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The objective of this text is to serve as a cornerstone for the learning of logic 
design, digital system design, and computer design by a broad audience of readers. 
This fourth edition marks the decade point in the evolution of the text contents. 
Beginning as an adaptation of a previous book by the first author in 1997, it contin­
ues to offer a unique combination of logic design and computer design principles 
with a strong hardware emphasis. Over the years, the text has followed industry 
trends by adding new material such as hardware description languages, removing 
or de-emphasizing material of declining importance, and revising material to track 
changes in computer technology and computer-aided design. 

In the fourth edition, revisions address pedagogical considerations as well as 
industrial trends. Sixty "real world" examples and problems, most drawn from 
design problems for products encountered in contemporary day-to-day life, moti­
vate interest and provide practice in solution formulation. Changes in chapter 
organization permit instructors to more easily tailor the degree of technology cov­
erage, accommodating both electrical and computer engineering and computer sci­
ence audiences. 

The organizational changes begin with the combining of the introduction to 
design from Chapter 3 and the functional block material from Chapter 4 into a new 
Chapter 3. The design science content from the old Chapter 3 is now distributed 
over multiple chapters on an "as needed" basis and is accompanied by illustrations. 
Hardware description language coverage for combinational circuits has been com­
bined in Chapter 4 with that for arithmetic circuits to balance chapter size. Mate­
rial on technology from the old Chapter 3, including timing and programmable 
logic, appears in a new Chapter 6 and can be selectively covered and scheduled by 
the instructor as appropriate for the course syllabus. The placement of this material 
in Chapter 6 permits earlier coverage of sequential circuits for those with lesser 
technology-related needs and provides the more extensive background needed for 
some of the topics covered. Further, technology topics fit better within digital sys­
tem design rather than within basic logic design material presented earlier in the 
text. Chapter 6 also contains new information on CMOS circuits and asynchronous 
interaction between systems including synchronization of inputs and metastability. 

Chapter 8 has been eliminated along with the algorithmic state machine 
(ASM) to streamline the treatment of design of complex sequential circuits and 
control units. Concepts from Chapter 8 are split between Chapter 5 (Sequential 
Circuits) and Chapter 7 (Registers and Register Transfers) . A new state machine 
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diagram notation replaces the ASM. The state machine diagram is modeled after 
the traditional state diagram and graphically represents much of the modeling flex­
ibility inherent in hardware description languages. Further, in Chapter 7, the 
design procedure for doing combined datapath and control unit design is formal­
ized and illustrated. 

Offering integrated coverage of both digital and computer design, this edition 
of Logic and Computer Design Fundamentals features a strong emphasis on funda­
mentals underlying contemporary design. Understanding of the material is sup­
ported by clear explanations and a progressive development of examples ranging 
from simple combinational applications to a CISC architecture built upon a RISC 
core. A thorough coverage of traditional topics is combined with attention to com­
puter-aided design, problem formulation, solution verification, and the building of 
problem-solving skills. Flexibility is provided for selective coverage of logic design, 
digital system design, and computer design topics, and for coverage of hardware 
description languages (none, VHDL, or Verilog®) . Aside from the organizational 
and content changes describe thus far, other updates in the Fourth Edition include: 
(1) a brief introduction to embedded systems, (2) illustration of practical computer­
aided logic optimization methods as used in Espresso, (3) replacement of a CRT 
display example with an LCD screen example, and (4) an updated Architectural 
Innovations section including multiple CPU microprocessors. 

With these revisions, chapters 1 through 5 of the book treat logic design, 
chapters 6 through 8 deal with digital systems design and chapters 9 through 13 
focus on computer design. This arrangement provides solid digital system design 
fundamentals while accomplishing a gradual, bottom-up development of funda­
mentals for use in top-down computer design in later chapters. Summaries of the 
topics covered in each chapter follow. 

Chapter 1-Digital Systems and Information This chapter introduces digital 
computers, embedded systems, and information representation including number 
systems, arithmetic, and codes. 

Chapter 2-Combinational Logic Circuits This chapter deals with gate cir­
cuits and their types and basic ideas for their design and cost optimization. 
Concepts include Boolean algebra, algebraic and Karnaugh map optimization, 
the Espresso algorithm as a pragmatic CAD optimization tool, and multilevel 
optimization. 

Chapter 3--Combinational Logic Design This chapter begins with an over­
view of a contemporary logic design process. The details of steps of the design pro­
cess including problem formulation, logic optimization, technology mapping to 
NAND and NOR gates, and verification are covered for combinational logic 
design examples. In addition, the chapter covers the functions and building blocks 
of combinational design including enabling and input-fixing, decoding, encoding, 
code conversion, selecting, and distributing, and their implementations. 

Chapter 4--Arithmetic Functions and HDLs This chapter deals with arith­
metic functions and their implementations. Beyond number representation for 
arithmetic, addition, subtraction, and incrementing, decrementing, filling, exten­
sion and shifting are described and implemented. Synthesis and hardware descrip­
tion languages (HDLs) are introduced and Verilog and VHDL are presented for 
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describing of combinational logic from Chapter 3 and arithmetic logic from this 

chapter. 
Chapter 5-Sequential Circuits This chapter covers sequential circuit analysis 

and design. Latches, master-slave flip-flops and edge-triggered flip-flops are cov­
ered with emphasis on the D type. Other types of flip-flops (S-R, J-K and T), which 

are used less frequently in modern designs, are covered briefly. Emphasis is placed 

on state machine diagram and state table formulation. A complete design process 
for sequential circuits including specification, formulation, state assignment, flip­
flop input and output equation determination, optimization, technology mapping, 

and verification is developed. A graphical state machine diagram model that repre­

sents sequential circuits too complex to model with a conventional state diagram is 

presented and illustrated by two real world examples. The chapter concludes with 

VHDL and Verilog descriptions of a flip-flop and a sequential circuit. 
Chapter 6---Selected Design Topics This chapter presents topics focusing on 

various aspects of underlying technology including the MOS transistor and CMOS 

circuits, delay and timing for gates, combinational and sequential circuits, asyn­

chronous interactions between circuits, and programmable logic technologies. The 

asynchronous interactions section includes coverage of synchronization of asyn­

chronous inputs and metastability. Programmable logic covers read-only memories, 
programmable logic arrays and programmable array logic. 

Chapter 7-Registers and Register Transfers This chapter covers registers 

and their applications. Shift register and counter design are based on the combina­

tion of flip-flops with functions and implementations introduced in the Chapters 3

and 4. Only the ripple counter is introduced as a totally new concept. Register 
transfers are considered for both parallel and serial designs and time-space trade­

offs are discussed. A section focuses on register cell design for multi-function regis­

ters that performing multiple operations. A process for the integrated design of 

datapaths and control units using register transfer statements and state machine 

diagrams is introduced and illustrated by two real world examples. Verilog and 

VHDL descriptions of selected register types are introduced. 
Chapter 8--Memory Basics This chapter introduces static random access 

memory (SRAM) and dynamic random access memory (DRAM) , and basic mem­

ory systems. It also describes briefly various distinct types of SRAMs. 
Chapter 9-Computer Design Basics This chapter covers register files, func­

tion units, datapaths, and two simple computers: a single-cycle computer and a 

multiple-cycle computer. The focus is on datapath and control unit design formula­

tion concepts applied to implementing specified instructions and instruction sets in 

single-cycle and multiple-cycle designs. 

Chapter 10-Instruction Set Architecture introduces many facets of instruc­

tion set architecture. It deals with address count, addressing modes, architectures, 

and the types of instructions and presents floating-point number representation 

and operations. Program control architecture is presented including procedure 

calls and interrupts. 
Chapter 11-RISC and CISC Processors This chapter covers high-performance 

processor concepts including a pipelined RISC processor, and a CISC processor. The 
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CISC processor, by using microcoded hardware added to a modification of the RISC 
processor, permits execution of the CISC instruction set using the RISC pipeline, an 
approach used in contemporary CISC processors. Also, sections describe high­
performance CPU concepts and architecture innovations including two examples of 
multiple CPU microprocessors. 

Chapter 12-Input-Output and Communication This chapter deals with data 
transfer between the CPU and memory, input-output interfaces and peripheral 
devices. Discussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a 
hard drive as peripherals are included, and a keyboard interface is illustrated. 
Other topics range from serial communication, including the Universal Serial Bus 
(USB), to interrupt system implementation. 

Chapter 13-Memory Systems has a particular focus on memory hierarchies. 
The concept of locality of reference is introduced and illustrated by consideration 
of the cache/main memory and main memory/hard drive relationships. An over­
view of cache design parameters is provided. The treatment of memory manage­
ment focuses on paging and a translation lookaside buffer supporting virtual 
memory. 

In addition to the text itself, a Companion Website and an Instructor's Man­
ual are provided. Companion Website (http://www.prenhall.com/mano) content 
includes the following: 1) reading supplements including new material and material 
deleted from prior editions, 2) VHDL and Verilog source files for all examples, 3) 
links to computer-aided design tools for FPGA design and HDL simulation, 4) 
solutions for about one-third of all text Chapter problems, 5) errata, 6) Power­
Point® slides for Chapters 1 through 9, 7) projection originals for complex figures 
and tables from the text, and 8) site news sections for students and instructors 
pointing out new material, updates, and corrections. Instructors are encouraged to 
periodically check the instructor's site news so that they are aware of site changes. 
Instructor's Manual content includes suggestions for use of the book and all prob­
lem solutions. On-line access to this manual is available from Prentice Hall to 
instructors at academic institutions who adopt the book for classroom use. The sug­
gestions for use provide important detailed information for navigating the text to 
fit with various course syllabi. 

Because of its broad coverage of both logic and computer design, this book 
serves several different objectives in sophomore through junior level courses. Chap­
ters 1 through 10 with selected sections omitted, provide an overview of hardware 
for computer science, computer engineering, electrical engineering or engineering 
students in general in a single semester course. Chapters 1 through 5 possibly with 
selected parts of 6 through 8 give a basic introduction to logic design, which can be 
completed in a single quarter for electrical and computer engineering students. Cov­
erage of Chapters 1 through 8 in a semester, provides a stronger, more contempo­
rary logic design treatment. The entire book, covered in two quarters, provides the 
basics of logic and computer design for computer engineering and science students. 
Coverage of the entire book with appropriate supplementary material or a labora­
tory component can fill a two-semester sequence in logic design and computer 
architecture. Due to its moderately paced treatment of a wide range of topics, the 
book is ideal for self-study by engineers and computer scientists. Finally, all of these 
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various objectives can also benefit from use of reading supplements provided on the 
Companion Website. 

During the preparation of the fourth edition, we have sought out the views 
of many instructors using prior editions of this text. Over 50 instructors completed 
an extensive survey on the third edition content and their uses of it. In addition, 
Professor Bharat Bhuva, Vanderbilt University, and Professor Donald Hung, San 
Jose State University, provided useful feedback through written reviews of the 
third edition. We are very grateful to all of these instructors for their participation 
and their thoughtful input in guiding the preparation of the fourth edition. Partic­
ular thanks goes to Professors Katherine Compton, Mikko Lipasti, Kewal Saluja, 
and Leon Shohet, and Faculty Associate Michael Morrow, ECE, University of 
Wisconsin-Madison. Via focused discussions with the second author, they pro­
vided extensive comments and suggestions that greatly influenced the fourth edi­
tion content. We appreciate corrections to the third edition provided by both 
instructors and students, most notably, those from Professor Douglas De Boer of 
Dordt College. A special thanks goes to Divya Jhalani from the University of 
Wisconsin-Madison for her preparation of solutions to new problems in the 
Instructor's Manual and on the website. Our appreciation goes to all of those at 
Prentice Hall and elsewhere for their efforts on this edition. Notable are Editor 
Mike McDonald for his guidance, encouragement and support, Production Edi­
tors Dan Sandin and Irvwin Zucker for their efficiency and helpfulness with text 
production, and Bob Lentz for his maticulous copy-editing. Finally, a very special 
thanks to Val Kime for her enduring patience and understanding throughout the 
development of the fourth edition. 

M. MORRIS MANO 

CHARLES R. KIME 
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DIGITAL SYSTEMS 

AND INFORMATION 

T
his book deals with logic circuits and digital computers. Early computers were 
used for computations with discrete numeric elements called digits (the Latin 
word for fingers)-hence the term digital computer. The use of "digital" spread 

from the computer to logic circuits and other systems that use discrete elements of 
information, giving us the terms digital circuits and digital systems. The term logic is 
applied to circuits that operate on a set of just two elements with values True (1) and 
False (0). Since computers are based on logic circuits, they operate on patterns of 
elements from these two-valued sets, which are used to represent, among other 
things, the decimal digits. Today, the term "digital circuits" is viewed as synonymous 
with the term "logic circuits:• 

The general-purpose digital computer is a digital system that can follow a stored 
sequence of instructions, called a program, that operates on data. The user can 

specify and change the program or the data according to specific needs. As a result 
of this flexibility, general-purpose digital computers can perform a variety of 
information-processing tasks, ranging over a very wide spectrum of applications. This 
makes the digital computer a highly general and very flexible digital system. Also, due 
to its generality, complexity, and widespread use, the computer provides an ideal 
vehicle for learning the concepts, methods, and tools of digital system design. To this 
end, we use the exploded pictorial diagram of a computer of the class commonly 
referred to as a PC (personal computer) given on the opposite page. We employ this 
generic computer to highlight the significance of the material covered and its 
relationship to the overall system. A bit later in this chapter, we will discuss the various 
major components of the generic computer and see how they relate to a block 
diagram commonly used to represent a computer. Otherwise, the remainder of the 
chapter focuses on the digital systems in our daily lives and introduces approaches 
for representing information in digital circuits and systems. 
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4 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION 

1-1 INFORMATION REPRESENTATION 

Digital systems store, move, and process information. The information represents a 
broad range of phenomena from the physical and man-made world. The physical 
world is characterized by parameters such as weight, temperature, pressure, veloc­
ity, flow, and sound intensity and frequency. Most physical parameters are continu­
ous, typically capable of taking on all possible values over a defined range. In 
contrast, in the man-made world, parameters can be discrete in nature, such as 
business records using words, quantities, and currencies, taking on values from an 
alphabet, the integers, or units of currency, respectively. In general, information 
systems must be able to represent both continuous and discrete information. Sup­
pose that temperature, which is continuous, is measured by a sensor and converted 
to an electrical voltage, which is likewise continuous. We refer to such a continuous 
voltage as an analog signal, which is one possible way to represent temperature. 
But, it is also possible to represent temperature by an electrical voltage that takes 
on discrete values that occupy only a finite number of values over a range, e.g., cor­
responding to integer degrees centigrade between - 40 and + 119. We refer to such 
a voltage as a digital signal. Alternatively, we can represent the discrete values by 
multiple voltage signals, each taking on a discrete value. At the extreme, each sig­
nal can be viewed as having only two discrete values, with multiple signals repre­
senting a large number of discrete values. For example, each of the 160 values just 
mentioned for temperature can be represented by a particular combination of 
eight two-valued signals. The signals in most present-day electronic digital systems 
use just two discrete values and are therefore said to be binary. The two discrete 
values used are often called 0 and 1, the digits for the binary number system. 

We typically represent the two discrete values by ranges of voltage values called 
HIGH and LOW. Output and input voltage ranges are illustrated in Figure 1-l(a). 
The HIGH output voltage value ranges between 0.9 and 1.1 volts, and the LOW 
output voltage value between -0.1 and0.1 volts. The high input range allows 0.6 to 
1.1 volts to be recognized as a HIGH, and the low input range allows -0.1 to 0.4 
volts to be recognized as a LOW. The fact that the input ranges are wider than the 

Voltage (Volts) 

OUTPUT INPUT 
1.0 

HIGH 0.5 
HIGH 1.0 

0.9 

0.6 0.0 Time 

0.4 
(b) Time-dependent voltage 

-

0.1 
LOW 0.0 

LOW 

0 Time 
(a) Example voltage ranges ( c) Binary model of time-dependent voltage 

D FIGURE 1-1 
Examples of Voltage Ranges and Waveforms for Binary Signals 
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output ranges allows the circuits to function correctly in spite of variations in their 
behavior and undesirable "noise" voltages that may be added to or subtracted 
from the outputs. 

We give the output and input voltage ranges a number of different names. 
Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 
0. It is natural to associate the higher voltage ranges with HIGH or H, and the 
lower voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, how­
ever, there is a choice. TRUE and 1 can be associated with either the higher or 
lower voltage range and FALSE and 0 with the other range. Unless otherwise indi­
cated, we assume that TRUE and 1 are associated with the higher of the voltage 
ranges, H, and that FALSE and 0 are associated with the lower of the voltage 
ranges, L. This particular convention is called positive logic. 

It is interesting to note that the values of voltages for a digital circuit in 
Figure 1-l (a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the 
voltage is actually analog! The actual voltages values for the output of a very 
high-speed digital circuit are plotted versus time in Figure 1-l (b). Such a plot is 
referred to as a waveform. The interpretation of the voltage as binary is based 
on a model using voltage ranges to represent discrete values 0 and 1 on the 
inputs and the outputs. The application of such a model, which redefines all 
voltage above 0.5 Vas 1 and below 0.5 Vas 0 in Figure 1-l (b), gives the wave­
form in Figure 1-l (c). The output has now been interpreted as binary, having 
only discrete values 1 and 0, with the actual voltage values removed. We note 
that digital circuits, made up of electronic devices called transistors, are 
designed to cause the outputs to occupy the two distinct output voltage ranges 
for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs are not changing. In 
contrast, analog circuits are designed to have their outputs take on continuous 
values over their range, whether changing or not. 

Since 0 and 1 are associated with the binary number system, they are the pre­
ferred names for the signal ranges. A binary digit is called a bit. Information is rep­
resented in digital computers by groups of bits. By using various coding techniques, 
groups of bits can be made to represent not only binary numbers, but also other 
groups of discrete symbols. Groups of bits, properly arranged, can even specify to 
the computer the program instructions to be executed and the data to be processed. 

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys­
tem with 10 values representing the decimal digits. In such a system, the voltages 
available-say, 0 to 1.0 volts-could be divided into 10 ranges, each of length 
0.1 volt. A circuit would provide an output voltage within each of these 10 ranges. 
An input of a circuit would need to determine in which of the 10 ranges an applied 
voltage lies. If we wish to allow for noise on the voltages, then output voltage might 
be permitted to range over less than 0.05 volt for a given digit representation, and 
boundaries between inputs could vary by less than 0.05 volt. This would require 
complex and costly electronic circuits, and the output still could be disturbed by 
small "noise" voltages or small variations in the circuits occurring during their 
manufacture or use. As a consequence, the use of such multivalued circuits is very 
limited. Instead, binary circuits are used in which correct circuit operation can be 
achieved with significant variations in values of the two output voltages and the 
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Memory 

t + 

CPU I I. ·1 I Control 
Datapath unit 

t + 
Input/Output 

D FIGURE 1-2 
Block Diagram of a Digital Computer 

two input ranges. The resulting transistor circuit with an output that is either 
HIGH or LOW is simple, easy to design, and extremely reliable. In addition, this 
use of binary values makes the results calculated repeatable in the sense that the 
same set of input values to a calculation always gives exactly the same set of out­
puts. This is not necessarily the case for multivalued or analog circuits, in which 
noise voltages and small variations due to manufacture or circuit aging can cause 
results to differ at different times. 

The Digital Computer 

A block diagram of a digital computer is shown in Figure 1-2. The memory stores 
programs as well as input, output, and intermediate data. The datapath performs 
arithmetic and other data-processing operations as specified by the program. The 
control unit supervises the flow of information between the various units. A data­
path, when combined with the control unit, forms a component referred to as a 
central processing unit, or CPU. 

The program and data prepared by the user are transferred into memory by 
means of an input device such as a keyboard. An output device, such as an LCD 
(liquid crystal display) , displays the results of the computations and presents them 
to the user. A digital computer can accommodate many different input and output 
devices, such as CD-ROM and DVD drives, scanners, and printers. These devices 
use digital logic circuits, but often include analog electronic circuits, optical sensors, 
LCDs (liquid crystal displays) , and electromechanical components. 

The control unit in the CPU retrieves the instructions, one by one, from the 
program stored in the memory. For each instruction, the control unit manipulates 
the datapath to execute the operation specified by the instruction. Both program 
and data are stored in memory. A digital computer can perform arithmetic compu­
tations, manipulate strings of alphabetic characters, and be programmed to make 
decisions based on internal and external conditions. 
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Beyond the Computer 

In terms of world impact, computers, such as the PC, are not the end of the story. 
Smaller, often less powerful, single-chip computers called microcomputers or 
microcontrollers, or special-purpose computers called digital signal processors 
(DSPs) actually are more prevalent in our lives. These computers are parts of 
everyday products and their presence is often not apparent. As a consequence of 
being integral parts of other products and often enclosed within them, they are 
called embedded systems. A generic block diagram of an embedded system is 
shown in Figure 1-3. Central to the system is the microcomputer (or its equivalent) . 
It has many of the characteristics of the PC, but differs in the sense that its soft­
ware programs are often permanently stored to provide only the functions 
required for the product. This software, which is critical to the operation of the 
product, is an integral part of the embedded system and referred to as embedded 
software. Also, the human interface of the microcomputer can be very limited or 
nonexistent. The larger information-storage components such as a hard drive and 
compact disk or DVD drive frequently are not present. The microcomputer con­
tains some memory; if additional memory is needed, it can be added externally. 

With the exception of the external memory, the hardware connected to the 
embedded microcomputer in Figure 1-3 interfaces with the product and/or the out­
side world. The input devices transform inputs from the product or outside world 
into electrical signals, and the output devices transform electrical signals into out­
puts to the product or outside world. The input and output devices are of two 
types, those which use analog signals and those which use digital signals. Examples 
of digital input devices include a limit switch which is closed or open depending on 
whether a force is applied to it and a keypad having ten decimal integer buttons. 
Examples of analog input devices include a thermistor which changes its electrical 

Analog Signal 
Input Devices � A-to-D + ..... D-to-A � Conditioning 

and Signal Converters Converters and Digital 
Conditioning Output Devices 

Microcomputer, 
Microcontroller, 

Digital 
or Digital Signal 

Signal Processor 
Input Devices ..... ..... Conditioning 

and Signal and Digital 
Conditioning Output Devices 

t + 

External 
Memory 

D FIGURE 1-3 
Block Diagram of an Embedded System 
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resistance in response to the temperature and a crystal which produces a charge 
(and a corresponding voltage) in response to the pressure applied. Typically, elec­
trical or electronic circuitry is required to "condition" the signal so that it can be 
read by the embedded system. Examples of digital output devices include relays 
(switches that are opened or closed by applied voltages), a stepper motor that 
responds to applied voltage pulses, or an LED digital display. Examples of analog 
output devices include a loudspeaker and a panel meter with a dial. The dial posi­
tion is controlled by the interaction of the magnetic fields of a permanent magnet 
and an electromagnet driven by the voltage applied to the meter. 

Next, we illustrate embedded systems by considering a temperature measure­
ment performed by using a wireless weather station. In addition, this example also 
illustrates analog and digital signals, including conversion between the signal types. 

> EXAMPLE 1-1 Temperature Measurement and Display 

A wireless weather station measures a number of weather parameters at an out­
door site and transmits them for display to an indoor base station. Its operation 
can be illustrated by considering the temperature measurement illustrated in Fig­
ure 1-4 with reference to the block diagram in Figure 1-3. Two embedded micro­
processors are used, one in the outdoor site and the other in the indoor base 
station. 

The temperature at the outdoor site ranges continuously from -40°F to 
+ 115°F. Temperature values over one 24-hour period are plotted as a function of 
time in Figure 1-4(a). This temperature is measured by a sensor consisting of a 
thermistor (a resistance that varies with temperature) with a fixed current applied 
by an electronic circuit. This sensor provides an analog voltage that is proportional 
to the temperature. Using signal conditioning, this voltage is changed to a continu­
ous voltage ranging between 0 and 15 volts, as shown in Figure 1-4(b ). 

