect to the outside
world? Isn’t that what a socket is for? To connect?

ServerSocket: Yeah but you’re missing the point here—a regular
Socket can only request connections, it can’t accept connections. It
can call out, but if nobody’s at the other end to get the request, the
client’s Socket request will fail. Spectacularly, I might add.

HeadFirst: What do you mean “more senior”?

ServerSocket: I’ve been in the spec since the very beginning!
Back in version 1.0, when entity beans were considered “optional”.
Me, though, I was considered essential. And cool. And then in the
2.0 spec, they add MessageDrivenBeans who don’t even do much.
It’s hard for me to be upset about EntityBeans because they work so
hard, what with the database and everything, but come on – Mes-
sageDrivenBeans don’t do anything except wait for the digital UPS
guy to show up with a message. Half they time they don’t even do
anything except turn around and hand it someone else to do the
real work. So they can run back to their inflatable mattress and
unbrella drinks.

HeadFirst: If a pool is such a nice feature, why don’t stateful ses-
sion beans get one?

ServerSocket: We’re the only bean that can establish a real re-
lationship with a client. Unlike my cohorts, I can remember things
from one method invocation to the next. I can maintain a conversa-
tion with a client, and keep track of the current state. So as long as
the client wants me, I’m at her service.

HeadFirst: What exactly do you mean by “state”?

ServerSocket: Picture an online shopping spree. You click the
little button to put things into your cart, right? Well where do you
think they go? Somebody has to keep track of your cart. But when
you’re done shopping, my life (in this case, as the bean keeping your
cart) has no meaning, and I’m cut loose, trying to stay one step
ahead of the garbage collector.

This weeks interview:
ServerSocket

Java Exposed

brain barbellBrain Barbell
How does the server know how to

communicate with the client?

The client knows the IP address and port

number of the server, but how is the server

able to make a Socket connection with the

client (and make input and output streams)?

Think about how / when / where the server

gets knowledge about the client.

there are noDumb Questions
Q: The advice server code on the opposite
page has a VERY serious limitation—it looks
like it can handle only one client at a time!

A:Yes, that’s right. It can’t accept a request
from a client until it has finished with the
current client and started the next iteration of
the infinite loop (where it sits at the accept()
call until a request comes in, at which time it
makes a Socket with the new client and starts
the process over again).

Q: Let me rephrase the problem: how can
you make a server that can handle multiple
clients concurrently??? This would never
work for a chat server, for instance.

A:Ah, that’s simple, really. Use separate
threads, and give each new client Socket to a
new thread. We’re just about to learn how to
do that!

486 chapter 15

Writing a Chat Client
We’ll write the Chat client application in two stages. First we’ll
make a send-only version that sends messages to the server but
doesn’t get to read any of the messages from other participants
(an exciting and mysterious twist to the whole chat room
concept).

Then we’ll go for the full chat monty and make one that both
sends and receives chat messages.

Version One: send-only

public class SimpleChatClientA {

 JTextField outgoing;
 PrintWriter writer;
 Socket sock;

 public void go() {
 // make gui and register a listener with the send button
 // call the setUpNetworking() method
 }

 private void setUpNetworking() {
 // make a Socket, then make a PrintWriter
 // assign the PrintWriter to writer instance variable
 }

 public class SendButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 // get the text from the text field and
 // send it to the server using the writer (a PrintWriter)
 }
 } // close SendButtonListener inner class

} // close outer class

Code outline

Type a message, then press ‘
Send’

to send it to the s
erver. We

won’t get any messages FROM the

server in this versio
n, so there’s

no scrolling text ar
ea.

a simple chat client

networking and threads

you are here4 487

import java.io.*;
import java.net.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleChatClientA {

 JTextField outgoing;
 PrintWriter writer;
 Socket sock;

 public void go() {
 JFrame frame = new JFrame(“Ludicrously Simple Chat Client”);
 JPanel mainPanel = new JPanel();
 outgoing = new JTextField(20);
 JButton sendButton = new JButton(“Send”);
 sendButton.addActionListener(new SendButtonListener());
 mainPanel.add(outgoing);
 mainPanel.add(sendButton);
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 setUpNetworking();
 frame.setSize(400,500);
 frame.setVisible(true);
 } // close go

 private void setUpNetworking() {
 try {
 sock = new Socket(“127.0.0.1”, 5000);
 writer = new PrintWriter(sock.getOutputStream());
 System.out.println(“networking established”);
 } catch(IOException ex) {
 ex.printStackTrace();
 }
 } // close setUpNetworking

 public class SendButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 try {
 writer.println(outgoing.getText());
 writer.flush();

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 outgoing.setText(“”);
 outgoing.requestFocus();
 }
 } // close SendButtonListener inner class

 public static void main(String[] args) {
 new SimpleChatClientA().go();
 }
 } // close outer class

imports for the stre
ams (java.io),

Socket (java.net) a
nd the GUI

stuff

build the GUI, nothing new

here, and nothing r
elated to

networking or I/O.

This is where we make the Socket
and the PrintWriter (it’s called
from the go() method right before
displaying the app GUI)

Now we actually do the writing.
Remember, the writer is chained to
the input stream from the Socket, so
whenever we do a println(), it goes
over the network to the server!

we’re using localhost so you can test the client and server on one machine

If you want to try this now, type in
the Ready-bake chat server code
listed at the end of this chapter .
First, start the server in one terminal.
Next, use another terminal to start
this client.

488 chapter 15

Version Two: send
and receive

The Server sends a message to all client participants, as soon as the message is received by the server. When a client sends a message, it doesn’t appear in the incoming message display area until the server sends it to everyone.

outgoing message

incoming
messages

Big Question: HOW do you get messages from the server?

Should be easy; when you set up the networking make an input stream as well
(probably a BufferedReader). Then read messages using readLine().

Bigger Question: WHEN do you get messages from the server?
Think about that. What are the options?

Pros: Well, it’s do-able

Cons: How does the server know what you’ve seen and what you haven’t? The server
would have to store the messages, rather than just doing a distribute-and-forget each time
it gets one. And why 20 seconds? A delay like this affects usability, but as you reduce the
delay, you risk hitting your server needlessly. Inefficient.

1 Option One: Poll the server every 20 seconds

2 Option Two: Read something in from the server each time the user
sends a message.

Pros: Do-able, very easy

Cons: Stupid. Why choose such an arbitrary time to check for messages? What if a user is
a lurker and doesn’t send anything?

3 Option Three: Read messages as soon as they’re sent from the server

Pros: Most efficient, best usability

Cons: How do you do you do two things at the same time? Where would you put this code?
You’d need a loop somewhere that was always waiting to read from the server. But where
would that go? Once you launch the GUI, nothing happens until an event is fired by a GUI
component.

improving the chat client

networking and threads

you are here4 489

You know by now that we’re
going with option three.

In Java you really CAN
walk and chew gum at
the same time.

We want something to run continuously,
checking for messages from the server,
but without interrupting the user’s ability to
interact with the GUI! So while the user is
happily typing new messages or scrolling
through the incoming messages, we
want something behind the scenes to keep
reading in new input from the server.

That means we fi nally need a new thread.
A new, separate stack

We want everything we did in the Send-
Only version (version one) to work the
same way, while a new process runs along
side that reads information from the
server and displays it in the incoming text
area.

Well, not quite. Unless you have multiple
processors on your computer, each new
Java thread is not actually a separate
process running on the OS. But it almost
feels as though it is.

Multithreading in Java

Java has multiple threading built right
into the fabric of the language. And it’s a
snap to make a new thread of execution:

Thread t = new Thread();
t.start();
That’s it. By creating a new Thread object,
you’ve launched a separate thread of
execution, with its very own call stack.

Except for one problem.

That thread doesn’t actually do anything,
so the thread “dies” virtually the instant
it’s born. When a thread dies, its new
stack disappears again. End of story.

So we’re missing one key component—
the thread’s job. In other words, we need
the code that you want to have run by a
separate thread.

Multiple threading in Java means we
have to look at both the thread and the job
that’s run by the thread. And we’ll also
have to look at the Thread class in the
java.lang package. (Remember, java.lang
is the package you get imported for
free, implicitly, and it’s where the classes
most fundamental to the language live,
including String and System.)

490 chapter 15

Java has multiple threads but only
one Thread class

We can talk about thread with a lower-case ‘t’ and Thread
with a capital ‘T’. When you see thread, we’re talking
about a separate thread of execution. In other words,
a separate call stack. When you see Thread, think of
the Java naming convention. What, in Java, starts with a
capital letter? Classes and interfaces. In this case, Thread
is a class in the java.lang package. A Thread object
represents a thread of execution; you’ll create an instance of
class Thread each time you want to start up a new thread
of execution.

thread

run()

doStuff()

go()

doMore()

Thread

Thread
void join()
void start()

static void sleep()

A thread (lower-case ‘t’) is a separate thread of execution.
That means a separate call stack. Every Java application
starts up a main thread—the thread that puts the
main() method on the bottom of the stack. The JVM
is responsible for starting the main thread (and other
threads, as it chooses, including the garbage collection
thread). As a programmer, you can write code to start
other threads of your own.

main()

x.foo()

y.bar()

x.baz()

main thread another thread
started by the code

Thread (capital ‘T’) is a class that
represents a thread of execution.
It has methods for starting a
thread, joining one thread with
another, and putting a thread to
sleep. (It has more methods; these
are just the crucial ones we need
to use now).

java.lang.Thread
class

A thread is a separate
‘thread of execution’.
In other words, a
separate call stack.
A Thread is a Java
class that represents
a thread.
To make a thread,
make a Thread.

threads and Thread

networking and threads

you are here4 491

What does it mean to have more than
one call stack?

With more than one call stack, you get the appearance of having
multiple things happen at the same time. In reality, only a true
multiprocessor system can actually do more than one thing at a
time, but with Java threads, it can appear that you’re doing several
things simultaneously. In other words, execution can move back
and forth between stacks so rapidly that you feel as though all stacks
are executing at the same time. Remember, Java is just a process
running on your underlying OS. So first, Java itself has to be ‘the
currently executing process’ on the OS. But once Java gets its
turn to execute, exactly what does the JVM run? Which bytecodes
execute? Whatever is on the top of the currently-running stack!
And in 100 milliseconds, the currently executing code might switch
to a different method on a different stack.

One of the things a thread must do is keep track of which statement
(of which method) is currently executing on the thread’s stack.

It might look something like this:

public static void main(String[] args) {
...
}

1 The JVM calls the main() method.
main()

Runnable r = new MyThreadJob();
Thread t = new Thread(r);
t.start();
Dog d = new Dog();

2 main() starts a new thread. The main
thread is temporarily frozen while the new
thread starts running.

3 The JVM switches between the new
thread (user thread A) and the original
main thread, until both threads complete.

main thread

main thread

run()

user thread A

main()

t.start()

the active thread

a new thread starts
and becomes the active
thread

main thread

main()

Dog()

user thread A

run()

x.go()

you’ll learn what this means in just a moment...

the active
thread aga

in

492 chapter 15

Make a Runnable object (the thread’s job)1

Runnable threadJob = new MyRunnable();

How to launch a new thread:

Runnable is an interface you’ll learn about on the next page.
You’ll write a class that implements the Runnable interface,
and that class is where you’ll define the work that a thread
will perform. In other words, the method that will be run
from the thread’s new call stack.

Make a Thread object (the worker) and
give it a Runnable (the job)

2

Thread myThread = new Thread(threadJob);

Pass the new Runnable object to the Thread constructor.
This tells the new Thread object which method to put on
the bottom of the new stack—the Runnable’s run() method.

Start the Thread3

myThread.start();

Nothing happens until you call the Thread’s
start() method. That’s when you go from
having just a Thread instance to having a new
thread of execution. When the new thread
starts up, it takes the Runnable object’s
run() method and puts it on the bottom of
the new thread’s stack.

Runnable obje
c t

Thread objec
t

Thread objec
t Runnable obje
c t

run()

launching a thread

networking and threads

you are here4 493

Every Thread needs a job to do.
A method to put on the new thread stack.

A Thread object needs a job. A job the thread will run when the
thread is started. That job is actually the first method that goes on
the new thread’s stack, and it must always be a method that looks
like this:

 public void run() {
 // code that will be run by the new thread
 }

How does the thread know which method to put at the bottom of
the stack? Because Runnable defines a contract. Because Runnable
is an interface. A thread’s job can be defined in any class that
implements the Runnable interface. The thread cares only that you
pass the Thread constructor an object of a class that implements
Runnable.

When you pass a Runnable to a Thread constructor, you’re really
just giving the Thread a way to get to a run() method. You’re giving
the Thread its job to do.

Runnable is to a
Thread what a job is to
a worker. A Runnable
is the job a thread is
supposed to run.
A Runnable holds the
method that goes on
the bottom of the new
thread’s stack: run().

Thread

All I need is a real job.
Just give me a Runnable

and I’ll get to work!

The Runnable inte
rface defin

es only one

method, publi
c void run()

. (Remember, it’s an

interface so
 the method is pub

lic regardles
s

of whether you
type it in t

hat way.)

.

494 chapter 15

run()

go()

doMore()

To make a job for your thread,
implement the Runnable interface

public class MyRunnable implements Runnable {

 public void run() {
 go();
 }

 public void go() {
 doMore();
 }

 public void doMore() {
 System.out.println(“top o’ the stack”);
 }
}

Runnable is in the j
ava.lang package,

so you don’t need
to import it.

Runnable has only one method to implement: public void run() (with no arguments). This is where you put the JOB the thread is supposed to run. This is the method that goes at the bottom of the new stack.

class ThreadTester {

 public static void main (String[] args) {

 Runnable threadJob = new MyRunnable();
 Thread myThread = new Thread(threadJob);

 myThread .start();

 System.out.println(“back in main”);
 }
}

Pass the new Runnable instance into th
e new

Thread constructor. This tells the thread

what method to put on the bo
ttom of the new

stack. In other words, the first method that

the new thread will run.

You won’t get a new thread of execution until you call start() on the Thread instance. A thread is not really a thread until you start it. Before that, it’s just a Thread instance, like any other object, but it won’t have any real ‘threadness’.

main thread

main()

myThread.start()

1

1

2

2

new thread

brain barbellBrain Barbell
What do you think the output will be if you run the

ThreadTester class? (we’ll find out in a few pages)

Runnable interface

networking and threads

you are here4 495

The three states of a new thread

A Thread instance has been
created but not started.
In other words, there is a
Thread object, but no thread
of execution.

NEW RUNNABLE

Thread t = new Thread(r);

When you start the thread, it
moves into the runnable state.
This means the thread is ready
to run and just waiting for its
Big Chance to be selected for
execution. At this point, there is
a new call stack for this thread.

t.start();

RUNNING

t.start(); Selected to run

This is the state all threads lust
after! To be The Chosen One.
The Currently Running Thread.
Only the JVM thread scheduler
can make that decision. You
can sometimes influence that
decision, but you cannot force a
thread to move from runnable
to running. In the running
state, a thread (and ONLY this
thread) has an active call stack,
and the method on the top of
the stack is executing.

Thread t = new Thread(r);

this is where a thread

wants to be!

But there’s more. Once the thread becomes
runnable, it can move back and forth between
runnable, running, and an additional state:
temporarily not runnable (also known as ‘blocked’).

“I’m good to go !”

“Can I
supersize
that for
you?”

“I’m waiting to
get started.”

496 chapter 15

RUNNABLE RUNNING

Selected to run

Typical runnable/running loop

Sent back to runnable
so another thread can
have a chance

Typically, a thread moves back and
forth between runnable and running,
as the JVM thread scheduler selects a
thread to run and then kicks it back
out so another thread gets a chance.

A thread can be made
temporarily not-runnable

The thread scheduler can move a
running thread into a blocked state,
for a variety of reasons. For example,
the thread might be executing code
to read from a Socket input stream,
but there isn’t any data to read. The
scheduler will move the thread out
of the running state until something
becomes available. Or the executing
code might have told the thread to
put itself to sleep (sleep()). Or the
thread might be waiting because it
tried to call a method on an object,
and that object was ‘locked’. In that
case, the thread can’t continue until
the object’s lock is freed by the thread
that has it.

All of those conditions (and more)
cause a thread to become temporarily
not-runnable.

RUNNABLE RUNNING

BLOCKED

Sent
to

a t
empor

ary

non
-ru

nna
ble st

ate

unt
il it

 ca
n b

ecom
e

run
nab

le ag
ain

.

sleeping, waiting for another thread to finish,
waiting for data to be available on the stream,
waiting for an object’s lock...

thread states

networking and threads

you are here4 497

The Thread Scheduler

Number four, you’ve had
enough time. Back to runnable.

Number two, looks like you’re up!

Oh, now it looks like you’re gonna have
to sleep. Number five, come take his

place. Number two, you’re still
sleeping...

The thread
scheduler makes all

the decisions about
who runs and who
doesn’t. He usually
makes the threads take
turns, nicely. But
there’s no guarantee
about that. He might
let one thread run
to its heart’s content
while the other
threads ‘starve’.

The thread scheduler makes all the decisions about
who moves from runnable to running, and about when
(and under what circumstances) a thread leaves the
running state. The scheduler decides who runs, and for
how long, and where the threads go when the scheduler
decides to kick them out of the currently-running state.

You can’t control the scheduler. There is no API for
calling methods on the scheduler. Most importantly,
there are no guarantees about scheduling! (There are a
few almost-guarantees, but even those are a little fuzzy.)

The bottom line is this: do not base your program’s
correctness on the scheduler working in a particular way!
The scheduler implementations are different for
different JVM’s, and even running the same program
on the same machine can give you different results.
One of the worst mistakes new Java programmers
make is to test their multi-threaded program on a
single machine, and assume the thread scheduler will
always work that way, regardless of where the program
runs.

So what does this mean for write-once-run-anywhere?
It means that to write platform-independent Java code,
your multi-threaded program must work no matter how
the thread scheduler behaves. That means that you can’t
be dependent on, for example, the scheduler making
sure all the threads take nice, perfectly fair and equal
turns at the running state. Although highly unlikely
today, your program might end up running on a JVM
with a scheduler that says, “OK thread five, you’re up,
and as far as I’m concerned, you can stay here until
you’re done, when your run() method completes.”

The secret to almost everything is sleep. That’s
right, sleep. Putting a thread to sleep, even for a few
milliseconds, forces the currently-running thread to
leave the running state, thus giving another thread a
chance to run. The thread’s sleep() method does come
with one guarantee: a sleeping thread will not become
the currently-running thread before the the length of
its sleep time has expired. For example, if you tell your
thread to sleep for two seconds (2,000 milliseconds),
that thread can never become the running thread again
until sometime after the two seconds have passed.

498 chapter 15

public class MyRunnable implements Runnable {

 public void run() {
 go();
 }

 public void go() {
 doMore();
 }

 public void doMore() {
 System.out.println(“top o’ the stack”);
 }
}

class ThreadTestDrive {

 public static void main (String[] args) {

 Runnable threadJob = new MyRunnable();
 Thread myThread = new Thread(threadJob);

 myThread.start();

 System.out.println(“back in main”);
 }
}

An example of how unpredictable the
scheduler can be...

Running this code on one machine: Produced this output:

File Edit Window Help PickMe

% java ThreadTestDrive

back in main

top o’ the stack

% java ThreadTestDrive

top o’ the stack

back in main

% java ThreadTestDrive

top o’ the stack

back in main

% java ThreadTestDrive

top o’ the stack

back in main

% java ThreadTestDrive

top o’ the stack

back in main

% java ThreadTestDrive

top o’ the stack

back in main

% java ThreadTestDrive

back in main

top o’ the stack

Notice how the order chan
ges

randomly. Sometimes the new thread

finishes first, a
nd sometimes the main

thread finishes
first.

thread scheduling

networking and threads

you are here4 499

run()

go()

doMore()

main thread

main()

myThread.start()

new thread

main()

myThread.start()

main thread

main()

main() starts the
new thread

The scheduler sends
the main thread out
of running and back
to runnable, so that
the new thread can
run.

The scheduler lets
the new thread
run to completion,
printing out “top o’
the stack”

The new thread goes
away, because its run()
completed. The main
thread once again
becomes the running
thread, and prints “back
in main”

main thread

time

main thread

main()

myThread.start()

new thread

main()

myThread.start()

main thread

main()

main() starts the
new thread

The scheduler sends
the main thread out
of running and back
to runnable, so that
the new thread can
run.

The scheduler lets the
new thread run for a
little while, not long
enough for the run()
method to complete.

main thread

time

run()

go()

run()

go()

new thread

The scheduler
sends the new
thread back to
runnable.

The scheduler
selects the main
thread to be the
running thread
again. Main prints
out “back in main”

run()

go()

doMore()

new thread

The new thread returns
to the running state
and prints out “top o’
the stack”.

How did we end up with different results?

Sometimes it runs like this:

And sometimes it runs like this:

Produced this output:

socket connections

500 chapter 15

 BULLET POINTS

ß A thread with a lower-case ‘t’ is a separate thread of
execution in Java.

ß Every thread in Java has its own call stack.

ß A Thread with a capital ‘T’ is the java.lang.Thread
class. A Thread object represents a thread of
execution.

ß A Thread needs a job to do. A Thread’s job is an
instance of something that implements the Runnable
interface.

ß The Runnable interface has just a single method, run().
This is the method that goes on the bottom of the new
call stack. In other words, it is the first method to run in
the new thread.

ß To launch a new thread, you need a Runnable to pass
to the Thread’s constructor.

ß A thread is in the NEW state when you have
instantiated a Thread object but have not yet called
start().

ß When you start a thread (by calling the Thread object’s
start() method), a new stack is created, with the
Runnable’s run() method on the bottom of the stack.
The thread is now in the RUNNABLE state, waiting to
be chosen to run.

ß A thread is said to be RUNNING when the JVM’s
thread scheduler has selected it to be the currently-
running thread. On a single-processor machine, there
can be only one currently-running thread.

ß Sometimes a thread can be moved from the RUNNING
state to a BLOCKED (temporarily non-runnable) state.
A thread might be blocked because it’s waiting for data
from a stream, or because it has gone to sleep, or
because it is waiting for an object’s lock.

ß Thread scheduling is not guaranteed to work in any
particular way, so you cannot be certain that threads
will take turns nicely. You can help influence turn-taking
by putting your threads to sleep periodically.

there are noDumb Questions
Q: I’ve seen examples that don’t use a separate
Runnable implementation, but instead just make a
subclass of Thread and override the Thread’s run()
method. That way, you call the Thread’s no-arg
constructor when you make the new thread;

Thread t = new Thread(); // no Runnable

A: Yes, that is another way of making your own
thread, but think about it from an OO perspective.
What’s the purpose of subclassing? Remember that
we’re talking about two different things here—the
Thread and the thread’s job. From an OO view, those
two are very separate activities, and belong in separate
classes. The only time you want to subclass/extend
the Thread class, is if you are making a new and more
specific type of Thread. In other words, if you think of
the Thread as the worker, don’t extend the Thread class
unless you need more specific worker behaviors. But if
all you need is a new job to be run by a Thread/worker,
then implement Runnable in a separate, job-specific
(not worker-specific) class.

This is a design issue and not a performance or
language issue. It’s perfectly legal to subclass Thread
and override the run() method, but it’s rarely a good
idea.

Q: Can you reuse a Thread object? Can you give it
a new job to do and then restart it by calling start()
again?

A: No. Once a thread’s run() method has completed,
the thread can never be restarted. In fact, at that
point the thread moves into a state we haven’t talked
about—dead. In the dead state, the thread has
finished its run() method and can never be restarted.
The Thread object might still be on the heap, as a
living object that you can call other methods on (if
appropriate), but the Thread object has permanently
lost its ‘threadness’. In other words, there is no longer a
separate call stack, and the Thread object is no longer
a thread. It’s just an object, at that point, like all other
objects.

But, there are design patterns for making a pool of
threads that you can keep using to perform different
jobs. But you don’t do it by restarting() a dead thread.

networking and threads

you are here4 501

Putting a thread to sleep

One of the best ways to help your threads take turns is
to put them to sleep periodically. All you need to do

is call the static sleep() method, passing it the sleep
duration, in milliseconds.

For example:

Thread.sleep(2000);
will knock a thread out of the running state, and
keep it out of the runnable state for two seconds.
The thread can’t become the running thread
again until after at least two seconds have passed.

A bit unfortunately, the sleep method throws an
InterruptedException, a checked exception, so all
calls to sleep must be wrapped in a try/catch (or
declared). So a sleep call really looks like this:

try {
 Thread.sleep(2000);
} catch(InterruptedException ex) {
 ex.printStackTrace();
}

Your thread will probably never be interrupted from
sleep; the exception is in the API to support a thread
communication mechanism that almost nobody uses in
the Real World. But, you still have to obey the handle
or declare law, so you need to get used to wrapping your
sleep() calls in a try/catch.

Now you know that your thread won’t wake up before the
specified duration, but is it possible that it will wake up
some time after the ‘timer’ has expired? Yes and no. It
doesn’t matter, really, because when the thread wakes
up, it always goes back to the runnable state! The thread
won’t automatically wake up at the designated time and
become the currently-running thread. When a thread
wakes up, the thread is once again at the mercy of
the thread scheduler. Now, for applications that don’t
require perfect timing, and that have only a few threads,
it might appear as though the thread wakes up and
resumes running right on schedule (say, after the 2000
milliseconds). But don’t bet your program on it.

Put your thread to sleep
if you want to be sure
that other threads get a
chance to run.
When the thread wakes
up, it always goes back
to the runnable state
and waits for the thread
scheduler to choose it
to run again.

502 chapter 15

Using sleep to make our program
more predictable.
Remember our earlier example that kept giving us different
results each time we ran it? Look back and study the code
and the sample output. Sometimes main had to wait until the
new thread finished (and printed “top o’ the stack”), while
other times the new thread would be sent back to runnable
before it was finished, allowing the main thread to come back
in and print out “back in main”. How can we fix that? Stop
for a moment and answer this question: “Where can you put
a sleep() call, to make sure that “back in main” always prints
before “top o’ the stack”?

We’ll wait while you work out an answer (there’s more than
one answer that would work).

Figure it out?

public class MyRunnable implements Runnable {

 public void run() {
 go();
 }

 public void go() {

 try {
 Thread.sleep(2000);
 } catch(InterruptedException ex) {
 ex.printStackTrace();
 }

 doMore();
 }

 public void doMore() {
 System.out.println(“top o’ the stack”);
 }
}

class ThreadTestDrive {
 public static void main (String[] args) {
 Runnable theJob = new MyRunnable();
 Thread t = new Thread(theJob);
 t.start();
 System.out.println(“back in main”);
 }
}

Calling sleep here
will force the new

thread to leave
the currently-running

state!

The main thread will become the

currently-running thread a
gain, and print

out “back in main”. Then there will be a

pause (for about
 two seconds) befor

e we

get to this line,
which calls doMore() and

prints out “top
o’ the stack”

File Edit Window Help SnoozeButton

% java ThreadTestDrive

back in main

top o’ the stack

% java ThreadTestDrive

back in main

top o’ the stack

% java ThreadTestDrive

back in main

top o’ the stack

% java ThreadTestDrive

back in main

top o’ the stack

% java ThreadTestDrive

back in main

top o’ the stack

This is what we want—a consistent order
of print statements:

using Thread.sleep()

networking and threads

you are here4 503

Making and starting two threads
Threads have names. You can give your threads a name of
your choosing, or you can accept their default names. But the
cool thing about names is that you can use them to tell which
thread is running. The following example starts two threads.
Each thread has the same job: run in a loop, printing the
currently-running thread’s name with each iteration.

public class RunThreads implements Runnable {

 public static void main(String[] args) {
 RunThreads runner = new RunThreads();
 Thread alpha = new Thread(runner);
 Thread beta = new Thread(runner);
 alpha.setName(“Alpha thread”);
 beta.setName(“Beta thread”);
 alpha.start();
 beta.start();
 }

 public void run() {
 for (int i = 0; i < 25; i++) {
 String threadName = Thread.currentThread().getName();
 System.out.println(threadName + “ is running”);
 }
 }
}

Make one Runnable insta
nce.

Make two threads, with the same Runnable (the same job--we’ll talk more about the “two threads and one Runnable” in a few pages).
Name the threads.

Start the threads.

Each thread will run through this lo
op,

printing its name each time.

What will happen?
Will the threads take turns? Will you see the thread names
alternating? How often will they switch? With each iteration?
After five iterations?

You already know the answer: we don’t know! It’s up to the
scheduler. And on your OS, with your particular JVM, on
your CPU, you might get very different results.

Running under OS X 10.2 (Jaguar), with five or fewer
iterations, the Alpha thread runs to completion, then
the Beta thread runs to completion. Very consistent. Not
guaranteed, but very consistent.

But when you up the loop to 25 or more iterations, things
start to wobble. The Alpha thread might not get to complete
all 25 iterations before the scheduler sends it back to
runnable to let the Beta thread have a chance.

File Edit Window Help Centauri

Alpha thread is running
Alpha thread is running
Alpha thread is running
Beta thread is running
Alpha thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Alpha thread is running

Part of the output when the loop iterates 25
times.

504 chapter 15

Um, yes. There IS a dark side.
Threads can lead to concurrency ‘issues’.
Concurrency issues lead to race conditions. Race conditions
lead to data corruption. Data corruption leads to fear... you
know the rest.

It all comes down to one potentially deadly scenario: two or
more threads have access to a single object’s data. In other
words, methods executing on two different stacks are both
calling, say, getters or setters on a single object on the heap.

It’s a whole ‘left-hand-doesn’t-know-what-the-right-hand-
is-doing’ thing. Two threads, without a care in the world,
humming along executing their methods, each thread
thinking that he is the One True Thread. The only one
that matters. After all, when a thread is not running, and in
runnable (or blocked) it’s essentially knocked unconscious.
When it becomes the currently-running thread again, it doesn’t
know that it ever stopped.

Wow! Threads are
the greatest thing since the
MINI Cooper! I can’t think
of a single downside to using

threads, can you?

aren’t threads wonderful?

networking and threads

you are here4 505

Marriage in Trouble.
Can this couple be saved?

Next, on a very special Dr.Steve Show

[Transcript from episode #42]

Welcome to the Dr. Steve show.

We’ve got a story today that’s centered around the top two reasons why
couples split up—finances and sleep.

Today’s troubled pair, Ryan and Monica, share a bed and a
bank account. But not for long if we can’t find a solution. The
problem? The classic “two people—one bank account” thing.

Here’s how Monica described it to me:

“Ryan and I agreed that neither of us will overdraw the checking account.
So the procedure is, whoever wants to withdraw money must check the
balance in the account before making the withdrawal. It all seemed so
simple. But suddenly we’re bouncing checks and getting hit with overdraft
fees!

I thought it wasn’t possible, I thought our procedure was safe. But then
this happened:

Ryan needed $50, so he checked the balance in the account,
and saw that it was $100. No problem. So, he plans to
withdraw the money. But first he falls asleep!

And that’s where I come in, while Ryan’s still asleep, and
now I want to withdraw $100. I check the balance, and
it’s $100 (because Ryan’s still asleep and hasn’t yet made
his withdrawal), so I think, no problem. So I make the
withdrawal, and again no problem. But then Ryan wakes up,
completes his withdrawal, and we’re suddenly overdrawn! He didn’t
even know that he fell asleep, so he just went ahead and completed his
transaction without checking the balance again. You’ve got to help us Dr.
Steve!”

Is there a solution? Are they doomed? We can’t stop Ryan from falling
asleep, but can we make sure that Monica can’t get her hands on the bank
account until after he wakes up?

Take a moment and think about that while we go to a commercial break.

Ryan falls asleep after

he checks the balance

but before he makes the

withdrawal. When he wakes

up, he immediately makes

the withdrawl without

checking the balance ag
ain.

Ryan and Monica: victims of the “two people, one account” problem.

506 chapter 15

The Ryan and Monica problem, in code
The following example shows what can happen when two
threads (Ryan and Monica) share a single object (the bank
account).

The code has two classes, BankAccount, and
MonicaAndRyanJob. The MonicaAndRyanJob class
implements Runnable, and represents the behavior that Ryan
and Monica both have—checking the balance and making
withdrawals. But of course, each thread falls asleep in between
checking the balance and actually making the withdrawal.

The MonicaAndRyanJob class has an instance variable of type
BankAccount., that represents their shared account.

The code works like this:

1 Make one instance of RyanAndMonicaJob.
The RyanAndMonicaJob class is the Runnable (the job to do),
and since both Monica and Ryan do the same thing (check
balance and withdraw money), we need only one instance.

BankAccount

int balance

getBalance()
withdraw()

RyanAndMonicaJob

BankAccount account

run()
makeWithdrawal()

Runnable

2 Make two threads with the same Runnable
(the RyanAndMonicaJob instance)

RyanAndMonicaJob theJob = new RyanAndMonicaJob();

Thread one = new Thread(theJob);
Thread two = new Thread(theJob);

3 Name and start the threads
one.setName(“Ryan”);
two.setName(“Monica”);
one.start();
two.start();

4 Watch both threads execute the run() method
(check the balance and make a withdrawal)

One thread represents Ryan, the other represents Monica.
Both threads continually check the balance and then make a
withdrawal, but only if it’s safe!

In the run() method, do
exactly what Ryan and
Monica would do—check
the balance and, if
there’s enough money,
make the withdrawal.

This should protect
against overdrawing the
account.

Except... Ryan and
Monica always fall
asleep after they
check the balance but
before they fi nish the
withdrawal.

if (account.getBalance() >= amount) {
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) {ex.printStackTrace(); }
}

int balance

getBalance()

Ryan and Monica code

networking and threads

you are here4 507

class BankAccount {
 private int balance = 100;

 public int getBalance() {
 return balance;
 }
 public void withdraw(int amount) {
 balance = balance - amount;
 }
}

 public class RyanAndMonicaJob implements Runnable {

 private BankAccount account = new BankAccount();

 public static void main (String [] args) {
 RyanAndMonicaJob theJob = new RyanAndMonicaJob();
 Thread one = new Thread(theJob);
 Thread two = new Thread(theJob);
 one.setName(“Ryan”);
 two.setName(“Monica”);
 one.start();
 two.start();
 }

 public void run() {
 for (int x = 0; x < 10; x++) {
 makeWithdrawl(10);
 if (account.getBalance() < 0) {
 System.out.println(“Overdrawn!”);
 }
 }
 }

 private void makeWithdrawal(int amount) {
 if (account.getBalance() >= amount) {
 System.out.println(Thread.currentThread().getName() + “ is about to withdraw”);
 try {
 System.out.println(Thread.currentThread().getName() + “ is going to sleep”);
 Thread.sleep(500);
 } catch(InterruptedException ex) {ex.printStackTrace(); }
 System.out.println(Thread.currentThread().getName() + “ woke up.”);
 account.withdraw(amount);
 System.out.println(Thread.currentThread().getName() + “ completes the withdrawl”);
 }
 else {
 System.out.println(“Sorry, not enough for “ + Thread.currentThread().getName());
 }
 }
}

The Ryan and Monica example

The account start
s with a

balance of $100.

There will be only ONE instance of the

RyanAndMonicaJob.That means only

ONE instance of the
bank account. Both

threads will access this one
 account.

Instantiate the Runnable (job)Make two threads, giving each thread the same Runnable
job. That means both threads will be accessing the one
account instance variable in the Runnable class.

In the run() method, a thread loops
 through and tries

to make a withdrawal with each iteration. After the

withdrawal, it checks the balan
ce once again to see if

the account is overdr
awn.

Check the account balance, and if there’s n
ot

enough money, we just print a message. If there IS

enough, we go to sleep, then wake up and complete

the withdrawal, just like Ryan did.

We put in a bunch of print statements so we can see what’s happening as it runs.

508 chapter 15

File Edit Window Help Visa

Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.
Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep
Ryan woke up.
Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.
Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep
Ryan woke up.
Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.
Monica completes the withdrawl
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Ryan woke up.
Ryan completes the withdrawl
Overdrawn!
Sorry, not enough for Ryan
Overdrawn!
Sorry, not enough for Ryan
Overdrawn!
Sorry, not enough for Ryan
Overdrawn!

The makeWithdrawal() method
always checks the balance
before making a withdrawal,
but still we overdraw the
account.

Here’s one scenario:

Ryan checks the balance, sees that
there’s enough money, and then falls
asleep.

 Meanwhile, Monica comes in and checks
the balance. She, too, sees that there’s
enough money. She has no idea that
Ryan is going to wake up and complete a
withdrawal.

Monica falls asleep.

Ryan wakes up and completes his
withdrawal.

Monica wakes up and completes her
withdrawal. Big Problem! In between the
time when she checked the balance and
made the withdrawal, Ryan woke up and
pulled money from the account.

