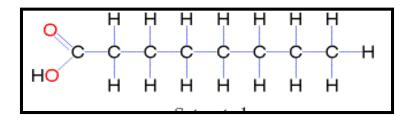
LIPIDS

- The word lipid is derived from the greek word 'lipos' meaning fat.
- Insoluble in water but soluble in non-polar solvents.
- Lipids occur in plants and animals as storage and structural components.
- Supply over twice as much energy per unit weight as proteins or carbohydrates.
- Lipids are essential for the effective absorption of **fat soluble** vitamins i.e. A, D, E and K from intestine.

FATTY ACIDS

- Fatty acids are building block of fat.
- These are carboxylic acids with hydrocarbon chains.
- □ Chemical formula : **R-(CH2)nCOOH.**
- More than 200 fatty acids have been isolated from plants.


Essential fatty acids: Not synthesized in body but essential for normal growth and development.

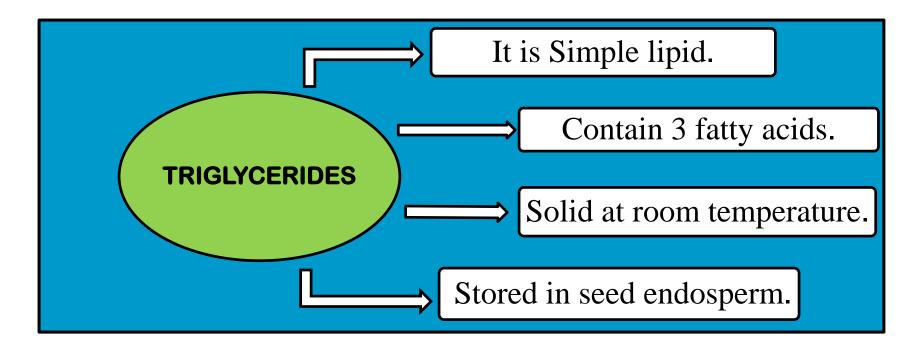
E.g. Linoleic acid, Linolenic acids

Saturated & Unsaturated Fatty Acids

■ **Saturated fatty acid** contains <u>single bond</u> and are solid at room temperature.

E.g. Lauric acid, palmatic acid

■ **Unsaturated fatty acids** possesses at least one double bond. Liquid at room temperature.


E.g. Linoleic acid, Linolenic acid

Types of Lipids

- 1. Simple Lipids: contain only fatty acids and glycerol.
 - It includes fats and oil.

FATS:- Rich in saturated fatty acids

OIL:- Rich in Unsaturated fatty acids

Types of Lipids

- 2. <u>Compound lipids</u>: contain chemical group in addition to fatty acids and glycerol.
 - E.g. Glycolipids, Phospholipids, Lipoproteins.
- 3. <u>Derived lipids</u>: Substances derived from simple and compound lipids by hydrolysis of alcohol, fatty acids, hydrocarbon etc.

Wax: Esters of fatty acids and alcohol. e.g. beeswax is esters of palmatic acid.

Storage lipids: Excess lipids after used for nutrition and energy_stored in body.

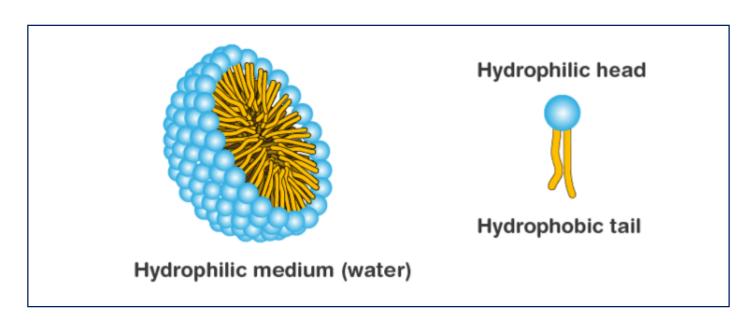
Lipids are stored in the form of triglycerides, fats and oil

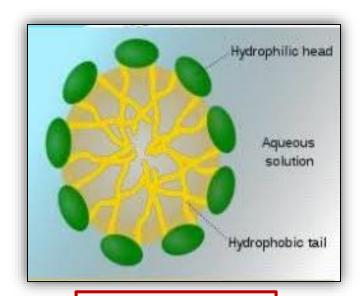
PROPERTIES OF LIPIDS

□ **Emulsification**: Fats broken down into smaller droplets dispersed in water.

