INTRODUCTION TO

Automata Theory,
Languages, and
Computation

3+d Edition



INTRODUCTION TO

Automata Theory,
Languages, and
Computation

3+d Edition

JOHN E. HOPCROFT
Cornell University

RAJEEV MOTWANI
Stanford University

JEFFREY D. ULLMAN
Stanford University

A
AA4

PEARSON

| —

Addison
Wesley

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal



Publisher

Executive Editor
Acquisitions Editor

Project Editor

Associate Managing Editor
Cover Designer

Digital Assets Manager
Media Producer

Marketing Manager
Marketing Assistant

Senior Author Support/
Technology Specialist
Senior Manufacturing Buyer
Media Manufacturing Buyer

Greg Tobin

Michael Hirsch

Matt Goldstein
Katherine Harutunian
Jeffrey Holcomb
Joyce Cosentino Wells
Marianne Groth
Bethany Tidd
Michelle Brown

Dana Lopreato

Joe Vetere
Carol Melville
Ginny Michaud

Many of the exercises that appear in this text use the stems of questions from
Gradiance Corporation, which retains the copyright to all such questions.
© Gradiance Corp., 2004-2006

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Hopcroft, John E., 1939-
Introduction to automata theory, languages, and computation / by John E. Hopcroft,
Rajeev Motwani, Jeffrey D. Ullman. -- 3rd ed.
p. cm.

Includes bibliographical references and index.

ISBN 0-321-45536-3

1. Machine theory. 2. Formal languages. 3. Computational complexity. I.
Motwani, Rajeev. II. Ullman, Jeffrey D., 1942- II1. Title.

QA267.H56 2006

511.3'5--dc22

2006014263

Copyright © 2007 Pearson Education, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of
material in this work, please submit a written request to Pearson Education, Inc.,
Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA
02116, fax your request to 617-848-7047, or e-mail at
http://www.pearsoned.com/legal/permissions.htm.

123456789 10—CW—1009 08 07 06



Preface

In the preface from the 1979 predecessor to this book, Hopcroft and Ullman
marveled at the fact that the subject of automata had exploded, compared with
its state at the time they wrote their first book, in 1969. Truly, the 1979 book
contained many topics not found in the earlier work and was about twice its
size. If you compare this book with the 1979 book, you will find that, like the
automobiles of the 1970’s, this book is “larger on the outside, but smaller on
the inside.” That sounds like a retrograde step, but we are happy with the
changes for several reasons.

First, in 1979, automata and language theory was still an area of active
research. A purpose of that book was to encourage mathematically inclined
students to make new contributions to the field. Today, there is little direct
research in automata theory (as opposed to its applications), and thus little
motivation for us to retain the succinct, highly mathematical tone of the 1979
book.

Second, the role of automata and language theory has changed over the
past two decades. In 1979, automata was largely a graduate-level subject, and
we imagined our reader was an advanced graduate student, especially those
using the later chapters of the book. Today, the subject is a staple of the
undergraduate curriculum. As such, the content of the book must assume less
in the way of prerequisites from the student, and therefore must provide more
of the background and details of arguments than did the earlier book.

A third change in the environment is that Computer Science has grown to
an almost unimaginable degree in the past three decades. While in 1979 it was
often a challenge to fill up a curriculum with material that we felt would survive
the next wave of technology, today very many subdisciplines compete for the
limited amount of space in the undergraduate curriculum.

Fourthly, CS has become a more vocational subject, and there is a severe
pragmatism among many of its students. We continue to believe that aspects
of automata theory are essential tools in a variety of new disciplines, and we
believe that the theoretical, mind-expanding exercises embodied in the typical
automata course retain their value, no matter how much the student prefers to
learn only the most immediately monetizable technology. However, to assure
a continued place for the subject on the menu of topics available to the com-
puter science student, we believe it is necessary to emphasize the applications
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along with the mathematics. Thus, we have replaced a number of the more
abstruse topics in the earlier book with examples of how the ideas are used
today. While applications of automata and language theory to compilers are
now so well understood that they are normally covered in a compiler course,
there are a variety of more recent uses, including model-checking algorithms
to verify protocols and document-description languages that are patterned on
context-free grammars.

A final explanation for the simultaneous growth and shrinkage of the book
is that we were today able to take advantage of the TEX and BTEX typesetting
systems developed by Don Knuth and Les Lamport. The latter, especially,
encourages the “open” style of typesetting that makes books larger, but easier
to read. We appreciate the efforts of both men.

Use of the Book

This book is suitable for a quarter or semester course at the Junior level or
above. At Stanford, we have used the notes in CS154, the course in automata
and language theory. It is a one-quarter course, which both Rajeev and Jeff have
taught. Because of the limited time available, Chapter 11 is not covered, and
some of the later material, such as the more difficult polynomial-time reductions
in Section 10.4 are omitted as well. The book’s Web site (see below) includes
notes and syllabi for several offerings of CS154.

Some years ago, we found that many graduate students came to Stanford
with a course in automata theory that did not include the theory of intractabil-
ity. As the Stanford faculty believes that these ideas are essential for every
computer scientist to know at more than the level of “NP-complete means it
takes too long,” there is another course, CS154N, that students may take to
cover only Chapters 8, 9, and 10. They actually participate in roughly the last
third of CS154 to fulfill the CS154N requirement. Even today, we find several
students each quarter availing themselves of this option. Since it requires little
extra effort, we recommend the approach.

Prerequisites

To make best use of this book, students should have taken previously a course
covering discrete mathematics, e.g., graphs, trees, logic, and proof techniques.
We assume also that they have had several courses in programming, and are
familiar with common data structures, recursion, and the role of major system
components such as compilers. These prerequisites should be obtained in a
typical freshman-sophomore CS program.
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Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Some of the exercises or parts are marked with a star. For these exercises,
we shall endeavor to maintain solutions accessible through the book’s Web page.
These solutions are publicly available and should be used for self-testing. Note
that in a few cases, one exercise B asks for modification or adaptation of your
solution to another exercise A. If certain parts of A have solutions, then you
should expect the corresponding parts of B to have solutions as well.

Gradiance On-Line Homeworks

A new feature of the third edition is that there is an accompanying set of on-line
homeworks using a technology developed by Gradiance Corp. Instructors may
assign these homeworks to their class, or students not enrolled in a class may
enroll in an “omnibus class” that allows them to do the homeworks as a tutorial
(without an instructor-created class). Gradiance questions look like ordinary
questions, but your solutions are sampled. If you make an incorrect choice you
are given specific advice or feedback to help you correct your solution. If your
instructor permits, you are allowed to try again, until you get a perfect score.

A subscription to the Gradiance service is offered with all new copies of this
text sold in North America. For more information, visit the Addison-Wesley
web site www.aw.com/gradiance or send email to computing@aw.com.

Support on the World Wide Web

The book’s home page is
http://www-db.stanford.edu/"ullman/ialc.html

Here are solutions to starred exercises, errata as we learn of them, and backup
materials. We hope to make available the notes for each offering of CS154 as
we teach it, including homeworks, solutions, and exams.
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Chapter 1

Automata: The Methods
and the Madness

Automata theory is the study of abstract computing devices, or “machines.”
Before there were computers, in the 1930’s, A. Turing studied an abstract ma-
chine that had all the capabilities of today’s computers, at least as far as in
what they could compute. Turing’s goal was to describe precisely the boundary
between what a computing machine could do and what it could not do; his
conclusions apply not only to his abstract Turing machines, but to today’s real
machines.

In the 1940’s and 1950’s, simpler kinds of machines, which we today call
“finite automata,” were studied by a number of researchers. These automata,
originally proposed to model brain function, turned out to be extremely useful
for a variety of other purposes, which we shall mention in Section 1.1. Also in
the late 1950’s, the linguist N. Chomsky began the study of formal “grammars.”
While not strictly machines, these grammars have close relationships to abstract
automata and serve today as the basis of some important software components,
including parts of compilers.

In 1969, S. Cook extended Turing’s study of what could and what could
not be computed. Cook was able to separate those problems that can be solved
efficiently by computer from those problems that can in principle be solved, but
in practice take so much time that computers are useless for all but very small
instances of the problem. The latter class of problems is called “intractable,”
or “NP-hard.” It is highly unlikely that even the exponential improvement in
computing speed that computer hardware has been following (“Moore’s Law”)
will have significant impact on our ability to solve large instances of intractable
problems.

All of these theoretical developments bear directly on what computer scien-
tists do today. Some of the concepts, like finite automata and certain kinds of
formal grammars, are used in the design and construction of important kinds
of software. Other concepts, like the Turing machine, help us understand what
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we can expect from our software. Especially, the theory of intractable problems
lets us deduce whether we are likely to be able to meet a problem “head-on”
and write a program to solve it (because it is not in the intractable class), or
whether we have to find some way to work around the intractable problem:
find an approximation, use a heuristic, or use some other method to limit the
amount of time the program will spend solving the problem.

In this introductory chapter, we begin with a very high-level view of what
automata theory is about, and what its uses are. Much of the chapter is de-
voted to a survey of proof techniques and tricks for discovering proofs. We cover
deductive proofs, reformulating statements, proofs by contradiction, proofs by
induction, and other important concepts. A final section introduces the con-
cepts that pervade automata theory: alphabets, strings, and languages.

1.1 Why Study Automata Theory?

There are several reasons why the study of automata and complexity is an
important part of the core of Computer Science. This section serves to introduce
the reader to the principal motivation and also outlines the major topics covered
in this book.

1.1.1 Introduction to Finite Automata

Finite automata are a useful model for many important kinds of hardware and
software. We shall see, starting in Chapter 2, examples of how the concepts are
used. For the moment, let us just list some of the most important kinds:

1. Software for designing and checking the behavior of digital circuits.

2. The “lexical analyzer” of a typical compiler, that is, the compiler com-
ponent that breaks the input text into logical units, such as identifiers,
keywords, and punctuation.

3. Software for scanning large bodies of text, such as collections of Web
pages, to find occurrences of words, phrases, or other patterns.

4. Software for verifying systems of all types that have a finite number of
distinct states, such as communications protocols or protocols for secure
exchange of information.

While we shall soon meet a precise definition of automata of various types,
let us begin our informal introduction with a sketch of what a finite automaton
is and does. There are many systems or components, such as those enumerated
above, that may be viewed as being at all times in one of a finite number
of “states.” The purpose of a state is to remember the relevant portion of the
system’s history. Since there are only a finite number of states, the entire history
generally cannot be remembered, so the system must be designed carefully, to
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remember what is important and forget what is not. The advantage of having
only a finite number of states is that we can implement the system with a fixed
set of resources. For example, we could implement it in hardware as a circuit, or
as a simple form of program that can make decisions looking only at a limited
amount of data or using the position in the code itself to make the decision.

Example 1.1: Perhaps the simplest nontrivial finite automaton is an on/off
switch. The device remembers whether it is in the “on” state or the “off” state,
and it allows the user to press a button whose effect is different, depending on
the state of the switch. That is, if the switch is in the off state, then pressing
the button changes it to the on state, and if the switch is in the on state, then
pressing the same button turns it to the off state.

Push

e @ @

Push

Figure 1.1: A finite automaton modeling an on/off switch

The finite-automaton model for the switch is shown in Fig. 1.1. As for all
finite automata, the states are represented by circles; in this example, we have
named the states on and off. Arcs between states are labeled by “inputs,” which
represent external influences on the system. Here, both arcs are labeled by the
input Push, which represents a user pushing the button. The intent of the two
arcs is that whichever state the system is in, when the Push input is received
it goes to the other state.

One of the states is designated the “start state,” the state in which the
system is placed initially. In our example, the start state is off, and we conven-
tionally indicate the start state by the word Start and an arrow leading to that
state.

It is often necessary to indicate one or more states as “final” or “accepting”
states. Entering one of these states after a sequence of inputs indicates that
the input sequence is good in some way. For instance, we could have regarded
the state on in Fig. 1.1 as accepting, because in that state, the device being
controlled by the switch will operate. It is conventional to designate accepting
states by a double circle, although we have not made any such designation in
Fig. 1.1. O

Example 1.2: Sometimes, what is remembered by a state can be much more
complex than an on/off choice. Figure 1.2 shows another finite automaton that
could be part of a lexical analyzer. The job of this automaton is to recognize
the keyword then. It thus needs five states, each of which represents a different
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position in the word then that has been reached so far. These positions corre-
spond to the prefixes of the word, ranging from the empty string (i.e., nothing
of the word has been seen so far) to the complete word.

Figure 1.2: A finite automaton modeling recognition of then

In Fig. 1.2, the five states are named by the prefix of then seen so far. Inputs
correspond to letters. We may imagine that the lexical analyzer examines one
character of the program that it is compiling at a time, and the next character
to be examined is the input to the automaton. The start state corresponds to
the empty string, and each state has a transition on the next letter of then to
the state that corresponds to the next-larger prefix. The state named then is
entered when the input has spelled the word then. Since it is the job of this
automaton to recognize when then has been seen, we could consider that state
the lone accepting state. O

1.1.2 Structural Representations

There are two important notations that are not automaton-like, but play an
important role in the study of automata and their applications.

1. Grammars are useful models when designing software that processes data
with a recursive structure. The best-known example is a “parser,” the
component of a compiler that deals with the recursively nested features
of the typical programming language, such as expressions — arithmetic,
conditional, and so on. For instance, a grammatical rule like £ = E+ E
states that an expression can be formed by taking any two expressions
and connecting them by a plus sign; this rule is typical of how expressions
of real programming languages are formed. We introduce context-free
grammars, as they are usually called, in Chapter 5.

2. Regular Expressions also denote the structure of data, especially text
strings. As we shall see in Chapter 3, the patterns of strings they describe
are exactly the same as what can be described by finite automata. The
style of these expressions differs significantly from that of grammars, and
we shall content ourselves with a simple example here. The UNIX-style
regular expression ’ [A-Z] [a-z]*[ ] [A-Z][A-Z]’ represents capitalized
words followed by a space and two capital letters. This expression rep-
resents patterns in text that could be a city and state, e.g., Ithaca NY.
It misses multiword city names, such as Palo Alto CA, which could be
captured by the more complex expression

' [A-Z] [a-z]*([ 1[A-Z] [a-z]*)*[ ][A-Z][A-Z]’
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When interpreting such expressions, we only need to know that [A-Z]
represents a range of characters from capital “A” to capital “Z” (i.e., any
capital letter), and [ ] is used to represent the blank character alone.
Also, the symbol * represents “any number of” the preceding expression.
Parentheses are used to group components of the expression; they do not
represent characters of the text described.

1.1.3 Automata and Complexity

Automata are essential for the study of the limits of computation. As we
mentioned in the introduction to the chapter, there are two important issues:

1. What can a computer do at all? This study is called “decidability,” and
the problems that can be solved by computer are called “decidable.” This
topic is addressed in Chapter 9.

2. What can a computer do efficiently? This study is called “intractabil-
ity,” and the problems that can be solved by a computer using no more
time than some slowly growing function of the size of the input are called
“tractable.” Often, we take all polynomial functions to be “slowly grow-
ing,” while functions that grow faster than any polynomial are deemed to
grow too fast. The subject is studied in Chapter 10.

1.2 Introduction to Formal Proof

If you studied plane geometry in high school any time before the 1990’s, you
most likely had to do some detailed “deductive proofs,” where you showed
the truth of a statement by a detailed sequence of steps and reasons. While
geometry has its practical side (e.g., you need to know the rule for computing
the area of a rectangle if you need to buy the correct amount of carpet for a
room), the study of formal proof methodologies was at least as important a
reason for covering this branch of mathematics in high school.

In the USA of the 1990’s it became popular to teach proof as a matter
of personal feelings about the statement. While it is good to feel the truth
of a statement you need to use, important techniques of proof are no longer
mastered in high school. Yet proof is something that every computer scientist
needs to understand. Some computer scientists take the extreme view that a
formal proof of the correctness of a program should go hand-in-hand with the
writing of the program itself. We doubt that doing so is productive. On the
other hand, there are those who say that proof has no place in the discipline of
programming. The slogan “if you are not sure your program is correct, run it
and see” is commonly offered by this camp.

Our position is between these two extremes. Testing programs is surely
essential. However, testing goes only so far, since you cannot try your program
on every input. More importantly, if your program is complex — say a tricky
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recursion or iteration — then if you don’t understand what is going on as you
go around a loop or call a function recursively, it is unlikely that you will write
the code correctly. When your testing tells you the code is incorrect, you still
need to get it right.

To make your iteration or recursion correct, you need to set up an inductive
hypothesis, and it is helpful to reason, formally or informally, that the hypoth-
esis is consistent with the iteration or recursion. This process of understanding
the workings of a correct program is essentially the same as the process of prov-
ing theorems by induction. Thus, in addition to giving you models that are
useful for certain types of software, it has become traditional for a course on
automata theory to cover methodologies of formal proof. Perhaps more than
other core subjects of computer science, automata theory lends itself to natural
and interesting proofs, both of the deductive kind (a sequence of justified steps)
and the inductive kind (recursive proofs of a parameterized statement that use
the statement itself with “lower” values of the parameter).

1.2.1 Deductive Proofs

As mentioned above, a deductive proof consists of a sequence of statements
whose truth leads us from some initial statement, called the hypothesis or the
given statement(s), to a conclusion statement. Each step in the proof must
follow, by some accepted logical principle, from either the given facts, or some
of the previous statements in the deductive proof, or a combination of these.

The hypothesis may be true or false, typically depending on values of its
parameters. Often, the hypothesis consists of several independent statements
connected by a logical AND. In those cases, we talk of each of these statements
as a hypothesis, or as a given statement.

The theorem that is proved when we go from a hypothesis H to a conclusion
C' is the statement “if H then C.” We say that C is deduced from H. An example
theorem of the form “if H then C” will illustrate these points.

Theorem 1.3: If z > 4, then 2% > z2. O

It is not hard to convince ourselves informally that Theorem 1.3 is true,
although a formal proof requires induction and will be left for Example 1.17.
First, notice that the hypothesis H is “z > 4.” This hypothesis has a parameter,
z, and thus is neither true nor false. Rather, its truth depends on the value of
the parameter z; e.g., H is true for z = 6 and false for z = 2.

Likewise, the conclusion C is “2%® > x2.” This statement also uses parameter
x and is true for certain values of x and not others. For example, C is false for
x = 3, since 23 = 8, which is not as large as 32 = 9. On the other hand, C is
true for x = 4, since 2* = 4% = 16. For = = 5, the statement is also true, since
25 = 32 is at least as large as 5% = 25.

Perhaps you can see the intuitive argument that tells us the conclusion
2% > 2 will be true whenever > 4. We already saw that it is true for z = 4.
As z grows larger than 4, the left side, 2* doubles each time z increases by
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1. However, the right side, 22, grows by the ratio (zT-H)Z If > 4, then

(xz + 1)/z cannot be greater than 1.25, and therefore (%“)2 cannot be bigger
than 1.5625. Since 1.5625 < 2, each time z increases above 4 the left side 27
grows more than the right side z2. Thus, as long as we start from a value like
z = 4 where the inequality 2* > z2 is already satisfied, we can increase = as
much as we like, and the inequality will still be satisfied.

We have now completed an informal but accurate proof of Theorem 1.3. We
shall return to the proof and make it more precise in Example 1.17, after we
introduce “inductive” proofs.

Theorem 1.3, like all interesting theorems, involves an infinite number of
related facts, in this case the statement “if > 4 then 2% > 22” for all integers
z. In fact, we do not need to assume z is an integer, but the proof talked about
repeatedly increasing « by 1, starting at x = 4, so we really addressed only the
situation where z is an integer.

Theorem 1.3 can be used to help deduce other theorems. In the next ex-
ample, we consider a complete deductive proof of a simple theorem that uses
Theorem 1.3.

Theorem 1.4: If x is the sum of the squares of four positive integers, then
2% > g2,

PROOF: The intuitive idea of the proof is that if the hypothesis is true for z,
that is, x is the sum of the squares of four positive integers, then x must be at
least 4. Therefore, the hypothesis of Theorem 1.3 holds, and since we believe
that theorem, we may state that its conclusion is also true for . The reasoning
can be expressed as a sequence of steps. Each step is either the hypothesis of
the theorem to be proved, part of that hypothesis, or a statement that follows
from one or more previous statements.

By “follows” we mean that if the hypothesis of some theorem is a previous
statement, then the conclusion of that theorem is true, and can be written down
as a statement of our proof. This logical rule is often called modus ponens; i.e.,
if we know H is true, and we know “if H then C” is true, we may conclude
that C is true. We also allow certain other logical steps to be used in creating
a statement that follows from one or more previous statements. For instance,
if A and B are two previous statements, then we can deduce and write down
the statement “A and B.”

Figure 1.3 shows the sequence of statements we need to prove Theorem 1.4.
While we shall not generally prove theorems in such a stylized form, it helps to
think of proofs as very explicit lists of statements, each with a precise justifica-
tion. In step (1), we have repeated one of the given statements of the theorem:
that z is the sum of the squares of four integers. It often helps in proofs if we
name quantities that are referred to but not named, and we have done so here,
giving the four integers the names a, b, ¢, and d.

In step (2), we put down the other part of the hypothesis of the theorem:
that the values being squared are each at least 1. Technically, this statement
represents four distinct statements, one for each of the four integers involved.
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| | Statement | Justification |
l.|z=a®>+b2+2 +d? Given
2.la>1;b>1;c>1;d>1 Given
3.1 a2>1;0>>1;¢>>1;d®>>1 | (2) and properties of arithmetic
4. |z >4 (1), (3), and properties of arithmetic
5. | 2% > a? (4) and Theorem 1.3

Figure 1.3: A formal proof of Theorem 1.4

Then, in step (3) we observe that if a number is at least 1, then its square is
also at least 1. We use as a justification the fact that statement (2) holds, and
“properties of arithmetic.” That is, we assume the reader knows, or can prove
simple statements about how inequalities work, such as the statement “if y > 1,
then y2 > 1.7

Step (4) uses statements (1) and (3). The first statement tells us that z is
the sum of the four squares in question, and statement (3) tells us that each of
the squares is at least 1. Again using well-known properties of arithmetic, we
conclude that x is at least 1+ 1+ 1+ 1, or 4.

At the final step (5), we use statement (4), which is the hypothesis of Theo-
rem 1.3. The theorem itself is the justification for writing down its conclusion,
since its hypothesis is a previous statement. Since the statement (5) that is
the conclusion of Theorem 1.3 is also the conclusion of Theorem 1.4, we have
now proved Theorem 1.4. That is, we have started with the hypothesis of that
theorem, and have managed to deduce its conclusion. O

1.2.2 Reduction to Definitions

In the previous two theorems, the hypotheses used terms that should have
been familiar: integers, addition, and multiplication, for instance. In many
other theorems, including many from automata theory, the terms used in the
statement may have implications that are less obvious. A useful way to proceed
in many proofs is:

e If you are not sure how to start a proof, convert all terms in the hypothesis
to their definitions.

Here is an example of a theorem that is simple to prove once we have ex-
pressed its statement in elementary terms. It uses the following two definitions:

1. A set S is finite if there exists an integer n such that S has exactly n
elements. We write ||S|| = n, where ||S]| is used to denote the number
of elements in a set S. If the set S is not finite, we say S is infinite.
Intuitively, an infinite set is a set that contains more than any integer
number of elements.
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2. If S and T are both subsets of some set U, then T is the complement of S
(with respect to U) if SUT =U and S N'T = §. That is, each element
of U is in exactly one of S and 7T'; put another way, 1" consists of exactly
those elements of U that are not in S.

Theorem 1.5: Let S be a finite subset of some infinite set U. Let T be the
complement of S with respect to U. Then T is infinite.

PROOF: Intuitively, this theorem says that if you have an infinite supply of
something (U), and you take a finite amount away (S), then you still have an
infinite amount left. Let us begin by restating the facts of the theorem as in
Fig. 1.4.

| Original Statement

New Statement |

S is finite There is a integer n
such that ||S|| =n
U is infinite For no integer p
is Ul =p
T is the complement of S | SUT =U and SNT =0

Figure 1.4: Restating the givens of Theorem 1.5

We are still stuck, so we need to use a common proof technique called “proof
by contradiction.” In this proof method, to be discussed further in Section 1.3.3,
we assume that the conclusion is false. We then use that assumption, together
with parts of the hypothesis, to prove the opposite of one of the given statements
of the hypothesis. We have then shown that it is impossible for all parts of the
hypothesis to be true and for the conclusion to be false at the same time.
The only possibility that remains is for the conclusion to be true whenever the
hypothesis is true. That is, the theorem is true.

In the case of Theorem 1.5, the contradiction of the conclusion is “T" is
finite.” Let us assume T is finite, along with the statement of the hypothesis
that says S is finite; i.e., ||S|| = n for some integer n. Similarly, we can restate
the assumption that 7" is finite as ||T'|| = m for some integer m.

Now one of the given statements tells us that SUT = U, and S NT = ().
That is, the elements of U are exactly the elements of S and T'. Thus, there
must be n + m elements of U. Since n +m is an integer, and we have shown
Ul = n+m, it follows that U is finite. More precisely, we showed the number
of elements in U is some integer, which is the definition of “finite.” But the
statement that U is finite contradicts the given statement that U is infinite. We
have thus used the contradiction of our conclusion to prove the contradiction
of one of the given statements of the hypothesis, and by the principle of “proof
by contradiction” we may conclude the theorem is true. O

Proofs do not have to be so wordy. Having seen the ideas behind the proof,
let us reprove the theorem in a few lines.
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Statements With Quantifiers

Many theorems involve statements that use the quantifiers “for all” and
“there exists,” or similar variations, such as “for every” instead of “for all.”
The order in which these quantifiers appear affects what the statement
means. It is often helpful to see statements with more than one quantifier
as a “game” between two players — for-all and there-exists — who take
turns specifying values for the parameters mentioned in the theorem. “For-
all” must consider all possible choices, so for-all’s choices are generally left
as variables. However, “there-exists” only has to pick one value, which
may depend on the values picked by the players previously. The order in
which the quantifiers appear in the statement determines who goes first.
If the last player to make a choice can always find some allowable value,
then the statement is true.

For example, consider an alternative definition of “infinite set”: set S
is infinite if and only if for all integers n, there exists a subset T' of S with
exactly n members. Here, “for-all” precedes “there-exists,” so we must
consider an arbitrary integer n. Now, “there-exists” gets to pick a subset
T, and may use the knowledge of n to do so. For instance, if S were the
set of integers, “there-exists” could pick the subset ' = {1,2,...,n} and
thereby succeed regardless of n. That is a proof that the set of integers is
infinite.

The following statement looks like the definition of “infinite,” but is
incorrect because it reverses the order of the quantifiers: “there exists a
subset 7" of set .S such that for all n, set 7" has exactly n members.” Now,
given a set S such as the integers, player “there-exists” can pick any set
T; say {1,2,5} is picked. For this choice, player “for-all” must show that
T has n members for every possible n. However, “for-all” cannot do so.
For instance, it is false for n = 4, or in fact for any n # 3.

PROOF: (of Theorem 1.5) We know that SUT = U and S and T are disjoint,
so ||[S||+||T|| = ||U||- Since S is finite, ||S|| = n for some integer n, and since U

is infinite, there is no integer p such that ||U|| = p. So assume that 7T is finite;
that is, ||T|| = m for some integer m. Then ||U]| = ||S|| + ||T|| = n + m, which

contradicts the given statement that there is no integer p equal to ||U]|. O

1.2.3 Other Theorem Forms

The “if-then” form of theorem is most common in typical areas of mathematics.
However, we see other kinds of statements proved as theorems also. In this
section, we shall examine the most common forms of statement and what we
usually need to do to prove them.
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Ways of Saying “If-Then”

First, there are a number of kinds of theorem statements that look different
from a simple “if H then C” form, but are in fact saying the same thing: if
hypothesis H is true for a given value of the parameter(s), then the conclusion
C is true for the same value. Here are some of the other ways in which “if H
then C” might appear.

1. H implies C.
2. H only if C.
3. CitH.

4. Whenever H holds, C follows.

We also see many variants of form (4), such as “if H holds, then C follows,” or
“whenever H holds, C' holds.”

Example 1.6: The statement of Theorem 1.3 would appear in these four forms
as:

1. z > 4 implies 2% > z2.
2. = > 4 only if 2% > z2.
3. 22> % ifz > 4.

4. Whenever = > 4, 2% > 22 follows.

In addition, in formal logic one often sees the operator — in place of “if-
then.” That is, the statement “if H then C” could appear as H — C in some
mathematical literature; we shall not use it here.

If-And-Only-If Statements

Sometimes, we find a statement of the form “A if and only if B.” Other forms
of this statement are “A iff B,”! “A is equivalent to B,” or “A exactly when
B.” This statement is actually two if-then statements: “if A then B,” and “if
B then A.” We prove “A if and only if B” by proving these two statements:

1. The if part: “if B then A,” and

2. The only-if part: “if A then B,” which is often stated in the equivalent
form “A only if B.”
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How Formal Do Proofs Have to Be?

The answer to this question is not easy. The bottom line regarding proofs
is that their purpose is to convince someone, whether it is a grader of your
classwork or yourself, about the correctness of a strategy you are using in
your code. If it is convincing, then it is enough; if it fails to convince the
“consumer” of the proof, then the proof has left out too much.

Part of the uncertainty regarding proofs comes from the different
knowledge that the consumer may have. Thus, in Theorem 1.4, we as-
sumed you knew all about arithmetic, and would believe a statement like
“if y > 1 then y? > 1.” If you were not familiar with arithmetic, we would
have to prove that statement by some steps in our deductive proof.

However, there are certain things that are required in proofs, and
omitting them surely makes the proof inadequate. For instance, any de-
ductive proof that uses statements which are not justified by the given or
previous statements, cannot be adequate. When doing a proof of an “if
and only if” statement, we must surely have one proof for the “if” part and
another proof for the “only-if” part. As an additional example, inductive
proofs (discussed in Section 1.4) require proofs of the basis and induction
parts.

The proofs can be presented in either order. In many theorems, one part is
decidedly easier than the other, and it is customary to present the easy direction
first and get it out of the way.

In formal logic, one may see the operator <+ or = to denote an “if-and-only-
if” statement. That is, A = B and A <+ B mean the same as “A if and only if
B'77

When proving an if-and-only-if statement, it is important to remember that
you must prove both the “if” and “only-if” parts. Sometimes, you will find it
helpful to break an if-and-only-if into a succession of several equivalences. That
is, to prove “A if and only if B,” you might first prove “A if and only if C,” and
then prove “C' if and only if B.” That method works, as long as you remember
that each if-and-only-if step must be proved in both directions. Proving any
one step in only one of the directions invalidates the entire proof.

The following is an example of a simple if-and-only-if proof. It uses the
notations:

1. |z], the floor of real number x, is the greatest integer equal to or less than
x.

LIff, short for “if and only if,” is a non-word that is used in some mathematical treatises
for succinctness.



1.3. ADDITIONAL FORMS OF PROOF 13

2. [z], the ceiling of real number z, is the least integer equal to or greater
than z.

Theorem 1.7: Let x be a real number. Then |z| = [z] if and only if z is an
integer.

PROOF: (Only-if part) In this part, we assume |z| = [z] and try to prove z is
an integer. Using the definitions of the floor and ceiling, we notice that |z]| < z,
and [z] > x. However, we are given that |z| = [z]. Thus, we may substitute
the floor for the ceiling in the first inequality to conclude [z] < x. Since
both [z] < x and [z] > z hold, we may conclude by properties of arithmetic
inequalities that [z] = z. Since [z] is always an integer,  must also be an
integer in this case.

(If part) Now, we assume z is an integer and try to prove |z| = [z]. This part
is easy. By the definitions of floor and ceiling, when z is an integer, both |z]
and [z] are equal to x, and therefore equal to each other. 0O

1.2.4 Theorems That Appear Not to Be If-Then
Statements

Sometimes, we encounter a theorem that appears not to have a hypothesis. An
example is the well-known fact from trigonometry:

Theorem 1.8: sin®f + cos?f=1. O

Actually, this statement does have a hypothesis, and the hypothesis consists
of all the statements you need to know to interpret the statement. In particular,
the hidden hypothesis is that 6 is an angle, and therefore the functions sine
and cosine have their usual meaning for angles. From the definitions of these
terms, and the Pythagorean Theorem (in a right triangle, the square of the
hypotenuse equals the sum of the squares of the other two sides), you could
prove the theorem. In essence, the if-then form of the theorem is really: “if 6
is an angle, then sin® 6 + cos?§ = 1.”

1.3 Additional Forms of Proof

In this section, we take up several additional topics concerning how to construct
proofs:

1. Proofs about sets.
2. Proofs by contradiction.

3. Proofs by counterexample.



14 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

1.3.1 Proving Equivalences About Sets

In automata theory, we are frequently asked to prove a theorem which says that
the sets constructed in two different ways are the same sets. Often, these sets
are sets of character strings, and the sets are called “languages,” but in this
section the nature of the sets is unimportant. If £ and F are two expressions
representing sets, the statement £ = F means that the two sets represented
are the same. More precisely, every element in the set represented by E is in
the set represented by F', and every element in the set represented by F' is in
the set represented by E.

Example 1.9: The commutative law of union says that we can take the union
of two sets R and S in either order. That is, R U S =S U R. In this case, E is
the expression R U S and F' is the expression S U R. The commutative law of
union says that £ =F. 0O

We can write a set-equality ' = F' as an if-and-only-if statement: an element
z is in E if and only if = is in F. As a consequence, we see the outline of a
proof of any statement that asserts the equality of two sets £ = F'; it follows
the form of any if-and-only-if proof:

1. Proof that if z is in E, then z is in F'.
2. Prove that if z is in F, then z is in F.

As an example of this proof process, let us prove the distributive law of
union over intersection:

Theorem 1.10: RU(SNT)=(RUS)N(RUT).
PROOF: The two set-expressions involved are E = RU (SN T) and

F=(RUS)N(RUT)

We shall prove the two parts of the theorem in turn. In the “if” part we assume
element z is in E and show it is in F'. This part, summarized in Fig. 1.5, uses
the definitions of union and intersection, with which we assume you are familiar.

Then, we must prove the “only-if” part of the theorem. Here, we assume z
is in F' and show it is in E. The steps are summarized in Fig. 1.6. Since we
have now proved both parts of the if-and-only-if statement, the distributive law
of union over intersection is proved. O

1.3.2 The Contrapositive

Every if-then statement has an equivalent form that in some circumstances is
easier to prove. The contrapositive of the statement “if H then C” is “if not C'
then not H.” A statement and its contrapositive are either both true or both
false, so we can prove either to prove the other.

To see why “if H then C” and “if not C' then not H” are logically equivalent,
first observe that there are four cases to consider:
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| Justification

l.|zisin RU(SNT)

Given

2. |zisin Rorzisin SNT | (1) and definition of union

3. | zisin Ror z is in (2) and definition of intersection
both S and T

4. | zisin RUS (3) and definition of union

5. |zisin RUT (3) and definition of union

6. | zisin (RUS)N(RUT) | (4), (5), and definition

of intersection

Figure 1.5: Steps in the “if” part of Theorem 1.10

| | Statement | Justification
1.|zisin (RUS)N(RUT) | Given
2. |zisin RUS (1) and definition of intersection
3. |zisin RUT (1) and definition of intersection
4. | zisin R or z is in (2), (3), and reasoning

both S and T about unions

5. |xisin Rorzisin SNT | (4) and definition of intersection
6. | zisin RU(SNT) (5) and definition of union

15

Figure 1.6: Steps in the “only-if” part of Theorem 1.10

—_

. H and C both true.
2. H true and C false.
3. C true and H false.
4. H and C both false.

There is only one way to make an if-then statement false; the hypothesis must
be true and the conclusion false, as in case (2). For the other three cases,
including case (4) where the conclusion is false, the if-then statement itself is
true.

Now, consider for which cases the contrapositive “if not C' then not H” is
false. In order for this statement to be false, its hypothesis (which is “not C”)
must be true, and its conclusion (which is “not H”) must be false. But “not
C” is true exactly when C is false, and “not H” is false exactly when H is true.
These two conditions are again case (2), which shows that in each of the four
cases, the original statement and its contrapositive are either both true or both
false; i.e., they are logically equivalent.

Example 1.11: Recall Theorem 1.3, whose statement was: “if x > 4, then
2% > z2.” The contrapositive of this statement is “if not 2° > z? then not
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Saying “If-And-Only-If” for Sets

As we mentioned, theorems that state equivalences of expressions about
sets are if-and-only-if statements. Thus, Theorem 1.10 could have been
stated: an element x is in R U (S N T) if and only if z is in

(RUS)N(RUT)

Another common expression of a set-equivalence is with the locution
“all-and-only.” For instance, Theorem 1.10 could as well have been stated
“the elements of R U (S N T) are all and only the elements of

(RUS)N(RUT)

The Converse

Do not confuse the terms “contrapositive” and “converse.” The converse
of an if-then statement is the “other direction”; that is, the converse of “if
H then C” is “if C' then H.” Unlike the contrapositive, which is logically
equivalent to the original, the converse is not equivalent to the original
statement. In fact, the two parts of an if-and-only-if proof are always
some statement and its converse.

x > 4.7 In more colloquial terms, making use of the fact that “not a > b” is
the same as a < b, the contrapositive is “if 2% < 22 then ¢ < 4.” O

When we are asked to prove an if-and-only-if theorem, the use of the con-
trapositive in one of the parts allows us several options. For instance, suppose
we want to prove the set equivalence E = F. Instead of proving “if x is in E
then z is in F and if z is in F then z is in E,” we could also put one direction
in the contrapositive. One equivalent proof form is:

e If  isin E then z is in F, and if x is not in E then z is not in F.

We could also interchange E and F' in the statement above.

1.3.3 Proof by Contradiction

Another way to prove a statement of the form “if H then C” is to prove the
statement
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e “H and not C implies falsehood.”

That is, start by assuming both the hypothesis H and the negation of the
conclusion C'. Complete the proof by showing that something known to be
false follows logically from H and not C'. This form of proof is called proof by
contradiction.

Example 1.12: Recall Theorem 1.5, where we proved the if-then statement
with hypothesis H = “U is an infinite set, S is a finite subset of U, and T is
the complement of S with respect to U.” The conclusion C' was “T is infinite.”
We proceeded to prove this theorem by contradiction. We assumed “not C”;
that is, we assumed T' was finite.

Our proof was to derive a falsehood from H and not C. We first showed
from the assumptions that S and 7" are both finite, that U also must be finite.
But since U is stated in the hypothesis H to be infinite, and a set cannot be
both finite and infinite, we have proved the logical statement “false.” In logical
terms, we have both a proposition p (U is finite) and its negation, not p (U
is infinite). We then use the fact that “p and not p” is logically equivalent to
“false.” O

To see why proofs by contradiction are logically correct, recall from Sec-
tion 1.3.2 that there are four combinations of truth values for H and C. Only
the second case, H true and C false, makes the statement “if H then C” false.
By showing that H and not C' leads to falsehood, we are showing that case 2
cannot occur. Thus, the only possible combinations of truth values for H and
C are the three combinations that make “if H then C” true.

1.3.4 Counterexamples

In real life, we are not told to prove a theorem. Rather, we are faced with some-
thing that seems true — a strategy for implementing a program for example —
and we need to decide whether or not the “theorem” is true. To resolve the
question, we may alternately try to prove the theorem, and if we cannot, try to
prove that its statement is false.

Theorems generally are statements about an infinite number of cases, per-
haps all values of its parameters. Indeed, strict mathematical convention will
only dignify a statement with the title “theorem” if it has an infinite number
of cases; statements that have no parameters, or that apply to only a finite
number of values of its parameter(s) are called observations. It is sufficient to
show that an alleged theorem is false in any one case in order to show it is not a
theorem. The situation is analogous to programs, since a program is generally
considered to have a bug if it fails to operate correctly for even one input on
which it was expected to work.

It often is easier to prove that a statement is not a theorem than to prove
it is a theorem. As we mentioned, if S is any statement, then the statement
“S is not a theorem” is itself a statement without parameters, and thus can
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be regarded as an observation rather than a theorem. The following are two
examples, first of an obvious nontheorem, and the second a statement that just
misses being a theorem and that requires some investigation before resolving
the question of whether it is a theorem or not.

Alleged Theorem 1.13: All primes are odd. (More formally, we might say:
if integer x is a prime, then z is odd.)

DISPROOF: The integer 2 is a prime, but 2 is even. O

Now, let us discuss a “theorem” involving modular arithmetic. There is an
essential definition that we must first establish. If ¢ and b are positive integers,
then a mod b is the remainder when « is divided by b, that is, the unique integer
r between 0 and b — 1 such that a = ¢b + r for some integer ¢q. For example,
8 mod 3 = 2, and 9 mod 3 = 0. Our first proposed theorem, which we shall
determine to be false, is:

Alleged Theorem 1.14: There is no pair of integers a and b such that

amod b=bmod a

When asked to do things with pairs of objects, such as a and b here, it is
often possible to simplify the relationship between the two by taking advantage
of symmetry. In this case, we can focus on the case where a < b, since if b < a
we can swap a and b and get the same equation as in Alleged Theorem 1.14.
We must be careful, however, not to forget the third case, where a = b. This
case turns out to be fatal to our proof attempts.

Let us assume a < b. Then a mod b = a, since in the definition of a mod b
we have ¢ = 0 and » = a. That is, when a < b we have a = 0 X b + a. But
b mod a < a, since anything mod «a is between 0 and @ — 1. Thus, when a < b,
b mod a < a mod b, so a mod b = b mod a is impossible. Using the argument
of symmetry above, we also know that a mod b # b mod a when b < a.

However, consider the third case: a = b. Since £ mod x = 0 for any integer
z, we do have @ mod b = b mod a if a = b. We thus have a disproof of the
alleged theorem:

DISPROOF: (of Alleged Theorem 1.14) Let a = b = 2. Then

amodb=bmoda=0

In the process of finding the counterexample, we have in fact discovered the
exact conditions under which the alleged theorem holds. Here is the correct
version of the theorem, and its proof.

Theorem 1.15: ¢ mod b = b mod a if and only if a = .
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PROOF: (If part) Assume a = b. Then as we observed above,  mod z = 0 for
any integer . Thus, a mod b = b mod ¢ = 0 whenever a = b.

(Only-if part) Now, assume a mod b = b mod a. The best technique is a
proof by contradiction, so assume in addition the negation of the conclusion;
that is, assume a # b. Then since a = b is eliminated, we have only to consider
the cases @ < b and b < a.

We already observed above that when a < b, we have ¢ mod b = a and
b mod a < a. Thus, these statements, in conjunction with the hypothesis
a mod b = b mod a lets us derive a contradiction.

By symmetry, if b < a then b mod a = b and a mod b < b. We again derive
a contradiction of the hypothesis, and conclude the only-if part is also true. We
have now proved both directions and conclude that the theorem is true. O

1.4 Inductive Proofs

There is a special form of proof, called “inductive,” that is essential when dealing
with recursively defined objects. Many of the most familiar inductive proofs
deal with integers, but in automata theory, we also need inductive proofs about
such recursively defined concepts as trees and expressions of various sorts, such
as the regular expressions that were mentioned briefly in Section 1.1.2. In this
section, we shall introduce the subject of inductive proofs first with “simple”
inductions on integers. Then, we show how to perform “structural” inductions
on any recursively defined concept.

1.4.1 Inductions on Integers

Suppose we are given a statement S(n), about an integer n, to prove. One
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer ¢. Usually, i = 0
or ¢« = 1, but there are examples where we want to start at some higher
i, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > ¢, where ¢ is the basis integer,
and we show that “if S(n) then S(n +1).”

Intuitively, these two parts should convince us that S(n) is true for every
integer n that is equal to or greater than the basis integer ;. We can argue as
follows. Suppose S(n) were false for one or more of those integers. Then there
would have to be a smallest value of n, say j, for which S(j) is false, and yet
j > 4. Now j could not be i, because we prove in the basis part that S(i) is
true. Thus, j must be greater than i. We now know that j —1 >4, and S(j —1)
is true.

However, we proved in the inductive part that if n > ¢, then S(n) implies
S(n +1). Suppose we let n = j — 1. Then we know from the inductive step
that S(j — 1) implies S(j). Since we also know S(j — 1), we can conclude S(j).
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We have assumed the negation of what we wanted to prove; that is, we
assumed S(j) was false for some j > i. In each case, we derived a contradiction,
so we have a “proof by contradiction” that S(n) is true for all n > i.

Unfortunately, there is a subtle logical flaw in the above reasoning. Our
assumption that we can pick the least j > ¢ for which S(j) is false depends on
our believing the principle of induction in the first place. That is, the only way
to prove that we can find such a j is to prove it by a method that is essentially
an inductive proof. However, the “proof” discussed above makes good intuitive
sense, and matches our understanding of the real world. Thus, we generally
take as an integral part of our logical reasoning system:

e The Induction Principle: If we prove S(i) and we prove that for all n > i,
S(n) implies S(n + 1), then we may conclude S(n) for all n > 1.

The following two examples illustrate the use of the induction principle to prove
theorems about integers.

Theorem 1.16: For all n > 0:

ZiZ _ n(n + 1)6(2n +1) (L1)

PROOF: The proof is in two parts: the basis and the inductive step; we prove
each in turn.

BASIS: For the basis, we pick n = 0. It might seem surprising that the theorem
even makes sense for n = 0, since the left side of Equation (1.1) is Z?:l when
n = 0. However, there is a general principle that when the upper limit of a sum
(0 in this case) is less than the lower limit (1 here), the sum is over no terms
and therefore the sum is 0. That is, Z?:1 i? =0.

The right side of Equation (1.1) is also 0, since 0 x (0+1) x (2x0+1)/6 = 0.
Thus, Equation (1.1) is true when n = 0.

INDUCTION: Now, assume n > 0. We must prove the inductive step, that
Equation (1.1) implies the same formula with n + 1 substituted for n. The
latter formula is
1
[%122 e l(n+ 1+ DR+ 1]+ 1)
N 6
i=1

(1.2)

We may simplify Equations (1.1) and (1.2) by expanding the sums and products
on the right sides. These equations become:

n

> i =(2n° 4+ 3n° +n)/6 (1.3)
i=1

n+1

> i = (2n® +9n® + 130+ 6)/6 (1.4)

i=1
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We need to prove (1.4) using (1.3), since in the induction principle, these are
statements S(n + 1) and S(n), respectively. The “trick” is to break the sum to
n + 1 on the left of (1.4) into a sum to n plus the (n + 1)st term. In that way,
we can replace the sum to n by the left side of (1.3) and show that (1.4) is true.
These steps are as follows:

(Z ﬁ) +(n+1)?=(2n* +9n® + 13n +6)/6 (1.5)
i=1
(2n® 4+ 3n* +n)/6+ (n* +2n + 1) = (2n® + In? + 13n + 6)/6 (1.6)

The final verification that (1.6) is true requires only simple polynomial algebra
on the left side to show it is identical to the right side. O

Example 1.17: In the next example, we prove Theorem 1.3 from Section 1.2.1.
Recall this theorem states that if z > 4, then 2% > z2. We gave an informal
proof based on the idea that the ratio #?/2% shrinks as x grows above 4. We
can make the idea precise if we prove the statement 2° > z? by induction on
z, starting with a basis of z = 4. Note that the statement is actually false for
T < 4.

BASIS: If z = 4, then 2% and 2 are both 16. Thus, 2* > 42 holds.

INDUCTION: Suppose for some & > 4 that 2% > z2. With this statement as
the hypothesis, we need to prove the same statement, with x + 1 in place of z,
that is, 211 > [z + 1]?. These are the statements S(z) and S(z + 1) in the
induction principle; the fact that we are using z instead of n as the parameter
should not be of concern; x or n is just a local variable.

As in Theorem 1.16, we should rewrite S(x + 1) so it can make use of S(x).
In this case, we can write 2[*t1] as 2 x 2%. Since S(x) tells us that 2% > z2, we
can conclude that 2211 =2 x 2% > 242,

But we need something different; we need to show that 2*+! > (z + 1)2.
One way to prove this statement is to prove that 2z? > (z + 1)? and then use
the transitivity of > to show 22! > 222 > (z + 1)2. In our proof that

227 > (z + 1)? (1.7)
we may use the assumption that > 4. Begin by simplifying (1.7):
2 > 20 +1 (1.8)
Divide (1.8) by z, to get:
1
T>2+ = (1.9)
x

Since ¢ > 4, we know 1/x < 1/4. Thus, the left side of (1.9) is at least
4, and the right side is at most 2.25. We have thus proved the truth of (1.9).
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Integers as Recursively Defined Concepts

We mentioned that inductive proofs are useful when the subject matter is
recursively defined. However, our first examples were inductions on inte-
gers, which we do not normally think of as “recursively defined.” However,
there is a natural, recursive definition of when a number is a nonnegative
integer, and this definition does indeed match the way inductions on inte-
gers proceed: from objects defined first, to those defined later.

BASIS: 0 is an integer.

INDUCTION: If n is an integer, then so is n + 1.

Therefore, Equations (1.8) and (1.7) are also true. Equation (1.7) in turn gives
us 2x? > (z +1)% for z > 4 and lets us prove statement S(z + 1), which we
recall was 2°71 > (z +1)2. O

1.4.2 More General Forms of Integer Inductions

Sometimes an inductive proof is made possible only by using a more general
scheme than the one proposed in Section 1.4.1, where we proved a statement S
for one basis value and then proved that “if S(n) then S(n+1).” Two important
generalizations of this scheme are:

1. We can use several basis cases. That is, we prove S(i),S(i + 1),...,5(j)
for some j > 1.

2. In proving S(n + 1), we can use the truth of all the statements
S(i),S(i+1),...,5(n)

rather than just using S(n). Moreover, if we have proved basis cases up
to S(j), then we can assume n > j, rather than just n > i.

The conclusion to be made from this basis and inductive step is that S(n) is
true for all n > 4.

Example 1.18: The following example will illustrate the potential of both
principles. The statement S(n) we would like to prove is that if n > 8, then n
can be written as a sum of 3’s and 5’s. Notice, incidentally, that 7 cannot be
written as a sum of 3’s and 5’s.

BASIS: The basis cases are S(8), S(9), and S(10). The proofs are 8 = 3 + 5,
9=3+3+ 3, and 10 =5 + 5, respectively.
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INDUCTION: Assume that n > 10 and that S(8),5(9),...,S(n) are true. We
must prove S(n + 1) from these given facts. Our strategy is to subtract 3 from
n + 1, observe that this number must be writable as a sum of 3’s and 5’s, and
add one more 3 to the sum to get a way to write n + 1.

More formally, observe that n — 2 > 8, so we may assume S(n — 2). That
is, n — 2 = 3a + 5b for some integers a and b. Then n + 1 = 3 + 3a + 5b, so
n + 1 can be written as the sum of a +1 3’s and b 5’s. That proves S(n + 1)
and concludes the inductive step. O

1.4.3 Structural Inductions

In automata theory, there are several recursively defined structures about which
we need to prove statements. The familiar notions of trees and expressions
are important examples. Like inductions, all recursive definitions have a basis
case, where one or more elementary structures are defined, and an inductive
step, where more complex structures are defined in terms of previously defined
structures.

Example 1.19: Here is the recursive definition of a tree:
BASIS: A single node is a tree, and that node is the root of the tree.
INDUCTION: If T, T5, ..., T} are trees, then we can form a new tree as follows:
1. Begin with a new node IV, which is the root of the tree.
2. Add copies of all the trees 1,75, ..., T}.
3. Add edges from node N to the roots of each of the trees Ty, T5, ..., T}-

Figure 1.7 shows the inductive construction of a tree with root NV from k smaller
trees. O

Figure 1.7: Inductive construction of a tree

Example 1.20: Here is another recursive definition. This time we define
expressions using the arithmetic operators + and %, with both numbers and
variables allowed as operands.
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Intuition Behind Structural Induction

We can suggest informally why structural induction is a valid proof
method. Imagine the recursive definition establishing, one at a time, that
certain structures Xy, Xo, ... meet the definition. The basis elements come
first, and the fact that X; is in the defined set of structures can only de-
pend on the membership in the defined set of structures that precede X;
on the list. Viewed this way, a structural induction is nothing but an in-
duction on integer n of the statement S(X,). This induction may be of
the generalized form discussed in Section 1.4.2; with multiple basis cases
and an inductive step that uses all previous instances of the statement.
However, we should remember, as explained in Section 1.4.1, that this
intuition is not a formal proof, and in fact we must assume the validity
of this induction principle as we did the validity of the original induction
principle of that section.