Monica’s check of the account was
not valid, because Ryan had already
checked and was still in the middle of
making a withdrawal.

Monica must be stopped from getting
into the account until Ryan wakes up and
finishes his transaction. And vice-versa.

How did this
happen?

Ryan and Monica output

networking and threads

you are here4 509

The lock works like this:

They need a lock for account access!

1 There’s a lock associated with the bank
account transaction (checking the balance
and withdrawing money). There’s only
one key, and it stays with the lock until
somebody wants to access the account.

2 When Ryan wants to access the bank
account (to check the balance and withdraw
money), he locks the lock and puts the key
in his pocket. Now nobody else can access
the account, since the key is gone.

3 Ryan keeps the key in his pocket until he
finishes the transaction. He has the only
key, so Monica can’t access the account
(or the checkbook) until Ryan unlocks the
account and returns the key.

Now, even if Ryan falls asleep after he
checks the balance, he has a guarantee
that the balance will be the same when he
wakes up, because he kept the key while he
was asleep!

The bank account
transaction is
unlocked when
nobody is using
the account.

When Ryan
wants to access
the account, he
secures the lock
and takes the key.

When Ryan is
finished, he
unlocks the lock
and returns the
key. Now the key
is available for
Monica (or Ryan
again) to access
the account.

510 chapter 15

We need the makeWithdrawal () method
to run as one atomic thing.

 private synchronized void makeWithdrawal(int amount) {

 if (account.getBalance() >= amount) {
 System.out.println(Thread.currentThread().getName() + “ is about to withdraw”);
 try {
 System.out.println(Thread.currentThread().getName() + “ is going to sleep”);
 Thread.sleep(500);
 } catch(InterruptedException ex) {ex.printStackTrace(); }
 System.out.println(Thread.currentThread().getName() + “ woke up.”);
 account.withdraw(amount);
 System.out.println(Thread.currentThread().getName() + “ completes the withdrawl”);
 } else {
 System.out.println(“Sorry, not enough for “ + Thread.currentThread().getName());
 }
 }

The synchronized
keyword means that
a thread needs a key
in order to access the
synchronized code.

To protect your data
(like the bank account),
synchronize the
methods that act on
that data.

We need to make sure that once a thread enters the
makeWithdrawal() method, it must be allowed to finish the method
before any other thread can enter.

In other words, we need to make sure that once a thread has
checked the account balance, that thread has a guarantee that it can
wake up and finish the withdrawal before any other thread can check the
account balance!

Use the synchronized keyword to modify a method so that only
one thread at a time can access it.

That’s how you protect the bank account! You don’t put a lock on
the bank account itself; you lock the method that does the banking
transaction. That way, one thread gets to complete the whole
transaction, start to finish, even if that thread falls asleep in the
middle of the method!

So if you don’t lock the back account, then what exactly is locked? Is
it the method? The Runnable object? The thread itself?

We’ll look at that on the next page. In code, though, it’s quite
simple—just add the synchronized modifier to your method
declaration:

(Note for you physics-savvy readers: yes, the convention of using the word ‘atomic’ here does not reflect
the whole subatomic parcticle thing. Think Newton, not Einstein, when you hear the word ‘atomic’ in the
context of threads or transactions. Hey, it’s not OUR convention. If WE were in charge, we’d apply
Heisenberg’s Uncertainty Principle to pretty much everything related to threads.)

using synchronized

networking and threads

you are here4 511

Using an object’s lock

Every object has a lock. Most of the time, the
lock is unlocked, and you can imagine a virtual
key sitting with it. Object locks come into play
only when there are synchronized methods.
When an object has one or more synchronized
methods, a thread can enter a synchronized
method only if the thread can get the key to the
object’s lock!

The locks are not per method, they
are per object. If an object has two
synchronized methods, it does not
simply mean that you can’t have two
threads entering the same method. It
means you can’t have two threads entering
any of the synchronized methods.

Think about it. If you have multiple
methods that can potentially act on an
object’s instance variables, all those methods
need to be protected with synchronized.

The goal of synchronization is to protect
critical data. But remember, you don’t lock the
data itself, you synchronize the methods that
access that data.

So what happens when a thread is cranking
through its call stack (starting with the run()
method) and it suddenly hits a synchronized
method? The thread recognizes that it needs
a key for that object before it can enter the
method. It looks for the key (this is all handled
by the JVM; there’s no API in Java for accessing
object locks), and if the key is available, the
thread grabs the key and enters the method.

From that point forward, the thread hangs on
to that key like the thread’s life depends on
it. The thread won’t give up the key until it
completes the synchronized method. So while
that thread is holding the key, no other threads
can enter any of that object’s synchronized
methods, because the one key for that object
won’t be available.

Every Java object has a lock.
A lock has only one key.
Most of the time, the lock is
unlocked and nobody cares.
But if an object has
synchronized methods, a
thread can enter one of the
synchronized methods ONLY
if the key for the object’s lock
is available. In other words,
only if another thread hasn’t
already grabbed the one key.

Hey, this object’s
takeMoney() method is
synchronized. I need to get
this object’s key before I

can go in...

512 chapter 15

The dreaded “Lost Update” problem
Here’s another classic concurrency problem, that comes from the database world. It’s
closely related to the Ryan and Monica story, but we’ll use this example to illustrate a few
more points.

The lost update revolves around one process:

Step 1: Get the balance in the account

 int i = balance;

Step 2: Add 1 to that balance

 balance = i + 1;

The trick to showing this is to force the computer to take two steps to complete the change
to the balance. In the real world, you’d do this particular move in a single statement:
balance++;

But by forcing it into two steps, the problem with a non-atomic process will become clear.
So imagine that rather than the trivial “get the balance and then add 1 to the current
balance” steps, the two (or more) steps in this method are much more complex, and
couldn’t be done in one statement.

In the “Lost Update” problem, we have two threads, both trying to increment the balance.

class TestSync implements Runnable {

 private int balance;

 public void run() {
 for(int i = 0; i < 50; i++) {
 increment();
 System.out.println(“balance is “ + balance);
 }
 }

 public void increment() {
 int i = balance;
 balance = i + 1;
 }
 }

public class TestSyncTest {
 public static void main (String[] args) {
 TestSync job = new TestSync();
 Thread a = new Thread(job);
 Thread b = new Thread(job);
 a.start();
 b.start();
 }
}

each threa
d runs 50 times,

incrementing the
balance on

each iterat
ion

Here’s the crucial part! We increment the balance by
adding 1 to whatever the value of balance was AT THE
TIME WE READ IT (rather than adding 1 to whatever
the CURRENTvalue is)

synchronization matters

networking and threads

you are here4 513

Let’s run this code...

A

B

1 Thread A runs for awhile
Put the value of balance into variable i.
Balance is 0, so i is now 0.
Set the value of balance to the result of i + 1.
Now balance is 1.
Put the value of balance into variable i.
Balance is 1, so i is now 1.
Set the value of balance to the result of i + 1.
Now balance is 2.

B

2 Thread B runs for awhile
Put the value of balance into variable i.
Balance is 2, so i is now 2.
Set the value of balance to the result of i + 1.
Now balance is 3.
Put the value of balance into variable i.
Balance is 3, so i is now 3.

[now thread B is sent back to runnable,
before it sets the value of balance to 4]

A

3 Thread A runs again, picking up where it left off
Put the value of balance into variable i.
Balance is 3, so i is now 3.
Set the value of balance to the result of i + 1.
Now balance is 4.
Put the value of balance into variable i.
Balance is 4, so i is now 4.
Set the value of balance to the result of i + 1.
Now balance is 5.

B

4 Thread B runs again, and picks up exactly where it left off!
Set the value of balance to the result of i + 1.
Now balance is 4.

Yikes!!

We lost the last updates
that Thread A made!
Thread B had previously
done a ‘read’ of the value
of balance, and when B
woke up, it just kept going
as if it never missed a beat.

Thread A updated it to 5, but
now B came back and stepped
on top of the update A made,
as if A’s update never happened.

514 chapter 15

Make the increment() method atomic.

Synchronize it!

Synchronizing the increment() method solves the “Lost
Update” problem, because it keeps the two steps in the method
as one unbreakable unit.

public synchronized void increment() {
 int i = balance;
 balance = i + 1;
}

Once a thread enters
the method, we have
to make sure that all
the steps in the method
complete (as one
atomic process) before
any other thread can
enter the method.

B
there are noDumb Questions

Q: Sounds like it’s a good idea to synchronize
everything, just to be thread-safe.

A: Nope, it’s not a good idea. Synchronization doesn’t
come for free. First, a synchronized method has a certain
amount of overhead. In other words, when code hits a
synchronized method, there’s going to be a performance hit
(although typically, you’d never notice it) while the matter of
“is the key available?” is resolved.

Second, a synchronized method can slow your program
down because synchronization restricts concurrency. In
other words, a synchronized method forces other threads to
get in line and wait their turn. This might not be a problem
in your code, but you have to consider it.

Third, and most frightening, synchronized methods can lead
to deadlock! (See page 516.)

A good rule of thumb is to synchronize only the bare
minimum that should be synchronized. And in fact, you
can synchronize at a granularity that’s even smaller than
a method. We don’t use it in the book, but you can use the
synchronized keyword to synchronize at the more fine-
grained level of one or more statements, rather than at the
whole-method level.

doStuff() doesn’t need to
be synchronized, so we don’t
synchronize the whole method.

Now, only these two method calls are grouped into one atomic unit. When you use the synchronized keyword WITHIN a method, rather than in a method declaration, you have to provide an argument that is the object whose key the thread needs to get. Although there are other ways to do it, you will almost always synchronize on the current object (this). That’s the same object you’d lock if the whole method were synchronized.

public void go() {
 doStuff();

 synchronized(this) {
 criticalStuff();
 moreCriticalStuff();
 }
}

synchronizing methods

networking and threads

you are here4 515

A

1 Thread A runs for awhile
Attempt to enter the increment() method.

The method is synchronized, so get the key for this object
Put the value of balance into variable i.
Balance is 0, so i is now 0.
Set the value of balance to the result of i + 1.
Now balance is 1.
Return the key (it completed the increment() method).
Re-enter the increment() method and get the key.
Put the value of balance into variable i.
Balance is 1, so i is now 1.

[now thread A is sent back to runnable, but since it has not
completed the synchronized method, Thread A keeps the key]

B

2 Thread B is selected to run

Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.

The key is not available.

[now thread B is sent into a ‘object lock not available lounge]

A

3 Thread A runs again, picking up where it left off
 (remember, it still has the key)

Set the value of balance to the result of i + 1.
Now balance is 2.
Return the key.

[now thread A is sent back to runnable, but since it
has completed the increment() method, the thread
does NOT hold on to the key]

B

4 Thread B is selected to run

Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.

This time, the key IS available, get the key.

Put the value of balance into variable i.

[continues to run...]

516 chapter 15

The deadly side of synchronization
Be careful when you use synchronized code, because nothing
will bring your program to its knees like thread deadlock.
Thread deadlock happens when you have two threads, both of
which are holding a key the other thread wants. There’s no way
out of this scenario, so the two threads will simply sit and wait.
And wait. And wait.

If you’re familiar with databases or other application servers,
you might recognize the problem; databases often have a
locking mechanism somewhat like synchronization. But a
real transaction management system can sometimes deal with
deadlock. It might assume, for example, that deadlock might
have occurred when two transactions are taking too long to
complete. But unlike Java, the application server can do a
“transaction rollback” that returns the state of the rolled-back
transaction to where it was before the transaction (the atomic
part) began.

Java has no mechanism to handle deadlock. It won’t even know
deadlock occurred. So it’s up to you to design carefully. If you
find yourself writing much multithreaded code, you might
want to study “Java Threads” by Scott Oaks and Henry Wong
for design tips on avoiding deadlock. One of the most common
tips is to pay attention to the order in which your threads are
started.

A simple deadlock scenario:

A

Thread A enters a

synchronized method

of object foo, and gets

the key.

Thread A goes to

sleep, holding the

foo key.

B

Thread B enters a

synchronized method

of object bar, and gets

the key.

Thread B tries to enter

a synchronized method

of object foo, but can’t

get that key (because

A has it). B goes

to the waiting lounge,

until the foo key is

available. B keeps the

bar key.

1 2

A B

foo

bar

foo bar
A

Thread A wakes up (still

holding the foo key)

and tries to enter a

synchronized method on

object bar, but can’t get

that key because B has

it. A goes to the waiting

lounge, until the bar key is

available (it never will be!)

Thread A can’t run until

it can get the bar key,

but B is holding the bar

key and B can’t run until it

gets the foo key that A is

holding and...

3

A
B A

All it takes for
deadlock are two
objects and two
threads.

foo

bar foo

thread deadlock

networking and threads

you are here4 517

 BULLET POINTS
ß The static Thread.sleep() method forces a thread to leave the

running state for at least the duration passed to the sleep method.
Thread.sleep(200) puts a thread to sleep for 200 milliseconds.

ß The sleep() method throws a checked exception (InterruptedException),
so all calls to sleep() must be wrapped in a try/catch, or declared.

ß You can use sleep() to help make sure all threads get a chance to run,
although there’s no guarantee that when a thread wakes up it’ll go to the
end of the runnable line. It might, for example, go right back to the front.
In most cases, appropriately-timed sleep() calls are all you need to keep
your threads switching nicely.

ß You can name a thread using the (yet another surprise) setName()
method. All threads get a default name, but giving them an explicit name
can help you keep track of threads, especially if you’re debugging with
print statements.

ß You can have serious problems with threads if two or more threads have
access to the same object on the heap.

ß Two or more threads accessing the same object can lead to data
corruption if one thread, for example, leaves the running state while still
in the middle of manipulating an object’s critical state.

ß To make your objects thread-safe, decide which statements should be
treated as one atomic process. In other words, decide which methods
must run to completion before another thread enters the same method
on the same object.

ß Use the keyword synchronized to modify a method declaration,
when you want to prevent two threads from entering that method.

ß Every object has a single lock, with a single key for that lock. Most of the
time we don’t care about that lock; locks come into play only when an
object has synchronized methods.

ß When a thread attempts to enter a synchronized method, the thread
must get the key for the object (the object whose method the thread
is trying to run). If the key is not available (because another thread
already has it), the thread goes into a kind of waiting lounge, until the key
becomes available.

ß Even if an object has more than one synchronized method, there is still
only one key. Once any thread has entered a synchronized method on
that object, no thread can enter any other synchronized method on the
same object. This restriction lets you protect your data by synchronizing
any method that manipulates the data.

518 chapter 15

import java.io.*;
import java.net.*;
import java.util.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleChatClient {

 JTextArea incoming;
 JTextField outgoing;
 BufferedReader reader;
 PrintWriter writer;
 Socket sock;

 public static void main(String[] args) {
 SimpleChatClient client = new SimpleChatClient();
 client.go();
 }

 public void go() {

 JFrame frame = new JFrame(“Ludicrously Simple Chat Client”);
 JPanel mainPanel = new JPanel();
 incoming = new JTextArea(15,50);
 incoming.setLineWrap(true);
 incoming.setWrapStyleWord(true);
 incoming.setEditable(false);
 JScrollPane qScroller = new JScrollPane(incoming);
 qScroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 qScroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 outgoing = new JTextField(20);
 JButton sendButton = new JButton(“Send”);
 sendButton.addActionListener(new SendButtonListener());
 mainPanel.add(qScroller);
 mainPanel.add(outgoing);
 mainPanel.add(sendButton);
 setUpNetworking();

 Thread readerThread = new Thread(new IncomingReader());
 readerThread.start();

 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(400,500);
 frame.setVisible(true);

 } // close go

New and improved SimpleChatClient
Way back near the beginning of this chapter, we built the SimpleChatClient that could send
outgoing messages to the server but couldn’t receive anything. Remember? That’s how we
got onto this whole thread topic in the first place, because we needed a way to do two things
at once: send messages to the server (interacting with the GUI) while simultaneously reading
incoming messages from the server, displaying them in the scrolling text area.

final chat client

This is mostly GUI code you’ve seen

before. Nothing special exce
pt the

highlighted part where we start the

new ‘reader’ thread.

We’re starting a new thread, using a new inner class as the Runnable (job) for the thread. The thread’s job is to read from the server’s socket stream, displaying any incoming messages in the scrolling text area.

Yes, there really IS an end to this chapter. But not yet...

networking and threads

you are here4 519

 private void setUpNetworking() {

 try {
 sock = new Socket(“127.0.0.1”, 5000);
 InputStreamReader streamReader = new InputStreamReader(sock.getInputStream());
 reader = new BufferedReader(streamReader);
 writer = new PrintWriter(sock.getOutputStream());
 System.out.println(“networking established”);
 } catch(IOException ex) {
 ex.printStackTrace();
 }
 } // close setUpNetworking

 public class SendButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 try {
 writer.println(outgoing.getText());
 writer.flush();

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 outgoing.setText(“”);
 outgoing.requestFocus();
 }
 } // close inner class

 public class IncomingReader implements Runnable {
 public void run() {
 String message;
 try {

 while ((message = reader.readLine()) != null) {
 System.out.println(“read “ + message);
 incoming.append(message + “\n”);

 } // close while
 } catch(Exception ex) {ex.printStackTrace();}
 } // close run
 } // close inner class

} // close outer class

We’re using the socke
t to get the input

and output stream
s. We were already using

the output stream
 to send to the se

rver,

but now we’re using the input
 stream so

that the new ‘reader’ thread ca
n get

messages from the server.

Nothing new here. When the user clicks the send button, this method sends the contents of the text field to the server.

This is what the thread does
!!

In the run() method, it stays in a

loop (as long as what it gets from

the server is not null
), reading a

line at a time and adding each lin
e

to the scrolling text
 area (along

with a new line character).

520 chapter 15

The really really simple Chat Server
You can use this server code for both versions of the Chat Client. Every possible
disclaimer ever disclaimed is in effect here. To keep the code stripped down to the
bare essentials, we took out a lot of parts that you’d need to make this a real server.
In other words, it works, but there are at least a hundred ways to break it. If you
want a Really Good Sharpen Your Pencil for after you’ve fi nished this book, come
back and make this server code more robust.

Another possible Sharpen Your Pencil, that you could do right now, is to annotate
this code yourself. You’ll understand it much better if you work out what’s
happening than if we explained it to you . Then again, this is Ready-bake code,
so you really don’t have to understand it at all. It’s here just to support the two
versions of the Chat Client.

Ready-bake
Code

chat server code

import java.io.*;
import java.net.*;
import java.util.*;

public class VerySimpleChatServer {

 ArrayList clientOutputStreams;

 public class ClientHandler implements Runnable {
 BufferedReader reader;
 Socket sock;

 public ClientHandler(Socket clientSocket) {
 try {
 sock = clientSocket;
 InputStreamReader isReader = new InputStreamReader(sock.getInputStream());
 reader = new BufferedReader(isReader);

 } catch(Exception ex) {ex.printStackTrace();}
 } // close constructor

 public void run() {
 String message;
 try {
 while ((message = reader.readLine()) != null) {
 System.out.println(“read “ + message);
 tellEveryone(message);

 } // close while
 } catch(Exception ex) {ex.printStackTrace();}
 } // close run
 } // close inner class

To run the chat client, you need two
terminals. First, launch this server
from one terminal, then launch the
client from another terminal

networking and threads

you are here4 521

 public static void main (String[] args) {
 new VerySimpleChatServer().go();
 }

 public void go() {
 clientOutputStreams = new ArrayList();
 try {
 ServerSocket serverSock = new ServerSocket(5000);

 while(true) {
 Socket clientSocket = serverSock.accept();
 PrintWriter writer = new PrintWriter(clientSocket.getOutputStream());
 clientOutputStreams.add(writer);

 Thread t = new Thread(new ClientHandler(clientSocket));
 t.start();
 System.out.println(“got a connection”);
 }

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 } // close go

 public void tellEveryone(String message) {

 Iterator it = clientOutputStreams.iterator();
 while(it.hasNext()) {
 try {
 PrintWriter writer = (PrintWriter) it.next();
 writer.println(message);
 writer.flush();
 } catch(Exception ex) {
 ex.printStackTrace();
 }

 } // end while

 } // close tellEveryone
} // close class

522 chapter 15

there are noDumb Questions
Q: What about protecting static
variable state? If you have static
methods that change the static variable
state, can you still use synchronization?

A: Yes! Remember that static
methods run against the class and not
against an individual instance of the class.
So you might wonder whose object’s lock
would be used on a static method? After
all, there might not even be any instances
of that class. Fortunately, just as each
object has its own lock, each loaded class
has a lock. That means that if you have
three Dog objects on your heap, you have
a total of four Dog-related locks. Three
belonging to the three Dog instances,
and one belonging to the Dog class itself.
When you synchronize a static method,
Java uses the lock of the class itself. So if
you synchronize two static methods in a
single class, a thread will need the class
lock to enter either of the methods.

Q: What are thread priorities? I’ve
heard that’s a way you can control
scheduling.

A: Thread priorities might help
you influence the scheduler, but they
still don’t offer any guarantee. Thread
priorities are numerical values that tell
the scheduler (if it cares) how important a
thread is to you. In general, the scheduler
will kick a lower priority thread out of the
running state if a higher priority thread
suddenly becomes runnable. But... one
more time, say it with me now, “there
is no guarantee.” We recommend that
you use priorities only if you want to
influence performance, but never, ever
rely on them for program correctness.

Q: Why don’t you just synchronize
all the getters and setters from the
class with the data you’re trying to
protect? Like, why couldn’t we have
synchronized just the checkBalance()
and withdraw() methods from class
BankAccount, instead of synchronizing
the makeWithdrawal() method from
the Runnable’s class?

A: Actually, we should have
synchronized those methods, to prevent
other threads from accessing those
methods in other ways. We didn’t bother,
because our example didn’t have any
other code accessing the account.

But synchronizing the getters
and setters (or in this case the
checkBalance() and withdraw()) isn’t
enough. Remember, the point of
synchronization is to make a specific
section of code work ATOMICALLY. In
other words, it’s not just the individual
methods we care about, it’s methods
that require more than one step to
complete! Think about it. If we had not
synchronized the makeWithdrawal()
method, Ryan would have checked the
balance (by calling the synchronized
checkBalance()), and then immediately
exited the method and returned the key!

Of course he would grab the key again,
after he wakes up, so that he can call
the synchronized withdraw() method,
but this still leaves us with the same
problem we had before synchronization!
Ryan can check the balance, go to sleep,
and Monica can come in and also check
the balance before Ryan has a chance to
wakes up and completes his withdrawal.

So synchronizing all the access methods
is probably a good idea, to prevent
other threads from getting in, but you
still need to synchronize the methods
that have statements that must execute
as one atomic unit.

synchronization questions

networking and threads

you are here4 523

Code Kitchen

This is the last version of the BeatBox!
It connects to a simple MusicServer so that you can
send and receive beat patterns with other clients.
The code is really long, so the complete listing is
actually in Appendix A.

your message gets se
nt to

the other play
ers, along

with your curre
nt beat

pattern, when you hit

“sendIt”
Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

incoming messages from players. Click one to load the pattern that goes with it, and then click ‘Start’ to play it.

524 chapter 15

A working Java program is scrambled up on the fridge. Can
you add the code snippets on the next page to the empty
classes below, to make a working Java program that pro-
duces the output listed? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you need!

File Edit Window Help Sewing

% java TestThreads
one 98098
two 98099

Exercise

Code Magnets

class ThreadOne

class Accum {
class ThreadTwo

public class TestThreads {

Bonus Question: Why do you think we used the
modifiers we did in the Accum class?

exercise: Code Magnets

networking and threads

you are here4 525

 try {

Thread.sleep(50);

Thread.sleep(50);

Code Magnets, continued..

counter += add;

return a;

implements Runnable {

public void run(
) {

return counter;

one.start();

a.updateCounter(1000);

Thread one = new Thr
ead(t1);

 try {

public static void main(String [] args) {

for(int x=0; x < 99; x++) {

} catch(InterruptedE
xception ex) { }

private static Accum
 a = new Accum();

} catch(InterruptedE
xception ex) { }

implements Runnable {

Accum a = Accum.getAccum();

Accum a = Accum.getAccum();

public void run(
) {

for(int x=0; x < 98; x++) {
two.start();

ThreadOne t1 = new T
hreadOne();

ThreadTwo t2 = new T
hreadTwo();

public void updateCounter(int add) {

private Accum() { }

public void updateCounter(int add) {

public int getCount() {

System.out.println(“
two “+a.getCount());

System.out.println(“one “+a.getCount());

public static Accum getAccum() {

private int counter = 0;

a.updateCounter(1);

Accum a = Accum.getAccum();

Thread two = new Thread(t2);

526 chapter 15

Exercise Solutionspublic class TestThreads {

 public static void main(String [] args) {

 ThreadOne t1 = new ThreadOne();

 ThreadTwo t2 = new ThreadTwo();

 Thread one = new Thread(t1);

 Thread two = new Thread(t2);

 one.start();

 two.start();

 }

}

class Accum {
 private static Accum a = new Accum();
 private int counter = 0;

 private Accum() { }

 public static Accum getAccum() {
 return a;
 }

 public void updateCounter(int add) {
 counter += add;
 }

 public int getCount() {
 return counter;
 }
}

class ThreadOne implements Runnable {

 Accum a = Accum.getAccum();

 public void run() {

 for(int x=0; x < 98; x++) {

 a.updateCounter(1000);

 try {

 Thread.sleep(50);

 } catch(InterruptedException ex) { }

 }

 System.out.println(“one “+a.getCount());

 }

}

class ThreadTwo implements Runnable {

 Accum a = Accum.getAccum();

 public void run() {

 for(int x=0; x < 99; x++) {

 a.updateCounter(1);

 try {

 Thread.sleep(50);

 } catch(InterruptedException ex) { }

 }

 System.out.println(“two “+a.getCount());

 }

}

Threads from two different classes are updating
the same object in a third class, because both
threads are accessing a single instance of Accum.
The line of code:

private static Accum a = new Accum(); creates a
static instance of Accum (remember static means
one per class), and the private constructor in
Accum means that no one else can make an Accum
object. These two techniques (private constructor
and static getter method) used together, create
what’s known as a ‘Singleton’ - an OO pattern to
restrict the number of instances of an object
that can exist in an application. (Usually, there’s
just a single instance of a Singleton—hence the
name), but you can use the pattern to restrict the
instance creation in whatever way you choose.)

create a sta
tic instance

of class Accum

A private constr
uctor

exercise solutions

networking and threads

you are here4 527

As Sarah joined the on-board development team’s design review meeting , she gazed out
the portal at sunrise over the Indian Ocean. Even though the ship’s conference room was
incredibly claustrophobic, the sight of the growing blue and white crescent overtaking night on
the planet below filled Sarah with awe and appreciation.

 This morning’s meeting was focused on the control systems for the orbiter’s airlocks.
As the final construction phases were nearing their end, the number of spacewalks was

scheduled to increase dramatically, and traffic was high both in and out of the ship’s
airlocks. “Good morning Sarah”, said Tom, “Your timing is perfect, we’re just starting
the detailed design review.”

 “As you all know”, said Tom, “Each airlock is outfitted with space-hardened GUI
terminals, both inside and out. Whenever spacewalkers are entering or exiting the orbiter

they will use these terminals to initiate the airlock sequences.” Sarah nodded, “Tom can
you tell us what the method sequences are for entry and exit?” Tom rose, and floated to the
whiteboard, “First, here’s the exit sequence method’s pseudocode”, Tom quickly wrote on the
board.

 orbiterAirlockExitSequence()

 verifyPortalStatus();

 pressurizeAirlock();

 openInnerHatch();

 confirmAirlockOccupied();

 closeInnerHatch();

 decompressAirlock();

 openOuterHatch();

 confirmAirlockVacated();

 closeOuterHatch();

 “To ensure that the sequence is not interrupted, we have synchronized all of the
methods called by the orbiterAirlockExitSequence() method”, Tom explained. “We’d hate to
see a returning spacewalker inadvertently catch a buddy with his space pants down!”

 Everyone chuckled as Tom erased the whiteboard, but something didn’t feel right
to Sarah and it finally clicked as Tom began to write the entry sequence pseudocode on the
whiteboard. “Wait a minute Tom!”, cried Sarah, “I think we’ve got a big flaw in the exit
sequence design, let’s go back and revisit it, it could be critical!”

 Why did Sarah stop the meeting? What did she suspect?

Five-Minute
Mystery

Near-miss at the Airlock

528 chapter 15

What did Sarah know?

 Sarah realized that in order to ensure that the entire exit
sequence would run without interruption the

orbiterAirlockExitSequence() method needed to
be synchronized. As the design stood, it would be possible
for a returning spacewalker to interrupt the Exit Sequence!
The Exit Sequence thread couldn’t be interrupted in the
middle of any of the lower level method calls, but it could be
interrupted in between those calls. Sarah knew that the entire
sequence should be run as one atomic unit, and if the orbit
erAirlockExitSequence() method was synchronized, it
could not be interrupted at any point.

puzzle answers

this is a new chapter 529

Make it Stick

Sorting is a snap in Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms (unless you’re reading this right

now sitting in your Computer Science 101 class, in which case, trust us—you are SO going to be

writing sort code while the rest of us just call a method in the Java API). The Java Collections

Framework has a data structure that should work for virtually anything you’ll ever need to do.

Want to keep a list that you can easily keep adding to? Want to find something by name? Want

to create a list that automatically takes out all the duplicates? Sort your co-workers by the

number of times they’ve stabbed you in the back? Sort your pets by number of tricks learned?

It’s all here...

Data
structures

16 collections and generics

Sheesh... and all
this time I could have just let

Java put things in alphabetical
order? Third grade really
sucks. We never learn

anything useful...

530 chapter 16

You have a list of songs in a fi le, where each line
represents one song, and the title and artist are
separated with a forward slash. So it should be simple
to parse the line, and put all the songs in an ArrayList.

Your boss cares only about the song titles, so for now
you can simply make a list that just has the song titles.

But you can see that the list is not in alphabetical
order... what can you do?

You know that with an ArrayList, the elements are
kept in the order in which they were inserted into the
list, so putting them in an ArrayList won’t take care of
alphabetizing them, unless... maybe there’s a sort()
method in the ArrayList class?

Congratulations on your new job—managing the automated
jukebox system at Lou’s Diner. There’s no Java inside the
jukebox itself, but each time someone plays a song, the
song data is appended to a simple text fi le.

Your job is to manage the data to track song popularity,
generate reports, and manipulate the playlists. You’re not
writing the entire app—some of the other software developer/
waiters are involved as well, but you’re responsible for managing
and sorting the data inside the Java app. And since Lou has a thing
against databases, this is strictly an in-memory data collection. All
you get is the fi le the jukebox keeps adding to. Your job is to take it
from there.

You’ve already fi gured out how to read and parse the fi le, and so far
you’ve been storing the data in an ArrayList.

Tracking song popularity on your jukebox

sorting a list

Challenge #1
Sort the songs in alphabetical order

SongList.txt

Pink Moon/Nick Drake
Somersault/Zero 7
Shiva Moon/Prem Joshua
Circles/BT
Deep Channel/Afro Celts
Passenger/Headmix
Listen/Tahiti 80

This is the file the ju
kebox device

writes. Your code must read the file,

then manipulate the song d
ata.

collections with generics

you are here4 531

Here’s what you have so far, without the sort:
import java.util.*;
import java.io.*;

public class Jukebox1 {

 ArrayList<String> songList = new ArrayList<String>();

 public static void main(String[] args) {
 new Jukebox1().go();
 }

 public void go() {
 getSongs();
 System.out.println(songList);
 }

 void getSongs() {
 try {
 File file = new File(“SongList.txt”);
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line= reader.readLine()) != null) {
 addSong(line);
 }

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void addSong(String lineToParse) {
 String[] tokens = lineToParse.split(“/”);
 songList.add(tokens[0]);
 }

}

We’ll store the song t
itles in

an ArrayList of Strings.

Nothing special here..
. just read the file

and

call the addSong() m
ethod for each line

.

The addSong method works just like the Quiz-
Card in the I/O chapter--you break the line
(that has both the title and artist) into two
pieces (tokens) using the split() method.

We only want the song title, so add only the first token to the SongList (the ArrayList).

The method that starts l
oading the

file and then prints
 the contents of

the songList ArrayList.

File Edit Window Help Dance

%java Jukebox1
[Pink Moon, Somersault,
Shiva Moon, Circles,
Deep Channel, Passenger,
Listen]

The songList prints out with the
songs in the order in which they
were added to the ArrayList (which

is the same order the songs are in
within the original text file).

This is definitely NOT alphabetical !

532 chapter 16

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

But the ArrayList class does NOT have a sort() method!
When you look in ArrayList, there doesn’t seem to be any method related to sorting.
Walking up the inheritance hierarchy didn’t help either—it’s clear that you can’t call a sort
method on the ArrayList.

532 chapter 16

ArrayList has a lot of methods, but there’s nothing here that looks like it would sort...

ArrayList API

collections with generics

you are here4 533

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

I do see a collection class
called TreeSet... and the docs

say that it keeps your data
sorted. I wonder if I should be
using a TreeSet instead of an
ArrayList...

ArrayList is not the only collection

Although ArrayList is the one you’ll use most often,
there are others for special occasions. Some of the key
collection classes include:

$ TreeSet
Keeps the elements sorted and prevents duplicates.

$ HashMap
Let’s you store and access elements as name/value pairs.

$ LinkedList
Designed to give better performance when you insert or delete
elements from the middle of the collection. (In practice, an
ArrayList is still usually what you want.)

$ HashSet
Prevents duplicates in the collection, and given an element, can
find that element in the collection quickly.

$ LinkedHashMap
Like a regular HashMap, except it can remember the order in
which elements (name/value pairs) were inserted, or it can be
configured to remember the order in which elements were last
accessed.

Don’t worry about trying

to learn these othe
r ones

right now. We’ll go into

more details a little
later.

534 chapter 16

If you put all the Strings (the song titles) into a TreeSet instead of
an ArrayList, the Strings would automatically land in the right place,
alphabetically sorted. Whenever you printed the list, the elements would
always come out in alphabetical order.

And that’s great when you need a set (we’ll
talk about sets in a few minutes) or when
you know that the list must always stay
sorted alphabetically.

On the other hand, if you don’t need the
list to stay sorted, TreeSet might be more
expensive than you need—every time you
insert into a TreeSet, the TreeSet has to take
the time to fi gure out where in the tree the new
element must go. With ArrayList, inserts can
be blindingly fast because the new element
just goes in at the end.

You could use a TreeSet...
Or you could use the Collections.sort() method

Collections.sort()

alphabetically sorted. Whenever you printed the list, the elements would

public static void copy(List destination, List source)

public static List emptyList()

public static void fill(List listToFill, Object objToFillItWith)

public static int frequency(Collection c, Object o)

public static void reverse(List list)

public static void rotate(List list, int distance)

public static void shuffle(List list)

public static void sort(List list)

public static boolean replaceAll(List list, Object oldVal, Object newVal)

// many more methods...

java.util.Collections

Q: But you CAN add something to an
ArrayList at a specifi c index instead of just at
the end—there’s an overloaded add() method
that takes an int along with the element to add.
So wouldn’t it be slower than inserting at the end?

A: Yes, it’s slower to insert something in an ArrayList
somewhere other than at the end. So using the overloaded
add(index, element) method doesn’t work as quickly as calling
the add(element)—which puts the added element at the end.
But most of the time you use ArrayLists, you won’t need to put
something at a specific index.

Q: I see there’s a LinkedList class, so wouldn’t that be better for
doing inserts somewhere in the middle? At least if I remember my Data
Structures class from college...

A: Yes, good spot. The LinkedList can be quicker when you insert or
remove something from the middle, but for most applications, the difference
between middle inserts into a LinkedList and ArrayList is usually not enough
to care about unless you’re dealing with a huge number of elements. We’ll
look more at LinkedList in a few minutes.

public static boolean replaceAll(List list, Object oldVal, Object newVal)

// many more methods...Hmmm... there IS a sort() method in the Collections class. It takes a List, and since ArrayList implements the List interface, ArrayList IS-A List. Thanks to polymorphism, you can pass an ArrayList to a method declared to take List.

Note: this is NOT the real Collections

class API; we simplified it here by leaving

out the generic type inf
ormation (which

you’ll see in a few pages).

collections with generics

you are here4 535

The Collections.sort()
method sorts a list of
Strings alphabetically.