The analog voltage is sampled at a rate of once per hour (a very slow sam­
pling rate used just for illustration), as shown by the dots in Figure 1-4(b ). Each 
value sampled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, 
which replaces the value with a digital number written in binary and having deci­
mal values between 0 and 15, as shown in Figure 1-4(c). A binary number can be 
interpreted in decimal by multiplying the bits from left to right times the respective 
weights, 8, 4, 2, and 1, and adding the resulting values. For example, 0101 can be 
interpreted as 0x8+1x4+0x2+1x1 = 5. In the process of conversion, the 
value of the temperature is quantized from an infinite number of values to just 16 
values. Examining the correspondence between the temperature in Figure 1-4(a) 
and the voltage in Figure 1-4(b), we find that the typical digital value of tempera­
ture represents an actual temperature range up to 5 degrees above or below the 
digital value. For example, the analog temperature range between -25 and -15 
degrees is represented by the digital temperature value of -20 degrees. This dis­
crepancy between the actual temperature and the digital temperature is called the 
quantization error. In order to obtain greater precision, we would need to increase 
the number of bits beyond four in the output of the AID converter. The hardware 
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components for sensing, signal conditioning, and AID conversion are shown in the 
upper left corner of Figure 1-3. 

Next, the digital value passes through the microcomputer to a wireless trans­
mitter as a digital output device in the lower right corner of Figure 1-3. The digital 
value is transmitted to a wireless receiver, which is a digital input device in the 
base station. The digital value enters the microcomputer at the base station, where 
calculations may be performed to adjust its value based on thermistor properties. 
The resulting value is to be displayed with an analog meter shown in Figure 1-4(f) 
as the output device. In order to support this display, the digital value is converted 
to an analog value by a digital-to-analog converter, giving the quantized, discrete 
voltage levels shown in Figure 1-4( d). Signal conditioning, such as processing of 
the output by a low-pass analog filter, is applied to give the continuous signal in 
Figure 1-4( e ). This signal is applied to the analog voltage display, which has been 
labeled with the corresponding temperature values shown for five selected points 
over the 24-hour period in Figure 1-4(f). • 

D TABLE 1-1 

Embedded System Examples 

Application Area Product 

Banking, commerce and manufacturing Copiers, FAX machines, UPC scanners, vend­
ing machines, automatic teller machines, 

automated warehouses, industrial robots 

Communication 

Games and toys 

Home appliances 

Media 

Medical equipment 

Personal 

Transportation and navigation 

Cell phones, routers, satellites 

Video games, handheld games, talking stuffed 
toys 

Digital alarm clocks, conventional and micro­
wave ovens, dishwashers 

CD players, DVD players, flat panel T Vs, 
Digital cameras, digital video cameras 

Pacemakers, incubators, magnetic resonance 
imaging 

Digital watches, MP3 players, personal digital 
assistants 

Electronic engine controls, traffic light con­
trollers, aircraft flight controls, global posi­
tioning systems 
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You might ask: "How many embedded systems are there in my current living 
environment?" Do you have a cell phone? An iPod™? An Xbox™? A digital cam­
era? A microwave oven? An automobile? All of these are embedded systems! In 
fact, a late-model automobile can contain more than 50 microcontrollers, each con­
trolling a distinct embedded system, such as the engine control unit (ECU), auto­
matic braking system (ABS), and stability control unit (SCU). Further, a 
significant proportion of these embedded systems communicate with each other 
through a CAN (controller area network). A new automotive network called 
FlexRay promises to provide high-speed, reliable communication for safety-critical 
tasks such as braking-by-wire and steering-by-wire, eliminating primary depen­
dence on mechanical and hydraulic linkages and enhancing the potential for addi­
tional safety features such as collision avoidance. Table 1-1 lists examples of 
embedded systems classified by application area. 

Considering the widespread use of personal computers and embedded sys­
tems, the impact of digital systems on our lives is truly mind boggling! Digital 
systems play central roles in our medical diagnosis and treatment, our educa­
tional institutions and workplaces, in moving from place to place, in our homes, 
in interacting with others, and in just having fun! Considering the complexity of 
many of these systems, it is a wonder that they work at all. Thanks to the inven­
tion of the transistor and the integrated circuit and to the ingenuity and persever­
ance of millions of engineers and programmers, they indeed work and usually 
work well. In the remainder of this text, we take you on a journey that reveals 
how digital systems work and provide a detailed look at how to design digital sys­
tems and computers. 

More on the Generic Computer 

At this point, we will briefly discuss the generic computer and relate its various 
parts to the block diagram in Figure 1-2. At the lower left of the diagram at the 
beginning of this chapter is the heart of the computer, an integrated circuit called 
the processor. Modern processors such as this one are quite complex and consist of 
tens to hundreds of millions of transistors. The processor contains four functional 
modules: the CPU, the FPU, the MMU, and the internal cache. 

We have already discussed the CPU. The FPU (fioating-point unit) is some­
what like the CPU, except that its datapath and control unit are specifically 
designed to perform floating-point operations. In essence, these operations pro­
cess information represented in the form of scientific notation (e.g., 1.234 x 107 ), 
permitting the generic computer to handle very large and very small numbers. 
The CPU and the FPU, in relation to Figure 1-2, each contain a datapath and a 
control unit. 

The MMU is the memory management unit. The MMU plus the internal cache 
and the separate blocks near the bottom of the computer labeled "External Cache" 
and "RAM" (random-access memory) are all part of the memory in Figure 1-2. The 
two caches are special kinds of memory that allow the CPU and FPU to get at the 
data to be processed much faster than with RAM alone. RAM is what is most com­
monly referred to as memory. As its main function, the MMU causes the memory 
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that appears to be available to the CPU to be much, much larger than the actual 
size of the RAM. This is accomplished by data transfers between the RAM and the 
hard drive shown at the top of the drawing of the generic computer. So the hard 
drive, which we discuss later as an input/output device, conceptually appears as a 
part of both the memory and input/output. 

The connection paths shown between the processor, memory, and external 
cache are the pathways between integrated circuits. These are typically imple­
mented as fine copper conductors on a printed circuit board. The connection paths 
below the bus interface are referred to as the processor bus. The connections above 
the bus interface are the input/output (110) bus. The processor bus and the 1/0 bus 
attached to the bus interface carry data having different numbers of bits and have 
different ways of controlling the movement of data. They may also operate at dif­
ferent speeds. The bus interface hardware handles these differences so that data 
can be communicated between the two buses. 

All of the remaining structures in the generic computer are considered part of 
I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. In 
order to enter information into the computer, a keyboard is provided. In order to 
view output in the form of text or graphics, a graphics adapter card and LCD (liquid 
crystal display) screen are provided. The hard drive, discussed previously, is an elec­
tromechanical magnetic storage device. It stores large quantities of information in 
the form of magnetic flux on spinning disks coated with magnetic materials. In order 
to control the hard drive and transfer information to and from it, a drive controller 
is used. The keyboard, graphics adapter card, and drive controller card are all 
attached to the 1/0 bus. This allows these devices to communicate through the bus 
interface with the CPU and other circuitry connected to the processor buses. 

The generic computer consists mainly of an interconnection of digital modules. 
To understand the operation of each module, we need a basic knowledge of digital 
systems and their general behavior. Chapters 1 through 6 of this book deal with logic 
design of digital circuits in general. Chapters 5 and 7 discuss the primary components 
of a digital system, their operation, and their design. The operational characteristics 
of RAM are explained in Chapter 8. Datapath and control for simple computers are 
introduced in Chapter 9. Chapters 10 through 13 present the basics of computer 
design. Typical instructions employed in computer instruction-set architectures are 
presented in Chapter 10. The architecture and design of CPUs are examined in 
Chapter 11. Input and output devices and the various ways that a CPU can commu­
nicate with them are discussed in Chapter 12. Finally, memory hierarchy concepts 
related to the caches and MMU are introduced in Chapter 13. 

To guide the reader through this material and to keep in mind the "forest" as 
we carefully examine many of the "trees," accompanying discussion appears in a 
blue box at the beginning of each chapter. Each discussion introduces the topics in 
the chapter and ties them to the associated components in the generic computer 
diagram at the start of this chapter. At the completion of our journey, we will have 
covered most of the various modules of the computer and will have gained an 
understanding of the fundamentals that underlie both its function and design. 

Earlier, we mentioned that a digital computer manipulates discrete elements 
of information and that all information in the computer is represented in binary 
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form. Operands used for calculations may be expressed in the binary number sys­
tem or in the decimal system by means of a binary code. The letters of the alpha­
bet are also converted into a binary code. The remainder of this chapter 
introduces the binary number system, binary arithmetic, and selected binary codes 
as a basis for further study in the succeeding chapters. In relation to the generic 
computer, this material is very important and spans all of the components, except­
ing some in 1/0 that involve mechanical operations and analog (as contrasted with 

digital) electronics. 

1-2 NUMBER SYSTEMS 

The decimal number system is employed in everyday arithmetic to represent 
numbers by strings of digits. Depending on its position in the string, each digit 
has an associated value of an integer raised to the power of 10. For example, the 

decimal number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 
units plus 5 tenths. The hundreds, tens, units, and tenths are powers of 10 
implied by the position of the digits. The value of the number is computed as 
follows: 

724.5 = 7 x 102 + 2 x 101+4 x 10° + 5 x 10-1 

The convention is to write only the digits and infer the corresponding powers of 10 
from their positions. In general, a decimal number with n digits to the left of the 
decimal point and m digits to the right of the decimal point is represented by a 
string of coefficients: 

Each coefficient Ai is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript 
value i gives the position of the coefficient and, hence, the weight 10i by which 
the coefficient must be multiplied. 

The decimal number system is said to be of base or radix 10, because the 
coefficients are multiplied by powers of 10 and the system uses 10 distinct digits. In 
general, a number in base r contains r digits, 0, 1, 2, ... , r - 1, and is expressed as a 
power series in r with the general form 

n-1 n-2 1 0 
An_1r +An_2r + ... +A1r +A0r 

-1 -2 -m+l -m 
+A_1r +A_2r + ... +A_m+lr +A_mr 

When the number is expressed in positional notation, only the coefficients and the 
radix point are written down: 

In general, the "." is called the radix point. An _ 1 is referred to as the most signifi­
cant digit (msd) andA_m as the least significant digit (lsd) of the number. Note that 
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if m = 0, the lsd is A_0 = A0. To distinguish between numbers of different bases, it 
is customary to enclose the coefficients in parentheses and place a subscript after 
the right parenthesis to indicate the base of the number. However, when the con­
text makes the base obvious, it is not necessary to use parentheses. The following 
illustrates a base 5 number with n = 3 and m = 1 and its conversion to decimal: 

(312.4)s = 3 x 52 +1x51+2x5° +4 x 5-1 

= 75 + 5 + 2 + 0.8 = (82.8)10 

Note that for all the numbers without the base designated, the arithmetic is per­
formed with decimal numbers. Note also that the base 5 system uses only five dig­
its, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3, 
and 4 when expressed in that system. 

An alternative method for conversion to base 10 that reduces the number of 
operations is based on a factored form of the power series: 

( ... ((An _1r +An _2)r +An _3)r + ··· + A1)r + A0 
-1 -1 -1 -1 -1 -1 

+(A_1+(A_2+(A_3+···+(A_m+2+(A_m+l+A_mr )r )r ... )r )r )r 

For the example above, 

(312.4)s = ((3 x 5 + 1) x 5) + 2 + 4 x 5-1 

= 16 x 5 + 2 + 0.8 = (82.8)10 

In addition to decimal, three number systems are used in computer work: 
binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number sys­
tems, respectively. 

Binary Numbers 

The binary number system is a base 2 system with two digits: 0 and 1. A binary 
number such as 11010.11 is expressed with a string of ls and Os and, possibly, a 
binary point. The decimal equivalent of a binary number can be found by expand­
ing the number into a power series with a base of 2. For example, 

(11010)z = 1 x 24+1 x 23+0x22+1 x 21 + 0 x 2° = (26)10 

As noted earlier, the digits in a binary number are called bits. When a bit is equal 
to 0, it does not contribute to the sum during the conversion. Therefore, the con­
version to decimal can be obtained by adding the numbers with powers of two cor­
responding to the bits that are equal to 1. For example, 

(110101.ll)z = 32 + 16 + 4+1 + 0.5 + 0.25 = (53.75)10 
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D TABLE 1-2 

Powers of Two 

n 2n n 2n n 2n 

0 1 8 256 16 65,536 

1 2 9 512 17 131,072 

2 4 10 1,024 18 262,144 

3 8 11 2,048 19 524,288 

4 16 12 4,096 20 1,048,576 
5 32 13 8,192 21 2,097,152 
6 64 14 16,384 22 4,194,304 

7 128 15 32,768 23 8,388,608 

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2. 
In digital systems, we refer to 210 as K (kilo) , 220 as M (mega) , 230 as G (giga) , and 240 
as T (tera) . Thus, 

4K = 22 x 210 = 2i2 = 4096 and 16M = 24 x 220 = 224 = 16 ,777 ,216 

This convention does not necessarily apply in all cases, with more conventional us­

age of K, M, G, and T as 103, 106, 109 and 1oi2, respectively, sometimes applied as 
well. So caution is necessary in interpreting and using this notation. 

The conversion of a decimal number to binary can be easily achieved by a 
method that successively subtracts powers of two from the decimal number. To 
convert the decimal number N to binary, first find the greatest number that is a 
power of two (see Table 1-2) and that, subtracted from N, produces a positive dif­
ference. Let the difference be designated Ni. Now find the greatest number that is 
a power of two and that, subtracted from Ni , produces a positive difference N2• 
Continue this procedure until the difference is zero. In this way, the decimal num­
ber is converted to its powers-of-two components. The equivalent binary number is 
obtained from the coefficients of a power series that forms the sum of the compo­
nents. ls appear in the binary number in the positions for which terms appear in 
the power series, and Os appear in all other positions. This method is demonstrated 
by the conversion of decimal 625 to binary as follows: 

625 -5 12 = 1 13 =Ni 

1 13 -64 = 49 = N2 
49 -32 = 17 = N3 

17 - 16 = 1 = N4 

5 12 = 29 

64 = 26 

32 = 25 

16 = 24 

1 - 1 = 0 = N5 1 = 2° 

(625)10 = 29 + 26 + 25 + 24 + 2° = ( 100 1 1 1000 1)z 
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Octal and Hexadecimal Numbers 

As previously mentioned, all computers and digital systems use the binary repre­
sentation. The octal (base 8) and hexadecimal (base 16) systems are useful for rep­
resenting binary quantities indirectly because their bases are powers of two. Since 
23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 
hexadecimal digit corresponds to four binary digits. 

The more compact representation of binary numbers in either octal or 
hexadecimal is much more convenient for people than using bit strings in binary 
that are three or four times as long. Thus, most computer manuals use either 
octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for 
example, can be represented in the octal system with only five digits. A group of 
16 bits can be represented in hexadecimal with four digits. The choice between an 
octal and a hexadecimal representation of binary numbers is arbitrary, although 
hexadecimal tends to win out, since bits often appear in strings of size divisible 
by four. 

The octal number system is the base 8 system with digits 0, 1, 2, 3, 4, 5, 6, and 
7. An example of an octal number is 127.4. To determine its equivalent decimal 
value, we expand the number in a power series with a base of 8: 

(127.4)8 = 1x82 +2 x 81 +7 x go +4 x s-1 = (87.5)10 

Note that the digits 8 and 9 cannot appear in an octal number. 
It is customary to use the first r digits from the decimal system, starting with 

0, to represent the coefficients in a baser system when r is less than 10. The letters 
of the alphabet are used to supplement the digits when r is 10 or more. The hexa­
decimal number system is a base 16 system with the first 10 digits borrowed from 
the decimal system and the letters A, B, C, D, E, and Fused for the values 10, 11, 
12, 13, 14, and 15, respectively. An example of a hexadecimal number is 

(B65F)16 = 11x163 + 6 x 162+5x161+15 x 16° = (46687)10 

The first 16 numbers in the decimal, binary, octal, and hexadecimal number sys­
tems are listed in Table 1-3. Note that the sequence of binary numbers follows a 
prescribed pattern. The least significant bit alternates between 0 and 1, the second 
significant bit between two Os and two ls, the third significant bit between four Os 
and four ls, and the most significant bit between eight Os and eight ls. 

The conversion from binary to octal is easily accomplished by partitioning 
the binary number into groups of three bits each, starting from the binary point 
and proceeding to the left and to the right. The corresponding octal digit is then 
assigned to each group. The following example illustrates the procedure: 

(010 110 001 101 011. 111 100 000 110)z = (26153.7406)g 

The corresponding octal digit for each group of three bits is obtained from the first eight 
entries in Table 1-3. To make the total count of bits a multiple of three, Os can be added 
on the left of the string of bits to the left of the binary point. More importantly, Os must 
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D TABLE 1-3 
Numbers with Different Bases 

Decimal Binary Octal Hexadecimal 
(base 10) (base 2) (base 8) (base 16) 

00 0000 00 0 
01 0001 01 1 
02 0010 02 2 
03 0011 03 3 
04 0100 04 4 
05 0101 05 5 
06 0110 06 6 
07 0111 07 7 
08 1000 10 8 
09 1001 11 9 
10 1010 12 A 
11 1011 13 B 
12 1100 14 c 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

be added on the right of the string of bits to the right of the binary point to make the 
number of bits a multiple of three and obtain the correct octal result. 

Conversion from binary to hexadecimal is similar, except that the binary 
number is divided into groups of four digits, starting at the binary point. The previ­
ous binary number is converted to hexadecimal as follows: 

(0010 1100 0110 1011. 1111 0000 0110)z = (2C6B.F06)16 

The corresponding hexadecimal digit for each group of four bits is obtained by ref­
erence to Table 1-3. 

Conversion from octal or hexadecimal to binary is done by reversing the pro­
cedure just performed. Each octal digit is converted to a 3-bit binary equivalent, 
and extra Os are deleted. Similarly, each hexadecimal digit is converted to its 4-bit 
binary equivalent. This is illustrated in the following examples: 

110 111 011. 001 010 = (110111011.00101)2 (673.12)8 = 

(3A6.C)16 = 0011 1010 0110. 1100 = (1110100110.11)2 

Number Ranges 

In digital computers, the range of numbers that can be represented is based on the 
number of bits available in the hardware structures that store and process informa­
tion. The number of bits in these structures is most frequently a power of two, such 
as 8, 16, 32, and 64. Since the numbers of bits is fixed by the structures, the addition 
of leading or trailing zeros to represent numbers is necessary, and the range of 
numbers that can be represented is also fixed. 
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For example, for a computer processing 16-bit unsigned integers, the num­
ber 537 is represented as 0000001000011001. The range of integers that can be 
handled by this representation is from 0 to 216 - 1, that is, from 0 to 65,535. If the 
same computer is processing 16-bit unsigned fractions with the binary point to the 
left of the most significant digit, then the number 0.375 is represented by 
0.0110000000000000. The range of fractions that can be represented is from 0 to 
(216 - 1)/216, or from 0.0 to 0.9999847412. 

In later chapters, we will deal with fixed-bit representations and ranges 
for binary signed numbers and floating-point numbers. In both of these cases, 
some bits are used to represent information other than simple integer or frac­
tion values. 

1-3 ARITHMETIC OPERATIONS 

Arithmetic operations with numbers in base r follow the same rules as for decimal 
numbers. However, when a base other than the familiar base 10 is used, one must 
be careful to use only r allowable digits and perform all computations with base r 

digits. Examples of the addition of two binary numbers are as follows (note the 
names of the operands for addition): 

Carries: 

Augend: 

Addend: 

Sum: 

00000 

01100 

+10001 

11101 

101100 

10110 

+10111 

101101 

The sum of two binary numbers is calculated following the same rules as for deci­
mal numbers, except that the sum digit in any position can be only 1 or 0. Also, a 
carry in binary occurs if the sum in any bit position is greater than 1. (A carry in 
decimal occurs if the sum in any digit position is greater than 9.) Any carry 
obtained in a given position is added to the bits in the column one significant posi­
tion higher. In the first example, since all of the carries are 0, the sum bits are sim­
ply the sum of the augend and addend bits. In the second example, the sum of the 
bits in the second column from the right is 2, giving a sum bit of 0 and a carry bit of 
1 (2 = 2 + 0). The carry bit is added with the ls in the third position, giving a sum 
of 3, which produces a sum bit of 1 and a carry of 1 (3 = 2 + 1). 

The following are examples of the subtraction of two binary numbers; as with 
addition, note the names of the operands: 

Borrows: 

Minuend: 

Subtrahend: 

Difference: 

00000 

10110 

-10010 

00100 

00110 

10110 

-10011 

00011 

00110 

10011 11110 

-11110X-10011 

-01011 
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The rules for subtraction are the same as in decimal, except that a borrow into a 
given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10 
to the minuend digit.) In the first example shown, no borrows occur, so the differ­
ence bits are simply the minuend bits minus the subtrahend bits. In the second 
example, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it 
is necessary to borrow from the second position as shown. This gives a difference 
bit in the first position of 1 (2 + 0 - 1 = 1). In the second position, the borrow is 
subtracted, so a borrow is again necessary. Recall that, in the event that the subtra­
hend is larger than the minuend, we subtract the minuend from the subtrahend 
and give the result a minus sign. This is the case in the third example, in which this 
interchange of the two operands is shown. 

The final operation to be illustrated is binary multiplication, which is quite 
simple. The multiplier digits are always 1 or 0. Therefore, the partial products are 
equal either to the multiplicand or to 0. Multiplication is illustrated by the follow­
ing example: 

Multiplicand: 

Multiplier: 

Product: 

1011 

x 101 

1011 

0000 

1011 

110111 

Arithmetic operations with octal, hexadecimal, or any other base r system 
will normally require the formulation of tables from which one obtains sums and 
products of two digits in that base. An easier alternative for adding two numbers 
in baser is to convert each pair of digits in a column to decimal, add the digits in 
decimal, and then convert the result to the corresponding sum and carry in the 
base r system. Since addition is done in decimal, we can rely on our memories 
for obtaining the entries from the familiar decimal addition table. The sequence 
of steps for adding the two hexadecimal numbers 59F and E46 is shown in 
Example 1-2. 

EXAMPLE 1-2 Hexadecimal Addition 

Perform the addition (59F)16 + (E46)16: 

Hexadecimal Equivalent Decimal Calculation 

lil Carry 
1 

5 9 F  9 15 Carry 
E 4 6  14 4 6 

13 E 5 1 19 = 16 + 3 14 = E 21=16 + 5 
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The equivalent decimal calculation columns on the right show the mental reason­
ing that must be carried out to produce each digit of the hexadecimal sum. Instead 
of adding F + 6 in hexadecimal, we add the equivalent decimals, 1 5  + 6 = 21. We 
then convert back to hexadecimal by noting that 21 = 1 6  + 5. This gives a sum 
digit of 5 and a carry of 1 to the next higher-order column of digits. The other two 
columns are added in a similar fashion. • 

In general, the multiplication of two base r numbers can be accomplished by 
doing all the arithmetic operations in decimal and converting intermediate results 
one at a time. This is illustrated in the multiplication of two octal numbers shown in 
Example 1-3. 

EXAMPLE 1-3 Octal Multiplication 

Perform the multiplication (762)8 X ( 45)8: 

Octal Octal Decimal Octal 

7 6 2  5 x2 10 = 8 + 2 12 
4 5  5 x 6  + 1 31 = 24 + 7 37 

4 6 72 5 x7 + 3 38 = 32 + 6 46 
3 71 0  4x2 8=8+0 10 

43 772 4 x 6  + 1 2 5  = 24 + 1 31 
4x7 + 3 31 = 24 + 7 37 

Shown on the right are the mental calculations for each pair of octal digits. The octal 
digits 0 through 7 have the same value as their corresponding decimal digits. The 
multiplication of two octal digits plus a carry, derived from the calculation on the 
previous line, is done in decimal, and the result is then converted back to octal. The 
left digit of the two-digit octal result gives the carry that must be added to the digit 
product on the next line. The blue digits from the octal results of the decimal calcu­
lations are copied to the octal partial products on the left. For example, 
( 5  X 2)8 = (12)8. The left digit, 1, is the carry to be added to the product ( 5  X 6)8, 
and the blue least significant digit, 2, is the corresponding digit of the octal partial 
product. When there is no digit product to which the carry can be added, the carry is 
written directly into the octal partial product, as in the case of the 4 in 46. • 

Conversion from Decimal to Other Bases 

We convert a number in base r to decimal by expanding it in a power series and 
adding all the terms, as shown previously. We now present a general procedure for 
the operation of converting a decimal number to a number in base r that is the 
reverse of the alternative expansion to base 10 on page 14. If the number includes 
a radix point, we need to separate the number into an integer part and a fraction 
part, since the two parts must be converted differently. The conversion of a decimal 
integer to a number in base r is done by dividing the number and all successive 
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quotients by r and accumulating the remainders. This procedure is best explained 
by example. 