BASIS: Any number or letter (i.e., a variable) is an expression.
INDUCTION: If E and F are expressions, then so are E + F', E x F and (E).

For example, both 2 and x are expressions by the basis. The inductive step
tells us z + 2, (z + 2), and 2 * (x + 2) are all expressions. Notice how each of
these expressions depends on the previous ones being expressions. O

When we have a recursive definition, we can prove theorems about it using
the following proof form, which is called structural induction. Let S(X) be a
statement about the structures X that are defined by some particular recursive
definition.

1. As a basis, prove S(X) for the basis structure(s) X.

2. For the inductive step, take a structure X that the recursive defini-
tion says is formed from Y7,Y5,...,Y). Assume that the statements
S(Y1),S(Y2),...,S(Y%) hold, and use these to prove S(X).

Our conclusion is that S(X) is true for all X. The next two theorems are
examples of facts that can be proved about trees and expressions.

Theorem 1.21: Every tree has one more node than it has edges.

PROOF: The formal statement S(T") we need to prove by structural induction
is: “if T is a tree, and T has n nodes and e edges, then n = e + 1.7

BASIS: The basis case is when T is a single node. Then n = 1 and e = 0, so
the relationship n = e + 1 holds.
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INDUCTION: Let T be a tree built by the inductive step of the definition,
from root node NV and k smaller trees 71,75, ...,T;. We may assume that the
statements S(T;) hold for ¢ = 1,2,... k. That is, let T; have n; nodes and e;
edges; then n; = ¢; + 1.

The nodes of T are node N and all the nodes of the T;’s. There are thus
1+mny +ne+---+n, nodes in 7. The edges of T are the k edges we added
explicitly in the inductive definition step, plus the edges of the T;’s. Hence, T
has

k+e+e+--+eg (1.10)

edges. If we substitute e; + 1 for n; in the count of the number of nodes of T’
we find that T has

L+fer+1]+[ex+ 1]+ -+ [er + 1] (1.11)

nodes. Since there are k of the “+1” terms in (1.11), we can regroup it as:

E+l4e+e+-+ep (1.12)

This expression is exactly 1 more than the expression of (1.10) that was given
for the number of edges of 7. Thus, T" has one more node than it has edges.
O

Theorem 1.22: Every expression has an equal number of left and right paren-
theses.

PROOF: Formally, we prove the statement S(G) about any expression G that
is defined by the recursion of Example 1.20: the numbers of left and right
parentheses in G are the same.

BASIS: If G is defined by the basis, then GG is a number or variable. These
expressions have 0 left parentheses and 0 right parentheses, so the numbers are
equal.

INDUCTION: There are three rules whereby expression G' may have been con-
structed according to the inductive step in the definition:

1. G=E+F.
2. G=ExF.
3. G=(E).

We may assume that S(E) and S(F) are true; that is, E has the same number
of left and right parentheses, say n of each, and F' likewise has the same number
of left and right parentheses, say m of each. Then we can compute the numbers
of left and right parentheses in G for each of the three cases, as follows:
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1. If G = E + F, then G has n + m left parentheses and n + m right
parentheses; n of each come from F and m of each come from F'.

2. If G = E = F, the count of parentheses for G is again n + m of each, for
the same reason as in case (1).

3. If G = (E), then there are n+1 left parentheses in G — one left parenthesis
is explicitly shown, and the other n are present in E. Likewise, there are
n + 1 right parentheses in G; one is explicit and the other n are in E.

In each of the three cases, we see that the numbers of left and right parentheses
in G are the same. This observation completes the inductive step and completes
the proof. 0O

1.4.4 Mutual Inductions

Sometimes, we cannot prove a single statement by induction, but rather need
to prove a group of statements Si(n),S2(n),...,Sk(n) together by induction
on n. Automata theory provides many such situations. In Example 1.23 we
sample the common situation where we need to explain what an automaton
does by proving a group of statements, one for each state. These statements
tell under what sequences of inputs the automaton gets into each of the states.

Strictly speaking, proving a group of statements is no different from proving
the conjunction (logical AND) of all the statements. For instance, the group
of statements Si(n), Sa(n), ..., Sk(n) could be replaced by the single statement
S1(n) AND Sy(n) AND - - - AND Sk (n). However, when there are really several inde-
pendent statements to prove, it is generally less confusing to keep the statements
separate and to prove them all in their own parts of the basis and inductive
steps. We call this sort of proof mutual induction. An example will illustrate
the necessary steps for a mutual recursion.

Example 1.23: Let us revisit the on/off switch, which we represented as an
automaton in Example 1.1. The automaton itself is reproduced as Fig. 1.8.
Since pushing the button switches the state between on and off, and the switch
starts out in the off state, we expect that the following statements will together
explain the operation of the switch:

S1(n): The automaton is in state off after n pushes if and only if n is even.
Sa(n): The automaton is in state on after n pushes if and only if n is odd.

We might suppose that S; implies Se and vice-versa, since we know that
a number n cannot be both even and odd. However, what is not always true
about an automaton is that it is in one and only one state. It happens that
the automaton of Fig. 1.8 is always in exactly one state, but that fact must be
proved as part of the mutual induction.
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Push

e @ @

Push

Figure 1.8: Repeat of the automaton of Fig. 1.1

We give the basis and inductive parts of the proofs of statements S;(n) and

Sa(n) below. The proofs depend on several facts about odd and even integers:
if we add or subtract 1 from an even integer, we get an odd integer, and if we
add or subtract 1 from an odd integer we get an even integer.

BASIS: For the basis, we choose n = 0. Since there are two statements, each of
which must be proved in both directions (because S; and S2 are each “if-and-
only-if” statements), there are actually four cases to the basis, and four cases
to the induction as well.

. [S1; If] Since 0 is in fact even, we must show that after 0 pushes, the

automaton of Fig. 1.8 is in state off. Since that is the start state, the
automaton is indeed in state off after O pushes.

. [S1; Only-if] The automaton is in state off after 0 pushes, so we must

)

show that 0 is even. But 0 is even by definition of “even,” so there is

nothing more to prove.

. [S2; If] The hypothesis of the “if” part of S, is that 0 is odd. Since this

hypothesis H is false, any statement of the form “if H then C” is true, as
we discussed in Section 1.3.2. Thus, this part of the basis also holds.

. [S2; Only-if] The hypothesis, that the automaton is in state on after 0

pushes, is also false, since the only way to get to state on is by following
an arc labeled Push, which requires that the button be pushed at least
once. Since the hypothesis is false, we can again conclude that the if-then
statement is true.

INDUCTION: Now, we assume that S;(n) and Sz(n) are true, and try to prove
S1(n + 1) and Sa(n + 1). Again, the proof separates into four parts.

. [S1(n + 1); If] The hypothesis for this part is that n + 1 is even. Thus,

n is odd. The “if” part of statement S2(n) says that after n pushes, the
automaton is in state on. The arc from on to off labeled Push tells us
that the (n 4 1)st push will cause the automaton to enter state off. That
completes the proof of the “if” part of S;(n + 1).
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. [S1(n + 1); Only-if] The hypothesis is that the automaton is in state off

after n 4+ 1 pushes. Inspecting the automaton of Fig. 1.8 tells us that the
only way to get to state off after one or more moves is to be in state on and
receive an input Push. Thus, if we are in state off after n + 1 pushes, we
must have been in state on after n pushes. Then, we may use the “only-if”
part of statement Ss(n) to conclude that n is odd. Consequently, n+ 1 is
even, which is the desired conclusion for the only-if portion of Sy(n + 1).

. [S2(n+1); If] This part is essentially the same as part (1), with the roles of

statements S; and S exchanged, and with the roles of “odd” and “even”
exchanged. The reader should be able to construct this part of the proof
easily.

. [S2(n+ 1); Only-if] This part is essentially the same as part (2), with the

roles of statements S; and S» exchanged, and with the roles of “odd” and
“even” exchanged.

We can abstract from Example 1.23 the pattern for all mutual inductions:

e Each of the statements must be proved separately in the basis and in the

inductive step.

e If the statements are “if-and-only-if,” then both directions of each state-

ment must be proved, both in the basis and in the induction.

1.5 The Central Concepts of Automata Theory

In this section we shall introduce the most important definitions of terms that
pervade the theory of automata. These concepts include the “alphabet” (a set
of symbols), “strings” (a list of symbols from an alphabet), and “language” (a
set of strings from the same alphabet).

1.5.1 Alphabets

An alphabet is a finite, nonempty set of symbols. Conventionally, we use the
symbol ¥ for an alphabet. Common alphabets include:

1. ¥ ={0,1}, the binary alphabet.
2. ¥ ={a,b,...,z}, the set of all lower-case letters.

3. The set of all ASCII characters, or the set of all printable ASCII charac-

ters.
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1.5.2 Strings

A string (or sometimes word) is a finite sequence of symbols chosen from some
alphabet. For example, 01101 is a string from the binary alphabet ¥ = {0,1}.
The string 111 is another string chosen from this alphabet.

The Empty String

The empty string is the string with zero occurrences of symbols. This string,
denoted ¢, is a string that may be chosen from any alphabet whatsoever.

Length of a String

It is often useful to classify strings by their length, that is, the number of
positions for symbols in the string. For instance, 01101 has length 5. It is
common to say that the length of a string is “the number of symbols” in the
string; this statement is colloquially accepted but not strictly correct. Thus,
there are only two symbols, 0 and 1, in the string 01101, but there are five
positions for symbols, and its length is 5. However, you should generally expect
that “the number of symbols” can be used when “number of positions” is meant.

The standard notation for the length of a string w is |w|. For example,
|011] = 3 and |e| = 0.

Powers of an Alphabet

If ¥ is an alphabet, we can express the set of all strings of a certain length from
that alphabet by using an exponential notation. We define ¥ to be the set of
strings of length k, each of whose symbols is in X.

Example 1.24: Note that ¥° = {e}, regardless of what alphabet ¥ is. That
is, € is the only string whose length is 0.
If ¥ = {0,1}, then X! = {0,1}, £ = {00,01, 10, 11},

¥? = {000,001, 010,011,100, 101,110,111}

and so on. Note that there is a slight confusion between ¥ and X!. The former
is an alphabet; its members 0 and 1 are symbols. The latter is a set of strings;
its members are the strings 0 and 1, each of which is of length 1. We shall not
try to use separate notations for the two sets, relying on context to make it
clear whether {0, 1} or similar sets are alphabets or sets of strings. O

The set of all strings over an alphabet ¥ is conventionally denoted ¥*. For
instance, {0,1}* = {¢,0,1,00,01,10,11,000, ...}. Put another way,

s =xustus?u---
Sometimes, we wish to exclude the empty string from the set of strings. The

set of nonempty strings from alphabet ¥ is denoted ¥ *. Thus, two appropriate
equivalences are:
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Type Convention for Symbols and Strings

Commonly, we shall use lower-case letters at the beginning of the alphabet
(or digits) to denote symbols, and lower-case letters near the end of the
alphabet, typically w, z, y, and z, to denote strings. You should try to get
used to this convention, to help remind you of the types of the elements
being discussed.

e Xt =Xlux2uxiuy...
o T =3+ U {e}.

Concatenation of Strings

Let z and y be strings. Then zy denotes the concatenation of x and y, that
is, the string formed by making a copy of z and following it by a copy of y.
More precisely, if x is the string composed of ¢ symbols x = ajas - - -a; and y is
the string composed of j symbols y = bibs - - - b;, then zy is the string of length
1+ xy = a1a2---a,-blb2---bj.

Example 1.25: Let x = 01101 and y = 110. Then zy = 01101110 and
yx = 11001101. For any string w, the equations ew = we = w hold. That is,
€ is the identity for concatenation, since when concatenated with any string it
yields the other string as a result (analogously to the way 0, the identity for
addition, can be added to any number z and yields z as a result). O

1.5.3 Languages

A set of strings all of which are chosen from some ¥*, where ¥ is a particular
alphabet, is called a language. If ¥ is an alphabet, and L C X*, then L is a
language over .. Notice that a language over ¥ need not include strings with
all the symbols of 3, so once we have established that L is a language over X,
we also know it is a language over any alphabet that is a superset of X.

The choice of the term “language” may seem strange. However, common
languages can be viewed as sets of strings. An example is English, where the
collection of legal English words is a set of strings over the alphabet that consists
of all the letters. Another example is C, or any other programming language,
where the legal programs are a subset of the possible strings that can be formed
from the alphabet of the language. This alphabet is a subset of the ASCII
characters. The exact alphabet may differ slightly among different programming
languages, but generally includes the upper- and lower-case letters, the digits,
punctuation, and mathematical symbols.

However, there are also many other languages that appear when we study
automata. Some are abstract examples, such as:
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1. The language of all strings consisting of n 0’s followed by n 1’s, for some
n > 0: {¢01,0011,000111, .. .}.

2. The set of strings of 0’s and 1’s with an equal number of each:

{e,01,10,0011,0101, 1001, .. .}

3. The set of binary numbers whose value is a prime:

{10,11,101,111,1011,.. .}
4. ¥* is a language for any alphabet X.
5. (), the empty language, is a language over any alphabet.

6. {€}, the language consisting of only the empty string, is also a language
over any alphabet. Notice that ) # {e}; the former has no strings and
the latter has one string.

The only important constraint on what can be a language is that all alphabets
are finite. Thus languages, although they can have an infinite number of strings,
are restricted to consist of strings drawn from one fixed, finite alphabet.

1.5.4 Problems

In automata theory, a problem is the question of deciding whether a given string
is a member of some particular language. It turns out, as we shall see, that
anything we more colloquially call a “problem” can be expressed as membership
in a language. More precisely, if ¥ is an alphabet, and L is a language over X,
then the problem L is:

e Given a string w in ¥*, decide whether or not w is in L.

Example 1.26: The problem of testing primality can be expressed by the
language L, consisting of all binary strings whose value as a binary number is
a prime. That is, given a string of 0’s and 1’s, say “yes” if the string is the
binary representation of a prime and say “no” if not. For some strings, this
decision is easy. For instance, 0011101 cannot be the representation of a prime,
for the simple reason that every integer except 0 has a binary representation
that begins with 1. However, it is less obvious whether the string 11101 belongs
to L,, so any solution to this problem will have to use significant computational
resources of some kind: time and/or space, for example. O

One potentially unsatisfactory aspect of our definition of “problem” is that
one commonly thinks of problems not as decision questions (is or is not the
following true?) but as requests to compute or transform some input (find the
best way to do this task). For instance, the task of the parser in a C compiler
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Set-Formers as a Way to Define Languages
It is common to describe a language using a “set-former”:
{w | something about w}

This expression is read “the set of words w such that (whatever is said
about w to the right of the vertical bar).” Examples are:

1. {w | w consists of an equal number of 0’s and 1’s }.
2. {w | w is a binary integer that is prime }.
3. {w | w is a syntactically correct C program }.

It is also common to replace w by some expression with parameters and
describe the strings in the language by stating conditions on the parame-
ters. Here are some examples; the first with parameter n, the second with
parameters ¢ and j:

1. {0"1™ | n > 1}. Read “the set of 0 to the n 1 to the n such that n
is greater than or equal to 1,” this language consists of the strings
{01,0011,000111,...}. Notice that, as with alphabets, we can raise
a single symbol to a power n in order to represent n copies of that
symbol.

2. {0i19 | 0 < i < j}. This language consists of strings with some 0’s
(possibly none) followed by at least as many 1’s.

can be thought of as a problem in our formal sense, where one is given an ASCII
string and asked to decide whether or not the string is a member of L., the set
of valid C programs. However, the parser does more than decide. It produces a
parse tree, entries in a symbol table and perhaps more. Worse, the compiler as
a whole solves the problem of turning a C program into object code for some
machine, which is far from simply answering “yes” or “no” about the validity
of a program.

Nevertheless, the definition of “problems” as languages has stood the test
of time as the appropriate way to deal with the important questions of com-
plexity theory. In this theory, we are interested in proving lower bounds on
the complexity of certain problems. Especially important are techniques for
proving that certain problems cannot be solved in an amount of time that is
less than exponential in the size of their input. It turns out that the yes/no
or language-based version of known problems are just as hard in this sense, as
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Is It a Language or a Problem?

Languages and problems are really the same thing. Which term we prefer
to use depends on our point of view. When we care only about strings for
their own sake, e.g., in the set {0"1" | n > 1}, then we tend to think of
the set of strings as a language. In the last chapters of this book, we shall
tend to assign “semantics” to the strings, e.g., think of strings as coding
graphs, logical expressions, or even integers. In those cases, where we care
more about the thing represented by the string than the string itself, we
shall tend to think of a set of strings as a problem.

their “solve this” versions.

That is, if we can prove it is hard to decide whether a given string belongs to
the language Lx of valid strings in programming language X, then it stands to
reason that it will not be easier to translate programs in language X to object
code. For if it were easy to generate code, then we could run the translator, and
conclude that the input was a valid member of Lx exactly when the translator
succeeded in producing object code. Since the final step of determining whether
object code has been produced cannot be hard, we can use the fast algorithm
for generating the object code to decide membership in Lx efficiently. We thus
contradict the assumption that testing membership in Lx is hard. We have a
proof by contradiction of the statement “if testing membership in Lx is hard,
then compiling programs in programming language X is hard.”

This technique, showing one problem hard by using its supposed efficient
algorithm to solve efficiently another problem that is already known to be hard,
is called a “reduction” of the second problem to the first. It is an essential tool
in the study of the complexity of problems, and it is facilitated greatly by our
notion that problems are questions about membership in a language, rather
than more general kinds of questions.

1.6 Summary of Chapter 1

4 Finite Automata: Finite automata involve states and transitions among
states in response to inputs. They are useful for building several different
kinds of software, including the lexical analysis component of a compiler
and systems for verifying the correctness of circuits or protocols, for ex-
ample.

4 Regular Expressions: These are a structural notation for describing the
same patterns that can be represented by finite automata. They are used
in many common types of software, including tools to search for patterns
in text or in file names, for instance.
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Context-Free Grammars: These are an important notation for describing
the structure of programming languages and related sets of strings; they
are used to build the parser component of a compiler.

Turing Machines: These are automata that model the power of real com-
puters. They allow us to study decidabilty, the question of what can or
cannot be done by a computer. They also let us distinguish tractable
problems — those that can be solved in polynomial time — from the
intractable problems — those that cannot.

Deductive Proofs: This basic method of proof proceeds by listing state-
ments that are either given to be true, or that follow logically from some
of the previous statements.

Proving If-Then Statements: Many theorems are of the form “if (some-
thing) then (something else).” The statement or statements following the
“if” are the hypothesis, and what follows “then” is the conclusion. Deduc-
tive proofs of if-then statements begin with the hypothesis, and continue
with statements that follow logically from the hypothesis and previous
statements, until the conclusion is proved as one of the statements.

Proving If-And-Only-If Statements: There are other theorems of the form
“(something) if and only if (something else).” They are proved by showing
if-then statements in both directions. A similar kind of theorem claims
the equality of the sets described in two different ways; these are proved
by showing that each of the two sets is contained in the other.

Proving the Contrapositive: Sometimes, it is easier to prove a statement
of the form “if H then C” by proving the equivalent statement: “if not
C then not H.” The latter is called the contrapositive of the former.

Proof by Contradiction: Other times, it is more convenient to prove the
statement “if H then C” by proving “if H and not C then (something
known to be false).” A proof of this type is called proof by contradiction.

Counterexamples: Sometimes we are asked to show that a certain state-
ment is not true. If the statement has one or more parameters, then we
can show it is false as a generality by providing just one counterexam-
ple, that is, one assignment of values to the parameters that makes the
statement false.

Inductive Proofs: A statement that has an integer parameter n can often
be proved by induction on n. We prove the statement is true for the
basis, a finite number of cases for particular values of n, and then prove
the inductive step: that if the statement is true for values up to n, then
it is true for n + 1.
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4 Structural Inductions: In some situations, including many in this book,
the theorem to be proved inductively is about some recursively defined
construct, such as trees. We may prove a theorem about the constructed
objects by induction on the number of steps used in its construction. This
type of induction is referred to as structural.

4 Alphabets: An alphabet is any finite set of symbols.
4 Strings: A string is a finite-length sequence of symbols.

4 Languages and Problems: A language is a (possibly infinite) set of strings,
all of which choose their symbols from some one alphabet. When the
strings of a language are to be interpreted in some way, the question of
whether a string is in the language is sometimes called a problem.

1.7 Gradiance Problems for Chapter 1

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.

Problem 1.1: Find in the list below the expression that is the contrapositive of
A AND (NOT B) — C OR (NOT D). Note: the hypothesis and conclusion
of the choices in the list below may have some simple logical rules applied to
them, in order to simplify the expressions.

Problem 1.2: To prove A AND (NOT B) — C OR (NOT D) by contra-
diction, which of the statements below would we prove? Note: each of the
choices is simplified by pushing NOT’s down until they apply only to atomic
statements A through D.

Problem 1.3: Suppose we want to prove the statement S(n): “If n > 2, the
sum of the integers 2 through n is (n + 2)(n — 1)/2” by induction on n. To
prove the inductive step, we can make use of the fact that

2434+4+...+(n+1)=2+3+4+...+n)+(n+1)

Find, in the list below an equality that we may prove to conclude the inductive
part.

Problem 1.4: The length of the string X [shown on-line by the Gradiance
system from a stock of choices] is:

Problem 1.5: What is the concatenation of X and Y7 [strings shown on-line
by the Gradiance system from a stock of choices]
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Problem 1.6: The binary string X [shown on-line by the Gradiance system)]
is a member of which of the following problems? Remember, a “problem” is a
language whose strings represent the cases of a problem that have the answer
“yes.” In this question, you should assume that all languages are sets of binary
strings interpreted as base-2 integers. The exception is the problem of finding
palindromes, which are strings that are identical when reversed, like 0110110,
regardless of their numerical value.

1.8 References for Chapter 1

For extended coverage of the material of this chapter, including mathematical
concepts underlying Computer Science, we recommend [1].

1. A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer
Science Press, New York, 1994.



Chapter 2

Finite Automata

This chapter introduces the class of languages known as “regular languages.”
These languages are exactly the ones that can be described by finite automata,
which we sampled briefly in Section 1.1.1. After an extended example that will
provide motivation for the study to follow, we define finite automata formally.

As was mentioned earlier, a finite automaton has a set of states, and its
“control” moves from state to state in response to external “inputs.” One of
the crucial distinctions among classes of finite automata is whether that con-
trol is “deterministic,” meaning that the automaton cannot be in more than
one state at any one time, or “nondeterministic,” meaning that it may be in
several states at once. We shall discover that adding nondeterminism does
not let us define any language that cannot be defined by a deterministic finite
automaton, but there can be substantial efficiency in describing an application
using a nondeterministic automaton. In effect, nondeterminism allows us to
“program” solutions to problems using a higher-level language. The nondeter-
ministic finite automaton is then “compiled,” by an algorithm we shall learn
in this chapter, into a deterministic automaton that can be “executed” on a
conventional computer.

We conclude the chapter with a study of an extended nondeterministic aut-
omaton that has the additional choice of making a transition from one state to
another spontaneously, i.e., on the empty string as “input.” These automata
also accept nothing but the regular languages. However, we shall find them
quite important in Chapter 3, when we study regular expressions and their
equivalence to automata.

The study of the regular languages continues in Chapter 3. There, we in-
troduce another important way to describe regular languages: the algebraic
notation known as regular expressions. After discussing regular expressions,
and showing their equivalence to finite automata, we use both automata and
regular expressions as tools in Chapter 4 to show certain important properties
of the regular languages. Examples of such properties are the “closure” proper-
ties, which allow us to claim that one language is regular because one or more
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other languages are known to be regular, and “decision” properties. The latter
are algorithms to answer questions about automata or regular expressions, e.g.,
whether two automata or expressions represent the same language.

2.1 An Informal Picture of Finite Automata

In this section, we shall study an extended example of a real-world problem
whose solution uses finite automata in an important role. We investigate pro-
tocols that support “electronic money” — files that a customer can use to pay
for goods on the internet, and that the seller can receive with assurance that
the “money” is real. The seller must know that the file has not been forged,
nor has it been copied and sent to the seller, while the customer retains a copy
of the same file to spend again.

The nonforgeability of the file is something that must be assured by a bank
and by a cryptography policy. That is, a third player, the bank, must issue and
encrypt the “money” files, so that forgery is not a problem. However, the bank
has a second important job: it must keep a database of all the valid money
that it has issued, so that it can verify to a store that the file it has received
represents real money and can be credited to the store’s account. We shall not
address the cryptographic aspects of the problem, nor shall we worry about
how the bank can store and retrieve what could be billions of “electronic dollar
bills.” These problems are not likely to represent long-term impediments to the
concept of electronic money, and examples of its small-scale use have existed
since the late 1990’s.

However, in order to use electronic money, protocols need to be devised to
allow the manipulation of the money in a variety of ways that the users want.
Because monetary systems always invite fraud, we must verify whatever policy
we adopt regarding how money is used. That is, we need to prove the only
things that can happen are things we intend to happen — things that do not
allow an unscrupulous user to steal from others or to “manufacture” money.
In the balance of this section, we shall introduce a very simple example of a
(bad) electronic-money protocol, model it with finite automata, and show how
constructions on automata can be used to verify protocols (or, in this case, to
discover that the protocol has a bug).

2.1.1 The Ground Rules

There are three participants: the customer, the store, and the bank. We assume
for simplicity that there is only one “money” file in existence. The customer
may decide to transfer this money file to the store, which will then redeem the
file from the bank (i.e., get the bank to issue a new money file belonging to the
store rather than the customer) and ship goods to the customer. In addition,
the customer has the option to cancel the file. That is, the customer may ask
the bank to place the money back in the customer’s account, making the money
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no longer spendable. Interaction among the three participants is thus limited
to five events:

1. The customer may decide to pay. That is, the customer sends the money
to the store.

2. The customer may decide to cancel. The money is sent to the bank with
a message that the value of the money is to be added to the customer’s
bank account.

3. The store may ship goods to the customer.

4. The store may redeem the money. That is, the money is sent to the bank
with a request that its value be given to the store.

5. The bank may transfer the money by creating a new, suitably encrypted
money file and sending it to the store.

2.1.2 The Protocol

The three participants must design their behaviors carefully, or the wrong things
may happen. In our example, we make the reasonable assumption that the
customer cannot be relied upon to act responsibly. In particular, the customer
may try to copy the money file, use it to pay several times, or both pay and
cancel the money, thus getting the goods “for free.”

The bank must behave responsibly, or it cannot be a bank. In particular, it
must make sure that two stores cannot both redeem the same money file, and
it must not allow money to be both canceled and redeemed. The store should
be careful as well. In particular, it should not ship goods until it is sure it has
been given valid money for the goods.

Protocols of this type can be represented as finite automata. Each state
represents a situation that one of the participants could be in. That is, the state
“remembers” that certain important events have happened and that others have
not yet happened. Transitions between states occur when one of the five events
described above occur. We shall think of these events as “external” to the
automata representing the three participants, even though each participant is
responsible for initiating one or more of the events. It turns out that what is
important about the problem is what sequences of events can happen, not who
is allowed to initiate them.

Figure 2.1 represents the three participants by automata. In that diagram,
we show only the events that affect a participant. For example, the action pay
affects only the customer and store. The bank does not know that the money
has been sent by the customer to the store; it discovers that fact only when the
store executes the action redeem.

Let us examine first the automaton (c) for the bank. The start state is
state 1; it represents the situation where the bank has issued the money file in
question but has not been requested either to redeem it or to cancel it. If a
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Start pay redeem transfer

ship

(a) Store
redeem transfer
cancel
% cancel
redeem transfer
Start Start
(b) Customer (c) Bank

Figure 2.1: Finite automata representing a customer, a store, and a bank

cancel request is sent to the bank by the customer, then the bank restores the
money to the customer’s account and enters state 2. The latter state represents
the situation where the money has been cancelled. The bank, being responsible,
will not leave state 2 once it is entered, since the bank must not allow the same
money to be cancelled again or spent by the customer.!

Alternatively, when in state 1 the bank may receive a redeem request from
the store. If so, it goes to state 3, and shortly sends the store a transfer message,
with a new money file that now belongs to the store. After sending the transfer
message, the bank goes to state 4. In that state, it will neither accept cancel or
redeem requests nor will it perform any other actions regarding this particular
money file.

Now, let us consider Fig. 2.1(a), the automaton representing the actions of
the store. While the bank always does the right thing, the store’s system has
some defects. Imagine that the shipping and financial operations are done by
separate processes, so there is the opportunity for the ship action to be done
either before, after, or during the redemption of the electronic money. That
policy allows the store to get into a situation where it has already shipped the
goods and then finds out the money was bogus.

The store starts out in state a. When the customer orders the goods by

You should remember that this entire discussion is about one single money file. The bank
will in fact be running the same protocol with a large number of electronic pieces of money,
but the workings of the protocol are the same for each of them, so we can discuss the problem
as if there were only one piece of electronic money in existence.
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performing the pay action, the store enters state b. In this state, the store
begins both the shipping and redemption processes. If the goods are shipped
first, then the store enters state ¢, where it must still redeem the money from
the bank and receive the transfer of an equivalent money file from the bank.
Alternatively, the store may send the redeem message first, entering state d.
From state d, the store might next ship, entering state e, or it might next
receive the transfer of money from the bank, entering state f. From state f, we
expect that the store will eventually ship, putting the store in state g, where the
transaction is complete and nothing more will happen. In state e, the store is
waiting for the transfer from the bank. Unfortunately, the goods have already
been shipped, and if the transfer never occurs, the store is out of luck.

Last, observe the automaton for the customer, Fig. 2.1(b). This automaton
has only one state, reflecting the fact that the customer “can do anything.”
The customer can perform the pay and cancel actions any number of times, in
any order, and stays in the lone state after each action.

2.1.3 Enabling the Automata to Ignore Actions

While the three automata of Fig. 2.1 reflect the behaviors of the three partici-
pants independently, there are certain transitions that are missing. For example,
the store is not affected by a cancel message, so if the cancel action is performed
by the customer, the store should remain in whatever state it is in. However, in
the formal definition of a finite automaton, which we shall study in Section 2.2,
whenever an input X is received by an automaton, the automaton must follow
an arc labeled X from the state it is in to some new state. Thus, the automaton
for the store needs an additional arc from each state to itself, labeled cancel.
Then, whenever the cancel action is executed, the store automaton can make a
“transition” on that input, with the effect that it stays in the same state it was
in. Without these additional arcs, whenever the cancel action was executed the
store automaton would “die”; that is, the automaton would be in no state at
all, and further actions by that automaton would be impossible.

Another potential problem is that one of the participants may, intentionally
or erroneously, send an unexpected message, and we do not want this action to
cause one of the automata to die. For instance, suppose the customer decided
to execute the pay action a second time, while the store was in state e. Since
that state has no arc out with label pay, the store’s automaton would die before
it could receive the transfer from the bank. In summary, we must add to the
automata of Fig. 2.1 loops on certain states, with labels for all those actions
that must be ignored when in that state; the complete automata are shown
in Fig. 2.2. To save space, we combine the labels onto one arc, rather than
showing several arcs with the same heads and tails but different labels. The
two kinds of actions that must be ignored are:

1. Actions that are irrelevant to the participant involved. As we saw, the
only irrelevant action for the store is cancel, so each of its seven states
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Figure 2.2: The complete sets of transitions for the three automata

has a loop labeled cancel. For the bank, both pay and ship are irrelevant,
so we have put at each of the bank’s states an arc labeled pay, ship. For
the customer, ship, redeem and transfer are all irrelevant, so we add arcs
with these labels. In effect, it stays in its one state on any sequence of
inputs, so the customer automaton has no effect on the operation of the
overall system. Of course, the customer is still a participant, since it is
the customer who initiates the pay and cancel actions. However, as we
mentioned, the matter of who initiates actions has nothing to do with the
behavior of the automata.

. Actions that must not be allowed to kill an automaton. As mentioned, we

must not allow the customer to kill the store’s automaton by executing pay
again, so we have added loops with label pay to all but state a (where the
pay action is expected and relevant). We have also added loops with labels
cancel to states 3 and 4 of the bank, in order to prevent the customer from
killing the bank’s automaton by trying to cancel money that has already
been redeemed. The bank properly ignores such a request. Likewise,
states 3 and 4 have loops on redeem. The store should not try to redeem
the same money twice, but if it does, the bank properly ignores the second
request.
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2.1.4 The Entire System as an Automaton

While we now have models for how the three participants behave, we do not
yet have a representation for the interaction of the three participants. As men-
tioned, because the customer has no constraints on behavior, that automaton
has only one state, and any sequence of events lets it stay in that state; i.e., it is
not possible for the system as a whole to “die” because the customer automaton
has no response to an action. However, both the store and bank behave in a
complex way, and it is not immediately obvious in what combinations of states
these two automata can be.

The normal way to explore the interaction of automata such as these is to
construct the product automaton. That automaton’s states represent a pair of
states, one from the store and one from the bank. For instance, the state (3, d)
of the product automaton represents the situation where the bank is in state
3, and the store is in state d. Since the bank has four states and the store has
seven, the product automaton has 4 x 7 = 28 states.

We show the product automaton in Fig. 2.3. For clarity, we have arranged
the 28 states in an array. The row corresponds to the state of the bank and
the column to the state of the store. To save space, we have also abbreviated
the labels on the arcs, with P, S, C', R, and T standing for pay, ship, cancel,
redeem, and transfer, respectively.

Start

Figure 2.3: The product automaton for the store and bank

To construct the arcs of the product automaton, we need to run the bank
and store automata “in parallel.” Each of the two components of the product
automaton independently makes transitions on the various inputs. However, it
is important to notice that if an input action is received, and one of the two
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automata has no state to go to on that input, then the product automaton
“dies”; it has no state to go to.

To make this rule for state transitions precise, suppose the product automa-
ton is in state (i,x). That state corresponds to the situation where the bank
is in state ¢ and the store in state . Let Z be one of the input actions. We
look at the automaton for the bank, and see whether there is a transition out
of state ¢ with label Z. Suppose there is, and it leads to state j (which might
be the same as 7 if the bank loops on input Z). Then, we look at the store and
see if there is an arc labeled Z leading to some state y. If both 7 and y exist,
then the product automaton has an arc from state (i, ) to state (j,y), labeled
Z. If either of states j or y do not exist (because the bank or store has no arc
out of ¢ or z, respectively, for input Z), then there is no arc out of (i, z) labeled
Z.

We can now see how the arcs of Fig. 2.3 were selected. For instance, on
input pay, the store goes from state a to b, but stays put if it is in any other
state besides a. The bank stays in whatever state it is in when the input is
pay, because that action is irrelevant to the bank. This observation explains
the four arcs labeled P at the left ends of the four rows in Fig. 2.3, and the
loops labeled P on other states.

For another example of how the arcs are selected, consider the input redeem.
If the bank receives a redeem message when in state 1, it goes to state 3. If in
states 3 or 4, it stays there, while in state 2 the bank automaton dies; i.e., it has
nowhere to go. The store, on the other hand, can make transitions from state
b to d or from c to e when the redeem input is received. In Fig. 2.3, we see six
arcs labeled redeem, corresponding to the six combinations of three bank states
and two store states that have outward-bound arcs labeled R. For example, in
state (1,b), the arc labeled R takes the automaton to state (3,d), since redeem
takes the bank from state 1 to 3 and the store from b to d. As another example,
there is an arc labeled R from (4, ¢) to (4, ¢e), since redeem takes the bank from
state 4 back to state 4, while it takes the store from state ¢ to state e.

2.1.5 Using the Product Automaton to Validate the
Protocol

Figure 2.3 tells us some interesting things. For instance, of the 28 states, only
ten of them can be reached from the start state, which is (1,a) — the combi-
nation of the start states of the bank and store automata. Notice that states
like (2,e) and (4, d) are not accessible, that is, there is no path to them from
the start state. Inaccessible states need not be included in the automaton, and
we did so in this example just to be systematic.

However, the real purpose of analyzing a protocol such as this one using
automata is to ask and answer questions that mean “can the following type
of error occur?” In the example at hand, we might ask whether it is possible
that the store can ship goods and never get paid. That is, can the product
automaton get into a state in which the store has shipped (that is, the state is
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in column ¢, e, or g), and yet no transition on input 7" was ever made or will
be made?

For instance, in state (3, ¢), the goods have shipped, but there will eventu-
ally be a transition on input T to state (4,g). In terms of what the bank is
doing, once it has gotten to state 3, it has received the redeem request and pro-
cessed it. That means it must have been in state 1 before receiving the redeem
and therefore the cancel message had not been received and will be ignored if
received in the future. Thus, the bank will eventually perform the transfer of
money to the store.

However, state (2,c) is a problem. The state is accessible, but the only arc
out leads back to that state. This state corresponds to a situation where the
bank received a cancel message before a redeem message. However, the store
received a pay message; i.e., the customer was being duplicitous and has both
spent and canceled the same money. The store foolishly shipped before trying
to redeem the money, and when the store does execute the redeem action, the
bank will not even acknowledge the message, because it is in state 2, where it
has canceled the money and will not process a redeem request.

2.2 Deterministic Finite Automata

Now it is time to present the formal notion of a finite automaton, so that we
may start to make precise some of the informal arguments and descriptions that
we saw in Sections 1.1.1 and 2.1. We begin by introducing the formalism of a
deterministic finite automaton, one that is in a single state after reading any
sequence of inputs. The term “deterministic” refers to the fact that on each
input there is one and only one state to which the automaton can transition from
its current state. In contrast, “nondeterministic” finite automata, the subject of
Section 2.3, can be in several states at once. The term “finite automaton” will
refer to the deterministic variety, although we shall use “deterministic” or the
abbreviation DFA normally, to remind the reader of which kind of automaton
we are talking about.

2.2.1 Definition of a Deterministic Finite Automaton
A deterministic finite automaton consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted X.

3. A transition function that takes as arguments a state and an input symbol
and returns a state. The transition function will commonly be denoted 6.
In our informal graph representation of automata, § was represented by
arcs between states and the labels on the arcs. If ¢ is a state, and « is an
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input symbol, then 0(g, a) is that state p such that there is an arc labeled
a from g to p.?

4. A start state, one of the states in Q).
5. A set of final or accepting states F'. The set F'is a subset of Q.

A deterministic finite automaton will often be referred to by its acronym: DFA.
The most succinct representation of a DFA is a listing of the five components
above. In proofs we often talk about a DFA in “five-tuple” notation:

A= (Q,E,(S,qo,F)

where A is the name of the DFA, @ is its set of states, ¥ its input symbols, §
its transition function, o its start state, and F' its set of accepting states.

2.2.2 How a DFA Processes Strings

The first thing we need to understand about a DFA is how the DFA decides
whether or not to “accept” a sequence of input symbols. The “language” of
the DFA is the set of all strings that the DFA accepts. Suppose aias - - - ay is a
sequence of input symbols. We start out with the DFA in its start state, gg. We
consult the transition function J, say d(go,a1) = q1 to find the state that the
DFA A enters after processing the first input symbol a;. We process the next
input symbol, as, by evaluating d(g1,a2); let us suppose this state is g2. We
continue in this manner, finding states gs, g4, - - ., gn such that §(¢;—1,a;) = ¢;
for each 7. If ¢, is a member of F', then the input ajas - - - a, is accepted, and
if not then it is “rejected.”

Example 2.1: Let us formally specify a DFA that accepts all and only the
strings of 0’s and 1’s that have the sequence 01 somewhere in the string. We
can write this language L as:

{w | w is of the form z01y for some strings
x and y consisting of 0’s and 1’s only}

Another equivalent description, using parameters z and y to the left of the
vertical bar, is:

{z0ly | = and y are any strings of 0’s and 1’s}

Examples of strings in the language include 01, 11010, and 100011. Examples
of strings not in the language include €, 0, and 111000.

What do we know about an automaton that can accept this language L?
First, its input alphabet is ¥ = {0,1}. It has some set of states, @), of which
one, say (o, is the start state. This automaton has to remember the important
facts about what inputs it has seen so far. To decide whether 01 is a substring
of the input, A needs to remember:

2More accurately, the graph is a picture of some transition function d, and the arcs of the
graph are constructed to reflect the transitions specified by d.
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1. Has it already seen 017 If so, then it accepts every sequence of further
inputs; i.e., it will only be in accepting states from now on.

2. Has it never seen 01, but its most recent input was 0, so if it now sees a
1, it will have seen 01 and can accept everything it sees from here on?

3. Has it never seen 01, but its last input was either nonexistent (it just
started) or it last saw a 17 In this case, A cannot accept until it first sees
a 0 and then sees a 1 immediately after.

These three conditions can each be represented by a state. Condition (3) is
represented by the start state, gp. Surely, when just starting, we need to see
a 0 and then a 1. But if in state go we next see a 1, then we are no closer to
seeing 01, and so we must stay in state go. That is, §(go, 1) = qo-

However, if we are in state go and we next see a 0, we are in condition (2).
That is, we have never seen 01, but we have our 0. Thus, let us use ¢ to
represent condition (2). Our transition from go on input 0 is d(go,0) = ¢o.

Now, let us consider the transitions from state ¢». If we see a 0, we are no
better off than we were, but no worse either. We have not seen 01, but 0 was
the last symbol, so we are still waiting for a 1. State g2 describes this situation
perfectly, so we want §(g2,0) = ¢2. If we are in state ¢» and we see a 1 input,
we now know there is a 0 followed by a 1. We can go to an accepting state,
which we shall call ¢;, and which corresponds to condition (1) above. That is,
6(g2, 1) = 1.

Finally, we must design the transitions for state ¢;. In this state, we have
already seen a 01 sequence, so regardless of what happens, we shall still be in
a situation where we’ve seen 01. That is, §(q1,0) = 6(q1,1) = ¢1.

Thus, @ = {qo,q1,¢2}. As we said, qo is the start state, and the only
accepting state is g¢p; that is, F = {q1}. The complete specification of the
automaton A that accepts the language L of strings that have a 01 substring,
is

A= ({qO; fh;Qz}; {07 1}7 67 qo, {ql})

where ¢ is the transition function described above. O

2.2.3 Simpler Notations for DFA’s

Specifying a DFA as a five-tuple with a detailed description of the ¢ transition
function is both tedious and hard to read. There are two preferred notations
for describing automatas:

1. A transition diagram, which is a graph such as the ones we saw in Sec-
tion 2.1.

2. A transition table, which is a tabular listing of the § function, which by
implication tells us the set of states and the input alphabet.
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Transition Diagrams

A transition diagram for a DFA A = (Q,X, 9, qo, F) is a graph defined as follows:

a) For each state in @) there is a node.

b) For each state ¢ in @ and each input symbol a in ¥, let d(q,a) = p.
Then the transition diagram has an arc from node g to node p, labeled
a. If there are several input symbols that cause transitions from ¢ to p,
then the transition diagram can have one arc, labeled by the list of these
symbols.

c) There is an arrow into the start state qo, labeled Start. This arrow does
not originate at any node.

d) Nodes corresponding to accepting states (those in F') are marked by a
double circle. States not in F' have a single circle.

Example 2.2: Figure 2.4 shows the transition diagram for the DFA that we
designed in Example 2.1. We see in that diagram the three nodes that cor-
respond to the three states. There is a Start arrow entering the start state,
qo, and the one accepting state, qp, is represented by a double circle. Out of
each state is one arc labeled 0 and one arc labeled 1 (although the two arcs
are combined into one with a double label in the case of ¢1). The arcs each
correspond to one of the § facts developed in Example 2.1. O

1 0

Start 0 1 " o

Figure 2.4: The transition diagram for the DFA accepting all strings with a
substring 01

Transition Tables

A transition table is a conventional, tabular representation of a function like §
that takes two arguments and returns a value. The rows of the table correspond
to the states, and the columns correspond to the inputs. The entry for the row
corresponding to state ¢ and the column corresponding to input a is the state

0(q,a).

Example 2.3: The transition table corresponding to the function § of Ex-
ample 2.1 is shown in Fig. 2.5. We have also shown two other features of a
transition table. The start state is marked with an arrow, and the accepting
states are marked with a star. Since we can deduce the sets of states and in-
put symbols by looking at the row and column heads, we can now read from
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the transition table all the information we need to specify the finite automaton
uniquely. O

[0 [1
—qo || 92 | 9o
*qr || 41 | 1
q2 || 92 | @1

Figure 2.5: Transition table for the DFA of Example 2.1

2.2.4 Extending the Transition Function to Strings

We have explained informally that the DFA defines a language: the set of all
strings that result in a sequence of state transitions from the start state to an
accepting state. In terms of the transition diagram, the language of a DFA
is the set of labels along all the paths that lead from the start state to any
accepting state.

Now, we need to make the notion of the language of a DFA precise. To do
so, we define an extended transition function that describes what happens when
we start in any state and follow any sequence of inputs. If ¢ is our transition
function, then the extended transition function constructed from 0 will be called
0. The extended transition function is a function that takes a state g and a
string w and returns a state p — the state that the automaton reaches when
starting in state ¢ and processing the sequence of inputs w. We define ) by
induction on the length of the input string, as follows:

BASIS: S(q, €) = ¢. That is, if we are in state ¢ and read no inputs, then we
are still in state q.

INDUCTION: Suppose w is a string of the form za; that is, a is the last symbol
of w, and = is the string consisting of all but the last symbol.> For example,
w = 1101 is broken into 2 = 110 and a = 1. Then

8(g,w) = 6(4(g, ), a) (2.1)

Now (2.1) may seem like a lot to take in, but the idea is simple. To compute
0(gq,w), first compute 0(q, x), the state that the automaton is in after processing
all but the last symbol of w. Suppose this state is p; that is, d(¢g,z) = p. Then

0(gq,w) is what we get by making a transition from state p on input a, the last
symbol of w. That is, §(¢, w) = d(p, a)-

3Recall our convention that letters at the beginning of the alphabet are symbols, and those
near the end of the alphabet are strings. We need that convention to make sense of the phrase
“of the form xa.”
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Example 2.4: Let us design a DFA to accept the language
L = {w | w has both an even number of 0’s and an even number of 1’s}

It should not be surprising that the job of the states of this DFA is to count
both the number of 0’s and the number of 1’s, but count them modulo 2. That
is, the state is used to remember whether the number of 0’s seen so far is even or
odd, and also to remember whether the number of 1’s seen so far is even or odd.
There are thus four states, which can be given the following interpretations:

go: Both the number of 0’s seen so far and the number of 1’s seen so far are
even.

q1: The number of 0’s seen so far is even, but the number of 1’s seen so far is
odd.

g2: The number of 1’s seen so far is even, but the number of 0’s seen so far is
odd.

g3: Both the number of 0’s seen so far and the number of 1’s seen so far are
odd.

State qp is both the start state and the lone accepting state. It is the start
state, because before reading any inputs, the numbers of 0’s and 1’s seen so
far are both zero, and zero is even. It is the only accepting state, because it
describes exactly the condition for a sequence of 0’s and 1’s to be in language
L.

Figure 2.6: Transition diagram for the DFA of Example 2.4

We now know almost how to specify the DFA for language L. It is

A= ({q07 qi1,92, q3}7 {07 ]-}7 67 qo, {qO})

where the transition function 0 is described by the transition diagram of Fig. 2.6.
Notice how each input 0 causes the state to cross the horizontal, dashed line.
Thus, after seeing an even number of 0’s we are always above the line, in state
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qo or ¢; while after seeing an odd number of 0’s we are always below the line,
in state ¢o or g3. Likewise, every 1 causes the state to cross the vertical, dashed
line. Thus, after seeing an even number of 1’s, we are always to the left, in state
go Or g2, while after seeing an odd number of 1’s we are to the right, in state g1
or q3. These observations are an informal proof that the four states have the
interpretations attributed to them. However, one could prove the correctness
of our claims about the states formally, by a mutual induction in the spirit of
Example 1.23.

We can also represent this DFA by a transition table. Figure 2.7 shows this
table. However, we are not just concerned with the design of this DFA; we
want to use it to illustrate the construction of 4 from its transition function 8.
Suppose the input is 110101. Since this string has even numbers of 0’s and 1’s
both, we expect it is in the language. Thus, we expect that S(qo, 110101) = go,
since o is the only accepting state. Let us now verify that claim.

o |1

*—=>qo || 92 | ©1
q1 g3 | 9o

q2 || 9o | 43

q3 || 41 | 92

Figure 2.7: Transition table for the DFA of Example 2.4

The check involves computing S(qo, w) for each prefix w of 110101, starting
at € and going in increasing size. The summary of this calculation is:

d S(QO;G) = {qo-

3(q0,1) = 6(d(go,€),1) = 8(qo, 1) = 1.

0(qo,11) = 6(8(q0,1),1) = 8(q1,1) = qo.

8(q0,110) = 6(5(qo, 11),0) = d(go,0) = go.

0(go, 1101) = §(d(go, 110),1) = 8(g2, 1) = gs.

8(go,11010) = §(d(go, 1101),0) = &(g3,0) = q1.

d(go, 110101) = §(6(go, 11010),1) = &(q1,1) = go.
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Standard Notation and Local Variables

After reading this section, you might imagine that our customary notation
is required; that is, you must use 0 for the transition function, use A for
the name of a DFA, and so on. We tend to use the same variables to
denote the same thing across all examples, because it helps to remind you
of the types of variables, much the way a variable 7 in a program is almost
always of integer type. However, we are free to call the components of an
automaton, or anything else, anything we wish. Thus, you are free to call
a DFA M and its transition function 7' if you like.

Moreover, you should not be surprised that the same variable means
different things in different contexts. For example, the DFA’s of Examples
2.1 and 2.4 both were given a transition function called §. However, the
two transition functions are each local variables, belonging only to their
examples. These two transition functions are very different and bear no
relationship to one another.

2.2.5 The Language of a DFA

Now, we can define the language of a DFA A = (Q, X, 6, qo, F). This language
is denoted L(A), and is defined by

L(A) = {w | §(qo, w) is in F}

That is, the language of A is the set of strings w that take the start state gg to
one of the accepting states. If L is L(A) for some DFA A, then we say L is a
regular language.

Example 2.5: As we mentioned earlier, if A is the DFA of Example 2.1, then
L(A) is the set of all strings of 0’s and 1’s that contain a substring 01. If A is
instead the DFA of Example 2.4, then L(A) is the set of all strings of 0’s and
1’s whose numbers of 0’s and 1’s are both even. O

2.2.6 Exercises for Section 2.2

Exercise 2.2.1: In Fig. 2.8 is a marble-rolling toy. A marble is dropped at
A or B. Levers x1, 2, and x3 cause the marble to fall either to the left or to
the right. Whenever a marble encounters a lever, it causes the lever to reverse
after the marble passes, so the next marble will take the opposite branch.

* a) Model this toy by a finite automaton. Let the inputs A and B represent
the input into which the marble is dropped. Let acceptance correspond
to the marble exiting at D; nonacceptance represents a marble exiting at
C.
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A B
} }
X

C D

Figure 2.8: A marble-rolling toy

! b) Informally describe the language of the automaton.

c) Suppose that instead the levers switched before allowing the marble to
pass. How would your answers to parts (a) and (b) change?

*! Exercise 2.2.2: We defined § by breaking the input string into any string
followed by a single symbol (in the inductive part, Equation 2.1). However, we
informally think of b as describing what happens along a path with a certain
string of labels, and if so, then it should not matter how we break the input
string in the definition of . Show that in fact, 6(¢q, zy) = 6(d(g,z),y) for any
state ¢ and strings ¢ and y. Hint: Perform an induction on |y|.

! Exercise 2.2.3: Show that for any state ¢, string z, and input symbol a,
0(q,ax) = 5(5(q,a),x). Hint: Use Exercise 2.2.2.