Adding Collections.sort() to the Jukebox code

File Edit Window Help Chill

%java Jukebox1

[Pink Moon, Somersault, Shiva Moon, Circles, Deep
Channel, Passenger, Listen]

[Circles, Deep Channel, Listen, Passenger, Pink
Moon, Shiva Moon, Somersault]

import java.util.*;
import java.io.*;

public class Jukebox1 {

 ArrayList<String> songList = new ArrayList<String>();

 public static void main(String[] args) {
 new Jukebox1().go();
 }

 public void go() {
 getSongs();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);
 }

 void getSongs() {
 try {
 File file = new File(“SongList.txt”);
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line= reader.readLine()) != null) {
 addSong(line);
 }

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void addSong(String lineToParse) {
 String[] tokens = lineToParse.split(“/”);
 songList.add(tokens[0]);
 }
}

Call the static Collections

sort() method, then print t
he

list again. The second print out

is in alphabetical or
der!

Before calling sort().

After calling sort().

536 chapter 16

But now you need Song objects,
not just simple Strings.
Now your boss wants actual Song class instances in the list, not just
Strings, so that each Song can have more data. The new jukebox
device outputs more information, so this time the fi le will have four
pieces (tokens) instead of just two.

The Song class is really simple, with only one interesting feature—
the overridden toString() method. Remember, the toString()
method is defi ned in class Object, so every class in Java inherits the
method. And since the toString() method is called on an object
when it’s printed (System.out.println(anObject)), you should
override it to print something more readable than the default
unique identifi er code. When you print a list, the toString()
method will be called on each object.

SongListMore.txt

Pink Moon/Nick Drake/5/80
Somersault/Zero 7/4/84
Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110
Deep Channel/Afro Celts/4/120
Passenger/Headmix/4/100
Listen/Tahiti 80/5/90

class Song {
 String title;
 String artist;
 String rating;
 String bpm;

 Song(String t, String a, String r, String b) {
 title = t;
 artist = a;
 rating = r;
 bpm = b;
 }

 public String getTitle() {
 return title;
 }

 public String getArtist() {
 return artist;
 }

 public String getRating() {
 return rating;
 }

 public String getBpm() {
 return bpm;
 }

 public String toString() {
 return title;
 }
}

Four instance variabl
es for the

four song attribute
s in the file.

The new song file holds four attributes instead of just two. And we want ALL of them in our list, so we need to make a Song class with instance variables for all four song attributes.

The variables are all set in
the constructor when the
new Song is created.

The getter methods for
the four attributes.

We override toString(), because when you do a System.out.println(aSongObject), we want to see the title. When you do a System.out.println(aListOfSongs), it calls the toString() method of EACH element in the list.

sorting your own objects

collections with generics

you are here4 537

import java.util.*;
import java.io.*;

public class Jukebox3 {

 ArrayList<Song> songList = new ArrayList<Song>();
 public static void main(String[] args) {
 new Jukebox3().go();
 }

 public void go() {
 getSongs();
 System.out.println(songList);
 Collections.sort(songList);
 System.out.println(songList);
 }
 void getSongs() {
 try {
 File file = new File(“SongList.txt”);
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line= reader.readLine()) != null) {
 addSong(line);
 }
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void addSong(String lineToParse) {
 String[] tokens = lineToParse.split(“/”);

 Song nextSong = new Song(tokens[0], tokens[1], tokens[2], tokens[3]);
 songList.add(nextSong);
 }
}

Change to an ArrayList of Song

objects instead of S
tring.

Create a new Song object using the four tokens (which means the four pieces of info in the song file for this line), then add the Song to the list.

Changing the Jukebox code to use Songs
instead of Strings

Your code changes only a little—the file I/O code is the same,
and the parsing is the same (String.split()), except this time
there will be four tokens for each song/line, and all four will be
used to create a new Song object. And of course the ArrayList
will be of type <Song> instead of <String>.

538 chapter 16

It won’t compile !
Something’s wrong... the Collections class clearly shows there’s a
sort() method, that takes a List.

ArrayList is-a List, because ArrayList implements the List interface,
so... it should work.

But it doesn’t!

The compiler says it can’t find a sort method that takes an
ArrayList<Song>, so maybe it doesn’t like an ArrayList of Song
objects? It didn’t mind an ArrayList<String>, so what’s the
important difference between Song and String? What’s the
difference that’s making the compiler fail?

File Edit Window Help Bummer

%javac Jukebox3.java
Jukebox3.java:15: cannot find symbol
symbol : method sort(java.util.ArrayList<Song>)
location: class java.util.Collections
 Collections.sort(songList);
 ^
1 error

And of course you probably already asked yourself, “What would it
be sorting on?” How would the sort method even know what made
one Song greater or less than another Song? Obviously if you want
the song’s title to be the value that determines how the songs are
sorted, you’ll need some way to tell the sort method that it needs
to use the title and not, say, the beats per minute.

We’ll get into all that a few pages from now, but first, let’s find out
why the compiler won’t even let us pass a Song ArrayList to the
sort() method.

Collections.sort()

collections with generics

you are here4 539

The sort() method declaration

From the API docs (looking up the java.util.Collections class, and scrolling to the sort()
method), it looks like the sort() method is declared... strangely. Or at least different from
anything we’ve seen so far.

That’s because the sort() method (along with other things in the whole collection framework in
Java) makes heavy use of generics. Anytime you see something with angle brackets in Java source
code or documentation, it means generics—a feature added to Java 5.0. So it looks like we’ll
have to learn how to interpret the documentation before we can fi gure out why we were able to
sort String objects in an ArrayList, but not an ArrayList of Song objects.

WTF? I have no idea how to
read the method declaration

on this. It says that sort()
takes a List<T>, but what is
T? And what is that big thing

before the return type?

540 chapter 16

 Generics means more type-safety
We’ll just say it right here—virtually all of the code you write that deals
with generics will be collection-related code. Although generics can be used
in other ways, the main point of generics is to let you write type-safe
collections. In other words, code that makes the compiler stop you
from putting a Dog into a list of Ducks.

Before generics (which means before Java 5.0), the compiler could
not care less what you put into a collection, because all collection
implementations were declared to hold type Object. You could put
anything in any ArrayList; it was like all ArrayLists were declared as
ArrayList<Object>.

With generics, you can
create type-safe collections
where more problems are
caught at compile-time
instead of runtime.

Without generics, the
compiler would happily let
you put a Pumpkin into an
ArrayList that was supposed
to hold only Cat objects.

WITHOUT generics

ArrayList

Object Object Object Object

Objects go IN as a reference to
SoccerBall, Fish, Guitar, and
Car objects

And come OUT as a reference of type Object

WITH generics

Objects go IN as a reference to
only Fish objects

And come out as a reference of type Fish

ArrayList<Fish>

Before generics, ther
e was no

way to declare the t
ype of an

ArrayList, so its add() method

took type Object.

Now with generics, you can put only Fish
objects in the ArrayList<Fish>, so the
objects come out as Fish references.
You don’t have to worry about someone
sticking a Volkswagen in there, or that
what you get out won’t really be cast-
able to a Fish reference.

generic types

collections with generics

you are here4 541

1 Creating instances of generified classes (like ArrayList)

When you make an ArrayList, you have to tell it the type
of objects you’ll allow in the list, just as you do with plain
old arrays.

3 Declaring (and invoking) methods that take generic types

If you have a method that takes as a parameter, say, an
ArrayList of Animal objects, what does that really mean?
Can you also pass it an ArrayList of Dog objects? We’ll
look at some subtle and tricky polymorphism issues that
are very different from the way you write methods that
take plain old arrays.

(This is actually the same point as #2, but that shows you
how important we think it is.)

2 Declaring and assigning variables of generic types

How does polymorphism really work with generic
types? If you have an ArrayList<Animal> reference
variable, can you assign an ArrayList<Dog> to it? What
about a List<Animal> reference? Can you assign an
ArrayList<Animal> to it? You’ll see...

Learning generics
Of the dozens of things you could learn about generics, there are
really only three that matter to most programmers:

new ArrayList<Song>()

List<Song> songList =
 new ArrayList<Song>()

void foo(List<Song> list)

x.foo(songList)

Q: But don’t I also need to learn how to create my OWN generic
classes? What if I want to make a class type that lets people
instantiating the class decide the type of things that class will use?

A: You probably won’t do much of that. Think about it—the API
designers made an entire library of collections classes covering most of
the data structures you’d need, and virtually the only type of classes that
really need to be generic are collection classes. In other words, classes
designed to hold other elements, and you want programmers using it to
specify what type those elements are when they declare and instantiate
the collection class.

Yes, it is possible that you might want to create generic classes, but that’s
the exception, so we won’t cover it here. (But you’ll figure it out from the
things we do cover, anyway.)

542 chapter 16

Using generic CLASSES
Since ArrayList is our most-used generified type, we’ll
start by looking at its documentation. They two key areas
to look at in a generified class are:

1) The class declaration

3) The method declarations that let you add elements

public boolean add(E o)

// more code

public class ArrayList<E> extends AbstractList<E> implements List<E> ... {

}

Understanding ArrayList documentation

(Or, what’s the true meaning of “E”?)

Think of “E” as a stand-in for
“the type of element you want
this collection to hold and
return.” (E is for Element.)

The “E” is a placehold
er for the

REAL type you use w
hen you

declare and cr
eate an ArrayList

ArrayList is a subclass of AbstractList,
so whatever type you specify for the ArrayList is automatically used for the
type of the AbstractList.

The type (the value of <E>)
becomes the type of the List
interface as well.Here’s the important part! Whatever “E” is

determines what kind of things you’re allowed
to add to the ArrayList.

The “E” represents the type used to create an instance
of ArrayList. When you see an “E” in the ArrayList
documentation, you can do a mental find/replace to
exchange it for whatever <type> you use to instantiate
ArrayList.

So, new ArrayList<Song> means that “E” becomes “Song”,
in any method or variable declaration that uses “E”.

generic classes

collections with generics

you are here4 543

public boolean add(E o)
// more code

public class ArrayList<E> extends AbstractList<E> ... {

}

Using type parameters with ArrayList

THIS code:

Means ArrayList:

ArrayList<String> thisList = new ArrayList<String>

public boolean add(String o)
// more code

}

Is treated by the compiler as:

public class ArrayList<String> extends AbstractList<String>... {

 o)

 extends AbstractList

In other words, the “E” is replaced by the real type (also called the type parameter)
that you use when you create the ArrayList. And that’s why the add() method
for ArrayList won’t let you add anything except objects of a reference type that’s
compatible with the type of “E”. So if you make an ArrayList<String>, the add()
method suddenly becomes add(String o). If you make the ArrayList of type Dog,
suddenly the add() method becomes add(Dog o).

Q: Is “E” the only thing you can put there? Because the docs for sort used “T”....

A: You can use anything that’s a legal Java identifier. That means anything that you
could use for a method or variable name will work as a type parameter. But the conven-
tion is to use a single letter (so that’s what you should use), and a further convention is to
use “T” unless you’re specifically writing a collection class, where you’d use “E” to repre-
sent the “type of the Element the collection will hold”.

544 chapter 16

Using generic METHODS

A generic class means that the class declaration includes a type
parameter. A generic method means that the method declaration
uses a type parameter in its signature.

You can use type parameters in a method in several different ways:

1 Using a type parameter defined in the class declaration

When you declare a type parameter for the class, you
can simply use that type any place that you’d use a
real class or interface type. The type declared in the
method argument is essentially replaced with the type
you use when you instantiate the class.

2 Using a type parameter that was NOT defined in the class declaration

If the class itself doesn’t use a type parameter, you can still
specify one for a method, by declaring it in a really unusual
(but available) space—before the return type. This method says
that T can be “any type of Animal”.

public boolean add(E o)
public class ArrayList<E> extends AbstractList<E> ... {

You can use the “E” here ONLY because it’s
already been defined as part of the class.

public <T extends Animal> void takeThing(ArrayList<T> list)

Here we can use <T> because we declared
“T” earlier in the method declaration.

generic methods

collections with generics

you are here4 545

Wait... that can’t be right. If you can
take a list of Animal, why don’t you

just SAY that? What’s wrong with just
takeThing(ArrayList<Animal> list)?

Here’s where it gets weird...

This:

public <T extends Animal> void takeThing(ArrayList<T> list)

Is NOT the same as this:

public void takeThing(ArrayList<Animal> list)

Both are legal, but they’re different!

The first one, where <T extends Animal> is part of the method
declaration, means that any ArrayList declared of a type that is
Animal, or one of Animal’s subtypes (like Dog or Cat), is legal.
So you could invoke the top method using an ArrayList<Dog>,
ArrayList<Cat>, or ArrayList<Animal>.

But... the one on the bottom, where the method argument is
(ArrayList<Animal> list) means that only an ArrayList<Animal>
is legal. In other words, while the first version takes an ArrayList
of any type that is a type of Animal (Animal, Dog, Cat, etc.),
the second version takes only an ArrayList of type Animal. Not
ArrayList<Dog>, or ArrayList<Cat> but only ArrayList<Animal>.

And yes, it does appear to violate the point of polymorphism.
but it will become clear when we revisit this in detail at the end
of the chapter. For now, remember that we’re only looking at
this because we’re still trying to figure out how to sort() that
SongList, and that led us into looking at the API for the sort()
method, which had this strange generic type declaration.

For now, all you need to know is that the syntax of the top version
is legal, and that it means you can pass in a ArrayList object
instantiated as Animal or any Animal subtype.

And now back to our sort() method...

546 chapter 16

import java.util.*;
import java.io.*;

public class Jukebox3 {

 ArrayList<Song> songList = new ArrayList<Song>();
 public static void main(String[] args) {
 new Jukebox3().go();
 }

 public void go() {
 getSongs();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);
 }
 void getSongs() {
 try {
 File file = new File(“SongList.txt”);
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line= reader.readLine()) != null) {
 addSong(line);
 }
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void addSong(String lineToParse) {
 String[] tokens = lineToParse.split(“/”);

 Song nextSong = new Song(tokens[0], tokens[1], tokens[2], tokens[3]);
 songList.add(nextSong);
 }
}

This still doesn’t
explain why the sort method

failed on an ArrayList of Songs
but worked for an ArrayList of
Strings...

Remember where we were...

This is where it breaks! It worked fine when

passed in an ArrayList<String>, but as soon as w
e

tried to sort an ArrayList<Song>, it failed.

File Edit Window Help Bummer

%javac Jukebox3.java
Jukebox3.java:15: cannot find symbol
symbol : method sort(java.util.ArrayList<Song>)
location: class java.util.Collections
 Collections.sort(songList);
 ^
1 error

sorting a Song

collections with generics

you are here4 547

public static <T extends Comparable<? super T>> void sort(List<T> list)

The sort() method can take only lists
of Comparable objects.

Song is NOT a subtype of
Comparable, so you cannot sort()
the list of Songs.

At least not yet...

This says “Whatever ‘T’ is must
be of type Comparable.”

(Ignore this part for now. But if you can’t, it just means
that the type parameter for Comparable must be of type T or one of T’s supertypes.)

You can pass in only a List (or
subtype of list, like ArrayList)
that uses a parameterized type
that “extends Comparable”.

So here we are, trying to read the sort() method docs to fi nd
out why it was OK to sort a list of Strings, but not a
list of Song objects. And it looks like the answer is...

Revisiting the sort() method

Um... I just checked the docs for
String, and String doesn’t EXTEND

Comparable--it IMPLEMENTS it.
Comparable is an interface. So it’s nonsense
to say <T extends Comparable>.

public fi nal class String extends Object implements Serializable,
 Comparable<String>, CharSequence

548 chapter 16

The Java engineers had to give you a way to put a constraint
on a parameterized type, so that you can restrict it to, say, only
subclasses of Animal. But you also need to constrain a type to
allow only classes that implement a particular interface. So
here’s a situation where we need one kind of syntax to work
for both situations—inheritance and implementation. In other
words, that works for both extends and implements.

And the winning word was... extends. But it really means “is-a”,
and works regardless of whether the type on the right is an
interface or a class.

In generics, “extends” means
“extends or implements”

public static <T extends Comparable<? super T>> void sort(List<T> list)

Comparable is an interface, so this
REALLY reads, “T must be a type that
implements the Comparable interface”.

It doesn’t matter whether the thing on the right is
a class or interface... you still say “extends”.

In generics, the keyword
“extends” really means “is-a”,
and works for BOTH classes
and interfaces.

Q: Why didn’t they just make a new keyword,“is”?

A: Adding a new keyword to the language is a REALLY big deal because
it risks breaking Java code you wrote in an earlier version. Think about
it—you might be using a variable “is” (which we do use in this book to repre-
sent input streams). And since you’re not allowed to use keywords as identi-
fiers in your code, that means any earlier code that used the keyword before
it was a reserved word, would break. So whenever there’s a chance for the
Sun engineers to reuse an existing keyword, as they did here with “extends”,
they’ll usually choose that. But sometimes they don’t have a choice...

A few (very few) new keywords have been added to the language, such
as assert in Java 1.4 and enum in Java 5.0 (we look at enum in the appen-
dix). And this does break people’s code, however you sometimes have the
option of compiling and running a newer version of Java so that it behaves
as though it were an older one. You do this by passing a special flag to the
compiler or JVM at the command-line, that says, “Yeah, yeah, I KNOW this is
Java 1.4, but please pretend it’s really 1.3, because I’m using a variable in my
code named assert that I wrote back when you guys said it would OK!#$%”.

(To see if you have a flag available, type javac (for the compiler) or java (for
the JVM) at the command-line, without anything else after it, and you should
see a list of available options. You’ll learn more about these flags in the chap-
ter on deployment.)

the sort() method

collections with generics

you are here4 549

Finally we know what’s wrong...
The Song class needs to implement Comparable

We can pass the ArrayList<Song> to the sort() method only if the
Song class implements Comparable, since that’s the way the sort()
method was declared. A quick check of the API docs shows the
Comparable interface is really simple, with only one method to
implement:

public interface Comparable<T> {
 int compareTo(T o);
}

java.lang.Comparable

And the method documentation for compareTo() says

The big question is: what
makes one song less than,
equal to, or greater than
another song?

You can’t implement the
Comparable interface until you
make that decision.

Returns:
a negative integer, zero, or a
positive integer as this object
is less than, equal to, or greater
than the specifi ed object.

It looks like the compareTo() method will be called on one
Song object, passing that Song a reference to a different
Song. The Song running the compareTo() method has to
fi gure out if the Song it was passed should be sorted higher,
lower, or the same in the list.

Your big job now is to decide what makes one song greater
than another, and then implement the compareTo() method
to refl ect that. A negative number (any negative number)
means the Song you were passed is greater than the Song
running the method. Returning a positive number says
that the Song running the method is greater than the Song
passed to the compareTo() method. Returning zero means
the Songs are equal (at least for the purpose of sorting... it
doesn’t necessarily mean they’re the same object). You might,
for example, have two Songs with the same title.

(Which brings up a whole different can of worms we’ll look
at later...)

Sharpen your pencil
Write in your idea and pseudo code (or
better, REAL code) for implementing the
compareTo() method in a way that will
sort() the Song objects by title.

Hint: if you’re on the right track, it should
take less than 3 lines of code!

550 chapter 16

The new, improved, comparable Song class
We decided we want to sort by title, so we implement the compareTo()
method to compare the title of the Song passed to the method against
the title of the song on which the compareTo() method was invoked.
In other words, the song running the method has to decide how its
title compares to the title of the method parameter.

Hmmm... we know that the String class must know about alphabetical
order, because the sort() method worked on a list of Strings. We know
String has a compareTo() method, so why not just call it? That way, we
can simply let one title String compare itself to another, and we don’t
have to write the comparing/alphabetizing algorithm!

class Song implements Comparable<Song> {
 String title;
 String artist;
 String rating;
 String bpm;

 public int compareTo(Song s) {
 return title.compareTo(s.getTitle());
 }

 Song(String t, String a, String r, String b) {
 title = t;
 artist = a;
 rating = r;
 bpm = b;
 }

 public String getTitle() {
 return title;
 }

 public String getArtist() {
 return artist;
 }

 public String getRating() {
 return rating;
 }

 public String getBpm() {
 return bpm;
 }

 public String toString() {
 return title;
 }
}

Usually these match...we’re specifying the type that
the implementing class can be compared against.

This means that Song objects can be compared to
other Song objects, for the purpose of sorting.

Simple! We just pass the work
on to the title String objects,
since we know Strings have a
compareTo() method.

The sort() method sends a Song to compareTo()
to see how that Song compares to the Song on
which the method was invoked.

File Edit Window Help Ambient

%java Jukebox3

[Pink Moon, Somersault, Shiva Moon, Circles, Deep
Channel, Passenger, Listen]

[Circles, Deep Channel, Listen, Passenger, Pink
Moon, Shiva Moon, Somersault]

This time it worked. It prints the list, then calls sort
which puts the Songs in alphabetical order by title.

the Comparable interface

collections with generics

you are here4 551

We can sort the list, but...

Look at the Collections class API again. There’s a
second sort() method—and it takes a Comparator.

There’s a new problem—Lou wants two different views of the song list,
one by song title and one by artist!

But when you make a collection element comparable (by having it
implement Comparable), you get only one chance to implement the
compareTo() method. So what can you do?

The horrible way would be to use a fl ag variable in the Song class,
and then do an if test in compareTo() and give a different result
depending on whether the fl ag is set to use title or artist for the
comparison.

But that’s an awful and brittle solution, and there’s something much
better. Something built into the API for just this purpose—when you
want to sort the same thing in more than one way.

The sort() method is overload
ed to

take something called a C
omparator.

Note to self: figur
e out how to

get /make a Comparator that can

compare and order t
he songs by

artist instead of
 title...

That’s not good enough.
Sometimes I want it to sort
by artist instead of title.

552 chapter 16

Using a custom Comparator
An element in a list can compare itself to another of
its own type in only one way, using its compareTo()
method. But a Comparator is external to the element
type you’re comparing—it’s a separate class. So you can
make as many of these as you like! Want to compare
songs by artist? Make an ArtistComparator. Sort by beats
per minute? Make a BPMComparator.

Then all you need to do is call the overloaded sort()
method that takes the List and the Comparator that will
help the sort() method put things in order.

The sort() method that takes a Comparator will use the
Comparator instead of the element’s own compareTo()
method, when it puts the elements in order. In other
words, if your sort() method gets a Comparator, it won’t
even call the compareTo() method of the elements
in the list. The sort() method will instead invoke the
compare() method on the Comparator.

So, the rules are:

public interface Comparator<T> {
 int compare(T o1, T o2);
}

java.util.Comparator

If you pass a Comparator to the
sort() method, the sort order is
determined by the Comparator
rather than the element’s own
compareTo() method.

Invoking the one-argument sort(List o) method
means the list element’s compareTo() method
determines the order. So the elements in the list
MUST implement the Comparable interface.

Invoking sort(List o, Comparator c) means the
list element’s compareTo() method will NOT be
called, and the Comparator’s compare() method
will be used instead. That means the elements
in the list do NOT need to implement the
Comparable interface.

Q: So does this mean that if you have a class that
doesn’t implement Comparable, and you don’t have the
source code, you could still put the things in order by
creating a Comparator?

A: That’s right. The other option (if it’s possible) would be
to subclass the element and make the subclass implement
Comparable.

Q: But why doesn’t every class implement Comparable?

A: Do you really believe that everything can be ordered?
If you have element types that just don’t lend themselves to
any kind of natural ordering, then you’d be misleading other
programmers if you implement Comparable. And you aren’t
taking a huge risk by not implementing Comparable, since
a programmer can compare anything in any way that he
chooses using his own custom Comparator.

$

$

the Comparator interface

collections with generics

you are here4 553

import java.util.*;
import java.io.*;

public class Jukebox5 {
 ArrayList<Song> songList = new ArrayList<Song>();
 public static void main(String[] args) {
 new Jukebox5().go();
 }

 class ArtistCompare implements Comparator<Song> {
 public int compare(Song one, Song two) {
 return one.getArtist().compareTo(two.getArtist());
 }
 }

 public void go() {
 getSongs();
 System.out.println(songList);
 Collections.sort(songList);
 System.out.println(songList);

 ArtistCompare artistCompare = new ArtistCompare();
 Collections.sort(songList, artistCompare);

 System.out.println(songList);
 }

 void getSongs() {
 // I/O code here
 }

 void addSong(String lineToParse) {
 // parse line and add to song list
 }
}

Create a new inner class that implements
Comparator (note that its type
parameter matches the type we’re going
to compare—in this case Song objects.)

Updating the Jukebox to use a Comparator

We did three new things in this code:

1) Created an inner class that implements Comparator (and thus the compare()
method that does the work previously done by compareTo()).

2) Made an instance of the Comparator inner class.

3) Called the overloaded sort() method, giving it both the song list and the
instance of the Comparator inner class.

Note: we also updated the Song class toString() method to print both the song
title and the artist. (It prints title: artist regardless of how the list is sorted.)

We’re letting the String variables (for artist) do the actual comparison, since Strings already know how to alphabetize themselves.

Make an instance of the
Comparator inner class.

Invoke sort(), passing it the list and a reference to the new custom Comparator object.

Note: we’ve made sort-by-title the default sort, by
keeping the compareTo() method in Song use the
titles. But another way to design this would be to
implement both the title sorting and artist sorting as
inner Comparator classes, and not have Song implement
Comparable at all. That means we’d always use the two-
arg version of Collections.sort().

This becomes a String (the artist)

554 chapter 16

Reverse Engineer
Assume this code exists in
a single file. Your job is
to fill in the blanks so the
the program will create the
output shown.

import __________________;

public class SortMountains {

 LinkedList______________ mtn = new LinkedList____________();

 class NameCompare ___________________________________ {
 public int compare(Mountain one, Mountain two) {

 return ___________________________;
 }
 }
 class HeightCompare _______________________________ {
 public int compare(Mountain one, Mountain two) {

 return (__________________________);
 }
 }
 public static void main(String [] args) {
 new SortMountain().go();
 }
 public void go() {
 mtn.add(new Mountain(“Longs”, 14255));
 mtn.add(new Mountain(“Elbert”, 14433));
 mtn.add(new Mountain(“Maroon”, 14156));
 mtn.add(new Mountain(“Castle”, 14265));

 System.out.println(“as entered:\n” + mtn);
 NameCompare nc = new NameCompare();

 _________________________________;
 System.out.println(“by name:\n” + mtn);
 HeightCompare hc = new HeightCompare();

 _________________________________;
 System.out.println(“by height:\n” + mtn);
 }
}

class Mountain {

 __________________;

 _________________;

 ______________________ {

 _________________;

 _________________;
 }
 _________________________ {

 ______________________________;
 }
}

File Edit Window Help ThisOne’sForBob

%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]

by name:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]

by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

Output:

Sharpen your pencil

collections exercise

Note: answers are at the end of
the chapter.

collections with generics

you are here4 555

For each of the questions below, fill in the blank
with one of the words from the “possible answers”
list, to correctly answer the question. Answers are
at the end of the chapter.

Given the following compilable statement:

 Collections.sort(myArrayList);

1. What must the class of the objects stored in myArrayList implement? ________________

2. What method must the class of the objects stored in myArrayList implement? ________________

3. Can the class of the objects stored in myArrayList implement both
 Comparator AND Comparable? ________________

Given the following compilable statement:

 Collections.sort(myArrayList, myCompare);

4. Can the class of the objects stored in myArrayList implement Comparable? ________________

5. Can the class of the objects stored in myArrayList implement Comparator? ________________

6. Must the class of the objects stored in myArrayList implement Comparable? ________________

7. Must the class of the objects stored in myArrayList implement Comparator? ________________

8. What must the class of the myCompare object implement? ________________

9. What method must the class of the myCompare object implement? __________________

Possible Answers:

Comparator,

Comparable,

compareTo(),

compare(),

yes,

no

Fill-in-the-blanksSharpen your pencil

556 chapter 16

Uh-oh. The sorting all works, but now we have duplicates...
The sorting works great, now we know how to sort on both title (using the Song object’s
compareTo() method) and artist (using the Comparator’s compare() method). But there’s
a new problem we didn’t notice with a test sample of the jukebox text fi le—the sorted list
contains duplicates.

It appears that the diner jukebox just keeps writing to the fi le regardless of whether the
same song has already been played (and thus written) to the text fi le. The SongListMore.txt
jukebox text fi le is a complete record of every song that was played, and might contain the
same song multiple times.

File Edit Window Help TooManyNotes

%java Jukebox4

[Pink Moon: Nick Drake, Somersault: Zero 7, Shiva Moon: Prem
Joshua, Circles: BT, Deep Channel: Afro Celts, Passenger:
Headmix, Listen: Tahiti 80, Listen: Tahiti 80, Listen: Tahiti
80, Circles: BT]

[Circles: BT, Circles: BT, Deep Channel: Afro Celts, Listen:
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Passenger:
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua,
Somersault: Zero 7]

[Deep Channel: Afro Celts, Circles: BT, Circles: BT, Passenger:
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua, Listen:
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Somersault:
Zero 7]

Before sorting.

SongListMore.txt

Pink Moon/Nick Drake/5/80
Somersault/Zero 7/4/84
Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110
Deep Channel/Afro Celts/4/120
Passenger/Headmix/4/100
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Circles/BT/5/110

The SongListMore text file now has duplicates in
it, because the jukebox machine is writing every song
played, in order. Somebody decided to play “Listen”
three times in a row, followed by “Circles”, a song
that had been played earlier.We can’t change the way the text file is written
because sometimes we’re going to need all that information. We have to change the java code.

After sorting using
the Song’s own
compareTo() method
(sort by title).

After sorting using
the ArtistCompare
Comparator (sort by
artist name).

dealing with duplicates

collections with generics

you are here4 557

$ LIST - when sequence matters
Collections that know about index position.

Lists know where something is in the list. You
can have more than one element referencing
the same object.

SET - when uniqueness matters
Collections that do not allow duplicates.

Sets know whether something is already in the collection.
You can never have more than one element referencing
the same object (or more than one element referencing
two objects that are considered equal—we’ll look at what
object equality means in a moment).

MAP - when finding something by key matters
Collections that use key-value pairs.
Maps know the value associated with a given key. You
can have two keys that reference the same value, but you
cannot have duplicate keys. Although keys are typically
String names (so that you can make name/value property
lists, for example), a key can be any object.

Duplicates OK.Duplicates OK.

0 1 2 3

 List

NO duplicates.NO duplicates.

Set

 Map

“Ball” “Fish” “Car”

Duplicate values OK, but NO duplicate keys.

“Ball1” “Ball2” “Fish” “Car”

$

$

From the Collection API, we fi nd three main interfaces, List, Set, and
Map. ArrayList is a List, but it looks like Set is exactly what we need.

We need a Set instead of a List

Before sorting.

the collections API

558 chapter 16

HashSet

Set

extends

implements

implementation class

interface

 KEY

Collection
(interface)

Set
(interface)

List
(interface)

SortedSet
(interface)

Map
(interface)

SortedMap
(interface)

 LinkedList Vector TreeSet LinkedHashSet HashSet ArrayList

 TreeMap Hashtable LinkedHashMap HashMap

The Collection API (part of it)
Notice that the Map interface doesn’t
actually extend the Collection interface,
but Map is still considered part of the

“Collection Framework” (also known
as the “Collection API”). So Maps are
still collections, even though they don’t
include java.util.Collection in their
inheritance tree.

(Note: this is not the complete
collection API; there are other
classes and interfaces, but
these are the ones we care
most about.)

Maps don’t extend from
java.util.Collection, but
they’re still considered
to be part of the
“collections framework”
in Java. So a Map is
still referred to as a
collection.

collections with generics

you are here4 559

We added on to the Jukebox to put the songs in a HashSet. (Note: we left out some
of the Jukebox code, but you can copy it from earlier versions. And to make it easier
to read the output, we went back to the earlier version of the Song’s toString()
method, so that it prints only the title instead of title and artist.)

Using a HashSet instead of ArrayList

import java.util.*;
import java.io.*;

public class Jukebox6 {
 ArrayList<Song> songList = new ArrayList<Song>();

 // main method etc.

 public void go() {

 getSongs();

 System.out.println(songList);

 Collections.sort(songList);

 System.out.println(songList);

 HashSet<Song> songSet = new HashSet<Song>();

 songSet.addAll(songList);
 System.out.println(songSet);

 }

 // getSongs() and addSong() methods
}

File Edit Window Help GetBetterMusic

%java Jukebox6

[Pink Moon, Somersault, Shiva Moon, Circles, Deep Channel,
Passenger, Listen, Listen, Listen, Circles]

[Circles, Circles, Deep Channel, Listen, Listen, Listen,
Passenger, Pink Moon, Shiva Moon, Somersault]

[Pink Moon, Listen, Shiva Moon, Circles, Listen, Deep Channel,
Passenger, Circles, Listen, Somersault]

Here we create a new HashSet
parameterized to hold Songs.

We didn’t change getSongs(), so it still puts the songs in an ArrayList

HashSet has a simple addAll() method that can take another collection and use it to populate the HashSet. It’s the same as if we added each song one at a time (except much simpler).

The Set didn’t help!!
We still have all the duplicates !

Before sorting
the ArrayList.

After sorting
the ArrayList
(by title).

After putting it
into a HashSet,
and printing the
HashSet (we didn’t
call sort() again).(And it lost its sort order

when we put the list into a
HashSet, but we’ll worry about
that one later...)

560 chapter 16

What makes two objects equal?
First, we have to ask—what makes two Song references
duplicates? They must be considered equal. Is it simply two
references to the very same object, or is it two separate objects
that both have the same title?

This brings up a key issue: reference equality vs. object equality.

$ Reference equality
Two references, one object on the heap.

Song

foo

title: Circles
hashCode: 254

Song

bar

$ Object equality
Two references, two objects on the heap, but
the objects are considered meaningfully equivalent.

Song

Song

Two references that refer to the same object on
the heap are equal. Period. If you call the hashCode() method on
both references, you’ll get the same result. If you don’t override the
hashCode() method, the default behavior (remember, you inherited
this from class Object) is that each object will get a unique number
(most versions of Java assign a hashcode based on the object’s
memory address on the heap, so no two objects will have the same
hashcode).

If you want to know if two references are really referring to the same
object, use the == operator, which (remember) compares the bits in
the variables. If both references point to the same object, the bits will
be identical.

title: Circles
hashCode: 254

title: Circles
hashCode: 254

foo

bar

If you want to treat two different Song objects as equal (for
example if you decided that two Songs are the same if they have
matching title variables), you must override both the hashCode()
and equals() methods inherited from class Object.

As we said above, if you don’t override hashCode(), the default
behavior (from Object) is to give each object a unique hashcode
value. So you must override hashCode() to be sure that two
equivalent objects return the same hashcode. But you must also
override equals() so that if you call it on either object, passing in
the other object, always returns true.

If two objects foo and bar are
equal, foo.equals(bar) must be
true, and both foo and bar must
return the same value from
hashCode(). For a Set to treat
two objects as duplicates, you
must override the hashCode()
and equals() methods inherited
from class Object, so that you
can make two different objects
be viewed as equal.

if (foo == bar) {

 // both references are referring
 // to the same object on the heap

}

if (foo.equals(bar) && foo.hashCode() == bar.hashCode()) {

 // both references are referring to either a

 // a single object, or to two objects that are equal

}

object equality

collections with generics

you are here4 561

title: Circles
hashCode: 742

title: Circles
hashCode: 742

How a HashSet checks for duplicates: hashCode() and equals()
When you put an object into a Hashset, it uses the
object’s hashcode value to determine where to put
the object in the Set. But it also compares the object’s
hashcode to the hashcode of all the other objects in
the HashSet, and if there’s no matching hashcode,
the HashSet assumes that this new object is not a
duplicate.

In other words, if the hashcodes are different, the
HashSet assumes there’s no way the objects can be
equal!

So you must override hashCode() to make sure the
objects have the same value.

But two objects with the same hashCode() might not
be equal (more on this on the next page), so if the

HashSet finds a matching hashcode for two objects—
one you’re inserting and one already in the set—the
HashSet will then call one of the object’s equals()
methods to see if these hashcode-matched objects
really are equal.

And if they’re equal, the HashSet knows that the
object you’re attempting to add is a duplicate of
something in the Set, so the add doesn’t happen.

You don’t get an exception, but the HashSet’s add()
method returns a boolean to tell you (if you care)
whether the new object was added. So if the add()
method returns false, you know the new object was a
duplicate of something already in the set.

HashSet

I need to know
if your hashcode
values are the same.

Object you’re trying to
add to the HashSet.

Object already IN
the HashSet.

Song

foo

Song

bar

hashCode()

742

hashCode()

742

title: Circles
hashCode: 742

title: Circles
hashCode: 742

HashSet

Your hashcodes
are the same, but are

you REALLY equal? Object you’re trying
to add runs its equals()
method, comparing itself
to bar, and returns true.

Object already IN
the HashSet.