EXAMPLE 1-4 Conversion of Decimal Integers to Octal 

Convert decimal 153 to octal: 

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and 
a remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2 
and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a 
remainder of 2. The coefficients of the desired octal number are obtained from 
the remainders: 

153/8 = 19 + 1/8 

19/8 = 2 + 3/8 

2/8 = 0 + 2/8 

(153)10 = (231)8 

Remainder = 1 

=3 

=2 

l Least significant digit 

Most significant digit 

• 

Note in Example 1-4 that the remainders are read from last to first, as indi­
cated by the arrow, to obtain the converted number. The quotients are divided by r 

until the result is 0. We also can use this procedure to convert decimal integers to 
binary, as shown in Example 1-5. In this case, the base of the converted number is 
2, and therefore, all the divisions must be done by 2. 

EXAMPLE 1-5 Conversion of Decimal Integers to Binary 

Convert decimal 41 to binary: 

41/2 = 20 + 1/2 

20/2 = 10 

10/2 = 5 

512 = 2 + 1/2 

2/2 = 1 

1/2 = 0 + 1/2 

(41)10 = (101001)z 

Remainder = 1 

=0 

=0 

=1 

=0 

=1 

Least significant digit 

Most significant digit 

Of course, the decimal number could be converted by the sum of powers of two: 

(41)10 = 32 + 8 + 1 = (101001)z • 

The conversion of a decimal fraction to base r is accomplished by a method 
similar to that used for integers, except that multiplication by r is used instead of 
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division, and integers are accumulated instead of remainders. Again, the method is 
best explained by example. 

EXAMPLE 1-6 Conversion of Decimal Fractions to Binary 

Convert decimal 0.6875 to binary: 

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is 
multiplied by 2 to give a new integer and a new fraction. This process is continued until 
the fractional part equals 0 or until there are enough digits to give sufficient accuracy. 
The coefficients of the binary number are obtained from the integers as follows: 

0.6875 x 2 = 1.3750 

0.3750 x 2 = 0.7500 

0.7500 x 2 = 1.5000 

0.5000 x 2 = 1.0000 

(0.6875)10 = (0.1011)2 

Integer= 1 

=0 

=1 

=1 

Most significant digit 

Least significant digit 

• 

Note in the foregoing example that the integers are read from first to last, as 
indicated by the arrow, to obtain the converted number. In the example, a finite 
number of digits appear in the converted number. The process of multiplying frac­
tions by r does not necessarily end with zero, so we must decide how many digits of 
the fraction to use from the conversion. Also, remember that the multiplications 
are by number r. Therefore, to convert a decimal fraction to octal, we must multi­
ply the fractions by 8, as shown in Example 1-7. 

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal 

Convert decimal 0.513 to a three-digit octal fraction: 

0.513 x 8 = 4.104 

0.104 x 8 = 0.832 

0.832 x 8 = 6.656 

0.656 x 8 = 5.248 

Integer= 4 

=0 

=6 

=5 

Most significant digit 

Least significant digit 

The answer, to three significant figures, is obtained from the integer digits. Note 
that the last integer digit, 5, is used for rounding in base 8 of the second-to-the-last 
digit, 6, to obtain 

(0.513)10 = (0.407)8 • 

The conversion of decimal numbers with both integer and fractional parts is 
done by converting each part separately and then combining the two answers. 
Using the results of Example 1-4 and Example 1-7, we obtain 

(153.513)10 = (231.407)8 



1-4 DECIMAL CODES 

1-4 I Decimal Codes D 23 

The binary number system is the most natural one for a computer, but people are 
accustomed to the decimal system. One way to resolve this difference is to convert 
decimal numbers to binary, perform all arithmetic calculations in binary, and then 
convert the binary results back to decimal. This method requires that we store the 
decimal numbers in the computer in such a way that they can be converted to 
binary. Since the computer can accept only binary values, we must represent the 
decimal digits by a code that contains ls and Os. It is also possible to perform the 
arithmetic operations directly with decimal numbers when they are stored in the 
computer in coded form. 

An n-bit binary code is a group of n bits that assume up to 2n distinct combi­
nations of ls and Os, with each combination representing one element of the set 
being coded. A set of four elements can be coded with a 2-bit binary code, with 
each element assigned one of the following bit combinations: 00, 01, 10, 11. A set of 
8 elements requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The 
bit combinations of an n-bit code can be determined from the count in binary from 
0 to 2n - 1. Each element must be assigned a unique binary bit combination, and 
no two elements can have the same value; otherwise, the code assignment is 
ambiguous. 

A binary code will have some unassigned bit combinations if the number of 
elements in the set is not a power of 2. The ten decimal digits form such a set. A 
binary code that distinguishes among ten elements must contain at least four bits, 
but six out of the 16 possible combinations will remain unassigned. Numerous dif­
ferent binary codes can be obtained by arranging four bits into 10 distinct combi­
nations. The code most commonly used for the decimal digits is the straightforward 
binary assignment listed in Table 1-3 on page 14. This is called binary-coded deci­
mal and is commonly referred to as BCD. Other decimal codes are possible, one of 
which is presented in Chapter 3. 

Table 1-4 gives a 4-bit code for each decimal digit. A number with n decimal 
digits will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12 
bits as 

0011 1001 0110 

with each group of four bits representing one decimal digit. A decimal number in 
BCD is the same as its equivalent binary number only when the number is 
between 0 and 9, inclusive. A BCD number greater than 10 has a representation 
different from its equivalent binary number, even though both contain ls and Os. 
Moreover, the binary combinations 1010 through 1111 are not used and have no 
meaning in the BCD code. 

Consider decimal 185 and its corresponding value in BCD and binary: 

(185)10 = (0001 1000 0101)BCD = (10111001)z 
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D TABLE 1-4 
Binary-Coded Decimal (BCD) 

Decimal BCD 
Symbol Digit 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It 
is obvious that a BCD number needs more bits than its equivalent binary value. 
However, BCD representation of decimal numbers is still important, because com­
puter input and output data used by most people needs to be in the decimal sys­
tem. BCD numbers are decimal numbers and not binary numbers, even though 
they are represented using bits. The only difference between a decimal and a BCD 
number is that decimals are written with the symbols 0, 1, 2, ... , 9, and BCD num­
bers use the binary codes 0000, 0001, 0010, ... , 1001. 

BCD Addition 

Consider the addition of two decimal digits in BCD, together with a possible 
carry of 1 from a previous less significant pair of digits. Since each digit does not 
exceed 9, the sum cannot be greater than 9 + 9 + 1 = 19, the 1 being a carry. 
Suppose we add the BCD digits as if they were binary numbers. Then the binary 
sum will produce a result in the range from 0 to 19. In binary, this will be from 
0000 to 10011, but in BCD, it should be from 0000 to 1 1001, the first 1 being a 
carry and the next four bits being the BCD digit sum . When the binary sum is 
less than 1010 (without a carry) , the corresponding BCD digit is correct. But 
when the binary sum is greater than or equal to 1010, the result is an invalid 
BCD digit. The addition of binary 6, (OllO)z, to the sum converts it to the correct 
digit and also produces a decimal carry as required. The reason is that the differ­
ence between a carry from the most significant bit position of the binary sum and 
a decimal carry is 16 - 10 = 6. Thus, the decimal carry and the correct BCD sum 
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digit are forced by adding 6 in binary. Consider the next three-digit BCD addi­
tion example. 

EXAMPLE 1-8 BCD Addition 

110 

448 

+489 

937 

BCD carry 

Binary sum 

Add6 

BCD sum 

BCD result 

1 

0100 

+0100 

1001 

1001 

1 

0100 

+1000 

1101 

+0110 

1 0011 

0011 

1000 

+1001 

1 0001 

+0110 

1 0111 

0111 

In each position, the two BCD digits are added as if they were two binary numbers. 
If the binary sum is greater than 1001, we add 0110 to obtain the correct BCD digit 
sum and a carry. In the right column, the binary sum is equal to 17. The presence of 
the carry indicates that the sum is greater than 16 (certainly greater than 9), so a 
correction is needed. The addition of 0110 produces the correct BCD digit sum, 
0111 (7), and a carry of 1 .  In the next column, the binary sum is 1101 (13), an 
invalid BCD digit. Addition of 0110 produces the correct BCD digit sum, 0011 (3), 
and a carry of 1. In the final column, the binary sum is equal to 1001 (9) and is the 
correct BCD digit. • 

1-5 ALPHANUMERIC CODES 

Many applications of digital computers require the handling of data consisting not 
only of numbers, but also of letters. For instance, an insurance company with thou­
sands of policyholders uses a computer to process its files. To represent the names 
and other pertinent information, it is necessary to formulate a binary code for the 
letters of the alphabet. In addition, the same binary code must represent numerals 
and special characters such as $. Any alphanumeric character set for English is a 
set of elements that includes the ten decimal digits, the 26 letters of the alphabet, 
and several (more than three) special characters. If only capital letters are 
included, we need a binary code of at least six bits, and if both uppercase letters 
and lowercase letters are included, we need a binary code of at least seven bits. 
Binary codes play an important role in digital computers. The codes must be in 
binary because computers can handle only ls and Os. Note that binary encoding 
merely changes the symbols, not the meaning of the elements of information being 
encoded. 



26 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION 

ASCII Character Code 

The standard binary code for the alphanumeric characters is called ASCII 
(American Standard Code for Information Interchange). It uses seven bits to 
code 128 characters, as shown in Table 1-5. The seven bits of the code are desig­
nated by B1 through B7, with B7 being the most significant bit. Note that the 
most significant three bits of the code determine the column of the table and 
the least significant four bits the row of the table. The letter A, for example, is 
represented in ASCII as 1000001 (column 100, row 0001). The ASCII code con­
tains 94 characters that can be printed and 34 nonprinting characters used for 
various control functions. The printing characters consist of the 26 uppercase 
letters, the 26 lowercase letters, the 10 numerals, and 32 special printable char­
acters such as % , @, and $. 

The 34 control characters are designated in the ASCII table with abbreviated 
names. They are listed again below the table with their full functional names. The 
control characters are used for routing data and arranging the printed text into a 
prescribed format. There are three types of control characters: format effectors, 
information separators, and communication control characters. Format effectors 
are characters that control the layout of printing. They include the familiar type­
writer controls such as backspace (BS), horizontal tabulation (HT), and carriage 
return (CR). Information separators are used to separate the data into divisions­
for example, paragraphs and pages. They include characters such as record separa­
tor (RS) and file separator (FS). The communication control characters are used 
during the transmission of text from one location to the other. Examples of com­
munication control characters are STX (start of text) and ETX (end of text), 
which are used to frame a text message transmitted via communication wires. 

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a 
single unit called a byte. Therefore, ASCII characters most often are stored one per 
byte, with the most significant bit set to 0. The extra bit is sometimes used for spe­
cific purposes, depending on the application. For example, some printers recognize 
an additional 128 8-bit characters, with the most significant bit set to 1. These char­
acters enable the printer to produce additional symbols, such as those from the 
Greek alphabet or characters with accent marks as used in languages other than 
English. 

> UNICODE This supplement on Unicode, a 16-bit standard code for representing the 
symbols and ideographs for the world's languages, is available on the Companion 
Website (http://www.prenhall.com/mano) for the text. 

Parity Bit 

To detect errors in data communication and processing, an additional bit is some­
times added to a binary code word to define its parity. A parity bit is the extra bit 
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D TABLE 1-5 

American Standard Code for Information Interchange (ASCII) 

878585 

84838281 000 001 010 011 100 101 110 111 

0000 NULL DLE SP 0 @ p p 
0001 SOH DC1 1 A Q a q 
0010 STX DC2 It 2 B R b r 

0011 ETX DC3 # 3 c s c s 

0100 EOT DC4 $ 4 D T d t 
0101 ENQ NAK % 5 E u e u 
0110 ACK SYN & 6 F v f v 
0111 BEL ETB 7 G w g w 
1000 BS CAN ( 8 H x h x 
1001 HT EM ) 9 I y 1 y 

1010 LF SUB * J z J z 
1011 VT ESC + K [ k { 
1100 FF FS < L \ 1 I 

1101 CR GS = M ] m } 
1110 so RS > N /\ n 
1111 SI us I ? 0 0 DEL 

Control Characters 

NULL NULL DLE Data link escape 
SOH Start of heading DC1 Device control 1 
STX Start of text DC2 Device control 2 

ETX End of text DC3 Device control 3 
EOT End of transmission DC4 Device control 4 
ENQ Enquiry NAK Negative acknowledge 
ACK Acknowledge SYN Synchronous idle 
BEL Bell ETB End of transmission block 
BS Backspace CAN Cancel 
HT Horizontal tab EM End of medium 

LF Line feed SUB Substitute 
VT Vertical tab ESC Escape 
FF Form feed FS File separator 

CR Carriage return GS Group separator 

so Shift out RS Record separator 

SI Shift in us Unit separator 

SP Space DEL Delete 
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included to make the total number of ls in the resulting code word either even or 
odd. Consider the following two characters and their even and odd parity: 

1000001 
1010100 

With Even Parity 

01000001 
11010100 

With Odd Parity 

11000001 
01010100 

In each case, we use the extra bit in the most significant position of the code to pro­
duce an even number of ls in the code for even parity or an odd number of ls in 
the code for odd parity. In general, one parity or the other is adopted, with even 
parity being more common. Parity may be used with binary numbers as well as 
with codes, including ASCII for characters, and the parity bit may be placed in any 
fixed position in the code. 

IL_, ... ,,., EXAMPLE 1-9 Error Detection and Correction for ASCII Transmission 

The parity bit is helpful in detecting errors during the transmission of information 
from one location to another. Assuming that even parity is used, the simplest case 
is handled as follows: An even (or odd) parity bit is generated at the sending end 
for all 7-bit ASCII characters; the 8-bit characters that include parity bits are trans­
mitted to their destination. The parity of each character is then checked at the 
receiving end; if the parity of the received character is not even (odd) , it means 
that at least one bit has changed its value during the transmission. This method 
detects one, three, or any odd number of errors in each character transmitted. An 
even number of errors is undetected. Other error-detection codes, some of which 
are based on additional parity bits, may be needed to take care of an even number 
of errors. What is done after an error is detected depends on the particular applica­
tion. One possibility is to request retransmission of the message on the assumption 
that the error was random and will not occur again. Thus, if the receiver detects a 
parity error, it sends back a NAK (negative acknowledge) control character con­
sisting of the even-parity eight bits, 10010101, from Table 1-5 on page 27. If no 
error is detected, the receiver sends back an ACK (acknowledge) control charac­
ter, 00000110. The sending end will respond to a NAK by transmitting the message 
again, until the correct parity is received. If, after a number of attempts, the trans­
mission is still in error, an indication of a malfunction in the transmission path is 
given. • 

1-6 GRAY CODES 

As we count up or down using binary codes, the number of bits that change from 
one binary value to the next varies. This is illustrated by the binary code for the 
octal digits on the left in Table 1-6. As we count from 000 up to 111 and "roll 
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D TABLE 1-6 
Gray Code 

Binary Bit Gray Bit 
Code Changes Code Changes 

000 
1 

000 
1 

001 
2 

001 
1 

010 
1 

011 
1 

011 
3 

010 
1 

100 
1 

110 
1 

101 
2 

111 
1 

110 
1 

101 
1 

111 
3 

100 
1 

000 000 

over" to 000, the number of bits that change between the binary values ranges 
from 1to3. 

For many applications, multiple bit changes as the circuit counts is not a 
problem. There are applications, however, in which a change of more than one 
bit when counting up or down can cause serious problems. One such problem is 
illustrated by an optical shaft -angle encoder shown in Figure 1-5(a) . The 
encoder is a disk attached to a rotating shaft for measurement of the rotational 
position of the shaft. The disk contains areas that are clear for binary 1 and 
opaque for binary 0. An illumination source is placed on one side of the disk, 
and optical sensors, one for each of the bits to be encoded, are placed on the 
other side of the disk. When a clear region lies between the source and a sensor, 
the sensor responds to the light with a binary 1 output. When an opaque region 
lies between the source and the sensor, the sensor responds to the dark with a 
binary 0. 

The rotating shaft, however, can be in any angular position. For example, 
suppose that the shaft and disk are positioned so that the sensors lie right at the 

000 000 

(a) Binary code for positions 0 through 7 (b) Gray code for positions 0 through 7 

D FIGURE 1-5 
Optical Shaft-Angle Encoder 
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boundary between 011 and 100. In this case, sensors in positions B2, B1 and B0 
have the light partially blocked. In such a situation, it is unclear whether the three 
sensors will see light or dark. As a consequence, each sensor may produce either a 
1 or a 0. Thus, the resulting encoded binary number for a value between 3 and 4 
may be 000, 001, 010, 011, 100, 101, 110, or 111. Either 011 or 100 will be satisfac­
tory in this case, but the other six values are clearly erroneous! 

To see the solution to this problem, notice that in those cases in which only 
a single bit changes when going from one value to the next or previous value, 
this problem cannot occur. For example, if the sensors lie on the boundary 
between 2 and 3, the resulting code is either 010 or 011, either of which is satis­
factory. If we change the encoding of the values 0 through 7 such that only one 
bit value changes as we count up or down (including rollover from 7 to 0), then 
the encoding will be satisfactory for all positions. A code having the property 
that only one bit at a time changes between codes during counting is a Gray code 
named for Frank Gray, who patented its use for shaft encoders in 1953. There are 
multiple Gray codes for any set of n consecutive integers, with n even. 

A specific Gray code for the octal digits, called a binary reflected Gray code, 
appears on the right in Table 1-6. Note that the counting order for binary codes is 
now 000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for pro­
cessing, then we can build a digital circuit or use software that converts these codes 
to binary before they are used in further processing of the information. 

Figure 1-5(b) shows the optical shaft-angle encoder using the Gray code from 
Table 1-6. Note that any two segments on the disk adjacent to each other have only 
one region that is clear for one and opaque for the other. 

The optical shaft encoder illustrates one use of the Gray code concept. There 
are many other similar uses in which a physical variable, such as position or volt­
age, has a continuous range of values that is converted to a digital representation. 
A quite different use of Gray codes appears in low-power CMOS (Complementary 
Metal Oxide Semiconductor) logic circuits that count up or down. In CMOS, 
power is consumed only when a bit changes. For the example codes given in Table 
1-6 with continuous counting (either up or down), there are 14 bit changes for 
binary counting for every eight bit changes for Gray code counting. Thus, the 
power consumed at the counter outputs for the Gray code counter is only 57 per­
cent of that consumed at the binary counter outputs. 

A Gray code for a counting sequence of n binary code words (n must be 
even) can be constructed by replacing each of the first n/2 numbers in the sequence 
with a code word consisting of 0 followed by the even parity for each bit of the 
binary code word and the bit to its left. For example, for the binary code word 
0100, the Gray code word is 0, parity(O, 1), parity(l, 0), parity(O, 0) = 0110. Next, 
take the sequence of numbers formed and copy it in reverse order with the left­
most 0 replaced by a 1. This new sequence provides the Gray code words for the 
second n/2 of the original n code words. For example, for BCD codes, the first five 
Gray code words are 0000, 0001, 0011, 0010, and 0110. Reversing the order of these 
codes and replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and 
1000 for the last five Gray codes. For the special cases in which the original binary 
codes are 0 through 2n - 1, each Gray code word may be formed directly from the 
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corresponding binary code word by copying its leftmost bit and then replacing 
each of the remaining bits with the even parity of the bit of the number and the bit 
to its left. 

1-7 CHAPTER SUMMARY 

In this chapter, we introduced digital systems and digital computers and showed 
why such systems use signals having only two values. We briefly introduced the 
structure of the stored-program digital computer and showed how computers can 
be applied to a broad range of specialized applications by using embedded systems. 
We then related the computer structure to a representative example of a personal 
computer (PC). 

Number-system concepts, including base (radix) and radix point, were pre­
sented. Because of their correspondence to two-valued signals, binary numbers were 
discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized, 
since they are useful as shorthand notation for binary. Arithmetic operations in bases 
other than base 10 and the conversion of numbers from one base to another were 
covered. Because of the predominance of decimal in normal use, Binary-Coded Dec­
imal (BCD) was treated. The representation of information in the form of characters 
instead of numbers by means of the ASCII code for the English alphabet was pre­
sented. The parity bit was presented as a technique for error detection, and the Gray 
code, which is critical to selected applications, was defined. 

In subsequent chapters, we treat the representation of signed numbers and 
floating-point numbers. Although these topics fit well with the topics in this chap­
ter, they are difficult to motivate without associating them with the hardware used 
to implement the operations performed on them. Thus, we delay their presentation 
until we examine the associated hardware. 
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PROBLEMS 

lWIWn� The plus (+) indicates a more advanced problem, and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

1-1. This problem concerns wind measurements made by the wireless weather 
station illustrated in Example 1-1. The wind-speed measurement uses a 
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rotating anemometer connected by a shaft to an enclosed disk that is one­
half clear and one-half black. There is a light above and a photodiode below 
the disk in the enclosure. The photodiode produces a 3 V signal when 
exposed to light and a 0 V signal when not exposed to light. (a) Sketch the 
relative appearance of voltage waveforms produced by this sensor (1) when 
the wind is calm, (2) when the wind is 10 mph, and (3) when the wind is 100 
mph. (b) Explain verbally what information the microcomputer must have 
available and the tasks it must perform to convert the voltage waveforms 
produced into a binary number representing wind speed in miles per hour. 

1-2. Using the scheme in Example 1-1, find the discrete, quantized value of 
voltage and the binary code for each of the following Fahrenheit tempera­
tures:-34, +31, +77, and +108. 

1-3. *List the binary, octal, and hexadecimal numbers from 16 to 31. 

1-4. What is the exact number of bits in a memory that contains (a) 96K bits; 
(b) 640M bits; (c) 4G bits? 

1-5. How many bits are in 1 Tb? [Hint: Depending on the tool used to calculate 
this, you may need to use a trick to get the exact result. Note that 220 

= 

1,000,00010 + d, where d is the difference between 220 and 1,000,00010, and 
that 1 T = (1,000,00010 + d)2• Expand the equation for 1 T into a sum-of­
products form, insert the value of d, find the three products, and then find 
their sum.] 

1-6. What is the decimal equivalent of the largest binary integer that can be 
obtained with (a) 11 bits and (b) 25 bits? 

1-7. *Convert the following binary numbers to decimal: 1001101, 1010011.101, 
and 10101110.1001. 

1-8. Convert the following decimal numbers to binary: 193, 751, 2007, and 19450. 

1-9. *Convert the following numbers from the given base to the other three 
bases listed in the table: 

Decimal Binary Octal Hexadecimal 
--

369.3125 ? ? ? 
? 10111101.101 ? ? 
? ? 326.5 ? 
? ? ? F 3C7.A 

1-10. *Convert the following decimal numbers to the indicated bases, using the 
methods of Examples 1-4 on page 21 and 1-7 on page 22: 
(a) 7562.45 to octal (b) 1938.257 to hexadecimal (c) 175.175 to binary. 

1-11. *Perform the following conversion by using base 2 instead of base 10 as the 
intermediate base for the conversion: 
(a) (673.6)8 to hexadecimal (b) (E7C.B)16 to octal (c) (310.2)4 to octal 
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1-12. Perform the following binary multiplications: 

(a) 1101x1011 (b) 0101x1010 (c) 100111x011011 

1-13. +Division is composed of multiplications and subtractions. Perform the 
binary division 1010110+101 to obtain a quotient and remainder. 

1-14. A limited number system uses base 12. There are at most four integer digits. 
The weights of the digits are 123, 122, 12, and 1. Special names are given to 
the weights as follows: 12 = 1 dozen, 122 = 1 gross, and 123 = 1 great gross. 