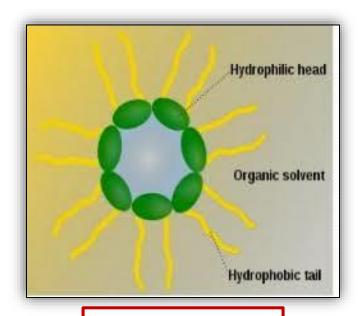
E.g. milk and egg yolk

□ **Saponification:** Hydrolysis of fat to yield alkali.


> Potassium soap are soft and soluble as compared to sodium soap.


PROPERTIES OF LIPIDS

Rancidity: Development of unpleasant odour and taste in fats or oil upon storage.

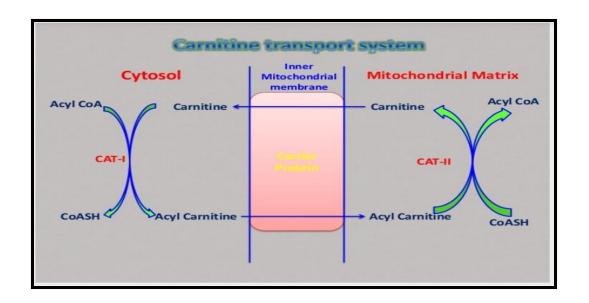

It is due to hydrolysis of ester bond (hydrolytic rancidity) or oxidation of fatty acids (oxidative rancidity).

Micelle: lipid molecule that arrange themselves in spherical form in water. Due to formation of <u>amphipathic</u> molecule.

Oil in Water

Water in oil

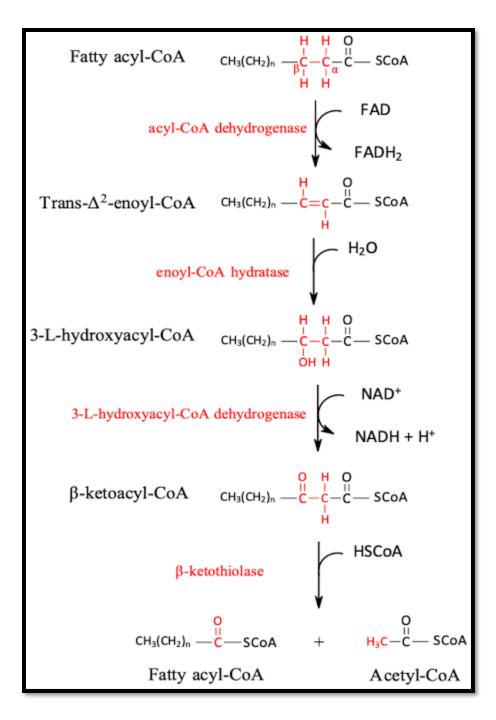
Beta oxidation


- Breakdown of fatty acid to acetyl coA.
- Occur in mitochondria.
- Process is aerobic.
- After production acetyl-coA is directly fed to kreb cycle.
- It involve three stages: 1. activation of fatty acid, 2. transport,
 3. beta oxidation proper.

1 gram fat gives 9 kcal energy

Beta Oxidation

1. Activation of fatty acid: This reaction proceeded by thiokinase.


2. <u>Transportation:</u> Acyl-CoA transported to inner membrane of mitochondria by mechanism called <u>carnitine shuttle.</u>

Beta Oxidation

3. β – Oxidation Proper: Occur in 4 steps.

- Oxidation: by acyl-CoA dehydrogenase.
- Hydration: by enoyl- CoA hydrase.
- \Box Oxidation: by dehydrogenase and product formed is β -ketoacyl CoA.
- Cleavage: by thiolase.

- β-oxidation of palmatic acid
 will repeats 7 cycle producing
 8 molecule of acetyl-CoA.
- ➤ Net energy gain through beta oxidation is **129ATP**.

THANK YOU