Song

foo

Song

bar

equals(bar)

true

562 chapter 16

The Song class with overridden
hashCode() and equals()

class Song implements Comparable<Song>{
 String title;
 String artist;
 String rating;
 String bpm;

 public boolean equals(Object aSong) {
 Song s = (Song) aSong;
 return getTitle().equals(s.getTitle());
 }

 public int hashCode() {
 return title.hashCode();
 }

 public int compareTo(Song s) {
 return title.compareTo(s.getTitle());
 }

 Song(String t, String a, String r, String b) {
 title = t;
 artist = a;
 rating = r;
 bpm = b;
 }

 public String getTitle() {
 return title;
 }

 public String getArtist() {
 return artist;
 }

 public String getRating() {
 return rating;
 }

 public String getBpm() {
 return bpm;
 }

 public String toString() {
 return title;
 }
}

The HashSet (or anyo
ne else calling th

is

method) sends it
another Song.

The GREAT news is that title is a Str
ing,

and Strings have an ov
erridden equals()

method. So all we have to do is ask one

title if it’s equal to t
he other song’s title.

Same deal here... the String class has an overridden hashCode() method, so you can just return the result of calling hashCode() on the title. Notice how hashCode() and equals() are using the SAME instance variable.

%java Jukebox6

[Pink Moon, Somersault, Shiva Moon, Circles,
Deep Channel, Passenger, Listen, Listen,
Listen, Circles]

[Circles, Circles, Deep Channel, Listen,
Listen, Listen, Passenger, Pink Moon, Shiva
Moon, Somersault]

[Pink Moon, Listen, Shiva Moon, Circles,
Deep Channel, Passenger, Somersault]

File Edit Window Help RebootWindows

Now it works! No duplicates when we
print out the HashSet. But we didn’t
call sort() again, and when we put
the ArrayList into the HashSet, the
HashSet didn’t preserve the sort order.

overriding hashCode() and equals()

collections with generics

you are here4 563

Java Object Law For HashCode()
and equals()

The API docs for class Object state the
rules you MUST follow:

$ If two objects are equal, they MUST
have matching hashcodes.

$ If two objects are equal, calling
equals() on either object MUST return
true. In other words, if (a.equals(b)) then
(b.equals(a)).

$ If two objects have the same hashcode
value, they are NOT required to be equal.
But if they’re equal, they MUST have the
same hashcode value.

$ So, if you override equals(), you MUST
override hashCode().

$ The default behavior of hashCode()
is to generate a unique integer for each
object on the heap. So if you don’t override
hashCode() in a class, no two objects of
that type can EVER be considered equal.

$ The default behavior of equals() is to
do an == comparison. In other words, to
test whether the two references refer to a
single object on the heap. So if you don’t
override equals() in a class, no two objects
can EVER be considered equal since
references to two different objects will
always contain a different bit pattern.

a.equals(b) must also mean that
a.hashCode() == b.hashCode()

But a.hashCode() == b.hashCode()
does NOT have to mean a.equals(b)

there are noDumb Questions
Q: How come hashcodes can be the same
even if objects aren’t equal?

A: HashSets use hashcodes to store the ele-
ments in a way that makes it much faster to access.
If you try to find an object in an ArrayList by giving
the ArrayList a copy of the object (as opposed to
an index value), the ArrayList has to start searching
from the beginning, looking at each element in
the list to see if it matches. But a HashSet can find
an object much more quickly, because it uses the
hashcode as a kind of label on the “bucket” where
it stored the element. So if you say, “I want you
to find an object in the set that’s exactly like this
one...” the HashSet gets the hashcode value from
the copy of the Song you give it (say, 742), and
then the HashSet says, “Oh, I know exactly where
the object with hashcode #742 is stored...”, and it
goes right to the #742 bucket.

This isn’t the whole story you get in a computer
science class, but it’s enough for you to use Hash-
Sets effectively. In reality, developing a good hash-
code algorithm is the subject of many a PhD thesis,
and more than we want to cover in this book.

The point is that hashcodes can be the same
without necessarily guaranteeing that the objects
are equal, because the “hashing algorithm” used in
the hashCode() method might happen to return
the same value for multiple objects. And yes, that
means that multiple objects would all land in the
same bucket in the HashSet (because each bucket
represents a single hashcode value), but that’s not
the end of the world. It might mean that the Hash-
Set is just a little less efficient (or that it’s filled
with an extremely large number of elements), but
if the HashSet finds more than one object in the
same hashcode bucket, the HashSet will simply
use the equals() method to see if there’s a perfect
match. In other words, hashcode values are some-
times used to narrow down the search, but to find
the one exact match, the HashSet still has to take
all the objects in that one bucket (the bucket for
all objects with the same hashcode) and then call
equals() on them to see if the object it’s looking for
is in that bucket.

564 chapter 16

And if we want the set to stay
sorted, we’ve got TreeSet

import java.util.*;
import java.io.*;
public class Jukebox8 {
 ArrayList<Song> songList = new ArrayList<Song>();
 int val;

 public static void main(String[] args) {
 new Jukebox8().go();
 }

 public void go() {
 getSongs();
 System.out.println(songList);
 Collections.sort(songList);
 System.out.println(songList);

 TreeSet<Song> songSet = new TreeSet<Song>();
 songSet.addAll(songList);
 System.out.println(songSet);
 }

 void getSongs() {
 try {
 File file = new File(“SongListMore.txt”);
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line= reader.readLine()) != null) {
 addSong(line);
 }

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void addSong(String lineToParse) {
 String[] tokens = lineToParse.split(“/”);
 Song nextSong = new Song(tokens[0], tokens[1], tokens[2], tokens[3]);
 songList.add(nextSong);
 }
}

TreeSet is similar to HashSet in that it prevents duplicates. But it also keeps the list sorted. It works
just like the sort() method in that if you make a TreeSet using the set’s no-arg constructor, the
TreeSet uses each object’s compareTo() method for the sort. But you have the option of passing
a Comparator to the TreeSet constructor, to have the TreeSet use that instead. The downside to
TreeSet is that if you don’t need sorting, you’re still paying for it with a small performance hit. But
you’ll probably find that the hit is almost impossible to notice for most apps.

Instantiate a TreeSet instead of H
ashSet.

Calling the no-arg TreeSet constructor

means the set will use the Song obje
ct’s

compareTo() method for the sort.

(We could have passed
in a Comparator.)

We can add all the songs from the HashSet using addAll(). (Or we could have added the songs individually using songSet.add() just the way we added songs to the ArrayList.)

TreeSets and sorting

collections with generics

you are here4 565

What you MUST know about TreeSet...

import java.util.*;

public class TestTree {
 public static void main (String[] args) {
 new TestTree().go();
 }

 public void go() {
 Book b1 = new Book(“How Cats Work”);
 Book b2 = new Book(“Remix your Body”);
 Book b3 = new Book(“Finding Emo”);

 TreeSet<Book> tree = new TreeSet<Book>();
 tree.add(b1);
 tree.add(b2);
 tree.add(b3);
 System.out.println(tree);
 }
}

class Book {
 String title;
 public Book(String t) {
 title = t;
 }
}

Sharpen your pencil

Look at this code.
Read it carefully, then
answer the questions
below. (Note: there
are no syntax errors
in this code.)

1). What is the result when you compile this code?

2). If it compiles, what is the result when you run the TestTree class?

3). If there is a problem (either compile-time or runtime) with this code, how would you fix it?

TreeSet looks easy, but make sure you really understand what you need to
do to use it. We thought it was so important that we made it an exercise so
you’d have to think about it. Do NOT turn the page until you’ve done this.
We mean it.

566 chapter 16

TreeSet elements MUST be comparable
TreeSet can’t read the programmer’s mind to figure out how the
object’s should be sorted. You have to tell the TreeSet how.

class Book implements Comparable {
 String title;
 public Book(String t) {
 title = t;
 }
 public int compareTo(Object b) {
 Book book = (Book) b;
 return (title.compareTo(book.title));
 }
}

$ The elements in
the list must be of a type that
implements Comparable

The Book class on the previous
page didn’t implement Comparable, so it
wouldn’t work at runtime. Think about it, the
poor TreeSet’s sole purpose in life is to keep
your elements sorted, and once again—it had
no idea how to sort Book objects! It doesn’t fail
at compile-time, because the TreeSet add()
method doesn’t take a Comparable type,The
TreeSet add() method takes whatever type
you used when you created the TreeSet. In
other words, if you say new TreeSet<Book>()
the add() method is essentially add(Book). And
there’s no requirement that the Book class
implement Comparable! But it fails at runtime
when you add the second element to the set.
That’s the first time the set tries to call one of
the object’s compareTo() methods and... can’t.

$ You use the TreeSet’s
overloaded constructor
that takes a Comparator

TreeSet works a lot like the sort()
method—you have a choice of using the
element’s compareTo() method, assuming
the element type implemented the
Comparable interface, OR you can use
a custom Comparator that knows how
to sort the elements in the set. To use a
custom Comparator, you call the TreeSet
constructor that takes a Comparator.

To use a TreeSet, one of these
things must be true:

OR
public class BookCompare implements Comparator<Book> {
 public int compare(Book one, Book two) {
 return (one.title.compareTo(two.title));
 }
}

class Test {
 public void go() {
 Book b1 = new Book(“How Cats Work”);
 Book b2 = new Book(“Remix your Body”);
 Book b3 = new Book(“Finding Emo”);
 BookCompare bCompare = new BookCompare();
 TreeSet<Book> tree = new TreeSet<Book>(bCompare);
 tree.add(new Book(“How Cats Work”);
 tree.add(new Book(“Finding Emo”);
 tree.add(new Book(“Remix your Body”);
 System.out.println(tree);
 }
}

how TreeSets sort

collections with generics

you are here4 567

We’ve seen Lists and Sets, now we’ll use a Map
Lists and Sets are great, but sometimes a Map is the best collection (not Collection
with a capital “C”—remember that Maps are part of Java collections but they don’t
implement the Collection interface).

Imagine you want a collection that acts like a property list, where you give it a name
and it gives you back the value associated with that name. Although keys will often be
Strings, they can be any Java object (or, through autoboxing, a primitive).

import java.util.*;

public class TestMap {

 public static void main(String[] args) {

 HashMap<String, Integer> scores = new HashMap<String, Integer>();

 scores.put(“Kathy”, 42);
 scores.put(“Bert”, 343);
 scores.put(“Skyler”, 420);

 System.out.println(scores);

 System.out.println(scores.get(“Bert”));
 }

}

Map

“Ball” “Fish” “Car”“Ball1” “Ball2” “Ball3” “Ball4”

Each element in a Map is actually
TWO objects—a key and a value.
You can have duplicate values, but
NOT duplicate keys.

Map example

HashMap needs TWO type parameters—one for the key and one for the value.

Use put() instead of add(), and now of course it takes two arguments (key, value).

%java TestMap

{Skyler=420, Bert=343, Kathy=42}
343

File Edit Window Help WhereAmI

When you print a Map, it gives you the key=value, in braces { } instead of the brackets [] you see when you print lists and sets.

value

key

The get() method takes a key, and returns the value (in this case, an Integer).

568 chapter 16

Finally, back to generics
Remember earlier in the chapter we talked about how methods
that take arguments with generic types can be... weird. And we
mean weird in the polymorphic sense. If things start to feel
strange here, just keep going—it takes a few pages to really tell
the whole story.

We’ll start with a reminder on how array arguments work,
polymorphically, and then look at doing the same thing with
generic lists. The code below compiles and runs without errors:

import java.util.*;

public class TestGenerics1 {
 public static void main(String[] args) {
 new TestGenerics1().go();
 }

 public void go() {
 Animal[] animals = {new Dog(), new Cat(), new Dog()};
 Dog[] dogs = {new Dog(), new Dog(), new Dog()};
 takeAnimals(animals);
 takeAnimals(dogs);
 }

 public void takeAnimals(Animal[] animals) {
 for(Animal a: animals) {
 a.eat();
 }
 }
}

abstract class Animal {
 void eat() {
 System.out.println(“animal eating”);
 }
}
class Dog extends Animal {
 void bark() { }
}
class Cat extends Animal {
 void meow() { }
}

Declare and create an Animal array, that holds both dogs and cats.

If a method argument is an array
of Animals, it will also take an
array of any Animal subtype.

In other words, if a method is
declared as:

void foo(Animal[] a) { }

Assuming Dog extends Animal,
you are free to call both:

foo(anAnimalArray);
foo(aDogArray);

Declare and create a Dog array,
that holds only Dogs (the compiler
won’t let you put a Cat in).

Call takeAnimals(), using both array types as arguments...

The crucial point is that the takeAnimals() method can take an Animal[] or a Dog[], since Dog IS-A Animal. Polymorphism in action.Remember, we can call ONLY the methods declared in type animal, since the animals parameter is of type Animal array, and we didn’t do any casting. (What would we cast it to? That array might hold both Dogs and Cats.)

The simplified Animal class hierarchy.

generic types

Here’s how it works with regular arrays:

collections with generics

you are here4 569

Using polymorphic arguments and generics
So we saw how the whole thing worked with arrays, but will it work
the same way when we switch from an array to an ArrayList? Sounds
reasonable, doesn’t it?

First, let’s try it with only the Animal ArrayList. We made just a few
changes to the go() method:

public void go() {

 ArrayList<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Cat());
 animals.add(new Dog());

 takeAnimals(animals);
 }

 public void takeAnimals(ArrayList<Animal> animals) {
 for(Animal a: animals) {
 a.eat();
 }
 }

A simple change from Animal[] to ArrayList<Animal>.

We have to add one at a time since there’s no shortcut syntax like there is for array creation.
This is the same code, except now the “animals” variable refers to an ArrayList instead of array.

The method now takes an ArrayList instead of an array, but everything else is the same. Remember, that for loop syntax works for both arrays and collections.

Passing in just ArrayList<Animal>

%java TestGenerics2

animal eating
animal eating
animal eating
animal eating
animal eating
animal eating

File Edit Window Help CatFoodIsBetter

Compiles and runs just fine

570 chapter 16

But will it work with ArrayList<Dog> ?
Because of polymorphism, the compiler let us pass a Dog array
to a method with an Animal array argument. No problem. And
an ArrayList<Animal> can be passed to a method with an
ArrayList<Animal> argument. So the big question is, will the
ArrayList<Animal> argument accept an ArrayList<Dog>? If it works
with arrays, shouldn’t it work here too?

 public void go() {

 ArrayList<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Cat());
 animals.add(new Dog());

 takeAnimals(animals);

 ArrayList<Dog> dogs = new ArrayList<Dog>();
 dogs.add(new Dog());
 dogs.add(new Dog());
 takeAnimals(dogs);
 }

 public void takeAnimals(ArrayList<Animal> animals) {
 for(Animal a: animals) {
 a.eat();
 }
 }

We know this line worked fine.

Make a Dog ArrayList and put a couple dogs in.

Passing in just ArrayList<Dog>

%java TestGenerics3

TestGenerics3.java:21: takeAnimals(java.util.
ArrayList<Animal>) in TestGenerics3 cannot be applied to
(java.util.ArrayList<Dog>)
 takeAnimals(dogs);
 ^
1 error

File Edit Window Help CatsAreSmarter

When we compile it:

It looked so right,
but went so wrong...

Will this work now that we changed from an array to an ArrayList?

polymorphism and generics

collections with generics

you are here4 571

And I’m supposed to be OK with this? That
totally screws my animal simulation where the

veterinary program takes a list of any type of
animal, so that a dog kennel can send a list of dogs,
and a cat kennel can send a list of cats... now
you’re saying I can’t do that if I use collections
instead of arrays?

What could happen if it were allowed...
Imagine the compiler let you get away with that. It let you pass an
ArrayList<Dog> to a method declared as:

public void takeAnimals(ArrayList<Animal> animals) {
 for(Animal a: animals) {
 a.eat();
 }
}

There’s nothing in that method that looks harmful, right? After all,
the whole point of polymorphism is that anything an Animal can
do (in this case, the eat() method), a Dog can do as well. So what’s
the problem with having the method call eat() on each of the Dog
references?

Nothing. Nothing at all.

There’s nothing wrong with that code. But imagine this code instead:

public void takeAnimals(ArrayList<Animal> animals) {
 animals.add(new Cat());
} Yikes !! We just stuck a Cat in what

might be a Dogs-only ArrayList.

So that’s the problem. There’s certainly nothing wrong with adding a
Cat to an ArrayList<Animal>, and that’s the whole point of having an
ArrayList of a supertype like Animal—so that you can put all types of
animals in a single Animal ArrayList.

But if you passed a Dog ArrayList—one meant to hold ONLY Dogs—
to this method that takes an Animal ArrayList, then suddenly you’d
end up with a Cat in the Dog list. The compiler knows that if it lets
you pass a Dog ArrayList into the method like that, someone could,
at runtime, add a Cat to your Dog list. So instead, the compiler just
won’t let you take the risk.

If you declare a method to take ArrayList<Animal> it can take ONLY an
ArrayList<Animal>, not ArrayList<Dog> or ArrayList<Cat>.

572 chapter 16

Wait a minute... if this is why they won’t let
you pass a Dog ArrayList into a method that

takes an Animal ArrayList—to stop you from
possibly putting a Cat in what was actually a Dog list,
then why does it work with arrays? Don’t you have
the same problem with arrays? Can’t you still add

a Cat object to a Dog[] ?

Array types are checked again at
runtime, but collection type checks
happen only when you compile

Let’s say you do add a Cat to an array declared as Dog[] (an array that
was passed into a method argument declared as Animal[], which is a
perfectly legal assignment for arrays).

public void go() {
 Dog[] dogs = {new Dog(), new Dog(), new Dog()};
 takeAnimals(dogs);
}

public void takeAnimals(Animal[] animals) {
 animals[0] = new Cat();
} We put a new Cat into a Dog array. The

compiler allowed it, because it knows that
you might have passed a Cat array or Animal
array to the method, so to the compiler it
was possible that this was OK.

%java TestGenerics1
Exception in thread “main” java.lang.ArrayStoreException:
Cat
 at TestGenerics1.takeAnimals(TestGenerics1.java:16)
 at TestGenerics1.go(TestGenerics1.java:12)
 at TestGenerics1.main(TestGenerics1.java:5)

File Edit Window Help CatsAreSmarter

It compiles, but when we run it:

Whew! At least the
JVM stopped it.

arrays vs. ArrayLists

collections with generics

you are here4 573

Wouldn’t it be dreamy if there were
a way to still use polymorphic collection
types as method arguments, so that my
veterinary program could take Dog lists

and Cat lists? That way I could loop through
the lists and call their immunize() method,
but it would still have to be safe so that you
couldn’t add a Cat in to the Dog list. But I
guess that’s just a fantasy...

574 chapter 16

Wildcards to the rescue

It looks unusual, but there is a way to create a method argument that
can accept an ArrayList of any Animal subtype. The simplest way is to
use a wildcard—added to the Java language explicitly for this reason.

public void takeAnimals(ArrayList<? extends Animal> animals) {
 for(Animal a: animals) {
 a.eat();
 }
}

So now you’re wondering, “What’s the difference? Don’t you have
the same problem as before? The method above isn’t doing
anything dangerous—calling a method any Animal subtype is
guaranteed to have—but can’t someone still change this to add a
Cat to the animals list, even though it’s really an ArrayList<Dog>?
And since it’s not checked again at runtime, how is this any
different from declaring it without the wildcard?”

And you’d be right for wondering. The answer is NO. When you
use the wildcard <?> in your declaration, the compiler won’t let
you do anything that adds to the list!

When you use a wildcard in your method
argument, the compiler will STOP you from doing
anything that could hurt the list referenced by the
method parameter.

You can still invoke methods on the elements in
the list, but you cannot add elements to the list.

In other words, you can do things with the list
elements, but you can’t put new things in the list.
So you’re safe at runtime, because the compiler
won’t let you do anything that might be horrible at
runtime.

So, this is OK inside takeAnimals():

for(Animal a: animals) {
 a.eat();
}

But THIS would not compile:

animals.add(new Cat());

Remember, the keyword “extends”
here means either extends OR
implements depending on the
type. So if you want to take
an ArrayList of types that
implement the Pet interface,
you’d declare it as:
ArrayList<? extends Pet>

generic wildcards

collections with generics

you are here4 575

Alternate syntax for doing the same thing

You probably remember that when we looked at the sort() method,
it used a generic type, but with an unusual format where the type
parameter was declared before the return type. It’s just a different way
of declaring the type parameter, but the results are the same:

public <T extends Animal> void takeThing(ArrayList<T> list)
This:

public void takeThing(ArrayList<? extends Animal> list)

Does the same thing as this:

there are noDumb Questions
Q: If they both do the same thing, why would you use
one over the other?

A: It all depends on whether you want to use “T” some-
where else. For example, what if you want the method to
have two arguments—both of which are lists of a type that
extend Animal? In that case, it’s more efficient to just declare
the type parameter once:

Instead of typing:

public <T extends Animal> void takeThing(ArrayList<T> one, ArrayList<T> two)

public void takeThing(ArrayList<? extends Animal> one,
 ArrayList<? extends Animal> two)

576 chapter 16

Exercise

Your job is to play compiler and determine which of
these statements would compile. But some of this
code wasn’t covered in the chapter, so you need to
work out the answers based on what you DID learn,

applying the “rules” to these new situations. In
some cases, you might have to guess, but the
point is to come up with a reasonable answer
based on what you know so far.

(Note: assume that this code is within a legal class and
method.)

BE the compiler, advanced

❑ ArrayList<Dog> dogs1 = new ArrayList<Animal>();

❑ ArrayList<Animal> animals1 = new ArrayList<Dog>();

❑ List<Animal> list = new ArrayList<Animal>();

❑ ArrayList<Dog> dogs = new ArrayList<Dog>();

❑ ArrayList<Animal> animals = dogs;

❑ List<Dog> dogList = dogs;

❑ ArrayList<Object> objects = new ArrayList<Object>();

❑ List<Object> objList = objects;

❑ ArrayList<Object> objs = new ArrayList<Dog>();

Compiles?

be the compiler exercise

collections with generics

you are here4 577

import java.util.*;

public class SortMountains {

 LinkedList<Mountain> mtn = new LinkedList<Mountain>();

 class NameCompare implements Comparator <Mountain> {
 public int compare(Mountain one, Mountain two) {

 return one.name.compareTo(two.name);
 }
 }

 class HeightCompare implements Comparator <Mountain> {
 public int compare(Mountain one, Mountain two) {

 return (two.height - one.height);
 }
 }
 public static void main(String [] args) {
 new SortMountain().go();
 }
 public void go() {
 mtn.add(new Mountain(“Longs”, 14255));
 mtn.add(new Mountain(“Elbert”, 14433));
 mtn.add(new Mountain(“Maroon”, 14156));
 mtn.add(new Mountain(“Castle”, 14265));

 System.out.println(“as entered:\n” + mtn);
 NameCompare nc = new NameCompare();

 Collections.sort(mtn, nc);
 System.out.println(“by name:\n” + mtn);
 HeightCompare hc = new HeightCompare();

 Collections.sort(mtn, hc);
 System.out.println(“by height:\n” + mtn);
 }
}

class Mountain {

 String name;
 int height;

 Mountain(String n, int h) {
 name = n;
 height = h;
 }

 public String toString() {
 return name + “ “ + height;
 }

File Edit Window Help ThisOne’sForBob

%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]

by name:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]

by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

Output:

Did you notice that the heigh
t list is

in DESCENDING sequence ? :)

Solution to the “Reverse
Engineer” sharpen exercise

578 chapter 16

Given the following compilable statement:

 Collections.sort(myArrayList);

1. What must the class of the objects stored in myArrayList implement? Comparable
2. What method must the class of the objects stored in myArrayList implement? compareTo()
3. Can the class of the objects stored in myArrayList implement both
 Comparator AND Comparable? yes

Given the following compilable statement:

 Collections.sort(myArrayList, myCompare);

4. Can the class of the objects stored in myArrayList implement Comparable? yes

5. Can the class of the objects stored in myArrayList implement Comparator? yes

6. Must the class of the objects stored in myArrayList implement Comparable? no

7. Must the class of the objects stored in myArrayList implement Comparator? no

8. What must the class of the myCompare object implement? Comparator

9. What method must the class of the myCompare object implement? compare()

Exercise Solution
Possible Answers:

Comparator,

Comparable,

compareTo(),

compare(),

yes,

no

fill-in-the-blank solution

collections with generics

you are here4 579

BE the compiler solution

❑ ArrayList<Dog> dogs1 = new ArrayList<Animal>();

❑ ArrayList<Animal> animals1 = new ArrayList<Dog>();

❑ List<Animal> list = new ArrayList<Animal>();

❑ ArrayList<Dog> dogs = new ArrayList<Dog>();

❑ ArrayList<Animal> animals = dogs;

❑ List<Dog> dogList = dogs;

❑ ArrayList<Object> objects = new ArrayList<Object>();

❑ List<Object> objList = objects;

❑ ArrayList<Object> objs = new ArrayList<Dog>();

Compiles?

this is a new chapter 581

Make it Stick

It’s time to let go. You wrote your code. You tested your code. You refined your code.

You told everyone you know that if you never saw a line of code again, that’d be fine. But in the

end, you’ve created a work of art. The thing actually runs! But now what? How do you give it to

end users? What exactly do you give to end users? What if you don’t even know who your end

users are? In these final two chapters, we’ll explore how to organize, package, and deploy your

Java code. We’ll look at local, semi-local, and remote deployment options including executable

jars, Java Web Start, RMI, and Servlets. In this chapter, we’ll spend most of our time on organizing

and packaging your code—things you’ll need to know regardless of your ultimate deployment

choice. In the final chapter, we’ll finish with one of the coolest things you can do in Java. Relax.

Releasing your code is not saying goodbye. There’s always maintenance...

Release Your Code

17 package, jars and deployment

582 chapter 17

Java deployment

A Java program is a bunch
of classes. That’s the
output of your development.

The real question is what
to do with those classes
when you’re done.

Deploying your application
What exactly is a Java application? In other words,
once you’re done with development, what is it that you
deliver? Chances are, your end-users don’t have a system
identical to yours. More importantly, they don’t have your
application. So now it’s time to get your program in shape
for deployment into The Outside World. In this chapter,
we’ll look at local deployments, including Executable Jars
and the part-local/part-remote technology called Java Web
Start. In the next chapter, we’ll look at the more remote
deployment options, including RMI and Servlets.

Deployment options

But before we really get into the whole deployment thing,
let’s take a step back and look at what happens when you’ve
finished programming your app and you simply want to pull
out the class files to give them to an end-user. What’s really
in that working directory?

3

1 Local
The entire application runs on the
end-user’s computer, as a stand-alone,
probably GUI, program, deployed as
an executable JAR (we’ll look at JAR
in a few pages.)

2

Remote
The entire Java application runs on a
server system, with the client accessing
the system through some non-Java
means, probably a web browser.

Combination of local and remote
The application is distributed with a
client portion running on the user’s
local system, connected to a server
where other parts of the application
are running.

100% Local Combination 100% Remote

Servlets

HTTP

Web Start

File Edit View

HTTP

RMI app

File Edit View

RMI

brain barbellBrain Barbell
What are the advantages and
disadvantages of delivering your
Java program as a local, stand-
alone application running on
the end-user’s computer?

What are the advantages and
disadvantages of delivering your
Java program as web-based
system where the user interacts
with a web browser, and the
Java code runs as servlets on the
server?

Executable
Jar

File Edit View

package, jars and deployment

you are here4 583

Imagine this scenario...

Bob’s happily at work on the final pieces of his cool new
Java program. After weeks of being in the “I’m-just-

one-compile-away” mode, this time he’s really
done. The program is a fairly sophisticated

GUI app, but since the bulk of it is Swing
code, he’s made only nine classes of his

own.

At last, it’s time to deliver the program to the
client. He figures all he has to do is copy the
nine class files, since the client already has
the Java API installed. He starts by doing an

ls on the directory where all his files are...

Whoa! Something strange has happened. Instead of 18
files (nine source code files and nine compiled class
files), he sees 31 files, many of which have very strange

names like:

Account$FileListener.class

Chart$SaveListener.class

and on it goes. He had completely forgotten
that the compiler has to generate class files
for all those inner class GUI event listeners
he made, and that’s what all the strangely-

named classes are.

 Now he has to carefully extract all the class
files he needs. If he leaves even one of them out,
his program won’t work. But it’s tricky since he

doesn’t want to accidentally send the client
one of his source code files, yet everything is
in the same directory in one big mess.

What the... ?

It’s
finally done!

organizing your classes

584 chapter 17

%cd MyProject/classes
%java Mini

%cd MyProject/source
%javac -d ../classes MyApp.java

Separate source code and class files
A single directory with a pile of source code and class fi les is a
mess. It turns out, Bob should have been organizing his fi les
from the beginning, keeping the source code and compiled
code separate. In other words, making sure his compiled class
fi les didn’t land in the same directory as his source code.

The key is a combination of directory structure organization and the
-d compiler option.

But I thought I didn’t have
a choice about putting the class
fi les in with the source fi les.
When you compile, they just go

there, so what do I do?

There are dozens of ways you can organize your fi les, and your
company might have a specifi c way they want you to do it. We
recommend an organizational scheme that’s become almost
standard, though.

With this scheme, you create a project directory, and inside
that you create a directory called source and a directory called
classes. You start by saving your source code (.java fi les) into
the source directory. Then the trick is to compile your code
in such a way that the output (the .class fi les) ends up in the
classes directory.

And there’s a nice compiler fl ag, -d, that lets you do that.

Compiling with the -d (directory) fl ag

tells the compiler to put the compiled code (class files) into the “classes: directory that’s one directory up and back down again from the current working directory.

the last thing is sti
ll

the name of the java
file to compile

By using the -d fl ag, you get to decide which directory the
compiled code lands in, rather than accepting the default of
class fi les landing in the same directory as the source code.
To compile all the .java fi les in the source directory, use:

Running your code

run your program from the ‘classes’ directory.

%javac -d ../classes *.java

*.java compiles ALL
source files in the
current directory

MyProject

sourceclasses

 Lorper
iure eugue
tat vero
conse
eugueroLore
do eliquis
do del dip

Lorper
iure eugue
tat vero

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

MyApp.javaMyApp.class

compile from
THIS directory

compiled code
lands here

run your main() from here

(troubleshooting note: everything in this chapter assumes that the current working directory (i.e. the “.”) is in your classpath. If you have explicitly set a classpath environment variable, be certain that it contains the “.”)

package, jars and deployment

you are here4 585

Put your Java in a JAR
A JAR fi le is a Java ARchive. It’s based on the pkzip fi le format, and it lets you bundle
all your classes so that instead of presenting your client with 28 class fi les, you hand
over just a single JAR fi le. If you’re familiar with the tar command on UNIX, you’ll
recognize the jar tool commands. (Note: when we say JAR in all caps, we’re referring
to the archive fi le. When we use lowercase, we’re referring to the jar tool you use to
create JAR fi les.)

The question is, what does the client do with the JAR? How do you get it to run?

You make the JAR executable.

An executable JAR means the end-user doesn’t have to pull the class fi les out before
running the program. The user can run the app while the class fi les are still in the
JAR. The trick is to create a manifest fi le, that goes in the JAR and holds information
about the fi les in the JAR. To make a JAR executable, the manifest must tell the JVM
which class has the main() method!

JAR

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101 101101

Making an executable JAR

1 Make sure all of your class fi les are in
the classes directory
We’re going to refi ne this in a few pages, but
for now, keep all your class fi les sitting in the
directory named ‘classes’.

2 Create a manifest.txt fi le that states
which class has the main() method
Make a text fi le named manifest.txt that has a
one line:
Main-Class: MyApp

Press the return key after typing the Main-
Class line, or your manifest may not work
correctly. Put the manifest fi le into the “classes”
directory.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

10101000010
1010 10 0
10101000010
1010 10 0 1010 10 0
01010 1

101101
101101
10101000010

Main-Class: MyiAppMain-Class: MyiApp

3 Run the jar tool to create a JAR fi le
that contains everything in the classes
directory, plus the manifest.
%cd MiniProject/classes
%jar -cvmf manifest.txt app1.jar *.class
OR
%jar -cvmf manifest.txt app1.jar MyApp.class

classes

MyProject

101101
101101
101101

classes

101101
101101

101101 101101

101101 101101

101101
101101

101101
101101
101101
101101 101101 101101 101101

101101
101101

MyProject

Main-Class: MiniAppMain-Class: MiniAppmanifest.txt

app1.jar

101101
101101
101101

101101
101101

101101 101101

101101 101101

101101
101101

101101
101101
101101
101101 101101 101101 101101

101101
101101

Main-Class: MiniApp

101101 101101

Main-Class: MiniApp

don’t put the .class
on the end

no source
code (.java)
in the JAR

MyApp.class

classes

manifest.txt

586 chapter 17

Running (executing) the JAR
Java (the JVM) is capable of loading a class from a JAR, and calling
the main() method of that class. In fact, the entire application can
stay in the JAR. Once the ball is rolling (i.e., the main() method
starts running), the JVM doesn’t care where your classes come
from, as long as it can fi nd them. And one of the places the JVM
looks is within any JAR fi les in the classpath. If it can see a JAR, the
JVM will look in that JAR when it needs to fi nd and load a class.

%cd MyProject/classes

%java -jar app1.jar

app1.jar

101101
101101
101101

101101
101101

101101 101101

101101 101101

101101
101101

101101
101101
101101
101101 101101 101101 101101

101101
101101

Main-Class: MiniApp

101101 101101

Main-Class: MiniApp

classes

The JVM has to ‘see’ the JAR, so
it must be in your classpath. The
easiest way to make the JAR visible
is to make your working directory
the place where the JAR is.

The -jar flag tells the JVM you’re giving it a JAR instead of a class.

The JVM looks inside
this JAR for

a manifest with an entry
 for Main-

Class. If it do
esn’t find on

e, you get

a runtime exception.

Depending on how your operating system is confi gured, you
might even be able to simply double-click the JAR fi le to launch
it. This works on most fl avors of Windows, and Mac OS X. You
can usually make this happen by selecting the JAR and telling
the OS to “Open with...” (or whatever the equivalent is on your
operating system).

Q: Why can’t I just JAR up an entire directory?

A: The JVM looks inside the JAR and expects to find
what it needs right there. It won’t go digging into other
directories, unless the class is part of a package, and even
then the JVM looks only in the directories that match the
package statement?

Q: What did you just say?

A: You can’t put your class files into some arbitrary
directory and JAR them up that way. But if your classes
belong to packages, you can JAR up the entire package
directory structure. In fact, you must. We’ll explain all this on
the next page, so you can relax.

100% Local Combination 100% Remote

GUI client

File Edit View

Servlets

HTTP

Web Start

File Edit View

HTTP

RMI app

File Edit View

RMI

100% Local Combination 100% Remote

Executable
Jar

File Edit View

there are noDumb Questions

Most 100% local Java
apps are deployed as
executable JAR files.

executable JAR

package, jars and deployment

you are here4 587

Put your classes in packages!
So you’ve written some nicely reusable class fi les, and you’ve
posted them in your internal development library for other
programmers to use. While basking in the glow of having
just delivered some of the (in your humble opinion) best
examples of OO ever conceived, you get a phone call. A
frantic one. Two of your classes have the same name as
the classes Fred just delivered to the library. And all hell is
breaking loose out there, as naming collisions and ambiguities
bring development to its knees.

And all because you didn’t use packages! Well, you did use
packages, in the sense of using classes in the Java API that are,
of course, in packages. But you didn’t put your own classes
into packages, and in the Real World, that’s Really Bad.

We’re going to modify the organizational structure from the
previous pages, just a little, to put classes into a package, and
to JAR the entire package. Pay very close attention to the
subtle and picky details. Even the tiniest deviation can stop
your code from compiling and/or running.

So you’ve written some nicely reusable class fi les, and you’ve

breaking loose out there, as naming collisions and ambiguities

Packages prevent class name conflicts
Although packages aren’t just for preventing name collisions,
that’s a key feature. You might write a class named Customer
and a class named Account and a class named ShoppingCart.
And what do you know, half of all developers working in
enterprise e-commerce have probably written classes with
those names. In an OO world, that’s just dangerous. If part of
the point of OO is to write reusable components, developers
need to be able to piece together components from a
variety of sources, and build something new out of them.
Your components have to be able to ‘play well with others’,
including those you didn’t write or even know about.