(a) How many beverage cans are in 6 great gross+ 8 gross+ 7 dozen+ 4? 
(b) Find the representation in base 12 for 756910 beverage cans. 

1-15. Considerable evidence suggests that base 20 has historically been used for 
number systems in a number of cultures. 
(a) Write the digits for a base 20 system, using an extension of the same digit 

representation scheme employed for hexadecimal. 
(b) Convert (2007)10 to base 20. (c) Convert (BCI.G)z0 to decimal. 

1-16. *In each of the following cases, determine the radix r: 

(a) (BEE),= (2699)10 (b) (365), = (194)10 

1-17. The following calculation was performed by a particular breed of unusually 
intelligent chicken. If the radix r used by the chicken corresponds to its total 
number of toes, how many toes does the chicken have on each foot? 

((34), + (24),) x (21), = (1480), 

1-18. *Find the binary representations for each of the following BCD numbers: 
(a) 0100 1000 0110 0111 (b) 0011 0111 1000.0111 0101 

1-19. *Represent the decimal numbers 694 and 835 in BCD, and then show the 
steps necessary to form their sum. 

1-20. *Internally in the computer, with few exceptions, all numerical computation 
is done using binary numbers. Input, however, often uses ASCII, which is 
formed by appending 011 to the left of a BCD code. Thus, an algorithm that 
directly converts a BCD integer to a binary integer is very useful. Here is 
one such algorithm: 

1. Draw lines between the 4-bit decades in the BCD number. 

2. Move the BCD number one bit to the right. 

3. Subtract 0011 from each BCD decade containing a binary value> 0111. 

4. Repeat steps 2 and 3 until the leftmost 1 in the BCD number has been 
moved out of the least significant decade position. 

5. Read the binary result to the right of the least significant BCD decade. 

(a) Execute the algorithm for the BCD number 0111 1000. 

(b) Execute the algorithm for the BCD number 0011 1001 0111. 
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1-21. Internally in a computer, with few exceptions, all computation is done using 
'""-'°"" binary numbers. Output, however, often uses ASCII, which is formed by 

appending 011 to the left of a BCD code. Thus, an algorithm that directly 
converts a binary integer to a BCD integer is very useful. Here is one such 
algorithm: 

1. Draw lines to bound the expected BCD decades to the left of the binary 
number. 

2. Move the binary number one bit to the left. 

3.Add 0011 to each BCD decade containing a binary value> 0100. 

4. Repeat steps 2 and 3 until the last bit in the binary number has been 
moved into the least significant BCD decade position. 

5. Read the BCD result. 

(a) Execute the algorithm for the binary number 1111000. 
(b) Execute the algorithm for the binary number 01110010111. 

1-22. What bit position in an ASCII code must be complemented to change the 
ASCII letter represented from uppercase to lowercase and vice versa? 

1-23. Write your full name in ASCII, using an 8-bit code (a) with the leftmost bit 
always 0 and (b) with the leftmost bit selected to produce even parity. 
Include a space between names and a period after the middle initial. 

1-24. Decode the following ASCII code: 1000111 1101111 0100000 1000010 
1100001 1100100 1100111 1100101 1110010 1110011 0100001. 

1-25. *Show the bit configuration that represents the decimal number 255 in 
(a) binary, (b) BCD, (c) ASCII, (d) ASCII with odd parity. 

1-26. (a) List the 6-bit binary number equivalents for 32 through 47 with a parity 
bit added in the rightmost position, giving odd parity to the overall 7-bit 
numbers. (b) Repeat for even parity. 

1-27. Using the procedure given in Section 1-5, find the hexadecimal Gray code. 

W , 1-28. This problem concerns wind measurements made by the wireless weather 
station in Example 1-1. The wind direction is to be measured with a disk 
encoder like the one shown in Figure 1-5(b ). (a) Assuming that the code 000 
corresponds to N, list the Gray code values for each of the directions, S, E, 
W, NW, NE, SW, and SE. (b) Explain why the Gray code you have assigned 
avoids the reporting of major errors in wind direction. 

1-29. +What is the percentage of power consumed for continuous counting (either 
up or down but not both) at the outputs of a binary Gray code counter (with 
all 2n code words used) compared to a binary counter as a function of the 
number of bits, n, in the two counters? 



COMBINATIONAL 

LOGIC CIRCUITS 

I 
n this chapter we will learn about gates, the most primitive logic elements used in 
digital systems. In addition, we will learn the mathematical techniques for 
designing circuits from these gates and learn how to design cost-effective circuits. 

T hese techniques, which are fundamental to the design of almost all digital circuits, 
are based on Boolean algebra. One aspect of design is to avoid unnecessary circuitry 
and excess cost, a goal accomplished by a technique called optimization. Karnaugh 
maps provide a graphical method for enhancing understanding of logic design and 
optimization and solving small optimization problems for ''two-level" logic circuits. 
More general optimization methods for circuits with two or more levels are introduced. 
Types of logic gates characteristic of contemporary integrated-circuit implementation 
are discussed. Exclusive-OR and exclusive-NOR gates are introduced, along with 
associated algebraic techniques. 

In terms of the diagram at the beginning of Chapter 1, concepts from this chapter 
apply to most of the generic computer. Exceptions are circuits that are largely 
memory, such as caches and RAM, and analog electronic circuits in the monitor and 
hard disk controller. Nevertheless, with its use throughout the design of most of the 
computer, what we study in this chapter is fundamental to an in-depth understanding 
of computers and digital systems and how they are designed. 

2-1 BINARY LOGIC AND GATES 

Digital circuits are hardware components that manipulate binary information. The 
circuits are implemented using transistors and interconnections in complex semi­
conductor devices called integrated circuits. Each basic circuit is referred to as a 
logic gate. For simplicity in design, we model the transistor-based electronic 
circuits as logic gates. Thus, the designer need not be concerned with the internal 
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electronics of the individual gates, but only with their external logic properties. 
Each gate performs a specific logical operation. The outputs of gates are applied to 
the inputs of other gates to form a digital circuit. 

In order to describe the operational properties of digital circuits, we need to 
introduce a mathematical notation that specifies the operation of each gate and 
that can be used to analyze and design circuits. This binary logic system is one of a 
class of mathematical systems generally called Boolean algebras (after the English 
mathematician George Boole, who in 1854 published a book introducing the math­
ematical theory of logic) . The specific Boolean algebra we will study is used to 
describe the interconnection of digital gates and to design logic circuits through the 
manipulation of Boolean expressions. We first introduce the concept of binary logic 
and show its relationship to digital gates and binary signals. We then present the 
properties of the Boolean algebra, together with other concepts and methods use­
ful in designing logic circuits. 

Binary Logic 

Binary logic deals with binary variables, which take on two discrete values, and 
with the operations of mathematical logic applied to these variables. The two val­
ues the variables take may be called by different names, as mentioned in Section 1-1, 
but for our purpose, it is convenient to think in terms of binary values and assign 1 
or 0 to each variable. In the first part of this book, variables are designated by let­
ters of the alphabet, such as A, B, C, X, Y, and Z. Later this notation will be 
expanded to include strings of letters, numbers, and special characters. Associated 
with the binary variables are three basic logical operations called AND, OR, and 
NOT: 

1. AND. This operation is represented by a dot or by the absence of an opera­
tor. For example, Z = X · Y or Z = XY is read "Z is equal to X AND Y." The 
logical operation AND is interpreted to mean that Z = 1 if and only if X = 1 
and Y = 1; otherwise Z = 0. (Remember that X, Y, and Z are binary vari­
ables and can be equal to only 1 or0.) 

2. OR. This operation is represented by a plus symbol. For example, Z = X + Y 

is read "Z is equal to XOR Y," meaning that Z = 1 if X = 1 or if Y = 1, or if 
both X = 1 and Y = 1. Z = 0 if and only if X = 0 and Y = 0. 

3. NOT._l'his operation is represented by a bar over the variable. For example, 
Z = X is read "Z is equal to NOT X," meaning that Z is what X is not. In 
other words, if X = 1, then Z = O; but if X = 0, then Z = 1. The NOT opera­
tion is also referred to as the complement operation, since it changes a 1 to 0 
and a 0 to1. 

Binary logic resembles binary arithmetic, and the operations AND and OR 
have similarities to multiplication and addition, respectively. This is why the sym­
bols used for AND and OR are the same as those used for multiplication and addi­
tion. However, binary logic should not be confused with binary arithmetic. One 
should realize that an arithmetic variable designates a number that may consist of 
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many digits, whereas a logic variable is always either a 1 or a 0. The following equa­
tions define the logical OR operation: 

0+0=0 

0+1=1 

1+0=1 

1+1=1 

These resemble binary addition, except for the last operation. In binary logic, we 
have 1 + 1 = 1 (read "one OR one is equal to one"), but in binary arithmetic, we 
have 1 + 1 = 10 (read "one plus one is equal to two"). To avoid ambiguity, the 
symbol v is sometimes used for the OR operation instead of the + symbol. But as 
long as arithmetic and logic operations are not mixed, each can use the + symbol 
with its own independent meaning. 

The next equations define the logical AND operation: 

0 . 0 = 0 

0·1=0 

1·0 = 0 

1·1=1 

This operation is identical to binary multiplication, provided that we use only a sin­
gle bit. Alternative symbols to the · for AND and + for OR, are symbols A and v, 
respectively, that represent conjunctive and disjunctive operations in propositional 
calculus. 

For each combination of the values of binary variables such as X and Y, 
there is a value of Z specified by the definition of the logical operation. The defini­
tions may be listed in compact form in a truth table. A truth table for an operation 
is a table of combinations of the binary variables showing the relationship 
between the values that the variables take on and the values of the result of the 
operation. The truth tables for the operations AND, OR, and NOT are shown in 
Table 2-1. The tables list all possible combinations of values for two variables and 
the results of the operation. They clearly demonstrate the definition of the three 
operations. 

D TABLE2-1 
Truth Tables for the Three Basic Logical Operations 

AND OR NOT 

x y Z= X·Y x y Z=X+Y x Z=X 

0 0 0 0 0 0 0 1 
0 1 0 0 1 1 1 0 
1 0 0 1 0 1 
1 1 1 1 1 1 
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Logic Gates 

Logic gates are electronic circuits that operate on one or more input signals to pro­
duce an output signal. Electrical signals such as voltages or currents exist through­
out a digital system in either of two recognizable values. Voltage-operated circuits 
respond to two separate voltage ranges that represent a binary variable equal to 
logic 1 or logic 0, as illustrated in Figure 1-1. The input terminals of logic gates 
accept binary signals within the allowable range and respond at the output termi­
nals with binary signals that fall within a specified range. The intermediate regions 
between the allowed ranges in the figure are crossed only during changes from 1 to 
0 or from 0 to 1. These changes are called transitions, and the intermediate regions 
are called the transition regions. 

The graphics symbols used to designate the three types of gates-AND, OR, 
and NOT-are shown in Figure 2-l(a) . The gates are electronic circuits that pro­
duce the equivalents of logic-1 and logic-0 output signals in accordance with their 
respective truth tables if the equivalents of logic-1 and logic-0 input signals are 
applied. The two input signals X and Y to the AND and OR gates take on one of 
four possible combinations: 00, 01, 10, or 11. These input signals are shown as tim­
ing diagrams in Figure 2-1 (b) , together with the timing diagrams for the corre­
sponding output signal for each type of gate. The horizontal axis of a timing 
diagram represents time, and the vertical axis shows a signal as it changes between 

�=D--Z=X·Y �=D-- Z=X+Y x------[)o--z=X 

AND gate OR gate NOT gate or 
inverter 

(a) Graphic symbols 

xl 0 0 1 1 L 

yl 0 1 0 1 L 
(AND) X·Yl 0 0 0 1 L 

(OR) X+Yl 0 1 1 1 L 
(NOT) x J 1 1 0 0 r 

(b) Timing diagram 

�tG� 

(AND) X·;i 0 0 0 1 L 
( c) AND timing diagram with gate delay tG 

D FIGURE 2-1 
Digital Logic Gates 
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the two possible voltage levels. The low level represents logic 0 and the high level 
represents logic 1. The AND gate responds with a logic-1 output signal when both 
input signals are logic 1. The OR gate responds with a logic-1 output signal if either 
input signal is logic 1. The NOT gate is more commonly referred to as an inverter. 
The reason for this name is apparent from the response in the timing diagram. The 
output logic signal is an inverted version of input logic signal X. 

In addition to its function, each gate has another very important property 
called gate delay, the length of time it takes for an input change to result in the 
corresponding output change. Depending on the technology used to implement 
the gate, the length of time may depend on which of the inputs are changing. For 
example, for the AND gate shown in Figure 2-l(a), with both inputs equal to 1, 
the gate delay when input B changes to 0 may be longer than the gate delay when 
the input A changes to 0. Also, the gate delay when the output is changing from 0 
to 1 may be longer than when the output is changing from 1 to 0, or vice versa. In 
the simplified model introduced here, these variations are ignored and the gate 
delay is assumed to have a single value, t0 This value may be different for each 
gate type, number of inputs, and the underlying technology and circuit design of 
the gate. In Figure 2-l(c), the output of the AND gate is shown taking into con­
sideration the AND gate delay, ta. A change in the output waveform is shifted ta 

time units later compared to the change in input X or Y that causes the it. When 
gates are attached together to form logic circuits, the delays down each path from 
an input to an output add together. In Section 6-2, we will revisit gate delay and 
consider a more accurate model. 

AND and OR gates may have more than two inputs. An AND gate with 
three inputs and an OR gate with six inputs are shown in Figure 2-2. The three­
input AND gate responds with a logic-I output if all three inputs are logic 1. The 
output is logic 0 if any input is logic 0. The six-input OR gate responds with a 
logic 1 if any input is logic 1; its output becomes a logic 0 only when all inputs are 
logic 0. 

2-2 BOOLEAN ALGEBRA 

The Boolean algebra we present is an algebra dealing with binary variables and 
logic operations. The variables are designated by letters of the alphabet, and the 
three basic logic operations are AND, OR, and NOT (complementation). A Bool­
ean expression is an algebraic expression formed by using binary variables, the con­
stants 0 and 1, the logic operation symbols, and parentheses. A Boolean function 
can be described by a Boolean equation consisting of a binary variable identifying 

�=o---F=ABC 

(a) Three-input AND gate 

A 
B 
c 
D 
E 
F 

D FIGURE2-2 

G=A+B+C+D+E+F 

(b) Six-input OR gate 

Gates with More than Two Inputs 
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the function followed by an equals sign and a Boolean expression. Optionally, the 
function identifier is followed by parentheses enclosing a list of the function vari­
ables separated by commas. A single-output Boolean function is a mapping from 
each of the possible combinations of values 0 and 1 on the function variables to 
value 0 or 1. A multiple-output Boolean function is a mapping from each of the 
possible combinations of values 0 and 1 on the function variables to combinations 
of 0 and 1 on the function outputs. 

W > EXAMPLE 2-1 Boolean Function Example - Power Windows 

Consider an example Boolean equation representing electrical or electronic logic 
for control of the lowering of the driver's power window in a car. 

L(D,X,A) = DX+ A 

The window is raised or lowered by a motor driving a lever mechanism connected 
to the window. The function L = 1 means that the window motor is powered up to 
turn in the direction that lowers the window. L = 0 means the window motor is not 
powered up to turn in this direction. D is an output produced by pushing a panel 
switch on the inside of the driver's door. With D = 1, the lowering of the driver's 
window is requested, and with D = 0, this action is not requested.X is the output of 
a mechanical limit switch. X = 1 if the window is at a limit-in this case, in the fully 
down position. X = 0 if the window is not at its limit-i.e., not in the fully down 
position. A = 1 indicates automatic lowering of the window until it is in the fully 
down position. A is a signal generated by timing logic from D and X. Whenever D 
has been 1 for at least one-half second, A becomes 1 and remains at 1 until X = 1. 
If D = 1 for less than one-half second, A = 0. Thus, if the driver requests that the 
window be lowered for one-half second or longer, the window is to be lowered 
automatically to the fully down position.:...._ 

The two parts of the expression, DX and A, are called terms of the expression 
for L. The function L is equal to 1 if term DX is equal to 1 or if term A is equal to 
1. Otherwise, L is equal to 0. The complement operation dictates that if X = 1, then 
X = 0. Therefore, we can say that L = 1 if D = 1, and X = 0 or if A = 1. So what 
does the equation for L say if interpreted in words? It says that the window will be 
lowered if the window is not fully lowered (X = 0) and the switch D is being 
pushed (D = 1) or if the window is to be lowered automatically to fully down posi­
tion (A= 1). • 

A Boolean equation expresses the logical relationship between binary vari­
ables. It is evaluated by determining the binary value of the expression for all pos­
sible combinations of values for the variables. A Boolean function can be 
represented by a truth table. A truth table for a function is a list of all combinations 
of ls and Os that can be assigned to the binary variables and a list that shows the 
value of the function for each binary combination. The truth tables for the logic 
operations given in Table 2-1 are special cases of truth tables for functions. The 
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D TABLE2-2 
Truth Table 
for the Function L =DX+ A 

D x A L 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

number of rows in a truth table is 2n, where n is the number of variables in the 
function. The binary combinations for the truth table are the n-bit binary numbers 
that correspond to counting in decimal from 0 through 2n - 1. Table 2-2 shows the 
truth table for the function L =DX+ A. There are eight possible binary combina­
tions that assign bits to the three variables D, X, and A. The column labeled L con­
tains either 0 or 1 for each of these combinations. The table shows that the 
function L is equal to 1 if D = 1 and X = 0 or if A = 1. Otherwise, the function L 

is equal to 0. 
An algebraic expression for a Boolean function can be transformed into a cir­

cuit diagram composed of logic gates that implements the function. The logic cir­
cuit diagram for function _!: is shown in Figure 2-3. An inverter on input X 

generates th� complement, X. An AND gate operates on X and D, and an OR gate 
combines DX and A. In logic circuit diagrams, the variables of the function F are 
taken as the inputs of the circuit, and the binary variable Fis taken as the output of 
the circuit. If the circuit has a single output, Fis a single output function. If the cir­
cuit has multiple outputs, function F is a multiple output function with multiple 
variables and equations required to represent its outputs. Circuit gates are inter­
connected by wires that carry logic signals. Logic circuits of this type are called 
combinational logic circuits, since the variables are "combined" by the logical oper­
ations. This is in contrast to the sequential logic to be treated in Chapter 5, in which 
variables are stored over time as well as being combined. 

There is only one way that a Boolean function can be represented in a truth 
table. However, when the function is in algebraic equation form, it can be 

D--------1 

x 

A ----------' 

D FIGURE2-3 
Logic Circuit Diagram for L = DX+ A 
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expressed in a variety of ways. The particular expression used to represent the 
function dictates the interconnection of gates in the logic circuit diagram. By 
manipulating a Boolean expression according to Boolean algebraic rules, it is often 
possible to obtain a simpler expression for the same function. This simpler expres­
sion reduces both the number of gates in the circuit and the numbers of inputs to 
the gates. To see how this is done, we must first study the basic rules of Boolean 
algebra. 

Basic Identities of Boolean Algebra 

Table 2-3 lists the most basic identities of Boolean algebra. The notation is simpli­
fied by omitting the symbol for AND whenever doing so does not lead to confu­
sion. The first_!!.ine identities show the relationship between a single variable X, its 
complement X, and the binary constants 0 and 1. The next five identities, 10 
through 14, have counterparts in ordinary algebra. The last three, 15 through 17, do 
not apply in ordinary algebra, but are useful in manipulating Boolean expressions. 

The basic rules listed in the table have been arranged into two columns that 
demonstrate the property of duality of Boolean algebra. The dual of an algebraic 
expression is obtained by interchanging OR and AND operations and replacing ls 
by Os and Os by ls. An equation in one column of the table can be obtained from 
the corresponding equation in the other column by taking the dual of the expres­
sions on both sides of the equals sign. For example, relation 2 is the dual of relation 
1 because the OR has been replaced by an AND and the 0 by 1. It is important to 
note that most of the time the dual of an expression is not equal to the original 
expression, so that an expression usually cannot be replaced by its dual. 

The nine identities involving a single variable can be easily verified by sub­
stituting each of the two possible values for X. For example, to show that X + 0 = 

X, let X = 0 to obtain 0 + 0 = 0, and then let X = 1 to obtain 1 + 0 = 1. Both 

D TABLE 2-3 
Basic Identities of Boolean Algebra 

1. X+O =X 2. X·l = X 

3. X+1=1 4. X·O = 0 

5. X+X=X 6. X·X=X 

7. X"+X=l 8. X·X= 0 

9. X=X 

10. X+Y= Y+X 11. XY= YX Commutative 

12. X + (Y + Z) = (X + Y) + Z 13. X(YZ) = (XY)Z Associative 

14. X(Y+Z) = XY+XZ 15. X + YZ = (X + Y)(X + Z) Distributive 

16. X+Y= X·Y 17. X·Y= X+Y DeMorgan's 
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equations are true according to the definition of the OR logic operation. Any 
expression can be substituted for the variable X in all the Boolean equations 
listed in the table. Thus, by identity 3 and with X =AB + C, we obtain 

AB+C+l = 1 

Note that identity 9 states that double complementation restores the variable to its 
- -

original value. Thus, if X = 0, then X = 1 and X = 0 = X. 

Identities 10 and 11, the commutative laws, state that the order in which the 
variables are written will not affect the result when using the OR and AND opera­
tions. Identities 12 and 13, the associative laws, state that the result of applying an 
operation over three variables is independent of the order that is taken, and there­
fore, the parentheses can be removed altogether, as follows: 

X+(Y+Z) 

X(YZ) 

(X + Y) + Z = X + Y + Z 

(XY)Z = XYZ 

These two laws and the first distributive law, identity 14, are well known from ordi­
nary algebra, so they should not pose any difficulty. The second distributive law, 
given by identity 15, is the dual of the ordinary distributive law and does not hold 
in ordinary algebra. As illustrated previously, each variable in an identity can be 
replaced by a Boolean expression, and the identity still holds. Thus, consider the 
expression (A + B) (A + CD). Letting X = A, Y = B, and Z = CD, and applying 
the second distributive law, we obtain 

(A +B)(A +CD)= A +BCD 

The last two identities in Table 2-3, 

X+Y = X·Y and X·Y= X+Y 

are referred to as DeMorgan's theorem. This is a very important theorem and is 
used to obtain the complement of an expression and of the corresponding function. 
DeMorgan's theorem can be illustrated by means of truth tables that assign all the 
possible binary values to X and Y. Table 2-4 shows two truth tables that verify the 
first part of DeMorgan's theorem. In (a) , we evaluate X + Y for all possible values 
of X and Y. This is done by !rst evaluating X + Y and then taking its complement. 
In (b ), we evaluate X and Y and then AND them together. The result is the same 

D TABLE2-4 
Truth Tables to Verify DeMorgan's Theorem 

(a) x y x+v X+Y (b) x y x y X·Y 

0 0 0 1 0 0 1 1 1 
0 1 1 0 0 1 1 0 0 
1 0 1 0 1 0 0 1 0 
1 1 1 0 1 1 0 0 0 
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for the four binary combinations of X and Y, which verifies the identity of the 
equation. 

Note the order in which the operations are performed when evaluating an 
expression. In part (b) of the table, the complement over a single variable is evalu­
ated first, followed by the AND operation, just as in ordinary algebra with multipli­
cation and addition. In part (a), the OR operation is evaluated first. Then, noting 
that the complement over an expression such as X + Y is considered as specifying 
NOT (X + Y), we evaluate the expression within the parentheses and take the 
complement of the result. It is customary to exclude the parentheses when comple­
menting an expression, since a bar over the entire expression joins it together. 
Thus, (X + Y) is expressed as X + Y when designating the complement of X + Y. 

