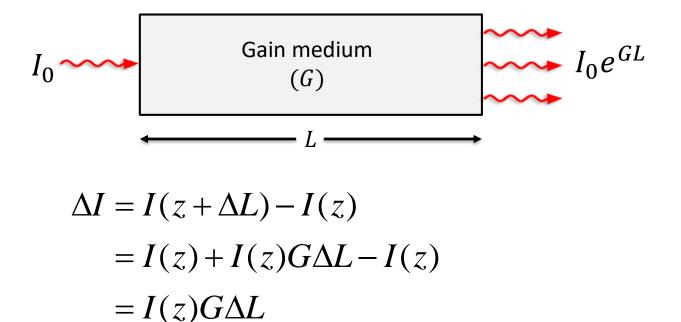
EE 232: Lightwave DevicesLecture #2 – Optical gain and laser cavities

Instructor: Seth A. Fortuna

Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

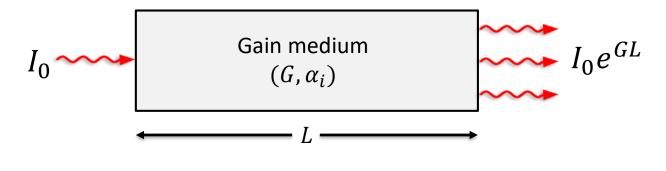
Gain Medium



$$G = \frac{\Delta I}{I} \frac{1}{\Delta L}$$

Gain is the fractional increase in light intensity per unit length (Units are cm^{-1})

Gain Medium (with internal loss)



$$\Delta I = I(z + \Delta L) - I(z)$$

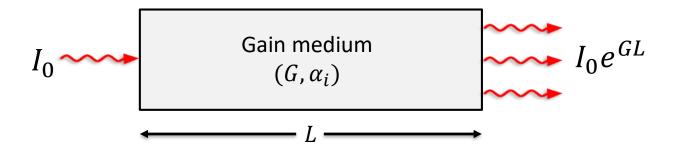
$$= I(z) + I(z)(G - \alpha_i)\Delta L - I(z)$$

$$= I(z)(G - \alpha_i)\Delta L$$

$$(G - \alpha_i) = \frac{\Delta I}{I} \frac{1}{\Delta L}$$

Internal loss (α_i) is the fractional decrease in light intensity per unit length (unrelated to fundamental absorption) (Units are cm^{-1})

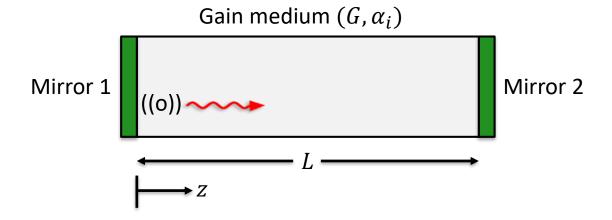
Gain Medium (with internal loss)



$$(G - \alpha_i) = \frac{\Delta I}{I} \frac{1}{\Delta L} \to \frac{dI}{dz} \frac{1}{I}$$

$$I(z) = I_0 e^{(G - \alpha_i)z}$$

Gain with cavity



$$1 = \frac{I(z = 0^+ + 2L)}{I(z = 0^+)} = e^{2(G_{th} - \alpha_i)L} R_2 R_1$$

$$\uparrow$$
Round-trip gain

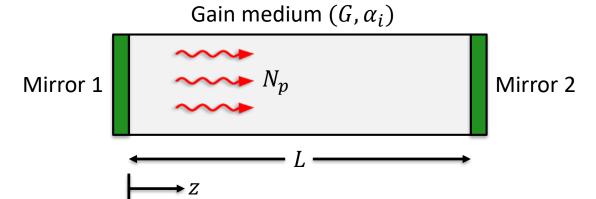
(Threshold condition for self-sustaining oscillation)