Remember way back in chapter 6 when we discussed how
a package name is like the full name of a class, technically
known as the fully-qualifi ed name. Class ArrayList is really
java.util.ArrayList, JButton is really javax.swing.JButton, and
Socket is really java.net.Socket. Notice that two of those classes,
ArrayList and Socket, both have java as their “fi rst name”.
In other words, the fi rst part of their fully-qualifi ed names
is “java”. Think of a hierarchy when you think of package
structures, and organize your classes accordingly.

java

net

util

text
awt

event

101101 10
1001 101 10
10 10010
101 101
101 101 101

101101 10 101101 10
1001 101 10

101101 10
1001 101 10
10 10010
101 101
101 101 101

101101 10 101101 10
1001 101 10

Socket

ActionEvent

101101 10
1001 101 10
10 10010
101 101
101 101 101

101101 10 101101 10
1001 101 10

FlowLayout

101101 10
1001 101 10
10 10010
101 101
101 101 101

101101 10 101101 10
1001 101 10

ArrayList

101101 10
1001 101 10
10 10010
101 101
101 101 101

101101 10 101101 10
1001 101 10

NumberFormat

Package structure of the Java API for:

What does this picture look like to
you? Doesn’t it look a whole lot like
a directory hierarchy?

java.text.NumberFormat

java.util.ArrayList

java.awt.FlowLayout

java.awt.event.ActionEvent

java.net.Socket

588 chapter 17

Preventing package name conflicts
Putting your class in a package reduces the chances of naming
conflicts with other classes, but what’s to stop two programmers
from coming up with identical package names? In other words,
what’s to stop two programmers, each with a class named Account,
from putting the class in a package named shopping.customers?
Both classes, in that case, would still have the same name:

shopping.customers.Account

Sun strongly suggests a package naming convention that greatly
reduces that risk—prepend every class with your reverse domain
name. Remember, domain names are guaranteed to be unique.
Two different guys can be named Bartholomew Simpson, but two
different domains cannot be named doh.com.

...so I finally settled on
foo.bar.Heisenberg for my

quantum baking class
Why, that’s the same name

I was thinking of for my
sub-atomic ironing class!
Guess I’ll just have to come

up with something else.

Reverse domain package names

com.headfirstjava.projects.Chart

start the package with your reverse
domain, separated by a dot (.),
then add your own organizational
structure after that

the clas
s name is

always capi
talized

projects.Chart might be a common name, but adding com.headfirstjava means we have to worry about only our own in-house developers.

Packages can prevent name
conflicts, but only if you
choose a package name
that’s guaranteed to be
unique. The best way to
do that is to preface your
packages with your reverse
domain name.
com.headfirstbooks.Book

package name class nam
e

package naming

package, jars and deployment

you are here4 589

pa
ck

ag
e

st
ru

ct
ur

e

MyProject

sourceclasses

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

PackageExercise.class

com

headfirstjava

com

headfirstjava

 Lorper
iure eugue
tat vero
conse
eugueroLore
do eliquis
do del dip

Lorper
iure eugue
tat vero

PackageExercise.java

1 Choose a package name
We’re using com.headfi rstjava as our
example. The class name is PackageExercise,
so the fully-qualifi ed name of the class is now:
com.headfi rstjava.PackageExercise.

To put your class in a package:

2 Put a package statement in your class

package com.headfi rstjava;

import javax.swing.*;

public class PackageExercise {
 // life-altering code here
}

3 Set up a matching directory structure

It must be the fi rst statement in the source
code fi le, above any import statements. There
can be only one package statement per source
code fi le, so all classes in a source fi le must
be in the same package. That includes inner
classes, of course.

It’s not enough to say your class is in a package,
by merely putting a package statement in
the code. Your class isn’t truly in a package
until you put the class in a matching directory
structure. So, if the fully-qualifi ed class name
is com.headfi rstjava.PackageExercise, you
must put the PackageExercise source code in a
directory named headfi rstjava, which must be in
a directory named com.
It is possible to compile without doing that, but
trust us—it’s not worth the other problems
you’ll have. Keep your source code in a directory
structure that matches the package structure,
and you’ll avoid a ton of painful headaches down
the road.

You must put a class
into a directory
structure that matches
the package hierarchy.

Set up a matching directory structure for
both the source and classes trees.

class nam
e

590 chapter 17

%cd MyProject/classes

%java com.headfi rstjava.PackageExercise

%cd MyProject/source

%javac -d ../classes com/headfi rstjava/PackageExercise.java

Compiling with the -d (directory) fl ag

tells the compiler to put the compiled code (class files) into the classes directory, within the right package structure!! Yes, it knows.

Now you have to specify

the PATH to get to the

actual source file.

To compile all the .java fi les in the com.headfi rstjava
package, use:

Running your code
run your program from the ‘classes’ directory.

%javac -d ../classes com/headfi rstjava/*.java

Compiling and running with packages
When your class is in a package, it’s a little trickier to compile and
run. The main issue is that both the compiler and JVM have to be
capable of fi nding your class and all of the other classes it uses.
For the classes in the core API, that’s never a problem. Java always
knows where its own stuff is. But for your classes, the solution
of compiling from the same directory where the source fi les are
simply won’t work (or at least not reliably). We guarantee, though,
that if you follow the structure we describe on this page, you’ll be
successful. There are other ways to do it, but this is the one we’ve
found the most reliable and the easiest to stick to.

MyProject

sourceclasses

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

PackageExercise.class

com

headfirstjava

com

headfirstjava

 Lorper
iure
eugue
tat vero
conse
euguero-

Lorper Lorper
iure

PackageExercise.java

you’ll still compile
from here

stay in the source directory! Do NOT cd down

into the directory where the .java file is!

compiles every source (.java) file in this directory

You MUST give the fully-qualified class name! The JVM will
see that, and immediately look inside its current directory
(classes) and expect to find a directory named com, where
it expects to find a directory named headfirstjava, and in
there it expects to find the class. If the class is in the “com”
directory, or even in “classes”, it won’t work!

you’ll sti
ll run

from here

compile and run with packages

package, jars and deployment

you are here4 591

there are noDumb Questions

Q: I tried to cd into the
directory where my main class
was, but now the JVM says it can’t
fi nd my class! But it’s right THERE
in the current directory!

A: Once your class is in a
package, you can’t call it by its
‘short’ name. You MUST specify,
at the command-line, the fully-
qualified name of the class whose
main() method you want to run.
But since the fully-qualified name
includes the package structure,
Java insists that the class be in a
matching directory structure. So if
at the command-line you say:

%java com.foo.Book

the JVM will look in its current
directory (and the rest of its
classpath), for a directory named
“com”. It will not look for a class
named Book, until it has found
a directory named “com” with a
directory inside named “foo”. Only
then will the JVM accept that its
found the correct Book class. If it
finds a Book class anywhere else,
it assumes the class isn’t in the
right structure, even if it is! The
JVM won’t for example, look back
up the directory tree to say, “Oh, I
can see that above us is a directory
named com, so this must be the
right package...”

The -d flag is even cooler than we said
Compiling with the -d fl ag is wonderful because not only does it
let you send your compiled class fi les into a directory other than
the one where the source fi le is, but it also knows to put the class
into the correct directory structure for the package the class is in.

But it gets even better!

Let’s say that you have a nice
directory structure all set up for your
source code. But you haven’t set
up a matching directory structure
for your classes directory. Not a
problem! Compiling with
-d tells the compiler to not
just put your classes into the
correct directory tree, but to build
the directories if they don’t exist.

MyProject

sourceclasses

com

headfirstjava

 Lorper
iure
eugue
tat vero
conse
euguero-

Lorper Lorper
iure

PackageExercise.java

If the package directory structure
doesn’t exist under the ‘classes’
directory, the compiler will build the
directories if you use the -d flag.

So you don’t actually have to
physically create the directories unde

r
the ‘classes’ root directory. And in
fact, if you let the compiler do it
there’s no chance of a typo.

The -d fl ag tells the compiler,
“Put the class into its package
directory structure, using the
class specifi ed after the -d as
the root directory. But... if the
directories aren’t there, create
them fi rst and then put the class
in the right place!”

592 chapter 17

When your class is in a package, the package directory structure
must be inside the JAR! You can’t just pop your classes in the
JAR the way we did pre-packages. And you must be sure that you
don’t include any other directories above your package. The
fi rst directory of your package (usually com) must be the fi rst
directory within the JAR! If you were to accidentally include the
directory above the package (e.g. the “classes” directory), the JAR
wouldn’t work correctly.

PackageExercise.class

classes

com

headfirstjava

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Making an executable JAR with packages

JAR

Making an executable JAR

1 Make sure all of your class fi les are
within the correct package structure,
under the classes directory.

2 Create a manifest.txt fi le that states
which class has the main() method,
and be sure to use the fully-qualifi ed
class name!
Make a text fi le named manifest.txt that has a
single line:
Main-Class: com.headfi rstjava.PackageExercise

Put the manifest fi le into the classes directory

3 Run the jar tool to create a JAR fi le
that contains the package directories
plus the manifest

%cd MyProject/classes

%jar -cvmf manifest.txt packEx.jar com

packEx.jar

classes

manifest.txt

classes

com

headfirstjava

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Main-Class: MiniAppMain-Class: MiniApp

PackageExercise.class

com

headfirstjava

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

PackageExercise.class

All you specify is
 the

com directory! And you’ll

get everything
in it!

The only thing you need to include is the ‘com’
directory, and the entire package (and all classes)
will go into the JAR.

JARs and packages

package, jars and deployment

you are here4 593

So where did the manifest file go?

-tf stands for ‘Table File’ as in “show me a table of the JAR file”

we put the JAR file into a

directory na
med Skyler

Why don’t we look inside the JAR and fi nd out? From the
command-line, the jar tool can do more than just create and run a
JAR. You can extract the contents of a JAR (just like ‘unzipping’ or
‘untarring’).

Imagine you’ve put the packEx.jar into a directory named Skyler.

packEx.jar

jar commands for listing and extracting

1 List the contents of a JAR

% jar -tf packEx.jar

File Edit Window Help Pickle

% cd Skyler
% jar -tf packEx.jar
META-INF/
META-INF/MANIFEST.MF
com/
com/headfirstjava/
com/headfirstjava/
PackageExercise.class

-xf stands for ‘Extract File’ and it
works just like unzipping or untarring.
If you extract the packEx.jar, you’ll
see the META-INF directory and the
com directory directory in your current
directory

2 Extract the contents of a JAR (i.e. unjar)
% cd Skyler
% jar -xf packEx.jar

MANIFEST.MF

Main-Class: MiniAppMain-Class: MiniApp

com

headfirstjava

PackageExercise.class

META-INF

Skyler

the jar tool
 automatically

 builds a META-INF

directory, a
nd puts the

manifest insid
e.

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Skyler

MANIFEST.MF

Main-Class: MiniAppMain-Class: MiniApp

com

headfirstjava

META-INF

PackageExercise.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

META-INF stands for ‘meta
information’. The jar tool creates
the META-INF directory as
well as the MANIFEST.MF fi le.
It also takes the contents of
your manifest fi le, and puts it
into the MANIFEST.MF fi le. So,
your manifest fi le doesn’t go into
the JAR, but the contents of it
are put into the ‘real’ manifest
(MANIFEST.MF).

organizing your classes

594 chapter 17

Sharpen your pencil

Foof.class

classes

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Given the package/directory structure in this
picture, fi gure out what you should type at the
command-line to compile, run, create a JAR, and
execute a JAR. Assume we’re using the standard
where the package directory structure starts just
below source and classes. In other words, the source
and classes directories are not part of the package.

%cd source
%javac ________________________________

javaranch

cows

Compile:

%cd ___________

%java _________________________________

Run:

%cd ___________

%______________________________________

Create a JAR

manifest.txt

Main-Class: MiniAppMain-Class: MiniApp

source

javaranch

cows

Lorper
iure
eugue
tat vero
conse
euguero-

Foof.java

Lorper Lorper Lorper Lorper
iure

MyProject

%cd ___________

% _____________________________________

Execute a JAR

Bonus question: What’s wrong with the package name?

package, jars and deployment

you are here4 595

 BULLET POINTS

ß Organize your project so that your source code and class files are not in
the same directory.

ß A standard organization structure is to create a project directory, and then
put a source directory and a classes directory inside the project directory.

ß Organizing your classes into packages prevents naming collisions with
other classes, if you prepend your reverse domain name on to the front of
a class name.

ß To put a class in a package, put a package statement at the top of the
source code file, before any import statements:
package com.wickedlysmart;

ß To be in a package, a class must be in a directory structure that exactly
matches the package structure. For a class, com.wickedlysmart.Foo,
the Foo class must be in a directory named wickedlysmart, which is in a
directory named com.

ß To make your compiled class land in the correct package directory
structure under the classes directory, use the -d compiler flag:
% cd source
% javac -d ../classes com/wickedlysmart/Foo.java

ß To run your code, cd to the classes directory, and give the fully-qualified
name of your class:
% cd classes
% java com.wickedlysmart.Foo

ß You can bundle your classes into JAR (Java ARchive) files. JAR is based
on the pkzip format.

ß You can make an executable JAR file by putting a manifest into the JAR
that states which class has the main() method. To create a manifest file,
make a text file with an entry like the following (for example):
Main-Class: com.wickedlysmart.Foo

ß Be sure you hit the return key after typing the Main-Class line, or your
manifest file may not work.

ß To create a JAR file, type:
jar -cvfm manifest.txt MyJar.jar com

ß The entire package directory structure (and only the directories matching
the package) must be immediately inside the JAR file.

ß To run an executable JAR file, type:
java -jar MyJar.jar

there are noDumb Questions

Q: What happens if you try
to run an executable JAR, and
the end-user doesn’t have java
installed?

A: Nothing will run, since
without a JVM, Java code can’t
run. The end-user must have Java
installed.

Q: How can I get Java
installed on the end-user’s
machine?

Ideally, you can create a custom
installer and distribute it along
with your application. Several
companies offer installer pro-
grams ranging from simple to
extremely powerful. An installer
program could, for example, de-
tect whether or not the end-user
has an appropropriate version
of Java installed, and if not,
install and configure Java before
installing your application.
Installshield, InstallAnywhere,
and DeployDirector all offer Java
installer solutions.

Another cool thing about some
of the installer programs is that
you can even make a deploy-
ment CD-ROM that includes
installers for all major Java
platforms, so... one CD to rule
them all. If the user’s running on
Solaris, for example, the Solaris
version of Java is installed. On
Windows, the Windows, ver-
sion, etc. If you have the budget,
this is by far the easiest way for
your end-users to get the right
version of Java installed and
configured.

596 chapter 17

Executable JAR files
are nice, but wouldn’t it be dreamy
if there were a way to make a rich, stand-
alone client GUI that could be distributed
over the Web? So that you wouldn’t have to

press and distribute all those CD-ROMs. And
wouldn’t it be just wonderful if the program

could automatically update itself, replacing
just the pieces that changed? The clients
would always be up-to-date, and you’d never

have to worry about delivering new

wouldn’t it be dreamy...

package, jars and deployment

you are here4 597

With Java Web Start (JWS), your application is launched for the
fi rst time from a Web browser (get it? Web Start?) but it runs as a
stand-alone application (well, almost), without the constraints of the
browser. And once it’s downloaded to the end-user’s machine (which
happens the fi rst time the user accesses the browser link that starts
the download), it stays there.

Java Web Start is, among other things, a small Java program that lives
on the client machine and works much like a browser plug-in (the
way, say, Adobe Acrobat Reader opens when your browser gets a .pdf
fi le). This Java program is called the Java Web Start ‘helper app’,
and its key purpose is to manage the downloading, updating, and
launching (executing) of your JWS apps.

When JWS downloads your application (an executable JAR), it
invokes the main() method for your app. After that, the end-user can
launch your application directory from the JWS helper app without
having to go back through the Web page link.

But that’s not the best part. The amazing thing about JWS is its
ability to detect when even a small part of application (say, a single
class fi le) has changed on the server, and—without any end-user
intervention—download and integrate the updated code.

There’s still an issue, of course, like how does the end-user get Java
and Java Web Start? They need both—Java to run the app, and Java
Web Start (a small Java application itself) to handle retrieving and
launching the app. But even that has been solved. You can set things
up so that if your end-users don’t have JWS, they can download
it from Sun. And if they do have JWS, but their version of Java is
out-of-date (because you’ve specifi ed in your JWS app that you
need a specifi c version of Java), the Java 2 Standard Edition can be
downloaded to the end-user machine.

Best of all, it’s simple to use. You can serve up a JWS app much like
any other type of Web resource such as a plain old HTML page or a
JPEG image. You set up a Web (HTML) page with a link to your JWS
application, and you’re in business.

In the end, your JWS application isn’t much more than an
executable JAR that end-users can download from the Web.

Java Web Start

100% Local Combination 100% Remote

Servlets

HTTP

Web Start

File Edit View

HTTP

RMI app

File Edit View

RMI

Web Start

100% Local Combination 100% Remote

File Edit View

HTTP

Executable
Jar

File Edit View

Web Start

File Edit View

HTTP

End-users launch a Java
Web Start app by clicking
on a link in a Web
page. But once the app
downloads, it runs outside
the browser, just like any
other stand-alone Java
application. In fact, a
Java Web Start app is just
an executable JAR that’s
distributed over the Web.

598 chapter 17

How Java Web Start works

1 The client clicks on a Web page link
to your JWS application (a .jnlp file).
The Web page link
Click

2 The Web server (HTTP) gets the
request and sends back a .jnlp file
(this is NOT the JAR).

Web Server

Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp MyApp.jar

click

3 Java Web Start (a small ‘helper app’
on the client) is started up by the
browser. The JWS helper app reads
the .jnlp file, and asks the server for
the MyApp.jar file.

The .jnlp file is an XML document that
states the name of the application’s
executable JAR file.

click Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp MyApp.jar

Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp

Web Server

JWS

Web Server

Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp

“give me MyApp.jar”

MyApp.jar

4 The Web server ‘serves’ up the
requested .jar file.

JWS
Web Server

Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp MyApp.jar

5 Java Web Start gets the JAR and
starts the application by calling the
specified main() method (just like an
executable JAR).

Hello
Web Server

Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp MyApp.jar

MyApp.jar

“give me MyApp.jnlp”

Web browser

Java Web Start

HelloWebStart (the app in the JAR)

Next time the user wants to run this app, he can
open the Java Web Start application and from
there launch your app, without even being online.

Java Web Start

package, jars and deployment

you are here4 599

To make a Java Web Start app, you need to .jnlp (Java Network
Launch Protocol) file that describes your application. This is the
file the JWS app reads and uses to find your JAR and launch the
app (by calling the JAR’s main() method). A .jnlp file is a simple
XML document that has several different things you can put in,
but as a minimum, it should look like this:

The .jnlp file

<?xml version=”1.0” encoding=”utf-8”?>

<jnlp spec=”0.2 1.0”

 codebase=”http://127.0.0.1/~kathy”

 href=”MyApp.jnlp”>

 <information>

 <title>kathy App</title>

 <vendor>Wickedly Smart</vendor>

 <homepage href=”index.html”/>

 <description>Head First WebStart demo</description>

 <icon href=”kathys.gif”/>

 <offline-allowed/>

 </information>

 <resources>

 <j2se version=”1.3+”/>

 <jar href=”MyApp.jar”/>

 </resources>

 <application-desc main-class=”HelloWebStart”/>

</jnlp>

The ‘codeba
se’ tag is

where you s
pecify the

 ‘root’

of where your
web start s

tuff is on
 the serve

r.

We’re testin
g this on o

ur localhos
t, so we’re using

the local l
oopback ad

dress “127.0.0.1”. For web

start apps
 on our int

ernet web server,
this would

say, “http
://www.wickedlysmart.com”

This is the location of the .jnlp file re
lative to the

codebase. This example shows that MyApp.jnlp is

available in the root directory of th
e web server, not

nested in some other directory.

Be sure to include all of these tags, or
 your app might

not work correctly! The ‘information’ tags are used by

the JWS helper app, mostly for displaying when the user

wants to relaunch a previously-downloaded application.

This means the user can run your program without

being connected to the internet. If t
he user is offline,

it means the automatic-updating feature won’t work.

This says that your app needs version 1
.3

of Java, or greater.

The name of your executable JAR! You might have
other JAR files as well, that hold other classes or
even sounds and images used by your app.

This is like the mainfest Main-Class entry... it says
which class in the JAR has the main() method.

600 chapter 17

Steps for making and deploying
a Java Web Start app

1 Make an executable JAR
for your application.

MyApp.jar

2 Write a .jnlp file.
Lorper
iure
eugue
tat vero
conse
euguero-

MyApp.jnlp

3 Web Server

MyApp.jar

Lorper
iure
eugue
tat vero
conse
euguero-

roo.html

Lorper
<iure
eugue
tat vero
conse

MyApp.jnlp

Place your JAR and .jnlp
files on your Web server.

4 Add a new mime type to your Web server.

This causes the server to send the .jnlp file with the
correct header, so that when the browser receives
the .jnlp file it knows what it is and knows to start
the JWS helper app.

application/x-java-jnlp-file
Web Server

configure
mime type

5 Create a Web page with a link
to your .jnlp file
<HTML>
 <BODY>
 Launch My Application
 </BODY>
</HTML>

Lorper
iure
eugue
tat vero
conse
euguero-

MyJWSApp.html

deploying with JWS

package, jars and deployment

you are here4 601

What’s
First?

 BULLET POINTS
ß Java Web Start technology lets you deploy a

stand-alone client application from the Web.

ß Java Web Start includes a ‘helper app’ that must
be installed on the client (along with Java).

ß A Java Web Start (JWS) app has two pieces:
an executable JAR and a .jnlp file.

ß A .jnlp file is a simple XML document that
describes your JWS application. It includes
tags for specifying the name and location of the
JAR, and the name of the class with the main()
method.

ß When a browser gets a .jnlp file from the server
(because the user clicked on a link to the .jnlp
file), the browser starts up the JWS helper app.

ß The JWS helper app reads the .jnlp file and
requests the executable JAR from the Web
server.

ß When the JWS gets the JAR, it invokes the
main() method (specified in the .jnlp file).

1.

2.

3.

4.

5.

6.

7.

Look at the sequence of events below, and
place them in the order in which they
occur in a JWS application.

user clicks a Web page link browser requests a .jnlp file
from the Web server

user clicks a Web page link browser requests a .jnlp file

the Web server sends a .jnlp file to the browser

the Web browser starts up

the JWS helper app

the Web server sends a .jnlp

the JWS helper app requests

the JAR file
the JWS helper app requests

the Web server sends a JAR file to the JWS helper app

browser requests a .jnlp file

the JWS helper app invokes
the JAR’s main() method

there are noDumb Questions
Q: How is Java Web Start different from an applet?

A: Applets can’t live outside of a Web browser. An applet is
downloaded from the Web as part of a Web page rather than
simply from a Web page. In other words, to the browser, the applet
is just like a JPEG or any other resource. The browser uses either a
Java plug-in or the browser’s own built-in Java (far less common
today) to run the applet. Applets don’t have the same level of
functionality for things such as automatic updating, and they must
always be launched from the browser. With JWS applications, once
they’re downloaded from the Web, the user doesn’t even have to
be using a browser to relaunch the application locally. Instead,
the user can start up the JWS helper app, and use it to launch the
already-downloaded application again.

Q: What are the security restrictions of JWS?

A: JWS apps have several limitations including being
restricted from reading and writing to the user’s hard drive. But...
JWS has its own API with a special open and save dialog box so
that, with the user’s permission, your app can save and read its
own files in a special, restricted area of the user’s drive.

Exercise

602 chapter 17

Exercise

We explored packaging, deployment, and JWS
in this chapter. Your job is to decide whether
each of the following statements is true or false.

1. The Java compiler has a flag, -d, that lets you decide where your .class files should go.

2. A JAR is a standard directory where your .class files should reside.

3. When creating a Java Archive you must create a file called jar.mf.

4. The supporting file in a Java Archive declares which class has the main() method.

5. JAR files must be unzipped before the JVM can use the classes inside.

6. At the command line, Java Archives are invoked using the -arch flag.

7. Package structures are meaningfully represented using hierarchies.

8. Using your company’s domain name is not recommended when naming packages.

9. Different classes within a source file can belong to different packages.

10. When compiling classes in a package, the -p flag is highly recommended.

11. When compiling classes in a package, the full name must mirror the directory tree.

12. Judicious use of the -d flag can help to assure that there are no typos in your class tree.

13. Extracting a JAR with packages will create a directory called meta-inf.

14. Extracting a JAR with packages will create a file called manifest.mf.

15. The JWS helper app always runs in conjunction with a browser.

16. JWS applications require a .nlp (Network Launch Protocol) file to work properly.

17. A JWS’s main method is specified in its JAR file.

CTrue or FalseD

exercise: True or False

package, jars and deployment

you are here4 603

Summary-Cross 7.0

Anything in the book
is fair game for this
one!

Down

1. Pushy widgets

2. ____ of my desire

3. ‘Abandoned’ moniker

4. A chunk

5. Math not trig

6. Be brave

7. Arrange well

8. Swing slang

11. I/O canals

13. Organized release

14. Not for an instance

Across

6. Won’t travel

9. Don’t split me

10. Release-able

11. Got the key

12. I/O gang

15. Flatten

17. Encapsulated returner

18. Ship this one

21. Make it so

22. I/O sieve

25. Disk leaf

26. Mine is unique

27. GUI’s target

29. Java team

30. Factory

32. For a while

33. Atomic * 8

35. Good as new

37. Pairs event

41. Where do I start

42. A little firewall

16. Who’s allowed

19. Efficiency expert

20. Early exit

21. Common wrapper

23. Yes or no

24. Java jackets

26. Not behavior

28. Socket’s suite

1

17

25

29

33

41 42

2 3 4 5 6 7 8

11

12 14 15 16

20 21 22

26 27

30 32

34 35 36 37 38 39

24

31

18

10

9

19

13

23

28

40

30. I/O cleanup

31. Milli-nap

34. Trig method

36. Encaps method

38. JNLP format

39. VB’s final

40. Java branch

Exercise

604 chapter 17

1.

2.

3.

4.

5.

6.

7.

user clicks a Web page link

browser requests a .jnlp file
from the Web server

the Web server sends a .jnlp
file to the browser

the Web browser starts up
the JWS helper appthe JWS helper app

the JWS helper app requests

the JAR file

the Web server sends a JAR file to the JWS helper app

the JWS helper app invokes
the JAR’s main() method

1. The Java compiler has a fl ag, -d, that lets you decide where your .class fi les should go.

2. A JAR is a standard directory where your .class fi les should reside.

3. When creating a Java Archive you must create a fi le called jar,mf.

4. The supporting fi le in a Java Archive declares which class has the main() method.

5. JAR fi les must be unzipped before the JVM can use the classes inside.

6. At the command line, Java Archives are invoked using the -arch fl ag.

7. Package structures are meaningfully represented using hierarchies.

8. Using your company’s domain name is not recommended when naming packages.

9. Different classes within a source fi le can belong to different packages.

10. When compiling classes in a package, the -p fl ag is highly recommended.

11. When compiling classes in a package, the full name must mirror the directory tree.

12. Judicious use of the -d fl ag can help to assure that there are no typos in your tree.

13. Extracting a JAR with packages will create a directory called meta-inf.

14. Extracting a JAR with packages will create a fi le called manifest.mf.

15. The JWS helper app always runs in conjunction with a browser.

16. JWS applications require a .nlp (Network Launch Protocol) fi le to work properly.

17. A JWS’s main method is specifi ed in its JAR fi le.

True
False
False
True
False
False
True
False
False
False
True
True
True
True
False
False
False

Exercise
Solutions

exercise solutions

package, jars and deployment

you are here4 605

1

17

25

29

33

41 42

2 3 4 5 6 7 8

11

12 14 15 16

20 21 22

26 27

30 32

34 35 36 37 38 39

24

31

18

10

9

19

13

23

28

40

Summary-Cross 7.0

D O G T M T R A N S I E N T W
I B A T O M I C R O I
A J A R K N S Y N C H R O N I Z E D
L E B E T T G
O C H A I N E D R S S A V E
G E T G E X E C U T A B L E C T
S E P A A U C S
 B I M P L E M E N T F I L T E R
 B R N O I F S W
D I R E C T O R Y S O C K E T U S E R
 N A E T R P A
P A C K A G E C L A S S L O O P P
 R E L T L R P
B Y T E R E S T O R E E E X T R E M E
 A I E S E M X R
M A N I F E S T E N C A P S U L A T E S

this is a new chapter 607

Make it Stick

Being remote doesn’t have to be a bad thing. Sure, things are easier when

all the parts of your application are in one place, in one heap, with one JVM to rule them all. But

that’s not always possible. Or desirable. What if your application handles powerful computations,

but the end-users are on a wimpy little Java-enabled device? What if your app needs data

from a database, but for security reasons, only code on your server can access the database?

Imagine a big e-commerce back-end, that has to run within a transaction-management system?

Sometimes, part of your app must run on a server, while another part (usually a client) must

run on a different machine. In this chapter, we’ll learn to use Java’s amazingly simple Remote

Method Invocation (RMI) technology. We’ll also take a quick peek at Servlets, Enterprise Java

Beans (EJB) , and Jini, and look at the ways in which EJB and Jini depend on RMI. We’ll end the

book by writing one of the coolest things you can make in Java, a universal service browser.

 Distributed
Computing

18 remote deployment with RMI

Everyone says long-
distance relationships are hard,

but with RMI, it’s easy. No
matter how far apart we really
are, RMI makes it seem like

we’re together.

608 chapter 18

100% Local Combination 100% Remote

Servlets

HTTP

Web Start

File Edit View

HTTP

RMI app

File Edit View

RMI

Executable
Jar

File Edit View

Servlets

HTTP

RMI app

File Edit View

100% Local Combination 100% Remote

RMI

RMI app

File Edit View

RMI

So far in this book, every method we’ve invoked has been on
an object running in the same virtual machine as the caller.
In other words, the calling object and the callee (the object
we’re invoking the method on) live on the same heap.

Method calls are always between
two objects on the same heap.

class Foo {

 void go() {

 Bar b = new Bar();

 b.doStuff();

 }

 public static void main (String[] args) {

 Foo f = new Foo();

 f.go();

 }

}

Foo object

Bar object
doStuff()

In most applications, when one object
calls a method on another, both objects
are on the same heap. In other words,
both are running within the same JVM.

one heap, two objects

In the code above, we know that the Foo instance
referenced by f and the Bar object referenced by b are
both on the same heap, run by the same JVM. Remember,
the JVM is responsible for stuffi ng bits into the reference
variable that represent how to get to an object on the heap.
The JVM always knows where each object is, and how to
get to it. But the JVM can know about references on only
its own heap! You can’t, for example, have a JVM running
on one machine knowing about the heap space of a JVM
running on a different machine. In fact, a JVM running on
one machine can’t know anything about a different JVM
running on the same machine. It makes no difference if
the JVMs are on the same or different physical machines;
it matters only that the two JVMs are, well, two different
invocations of the JVM.

how many heaps?

remote deployment with RMI

you are here4 609

We know how to get information from one machine to another—
with Sockets and I/O. We open a Socket connection to another
machine, and get an OutputStream and write some data to it.

But what if we actually want to call a method on something running
in another machine... another JVM? Of course we could always build
our own protocol, and when you send data to a ServerSocket the
server could parse it, figure out what you meant, do the work, and
send back the result on another stream. What a pain, though. Think
how much nicer it would be to just get a reference to the object on
the other machine, and call a method.

What if you want to invoke a method on
an object running on another machine?

Imagine two computers...

Big has something Little wants.
Compute power.

Little wants to send some data to Big, so that Big can do the
heavy computing.
Little wants simply to call a method...
 double doCalcUsingDatabase(CalcNumbers numbers)

and get back the result.
But how can Little get a reference to an object on Big?

Little Big

powerful, fast, l
oves

to crunch th
rough big

calculations

tiny, wimpy, painfully slow at calculations JVM

JVM

two objects, two heaps

610 chapter 18

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

Object A, running on Little, wants to call
a method on Object B, running on Big.

A B
doCalcUsingDatabase()

return value

Well, not directly anyway. You can’t get a reference to
something on another heap. If you say:

Dog d = ???

Whatever d is referencing must be in the same heap space as
the code running the statement.

But imagine you want to design something that will use
Sockets and I/O to communicate your intention (a method
invocation on an object running on another machine), yet
still feel as though you were making a local method call.

In other words, you want to cause a method invocation on a
remote object (i.e., an object in a heap somewhere else), but
with code that lets you pretend that you’re invoking a method
on a local object. The ease of a plain old everyday method
call, but the power of remote method invocation. That’s our
goal.

That’s what RMI (Remote Method Invocation) gives you!

But let’s step back and imagine how you would design RMI if
you were doing it yourself. Understanding what you’d have to
build yourself will help you learn how RMI works.

But you can’t do that.

remote deployment with RMI

you are here4 611

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

A design for remote method calls

Create four things: server, client,
server helper, client helper

1 Create client and server apps. The server app is the
remote service that has an object with the method
that the client wants to invoke.

Service object

Server heap

Client object

Client heap

2 Create client and server ‘helpers’. They’ll handle all
the low-level networking and I/O details so your client
and service can pretend like they’re in the same heap.

Service object

Server heap

Client object

Client heap

Client helper Service helper

612 chapter 18

The ‘helpers’ are the objects that actually do the communicating.
They make it possible for the client to act as though its calling a
method on a local object. In fact, it is. The client calls a method on
the client helper, as if the client helper were the actual service. The client
helper is a proxy for the Real Thing.

In other words, the client object thinks it’s calling a method on
the remote service, because the client helper is pretending to be
the service object. Pretending to be the thing with the method the client
wants to call!

But the client helper isn’t really the remote service. Although the
client helper acts like it (because it has the same method that the
service is advertising), the client helper doesn’t have any of the
actual method logic the client is expecting. Instead, the client
helper contacts the server, transfers information about the method
call (e.g., name of the method, arguments, etc.), and waits for a
return from the server.

On the server side, the service helper receives the request from
the client helper (through a Socket connection), unpacks the
information about the call, and then invokes the real method on
the real service object. So to the service object, the call is local. It’s
coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it
up, and ships it back (over a Socket’s output stream) to the client
helper. The client helper unpacks the information and returns the
value to the client object.

The role of the ‘helpers’

Your client object gets to
act like it’s making remote
method calls. But what
it’s really doing is calling
methods on a heap-local
‘proxy’ object that handles
all the low-level details of
Sockets and streams.

Service object
Server heap

Client object

Client heap

Client helper Service helper

Client object thinks
it’s talking to the
Real Service. It
thinks the client
helper is the thing
that can actually
do the real work.

Client helper pretend
s

to be the service, b
ut

it’s just a proxy fo
r the

Real Thing.

Service helper gets the request from the client helper, unpacks it, and calls the method on the Real Service.

The Service
object IS

the Real Service
. It’s the

object with the method

that actua
lly does th

e

real method work.

client and server helpers

remote deployment with RMI

you are here4 613

Service object

Server heap

Client object

Client heap

Client helper Service helper

How the method call happens

1 Client object calls doBigThing() on the client helper object

Service object

Server heap

Client object

Client heap

Client helper Service helper

2 Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

doBigThing()

doBigThing()

“client wants to call a method”

Service object

Server heap

Client object

Client heap

Client helper Service helper

3 Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

doBigThing()

“client wants to call a method”
doBigThing()

Remember, this is the
object with the REAL

method logic. The guy

that does the real
work!

614 chapter 18

In Java, RMI builds the client and service helper
objects for you, and it even knows how to make the
client helper look like the Real Service. In other
words, RMI knows how to give the client helper
object the same methods you want to call on the
remote service.

Plus, RMI provides all the runtime infrastructure to
make it work, including a lookup service so that the
client can find and get the client helper (the proxy
for the Real Service).

With RMI, you don’t write any of the networking
or I/O code yourself. The client gets to call remote
methods (i.e. the ones the Real Service has) just
like normal method calls on objects running in the
client’s own local JVM.

Almost.

There is one difference between RMI calls and local
(normal) method calls. Remember that even though
to the client it looks like the method call is local,
the client helper sends the method call across the
network. So there is networking and I/O. And what
do we know about networking and I/O methods?

They’re risky!

They throw exceptions all over the place.

So, the client does have to acknowledge the risk. The
client has to acknowledge that when it calls a remote
method, even though to the client it’s just a local call
to the proxy/helper object, the call ultimately involves
Sockets and streams. The client’s original call is local,
but the proxy turns it into a remote call. A remote call
just means a method that’s invoked on an object on
another JVM. How the information about that call
gets transferred from one JVM to another depends
on the protocol used by the helper objects.

With RMI, you have a choice of protocols: JRMP or
IIOP. JRMP is RMI’s ‘native’ protocol, the one made
just for Java-to-Java remote calls. IIOP, on the other
hand, is the protocol for CORBA (Common Object
Request Broker Architecture), and lets you make
remote calls on things which aren’t necessarily Java
objects. CORBA is usually much more painful than
RMI, because if you don’t have Java on both ends,
there’s an awful lot of translation and conversion that
has to happen.

But thankfully, all we care about is Java-to-Java, so
we’re sticking with plain old, remarkably easy RMI.

Java RMI gives you the client and
service helper objects!