DeMorgan's theorem can be extended to three or more variables. The gen­
eral DeMorgan's theorem can be expressed as 

X1 +X2 + 
· · ·  +Xn = X1X2 ... Xn 

X1X2 ... Xn = X1 +X2 + · · ·  +Xn 

Observe that the logic operation changes from OR to AND or from AND to OR. 
In addition, the complement is removed from the entire expression and placed 
instead over each variable. For example, 

A+B+C+D=ABCD 

Algebraic Manipulation 

Boolean algebra is a useful tool for simplifying digital circuits. Consider, for exam­
ple, the Boolean function represented by 

F = XYZ+XYZ+XZ 

The implementation of this equation with logic gates is shown in Figure 2-4(a). 
Input variables X and Z are complemented with inverters to obtain X and Z. The 
three terms in the expression are implemented with three AND gates. The OR gate 
forms the logical OR of the terms. Now consider a simplification of the expression 
for F by applying some of the identities listed in Table 2-3: 

F= XYZ+XYZ+XZ 

XY( Z + Z) + XZ by identity 14 

XY · 1 + XZ by identity 7 

XY + XZ by identity 2 

The expression is reduced to only two terms and can be implemented with 
gates as shown in Figure 2-4(b ). It is obvious that the circuit in (b) is simpler than 
the one in (a), yet, both implement the same function. It is possible to use a truth 
table to verify that the two implementations are equivalent. This is shown in Table 2-
5. As expressed in Figure 2-4(a), the function is equal to 1 if X = 0, Y = 1, and Z 
= 1; if X = 0, Y = 1, and Z = O; or if X and Z are both 1. This produces the four ls 
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Y------jf--+--���+-�--1 

z -____,f--__ ---1 

(a) F = XYZ + XYZ + XZ 

x-----.------1 

y�-----jr--������� 

(b) F = XY + XZ 

D FIGURE2-4 
Implementation of Boolean Function with Gates 

D TABLE2-5 
Truth Table for Boolean Function 

x y z (a) F (b) F 

0 0 0 0 0 
0 0 1 0 0 
0 1 0 1 1 
0 1 1 1 1 
1 0 0 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 1 1 1 

F 

F 

for Fin part (a) of the table. As expressed in Figure 2-4(b ) , the function is equal to 
1 if X = 0 and Y = 1 or if X = 1 and Z = 1. This produces the same four ls in part 
(b) of the table. Since both expressions produce the same truth table, they are 
equivalent. Therefore, the two circuits have the same output for all possible binary 
combinations of the three input variables. Each circuit implements the same func­
tion, but the one with fewer gates and/or fewer gate inputs is preferable because it 
requires fewer components. 

When a Boolean equation is implemented with logic gates, each term 
requires a gate, and each variable within the term designates an input to the gate. 
We define a literal as a single variable within a term that may or may not be com­
plemented. The expression for the function in Figure 2-4(a) has three terms and 
eight literals; the one in Figure 2-4(b) has two terms and four literals. By 
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reducing the number of terms, the number of literals, or both in a Boolean 
expression, it is often possible to obtain a simpler circuit. Boolean algebra is 
applied to reduce an expression for the purpose of obtaining a simpler circuit. 
For highly complex functions, finding the best expression based on counts of 
terms and literals is very difficult, even by the use of computer programs. Certain 
methods, however, for reducing expressions are often included in computer tools 
for synthesizing logic circuits. These methods can obtain good, if not the best, 
solutions. The only manual method for the general case is a cut-and-try proce­
dure employing the basic relations and other manipulations that become familiar 
with use. The following examples use identities from Table 2-3 to illustrate a few 
of the possibilities: 

1. X+XY= X·1 +XY = X(l + Y) = X·1 = X 
- -

2. XY + XY = X(Y + Y) = X · 1 = X 
- -

3. X + XY = (X + X)(X + Y)  = 1 · (X + Y) = X + Y 

Note that the intermediate steps X = X· 1 and X· 1 = X are often omitted 
because of their rudimentary nature. The relationship 1 + Y = 1 is useful for elim­
inating redundant terms, as is done with the term XY in this same equation. The 
relation Y + Y = 1 is useful for combining two terms, as is done in equation 2. The 
two terms being combined must be identical except for one variable, and that vari­
able must be complemented in one term and not complemented in the other. 
Equation 3 is simplified by means of the second distributive law (identity 15 in 
Table 2-3). The following are three more examples of simplifying Boolean expres­
s10ns: 

4. X(X+Y) = X·X+X·Y = X+XY = X(l +Y) = X·1 = X 
- -

5. (X+Y)(X+Y) = X+YY= X+O = X 

6. X(X + Y) = XX+ XY = 0 + XY = XY 

The six equalities represented by the initial and final expressions are theorems of 
Boolean algebra proved by the application of the identities from Table 2-3. These 
theorems can be used along with the identities in Table 2-3 to prove additional 
results and to assist in performing simplification. 

Theorems 4 through 6 are the duals of equations 1 through 3. Remember that 
the dual of an expression is obtained by changing AND to OR and OR to AND 
throughout (and ls to Os and Os to ls if they appear in the expression). The duality 
principle of Boolean algebra states that a Boolean equation remains valid if we 
take the dual of the expressions on both sides of the equals sign. Therefore, equa­
tions 4, 5, and 6 can be obtained by taking the dual of equations 1, 2, and 3, respec­
tively. 

Along with the results just given in equations 1 through 6, the following con­
sensus theorem is useful when simplifying Boolean expressions: 

XY + XZ + YZ = XY + XZ 
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The theorem shows that the third term, YZ, is redundant and can be eliminated. 
Note that Y and Z are associated with X and X in the first two terms and appear 
together in the term that is eliminated. The proof of the consensus theorem is 
obtained by first ANDing YZ with (X + X) = 1 and proceeds as follows: 

XY+XZ+YZ XY+XZ + YZ(X +X) 

XY+XZ+XYZ+XYZ 

XY+XYZ+XZ+XYZ 

XY(l + Z) + XZ (l + Y) 

= XY+XZ 

The dual of the consensus theorem is 

(X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z) 

The following example shows how the consensus theorem can be applied in 
manipulating a Boolean expression: 

(A +B)(A + C) AA +AC+AB +BC 

AC+AB+BC 

AC+AB 

Note that AA = 0 and 0 +AC= AC. The redundant term eliminated in the last 
step by the consensus theorem is BC. 

Complement of a Function 

The complement representation for a function F, F, is obtained from an inter­
change of ls to Os and Os to ls for the values of F in the truth table. The comple­
ment of a function can be derived algebraically by applying DeMorgan's theorem. 
The generalized form of this theorem states that the complement of an expression 
is obtained by interchanging AND and OR operations and complementing each 
variable and constant, as shown in Example 2-2. 

EXAMPLE 2-2 Complementing Functions 

Find the _£omplement of each o!_ the functions represented by the equations 
F1 = XYZ + X YZ and F2 = X(YZ + YZ). Applying DeMorgan's theorem as 
many times as necessary, we obtain the complements as follows: 

F1 XYZ + XYZ = (XYZ) · (XYZ) 

(X + Y+Z)(X + Y+Z) 
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F2 = X(Y Z+YZ) = X+(YZ+YZ) 

X+(YZ·YZ) 

X + (Y + Z)(Y + Z) • 

A simpler method for deriving the complement of a function is to take the 
dual of the function equation and complement each literal. This method follows 
from the generalization of DeMorgan's theorem. Remember that the dual of an 
expression is obtained by interchanging AND and OR operations and ls and Os. To 
avoid confusion in handling complex functions, adding parentheses around terms 
before taking the dual is helpful, as illustrated in the next example. 

EXAMPLE 2-3 Complementing Functions by Using Duals 

Find the complements of the functions in Example 2-2 by taking the duals of their 
equations and complementing each literal. 

We begin with 

F1 = XYZ + XYZ = (XYZ) + (X YZ) 

The dual of F1 is 

(X + Y + Z)(X + Y + Z) 

Complementing each literal, we have 

Now, 

The dual of F2 is 

(X+Y+Z)(X+Y+Z) = F1 

F2 = X(Y Z + YZ) = X((Y Z) + (YZ)) 

X + (Y + Z)(Y + Z) 

Complementing each literal yields 

X+(Y+Z)(Y+Z) = F2 

2-3 STANDARD FORMS 

• 

A Boolean function expressed algebraically can be written in a variety of ways. 
There are, however, specific ways of writing algebraic equations that are consid­
ered to be standard forms. The standard forms facilitate the simplification proce­
dures for Boolean expressions and, in some cases, may result in more desirable 
expressions for implementing logic circuits. 
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The standard_!orms contain product terms and sum terms. An example of a 
product term is XYZ. This is a logical product consisting _£f an AND operation 
among three literals. An example of a sum term is X + Y + Z. This is a logical sum 
consisting of an OR operation among the literals. In Boolean algebra, the words 
"product" and "sum" do not imply arithmetic operations; instead, they specify the 
logical operations AND and OR, respectively. 

Minterms and Maxterms 

A truth table defines a Boolean function. An algebraic expression for the function 
can be derived from the table by finding a logical sum of product terms for which 
the function assumes the binary value 1. A product term in which all the variables 
appear exactly once, either complemented or uncomplemented, is called a min­
term. Its characteristic property is that it represents exactly one combination of 
binary variable values in the truth table. It has the value 1 for that combination and 
0 for all others. There are 2n distinct minterms for n variables. The four minterms 

--- -

for the two variables X and Y are X Y, XY, XY, and XY. The eight min terms for the 
three variables X, Y, and Z are listed in Table 2-6. The binary numbers from 000 to 
111 are listed under the variables. For each binary combination, there is a related 
minterm. Each minterm is a product term of exactly n literals, where n is the num­
ber of variables. In this example, n = 3. A literal is a complemented variable if the 
corresponding bit of the related binary combination is 0 and is an uncomple­
mented variable if it is 1. A symbol mj for each minterm is also shown in the table, 
where the subscript j denotes the decimal equivalent of the binary combination 
corresponding to the minterm. This list of minterms for any given n variables can 
be formed in a similar manner from a list of the binary numbers from 0 through 
2n - 1. In addition, the truth table for each minterm is given in the right half of the 
table. These truth tables clearly show that each minterm is 1 for the corresponding 
binary combination and 0 for all other combinations. Such truth tables will be help­
ful later in using minterms to form Boolean expressions. 

D TABLE2-6 

Minterms for Three Variables 

Product 
x y z Term Symbol mo m1 m2 ma m4 ms ms m1 

0 0 0 X Y Z  mo 1 0 0 0 0 0 0 0 

0 0 1 X YZ mi 0 1 0 0 0 0 0 0 
0 1 0 XYZ m1 0 0 1 0 0 0 0 0 

0 1 1 XYZ m3 0 0 0 1 0 0 0 0 
1 0 0 XY Z m4 0 0 0 0 1 0 0 0 
1 0 1 XYZ ms 0 0 0 0 0 1 0 0 
1 1 0 XYZ m6 0 0 0 0 0 0 1 0 
1 1 1 XYZ m7 0 0 0 0 0 0 0 1 
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D TABLE2-7 
Maxterms for Three Variables 

x y z Sum Term Symbol Mo M1 M2 Ma 

0 0 0 X+Y+Z Mo 0 1 1 1 
0 0 1 X+Y+Z Mi 1 0 1 1 
0 1 0 X+Y+Z M2 1 1 0 1 
0 1 1 X+Y+Z M3 1 1 1 0 
1 0 0 X+Y+Z M4 1 1 1 1 
1 0 1 X+Y+Z Ms 1 1 1 1 
1 1 0 X+Y+Z M6 1 1 1 1 

- - -

1 1 1 X+Y+Z M1 1 1 1 1 

M4 Ms Me M1 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

A sum term that contains all the variables in complemented or uncomple­
mented form is called a maxterm. Again, it is possible to formulate 2n maxterms 
with n variables. The eight maxterms for three variables are listed in Table 2-7. 
Each maxterm is a logical sum of the three variables, with each variable being com­
plemented if the corresponding bit of the binary number is 1 and uncomplemented 
if it is 0. The symbol for a maxterm is Mi, where j denotes the decimal equivalent of 
the binary combination corresponding to the maxterm. In the right half of the 
table, the truth table for each maxterm is given. Note that the value of the max­
term is 0 for the corresponding combination and 1 for all other combinations. It is 
now clear where the terms "minterm" and "maxterm" come from: a minterm is a 
function, not equal to 0, having the minimum number of ls in its truth table; a 
maxterm is a function, not equal to 1, having the maximum of ls in its truth table. 
Note from Table 2-6 and Table 2-7 that a minterm and maxterm with the same sub­
script are the complements of each other; that is, Mi = mi and mi = Mi. For exam­
ple, for j = 3, we have 

M3 = X + Y + Z = XYZ = m3 

A Boolean function can be represented algebraically from a given truth table 
by forming the logical sum of all the minterms that produce a 1 in the function. 
This expression is called a sum of minterms. Consider the Boolean function F in 
Table 2-8(a). The function is equal to 1 for each of the following binary combina­
tions of the variables X, Y, and Z: 000, 010, 101 and 111. These combinations corre­
spond to minterms 0, 2, 5, and 7. By examining Table 2-8 and the truth tables for 
these minterms in Table 2-6, it is evident that the function F can be expressed alge­
braically as the logical sum of the stated minterms: 

F= X YZ +XYZ +XYZ +XYZ = m0 +m2 +ms +m7 

This can be further abbreviated by listing only the decimal subscripts of the min­
terms: 

F(X, Y,Z) = Im(0,2,5, 7) 
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D TABLE2-8 

Boolean Functions of Three Variables 

(a) x y z F F (b) x y z E 

0 0 0 1 0 0 0 0 1 
0 0 1 0 1 0 0 1 1 
0 1 0 1 0 0 1 0 1 
0 1 1 0 1 0 1 1 0 
1 0 0 0 1 1 0 0 1 
1 0 1 1 0 1 0 1 1 
1 1 0 0 1 1 1 0 0 
1 1 1 1 0 1 1 1 0 

The symbol I stands for the logical sum (Boolean OR) of the minterms. The num­
bers following it represent the minterms of the function. The letters in parentheses 
following F form a list of the variables in the order taken when the min terms are 
converted to product terms. 

Now consider the complement of a Boolean function. The binary values of F 
in Table 2-8(a) are obtained by changin_g_ ls to Os and Os to ls in the values of 
F. Taking the logical sum of minterms of F, we obtain 

F(X,Y,Z) = X YZ +XYZ +XY Z +XYZ = m1 +m3 +m4 +m6 

or, in abbreviated form, 

F(X, Y,Z) = Im(l,3,4,6) 

Note that the minterm numbers for Fare the ones missing from the list of the min­
term numbers of F. We now take the complement of F to obtain F: 

= (X + Y+Z)(X + Y+Z)(X + Y+Z)(X + Y+Z) 

This shows the procedure for expressing a Boolean function as a product of max­
terms. The abbreviated form for this product is 

F(X, Y,Z) = IIM(l,3,4,6) 

where the symbol II denotes the logical product (Boolean AND) of the maxterms 
whose numbers are listed in parentheses. Note that the decimal numbers included 
in the product of maxterms will always be the same as the minterm list of the com­
plemented function, such as (1, 3, 4, 6) in the foregoing example. Maxterms are sel­
dom used directly when dealing with Boolean functions, since we can always 
replace them with the minterm list of F. 
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The following is a summary of the most important properties of minterms: 

1. There are 2n minterms for n Boolean variables. These minterms can be gener­
ated from the binary numbers from 0 to 2n - 1. 

2. Any Boolean function can be expressed as a logical sum of minterms. 

3. The complement of a function contains those minterms not included in the 
original function. 

4. A function that includes all the 2n minterms is equal to logic 1. 

A function that is not in the sum-of-minterms form can be converted to that form 
by means of a truth table, since the truth table always specifies the minterms of the 
function. Consider, for example, the Boolean function 

E = Y+XZ 

The expression is not in sum-of-minterms form, because each term does not con­
tain all three variables X, Y, and Z. The truth table for this function is listed in 
Table 2-8(b ). From the table, we obtain the min terms of the function: 

E(X, Y,Z) = Im(O, 1,2,4,5) 

The minterms for the complement of E are given by 

E(X, Y, Z) = Im(3, 6, 7) 

Note that the total number of min terms in E and E is equal to eight, since the func­
tion has three variables, and three variables produce a total of eight minterms. With 
four variables, there will be a total of 16 minterms, and for two variables, there will 
be four minterms. An example of a function that includes all the minterms is 

G(X,Y) = Im(0,1,2,3) = 1 

Since G is a function of two variables and contains all four minterms, it is always 
equal to logic 1. 

Sum of Products 

The sum-of-minterms form is a standard algebraic expression that is obtained 
directly from a truth table. The expression so obtained contains the maximum 
number of literals in each term and usually has more product terms than necessary. 
This is because, by definition, each minterm must include all the variables of the 
function, complemented or uncomplemented. Once the sum of minterms is 
obtained from the truth table, the next step is to try to simplify the expression to 
see whether it is possible to reduce the number of product terms and the number 
of literals in the terms. The result is a simplified expression in sum-of-products 
form. This is an alternative standard form of expression that contains product 
terms with up to n literals. An example of a Boolean function expressed as a sum 
of products is 
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Sum-of-Products Implementation 

F = Y+XYZ+XY 

The expression has three product terms, the first with one literal, the second with 
three literals, and the third with two literals. 

The logic diagram for a sum-of-products form consists of a group of AND 
gates followed by a single OR gate, as shown in Figure 2-5. Each product term 
requires an AND gate, except for a term with a single literal. The logical sum is 
formed with an OR gate that has single literals and the outputs of the AND gates 
as inputs. Often, we assumed that the input variables are directly available in their 
complemented and uncomplemented forms, so inverters are not included in the 
diagram. The AND gates followed by the OR gate form a circuit configuration 
referred to as a two-level implementation or two-level circuit. 

If an expression is not in sum-of-products-form, it can be converted to the 
standard form by means of the distributive laws. Consider the expression 

F =AB +C(D +E) 

This is not in sum-of-products form, because the term D + E is part of a product, 
not a single literal. The expression can be converted to a sum of products by apply­
ing the appropriate distributive law as follows: 

F = AB + C(D + E) = AB + CD + CE 

The function F is implemented in a nonstandard form in Figure 2-6(a). This 
requires two AND gates and two OR gates. There are three levels of gating in the 
circuit. F is implemented in sum-of-products form in Figure 2-6(b ) . This circuit 
requires three AND gates and an OR gate and uses two levels of gating. The deci­
sion as to whether to use a two-level or multiple-level (three levels or more) 
implementation is complex. Among the issues involved are the number of gates, 
number of gate inputs, and the amount of delay between the time the input values 
are set and the time the resulting output values appear. Two-level implementations 
are the natural form for certain implementation technologies, as we will see in 
Chapter 6. 
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A 
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E---1 

(a) AB + C(D + E) 

D FIGURE 2-6 

(b) AB + CD + CE 

Three-Level and Two-Level Implementation 

Product of Sums 

Another standard form of expressing Boolean functions algebraically is the prod­
uct of sums. This form is obtained by forming a logical product of sum terms. Each 
logical sum term may have any number of distinct literals. An example of a func­
tion expressed in product-of-sums form is 

F = X(Y + Z)(X + Y + Z) 

This expression has sum terms of one, two, and three literals. The sum terms per­
form an OR operation, and the product is an AND operation. 

The gate structure of the product-of-sums expression consists of a group of 
OR gates for the sum terms (except for a single literal term), followed by an AND 
gate. This is shown in Figure 2-7 for the preceding function F. As with the sum of 
products, this standard type of expression results in a two-level gating structure. 

2-4 Two-LEVEL CIRCUIT OPTIMIZATION 

The complexity of a logic circuit that implements a Boolean function is directly 
related to the algebraic expression from which the function is implemented. 
Although the truth-table representation of a function is unique, when expressed 
algebraically, the function appears in many different forms. Boolean expressions 
may be simplified by algebraic manipulation, as discussed in Section 2-2. How­
ever, this procedure of simplification is awkward, because it lacks specific rules to 

x -----� 

F 

D FIGURE2-7 
Product-of-Sums Implementation 
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predict each succeeding step in the manipulative process and it is difficult to 
determine whether the simplest expression has been achieved. By contrast, the 
map method provides a straightforward procedure for optimizing Boolean func­
tions of up to four variables. Maps for five and six variables can be drawn as well, 
but are more cumbersome to use. The map is also known as the Karnaugh map, or 
K-map. The map is a diagram made up of squares, with each square representing 
one row of a truth table, or correspondingly, one minterm of a single output func­
tion. Since any Boolean function can be expressed as a sum of minterms, it follows 
that a Boolean function is recognized graphically in the map by those squares for 
which the function has value 1, or correspondingly, whose minterms are included 
in the function. From a more complex view, the map presents a visual diagram of 
all possible ways a function may be expressed in a standard form. Among these 
ways are the optimum sum-of-products standard forms for the function. The opti­
mized expressions produced by the map are always in sum-of-products or prod­
uct-of-sums form. Thus, maps handle optimization for two-level implementations, 
but do not apply directly to possible simpler implementations for the general case 
with three or more levels. Initially, this section covers sum-of-products optimiza­
tion and, later, applies it to performing product-of-sums optimization. 

Cost Criteria 

In the prior section, counting literals and terms was mentioned as a way of measur­
ing the simplicity of a logic circuit. We introduce two cost criteria to formalize this 
concept. 

The first criterion is literal cost, the number of literal appearances in a Bool­
ean expression corresponding exactly to the logic diagram. For example, for the 
circuits in Figure 2-6, the corresponding Boolean expressions are 

F = AB + C(D + E) and F = AB + CD + CE 

There are five literal appearances in the first equation and six in the second, so the 
first equation is the simplest in terms of literal cost. Literal cost has the advantage 
that it is very simple to evaluate by counting literal appearances. It does not, how­
ever, represent circuit complexity accurately in all cases, even for the comparison 
of different implementations of the same logic function. The following Boolean 
equations, both for function G, illustrate this situation: 

G = ABCD + ABCD and G = (A+ B)(B + C)(C + D)(D +A) 

The implementations represented by these equations both have a literal cost of 
eight. But, the first equation has two terms and the second has four. This suggests 
that the first equation has a lower cost than the second. 

To capture the difference illustrated, we define gate-input cost as the number 
of inputs to the gates in the implementation corresponding exactly to the given 
equation or equations. This cost can be determined easily from the logic diagram 
by simply counting the total number of inputs to the gates in the logic diagram. For 
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sum-of-products or product-of-sums equations, it can be found from the equation 
by finding the sum of 

(1) all literal appearances, 

(2) the number of terms excluding terms that consist only of a single literal, and, 
optionally, 

(3) the number of distinct complemented single literals. 

In (1), all gate inputs from outside the circuit are represented. In (2), all gate inputs 
within the circuit, except for those to inverters, are represented and in (3), invert­
ers needed to complement the input variables are counted in the event that com­
plemented input variables are not provided. For the two preceding equations, 
excluding the count from (3), the respective gate-input counts are 8 + 2 = 10 and 
8 + 4 = 12. Including the count from (3), that of input inverters, the respective 
counts are 14 and 16. So the first equation for G has a lower gate-input cost, even 
though the literal costs are equal. 

Gate-input cost is currently a good measure for contemporary logic imple­
mentations, since it is proportional to the number of transistors and wires used in 
implementing a logic circuit. Representation of gate inputs becomes particularly 
important in measuring cost for circuits with more than two levels. Typically, as the 
number of levels increases, literal cost represents a smaller proportion of the actual 
circuit cost, since more and more gates have no inputs from outside the circuit 
itself. Later, in Figure 2-23, we introduce complex gate types for which evaluation 
of the gate-input cost from an equation is invalid, since the correspondence 
between the AND, OR and NOT operations in the equation and the gates in the 
circuit can no longer be established. In such cases, as well as for equation forms 
more complex than sum-of-products and product-of-sums, the gate-input count 
must be determined directly from the implementation. 

Regardless of the cost criteria used, we see later that the simplest expression 
is not necessarily unique. It is sometimes possible to find two or more expressions 
that satisfy the cost criterion applied. In that case, either solution is satisfactory 
from the cost standpoint. 

Map Structures 

We will consider maps for two, three, and four variables as shown in Figure 2-8. 
The number of squares in each map is equal to the number of minterms in the cor­
responding function. In our discussion of minterms, we defined a minterm mi to go 
with the row of the truth table with i in binary as the variable values. This use of i 

to represent the minterm mi is carried over to the cells of the maps, each of which 
corresponds to a minterm. For two, three, and four variables, there are 4, 8, and 16 
squares, respectively. Each of the maps is labeled in two ways: 1) with variables at 
the upper left for the columns and the rows and with a binary combination of those 
variables for each column and each row, and 2) with single variable labels at the 
edges of the map applied by a bracket to single or double rows and columns. Each 
location of a variable label aligns with the region of the map for which the variable 
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has value 1. The region for which the variable has value 0 is implicitly labeled with 
the complement of the variable. Only one of these two schemes is required to com­
pletely label a map, but both are shown to allow selection of the one that works 
best for a given user. 