Gain with cavity

Mirror 1
$$((0))$$
 L Z

$$G_{th} = \frac{1}{2L} \ln \left(\frac{1}{R_2 R_1} \right) + \alpha_i \qquad \text{(Threshold condition for self-sustaining oscillation)} \\ = \alpha_m + \alpha_i$$

Photon lifetime (τ_p)

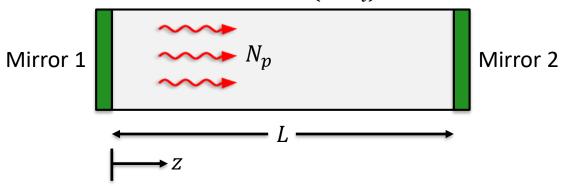


After one round trip: $(1-R_1R_2)N_p$ photons are lost from the cavity (ignoring α_i)

$$\frac{\Delta N_{p}}{\Delta t} = \frac{N_{p}(t + \tau_{RT}) - N_{P}(t)}{\tau_{RT}} = -\frac{(1 - R_{1}R_{2})N_{p}}{\tau_{RT}}$$

$$N_p = N_{p0} e^{-t/\tau_p}$$
 where $\tau_p = \frac{2nL/c}{1 - R_1 R_2}$ (photon lifetime)

Quality factor (Q)

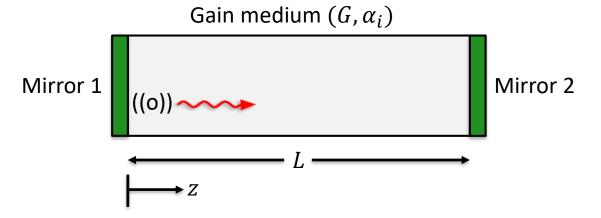


$$Q = 2\pi \frac{\text{Energy stored in cavity}}{\text{Energy lost per cycle}}$$

$$Q = 2\pi \frac{N_p \hbar \omega}{N_p \hbar \omega} = \frac{2\pi}{T} \tau_p$$

$$Q = \omega_0 \tau_p$$

Alternative expression for G_{th}

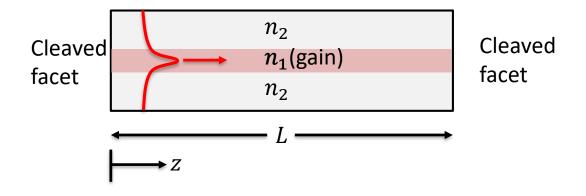


$$G = \frac{C}{n}$$
 is the fractional increase in photons per second

$$G_{th} \frac{c}{n} N_p = \frac{N_p}{\tau_p}$$

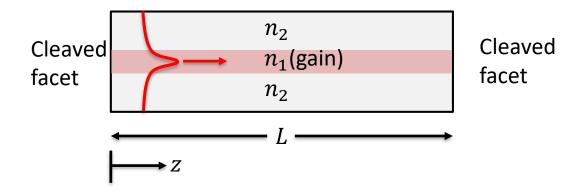
$$G_{th} \frac{c}{n} \tau_p = 1 \longrightarrow G_{th} = \frac{\omega_0}{Q} \frac{n}{c}$$

Semiconductor laser



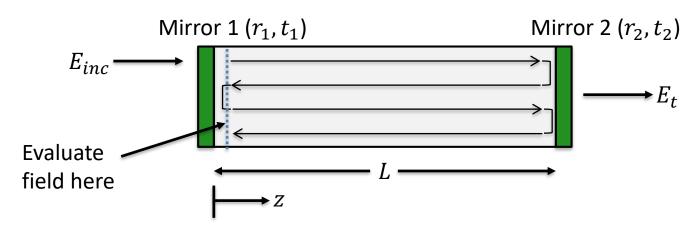
$$R = \left(\frac{n-1}{n+1}\right)^2 \sim 30\% \text{ for } n = 3.5$$