Service object

Client object
Client helper Service helper

Server heapClient heap

RMI STUB RMI SKELETON

In RMI, the client helper is a ‘stub’
and the server helper is a ‘skeleton’.

RMI helper objects

remote deployment with RMI

you are here4 615

Server
Making the Remote Service

Make a Remote Interface

Make a Remote Implementation

Generate the stubs and skeletons using rmic

Start the RMI registry (rmiregistry)

Start the remote service

MyRemote.java

public interface
MyRemote extends
Remote { }

public interface
MyRemote extends

MyRemoteImpl.java

public interface
MyRemote extends
Remote { }

public interface
MyRemote extends

This is an overview of the fi ve steps for making the remote
service (that runs on the server). Don’t worry, each step is
explained in detail over the next few pages.

The remote interface defi nes the methods
that a client can call remotely. It’s what
the client will use as the polymorphic class
type for your service. Both the Stub and
actual service will implement this!

This interfa
ce defines

the

remote methods tha
t you

want clients
 to call

This is the class that does the Real Work.
It has the real implementation of the
remote methods defi ned in the remote
interface. It’s the object that the client
wants to call methods on.

The Real Service. The class
with the methods that do
the real work. It implements
the remote interface.

These are the client and server ‘helpers’.
You don’t have to create these classes or ever
look at the source code that generates them.
It’s all handled automatically when you
run the rmic tool that ships with your Java
development kit.

File Edit Window Help Eat

%rmic MyRemoteImpl

MyRemoteImpl_Stub.class

MyRemoteImpl_Skel.class

Running rmic against the actual
service implementation class...

spits out two new classes for the helper objects

File Edit Window Help Drink

%rmiregistry

File Edit Window Help BeMerry

%java MyRemoteImpl

The rmiregistry is like the white pages of a
phone book. It’s where the user goes to get
the proxy (the client stub/helper object).

You have to get the service object up and running.
Your service implementation class instantiates an
instance of the service and registers it with the RMI
registry. Registering it makes the service available for
clients.

run this in a

separate ter
minal

Step one:

Step two:

Step three:

Step four:

Step fi ve:

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

616 chapter 18

Step one: Make a Remote Interface

1 Extend java.rmi.Remote MyRemote.java

public interface
MyRemote extends
Remote { }

public interface
MyRemote extends

Remote is a ‘marker’ interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice
that we say ‘extends’ here. One interface is allowed to extend another
interface.

public interface MyRemote extends Remote {

2 Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the polymorphic type
for the service. In other words, the client invokes methods on something
that implements the remote interface. That something is the stub, of
course, and since the stub is doing networking and I/O, all kinds of Bad
Things can happen. The client has to acknowledge the risks by handling
or declaring the remote exceptions. If the methods in an interface
declare exceptions, any code calling methods on a reference of that type
(the interface type) must handle or declare the exceptions.

import java.rmi.*;

public interface MyRemote extends Remote {
 public String sayHello() throws RemoteException;
}

3 Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you’ll be fi ne. If you are passing around your own types, just be sure that
you make your classes implement Serializable.

public String sayHello() throws RemoteException;

Your interface has t
o

announce that it’s f
or

remote method calls. An

interface can’t implement

anything, but it can
 extend

other interfaces.

Every remote method call is considered ‘risky’. Declaring RemoteException on every method forces the client to pay attention and acknowledge that things might not work.

This return value is gonna be shipped over the wire from the server back to the client, so it must be Serializable. That’s how args and return values get packaged up and sent.

the Remote interface is in java.rmi

a remote interface

remote deployment with RMI

you are here4 617

Step two: Make a Remote Implementation

1 Implement the Remote interface MyRemoteImpl.java

public interface
MyRemote extends
Remote { }

public interface
MyRemote extends

Your service has to implement the remote interface—the one
with the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
 public String sayHello() {
 return “Server says, ‘Hey’”;
 }
 // more code in class
}

2 Extend UnicastRemoteObject
In order to work as a remote service object, your object needs some
functionality related to ‘being remote’. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that
class (your superclass) do the work for you.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

3 Write a no-arg constructor that declares a RemoteException
Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation, just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that
your constructor also throws an exception.

public MyRemoteImpl() throws RemoteException { }

4 Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stub in
the registry, since that’s what the client really needs. Register your service
using the static rebind() method of the java.rmi.Naming class.
try {
 MyRemote service = new MyRemoteImpl();
 Naming.rebind(“Remote Hello”, service);
} catch(Exception ex) {...}

The compiler will make sure that you’ve implemented all the methods from the interface you implement. In this case, there’s only one.

You don’t have to put any
thing in

the constructor. You just need a

way to declare that your
superclass

constructor throws an exception.

Give your service a name (that clients can use

to look it up in the regis
try) and register it

with the RMI registry. When you bind the

service object, RMI swaps the service for the

stub and puts the stub in
 the registry.

618 chapter 18

Step three: generate stubs and skeletons

1 Run rmic on the remote implementation class
(not the remote interface)

The rmic tool, that comes with the Java software
development kit, takes a service implementation and
creates two new classes, the stub and the skeleton.
It uses a naming convention that is the name of
your remote implementation, with either _Stub or

_Skeleton added to the end. There are other options
with rmic, including not generating skeletons,
seeing what the source code for these classes looked
like, and even using IIOP as the protocol. The way
we’re doing it here is the way you’ll usually do it.
The classes will land in the current directory (i.e.
whatever you did a cd to). Remember, rmic must
be able to see your implementation class, so you’ll
probably run rmic from the directory where your
remote implementation is. (We’re deliberately not
using packages here, to make it simpler. In the Real
World, you’ll need to account for package directory
structures and fully-qualifi ed names).

%rmic MyRemoteImpl
MyRemoteImpl_Stub.class

MyRemoteImpl_Skel.class

Notice that you don’t say “.cl
ass”

on the end. Just the class name.

spits out two new classes for the helper objects

Step four: run rmiregistry

1 Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access
to your classes. The simplest way is to start it from
your ‘classes’ directory.

File Edit Window Help Huh?

%rmiregistry

File Edit Window Help Whuffi e

Step fi ve: start the service

1 Bring up another terminal and start your service
This might be from a main() method in your remote
implementation class, or from a separate launcher class.
In this simple example, we put the starter code in the
implementation class, in a main method that instantiates
the object and registers it with RMI registry.

File Edit Window Help Huh?

%java MyRemoteImpl

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

stubs and skeletons

remote deployment with RMI

you are here4 619

Complete code for the server side
Server

import java.rmi.*;
import java.rmi.server.*;

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

 public String sayHello() {
 return “Server says, ‘Hey’”;
 }

 public MyRemoteImpl() throws RemoteException { }

 public static void main (String[] args) {

 try {
 MyRemote service = new MyRemoteImpl();
 Naming.rebind(“Remote Hello”, service);
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

import java.rmi.*;

public interface MyRemote extends Remote {

 public String sayHello() throws RemoteException;
}

RemoteException and Remote
interface are in java.rmi package

Your interface MUST extend
java.rmi.Remote

All of your remote methods must
declare a RemoteException

UnicastRemoteObject is in t
he

java.rmi.server pack
age

The Remote interface:

The Remote service (the implementation):

extending UnicastRemoteObject is the

easiest way to make a remote object

you MUST implement your remote interface!!
You have to implement all the interface methods, of course. But notice that you do NOT have to declare the RemoteException.

your superclass constructor (for
UnicastRemoteObject) declares an exception, so
YOU must write a constructor, because it means
that your constructor is calling risky code (its
super constructor)

Make the remote object, then ‘bind’ it to the rmiregistry using the static Naming,rebind(). The name you register it under is the name clients will need to look it up in the rmi registry.

620 chapter 18

How does the client get the stub object?
The client has to get the stub object, since that’s the thing the
client will call methods on. And that’s where the RMI registry
comes in. The client does a ‘lookup’, like going to the white pages
of a phone book, and essentially says, “Here’s a name, and I’d like
the stub that goes with that name.”

MyRemote service = (MyRemote) Naming.lookup(“rmi://127.0.0.1/Remote Hello”);

The client always uses the remote implementation as the type of the service. In fact, the client never needs to know the actual class name of your remote service.

You have to cast it to the
interface, since the lookup
method returns type Object.

lookup() is a static method of
the Naming class

your host name or IP
address goes here

This must be the name that the service was registered under

Service object

Client object
Stub

Skeleton

ServerClient

Remote
Hello

Stub

RMI registry (on server)

1 Client does a lookup on the RMI registry

2 RMI registry returns the stub object
(as the return value of the lookup method) and RMI
deserializes the stub automatically. You MUST have
the stub class (that rmic generated for you) on the
client or the stub won’t be deserialized.

3 Client invokes a method on the stub, as
though the stub IS the real service

1

2

3

Naming.lookup(“rmi://127.0.0.1/Remote Hello”);

lookup()

stub returned

sayHello()

getting the stub

remote deployment with RMI

you are here4 621

How does the client get the stub class?
Now we get to the interesting question. Somehow, someway, the
client must have the stub class (that you generated earlier using
rmic) at the time the client does the lookup, or else the stub won’t
be deserialized on the client and the whole thing blows up. In a
simple system, you can simply hand-deliver the stub class to the
client.

There’s a much cooler way, though, although it’s beyond the
scope of this book. But just in case you’re interested, the cooler
way is called “dynamic class downloading”. With dynamic class
downloading, a stub object (or really any Serialized object) is
‘stamped’ with a URL that tells the RMI system on the client
where to find the class file for that object. Then, in the process of
deserializing an object, if RMI can’t find the class locally, it uses
that URL to do an HTTP Get to retrieve the class file. So you’d
need a simple Web server to serve up class files, and you’d also
need to change some security parameters on the client. There are
a few other tricky issues with dynamic class downloading, but that’s
the overview.

import java.rmi.*;

public class MyRemoteClient {
 public static void main (String[] args) {
 new MyRemoteClient().go();
 }

 public void go() {

 try {
 MyRemote service = (MyRemote) Naming.lookup(“rmi://127.0.0.1/Remote Hello”);

 String s = service.sayHello();

 System.out.println(s);
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Complete client code

The Naming class (for doing the remiregistry lookup) is in the java.rmi package

It comes out of the
 registry as t

ype

Object, so don
’t forget the

 cast

you need the IP address or hostname and the name used to
bind/rebind the serviceIt looks just like a regular old method call! (Except it must acknowledge the RemoteException)

622 chapter 18

Be sure each machine has the class
files it needs.
The top three things programmers do wrong with RMI are:

1) Forget to start rmiregistry before starting remote service
(when you register the service using Naming.rebind(), the
rmiregistry must be running!)

2) Forget to make arguments and return types serializable
(you won’t know until runtime; this is not something the
compiler will detect.)

3) Forget to give the stub class to the client.

Service object

Client object
Stub

Skeleton

ServerClient

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemoteImpl_Stub.classClient.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemoteImpl_Stub.class

Stub

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemote.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemote.class

MyRemoteImpl.class

MyRemoteImpl_Skel.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Don’t forget, the client
uses the interface to call
methods on the stub. The
client JVM needs the stub
class, but the client never
refers to the stub class
in code. The client always
uses the remote interface,
as though the remote
interface WERE the
actual remote object.

Server needs both the Stub and Skeleton
classes, as well as the service and the
remote interface. It needs the stub class
because remember, the stub is substituted
for the real service, when the real service
is bound to the RMI registry.

RMI class files

The remote interf
ace.

remote deployment with RMI

you are here4 623

What’s
First? 1.

2.

3.

4.

5.

6.

7.

Look at the sequence of events below, and
place them in the order in which they
occur in a Java RMI application.

The RMI registry is started The remote service (remote
implementation) is instantiated

The RMI registry is started The remote service (remote

The client does a lookup on
the RMI Registry

The stub sends the method

call to the server

The client does a lookup on

The client invokes a method

on the stub
The client invokes a method

The client gets the stub from the RMI registry

The remote service (remote

The remote service is regis-
tered with the RMI registry

Sharpen your pencil

 BULLET POINTS
ß An object on one heap cannot get a normal Java

reference to an object on a different heap (which means
running on a different JVM)

ß Java Remote Method Invocation (RMI) makes it seem like
you’re calling a method on a remote object (i.e. an object
in a different JVM), but you aren’t.

ß When a client calls a method on a remote object, the
client is really calling a method on a proxy of the remote
object. The proxy is called a ‘stub’.

ß A stub is a client helper object that takes care of the low-
level networking details (sockets, streams, serialization,
etc.) by packaging and sending method calls to the
server.

ß To build a remote service (in other words, an object that
a remote client can ultimately call methods on), you must
start with a remote interface.

ß A remote interface must extend the java.rmi.Remote
interface, and all methods must declare
RemoteException.

ß Your remote service implements your remote interface.

ß Your remote service should extend UnicastRemoteObject.
(Technically there are other ways to create a remote ob-
ject, but extending UnicastRemoteObject is the simplest).

ß Your remote service class must have a constructor,
and the constructor must declare a RemoteException
(because the superclass constructor declares one).

ß Your remote service must be instantiated, and the object
registered with the RMI registry.

ß To register a remote service, use the static
Naming.rebind(“Service Name”, serviceInstance);

ß The RMI registry must be running on the same machine
as the remote service, before you try to register a remote
object with the RMI registry.

ß The client looks up your remote service using the static
Naming.lookup(“rmi://MyHostName/ServiceName”);

ß Almost everything related to RMI can throw a
RemoteException (checked by the compiler). This
includes registering or looking up a service in the reigstry,
and all remote method calls from the client to the stub.

101101
10 110 1
0 11 0
001 10
001 01

MyRemoteImpl_Stub.class

101101
10 110 1
0 11 0
001 10
001 01

MyRemote.class

624 chapter 18

Yeah, but who really uses RMI?

I use it
for serious B-to-B,
e-commerce back-
ends, running on J2EE

technology.

We use it
for our cool

new decision-support
system.

I heard your ex-
wife still uses

plain sockets.

We’ve got an
EJB-based hotel
reservation system.
And EJB uses RMI!

I just can’t imagine
life without our Jini-
enabled home network

and applicances.

Me too! How
did anyone get
by? I just love RMI

for giving us Jini
technology.

uses for RMI

remote deployment with RMI

you are here4 625

Thanks
Kathy
Sierra

Bobʼs
Pets

Kathy

Sierra

What about Servlets?
Servlets are Java programs that run on (and with) an HTTP web server. When a client uses a
web browser to interact with a web page, a request is sent back to the web server. If the request
needs the help of a Java servlet, the web server runs (or calls, if the servlet is already running)
the servlet code. Servlet code is simply code that runs on the server, to do work as a result of
whatever the client requests (for example, save information to a text fi le or database on the
server). If you’re familiar with CGI scripts written in Perl, you know exactly what we’re talking
about. Web developers use CGI scripts or servlets to do everything from sending user-submitted
info to a database, to running a web-site’s discussion board.

And even servlets can use RMI!

By far, the most common use of J2EE technology is to mix servlets and EJBs together, where
servlets are the client of the EJB. And in that case, the servlet is using RMI to talk to the EJBs.
(Although the way you use RMI with EJB is a little different from the process we just looked at.)

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServlet.class

Web Server
Web Browser

(client) “client requests RegisterServlet”

1 Client fi lls out a registration form and clicks ‘submit’.
The HTTP server (i.e. web server) gets the request, sees that
it’s for a servlet, and sends the request to the servlet.

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServlet.class

Web Server Web Browser
(client) “client requests RegisterServlet”

2 Servlet (Java code) runs, adds data to the database,
composes a web page (with custom info) and sends it back to
the client where it displays in the browser.

confirm.html

<HTML>
 <BODY>
 Java
rules!
 <BODY>
<HTML>

“here’s a confi rmation page”

100% Local Combination 100% Remote

Servlets

HTTP

Web Start

File Edit View

HTTP

RMI app

File Edit View

RMI

Executable
Jar

File Edit View

Servlets

100% Local Combination 100% Remote

HTTP

Servlets

HTTP

626 chapter 18

very simple servlet

Step for making and running a servlet

1 Find out where your servlets need to be placed.
For these examples, we’ll assume that you already have a web server
up and running, and that it’s already confi gured to support servlets.
The most important thing is to fi nd out exactly where your servlet
class fi les have to be placed in order for your server to ‘see’ them. If
you have a web site hosted by an ISP, the hosting service can tell you
where to put your servlets, just as they’ll tell you where to place your
CGI scripts.

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServletA.class

Web Server

Servlets

2 Get the servlets.jar and add it to your classpath
Servlets aren’t part of the standard Java libraries; you need
the servlets classes packaged into the servlets.jar fi le. You can
download the servlets classes from java.sun.com, or you can get
them from your Java-enabled web server (like Apache Tomcat, at
the apache.org site). Without these classes, you won’t be able to
compile your servlets.

3 Write a servlet class by extending HttpServlet
A servlet is just a Java class that extends HttpServlet (from the
javax.servlet.http package). There are other types of servlets you
can make, but most of the time we care only about HttpServlet.

public class MyServletA extends HttpServlet { ... }

servlets.jar

4 Write an HTML page that invokes your servlet
When the user clicks a link that references your servlet, the web
server will fi nd the servlet and invoke the appropriate method
depending on the HTTP command (GET, POST, etc.)

This is the most amazing servlet.

5 Make your servlet and HTML page available to your server
This is completely dependent on your web server (and more specifi -
cally, on which version of Java Servlets that you’re using). Your ISP
may simply tell you to drop it into a “Servlets” directory on your
web site. But if you’re using, say, the latest version of Tomcat, you’ll
have a lot more work to do to get the servlet (and web page) into
the right location. (We just happen to have a book on this too .)

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServletA.class

MyPage.html

<HTML>
 <BODY>
 Java
rules!
 <BODY>
<HTML>

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServletA.class

Web Server

Servlets

MyPage.html

<HTML>
 <BODY>
 Java
rules!
 <BODY>
<HTML>

remote deployment with RMI

you are here4 627

A very simple Servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServletA extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType(“text/html”);

 PrintWriter out = response.getWriter();

 String message = “If you’re reading this, it worked!”;

 out.println(“<HTML><BODY>”);
 out.println(“<H1>” + message + “</H1>”);
 out.println(“</BODY></HTML>”);
 out.close();
 }
}

Besides io, we need to import two of the servlet pa
ckages.

Remember, these two packages are NOT part of the Java

standard libraries
-- you have to download them separately

Most ‘normal’ servlets will extend
HttpServlet, then override one or
more methods.

Override the doGet for simple

HTTP GET messages. The web server calls this method, handing you the clie
nt’s

request (you can get data
 out of it) and a ‘response

’

object that you’ll use to s
end back a response (a pag

e).

This tells the server (and browser) what kind of ‘thing’ is coming back from the server as a reuslt of this servlet running.

The response object gives us
 an output stream to

‘write’ information back out to the serv
er.

What we ‘write’ is an HTML page! The page

gets delivered through the
 server back to

the browser, just like any other HTML page,

even though this is a page
that never existed

until now. In other words, there’s no .html file

somewhere with this stuff in it.

<HTML>
 <BODY>
 This is an amazing servlet.
 </BODY>
</HTML>

HTML page with a link to this servlet This an amazing servlet.

What the web page looks like:

click the link
to trigger the
servlet

628 chapter 18

there are noDumb Questions
Q: What’s a JSP, and how does it relate to servlets?

A: JSP stands for Java Server Pages. In the end, the web server
turns a JSP into a servlet, but the difference between a servlet and
a JSP is what YOU (the developer) actually create. With a servlet,
you write a Java class that contains HTML in the output statements
(if you’re sending back an HTML page to the client). But with a
JSP, it’s the opposite—you write an HTML page that contains Java
code!

This gives you the ability to have dynamic web pages where you
write the page as a normal HTML page, except you embed Java
code (and other tags that “trigger” Java code at runtime) that
gets processed at runtime. In other words, part of the page is
customized at runtime when the Java code runs.

The main benefit of JSP over regular servlets is that it’s just a lot
easier to write the HTML part of a servlet as a JSP page than to
write HTML in the torturous print out statements in the servlet’s
response. Imagine a reasonably complex HTML page, and now
imagine formatting it within println statements. Yikes!

But for many applications, it isn’t necessary to use JSPs because
the servlet doesn’t need to send a dynamic response, or the
HTML is simple enough not to be such a big pain. And, there are
still many web servers out there that support servlets but do not
support JSPs, so you’re stuck.

Another benefit of JSPs is that you can separate the work by
having the Java developers write the servlets and the web page
developers write the JSPs. That’s the promised benefit, anyway.
In reality, there’s still a Java learning curve (and a tag learning
curve) for anyone writing a JSP, so to think that an HTML web page
designer can bang out JSPs is not realistic. Well, not without tools.
But that’s the good news—authoring tools are starting to appear,
that help web page designers create JSPs without writing the
code from scratch.

Q: Is this all you’re gonna say about servlets? After such a
huge thing on RMI?

A: Yes. RMI is part of the Java language, and all the classes for
RMI are in the standard libraries. Servlets and JSPs are not part of
the Java language; they’re considered standard extensions. You
can run RMI on any modern JVM, but Servlets and JSPs require a
properly configured web server with a servlet “container”. This is
our way of saying, “it’s beyond the scope of this book.” But you can
read much more in the lovely Head First Servlets & JSP.

 BULLET POINTS
ß Servlets are Java classes that run entirely on

(and/or within) an HTTP (web) server.

ß Servlets are useful for running code on the
server as a result of client interaction with a
web page. For example, if a client submits
information in a web page form, the servlet can
process the information, add it to a database,
and send back a customized, confirmation
response page.

ß To compile a servlet, you need the servlet
packages which are in the servlets.jar file. The
servlet classes are not part of the Java standard
libraries, so you need to download the servlets.
jar from java.sun.com or get them from a servlet-
capable web server. (Note: the Servlet library
is included with the Java 2 Enterprise Edition
(J2EE))

ß To run a servlet, you must have a web server
capable of running servlets, such as the Tomcat
server from apache.org.

ß Your servlet must be placed in a location that’s
specific to your particular web server, so you’ll
need to find that out before you try to run your
servlets. If you have a web site hosted by an ISP
that supports servlets, the ISP will tell you which
directory to place your servlets in.

ß A typical servlet extends HttpServlet and
overrides one or more servlet methods, such as
doGet() or doPost().

ß The web server starts the servlet and calls the
appropriate method (doGet(), etc.) based on the
client’s request.

ß The servlet can send back a response by getting
a PrintWriter output stream from the response
parameter of the doGet() method.

ß The servlet ‘writes’ out an HTML page, complete
with tags).

servlets and JSP

remote deployment with RMI

you are here4 629

Just for fun, let’s make the Phrase-O-Matic
work as a servlet

Now that we told you that we won’t
say any more about servlets, we can’t
resist servletizing (yes, we can verbify
it) the Phrase-O-Matic from chapter 1.
A servlet is still just Java. And Java code
can call Java code from other classes.
So a servlet is free to call a method on
the Phrase-O-Matic. All you have to do
is drop the Phrase-O-Matic class into
the same directory as your servlet, and
you’re in business. (The Phrase-O-
Matic code is on the next page).

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class KathyServlet extends HttpServlet {
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 String title = “PhraseOMatic has generated the following phrase.”;

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“<HTML><HEAD><TITLE>”);
 out.println(“PhraseOmatic”);
 out.println(“</TITLE></HEAD><BODY>”);
 out.println(“<H1>” + title + “</H1>”);
 out.println(“<P>” + PhraseOMatic.makePhrase());
 out.println(“<P>make another phrase</p>”);
 out.println(“</BODY></HTML>”);

 out.close();
 }
}

Try my
new web-enabled

phrase-o-matic and you’ll
be a slick talker just like
the boss or those guys in
marketing.

See? Your servlet can call methods on

another class. In this case,
 we’re calling

the static makePhrase() method of the

PhraseOMatic class (on the next pag
e)

630 chapter 18

public class PhraseOMatic {
 public static String makePhrase() {

 // make three sets of words to choose from
 String[] wordListOne = {“24/7”,”multi-Tier”,”30,000 foot”,”B-to-B”,”win-win”,”front-
end”, “web-based”,”pervasive”, “smart”, “six-sigma”,”critical-path”, “dynamic”};

 String[] wordListTwo = {“empowered”, “sticky”, “valued-added”, “oriented”, “centric”,
“distributed”, “clustered”, “branded”,”outside-the-box”, “positioned”, “networked”, “fo-
cused”, “leveraged”, “aligned”, “targeted”, “shared”, “cooperative”, “accelerated”};

 String[] wordListThree = {“process”, “tipping point”, “solution”, “architecture”,
“core competency”, “strategy”, “mindshare”, “portal”, “space”, “vision”, “paradigm”, “mis-
sion”};

 // find out how many words are in each list
 int oneLength = wordListOne.length;
 int twoLength = wordListTwo.length;
 int threeLength = wordListThree.length;

 // generate three random numbers, to pull random words from each list
 int rand1 = (int) (Math.random() * oneLength);
 int rand2 = (int) (Math.random() * twoLength);
 int rand3 = (int) (Math.random() * threeLength);

 // now build a phrase
 String phrase = wordListOne[rand1] + “ “ + wordListTwo[rand2] + “ “ +
wordListThree[rand3];

 // now return it
 return (“What we need is a “ + phrase);
 }
}

Phrase-O-Matic code, servlet-friendly

This is a slightly different version from the code in chapter one. In the
original, we ran the entire thing in a main() method, and we had to rerun
the program each time to generate a new phrase at the command-line. In this
version, the code simply returns a String (with the phrase) when you invoke
the static makePhrase() method. That way, you can call the method from any
other code and get back a String with the randomly-composed phrase.

Please note that these long String[] array assignments are a victim of word-
processing here—don’t type in the hyphens! Just keep on typing and let your
code editor do the wrapping. And whatever you do, don’t hit the return key in
the middle of a String (i.e. something between double quotes).

Phrase-O-Matic code

remote deployment with RMI

you are here4 631

Enterprise JavaBeans: RMI on steroids

RMI is great for writing and running remote services. But
you wouldn’t run something like an Amazon or eBay on RMI
alone. For a large, deadly serious, enterprise application, you
need something more. You need something that can handle
transactions, heavy concurrency issues (like a gazillion
people are hitting your server at once to buy those organic
dog kibbles), security (not just anyone should hit your
payroll database), and data management. For that, you need
an enterprise application server.

In Java, that means a Java 2 Enterprise Edition (J2EE) server.
A J2EE server includes both a web server and an Enterprise
JavaBeans(EJB) server, so that you can deploy an application
that includes both servlets and EJBs. Like servlets, EJB is
way beyond the scope of this book, and there’s no way to
show “just a little” EJB example with code, but we will take
a quick look at how it works. (For a much more detailed
treatment of EJB, we can recommend the lively Head First
EJB certification study guide.)

EJB object Client object
Client helper

Service helper

Client

RMI STUB
RMI SKELETON

This client could be ANYTHING, but

typically an EJB client is a servlet

running in the same J2EE server.

enterprise bean

Here’s where the EJB server gets involved! The EJB object intercepts the calls to the bean (the bean holds the real business logic) and layers in all the services provided by the EJB server (security, transactions, etc.)
EJB server

The bean object is protected
from

direct client access! Only the server

can actually talk to the bea
n. This

lets the server do things like
 say,

“Whoa! This client doesn’t have
the security clearance to ca

ll this

method...” Almost everything you pay

for in an EJB server happens right

HERE, where the server steps in!

DB

An EJB server adds a bunch
of services that you don’t get
with straight RMI. Things
like transactions, security,
concurrency, database
management, and networking.

An EJB server steps into the
middle of an RMI call and
layers in all of the services.

This is only a small part of the EJB picture!

632 chapter 18

For our final trick... a little Jini
We love Jini. We think Jini is pretty much the best thing in Java. If EJB is RMI
on steroids (with a bunch of managers), Jini is RMI with wings. Pure Java bliss.
Like the EJB material, we can’t get into any of the Jini details here, but if you
know RMI, you’re three-quarters of the way there. In terms of technology,
anyway. In terms of mindset, it’s time to make a big leap. No, it’s time to fly.

Jini uses RMI (although other protocols can be involved), but gives you a few
key features including:

Adaptive discovery

Self-healing networks

With RMI, remember, the client has to know the
name and location of the remote service. The
client code for the lookup includes the IP address or
hostname of the remote service (because that’s where
the RMI registry is running) and the logical name the
service was registered under.

But with Jini, the client has to know only one thing: the
interface implemented by the service! That’s it.

So how do you find things? The trick revolves around Jini lookup
services. Jini lookup services are far more powerful and flexible than
the RMI registry. For one thing, Jini lookup services announce themselves to the
network, automatically. When a lookup service comes online, it sends a message (using IP
multicast) out to the network saying, “I’m here, if anyone’s interested.”

But that’s not all. Let’s say you (a client) come online after the lookup service has already
announced itself, you can send a message to the entire network saying, “Are there any
lookup services out there?”

Except that you’re not really interested in the lookup service itself—you’re interested in
the services that are registered with the lookup service. Things like RMI remote services,
other serializable Java objects, and even devices such as printers, cameras, and coffee-
makers.

And here’s where it gets even more fun: when a service comes online, it will dynamically
discover (and register itself with) any Jini lookup services on the network. When the
service registers with the lookup service, the service sends a serialized object to be placed
in the lookup service. That serialized object can be a stub to an RMI remote service, a
driver for a networked device, or even the whole service itself that (once you get it from
the lookup service) runs locally on your machine. And instead of registering by name, the
service registers by the interface it implements.

Once you (the client) have a reference to a lookup service, you can say to that lookup
service, “Hey, do you have anything that implements ScientificCalculator?” At that point,
the lookup service will check its list of registered interfaces, and assuming it finds a
match, says back to you, “Yes I do have something that implements that interface. Here’s
the serialized object the ScientificCalculator service registered with me.”

a little Jini

remote deployment with RMI

you are here4 633

Adaptive discovery in action

1 Jini lookup service is launched somewhere on the network, and
announces itself using IP multicast.

2 An already-running Jini service on
another machine asks to be registered
with this newly-announced lookup
service. It registers by capability,
rather than by name. In other words,
it registers as the service interface it
implements. It sends a serialized object
to be placed in the lookup service.

Jini Lookup Service

machine on the network
somewhere...

Hey everybody,
I’m here!

another machine on the network

another machine on the network

Jini Lookup Service

machine on the network
somewhere... another machine on the network

another machine on the network

Jini Service

Register
me as something
that implements

ScientificCalculator. Here’s a
serialized object that represents

my service. Send it to
anybody who asks...

634 chapter 18

Adaptive discovery in action, continued...

3 A client on the network wants
something that implements the
ScientificCalculator interface. It has
no idea where (or if) that thing exists,
so it asks the lookup service.

4 The lookup service responds, since it does have something
registered as a ScientificCalculator interface.

Jini Lookup Service

machine on the network
somewhere...

Do you
have anything

that implements
ScientificCalculator?

another machine on the network

another machine
on the network

Jini Lookup Service

machine on the network
somewhere... another machine on the network

another machine on the network

Jini Service

Jini Service

Java app

Java app

Yes, I do
have something.

I’m sending you the
serialized object
now...

adaptive discovery in Jini

remote deployment with RMI

you are here4 635

Self-healing network in action

1 A Jini Service has asked to register with the lookup service. The lookup
service responds with a “lease”. The newly-registered service must keep
renewing the lease, or the lookup service assumes the service has gone
offline. The lookup service wants always to present an accurate picture
to the rest of the network about which services are available.

2 The service goes offline (somebody shuts it down), so it fails to
renew its lease with the lookup service. The lookup service drops it.

Jini Lookup Service

machine on the network
somewhere...

I’ll
register you,
and here’s your

lease. If you don’t
renew it, I’ll drop you.

another machine on the network

another machine
on the network

Jini Lookup Service

machine on the network
somewhere... another machine on the network

another machine on the network

Jini Service

Hmmmm... I
didn’t get a lease

renewal from that one... it
must be down. I’ll drop it. If it
comes back, it will automatically
rediscover me.

lease

636 chapter 18

Final Project: the Universal Service browser
We’re going to make something that isn’t Jini-enabled, but quite easily could be.
It will give you the flavor and feeling of Jini, but using straight RMI. In fact the
main difference between our application and a Jini application is how the service is
discovered. Instead of the Jini lookup service, which automatically announces itself and
lives anywhere on the network, we’re using the RMI registry which must be on the same
machine as the remote service, and which does not announce itself automatically.

And instead of our service registering itself automatically with the lookup service, we
have to register it in the RMI registry (using Naming.rebind()).

But once the client has found the service in the RMI registry, the rest of the application
is almost identical to the way we’d do it in Jini. (The main thing missing is the lease that
would let us have a self-healing network if any of the services go down.)

The universal service browser is like a specialized web browser, except instead of HTML
pages, the service browser downloads and displays interactive Java GUIs that we’re
calling universal services.

When you select
 a service,

it will show up here !

Choose a service from the
list. The RMI remote service
has a getServiceList()
method that sends back this
list of services.
When the user selects one,
the client asks for the
actual service (DiceRolling,
DayOfTheWeek, etc.) to
be sent back from the RMI
remote service.

universal service project

remote deployment with RMI

you are here4 637

How it works:

1 Client starts up and
does a lookup on the
RMI registry for
the service called
“ServiceServer”, and
gets back the stub.

Server Service Browser
(client)

“Please give me the thing named

“ServiceServer”

Server Service Browser
(client) “getServiceList()”

“OK, here’s an array of services”
ServiceSer

ve
r

Service
Server

Stub

RMI registry (on server)
“OK, here’s the stub”

2 Client calls getServiceList() on the stub. The ServiceServer
returns an array of services

Server Service Browser
(client)

ServiceSer
ve

r

3 Client displays the list of services in a GUI

ServiceSer
ve

r

638 chapter 18

Server Service Browser
(client)

ServiceSer
ve

r

4 User selects from the list, so client calls the getService()
method on the remote service. The remote service returns a
serialized object that is an actual service that will run inside
the client browser.

How it works, continued...

universal service browser

“getService(selectedSvc)”

“OK, here’s the service”

Service Browser
(client)

5 Client calls the getGuiPanel() on the serialized service object it
just got from the remote service. The GUI for that service is
displayed inside the browser, and the user can interact with it
locally. At this point, we don’t need the remote service unless/until
the user decides to select another service.

remote deployment with RMI

you are here4 639

1 interface ServiceServer implements Remote
A regular old RMI remote interface for the remote service (the
remote service has the method for getting the service list and
returning a selected service).

The classes and interfaces:

2 class ServiceServerImpl implements ServiceServer
The actual RMI remote service (extends UnicastRemoteObject).
Its job is to instantiate and store all the services (the things
that will be shipped to the client), and register the server itself
(ServiceServerImpl) with the RMI registry.

3 class ServiceBrowser
The client. It builds a very simple GUI, does a lookup in the RMI
registry to get the ServiceServer stub, then calls a remote method on
it to get the list of services to display in the GUI list.

4 interface Service
This is the key to everything. This very simple interface has just one
method, getGuiPanel(). Every service that gets shipped over to the
client must implement this interface. This is what makes the whole thing
UNIVERSAL! By implementing this interface, a service can come over
even though the client has no idea what the actual class (or classes)
are that make up that service. All the client knows is that whatever
comes over, it implements the Service interface, so it MUST have a
getGuiPanel() method.
The client gets a serialized object as a result of calling
getService(selectedSvc) on the ServiceServer stub, and all the client
says to that object is, “I don’t know who or what you are, but I DO
know that you implement the Service interface, so I know I can call
getGuiPanel() on you. And since getGuiPanel() returns a JPanel, I’ll just
slap it into the browser GUI and start interacting with it!

5 class DiceService implements Service
Got dice? If not, but you need some, use this service to roll anywhere
from 1 to 6 virtual dice for you.

6 class MiniMusicService implements Service
Remember that fabulous little ‘music video’ program from the fi rst
GUI Code Kitchen? We’ve turned it into a service, and you can play it
over and over and over until your roommates fi nally leave.

7 class DayOfTheWeekService implements Service
Were you born on a Friday? Type in your birthday and fi nd out.

ServiceServer

getServicesList()
getService()

ServiceServerImpl

getServicesList()
getService()

ServiceBrowser

main()

Service

getGuiPanel()

DiceService

getGuiPanel()

MiniMusicService

getGuiPanel()DayOfTheWeekService

getGuiPanel()

640 chapter 18

universal service code

interface ServiceServer (the remote interface)

import java.rmi.*;

public interface ServiceServer extends Remote {

 Object[] getServiceList() throws RemoteException;

 Service getService(Object serviceKey) throws RemoteException;
}

interface Service (what the GUI services implement)

import javax.swing.*;
import java.io.*;

public interface Service extends Serializable {
 public JPanel getGuiPanel();
}

A normal RMI remote interface
,

defines the t
wo methods the

remote service will have.