Beginning with the binary combination scheme, we note that the binary com­
binations across the top and down the left side of a map take the form of a Gray 
code as introduced in Section 1-6. The use of the Gray code is appropriate because 
it represents the adjacency of binary combinations and of the corresponding min­
terms that is the foundation of K-maps. Two binary combinations are said to be 
adjacent if they differ in the value of exactly one variable. Two product terms 
(including min terms) are adjacent if they differ in one and only one literal which 
appears uncomplemented in one and complemented in the other. For example, the 
combinations (X, Y, Z) = 011 and 010 are adjacent, since they differ only in the 
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value of variable Z. Further, the minterms XYZ and XYZ are adjacent, since they 
have identical literal appearances except for Z, which appears uncomplemented 
and complemented. The reason for the use of a Gray code on K-maps is that any 
two squares which share a common edge correspond to a pair of adjacent binary 
combinations and adjacent minterms. This correspondence can be used to perform 
simplification of product terms for a given function on a K-map. This simplification 
is based on the Boolean algebraic theorem: 

AB+AB =A 

Applying this to the example with A = XY and B = Z, 

(XY)Z + (XY)Z = XY 

Looking at the K-map in Figure 2-8(c), we see that the two corresponding squares 
are located at (X, Y, Z) = 011 (3) and 010 (2), which are in row 0 and columns 11 
and 10, respectively. Note that these two squares are adjacent (share an edge) and 
can be combined, as indicated by the black rectangle in Figure 2-8(c). This rectan­
gle on the K-map contains both 0 and 1 for Z, and so no longer depends on Z, and 
can be read off as XY. This demonstrates that whenever we have two squares shar­
ing edges that are minterms of a function, these squares can be combined to form a 
product term with one less variable. 

For the 3- and 4-variable K-maps, there is one more issue to be addressed 
with respect to the adjacency concept. For a 3-variable K-map, suppose we con­
sider the minterms 0 and 2 in Figure 2-8( c ). These two min terms do not share an 
ed_g_e.L.and henc�do not appear to be adjacent. However, these two minterms are 
X Y Z and X Y Z, which by definition are adjacent. In order to recognize this adja­
cency on the K-map, we need to consider the left and right borders of the map to 
be a shared edge. Geometrically, this can be accomplished by forming a cylinder 
from the map so that the squares touching the left and right borders actually have 
a shared edge! A view of this cylinder appears in Figure 2-8( d). Here min terms m0 
and m2 share an edge and, from the K-map, are adjacent. Likewise, m4 and m6 
share an edge on the K-map and are adjacent. The two rectangles resulting from 
these adjacencies are shown in Figure 2-8(c) and 2-8(d) in blue. 

The 4-variable K-map in Figure 2-8(e) can likewise be formed into a cylinder. 
This demonstrates four adjacencie� m0�nd m2, mLan<!.._ m6' m12 and m14, and mg 
and m10• The minterms m0 and mg, W X Y Z and W X Y Z, are adjacent, suggesting 
that the top border of the map should be a shared edge with the bottom border. 
This can be accomplished by taking the cylinder formed from the map and bending 
it, joining these two borders. This results in the torus (doughnut shape) in Figure 2-
8(f). The additional resulting adjacencies identifiable on the map are m1 and m9, m3 
and m11, and m2 and m10• 

Unfortunately, the cylinder and the torus are not convenient to use, but they 
can help us remember the locations of shared edges. These edges are at the left and 
right border pair for the flat 3-variable map and at the left and right border pair 
and the top and bottom border pair for 4-variable K-maps, respectively. The use of 
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flat maps will require the use of pairs of split rectangles lying across the border 
paus. 

One final detail is the placing of a given function F on a map. Suppose that 
the function Fis given as a truth table with the row designated by decimal i corre­
sponding to the binary input values equivalent to i. Based on the binary combina­
tions on the left and top edges of the K-map combined in order, we can designate 
each cell of the map by the same i. This will permit easy transfer of the 0 and 1 val­
ues of F from the truth table onto the K-map. The values of i for this purpose are 
shown on the three maps in Figure 2-8. It is a good idea to determine how to fill in 
the values of i quickly by noting the order of the values of i in a row depends on 
the Gray code value order for the columns and the ordering of the rows of i values 
depends on the Gray code value order for the rows. For example, for the 4-variable 
map, the rows-of-columns order of the i values is: 0, 1, 3, 2, 4, 5, 7, 6, 12, 13, 15, 14, 
8, 9, 11, 10. The rows-of-columns order of the i values for 2-variable and 3-variable 
maps are the first four values and the first eight values from this sequence. These 
values can also be used for sum of minterm expressions defined using the abbrevi­
ated I notation. Note that the positioning of the i values is dependent upon the 
placement of the variables in order from lower left side to middle right side to right 
top and middle bottom for a 4-variable map. For 2- and 3-variable maps, the order 
is the same with the nonexistent "middle" positions skipped. Any variation from 
this ordering will give a different map structure. 

Two-Variable Maps 

There are four basic steps for using a K-map. Initially, we present each of these 
steps using a 2-variable function F(A, B) as an example. 

The first step is to enter the function on the K-map. The function may be in 
the form of a truth table, the Im shorthand notation for a sum of minterms, or a 
sum-of-products expression. The truth table for F(A, B) is given in Table 2-9. For 

D TABLE 2-9 

Two-Variable Function F(A, B) 

A 

0 

0 
1 

1 

B 

0 

1 

0 
1 

F 

1 
1 

0 
1 

each row in which the function F has value 1, the values of A and B can be read to 
determine where to place a 1 on the map. For example, the function has value 1 for 
the combination A = 0 and B = 0. Thus, a 1 is placed in the upper left square of the 
K-map in Figure 2-9(a) corresponding to A = 0 and B = 0. This operation is 
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repeated for rows (0, 1) and (1, 1) in the truth table to complete the entry of Fin 
the map. 

If the decimal subscripts for the minterms have been added to the truth table 
and entered on the map as discussed previously, a much faster approach to enter­
ing the function on the map is available. The subscripts for the minterms of the 
function are those corresponding to the rows for which the function is a 1. So a 1 is 
simply entered in squares 0, 1, and 3 of the K-map. For these two entry methods, as 
well as others, we assume that each remaining square contains a 0, but do not actu­
ally enter Os in the K-map. 

The Im notation for Fin the truth table is F(A, B) = Im(O, 1, 3) , which can 
be entered on the K-map simply by placing 1 in each of the squares 0, 1, and 3. 
Alternatively, a sum-of-products expression such as F =A+ AB can be given as a 
specification. This can be converted to minterms and entered on the K-map. More 
simply, the region of the K-map corresponding to each of the product terms can be 
identified anc!_filled with ls. Since AB is a minterm, we can simply place a 1 in 
square 3. For A, we note that the region is that identified as "not" A on the K-map 
and consists of squares 0 and 1. So A can be entered by placing a 1 in each of these 
two squares. In general, this last process becomes easier once we have mastered 
the concept of rectangles on a K-map, as discussed next. 

The second step is to identify collections of squares on the map representing 
product terms to be considered for the simplified expression. We call such objects 
rectangles, since their shape is that of a rectangle (including, of course, a square). 
Rectangles that correspond to product terms are restricted to contain numbers of 
squares that are powers of 2, such as 1, 2, 4, and 8. Also, this implies that the length 
of a side of any rectangle is a power of 2. Our goal is to find the fewest such rectan­
gles that include or cover all of the squares marked with ls. This will give the few­
est product terms and the least input cost for summing the product terms. Any 
rectangle we are planning to use should be as large as possible in order to include 
as many ls as possible. Also, a larger rectangle gives a lower input cost for the cor­
responding product term. 

For the example, there are two largest rectangles. One consists of squar� 1 
and 0, the other of squares 3 and 1. Squares 1 and _Q correspond to minterms AB 
and A B, which can be combined to form rectangle A. Squares 3 and 1 correspond 
to min terms AB and AB, which can be combined to form rectangle B. 
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The third step is to determine if any of the rectangles we have generated is 
not_!!.eeded to cover all of the ls on the K-map. In example, we can see that rectan­
gle A is required to cover minterm 0 and rectangle B is required to cover minterm 
3. In general, a rectangle is not required if it can be deleted and all of the ls on the 
map are covered by the remaining rectangles. If there are choices as to which rect­
angle of two having unequal size to remove, the largest one should remain. 

The final step is to read off the sum-of-products expression, determining the 
corresponding product terms for the required rectangles in the map. In the exam­
ple, we can read off the corresponding product term!_ by using the rectangles 
shown and the variable labels on the map boundary as A and B, respectively. This 
gives a sum-of-products expression for Fas: 

F=A+B 

EXAMPLE 2-4 Another 2-Variable Map Example 

The function G(A, B) = Im(l,2) is shown on the 2-variable K-map in Figure 2-9(b). 
Looking at the map, we find the two rectangles are simply the minterms 1 and 2. 
From the map, 

G(A,B) =AB +AB • 

From Figure 2-9(a) and 2-9(b), we find that 2-variable maps contain: (1) 1X1 
rectangles which correspond to minterms and (2) 2 X 1 rectangles consisting of a 
pair of adjacent minterms. A 1X1 rectangle can appear on any square of the map 
and a 2 X 1 rectangle can appear either horizontally or vertically on the map, each 
in one of two positions. Note that a 2 X 2 rectangle covers the entire map and cor­
responds to the function F = 1. 

Three-Variable Maps 

We introduce simplification on 3-variable maps by using two examples followed by 
a discussion of the new concepts involved beyond those required for 2-variable 
maps. 

EXAMPLE 2-5 Three-Variable Map Simplification 1 

Simplify the Boolean function 

F(A,B,C) = Im(0,1,2,3,4,5) 

This function has been entered on the K-map shown in Figure 2-lO(a), where 
squares 0 through 5 are marked with ls. In the map, the two largest rectangles each 
enclose four squares containing ls. Note that two squares, 0 and 1, lie in both of the 
rectangles. Since these two rectangles include all of the ls in the map and neither 
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Three-Variable K-Maps for Example 2-5 through 2-7 

c 
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B 

11 10 

can be removed, the logical sum of the corresponding two product terms gives the 
optimized expression for F: 

F=A+B 

To illustrate algebraically how a 4 �'!_!ectangle such as B arises, consider the two 
adjacent black rectangles AB and A B  connected by two pairs of adjacent min­
terms. These can be combined based on the theorem XY + XY= X with X = B and Y = 

A���R • 

EXAMPLE 2-6 Three-Variable Map Simplification 2 

Simplify the Boolean function 

G(A,B,C) = Im(0,2,4,5,6) 

This function has been enter on the K-map shown in Figure 2-lO(b), where squares 
listed are marked with ls. In some cases, two squares in the map are adjacent and 
form a rectangle of size two, even though they do not touch each other. For exam­
ple, in Figure 2-lO(b) and 2-8( d), m0 is adjacent to m2 because the min terms differ 
by one variable. This can be readily verified algebraically: 

m0 +m2 = ABC+ABC = AC(B +B) =AC 

This rectangle is represented in black in Figure 2-lO(b) and in blue in Figure 2-8( d) 
on a cylinder where the adjacency relationship is apparent. Likewise, a rectangle is 
shown in both figures for squares 4 and 6 which corresponds to AC. From the prior 
example, it is apparent that these two rectangles can be combined to give a larger 
rectangle C which covers squares 0, 2, 4, and 6. An additional rectangle is required 
to cover square 5. Th�largest such rectangle covers squares 4 and 5. It can be read 
from the K-map as AB. The resulting simplified function is 

G(A,B) =AB+ C • 

From Figure 2-lO(a) and 2-lO(b ), we find that 3-variable maps can contain all 
of the rectangles contained in a 2-variable map plus: (1) 2 x 2 rectangles, (2) 1 x 
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4 rectangles, (3) 2 x 1 "split rectangles" at the left and right edges, and a 2 x 2 split 
rectangle at the left and right edges. Note that a 2 x 4 rectangle covers the entire 
map and corresponds to the function G = 1. 

EXAMPLE 2-7 Three-Variable Map Simplification 3 
Simplify the Boolean function 

H(A,B,C) = Im(l,3,4,5,6) 

This function has been entered on the K-map shown in Figure 2-lO(c), where 
squares listed are marked with ls. In this example, we intentionally set the goal of 
finding all of the largest rectangles in order to emphasize step 3 of simplification, 
which has not been a significant step in earlier examples. Progressing from the 
upper center, we find the rectangles corresponding to the following pairs of squares: 
(3, 1), (1, 5), (5, 4), (4, 6). Can any of these rectangles be removed and still have all 
squares covered? Since only (3, 1) covers 3, it cannot be removed. The same holds 
for ( 4, 6) which covers square 6. After these are included, the only square that 
remains uncovered is 5, which permits either (1, 5) or (5, 4), but not both, to be 
removed. Assuming that (5, 4) remains, the result can be read from the map as 

H(A,B,C) = AC+AB +AC 

EXAMPLE 2-8 Four-Variable Map Simplification 1 
Simplify the Boolean function 

F(A,B,C,D) = Im(0,1,2,4,5,6,8,9,10,12,13) 

• 

The minterms of the function are marked with ls in the K-map shown in Figure 2-11. 
Eight squares in the two left columns are combined to form a rectangle for the one 
literal term, C. The remaining three ls cannot be combined to give a single simplified 
product term; rather, they must be combined as two split 2 x 2 rectangles. The top 
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tw£._ 1s on the right are combined with the top two ls on the left to give the term 
A D. Note again that it is permissible to use the same square more than once. We 
are now left with a square marked with a 1 in the fourth row and fourth column 
(minterm 1010). Instead of taking this square alone, which will give a term with 
four literals, we combine it with squares alreadr._ used to form a rectangle of four 
squares on the four corners, giving the term B D. This rectangle is represented in 
Figure 2-11 and in Figure 2-8(e) on a torus, where the adjacency relationships 
between the four squares is apparent. The optimized expression is the logical sum 
of the three terms: 

F= C+AD+BD 

EXAMPLE 2-9 Four-Variable Map Simplification 2 

Simplify the Boolean function 

G(A,B,C,D) = A C D  +AD +BC+ CD +ABD 

• 

This function has four variables: A, B, C, and D. It is expressed in a fairly complex 
sum-of-products form. In order to enter G on a K-map, we will actually enter the 
regions corresponding to the product terms onto the map, fill the regions with ls, 
and then copy the ls onto a new map for solution. The area in the map covered by 
the function is shown in Figure 2-12(a). A C  D places ls on squares 0 and 4. AD 
adds ls to squares 1, 3, 5, an!�BC adds new ls to squares 2, 10, and 11. CD adds 
a new 1 to square 15 and A B D adds the final 1 to square 8. The resulting function 

G(A,B, C,D) = Im(O, 1,2,3,4,5, 7,8, 10, 11, 15) 

is placed on the maEJn Figure 2-12(b ). It is a good idea to check to see if the four­
corner rectangle B D is present and required. It is present, is required to cover 

c 
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square 8, and also covers squares 0, 2, and 10. With these squares covered, it is easy 
to see that just two rectangles, A C and CD, cover all of the remaining uncovered 
squares. We can read off the resulting function as: 

G = BD +A C+CD 

Note that this function is much simpler than the original sum-of-products given. • 

2-5 MAP MANIPULATION 

When combining squares in a map, it is necessary to ensure that all the minterms of 
the function are included. At the same time, we need to minimize the number of 
terms in the optimized function by avoiding any redundant terms whose minterms 
are already included in other terms. In this section, we consider a procedure that 
assists in the recognition of useful patterns in the map. Other topics to be covered 
are the optimization of products of sums and the optimization of incompletely 
specified functions. 

Essential Prime Implicants 

The procedure for combining squares in a map may be made more sy stematic if we 
introduce the terms "implicant," "prime implicant," and "essential prime impli­
cant." A product term is an implicant of a function if the function has the value 1 
for all minterms of the product term. Clearly, all rectangles on a map made up of 
squares containing ls correspond to implicants. If the removal of any literal from 
an implicant P results in a product term that is not an implicant of the function, 
then P is a prime implicant. On a map for an n-variable function, the set of prime 
implicants corresponds to the set of all rectangles made up of 2m squares contain­
ing ls (m = 0, 1, ... , n), with each rectangle containing as many squares as possible. 

If a minterm of a function is included in only one prime implicant, that prime 
implicant is said to be essential. Thus, if a square containing a 1 is in only one rect­
angle representing a prim� implicant,_!hen that prime implicant is essential. In 
Figure 2-10( c ), the terms AC and AC are essential prime implicants, and the 
terms AB and BC are nonessential prime implicants. 

The prime implicants of a function can be obtained from a map of the func­
tion as all possible maximum collections of 2m squares containing ls (m = 0, 
1, ... , n) that constitute rectangles. This means that a single 1 on a map represents a 
prime implicant if it is not adjacent to any other ls. Two adjacent ls form a rectan­
gle representing a prime implicant, provided that they are not within a rectangle of 
four or more squares containing ls. Four ls form a rectangle representing a prime 
implicant if they are not within a rectangle of eight or more squares containing ls, 
and so on. Each essential prime implicant contains at least one square that is not 
contained in any other prime implicant. 
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Prime Implicants for Example 2-10: AD, BD, and AB 

The systematic procedure for finding the optimized expression from the map 
requires that we first determine all prime implicants. Then, the optimized expres­
sion is obtained from the logical sum of all the essential prime implicants, plus 
other prime implicants needed to include remaining minterms not included in the 
essential prime implicants. This procedure will be clarified by examples. 

EXAMPLE 2-10 Simplification Using Prime Implicants 

Consider the map of Figure 2-13. There are three ways that we can combine four 
squares into rectangles. The product terms obtained from these combinations are 
the prime implicants of the function, A D, B D and A B. The terms A D and B D 
are essential prime implicants, but 4-_B is not essential. This is because minterms 1 
and 3 are included only in the term A D, and minterms 12 and 14 are included only 
in the term B D . But minterms 4, 5, 6, and 7 are each included in two prime impli­
cants, one of which is A B, so the term A B is not an essential J2!.ime implicant. In 
fact, once the essential prime implicants are chosen, the term AB is not needed, 
because all the minterms are already included in the two essential prime impli­
cants. The optimized expression for the function of Figure 2-13 is 

F= AD+BD • 

EXAMPLE 2-11 Simplification Via Essential and Non essential Prime Implicants 
A second example is shown in Figure 2-14. The function plotted in part (a) has 
seven minterms. If we try to combine squares, we will find that there are six prime 
implicants. In order to obtain a minimum number of terms for the function, we 
must first determine the prime implicants that are essential. As shown in blue in 
part (b) of_J:he figure, the function has four essential prime implicants. The product 
term ABC D is essential because it is th� only prime implicant that includes 
minterm 0. Similarly, the product terms BCD, ABC , and ABC are essential 
prime implicants because they are the only ones that include minterms 5, 12, and 
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10, respectively. Minterm 15 is included in two nonessential prime implicants. The 
optimized expression for the function consists of the logical sum of the four essen­
tial prime implicants and one prime implicant that includes minterm 15: [ACD 

F = ABCD +BCD +ABC+ABC+ or 

ABD • 

The identification of essential prime implicants in the map provides an addi­
tional tool which shows the terms that must absolutely appear in every sum-of­
products expression for a function and provides a partial structure for a more 
systematic method for choosing patterns of prime implicants. 

Nonessential Prime Implicants 

Beyond using all essential prime implicants, the following rule can be applied to 
include the remaining minterms of the function in nonessential prime implicants: 

Selection Rule: Minimize the overlap among prime implicants as much as pos­
sible. In particular, in the final solution, make sure that each prime implicant selected 
includes at least one minterm not included in any other prime implicant selected. 

In most cases, this results in a simplified, although not necessarily optimum, 
sum-of-products expression. The use of the selection rule is illustrated in the next 
example. 

EXAMPLE 2-12 Simplifying a Function Using the Selection Rule 
Find a simplified sum-of-products form for F(A, B, C, D) = �m (0, 1, 2, 4, 5, 10, 11, 
13, 15). 

The map for Fis given in Figure 2-15, with all prime implicants shown. A C is 
the only essential prime implicant. Using the preceding selection rule, we can 
choose the remaining prime implicants for the sum-of-products form in the order 
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3 

indicated by the numbers. Note how the prime implicants 1 and 2 are�elected in 
order to include _EJ.interms without overlapping. Prime implicant 3 (A B D) and 
prime implicant BCD both include the one remaining minterm 0010, and prime 
implicant 3 is arbitrarily selected to include the minterm and complete the sum-of­
products expression: 

F(A,B,C,D) = A C+ABD +ABC+AB D  

The prime implicants not used are shown in black in Figure 2-15. • 

Product-of-Sums Optimization 

The optimized Boolean functions derived from the maps in all of the previous 
examples were expressed in sum-of-products form. With only minor modification, 
the product-of-sums form can be obtained. 

The procedure for obtaining an optimized expression in product-of-sums 
form follows from the properties of Boolean functions. The ls placed in the 
squares of the map represent the minterms of the function. The minterms not 
included in the function belong to the complement of the function. From this, we 
see that the complement of a function is represented in the map by the squares not 
marked by ls. If we mark the empty squares with Os and combine them into valid 
�ctangles, we obtain an optimized exE_ression of the complement of the function, 
F. We then take the complement of F to obtain F as a product of sums. This is 
done by taking the dual and complementing each literal, as in Example 2-3. 

EXAMPLE 2-13 Simplifying a Product-of-Sums Form 
Simplify the following Boolean function in product-of-sums form: 

F(A,B,C,D) = �m(0,1,2,5,8,9,10) 
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The ls marked in the map of Figure 2-16 represent the minterms of the function. 
The squares marked with Os represent the minterms not included in F and there­
fore denote the complement of F. Combining the squares marked with Os, we 
obtain the optimized complemented function 

F =AB +CD +BD 

Taking the dual and complementing each literal gives the complement of F. This is 
Fin product-of-sums form: 

F = (A + B)( C + D)(B + D) • 

The previous example shows the procedure for obtaining the product-of­
sums optimization when the function is originally expressed as a sum of minterms. 
The procedure is also valid when the function is originally expressed as a product 
of maxterms or a product of sums. Remember that the maxterm numbers are the 
same as the minterm numbers of the complemented function, so Os are entered in 
the map for the maxterms or for the complement of the function. To enter a func­
tion expressed as a product of sums into the map, we take the complement of the 
function and, from it, find the squares to be marked with Os. For example, the 
function 

F = (A + B + C)(B + D) 

can be plotted in the map by first obtaining its complement, 

F = ABC+BD 

and then marking Os in the squares representing the minterms of F. The remaining 
squares are marked with ls. Then, combining the ls gives the optimized expression 
in sum-of-products form. Combining the Os and then complementing gives the 
optimized expression in product-of-sums form. Thus, for any function plotted on 
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the map, we can derive the optimized function in either one of the two standard 
forms. 

Don't-Care Conditions 

The min terms of a Boolean function specify all combinations of variable values for 
which the function is equal to 1. The function is assumed to be equal to 0 for the 
rest of the minterms. This assumption, however, is not always valid, since there are 
applications in which the function is not specified for certain variable value combi­
nations. There are two cases in which this occurs. In the first case, the input combi­
nations never occur. As an example, the four-bit binary code for the decimal digits 
has six combinations that are not used and not expected to occur. In the second 
case, the input combinations are expected to occur, but we do not care what the 
outputs are in response to these combinations. In both cases, the outputs are said 
to be unspecified for the input combinations. Functions that have unspecified out­
puts for some input combinations are called incompletely specified functions. In 
most applications, we simply do not care what value is assumed by the function for 
the unspecified minterms. For this reason, it is customary to call the unspecified 
minterms of a function don't-care conditions. These conditions can be used on a 
map to provide further simplification of the function. 