Semiconductor laser



Confinement factor:
$$\Gamma = \frac{\text{Power of optical mode in gain region}}{\text{Total power of optical mode}}$$

$$G_{th} = \frac{1}{\Gamma} \frac{\omega_0}{Q} \frac{n}{c}$$



Field just to the right of Mirror 1 and propagating in +z direction:

$$E^{+} = E_{inc}t_{1}(1 + r_{1}r_{2}e^{-jk2L} + r_{1}r_{2}r_{1}r_{2}e^{-jk4L} + (r_{1}r_{2}e^{-jk2L})^{3} + \dots)$$

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1 - r}$$

$$E^{+} = E_{inc}t_1 \frac{1}{1 - r_1 r_2 e^{-j2\theta}} \text{ where } \theta = kL$$

 E^+ is the field traveling to the right (+z direction)

Transmission
$$T = \frac{I_t}{I_{inc}} = \frac{\left| E^+ \right|^2 t_2^2}{\left\langle S_{inc} \right\rangle} = \frac{\frac{\left| E^+ \right|^2 t_2^2}{2\eta_0}}{\frac{\left| E_{inc} \right|^2}{2\eta_0}}$$

Assume that $r_{1,2}$ and $t_{1,2}$ are real for simplicity

$$= \frac{\left|E_{inc}t_{1}\frac{1}{1-r_{1}r_{2}e^{-j2\theta}}\right|^{2}t_{2}^{2}}{\left|E_{inc}\right|^{2}}$$

$$= \frac{t_{1}^{2}t_{2}^{2}}{\left|1-r_{1}r_{2}e^{-j2\theta}\right|^{2}}$$

$$= \frac{(1-r_{1}^{2})\eta_{cavity}\eta_{0}^{-1}(1-r_{2}^{2})\eta_{0}\eta_{cavity}^{-1}}{\left|1-r_{1}r_{2}e^{-j2\theta}\right|^{2}}$$

 $=\frac{(1-r_1^2)(1-r_2^2)}{\left|1-r_1r_2e^{-j2\theta}\right|^2}$

 $\langle S \rangle$: Time-average Poynting vector (intensity)

 η_0 : Impedance of medium outside cavity

 η_{cavity} : Impedance of medium inside cavity

 t_1 : transmission of mirror 1

 r_i : reflectivity of mirror 1

 t_2 : transmission of mirror 2

 r_2 : reflectivity of mirror 2

$$t_1^2 \eta_0 \eta_{cavity}^{-1} + r_1^2 = 1$$

$$t_2^2 \eta_0^{-1} \eta_{cavity} + r_2^2 = 1$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{\left|1-r_1r_2e^{-j2\theta}\right|^2}$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{(1-r_1r_2e^{j2\theta})(1-r_1r_2e^{-j2\theta})}$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{1-r_1r_2\left[e^{j2\theta}+e^{-j2\theta}\right]+(r_1r_2)^2}$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2\left[\cos 2\theta\right]+(r_1r_2)^2}$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2\left[1-2\sin^2\theta\right]+(r_1r_2)^2}$$

$$= \frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2+4r_1r_2\sin^2\theta+(r_1r_2)^2}$$

$$T = \frac{(1-r_1^2)(1-r_2^2)}{(1-r_1r_2)^2+4r_1r_2\sin^2kL}$$

 $\langle S \rangle$: Time-average Poynting vector (intensity) η_0 : Impedance of medium outside cavity