A plain old (i.e. non-remote) interface, that defines the one method that any universal service must have—getGuiPanel(). The interface extends Serializable, so that any class implementing the Service interface will automatically be Serializable. That’s a must, because the services get shipped over the wire from the server, as a result of the client calling getService() on the remote ServiceServer.

remote deployment with RMI

you are here4 641

import java.rmi.*;
import java.util.*;
import java.rmi.server.*;

public class ServiceServerImpl extends UnicastRemoteObject implements ServiceServer {

 HashMap serviceList;

 public ServiceServerImpl() throws RemoteException {
 setUpServices();
 }

 private void setUpServices() {
 serviceList = new HashMap();
 serviceList.put(“Dice Rolling Service”, new DiceService());
 serviceList.put(“Day of the Week Service”, new DayOfTheWeekService());
 serviceList.put(“Visual Music Service”, new MiniMusicService());
 }

 public Object[] getServiceList() {
 System.out.println(“in remote”);
 return serviceList.keySet().toArray();

 }

 public Service getService(Object serviceKey) throws RemoteException {
 Service theService = (Service) serviceList.get(serviceKey);
 return theService;
 }

 public static void main (String[] args) {
 try {
 Naming.rebind(“ServiceServer”, new ServiceServerImpl());
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 System.out.println(“Remote service is running”);
 }
}

class ServiceServerImpl (the remote implementation)

A normal RMI implementation

The services will be stored in a HashMap collection. Instead of putting ONE
object in the collection, you put TWO -- a key object (like a String) and a
value object (whatever you want). (see appendix B for more on HashMap)

When the construc
tor is called, init

ialize the actual

universal services
 (DiceService, MiniMusicService, etc.)

Client calls this in order to get a list of services to display in the browser (so the user can select one). We send an array of type Object (even though it has Strings inside) by making an array of just the KEYS that are in the HashMap. We won’t send an actual Service object unless the client asks for it by calling getService().

Make the services
(the actual servi

ce

objects) and put
 them into the

HashMap, with a String nam
e (for

the ‘key’).

Client calls this m
ethod after the

 user selects a se
rvice

from the displayed lis
t of services (th

at it got from the

method above). This code uses the
 key (the same key

originally sent to
 the client) to g

et the correspon
ding

service out of t
he HashMap.

642 chapter 18

import java.awt.*;
import javax.swing.*;
import java.rmi.*;
import java.awt.event.*;

public class ServiceBrowser {

 JPanel mainPanel;
 JComboBox serviceList;
 ServiceServer server;

 public void buildGUI() {
 JFrame frame = new JFrame(“RMI Browser”);
 mainPanel = new JPanel();
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);

 Object[] services = getServicesList();

 serviceList = new JComboBox(services);

 frame.getContentPane().add(BorderLayout.NORTH, serviceList);

 serviceList.addActionListener(new MyListListener());

 frame.setSize(500,500);
 frame.setVisible(true);

 }

 void loadService(Object serviceSelection) {
 try {
 Service svc = server.getService(serviceSelection);

 mainPanel.removeAll();
 mainPanel.add(svc.getGuiPanel());
 mainPanel.validate();
 mainPanel.repaint();
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }

class ServiceBrowser (the client)

this method does the RMI registry lookup,

gets the stub, and
 calls getServiceL

ist().

(The actual method is on the ne
xt page).

Add the services (an array of
 Objects) to the

JComboBox (the list). The JComboBox knows how to

make displayable Strings out
of each thing in the array.

Here’s where we add the actual service to the GUI, after the user has selected one. (This method is called by the event listener on the JComboBox). We call getService() on the remote server (the stub for ServiceServer) and pass it the String that was displayed in the list (which is the SAME String we originally got from the server when we called getServiceList()). The server returns the actual service (serialized), which is automatically deserialized (thanks to RMI) and we simply call the getGuiPanel() on the service and add the result (a JPanel) to the browser’s mainPanel.

ServiceBrowser code

remote deployment with RMI

you are here4 643

 Object[] getServicesList() {
 Object obj = null;
 Object[] services = null;

 try {

 obj = Naming.lookup(“rmi://127.0.0.1/ServiceServer”);

 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 server = (ServiceServer) obj;

 try {

 services = server.getServiceList();

 } catch(Exception ex) {
 ex.printStackTrace();
 }
 return services;

 }

 class MyListListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {

 Object selection = serviceList.getSelectedItem();
 loadService(selection);
 }
 }

 public static void main(String[] args) {
 new ServiceBrowser().buildGUI();
 }
}

Do the RMI lookup, and get t
he stub

Cast the stub to the remote interface type, so that we can call getServiceList() on it

getServiceList() gives us the array of Objects,
that we display in the JComboBox for the user to
select from.

If we’re here, it means the user made a

selection from the JComboBox list. So,

take the selectio
n they made and load the

appropriate serv
ice. (see the load

Service method

on the previous p
age, that asks th

e server for

the service that
 corresponds with this selection

)

644 chapter 18

import javax.swing.*;
import java.awt.event.*;
import java.io.*;

public class DiceService implements Service {

 JLabel label;
 JComboBox numOfDice;

 public JPanel getGuiPanel() {
 JPanel panel = new JPanel();
 JButton button = new JButton(“Roll ‘em!”);
 String[] choices = {“1”, “2”, “3”, “4”, “5”};
 numOfDice = new JComboBox(choices);
 label = new JLabel(“dice values here”);
 button.addActionListener(new RollEmListener());
 panel.add(numOfDice);
 panel.add(button);
 panel.add(label);
 return panel;
 }

 public class RollEmListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 // roll the dice
 String diceOutput = “”;
 String selection = (String) numOfDice.getSelectedItem();
 int numOfDiceToRoll = Integer.parseInt(selection);
 for (int i = 0; i < numOfDiceToRoll; i++) {
 int r = (int) ((Math.random() * 6) + 1);
 diceOutput += (“ “ + r);
 }
 label.setText(diceOutput);

 }
 }

class DiceService (a universal service, implements Service)

Here’s the one important method! The method of the Service interface-- the one the client’s gonna call when this service is selected and loaded. You can do whatever you want in the getGuiPanel() method, as long as you return a JPanel, so it builds the actual dice-rolling GUI.

Sharpen your pencil
Think about ways to improve the DiceService. One
suggestion: using what you learned in the GUI chapters,
make the dice graphical. Use a rectangle, and draw the
appropriate number of circles on each one, corresponding
to the roll for that particular die.

DiceService code

remote deployment with RMI

you are here4 645

class MiniMusicService (a universal service, implements Service)

import javax.sound.midi.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MiniMusicService implements Service {

 MyDrawPanel myPanel;

 public JPanel getGuiPanel() {
 JPanel mainPanel = new JPanel();
 myPanel = new MyDrawPanel();
 JButton playItButton = new JButton(“Play it”);
 playItButton.addActionListener(new PlayItListener());
 mainPanel.add(myPanel);
 mainPanel.add(playItButton);
 return mainPanel;
 }

 public class PlayItListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {

 try {

 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();

 sequencer.addControllerEventListener(myPanel, new int[] {127});
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 for (int i = 0; i < 100; i+= 4) {

 int rNum = (int) ((Math.random() * 50) + 1);
 if (rNum < 38) { // so now only do it if num <38 (75% of the time)
 track.add(makeEvent(144,1,rNum,100,i));
 track.add(makeEvent(176,1,127,0,i));
 track.add(makeEvent(128,1,rNum,100,i + 2));
 }
 } // end loop

 sequencer.setSequence(seq);
 sequencer.start();
 sequencer.setTempoInBPM(220);
 } catch (Exception ex) {ex.printStackTrace();}

 } // close actionperformed
 } // close inner class

This is all the music stuff from the Code Kitchen in chapter 12, so we won’t annotate it again here.

The service method! All it

does is display a
 button and

the drawing service (where

the rectangles w
ill eventually

be painted).

646 chapter 18

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 }catch(Exception e) { }
 return event;
 }

 class MyDrawPanel extends JPanel implements ControllerEventListener {

 // only if we got an event do we want to paint
 boolean msg = false;

 public void controlChange(ShortMessage event) {
 msg = true;
 repaint();
 }

 public Dimension getPreferredSize() {
 return new Dimension(300,300);
 }

 public void paintComponent(Graphics g) {
 if (msg) {

 Graphics2D g2 = (Graphics2D) g;

 int r = (int) (Math.random() * 250);
 int gr = (int) (Math.random() * 250);
 int b = (int) (Math.random() * 250);

 g.setColor(new Color(r,gr,b));

 int ht = (int) ((Math.random() * 120) + 10);
 int width = (int) ((Math.random() * 120) + 10);

 int x = (int) ((Math.random() * 40) + 10);
 int y = (int) ((Math.random() * 40) + 10);

 g.fillRect(x,y,ht, width);
 msg = false;

 } // close if
 } // close method
 } // close inner class
} // close class

class MiniMusicService, continued...

MiniMusicService code

Nothing new on this entire p
age. You’ve

seen it all in the
 graphics CodeKitchen.

If you want another exe
rcise, try

annotating this
code yourself, t

hen

compare it with the CodeKitchen in

the “A very graphic st
ory” chapter.

remote deployment with RMI

you are here4 647

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.io.*;
import java.util.*;
import java.text.*;

public class DayOfTheWeekService implements Service {

 JLabel outputLabel;
 JComboBox month;
 JTextField day;
 JTextField year;

 public JPanel getGuiPanel() {
 JPanel panel = new JPanel();
 JButton button = new JButton(“Do it!”);
 button.addActionListener(new DoItListener());
 outputLabel = new JLabel(“date appears here”);
 DateFormatSymbols dateStuff = new DateFormatSymbols();
 month = new JComboBox(dateStuff.getMonths());
 day = new JTextField(8);
 year = new JTextField(8);
 JPanel inputPanel = new JPanel(new GridLayout(3,2));
 inputPanel.add(new JLabel(“Month”));
 inputPanel.add(month);
 inputPanel.add(new JLabel(“Day”));
 inputPanel.add(day);
 inputPanel.add(new JLabel(“Year”));
 inputPanel.add(year);
 panel.add(inputPanel);
 panel.add(button);
 panel.add(outputLabel);
 return panel;
 }

 public class DoItListener implements ActionListener {
 public void actionPerformed(ActionEvent ev) {
 int monthNum = month.getSelectedIndex();
 int dayNum = Integer.parseInt(day.getText());
 int yearNum = Integer.parseInt(year.getText());
 Calendar c = Calendar.getInstance();
 c.set(Calendar.MONTH, monthNum);
 c.set(Calendar.DAY_OF_MONTH, dayNum);
 c.set(Calendar.YEAR, yearNum);
 Date date = c.getTime();
 String dayOfWeek = (new SimpleDateFormat(“EEEE”)).format(date);
 outputLabel.setText(dayOfWeek);
 }
 }
}

class DayOfTheWeekService (a universal service, implements Service)

The Service inter
face method

that builds the
GUI

Refer to chapter
 10 if you need a r

eminder

of how number and date fo
rmatting works.

This code is slight
ly different, ho

wever,

because it uses t
he Calendar class. Also, the

SimpleDateFormat lets us specif
y a pattern

for how the date should
 print out.

648 chapter 18

Congratulations!
You made it to the end.

Wouldn’t it be
dreamy if this were the end
of the book? If there were no
more bullet points or puzzles

or code listings or anything else?
But that’s probably just a

fantasy...

Of course, there’s still the two appendices.
And the index.
And then there’s the web site...
There’s no escape, really.

the end... sort of

649

Appendix A:

Final Code Kitchen

Finally, the complete version of the BeatBox!
It connects to a simple MusicServer so that you can
send and receive beat patterns with other clients.

Your message gets se
nt to

the other play
ers, along

with your curre
nt beat

pattern, when you hit

“sendIt”.
Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

Incoming messages from players. Click one to load the pattern that goes with it, and then click ‘Start’ to play it.

this is a new appendix

final BeatBox code

650 appendix A

import java.awt.*;
import javax.swing.*;
import java.io.*;
import javax.sound.midi.*;
import java.util.*;
import java.awt.event.*;
import java.net.*;
import javax.swing.event.*;

public class BeatBoxFinal {

 JFrame theFrame;
 JPanel mainPanel;
 JList incomingList;
 JTextField userMessage;
 ArrayList<JCheckBox> checkboxList;
 int nextNum;
 Vector<String> listVector = new Vector<String>();
 String userName;
 ObjectOutputStream out;
 ObjectInputStream in;
 HashMap<String, boolean[]> otherSeqsMap = new HashMap<String, boolean[]>();

 Sequencer sequencer;
 Sequence sequence;
 Sequence mySequence = null;
 Track track;

 String[] instrumentNames = {“Bass Drum”, “Closed Hi-Hat”, “Open Hi-Hat”,”Acoustic
 Snare”, “Crash Cymbal”, “Hand Clap”, “High Tom”, “Hi Bongo”, “Maracas”, “Whistle”,
 “Low Conga”, “Cowbell”, “Vibraslap”, “Low-mid Tom”, “High Agogo”, “Open Hi Conga”};

 int[] instruments = {35,42,46,38,49,39,50,60,70,72,64,56,58,47,67,63};

Final BeatBox client program
Most of this code is the same as the code from the CodeKitchens in the previous
chapters, so we don’t annotate the whole thing again. The new parts include:

GUI - two new components are added for the text area that displays incoming
messages (actually a scrolling list) and the text field.

NETWORKING - just like the SimpleChatClient in this chapter, the BeatBox now
connects to the server and gets an input and output stream.

THREADS - again, just like the SimpleChatClient, we start a ‘reader’ class that
keeps looking for incoming messages from the server. But instead of just text, the
messages coming in include TWO objects: the String message and the serialized
ArrayList (the thing that holds the state of all the checkboxes.)

appendix A Final Code Kitchen

you are here4 651

 public static void main (String[] args) {
 new BeatBoxFinal().startUp(args[0]); // args[0] is your user ID/screen name
 }

 public void startUp(String name) {
 userName = name;
 // open connection to the server
 try {
 Socket sock = new Socket(“127.0.0.1”, 4242);
 out = new ObjectOutputStream(sock.getOutputStream());
 in = new ObjectInputStream(sock.getInputStream());
 Thread remote = new Thread(new RemoteReader());
 remote.start();
 } catch(Exception ex) {
 System.out.println(“couldn’t connect - you’ll have to play alone.”);
 }
 setUpMidi();
 buildGUI();
 } // close startUp

 public void buildGUI() {

 theFrame = new JFrame(“Cyber BeatBox”);
 BorderLayout layout = new BorderLayout();
 JPanel background = new JPanel(layout);
 background.setBorder(BorderFactory.createEmptyBorder(10,10,10,10));

 checkboxList = new ArrayList<JCheckBox>();

 Box buttonBox = new Box(BoxLayout.Y_AXIS);
 JButton start = new JButton(“Start”);
 start.addActionListener(new MyStartListener());
 buttonBox.add(start);

 JButton stop = new JButton(“Stop”);
 stop.addActionListener(new MyStopListener());
 buttonBox.add(stop);

 JButton upTempo = new JButton(“Tempo Up”);
 upTempo.addActionListener(new MyUpTempoListener());
 buttonBox.add(upTempo);

 JButton downTempo = new JButton(“Tempo Down”);
 downTempo.addActionListener(new MyDownTempoListener());
 buttonBox.add(downTempo);

 JButton sendIt = new JButton(“sendIt”);
 sendIt.addActionListener(new MySendListener());
 buttonBox.add(sendIt);

 userMessage = new JTextField();

Add a command-line argument for your screen name.

Example: % java BeatBoxFinal theFlash

Nothing new... set up the
networking, I/O, and make (and
start) the reader thread.

GUI code, nothing new here

final BeatBox code

652 appendix A

 buttonBox.add(userMessage);

 incomingList = new JList();
 incomingList.addListSelectionListener(new MyListSelectionListener());
 incomingList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 JScrollPane theList = new JScrollPane(incomingList);
 buttonBox.add(theList);
 incomingList.setListData(listVector); // no data to start with

 Box nameBox = new Box(BoxLayout.Y_AXIS);
 for (int i = 0; i < 16; i++) {
 nameBox.add(new Label(instrumentNames[i]));
 }

 background.add(BorderLayout.EAST, buttonBox);
 background.add(BorderLayout.WEST, nameBox);

 theFrame.getContentPane().add(background);
 GridLayout grid = new GridLayout(16,16);
 grid.setVgap(1);
 grid.setHgap(2);
 mainPanel = new JPanel(grid);
 background.add(BorderLayout.CENTER, mainPanel);

 for (int i = 0; i < 256; i++) {
 JCheckBox c = new JCheckBox();
 c.setSelected(false);
 checkboxList.add(c);
 mainPanel.add(c);
 } // end loop

 theFrame.setBounds(50,50,300,300);
 theFrame.pack();
 theFrame.setVisible(true);
 } // close buildGUI

 public void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequence = new Sequence(Sequence.PPQ,4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(120);
 } catch(Exception e) {e.printStackTrace();}

 } // close setUpMidi

JList is a component we haven’t
used before. This is where the
incoming messages are displayed.
Only instead of a normal chat
where you just LOOK at the
messages, in this app you can
SELECT a message from the list
to load and play the attached
beat pattern.

Nothing else on this page is new

Get the Sequence
r, make a

Sequence, and m
ake a Track

appendix A Final Code Kitchen

you are here4 653

 public void buildTrackAndStart() {
 ArrayList<Integer> trackList = null; // this will hold the instruments for each
 sequence.deleteTrack(track);
 track = sequence.createTrack();

 for (int i = 0; i < 16; i++) {

 trackList = new ArrayList<Integer>();

 for (int j = 0; j < 16; j++) {
 JCheckBox jc = (JCheckBox) checkboxList.get(j + (16*i));
 if (jc.isSelected()) {
 int key = instruments[i];
 trackList.add(new Integer(key));
 } else {
 trackList.add(null); // because this slot should be empty in the track
 }
 } // close inner loop
 makeTracks(trackList);
 } // close outer loop
 track.add(makeEvent(192,9,1,0,15)); // - so we always go to full 16 beats
 try {
 sequencer.setSequence(sequence);
 sequencer.setLoopCount(sequencer.LOOP_CONTINUOUSLY);
 sequencer.start();
 sequencer.setTempoInBPM(120);
 } catch(Exception e) {e.printStackTrace();}
 } // close method

 public class MyStartListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 buildTrackAndStart();
 } // close actionPerformed
 } // close inner class

 public class MyStopListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 sequencer.stop();
 } // close actionPerformed
 } // close inner class

 public class MyUpTempoListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor((float)(tempoFactor * 1.03));
 } // close actionPerformed
 } // close inner class

Build a track by
walking through t

he checkboxes

to get their sta
te, and mapping that to

an

instrument (and making the MidiEvent for it).

This is pretty com
plex, but it is E

XACTLY as it

was in the previou
s chapters, so r

efer to previous

CodeKitchens to get t
he full explanat

ion again.

The GUI listeners.

Exactly the same as the

previous chapter
’s version.

final BeatBox code

654 appendix A

 public class MyDownTempoListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor((float)(tempoFactor * .97));
 }
 }

 public class MySendListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 // make an arraylist of just the STATE of the checkboxes
 boolean[] checkboxState = new boolean[256];
 for (int i = 0; i < 256; i++) {
 JCheckBox check = (JCheckBox) checkboxList.get(i);
 if (check.isSelected()) {
 checkboxState[i] = true;
 }
 } // close loop
 String messageToSend = null;
 try {
 out.writeObject(userName + nextNum++ + “: “ + userMessage.getText());
 out.writeObject(checkboxState);
 } catch(Exception ex) {
 System.out.println(“Sorry dude. Could not send it to the server.”);
 }
 userMessage.setText(“”);
 } // close actionPerformed
 } // close inner class

 public class MyListSelectionListener implements ListSelectionListener {
 public void valueChanged(ListSelectionEvent le) {
 if (!le.getValueIsAdjusting()) {
 String selected = (String) incomingList.getSelectedValue();
 if (selected != null) {
 // now go to the map, and change the sequence
 boolean[] selectedState = (boolean[]) otherSeqsMap.get(selected);
 changeSequence(selectedState);
 sequencer.stop();
 buildTrackAndStart();
 }
 }
 } // close valueChanged
 } // close inner class

This is new... it’s a lot like
the SimpleChatClient, except

instead of sendi
ng a String message, we serialize two objects

(the String message and the b
eat pattern) an

d write those

two objects to th
e socket output

 stream (to the server)
.

This is also new -- a ListSelectionListener that tells us

when the user made a selection on the list of messages.

When the user selects a message, we IMMEDIATELY
load the associated beat pattern (it’s in the HashMap

called otherSeqsMap) and start playing it. There’s some

if tests because of little quirky things about getting
ListSelectionEvents.

appendix A Final Code Kitchen

you are here4 655

 public class RemoteReader implements Runnable {
 boolean[] checkboxState = null;
 String nameToShow = null;
 Object obj = null;
 public void run() {
 try {
 while((obj=in.readObject()) != null) {
 System.out.println(“got an object from server”);
 System.out.println(obj.getClass());
 String nameToShow = (String) obj;
 checkboxState = (boolean[]) in.readObject();
 otherSeqsMap.put(nameToShow, checkboxState);
 listVector.add(nameToShow);
 incomingList.setListData(listVector);
 } // close while
 } catch(Exception ex) {ex.printStackTrace();}
 } // close run
 } // close inner class

 public class MyPlayMineListener implements ActionListener {
 public void actionPerformed(ActionEvent a) {
 if (mySequence != null) {
 sequence = mySequence; // restore to my original
 }
 } // close actionPerformed
 } // close inner class

 public void changeSequence(boolean[] checkboxState) {
 for (int i = 0; i < 256; i++) {
 JCheckBox check = (JCheckBox) checkboxList.get(i);
 if (checkboxState[i]) {
 check.setSelected(true);
 } else {
 check.setSelected(false);
 }
 } // close loop
 } // close changeSequence

 public void makeTracks(ArrayList list) {
 Iterator it = list.iterator();
 for (int i = 0; i < 16; i++) {
 Integer num = (Integer) it.next();
 if (num != null) {
 int numKey = num.intValue();
 track.add(makeEvent(144,9,numKey, 100, i));
 track.add(makeEvent(128,9,numKey,100, i + 1));
 }
 } // close loop
 } // close makeTracks()

This is the thread
 job -- read in data

from the server. In t
his code, ‘data’

will

always be two serialized obje
cts: the

String message and the b
eat pattern (an

ArrayList of checkbox
 state values)

When a message comes in, we read
(deserialize) the two objects (the
message and the ArrayList of Boolean
checkbox state values) and add it to
the JList component. Adding to a JList
is a two-step thing: you keep a Vector
of the lists data (Vector is an old-
fashioned ArrayList), and then tell the
JList to use that Vector as it’s source
for what to display in the list.

This method is called when the user selects something from the list. We IMMEDIATELY change the pattern to the one they selected.

All the MIDI stuff is exactly the same as it

was in the previous version.

final BeatBox code

656 appendix A

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);
 }catch(Exception e) { }
 return event;
 } // close makeEvent

} // close class

Nothing new. Just like the last
 version.

Sharpen your pencil

What are some of the ways you can improve this program?

Here are a few ideas to get you started:

1) Once you select a pattern, whatever current pattern was playing is blown
away. If that was a new pattern you were working on (or a modification of
another one), you’re out of luck. You might want to pop up a dialog box that
asks the user if he’d like to save the current pattern.

2) If you fail to type in a command-line argument, you just get an exception
when you run it! Put something in the main method that checks to see if
you’ve passed in a command-line argument. If the user doesn’t supply one,
either pick a default or print out a message that says they need to run it
again, but this time with an argument for their screen name.

3) It might be nice to have a feature where you can click a button and it
will generate a random pattern for you. You might hit on one you really like.
Better yet, have another feature that lets you load in existing ‘foundation’
patterns, like one for jazz, rock, reggae, etc. that the user can add to.

You can find existing patterns on the Head First Java web start.

appendix A Final Code Kitchen

you are here4 657

import java.io.*;
import java.net.*;
import java.util.*;

public class MusicServer {

 ArrayList<ObjectOutputStream> clientOutputStreams;

 public static void main (String[] args) {
 new MusicServer().go();
 }

 public class ClientHandler implements Runnable {

 ObjectInputStream in;
 Socket clientSocket;

 public ClientHandler(Socket socket) {
 try {
 clientSocket = socket;
 in = new ObjectInputStream(clientSocket.getInputStream());

 } catch(Exception ex) {ex.printStackTrace();}
 } // close constructor

 public void run() {
 Object o2 = null;
 Object o1 = null;
 try {

 while ((o1 = in.readObject()) != null) {

 o2 = in.readObject();

 System.out.println(“read two objects”);
 tellEveryone(o1, o2);
 } // close while

 } catch(Exception ex) {ex.printStackTrace();}
 } // close run
 } // close inner class

Final BeatBox server program
Most of this code is identical to the SimpleChatServer we made in the
Networking and Threads chapter. The only difference, in fact, is that this server
receives, and then re-sends, two serialized objects instead of a plain String
(although one of the serialized objects happens to be a String).

final BeatBox code

658 appendix A

 public void go() {
 clientOutputStreams = new ArrayList<ObjectOutputStream>();

 try {
 ServerSocket serverSock = new ServerSocket(4242);

 while(true) {
 Socket clientSocket = serverSock.accept();
 ObjectOutputStream out = new ObjectOutputStream(clientSocket.getOutputStream());
 clientOutputStreams.add(out);

 Thread t = new Thread(new ClientHandler(clientSocket));
 t.start();

 System.out.println(“got a connection”);
 }
 }catch(Exception ex) {
 ex.printStackTrace();
 }
 } // close go

 public void tellEveryone(Object one, Object two) {
 Iterator it = clientOutputStreams.iterator();
 while(it.hasNext()) {
 try {
 ObjectOutputStream out = (ObjectOutputStream) it.next();
 out.writeObject(one);
 out.writeObject(two);
 }catch(Exception ex) {ex.printStackTrace();}
 }
 } // close tellEveryone

 } // close class

We covered a lot of ground, and you’re almost finished with this book. We’ll miss you, but before

we let you go, we wouldn’t feel right about sending you out into JavaLand without a little more

preparation. We can’t possibly fit everything you’ll need to know into this relatively small appendix.

Actually, we did originally include everything you need to know about Java (not already covered by

the other chapters), by reducing the type point size to .00003. It all fit, but nobody could read it. So,

we threw most of it away, but kept the best bits for this Top Ten appendix.

This really is the end of the book. Except for the index (a must-read!).

Appendix B
The Top Ten Topics that almost made it into the Real Book...

You mean, there’s still
MORE? Doesn’t this
book EVER end?

659this is a new appendix

660 appendix B

#10 Bit Manipulation

Why do you care?

We’ve talked about the fact that there are 8 bits in a byte,
16 bits in a short, and so on. You might have occasion to
turn individual bits on or off. For instance you might find
yourself writing code for your new Java enabled toaster,
and realize that due to severe memory limitations, certain
toaster settings are controlled at the bit level. For easier
reading, we’re showing only the last 8 bits in the comments
rather than the full 32 for an int).

Bitwise NOT Operator: ~
This operator ‘flips all the bits’ of a primitive.

int x = 10; // bits are 00001010

x = ~x; // bits are now 11110101

The next three operators compare two primitives on a bit
by bit basis, and return a result based on comparing these
bits. We’ll use the following example for the next three
operators:

int x = 10; // bits are 00001010

int y = 6; // bits are 00000110

Bitwise AND Operator: &
This operator returns a value whose bits are turned on only
if both original bits are turned on:

int a = x & y; // bits are 00000010

Bitwise OR Operator: |
This operator returns a value whose bits are turned on only
if either of the original bits are turned on:

int a = x | y; // bits are 00001110

Bitwise XOR (exclusive OR) Operator: ̂
This operator returns a value whose bits are turned on only
if exactly one of the original bits are turned on:

int a = x ^ y; // bits are 00001100

The Shift Operators
These operators take a single integer primitive and shift (or
slide) all of its bits in one direction or another. If you want
to dust off your binary math skills, you might realize that
shifting bits left effectively multiplies a number by a power of
two, and shifting bits right effectively divides a number by a
power of two.

We’ll use the following example for the next three operators:

int x = -11; // bits are 11110101

Ok, ok, we’ve been putting it off, here is the world’s
shortest explanation of storing negative numbers, and
two’s complement. Remember, the leftmost bit of an integer
number is called the sign bit. A negative integer number in
Java always has its sign bit turned on (i.e. set to 1). A positive
integer number always has its sign bit turned off (0). Java
uses the two’s complement formula to store negative numbers.
To change a number’s sign using two’s complement, flip all
the bits, then add 1 (with a byte, for example, that would
mean adding 00000001 to the flipped value).

Right Shift Operator: >>
This operator shifts all of a number’s bits right by a certain
number, and fills all of the bits on the left side with whatever
the original leftmost bit was. The sign bit does not change:

int y = x >> 2; // bits are 11111101

Unsigned Right Shift Operator: >>>
Just like the right shift operator BUT it ALWAYS fills the
leftmost bits with zeros. The sign bit might change:

int y = x >>> 2; // bits are 00111101

Left Shift Operator: <<
Just like the unsigned right shift operator, but in the other
direction; the rightmost bits are filled with zeros. The sign bit
might change.

int y = x << 2; // bits are 11010100

bit manipulation

appendix B Top Ten Reference

you are here4 661

#9 Immutability

Why do you care that Strings are Immutable?
When your Java programs start to get big, you’ll
inevitably end up with lots and lots of String objects.
For security purposes, and for the sake of conserving
memory (remember your Java programs can run on
teeny Java-enabled cell phones), Strings in Java are
immutable. What this means is that when you say:

String s = “0”;

for (int x = 1; x < 10; x++) {
 s = s + x;
}
What’s actually happening is that you’re creating ten
String objects (with values “0”, “01”, “012”, through
“0123456789”). In the end s is referring to the String
with the value “0123456789”, but at this point there
are ten Strings in existence!

Whenever you make a new String, the JVM puts it
into a special part of memory called the ‘String Pool’
(sounds refreshing doesn’t it?). If there is already
a String in the String Pool with the same value, the
JVM doesn’t create a duplicate, it simply refers your
reference variable to the existing entry. The JVM can
get away with this because Strings are immutable; one
reference variable can’t change a String’s value out
from under another reference variable referring to
the same String.

The other issue with the String pool is that the
Garbage Collector doesn’t go there. So in our example,
unless by coincidence you later happen to make a
String called “01234”, for instance, the fi rst nine
Strings created in our for loop will just sit around
wasting memory.

How does this save memory?
Well, if you’re not careful, it doesn’t! But if you un-
derstand how String immutability works, than you
can sometimes take advantage of it to save memory.
If you have to do a lot of String manipulations (like
concatenations, etc.), however, there is another class
StringBuilder, better suited for that purpose. We’ll
talk more about StringBuilder in a few pages.

Why do you care that Wrappers are
Immutable?
In the Math chapter we talked about the two main
uses of the wrapper classes:

• Wrapping a primitive so it can pretend to be an
 object.

• Using the static utility methods (for example,
 Integer.parseInt()).

It’s important to remember that when you create a
wrapper object like:

 Integer iWrap = new Integer(42);

That’s it for that wrapper object. Its value will always
be 42. There is no setter method for a wrapper object.
You can, of course, refer iWrap to a different wrapper
object, but then you’ll have two objects. Once you
create a wrapper object, there’s no way to change
the value of that object!

Make it Sticki kkk
Roses are red, violets are blue.Strings are immutable, wrappers are too.

Oh look! A bonus Make it Stick.Right here in the appendix.

662 appendix B

#8 Assertions

We haven’t talked much about how to debug your Java
program while you’re developing it. We believe that
you should learn Java at the command line, as we’ve
been doing throughout the book. Once you’re a Java
pro, if you decide to use an IDE*, you might have
other debugging tools to use. In the old days, when
a Java programmer wanted to debug her code, she’d
stick a bunch of System.out.println() statements
throughout the program, printing current variable
values, and “I got here” messages, to see if the flow
control was working properly. (The ready-bake code
in chapter 6 left some debugging ‘print’ statements
in the code.) Then, once the program was working
correctly, she’d go through and take all those System.
out.println() statements back out again. It was
tedious and error prone. But as of Java 1.4 (and 5.0),
debugging got a whole lot easier. The answer?

Assertions

Assertions are like System.out.println() statements
on steroids. Add them to your code as you would
add println statements. The Java 5.0 compiler
assumes you’ll be compiling source files that are 5.0
compatible, so as of Java 5.0, compiling with assertions
is enabled by default.

At runtime, if you do nothing, the assert statements
you added to your code will be ignored by the JVM,
and won’t slow down your program. But if you tell the
JVM to enable your assertions, they will help you do
your debugging, without changing a line of code!

Some folks have complained about having to leave
assert statements in their production code, but
leaving them in can be really valuable when your
code is already deployed in the field. If your client
is having trouble, you can instruct the client to run
the program with assertions enabled, and have the
client send you the output. If the assertions were
stripped out of your deployed code, you’d never
have that option. And there is almost no downside;
when assertions are not enabled, they are completely
ignored by the JVM, so there’s no performance hit to
worry about.

How to make Assertions work

Add assertion statements to your code wherever you
believe that something must be true. For instance:

assert (height > 0);

// if true, program continues normally

// if false, throw an AssertionError

You can add a little more information to the stack
trace by saying:

assert (height > 0) : “height = “ +

height + “ weight = “ + weight;

The expression after the colon can be any legal
Java expression that resolves to a non-null value. But
whatever you do, don’t create assertions that change an
object’s state! If you do, enabling assertions at runtime
might change how your program performs.

Compiling and running with
Assertions

To compile with assertions:

javac TestDriveGame.java

(Notice that no command line options were
necessary.)

To run with assertions:

java -ea TestDriveGame

assertions

* IDE stands for Integrated Development Environment
and includes tools such as Eclipse, Borland’s JBuilder, or
the open source NetBeans (netbeans.org).

appendix B Top Ten Reference

you are here4 663

In chapter 9, we talked about how local variables
live only as long as the method in which they’re
declared stays on the stack. But some variables can
have even shorter lifespans. Inside of methods, we
often create blocks of code. We’ve been doing this
all along, but we haven’t explicitly talked in terms of
blocks. Typically, blocks of code occur within methods,
and are bounded by curly braces { }. Some common
examples of code blocks that you’ll recognize include
loops (for, while) and conditional expressions (like if
statements).

Let’s look at an example:

void doStuff() {
 int x = 0;

 for(int y = 0; y < 5; y++) {

 x = x + y;

 }

 x = x * y;

}

In the previous example, y was a block variable,
declared inside a block, and y went out of scope as
soon as the for loop ended. Your Java programs will
be more debuggable and expandable if you use local
variables instead of instance variables, and block
variables instead of local variables, whenever possible.
The compiler will make sure that you don’t try to use
a variable that’s gone out of scope, so you don’t have
to worry about runtime meltdowns.

#7 Block Scope

local variable scoped to the
 entire method

beginning of a for loop bloc
k, and y is

scoped to only the for loop
!

No problem, x and y are both in scope

Aack! Won’t compile! y is out of scope here! (this is not the way it works in some other languages, so beware!)

end of the for loop block

end of the method block, now x is also out of scope

start of the
 method block

664 appendix B

#6 Linked Invocations

While you did see a little of this in this book, we tried to keep our syntax as clean and
readable as possible. There are, however, many legal shortcuts in Java, that you’ll no doubt
be exposed to, especially if you have to read a lot code you didn’t write. One of the more
common constructs you will encounter is known as linked invocations. For example:

 StringBuffer sb = new StringBuffer(“spring”);

 sb = sb.delete(3,6).insert(2,”umme”).deleteCharAt(1);

 System.out.println(“sb = “ + sb);

 // result is sb = summer

What in the world is happening in the second line of code? Admittedly, this is a contrived
example, but you need to learn how to decipher these.

1 - Work from left to right.

2 - Find the result of the leftmost method call, in this case sb.delete(3,6). If you
look up StringBuffer in the API docs, you’ll see that the delete() method returns a
StringBuffer object. The result of running the delete() method is a StringBuffer object
with the value “spr”.