It should be realized that a don't-care minterm cannot be marked with a 1 on 
the map, because that would require that the function always be a 1 for such a min­
term. Likewise, putting a 0 in the square requires the function to be 0. To distin­
guish the don't-care condition from ls and Os, an Xis used. Thus, an X inside a 
square in the map indicates that we do not care whether the value of 0 or 1 is 
assigned to the function for the particular minterm. 

In choosing adjacent squares to simplify the function in a map, the don't-care 
minterms may be used. When simplifying function Fusing the ls, we can choose to 
include those don't-care mi_!!terms that give the simplest prime implicants for F. 
When simplifying function F using the Os, we can choose _!o include those don't­
care minterms that give the simplest prime implicants for F, irrespective of those 
included in the prime implicants for F. In both cases, whether or not the don't-care 
minterms are included in the terms in the final expression is irrelevant. The han­
dling of don't-care conditions is illustrated in the next example. 

EXAMPLE 2-14 Simplification with Don't-Care Conditions 

To clarify the procedure for handling the don't-care conditions, consider the fol­
lowing incompletely specified function F that has three don't-care min terms d: 

F(A,B,C,D) 

d(A,B,C,D) 

:Sm(l,3, 7, 11, 15) 

:Sm(0,2,5) 

The minterms of F are the variable combinations that make the function equal to 
1. The minterms of dare the don't-care minterms. The map optimization is shown 
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in Figure 2-17. The minterms of Fare marked by ls, those of dare marked by X's, 
and the remaining squares are filled with Os. To get the simplified function in sum­
of-products form, we must include all five ls in the map, but we may or may not 
include any of the X's, depending on what yields the simplest expression for the 
function. The term CD includes the four minterms in the third column. The 
remaining minterm in square 0001 can be combined with square 0011 to give a 
three-literal term. However, by including one or two adjacent X's, we can combine 
four squares into a rectangle to give a two-literal term. In part (a) of the figure, 
don't-care minterms 0 and 2 are included with the ls, which results in the simplified 
function 

F= CD+AB 

In part (b ), don't-care minterm 5 is included with the ls, and the simplified func­
tion now is 

F= CD+AD 

The two expressions represent two functions that are algebraically unequal. Both 
include the specified minterms of the original incompletely specified function, but 
each includes different don't-care minterms. As far as the incompletely specified 
function is concerned, both expressions are acceptable. The only difference is in 
the value of F for the unspecified min terms. 

It is also possible to obtain an optimized product-of-sums expression for the 
function of Figure 2-17. In this case, the way to combine the Os is to include don't­
care minterms 0 and 2 with the Os, giving the optimized complemented function 

F= D+AC 

Taking the complement of F gives the optimized expression in product-of-sums 
form: 
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F = D(A + C) • 

The foregoing example shows that the don't-care minterms in the map are 
initially considered as representing both 0 and 1. The 0 or 1 value that is eventually 
assigned depends on the optimization process. Due to this process, the optimized 
function will have a 0 or 1 value for each minterm of the original function, includ­
ing those that were initially don't cares. Thus, although the outputs in the initial 
specification may contain Xs, the outputs in a particular implementation of the 
specification are only Os and ls . 

• · � > MORE OPTIMIZATION This supplement gives a procedure for selecting prime impli­
cants that guarantees an optimum solution. In addition, it presents a symbolic 
method for performing prime-implicant generation and a tabular method for 
prime-implicant selection. 

2-6 PRAGMATIC Two-LEVEL OPTIMIZATION 

The two-level optimization procedure that achieves a true optimum solution 
requires: 1) use of the minterms of the function, 2) the generation of all prime 
implicants, and 3) a selection process that potentially involves a huge number of 
alternative prime-implicant selection solutions. A computer algorithm for this pro­
cedure when applied to many realistic problems is impractical due to the number 
of minterms or prime implicants involved or the number of solutions that must be 
examined. As a consequence, algorithms have been developed that do not 1) 
depend upon the enumeration of minterms, 2) require generation of all prime 
implicants, or 3) require enumeration of alternate prime-implicant selections. The 
best known and most widely used of these algorithms is Espresso II. Using the 
vehicle of K-maps, we will illustrate the Espresso II algorithm. For simplicity, 
product-of-sums specifications, multiple output functions, and don't cares are not 
considered. Further, we will not illustrate the complex underlying details that con­
tribute significantly to the efficiency and effectiveness of the algorithm. Finally, we 
use gate-input count as the cost measure rather than the complex multidimensional 
measure used in Espresso. The resulting simplified form of the algorithm appears 
in Figure 2-18. The five routines providing core operations for execution of 
Espresso are: EXPAND, ESSENTIAL_PRIMES, IRREDUNDANT _COVER, 
REDUCE, and LAST_GASP. The function of each of these routines is outlined 
next, followed by an example that illustrates the execution of Espresso. In these 
discussions, we will deal with various sets of implicants that cover all of the min­
terms of F. Such a set is called a cover of F, denoted by F. 

EXPAND replaces each of the implicants of the current F with prime impli­
cants and insures that the cover is reduced in the sense that no implicants remain 
that are covered by any single implicant. EXPAND depends on the order in which 
the original implicants are processed. The order selects the largest (in terms of size 
on the K-map) remaining unprocessed implicant first. If an implicant can be 
expanded into multiple prime implicants, the prime implicant chosen is the one 
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Input Function F and its initial cover F 
Initialize Cost = Gate Input Cost of F 
Loop 1: Execute EXPAND 

On first pass only, execute ESSENTIAL_PRIMES 
Execute IRREDUNDANT_COVER 
If Cost not improved, goto OUT, 
Else update Cost 

Loop 2: Execute REDUCE 
Goto Loop 1 

Out: Execute LAST GASP 
If Cost not improved, goto QUIT 
Else goto Loop 2 

Q uit: Place Essential Primes back in F 
Return Final F and Final Cost 

D FIGURE 2-18 
Simplified Espresso Algorithm 

which 1) covers the maximum number of other current implicants of F, and 2) in 
the case of ties, is the largest implicant. 

ESSENTIAL_PRIMES evaluates each of the current implicants to deter­
mine if it is an essential prime implicant, a concept defined in the first part of Sec­
tion 2-5. An implicant is essential prime if it contains a minterm that is surrounded 
either by other minterms of the prime or by 0 values in all n directions when n is 
the number of variables in the function. This test is applied to each of the current 
implicants in F. Since the essential primes are required in all solutions, they are 
removed temporarily from the solution space. Also, since they are guaranteed to 
be covered, their minterms are changed to don't cares in the solution space. We 
denote the changed function as F _E, and a cover of F _E without the essential 
primes as F -E· 

IRREDUNDANT COVER is used on the implicants in F-E· First, it removes 
implicants that are totally redundant in the sense that all can be removed without 
exposing any uncovered minterms (squares). Second, it takes the remaining impli­
cants and performs a selection process that resembles a formalization of the selec­
tion rule in Section 2-5. 

REDUCE is used to move away from a solution called a local minimum. The 
solution is irredundant but, based on the possibility that all prime implicants have 
not been found, may not be a minimum-cost solution. In REDUCE, each of the 
implicants is reduced to the smallest implicant possible while still maintaining 
the cover of the function F-E· REDUCE is performed sequentially on each of the 
implicants. This process is order dependent, since the reduction of one implicant 
potentially affects squares involved in the reduction of a subsequent implicant. The 
ordering is described as follows: (1) choose the largest implicant first, and (2) place 
the remaining implicants in the order of smallest number of positions in which the 
given implicant differs from the largest one. 
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LAST_GASP is a modification of REDUCE, followed by a modification of 
EXPAND, followed by IRREDUNDANT_COVER. The modified REDUCE 
reduces each of the implicants one at a time to the smallest implicant possible while 
still preserving the cover present upon entry. The set of smallest implicants gen­
erated then replaces the starting cover. Note that this set may no longer cover 
the function F-E· Next the modified EXPAND finds all prime implicants that 
cover at least two of the smallest implicants generated. This set of prime impli­
cants is then combined with the cover present upon entry to LAST_GASP, and 
IRREDUNDANT_COVER is applied. 

EXAMPLE 2-15 Espresso Example 

In executing this example, the simplified Espresso algorithm in Figure 2-18 will be 
followed. Our input to Espresso consists of a sum-of-products expression: 

F(A, B,C,D) =AD +ABD +BCD +ABCD 

The initial K-map for the cover Fusing the implicants in the equation F appears in 
Figure 2-19(a). The initial Cost is 16 gate inputs. These implicants are already in the 
order of implican�izes as required in the next step, EXPAND. Beginning with the 
largest implicant, A D, we can look at potential for its expansion by attempting to 
remove each of its literals in turn, and evaluate the result on the K-map. If there 
are any zeros in the region added, then the literal cannot be deleted. Deleting_ A, 

zeros are encountered at 8, 10, 12, and_..!4. So, A must be restore'!:. Deleting D, a 
zero is encountered at square 1. So, D mus!_ be restored, �nd A D cannot be 
expanded into a larger implicant. Considering ABD, deleting A expands into zeros 
in squares 13 and 15, and deleting B expands into zero il.!__square 1. Deleting D 
expands into squares 4 and 6, both of which contail.!__1. So ABD can be expanded 
into AB. AB contains no other listed implicants but ABD, which we remove. Simi­
lar operations on BCD reveal that it can not be expanded. We find that C can be 
removed from AB CD, giving new implicant ABD. Figure 2-19(b) gives the final 
result of the execution of EXPAND. 

Next, ESSENTIAL_PRIMES is applied to the cover F represented in 
Figure 2-19(b). Note that n = 4. Checking the minterms of AD, we find that square 
0 is surrounded by squares 2 and _i within A D and squares 1, and 8 which contain 
Os. This satisfies the condition for A D to be essential prime. Square 5 is surrounded 
by squares 4 and 7 within AB, and squares 1 and 13 contain 0. Thus, AB is essential 
prime. Square 9 is surrounded by square 11 within ABD, and squares 1, 8, and 13 
contain 0, making ABD essential prime. On the other hand, BCD has two ls adja­
cent to it, neither of which is within it. The resulting essential prime implicants are 
shown in Figure 2-19(c), using dashed lines. Since the essential prime implicants 
are included in any solution, they are removed and the squares they cover are 
changed to d's before the steps that follow. These essential prime implicants will be 
reintroduced in the final step of Espresso. 

After dispensing with the essentia!._primes, IRREDUNDANT_COVER is 
applied. Since the only implicant left is BCD, the only one covering square 3, it 

www.Ebook777.com

http://www.ebook777.com


2-6 I Pragmatic Two-Level Optimization D 

� 
c 

� 
c 

AB 00 01 11 10 AB 00 11 10 
1 00 

B B 
11 

10 10 A 
10 

D D 
(a) Orig inal function F and cover F (b) After EXPAND 

� 
c 

� 
c 

AB 00 AB 00 01 10 
00 do d2 

01 d6 
B 1 1 B 

11 11 
A A 

10 10 10 8 10 

D D 
( c) After ESSENTIAL (d) AfterIRREDUNDANT _COVER 

CD C 
A� 00 01 11 10 

CD C 
A� 00 01 11 10 

00 

01 

11 
A 

10 

do 

d4 
12 

8 

1
0 d2 

d 5 d 7 d6 

13 15 14 

d 9 J 10 

B 

00 

01 

11 
A 

10 

do 

d4 

12 

8 

1 1 _, 

d5 d7 
13 15 

d9 dlJ 

D 
(e) After REDUCE 

D 
(f) After EXPAND 

,en c 

AB'- 00 01 11 10 
00 

01 

11 
A 

10 

7 

11 
12 

8 

1 

1 � 

13 

1 � 

D 

1 � 1 

1 I 1 
15 l• B 

r._f 
10 

(g) After IRREDUNDANT_COVER, 
LAST_GASP, and QUIT 

D FIGURE 2-19 

Espresso Example 

d 

d 
14 

10 

B 

75 



76 0 CHAPTER 2 I COMBINATIONAL LOGIC CIRCUITS 

must be selected. Next, the new Cost must be evaluated to see if it has improved. 
Based on the K-map in Figure 2-19(d), Cost has been reduced to 14. This solution 
represents a local minimum Cost. 

REDUCE is applied next to attempt to move away from the local minimum 
Cost to a lower Cost. There is only one implicant BCD under consideration, so 
there is no need for ordering the implicants. From the K-map in Figure 2-19( d), the 
only square containing a 1 is square 3, so BCD can be reduced to A BCD, as shown 
in Figure 2-19(e). 

Applicatio!!.._ of EXPAND replaces A BCD with the largest implicant that 
covers square 3,AC. Next, IRREDUNDANT_COVER finds that all implicants are 
required. The result, shown in Figure 2-19(f), gives Cost= 13. 

Repetition of REDUCE, EXPAND, and IRREDUNDANT_COVER still 
yields Cost = 13, so the next step is LAST_GASP. This step yields no new result, 
since only one square, 3, remains to be covered. Since the Cost is still 13, the next 
step is QUIT. The essential primes are returned to the solution to give the final 
result in Figure 2-19(g). The equation for the result is: 

F(A,B, C,D) = A D+ AB+ ABD +AC • 

2-7 MULTIPLE-LEVEL CIRCUIT OPTIMIZATION 

Although we have found that two-level circuit optimization can reduce the cost of 
combinational logic circuits, often additional cost savings are available by using cir­
cuits with more than two levels. Such circuits are referred to as multiple-level cir­
cuits. These savings are illustrated by the implementation of the function 

G = ABC+ABD +E+ACF+ADF 

Figure 2-20(a) gives the two-level implementation of G, which has a gate-input cost 
of 17. Now suppose that we apply the distributive law of Boolean algebra to G to 
give 

G = AB( C + D) + E +A( C + D)F 

This equation gives the multiple-level implementation of Gin Figure 2-20(b ), which 
has a gate-input cost of 13, an improvement of 4 gate inputs. In Figure 2-20(b ), 
C + D is implemented twice. Instead, one implementation of this subfunction can 
be shared to give the circuit in Figure 2-20(c) with a gate-input cost of 11, an 
improvement of 2. This common use of ( C + D) suggests that G can be written as 

G =(AB +AF)(C+D) +E 

This increases the cost to 12. But by factoring out A from AB +AF, we obtain 

G = A(B +F)(C+D) +E 
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Multiple-Level Circuit Example 

Figure 2-20( d) gives the multiple-level implementation of G using this equation, 
which has a gate-input cost of only 9, just slightly more than one-half of the origi­
nal cost. 

This reduction was achieved by a sequence of applications of algebraic iden­
tities, at each step observing the effect on the gate-input cost. Just as with the use 
of Boolean algebra to obtain simplified two-level circuits, the procedure used here 
is not particularly systematic. Further, an algorithmic procedure corresponding to 
that for two-level circuit optimization does not exist, due to the broader range of 
possible actions and the number of solutions possible. So multiple-level optimiza­
tion is based on the use of a set of transformations that are applied in conjunction 
with cost evaluation to find a good, but not necessarily optimum, solution. In the 
remainder of this section, we consider such transformations and illustrate their 
application in reducing circuit cost. The transformations, to be illustrated by the 

next example, are defined as follows: 

1. Factoring is finding a factored form from either a sum-of-products expression 
or a product-of-sums expression for a function. 

2. Decomposition is the expression of a function as a set of new functions. 

3. Extraction is the expression of multiple functions as a set of new functions. 

4. Substitution of a function G into a function Fis expressing Fas a function of 
G and some or all of the original variables of F. 
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5. Elimination is the inverse of substitution in which function G in an expres­
sion for function Fis replaced by the expression for G. Elimination is also 
called flattening or collapsing. 

EXAMPLE 2-16 Multilevel Optimization Transformations 

The following functions will be used in illustrating the transformations: 

G=ACE+ACF+ADE+ADF+BCDEF 
H= ABCD +ABE +ABF+ BCE+ BCF 

The first transformation to be illustrated is factoring by using function G. Ini­
tially, we will look at algebraic factoring, which avoids axioms that are unique to 
Boolean algebra, such as those involving the complement and idempotence. Fac­
tors can be found not only for the entire expression for G, but also for its subex­
pressions. For example, since the first four terms of G all contain variable A, it can 
be factored out of these terms, giving: 

G=A (C E+ C F+D E+DF) +B C D  E F 

In this case, note that A and CE+ CF+ DE+ Dare factors, and BCDE Fis not 
- - - - -

involved in the factoring operation. By factoring out C and D, CE+ CF+ DE+ 
DF can be written as C(E + F) + D(E + F), which be rewritten as ( C + D)(E + F). 

Placing this expression in G gives: 

G =A(C + D)(E + F) + BCDEF 

The term BCDEF could be factored into product terms, but such factoring will 
not reduce the gate-input count and so is not considered. The gate-input count for 
the original sum-of-products expression for G is 26 and for the factored form of G 
is 18, for a saving of 8 gate inputs. Due to the factoring, there are more gates in 
series from inputs to outputs, a maximum of four levels instead of three, including 
input inverters. This may increase the delay through the circuit after technology 
mapping has been applied. 

The second transformation to be illustrated is decomposition, which allows 
operations beyond algebraic factoring. The factored form of G can be written as a 
decomposition as follows: 

G =A (C + D) X2 + B X1 E F 
X1=C D 
X2=E+F 

Once X1 and X2 have been defi�ed, they can be complemented, and the comple­
ments can replace C + D and EF, respectively, in G. An illustration of the substi­
tution transformation is 
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G =A X1 X2 + B X1 X2 

X1=CD 

X2=E+ F  

The gate-input count for this decomposition is 14, for a saving of 12 gate inputs 
from the original sum-of-products expression for G, and of 4 gate inputs from the 
factored form of G. 

In order to illustrate extraction, we need to perform decomposition on H and 
extract common subexpressions in G and H. Factoring out B from H, we have 

H=B(A CD +A E+A F+ CE+ CF) 

Determining additional factors in H, we can write 

H = B(A (CD) + (A + C)(E + F)) 

Factors X1, Xi, and X3 can now be extracted to obtain 

X1=CD 

X2= E+F 

X3 =A+ C 

and factors X1 and X2 can be shared between G and H. Performing substitution, 
we can write G and H as 

G =A X1 X2 + B X1 X2 

H = B(A X1 + X3 X2) 

A logic diagram is given for the original sum-of-products in Figure 2-21(a) and for 
the extracted form in Figure 2-21(b ). The gate-input cost for the original G and H 
without shared terms, including input inverters, is 48. For decomposed G and H 
without shared terms between G and H, it is 31. With shared terms, it is 25, cutting 
the gate-input cost to about half. • 

This example illustrates the value of the transformations in reducing gate-input 
cost. In general, due to the wide range of alternative solutions and the complexity in 
determining the divisors to use in decomposition and extraction, obtaining truly opti­
mum solutions in terms of gate-input cost is usually not feasible, so only good solu­
tions are sought. The key to successful transformations is the determination of the 
factors to be used in decomposition or extraction and choice of the transformation 
sequence to apply. These decisions are complex and beyond the scope of our study 
here, but are regularly incorporated into logic synthesis tools. 

Our discussion thus far has dealt only with multilevel optimization in terms 
of reducing gate-input cost. In a large proportion of designs, the length of the long­
est path or paths through the circuit is often constrained due to the path delay, the 
length of time it takes for a change in a signal to propagate down a path through 
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the gates. In such cases, the number of gates in series may need to be reduced. 
Such a reduction using the final transformation, elimination, is illustrated in the 
following example. 
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EXAMPLE 2-17 Example of Transformation for Delay Reduction 

In the circuit in Figure 2-21(b), the paths from C, D, E, F and A to H all pass 
through four 2-input gates. Assuming that all multi-input gates contribute the 
same delay to the path, a delay greater than that contributed by an inverter, 
these are the longest-delay paths in the circuit. Due to a specification on maxi­
mum path delay for the circuit, these paths must be shortened to at most three 
multi-input gates or their equivalent in multi-input gates and inverter delays. 
T his path shortening should be done with a minimum increase in gate-input 
cost. 

The elimination transform which replaces intermediate variables, Xh with the 
expressions on their right-hand sides or removes other factoring such as that of 
variable B is the mechanism for reducing the number of gates in series. To deter­
mine which factor or combination of factors should be eliminated, we need to look 
at the effect on gate-input cost. The increase in gate-input cost for the combina­
tions of eliminations that reduce the problem path lengths by at least one gate are 
of interest. There are only three such combinations: elimination of the factoring of 
B, elimination of intermediate variables Xi, X2, and X3, and elimination of the fac­
tor B and the three intermediate variables Xi, X2, and X3. The respective gate­
input cost increases for these actions are 0, 12, and 12, respectively. Clearly, the 
removal of the factor B is the best choice, since the gate-input cost does not 
increase. This also demonstrates that, due to the additional decomposition of H, 
the gate-input cost gain of 3 that occurred by factoring out B at the beginning has 
disappeared. The logic diagram resulting from elimination of the factor B is given 
in Figure 2-21(c). • 

While the necessary delay reduction was obtained by using elimination to 
reduce the number of gates along the paths in Example 2-17, in general, such a 
gate reduction may not reduce delay, or may even increase it due to differences in 
the delay characteristics of the gates, as discussed further in Chapter 6. 

2-8 OTHER GATE TYPES 

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, 
it is a straightforward procedure to implement a Boolean function with AND, OR, 
and NOT gates. We find, however, that the possibility of considering gates with 
other logic operations is of considerable practical interest. Factors to be taken into 
consideration when constructing other types of gates are the feasibility and econ­
omy of implementing the gate with electronic components, the ability of the gate to 
implement Boolean functions alone or in conjunction with other gates, and the 
convenience of representing gate functions that are frequently used. In this section, 
we introduce these other gate types, which are used throughout the rest of the text. 
Specific techniques for incorporating these gate types in circuits are given in 
Section 3-3. 
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The graphics symbols and truth tables of six logic-gate types are shown in 
Figure 2-22, with six additional gate types given in Figure 2-23. The gates in Figure 2-22 
are referred to as primitive gates, and those in Figure 2-23 as complex gates. 

Although the gates in Figure 2-22 are shown with just two binary input 
variables, X and B, and one output binary variable, F, with the exception of the 
inverter and the buffer, all may have more than two inputs. The distinctively 
shaped symbols shown, as well as rectangular symbols not shown, are specified 
in detail in the Institute of Electrical and Electronics Engineers' (IEEE) Stan­
dard Graphic Symbols for Logic Functions (IEEE Standard 91-1984). The 
AND, OR, and NOT gates were defined previously. The NOT circuit inverts the 
logic sense of a binary signal to produce the complement operation. Recall that 
this circuit is typically called an inverter rather than a NOT gate. The small circle 
at the output of the graphic symbol of an inverter is formally called a negation 
indicator and designates the logical complement. We informally refer to the 
negation indicator as a "bubble." The triangle symbol by itself designates a 
buffer circuit. A buffer produces the logical function Z = X, since the binary 
value of the output is equal to the binary value of the input. This circuit is used 
primarily to amplify an electrical signal to permit more gates to be attached to 
the output or to decrease the time it takes for signals to propagate through the 
circuit. 

The 3-state buffer is unique in that outputs of such buffers can be connected 
together, provided that only one of the signals on their E inputs is 1 at any given 
time. This type of buffer and its basic use are discussed in detail later in this 
section. 

The NAND gate represents the complement of the AND operation, and the 
NOR gate represents the complement of the OR operation. Their respective 
names are abbreviations of NOT-AND and NOT-OR, respectively. The graphics 
symbols for the NAND gate and NOR gate consist of an AND symbol and an OR 
symbol, respectively, with a bubble on the output, denoting the complement opera­
tion. In contemporary integrated circuit technology, NAND and NOR gates are 
the natural primitive gate functions for the simplest and fastest electronic circuits. 
If we consider the inverter as a degenerate version of NAND and NOR gates with 
just one input, NAND gates alone or NOR gates alone can implement any Bool­
ean function. Thus, these gate types are much more widely used than AND and 
OR gates in actual logic circuits. As a consequence, actual circuit implementations 
are often done in terms of these gate types. 