 $\eta_{\it cavity}$: Impedance of medium inside cavity

 t_1 : transmission of mirror 1

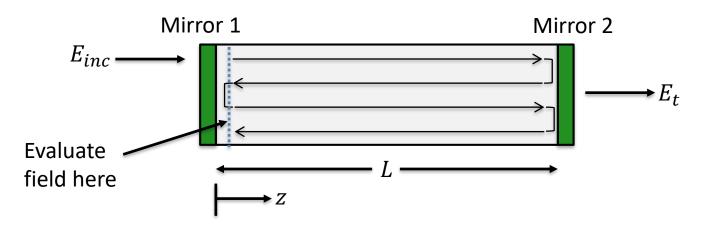
 r_i : reflectivity of mirror 1

 t_2 : transmission of mirror 2

 r_2 : reflectivity of mirror 2

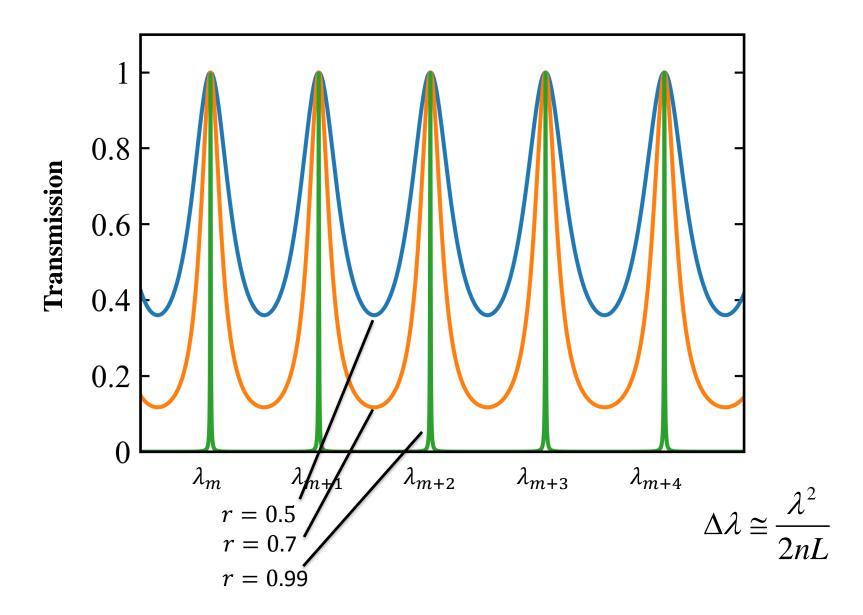
$$t_1^2 \eta_0 \eta_{cavity}^{-1} + r_1^2 = 1$$

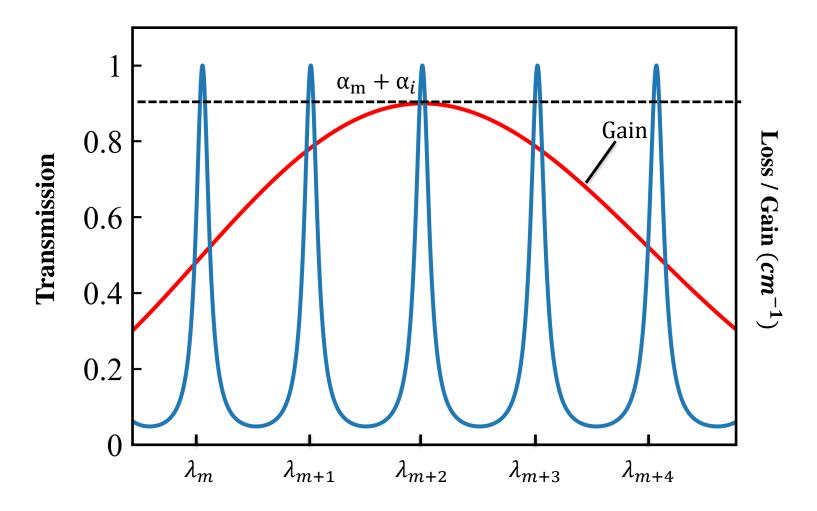
$$t_2^2 \eta_0^{-1} \eta_{cavity} + r_2^2 = 1$$



Resonance condition: $\sin^2 \theta = 0 \rightarrow kL = m\pi$

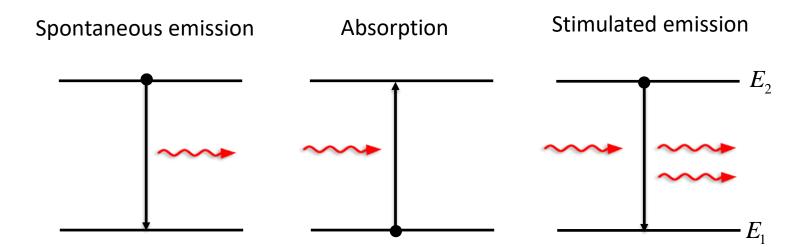
$$L = \frac{m\lambda_0}{2n} \quad \mathbf{m} = \text{integer}$$





e.g. with simple gain curve Threshold is achieved for one Fabry-Perot mode.