Exercise 2.2.4: Give DFA’s accepting the following languages over the alpha-
bet {0,1}:

* a) The set of all strings ending in 00.

b) The set of all strings with three consecutive 0’s (not necessarily at the
end).

c) The set of strings with 011 as a substring.

! Exercise 2.2.5: Give DFA’s accepting the following languages over the alpha-
bet {0,1}:

a) The set of all strings such that each block of five consecutive symbols
contains at least two 0’s.
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b) The set of all strings whose tenth symbol from the right end is a 1.
c) The set of strings that either begin or end (or both) with 01.

d) The set of strings such that the number of 0’s is divisible by five, and the
number of 1’s is divisible by 3.

!! Exercise 2.2.6: Give DFA’s accepting the following languages over the alpha-
bet {0,1}:

* a) The set of all strings beginning with a 1 that, when interpreted as a binary
integer, is a multiple of 5. For example, strings 101, 1010, and 1111 are
in the language; 0, 100, and 111 are not.

b) The set of all strings that, when interpreted in reverse as a binary inte-
ger, is divisible by 5. Examples of strings in the language are 0, 10011,
1001100, and 0101.

Exercise 2.2.7: Let A be a DFA and ¢ a particular state of A, such that
d(g,a) = q for all input symbols a. Show by induction on the length of the
input that for all input strings w, é(¢, w) = q.

Exercise 2.2.8: Let A be a DFA and a a particular input symbol of A, such
that for all states ¢ of A we have 0(q,a) = gq.

a) Show by induction on n that for all n > 0, S(q,a”) = ¢, where a" is the
string consisting of n a’s.

b) Show that either {a}* C L(A) or {a}* N L(A4) = 0.

*! Exercise 2.2.9: Let A = (Q,%,6,q0,{gr}) be a DFA, and suppose that for all
a in ¥ we have 6(go,a) = é(gr,a).

a) Show that for all w # e we have §(qo, w) = S(qf,w).

b) Show that if = is a nonempty string in L(A), then for all £ > 0, z* (i.e.,
x written k times) is also in L(A).

*! Exercise 2.2.10: Consider the DFA with the following transition table:

[0 |1
—A| A|B
xB | B | A

Informally describe the language accepted by this DFA, and prove by induction
on the length of an input string that your description is correct. Hint: When
setting up the inductive hypothesis, it is wise to make a statement about what
inputs get you to each state, not just what inputs get you to the accepting
state.
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Exercise 2.2.11: Repeat Exercise 2.2.10 for the following transition table:

[0 |1
—xA || B| A
xB | C| A
clc|c

2.3 Nondeterministic Finite Automata

A “nondeterministic” finite automaton (NFA) has the power to be in several
states at once. This ability is often expressed as an ability to “guess” something
about its input. For instance, when the automaton is used to search for certain
sequences of characters (e.g., keywords) in a long text string, it is helpful to
“guess” that we are at the beginning of one of those strings and use a sequence of
states to do nothing but check that the string appears, character by character.
We shall see an example of this type of application in Section 2.4.

Before examining applications, we need to define nondeterministic finite
automata and show that each one accepts a language that is also accepted by
some DFA. That is, the NFA’s accept exactly the regular languages, just as
DFA’s do. However, there are reasons to think about NFA’s. They are often
more succinct and easier to design than DFA’s. Moreover, while we can always
convert an NFA to a DFA, the latter may have exponentially more states than
the NFA; fortunately, cases of this type are rare.

2.3.1 An Informal View of Nondeterministic Finite
Automata

Like the DFA, an NFA has a finite set of states, a finite set of input symbols,
one start state and a set of accepting states. It also has a transition function,
which we shall commonly call §. The difference between the DFA and the NFA
is in the type of §. For the NFA, § is a function that takes a state and input
symbol as arguments (like the DFA’s transition function), but returns a set
of zero, one, or more states (rather than returning exactly one state, as the
DFA must). We shall start with an example of an NFA, and then make the
definitions precise.

Example 2.6: Figure 2.9 shows a nondeterministic finite automaton, whose
job is to accept all and only the strings of 0’s and 1’s that end in 01. State
qo is the start state, and we can think of the automaton as being in state go
(perhaps among other states) whenever it has not yet “guessed” that the final
01 has begun. It is always possible that the next symbol does not begin the
final 01, even if that symbol is 0. Thus, state g may transition to itself on both
0 and 1.

However, if the next symbol is 0, this NFA also guesses that the final 01 has
begun. An arc labeled 0 thus leads from ¢o to state ¢;. Notice that there are
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0, 1
S m 0 1
tart @ @

Figure 2.9: An NFA accepting all strings that end in 01

two arcs labeled 0 out of gop. The NFA has the option of going either to g or
to q1, and in fact it does both, as we shall see when we make the definitions
precise. In state ¢;, the NFA checks that the next symbol is 1, and if so, it goes
to state g and accepts.

Notice that there is no arc out of g; labeled 0, and there are no arcs at all
out of ¢g2. In these situations, the thread of the NFA’s existence corresponding
to those states simply “dies,” although other threads may continue to exist.
While a DFA has exactly one arc out of each state for each input symbol, an
NFA has no such constraint; we have seen in Fig. 2.9 cases where the number
of arcs is zero, one, and two, for example.

9 —>49h—> 9 —» 99— 94— 9

S,

9 9 9

(stuck) \ \

D D
(stuck)

0 0 1 0 1

Figure 2.10: The states an NFA is in during the processing of input sequence
00101

Figure 2.10 suggests how an NFA processes inputs. We have shown what
happens when the automaton of Fig. 2.9 receives the input sequence 00101. It
starts in only its start state, go. When the first 0 is read, the NFA may go to
either state gy or state g, so it does both. These two threads are suggested by
the second column in Fig. 2.10.

Then, the second 0 is read. State gy may again go to both ¢y and ¢;.
However, state ¢; has no transition on 0, so it “dies.” When the third input, a
1, occurs, we must consider transitions from both ¢y and ¢;. We find that go
goes only to gg on 1, while g; goes only to ¢o. Thus, after reading 001, the NFA
is in states go and g2. Since ¢o is an accepting state, the NFA accepts 001.

However, the input is not finished. The fourth input, a 0, causes ¢»’s thread
to die, while gg goes to both g9 and ¢;. The last input, a 1, sends gy to gop and
q1 to g2. Since we are again in an accepting state, 00101 is accepted. O
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2.3.2 Definition of Nondeterministic Finite Automata

Now, let us introduce the formal notions associated with nondeterministic finite
automata. The differences between DFA’s and NFA’s will be pointed out as we
do. An NFA is represented essentially like a DFA:

A=(Q,%,0,q,F)
where:

1. @ is a finite set of states.

2. ¥ is a finite set of input symbols.

3. qo, a member of Q, is the start state.

4. F, a subset of @, is the set of final (or accepting) states.

5. 0, the transition function is a function that takes a state in ) and an
input symbol in ¥ as arguments and returns a subset of ). Notice that
the only difference between an NFA and a DFA is in the type of value

that d returns: a set of states in the case of an NFA and a single state in
the case of a DFA.

Example 2.7: The NFA of Fig. 2.9 can be specified formally as

({q07q17 qZ}; {07 ]-}7 67 qo, {ql})

where the transition function § is given by the transition table of Fig. 2.11. O

| o | 1
= q || {90, a1} | {0}
q1 0 {Q2}
xq || 0 0

Figure 2.11: Transition table for an NFA that accepts all strings ending in 01

Notice that transition tables can be used to specify the transition function
for an NFA as well as for a DFA. The only difference is that each entry in the
table for the NFA is a set, even if the set is a singleton (has one member). Also
notice that when there is no transition at all from a given state on a given input
symbol, the proper entry is @), the empty set.
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2.3.3 The Extended Transition Function

As for DFA’s, we need to extend the transition function § of an NFA to a
function & that takes a state q and a string of input symbols w, and returns the
set of states that the NFA is in if it starts in state ¢ and processes the string w.
The idea was suggested by Fig. 2.10; in essence 0(g,w) is the column of states
found after reading w, if ¢ is the lone state in the first column. For instance,
Fig. 2.10 suggests that d(qo, 001) = {qo, g2 }- Formally, we define 4 for an NFA’s
transition function ¢ by:

BASIS: S(q, €) = {q}. That is, without reading any input symbols, we are only
in the state we began in.

INDUCTION: Suppose w is of the form w = wa, where a is the final symbol of
w and x is the rest of w. Also suppose that 6(q,x) = {p1,p2,...,pr}- Let

k

U 6(pi7a) = {T‘1,’I°2,...,’I°m}

i=1

Then S(q,w) = {ri,r2,...,"m}. Less formally, we compute S(q,w) by first

computing d(g, x), and by then following any transition from any of these states
that is labeled a.

Example 2.8: Let us use 5 to describe the processing of input 00101 by the
NFA of Fig. 2.9. A summary of the steps is:

~

1. d(qo,€) = {qo}-

~

2. 0(q0,0) = 6(q0,0) = {qo, 71 }-

3. 6(go,00) = 0(qo,0) U 0(q1,0) = {qo, 1} U D = {qo,q: }

4. 6(q0,001) = 6(q0, 1) U d(q1,1) = {qo} U {ez} = {90, ¢2}-

~

5. 0(go,0010) = 0(q0,0) U d(q2,0) = {go, 1} U D = {qo,q1}-

6. 0(qo,00101) = 6(go,1) U d(q1,1) = {qo} U {q2} = {q0, 2}

Line (1) is the basis rule. We obtain line (2) by applying ¢ to the lone state, go,
that is in the previous set, and get {qo,q1} as a result. Line (3) is obtained by
taking the union over the two states in the previous set of what we get when we
apply 0 to them with input 0. That is, d(go,0) = {qo,¢1}, while §(g1,0) = 0.
For line (4), we take the union of 6(go, 1) = {go} and d(g1,1) = {g=}. Lines (5)
and (6) are similar to lines (3) and (4). O
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2.3.4 The Language of an NFA

As we have suggested, an NFA accepts a string w if it is possible to make any
sequence of choices of next state, while reading the characters of w, and go from
the start state to any accepting state. The fact that other choices using the
input symbols of w lead to a nonaccepting state, or do not lead to any state at
all (i.e., the sequence of states “dies”), does not prevent w from being accepted
by the NFA as a whole. Formally, if A = (@, X%, 6, qo, F') is an NFA, then

L(A) = {w | §(qo, w) N F # 0}

That is, L(A) is the set of strings w in ¥* such that (g, w) contains at least
one accepting state.

Example 2.9: As an example, let us prove formally that the NFA of Fig. 2.9
accepts the language L = {w | w ends in 01}. The proof is a mutual induction
of the following three statements that characterize the three states:

>

1. (qo,w) contains qo for every w.

>

2. 0(qo,w) contains ¢y if and only if w ends in 0.
3. S(qg, w) contains ¢» if and only if w ends in 01.

To prove these statements, we need to consider how A can reach each state; i.e.,
what was the last input symbol, and in what state was A just before reading
that symbol?

Since the language of this automaton is the set of strings w such that S(qo, w)
contains ¢ (because ¢» is the only accepting state), the proof of these three
statements, in particular the proof of (3), guarantees that the language of this
NFA is the set of strings ending in 01. The proof of the theorem is an induction
on |w|, the length of w, starting with length 0.

BASIS: If |w| = 0, then w = e. Statement (1) says that 6(go,€) contains go,
which it does by the basis part of the definition of 5. For statement (2), we
know that e does not end in 0, and we also know that ) (go, €) does not contain
q1, again by the basis part of the definition of 5. Thus, the hypotheses of both
directions of the if-and-only-if statement are false, and therefore both directions
of the statement are true. The proof of statement (3) for w = € is essentially
the same as the above proof for statement (2).

INDUCTION: Assume that w = xa, where a is a symbol, either 0 or 1. We
may assume statements (1) through (3) hold for =, and we need to prove them
for w. That is, we assume |w| = n + 1, so |x| = n. We assume the inductive
hypothesis for n and prove it for n + 1.

1. We know that S(qg,x) contains ¢p. Since there are transitions on both
0 and 1 from ¢p to itself, it follows that d(go,w) also contains qg, so
statement (1) is proved for w.
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2. (If) Assume that w ends in 0; i.e., a = 0. By statement (1) applied to z,
we know that d(go,x) contains gp. Since there is a transition from gy to
¢1 on input 0, we conclude that d(go,w) contains g .

(Only-if) Suppose S(qo,w) contains ¢;. If we look at the diagram of
Fig. 2.9, we see that the only way to get into state g; is if the input
sequence w is of the form 0. That is enough to prove the “only-if”
portion of statement (2).

3. (If) Assume that w ends in 01. Then if w = za, we know that a = 1 and
@ ends in 0. By statement (2) applied to z, we know that 6(go, #) contains
q1- Since there is a transition from ¢; to ¢» on input 1, we conclude that
S(qg,w) contains ¢o.

(Only-if) Suppose 5 (o, w) contains go. Looking at the diagram of Fig. 2.9,
we discover that the only way to get to state g is for w to be of the form
z1, where S(qo,a:) contains ¢;. By statement (2) applied to z, we know
that = ends in 0. Thus, w ends in 01, and we have proved statement (3).

O

2.3.5 Equivalence of Deterministic and Nondeterministic
Finite Automata

Although there are many languages for which an NFA is easier to construct
than a DFA, such as the language (Example 2.6) of strings that end in 01, it is
a surprising fact that every language that can be described by some NFA can
also be described by some DFA. Moreover, the DFA in practice has about as
many states as the NFA, although it often has more transitions. In the worst
case, however, the smallest DFA can have 2" states while the smallest NFA for
the same language has only n states.

The proof that DFA’s can do whatever NFA’s can do involves an important
“construction” called the subset construction because it involves constructing all
subsets of the set of states of the NFA. In general, many proofs about automata
involve constructing one automaton from another. It is important for us to
observe the subset construction as an example of how one formally describes one
automaton in terms of the states and transitions of another, without knowing
the specifics of the latter automaton.

The subset construction starts from an NFA N = (Qn, X, N, qo, Fn). Its
goal is the description of a DFA D = (Qp,¥,dp,{q}, Fp) such that L(D) =
L(N). Notice that the input alphabets of the two automata are the same, and
the start state of D is the set containing only the start state of N. The other
components of D are constructed as follows.

e ()p is the set of subsets of Qn; i.e., @p is the power set of Qn. Note
that if Qx has n states, then () p will have 2™ states. Often, not all these
states are accessible from the start state of (Jp. Inaccessible states can
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be “thrown away,” so effectively, the number of states of D may be much
smaller than 2".

e F'p is the set of subsets S of Qn such that S N Fy # 0. That is, Fp is
all sets of IV’s states that include at least one accepting state of NV.

e For each set S C @Qn and for each input symbol a in X,
sp(S,a) = |J on(p,a)
pin S

That is, to compute dp(S,a) we look at all the states p in S, see what
states IV goes to from p on input a, and take the union of all those states.

|0 | 1
010 0
= {0} || {eo0. a1} | {0}
{m} || 0 {e}
#{q2} || 0 0

{eo,a1} || {e0, a1} | {90, 42}
*{QO,Qz} {QO,(h} {QO}
w{qi,q2} || 0 {g2}

*{CIO,Q1,Q2} {QO,(h} {CIO,(h}

Figure 2.12: The complete subset construction from Fig. 2.9

Example 2.10: Let N be the automaton of Fig. 2.9 that accepts all strings
that end in 01. Since N’s set of states is {qo,q1,¢2}, the subset construction
produces a DFA with 23 = 8 states, corresponding to all the subsets of these
three states. Figure 2.12 shows the transition table for these eight states; we
shall show shortly the details of how some of these entries are computed.

Notice that this transition table belongs to a deterministic finite automaton.
Even though the entries in the table are sets, the states of the constructed DFA
are sets. To make the point clearer, we can invent new names for these states,
e.g., Afor (), B for {qp}, and so on. The DFA transition table of Fig 2.13 defines
exactly the same automaton as Fig. 2.12, but makes clear the point that the
entries in the table are single states of the DFA.

Of the eight states in Fig. 2.13, starting in the start state B, we can only
reach states B, E/, and F'. The other five states are inaccessible from the start
state and may as well not be there. We often can avoid the exponential-time step
of constructing transition-table entries for every subset of states if we perform
“lazy evaluation” on the subsets, as follows.

BASIS: We know for certain that the singleton set consisting only of N’s start
state is accessible.
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Figure 2.13: Renaming the states of Fig. 2.12

INDUCTION: Suppose we have determined that set S of states is accessible.
Then for each input symbol a, compute the set of states 0p (S, a); we know that
these sets of states will also be accessible.

For the example at hand, we know that {go} is a state of the DFA D. We
find that dp({go},0) = {q0,¢1} and 0p({g},1) = {qo}. Both these facts are
established by looking at the transition diagram of Fig. 2.9 and observing that
on 0 there are arcs out of gy to both gy and ¢;, while on 1 there is an arc only
to go. We thus have one row of the transition table for the DFA: the second
row in Fig. 2.12.

One of the two sets we computed is “old”; {go} has already been considered.
However, the other — {qo, g1} — is new and its transitions must be computed.

We find 0p({g0,¢1},0) = {qo,¢1} and 6p({qo,q1},1) = {qo,q2}. For instance,
to see the latter calculation, we know that

dp({qo,q1},1) = 0n(qo,1) Udn(q1,1) = {0} U {a2} = {q0, @2}

We now have the fifth row of Fig. 2.12, and we have discovered one new
state of D, which is {go,¢2}. A similar calculation tells us

dp({q0,42},0) = dn(g0,0) U dn(g2,0) = {go, 1 } U D = {qo, 1 }
dp({q0,42},1) = 0n(qo,1) Udn(g2,1) = {q0} U D = {qo}

These calculations give us the sixth row of Fig. 2.12, but it gives us only sets
of states that we have already seen.

Thus, the subset construction has converged; we know all the accessible
states and their transitions. The entire DFA is shown in Fig. 2.14. Notice that
it has only three states, which is, by coincidence, exactly the same number of
states as the NFA of Fig. 2.9, from which it was constructed. However, the DFA
of Fig. 2.14 has six transitions, compared with the four transitions in Fig. 2.9.
O

We need to show formally that the subset construction works, although
the intuition was suggested by the examples. After reading sequence of input
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Figure 2.14: The DFA constructed from the NFA of Fig 2.9

symbols w, the constructed DFA is in one state that is the set of NFA states
that the NFA would be in after reading w. Since the accepting states of the
DFA are those sets that include at least one accepting state of the NFA, and the
NFA also accepts if it gets into at least one of its accepting states, we may then
conclude that the DFA and NFA accept exactly the same strings, and therefore
accept the same language.

Theorem 2.11: If D = (Qp,%,dp,{q}, Fp) is the DFA constructed from
NFA N = (Qn,%,0n, g0, Fn) by the subset construction, then L(D) = L(N).

PROOF: What we actually prove first, by induction on |w/|, is that

50({110},11}) = 5N(Q07w)

Notice that each of the & functions returns a set of states from @nN, but 5p
interprets this set as one of the states of @p (which is the power set of Qn),
while dn interprets this set as a subset of Q.

BASIS: Let |w| = 0; that is, w = €. By the basis definitions of & for DFA’s and
NFA’s, both dp({qo},€) and dn(qo,€) are {qgo}.

INDUCTION: Let w be of length n + 1, and assume the statement for length
n. Break w up as w = za, where a is the final symbol of w. By the induc-
tive hypothesis, 0p({qo},z) = dn(qo,z). Let both these sets of N’s states be

{p17p27"'7pk}' .
The inductive part of the definition of § for NFA’s tells us

k
on(q0,w) = |Jon(pira) (2.2)
i=1
The subset construction, on the other hand, tells us that
k
6D({p17p27"'7pk}7a) = U6N(pi7a) (23)
i=1

Now, let us use (2.3) and the fact that SD({(]O},:U) ={p1,p2,...,Pr} in the
inductive part of the definition of § for DFA’s:
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k
op({go},w) = 6p(6p({a0},z),a) = dp({p1, P2, .-, pr},a) = U on(pi,a)

(2.4)
Thus, Equations (2.2) and (2.4) demonstrate that dp({qo},w) = dn(go,w).
When we observe that D and N both accept w if and only if 0p({go},w) or

SN(qo,'lU), respectively, contain a state in Fjy, we have a complete proof that
L(D)=L(N). O

Theorem 2.12: A language L is accepted by some DFA if and only if L is
accepted by some NFA.

PROOF: (If) The “if” part is the subset construction and Theorem 2.11.

(Only-if) This part is easy; we have only to convert a DFA into an identical NFA.
Put intuitively, if we have the transition diagram for a DFA, we can also inter-
pret it as the transition diagram of an NFA | which happens to have exactly one
choice of transition in any situation. More formally, let D = (Q,%,0p, qo, F)
be a DFA. Define N = (Q, X, dn, qo, F') to be the equivalent NFA, where dy is
defined by the rule:

o If dp(q,a) = p, then dn(q,a) = {p}.

It is then easy to show by induction on |w|, that if op (go,w) = p then

N

On (g0, w) = {p}

We leave the proof to the reader. As a consequence, w is accepted by D if and
only if it is accepted by N;i.e., L(D) = L(N). O

2.3.6 A Bad Case for the Subset Construction

In Example 2.10 we found that the DFA had no more states than the NFA.
As we mentioned, it is quite common in practice for the DFA to have roughly
the same number of states as the NFA from which it is constructed. However,
exponential growth in the number of states is possible; all the 2" DFA states
that we could construct from an n-state NFA may turn out to be accessible. The
following example does not quite reach that bound, but it is an understandable

way to reach 2" states in the smallest DFA that is equivalent to an n + 1-state
NFA.

Example 2.13: Consider the NFA N of Fig. 2.15. L(N) is the set of all strings
of 0’s and 1’s such that the nth symbol from the end is 1. Intuitively, a DFA
D that accepts this language must remember the last n symbols it has read.
Since any of 2" subsets of the last n symbols could have been 1, if D has fewer
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than 2" states, then there would be some state ¢ such that D can be in state ¢
after reading two different sequences of n bits, say ajas - - a, and b1bs - - - by,.

Since the sequences are different, they must differ in some position, say
a; # b;. Suppose (by symmetry) that a; = 1 and b; = 0. If i = 1, then ¢
must be both an accepting state and a nonaccepting state, since aias - - -a, is
accepted (the nth symbol from the end is 1) and b1by - -- b, is not. If i > 1,
then consider the state p that D enters after reading ¢ — 1 0’s. Then p must
be both accepting and nonaccepting, since a;a; 1 - -a,00- -0 is accepted and
b;ibiy1 -+ b,00---0 is not.

0,1

m 1 0,1 0,1 0,1 0,1
@@y ()

Start
Figure 2.15: This NFA has no equivalent DFA with fewer than 2" states

Now, let us see how the NFA N of Fig. 2.15 works. There is a state go that
the NFA is always in, regardless of what inputs have been read. If the next
input is 1, N may also “guess” that this 1 will be the nth symbol from the end,
so it goes to state g; as well as gg. From state g;, any input takes N to g2,
the next input takes it to ¢3, and so on, until n — 1 inputs later, it is in the
accepting state g,. The formal statement of what the states of N do is:

1. N is in state go after reading any sequence of inputs w.

2. N is in state g;, for i = 1,2,...,n, after reading input sequence w if and
only if the ith symbol from the end of w is 1; that is, w is of the form
zlayas - - -a;—1, where the a;’s are each input symbols.

We shall not prove these statements formally; the proof is an easy induction
on |w|, mimicking Example 2.9. To complete the proof that the automaton
accepts exactly those strings with a 1 in the nth position from the end, we
consider statement (2) with ¢ = n. That says N is in state g, if and only if
the nth symbol from the end is 1. But ¢, is the only accepting state, so that
condition also characterizes exactly the set of strings accepted by N. O

2.3.7 Exercises for Section 2.3

* Exercise 2.3.1: Convert to a DFA the following NFA:

[o |1
—=p || {p.q} | {p}
q | {r} {r}

r | {s} 0

xs || {s} | {s}
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The Pigeonhole Principle

In Example 2.13 we used an important reasoning technique called the
pigeonhole principle. Colloquially, if you have more pigeons than pigeon-
holes, and each pigeon flies into some pigeonhole, then there must be at
least one hole that has more than one pigeon. In our example, the “pi-
geons” are the sequences of n bits, and the “pigeonholes” are the states.
Since there are fewer states than sequences, one state must be assigned
two sequences.

The pigeonhole principle may appear obvious, but it actually depends
on the number of pigeonholes being finite. Thus, it works for finite-state
automata, with the states as pigeonholes, but does not apply to other
kinds of automata that have an infinite number of states.

To see why the finiteness of the number of pigeonholes is essential,
consider the infinite situation where the pigeonholes correspond to integers
1,2,.... Number the pigeons 0,1, 2, ..., so there is one more pigeon than
there are pigeonholes. However, we can send pigeon 4 to hole i + 1 for all
i > 0. Then each of the infinite number of pigeons gets a pigeonhole, and
no two pigeons have to share a pigeonhole.

Exercise 2.3.2: Convert to a DFA the following NFA:

[o |1
—=p | {g,s} | {g}
xq | {r} | {a,r}
r | {s} | {p}
xs || 0 {p}

! Exercise 2.3.3: Convert the following NFA to a DFA and informally describe
the language it accepts.

[o [t
—=p || {p.¢} | {p}
q | {rs}t | {t}
r | A} | {t}
xs || 0 0
xt || 0 0

! Exercise 2.3.4: Give nondeterministic finite automata to accept the following
languages. Try to take advantage of nondeterminism as much as possible.
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Dead States and DFA’s Missing Some Transitions

We have formally defined a DFA to have a transition from any state,
on any input symbol, to exactly one state. However, sometimes, it is
more convenient to design the DFA to “die” in situations where we know
it is impossible for any extension of the input sequence to be accepted.
For instance, observe the automaton of Fig. 1.2, which did its job by
recognizing a single keyword, then, and nothing else. Technically, this
automaton is not a DFA, because it lacks transitions on most symbols
from each of its states.

However, such an automaton is an NFA. If we use the subset construc-
tion to convert it to a DFA, the automaton looks almost the same, but it
includes a dead state, that is, a nonaccepting state that goes to itself on
every possible input symbol. The dead state corresponds to (), the empty
set of states of the automaton of Fig. 1.2.

In general, we can add a dead state to any automaton that has no
more than one transition for any state and input symbol. Then, add a
transition to the dead state from each other state ¢, on all input symbols
for which ¢ has no other transition. The result will be a DFA in the strict
sense. Thus, we shall sometimes refer to an automaton as a DFA if it has
at most one transition out of any state on any symbol, rather than if it
has exactly one transition.

* a) The set of strings over alphabet {0,1,...,9} such that the final digit has
appeared before.

b) The set of strings over alphabet {0, 1,...,9} such that the final digit has
not appeared before.

c) The set of strings of 0’s and 1’s such that there are two 0’s separated by
a number of positions that is a multiple of 4. Note that 0 is an allowable
multiple of 4.

Exercise 2.3.5: In the only-if portion of Theorem 2.12 we omitted the proof
by induction on |w| that if dp(go,w) = p then dn(go,w) = {p}. Supply this
proof.

Exercise 2.3.6: In the box on “Dead States and DFA’s Missing Some Tran-
sitions,” we claim that if IV is an NFA that has at most one choice of state for
any state and input symbol (i.e., 6(q, a) never has size greater than 1), then the
DFA D constructed from N by the subset construction has exactly the states
and transitions of NV plus transitions to a new dead state whenever N is missing
a transition for a given state and input symbol. Prove this contention.
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Exercise 2.3.7: In Example 2.13 we claimed that the NFA N is in state g;,
fori =1,2,...,n, after reading input sequence w if and only if the ¢th symbol
from the end of w is 1. Prove this claim.

2.4 An Application: Text Search

In this section, we shall see that the abstract study of the previous section,
where we considered the “problem” of deciding whether a sequence of bits ends
in 01, is actually an excellent model for several real problems that appear in
applications such as Web search and extraction of information from text.

2.4.1 Finding Strings in Text

A common problem in the age of the Web and other on-line text repositories
is the following. Given a set of words, find all documents that contain one
(or all) of those words. A search engine is a popular example of this process.
The search engine uses a particular technology, called inverted indezes, where
for each word appearing on the Web (there are 100,000,000 different words),
a list of all the places where that word occurs is stored. Machines with very
large amounts of main memory keep the most common of these lists available,
allowing many people to search for documents at once.

Inverted-index techniques do not make use of finite automata, but they also
take very large amounts of time for crawlers to copy the Web and set up the
indexes. There are a number of related applications that are unsuited for in-
verted indexes, but are good applications for automaton-based techniques. The
characteristics that make an application suitable for searches that use automata
are:

1. The repository on which the search is conducted is rapidly changing. For
example:

(a) Every day, news analysts want to search the day’s on-line news arti-
cles for relevant topics. For example, a financial analyst might search
for certain stock ticker symbols or names of companies.

(b) A “shopping robot” wants to search for the current prices charged
for the items that its clients request. The robot will retrieve current
catalog pages from the Web and then search those pages for words
that suggest a price for a particular item.

2. The documents to be searched cannot be cataloged. For example, Ama-
zon.com does not make it easy for crawlers to find all the pages for all the
books that the company sells. Rather, these pages are generated “on the
fly” in response to queries. However, we could send a query for books on
a certain topic, say “finite automata,” and then search the pages retrieved
for certain words, e.g., “excellent” in a review portion.
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2.4.2 Nondeterministic Finite Automata for Text Search

Suppose we are given a set of words, which we shall call the keywords, and we
want to find occurrences of any of these words. In applications such as these, a
useful way to proceed is to design a nondeterministic finite automaton, which
signals, by entering an accepting state, that it has seen one of the keywords.
The text of a document is fed, one character at a time to this NFA, which then
recognizes occurrences of the keywords in this text. There is a simple form to
an NFA that recognizes a set of keywords.

1. There is a start state with a transition to itself on every input symbol,
e.g. every printable ASCII character if we are examining text. Intuitively,
the start state represents a “guess” that we have not yet begun to see one
of the keywords, even if we have seen some letters of one of these words.

2. For each keyword ajas - - - a, there are k states, say q1,q2,...,qr. There
is a transition from the start state to g; on symbol a;, a transition from
g1 to g2 on symbol asz, and so on. The state g is an accepting state and
indicates that the keyword ajas - - - a; has been found.

Example 2.14: Suppose we want to design an NFA to recognize occurrences
of the words web and ebay. The transition diagram for the NFA designed using
the rules above is in Fig. 2.16. State 1 is the start state, and we use ¥ to stand
for the set of all printable ASCII characters. States 2 through 4 have the job
of recognizing web, while states 5 through 8 recognize ebay. O

Figure 2.16: An NFA that searches for the words web and ebay

Of course the NFA is not a program. We have two major choices for an
implementation of this NFA.

1. Write a program that simulates this NFA by computing the set of states
it is in after reading each input symbol. The simulation was suggested in
Fig. 2.10.

2. Convert the NFA to an equivalent DFA using the subset construction.
Then simulate the DFA directly.



70 CHAPTER 2. FINITE AUTOMATA

Some text-processing programs, such as advanced forms of the UNIX grep
command (egrep and fgrep) actually use a mixture of these two approaches.
However, for our purposes, conversion to a DFA is easy and is guaranteed not
to increase the number of states.

2.4.3 A DFA to Recognize a Set of Keywords

We can apply the subset construction to any NFA. However, when we apply that
construction to an NFA that was designed from a set of keywords, according to
the strategy of Section 2.4.2, we find that the number of states of the DFA is
never greater than the number of states of the NFA. Since in the worst case the
number of states exponentiates as we go to the DFA, this observation is good
news and explains why the method of designing an NFA for keywords and then
constructing a DFA from it is used frequently. The rules for constructing the
set of DFA states is as follows.

a) If go is the start state of the NFA, then {go} is one of the states of the
DFA.

b) Suppose p is one of the NFA states, and it is reached from the start state
along a path whose symbols are ajas - - - a,,. Then one of the DFA states
is the set of NFA states consisting of:

1. qo-
2. p.
3. Every other state of the NFA that is reachable from gg by following

a path whose labels are a suffix of ajas - - - a,,, that is, any sequence
of symbols of the form aja;ji1---an,.

Note that in general, there will be one DFA state for each NFA state p. However,
in step (b), two states may actually yield the same set of NFA states, and thus
become one state of the DFA. For example, if two of the keywords begin with
the same letter, say a, then the two NFA states that are reached from ¢¢ by an
arc labeled a will yield the same set of NFA states and thus get merged in the
DFA.

Example 2.15: The construction of a DFA from the NFA of Fig. 2.16 is shown
in Fig. 2.17. Each of the states of the DFA is located in the same position as
the state p from which it is derived using rule (b) above. For example, consider
the state 135, which is our shorthand for {1,3,5}. This state was constructed
from state 3. It includes the start state, 1, because every set of the DFA states
does. It also includes state 5 because that state is reached from state 1 by a
suffix, e, of the string we that reaches state 3 in Fig. 2.16.

The transitions for each of the DFA states may be calculated according to
the subset construction. However, the rule is simple. From any set of states that
includes the start state go and some other states {p1,po,...,pn}, determine, for
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Figure 2.17: Conversion of the NFA from Fig. 2.16 to a DFA

each symbol z, where the p;’s go in the NFA, and let this DFA state have a
transition labeled = to the DFA state consisting of gg and all the targets of the
pi’s and gp on symbol . On all symbols x such that there are no transitions
out of any of the p;’s on symbol z, let this DFA state have a transition on z to
that state of the DFA consisting of gp and all states that are reached from gq
in the NFA following an arc labeled z.

For instance, consider state 135 of Fig. 2.17. The NFA of Fig. 2.16 has
transitions on symbol b from states 3 and 5 to states 4 and 6, respectively.
Therefore, on symbol b, 135 goes to 146. On symbol e, there are no transitions
of the NFA out of 3 or 5, but there is a transition from 1 to 5. Thus, in the
DFA, 135 goes to 15 on input e. Similarly, on input w, 135 goes to 12.

On every other symbol z, there are no transitions out of 3 or 5, and state 1
goes only to itself. Thus, there are transitions from 135 to 1 on every symbol
in ¥ other than b, e, and w. We use the notation ¥ — b — e — w to represent
this set, and use similar representations of other sets in which a few symbols
are removed from ¥. O

2.4.4 Exercises for Section 2.4

Exercise 2.4.1: Design NFA’s to recognize the following sets of strings.
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* a) abc, abd, and aacd. Assume the alphabet is {a,b, c,d}.
b) 0101, 101, and 011.

c) ab, bc, and ca. Assume the alphabet is {a, b, c}.

Exercise 2.4.2: Convert each of your NFA’s from Exercise 2.4.1 to DFA’s.

2.5 Finite Automata With Epsilon-Transitions

We shall now introduce another extension of the finite automaton. The new
“feature” is that we allow a transition on €, the empty string. In effect, an
NFA is allowed to make a transition spontaneously, without receiving an input
symbol. Like the nondeterminism added in Section 2.3, this new capability does
not expand the class of languages that can be accepted by finite automata, but it
does give us some added “programming convenience.” We shall also see, when
we take up regular expressions in Section 3.1, how NFA’s with e-transitions,
which we call e-NFA’s, are closely related to regular expressions and useful
in proving the equivalence between the classes of languages accepted by finite
automata and by regular expressions.

2.5.1 Uses of e-Transitions

We shall begin with an informal treatment of e-NFA’s, using transition diagrams
with € allowed as a label. In the examples to follow, think of the automaton
as accepting those sequences of labels along paths from the start state to an
accepting state. However, each € along a path is “invisible”; i.e., it contributes
nothing to the string along the path.

Example 2.16: In Fig. 2.18 is an e-NFA that accepts decimal numbers con-
sisting of:

1. An optional + or — sign,
2. A string of digits,
3. A decimal point, and

4. Another string of digits. Either this string of digits, or the string (2) can
be empty, but at least one of the two strings of digits must be nonempty.

Of particular interest is the transition from ¢p to ¢; on any of €, +, or —.
Thus, state q; represents the situation in which we have seen the sign if there
is one, and perhaps some digits, but not the decimal point. State go represents
the situation where we have just seen the decimal point, and may or may not
have seen prior digits. In g; we have definitely seen at least one digit, but
not the decimal point. Thus, the interpretation of g3 is that we have seen a
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0,1,..,9 0,1,...9

Figure 2.18: An e-NFA accepting decimal numbers

decimal point and at least one digit, either before or after the decimal point.
We may stay in g3 reading whatever digits there are, and also have the option
of “guessing” the string of digits is complete and going spontaneously to g5, the
accepting state. O

Example 2.17: The strategy we outlined in Example 2.14 for building an
NFA that recognizes a set of keywords can be simplified further if we allow
e-transitions. For instance, the NFA recognizing the keywords web and ebay,
which we saw in Fig. 2.16, can also be implemented with e-transitions as in
Fig. 2.19. In general, we construct a complete sequence of states for each
keyword, as if it were the only word the automaton needed to recognize. Then,
we add a new start state (state 9 in Fig. 2.19), with e-transitions to the start-
states of the automata for each of the keywords. O

€
Start e b a y

Figure 2.19: Using e-transitions to help recognize keywords

2.5.2 The Formal Notation for an e-NFA

We may represent an e-NFA exactly as we do an NFA, with one exception: the
transition function must include information about transitions on e. Formally,
we represent an e-NFA A by A = (Q, %, 0, qo, F'), where all components have
their same interpretation as for an NFA, except that § is now a function that
takes as arguments:

1. A state in @), and
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2. A member of ¥ U {e}, that is, either an input symbol, or the symbol e.
We require that €, the symbol for the empty string, cannot be a member
of the alphabet X, so no confusion results.

Example 2.18: The e-NFA of Fig. 2.18 is represented formally as

E= ({q07q17 . -;Q5}; {'7 +7 _707 ]-7 e '79}767 qo, {%})

where ¢ is defined by the transition table in Fig. 2.20. O

le |+-]. | 0,1,...,9
o || {a} [ {a} |0 0
@ || 0 0 {2} | {a1, 94}
g || 0 0 0 {a3}
gz || {as} | 0 0 {a3}
qa || 0 0 {gs} | 0
gs || 0 0 0 0

Figure 2.20: Transition table for Fig. 2.18

2.5.3 Epsilon-Closures

We shall proceed to give formal definitions of an extended transition function for
e-NFA’s, which leads to the definition of acceptance of strings and languages by
these automata, and eventually lets us explain why e-NFA’s can be simulated by
DFA’s. However, we first need to learn a central definition, called the e-closure
of a state. Informally, we e-close a state ¢ by following all transitions out of
q that are labeled e. However, when we get to other states by following €, we
follow the e-transitions out of those states, and so on, eventually finding every
state that can be reached from ¢ along any path whose arcs are all labeled e.
Formally, we define the e-closure ECLOSE(q) recursively, as follows:

BASIS: State ¢ is in ECLOSE(q).

INDUCTION: If state p is in ECLOSE(q), and there is a transition from state p
to state r labeled €, then r is in ECLOSE(g). More precisely, if § is the transition
function of the e-NFA involved, and p is in ECLOSE(g), then ECLOSE(q) also
contains all the states in d(p, €).

Example 2.19: For the automaton of Fig. 2.18, each state is its own e-closure,
with two exceptions: ECLOSE(qo) = {qo,¢1} and ECLOSE(gs) = {¢3,¢5}. The
reason is that there are only two e-transitions, one that adds ¢; to ECLOSE(qp)
and the other that adds ¢5 to ECLOSE(g3)-
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(1) b
O &) @

a €

Figure 2.21: Some states and transitions

A more complex example is given in Fig. 2.21. For this collection of states,
which may be part of some ¢-NFA, we can conclude that

ECLOSE(1) = {1,2,3,4,6}

Each of these states can be reached from state 1 along a path exclusively labeled
e. For example, state 6 is reached by the path 1 — 2 — 3 — 6. State 7 is not
in ECLOSE(1), since although it is reachable from state 1, the path must use
the arc 4 — 5 that is not labeled e. The fact that state 6 is also reached from
state 1 along a path 1 — 4 — 5 — 6 that has non-e transitions is unimportant.
The existence of one path with all labels € is sufficient to show state 6 is in
ECLOSE(1). O

We sometimes need to apply the e-closure to a set of states S. We do so my
taking the union of the e-closures of the individual states; that is, ECLOSE(S) =

Uq in s ECLOSE(q).

2.5.4 Extended Transitions and Languages for ¢-NFA’s

The e-closure allows us to explain easily what the transitions of an e-NFA look
like when given a sequence of (non-€) inputs. From there, we can define what
it means for an e-NFA to accept its input.

Suppose that E = (@, X, J, qo, F') is an e-NFA. We first define 8, the extended
transition function, to reflect what happens on a sequence of inputs. The intent
is that S(q, w) is the set of states that can be reached along a path whose labels,
when concatenated, form the string w. As always, €’s along this path do not
contribute to w. The appropriate recursive definition of ¢ is:

BASIS: §(q,€) = ECLOSE(q). That is, if the label of the path is €, then we can
follow only e-labeled arcs extending from state ¢; that is exactly what ECLOSE
does.

INDUCTION: Suppose w is of the form za, where a is the last symbol of w.
Note that a is a member of ¥; it cannot be €, which is not in ¥. We compute

0(gq,w) as follows:

1. Let {p1,p2,...,pr} be S(q, x). That is, the p;’s are all and only the states
that we can reach from ¢ following a path labeled x. This path may end
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with one or more transitions labeled €, and may have other e-transitions,
as well.

2. Let Ule 0(p;, a) be the set {ry,r2,...,rn}. That is, follow all transitions
labeled a from states we can reach from ¢ along paths labeled . The
r;’s are some of the states we can reach from ¢ along paths labeled w.
The additional states we can reach are found from the r;’s by following
e-labeled arcs in step (3), below.

3. Then 6(q,w) = ECLOSE({r1,72,...,7n}). This additional closure step
includes all the paths from ¢ labeled w, by considering the possibility
that there are additional e-labeled arcs that we can follow after making a
transition on the final “real” symbol, a.

Example 2.20: Let us compute S(q0,5.6) for the e-NFA of Fig. 2.18. A
summary of the steps needed are as follows:

* (a0,€) = ECLOSE(¢o) = {a0, 01 }-
e Compute 6(go,5) as follows:

1. First compute the transitions on input 5 from the states qo and ¢;
that we obtained in the calculation of S(qg,e), above. That is, we
compute 6(qo,5) U d(q1,5) = {q1,q4}-

2. Next, e-close the members of the set computed in step (1). We get
ECLOSE(ql) U ECLOSE((]4) = {ql} U {q4} = {Q1,Q4}. That set is

0(qo,5). This two-step pattern repeats for the next two symbols.
e Compute S(qo, 5.) as follows:

1. First compute d(q1, .) Ud(qs, .) ={g} U{e} = {2 e}
2. Then compute

0(g0,5.) = ECLOSE(gq2) U ECLOSE(q3) = {¢2} U {@3,¢5} = {q2, 03,05}

e Compute S(qo, 5.6) as follows:

1. First compute d(q2,6) U d(gs3,6) U 0(g5,6) = {g3} U {gs} U 0 =
{as}.

2. Then compute S(qg, 5.6) = ECLOSE(gq3) = {g3, ¢ }-

Now, we can define the language of an e-NFA E = (Q,X,0,qo, F') in the
expected way: L(E) = {w | 6(go,w) N F # 0}. That is, the language of E is
the set of strings w that take the start state to at least one accepting state. For
instance, we saw in Example 2.20 that 0(go,5.6) contains the accepting state
g5, SO the string 5.6 is in the language of that e-NFA.
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2.5.5 Eliminating e-Transitions

Given any e-NFA E| we can find a DFA D that accepts the same language as E.
The construction we use is very close to the subset construction, as the states of
D are subsets of the states of E. The only difference is that we must incorporate
e-transitions of E, which we do through the mechanism of the e-closure.

Let £ = (Qg,%,0r,q90, Fr). Then the equivalent DFA

D= (QD; Ea(sD;qDaFD)
is defined as follows:

1. Qp is the set of subsets of . More precisely, we shall find that all
accessible states of D are e-closed subsets of Qg, that is, sets S C Qg
such that S = ECLOSE(S). Put another way, the e-closed sets of states S
are those such that any e-transition out of one of the states in S leads to
a state that is also in S. Note that () is an e-closed set.

2. gqp = ECLOSE(qp); that is, we get the start state of D by closing the set
consisting of only the start state of E. Note that this rule differs from
the original subset construction, where the start state of the constructed
automaton was just the set containing the start state of the given NFA.

3. Fp is those sets of states that contain at least one accepting state of E.
That is, Fp = {S | Sisin @p and S N Fg # 0}.

4. 0p(S,a) is computed, for all ¢ in ¥ and sets S in Qp by:

(a) Let S ={p1,p2,...,Pr}-
(b) Compute Ule 0r(pi,a); let this set be {ry,ra,...,7m}.
(c) Then 6p(S,a) = ECLOSE({r1,72,...,"m})-

Example 2.21: Let us eliminate e-transitions from the e-NFA of Fig. 2.18,
which we shall call £ in what follows. From E, we construct an DFA D, which
is shown in Fig. 2.22. However, to avoid clutter, we omitted from Fig. 2.22 the
dead state () and all transitions to the dead state. You should imagine that for
each state shown in Fig. 2.22 there are additional transitions from any state to
() on any input symbols for which a transition is not indicated. Also, the state
() has transitions to itself on all input symbols.

Since the start state of E is qo, the start state of D is ECLOSE(qp), which
is {qgo,q1}. Our first job is to find the successors of go and ¢, on the various
symbols in ¥; note that these symbols are the plus and minus signs, the dot,
and the digits 0 through 9. On + and —, ¢; goes nowhere in Fig. 2.18, while
go goes to ¢;. Thus, to compute dp({qo,q1},+) we start with {g;} and e-close
it. Since there are no e-transitions out of ¢;, we have dp({qo,q1},+) = {a1 }.
Similarly, dp({go,q1},—) = {@1}. These two transitions are shown by one arc
in Fig. 2.22.
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0,1,....9

Figure 2.22: The DFA D that eliminates e-transitions from Fig. 2.18

Next, we need to compute dp({qo,q1}, .). Since gy goes nowhere on the
dot, and ¢ goes to ¢» in Fig. 2.18, we must e-close {g2}. As there are no
e-transitions out of ¢, this state is its own closure, so dp({qo,q1}, -) = {g2}-

Finally, we must compute dp({qo,q1},0), as an example of the transitions
from {qo,q:1} on all the digits. We find that gy goes nowhere on the digits, but
q1 goes to both ¢; and g4. Since neither of those states have e-transitions out,
we conclude dp({go,q1},0) = {q1,qs}, and likewise for the other digits.

We have now explained the arcs out of {go,q1} in Fig. 2.22. The other
transitions are computed similarly, and we leave them for you to check. Since
@5 is the only accepting state of E, the accepting states of D are those accessible
states that contain gs. We see these two sets {¢s3, g5} and {g2, g3, g5} indicated
by double circles in Fig. 2.22. O

Theorem 2.22: A language L is accepted by some e-NFA if and only if L is
accepted by some DFA.

PROOF: (If) This direction is easy. Suppose L = L(D) for some DFA. Turn
D into an eNFA E by adding transitions d(q,e) = ) for all states ¢ of D.
Technically, we must also convert the transitions of D on input symbols, e.g.,
0p(g,a) = p into an NFA-transition to the set containing only p, that is
0r(q,a) = {p}. Thus, the transitions of E and D are the same, but E ex-
plicitly states that there are no transitions out of any state on e.

(Only-if) Let E = (Qg,X,08,q0,Fr) be an e-NFA. Apply the modified
subset construction described above to produce the DFA

D = (QD: Ea(sD:qDaFD)

We need to show that L(D) = L(E), and we do so by showing that the extended
transition functions of E and D are the same. Formally, we show dg(qo,w) =
0p(gp,w) by induction on the length of w.



2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS 79

BASIS: If |w| = 0, then w = e. We know dz(qo,e) = ECLOSE(go). We also
know that gp = ECLOSE(qo), because that is how the start state of D is defined.
Finally, for a DFA, we know that S(p, €) = p for any state p, so in particular,
6p(qp,€) = ECLOSE(qo). We have thus proved that d5(qo,€) = 6p(qp, €).

INDUCTION: Suppose w = xa, where a is the final symbol of w, and assume
that the statement holds for z. That is, SE(qO,a:) = SD(qD,a:). Let both these
sets of states be {p1,p2,...,pk}

By the definition of & for e-NFA’s, we compute SE(qo, w) by:

1. Let {r1,72,...,7m} be Ule 0 (pi,a).
2. Then 5E(q0, w) = ECLOSE({r1,72,...,"m}).

If we examine the construction of DFA D in the modified subset construction
above, we see that dp({p1,p2,...,pr},a) is constructed by the same two steps
(1) and (2) above. Thus, SD(qD,w), which is 6p ({p1,p2, .., Pk },a) is the same
set as SE(qO, w). We have now proved that SE(qO, w) = SD(qD, w) and completed
the inductive part. O

2.5.6 [Exercises for Section 2.5
* Exercise 2.5.1: Consider the following e-NFA.

a) Compute the e-closure of each state.
b) Give all the strings of length three or less accepted by the automaton.
c) Convert the automaton to a DFA.

Exercise 2.5.2: Repeat Exercise 2.5.1 for the following e-NFA:

e Ja b [c
—=p | {er} |0 {a} | {r}
q {p} | {r} | {p.q}
xr || 0 0 0 0

Exercise 2.5.3: Design e-NFA’s for the following languages. Try to use e-
transitions to simplify your design.

a) The set of strings consisting of zero or more a’s followed by zero or more
b’s, followed by zero or more ¢’s.
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! b)

'c)

2.6
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The set of strings that consist of either 01 repeated one or more times or
010 repeated one or more times.

The set of strings of 0’s and 1’s such that at least one of the last ten
positions is a 1.

Summary of Chapter 2

Deterministic Finite Automata: A DFA has a finite set of states and a
finite set of input symbols. One state is designated the start state, and
zero or more states are accepting states. A transition function determines
how the state changes each time an input symbol is processed.

Transition Diagrams: It is convenient to represent automata by a graph
in which the nodes are the states, and arcs are labeled by input symbols,
indicating the transitions of that automaton. The start state is designated
by an arrow, and the accepting states by double circles.

Language of an Automaton: The automaton accepts strings. A string is
accepted if, starting in the start state, the transitions caused by processing
the symbols of that string one-at-a-time lead to an accepting state. In
terms of the transition diagram, a string is accepted if it is the label of a
path from the start state to some accepting state.

Nondeterministic Finite Automata: The NFA differs from the DFA in
that the NFA can have any number of transitions (including zero) to next
states from a given state on a given input symbol.

The Subset Construction: By treating sets of states of an NFA as states
of a DFA, it is possible to convert any NFA to a DFA that accepts the
same language.

e-Transitions: We can extend the NFA by allowing transitions on an
empty input, i.e., no input symbol at all. These extended NFA’s can be
converted to DFA’s accepting the same language.

Text-Searching Applications: Nondeterministic finite automata are a use-
ful way to represent a pattern matcher that scans a large body of text for
one or more keywords. These automata are either simulated directly in
software or are first converted to a DFA, which is then simulated.

2.7 Gradiance Problems for Chapter 2

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
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choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.

Problem 2.1: Examine the following DFA [shown on-line by the Gradiance
system]. Identify in the list below the string that this automaton accepts.

Problem 2.2: The finite automaton below [shown on-line by the Gradiance
system] accepts no word of length zero, no word of length one, and only two
words of length two (01 and 10). There is a fairly simple recurrence equation for
the number N (k) of words of length & that this automaton accepts. Discover
this recurrence and demonstrate your understanding by identifying the correct
value of N (k) for some particular k. Note: the recurrence does not have an
easy-to-use closed form, so you will have to compute the first few values by
hand. You do not have to compute N (k) for any k greater than 14.

Problem 2.3: Here is the transition function of a simple, deterministic au-
tomaton with start state A and accepting state B:

0 1
A|lA B
B|B A

We want to show that this automaton accepts exactly those strings with an odd
number of 1’s, or more formally:

0(A,w) = B if and only if w has an odd number of 1’s.