3 - The next leftmost method (insert())is called on the newly created StringBuffer
object “spr”. The result of that method call (the insert() method), is also a StringBuffer
object (although it doesn’t have to be the same type as the previous method return), and so
it goes, the returned object is used to call the next method to the right. In theory, you can
link as many methods as you want in a single statement (although it’s rare to see more than
three linked methods in a single statement). Without linking, the second line of code from
above would be more readable, and look something like this:

 sb = sb.delete(3,6);
 sb = sb.insert(2,”umme”);
 sb = sb.deleteCharAt(1);

But here’s a more common, and useful example, that you saw us using, but we thought
we’d point it out again here. This is for when your main() method needs to invoke an
instance method of the main class, but you don’t need to keep a reference to the instance of
the class. In other words, the main() needs to create the instance only so that main() can
invoke one of the instance’s methods.

 class Foo {

 public static void main(String [] args) [

 new Foo().go();

 }

 void go() {

 // here’s what we REALLY want...

 }

 }

we want to call go(), but we don’t care about

the Foo instance, so we don’t bother assigning

the new Foo object to a reference
.

linked invocations

appendix B Top Ten Reference

you are here4 665

#5 Anonymous and Static Nested Classes

A static nested class is ju
st that—a

class enclosed within another, and

marked with the static modifier.

Nested classes come in many flavors

In the GUI event-handling section of the book, we started using inner (nested) classes as a
solution for implementing listener interfaces. That’s the most common, practical, and read-
able form of an inner class—where the class is simply nested within the curly braces of another
enclosing class. And remember, it means you need an instance of the outer class in order to get
an instance of the inner class, because the inner class is a member of the outer/enclosing class.

But there are other kinds of inner classes including static and anonymous. We’re not going
into the details here, but we don’t want you to be thrown by strange syntax when you see it in
someone’s code. Because out of virtually anything you can do with the Java language, perhaps
nothing produces more bizarre-looking code than anonymous inner classes. But we’ll start with
something simpler—static nested classes.

Static nested classes

You already know what static means—something tied to the class, not a particular instance. A
static nested class looks just like the non-static classes we used for event listeners, except they’re
marked with the keyword static.

public class FooOuter {

 static class BarInner {

 void sayIt() {

 System.out.println(“method of a static inner class”);

 }

 }

}

class Test {

 public static void main (String[] args) {

 FooOuter.BarInner foo = new FooOuter.BarInner();

 foo.sayIt();

 }

}

Because a static nested class is...static, you don’t use an instance of the outer class. You just use the name of the class, the same way you invoke static methods or access static variables.

Static nested classes are more like regular non-nested classes in that they don’t enjoy a special relation-
ship with an enclosing outer object. But because static nested classes are still considered a member of
the enclosing/outer class, they still get access to any private members of the outer class... but only the
ones that are also static. Since the static nested class isn’t connected to an instance of the outer class, it
doesn’t have any special way to access the non-static (instance) variables and methods.

when arrays aren’t enough

666 appendix B

#5 Anonymous and Static Nested Classes, continued

The difference between nested and inner

Any Java class that’s defi ned within the scope of another class is known as a nested class. It
doesn’t matter if it’s anonymous, static, normal, whatever. If it’s inside another class, it’s
technically considered a nested class. But non-static nested classes are often referred to as inner
classes, which is what we called them earlier in the book. The bottom line: all inner classes are
nested classes, but not all nested classes are inner classes.

Anonymous inner classes

Imagine you’re writing some GUI code, and suddenly realize that you need an instance
of a class that implements ActionListener. But you realize you don’t have an instance of an
ActionListener. Then you realize that you also never wrote a class for that listener. You have two
choices at that point:

1) Write an inner class in your code, the way we did in our GUI code, and then instantiate it
and pass that instance into the button’s event registration (addActionListener()) method.

OR

2) Create an anonymous inner class and instantiate it, right there, just-in-time. Literally right
where you are at the point you need the listener object. That’s right, you create the class and the
instance in the place where you’d normally be supplying just the instance. Think about that for
a moment—it means you pass the entire class where you’d normally pass only an instance into a
method argument!

import java.awt.event.*;
import javax.swing.*;
public class TestAnon {
 public static void main (String[] args) {

 JFrame frame = new JFrame();
 JButton button = new JButton(“click”);
 frame.getContentPane().add(button);
 // button.addActionListener(quitListener);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 System.exit(0);
 }

 });

 }
}

We made a frame and added a bu
tton, and now we

need to register
an action listener

 with the button.

Except we never made a class that
implements the

ActionListener interface
...

Normally we’d do something like this—passing in

a reference to an
 instance of an in

ner class... an

inner class that im
plements ActionListener (and

the actionPerformed() method).

But now instead of passin
g in an object

reference, we pass in... the whole new

class definition!!
In other words, we

write the class tha
t implements Ac-

tionListener RIGHT HERE WHERE WE

NEED IT. The syntax also cr
eates an

instance of the c
lass automatically.

Notice that we say “new ActionListener()” even

though ActionListener is an interface and so you

can’t MAKE an instance of it! But this syntax

really means, “create a new class (with no name)

that implements the ActionListener interface,

and by the way, here’s the implementation of the

interface methods .actionPerformed().

new ActionListener() {
 public void actionPerformed(ActionEvent ev) {

This statement:

ends down here!

appendix B Top Ten Reference

you are here4 667

Java has four access levels and three access modifiers. There are only three modifiers because
the default (what you get when you don’t use any access modifier) is one of the four
access levels.

Access Levels (in order of how restrictive they are, from least to most restrictive)

 public

 protected

 default

 private

Access modifiers

 public

 protected

 private

Most of the time you’ll use only public and private access levels.

public

Use public for classes, constants (static final variables), and methods that you’re
exposing to other code (for example getters and setters) and most constructors.

private

Use private for virtually all instance variables, and for methods that you don’t want
outside code to call (in other words, methods used by the public methods of your class).

But although you might not use the other two (protected and default), you still need to
know what they do because you’ll see them in other code.

#4 Access Levels and Access Modifiers (Who Sees What)

public means any code anywhere can access the public thing (by
‘thing’ we mean class, variable, method, constructor, etc.).

protected works just like default (code in the same package has access), EXCEPT it
also allows subclasses outside the package to inherit the protected thing.

default access means that only code within the same package as
the class with the default thing can access the default thing.
private means that only code within the same class can access the private thing.
Keep in mind it means private to the class, not private to the object. One Dog
can see another Dog object’s private stuff, but a Cat can’t see a Dog’s privates.

access levels

when arrays aren’t enough

668 appendix B

default and protected

default

Both protected and default access levels are tied to packages. Default access is simple—it
means that only code within the same package can access code with default access. So a
default class, for example (which means a class that isn’t explicitly declared as public) can
be accessed by only classes within the same package as the default class.

But what does it really mean to access a class? Code that does not have access to a class is
not allowed to even think about the class. And by think, we mean use the class in code.
For example, if you don’t have access to a class, because of access restriction, you aren’t
allowed to instantiate the class or even declare it as a type for a variable, argument, or
return value. You simply can’t type it into your code at all! If you do, the compiler will
complain.

Think about the implications—a default class with public methods means the public
methods aren’t really public at all. You can’t access a method if you can’t see the class.

Why would anyone want to restrict access to code within the same package? Typically,
packages are designed as a group of classes that work together as a related set. So it might
make sense that classes within the same package need to access one another’s code, while
as a package, only a small number of classes and methods are exposed to the outside
world (i.e. code outside that package).

OK, that’s default. It’s simple—if something has default access (which, remember, means
no explicit access modifier!), only code within the same package as the default thing
(class, variable, method, inner class) can access that thing.

Then what’s protected for?

protected

Protected access is almost identical to default access, with one exception: it allows sub-
classes to inherit the protected thing, even if those subclasses are outside the package of the super-
class they extend. That’s it. That’s all protected buys you—the ability to let your subclasses
be outside your superclass package, yet still inherit pieces of the class, including methods
and constructors.

Many developers find very little reason to use protected, but it is used in some designs,
and some day you might find it to be exactly what you need. One of the interesting things
about protected is that—unlike the other access levels—protected access applies only to
inheritance. If a subclass-outside-the-package has a reference to an instance of the superclass
(the superclass that has, say, a protected method), the subclass can’t access the pro-
tected method using that superclass reference! The only way the subclass can access that
method is by inheriting it. In other words, the subclass-outside-the-package doesn’t have
access to the protected method, it just has the method, through inheritance.

#4 Access Levels and Access Modifiers, cont.

appendix B Top Ten Reference

you are here4 669

#3 String and StringBuffer/StringBuilder Methods

Two of the most commonly used classes in the Java API are String and StringBuffer (remember from
#9 a few pages back, Strings are immutable, so a StringBuffer/StringBuilder can be a lot mor efficient
if you’re manipulating a String). As of Java 5.0 you should use the StringBuilder class instead of
StringBuffer, unless your String manipulations need to be thread-safe, which is not common. Here’s a
brief overview of the key methods in these classes:

Both String and StringBuffer/StringBuilder classes have:

 char charAt(int index); // what char is at a certain position

 int length(); // how long is this

 String substring(int start, int end); // get a part of this

 String toString(); // what’s the String value of this

To concatenate Strings:

 String concat(string); // for the String class

 String append(String); // for StringBuffer & StringBuilder

The String class has:

 String replace(char old, char new); // replace all occurences of a char

 String substring(int begin, int end); // get a portion of a String

 char [] toCharArray(); // convert to an array of chars

 String toLowerCase(); // convert all characters to lower case

 String toUpperCase(); // convert all characters to upper case

 String trim(); // remove whitespace from the ends

 String valueOf(char []) // make a String out of a char array

 String valueOf(int i) // make a String out of a primitive
 // other primitives are supported as well

The StringBuffer & StringBuilder classes have:

 StringBxxxx delete(int start, int end); // delete a portion

 StringBxxxx insert(int offset, any primitive or a char []); // insert something

 StringBxxxx replace(int start, int end, String s); // replace this part with this String

 StringBxxxx reverse(); // reverse the SB from front to back

 void setCharAt(int index, char ch); // replace a given character

Note: StringBxxxx refers to either StringBuffer or StringBuilder, as appropriate.

String and StringBuffer

when arrays aren’t enough

670 appendix B

#2 Multidimensional Arrays

In most languages, if you create, say, a 4 x 2 two-dimensional array, you would visualize a
rectangle, 4 elements by 2 elements, with a total of 8 elements. But in Java, such an array
would actually be 5 arrays linked together! In Java, a two dimensional array is simply an array
of arrays. (A three dimensional array is an array of arrays of arrays, but we’ll leave that for
you to play with.) Here’s how it works

 int[][] a2d = new int [4][2];

The JVM creates an array with 4 elements. Each of these four elements is actually a reference
variable referring to a (newly created), int array with 2 elements.

Working with multidimensional arrays

- To access the second element in the third array: int x = a2d[2][1]; // remember, 0 based!
- To make a one-dimensional reference to one of the sub-arrays: int[] copy = a2d[1];
- Short-cut initialization of a 2 x 3 array: int[][] x = { { 2,3,4 }, { 7,8,9 } };
- To make a 2d array with irregular dimensions:
 int[][] y = new int [2][]; // makes only the first array, with a length of 2

 y[0] = new int [3]; // makes the first sub-array 3 elements in length

 y[1] = new int [5]; // makes the second sub-array 5 elements in length

int array object (int[][])
int[][]

 a2d

int int

Remember that the array itself is an object (an array holding references to int arrays)

int[] int[] int[] int[]

int int int int

int int

4 int[] refer
ence variable

s

int array (int[])
int array (int[])

int array (int[])

int array (int[])

a2d[0][0]
a2d[0][1]

a2d[3][0]

regular ints go inside each
of the eight elements a2d[2][1]

a2d[1]

appendix B Top Ten Reference

you are here4 671

And the number one topic that didn’t quite make it in...

#1 Enumerations (also called Enumerated Types or Enums)

We’ve talked about constants that are defined in the API, for instance,
JFrame.EXIT_ON_CLOSE. You can also create your own constants by
marking a variable static final. But sometimes you’ll want to create a set
of constant values to represent the only valid values for a variable. This set of
valid values is commonly referred to as an enumeration. Before Java 5.0 you
could only do a half-baked job of creating an enumeration in Java. As of Java
5.0 you can create full fledged enumerations that will be the envy of all your
pre-Java 5.0-using friends.

Who’s in the band?

Let’s say that you’re creating a website for your favorite band, and you want to
make sure that all of the comments are directed to a particular band member.

The old way to fake an “enum”:

enumerations

public static final int JERRY = 1;
public static final int BOBBY = 2;
public static final int PHIL = 3;

// later in the code

if (selectedBandMember == JERRY) {
 // do JERRY related stuff
}

The good news about this technique is that it DOES make the code easier to
read. The other good news is that you can’t ever change the value of the fake
enums you’ve created; JERRY will always be 1. The bad news is that there’s
no easy or good way to make sure that the value of selectedBandMember
will always be 1, 2, or 3. If some hard to find piece of code sets
selectedBandMember equal to 812, it’s pretty likely your code will break...

We’re hoping that by the time we got here
“selectedBandMember” has a valid value!

when arrays aren’t enough

672 appendix B

public enum Members { JERRY, BOBBY, PHIL };
public Members selectedBandMember;

// later in the code

if (selectedBandMember == Members.JERRY) {
 // do JERRY related stuff
}

The same situation using a genuine Java 5.0 enum. While this is a very basic
enumeration, most enumerations usually are this simple.

A new, official “enum”:

#1 Enumerations, cont.

This kind of l
ooks like a s

imple class def
inition

doesn’t it?
It turns out

 that enums ARE a

special kind
of class. Here we’ve created

 a new

enumerated type
 called “Members”.

The “selectedBandMember” variable is of type “Members”, and can ONLY have a value of
“JERRY”, “BOBBY”, or “PHIL”.

No need to worry about this variable’s value!

When you create an enum, you’re creating a new class, and you’re implicitly extending
java.lang.Enum. You can declare an enum as its own standalone class, in its own
source file, or as a member of another class.

Your enum extends java.lang.Enum

Using “if” and “switch” with Enums

Using the enum we just created, we can perform branches in our code using either
the if or switch statement. Also notice that we can compare enum instances using
either == or the .equals() method. Usually == is considered better style.

Members n = Members.BOBBY;

if (n.equals(Members.JERRY)) System.out.println(“Jerrrry!”);
if (n == Members.BOBBY) System.out.println(“Rat Dog”);

Members ifName = Members.PHIL;

switch (ifName) {
 case JERRY: System.out.print(“make it sing “);

 case PHIL: System.out.print(“go deep “);

 case BOBBY: System.out.println(“Cassidy! ”);

}

The syntax to refer to an enum “instance”.

Both of thes
e work fine!

“Rat Dog” is printe
d.

Pop Quiz! What’s the output?

go deep Cassidy!

Answer:

Assigning an enum value to a variable.

appendix B Top Ten Reference

you are here4 673

public class HfjEnum {

 enum Names {
 JERRY(“lead guitar”) { public String sings() {
 return “plaintively”; }
 },
 BOBBY(“rhythm guitar”) { public String sings() {
 return “hoarsely”; }
 },
 PHIL(“bass”);

 private String instrument;

 Names(String instrument) {
 this.instrument = instrument;
 }
 public String getInstrument() {
 return this.instrument;
 }
 public String sings() {
 return “occasionally”;
 }
 }

 public static void main(String [] args) {
 for (Names n : Names.values()) {
 System.out.print(n);
 System.out.print(“, instrument: “+ n.getInstrument());
 System.out.println(“, sings: “ + n.sings());
 }
 }
}

#1 Enumerations, completed

enumerations

You can add a bunch of things to your enum like a constructor, methods,
variables, and something called a constant-specific class body. They’re
not common, but you might run into them:

A really tricked-out version of a similar enum

%java HfjEnum

JERRY, instrument: lead guitar, sings: plaintively
BOBBY, instrument: rhythm guitar, sings: hoarsely
PHIL, instrument: bass, sings: occasionally
%

File Edit Window Help Bootleg

These are the so-called

“constant-specific class bodies”.

Think of them as overriding the

basic enum method (in this case

the “sing()” method), if sing() is

called on a variable with an enum

value of JERRY or BOBBY.

Notice that the basic “sing()”
method is only called when the
enum value has no constant-
specific class body.

This is an argum
ent passed in

to

the construct
or declared b

elow.

This is the enum’s constructor. It runs
once for each declared enum value (in
this case it runs three times).

You’ll see these methods being called from “main()”.

Every enum comes with a

built-in “values()” method

which is typically used in a

“for” loop as shown.

when arrays aren’t enough

674 appendix B

Captain Byte of the Flatland starship “Traverser” had received an urgent, Top Secret transmission
from headquarters. The message contained 30 heavily encrypted navigational codes that the
Traverser would need to successfully plot a course home through enemy sectors. The enemy
Hackarians, from a neighboring galaxy, had devised a devilish code-scrambling ray that was capable

of creating bogus objects on the heap of the Traverser’s only navigational computer. In
addition, the alien ray could alter valid reference variables so that they referred to these
bogus objects. The only defense the Traverser crew had against this evil Hackarian ray was

to run an inline virus checker which could be imbedded into the Traverser’s state of the art
Java 1.4 code.

Captain Byte gave Ensign Smith the following programming instructions to process the critical
navigational codes:

“Put the first five codes in an array of type ParsecKey. Put the last 25 codes in a five by five, two
dimensional array of type QuadrantKey. Pass these two arrays into the plotCourse() method of the
public final class ShipNavigation. Once the course object is returned run the inline virus checker
against all the programs reference variables and then run the NavSim program and bring me the
results.”

A few minutes later Ensign Smith returned with the NavSim output. “NavSim output ready for
review, sir”, declared Ensign Smith. “Fine”, replied the Captain, “Please review your work”. “Yes
sir!”, responded the Ensign, “First I declared and constructed an array of type ParsecKey with the
following code; ParsecKey [] p = new ParsecKey[5]; , next I declared and constructed an array
of type QuadrantKey with the following code: QuadrantKey [] [] q = new QuadrantKey [5] [5]; .
Next, I loaded the first 5 codes into the ParsecKey array using a ‘for’ loop, and then I loaded the last
25 codes into the QuadrantKey array using nested ‘for’ loops. Next, I ran the virus checker against
all 32 reference variables, 1 for the ParsecKey array, and 5 for its elements, 1 for the QuadrantKey
array, and 25 for its elements. Once the virus check returned with no viruses detected, I ran the
NavSim program and re-ran the virus checker, just to be safe… Sir ! “

Captain Byte gave the Ensign a cool, long stare and said calmly, “Ensign, you are confined to
quarters for endangering the safety of this ship, I don’t want to see your face on this bridge again
until you have properly learned your Java! Lieutenant Boolean, take over for the Ensign and do this
job correctly!”

Why did the captain confine the Ensign to his quarters?

Five-Minute
Mystery

A Long Trip Home

appendix B Top Ten Reference

you are here4 675

Five-Minute Mystery Solution

A Long Trip Home

Captain Byte knew that in Java, multidimensional arrays are actu-
ally arrays of arrays. The five by five QuadrantKey array ‘q’, would
actually need a total of 31 reference variables to be able to access
all of its components:

1 - reference variable for ‘q’

5 - reference variables for q[0] - q[4]

25 - reference variables for q[0][0] - q[4][4]

The ensign had forgotten the reference variables for the five one
dimensional arrays embedded in the ‘q’ array. Any of those five
reference variables could have been corrupted by the Hackarian
ray, and the ensign’s test would never reveal the problem.

puzzle answers

you are here4

the index

677

Symbols
&, &&, |. || (boolean operators) 151, 660

&, <<, >>, >>>, ^, |, ~ (bitwise operators) 660

++ -- (increment/decrement) 105, 115

+ (String concatenation operator) 17

. (dot operator) 36
reference 54

<, <=, ==,!=, >, >= (comparison operators) 86, 114,
151

<, <=, ==, >, >= (comparison operators) 11

A
abandoned objects. See garbage collection

abstract
class 200–210
class modifier 200

abstract methods
declaring 203

access
and inheritance 180
class modifiers 667
method modifiers 81, 667
variable modifiers 81, 667

accessors and mutators. See getters and setters

ActionListener interface 358, 358–361

addActionListener() 359–361

advice guy 480, 484

Aeron™ 28

animation 382–385

API 154–155, 158–160
ArrayList 532
collections 558

appendix A 649–658
beat box final client 650
beat box final server 657

appendix B
access levels and modifiers 667
assertions 662
bit manipulation 660
block scope 663
immutability 661
linked invocations 664
multidimensional arrays 670
String and StringBuffer methods 669

apples and oranges 137

arguments
method 74, 76, 78
polymorphic 187

ArrayList 132, 133–138, 156, 208, 558
API 532
ArrayList<Object> 211–213
autoboxing 288–289
casting 229

arrays
about 17, 59, 135
assigning 59
compared to ArrayList 134–137
creation 60
declaring 59
length attribute 17
multidimensional 670
objects, of 60, 83
primitives, of 59

assertions
assertions 662

assignments, primitive 52

assignments, reference variables 55, 57, 83

atomic code blocks 510–512. See also threads

Index
h

d h d
h

the index

678 index

audio. See midi

autoboxing 288–291
and operators 291
assignments 291

B
bark different 73

bathtub 177

beat box 316, 347, 472. See also appendix A

beer 14

behavior 73

Bela Fleck 30

bitwise operators 660

bit shifting 660

block scope 663

boolean 51

boolean expressions 11, 114
logical 151

BorderLayout manager 370–371, 401, 407

BoxLayout manager 411

brain barbell 33, 167, 188

break statement 105

BufferedReader 454, 478

BufferedWriter 453

buffers 453, 454

byte 51

bytecode 2

C
Calendar 303–305

methods 305

casting
explicit primitive 117
explicit reference 216
implicit primitive 117

catching exceptions 326

catch 338
catching multiple exceptions 329, 330, 332
try 321

catch blocks 326, 338
catching multiple exceptions 329, 330, 332

chair wars 28, 166

char 51

chat client 486
with threads 518

chat server (simple) 520

checked exceptions
runtime vs. 324

checking account. See Ryan and Monica

check box (JCheckBox) 416

class
abstract 200–210
concrete 200–210
designing 34, 41, 79
final 283
fully qualified names 154–155, 157

client/server 473

code kitchen
beat box save and restore 462
final beat box. See appendix A
making the GUI 418
music with graphics 386
playing sound 339

coffee cups 51

collections 137, 533
API 558
ArrayList 137
ArrayList<Object> 211–213
Collections.sort() 534, 539
HashMap 533
HashSet 533
LinkedHashMap 533
LinkedList 533
List 557
Map 557, 567
parameterized types 137

you are here4

the index

679

Set 557
TreeSet 533

Collections.sort() 534, 539
Comparator 551
compare() 553

Comparable 547, 566
and TreeSet 566
compareTo() method 549

Comparator 551, 566
and TreeSet 566

compare() 553

compareTo() 549

comparing with == 86

compiler 2
about 18
java -d 590

concatenate 17

concrete classes 200–210

conditional expressions 10, 11, 13

constants 282

constructors
about 240
chaining 250–256
overloaded 256
superclass 250–256

contracts 190–191, 218

cups 51

curly braces 10

D
daily advice client 480

daily advice server 484

dancing girl 316

dates
Calendar 303
methods 305
formatting 301
GregorianCalendar 303

java.util.Date 303

deadlock 516

deadly diamond of death 223

declarations
about 50
exceptions 335–336
instance variables 50

default access 668

default value 84

deployment options 582, 608

deserialized objects 441. See also serialization

directory structures
packages 589
servlets 626

doctor 169

dot operator
reference 54

double 51

duck 277
construct 242
garbage collect 261

ducking exceptions 335

E
EJB 631

encapsulation
about 79–82
benefits 80

end of book 648

enumerations 671–672

enums 671–672

equality 560
and hashCode() 561

equals() 561

equals()
about 209
Object class 209

the index

680 index

event handling 357–361
event object 361
listener interface 358–361
using inner classes 379

event source 359–361

exceptions
about 320, 325, 338
catch 321, 338
catching multiple exceptions 329, 332
checked vs. runtime 324
declaring 335–336
ducking 335–336
finally 327
flow control 326
handle or declare law 337
propagating 335–336
remote exceptions 616
throwing 323–326
try 321, 338

executable JAR 585–586, 586
with packages 592, 592–593

exercises
be the... 88, 118, 266, 310, 395
code magnets 20, 43, 64, 119, 312, 349, 467,

524–525
honeypot 267
true or false 311, 348, 466, 602
what’s the declaration 231
what’s the picture 230
which layout manager? 424
who am I 45, 89, 394

Extreme Programming 101

F
File 452

FileInputStream 441. See also I/O

FileOutputStream 432

FileReader 454. See also I/O

files
File class 452

reading from 441, 454
source file structure 7
writing to 432, 447

FileWriter 447

File class 452

final
class 189, 283
methods 189, 283
static variables 282
variables 282, 283

finally block 327

fireside chats
about 18

five minute mystery. See puzzles

float 51

FlowLayout 403, 408–410

flow control
exceptions 326

font 406

formatting
dates 301–302
format specifiers 295–296
argument 300
numbers 294–295
printf() 294
String.format() 294

for loops 105

fully qualified name 154, 157
packages 587

G
garbage collection

about 40
eligible objects 260–263
heap 57, 58
nulling references 58
reassigning references 58

generics 540, 542, 568–574
methods 544

you are here4

the index

681

wildcards 574

getters and setters 79

ghost town 109

giraffe 50

girl dreaming
inner classes 375
Java Web Start 596

girl in a tub 177

girl who isn’t getting it 182–188

graphics 364–366. See also GUI
Graphics2D class 366
Graphics object 364

GregorianCalendar 303

guessing game 38

GUI 406
about 354, 400
animation 382–385
BorderLayout 370–371, 401, 407
box layout 403, 411
buttons 405
components 354, 363–368, 400
event handling 357–361, 379
flow layout 403, 408
frames 400
graphics 363–367
ImageIcon class 365
JButton 400
JLabel 400
JPanel 400, 401
JTextArea 414
JTextField 413
layout managers 401–412
listener interface 358–361
scrolling (JScrollPane) 414
Swing 354

GUI Constants
ScrollPaneConstants.HORIZONTAL_SCROLL-

BAR_NEVER 415
ScrollPaneConstants.VERTICAL_SCROLLBAR_

ALWAYS 415

GUI methods

drawImage() 365
fillOval() 365
fillRect() 364
gradientPaint(). See also GUI
paintComponent() 364
setColor() 364
setFont() 406

GUI Widgets 354
JButton 354, 405
JCheckBox 416
JFrame 354, 400, 401
JList 417
JPanel 400, 401
JScrollPane 414, 417
JTextArea 414
JTextField 413

H
HAS-A 177–181

hashCode() 561

HashMap 533, 558

HashSet 533, 558

Hashtable 558

heap
about 40, 57, 236–238
garbage collection 40, 57, 58

I
I/O

BufferedReader 454, 478
BufferedWriter 453
buffers 453
deserialization 441
FileInputStream 441
FileOutputStream 432
FileWriter 447
InputStreamReader 478
ObjectInputStream 441
ObjectOutputStream 432, 437
serialization 432, 434–439, 437, 446, 460

the index

682 index

streams 433, 437
with sockets 478

if -else 13

if statement 13

immutability, Strings
immutability 661

implements 224

imports
static imports 307

import statement 155, 157

increment 105

inheritance
about 31, 166–192
and abstract classes 201
animals 170–175
IS-A 214, 251
super 228

initializing
instance variables 84
primitives 84
static variables 281

inner classes
about 376–386
events 379

inner class threesome 381

InputStreamReader 478

instance variables
about 34, 73
declaring 84
default values 84
initializing 84
life and scope 258–263
local variables vs. 236–238, 239
static vs. 277

instantiation. See objects

int 50
primitive 51

Integer. See wrapper

interfaces

about 219–227
for serialization 437
implementing 224, 437
implementing multiple 226
java.io.Serializable 437

IP address. See networking

IS-A 177–181, 251

J
J2EE 631

JAR files
basic commands 593
executable 585–586, 592
manifest 585
running executable 586, 592
tool 593
with Java Web Start 598

Java, about 5, 6

javac. See compiler

Java in a Nutshell 158–159

java sound 317, 340

Java Web Start 597–601
jnlp file 598, 599

Jini 632–635

JNLP 598
jnlp file 599

JPEG 365

JVM
about 2, 18

JWS. See Java Web Start

K
keywords 53

L
l 264

layout managers 401–412
BorderLayout 370–371, 403, 407

you are here4

the index

683

BoxLayout 403, 411
FlowLayout 403, 408–410

lingerie, exceptions 329

LinkedHashMap 533, 558

LinkedHashSet 558

LinkedList 533, 558

linked invocations 664

List 557

listeners
listener interface 358–361

literals, assigning values
primitive 52

local
variables 85, 236, 236–238, 258–263

locks
object 509
threads 509

long 51

loops
about 10
break 105
for 105
while 115

lost update problem. See threads

M
main() 9, 38

make it stick 53, 87, 157, 179, 227, 278

manifest file 585

Map 557, 567

Math class
methods 274–278, 286
random() 111

memory
garbage collection 260–263

metacognitive tip 33, 108, 325

methods
about 34, 78

abstract 203
arguments 74, 76, 78
final 283
generic arguments 544
on the stack 237
overloading 191
overriding 32, 167–192
return 75, 78
static 274–278

midi 317, 340–346, 387–390

midi sequencer 340–346

MINI Cooper 504

modifiers
class 200
method 203

multidimensional arrays 670

multiple inheritance 223

multiple threads. See threads

music. See midi

mystery. See puzzles

N
naming 53. See also RMI

classes and interfaces 154–155, 157
collisions 587
packages 587

networking
about 473
ports 475
sockets 475

new 55

null
reference 262

numbers
formatting 294–295

O
ObjectOutputStream 432, 437

the index

684 index

objects
about 55
arrays 59, 60, 83
comparing 209
creation 55, 240–256
eligible for garbage collection 260–263
equality 560
equals() 209, 561
life 258–263
locks 509

Object class
about 208–216
equals() 561
hashCode() 561
overriding methods 563

object graph 436, 438

object references 54, 56
assignment 55, 262
casting 216
comparing 86
equality 560
nulling 262
polymorphism 185–186

OO
contracts 190–191, 218
deadly diamond of death 223
design 34, 41, 79, 166–191
HAS-A 177–181
inheritance 166–192
interfaces 219–227
IS-A 177–181, 251
overload 191
override 167–192
polymorphism 183, 183–191, 206–217
superclass 251–256

operators
and autoboxing 291
bitwise 660
comparison 151
conditional 11
decrement 115

increment 105, 115
logical 151
shift 660

overload 191
constructors 256

override
about 32, 167–192
polymorphism. See polymorphism

P
packages 154–155, 157, 587–593

directory structure 589
organizing code 589

paintComponent() 364–368

parameter. See arguments

parameterized types 137

parsing an int. See wrapper

parsing text with String.split() 458

pass-by-copy. See pass-by-value

pass-by-value 77

phrase-o-matic 16

polymorphism 183–191
abstract classes 206–217
and exceptions 330
arguments and return types 187
references of type Object 211–213

pool puzzle. See puzzles

ports 475

prep code 99–102

primitives 53
== operator 86
autoboxing 288–289
boolean 51
byte 51
char 51
double 51
float 51
int 51

you are here4

the index

685

ranges 51
short 51
type 51

primitive casting
explicit primitive 117

printf() 294

PrintWriter 479

private
access modifier 81

protected 668

public
access modifier 81, 668

puzzles
five minute mystery 92, 527, 674
Java cross 22, 120, 162, 350, 426, 603
pool puzzle 24, 44, 65, 91, 194, 232, 396

Q
quiz card builder 448, 448–451

R
rabbit 50

random() 111

ready-bake code 112, 152–153, 520

reference variables. See object references
casting 216

registry, RMI 615, 617, 620

remote control 54, 57

remote interface. See RMI

reserved words 53

return types
about 75
polymorphic 187
values 78

risky code 319–336

RMI
about 614–622
client 620, 622

compiler 618
Jini. See also Jini
Naming.lookup() 620
Naming.rebind(). See also RMI
registry 615, 617, 620
remote exceptions 616
remote implementation 615, 617
remote inteface 615, 616
rmic 618
skeleton 618
stub 618
UnicastRemoteObject 617
universal service browser 636–648

rmic. See RMI

run()
overriding in Runnable interface 494

Runnable interface 492
about 493
run() 493, 494
threads 493

runnable thread state 495

Ryan and Monica 505–506
introduction 505–506

S
scary objects 200

scheduling threads
scheduling 496–498

scope
variables 236–238, 258–263

scrolling (JScrollPane) 414

serialization 434–439, 446
deserialization 460
interface 437
ObjectInputStream. See I/O
objectOutputStream 432
objects 460
object graph 436
reading. See I/O
restoring 460. See also I/O

the index

saving 432
serialVersionUID 461
transient 439
versioning 460, 461
writing 432

server
socket 483. See also socket

servlet 625–627

Set 557
importance of equals() 561
importance of hashCode() 561

short 51

short circuit logical operators 151

sink a dot com 96–112, 139–150

skeleton. See RMI

sleep() 501–503

sleeping threads 501–503

snowboard 214

socket
about 475
addresses 475
creating 478
I/O 478
ports 475
reading from 478
server 483
TCP/IP 475
writing to 479

sorting
Collections.sort() 534, 539, 547
Comparable interface 547, 549
Comparator 551, 553
TreeSet 564–566

source files
structure of 7

specifiers
format specifiers 295, 298
argument specifier 300

stack
heap vs. 236

methods on 237
scope 236
threads 490
trace 323

static
enumerated types 671
initializer 282
Math class methods 274–278
methods 274–278
static imports 307
variables 282

streams 433. See also I/O

String
arrays 17
concatenating 17
methods 669
parsing 458
String.format() 294–297
String.split() 458

StringBuffer/StringBuilder
methods 669

stub. See RMI

subclass
about 31, 166–192

super 228
about 31

superclass
about 166–192, 214–217, 228

super constructor 250–256

Swing. See GUI

synchronized
methods 510. See also threads

syntax
about 10, 12

System.out.print() 13

System.out.println() 13

index686

you are here4

the index

687

T
talking head 203

TCP ports 475

Telluride 30

testing
extreme programming 101

text
parsing with String.split() 458 458
read from a file. See also I/O
write to a file 447

text area (JTextArea) 414

text field (JTextField) 413

Thread.sleep() 501–503

threads
about 489–515
deadlock 516
locks 509
lost update problem 512–514
run() 493, 494
Runnable 492, 493, 494
Ryan and Monica problem 505–507
scheduling 496, 496–498
sleep() 501–503
stack 490–491
start() 492
starting 492
states 495, 496
summary 500, 517
synchronized 510–512
unpredictability 498–499

throw
exceptions 323–326
throws 323–326

transient 439

TreeMap 558

TreeSet 533, 558, 564–566, 566

try
blocks 321, 326

type 50
parameter 137, 542, 544

type-safety 540
and generics 540

U
universal service browser 636–648

V
variables

assigning 52, 262
declaring 50, 54, 84, 236–238
local 85, 236–238
nulling 262
primitive 51, 52
references 54, 55, 56, 185–186
scope 236–238
static. See static

variable declarations 50
instance 84
primitive 51
reference 54

virtual method invocation 175

W
web start. See Java Web Start

while loops 11, 115

wildcard 574

wine 202

wrapper 287
autoboxing 288–289
conversion utilities 292
Integer.parseInt() 104, 106, 117

writing. See I/O

the index

688 index

Don’t you know about the web site?
We’ve got answers to some of the

Sharpens, examples, the Code Kitchens,
Ready-bake Code, and daily updates
from the Head First author blogs!

This isn’t goodbye
Bring your brain over to

wickedlysmart.com

	Table of Contents
	Intro
	Chapter 1. Breaking the Surface: a quick dip
	Chapter 2. A Trip to Objectville: yes, there will be objects
	Chapter 3. Know Your Variables: primitives and references
	Chapter 4. How Objects Behave: object state affects method behavior
	Chapter 5. Extra-Strength Methods: flow control, operations, and more
	Chapter 6. Using the Java Library: so you don’t have to write it all yourself
	Chapter 7. Better Living in Objectville: planning for the future
	Chapter 8. Serious Polymorphism: exploiting abstract classes and interfaces
	Chapter 9. Life and Death of an Object: constructors and memory management
	Chapter 10. Numbers Matter: math, formatting, wrappers, and statics
	Chapter 11. Risky Behavior: exception handling
	Chapter 12. A Very Graphic Story: intro to GUI, event handling, and inner classes
	Chapter 13. Work on Your Swing: layout managers and components
	Chapter 14. Saving Objects: serialization and I/O
	Chapter 15. Make a Connection: networking sockets and multithreading
	Chapter 16. Data Structures: collections and generics
	Chapter 17. Release Your Code: packaging and deployment
	Chapter 18. Distributed Computing: RMI with a dash of servlets, EJB, and Jini
	Appendix A. Final code kitchen
	Appendix B. Top Ten Things that didn’t make it into the rest of the book
	Index