Population inversion



Gain will occur if stimulated emission > absorption which implies that number of electrons in the excited state is higher than the ground state (i.e. population inversion)

$$B_{21}WN_2 > B_{21}WN_1$$

 $N_2 > N_1$

 A_{21} = Spontaneous emission rate

 $B_{21}W =$ Stimulated emission / absorption rate

W = Electromagnetic energy density

 N_1 = Number of electrons in ground state

 N_2 = Number of electrons in excited state

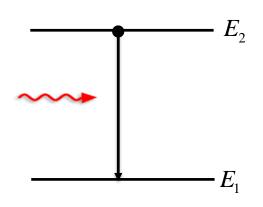
 $N_p = Number of photons$

2-level system

$$\frac{dN_1}{dt} = -A_{21}N_2 + B_{21}WN_1 - B_{21}WN_2$$
At equilibrium,
$$0 = -A_{21}N_2 + B_{21}WN_1 - B_{21}WN_2$$
Let $N = N_1 + N_2$

$$N_1 = \frac{A_{21} + B_{21}W}{A_{21} + 2B_{21}W}N$$

$$N_2 = \frac{B_{21}W}{A_{21} + 2B_{22}W}N$$



For population inversion $N_2 > N_1$

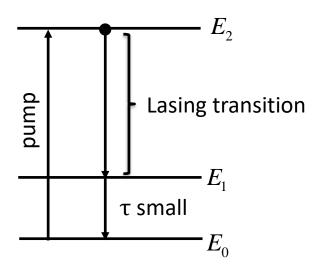
$$\frac{B_{21}W}{A_{21} + 2B_{21}W}N > \frac{A_{21} + B_{21}W}{A_{21} + 2B_{21}W}N$$

$$B_{21}W > A_{21} + B_{21}W$$

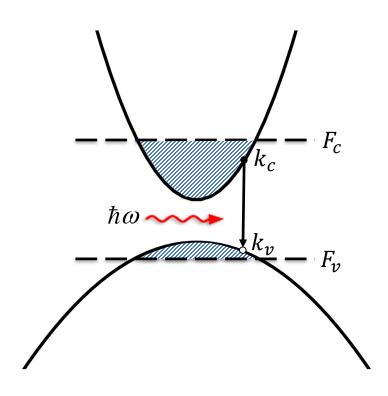
Not physical, population inversion not possible in a 2-level system (at equilibrium)!

3-level system

Population inversion $(N_2 > N_1)$ is possible if a state with energy smaller than E_1 is added; provided electrons quickly decay from state 1 into state 0. In other words, A_{10} must be larger than A_{21} .



Gain in a semiconductor



$$f_c(k_c) = \frac{1}{1 + \exp[(E(k_c) - F_c)/kT]}$$
$$f_v(k_v) = \frac{1}{1 + \exp[(E(k_v) - F_v)/kT]}$$

$$\frac{dN_p}{dt} = B\rho f_c (1 - f_v) N_p - B\rho f_v (1 - f_c) N_p$$
Stimulated emission Absorption

$$\frac{dN_p}{dt} > 0 \text{ for } f_c(1 - f_v) > f_v(1 - f_c)$$

$$\begin{array}{c|c}
F_c - F_v > \hbar \omega \\
\hline
\text{Condition}$$

More on this as we progress in the course

B = transition rate coefficient

 ρ = density of states