Here, ¢ is the extended transition function of the automaton; that is, (A, w)
is the state that the automaton is in after processing input string w The proof
of the statement above is an induction on the length of w. Below, we give the
proof with reasons missing. You must give a reason for each step, and then
demonstrate your understanding of the proof by classifying your reasons into
the following three categories:

A) Use of the inductive hypothesis.

B) Reasoning about properties of deterministic finite automata, e.g., that if
string s = yz, then d(q,s) = §(6(q,y), 2)-

C) Reasoning about properties of binary strings (strings of 0’s and 1’s), e.g.,
that every string is longer than any of its proper substrings.

Basis (Jw| = 0):
1. w = € because:

2. §(A,e) = A because:
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3. € has an even number of 0’s because:
Induction (Jw| =n > 0)

4. There are two cases: (a) when w = z1 and (b) when w = 20 because:
Case (a):

5. In case (a), w has an odd number of 1’s if and only if # has an even
number of 1’s because:

6. In case (a), 6(A,z) = A if and only if w has an odd number of 1’s because:
7. In case (a), 6(A,w) = B if and only if w has an odd number of 1’s because:
Case (b):

8. In case (b), w has an odd number of 1’s if and only if  has an odd number
of 1’ because:

9. In case (b), (A, z) = B if and only if w has an odd number of 1’s because:
10. In case (b), 6(A,w) = B if and only if w has an odd number of 1’s because:

Problem 2.4: Convert the following nondeterministic finite automaton [shown
on-line by the Gradiance system] to a DFA, including the dead state, if neces-
sary. Which of the following sets of NFA states is not a state of the DFA that
is accessible from the start state of the DFA?

Problem 2.5: The following nondeterministic finite automaton [shown on-line
by the Gradiance system] accepts which of the following strings?

Problem 2.6: Here is a nondeterministic finite automaton with epsilon-trans-
itions [shown on-line by the Gradiance system]. Suppose we use the extended
subset construction from Section 2.5.5 to convert this epsilon-NFA to a deter-
ministic finite automaton with a dead state, with all transitions defined, and
with no state that is inaccessible from the start state. Which of the following
would be a transition of the DFA?

Problem 2.7: Here is an epsilon-NFA [shown on-line by the Gradiance sys-
tem]. Suppose we construct an equivalent DFA by the construction of Section
2.5.5. That is, start with the epsilon-closure of the start state A. For each set of
states S we construct (which becomes one state of the DFA), look at the tran-
sitions from this set of states on input symbol 0. See where those transitions
lead, and take the union of the epsilon-closures of all the states reached on 0.
This set of states becomes a state of the DFA. Do the same for the transitions
out of S on input 1. When we have found all the sets of epsilon-NFA states
that are constructed in this way, we have the DFA and its transitions. Carry
out this construction of a DFA, and identify one of the states of this DFA (as
a subset of the epsilon-NFA’s states) from the list below.
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Problem 2.8: Identify which automata [in a set of diagrams shown on-line
by the Gradiance system| define the same language and provide the correct
counterexample if they don’t. Choose the correct statement from the list below.

Problem 2.9: Examine the following DFA [shown on-line by the Gradiance
system]. This DFA accepts a certain language L. In this problem we shall
consider certain other languages that are defined by their tails, that is, languages
of the form (0 + 1) % w, for some particular string w of 0’s and 1’s. Call this
language L(w). Depending on w, L(w) may be contained in L, disjoint from L,
or neither contained nor disjoint from L (i.e., some strings of the form zw are
in L and others are not). Your problem is to find a way to classify w into one of
these three cases. Then, use your knowledge to classify the following languages:

1. L(1111001), i.e., the language of regular expression (0 + 1) * 1111001.

(
2. L(11011), i.e., the language of regular expression (0 + 1) % 11011.
3. L(110101), i.e., the language of regular expression (0 + 1) x 110101.
4. L(00011101), i.e., the language of regular expression (0 + 1) x 00011101.

Problem 2.10: Here is a nondeterministic finite automaton [shown on-line by
the Gradiance system]. Convert this NFA to a DFA, using the “lazy” version of
the subset construction described in Section 2.3.5, so only the accessible states
are constructed. Which of the following sets of NFA states becomes a state of
the DFA?

Problem 2.11: Here is a nondeterministic finite automaton [shown on-line by
the Gradiance system]. Some input strings lead to more than one state. Find,
in the list below, a string that leads from the start state A to three different
states (possibly including A).

2.8 References for Chapter 2

The formal study of finite-state systems is generally regarded as originating
with [2]. However, this work was based on a “neural nets” model of computing,
rather than the finite automaton we know today. The conventional DFA was
independently proposed, in several similar variations, by [1], [3], and [4]. The
nondeterministic finite automaton and the subset construction are from [5].

1. D. A. Huffman, “The synthesis of sequential switching circuits,” J. Frank-
lin Inst. 257:3-4 (1954), pp. 161-190 and 275-303.

2. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervious activity,” Bull. Math. Biophysics 5 (1943), pp. 115-133.

3. G. H. Mealy, “A method for synthesizing sequential circuits,” Bell System
Technical Journal 34:5 (1955), pp. 1045-1079.
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5. M. O. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM J. Research and Development 3:2 (1959), pp. 115-125.

6. C. E. Shannon and J. McCarthy, Automata Studies, Princeton Univ.
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Chapter 3

Regular Expressions and
Languages

We begin this chapter by introducing the notation called “regular expressions.”
These expressions are another type of language-defining notation, which we
sampled briefly in Section 1.1.2. Regular expressions also may be thought of as
a “programming language,” in which we express some important applications,
such as text-search applications or compiler components. Regular expressions
are closely related to nondeterministic finite automata and can be thought of
as a “user-friendly” alternative to the NFA notation for describing software
components.

In this chapter, after defining regular expressions, we show that they are
capable of defining all and only the regular languages. We discuss the way
that regular expressions are used in several software systems. Then, we exam-
ine the algebraic laws that apply to regular expressions. They have significant
resemblance to the algebraic laws of arithmetic, yet there are also some im-
portant differences between the algebras of regular expressions and arithmetic
expressions.

3.1 Regular Expressions

Now, we switch our attention from machine-like descriptions of languages —
deterministic and nondeterministic finite automata — to an algebraic descrip-
tion: the “regular expression.” We shall find that regular expressions can define
exactly the same languages that the various forms of automata describe: the
regular languages. However, regular expressions offer something that automata
do not: a declarative way to express the strings we want to accept. Thus,
regular expressions serve as the input language for many systems that process
strings. Examples include:

85
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1. Search commands such as the UNIX grep or equivalent commands for
finding strings that one sees in Web browsers or text-formatting systems.
These systems use a regular-expression-like notation for describing pat-
terns that the user wants to find in a file. Different search systems convert
the regular expression into either a DFA or an NFA, and simulate that
automaton on the file being searched.

2. Lexical-analyzer generators, such as Lex or Flex. Recall that a lexical
analyzer is the component of a compiler that breaks the source program
into logical units (called tokens) of one or more characters that have a
shared significance. Examples of tokens include keywords (e.g., while),
identifiers (e.g., any letter followed by zero or more letters and/or digits),
and signs, such as + or <=. A lexical-analyzer generator accepts descrip-
tions of the forms of tokens, which are essentially regular expressions, and
produces a DFA that recognizes which token appears next on the input.

3.1.1 The Operators of Regular Expressions

Regular expressions denote languages. For a simple example, the regular ex-
pression 01" + 10" denotes the language consisting of all strings that are either
a single 0 followed by any number of 1’s or a single 1 followed by any number
of 0’s. We do not expect you to know at this point how to interpret regular
expressions, so our statement about the language of this expression must be
accepted on faith for the moment. We shortly shall define all the symbols used
in this expression, so you can see why our interpretation of this regular expres-
sion is the correct one. Before describing the regular-expression notation, we
need to learn the three operations on languages that the operators of regular
expressions represent. These operations are:

1. The union of two languages L and M, denoted L U M, is the set of strings
that are in either L or M, or both. For example, if L = {001, 10,111} and
M ={¢,001}, then L U M = {¢,10,001,111}.

2. The concatenation of languages L and M is the set of strings that can
be formed by taking any string in L and concatenating it with any string
in M. Recall Section 1.5.2, where we defined the concatenation of a
pair of strings; one string is followed by the other to form the result of the
concatenation. We denote concatenation of languages either with a dot or
with no operator at all, although the concatenation operator is frequently
called “dot.” For example, if L = {001,10,111} and M = {¢, 001}, then
L.M, or just LM, is {001,10,111,001001,10001,111001}. The first three
strings in LM are the strings in L concatenated with e. Since € is the
identity for concatenation, the resulting strings are the same as the strings
of L. However, the last three strings in LM are formed by taking each
string in L and concatenating it with the second string in M, which is
001. For instance, 10 from L concatenated with 001 from M gives us
10001 for LM.
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3. The closure (or star, or Kleene closure)' of a language L is denoted L*
and represents the set of those strings that can be formed by taking any
number of strings from L, possibly with repetitions (i.e., the same string
may be selected more than once) and concatenating all of them. For
instance, if L = {0, 1}, then L* is all strings of 0’s and 1’s. If L = {0, 11},
then L* consists of those strings of 0’s and 1’s such that the 1’s come in
pairs, e.g., 011, 11110, and €, but not 01011 or 101. More formally, L* is
the infinite union U;>o Lf, where L® = {e}, L' = L, and L%, for i > 1 is
LL--- L (the concatenation of ¢ copies of L).

Example 3.1: Since the idea of the closure of a language is somewhat tricky,
let us study a few examples. First, let L = {0,11}. L° = {€}, independent of
what language L is; the Oth power represents the selection of zero strings from
L. L' = L, which represents the choice of one string from L. Thus, the first
two terms in the expansion of L* give us {¢,0,11}.

Next, consider L?. We pick two strings from L, with repetitions allowed, so
there are four choices. These four selections give us L? = {00,011,110,1111}.
Similarly, L? is the set of strings that may be formed by making three choices
of the two strings in L and gives us

{000, 0011,0110,1100,01111,11011,11110, 111111}

To compute L*, we must compute L! for each i, and take the union of all these
languages. L' has 2° members. Although each L? is finite, the union of the
infinite number of terms L! is generally an infinite language, as it is in our
example.

Now, let L be the set of all strings of 0’s. Note that L is infinite, unlike
our previous example, which is a finite language. However, it is not hard to
discover what L* is. L° = {e}, as always. L' = L. L? is the set of strings that
can be formed by taking one string of 0’s and concatenating it with another
string of 0’s. The result is still a string of 0’s. In fact, every string of 0’s
can be written as the concatenation of two strings of 0’s (don’t forget that e
is a “string of 0’s”; this string can always be one of the two strings that we
concatenate). Thus, L? = L. Likewise, L?> = L, and so on. Thus, the infinite
union L* = L° U L' U L? U --- is L in the particular case that the language L
is the set of all strings of 0’s.

For a final example, §* = {¢}. Note that §° = {e}, while (¢, for any i > 1,
is empty, since we can’t select any strings from the empty set. In fact, §) is one
of only two languages whose closure is not infinite. O

3.1.2 Building Regular Expressions

Algebras of all kinds start with some elementary expressions, usually constants
and/or variables. Algebras then allow us to construct more expressions by

IThe term “Kleene closure” refers to S. C. Kleene, who originated the regular expression
notation and this operator.
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Use of the Star Operator

We saw the star operator first in Section 1.5.2, where we applied it to an
alphabet, e.g., ¥*. That operator formed all strings whose symbols were
chosen from alphabet X. The closure operator is essentially the same,
although there is a subtle distinction of types.

Suppose L is the language containing strings of length 1, and for each
symbol a in ¥ there is a string @ in L. Then, although L and ¥ “look”
the same, they are of different types; L is a set of strings, and ¥ is a set
of symbols. On the other hand, L* denotes the same language as ¥*.

applying a certain set of operators to these elementary expressions and to pre-
viously constructed expressions. Usually, some method of grouping operators
with their operands, such as parentheses, is required as well. For instance,
the familiar arithmetic algebra starts with constants such as integers and real
numbers, plus variables, and builds more complex expressions with arithmetic
operators such as + and x.

The algebra of regular expressions follows this pattern, using constants and
variables that denote languages, and operators for the three operations of Sec-
tion 3.1.1 —union, dot, and star. We can describe the regular expressions
recursively, as follows. In this definition, we not only describe what the le-
gal regular expressions are, but for each regular expression F, we describe the
language it represents, which we denote L(E).

BASIS: The basis consists of three parts:

1. The constants € and ) are regular expressions, denoting the languages {e}
and (), respectively. That is, L(e) = {e}, and L(}) = 0.

2. If a is any symbol, then a is a regular expression. This expression denotes
the language {a}. That is, L(a) = {a}. Note that we use boldface font
to denote an expression corresponding to a symbol. The correspondence,
e.g. that a refers to a, should be obvious.

3. A variable, usually capitalized and italic such as L, is a variable, repre-
senting any language.

INDUCTION: There are four parts to the inductive step, one for each of the
three operators and one for the introduction of parentheses.

1. If E and F are regular expressions, then E + F' is a regular expression
denoting the union of L(E) and L(F'). That is, L(E+F) = L(E) U L(F).

2. If E and F are regular expressions, then E'F is a regular expression denot-
ing the concatenation of L(E) and L(F). That is, L(EF) = L(E)L(F).
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Expressions and Their Languages

Strictly speaking, a regular expression F is just an expression, not a lan-
guage. We should use L(E) when we want to refer to the language that E
denotes. However, it is common usage to refer to say “E” when we really
mean “L(E).” We shall use this convention as long as it is clear we are
talking about a language and not about a regular expression.

Note that the dot can optionally be used to denote the concatenation op-
erator, either as an operation on languages or as the operator in a regular
expression. For instance, 0.1 is a regular expression meaning the same as
01 and representing the language {01}. However, we shall avoid the dot
as concatenation in regular expressions.?

3. If E is a regular expression, then E* is a regular expression, denoting the
closure of L(E). That is, L(E*) = (L(E))*

4. If E is a regular expression, then (E), a parenthesized E, is also a regular
expression, denoting the same language as E. Formally; L((E)) = L(E).

Example 3.2: Let us write a regular expression for the set of strings that
consist of alternating 0’s and 1’s. First, let us develop a regular expression
for the language consisting of the single string 01. We can then use the star
operator to get an expression for all strings of the form 0101 ---01.

The basis rule for regular expressions tells us that 0 and 1 are expressions
denoting the languages {0} and {1}, respectively. If we concatenate the two
expressions, we get a regular expression for the language {01}; this expression is
01. As a general rule, if we want a regular expression for the language consisting
of only the string w, we use w itself as the regular expression. Note that in the
regular expression, the symbols of w will normally be written in boldface, but
the change of font is only to help you distinguish expressions from strings and
should not be taken as significant.

Now, to get all strings consisting of zero or more occurrences of 01, we use
the regular expression (01)*. Note that we first put parentheses around 01, to
avoid confusing with the expression 01*, whose language is all strings consisting
of a 0 and any number of 1’s. The reason for this interpretation is explained
in Section 3.1.3, but briefly, star takes precedence over dot, and therefore the
argument of the star is selected before performing any concatenations.

However, L((01)*) is not exactly the language that we want. It includes
only those strings of alternating 0’s and 1’s that begin with 0 and end with 1.
We also need to consider the possibility that there is a 1 at the beginning and/or

2In fact, UNIX regular expressions use the dot for an entirely different purpose: represent-
ing any ASCII character.
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a 0 at the end. One approach is to construct three more regular expressions that
handle the other three possibilities. That is, (10)* represents those alternating
strings that begin with 1 and end with 0, while 0(10)* can be used for strings
that both begin and end with 0 and 1(01)* serves for strings that begin and
end with 1. The entire regular expression is

(01)* + (10)* 4+ 0(10)* + 1(01)*

Notice that we use the + operator to take the union of the four languages that
together give us all the strings with alternating 0’s and 1’s.

However, there is another approach that yields a regular expression that
looks rather different and is also somewhat more succinct. Start again with the
expression (01)*. We can add an optional 1 at the beginning if we concatenate
on the left with the expression € + 1. Likewise, we add an optional 0 at the end
with the expression € + 0. For instance, using the definition of the 4+ operator:

L(e+1) = L(e) UL(1) = {e} U {1} = {, 1}

If we concatenate this language with any other language L, the € choice gives
us all the strings in L, while the 1 choice gives us 1w for every string w in L.
Thus, another expression for the set of strings that alternate 0’s and 1’s is:

(e +1)(01)*(e + 0)

Note that we need parentheses around each of the added expressions, to make
sure the operators group properly. O

3.1.3 Precedence of Regular-Expression Operators

Like other algebras, the regular-expression operators have an assumed order of
“precedence,” which means that operators are associated with their operands in
a particular order. We are familiar with the notion of precedence from ordinary
arithmetic expressions. For instance, we know that xy+ 2z groups the product zy
before the sum, so it is equivalent to the parenthesized expression (zy) + z and
not to the expression z(y + z). Similarly, we group two of the same operators
from the left in arithmetic, so x —y — z is equivalent to (z — y) — z, and not to
x — (y — z). For regular expressions, the following is the order of precedence for
the operators:

1. The star operator is of highest precedence. That is, it applies only to
the smallest sequence of symbols to its left that is a well-formed regular
expression.

2. Next in precedence comes the concatenation or “dot” operator. After
grouping all stars to their operands, we group concatenation operators
to their operands. That is, all expressions that are justaposed (adjacent,
with no intervening operator) are grouped together. Since concatenation
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is an associative operator it does not matter in what order we group
consecutive concatenations, although if there is a choice to be made, you
should group them from the left. For instance, 012 is grouped (01)2.

3. Finally, all unions (+ operators) are grouped with their operands. Since
union is also associative, it again matters little in which order consecutive
unions are grouped, but we shall assume grouping from the left.

Of course, sometimes we do not want the grouping in a regular expression
to be as required by the precedence of the operators. If so, we are free to use
parentheses to group operands exactly as we choose. In addition, there is never
anything wrong with putting parentheses around operands that you want to
group, even if the desired grouping is implied by the rules of precedence.

Example 3.3: The expression 01* + 1 is grouped (0(1*)) + 1. The star
operator is grouped first. Since the symbol 1 immediately to its left is a legal
regular expression, that alone is the operand of the star. Next, we group the
concatenation between 0 and (1*), giving us the expression (0(1*)). Finally,
the union operator connects the latter expression and the expression to its right,
which is 1.

Notice that the language of the given expression, grouped according to the
precedence rules, is the string 1 plus all strings consisting of a 0 followed by any
number of 1’s (including none). Had we chosen to group the dot before the star,
we could have used parentheses, as (01)* + 1. The language of this expression
is the string 1 and all strings that repeat 01, zero or more times. Had we wished
to group the union first, we could have added parentheses around the union to
make the expression 0(1* + 1). That expression’s language is the set of strings
that begin with 0 and have any number of 1’s following. O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Write regular expressions for the following languages:

* a) The set of strings over alphabet {a,b, ¢} containing at least one a and at
least one b.

b) The set of strings of 0’s and 1’s whose tenth symbol from the right end is
1.

¢) The set of strings of 0’s and 1’s with at most one pair of consecutive 1’s.

! Exercise 3.1.2: Write regular expressions for the following languages:

* a) The set of all strings of 0’s and 1’s such that every pair of adjacent 0’s
appears before any pair of adjacent 1’s.

b) The set of strings of 0’s and 1’s whose number of 0’s is divisible by five.
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!! Exercise 3.1.3: Write regular expressions for the following languages:
a) The set of all strings of 0’s and 1’s not containing 101 as a substring.

b) The set of all strings with an equal number of 0’s and 1’s, such that no
prefix has two more 0’s than 1’s, nor two more 1’s than 0’s.

c) The set of strings of 0’s and 1’s whose number of 0’s is divisible by five
and whose number of 1’s is even.

! Exercise 3.1.4: Give English descriptions of the languages of the following
regular expressions:

*a) (1+¢€)(00*1)*0*.
b) (0*1%)*000(0 + 1)*.
c) (0+10)*1".

*! Exercise 3.1.5: In Example 3.1 we pointed out that () is one of two languages
whose closure is finite. What is the other?

3.2 Finite Automata and Regular Expressions

While the regular-expression approach to describing languages is fundamentally
different from the finite-automaton approach, these two notations turn out to
represent exactly the same set of languages, which we have termed the “reg-
ular languages.” We have already shown that deterministic finite automata,
and the two kinds of nondeterministic finite automata — with and without
e-transitions — accept the same class of languages. In order to show that the
regular expressions define the same class, we must show that:

1. Every language defined by one of these automata is also defined by a
regular expression. For this proof, we can assume the language is accepted
by some DFA.

2. Every language defined by a regular expression is defined by one of these
automata. For this part of the proof, the easiest is to show that there is
an NFA with e-transitions accepting the same language.

Figure 3.1 shows all the equivalences we have proved or will prove. An arc from
class X to class Y means that we prove every language defined by class X is
also defined by class Y. Since the graph is strongly connected (i.e., we can get
from each of the four nodes to any other node) we see that all four classes are
really the same.
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Figure 3.1: Plan for showing the equivalence of four different notations for
regular languages

3.2.1 From DFA’s to Regular Expressions

The construction of a regular expression to define the language of any DFA is
surprisingly tricky. Roughly, we build expressions that describe sets of strings
that label certain paths in the DFA’s transition diagram. However, the paths
are allowed to pass through only a limited subset of the states. In an inductive
definition of these expressions, we start with the simplest expressions that de-
scribe paths that are not allowed to pass through any states (i.e., they are single
nodes or single arcs), and inductively build the expressions that let the paths
go through progressively larger sets of states. Finally, the paths are allowed to
go through any state; i.e., the expressions we generate at the end represent all
possible paths. These ideas appear in the proof of the following theorem.

Theorem 3.4: If L = L(A) for some DFA A, then there is a regular expression
R such that L = L(R).

PROOF: Let us suppose that A’s states are {1,2,...,n} for some integer n. No
matter what the states of A actually are, there will be n of them for some finite
n, and by renaming the states, we can refer to the states in this manner, as if
they were the first n positive integers. Our first, and most difficult, task is to
construct a collection of regular expressions that describe progressively broader
sets of paths in the transition diagram of A.

Let us use Rl(-l.“) as the name of a regular expression whose language is the
set of strings w such that w is the label of a path from state i to state j in A,
and that path has no intermediate node whose number is greater than k. Note
that the beginning and end points of the path are not “intermediate,” so there
is no constraint that ¢ and/or j be less than or equal to k.

Figure 3.2 suggests the requirement on the paths represented by REJI-C). There,
the vertical dimension represents the state, from 1 at the bottom to n at the
top, and the horizontal dimension represents travel along the path. Notice that
in this diagram we have shown both ¢ and j to be greater than k, but either or
both could be k or less. Also notice that the path passes through node k twice,
but never goes through a state higher than k, except at the endpoints.

To construct the expressions Rg-“), we use the following inductive definition,
starting at £ = 0 and finally reaching k¥ = n. Notice that when k& = n, there is
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(k)
ij

Figure 3.2: A path whose label is in the language of regular expression R

no restriction at all on the paths represented, since there are no states greater
than n.

BASIS: The basis is £ = 0. Since all states are numbered 1 or above, the
restriction on paths is that the path must have no intermediate states at all.
There are only two kinds of paths that meet such a condition:

1. An arc from node (state) 7 to node j.

2. A path of length 0 that consists of only some node i.

If i # 7, then only case (1) is possible. We must examine the DFA A and
find those input symbols a such that there is a transition from state ¢ to state
j on symbol a.

@ —y,

a) If there is no such symbol a, then R;;

b) If there is exactly one such symbol a, then RE?) =a.

c¢) If there are symbols ay, as, ..., a that label arcs from state ¢ to state j,
then RE?) =a; +ay+-- +ay.

However, if @ = 7, then the legal paths are the path of length 0 and all loops
from ¢ to itself. The path of length O is represented by the regular expression
€, since that path has no symbols along it. Thus, we add e to the various
expressions devised in (a) through (c) above. That is, in case (a) [no symbol a]
the expression becomes ¢, in case (b) [one symbol a] the expression becomes e+a,
and in case (c) [multiple symbols] the expression becomes e +a; +as + - - - + a.

INDUCTION: Suppose there is a path from state i to state j that goes through
no state higher than k. There are two possible cases to consider:

1. The path does not go through state k£ at all. In this case, the label of the

path is in the language of Rz(f*l)
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2. The path goes through state k at least once. Then we can break the path
into several pieces, as suggested by Fig. 3.3. The first goes from state
1 to state k without passing through k, the last piece goes from k to j
without passing through k, and all the pieces in the middle go from k
to itself, without passing through k. Note that if the path goes through
state k only once, then there are no “middle” pieces, just a path from i
to k and a path from k to j. The set of labels for all paths of this type
is represented by the regular expression Rgf_l)(R,(ci_l))*R,i];_l). That is,
the first expression represents the part of the path that gets to state k
the first time, the second represents the portion that goes from k to itself,
zero times, once, or more than once, and the third expression represents
the part of the path that leaves k for the last time and goes to state j.

WA NNV

\/ \/
\/
(k—1) (k—1)
In R i In Rkj

e in R (k=1)
Zero or more strings in R

Figure 3.3: A path from i to j can be broken into segments at each point where
it goes through state k

When we combine the expressions for the paths of the two types above, we
have the expression

k k—1 k—1 k—1)\% p(k—1
Rz(j):Rz('j )+R£k )(Rsck )) Rgcj )

for the labels of all paths from state ¢ to state j that go through no state higher
than k. If we construct these expressions in order of increasing superscript,
then since each Rgf) depends only on expressions with a smaller superscript,
then all expressions are available when we need them.

Eventually, we have RE@ for all 7 and j. We may assume that state 1 is the
start state, although the accepting states could be any set of the states. The
regular expression for the language of the automaton is then the sum (union)
()
1j

of all expressions R;.’ such that state j is an accepting state. O

Example 3.5: Let us convert the DFA of Fig. 3.4 to a regular expression.

This DFA accepts all strings that have at least one 0 in them. To see why, note

that the automaton goes from the start state 1 to accepting state 2 as soon as

it sees an input 0. The automaton then stays in state 2 on all input sequences.
Below are the basis expressions in the construction of Theorem 3.4.

R%?) e+1
rRY o
RO | ¢

RY | (e+0+1)
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1
Start 0 @, 0,1

Figure 3.4: A DFA accepting all strings that have at least one 0

For instance, qu) has the term € because the beginning and ending states are
the same, state 1. It has the term 1 because there is an arc from state 1 to state
1 on input 1. As another example, Rﬁg) is 0 because there is an arc labeled 0
from state 1 to state 2. There is no e term because the beginning and ending
states are different. For a third example, Rg;) = (), because there is no arc from
state 2 to state 1.

Now, we must do the induction part, building more complex expressions
that first take into account paths that go through state 1, and then paths that
can go through states 1 and 2, i.e., any path. The rule for computing the
expressions RS) are instances of the general rule given in the inductive part of
Theorem 3.4:

R} =R + R (R))* R (3.1)

The table in Fig. 3.5 gives first the expressions computed by direct substitution
into the above formula, and then a simplified expression that we can show, by
ad-hoc reasoning, to represent the same language as the more complex expres-
sion.

| By direct substitution | Simplified
RY [ et1+(e+1)(e+1)*(e+1) | 17
RY [0+ (e+1)(e+1)*0 170
R | 0+ 0+ 1)*(e+1) 0
RY | e+ 0+1+0(e+1)"0 e+0+1

Figure 3.5: Regular expressions for paths that can go through only state 1

For example, consider Rg). Its expression is Rg) + RE[P (Rﬂ))*Rgg), which
we get from (3.1) by substituting i =1 and j = 2.

To understand the simplification, note the general principle that if R is any
regular expression, then (e + R)* = R*. The justification is that both sides of
the equation describe the language consisting of any concatenation of zero or
more strings from L(R). In our case, we have (¢ + 1)* = 1*; notice that both
expressions denote any number of 1’s. Further, (e4+1)1* = 1*. Again, it can be
observed that both expressions denote “any number of 1’s.” Thus, the original
expression Rg) is equivalent to 0 + 1*0. This expression denotes the language
containing the string 0 and all strings consisting of a 0 preceded by any number
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of 1’s. This language is also expressed by the simpler expression 1*0.

The simplification of Rﬁ) is similar to the simplification of Rg)

considered. The simplification of Rgll) and Rg;) depends on two rules about
how 0 operates. For any regular expression R:

that we just

1. )R = R() = 0. That is, () is an annihilator for concatenation; it results in
itself when concatenated, either on the left or right, with any expression.
This rule makes sense, because for a string to be in the result of a concate-
nation, we must find strings from both arguments of the concatenation.
Whenever one of the arguments is ), it will be impossible to find a string
from that argument.

2. )+ R=R+ 0 = R. That is, 0 is the identity for union; it results in the
other expression whenever it appears in a union.

As a result, an expression like (e + 1)*(e + 1) can be replaced by . The last
two simplifications should now be clear.

Now, let us compute the expressions RE;). The inductive rule applied with
k = 2 gives us:

R = R} + Ry, (Ryy))"RY) (3:2)
If we substitute the simplified expressions from Fig. 3.5 into (3.2), we get the

expressions of Fig. 3.6. That figure also shows simplifications following the same
principles that we described for Fig. 3.5.

| By direct substitution | Simplified
R | 1" +1°0(e + 0 + 1)*) 1"
R | 170+ 1%0( + 0+ 1)*(e + 0 + 1) 170(0 + 1)*
R | 0+ (e+0+1)(e+0+1)*0 ]
RY | e40+1+(€+0+1)(c+0+1)*(e+0+1) | (0+1)*

Figure 3.6: Regular expressions for paths that can go through any state

The final regular expression equivalent to the automaton of Fig. 3.4 is con-
structed by taking the union of all the expressions where the first state is the
start state and the second state is accepting. In this example, with 1 as the
start state and 2 as the only accepting state, we need only the expression Rg).
This expression is 1*0(0 + 1)*. It is simple to interpret this expression. Its
language consists of all strings that begin with zero or more 1’s, then have a 0,
and then any string of 0’s and 1’s. Put another way, the language is all strings
of 0’s and 1’s with at least one 0. O
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3.2.2 Converting DFA’s to Regular Expressions by
Eliminating States

The method of Section 3.2.1 for converting a DFA to a regular expression al-
ways works. In fact, as you may have noticed, it doesn’t really depend on the
automaton being deterministic, and could just as well have been applied to an
NFA or even an e-NFA. However, the construction of the regular expression
is expensive. Not only do we have to construct about n® expressions for an
n-state automaton, but the length of the expression can grow by a factor of 4
on the average, with each of the n inductive steps, if there is no simplification
of the expressions. Thus, the expressions themselves could reach on the order
of 4™ symbols.

There is a similar approach that avoids duplicating work at some points.
For example, for every i and j, the formula for REJI-C)
orem 3.4 uses the subexpression (Rgf;l))*; the work of writing that expression
is therefore repeated n? times.

The approach to constructing regular expressions that we shall now learn
involves eliminating states. When we eliminate a state s, all the paths that went
through s no longer exist in the automaton. If the language of the automaton
is not to change, we must include, on an arc that goes directly from ¢ to p,
the labels of paths that went from some state g to state p, through s. Since
the label of this arc may now involve strings, rather than single symbols, and
there may even be an infinite number of such strings, we cannot simply list the
strings as a label. Fortunately, there is a simple, finite way to represent all such
strings: use a regular expression.

Thus, we are led to consider automata that have regular expressions as
labels. The language of the automaton is the union over all paths from the
start state to an accepting state of the language formed by concatenating the
languages of the regular expressions along that path. Note that this rule is
consistent with the definition of the language for any of the varieties of automata
we have considered so far. Each symbol a, or € if it is allowed, can be thought
of as a regular expression whose language is a single string, either {a} or {e}.
We may regard this observation as the basis of a state-elimination procedure,
which we describe next.

Figure 3.7 shows a generic state s about to be eliminated. We suppose that
the automaton of which s is a state has predecessor states qi,¢s,- .., g for s
and successor states pi,ps,...,Ppm for s. It is possible that some of the ¢’s are
also p’s, but we assume that s is not among the ¢’s or p’s, even if there is a loop
from s to itself, as suggested by Fig. 3.7. We also show a regular expression on
each arc from one of the ¢’s to s; expression (); labels the arc from ¢;. Likewise,
we show a regular expression P; labeling the arc from s to p;, for all ;. We show
a loop on s with label S. Finally, there is a regular expression R;; on the arc
from g¢; to pj;, for all ¢ and j. Note that some of these arcs may not exist in the
automaton, in which case we take the expression on that arc to be ().

Figure 3.8 shows what happens when we eliminate state s. All arcs involving

in the construction of The-
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Figure 3.7: A state s about to be eliminated

state s are deleted. To compensate, we introduce, for each predecessor g; of s
and each successor p; of s, a regular expression that represents all the paths
that start at ¢;, go to s, perhaps loop around s zero or more times, and finally
go to pj. The expression for these paths is (;S*P;. This expression is added
(with the union operator) to the arc from g; to p;. If there was no arc ¢; = pj,
then first introduce one with regular expression (.

The strategy for constructing a regular expression from a finite automaton
is as follows:

1. For each accepting state ¢, apply the above reduction process to pro-
duce an equivalent automaton with regular-expression labels on the arcs.
Eliminate all states except ¢ and the start state gg.

2. If ¢ # qo, then we shall be left with a two-state automaton that looks like
Fig. 3.9. The regular expression for the accepted strings can be described
in various ways. One is (R + SU*T)*SU*. In explanation, we can go
from the start state to itself any number of times, by following a sequence
of paths whose labels are in either L(R) or L(SU*T). The expression
SU*T represents paths that go to the accepting state via a path in L(S5),
perhaps return to the accepting state several times using a sequence of
paths with labels in L(U), and then return to the start state with a path
whose label is in L(T"). Then we must go to the accepting state, never to
return to the start state, by following a path with a label in L(S). Once
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R+ Q,5%A

R, + Q S*P

m

Ry + 0 S*A

R,, + Q,S*P,

Figure 3.8: Result of eliminating state s from Fig. 3.7

in the accepting state, we can return to it as many times as we like, by
following a path whose label is in L(U).

R U
=8
T

Figure 3.9: A generic two-state automaton

3. If the start state is also an accepting state, then we must also perform
a state-elimination from the original automaton that gets rid of every
state but the start state. When we do so, we are left with a one-state
automaton that looks like Fig. 3.10. The regular expression denoting the
strings that it accepts is R*.

R

Start 6

Figure 3.10: A generic one-state automaton

4. The desired regular expression is the sum (union) of all the expressions
derived from the reduced automata for each accepting state, by rules (2)
and (3).
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0.1

Start Ol 0,1 0,1
——0—©

Figure 3.11: An NFA accepting strings that have a 1 either two or three posi-
tions from the end

Example 3.6: Let us consider the NFA in Fig. 3.11 that accepts all strings of
0’s and 1’s such that either the second or third position from the end has a 1.
Our first step is to convert it to an automaton with regular expression labels.
Since no state elimination has been performed, all we have to do is replace the
labels “0,1” with the equivalent regular expression 0 + 1. The result is shown
in Fig. 3.12.

0+1

Start 1 e 0+1 . 0+1 @
Figure 3.12: The automaton of Fig. 3.11 with regular-expression labels

Let us first eliminate state B. Since this state is neither accepting nor
the start state, it will not be in any of the reduced automata. Thus, we save
work if we eliminate it first, before developing the two reduced automata that
correspond to the two accepting states.

State B has one predecessor, A, and one successor, C. In terms of the
regular expressions in the diagram of Fig. 3.7: Q; =1, P, =0+ 1, Ri; =0
(since the arc from A to C' does not exist), and S = () (because there is no
loop at state B). As a result, the expression on the new arc from A to C is
0+ 10%(0+1).

To simplify, we first eliminate the initial (), which may be ignored in a union.
The expression thus becomes 10*(0 + 1). Note that the regular expression §*
is equivalent to the regular expression e, since

L(0*) = {e} U L) U LO)LO) U - - -

Since all the terms but the first are empty, we see that L(0*) = {e}, which
is the same as L(e). Thus, 10*(0 + 1) is equivalent to 1(0 + 1), which is the
expression we use for the arc A — C in Fig. 3.13.

Now, we must branch, eliminating states C' and D in separate reductions.
To eliminate state C, the mechanics are similar to those we performed above
to eliminate state B, and the resulting automaton is shown in Fig. 3.14.

In terms of the generic two-state automaton of Fig. 3.9, the regular expres-
sions from Fig. 3.14 are: R=0+4+1,S=10+1)(0+1), 7T =0, and U = 0.
The expression U* can be replaced by ¢, i.e., eliminated in a concatenation;
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0+1

Start O 10+1) 0+1
—o—0—@

Figure 3.13: Eliminating state B

0+1

Start O 10+ 10 +1)

Figure 3.14: A two-state automaton with states A and D

the justification is that 0* = €, as we discussed above. Also, the expression
SU*T is equivalent to (), since T, one of the terms of the concatenation, is ().
The generic expression (R + SU*T)*SU* thus simplifies in this case to R*S,
or (0+1)*1(0+1)(0 + 1). In informal terms, the language of this expression
is any string ending in 1, followed by two symbols that are each either 0 or
1. That language is one portion of the strings accepted by the automaton of
Fig. 3.11: those strings whose third position from the end has a 1.

Now, we must start again at Fig. 3.13 and eliminate state D instead of C.
Since D has no successors, an inspection of Fig. 3.7 tells us that there will be
no changes to arcs, and the arc from C to D is eliminated, along with state D.
The resulting two-state automaton is shown in Fig. 3.15.

This automaton is very much like that of Fig. 3.14; only the label on the arc
from the start state to the accepting state is different. Thus, we can apply the
rule for two-state automata and simplify the expression to get (0+1)*1(0+1).
This expression represents the other type of string the automaton accepts: those
with a 1 in the second position from the end.

All that remains is to sum the two expressions to get the expression for the
entire automaton of Fig. 3.11. This expression is

(0+1)*1(0+1) + (0 +1)*1(0 + 1)(0 + 1)

O

3.2.3 Converting Regular Expressions to Automata

We shall now complete the plan of Fig. 3.1 by showing that every language L
that is L(R) for some regular expression R, is also L(E) for some e-NFA E. The
proof is a structural induction on the expression R. We start by showing how
to construct automata for the basis expressions: single symbols, €, and (). We
then show how to combine these automata into larger automata that accept the
union, concatenation, or closure of the language accepted by smaller automata.

All of the automata we construct are e-NFA’s with a single accepting state.
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Ordering the Elimination of States

As we observed in Example 3.6, when a state is neither the start state
nor an accepting state, it gets eliminated in all the derived automata.
Thus, one of the advantages of the state-elimination process compared
with the mechanical generation of regular expressions that we described
in Section 3.2.1 is that we can start by eliminating all the states that
are neither start nor accepting, once and for all. We only have to begin
duplicating the reduction effort when we need to eliminate some accepting
states.

Even there, we can combine some of the effort. For instance, if there
are three accepting states p, ¢, and r, we can eliminate p and then branch
to eliminate either q or r, thus producing the automata for accepting states
r and g, respectively. We then start again with all three accepting states
and eliminate both ¢ and r to get the automaton for p.

0+1

Start O 10+1)

Figure 3.15: Two-state automaton resulting from the elimination of D

Theorem 3.7 : Every language defined by a regular expression is also defined
by a finite automaton.

PROOF: Suppose L = L(R) for a regular expression R. We show that L = L(E)
for some e-NFA E with:

1. Exactly one accepting state.
2. No arcs into the initial state.

3. No arcs out of the accepting state.

The proof is by structural induction on R, following the recursive definition of
regular expressions that we had in Section 3.1.2.

BASIS: There are three parts to the basis, shown in Fig. 3.16. In part (a) we
see how to handle the expression e. The language of the automaton is easily
seen to be {e}, since the only path from the start state to an accepting state
is labeled e. Part (b) shows the construction for (). Clearly there are no paths
from start state to accepting state, so () is the language of this automaton.
Finally, part (c) gives the automaton for a regular expression a. The language
of this automaton evidently consists of the one string a, which is also L(a). It
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Figure 3.16: The basis of the construction of an automaton from a regular
expression

is easy to check that these automata all satisfy conditions (1), (2), and (3) of
the inductive hypothesis.

INDUCTION: The three parts of the induction are shown in Fig. 3.17. We
assume that the statement of the theorem is true for the immediate subexpres-
sions of a given regular expression; that is, the languages of these subexpressions
are also the languages of e-NFA’s with a single accepting state. The four cases
are:

1. The expression is R+ S for some smaller expressions R and S. Then the
automaton of Fig. 3.17(a) serves. That is, starting at the new start state,
we can go to the start state of either the automaton for R or the automa-
ton for S. We then reach the accepting state of one of these automata,
following a path labeled by some string in L(R) or L(S), respectively.
Once we reach the accepting state of the automaton for R or S, we can
follow one of the e-arcs to the accepting state of the new automaton.
Thus, the language of the automaton in Fig. 3.17(a) is L(R) U L(S).

2. The expression is RS for some smaller expressions R and S. The automa-
ton for the concatenation is shown in Fig. 3.17(b). Note that the start
state of the first automaton becomes the start state of the whole, and the
accepting state of the second automaton becomes the accepting state of
the whole. The idea is that the only paths from start to accepting state go
first through the automaton for R, where it must follow a path labeled by
a string in L(R), and then through the automaton for S, where it follows
a path labeled by a string in L(S). Thus, the paths in the automaton of
Fig. 3.17(b) are all and only those labeled by strings in L(R)L(S).

3. The expression is R* for some smaller expression R. Then we use the
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P
poncy

(a

Figure 3.17: The inductive step in the regular-expression-to-e-NFA construction

automaton of Fig. 3.17(c). That automaton allows us to go either:

(a) Directly from the start state to the accepting state along a path
labeled €. That path lets us accept €, which is in L(R*) no matter
what expression R is.

(b) To the start state of the automaton for R, through that automaton
one or more times, and then to the accepting state. This set of paths
allows us to accept strings in L(R), L(R)L(R), L(R)L(R)L(R), and
so on, thus covering all strings in L(R*) except perhaps ¢, which was
covered by the direct arc to the accepting state mentioned in (3a).

4. The expression is (R) for some smaller expression R. The automaton
for R also serves as the automaton for (R), since the parentheses do not
change the language defined by the expression.

It is a simple observation that the constructed automata satisfy the three con-
ditions given in the inductive hypothesis — one accepting state, with no arcs
into the initial state or out of the accepting state. O
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Figure 3.18: Automata constructed for Example 3.8

Example 3.8: Let us convert the regular expression (0 + 1)*1(0 + 1) to an
e-NFA. Our first step is to construct an automaton for 0 + 1. We use two
automata constructed according to Fig. 3.16(c), one with label 0 on the arc
and one with label 1. These two automata are then combined using the union
construction of Fig. 3.17(a). The result is shown in Fig. 3.18(a).

Next, we apply to Fig. 3.18(a) the star construction of Fig. 3.17(c). This
automaton is shown in Fig. 3.18(b). The last two steps involve applying the
concatenation construction of Fig. 3.17(b). First, we connect the automaton of
Fig. 3.18(b) to another automaton designed to accept only the string 1. This
automaton is another application of the basis construction of Fig. 3.16(c) with
label 1 on the arc. Note that we must create a new automaton to recognize 1;
we must not use the automaton for 1 that was part of Fig. 3.18(a). The third
automaton in the concatenation is another automaton for 0 + 1. Again, we
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must create a copy of the automaton of Fig. 3.18(a); we must not use the same
copy that became part of Fig. 3.18(b). The complete automaton is shown in
Fig. 3.18(c). Note that this e-NFA, when e-transitions are removed, looks just
like the much simpler automaton of Fig. 3.15 that also accepts the strings that
have a 1 in their next-to-last position. O

3.2.4 Exercises for Section 3.2

Exercise 3.2.1: Here is a transition table for a DFA:

[0 [1
—q || 2| N
q2 || 43 | q1
*q3 || 43 | 42

(0)

*a) Give all the regular expressions R;;’. Note: Think of state g; as if it were

the state with integer number i.

*b) Give all the regular expressions R, Try to simplify the expressions as

ij
much as possible.
c) Give all the regular expressions Rg). Try to simplify the expressions as
much as possible.

d) Give a regular expression for the language of the automaton.

* ¢) Construct the transition diagram for the DFA and give a regular expres-
sion for its language by eliminating state ga.

Exercise 3.2.2: Repeat Exercise 3.2.1 for the following DFA:

[0 [1
—q1 || 92 | g3
q2 || 491 | 43
*q3 || 42 | 1

Note that solutions to parts (a), (b) and (e) are not available for this exercise.

Exercise 3.2.3: Convert the following DFA to a regular expression, using the
state-elimination technique of Section 3.2.2.




*1

108 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Exercise 3.2.4: Convert the following regular expressions to NFA’s with e-
transitions.

*a) 01,
b) (0 +1)01.
c¢) 00(0 + 1)*.

Exercise 3.2.5: Eliminate e-transitions from your e-NFA’s of Exercise 3.2.4.
A solution to part (a) appears in the book’s Web pages.

Exercise 3.2.6: Let A = (Q, X, 6, q0, {gr}) be an e-NFA such that there are no
transitions into go and no transitions out of gy. Describe the language accepted
by each of the following modifications of A, in terms of L = L(A):

* a) The automaton constructed from A by adding an e-transition from gy to
do-

*b) The automaton constructed from A by adding an e-transition from g
to every state reachable from gy (along a path whose labels may include
symbols of ¥ as well as ¢€).

c¢) The automaton constructed from A by adding an e-transition to ¢y from
every state that can reach gy along some path.

d) The automaton constructed from A by doing both (b) and (c).

Exercise 3.2.7: There are some simplifications to the constructions of Theo-
rem 3.7, where we converted a regular expression to an e-NFA. Here are three:

1. For the union operator, instead of creating new start and accepting states,
merge the two start states into one state with all the transitions of both
start states. Likewise, merge the two accepting states, having all transi-
tions to either go to the merged state instead.

2. For the concatenation operator, merge the accepting state of the first
automaton with the start state of the second.

3. For the closure operator, simply add e-transitions from the accepting state
to the start state and vice-versa.

Each of these simplifications, by themselves, still yield a correct construction;
that is, the resulting e-NFA for any regular expression accepts the language of
the expression. Which subsets of changes (1), (2), and (3) may be made to the
construction together, while still yielding a correct automaton for every regular
expression?

Exercise 3.2.8: Give an algorithm that takes a DFA A and computes the
number of strings of length n (for some given n, not related to the number
of states of A) accepted by A. Your algorithm should be polynomial in both
n and the number of states of A. Hint: Use the technique suggested by the
construction of Theorem 3.4.
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3.3 Applications of Regular Expressions

A regular expression that gives a “picture” of the pattern we want to recognize
is the medium of choice for applications that search for patterns in text. The
regular expressions are then compiled, behind the scenes, into deterministic or
nondeterministic automata, which are then simulated to produce a program
that recognizes patterns in text. In this section, we shall consider two impor-
tant classes of regular-expression-based applications: lexical analyzers and text
search.

3.3.1 Regular Expressions in UNIX

Before seeing the applications, we shall introduce the UNIX notation for ex-
tended regular expressions. This notation gives us a number of additional ca-
pabilities. In fact, the UNIX extensions include certain features, especially the
ability to name and refer to previous strings that have matched a pattern, that
actually allow nonregular languages to be recognized. We shall not consider
these features here; rather we shall only introduce the shorthands that allow
complex regular expressions to be written succinctly.

The first enhancement to the regular-expression notation concerns the fact
that most real applications deal with the ASCII character set. Our examples
have typically used a small alphabet, such as {0,1}. The existence of only two
symbols allowed us to write succinct expressions like 0 + 1 for “any character.”
However, if there were 128 characters, say, the same expression would involve
listing them all, and would be highly inconvenient to write. Thus, UNIX reg-
ular expressions allow us to write character classes to represent large sets of
characters as succinctly as possible. The rules for character classes are:

e The symbol . (dot) stands for “any character.”

e The sequence [ajas - - - ar] stands for the regular expression
ar +az+---+ag

This notation saves about half the characters, since we don’t have to write
the +-signs. For example, we could express the four characters used in C
comparison operators by [<>=!].

e Between the square braces we can put a range of the form z-y to mean all
the characters from z to y in the ASCII sequence. Since the digits have
codes in order, as do the upper-case letters and the lower-case letters, we
can express many of the classes of characters that we really care about
with just a few keystrokes. For example, the digits can be expressed
[0-9], the upper-case letters can be expressed [A-Z], and the set of all
letters and digits can be expressed [A-Za-z0-9]. If we want to include a
minus sign among a list of characters, we can place it first or last, so it is
not confused with its use to form a character range. For example, the set
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of digits, plus the dot, plus, and minus signs that are used to form signed
decimal numbers may be expressed [-+.0-9]. Square brackets, or other
characters that have special meanings in UNIX regular expressions can
be represented as characters by preceding them with a backslash (\).

e There are special notations for several of the most common classes of
characters. For instance:

a) [:digit:] is the set of ten digits, the same as [0-9].3
b) [:alpha:] stands for any alphabetic character, as does [A-Za-z].

¢) [:alnum:] stands for the digits and letters (alphabetic and numeric
characters), as does [A-Za-z0-9].

In addition, there are several operators that are used in UNIX regular ex-
pressions that we have not encountered previously. None of these operators
extend what languages can be expressed, but they sometimes make it easier to
express what we want.

1. The operator | is used in place of + to denote union.

2. The operator ? means “zero or one of.” Thus, R? in UNIX is the same
as € + R in this book’s regular-expression notation.

3. The operator + means “one or more of.” Thus, R+ in UNIX is shorthand
for RR* in our notation.

4. The operator {n} means “n copies of.” Thus, R{5} in UNIX is shorthand
for RRRRR.

Note that UNIX regular expressions allow parentheses to group subexpressions,
just as for the regular expressions described in Section 3.1.2, and the same
operator precedence is used (with 7, + and {n} treated like * as far as precedence
is concerned). The star operator * is used in UNIX (without being a superscript,
of course) with the same meaning as we have used.

3.3.2 Lexical Analysis

One of the oldest applications of regular expressions was in specifying the com-
ponent of a compiler called a “lexical analyzer.” This component scans the
source program and recognizes all tokens, those substrings of consecutive char-
acters that belong together logically. Keywords and identifiers are common
examples of tokens, but there are many others.

3The notation [:digit:] has the advantage that should some code other than ASCII be
used, including a code where the digits did not have consecutive codes, [:digit:] would still
represent [0123456789], while [0-9] would represent whatever characters had codes between
the codes for 0 and 9, inclusive.
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The Complete Story for UNIX Regular Expressions

The reader who wants to get the complete list of operators and short-
hands available in the UNIX regular-expression notation can find them
in the manual pages for various commands. There are some differences
among the various versions of UNIX, but a command like man grep will
get you the notation used for the grep command, which is fundamental.
“Grep” stands for “Global (search for) Regular Expression and Print,”
incidentally.

The UNIX command lex and its GNU version flex, accept as input a list of
regular expressions, in the UNIX style, each followed by a bracketed section of
code that indicates what the lexical analyzer is to do when it finds an instance
of that token. Such a facility is called a lexical-analyzer generator, because it
takes as input a high-level description of a lexical analyzer and produces from
it a function that is a working lexical analyzer.

Commands such as lex and flex have been found extremely useful because
the regular-expression notation is exactly as powerful as we need to describe
tokens. These commands are able to use the regular-expression-to-DFA con-
version process to generate an efficient function that breaks source programs
into tokens. They make the implementation of a lexical analyzer an afternoon’s
work, while before the development of these regular-expression-based tools, the
hand-generation of the lexical analyzer could take months. Further, if we need
to modify the lexical analyzer for any reason, it is often a simple matter to
change a regular expression or two, instead of having to go into mysterious
code to fix a bug.

Example 3.9: In Fig. 3.19 is an example of partial input to the lex command,
describing some of the tokens that are found in the language C. The first line
handles the keyword else and the action is to return a symbolic constant (ELSE
in this example) to the parser for further processing. The second line contains
a regular expression describing identifiers: a letter followed by zero or more
letters and/or digits. The action is first to enter that identifier in the symbol
table if not already there; lex isolates the token found in a buffer, so this piece
of code knows exactly what identifier was found. Finally, the lexical analyzer
returns the symbolic constant ID, which has been chosen in this example to
represent identifiers.

The third entry in Fig. 3.19 is for the sign >=, a two-character operator.
The last example we show is for the sign =, a one-character operator. There
would in practice appear expressions describing each of the keywords, each of
the signs and punctuation symbols like commas and parentheses, and families
of constants such as numbers and strings. Many of these are very simple,
just a sequence of one or more specific characters. However, some have more
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else {return(ELSE) ;}

[A-Za-z] [A-Za-z0-9]* {code to enter the found identifier
in the symbol table;
return(ID);
}

>= {return(GE) ;}

= {return(ASGN) ;}

Figure 3.19: A sample of lex input

of the flavor of identifiers, requiring the full power of the regular-expression
notation to describe. The integers, floating-point numbers, character strings,
and comments are other examples of sets of strings that profit from the regular-
expression capabilities of commands like lex. 0O

The conversion of a collection of expressions, such as those suggested in
Fig. 3.19, to an automaton proceeds approximately as we have described for-
mally in the preceding sections. We start by building an automaton for the
union of all the expressions. This automaton in principle tells us only that
some token has been recognized. However, if we follow the construction of The-
orem 3.7 for the union of expressions, the e-NFA state tells us exactly which
token has been recognized.

The only problem is that more than one token may be recognized at once;
for instance, the string else matches not only the regular expression else but
also the expression for identifiers. The standard resolution is for the lexical-
analyzer generator to give priority to the first expression listed. Thus, if we
want keywords like else to be reserved (not usable as identifiers), we simply
list them ahead of the expression for identifiers.

3.3.3 Finding Patterns in Text

In Section 2.4.1 we introduced the notion that automata could be used to search
efficiently for a set of words in a large repository such as the Web. While the
tools and technology for doing so are not so well developed as that for lexical
analyzers, the regular-expression notation is valuable for describing searches
for interesting patterns. As for lexical analyzers, the capability to go from
the natural, descriptive regular-expression notation to an efficient (automaton-
based) implementation offers substantial intellectual leverage.

The general problem for which regular-expression technology has been found
useful is the description of a vaguely defined class of patterns in text. The
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vagueness of the description virtually guarantees that we shall not describe
the pattern correctly at first — perhaps we can never get exactly the right
description. By using regular-expression notation, it becomes easy to describe
the patterns at a high level, with little effort, and to modify the description
quickly when things go wrong. A “compiler” for regular expressions is useful
to turn the expressions we write into executable code.

Let us explore an extended example of the sort of problem that arises in
many Web applications. Suppose that we want to scan a very large number of
Web pages and detect addresses. We might simply want to create a mailing
list. Or, perhaps we are trying to classify businesses by their location so that
we can answer queries like “find me a restaurant within 10 minutes drive of
where I am now.”

We shall focus on recognizing street addresses in particular. What is a street
address? We’ll have to figure that out, and if, while testing the software, we
find we miss some cases, we’ll have to modify the expressions to capture what
we were missing. To begin, a street address will probably end in “Street” or its
abbreviation, “St.” However, some people live on “Avenues” or “Roads,” and
these might be abbreviated in the address as well. Thus, we might use as the
ending for our regular expression something like:

Street|St\. |Avenue|Ave\. |Road |Rd\.

In the above expression, we have used UNIX-style notation, with the vertical
bar, rather than +, as the union operator. Note also that the dots are escaped
with a preceding backslash, since dot has the special meaning of “any character”
in UNIX expressions, and in this case we really want only the period or “dot”
character to end the three abbreviations.

The designation such as Street must be preceded by the name of the street.
Usually, the name is a capital letter followed by some lower-case letters. We
can describe this pattern by the UNIX expression [A-Z][a-z]*. However,
some streets have a name consisting of more than one word, such as Rhode
Island Avenue in Washington DC. Thus, after discovering that we were missing
addresses of this form, we could revise our description of street names to be

’[A-Z] [a-z]*( [A-Z][a-z]*)*’

The expression above starts with a group consisting of a capital and zero
or more lower-case letters. There follow zero or more groups consisting of a
blank, another capital letter, and zero or more lower-case letters. The blank
is an ordinary character in UNIX expressions, but to avoid having the above
expression look like two expressions separated by a blank in a UNIX command
line, we are required to place quotation marks around the whole expression.
The quotes are not part of the expression itself.

Now, we need to include the house number as part of the address. Most
house numbers are a string of digits. However, some will have a letter follow-
ing, as in “123A Main St.” Thus, the expression we use for numbers has an
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optional capital letter following: [0-9]+[A-Z]7. Notice that we use the UNIX
+ operator for “one or more” digits and the ? operator for “zero or one” capital
letter. The entire expression we have developed for street addresses is:

> [0-9]1+[A-Z]7 [A-Z][a-z]l*( [A-Z][a-z]*)=*
(Street |St\. |Avenuel|Ave\. |Road |Rd\.)"’

If we work with this expression, we shall do fairly well. However, we shall
eventually discover that we are missing;:

1. Streets that are called something other than a street, avenue, or road. For
example, we shall miss “Boulevard,” “Place,” “Way,” and their abbrevi-
ations.

2. Street names that are numbers, or partially numbers, like “42nd Street.”
3. Post-Office boxes and rural-delivery routes.

4. Street names that don’t end in anything like “Street.” An example is El
Camino Real in Silicon Valley. Being Spanish for “the royal road,” saying
“El Camino Real Road” would be redundant, so one has to deal with
complete addresses like “2000 El Camino Real.”

5. All sorts of strange things we can’t even imagine. Can you?

Thus, having a regular-expression compiler can make the process of slow con-
vergence to the complete recognizer for addresses much easier than if we had
to recode every change directly in a conventional programming language.

3.3.4 Exercises for Section 3.3

Exercise 3.3.1: Give a regular expression to describe phone numbers in all
the various forms you can think of. Consider international numbers as well as
the fact that different countries have different numbers of digits in area codes
and in local phone numbers.

Exercise 3.3.2: Give a regular expression to represent salaries as they might
appear in employment advertising. Consider that salaries might be given on
a per hour, week, month, or year basis. They may or may not appear with a
dollar sign, or other unit such as “K” following. There may be a word or words
nearby that identify a salary. Suggestion: look at classified ads in a newspaper,
or on-line jobs listings to get an idea of what patterns might be useful.

Exercise 3.3.3: At the end of Section 3.3.3 we gave some examples of improve-
ments that could be possible for the regular expression that describes addresses.
Modify the expression developed there to include all the mentioned options.
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3.4 Algebraic Laws for Regular Expressions

In Example 3.5, we saw the need for simplifying regular expressions, in order to
keep the size of expressions manageable. There, we gave some ad-hoc arguments
why one expression could be replaced by another. In all cases, the basic issue
was that the two expressions were equivalent, in the sense that they defined
the same languages. In this section, we shall offer a collection of algebraic
laws that bring to a higher level the issue of when two regular expressions are
equivalent. Instead of examining specific regular expressions, we shall consider
pairs of regular expressions with variables as arguments. Two expressions with
variables are equivalent if whatever languages we substitute for the variables,
the results of the two expressions are the same language.

An example of this process in the algebra of arithmetic is as follows. It is
one matter to say that 1+2 = 2+ 1. That is an example of the commutative law
of addition, and it is easy to check by applying the addition operator on both
sides and getting 3 = 3. However, the commutative law of addition says more;
it says that © +y = y + x, where z and y are variables that can be replaced
by any two numbers. That is, no matter what two numbers we add, we get the
same result regardless of the order in which we sum them.

Like arithmetic expressions, the regular expressions have a number of laws
that work for them. Many of these are similar to the laws for arithmetic, if we
think of union as addition and concatenation as multiplication. However, there
are a few places where the analogy breaks down, and there are also some laws
that apply to regular expressions but have no analog for arithmetic, especially
when the closure operator is involved. The next sections form a catalog of the
major laws. We conclude with a discussion of how one can check whether a
proposed law for regular expressions is indeed a law; i.e., it will hold for any
languages that we may substitute for the variables.

3.4.1 Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order
of its operands and get the same result. An example for arithmetic was given
above: ¢ +y = y + x. Associativity is the property of an operator that allows
us to regroup the operands when the operator is applied twice. For example,
the associative law of multiplication is (z X y) X z = X (y x z). Here are three
laws of these types that hold for regular expressions:

e L+ M = M + L. This law, the commutative law for union, says that we
may take the union of two languages in either order.

e (L+ M)+ N =L+ (M+ N). This law, the associative law for union,
says that we may take the union of three languages either by taking the
union of the first two initially, or taking the union of the last two initially.
Note that, together with the commutative law for union, we conclude
that we can take the union of any collection of languages with any order
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and grouping, and the result will be the same. Intuitively, a string is in
Ly ULy U---U Ly if and only if it is in one or more of the L;’s.

e (LM)N = L(MN). This law, the associative law for concatenation, says
that we can concatenate three languages by concatenating either the first
two or the last two initially.

Missing from this list is the “law” LM = M L, which would say that con-
catenation is commutative. However, this law is false.

Example 3.10: Consider the regular expressions 01 and 10. These expres-
sions denote the languages {01} and {10}, respectively. Since the languages are
different the general law LM = ML cannot hold. If it did, we could substitute
the regular expression 0 for L and 1 for M and conclude falsely that 01 = 10.
O

3.4.2 Identities and Annihilators

An identity for an operator is a value such that when the operator is applied to
the identity and some other value, the result is the other value. For instance,
0 is the identity for addition, since 0 + z = = + 0 = z, and 1 is the identity
for multiplication, since 1 X * = ¢ X 1 = z. An annihilator for an operator
is a value such that when the operator is applied to the annihilator and some
other value, the result is the annihilator. For instance, 0 is an annihilator for
multiplication, since 0 X x = ¢ x 0 = 0. There is no annihilator for addition.

There are three laws for regular expressions involving these concepts; we list
them below.

e )+ L =L+ (= L. This law asserts that () is the identity for union.
e ¢L = Le = L. This law asserts that € is the identity for concatenation.
e )L = LP = (). This law asserts that () is the annihilator for concatenation.

These laws are powerful tools in simplifications. For example, if we have a
union of several expressions, some of which are, or have been simplified to 0,
then the ()’s can be dropped from the union. Likewise, if we have a concatenation
of several expressions, some of which are, or have been simplified to €, we can
drop the €’s from the concatenation. Finally, if we have a concatenation of any
number of expressions, and even one of them is (), then the entire concatenation
can be replaced by 0.

3.4.3 Distributive Laws

A distributive law involves two operators, and asserts that one operator can be
pushed down to be applied to each argument of the other operator individually.
The most common example from arithmetic is the distributive law of multipli-
cation over addition, that is, ¢ X (y+2) = & X y +x X z. Since multiplication is



3.4. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 117

commutative, it doesn’t matter whether the multiplication is on the left or right
of the sum. However, there is an analogous law for regular expressions, that we
must state in two forms, since concatenation is not commutative. These laws
are:

e L(M + N)= LM + LN. This law, is the left distributive law of concate-
nation over union.

e (M +N)L =ML+ NL. This law, is the right distributive law of con-
catenation over union.

Let us prove the left distributive law; the other is proved similarly. The
proof will refer to languages only; it does not depend on the languages having
regular expressions.

Theorem 3.11: If L, M, and N are any languages, then
L(MUN)=LMULN

PROOF: The proof is similar to another proof about a distributive law that we
saw in Theorem 1.10. We need first to show that a string w is in L(M U N) if
and only if it isin LM U LN.

(Only-if) If w is in L(M U N), then w = xy, where  is in L and y is in either
M or N. If yisin M, then zy is in LM, and therefore in LM U LN. Likewise,
if y is in N, then zy is in LN and therefore in LM U LN.

(If) Suppose w is in LM U LN. Then w is in either LM or in LN. Suppose
first that w is in LM . Then w = xy, where x isin L and y isin M. As y is in
M, it is alsoin M U N. Thus, zy is in L(M U N). If w is not in LM, then it
is surely in LN, and a similar argument shows it is in L(M U N). O

Example 3.12: Consider the regular expression 0+01*. We can “factor out a
0” from the union, but first we have to recognize that the expression 0 by itself
is actually the concatenation of 0 with something, namely €. That is, we use
the identity law for concatenation to replace 0 by Oe¢, giving us the expression
Oc+ 01*. Now, we can apply the left distributive law to replace this expression
by 0(e + 1*). If we further recognize that € is in L(1*), then we observe that
€+ 1* = 1%, and can simplify to 01*. O

3.4.4 The Idempotent Law

An operator is said to be idempotent if the result of applying it to two of the
same values as arguments is that value. The common arithmetic operators are
not idempotent;  + = #  in general and x X = # z in general (although there
are some values of x for which the equality holds, such as 0 + 0 = 0). However,
union and intersection are common examples of idempotent operators. Thus,
for regular expressions, we may assert the following law:
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e L+ L = L. This law, the idempotence law for union, states that if we
take the union of two identical expressions, we can replace them by one
copy of the expression.

3.4.5 Laws Involving Closures

There are a number of laws involving the closure operators and its UNIX-style
variants T and 7. We shall list them here, and give some explanation for why
they are true.

e (L*)* = L*. This law says that closing an expression that is already
closed does not change the language. The language of (L*)* is all strings
created by concatenating strings in the language of L*. But those strings
are themselves composed of strings from L. Thus, the string in (L*)* is
also a concatenation of strings from L and is therefore in the language of
L*.

e ()* = e. The closure of {) contains only the string €, as we discussed in
Example 3.6.

*

e ¢* = ¢. It is easy to check that the only string that can be formed by
concatenating any number of copies of the empty string is the empty
string itself.

o Lt =LL* = L*L. Recall that LT is defined to be L + LL + LLL + -- - .
Also, L* =e+ L+ LL+ LLL + --- . Thus,

LL*=Le+ LL+ LLL+ LLLL+ ---

When we remember that Le = L, we see that the infinite expansions for
LL* and for Lt are the same. That proves LT = LL*. The proof that
LT = L*L is similar.*

e L* = LT +¢. The proof is easy, since the expansion of LT includes every
term in the expansion of L* except €. Note that if the language L contains
the string €, then the additional “+¢” term is not needed; that is, LT = L*
in this special case.

e L7 = ¢+ L. This rule is really the definition of the ? operator.

3.4.6 Discovering Laws for Regular Expressions

Each of the laws above was proved, formally or informally. However, there is
an infinite variety of laws about regular expressions that might be proposed.
Is there a general methodology that will make our proofs of the correct laws

4Notice that, as a consequence, any language L commutes (under concatenation) with its
own closure; LL* = L*L. That rule does not contradict the fact that, in general, concatena-
tion is not commutative.
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easy? It turns out that the truth of a law reduces to a question of the equality
of two specific languages. Interestingly, the technique is closely tied to the
regular-expression operators, and cannot be extended to expressions involving
some other operators, such as intersection.

To see how this test works, let us consider a proposed law, such as

(L + M)* = (L*M*)*

This law says that if we have any two languages L and M, and we close their
union, we get the same language as if we take the language L*M™, that is,
all strings composed of zero or more choices from L followed by zero or more
choices from M, and close that language.

To prove this law, suppose first that string w is in the language of (L+M)*.5
Then we can write w = wyws - - - wy, for some k, where each w; is in either L or
M. Tt follows that each w; is in the language of L*M*. To see why, if w; is in
L, pick one string, w;, from L; this string is also in L*. Pick no strings from
M; that is, pick € from M*. If w; is in M, the argument is similar. Once every
w; is seen to be in L*M™*, it follows that w is in the closure of this language.

To complete the proof, we also have to prove the converse: that strings
in (L*M™)* are also in (L + M)*. We omit this part of the proof, since our
objective is not to prove the law, but to notice the following important property
of regular expressions.

Any regular expression with variables can be thought of as a concrete regular
expression, one that has no variables, by thinking of each variable as if it were a
distinct symbol. For example, the expression (L+ M)* can have variables L and
M replaced by symbols a and b, respectively, giving us the regular expression
(a+b)*.

The language of the concrete expression guides us regarding the form of
strings in any language that is formed from the original expression when we
replace the variables by languages. Thus, in our analysis of (L + M)*, we
observed that any string w composed of a sequence of choices from either L or
M, would be in the language of (L + M)*. We can arrive at that conclusion
by looking at the language of the concrete expression, L((a + b)*), which is
evidently the set of all strings of a’s and b’s. We could substitute any string in
L for any occurrence of a in one of those strings, and we could substitute any
string in M for any occurrence of b, with possibly different choices of strings for
different occurrences of a or b. Those substitutions, applied to all the strings
in (a+ b)*, gives us all strings formed by concatenating strings from L and/or
M, in any order.

The above statement may seem obvious, but as is pointed out in the box
on “Extensions of the Test Beyond Regular Expressions May Fail,” it is not
even true when some other operators are added to the three regular-expression
operators. We prove the general principle for regular expressions in the next
theorem.

5For simplicity, we shall identify the regular expressions and their languages, and avoid
saying “the language of” in front of every regular expression.
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Theorem 3.13: Let E be a regular expression with variables Ly, Lo, ..., L,,.
Form concrete regular expression C' by replacing each occurrence of L; by the
symbol a;, for ¢ = 1,2,...,m. Then for any languages L1, Lo, ..., Ly, every

string w in L(E) can be written w = wyws - - - wg, where each w; is in one of
the languages, say Lj;, and the string aj, aj, - --aj, is in the language L(C).
Less formally, we can construct L(E) by starting with each string in L(C),
say aj, aj, ---aj,, and substituting for each of the a;,’s any string from the
corresponding language L;;.

PROOF: The proof is a structural induction on the expression E.

BASIS: The basis cases are where E is ¢, (), or a variable L. In the first two
cases, there is nothing to prove, since the concrete expression C' is the same as
E. If E is a variable L, then L(E) = L. The concrete expression C' is just a,
where a is the symbol corresponding to L. Thus, L(C) = {a}. If we substitute
any string in L for the symbol a in this one string, we get the language L, which
is also L(E).

INDUCTION: There are three cases, depending on the final operator of E.
First, suppose that £ = F' + @; i.e., a union is the final operator. Let C and D
be the concrete expressions formed from F' and G, respectively, by substituting
concrete symbols for the language-variables in these expressions. Note that the
same symbol must be substituted for all occurrences of the same variable, in
both F and G. Then the concrete expression that we get from E is C'+ D, and
L(C+ D)= L(C)+ L(D).

Suppose that w is a string in L(E), when the language variables of E are
replaced by specific languages. Then w is in either L(F) or L(G). By the
inductive hypothesis, w is obtained by starting with a concrete string in L(C) or
L(D), respectively, and substituting for the symbols strings in the corresponding
languages. Thus, in either case, the string w can be constructed by starting
with a concrete string in L(C'+ D), and making the same substitutions of strings
for symbols.

We must also consider the cases where E is F'G or F*. However, the ar-
guments are similar to the union case above, and we leave them for you to
complete. O

3.4.7 The Test for a Regular-Expression Algebraic Law

Now, we can state and prove the test for whether or not a law of regular
expressions is true. The test for whether £ = F' is true, where E and F' are
two regular expressions with the same set of variables, is:

1. Convert E and F to concrete regular expressions C' and D, respectively,
by replacing each variable by a concrete symbol.

2. Test whether L(C) = L(D). If so, then E = F is a true law, and if not,
then the “law” is false. Note that we shall not see the test for whether two
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regular expressions denote the same language until Section 4.4. However,
we can use ad-hoc means to decide the equality of the pairs of languages
that we actually care about. Recall that if the languages are not the same,
then it is sufficient to provide one counterexample: a single string that is
in one language but not the other.

Theorem 3.14: The above test correctly identifies the true laws for regular
expressions.

PROOF: We shall show that L(E) = L(F') for any languages in place of the
variables of E and F if and only if L(C) = L(D).

(Only-if) Suppose L(E) = L(F') for all choices of languages for the variables.
In particular, choose for every variable L the concrete symbol a that replaces L
in expressions C and D. Then for this choice, L(C) = L(E), and L(D) = L(F).
Since L(E) = L(F) is given, it follows that L(C) = L(D).

(If) Suppose L(C) = L(D). By Theorem 3.13, L(E) and L(F') are each
constructed by replacing the concrete symbols of strings in L(C) and L(D),
respectively, by strings in the languages that correspond to those symbols. If
the strings of L(C') and L(D) are the same, then the two languages constructed
in this manner will also be the same; that is, L(E) = L(F). O

Example 3.15: Consider the prospective law (L + M)* = (L*M*)*. If we
replace variables L and M by concrete symbols a and b respectively, we get the
regular expressions (a + b)* and (a*b*)*. It is easy to check that both these
expressions denote the language with all strings of a’s and 0’s. Thus, the two
concrete expressions denote the same language, and the law holds.

For another example of a law, consider L* = L*L*. The concrete languages
are a* and a*a*, respectively, and each of these is the set of all strings of a’s.
Again, the law is found to hold; that is, concatenation of a closed language with
itself yields that language.

Finally, consider the prospective law L + ML = (L + M)L. If we choose
symbols a and b for variables L and M, respectively, we have the two concrete
regular expressions a + ba and (a + b)a. However, the languages of these
expressions are not the same. For example, the string aa is in the second, but
not the first. Thus, the prospective law is false. O

3.4.8 Exercises for Section 3.4

Exercise 3.4.1: Verify the following identities involving regular expressions.
*a) R+S=S+R.

b) (R+S)+T =R+ (S+T).

c) (RS)T = R(ST).
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Extensions of the Test Beyond Regular Expressions
May Fail

Let us consider an extended regular-expression algebra that includes
the intersection operator. Interestingly, adding N to the three regular-
expression operators does not increase the set of languages we can de-
scribe, as we shall see in Theorem 4.8. However, it does make the test for
algebraic laws invalid.

Consider the “law” L N M N N = L N M; that is, the intersection of
any three languages is the same as the intersection of the first two of these
languages. This “law” is patently false. For example, let L = M = {a}
and N = (). But the test based on concretizing the variables would fail to
see the difference. That is, if we replaced L, M, and N by the symbols a,
b, and ¢, respectively, we would test whether {a} N {b} N {c} = {a} N {b}.
Since both sides are the empty set, the equality of languages holds and
the test would imply that the “law” is true.

d) R(S+T)=RS +RT.

e) (R+S)T = RT + ST.

R*)* =
g) (e+R)* = R*.

)
)

)
h)

(
(
(
(R*S*)* = (R+S)".

! Exercise 3.4.2: Prove or disprove each of the following statements about
regular expressions.

*

a) (R+S)* = R*+ S*.
b) (RS + R)*R = R(SR + R)".

* ¢) (RS + R)*RS = (RR*S)*.
d) (R+S)*S = (R*S)".
e) S(RS+ S)*R = RR*S(RR*S)".

Exercise 3.4.3: In Example 3.6, we developed the regular expression
(0+1)*1(0+1)+(0+1)"1(0+1)(0+1)

Use the distributive laws to develop two different, simpler, equivalent expres-
sions.
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Exercise 3.4.4: At the beginning of Section 3.4.6, we gave part of a proof that
(L*M*)* = (L + M)*. Complete the proof by showing that strings in (L*M*)*
are also in (L + M)*.

! Exercise 3.4.5: Complete the proof of Theorem 3.13 by handling the cases
where regular expression F is of the form FG or of the form F*.

3.5

<+

3.6

Summary of Chapter 3

Regular Expressions: This algebraic notation describes exactly the same
languages as finite automata: the regular languages. The regular-ex-
pression operators are union, concatenation (or “dot”), and closure (or
“star”).

Regular Expressions in Practice: Systems such as UNIX and various of
its commands use an extended regular-expression language that provides
shorthands for many common expressions. Character classes allow the
easy expression of sets of symbols, while operators such as one-or-more-of
and at-most-one-of augment the usual regular-expression operators.

Equivalence of Regular FExpressions and Finite Automata: We can con-
vert a DFA to a regular expression by an inductive construction in which
expressions for the labels of paths allowed to pass through increasingly
larger sets of states are constructed. Alternatively, we can use a state-
elimination procedure to build the regular expression for a DFA. In the
other direction, we can construct recursively an e-NFA from regular ex-
pressions, and then convert the e-NFA to a DFA, if we wish.

The Algebra of Regular Expressions: Regular expressions obey many of
the algebraic laws of arithmetic, although there are differences. Union
and concatenation are associative, but only union is commutative. Con-
catenation distributes over union. Union is idempotent.

Testing Algebraic Identities: We can tell whether a regular-expression
equivalence involving variables as arguments is true by replacing the vari-
ables by distinct constants and testing whether the resulting languages
are the same.

Gradiance Problems for Chapter 3

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.
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Problem 3.1: Here is a finite automaton [shown on-line by the Gradiance
system]. Which of the following regular expressions defines the same language
as the finite automaton? Hint: each of the correct choices uses component
expressions. Some of these components are:

1. The ways to get from A to D without going through D.
2. The ways to get from D to itself, without going through D.
3. The ways to get from A to itself, without going through A.

It helps to write down these expressions first, and then look for an expression
that defines all the paths from A to D.

Problem 3.2: When we convert an automaton to a regular expression, we
need to build expressions for the labels along paths from one state to another
state that do not go through certain other states. Below is a nondeterministic
finite automaton with three states [shown on-line by the Gradiance system].
For each of the six orders of the three states, find regular expressions that give
the set of labels along all paths from the first state to the second state that
never go through the third state. Then identify one of these expressions from
the list of choices below.

Problem 3.3: Identify from the list below the regular expression that gener-
ates all and only the strings over alphabet {0,1} that end in 1.

Problem 3.4: Apply the construction in Fig. 3.16 and Fig. 3.17 to convert
the regular expression (0+1)*(0+¢) to an epsilon-NFA. Then, identify the true
statement about your epsilon-NFA from the list below.

Problem 3.5: Consider the following identities for regular expressions; some
are false and some are true. You are asked to decide which and in case it is
false to provide the correct counterexample.

a) R(S+T)=RS+RT
b) (B*)" = R*

¢) (R*S*)* = (R+ 8)*
d) (R+8)* = R* + S*
e) S(RS + S)*R = RR*S(RR*S)*
f) (RS + R)*R = R(SR + R)*

Problem 3.6: In this question you are asked to consider the truth or falsehood
of six equivalences for regular expressions. If the equivalence is true, you must
also identify the law from which it follows. In each case the statement R = S is
conventional shorthand for “L(R) = L(S).” The six proposed equivalences are:
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1. 0*1* = 1*0*
2. 010 =0
. e01 =01

= W

. (0% +1%)0 = 00 + 1*0
. (0°1)0* = 0*(10%)

ot

6. 01+01=01
Identify the correct statement from the list below.

Problem 3.7: Which of the following strings is not in the Kleene closure of
the language {011, 10,110}7

Problem 3.8: Here are seven regular expressions [shown on-line by the Gra-
diance system]. Determine the language of each of these expressions. Then,
find in the list below a pair of equivalent expressions.

Problem 3.9: Converting a DFA such as the following [shown on-line by
the Gradiance system]. to a regular expression requires us to develop regular
expressions for limited sets of paths — those that take the automaton from one
particular state to another particular state, without passing through some set
of states. For the automaton above, determine the languages for the following
limitations:

1. L4 = the set of path labels that go from A to A without passing through
CorD.

2. Lyp = the set of path labels that go from A to B without passing through
CorD.

3. Lpa = the set of path labels that go from B to A without passing through
C or D.

4. Lpp = the set of path labels that go from B to B without passing through
CorD.

Then, identify a correct regular expression from the list below.

3.7 References for Chapter 3

The idea of regular expressions and the proof of their equivalence to finite
automata is the work of S. C. Kleene [3]. However, the construction of an e-
NFA from a regular expression, as presented here, is the “McNaughton-Yamada
construction,” from [4]. The test for regular-expression identities by treating
variables as constants was written down by J. Gischer [2]. Although thought to
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be folklore, this report demonstrated how adding several other operations such
as intersection or shuffle (See Exercise 7.3.4) makes the test fail, even though
they do not extend the class of languages representable.

Even before developing UNIX, K. Thompson was investigating the use of
regular expressions in commands such as grep, and his algorithm for processing
such commands appears in [5]. The early development of UNIX produced sev-
eral other commands that make heavy use of the extended regular-expression
notation, such as M. Lesk’s 1ex command. A description of this command and
other regular-expression techniques can be found in [1].

1. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading MA, 1986.

2. J. L. Gischer, STAN-CS-TR-84-1033 (1984).

3. S. C. Kleene, “Representation of events in nerve nets and finite automata,”
In C. E. Shannon and J. McCarthy, Automata Studies, Princeton Univ.
Press, 1956, pp. 3-42.

4. R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IEEE Trans. Electronic Computers 9:1 (Jan., 1960), pp.
39-47.

5. K. Thompson, “Regular expression search algorithm,” Comm. ACM 11:6
(June, 1968), pp. 419-422.



Chapter 4

Properties of Regular
Languages

The chapter explores the properties of regular languages. Our first tool for
this exploration is a way to prove that certain languages are not regular. This
theorem, called the “pumping lemma,” is introduced in Section 4.1.

One important kind of fact about the regular languages is called a “closure
property.” These properties let us build recognizers for languages that are
constructed from other languages by certain operations. As an example, the
intersection of two regular languages is also regular. Thus, given automata
that recognize two different regular languages, we can construct mechanically
an automaton that recognizes exactly the intersection of these two languages.
Since the automaton for the intersection may have many more states than either
of the two given automata, this “closure property” can be a useful tool for
building complex automata. Section 2.1 used this construction in an essential
way.

Some other important facts about regular languages are called “decision
properties.” Our study of these properties gives us algorithms for answering
important questions about automata. A central example is an algorithm for
deciding whether two automata define the same language. A consequence of
our ability to decide this question is that we can “minimize” automata, that
is, find an equivalent to a given automaton that has as few states as possible.
This problem has been important in the design of switching circuits for decades,
since the cost of the circuit (area of a chip that the circuit occupies) tends to
decrease as the number of states of the automaton implemented by the circuit
decreases.

127
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4.1 Proving Languages Not to Be Regular

We have established that the class of languages known as the regular languages
has at least four different descriptions. They are the languages accepted by
DFA’s, by NFA’s, and by e-NFA’s; they are also the languages defined by regular
expressions.

Not every language is a regular language. In this section, we shall introduce
a powerful technique, known as the “pumping lemma,” for showing certain
languages not to be regular. We then give several examples of nonregular
languages. In Section 4.2 we shall see how the pumping lemma can be used in
tandem with closure properties of the regular languages to prove other languages
not to be regular.

4.1.1 The Pumping Lemma for Regular Languages

Let us consider the language Loy = {0"1™ | n > 1}. This language contains
all strings 01, 0011, 000111, and so on, that consist of one or more 0’s followed
by an equal number of 1’s. We claim that Lo is not a regular language. The
intuitive argument is that if Lg; were regular, then Ly, would be the language
of some DFA A. This automaton has some particular number of states, say k
states. Imagine this automaton receiving k£ 0’s as input. It is in some state after
consuming each of the k + 1 prefixes of the input: €,0,00,...,0%. Since there
are only k different states, the pigeonhole principle tells us that after reading
two different prefixes, say 0° and 07, A must be in the same state, say state q.

However, suppose instead that after reading ¢ or j 0’s, the automaton A
starts receiving 1’s as input. After receiving ¢ 1’s, it must accept if it previously
received ¢ 0’s, but not if it received 5 0’s. Since it was in state ¢ when the 1’s
started, it cannot “remember” whether it received ¢ or j 0’s, so we can “fool”
A and make it do the wrong thing — accept if it should not, or fail to accept
when it should.

The above argument is informal, but can be made precise. However, the
same conclusion, that the language Lg; is not regular, can be reached using a
general result, as follows.

Theorem 4.1: (The pumping lemma for regular languages) Let L be a regular
language. Then there exists a constant n (which depends on L) such that for
every string w in L such that |w| > n, we can break w into three strings,
w = xyz, such that:

1. y#e
2. |zy| < n.
3. For all k > 0, the string zy*z is also in L.

That is, we can always find a nonempty string y not too far from the beginning
of w that can be “pumped”; that is, repeating y any number of times, or deleting
it (the case k = 0), keeps the resulting string in the language L.
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PROOF: Suppose L is regular. Then L = L(A) for some DFA A. Suppose A has
n states. Now, consider any string w of length n or more, say w = a1az - - - am,
where m > n and each q; is an input symbol. For i = 0,1,...,n define state
pi to be 6(qo,aras - - - a;), where ¢ is the transition function of A, and qp is the
start state of A. That is, p; is the state A is in after reading the first ¢ symbols
of w. Note that py = qp.

By the pigeonhole principle, it is not possible for the n + 1 different p;’s for
1 =20,1,...,n to be distinct, since there are only n different states. Thus, we
can find two different integers ¢ and j, with 0 < i < j < n, such that p; = p;.
Now, we can break w = zyz as follows:

1. x =ajas---aq;.
2. Yy =ai11a,42 - aj.
3. 2 =aj11aj42 " Q.

That is,  takes us to p; once; y takes us from p; back to p; (since p; is also p;),
and z is the balance of w. The relationships among the strings and states are
suggested by Fig. 4.1. Note that ¢ may be empty, in the case that i = 0. Also,
z may be empty if j = n = m. However, y can not be empty, since ¢ is strictly
less than j.

Start a, ... a

Figure 4.1: Every string longer than the number of states must cause a state
to repeat

Now, consider what happens if the automaton A receives the input zy* 2z for
any k > 0. If k =0, then the automaton goes from the start state go (which is
also pp) to p; on input x. Since p; is also pj, it must be that A goes from p; to
the accepting state shown in Fig. 4.1 on input z. Thus, A accepts zz.

If £ > 0, then A goes from gy to p; on input z, circles from p; to p; k times
on input y*, and then goes to the accepting state on input z. Thus, for any
k > 0, zy*z is also accepted by A; that is, zy*z isin L. O

4.1.2 Applications of the Pumping Lemma

Let us see some examples of how the pumping lemma is used. In each case,
we shall propose a language and use the pumping lemma to prove that the
language is not regular.
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The Pumping Lemma as an Adversarial Game

Recall our discussion from Section 1.2.3 where we pointed out that a theo-
rem whose statement involves several alternations of “for-all” and “there-
exists” quantifiers can be thought of as a game between two players. The
pumping lemma is an important example of this type of theorem, since it
in effect involves four different quantifiers: “for all regular languages L
there exists n such that for all w in L with |w| > n there exists zyz
equal to w such that ---.” We can see the application of the pumping
lemma as a game, in which:

1. Player 1 picks the language L to be proved nonregular.

2. Player 2 picks n, but doesn’t reveal to player 1 what n is; player 1
must devise a play for all possible n’s.

3. Player 1 picks w, which may depend on n and which must be of
length at least n.

4. Player 2 divides w into z, y, and z, obeying the constraints that
are stipulated in the pumping lemma; y # € and |zy| < n. Again,
player 2 does not have to tell player 1 what z, y, and z are, although
they must obey the constraints.

5. Player 1 “wins” by picking k, which may be a function of n, z, y,
and z, such that xy*z is not in L.

Example 4.2: Let us show that the language L., consisting of all strings with
an equal number of 0’s and 1’s (not in any particular order) is not a regular
language. In terms of the “two-player game” described in the box on “The
Pumping Lemma as an Adversarial Game,” we shall be player 1 and we must
deal with whatever choices player 2 makes. Suppose n is the constant that must
exist if L, is regular, according to the pumping lemma; i.e., “player 2” picks
n. We shall pick w = 0™1", that is, n 0’s followed by n 1’s, a string that surely
isin Leg.

Now, “player 2” breaks our w up into zyz. All we know is that y # €, and
|zy| < n. However, that information is very useful, and we “win” as follows.
Since |zy| < n, and zy comes at the front of w, we know that = and y consist
only of 0’s. The pumping lemma tells us that zz is in L4, if L., is regular.
This conclusion is the case k = 0 in the pumping lemma.! However, xz has n
1’s, since all the 1’s of w are in z. But xz also has fewer than n 0’s, because we

LObserve in what follows that we could have also succeeded by picking k = 2, or indeed
any value of k£ other than 1.
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lost the 0’s of y. Since y # € we know that there can be no more than n —1 0’s
among z and z. Thus, after assuming L., is a regular language, we have proved
a fact known to be false, that zz is in L.,. We have a proof by contradiction
of the fact that L, is not regular. O

Example 4.3: Let us show that the language L,, consisting of all strings of
1’s whose length is a prime is not a regular language. Suppose it were. Then
there would be a constant n satisfying the conditions of the pumping lemma.
Consider some prime p > n + 2; there must be such a p, since there are an
infinity of primes. Let w = 1P.

By the pumping lemma, we can break w = xyz such that y # € and |zy| < n.
Let |y| = m. Then |zz| = p — m. Now consider the string zy?~ "™z, which must
be in L,, by the pumping lemma, if L,, really is regular. However,

joy? 2| = Jwz| + (p = m)lyl =p —m + (p— m)m = (m +1)(p — m)

It looks like |zyP~™z| is not a prime, since it has two factors m + 1 and
p — m. However, we must check that neither of these factors are 1, since then
(m + 1)(p — m) might be a prime after all. But m + 1 > 1, since y # € tells us
m > 1. Also, p —m > 1, since p > n + 2 was chosen, and m < n since

m=ly| <l|zy| <n

Thus, p —m > 2.

Again we have started by assuming the language in question was regular,
and we derived a contradiction by showing that some string not in the language
was required by the pumping lemma to be in the language. Thus, we conclude
that L, is not a regular language. O

4.1.3 Exercises for Section 4.1

Exercise 4.1.1: Prove that the following are not regular languages.

a) {0"1™ | n > 1}. This language, consisting of a string of 0’s followed by an
equal-length string of 1’s, is the language Lo; we considered informally at
the beginning of the section. Here, you should apply the pumping lemma
in the proof.

b) The set of strings of balanced parentheses. These are the strings of char-
acters “(” and “)” that can appear in a well-formed arithmetic expression.

*¢) {0n10" | n > 1}

)
d) {0™1™2" | n and m are arbitrary integers}.
e) {0"1™ | n < m}.

)

£) {0712 | n > 1}.
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! Exercise 4.1.2: Prove that the following are not regular languages.
*a) {0" | n is a perfect square}.
b) {0" | n is a perfect cube}.
c) {0™ | n is a power of 2}.
d) The set of strings of 0’s and 1’s whose length is a perfect square.

e) The set of strings of 0’s and 1’s that are of the form ww, that is, some
string repeated.

f) The set of strings of 0’s and 1’s that are of the form ww®, that is, some
string followed by its reverse. (See Section 4.2.2 for a formal definition of
the reversal of a string.)

g) The set of strings of 0’s and 1’s of the form ww, where w is formed from
w by replacing all 0’s by 1’s, and vice-versa; e.g., 011 = 100, and 011100

is an example of a string in the language.

h) The set of strings of the form w1™, where w is a string of 0’s and 1’s of
length n.

!! Exercise 4.1.3: Prove that the following are not regular languages.

a) The set of strings of 0’s and 1’s, beginning with a 1, such that when
interpreted as an integer, that integer is a prime.

b) The set of strings of the form 0717 such that the greatest common divisor
of 7 and j is 1.

! Exercise 4.1.4: When we try to apply the pumping lemma to a regular lan-
guage, the “adversary wins,” and we cannot complete the proof. Show what
goes wrong when we choose L to be one of the following languages:

* a) The empty set.
* D) {00,11}.
*¢) (00 +11)*.

d) 0170*1.



4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 133

4.2 Closure Properties of Regular Languages

In this section, we shall prove several theorems of the form “if certain languages
are regular, and a language L is formed from them by certain operations (e.g., L
is the union of two regular languages), then L is also regular.” These theorems
are often called closure properties of the regular languages, since they show that
the class of regular languages is closed under the operation mentioned. Closure
properties express the idea that when one (or several) languages are regular,
then certain related languages are also regular. They also serve as an interest-
ing illustration of how the equivalent representations of the regular languages
(automata and regular expressions) reinforce each other in our understanding
of the class of languages, since often one representation is far better than the
others in supporting a proof of a closure property. Here is a summary of the
principal closure properties for regular languages:

1. The union of two regular languages is regular.
. The intersection of two regular languages is regular.
. The complement of a regular language is regular.

. The difference of two regular languages is regular.

2

3

4

5. The reversal of a regular language is regular.

6. The closure (star) of a regular language is regular.
7. The concatenation of regular languages is regular.
8

. A homomorphism (substitution of strings for symbols) of a regular lan-
guage is regular.

9. The inverse homomorphism of a regular language is regular.

4.2.1 Closure of Regular Languages Under Boolean
Operations

Our first closure properties are the three boolean operations: union, intersec-
tion, and complementation:

1. Let L and M be languages over alphabet ¥. Then L U M is the language
that contains all strings that are in either or both of L and M.

2. Let L and M be languages over alphabet ¥. Then L N M is the language
that contains all strings that are in both L and M.

3. Let L be a language over alphabet ¥. Then L, the complement of L, is
the set of strings in ¥* that are not in L.

It turns out that the regular languages are closed under all three of the
boolean operations. The proofs take rather different approaches though, as we
shall see.
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What if Languages Have Different Alphabets?

When we take the union or intersection of two languages L and M, they
might have different alphabets. For example, it is possible that L; C
{a,b}* while Ly C {b,c,d}*. However, if a language L consists of strings
with symbols in X, then we can also think of L as a language over any
finite alphabet that is a superset of ¥. Thus, for example, we can think of
both L; and L, above as being languages over alphabet {a,b,c,d}. The
fact that none of L’s strings contain symbols ¢ or d is irrelevant, as is the
fact that L»’s strings will not contain a.

Likewise, when taking the complement of a language L that is a subset
of ¥} for some alphabet 3;, we may choose to take the complement with
respect to some alphabet ¥ that is a superset of ¥;. If so, then the
complement of L will be X3 — L; that is, the complement of L with respect
to ¥ includes (among other strings) all those strings in X3 that have at
least one symbol that isin ¥, but not in ¥;. Had we taken the complement,
of L with respect to ¥1, then no string with symbols in ¥5 —¥; would be in
L. Thus, to be strict, we should always state the alphabet with respect to
which a complement is taken. However, often it is obvious which alphabet
is meant; e.g., if L is defined by an automaton, then the specification of
that automaton includes the alphabet. Thus, we shall often speak of the
“complement” without specifying the alphabet.

Closure Under Union
Theorem 4.4: If L and M are regular languages, then so is L U M.

PROOF: This proof is simple. Since L and M are regular, they have regular
expressions; say L = L(R) and M = L(S). Then L U M = L(R+ S) by the
definition of the + operator for regular expressions. O

Closure Under Complementation

The theorem for union was made very easy by the use of the regular-expression
representation for the languages. However, let us next consider complemen-
tation. Do you see how to take a regular expression and change it into one
that defines the complement language? Well neither do we. However, it can be
done, because as we shall see in Theorem 4.5, it is easy to start with a DFA and
construct a DFA that accepts the complement. Thus, starting with a regular
expression, we could find a regular expression for its complement as follows:

1. Convert the regular expression to an e-NFA.

2. Convert that e-NFA to a DFA by the subset construction.
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Closure Under Regular Operations

The proof that regular languages are closed under union was exceptionally
easy because union is one of the three operations that define the regular
expressions. The same idea as Theorem 4.4 applies to concatenation and
closure as well. That is:

o If L and M are regular languages, then so is LM.

o If L is a regular language, then so is L*.

3. Complement the accepting states of that DFA.

4. Turn the complement DFA back into a regular expression using the con-
struction of Sections 3.2.1 or 3.2.2.

Theorem 4.5: If L is a regular language over alphabet ¥, then L = ¥* — L is
also a regular language.

PROOF: Let L = L(A) for some DFA A = (Q,%,8,q0,F). Then L = L(B),
where B is the DFA (Q, X, 0,0, Q — F). That is, B is exactly like A, but the
accepting states of A have become nonaccepting states of B, and vice versa.
Then w is in L(B) if and only if S(qo, w) is in @ — F, which occurs if and only
if wis not in L(A). O

Notice that it is important for the above proof that S(qo, w) is always some
state; i.e., there are no missing transitions in A. If there were, then certain
strings might lead neither to an accepting nor nonaccepting state of A, and
those strings would be missing from both L(A) and L(B). Fortunately, we
have defined a DFA to have a transition on every symbol of ¥ from every state,
so each string leads either to a state in F' or a state in @ — F'.

Example 4.6: Let A be the automaton of Fig. 2.14. Recall that DFA A ac-
cepts all and only the strings of 0’s and 1’s that end in 01; in regular-expression
terms, L(A) = (0 4+ 1)*01. The complement of L(A) is therefore all strings
of 0’s and 1’s that do not end in 01. Figure 4.2 shows the automaton for
{0,1}* — L(A). It is the same as Fig. 2.14 but with the accepting state made
nonaccepting and the two nonaccepting states made accepting. O

Example 4.7: In this example, we shall apply Theorem 4.5 to show a certain
language not to be regular. In Example 4.2 we showed that the language L.,
consisting of strings with an equal number of 0’s and 1’s is not regular. This
proof was a straightforward application of the pumping lemma. Now consider
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Figure 4.2: DFA accepting the complement of the language (0 + 1)*01

the language M consisting of those strings of 0’s and 1’s that have an unequal
number of 0’s and 1’s.

It would be hard to use the pumping lemma to show M is not regular.
Intuitively, if we start with some string w in M, break it into w = zyz, and
“pump” y, we might find that y itself was a string like 01 that had an equal
number of 0’s and 1’s. If so, then for no & will zy*z have an equal number of 0’s
and 1’s, since zyz has an unequal number of 0’s and 1’s, and the numbers of 0’s
and 1’s change equally as we “pump” y. Thus, we can never use the pumping
lemma to contradict the assumption that M is regular.

However, M is still not regular. The reason is that M = L. Since the
complement of the complement is the set we started with, it also follows that
L = M. If M is regular, then by Theorem 4.5, L is regular. But we know L is
not regular, so we have a proof by contradiction that M is not regular. O

Closure Under Intersection

Now, let us consider the intersection of two regular languages. We actually
have little to do, since the three boolean operations are not independent. Once
we have ways of performing complementation and union, we can obtain the
intersection of languages L and M by the identity

LNM=LuM (4.1)

In general, the intersection of two sets is the set of elements that are not in
the complement of either set. That observation, which is what Equation (4.1)
says, is one of DeMorgan’s laws. The other law is the same with union and
intersection interchanged; that is, LU M = L N M.

However, we can also perform a direct construction of a DFA for the in-
tersection of two regular languages. This construction, which essentially runs
two DFA’s in parallel, is useful in its own right. For instance, we used it to
construct the automaton in Fig. 2.3 that represented the “product” of what
two participants — the bank and the store — were doing. We shall make the
product construction formal in the next theorem.

Theorem 4.8: If L and M are regular languages, then so is L N M.
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PROOF: Let L and M be the languages of automata A, = (Qr,%,0r,q5, FL)
and Ay = (Qun, 2,00, qu, Far). Notice that we are assuming that the alpha-
bets of both automata are the same; that is, ¥ is the union of the alphabets
of L and M, if those alphabets are different. The product construction actu-
ally works for NFA’s as well as DFA’s, but to make the argument as simple as
possible, we assume that A; and Ap; are DFA’s.

For L N M we shall construct an automaton A that simulates both Ay and
Ajps. The states of A are pairs of states, the first from A; and the second from
Aps. To design the transitions of A, suppose A is in state (p, q), where p is the
state of Ay and q is the state of Aps. If a is the input symbol, we see what Ap,
does on input a; say it goes to state s. We also see what Aps does on input
a; say it makes a transition to state ¢. Then the next state of A will be (s, ).
In that manner, A has simulated the effect of both A; and Ap;. The idea is
sketched in Fig. 4.3.

Input a

r

Start Accept

-

A

Figure 4.3: An automaton simulating two other automata and accepting if and
only if both accept

The remaining details are simple. The start state of A is the pair of start
states of A, and Aps. Since we want to accept if and only if both automata
accept, we select as the accepting states of A all those pairs (p,q) such that p
is an accepting state of Ay and ¢ is an accepting state of Ap;. Formally, we
define:

A=(QLxQm,%,6,(qL,qm), FL X Fun)
where (5((p, q); a) = (6L(p7 a)? 6M(q7 (l)) '
To see why L(A) = L(Ayr) N L(Ay), first observe that an easy induction
on |w| proves that 6 ((qr,qum),w) = (61(qr,w),dn (grr, w)). But A accepts w if
and only if 5((qL, gm),w) is a pair of accepting states. That is, oL (qr,w) must

be in Fr,, and SM(qM, w) must be in Fis. Put another way, w is accepted by A
if and only if both Ay, and A accept w. Thus, A accepts the intersection of
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Land M. O

Example 4.9: In Fig. 4.4 we see two DFA’s. The automaton in Fig. 4.4(a)
accepts all those strings that have a 0, while the automaton in Fig. 4.4(b)
accepts all those strings that have a 1. We show in Fig. 4.4(c) the product of
these two automata. Its states are labeled by the pairs of states of the automata
in (a) and (b).

Figure 4.4: The product construction

It is easy to argue that this automaton accepts the intersection of the first
two languages: those strings that have both a 0 and a 1. State pr represents
only the initial condition, in which we have seen neither 0 nor 1. State gr means
that we have seen only 0’s, while state ps represents the condition that we have
seen only 1’s. The accepting state gs represents the condition where we have
seen both 0’s and 1’s. 0O

Closure Under Difference

There is a fourth operation that is often applied to sets and is related to the
boolean operations: set difference. In terms of languages, L — M, the difference
of L and M, is the set of strings that are in language L but not in language
M. The regular languages are also closed under this operation, and the proof
follows easily from the theorems just proven.



4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 139

Theorem 4.10: If L and M are regular languages, then so is L — M.

PROOF: Observe that L — M = L N M. By Theorem 4.5, M is regular, and
by Theorem 4.8 L N M is regular. Therefore L — M is regular. O

4.2.2 Reversal

The reversal of a string ajas - --a, is the string written backwards, that is,
AnQn_1 - -a1. We use w? for the reversal of string w. Thus, 0010% is 0100, and
e = e

The reversal of a language L, written L%, is the language consisting of the
reversals of all its strings. For instance, if L = {001,10,111}, then L? =
{100,01,111}.

Reversal is another operation that preserves regular languages; that is, if
L is a regular language, so is L. There are two simple proofs, one based on
automata and one based on regular expressions. We shall give the automaton-
based proof informally, and let you fill in the details if you like. We then prove
the theorem formally using regular expressions.

Given a language L that is L(A) for some finite automaton, perhaps with
nondeterminism and e-transitions, we may construct an automaton for L by:

1. Reverse all the arcs in the transition diagram for A.

2. Make the start state of A be the only accepting state for the new automa-
ton.

3. Create a new start state pp with transitions on € to all the accepting states
of A.

The result is an automaton that simulates A “in reverse,” and therefore accepts
a string w if and only if A accepts w®. Now, we prove the reversal theorem
formally.

Theorem 4.11: If L is a regular language, so is L.

PROOF: Assume L is defined by regular expression . The proof is a structural
induction on the size of E. We show that there is another regular expression

Ef such that L(E®R) = (L(E))R; that is, the language of E* is the reversal of
the language of E.

BASIS: If E is €, 0, or a, for some symbol a, then EF is the same as E. That
is, we know {e}® = {e}, 0¥ =0, and {a}? = {a}.

INDUCTION: There are three cases, depending on the form of E.
1. E = E; + E>. Then Ef = EF 4+ EF. The justification is that the reversal

of the union of two languages is obtained by computing the reversals of
the two languages and taking the union of those languages.
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2. E = E\E,. Then Ef = EFEF. Note that we reverse the order of
the two languages, as well as reversing the languages themselves. For
instance, if L(E;) = {01,111} and L(E,) = {00, 10}, then L(E1E,) =
{0100, 0110,11100,11110}. The reversal of the latter language is

{0010,0110,00111,01111}
If we concatenate the reversals of L(E>) and L(E;) in that order, we get

{00,01}{10, 111} = {0010, 00111, 0110,01111}

which is the same language as (L(ElEg))R. In general, if a word w in
L(E) is the concatenation of wy from L(E;) and ws from L(E-), then

3. E = Ef. Then Ef = (EE)*. The justification is that any string w in
L(E) can be written as wjws - - - w,, where each w; is in L(E). But

wf = whwl - wf
Each w! is in L(E®), so w® is in L((E{*)*). Conversely, any string in
L((Ef)*) is of the form wyws, - --w,, where each w; is the reversal of a
string in L(E7). The reversal of this string, wfwf | ... wf, is therefore
a string in L(EY), which is L(E). We have thus shown that a string is in
L(E) if and only if its reversal is in L((Ef*)*).

O

Example 4.12: Let L be defined by the regular expression (0 + 1)0*. Then
L* is the language of (0*)f(0 + 1)%, by the rule for concatenation. If we apply
the rules for closure and union to the two parts, and then apply the basis rule
that says the reversals of 0 and 1 are unchanged, we find that L% has regular
expression 0*(0 +1). O

4.2.3 Homomorphisms

A string homomorphism is a function on strings that works by substituting a
particular string for each symbol.

Example 4.13: The function h defined by h(0) = ab and h(1) = € is a homo-
morphism. Given any string of 0’s and 1’s, it replaces all 0’s by the string ab
and replaces all 1’s by the empty string. For example, h applied to the string
0011 is abab. O

Formally, if h is a homomorphism on alphabet X, and w = aas---an,
is a string of symbols in ¥, then h(w) = h(ai)h(az)---h(a,). That is, we
apply h to each symbol of w and concatenate the results, in order. For in-
stance, if h is the homomorphism in Example 4.13, and w = 0011, then
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h(w) = h(0)h(0)h(1)h(1) = (ab)(adb)(e)(e) = abab, as we claimed in that ex-
ample.

Further, we can apply a homomorphism to a language by applying it to
each of the strings in the language. That is, if L is a language over alphabet
¥, and h is a homomorphism on ¥, then h(L) = {h(w) | w is in L}. For
instance, if L is the language of regular expression 10*1, i.e., any number of
0’s surrounded by single 1’s, then h(L) is the language (ab)*. The reason is
that h of Example 4.13 effectively drops the 1’s, since they are replaced by e,
and turns each 0 into ab. The same idea, applying the homomorphism directly
to the regular expression, can be used to prove that the regular languages are
closed under homomorphisms.

Theorem 4.14: If L is a regular language over alphabet ¥, and h is a homo-
morphism on X, then h(L) is also regular.

PROOF: Let L = L(R) for some regular expression R. In general, if E is a
regular expression with symbols in X, let h(E) be the expression we obtain by
replacing each symbol a of ¥ in E by h(a). We claim that h(R) defines the
language h(L).

The proof is an easy structural induction that says whenever we take a
subexpression E of R and apply h to it to get h(E), the language of h(E)
is the same language we get if we apply h to the language L(E). Formally,
L(h(E)) = h(L(E)).

BASIS: If E is € or (), then h(E) is the same as E, since h does not affect the
string € or the language (. Thus, L(h(E)) = L(E). However, if E is ) or €, then
L(E) contains either no strings or a string with no symbols, respectively. Thus
h(L(E)) = L(E) in either case. We conclude L(h(E)) = L(E) = h(L(E)).

The only other basis case is if £ = a for some symbol ¢ in ¥. In this case,
L(E) = {a}, so h(L(E)) = {h(a)}. Also, h(E) is the regular expression that
is the string of symbols h(a). Thus, L(h(E)) is also {h(a)}, and we conclude
L(h(E)) = h(L(B)).

INDUCTION: There are three cases, each of them simple. We shall prove only
the union case, where £ = F'+(G. The way we apply homomorphisms to regular
expressions assures us that h(E) = h(F + G) = h(F) + h(G). We also know
that L(E) = L(F) U L(G) and

L(h(E)) = L(h(F) + h(G)) = L(h(F)) U L(h(G)) (42)

by the definition of what “4” means in regular expressions. Finally,

h(L(E)) = h(L(F) U L(G)) = h(L(F)) U h(L(G)) (4.3)

because h is applied to a language by application to each of its strings individ-
ually. Now we may invoke the inductive hypothesis to assert that L(h(F)) =
h(L(F)) and L(h(G)) = h(L(G)). Thus, the final expressions in (4.2) and
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(4.3) are equivalent, and therefore so are their respective first terms; that is,
L(h(E)) = h(L(E)).

We shall not prove the cases where expression E is a concatenation or clo-
sure; the ideas are similar to the above in both cases. The conclusion is that
L(h(R)) is indeed h(L(R)); i.e., applying the homomorphism A to the regu-
lar expression for language L results in a regular expression that defines the
language h(L). O

4.2.4 Inverse Homomorphisms

Homomorphisms may also be applied “backwards,” and in this mode they also
preserve regular languages. That is, suppose h is a homomorphism from some
alphabet ¥ to strings in another (possibly the same) alphabet T2 Let L be
a language over alphabet T. Then h~!(L), read “h inverse of L,” is the set
of strings w in ¥* such that h(w) is in L. Figure 4.5 suggests the effect of
a homomorphism on a language L in part (a), and the effect of an inverse
homomorphism in part (b).

(D=

(a)

9] -

(b)

Figure 4.5: A homomorphism applied in the forward and inverse direction

Example 4.15: Let L be the language of regular expression (00 + 1)*. That
is, L consists of all strings of 0’s and 1’s such that all the 0’s occur in adjacent
pairs. Thus, 0010011 and 10000111 are in L, but 000 and 10100 are not.

2That “T” should be thought of as a Greek capital tau, the letter following sigma.
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Let h be the homomorphism defined by h(a) = 01 and h(b) = 10. We claim
that h=1(L) is the language of regular expression (ba)*, that is, all strings of
repeating ba pairs. We shall prove that h(w) is in L if and only if w is of the
form baba - - - ba.

(If) Suppose w is n repetitions of ba for some n > 0. Note that h(ba) = 1001,
so h(w) is n repetitions of 1001. Since 1001 is composed of two 1’s and a pair of
0’s, we know that 1001 is in L. Therefore any repetition of 1001 is also formed
from 1 and 00 segments and is in L. Thus, h(w) is in L.

(Only-if) Now, we must assume that h(w) is in L and show that w is of the
form baba - - -ba. There are four conditions under which a string is not of that
form, and we shall show that if any of them hold then h(w) is not in L. That
is, we prove the contrapositive of the statement we set out to prove.

1. If w begins with a, then h(w) begins with 01. It therefore has an isolated
0, and is not in L.

2. If w ends in b, then h(w) ends in 10, and again there is an isolated 0 in
h(w).

3. If w has two consecutive a’s, then h(w) has a substring 0101. Here too,
there is an isolated 0 in w.

4. Likewise, if w has two consecutive b’s, then h(w) has substring 1010 and
has an isolated O.

Thus, whenever one of the above cases hold, h(w) is not in L. However, unless
at least one of items (1) through (4) hold, then w is of the form baba - - - ba.
To see why, assume none of (1) through (4) hold. Then (1) tells us w must
begin with b, and (2) tells us w ends with a. Statements (3) and (4) tell us that
a’s and b’s must alternate in w. Thus, the logical “OR” of (1) through (4) is
equivalent to the statement “w is not of the form baba - - -ba.” We have proved
that the “OR” of (1) through (4) implies h(w) is not in L. That statement is
the contrapositive of the statement we wanted: “if h(w) is in L, then w is of
the form baba - - -ba.” O

We shall next prove that the inverse homomorphism of a regular language
is also regular, and then show how the theorem can be used.

Theorem 4.16: If h is a homomorphism from alphabet ¥ to alphabet T', and
L is a regular language over T, then h=1(L) is also a regular language.

PROOF: The proof starts with a DFA A for L. We construct from A and h a
DFA for h=1(L) using the plan suggested by Fig. 4.6. This DFA uses the states
of A but translates the input symbol according to h before deciding on the next
state.

Formally, let L be L(A), where DFA A = (Q,T,0,qo, F'). Define a DFA

B= (Q72777q07F)
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Input a

]

Input
Start Y h(a) to A

Accept/reject
A -

Figure 4.6: The DFA for h=!(L) applies h to its input, and then simulates the
DFA for L

where transition function «y is constructed by the rule v(q,a) = S(q, h(a)). That
is, the transition B makes on input a is the result of the sequence of transitions
that A makes on the string of symbols h(a). Remember that h(a) could be €,
it could be one symbol, or it could be many symbols, but S is properly defined
to take care of all these cases.

It is an easy induction on |w| to show that 4(go, w) = & (go, h(w)). Since the
accepting states of A and B are the same, B accepts w if and only if A accepts
h(w). Put another way, B accepts exactly those strings w that are in h=1(L).
O

Example 4.17: In this example we shall use inverse homomorphism and sev-
eral other closure properties of regular sets to prove an odd fact about finite
automata. Suppose we required that a DFA visit every state at least once when
accepting its input. More precisely, suppose A = (@, X, J, go, F') is a DFA, and
we are interested in the language L of all strings w in ¥* such that S(qo,w)
is in F', and also for every state ¢ in () there is some prefix z, of w such that
5((10, xq) = ¢. Is L regular? We can show it is, but the construction is complex.

First, start with the language M that is L(A), i.e., the set of strings that
A accepts in the usual way, without regard to what states it visits during the
processing of its input. Note that L C M, since the definition of L puts an
additional condition on the strings of L(A). Our proof that L is regular begins
by using an inverse homomorphism to, in effect, place the states of A into the
input symbols. More precisely, let us define a new alphabet 7' consisting of
symbols that we may think of as triples [pag], where:

1. p and ¢ are states in @,

2. ais a symbol in X, and

3. d(p,a) =gq.
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That is, we may think of the symbols in T' as representing transitions of the
automaton A. It is important to see that the notation [pag] is our way of
expressing a single symbol, not the concatenation of three symbols. We could
have given it a single letter as a name, but then its relationship to p, ¢, and a
would be hard to describe.

Now, define the homomorphism h([paq]) = a for all p, a, and ¢q. That is, h
removes the state components from each of the symbols of 7" and leaves only
the symbol from . Our first step in showing L is regular is to construct the
language L1 = h~1(M). Since M is regular, so is L; by Theorem 4.16. The
strings of L; are just the strings of M with a pair of states, representing a
transition, attached to each symbol.

As a very simple illustration, consider the two-state automaton of Fig.
4.4(a). The alphabet ¥ is {0,1}, and the alphabet T' consists of the four sym-
bols [pOq], [¢0q], [p1lp], and [¢lg]. For instance, there is a transition from state
p to g on input 0, so [pOq] is one of the symbols of T'. Since 101 is a string ac-
cepted by the automaton, h~! applied to this string will give us 2% = 8 strings,
of which [plp][p0g][glq] and [¢1g][¢0q][plp] are two examples.

We shall now construct L from L; by using a series of further operations
that preserve regular languages. Our first goal is to eliminate all those strings
of L; that deal incorrectly with states. That is, we can think of a symbol like
[pag] as saying the automaton was in state p, read input a, and thus entered
state ¢. The sequence of symbols must satisfy three conditions if it is to be
deemed an accepting computation of A:

1. The first state in the first symbol must be qg, the start state of A.

2. Each transition must pick up where the previous one left off. That is,
the first state in one symbol must equal the second state of the previous
symbol.

3. The second state of the last symbol must be in F'. This condition in fact
will be guaranteed once we enforce (1) and (2), since we know that every
string in L; came from a string accepted by A.

The plan of the construction of L is shown in Fig. 4.7.

We enforce (1) by intersecting L; with the set of strings that begin with a
symbol of the form [goag] for some symbol a and state g. That is, let E; be the
expression [goa1q1] + [goazq2] + - - -, where the pairs a;¢; range over all pairs in
¥ x @ such that 6(go,a;) = ¢;. Then let Ly = Ly N L(E,T*). Since EyT* is
a regular expression denoting all strings in 7" that begin with the start state
(treat T in the regular expression as the sum of its symbols), Lo is all strings
that are formed by applying h~! to language M and that have the start state
as the first component of its first symbol; i.e., it meets condition (1).

To enforce condition (2), it is easier to subtract from L, (using the set-
difference operation) all those strings that violate it. Let E, be the regular
expression consisting of the sum (union) of the concatenation of all pairs of
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M The language of automaton A

Y Inverse homomorphism

L, Strings of M with state transitions embedded
Y Intersection with a regular language

L

2 Add condition that first state is the start state

Difference with a regular language

3 Add condition that adjacent states are equal

Difference with regular languages

4 Add condition that all states appear on the path

Homomorphism

Delete state components, leaving the symbols

Figure 4.7: Constructing language L from language M by applying operations
that preserve regularity of languages

symbols that fail to match; that is, pairs of the form [pag][rbs| where ¢ # r.
Then T*E>T™* is a regular expression denoting all strings that fail to meet
condition (2).

We may now define Ly = Ly — L(T*E>T*). The strings of L3 satisfy condi-
tion (1) because strings in Lo must begin with the start symbol. They satisfy
condition (2) because the subtraction of L(T*E,T*) removes any string that
violates that condition. Finally, they satisfy condition (3), that the last state
is accepting, because we started with only strings in M, all of which lead to
acceptance by A. The effect is that L3 consists of the strings in M with the
states of the accepting computation of that string embedded as part of each
symbol. Note that Ls is regular because it is the result of starting with the
regular language M, and applying operations — inverse homomorphism, inter-
section, and set difference — that yield regular sets when applied to regular
sets.

Recall that our goal was to accept only those strings in M that visited
every state in their accepting computation. We may enforce this condition by
additional applications of the set-difference operator. That is, for each state ¢,
let E; be the regular expression that is the sum of all the symbols in 7" such
that ¢ appears in neither its first or last position. If we subtract L(E;‘) from
L3 we have those strings that are an accepting computation of A and that visit
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state ¢ at least once. If we subtract from L3 all the languages L(E}) for ¢ in
@, then we have the accepting computations of A that visit all the states. Call
this language Ls. By Theorem 4.10 we know L, is also regular.

Our final step is to construct L from L4 by getting rid of the state com-
ponents. That is, L = h(L4). Now, L is the set of strings in ¥* that are
accepted by A and that visit each state of A at least once during their accep-
tance. Since regular languages are closed under homomorphisms, we conclude
that L is regular. O

4.2.5 Exercises for Section 4.2

Exercise 4.2.1: Suppose h is the homomorphism from the alphabet {0, 1,2}
to the alphabet {a, b} defined by: h(0) = a; h(1) = ab, and h(2) = ba.

* a) What is h(0120)?
b) What is h(21120)?

)
)
* ¢) If L is the language L(01*2), what is h(L)?
d) If L is the language L(0 4 12), what is h(L)?
)

* e) Suppose L is the language {ababa}, that is, the language consisting of
only the one string ababa. What is h~1(L)?

!'f) If L is the language L(a(ba)*), what is h='(L)?

*! Exercise 4.2.2: If L is a language, and a is a symbol, then L/a, the quotient
of L and a, is the set of strings w such that wa is in L. For example, if
L = {a,aab,baa}, then L/a = {e,ba}. Prove that if L is regular, so is L/a.
Hint: Start with a DFA for L and consider the set of accepting states.

! Exercise 4.2.3: If L is a language, and a is a symbol, then a\L is the set
of strings w such that aw is in L. For example, if L = {a,aab,baa}, then
a\L = {¢,ab}. Prove that if L is regular, so is a\L. Hint: Remember that the
regular languages are closed under reversal and under the quotient operation of
Exercise 4.2.2.

! Exercise 4.2.4: Which of the following identities are true?

a) (L/a)a = L (the left side represents the concatenation of the languages
L/a and {a}).

b) a(a\L) = L (again, concatenation with {a}, this time on the left, is
intended).

¢) (La)/a = L.
d) a\(aL) = L.
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Exercise 4.2.5: The operation of Exercise 4.2.3 is sometimes viewed as a “der-
ivative,” and a\L is written %. These derivatives apply to regular expressions
in a manner similar to the way ordinary derivatives apply to arithmetic expres-
sions. Thus, if R is a regular expression, we shall use % to mean the same as
dL
e, if L=L(R).
d(R+S) _ dR , dS
a) ShOW that “da  — da =+ da”
*!'b) Give the rule for the “derivative” of RS. Hint: You need to consider two
cases: if L(R) does or does not contain e. This rule is not quite the same
as the “product rule” for ordinary derivatives, but is similar.

d(R")
da -

! ¢) Give the rule for the “derivative” of a closure, i.e.,

d) Use the rules from (a)—(c) to find the “derivatives” of regular expression
(0 4+ 1)*011 with respect to 0 and 1.

* ) Characterize those languages L for which % = 0.

*! f) Characterize those languages L for which 4% = L.
Exercise 4.2.6: Show that the regular languages are closed under the follow-
ing operations:

a) min(L) = {w | w is in L, but no proper prefix of w is in L}.
b) maz(L) = {w | w is in L and for no = other than € is wz in L}.
c) init(L) = {w | for some z, wx is in L}.

Hint: Like Exercise 4.2.2, it is easiest to start with a DFA for L and perform a
construction to get the desired language.

Exercise 4.2.7: If w = ajas---a, and x = b1by - - - b, are strings of the same
length, define alt(w,z) to be the string in which the symbols of w and z al-
ternate, starting with w, that is, aibya2bs - - - apb,. If L and M are languages,
define alt(L, M) to be the set of strings of the form alt(w,z), where w is any
string in L and z is any string in M of the same length. Prove that if L and
M are regular, so is alt(L, M).

Exercise 4.2.8: Let L be a language. Define half(L) to be the set of first
halves of strings in L, that is, {w | for some z such that |z| = |w|, we have wz
in L}. For example, if L = {¢,0010,011,010110} then half(L) = {¢,00,010}.
Notice that odd-length strings do not contribute to half(L). Prove that if L is
a regular language, so is half(L).

Exercise 4.2.9: We can generalize Exercise 4.2.8 to a number of functions that
determine how much of the string we take. If f is a function of integers, define
f(L) to be {w | for some z, with |z| = f(|w|), we have wz in L}. For instance,
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the operation half corresponds to f being the identity function f(n) = n, since
half(L) is defined by having |z| = |w|. Show that if L is a regular language,
then so is f(L), if f is one of the following functions:

a) f(n) =2n (i.e., take the first thirds of strings).

b) f(n) = n? (i.e., the amount we take has length equal to the square root
of what we do not take.

c) f(n) = 2" (i.e., what we take has length equal to the logarithm of what
we leave).

Exercise 4.2.10: Suppose that L is any language, not necessarily regular,
whose alphabet is {0}; i.e., the strings of L consist of 0’s only. Prove that L* is
regular. Hint: At first, this theorem sounds preposterous. However, an example
will help you see why it is true. Consider the language L = {0% | i is prime},
which we know is not regular by Example 4.3. Strings 00 and 000 are in L,
since 2 and 3 are both primes. Thus, if 7 > 2, we can show 07 is in L*. If j is
even, use j/2 copies of 00, and if j is odd, use one copy of 000 and (5 — 3)/2
copies of 00. Thus, L* = ¢ + 000".

Exercise 4.2.11: Show that the regular languages are closed under the fol-
lowing operation: cycle(L) = {w | we can write w as w = zy, such that yz is
in L}. For example, if L = {01,011}, then cycle(L) = {01,10,011,110,101}.
Hint: Start with a DFA for L and construct an e-NFA for cycle(L).

Exercise 4.2.12: Let w; = agapai, and w; = w;_jw;_1a; for all ¢ > 1.
For instance, ws = agaoa1aoaoala2a0a9a1apapaiazaz. The shortest regular
expression for the language L, = {w,}, i.e., the language consisting of the one
string w,,, is the string w, itself, and the length of this expression is 2"+1 — 1.
However, if we allow the intersection operator, we can write an expression for
L,, whose length is O(n?). Find such an expression. Hint: Find n languages,
each with regular expressions of length O(n), whose intersection is L.

Exercise 4.2.13: We can use closure properties to help prove certain lan-
guages are not regular. Start with the fact that the language

is not a regular set. Prove the following languages not to be regular by trans-
forming them, using operations known to preserve regularity, to Lopin:

*a) {07 | i # j).
b) {07172%=" | i > m > 0}.

Exercise 4.2.14: In Theorem 4.8, we described the “product construction”
that took two DFA’s and constructed one DFA whose language is the intersec-
tion of the languages of the first two.
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a) Show how to perform the product construction on NFA’s (without e-
transitions).

! b) Show how to perform the product construction on e-NFA’s.

* ¢) Show how to modify the product construction so the resulting DFA ac-
cepts the difference of the languages of the two given DFA’s.

d) Show how to modify the product construction so the resulting DFA ac-
cepts the union of the languages of the two given DFA’s.

Exercise 4.2.15: In the proof of Theorem 4.8 we claimed that it could be
proved by induction on the length of w that

S((qLa qM): ’U)) = (SL((]L: ’U)), SM(QM: w))
Give this inductive proof.

Exercise 4.2.16: Complete the proof of Theorem 4.14 by considering the cases
where expression E is a concatenation of two subexpressions and where E is
the closure of an expression.

Exercise 4.2.17: In Theorem 4.16, we omitted a proof by induction on the
length of w that 9(go,w) = 6(go, h(w)). Prove this statement.

4.3 Decision Properties of Regular Languages

In this section we consider how one answers important questions about regular
languages. First, we must consider what it means to ask a question about a
language. The typical language is infinite, so you cannot present the strings of
the language to someone and ask a question that requires them to inspect the
infinite set of strings. Rather, we present a language by giving one of the finite
representations for it that we have developed: a DFA, an NFA, an e-NFA, or a
regular expression.

Of course the language so described will be regular, and in fact there is no
way at all to represent completely arbitrary languages. In later chapters we
shall see finite ways to represent more than the regular languages, so we can
consider questions about languages in these more general classes. However, for
many of the questions we ask, algorithms exist only for the class of regular
languages. The same questions become “undecidable” (no algorithm to answer
them exists) when posed using more “expressive” notations (i.e., notations that
can be used to express a larger set of languages) than the representations we
have developed for the regular languages.

We begin our study of algorithms for questions about regular languages by
reviewing the ways we can convert one representation into another for the same
language. In particular, we want to observe the time complexity of the algo-
rithms that perform the conversions. We then consider some of the fundamental
questions about languages:
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1. Is the language described empty?
2. Is a particular string w in the described language?

3. Do two descriptions of a language actually describe the same language?
This question is often called “equivalence” of languages.

4.3.1 Converting Among Representations

We know that we can convert any of the four representations for regular lan-
guages to any of the other three representations. Figure 3.1 gave paths from
any representation to any of the others. While there are algorithms for any
of the conversions, sometimes we are interested not only in the possibility of
making a conversion, but in the amount of time it takes. In particular, it is
important to distinguish between algorithms that take exponential time (as a
function of the size of their input), and therefore can be performed only for
relatively small instances, from those that take time that is a linear, quadratic,
or some small-degree polynomial of their input size. The latter algorithms are
“realistic,” in the sense that we expect them to be executable for large instances
of the problem. We shall consider the time complexity of each of the conversions
we discussed.

Converting NFA’s to DFA’s

When we start with either an NFA or and e-NFA and convert it to a DFA, the
time can be exponential in the number of states of the NFA. First, computing
the e-closure of n states takes O(n?®) time. We must search from each of the n
states along all arcs labeled e. If there are n states, there can be no more than
n? arcs. Judicious bookkeeping and well-designed data structures will make
sure that we can explore from each state in O(n?) time. In fact, a transitive
closure algorithm such as Warshall’s algorithm can be used to compute the
entire e-closure at once.3

Once the e-closure is computed, we can compute the equivalent DFA by the
subset construction. The dominant cost is, in principle, the number of states
of the DFA, which can be 2". For each state, we can compute the transitions
in O(n?) time by consulting the e-closure information and the NFA’s transition
table for each of the input symbols. That is, suppose we want to compute
0({q1,q2,---,4qr},a) for the DFA. There may be as many as n states reachable
from each ¢; along e-labeled paths, and each of those states may have up to n
arcs labeled a. By creating an array indexed by states, we can compute the
union of up to n sets of up to n states in time proportional to nZ.

In this way, we can compute, for each g;, the set of states reachable from
g; along a path labeled a (possibly including €’s). Since k < n, there are at
most n states to deal with. We compute the reachable states for each in O(n?)

3For a discussion of transitive closure algorithms, see A. V. Aho, J. E. Hopcroft, and J.
D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1984.
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time. Thus, the total time spent computing reachable states is O(n®). The
union of the sets of reachable states requires only O(n?) additional time, and
we conclude that the computation of one DFA transition takes O(n?®) time.

Note that the number of input symbols is assumed constant, and does not
depend on n. Thus, in this and other estimates of running time, we do not
consider the number of input symbols as a factor. The size of the input alpha-
bet influences the constant factor that is hidden in the “big-oh” notation, but
nothing more.

Our conclusion is that the running time of NFA-to-DFA conversion, includ-
ing the case where the NFA has e-transitions, is O(n32"). Of course in practice
it is common that the number of states created is much less than 27, often only
n states. We could state the bound on the running time as O(n®s), where s is
the number of states the DFA actually has.

DFA-to-NFA Conversion

This conversion is simple, and takes O(n) time on an n-state DFA. All that we
need to do is modify the transition table for the DFA by putting set-brackets
around states and, if the output is an e-NFA, adding a column for €. Since we
treat the number of input symbols (i.e., the width of the transition table) as a
constant, copying and processing the table takes O(n) time.

Automaton-to-Regular-Expression Conversion

If we examine the construction of Section 3.2.1 we observe that at each of n
rounds (where n is the number of states of the DFA) we can quadruple the size
of the regular expressions constructed, since each is built from four expressions
of the previous round. Thus, simply writing down the n® expressions can take
time O(n®4™). The improved construction of Section 3.2.2 reduces the constant
factor, but does not affect the worst-case exponentiality of the problem.

The same construction works in the same running time if the input is an
NFA, or even an e-NFA | although we did not prove those facts. It is important
to use those constructions for NFA’s, however. If we first convert an NFA to
a DFA and then convert the DFA to a regular expression, it could take time
0O(8"42"), which is doubly exponential.

Regular-Expression-to-Automaton Conversion

Conversion of a regular expression to an e-NFA takes linear time. We need to
parse the expression efficiently, using a technique that takes only O(n) time on
a regular expression of length n.* The result is an expression tree with one
node for each symbol of the regular expression (although parentheses do not
have to appear in the tree; they just guide the parsing of the expression).

4Parsing methods capable of doing this task in O(n) time are discussed in A. V. Aho,
R. Sethi, and J. D. Ullman, Compiler Design: Principles, Tools, and Techniques, Addison-
Wesley, 1986.
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Once we have an expression tree for the regular expression, we can work
up the tree, building the e-NFA for each node. The construction rules for the
conversion of a regular expression that we saw in Section 3.2.3 never add more
than two states and four arcs for any node of the expression tree. Thus, the
numbers of states and arcs of the resulting e-NFA are both O(n). Moreover,
the work at each node of the parse tree in creating these elements is constant,
provided the function that processes each subtree returns pointers to the start
and accepting states of its automaton.

We conclude that construction of an e-NFA from a regular expression takes
time that is linear in the size of the expression. We can eliminate e-transitions
from an n-state e-NFA, to make an ordinary NFA, in O(n?) time, without
increasing the number of states. However, proceeding to a DFA can take expo-
nential time.

4.3.2 Testing Emptiness of Regular Languages

At first glance the answer to the question “is regular language L empty?” is
obvious: () is empty, and all other regular languages are not. However, as we
discussed at the beginning of Section 4.3, the problem is not stated with an
explicit list of the strings in L. Rather, we are given some representation for L
and need to decide whether that representation denotes the language 0.

If our representation is any kind of finite automaton, the emptiness question
is whether there is any path whatsoever from the start state to some accepting
state. If so, the language is nonempty, while if the accepting states are all
separated from the start state, then the language is empty. Deciding whether
we can reach an accepting state from the start state is a simple instance of
graph-reachability, similar in spirit to the calculation of the e-closure that we
discussed in Section 2.5.3. The algorithm can be summarized by this recursive
process.

BASIS: The start state is surely reachable from the start state.

INDUCTION: If state ¢ is reachable from the start state, and there is an arc
from ¢ to p with any label (an input symbol, or € if the automaton is an e-NFA),
then p is reachable.

In that manner we can compute the set of reachable states. If any accepting
state is among them, we answer “no” (the language of the automaton is not
empty), and otherwise we answer “yes.” Note that the reachability calculation
takes no more time than O(n?) if the automaton has n states, and in fact it is
no worse than proportional to the number of arcs in the automaton’s transition
diagram, which could be less than n? and cannot be more than O(n?).

If we are given a regular expression representing the language L, rather
than an automaton, we could convert the expression to an e-NFA and proceed
as above. Since the automaton that results from a regular expression of length
n has at most O(n) states and transitions, the algorithm takes O(n) time.
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However, we can also inspect the regular expression to decide whether it
is empty. Notice first that if the expression has no occurrence of (), then its
language is surely not empty. If there are ()’s, the language may or may not be
empty. The following recursive rules tell whether a regular expression denotes
the empty language.

BASIS: () denotes the empty language; € and a for any input symbol a do not.

INDUCTION: Suppose R is a regular expression. There are four cases to con-
sider, corresponding to the ways that R could be constructed.

1. R =Ry + Ry. Then L(R) is empty if and only if both L(R;) and L(R3)
are empty.

2. R = RiRy. Then L(R) is empty if and only if either L(R;) or L(Rz) is
empty.

3. R = R}. Then L(R) is not empty; it always includes at least e.

4. R = (Ry). Then L(R) is empty if and only if L(R;) is empty, since they
are the same language.

4.3.3 Testing Membership in a Regular Language

The next question of importance is, given a string w and a regular language L,
is w in L. While w is represented explicitly, L is represented by an automaton
or regular expression.

If L is represented by a DFA, the algorithm is simple. Simulate the DFA
processing the string of input symbols w, beginning in the start state. If the
DFA ends in an accepting state, the answer is “yes”; otherwise the answer is
“no.” This algorithm is extremely fast. If |w| = n, and the DFA is represented
by a suitable data structure, such as a two-dimensional array that is the transi-
tion table, then each transition requires constant time, and the entire test takes
O(n) time.

If L has any other representation besides a DFA, we could convert to a DFA
and run the test above. That approach could take time that is exponential
in the size of the representation, although it is linear in |w|. However, if the
representation is an NFA or e-NFA, it is simpler and more efficient to simulate
the NFA directly. That is, we process symbols of w one at a time, maintaining
the set of states the NFA can be in after following any path labeled with that
prefix of w. The idea was presented in Fig. 2.10.

If w is of length n, and the NFA has s states, then the running time of this
algorithm is O(ns?). Each input symbol can be processed by taking the previous
set of states, which numbers at most s states, and looking at the successors of
each of these states. We take the union of at most s sets of at most s states
each, which requires O(s?) time.

If the NFA has e-transitions, then we must compute the e-closure before
starting the simulation. Then the processing of each input symbol a has two
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stages, each of which requires O(s?) time. First, we take the previous set of
states and find their successors on input symbol a. Next, we compute the e-
closure of this set of states. The initial set of states for the simulation is the
e-closure of the initial state of the NFA.

Lastly, if the representation of L is a regular expression of size s, we can
convert to an e-NFA with at most 2s states, in O(s) time. We then perform
the simulation above, taking O(ns?) time on an input w of length n.

4.3.4 Exercises for Section 4.3

Exercise 4.3.1: Give an algorithm to tell whether a regular language L is
infinite. Hint: Use the pumping lemma to show that if the language contains
any string whose length is above a certain lower limit, then the language must
be infinite.

Exercise 4.3.2: Give an algorithm to tell whether a regular language L con-
tains at least 100 strings.

Exercise 4.3.3: Suppose L is a regular language with alphabet ¥. Give an
algorithm to tell whether L = ¥*, i.e., all strings over its alphabet.

Exercise 4.3.4: Give an algorithm to tell whether two regular languages L
and L, have at least one string in common.

Exercise 4.3.5: Give an algorithm to tell, for two regular languages L; and
Ly over the same alphabet 3, whether there is any string in ¥* that is in neither
Ll nor L2.

4.4 Equivalence and Minimization of Automata

In contrast to the previous questions — emptiness and membership — whose
algorithms were rather simple, the question of whether two descriptions of two
regular languages actually define the same language involves considerable intel-
lectual mechanics. In this section we discuss how to test whether two descriptors
for regular languages are equivalent, in the sense that they define the same lan-
guage. An important consequence of this test is that there is a way to minimize
a DFA. That is, we can take any DFA and find an equivalent DFA that has
the minimum number of states. In fact, this DFA is essentially unique: given
any two minimum-state DFA’s that are equivalent, we can always find a way
to rename the states so that the two DFA’s become the same.

4.4.1 Testing Equivalence of States

We shall begin by asking a question about the states of a single DFA. Our goal
is to understand when two distinct states p and ¢ can be replaced by a single
state that behaves like both p and q. We say that states p and ¢ are equivalent
if:
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e For all input strings w, S(p, w) is an accepting state if and only if S(q, w)
is an accepting state.

Less formally, it is impossible to tell the difference between equivalent states
p and g merely by starting in one of the states and asking whether or not a
given input string leads to acceptance when the automaton is started in this
(unknown) state. Note we do not require that §(p,w) and 6(q, w) are the same
state, only that either both are accepting or both are nonaccepting.

If two states are not equivalent, then we say they are distinguishable. That
is, state p is distinguishable from state q if there is at least one string w such
that one of S(p, w) and S(q, w) is accepting, and the other is not accepting.

Example 4.18: Consider the DFA of Fig. 4.8, whose transition function we
shall refer to as 0 in this example. Certain pairs of states are obviously not
equivalent. For example, C' and G are not equivalent because one is accepting
and the other is not. That is, the empty string distinguishes these two states,
because 8(C, €) is accepting and §(G, €) is not.

: 1 C 1 C 0 IC

Sl

0
Figure 4.8: An automaton with equivalent states

Consider states A and G. String e doesn’t distinguish them, because they are
both nonaccepting states. String 0 doesn’t distinguish them because they go to
states B and G, respectively on input 0, and both these states are nonaccepting.
Likewise, string 1 doesn’t distinguish A from G, because they go to F' and E,
respectively, and both are nonaccepting. However, 01 distinguishes A from G,
because 0(A,01) = C, §(G,01) = E, C is accepting, and E is not. Any input
string that takes A and G to states only one of which is accepting is sufficient
to prove that A and G are not equivalent.

In contrast, consider states A and E. Neither is accepting, so € does not
distinguish them. On input 1, they both go to state F. Thus, no input string
that begins with 1 can distinguish A from E, since for any string z, (A4, 1z) =
5(E,1z).

Now consider the behavior of states A and E on inputs that begin with 0.
They go to states B and H, respectively. Since neither is accepting, string 0
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by itself does not distinguish A from E. However, B and H are no help. On
input 1 they both go to C, and on input 0 they both go to G. Thus, all inputs
that begin with 0 will fail to distinguish A from E. We conclude that no input
string whatsoever will distinguish A from Ej i.e., they are equivalent states. 0O

To find states that are equivalent, we make our best efforts to find pairs
of states that are distinguishable. It is perhaps surprising, but true, that if
we try our best, according to the algorithm to be described below, then any
pair of states that we do not find distinguishable are equivalent. The algo-
rithm, which we refer to as the table-filling algorithm, is a recursive discovery
of distinguishable pairs in a DFA A = (Q, %, 4, qo, F).

BASIS: If p is an accepting state and ¢ is nonaccepting, then the pair {p, ¢} is
distinguishable.

INDUCTION: Let p and ¢ be states such that for some input symbol a, r =
0(p,a) and s = d(q,a) are a pair of states known to be distinguishable. Then
{p,q} is a pair of distinguishable states. The reason this rule makes sense is
that there must be some string w that distinguishes r from s; that is, exactly
one of §(r,w) and &(s, w) is accepting. Then string aw must distinguish p from
q, since S(p, aw) and S(q,aw) is the same pair of states as 5(7“, w) and S(S,w).

Example 4.19: Let us execute the table-filling algorithm on the DFA of
Fig 4.8. The final table is shown in Fig. 4.9, where an z indicates pairs of
distinguishable states, and the blank squares indicate those pairs that have
been found equivalent. Initially, there are no z’s in the table.

B |x

C |x |x

D |x |x |x

E X |x |x

F |x |x |x X
G |x |x |x |x |x |x
H |x X |x |x |x |x

A B C D E F G

Figure 4.9: Table of state inequivalences

For the basis, since C is the only accepting state, we put x’s in each pair
that involves C. Now that we know some distinguishable pairs, we can discover
others. For instance, since {C, H} is distinguishable, and states E and F' go to
H and C, respectively, on input 0, we know that {E, F'} is also a distinguishable
pair. In fact, all the «’s in Fig. 4.9 with the exception of {4,G} and {E,G}
are discovered simply by looking at the transitions from the pair of states on
either 0 or on 1, and observing that, for one of those inputs, one state goes to
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C and the other does not. {A4,G} and {E, G} are shown distinguishable on the
next round. On input 1, A and E go to F, while G goes to E, and we already
know that E and F' are distinguishable.

However, then we can discover no more distinguishable pairs. The three
remaining pairs, which are therefore equivalent pairs, are {4, E}, {B, H}, and
{D, F}. For example, consider why we can not infer that {4, E} is a distin-
guishable pair. On input 0, A and E go to B and H, respectively, and {B, H}
has not yet been shown distinguishable. On input 1, A and E both go to F, so
there is no hope of distinguishing them that way. The other two pairs, {B, H}
and {D, F'} will never be distinguished because they each have identical tran-
sitions on 0 and identical transitions on 1. Thus, the table-filling algorithm
stops with the table as shown in Fig. 4.9, which is the correct determination of
equivalent and distinguishable states. O

Theorem 4.20: If two states are not distinguished by the table-filling algo-
rithm, then the states are equivalent.

PROOF: Let us again assume we are talking of the DFA A = (Q, %, 4, g, F).
Suppose the theorem is false; that is, there is at least one pair of states {p,q}
such that

1. States p and ¢ are distinguishable, in the sense that there is some string
w such that exactly one of d(p, w) and d(g,w) is accepting, and yet

2. The table-filling algorithm does not find p and ¢ to be distinguished.

Call such a pair of states a bad pair.

If there are bad pairs, then there must be some that are distinguished by the
shortest strings among all those strings that distinguish bad pairs. Let {p,q}
be one such bad pair, and let w = aja; ---a, be a string as short as any that
distinguishes p from ¢. Then exactly one of S(p, w) and S(q, w) is accepting.

Observe first that w cannot be e, since if € distinguishes a pair of states,
then that pair is marked by the basis part of the table-filling algorithm. Thus,
n > 1.

Counsider the states r = d(p,a1) and s = d(g, a1). States r and s are distin-

uished by tAhe string asas - - - a,, since this string takes r and s to the states
0(p, w) and §(q, w). However, the string distinguishing r from s is shorter than
any string that distinguishes a bad pair. Thus, {r, s} cannot be a bad pair.
Rather, the table-filling algorithm must have discovered that they are distin-
guishable.

But the inductive part of the table-filling algorithm will not stop until it has
also inferred that p and ¢ are distinguishable, since it finds that d(p,a1) =7 is
distinguishable from d§(g,a;) = s. We have contradicted our assumption that
bad pairs exist. If there are no bad pairs, then every pair of distinguishable
states is distinguished by the table-filling algorithm, and the theorem is true.
O
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4.4.2 Testing Equivalence of Regular Languages

The table-filling algorithm gives us an easy way to test if two regular languages
are the same. Suppose languages L and M are each represented in some way,
e.g., one by a regular expression and one by an NFA. Convert each represent-
ation to a DFA. Now, imagine one DFA whose states are the union of the
states of the DFA’s for L and M. Technically, this DFA has two start states,
but actually the start state is irrelevant as far as testing state equivalence is
concerned, so make any state the lone start state.

Now, test if the start states of the two original DFA’s are equivalent, using
the table-filling algorithm. If they are equivalent, then L = M, and if not, then
L # M.

1

0
Start a 1 m
0

@) ()

Figure 4.10: Two equivalent DFA’s

Example 4.21: Consider the two DFA’s in Fig. 4.10. Each DFA accepts
the empty string and all strings that end in 0; that is the language of regular
expression € + (0 + 1)*0. We can imagine that Fig. 4.10 represents a single
DFA, with five states A through E. If we apply the table-filling algorithm to
that automaton, the result is as shown in Fig. 4.11.

X

& O AW
=

X X | X

A B C D

Figure 4.11: The table of distinguishabilities for Fig. 4.10
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To see how the table is filled out, we start by placing z’s in all pairs of
states where exactly one of the states is accepting. It turns out that there is
no more to do. The four remaining pairs, {4,C}, {4, D}, {C, D}, and {B, E}
are all equivalent pairs. You should check that no more distinguishable pairs
are discovered in the inductive part of the table-filling algorithm. For instance,
with the table as in Fig. 4.11, we cannot distinguish the pair {A, D} because
on 0 they go to themselves, and on 1 they go to the pair {B, E}, which has
not yet been distinguished. Since A and C are found equivalent by this test,
and those states were the start states of the two original automata, we conclude
that these DFA’s do accept the same language. O

The time to fill out the table, and thus to decide whether two states are
equivalent is polynomial in the number of states. If there are n states, then
there are (), or n(n — 1)/2 pairs of states. In one round, we consider all pairs
of states, to see if one of their successor pairs has been found distinguishable,
so a round surely takes no more than O(n?) time. Moreover, if on some round,
no additional z’s are placed in the table, then the algorithm ends. Thus, there
can be no more than O(n?) rounds, and O(n?) is surely an upper bound on the
running time of the table-filling algorithm.

However, a more careful algorithm can fill the table in O(n?) time. The
idea is to initialize, for each pair of states {r, s}, a list of those pairs {p, ¢} that
“depend on” {r,s}. That is, if {r,s} is found distinguishable, then {p,q} is
distinguishable. We create the lists initially by examining each pair of states
{p,q}, and for each of the fixed number of input symbols a, we put {p,q} on
the list for the pair of states {0(p, a), (g, a)}, which are the successor states for
p and ¢ on input a.

If we ever find {r,s} to be distinguishable, then we go down the list for
{r,s}. For each pair on that list that is not already distinguishable, we make
that pair distinguishable, and we put the pair on a queue of pairs whose lists
we must check similarly.

The total work of this algorithm is proportional to the sum of the lengths
of the lists, since we are at all times either adding something to the lists (ini-
tialization) or examining a member of the list for the first and last time (when
we go down the list for a pair that has been found distinguishable). Since the
size of the input alphabet is considered a constant, each pair of states is put on
O(1) lists. As there are O(n?) pairs, the total work is O(n?).

4.4.3 Minimization of DFA’s

Another important consequence of the test for equivalence of states is that we
can “minimize” DFA’s. That is, for each DFA we can find an equivalent DFA
that has as few states as any DFA accepting the same language. Moreover,
except for our ability to call the states by whatever names we choose, this
minimum-state DFA is unique for the language. The algorithm is as follows:

1. First, eliminate any state that cannot be reached from the start state.
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2. Then, partition the remaining states into blocks, so that all states in the
same block are equivalent, and no pair of states from different blocks are
equivalent. Theorem 4.24, below, shows that we can always make such a
partition.

Example 4.22: Consider the table of Fig. 4.9, where we determined the state
equivalences and distinguishabilities for the states of Fig. 4.8. The partition
of the states into equivalent blocks is ({4, E}, {B,H}, {C}, {D,F}, {G}).
Notice that the three pairs of states that are equivalent are each placed in a
block together, while the states that are distinguishable from all the other states
are each in a block alone.

For the automaton of Fig. 4.10, the partition is ({A,C, D}, {B, E}). This
example shows that we can have more than two states in a block. It may
appear fortuitous that A, C, and D can all live together in a block, because
every pair of them is equivalent, and none of them is equivalent to any other
state. However, as we shall see in the next theorem to be proved, this situation
is guaranteed by our definition of “equivalence” for states. O

Theorem 4.23: The equivalence of states is transitive. That is, if in some
DFA A =(Q,%,6,qo, F) we find that states p and ¢ are equivalent, and we also
find that ¢ and r are equivalent, then it must be that p and r are equivalent.

PROOF: Note that transitivity is a property we expect of any relationship called
“equivalence.” However, simply calling something “equivalence” doesn’t make
it transitive; we must prove that the name is justified.

Suppose that the pairs {p,q} and {g,r} are equivalent, but pair {p,r} is
distinguishable. Then there is some input string w such that exactly one of
S(p, w) and S(r,w) is an accepting state. Suppose, by symmetry, that S(p,w)
is the accepting state.

Now consider whether 6(q,w) is accepting or not. If it is accepting, then
{q,r} is distinguishable, since S(q, w) is accepting, and S(r, w) is not. If S(q, w)
is nonaccepting, then {p, ¢} is distinguishable for a similar reason. We conclude
by contradiction that {p,r} was not distinguishable, and therefore this pair is
equivalent. O

We can use Theorem 4.23 to justify the obvious algorithm for partitioning
states. For each state ¢, construct a block that consists of ¢ and all the states
that are equivalent to q. We must show that the resulting blocks are a partition;
that is, no state is in two distinct blocks.

First, observe that all states in any block are mutually equivalent. That is,
if p and r are two states in the block of states equivalent to ¢, then p and r are
equivalent to each other, by Theorem 4.23.

Suppose that there are two overlapping, but not identical blocks. That
is, there is a block B that includes states p and ¢, and another block C that
includes p but not ¢. Since p and ¢ are in a block together, they are equivalent.
Consider how the block C was formed. If it was the block generated by p, then
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q would be in C, because those states are equivalent. Thus, it must be that
there is some third state s that generated block C; i.e., C' is the set of states
equivalent to s.

We know that p is equivalent to s, because pis in block C. We also know that
p is equivalent to g because they are together in block B. By the transitivity of
Theorem 4.23, ¢ is equivalent to s. But then ¢ belongs in block C, a contradic-
tion. We conclude that equivalence of states partitions the states; that is, two
states either have the same set of equivalent states (including themselves), or
their equivalent states are disjoint. To conclude the above analysis:

Theorem 4.24: If we create for each state ¢ of a DFA a block consisting of
g and all the states equivalent to ¢, then the different blocks of states form a
partition of the set of states. That is, each state is in exactly one block. All
members of a block are equivalent, and no pair of states chosen from different
blocks are equivalent. O

We are now able to state succinctly the algorithm for minimizing a DFA
A= (Q?EJ(S;qO;F)‘

1. Use the table-filling algorithm to find all the pairs of equivalent states.

2. Partition the set of states ) into blocks of mutually equivalent states by
the method described above.

3. Construct the minimum-state equivalent DFA B by using the blocks as
its states. Let v be the transition function of B. Suppose S is a set of
equivalent states of A, and a is an input symbol. Then there must exist one
block T of states such that for all states ¢ in S, §(q, a) is a member of block
T. For if not, then input symbol a takes two states p and ¢ of S to states
in different blocks, and those states are distinguishable by Theorem 4.24.
That fact lets us conclude that p and ¢ are not equivalent, and they did
not both belong in S. As a consequence, we can let v(S,a) = 7. In
addition:

(a) The start state of B is the block containing the start state of A.

(b) The set of accepting states of B is the set of blocks containing ac-
cepting states of A. Note that if one state of a block is accepting,
then all the states of that block must be accepting. The reason is
that any accepting state is distinguishable from any nonaccepting
state, so you can’t have both accepting and nonaccepting states in
one block of equivalent states.

5You should remember that the same block may be formed several times, starting from
different states. However, the partition consists of the different blocks, so this block appears
only once in the partition.
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Figure 4.12: Minimum-state DFA equivalent to Fig. 4.8

Example 4.25: Let us minimize the DFA from Fig. 4.8. We established the
blocks of the state partition in Example 4.22. Figure 4.12 shows the minimum-
state automaton. Its five states correspond to the five blocks of equivalent states
for the automaton of Fig. 4.8.

The start state is {A, E'}, since A was the start state of Fig. 4.8. The only
accepting state is {C'}, since C' is the only accepting state of Fig. 4.8. Notice
that the transitions of Fig. 4.12 properly reflect the transitions of Fig. 4.8. For
instance, Fig. 4.12 has a transition on input 0 from {4, E} to {B,H}. That
makes sense, because in Fig. 4.8, A goes to B on input 0, and E goes to H.
Likewise, on input 1, {4, E} goes to {D, F'}. If we examine Fig. 4.8, we find
that both A and E go to F on input 1, so the selection of the successor of
{4, E} on input 1 is also correct. Note that the fact neither A nor E goes to
D on input 1 is not important. You may check that all of the other transitions
are also proper. O

4.4.4 Why the Minimized DFA Can’t Be Beaten

Suppose we have a DFA A, and we minimize it to construct a DFA M, using the
partitioning method of Theorem 4.24. That theorem shows that we can’t group
the states of A into fewer groups and still have an equivalent DFA. However,
could there be another DFA N, unrelated to A, that accepts the same language
as A and M, yet has fewer states than M? We can prove by contradiction that
N does not exist.

First, run the state-distinguishability process of Section 4.4.1 on the states of
M and N together, as if they were one DFA. We may assume that the states of
M and N have no names in common, so the transition function of the combined
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Minimizing the States of an NFA

You might imagine that the same state-partition technique that minimizes
the states of a DFA could also be used to find a minimum-state NFA
equivalent to a given NFA or DFA. While we can, by a process of exhaustive
enumeration, find an NFA with as few states as possible accepting a given
regular language, we cannot simply group the states of some given NFA
for the language.

An example is in Fig. 4.13. None of the three states are equivalent.
Surely accepting state B is distinguishable from nonaccepting states A and
C. However, A and C are distinguishable by input 0. The successors of C'
are A alone, which does not include an accepting state, while the successors
of A are {A, B}, which does include an accepting state. Thus, grouping
equivalent states does not reduce the number of states of Fig. 4.13.

However, we can find a smaller NFA for the same language if we
simply remove state C'. Note that A and B alone accept all strings ending
in 0, while adding state C' does not allow us to accept any other strings.

Figure 4.13: An NFA that cannot be minimized by state equivalence

automaton is the union of the transition rules of M and IV, with no interaction.
States are accepting in the combined DFA if and only if they are accepting in
the DFA from which they come.

The start states of M and N are indistinguishable because L(M) = L(N).
Further, if {p, ¢} are indistinguishable, then their successors on any one input
symbol are also indistinguishable. The reason is that if we could distinguish
the successors, then we could distinguish p from g¢.

Neither M nor N could have an inaccessible state, or else we could eliminate
that state and have an even smaller DFA for the same language. Thus, every
state of M is indistinguishable from at least one state of N. To see why, suppose
p is a state of M. Then there is some string ajas ---ap that takes the start
state of M to state p. This string also takes the start state of N to some state
g. Since we know the start states are indistinguishable, we also know that their
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successors under input symbol a; are indistinguishable. Then, the successors
of those states on input a- are indistinguishable, and so on, until we conclude
that p and ¢ are indistinguishable.

Since N has fewer states than M, there are two states of M that are in-
distinguishable from the same state of N, and therefore indistinguishable from
each other. But M was designed so that all its states are distinguishable from
each other. We have a contradiction, so the assumption that IV exists is wrong,
and M in fact has as few states as any equivalent DFA for A. Formally, we
have proved:

Theorem 4.26: If A is a DFA, and M the DFA constructed from A by the
algorithm described in the statement of Theorem 4.24, then M has as few states
as any DFA equivalent to A. O

In fact we can say something even stronger than Theorem 4.26. There must
be a one-to-one correspondence between the states of any other minimum-state
N and the DFA M. The reason is that we argued above how each state of M
must be equivalent to one state of IV, and no state of M can be equivalent to
two states of N. We can similarly argue that no state of N can be equivalent
to two states of M, although each state of N must be equivalent to one of M’s
states. Thus, the minimum-state DFA equivalent to A is unique except for a
possible renaming of the states.

[0 |1
—-A| B|A
B A|C
C|D|B
xD || D | A
E|D|F
F|G|FE
G| F |G
H|G|D

Figure 4.14: A DFA to be minimized

4.4.5 Exercises for Section 4.4
* Exercise 4.4.1: In Fig. 4.14 is the transition table of a DFA.
a) Draw the table of distinguishabilities for this automaton.

b) Construct the minimum-state equivalent DFA.

Exercise 4.4.2: Repeat Exercise 4.4.1 for the DFA of Fig 4.15.
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>
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Figure 4.15: Another DFA to minimize

!! Exercise 4.4.3: Suppose that p and ¢ are distinguishable states of a given
DFA A with n states. As a function of n, what is the tightest upper bound on
how long the shortest string that distinguishes p from ¢ can be?

4.5 Summary of Chapter 4

4 The Pumping Lemma: If a language is regular, then every sufficiently long
string in the language has a nonempty substring that can be “pumped,”
that is, repeated any number of times while the resulting strings are also
in the language. This fact can be used to prove that many different
languages are not regular.

4 Operations That Preserve the Property of Being a Regular Language:
There are many operations that, when applied to regular languages, yield
aregular language as a result. Among these are union, concatenation, clo-
sure, intersection, complementation, difference, reversal, homomorphism
(replacement of each symbol by an associated string), and inverse homo-
morphism.

4 Testing Emptiness of Regular Languages: There is an algorithm that,
given a representation of a regular language, such as an automaton or
regular expression, tells whether or not the represented language is the
empty set.

4 Testing Membership in a Regular Language: There is an algorithm that,
given a string and a representation of a regular language, tells whether or
not the string is in the language.

4 Testing Distinguishability of States: Two states of a DFA are distinguish-
able if there is an input string that takes exactly one of the two states to
an accepting state. By starting with only the fact that pairs consisting
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of one accepting and one nonaccepting state are distinguishable, and try-
ing to discover additional pairs of distinguishable states by finding pairs
whose successors on one input symbol are distinguishable, we can discover
all pairs of distinguishable states.

4+ Minimizing Deterministic Finite Automata: We can partition the states
of any DFA into groups of mutually indistinguishable states. Members of
two different groups are always distinguishable. If we replace each group
by a single state, we get an equivalent DFA that has as few states as any
DFA for the same language.

4.6 Gradiance Problems for Chapter 4

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.

Problem 4.1: Design the minimum-state DFA that accepts all and only the
strings of 0’s and 1’s that end in 010. To verify that you have designed the
correct automaton, we will ask you to identify the true statement in a list of
choices. These choices will involve:

1. The number of loops (transitions from a state to itself).
2. The number of transitions into a state (including loops) on input 1.

3. The number of transitions into a state (including loops) on input 0.

Count the number of transitions into each of your states (”in-transitions”) on
input 1 and also on input 0. Count the number of loops on input 1 and on
input 0. Then, find the true statement in the following list.

Problem 4.2: Here is the transition table of a DFA [shown on-line by the
Gradiance system]. Find the minimum-state DFA equivalent to the above.
Then, identify in the list below the pair of equivalent states (states that get
merged in the minimization process.

Problem 4.3 : Here is the transition table of a DFA that we shall call M [shown
on-line by the Gradiance system]. Find the minimum-state DFA equivalent to
the above. States in the minimum-state DFA are each the merger of some of
the states of M. Find in the list below a set of states of M that forms one state
of the minimum-state DFA.
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Problem 4.4: The language of regular expression (0 + 10)* is the set of all
strings of 0’s and 1’s such that every 1 is immediately followed by a 0. Describe
the complement of this language (with respect to the alphabet {0, 1}) and iden-
tify in the list below the regular expression whose language is the complement
of L((0+ 10)*).

Problem 4.5: The homomorphism A is defined by h(a) = 01 and h(b) = 10.
What is h(X)? [X is a string that will be provided by the Gradiance system)].

Problem 4.6: If h is the homomorphism defined by h(a) = 0 and h(b) = e,
which of the following strings is in A=1(000)?

Problem 4.7: Let h be the homomorphism defined by h(a) = 01, h(b) = 10,
h(c) = 0, and h(d) = 1. If we take any string w in (0 + 1)*, A~ (w) contains
some number of strings, N(w). For example, h~1(1100) = {ddcc,dbc}; i.e.,
N(1100) = 2. We can calculate the number of strings in h~!(w) by a recursion
on the length of w. For example, if w = 00z for some string z, then N(w) =
N (0z), since the first 0 in w can only be produced from ¢, not from a. Complete
the reasoning necessary to compute N(w) for any string w in (0 + 1)*. Then,
choose the correct value of N(X) [X is a value that will be provided by the
Gradiance system].

Problem 4.8: The operation DM (L) is defined as follows:
1. Throw away every even-length string from L.
2. For each odd-length string, remove the middle character.

For example, if L = {001,1100,10101}, then DM (L) = {01,1001}. That is,
even-length string 1100 is deleted, the middle character of 001 is removed to
make 01, and the middle character of 10101 is removed to make 1001. It turns
out that if L is a regular language, DM (L) may or may not be regular. For
each of the following languages L, determine what DM (L) is, and tell whether
or not it is regular.

1. L;: the language of regular expression (01)*0.
2. Ls: the language of regular expression (0 + 1)*1(0 4 1)*.
3. Ls: the language of regular expression (101)*.
4. L4: the language of regular expression 00*11*.
Now, identify the true statement below.

Problem 4.9: Find, in the list below, a regular expression whose language is
the reversal of the language of this regular expression. [The regular expression
will be provided by the Gradiance system.]

Problem 4.10: If h(a) = 01, h(b) = 0, and h(c) = 10, which of the following
strings is in A~1(010010)?
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4.7 References for Chapter 4

Except for the obvious closure properties of regular expressions — union, con-
catenation, and star — that were shown by Kleene [6], almost all results about
closure properties of the regular languages mimic similar results about context-
free languages (the class of languages we study in the next chapters). Thus,
the pumping lemma for regular languages is a simplification of a correspond-
ing result for context-free languages by Bar-Hillel, Perles, and Shamir [1]. The
same paper indirectly gives us several of the other closure properties shown
here. However, the closure under inverse homomorphism is from [2].

The quotient operation introduced in Exercise 4.2.2 is from [3]. In fact, that
paper talks about a more general operation where in place of a single symbol a
is any regular language. The series of operations of the “partial removal” type,
starting with Exercise 4.2.8 on the first halves of strings in a regular language,
began with [8]. Seiferas and McNaughton [9] worked out the general case of
when a removal operation preserves regular languages.

The original decision algorithms, such as emptiness, finiteness, and member-
ship for regular languages, are from [7]. Algorithms for minimizing the states
of a DFA appear there and in [5]. The most efficient algorithm for finding the
minimum-state DFA is in [4].
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Chapter 5

Context-Free Grammars
and Languages

We now turn our attention away from the regular languages to a larger class of
languages, called the “context-free languages.” These languages have a natu-
ral, recursive notation, called “context-free grammars.” Context-free grammars
have played a central role in compiler technology since the 1960’s; they turned
the implementation of parsers (functions that discover the structure of a pro-
gram) from a time-consuming, ad-hoc implementation task into a routine job
that can be done in an afternoon. More recently, the context-free grammar has
been used to describe document formats, via the so-called document-type defi-
nition (DTD) that is used in the XML (extensible markup language) community
for information exchange on the Web.

In this chapter, we introduce the context-free grammar notation, and show
how grammars define languages. We discuss the “parse tree,” a picture of the
structure that a grammar places on the strings of its language. The parse tree
is the product of a parser for a programming language and is the way that the
structure of programs is normally captured.

There is an automaton-like notation, called the “pushdown automaton,”
that also describes all and only the context-free languages; we introduce the
pushdown automaton in Chapter 6. While less important than finite automata,
we shall find the pushdown automaton, especially its equivalence to context-free
grammars as a language-defining mechanism, to be quite useful when we explore
the closure and decision properties of the context-free languages in Chapter 7.

5.1 Context-Free Grammars
We shall begin by introducing the context-free grammar notation informally.
After seeing some of the important capabilities of these grammars, we offer

formal definitions. We show how to define a grammar formally, and introduce

171
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the process of “derivation,” whereby it is determined which strings are in the
language of the grammar.

5.1.1 An Informal Example

Let us consider the language of palindromes. A palindrome is a string that reads
the same forward and backward, such as otto or madamimadam (“Madam, I'm
Adam,” allegedly the first thing Eve heard in the Garden of Eden). Put another
way, string w is a palindrome if and only if w = w’. To make things simple,
we shall consider describing only the palindromes with alphabet {0,1}. This
language includes strings like 0110, 11011, and €, but not 011 or 0101.

It is easy to verify that the language L, of palindromes of 0’s and 1’s is
not a regular language. To do so, we use the pumping lemma. If L,q is a
regular language, let n be the associated constant, and consider the palindrome
w = 0"10™. If Lpy is regular, then we can break w into w = zyz, such that
y consists of one or more 0’s from the first group. Thus, zz, which would also
have to be in Lyq if L,q were regular, would have fewer 0’s to the left of the
lone 1 than there are to the right of the 1. Therefore zz cannot be a palindrome.
We have now contradicted the assumption that L,q is a regular language.

There is a natural, recursive definition of when a string of 0’s and 1’s is in
Lpgi- It starts with a basis saying that a few obvious strings are in L4, and
then exploits the idea that if a string is a palindrome, it must begin and end
with the same symbol. Further, when the first and last symbols are removed,
the resulting string must also be a palindrome. That is:

BASIS: ¢, 0, and 1 are palindromes.

INDUCTION: If w is a palindrome, so are Qw0 and lwl. No string is a palin-
drome of 0’s and 1’s, unless it follows from this basis and induction rule.

A context-free grammar is a formal notation for expressing such recursive
definitions of languages. A grammar consists of one or more variables that
represent classes of strings, i.e., languages. In this example we have need for
only one variable P, which represents the set of palindromes; that is the class of
strings forming the language L,q;. There are rules that say how the strings in
each class are constructed. The construction can use symbols of the alphabet,
strings that are already known to be in one of the classes, or both.

Example 5.1: The rules that define the palindromes, expressed in the context-
free grammar notation, are shown in Fig. 5.1. We shall see in Section 5.1.2 what
the rules mean.

The first three rules form the basis. They tell us that the class of palindromes
includes the strings €, 0, and 1. None of the right sides of these rules (the
portions following the arrows) contains a variable, which is why they form a
basis for the definition.

The last two rules form the inductive part of the definition. For instance,
rule 4 says that if we take any string w from the class P, then OwO0 is also in
class P. Rule 5 likewise tells us that 1wl is also in P. O
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1. P — €
2. P = 0
3. P — 1
4. P — 0PO
5. P — 1P1

Figure 5.1: A context-free grammar for palindromes

5.1.2 Definition of Context-Free Grammars

There are four important components in a grammatical description of a lan-
guage:

1. There is a finite set of symbols that form the strings of the language being

defined. This set was {0, 1} in the palindrome example we just saw. We
call this alphabet the terminals, or terminal symbols.

. There is a finite set of wvariables, also called sometimes nonterminals or

syntactic categories. Each variable represents a language; i.e., a set of
strings. In our example above, there was only one variable, P, which we
used to represent the class of palindromes over alphabet {0, 1}.

. One of the variables represents the language being defined; it is called the

start symbol. Other variables represent auxiliary classes of strings that
are used to help define the language of the start symbol. In our example,
P, the only variable, is the start symbol.

. There is a finite set of productions or rules that represent the recursive

definition of a language. Each production consists of:

(a) A variable that is being (partially) defined by the production. This
variable is often called the head of the production.

(b) The production symbol —.

(c) A string of zero or more terminals and variables. This string, called
the body of the production, represents one way to form strings in the
language of the variable of the head. In so doing, we leave terminals
unchanged and substitute for each variable of the body any string
that is known to be in the language of that variable.

We saw an example of productions in Fig. 5.1.

The four components just described form a context-free grammar, or just gram-
mar, or CFG. We shall represent a CFG G by its four components, that is,
G = (V,T,P,S), where V is the set of variables, T' the terminals, P the set of
productions, and S the start symbol.



174 CHAPTER 5. CONTEXT-FREE GRAMMARS AND LANGUAGES

Example 5.2: The grammar G, for the palindromes is represented by
Gpar = ({P},{0,1}, 4, P)
where A represents the set of five productions that we saw in Fig. 5.1. O

Example 5.3: Let us explore a more complex CFG that represents (a simplific-
ation of) expressions in a typical programming language. First, we shall limit
ourselves to the operators + and *, representing addition and multiplication.
We shall allow arguments to be identifiers, but instead of allowing the full set of
typical identifiers (letters followed by zero or more letters and digits), we shall
allow only the letters a and b and the digits 0 and 1. Every identifier must
begin with a or b, which may be followed by any string in {a,b,0,1}*.

We need two variables in this grammar. One, which we call E, represents
expressions. It is the start symbol and represents the language of expressions
we are defining. The other variable, I, represents identifiers. Its language is
actually regular; it is the language of the regular expression

(a+b)a+b+0+1)*

However, we shall not use regular expressions directly in grammars. Rather,
we use a set of productions that say essentially the same thing as this regular
expression.

E+FE
ExFE
(E)

el .
SHCEC R
1114

a
b

Ia
Ib
10
I1

= © 0N o
T
NN

Figure 5.2: A context-free grammar for simple expressions

The grammar for expressions is stated formally as G = ({E,I},T, P, E),
where T is the set of symbols {+, %, (,),a,b,0,1} and P is the set of productions
shown in Fig. 5.2. We interpret the productions as follows.

Rule (1) is the basis rule for expressions. It says that an expression can
be a single identifier. Rules (2) through (4) describe the inductive case for
expressions. Rule (2) says that an expression can be two expressions connected
by a plus sign; rule (3) says the same with a multiplication sign. Rule (4) says
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Compact Notation for Productions

It is convenient to think of a production as “belonging” to the variable
of its head. We shall often use remarks like “the productions for A” or
“A-productions” to refer to the productions whose head is variable A. We
may write the productions for a grammar by listing each variable once, and
then listing all the bodies of the productions for that variable, separated by
vertical bars. That is, the productions A — a;, A — as,..., A = a, can
be replaced by the notation A — «;|as]|- - - |ay,. For instance, the grammar
for palindromes from Fig. 5.1 can be written as P - ¢ | 0| 1| 0P0 | 1P1.

that if we take any expression and put matching parentheses around it, the
result is also an expression.

Rules (5) through (10) describe identifiers I. The basis is rules (5) and (6);
they say that a and b are identifiers. The remaining four rules are the inductive
case. They say that if we have any identifier, we can follow it by a, b, 0, or 1,
and the result will be another identifier. O

5.1.3 Derivations Using a Grammar

We apply the productions of a CFG to infer that certain strings are in the
language of a certain variable. There are two approaches to this inference. The
more conventional approach is to use the rules from body to head. That is, we
take strings known to be in the language of each of the variables of the body,
concatenate them, in the proper order, with any terminals appearing in the
body, and infer that the resulting string is in the language of the variable in
the head. We shall refer to this procedure as recursive inference.

There is another approach to defining the language of a grammar, in which
we use the productions from head to body. We expand the start symbol using
one of its productions (i.e., using a production whose head is the start symbol).
We further expand the resulting string by replacing one of the variables by the
body of one of its productions, and so on, until we derive a string consisting
entirely of terminals. The language of the grammar is all strings of terminals
that we can obtain in this way. This use of grammars is called derivation.

We shall begin with an example of the first approach — recursive inference.
However, it is often more natural to think of grammars as used in derivations,
and we shall next develop the notation for describing these derivations.

Example 5.4: Let us consider some of the inferences we can make using the
grammar for expressions in Fig. 5.2. Figure 5.3 summarizes these inferences.
For example, line (i) says that we can infer string a is in the language for
I by using production 5. Lines (ii) through (iv) say we can infer that 500
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is an identifier by using production 6 once (to get the b) and then applying
production 9 twice (to attach the two 0’s).

String For lang- | Production | String(s)
Inferred uage of used used
@ |a j 5 —
(i) | b I 6 —
(idi) | b0 I 9 (ii)
(iv) | b0O I 9 (iii)
(v) | a E 1 (1)
(vi) | 0O E 1 (iv)
(vii) | a+ b00 E 2 (v), (vi)
(viii) | (a+ b00) E 4 (vi7)
(iz) | a*(a+000) | E 3 (v), (viid)

Figure 5.3: Inferring strings using the grammar of Fig. 5.2

Lines (v) and (vi) exploit production 1 to infer that, since any identifier is
an expression, the strings a and 500, which we inferred in lines (i) and (iv) to
be identifiers, are also in the language of variable E. Line (vii) uses produc-
tion 2 to infer that the sum of these identifiers is an expression; line (viii) uses
production 4 to infer that the same string with parentheses around it is also an
expression, and line (iz) uses production 3 to multiply the identifier a by the
expression we had discovered in line (vii¢). O

The process of deriving strings by applying productions from head to body
requires the definition of a new relation symbol =. Suppose G = (V, T, P, S) is
a CFG. Let aAf be a string of terminals and variables, with A a variable. That
is, a and 3 are strings in (V U T)* and A isin V. Let A — v be a production
of G. Then we say aAS3 g> ayB. If G is understood, we just say aASB = ayf.
Notice that one derivation step replaces any variable anywhere in the string by
the body of one of its productions.

We may extend the = relationship to represent zero, one, or many derivation
steps, much as the transition function § of a finite automaton was extended to
§. For derivations, we use a * to denote “zero or more steps,” as follows:

BASIS: For any string « of terminals and variables, we say « C:t> a. That is,
any string derives itself.

INDUCTION: If « :> B and g ? v, then a ? ~. That is, if @ can become 3

by zero or more steps and one more step takes 3 to 7y, then a can become 7.
Put another way, o g> (B means that there is a sequence of strings v1, 72, - . ., Vn,

for some n > 1, such that

1. a=m,
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2. B =", and

3. Fori=1,2,...,n—1, we have v; = 7;+1.
If grammar G is understood, then we use % in place of C:} .

Example 5.5: The inference that a* (a + b00) is in the language of variable E
can be reflected in a derivation of that string, starting with the string E. Here
is one such derivation:

E=FExE=IxE=axFE=>
ax(E)=a*x(E+E)=>ax(I+E)=>ax*x(a+E)=>
ax(a+1)=ax(a+10)= ax(a+ 100) = ax (a+ b00)

At the first step, E is replaced by the body of production 3 (from Fig. 5.2).
At the second step, production 1 is used to replace the first E by I, and so
on. Notice that we have systematically adopted the policy of always replacing
the leftmost variable in the string. However, at each step we may choose which
variable to replace, and we can use any of the productions for that variable.
For instance, at the second step, we could have replaced the second E by (E),
using production 4. In that case, we would say E* E = Ex(E). We could also
have chosen to make a replacement that would fail to lead to the same string
of terminals. A simple example would be if we used production 2 at the first
step, and said £ = E + E. No replacements for the two E’s could ever turn
E + E into a * (a + b00).

We can use the = relationship to condense the derivation. We know E .
by the basis. Repeated use of the inductive part gives us E = E+xE FE 5 I+E,
and so on, until finally E = a (a + b00).

The two viewpoints — recursive inference and derivation — are equivalent.
That is, a string of terminals w is inferred to be in the language of some variable
A if and only if A 5w, However, the proof of this fact requires some work,
and we leave it to Section 5.2. O

5.1.4 Leftmost and Rightmost Derivations

In order to restrict the number of choices we have in deriving a string, it is
often useful to require that at each step we replace the leftmost variable by one
of its production bodies. Such a derivation is called a leftmost derivation, and
we indicate that a derivation is leftmost by using the relations = and = , for

one or many steps, respectively. If the grammar G that is beli?llg use(llnibs not
obvious, we can place the name G below the arrow in either of these symbols.

Similarly, it is possible to require that at each step the rightmost variable
is replaced by one of its bodies. If so, we call the derivation rightmost and use
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Notation for CFG Derivations

There are a number of conventions in common use that help us remember
the role of the symbols we use when discussing CFG’s. Here are the
conventions we shall use:

1. Lower-case letters near the beginning of the alphabet, a, b, and so
on, are terminal symbols. We shall also assume that digits and other
characters such as + or parentheses are terminals.

2. Upper-case letters near the beginning of the alphabet, A, B, and so
on, are variables.

3. Lower-case letters near the end of the alphabet, such as w or z, are
strings of terminals. This convention reminds us that the terminals
are analogous to the input symbols of an automaton.

4. Upper-case letters near the end of the alphabet, such as X or Y, are
either terminals or variables.

5. Lower-case Greek letters, such as a and 3, are strings consisting of
terminals and/or variables.

There is no special notation for strings that consist of variables only, since
this concept plays no important role. However, a string named « or an-
other Greek letter might happen to have only variables.

the symbols = and % to indicate one or many rightmost derivation steps,

rm T
respectively. Again, the name of the grammar may appear below these symbols
if it is not clear which grammar is being used.

Example 5.6: The derivation of Example 5.5 was actually a leftmost deriva-
tion. Thus, we can describe the same derivation by:

El:> E*El:> I*El:> a*El:>

a*(E);Z ax(E+E)= ax(I+E)= ax(a+E)=

im im im

ax(a+1I)= ax(a+10)= ax(a+I100) = ax*(a+ b00)

im lm lm

We can also summarize the leftmost derivation by saying E lé a * (a+b00), or
m

express several steps of the derivation by expressions such as E x E 5 ax (E).
lm
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There is a rightmost derivation that uses the same replacements for each
variable, although it makes the replacements in different order. This rightmost
derivation is:

E= ExE= Ex(E)=> Ex(E+FE)=
rm rm rm

m

Ex(E+1)= Ex(E+10)= Ex(E+100)= Ex(E+Db00)=

m

E x (I +b00)= E=x(a+b00)= I=x(a+b00)= asx*(a+ b00)

This derivation allows us to conclude E = a * (a + b00). O
rm
Any derivation has an equivalent leftmost and an equivalent rightmost der-
ivation. That is, if w is a terminal string, and A a variable, then A = w if and
only if A = w, and A = w if and only if A = w. We shall also prove these
Tm

. . lm .
claims in Section 5.2.

5.1.5 The Language of a Grammar

If G = (V,T,P,S) is a CFG, the language of G, denoted L(G), is the set of
terminal strings that have derivations from the start symbol. That is,

L(G):{winT*|S§> w}

If a language L is the language of some context-free grammar, then L is said to
be a context-free language, or CFL. For instance, we asserted that the grammar
of Fig. 5.1 defined the language of palindromes over alphabet {0,1}. Thus, the
set of palindromes is a context-free language. We can prove that statement, as
follows.

Theorem 5.7: L(Gpq), where Gpg is the grammar of Example 5.1, is the set
of palindromes over {0, 1}.

PROOF: We shall prove that a string w in {0,1}* is in L(Gpa) if and only if it

is a palindrome; i.e., w = w¥.

(If) Suppose w is a palindrome. We show by induction on |w| that w is in
L(Gpar)-

BASIS: We use lengths 0 and 1 as the basis. If |w| =0 or |w| =1, then w is e,

0, or 1. Since there are productions P — ¢, P — 0, and P — 1, we conclude
* . .

that P = w in any of these basis cases.

INDUCTION: Suppose |w| > 2. Since w = w®, w must begin and end with the
same symbol That is, w = 0z0 or w = 1zl. Moreover, x must be a palindrome;
that is, z = zf*. Note that we need the fact that |w| > 2 to infer that there are
two distinct 0’s or 1’s, at either end of w.
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If w = 020, then we invoke the inductive hypothesis to claim that P 5 2.
Then there is a derivation of w from P, namely P = 0P0 S 020 = w. If
w = lzl, the argument is the same, but we use the production P — 1P1 at
the first step. In either case, we conclude that w is in L(Gpq) and complete
the proof.

(Only-if) Now, we assume that w is in L(Gpq); that is, P S w. We must
conclude that w is a palindrome. The proof is an induction on the number of
steps in a derivation of w from P.

BASIS: If the derivation is one step, then it must use one of the three produc-
tions that do not have P in the body. That is, the derivation is P = ¢, P = 0,
or P = 1. Since ¢, 0, and 1 are all palindromes, the basis is proven.

INDUCTION: Now, suppose that the derivation takes n+ 1 steps, where n > 1,
and the statement is true for all derivations of n steps. That is, if P S zinn
steps, then z is a palindrome.

Consider an (n + 1)-step derivation of w, which must be of the form

P=0P0= 020 = w

or P = 1P1 = 1z1 = w, since n + 1 steps is at least two steps, and the
productions P — 0P0 and P — 1P1 are the only productions whose use allows
additional steps of a derivation. Note that in either case, P S zinn steps.

By the inductive hypothesis, we know that « is a palindrome; that is, z = z .
But if so, then 0z0 and 1zl are also palindromes. For instance, (0z0)f =
020 = 020. We conclude that w is a palindrome, which completes the proof.
O

5.1.6 Sentential Forms

Derivations from the start symbol produce strings that have a special role. We

call these “sentential forms.” That is, if G = (V,T,P,S) is a CFG, then any

string a in (V U T)* such that S = a is a sentential form. If $ = a, then
lm

« is a left-sentential form, and if S = «, then « is a right-sentential form.

rm
Note that the language L(G) is those sentential forms that are in T*; i.e., they
consist solely of terminals.

Example 5.8: Consider the grammar for expressions from Fig. 5.2. For ex-
ample, E x (I + E) is a sentential form, since there is a derivation

E=ExE=Ex(E)= Ex(E+E)= Ex (I +E)

However this derivation is neither leftmost nor rightmost, since at the last step,
the middle F is replaced.

As an example of a left-sentential form, consider a * E, with the leftmost
derivation
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The Form of Proofs About Grammars

Theorem 5.7 is typical of proofs that show a grammar defines a particular,
informally defined language. We first develop an inductive hypothesis that
states what properties the strings derived from each variable have. In this
example, there was only one variable, P, so we had only to claim that its
strings were palindromes.

We prove the “if” part: that if a string w satisfies the informal state-
ment about the strings of one of the variables A, then A % w. In our
example, since P is the start symbol, we stated “P 5w by saying that
w is in the language of the grammar. Typically, we prove the “if” part by
induction on the length of w. If there are k variables, then the inductive
statement to be proved has k parts, which must be proved as a mutual
induction.

We must also prove the “only-if” part, that if A = w, then w sat-
isfies the informal statement about the strings derived from variable A.
Again, in our example, since we had to deal only with the start symbol
P, we assumed that w was in the language of G, as an equivalent to
P2 w. The proof of this part is typically by induction on the number of
steps in the derivation. If the grammar has productions that allow two or
more variables to appear in derived strings, then we shall have to break
a derivation of n steps into several parts, one derivation from each of the
variables. These derivations may have fewer than n steps, so we have to
perform an induction assuming the statement for all values n or less, as
discussed in Section 1.4.2.

Ez E*E;i I*E;i axE
Additionally, the derivation
shows that E * (E + E) is a right-sentential form. O

5.1.7 Exercises for Section 5.1
Exercise 5.1.1: Design context-free grammars for the following languages:

*a) The set {0"1" | n > 1}, that is, the set of all strings of one or more 0’s
followed by an equal number of 1’s.

*1'b) The set {a’bic* | i # j or j # k}, that is, the set of strings of a’s followed
by b’s followed by ¢’s, such that there are either a different number of a’s
and b’s or a different number of b’s and ¢’s, or both.
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! ¢) The set of all strings of a’s and b’s that are not of the form ww, that is,
not equal to any string repeated.

1''d) The set of all strings with twice as many 0’s as 1’s.

Exercise 5.1.2: The following grammar generates the language of regular
expression 0°1(0 + 1)*:

S — AlB
A — 04]e€
B — 0B|1B|e

Give leftmost and rightmost derivations of the following strings:
* a) 00101.

b) 1001.

c) 00011.

Exercise 5.1.3: Show that every regular language is a context-free language.
Hint: Construct a CFG by induction on the number of operators in the regular
expression.

Exercise 5.1.4: A CFG is said to be right-linear if each production body
has at most one variable, and that variable is at the right end. That is, all
productions of a right-linear grammar are of the form A — wB or A — w,
where A and B are variables and w some string of zero or more terminals.

a) Show that every right-linear grammar generates a regular language. Hint:
Construct an e-NFA that simulates leftmost derivations, using its state to
represent the lone variable in the current left-sentential form.

b) Show that every regular language has a right-linear grammar. Hint: Start
with a DFA and let the variables of the grammar represent states.

Exercise 5.1.5: Let T'={0,1,(,), +, %, 0, e}. We may think of T" as the set of
symbols used by regular expressions over alphabet {0, 1}; the only difference is
that we use e for symbol €, to avoid potential confusion in what follows. Your
task is to design a CFG with set of terminals 7' that generates exactly the
regular expressions with alphabet {0, 1}.

Exercise 5.1.6: We defined the relation = with a basis “a = o’ and an
induction that says “o 5 B and B = v imply « 5 v. There are several other
ways to define % that also have the effect of saying that % is zero or more
= steps.” Prove that the following are true:

a) a 5 B if and only if there is a sequence of one or more strings

Y1,725-+5Un

such that a =y, 8 =y, and for i =1,2,...,n — 1 we have v; = v;+1.
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b) If = B, and B = v, then a = v. Hint: use induction on the number
of steps in the derivation 8 = .

! Exercise 5.1.7: Consider the CFG G defined by productions:
S—aS|Sblalb

a) Prove by induction on the string length that no string in L(G) has ba as
a substring.

b) Describe L(G) informally. Justify your answer using part (a).
!! Exercise 5.1.8: Consider the CFG G defined by productions:
S — aSbhS | bSaS | €

Prove that L(G) is the set of all strings with an equal number of a’s and b’s.

5.2 Parse Trees

There is a tree representation for derivations that has proved extremely useful.
This tree shows us clearly how the symbols of a terminal string are grouped
into substrings, each of which belongs to the language of one of the variables of
the grammar. But perhaps more importantly, the tree, known as a “parse tree”
when used in a compiler, is the data structure of choice to represent the source
program. In a compiler, the tree structure of the source program facilitates
the translation of the source program into executable code by allowing natural,
recursive functions to perform this translation process.

In this section, we introduce the parse tree and show that the existence of
parse trees is tied closely to the existence of derivations and recursive inferences.
We shall later study the matter of ambiguity in grammars and languages, which
is an important application of parse trees. Certain grammars allow a terminal
string to have more than one parse tree. That situation makes the grammar
unsuitable for a programming language, since the compiler could not tell the
structure of certain source programs, and therefore could not with certainty
deduce what the proper executable code for the program was.

5.2.1 Constructing Parse Trees

Let us fix on a grammar G = (V,T, P,S). The parse trees for G are trees with
the following conditions:

1. Each interior node is labeled by a variable in V.

2. Each leaf is labeled by either a variable, a terminal, or e. However, if the
leaf is labeled ¢, then it must be the only child of its parent.
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Review of Tree Terminology

We assume you have been introduced to the idea of a tree and are familiar
with the commonly used definitions for trees. However, the following will
serve as a review.

e Trees are collections of nodes, with a parent-child relationship. A
node has at most one parent, drawn above the node, and zero or
more children, drawn below. Lines connect parents to their children.
Figures 5.4, 5.5, and 5.6 are examples of trees.

e There is one node, the root, that has no parent; this node appears at
the top of the tree. Nodes with no children are called leaves. Nodes
that are not leaves are interior nodes.

e A child of a child of a - - - node is a descendant of that node. A parent
of a parent of a - - - is an ancestor. Trivially, nodes are ancestors and
descendants of themselves.

e The children of a node are ordered “from the left,” and drawn so. If
node N is to the left of node M, then all the descendants of N are
considered to be to the left of all the descendants of M.

3. If an interior node is labeled A, and its children are labeled
X, Xo,..., X}

respectively, from the left, then A — X; X5 .-+ X}, is a production in P.
Note that the only time one of the X'’s can be € is if that is the label of
the only child, and A — € is a production of G.

Example 5.9: Figure 5.4 shows a parse tree that uses the expression grammar
of Fig. 5.2. The root is labeled with the variable E. We see that the production
used at the root is £ — E + E, since the three children of the root have labels
E, 4+, and E, respectively, from the left. At the leftmost child of the root, the
production E — I is used, since there is one child of that node, labeled I. O

Example 5.10: Figure 5.5 shows a parse tree for the palindrome grammar of
Fig. 5.1. The production used at the root is P — 0P0, and at the middle child
of the root it is P — 1P1. Note that at the bottom is a use of the production
P — €. That use, where the node labeled by the head has one child, labeled e,
is the only time that a node labeled e can appear in a parse tree. 0O
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Figure 5.4: A parse tree showing the derivation of I + E from E
P
N
0 P 0
N
1 P 1
|

€

Figure 5.5: A parse tree showing the derivation P % 0110

5.2.2 The Yield of a Parse Tree

If we look at the leaves of any parse tree and concatenate them from the left, we
get a string, called the yield of the tree, which is always a string that is derived
from the root variable. The fact that the yield is derived from the root will be
proved shortly. Of special importance are those parse trees such that:

1. The yield is a terminal string. That is, all leaves are labeled either with
a terminal or with e.

2. The root is labeled by the start symbol.

These are the parse trees whose yields are strings in the language of the under-
lying grammar. We shall also prove shortly that another way to describe the
language of a grammar is as the set of yields of those parse trees having the
start symbol at the root and a terminal string as yield.

Example 5.11: Figure 5.6 is an example of a tree with a terminal string as
yield and the start symbol at the root; it is based on the grammar for expressions
that we introduced in Fig. 5.2. This tree’s yield is the string a * (a + b00) that
was derived in Example 5.5. In fact, as we shall see, this particular parse tree
is a representation of that derivation. O

5.2.3 Inference, Derivations, and Parse Trees

Each of the ideas that we have introduced so far for describing how a grammar
works gives us essentially the same facts about strings. That is, given a grammar
G = (V,T,P,S), we shall show that the following are equivalent:
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E
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Figure 5.6: Parse tree showing a * (a 4+ b00) is in the language of our expression
grammar

1. The recursive inference procedure determines that terminal string w is in
the language of variable A.

2. A> w.

3. AS w.

lm

4. AS w.

rm

5. There is a parse tree with root A and yield w.

In fact, except for the use of recursive inference, which we only defined for
terminal strings, all the other conditions — the existence of derivations, leftmost
or rightmost derivations, and parse trees — are also equivalent if w is a string
that has some variables.

We need to prove these equivalences, and we do so using the plan of Fig. 5.7.
That is, each arc in that diagram indicates that we prove a theorem that says
if w meets the condition at the tail, then it meets the condition at the head of
the arc. For instance, we shall show in Theorem 5.12 that if w is inferred to be
in the language of A by recursive inference, then there is a parse tree with root
A and yield w.

Note that two of the arcs are very simple and will not be proved formally. If
w has a leftmost derivation from A, then it surely has a derivation from A, since
a leftmost derivation is a derivation. Likewise, if w has a rightmost derivation,
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Parse
Leftmost <~ tree

derivation / \\
/ Rightmost

Derivation <+—— derivation Recursive

\_/' inference

Figure 5.7: Proving the equivalence of certain statements about grammars

then it surely has a derivation. We now proceed to prove the harder steps of
this equivalence.

5.2.4 From Inferences to Trees

Theorem 5.12: Let G = (V,T,P,S) be a CFG. If the recursive inference
procedure tells us that terminal string w is in the language of variable A, then
there is a parse tree with root A and yield w.

PROOF: The proof is an induction on the number of steps used to infer that w
is in the language of A.

BASIS: One step. Then only the basis of the inference procedure must have
been used. Thus, there must be a production A — w. The tree of Fig. 5.8,
where there is one leaf for each position of w, meets the conditions to be a parse
tree for grammar G, and it evidently has yield w and root A. In the special
case that w = ¢, the tree has a single leaf labeled € and is a legal parse tree
with root A and yield w.

w

Figure 5.8: Tree constructed in the basis case of Theorem 5.12

INDUCTION: Suppose that the fact w is in the language of A is inferred after
n+ 1 inference steps, and that the statement of the theorem holds for all strings
z and variables B such that the membership of z in the language of B was
inferred using n or fewer inference steps. Consider the last step of the inference
that w is in the language of A. This inference uses some production for A, say
A — X X5+ Xy, where each X; is either a variable or a terminal.

We can break w up as wyws - - - wg, where:

1. If X; is a terminal, then w; = Xj; i.e., w; consists of only this one terminal
from the production.
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2. If X; is a variable, then w; is a string that was previously inferred to be in
the language of X;. That is, this inference about w; took at most n of the
n + 1 steps of the inference that w is in the language of A. It cannot take
all n+1 steps, because the final step, using production 4 — X3 Xo - - - X,
is surely not part of the inference about w;. Consequently, we may apply
the inductive hypothesis to w; and X;, and conclude that there is a parse
tree with yield w; and root Xj.

AVANSA!

Figure 5.9: Tree used in the inductive part of the proof of Theorem 5.12

We then construct a tree with root A and yield w, as suggested in Fig. 5.9.
There is a root labeled A, whose children are Xy, Xs,...,Xy. This choice is
valid, since A - X; X5 -+ X} is a production of G.

The node for each X; is made the root of a subtree with yield w;. In case (1),
where X; is a terminal, this subtree is a trivial tree with a single node labeled
X;. That is, the subtree consists of only this child of the root. Since w; = X;
in case (1), we meet the condition that the yield of the subtree is w;.

In case (2), X; is a variable. Then, we invoke the inductive hypothesis to
claim that there is some tree with root X; and yield w;. This tree is attached
to the node for X; in Fig. 5.9.

The tree so constructed has root A. Its yield is the yields of the subtrees,
concatenated from left to right. That string is wyws - - - wg, which is w. O

5.2.5 From Trees to Derivations

We shall now show how to construct a leftmost derivation from a parse tree.
The method for constructing a rightmost derivation uses the same ideas, and
we shall not explore the rightmost-derivation case. In order to understand how
derivations may be constructed, we need first to see how one derivation of a
string from a variable can be embedded within another derivation. An example
should illustrate the point.

Example 5.13: Let us again consider the expression grammar of Fig. 5.2. It
is easy to check that there is a derivation

E=I=I1b=ab
As a result, for any strings « and 3, it is also true that

abf = alf = albB = aabf
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The justification is that we can make the same replacements of production
bodies for heads in the context of a and 3 as we can in isolation.!

For instance, if we have a derivation that begins £ = E + E = E + (E),
we could apply the derivation of ab from the second E by treating “E + (” as
a and “)” as 8. This derivation would then continue

E+(E)= E+ (I) = E + (Ib) = E + (ab)

We are now able to prove a theorem that lets us convert a parse tree to a
leftmost derivation. The proof is an induction on the height of the tree, which is
the maximum length of a path that starts at the root, and proceeds downward
through descendants, to a leaf. For instance, the height of the tree in Fig. 5.6 is
7. The longest root-to-leaf path in this tree goes to the leaf labeled b. Note that
path lengths conventionally count the edges, not the nodes, so a path consisting
of a single node is of length 0.

Theorem 5.14: Let G = (V,T, P, S) be a CFG, and suppose there is a parse
tree with root labeled by variable A and with yield w, where w is in T*. Then
there is a leftmost derivation A lé w in grammar G.

m

PROOF: We perform an induction on the height of the tree.

BASIS: The basis is height 1, the least that a parse tree with a yield of terminals

can be. In this case, the tree must look like Fig. 5.8, with a root labeled A and

children that read w, left-to-right. Since this tree is a parse tree, A — w must

be a production. Thus, A l:> w is a one-step, leftmost derivation of w from A.
m

INDUCTION: If the height of the tree is n, where n > 1, it must look like
Fig 5.9. That is, there is a root labeled A, with children labeled X, Xs, ..., X
from the left. The X’s may be either terminals or variables.

1. If X; is a terminal, define w; to be the string consisting of X; alone.

2. If X; is a variable, then it must be the root of some subtree with a yield
of terminals, which we shall call w;. Note that in this case, the subtree is
of height less than n, so the inductive hypothesis applies to it. That is,
there is a leftmost derivation X; lé> wj.

m

Note that w = wiws - - - wy,.

Mn fact, it is this property of being able to make a string-for-variable substitution regard-
less of context that gave rise originally to the term “context-free.” There is a more powerful
classes of grammars, called “context-sensitive,” where replacements are permitted only if cer-
tain strings appear to the left and/or right. Context-sensitive grammars do not play a major
role in practice today.
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We construct a leftmost derivation of w as follows. We begin with the step
A l:> X1Xs -+ Xg. Then, for each i = 1,2,...,k, in order, we show that
m

*
A = wiwy - Wi X1 Xigo - Xi
m

This proof is actually another induction, this time on i. For the basis, ¢ = 0,
we already know that A l:> X1 X5 -+ Xg. For the induction, assume that
m

%
A l:> wiwse - Wi—1 X X1 - Xy,
m

a) If X; is a terminal, do nothing. However, we shall subsequently think of
X; as the terminal string w;. Thus, we already have

*
A = wiwy - ‘Wi Xip1 Xigo - Xi
m
b) If X; is a variable, continue with a derivation of w; from X, in the context
of the derivation being constructed. That is, if this derivation is

Xi= 1= a - = w
m

im im

we proceed with

wiwg -+ wi—1 X Xy - X =

im
wiwg - w1 Xy - Xg l=>
m
wiwg - w12 Xip1 - Xg l=>
m

wiws - Wi X1 Xiga - - Xy

The result is a derivation A = wywsy - w; X1 -+ - Xg.
Im

When i = k, the result is a leftmost derivation of w from A. O

Example 5.15: Let us construct the leftmost derivation for the tree of Fig. 5.6.
We shall show only the final step, where we construct the derivation from the
entire tree from derivations that correspond to the subtrees of the root. That is,
we shall assume that by recursive application of the technique in Theorem 5.14,
we have deduced that the subtree rooted at the first child of the root has
leftmost derivation E :> 1 :> a, while the subtree rooted at the third child of

the root has leftmost derlvatlon

E;Z (E) = (E+E);n> (I+E)l:m> (a+E)=>

im im

(a+I)l:> (a+IO)l:> (a+IOO)l:> (a + b00)
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To build a leftmost derivation for the entire tree, we start with the step at
the root: £ = FE % E. Then, we replace the first £ according to its deriva-

lm
tion, following each step by *E to account for the larger context in which that
derivation is used. The leftmost derivation so far is thus

E:> ExE= IxEF= axFE
lm lm
The * in the production used at the root requires no derivation, so the
above leftmost derivation also accounts for the first two children of the root.
We complete the leftmost derivation by using the derivation of l:> (a + b00),

m
in a context where it is preceded by a* and followed by the empty string. This
derivation actually appeared in Example 5.6; it is:

E= FExE= IxFE= axFE =
im lm lm lm

*(E)l:> ax(E4+E)= ax(I+E)=> ax(a+E)=>

lm lm lm

x(a+1)= ax(a+I10)= ax(a+I00) = ax*(a-+ b00)

lm lm lm

A similar theorem lets us convert a tree to a rightmost derivation. The
construction of a rightmost derivation from a tree is almost the same as the
construction of a leftmost derivation. However, after starting with the step
A= X3X5--- Xy, we expand X, first, using a rightmost derivation, then

exprg}ld X1, and so on, down to X;. Thus, we shall state without further
proof:

Theorem 5.16: Let G = (V,T, P, S) be a CFG, and suppose there is a parse
tree with root labeled by variable A and with yield w, where w is in T*. Then
there is a rightmost derivation A :> w in grammar G |

5.2.6 From Derivations to Recursive Inferences

We now complete the loop suggested by Fig. 5.7 by showing that whenever
there is a derivation A = w for some CFG, then the fact that w is in the
language of A is discovered in the recursive inference procedure. Before giving
the theorem and proof, let us observe something important about derivations.

Suppose that we have a derivation A = X1 X5+ X}, % w. Then we can
break w into pieces w = wiws ---wy such that X; = w;. Note that if X; is
a terminal, then w; = X;, and the derivation is zero steps. The proof of this
observation is not hard. You can show by induction on the number of steps
of the derivation, that if X;Xs--- X} X «, then all the positions of a that
come from expansion of X; are to the left of all the positions that come from
expansion of X, if ¢ < j.
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If X; is a variable, we can obtain the derivation of X; = w; by starting
with the derivation A = w, and stripping away:

a) All the positions of the sentential forms that are either to the left or right
of the positions that are derived from X;, and

b) All the steps that are not relevant to the derivation of w; from X;.
An example should make this process clear.

Example 5.17: Using the expression grammar of Fig. 5.2, consider the deriva-
tion

F==FExE=>FExE+FE=I«xEFE+F=1x]1+F =
IxI+I=ax]I+]=axb+]I=axb+a

Consider the third sentential form, FE x E 4+ E, and the middle E in this form.?

Starting from E x E + E, we may follow the steps of the above derivation,
but strip away whatever positions are derived from the Ex to the left of the
central E or derived from the +F to its right. The steps of the derivation then
become E,E,I1,I,1,b,b. That is, the next step does not change the central E,
the step after that changes it to I, the next two steps leave it as I, the next
changes it to b, and the final step does not change what is derived from the
central E.

If we take only the steps that change what comes from the central E, the
sequence of strings E, E,I,1,1,b,b becomes the derivation £ = I = b. That
derivation correctly describes how the central E evolves during the complete
derivation. 0O

Theorem 5.18: Let G = (V, T, P, S) be a CFG, and suppose there is a deriva-
tion A C:t> w, where w is in T*. Then the recursive inference procedure applied
to G determines that w is in the language of variable A.

PROOF: The proof is an induction on the length of the derivation A = w.

BASIS: If the derivation is one-step, then A — w must be a production. Since
w consists of terminals only, the fact that w is in the language of A will be
discovered in the basis part of the recursive inference procedure.

INDUCTION: Suppose the derivation takes n + 1 steps, and assume that for
any derivation of n or fewer steps, the statement holds. Write the derivation
as A = X1 Xo - X, S w. Then, as discussed prior to the theorem, we can
break w as w = wyws - - - wy, where:

20ur discussion of finding subderivations from larger derivations assumed we were con-
cerned with a variable in the second sentential form of some derivation. However, the idea
applies to a variable in any step of a derivation.
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a) If X; is a terminal, then w; = X;.

b) If X; is a variable, then X; = w;. Since the first step of the derivation
AS wis surely not part of the derivation X; = w;, we know that this
derivation is of n or fewer steps. Thus, the inductive hypothesis applies
to it, and we know that w; is inferred to be in the language of X;.

Now, we have a production A — X1 X5 -+ - X, with w; either equal to X; or
known to be in the language of X;. In the next round of the recursive inference
procedure, we shall discover that wjws - --wy is in the language of A. Since
wiws - - Wy, = w, we have shown that w is inferred to be in the language of A.
O

5.2.7 Exercises for Section 5.2

Exercise 5.2.1: For the grammar and each of the strings in Exercise 5.1.2,
give parse trees.

Exercise 5.2.2: Suppose that G is a CFG without any productions that have
€ as the right side. If w is in L(G), the length of w is n, and w has a derivation
of m steps, show that w has a parse tree with n + m nodes.

Exercise 5.2.3: Suppose all is as in Exercise 5.2.2, but G may have some
productions with € as the right side. Show that a parse tree for a string w other
than € may have as many as n + 2m — 1 nodes, but no more.

Exercise 5.2.4: In Section 5.2.6 we mentioned that if X7 X5 --- X}, Y a, then
all the positions of a that come from expansion of X; are to the left of all the
positions that come from expansion of Xj, if ¢ < j. Prove this fact. Hint:
Perform an induction on the number of steps in the derivation.

5.3 Applications of Context-Free Grammars

Context-free grammars were originally conceived by N. Chomsky as a way to
describe natural languages. That promise has not been fulfilled. However, as
uses for recursively defined concepts in Computer Science have multiplied, so
has the need for CFG’s as a way to describe instances of these concepts. We
shall sketch two of these uses, one old and one new.

1. Grammars are used to describe programming languages. More impor-
tantly, there is a mechanical way of turning the language description as
a CFG into a parser, the component of the compiler that discovers the
structure of the source program and represents that structure by a parse
tree. This application is one of the earliest uses of CFG’s; in fact it is
one of the first ways in which theoretical ideas in Computer Science found
their way into practice.
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2. The development of XML (Extensible Markup Language) is widely pre-
dicted to facilitate electronic commerce by allowing participants to share
conventions regarding the format of orders, product descriptions, and
many other kinds of documents. An essential part of XML is the Docu-
ment Type Definition (DTD), which is essentially a context-free grammar
that describes the allowable tags and the ways in which these tags may
be nested. Tags are the familiar keywords with triangular brackets that
you may know from HTML, e.g., <EM> and </EM> to surround text that
needs to be emphasized. However, XML tags deal not with the formatting
of text, but with the meaning of text. For instance, one could surround
a sequence of characters that was intended to be interpreted as a phone
number by <PHONE> and </PHONE>.

5.3.1 Parsers

Many aspects of a programming language have a structure that may be de-
scribed by regular expressions. For instance, we discussed in Example 3.9 how
identifiers could be represented by regular expressions. However, there are also
some very important aspects of typical programming languages that cannot be
represented by regular expressions alone. The following are two examples.

Example 5.19: Typical languages use parentheses and/or brackets in a nested
and balanced fashion. That is, we must be able to match some left parenthesis
against a right parenthesis that appears immediately to its right, remove both
of them, and repeat. If we eventually eliminate all the parentheses, then the
string was balanced, and if we cannot match parentheses in this way, then it is
unbalanced. Examples of strings of balanced parentheses are (()), ()(), (()()),
and ¢, while )( and (() are not.

A grammar Gy = ({B},{(,)}, P, B) generates all and only the strings of
balanced parentheses, where P consists of the productions:

B—BB|(B)|e¢

The first production, B — BB, says that the concatenation of two strings of
balanced parentheses is balanced. That assertion makes sense, because we can
match the parentheses in the two strings independently. The second production,
B — (B), says that if we place a pair of parentheses around a balanced string,
then the result is balanced. Again, this rule makes sense, because if we match
the parentheses in the inner string, then they are all eliminated and we are then
allowed to match the first and last parentheses, which have become adjacent.
The third production, B — € is the basis; it says that the empty string is
balanced.

The above informal arguments should convince us that Gy, generates all
strings of balanced parentheses. We need a proof of the converse — that every
string of balanced parentheses is generated by this grammar. However, a proof
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by induction on the length of the balanced string is not hard and is left as an
exercise.

We mentioned that the set of strings of balanced parentheses is not a regular
language, and we shall now prove that fact. If L(Gyq) were regular, then there
would be a constant n for this language from the pumping lemma for regular
languages. Consider the balanced string w = (™)™, that is, n left parentheses
followed by n matching right parentheses. If we break w = xyz according to
the pumping lemma, then y consists of only left parentheses, and therefore xz
has more right parentheses than left. This string is not balanced, contradicting
the assumption that the language of balanced parentheses is regular. O

Programming languages consist of more than parentheses, of course, but
parentheses are an essential part of arithmetic or conditional expressions. The
grammar of Fig. 5.2 is more typical of the structure of arithmetic expressions,
although we used only two operators, plus and times, and we included the de-
tailed structure of identifiers, which would more likely be handled by the lexical-
analyzer portion of the compiler, as we mentioned in Section 3.3.2. However,
the language described in Fig. 5.2 is not regular either. For instance, according
to this grammar, ("a)™ is a legal expression. We can use the pumping lemma
to show that if the language were regular, then a string with some of the left
parentheses removed and the a and all right parentheses intact would also be a
legal expression, which it is not.

There are numerous aspects of a typical programming language that behave
like balanced parentheses. There will usually be parentheses themselves, in
expressions of all types. Beginnings and endings of code blocks, such as begin
and end in Pascal, or the curly braces {...} of C, are examples. That is,
whatever curly braces appear in a C program must form a balanced sequence,
with { in place of the left parenthesis and } in place of the right parenthesis.

There is a related pattern that appears occasionally, where “parentheses”
can be balanced with the exception that there can be unbalanced left parenthe-
ses. An example is the treatment of if and else in C. An if-clause can appear
unbalanced by any else-clause, or it may be balanced by a matching else-clause.
A grammar that generates the possible sequences of if and else (represented
by i and e, respectively) is:

S €| SS|iS|iSeS

For instance, ieie, iie, and iei are possible sequences of if’s and else’s, and
each of these strings is generated by the above grammar. Some examples of
illegal sequences, not generated by the grammar, are ei and teeti.

A simple test (whose correctness we leave as an exercise), for whether a
sequence of i’s and e’s is generated by the grammar is to consider each e, in
turn from the left. Look for the first ¢ to the left of the e being considered. If
there is none, the string fails the test and is not in the language. If there is such
an %, delete this ¢ and the e being considered. Then, if there are no more e’s
the string passes the test and is in the language. If there are more e’s, proceed
to consider the next one.
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Example 5.20: Consider the string iee. The first e is matched with the 7 to
its left. They are removed, leaving the string e. Since there are more e’s we
consider the next. However, there is no 7 to its left, so the test fails; iee is not
in the language. Note that this conclusion is valid, since you cannot have more
else’s than if’s in a C program.

For another example, consider iieie. Matching the first e with the ¢ to its
left leaves iie. Matching the remaining e with the i to its left leaves i. Now
there are no more e’s, so the test succeeds. This conclusion also makes sense,
because the sequence iteie corresponds to a C program whose structure is like
that of Fig. 5.10. In fact, the matching algorithm also tells us (and the C
compiler) which if matches any given else. That knowledge is essential if the
compiler is to create the control-flow logic intended by the programmer. O

if (Conditiomn) {

if (Condition) Statement;
else Statement;

if (Condition) Statement;
else Statement;

Figure 5.10: An if-else structure; the two else’s match their previous if’s, and
the first if is unmatched

5.3.2 The YACC Parser-Generator

The generation of a parser (function that creates parse trees from source pro-
grams) has been institutionalized in the YACC command that appears in all
UNIX systems. The input to YACC is a CFG, in a notation that differs only
in details from the one we have used here. Associated with each production is
an action, which is a fragment of C code that is performed whenever a node of
the parse tree that (with its children) corresponds to this production is created.
Typically, the action is code to construct that node, although in some YACC
applications the tree is not actually constructed, and the action does something
else, such as emit a piece of object code.

Example 5.21: In Fig. 5.11 is a sample of a CFG in the YACC notation.
The grammar is the same as that of Fig. 5.2. We have elided the actions, just
showing their (required) curly braces and their position in the YACC input.

Notice the following correspondences between the YACC notation for gram-
mars and ours:
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O

Exp : Id {...}
| Exp ’+> Exp {...}
| Exp x> Exp {...}
| >C Exp )’ {...}

Id : ’a’ {...}
| ’b’ {...}
| Id ’a’ {...}
| Ia ’p’ {...}
| Id ’0° {...}
| Ia ’1° {...}

Figure 5.11: An example of a grammar in the YACC notation

The colon is used as the production symbol, our —.

All the productions with a given head are grouped together, and their
bodies are separated by the vertical bar. We also allow this convention,
as an option.

The list of bodies for a given head ends with a semicolon. We have not
used a terminating symbol.

Terminals are quoted with single quotes. Several characters can appear
within a single pair of quotes. Although we have not shown it, YACC al-
lows its user to define symbolic terminals as well. The occurrence of these
terminals in the source program are detected by the lexical analyzer and
signaled, through the return-value of the lexical analyzer, to the parser.

Unquoted strings of letters and digits are variable names. We have taken
advantage of this capability to give our two variables more descriptive
names — Exp and Id — although E and I could have been used.

5.3.3 Markup Languages

We shall next consider a family of “languages” called markup languages. The
“strings” in these languages are documents with certain marks (called tags) in
them. Tags tell us something about the semantics of various strings within the
document.

The markup language with which you are probably most familiar is HTML

(HyperText Markup Language). This language has two major functions: creat-
ing links between documents and describing the format (“look”) of a document.
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We shall offer only a simplified view of the structure of HTML, but the follow-
ing examples should suggest both its structure and how a CFG could be used
both to describe the legal HTML documents and to guide the processing (i.e.,
the display on a monitor or printer) of a document.

Example 5.22: Figure 5.12(a) shows a piece of text, comprising a list of items,
and Fig. 5.12(b) shows its expression in HTML. Notice from Fig. 5.12(b) that
HTML consists of ordinary text interspersed with tags. Matching tags are of
the form <z> and </z> for some string z.> For instance, we see the matching
tags <EM> and </EM>, which indicate that the text between them should be
emphasized, that is, put in italics or another appropriate font. We also see the
matching tags <0L> and </0L>, indicating an ordered list, i.e., an enumeration
of list items.

The things I hate:

1. Moldy bread.

2. People who drive too slow in the fast lane.
(a) The text as viewed

<P>The things I <EM>hate</EM>:
<0L>

<LI>Moldy bread.

<LI>People who drive too slow
in the fast lane.

</0L>

(b) The HTML source

Figure 5.12: An HTML document and its printed version

We also see two examples of unmatched tags: <P> and <LI>, which introduce
paragraphs and list items, respectively. HTML allows, indeed encourages, that
these tags be matched by </P> and </LI> at the ends of paragraphs and list
items, but it does not require the matching. We have therefore left the matching
tags off, to provide some complexity to the sample HTML grammar we shall
develop. O

There are a number of classes of strings that are associated with an HTML
document. We shall not try to list them all, but here are the ones essential to
the understanding of text like that of Example 5.22. For each class, we shall
introduce a variable with a descriptive name.

3Sometimes the introducing tag <z> has more information in it than just the name z for
the tag. However, we shall not consider that possibility in examples.
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1. Text is any string of characters that can be literally interpreted; i.e., it
has no tags. An example of a Text element in Fig 5.12(a) is “Moldy
bread.”

2. Char is any string consisting of a single character that is legal in HTML
text. Note that blanks are included as characters.

3. Doc represents documents, which are sequences of “elements.” We define
elements next, and that definition is mutually recursive with the definition
of a Doc.

4. Element is either a Text string, or a pair of matching tags and the doc-
ument between them, or an unmatched tag followed by a document.

5. Listltem is the <LI> tag followed by a document, which is a single list
item.

6. List is a sequence of zero or more list items.

1. Char - alAl| -
2. Text — €| Char Text
3. Doc — €| Element Doc

4. Element — Teuxt |
<EM> Doc </EM> |
<P> Doc |
<0L> List </0L> | ---

5. Listltem — <LI> Doc

6. List — €| ListItem List

Figure 5.13: Part of an HTML grammar

Figure 5.13 is a CFG that describes as much of the structure of the HTML
language as we have covered. In line (1) it is suggested that a character can
be “a” or “A” or many other possible characters that are part of the HTML
character set. Line (2) says, using two productions, that T'ext can be either the
empty string, or any legal character followed by more text. Put another way,
Text is zero or more characters. Note that < and > are not legal characters,
although they can be represented by the sequences &1t; and &gt ;, respectively.
Thus, we cannot accidentally get a tag into Text.

Line (3) says that a document is a sequence of zero or more “elements.” An
element in turn, we learn at line (4), is either text, an emphasized document, a
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paragraph-beginning followed by a document, or a list. We have also suggested
that there are other productions for Element, corresponding to the other kinds
of tags that appear in HTML. Then, in line (5) we find that a list item is the
<LI> tag followed by any document, and line (6) tells us that a list is a sequence
of zero or more list elements.

Some aspects of HTML do not require the power of context-free grammars;
regular expressions are adequate. For example, lines (1) and (2) of Fig. 5.13
simply say that Text represents the same language as does the regular expres-
sion (a+ A + ---)*. However, some aspects of HTML do require the power
of CFG’s. For instance, each pair of tags that are a corresponding beginning
and ending pair, e.g., <EM> and </EM>, is like balanced parentheses, which we
already know are not regular.

5.3.4 XML and Document-Type Definitions

The fact that HTML is described by a grammar is not in itself remarkable.
Essentially all programming languages can be described by their own CFG'’s,
so it would be more surprising if we could not so describe HTML. However,
when we look at another important markup language, XML (eXtensible Markup
Language), we find that the CFG’s play a more vital role, as part of the process
of using that language.

The purpose of XML is not to describe the formatting of the document;
that is the job for HTML. Rather, XML tries to describe the “semantics” of
the text. For example, text like “12 Maple St.” looks like an address, but is
it? In XML, tags would surround a phrase that represented an address; for
example:

<ADDR>12 Maple St.</ADDR>

However, it is not immediately obvious that <ADDR> means the address of a
building. For instance, if the document were about memory allocation, we might
expect that the <ADDR> tag would refer to a memory address. To make clear
what the different kinds of tags are, and what structures may appear between
matching pairs of these tags, people with a common interest are expected to
develop standards in the form of a DTD (Document-Type Definition).

A DTD is essentially a context-free grammar, with its own notation for
describing the variables and productions. In the next example, we shall show
a simple DTD and introduce some of the language used for describing DTD’s.
The DTD language itself has a context-free grammar, but it is not that grammar
we are interested in describing. Rather, the language for describing DTD’s is
essentially a CFG notation, and we want to see how CFG’s are expressed in
this language.

The form of a DTD is

<!DOCTYPE name-of-DTD [
list of element definitions

1>
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An element definition, in turn, has the form
<!ELEMENT element-name (description of the element)>

Element descriptions are essentially regular expressions. The basis of these
expressions are:

1. Other element names, representing the fact that elements of one type can
appear within elements of another type, just as in HTML we might find
emphasized text within a list.

2. The special term #PCDATA, standing for any text that does not involve
XML tags. This term plays the role of variable Text in Example 5.22.

The allowed operators are:

1. | standing for union, as in the UNIX regular-expression notation discussed
in Section 3.3.1.

2. A comma, denoting concatenation.

3. Three variants of the closure operator, as in Section 3.3.1. These are x,
the usual operator meaning “zero or more occurrences of,” 4, meaning
“one or more occurrences of,” and ?, meaning “zero or one occurrence
of.”

Parentheses may group operators to their arguments; otherwise, the usual prece-
dence of regular-expression operators applies.

Example 5.23: Let us imagine that computer vendors get together to create
a standard DTD that they can use to publish, on the Web, descriptions of the
various PC’s that they currently sell. Each description of a PC will have a
model number, and details about the features of the model, e.g., the amount of
RAM, number and size of disks, and so on. Figure 5.14 shows a hypothetical,
very simple, DTD for personal computers.

The name of the DTD is PcSpecs. The first element, which is like the start
symbol of a CFG, is PCS (list of PC specifications). Its definition, PC*, says
that a PCS is zero or more PC entries.

We then see the definition of a PC element. It consists of the concatenation
of five things. The first four are other elements, corresponding to the model,
price, processor type, and RAM of the PC. Each of these must appear once,
in that order, since the comma represents concatenation. The last constituent,
DISK+, tells us that there will be one or more disk entries for a PC.

Many of the constituents are simply text; MODEL, PRICE, and RAM are of this
type. However, PROCESSOR has more structure. We see from its definition that
it consists of a manufacturer, model, and speed, in that order; each of these
elements is simple text.
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<!DOCTYPE PcSpecs [
<!ELEMENT PCS (PCx)>
<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>
<!ELEMENT MODEL (#PCDATA)>
<!ELEMENT PRICE (#PCDATA)>
<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>
<!ELEMENT MANF (#PCDATA)>
<!ELEMENT MODEL (#PCDATA)>
<!ELEMENT SPEED (#PCDATA)>
<!ELEMENT RAM (#PCDATA)>
<!ELEMENT DISK (HARDDISK | CD | DVD)>
<!ELEMENT HARDDISK (MANF, MODEL, SIZE)>
<!ELEMENT SIZE (#PCDATA)>
<!ELEMENT CD (SPEED)>
<!ELEMENT DVD (SPEED)>
1>

Figure 5.14: A DTD for personal computers

A DISK entry is the most complex. First, a disk is either a hard disk, CD, or
DVD, as indicated by the rule for element DISK, which is the OR of three other
elements. Hard disks, in turn, have a structure in which the manufacturer,
model, and size are specified, while CD’s and DVD’s are represented only by
their speed.

Figure 5.15 is an example of an XML document that conforms to the DTD
of Fig. 5.14. Notice that each element is represented in the document by a tag
with the name of that element and a matching tag at the end, with an extra
slash, just as in HTML. Thus, in Fig. 5.15 we see at the outermost level the tag
<PCS>...</PCS>. Inside these tags appears a list of entries, one for each PC
sold by this manufacturer; we have only shown one such entry explicitly.

Within the illustrated <PC> entry, we can easily see that the model number
is 4560, the price is $2295, and it has an 800MHz Intel Pentium processor. It
has 256Mb of RAM, a 30.5Gb Maxtor Diamond hard disk, and a 32x CD-ROM
reader. What is important is not that we can read these facts, but that a
program could read the document, and guided by the grammar in the DTD
of Fig. 5.14 that it has also read, could interpret the numbers and names in
Fig. 5.15 properly. O

You may have noticed that the rules for the elements in DTD’s like Fig. 5.14
are not quite like productions of context-free grammars. Many of the rules are
of the correct form. For instance,

<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>
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<PCS>
<PC>
<MODEL>4560</MODEL>
<PRICE>$2295</PRICE>
<PROCESSOR>
<MANF>Intel</MANF>
<MODEL>Pentium</MODEL>
<SPEED>800MHz</SPEED>
</PROCESSOR>
<RAM>256</RAM>
<DISK><HARDDISK>
<MANF>Maxtor</MANF>
<MODEL>Diamond</MODEL>
<SIZE>30.5Gb</SIZE>
</HARDDISK></DISK>
<DISK><CD>
<SPEED>32x</SPEED>
</CD></DISK>
</PC>
<PC>

</PC>
</PCS>

Figure 5.15: Part of a document obeying the structure of the DTD in Fig. 5.14

is analogous to the production
Processor — Manf Model Speed
However, the rule
<!'ELEMENT DISK (HARDDISK | CD | DVD)>
does not have a definition for DISK that is like a production body. In this case,
the extension is simple: we may interpret this rule as three productions, with

the vertical bar playing the same role as it does in our shorthand for productions
having a common head. Thus, this rule is equivalent to the three productions

Disk — HardDisk | Cd | Dvd

The most difficult case is

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>
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where the “body” has a closure operator within it. The solution is to replace
DISK+ by a new variable, say Disks, that generates, via a pair of productions,
one or more instances of the variable Disk. The equivalent productions are
thus:

Pc — Model Price Processor Ram Disks
Disks — Disk | Disk Disks

There is a general technique for converting a CFG with regular expressions
as production bodies to an ordinary CFG. We shall give the idea informally;
you may wish to formalize both the meaning of CFG’s with regular-expression
productions and a proof that the extension yields no new languages beyond
the CFL’s. We show, inductively, how to convert a production with a regular-
expression body to a collection of equivalent ordinary productions. The induc-
tion is on the size of the expression in the body.

BASIS: If the body is the concatenation of elements, then the production is
already in the legal form for CFG’s, so we do nothing.

INDUCTION: Otherwise, there are five cases, depending on the final operator
used.

1. The production is of the form A — Ei, E>, where E; and E> are expres-
sions permitted in the DTD language. This is the concatenation case.
Introduce two new variables, B and C, that appear nowhere else in the
grammar. Replace A — Ey, E5 by the productions

A— BC
B—)El
C—)EQ

The first production, A — BC, is legal for CFG’s. The last two may or
may not be legal. However, their bodies are shorter than the body of the
original production, so we may inductively convert them to CFG form.

2. The production is of the form A — E; | E,. For this union operator,
replace this production by the pair of productions:

A—)El
A—)EQ

Again, these productions may or may not be legal CFG productions, but
their bodies are shorter than the body of the original. We may therefore
apply the rules recursively and eventually convert these new productions
to CFG form.

3. The production is of the form A — (E;)*. Introduce a new variable B
that appears nowhere else, and replace this production by:
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A — BA
A— e
B — E;

4. The production is of the form A — (E;)*. Introduce a new variable B
that appears nowhere else, and replace this production by:

A — BA
A— B
B—)El

5. The production is of the form A — (E;)?. Replace this production by:

A—e
A—)El

Example 5.24: Let us consider how to convert the DTD rule
<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>

to legal CFG productions. First, we can view the body of this rule as the con-
catenation of two expressions, the first of which is MODEL, PRICE, PROCESSOR,
RAM and the second of which is DISK+. If we create variables for these two
subexpressions, say A and B, respectively, then we can use the productions:

Pc— AB
A — Model Price Processor Ram
B — Disk™

Only the last of these is not in legal form. We introduce another variable C
and the productions:

B—-CB|C
C — Disk

In this special case, because the expression that A derives is just a concate-
nation of variables, and Disk is a single variable, we actually have no need for
the variables A or C'. We could use the following productions instead:

Pc — Model Price Processor Ram B
B — Disk B | Disk
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5.3.5 Exercises for Section 5.3

Exercise 5.3.1: Prove that if a string of parentheses is balanced, in the sense
given in Example 5.19, then it is generated by the grammar B — BB | (B) | e.
Hint: Perform an induction on the length of the string.

Exercise 5.3.2: Consider the set of all strings of balanced parentheses of two
types, round and square. An example of where these strings come from is as
follows. If we take expressions in C, which use round parentheses for grouping
and for arguments of function calls, and use square brackets for array indexes,
and drop out everything but the parentheses, we get all strings of balanced
parentheses of these two types. For example,

falil*(w[il[j1,clgx)1),dlil)

becomes the balanced-parenthesis string ([J(LILO1)[1). Design a gram-
mar for all and only the strings of round and square parentheses that are bal-
anced.

Exercise 5.3.3: In Section 5.3.1, we considered the grammar
S—e|SS|iS|iSeS

and claimed that we could test for membership in its language L by repeatedly
doing the following, starting with a string w. The string w changes during
repetitions.

1. If the current string begins with e, fail; w is not in L.
2. If the string currently has no e’s (it may have i’s), succeed; w is in L.

3. Otherwise, delete the first e and the ¢ immediately to its left. Then repeat
these three steps on the new string.

Prove that this process correctly identifies the strings in L.

Exercise 5.3.4: Add the following forms to the HTML grammar of Fig. 5.13:
* a) A list item must be ended by a closing tag </LI>.

b) An element can be an unordered list, as well as an ordered list. Unordered
lists are surrounded by the tag <UL> and its closing </UL>.

! ¢) An element can be a table. Tables are surrounded by <TABLE> and its
closer </TABLE>. Inside these tags are one or more rows, each of which
is surrounded by <TR> and </TR>. The first row is the header, with one
or more fields, each introduced by the <TH> tag (we’ll assume these are
not closed, although they should be). Subsequent rows have their fields
introduced by the <TD> tag.

Exercise 5.3.5: Convert the DTD of Fig. 5.16 to a context-free grammar.
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<!DOCTYPE CourseSpecs [
<!ELEMENT COURSES (COURSE+)>
<!ELEMENT COURSE (CNAME, PROF, STUDENT*, TA7)>
<!ELEMENT CNAME (#PCDATA)>
<!ELEMENT PROF (#PCDATA)>
<!ELEMENT STUDENT (#PCDATA)>
<!ELEMENT TA (#PCDATA)> 1>

Figure 5.16: A DTD for courses

5.4 Ambiguity in Grammars and Languages

As we have seen, applications of CFG’s often rely on the grammar to provide
the structure of files. For instance, we saw in Section 5.3 how grammars can be
used to put structure on programs and documents. The tacit assumption was
that a grammar uniquely determines a structure for each string in its language.
However, we shall see that not every grammar does provide unique structures.

When a grammar fails to provide unique structures, it is sometimes possible
to redesign the grammar to make the structure unique for each string in the
language. Unfortunately, sometimes we cannot do so. That is, there are some
CFL’s that are “inherently ambiguous”; every grammar for the language puts
more than one structure on some strings in the language.

5.4.1 Ambiguous Grammars

Let us return to our running example: the expression grammar of Fig. 5.2. This
grammar lets us generate expressions with any sequence of * and + operators,
and the productions E — E + E | E x E allow us to generate these expressions
in any order we choose.

Example 5.25: For instance, consider the sentential form E + E % E. It has
two derivations from E:

1. E>E+E=E+ExE

2. E>E«xE=E+E+E

Notice that in derivation (1), the second E is replaced by E % E, while in
derivation (2), the first E is replaced by E + E. Figure 5.17 shows the two
parse trees, which we should note are distinct trees.

The difference between these two derivations is significant. As far as the
structure of the expressions is concerned, derivation (1) says that the second and
third expressions are multiplied, and the result is added to the first expression,
while derivation (2) adds the first two expressions and multiplies the result by
the third. In more concrete terms, the first derivation suggests that 1 + 2 % 3
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N N
NN

E
(@) (b)

Figure 5.17: Two parse trees with the same yield

should be grouped 1 + (2 % 3) = 7, while the second derivation suggests the
same expression should be grouped (1 + 2) * 3 = 9. Obviously, the first of
these, and not the second, matches our notion of correct grouping of arithmetic
expressions.

Since the grammar of Fig. 5.2 gives two different structures to any string
of terminals that is derived by replacing the three expressions in E + E x E by
identifiers, we see that this grammar is not a good one for providing unique
structure. In particular, while it can give strings the correct grouping as arith-
metic expressions, it also gives them incorrect groupings. To use this expression
grammar in a compiler, we would have to modify it to provide only the correct
groupings. O

On the other hand, the mere existence of different derivations for a string
(as opposed to different parse trees) does not imply a defect in the grammar.
The following is an example.

Example 5.26: Using the same expression grammar, we find that the string
a + b has many different derivations. Two examples are:

1. EFE+E=I14+E=a+E=a+1=a+b
2. FFE+FE=FE+I=>14+1=>14+b=a+b

However, there is no real difference between the structures provided by these
derivations; they each say that a and b are identifiers, and that their values are
to be added. In fact, both of these derivations produce the same parse tree if
the construction of Theorems 5.18 and 5.12 are applied. O

The two examples above suggest that it is not a multiplicity of derivations
that cause ambiguity, but rather the existence of two or more parse trees. Thus,
we say a CFG G = (V,T, P, S) is ambiguous if there is at least one string w
in T* for which we can find two different parse trees, each with root labeled S
and yield w. If each string has at most one parse tree in the grammar, then the
grammar is unambiguous.

For instance, Example 5.25 almost demonstrated the ambiguity of the gram-
mar of Fig. 5.2. We have only to show that the trees of Fig. 5.17 can be com-
pleted to have terminal yields. Figure 5.18 is an example of that completion.
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Figure 5.18: Trees with yield a + a * a, demonstrating the ambiguity of our
expression grammar

5.4.2 Removing Ambiguity From Grammars

In an ideal world, we would be able to give you an algorithm to remove ambi-
guity from CFG’s, much as we were able to show an algorithm in Section 4.4 to
remove unnecessary states of a finite automaton. However, the surprising fact
is, as we shall show in Section 9.5.2, that there is no algorithm whatsoever that
can even tell us whether a CFG is ambiguous in the first place. Moreover, we
shall see in Section 5.4.4 that there are context-free languages that have nothing
but ambiguous CFG’s; for these languages, removal of ambiguity is impossible.

Fortunately, the situation in practice is not so grim. For the sorts of con-
structs that appear in common programming languages, there are well-known
techniques for eliminating ambiguity. The problem with the expression gram-
mar of Fig. 5.2 is typical, and we shall explore the elimination of its ambiguity
as an important illustration.

First, let us note that there are two causes of ambiguity in the grammar of
Fig. 5.2:

1. The precedence of operators is not respected. While Fig. 5.17(a) properly
groups the x before the + operator, Fig 5.17(b) is also a valid parse tree
and groups the + ahead of the x. We need to force only the structure of
Fig. 5.17(a) to be legal in an unambiguous grammar.

2. A sequence of identical operators can group either from the left or from the
right. For example, if the %’s in Fig. 5.17 were replaced by +’s, we would
see two different parse trees for the string £ + F + E. Since addition
and multiplication are associative, it doesn’t matter whether we group
from the left or the right, but to eliminate ambiguity, we must pick one.
The conventional approach is to insist on grouping from the left, so the
structure of Fig. 5.17(b) is the only correct grouping of two +-signs.
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Ambiguity Resolution in YACC

If the expression grammar we have been using is ambiguous, we might
wonder whether the sample YACC program of Fig. 5.11 is realistic. True,
the underlying grammar is ambiguous, but much of the power of the YACC
parser-generator comes from providing the user with simple mechanisms
for resolving most of the common causes of ambiguity. For the expression
grammar, it is sufficient to insist that:

a) * takes precedence over +. That is, *’s must be grouped before
adjacent +’s on either side. This rule tells us to use derivation (1)
in Example 5.25, rather than derivation (2).

b) Both x and + are left-associative. That is, group sequences of ex-
pressions, all of which are connected by *, from the left, and do the
same for sequences connected by +.

YACC allows us to state the precedence of operators by listing them
in order, from lowest to highest precedence. Technically, the precedence
of an operator applies to the use of any production of which that operator
is the rightmost terminal in the body. We can also declare operators to
be left- or right-associative with the keywords %left and %right. For
instance, to declare that + and * were both left associative, with * taking
precedence over 4+, we would put ahead of the grammar of Fig. 5.11 the
statements:

%left '+
%left 7%

CHAPTER 5. CONTEXT-FREE GRAMMARS AND LANGUAGES

The solution to the problem of enforcing precedence is to introduce several

different variables, each of which represents those expressions that share a level
of “binding strength.” Specifically:

1. A factor is an expression that cannot be broken apart by any adjacent

operator, either a * or a +. The only factors in our expression language
are:

(a) Identifiers. It is not possible to separate the letters of an identifier
by attaching an operator.

(b) Any parenthesized expression, no matter what appears inside the
parentheses. It is the purpose of parentheses to prevent what is inside
from becoming the operand of any operator outside the parentheses.



5.4. AMBIGUITY IN GRAMMARS AND LANGUAGES 211

2. A term is an expression that cannot be broken by the + operator. In our
example, where + and * are the only operators, a term is a product of
one or more factors. For instance, the term a * b can be “broken” if we
use left associativity and place alx to its left. That is, al*a*b is grouped
(al * a) % b, which breaks apart the a * b. However, placing an additive
term, such as al+, to its left or +al to its right cannot break a * b. The
proper grouping of al + a x b is al + (a * b), and the proper grouping of
axb+alis (axb)+al.

3. An ezpression will henceforth refer to any possible expression, including
those that can be broken by either an adjacent * or an adjacent +. Thus,
an expression for our example is a sum of one or more terms.

I — al|b|la|Ib]I0]|I1
F - I|(E)

T - F|T*F

E — T|E+T

Figure 5.19: An unambiguous expression grammar

Example 5.27: Figure 5.19 shows an unambiguous grammar that generates
the same language as the grammar of Fig. 5.2. Think of F', T, and E as the
variables whose languages are the factors, terms, and expressions, as defined
above. For instance, this grammar allows only one parse tree for the string
a + a * a; it is shown in Fig. 5.20.

E
N
E + T
N N
T T * F
] |
F F 1
] |
1 1 a
|
a a

Figure 5.20: The sole parse tree for a + a * a

The fact that this grammar is unambiguous may be far from obvious. Here
are the key observations that explain why no string in the language can have
two different parse trees.
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e Any string derived from T, a term, must be a sequence of one or more
factors, connected by *’s. A factor, as we have defined it, and as follows
from the productions for F' in Fig. 5.19, is either a single identifier or any
parenthesized expression.

e Because of the form of the two productions for 7', the only parse tree for
a sequence of factors is the one that breaks fi * fox---x f,, for n > 1 into
a term fi % fo*---x% f,, 1 and a factor f,. The reason is that F' cannot
derive expressions like f,,_1 * f,, without introducing parentheses around
them. Thus, it is not possible that when using the production T' — T % F,
the F' derives anything but the last of the factors. That is, the parse tree
for a term can only look like Fig. 5.21.

T

I

T * F

T
F
Figure 5.21: The form of all parse trees for a term

e Likewise, an expression is a sequence of terms connected by +. When
we use the production £ — E + T to derive t; + to + --- + t, the T
must derive only ¢,, and the E in the body derives t1 + t3 + -+ + tp—1-
The reason, again, is that 7' cannot derive the sum of two or more terms
without putting parentheses around them.

5.4.3 Leftmost Derivations as a Way to Express
Ambiguity

While derivations are not necessarily unique, even if the grammar is unambigu-
ous, it turns out that, in an unambiguous grammar, leftmost derivations will
be unique, and rightmost derivations will be unique. We shall consider leftmost
derivations only, and state the result for rightmost derivations.
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Example 5.28: As an example, notice the two parse trees of Fig. 5.18 that
each yield £ + E x E. If we construct leftmost derivations from them we get
the following leftmost derivations from trees (a) and (b), respectively:

a) E= E4+E= I+E= a+E= a+ExE= a+I[+«E= a+axE =
Im Im Im Im Im lm lm
at+axl= ataxa

Im

b) E:> E*E:> E+E*E:> [+E*E:> a+E*E:> a+[*E:>
a+a*E:> a+a*I:> a+a*a

lm im
Note that these two leftmost derivations differ. This example does not prove
the theorem, but demonstrates how the differences in the trees force different
steps to be taken in the leftmost derivation. O

Theorem 5.29: For each grammar G = (V,T, P, S) and string w in T*, w has
two distinct parse trees if and only if w has two distinct leftmost derivations
from S.

PROOF: (Only-if) If we examine the construction of a leftmost derivation from
a parse tree in the proof of Theorem 5.14, we see that wherever the two parse
trees first have a node at which different productions are used, the leftmost
derivations constructed will also use different productions and thus be different
derivations.

(If) While we have not previously given a direct construction of a parse tree
from a leftmost derivation, the idea is not hard. Start constructing a tree with
only the root, labeled S. Examine the derivation one step at a time. At each
step, a variable will be replaced, and this variable will correspond to the leftmost
node in the tree being constructed that has no children but that has a variable
as its label. From the production used at this step of the leftmost derivation,
determine what the children of this node should be. If there are two distinct
derivations, then at the first step where the derivations differ, the nodes being
constructed will get different lists of children, and this difference guarantees
that the parse trees are distinct. O

5.4.4 Inherent Ambiguity

A context-free language L is said to be inherently ambiguous if all its gram-
mars are ambiguous. If even one grammar for L is unambiguous, then L is an
unambiguous language. We saw, for example, that the language of expressions
generated by the grammar of Fig. 5.2 is actually unambiguous. Even though
that grammar is ambiguous, there is another grammar for the same language
that is unambiguous — the grammar of Fig. 5.19.

We shall not prove that there are inherently ambiguous languages. Rather
we shall discuss one example of a language that can be proved inherently am-
biguous, and we shall explain intuitively why every grammar for the language
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must be ambiguous. The language L in question is:
L={a™"c"d™ |n>1,m>1} U {a"b"c™d" | n>1,m > 1}
That is, L consists of strings in a*b™ctd™ such that either:

1. There are as many a’s as b’s and as many c’s as d’s, or

2. There are as many a’s as d’s and as many b’s as ¢’s.

L is a context-free language. The obvious grammar for L is shown in
Fig. 5.22. It uses separate sets of productions to generate the two kinds of
strings in L.

S — AB|C
A — aAb|ab
B — c¢Bd|cd
C — aCd|aDd
D — bDc|be

Figure 5.22: A grammar for an inherently ambiguous language

This grammar is ambiguous. For example, the string aabbcedd has the two
leftmost derivations:

1. Sl:> ABl:> aAbBl:> aabbBl:> aabchdl:> aabbeedd

2. S= C = aCd = aaDdd = aabDcdd = aabbcedd
im im Im im Im
and the two parse trees shown in Fig. 5.23.

The proof that all grammars for L must be ambiguous is complex. However,
the essence is as follows. We need to argue that all but a finite number of the
strings whose counts of the four symbols a, b, ¢, and d, are all equal must be
generated in two different ways: one in which the a’s and b’s are generated to
be equal and the ¢’s and d’s are generated to be equal, and a second way, where
the a’s and d’s are generated to be equal and likewise the b’s and ¢’s.

For instance, the only way to generate strings where the a’s and b’s have
the same number is with a variable like A in the grammar of Fig. 5.22. There
are variations, of course, but these variations do not change the basic picture.
For instance:

e Some small strings can be avoided, say by changing the basis production
A — ab to A — aaabbb, for instance.

e We could arrange that A shares its job with some other variables, e.g.,
by using variables A; and As, with A; generating the odd numbers of a’s
and As generating the even numbers, as: Ay — aAsb | ab; As — aA;b.
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Figure 5.23: Two parse trees for aabbcedd

e We could also arrange that the numbers of a’s and b’s generated by A
are not exactly equal, but off by some finite number. For instance, we
could start with a production like S — AbB and then use A — adb | a
to generate one more @ than b’s.

However, we cannot avoid some mechanism for generating a’s in a way that
matches the count of b’s.

Likewise, we can argue that there must be a variable like B that generates
matching ¢’s and d’s. Also, variables that play the roles of C' (generate match-
ing a’s and d’s) and D (generate matching b’s and ¢’s) must be available in
the grammar. The argument, when formalized, proves that no matter what
modifications we make to the basic grammar, it will generate at least some of
the strings of the form a™b"c"d" in the two ways that the grammar of Fig. 5.22
does.

5.4.5 Exercises for Section 5.4

Exercise 5.4.1: Consider the grammar
S —aS | aSbS | e
This grammar is ambiguous. Show in particular that the string aab has two:
a) Parse trees.
b) Leftmost derivations.

¢) Rightmost derivations.
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Exercise 5.4.2: Prove that the grammar of Exercise 5.4.1 generates all and
only the strings of a’s and b’s such that every prefix has at least as many a’s as
b’s.

Exercise 5.4.3: Find an unambiguous grammar for the language of Exer-
cise 5.4.1.

Exercise 5.4.4: Some strings of a’s and b’s have a unique parse tree in the
grammar of Exercise 5.4.1. Give an efficient test to tell whether a given string
is one of these. The test “try all parse trees to see how many yield the given
string” is not adequately efficient.

Exercise 5.4.5: This question concerns the grammar from Exercise 5.1.2,
which we reproduce here:

S — AlB
A — 04]e¢
B — O0B|1B|e

a) Show that this grammar is unambiguous.

b) Find a grammar for the same language that is ambiguous, and demon-
strate its ambiguity.

Exercise 5.4.6: Is your grammar from Exercise 5.1.5 unambiguous? If not,
redesign it to be unambiguous.

Exercise 5.4.7: The following grammar generates prefix expressions with
operands = and y and binary operators +, —, and *:

E—-+EE| xEE| —EE |z |y

a) Find leftmost and rightmost derivations, and a derivation tree for the
string +*-xyxy.

! b) Prove that this grammar is unambiguous.

5.5 Summary of Chapter 5

4+ Context-Free Grammars: A CFG is a way of describing languages by
recursive rules called productions. A CFG consists of a set of variables, a
set of terminal symbols, and a start variable, as well as the productions.
Each production consists of a head variable and a body consisting of a
string of zero or more variables and/or terminals.

4 Derivations and Languages: Beginning with the start symbol, we derive
terminal strings by repeatedly replacing a variable by the body of some
production with that variable in the head. The language of the CFG is
the set of terminal strings we can so derive; it is called a context-free
language.
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4 Leftmost and Rightmost Derivations: If we always replace the leftmost
(resp. rightmost) variable in a string, then the resulting derivation is a
leftmost (resp. rightmost) derivation. Every string in the language of a
CFG has at least one leftmost and at least one rightmost derivation.

4 Sentential Forms: Any step in a derivation is a string of variables and/or
terminals. We call such a string a sentential form. If the derivation is
leftmost (resp. rightmost), then the string is a left- (resp. right-) sentential
form.

4 Parse Trees: A parse tree is a tree that shows the essentials of a derivation.
Interior nodes are labeled by variables, and leaves are labeled by terminals
or €. For each internal node, there must be a production such that the
head of the production is the label of the node, and the labels of its
children, read from left to right, form the body of that production.

4 FEquivalence of Parse Trees and Derivations: A terminal string is in the
language of a grammar if and only if it is the yield of at least one parse
tree. Thus, the existence of leftmost derivations, rightmost derivations,
and parse trees are equivalent conditions that each define exactly the
strings in the language of a CFG.

+ Ambiguous Grammars: For some CFG’s, it is possible to find a terminal
string with more than one parse tree, or equivalently, more than one left-
most derivation or more than one rightmost derivation. Such a grammar
is called ambiguous.

4 Eliminating Ambiguity: For many useful grammars, such as those that
describe the structure of programs in a typical programming language,
it is possible to find an unambiguous grammar that generates the same
language. Unfortunately, the unambiguous grammar is frequently more
complex than the simplest ambiguous grammar for the language. There
are also some context-free languages, usually quite contrived, that are
inherently ambiguous, meaning that every grammar for that language is
ambiguous.

4 Parsers: The context-free grammar is an essential concept for the im-
plementation of compilers and other programming-language processors.
Tools such as YACC take a CFG as input and produce a parser, the com-
ponent of a compiler that deduces the structure of the program being
compiled.

4 Document Type Definitions: The emerging XML standard for sharing
information through Web documents has a notation, called the DTD,
for describing the structure of such documents, through the nesting of
semantic tags within the document. The DTD is in essence a context-free
grammar whose language is a class of related documents.
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5.6 Gradiance Problems for Chapter 5

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.

Problem 5.1: Let G be the grammar:
S—=S5|(S)]e

L(G) is the language BP of all strings of balanced parentheses, that is, those
strings that could appear in a well-formed arithmetic expression. We want to
prove that L(G) = BP, which requires two inductive proofs:

1. If wis in L(G), then w is in BP.
2. If wis in BP, then w is in L(G).

We shall here prove only the first. You will see below a sequence of steps in the
proof, each with a reason left out. These reasons belong to one of three classes:

A) Use of the inductive hypothesis.

B) Reasoning about properties of grammars, e.g., that every derivation has
at least one step.

C) Reasoning about properties of strings, e.g., that every string is longer
than any of its proper substrings.

The proof is an induction on the number of steps in the derivation of w. You
should decide on the reason for each step in the proof below, and then identify
from the available choices a correct pair consisting of a step and a kind of reason

(A, B, or C).

Basis: One step.
1. The only 1-step derivation of a terminal string is S = € because:
2. €is in BP because:

Induction: An n-step derivation for some n > 1.
3. The derivation S =" w is either of the form

a) S =SS =""1w or of the form
b) S=(S)=""tw
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because:
Case (a):

4. w = xy, for some strings x and y such that S =P x and S =7 y, where
p < n and g < n because:

5. z is in BP because:
6. y is in BP because:
7. w is in BP because:
Case (b):
8. w = (2) for some string z such that S ="' z because:

9. zis in BP because:

10. w is in BP because:
Problem 5.2: Let G be the grammar:
S—S5|(S)]e

L(G) is the language BP of all strings of balanced parentheses, that is, those
strings that could appear in a well-formed arithmetic expression. We want to
prove that L(G) = BP, which requires two inductive proofs:

1. If wis in L(G), then w is in BP.
2. If wis in BP, then w is in L(G).

We shall here prove only the second. You will see below a sequence of steps
in the proof, each with a reason left out. These reasons belong to one of three
classes:

A) Use of the inductive hypothesis.

B) Reasoning about properties of grammars, e.g., that every derivation has
at least one step.

C) Reasoning about properties of strings, e.g., that every string is longer
than any of its proper substrings.

The proof is an induction on the number of steps in the derivation of w. You
should decide on the reason for each step in the proof below, and then identify

from the available choices a correct pair consisting of a step and a kind of reason
(A, B, or C).

Basis: Length = 0.
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1.

2.
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The only string of length 0 in BP is € because:

€ is in L(G) because:

Induction: |w|=n > 0.

3.

10.

11.

w is of the form (z)y, where (z) is the shortest proper prefix of w that is
in BP, and y is the remainder of w because:

. x is in BP because:

y is in BP because:

|z] < n because:

ly| < n because:

x is in L(G) because:
y is in L(G) because:
(z) is in L(G) because:

w is in L(G) because:

Problem 5.3: Here are eight simple grammars, each of which generates an
infinite language of strings. These strings tend to look like alternating a’s and
b’s, although there are some exceptions, and not all grammars generate all such

strings.
1. S—abS | ab
2.85—-5S5|ab
3. S—»aB B—bS|a
4. S—aB B —bS|b
5.8 —-aB B —bS|ab
6. S—aB|b; B—bS
7.8 —=aB|a; B—bS
8. S —aB|ab; B—bS

The initial symbol is S in all cases. Determine the language of each of these
grammars. Then, find, in the list below, the pair of grammars that define the
same language.



5.6. GRADIANCE PROBLEMS FOR CHAPTER 5 221

Problem 5.4: Consider the grammar G and the language L:
G:S—>AB|a|abC A—b C—abC|c
L: {w | w a string of a’s, b’s, and ¢’s with an equal number of a’s and b’s}
Grammar G does not define language L. To prove, we use a string that
either is produced by G and not contained in L or is contained in L but is not
produced by G. Which string can be used to prove it?

Problem 5.5: Consider the grammars:

Gi:S—ABla|ablC A—b C—abC|c

Go: S—=a|b|lecC C—cClec

These grammars do not define the same language. To prove, we use a string
that is generated by one but not by the other grammar. Which of the following
strings can be used for this proof?

Problem 5.6: Consider the languge L = {a}. Which grammar defines L?
Problem 5.7: Consider the grammars:

Gy S—SaS|a

Gy S— S5 |e€

Gs S—>SS|a

Gy S— 5SS |aa

Gs S— Sa|a

Gs S—aSa|aala

Gr S — SAS | e

Describe the language of each of these grammars. Then, identify from the list
below a pair of grammars that define the same language.

Problem 5.8: Consider the following languages and grammars.
G1 S = aAlaS,A — ab
G2 S = abS|aA,A—a
G3 S — Sa|AB,A — aAla,B—b
Gy S — aS|b
Ly {ab|i=1,2,...}
Ly {(ab)laa | i=0,1,...}
Lz {a'b|i=2,3,...}
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Ly {aibai |i=1,2,...,j=0,1,...}
Ls {aib|i=0,1,...}

Match each grammar with the language it defines. Then, identify a correct
match from the list below.

Problem 5.9: Here is a context-free grammar G-

S — AB
A — 0A1 | 2
B — 1B |34

Which of the following strings is in L(G)?

Problem 5.10: Identify in the list below a sentence of length 6 that is gener-
ated by the grammar:

S—=(S)S e
Problem 5.11: Consider the grammar G with start symbol S:
S—=bS|aAlb
A—bA|aB
B —=bB|aS|a
Which of the following is a word in L(G)?

Problem 5.12: Here is a parse tree that uses some unknown grammar G
[shown on-line by the Gradiance system]|. Which of the following productions
is surely one of those for grammar G?

Problem 5.13: The parse tree below [shown on-line by the Gradiance system)]
represents a rightmost derivation according to the grammar

S—AB A—aSla B—0bA
Which of the following is a right-sentential form in this derivation?
Problem 5.14: Consider the grammar:
S—=85 S—ab

Identify in the list below the one set of parse trees which includes a tree that is
not a parse tree of this grammar?

Problem 5.15: Which of the parse trees below [shown on-line by the Gradi-
ance system] yield the same word?
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Problem 5.16: Programming languages are often described using an extended

form of context-free grammar, where square brackets are used to denote an

optional construct. For example, A — B[C]D says that an A can be replaced

by a B and a D, with an optional C' between them. This notation does not

allow us to describe anything but context-free languages, since an extended

production can always be replaced by several conventional productions.
Suppose a grammar has the extended productions:

A UVWIXY | UV[WX]Y

[U,...,Y are strings that will be provided on-line by the Gradiance system.]
Convert this pair of extended productions to conventional productions. Identify,
from the list below, the conventional productions that are equivalent to the
extended productions above.

Problem 5.17: Programming languages are often described using an extended
form of context-free grammar, where curly brackets are used to denote a con-
struct that can repeat 0, 1, 2, or any number of times. For example, A —
B{C}D says that an A can be replaced by a B and a D, with any number of
C’s (including 0) between them. This notation does not allow us to describe
anything but context-free languages, since an extended production can always
be replaced by several conventional productions.
Suppose a grammar has the extended production:

Ao U{VIW

[U, V, and W are strings that will be provided on-line by the Gradiance system.]
Convert this extended production to conventional productions. Identify, from
the list below, the conventional productions that are equivalent to the extended
production above.

Problem 5.18: The grammar G:
S—>S8S|alb

is ambiguous. That means at least some of the strings in its language have
more than one leftmost derivation. However, it may be that some strings in the
language have only one derivation. Identify from the list below a string that
has exactly two leftmost derivations in G.

Problem 5.19: This question concerns the grammar:

S — AbB
A—aAd|e
B —aB |bB |¢€

Find a leftmost derivation of the string XbY [X and Y are strings that will
be provided on-line by the Gradiance system]. Then, identify one of the left-
sentential forms of this derivation from the list below.
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5.7 References for Chapter 5

The context-free grammar was first proposed as a description method for nat-
ural languages by Chomsky [4]. A similar idea was used shortly thereafter to
describe computer languages — Fortran by Backus [2] and Algol by Naur [7].
As aresult, CFG’s are sometimes referred to as “Backus-Naur form grammars.”

Ambiguity in grammars was identified as a problem by Cantor [3] and Floyd
[5] at about the same time. Inherent ambiguity was first addressed by Gross
[6].

For applications of CFG’s in compilers, see [1]. DTD’s are defined in the
standards document for XML [8].
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Chapter 6

Pushdown Automata

The context-free languages have a type of automaton that defines them. This
automaton, called a “pushdown automaton,” is an extension of the nondeter-
ministic finite automaton with e-transitions, which is one of the ways to define
the regular languages. The pushdown automaton is essentially an e-NFA with
the addition of a stack. The stack can be read, pushed, and popped only at the
top, just like the “stack” data structure.

In this chapter, we define two different versions of the pushdown automaton:
one that accepts by entering an accepting state, like finite automata do, and
another version that accepts by emptying its stack, regardless of the state it is in.
We show that these two variations accept exactly the context-free languages;
that is, grammars can be converted to equivalent pushdown automata, and
vice-versa. We also consider briefly the subclass of pushdown automata that is
deterministic. These accept all the regular languages, but only a proper subset
of the CFL’s. Since they resemble closely the mechanics of the parser in a
typical compiler, it is important to observe what language constructs can and
cannot be recognized by deterministic pushdown automata.

6.1 Definition of the Pushdown Automaton

In this section we introduce the pushdown automaton, first informally, then as
a formal construct.

6.1.1 Informal Introduction

The pushdown automaton is in essence a nondeterministic finite automaton
with e-transitions permitted and one additional capability: a stack on which it
can store a string of “stack symbols.” The presence of a stack means that, unlike
the finite automaton, the pushdown automaton can “remember” an infinite
amount of information. However, unlike a general-purpose computer, which
also has the ability to remember arbitrarily large amounts of information, the
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pushdown automaton can only access the information on its stack in a last-in-
first-out way.

As a result, there are languages that could be recognized by some computer
program, but are not recognizable by any pushdown automaton. In fact, push-
down automata recognize all and only the context-free languages. While there
are many languages that are context-free, including some we have seen that are
not regular languages, there are also some simple-to-describe languages that are
not context-free, as we shall see in Section 7.2. An example of a non-context-
free language is {0™1™2" | n > 1}, the set of strings consisting of equal groups
of 0’s, 1’s, and 2’s.

Finite
Input — StAle L  Accept/reject
control

A
Y

Stack

Figure 6.1: A pushdown automaton is essentially a finite automaton with a
stack data structure

We can view the pushdown automaton informally as the device suggested
in Fig. 6.1. A “finite-state control” reads inputs, one symbol at a time. The
pushdown automaton is allowed to observe the symbol at the top of the stack
and to base its transition on its current state, the input symbol, and the symbol
at the top of stack. Alternatively, it may make a “spontaneous” transition, using
€ as its input instead of an input symbol. In one transition, the pushdown
automaton:

1. Consumes from the input the symbol that it uses in the transition. If € is
used for the input, then no input symbol is consumed.

2. Goes to a new state, which may or may not be the same as the previous
state.

3. Replaces the symbol at the top of the stack by any string. The string
could be €, which corresponds to a pop of the stack. It could be the same
symbol that appeared at the top of the stack previously; i.e., no change
to the stack is made. It could also replace the top stack symbol by one
other symbol, which in effect changes the top of the stack but does not
push or pop it. Finally, the top stack symbol could be replaced by two or
more symbols, which has the effect of (possibly) changing the top stack
symbol, and then pushing one or more new symbols onto the stack.

Example 6.1: Let us consider the language
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Lywr = {ww? | wisin (0 +1)*}

This language, often referred to as “w-w-reversed,” is the even-length palin-
dromes over alphabet {0, 1}. It is a CFL, generated by the grammar of Fig. 5.1,
with the productions P — 0 and P — 1 omitted.

We can design an informal pushdown automaton accepting L., as fol-
lows.!

1. Start in a state go that represents a “guess” that we have not yet seen the
middle; i.e., we have not seen the end of the string w that is to be followed
by its own reverse. While in state ¢, we read symbols and store them on
the stack, by pushing a copy of each input symbol onto the stack, in turn.

2. At any time, we may guess that we have seen the middle, i.e., the end of
w. At this time, w will be on the stack, with the right end of w at the top
and the left end at the bottom. We signify this choice by spontaneously
going to state ¢;. Since the automaton is nondeterministic, we actually
make both guesses: we guess we have seen the end of w, but we also stay
in state gp and continue to read inputs and store them on the stack.

3. Once in state g1, we compare input symbols with the symbol at the top
of the stack. If they match, we consume the input symbol, pop the stack,
and proceed. If they do not match, we have guessed wrong; our guessed
w was not followed by wf. This branch dies, although other branches
of the nondeterministic automaton may survive and eventually lead to
acceptance.

4. If we empty the stack, then we have indeed seen some input w followed
by wf. We accept the input that was read up to this point.

O

6.1.2 The Formal Definition of Pushdown Automata

Our formal notation for a pushdown automaton (PDA) involves seven compo-
nents. We write the specification of a PDA P as follows:

P = (Q: E7F767Q()7Z()7'Z?)
The components have the following meanings:

Q: A finite set of states, like the states of a finite automaton.

3: A finite set of input symbols, also analogous to the corresponding compo-
nent of a finite automaton.

'We could also design a pushdown automaton for Lpq1, which is the language whose
grammar appeared in Fig. 5.1. However, Ly, is slightly simpler and will allow us to focus
on the important ideas regarding pushdown automata.
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No “Mixing and Matching”

There may be several pairs that are options for a PDA in some situation.
For instance, suppose 6(g,a,X) = {(p,Y Z), (r,e)}. When making a move
of the PDA, we have to choose one pair in its entirety; we cannot pick a
state from one and a stack-replacement string from another. Thus, in state
q, with X on the top of the stack, reading input a, we could go to state p
and replace X by Y Z, or we could go to state r and pop X. However, we
cannot go to state p and pop X, and we cannot go to state r and replace
X by YZ.

I': A finite stack alphabet. This component, which has no finite-automaton
analog, is the set of symbols that we are allowed to push onto the stack.

0: The transition function. As for a finite automaton, é governs the behavior
of the automaton. Formally, 0 takes as argument a triple 6(q, a, X ), where:

1. ¢ is a state in Q.

2. a is either an input symbol in ¥ or @ = €, the empty string, which is
assumed not to be an input symbol.

3. X is a stack symbol, that is, a member of T'.

The output of 4 is a finite set of pairs (p, ), where p is the new state, and
v is the string of stack symbols that replaces X at the top of the stack.
For instance, if 7 = €, then the stack is popped, if v = X, then the stack
is unchanged, and if v = Y Z, then X is replaced by Z, and Y is pushed
onto the stack.

qo: The start state. The PDA is in this state before making any transitions.

Zo: The start symbol. Initially, the PDA’s stack consists of one instance of
this symbol, and nothing else.

F: T