A gate type that alone can be used to implement all Boolean functions is 
called a universal gate. To show that the NAND gate is a universal gate, we need 
only show that the logical operations of AND, OR, and NOT can be obtained with 
NAND gates only. This is done in Figure 2-24. The complement operation obtained 
from a one-input NAND gate corresponds to a NOT gate. In fact, the one-input 
NAND is an invalid symbol and is replaced by the NOT symbol, as shown in the 
figure. The AND operation requires a NAND gate followed by a NOT gate. The 
NOT inverts the output of the NAND, giving an AND operation as the result. The 
OR operation is achieved using a NAND gate with NOTs on each input. When 
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Algebraic Truth 
Equation Table 
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Algebraic 
Equation 

F=XY+XY 
=XEBY 

F=XY+XY 

=XEBY 

F=WX+YZ 

F = (W + X )(Y + Z) 

F=WX+YZ 

F = (W + X )(Y + Z) 

Complex Digital Logic Gates 

Truth 
Table 

X Y  F 

0 0 0 
0 1 1 

1 0 1 

1 1 0 

X Y  F 

0 0 1 

0 1 0 

1 0 0 
1 1 1 

DeMorgan's theorem is applied, as shown in Figure 2-24, the inversions cancel and 
an OR function results. 

The exclusive-OR (XOR) gate shown in Figure 2-23 is similar to the OR gate, 
but excludes (has the value 0 for) the combination with both X and Y equal to 1. 
The graphics symbol for the XOR gate is similar to that for the OR gate, except for 
the additional curved line on the inputs. The exclusive-OR has the special symbol 
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Logical Operations with NAND Gates 

EB to designate its operation. The exclusive-NOR is the complement of the exclu­
sive-OR, as indicated by the bubble at the output of its graphics symbol. 

The AND-OR-INVERT (AOI) gate forms the complement of a sum of prod­
ucts. The are many different AND-OR-INVERT gates, depending on the number 
of AND gates and the numbers of inputs to each AND and directly to the OR gate. 
For example, suppose that the function implemented by an AOI is 

F=XY+Z 

This AOI is referred to as a 2-1 AOI, since it consists of a 2-input AND and 1 input 
directly to the OR gate. If the function implemented is 

F= TUV+WX+YZ 

then the AOI is called a 3-2-2 AOI. The OR-AND-INVERT (OAI) is the dual of 
the AOI and implements the complement of a product-of-sums form. The AND­
OR (AO) and OR-AND (OA) are versions of the AOI and OAI without the 
complement. 

In general, complex gates are used to reduce the circuit complexity needed 
for implementing specific Boolean functions in order to reduce integrated circuit 
cost. In addition, they reduce the time required for signals to propagate through a 
circuit. 

1111111n•n1 CMOS CIRCUITS Circuit-level implementation of CMOS primitive gates is dis­
cussed in Chapter 6. Based on the Chapter 6 material, circuit-level implementa­
tion of CMOS complex gates is available in a supplement on the Companion 
Website for the text. 

2-9 EXCLUSIVE-OR OPERATOR AND GATES 

In addition to the exclusive-OR gate shown in Figure 2-23, there is an exclusive­
OR operator with its own algebraic identities. The exclusive-OR (XOR), denoted 
by EB, is a logical operation that performs the function 
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XEBY = XY+XY 

It is equal to 1 if exactly one input variable is equal to 1. The exclusive-NOR, also 
known as the equivalence, is the complement of the exclusive-OR and is expressed 
by the function 

XEBY = XY+X Y 

It is equal to 1 if both X and Y are equal to 1 or if both are equal to 0. The two 
functions can be shown to be the complement of each other, either by means of a 
truth table or, as follows, by algebraic manipulation: 

XEBY = XY +XY= (X + Y)(X + Y) = XY +X Y 

The following identities apply to the exclusive-OR operation: 

XEBO = X XEBl = X 

XEBX = 0 XEBX = 1 

XEBY = XEBY XEBY = XEBY 

Any of these identities can be verified by using a truth table or by replacing 
the Ee operation by its equivalent Boolean expression. It can also be shown that the 
exclusive-OR operation is both commutative and associative; that is, 

AEBB = BEBA 

(AEBB)EBC = AEB(BEBC) = AEBBEBC 

This means that the two inputs to an exclusive-OR gate can be interchanged with­
out affecting the operation. It also means that we can evaluate a three-variable 
exclusive-OR operation in any order, and for this reason, exclusive-ORs with three 
or more variables can be expressed without parentheses. 

A two-input exclusive-OR function may be constructed with conventional 
gates. Two NOT gates, two AND gates, and an OR gate are used. The associativ­
ity of the exclusive-OR operator suggests the possibility of exclusive-OR gates 
with more than two inputs. The exclusive-OR concept for more than two vari­
ables, however, is replaced by the odd function to be discussed next. Thus, there 
is no symbol for exclusive-OR for more than two inputs. By duality, the exclu­
sive-NOR is replaced by the even function and has no symbol for more than two 
inputs. 

Odd Function 

The exclusive-OR operation with three or more variables can be converted into an 
ordinary Boolean function by replacing the Ee symbol with its equivalent Boolean 
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expression. In particular, the three-variable case can be converted to a Boolean 
expression as follows: 

XEB YEB Z = (XY + XY)Z + (XY + X Y)Z 

= XYZ+XYZ+XYZ+XYZ 

The Boolean expression clearly indicates that the three-variable exclusive-OR is 
equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. 
Hence, whereas in the two-variable function only one variable need be equal to 1, 
with three or more variables an odd number of variables must be equal to 1. As a 
consequence, the multiple-variable exclusive-OR operation is defined as the odd 
function. In fact, strictly speaking, this is the correct name for the Ee operation with 
three or more variables; the name "exclusive-OR" is applicable to the case with 
only two variables. 

The definition of the odd function can be clarified by plotting the function on 
a map. Figure 2-25(a) shows the map for the three-variable odd function. The four 
minterms of the function differ from each other in at least two literals and hence 
cannot be adjacent on the map. These minterms are said to be distance two from 
each other. The odd function is identified from the four minterms whose binary val­
ues have an odd number of ls. The four-variable case is shown in Figure 2-25(b ). 
The eight minterms marked with ls in the map constitute the odd function. Note 
the characteristic pattern of the distance between the ls in the map. It should be 
mentioned that the minterms not marked with ls in the map have an even number 
of ls and constitute the complement of the odd function, called the even function. 
The odd function is implemented by means of two-input exclusive-OR gates, as 
shown in Figure 2-26. The even function is obtained by replacing the output gate 
with an exclusive-NOR gate. 
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(a) P = x EBY EB z 
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Y---+t 
Z---+\. 

P---+t 

D FIGURE 2-26 

Multiple-Input Odd Functions 

2-10 HIGH-IMPEDANCE OUTPUTS 

Thus far, we have considered gates that have only output values logic 0 and logic 1. 
In this section, we introduce an important structure, the three-state buffer, that 
provides a third output value referred to as the high-impedance state and denoted 
by Hi-Z or just plain Z or z. The Hi-Z value behaves as an open circuit, which 
means that, looking back into the circuit, we find that the output appears to be dis­
connected internally. Thus, the output appears not to be there at all and, thus, is 
incapable of driving any attached inputs. Gates with Hi-Z output capability have 
two very useful properties. First of all, Hi-Z outputs can be connected together, 
provided that no two or more gates drive the line at the same time to opposite 0 
and 1 values. In contrast, gates with only logic 0 and logic 1 outputs cannot have 
their outputs connected together. Second, an output in the Hi-Z states, since it 
appears as an open circuit, can have an input attached to it internally, so that the 
Hi-Z output can act as both an output and an input. This is referred to as a bidirec­
tional input/output. Instead of carrying signals in just one direction, interconnet­
ions between Hi-Z outputs can carry information in both directions. This feature 
reduces significantly the number of interconnections required. High-impedance 
outputs may appear on any gate, but here we restrict consideration to a primitive 
gate structure with a single data input, i.e., either a Hi-Z buffer or Hi-Z inverter. 

The 3-state buffer was introduced earlier as one of the primitive gates. As 
the name implies, a three-state logic output exhibits three distinct states. Two of 
the "states" are the logic 1 and logic 0 of conventional logic. The third "state" is the 
Hi-Z value, which, for three-state logic, is referred to as the Hi-Z state. 

The graphic symbol and truth table for a 3-state buffer are given in Figure 2-27. 
The symbol in Figure 2-27(a) is distinguished from the symbol for a normal buffer 
by the enable input, EN, entering the bottom of the buffer symbol. From the truth 
table in Figure 2-27(b), if EN = 1, OUT is equal to IN, behaving like a normal 
buffer. But for EN = 0, the output value is high impedance (Hi-Z), regardless of 
the value of IN. 

Three-state buffer outputs can be connected together to form a multiplexed 
output line. Figure 2-28(a) shows two 3-state buffers with their outputs connected 
to form output line OL. We are interested in the output of this structure in terms 
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Three-State Buffer 

of the four inputs EN1, ENO, IN1, and !NO. The output behavior is given by the 
truth table in Figure 2-28(b ) . For EN1 and ENO equal to 0, both buffer outputs are 
Hi-Z. Since both appear as open circuits, OL is also an open circuit, represented 
by a Hi-Z value. For EN1 = 0 and ENO = 1, the output of the top buffer is !NO 
and the output of bottom buffer is Hi-Z. Since the value of !NO combined with an 
open circuit is just !NO, OL has value !NO, giving the second and third rows of the 
truth table. A corresponding, but opposite, case occurs for EN1 = 1 and ENO = 0, 
so OL has value IN1, giving the fourth and fifth rows of the truth table. For EN1 
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and ENO both 1, the situation is more complicated. If /Nl = !NO, then their 
mutual value appears at OL. But if IN1 =fa !NO, then their values conflict at the out­
put. The conflict results in an electrical current flowing from the buffer output that 
is at 1 into the buffer output that is at 0. This current is often large enough to cause 
heating and may even destroy the circuit, as symbolized by the "smoke" icons in 
the truth table. Clearly, such a situation must be avoided. The designer must 
ensure that ENO and EN1 never equal 1 at the same time. In the general case, for 
n 3-state buffers attached to a bus line, EN can equal 1 for only one of the buffers 
and must be 0 for the rest. One way to ensure this is to use a decoder to generate 
the EN signals. For the two-buffer case, the decoder is just an inverter with select 
input S, as shown in dotted lines in Figure 2-28(a) . It is interesting to examine the 
truth table with the inverter in place. It consists of the shaded area of the table in 
Figure 2-28{b ) . Clearly, the value on S selects between inputs !NO and IN1. Fur­
ther, the circuit output OL is never in the Hi-Z state. 

CWlllllUI'� TRANMISSION GATES Another Hi-Z output circuit, the transmission gate, is pre­
sented, along with examples of its use on the text Companion Website in the sup­
plement, More CMOS Circuit Level Design. 

2-11 CHAPTER SUMMARY 

The primitive logic operations AND, OR, and NOT define three primitive logic 
components called gates, from which digital systems are implemented. A Boolean 
algebra defined in terms of these operations provides a tool for manipulating Bool­
ean functions in designing digital logic circuits. Minterm and maxterm standard 
forms correspond directly to truth tables for functions. These standard forms can 
be manipulated into sum-of-products and product-of-sums forms, which corre­
spond to two-level gate circuits. Two cost measures to be minimized in optimizing a 
circuit are the number of input literals to the circuit and the total number of inputs 
to the gates in the circuit. K-maps with two to four variables are an effective alter­
native to algebraic manipulation in optimizing small circuits. These maps can be 
used to optimize sum-of-products forms, product-of-sums forms, and incompletely 
specified functions with don't-care conditions. The Espresso algorithm provides 
practical automated circuit optimization. Transforms for optimizing multiple-level 
circuits with three or more levels of gating are illustrated. 

The primitive operations AND and OR are not directly implemented by 
primitive logic elements in the most popular logic family. Thus, NAND and NOR 
primitives as well as complex gates that implement these families were introduced 
and used to implement circuits. A more complex primitive, the exclusive-OR, and 
its complement, the exclusive-NOR, were presented along with their mathemati­
cal properties. Finally, the 3-state buffer was introduced as an example of a circuit 
with a Hi-Z {high-impedance) output. 
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PROBLEMS 

> The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

2-1. *Demonstrate by means of truth tables the validity of the following identities: 
-- - - -

(a) DeMorgan's theorem for three variables: XYZ = X + Y + Z 

(b) The second distributive law: X + YZ = (X + Y)(X + Z) - - - - - -
(c) XY+ YZ +XZ = XY+ YZ +XZ 

2-2. *Prove the identity of each of the following Boolean equations, using algebraic 
manipulation: 

-- -
(a) X Y+XY+XY= X+Y - -- -
(b)AB+B C+AB+BC= 1 

(c) Y+XZ +XY = X + Y+Z -- - -
(d) X Y+ YZ +XZ +XY+ YZ = X Y+XZ + YZ 

2-3. +Prove the identity of each of the following Boolean equations, using algebraic 
manipulation: 

(a) ABC+B C D  +BC+ CD= B + C D  - - - -
(b) WY+WY Z+WXZ+WXY = WY+WXZ+XYZ+XYZ - - - - - - - -
(c) A D+ AB+ CD+ BC= (A+ B + C + D)(A + B + C + D) 

2-4. +Given that A · B = 0 and A + B = 1 , use algebraic manipulation to prove 
that 

(A + C) · (A + B) · (B + C) = B · C 

2-5. +A specific Boolean algebra with just two elements 0 and 1 has been used in 
this chapter. Other Boolean algebras can be defined with more than two 
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elements by using elements that correspond to binary strings. These 
algebras form the mathematical foundation for bitwise logical operations 
that we will study in Chapter 7. Suppose that the strings are each a nibble 
(half of a byte) of four bits. Then there are 24, or 16, elements in the algebra, 
where an element I is the 4-bit nibble in binary corresponding to I in 
decimal. Based on bitwise application of the two-element Boolean algebra, 
define each of the following for the new algebra so that the Boolean 
identities hold: 

(a) The OR operation A+ B for any two elements A and B 

(b) The AND operation A· B for any two elements A and B 

(c) The element that acts as the 0 for the algebra 

(d) The element that acts as the 1 for the algebra 

(e) For any element A, the element A. 

2-6. Simplify the following Boolean expressions to express10ns containing a 
minimum number of literals: 

(a) A C+ABC +BC 

(b) (A+B+C)·ABC 

(c) ABC+AC 

(d) ABD +ACD + BD 
- - - -

(e) (A+ B)(A + C)(ABC) 

2-7. *Reduce the following Boolean expressions to the indicated number of 
literals: 

(a) XY + XYZ + XY to three literals 

(b) X + Y(Z + X + Z) to two literals 
- - - -

(c) WX(Z + YZ) + X(W + WYZ) to one literal 

(d) (AB+ A B)(CD +CD)+ AC to four literals 

2-8. Using DeMorgan's theorem, express the function 

F = ABC+A C+AB 

(a) with only OR and complement operations. 
(b) with only AND and complement operations. 

2-9. *Find the complement of the following expressions: 
- -

(a) AB +AB 

(b) (VW + X) Y + Z 

(c) WX(YZ + YZ) + W X(Y + Z)(Y + Z) 
- -- --

(d) (A+ B + C)(AB + C)(A +BC) 

2-10. *Obtain the truth table of the following functions, and express each function 
in sum-of-minterms and product-of-maxterms form: 

(a) (XY + Z)(Y + XZ) 

www.Ebook777.com
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(b) (A+ B)(B + C) 

(c) WXY + WXZ + WXZ + YZ 

2-11. For the Boolean functions E and F, as given in the following truth table: 

x y z E F 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 1 0 

1 1 1 0 1 

(a) List the minterms and maxterms of each function. - -
(b) List the min terms of E and F. 

(c) List the minterms of E + F and E · F. 

(d) Express E and F in sum-of-minterms algebraic form. 

(e) Simplify E and F to expressions with a minimum of literals. 

2-12. *Convert the following expressions into sum-of-products and product-of­
sums forms: 

(a) (AB + C)(B + CD) 
- -

(b) X + X(X + Y)(Y + Z) 

(c) (A+ BC+ CD)(B + EF) 

2-13. Draw the logic diagram for the following Boolean expressions. The diagram 
should correspond exactly to the equation. Assume that the complements of 
the inputs are not available. 

(a) XYZ+XY+XZ 
-- -

(b) B(AC+AC) +D(A +BC) 

(c) XY(W + Z) + WY(X + Z) + WY(X + Z) 

2-14. Optimize the following Boolean functions by means of a three-variable map: 

(a) F(X, Y, Z) = :Sm(O, 2, 6, 7) 

(b) F(X, Y,Z) = :Sm(0,1,2,4) 

(c) F(A,B,C) = :Sm(0,2,3,4,6) 

(d) F(A,B, C) = :Sm(0,2,3,4,5, 7) 

2-15. *Optimize the following Boolean expressions using a map: 

(a) X Z  + YZ +XYZ 
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(b) AB +BC+A BC 

(c) AB +AC+BC+ABC 

2-16. Optimize the following Boolean functions by means of a four-variable map: 

(a) F(A,B,C,D) = 2m(2,3,8,9,10,12,13,14) 

(b) F(W,X, Y,Z) = Im(0,2,5,6,8, 10, 13, 14, 15) 

(c) F(A,B,C,D) = Im(0,2,3,7,8,10,12,13) 

2-17. Optimize the following Boolean functions, using a map: 

(a) F(W,X,Y,Z) = Im(0,2,5,8,9,10,11,12,13) 

(b) F(A,B,C,D) = Im(l,3,6,7,9,11,12,13,15) 

2-18. *Find the minterms of the following expressions by first plotting each 
express10n on a map: 

(a) XY + XZ + XYZ 

(b) XZ + WXY + WXY + WYZ + WYZ 

(c) B D  +ABD +ABC 

2-19. *Find all the prime implicants for the following Boolean functions, and 
determine which are essential: 

(a) F(W,X,Y,Z) = Im(0,2,5,7,8,10,12,13,14,15) 

(b) F(A,B,C,D) = Im(0,2,3,5,7,8,10,11,14,15) 

(c) F(A,B, C,D) = Im{l,3,4,5, 9, 10, 11, 12, 13, 14, 15) 

2-20. Optimize the following Boolean functions by finding all prime implicants 
and essential prime implicants and applying the selection rule: 

(a) F(W,X, Y,Z) = Im(0,2,3,5, 7,8, 10, 11, 12, 13) 

(b) F(A,B,C,D) = 2m(3,4,5,7,9,13,14,15) 

(c) F(W,X,Y,Z) = Im(0,2,4,6,7,8,9,12,13,15) 

2-21. Optimize the following Boolean functions in product-of-sums form: 

(a) F(W,X, Y,Z) = Im(0,2,3,4,8, 10, 11, 15) 

(b) F(A,B,C,D) = IIM(0,2,4,5,8,10,11,12,13,14) 

2-22. *Optimize the following expressions in (1) sum-of-products and (2) product­
of-sums forms: 

(a) AC+BD +ACD +ABCD 
- - - - - - - -

(b) (A+ B + D)(A + B + C)(A + B + D)(B + C + D) 

(c) (A+ B + D)(A + D)(A + B + D)(A + B + C + D) 

2-23. Optimize the following functions into (1) sum-of-products and (2) product­
of-sums forms: 



(a) F(A,B,C,D) = Im(0,1,5,7,8,10,14,15) 

(b) F(W,X, Y,Z) = IIM(3,11,13,15) 
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2-24. Optimize the following Boolean functions F together with the don't-care 
conditions d: 

(a) F(A,B,C,D) = Im(0,1,7,13,15), d(A,B,C,D) = Im(2,6,8,9,10) 

(b) F(W,X,Y,Z) = Im(2,4,9,12,15), d(W,X,Y,Z) = Im(3,5,6,13) 

(c) F(A,B, C) = Im(l,2,4), d(A,B, C) = Im(0,3,6, 7) 

2-25. *Optimize the following Boolean functions F together with the don't-care 
conditions d. Find all prime implicants and essential prime implicants, and 
apply the selection rule. 

(a) F(A,B, C) = Im(3,5,6), d(A,B, C) = Im(O, 7) 

(b) F(W,X, Y,Z) = Im(0,2,4,5,8,14,15), d(W,X, Y,Z) = Im{7,10,13) 

(c) F(A,B,C,D) = Im(4,6,7,8,12,15), 
d(A,B,C,D) = Im(2,3,5,10,11,14) 

2-26. Optimize the following Boolean functions F together with the don't-care 
conditions d in (1) sum-of-products and (2) product-of-sums form: 

(a) F(A,B, C,D) = Ilm{l,3,4,6, 9, 11) , 
d(A,B,C,D) = Im(0,2,5,8,10,12,14) 

(b) F(W,X, Y,Z) = Im(3,4,9,15), d(W,X, Y,Z) = Im(0,1,2,5,10,12,14) 

2-27. Illustrate the expansion or reduction performed on each implicant on a K­
map if the operation changes the implicant. 

(a) Apply the Espresso EXPAND routine to the following function. 

F(A,B,C,D) =ABCD+ABC + ACD +ABD +ABCD +BCD 

(b) Apply the Espresso REDUCE routine to the following function, 
beginning with the implicant at the upper left and proceeding downward. 

F(A,B,C,D) =A C +AB + BD +AC + AB 

2-28. +Apply the simplified Espresso algorithm to the following function. Show a 
K-map for each algorithm routine that changes one or more implicants. 

F(A,B,C,D) = ABD+BCD +BC+ AB +ACD 

2-29. Use decomposition to find minimum gate-input cost, multiple-level 
implementations for the functions given, using AND and OR gates and 
inverters. 

(a) F(A,B, C,D) = ABC+ ABC+ ABD + ABD 

(b) F(W,X, Y,Z) = WY+ XY + WXZ + WXZ 
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2-30. Use extraction to find a shared, minimum gate-input cost, multiple-level 
implementation for the pair of functions given, using AND and OR gates 
and inverters. 

(a) F(A,B, C,D) = Im(0,5, 11, 14, 15),d(A,B, C,D) = Im(10) 

(b) G(A,B, C,D) = Im(2, 7, 10, 11, 14),d(A,B, C,D) = Im(15) 

2-31. Use elimination to flatten each of the function sets given into a two-level 
sum-of-products form. 

(a) F(A,B, G,H) = ABG +BG+ AH, G(C,D) = CD+ CD, 
H(B, C,D) = B +CD 

(b) T(U, V, Y,Z) = YZU + YZV, U(W,X) = W + X, 
V(W, X, Y) = WY+ X 

2-32. *Prove that the dual of the exclusive-OR is also its complement. 

2-33. Implement the following Boolean function with exclusive-OR and AND 
gates, using a minimum number of gate inputs: 

F(A,B, C,D) = ABCD +AD +AD 

2-34. (a) Implement function H = X Y+XZ using two three-state buffers and an 
inverter. 

(b) Construct an exclusive-OR gate by interconnecting two three-state 
buffers and two inverters. 

2-35. (a) Connect the outputs of three 3-state buffers together, and add additional 
logic to implement the function 

F=ABC+ABD +ABD 

Assume that C, D, and D are data inputs to the buffers and A and B pass 
through logic that generates the enable inputs. 

(b) Is your design in part (a) free of three-state output conflicts? If not, 
change the design to be free of such conflicts. 



COMBINATIONAL LOGIC 

DESIGN 

I 
n this chapter, we learn about the design of combinational circuits. A design 

procedure with five major steps is presented. The first three steps, specification, 

formulation, and optimization, are illustrated by examples. The fourth step, 

technology mapping, is illustrated by considering mapping to NAND and NOR gate 

technologies.The final step of the design procedure, verification, is illustrated by an 

example using both a manual method and logic simulation. 

Next, we learn about a number of functions and the corresponding fundamental circuits 

that are very useful in designing larger digital circuits. The fundamental, reusable 

circuits, which we call functional blocks, implement functions of a single variable, 

decoders, encoders, code converters, and multiplexers. 

The various concepts in this chapter are pervasive in the design of the generic 

computer in the diagram at the beginning of Chapter 1 . Combinational logic is a 

mainstay in all of the digital components. Multiplexers are very important for selecting 

data in the processor, in memory, and on 1/0 boards. Decoders are used for selecting 

boards attached to the input-output bus and to decode instructions to determine the 

operations performed in the processor. Encoders are used in a number of components, 

such as the keyboard. Functional blocks are widely used, so concepts from this chapter 

apply across all of the digital components of the generic computer, including memories. 

3-1 DESIGN PROCEDURE 

The design of a combinational circuit starts from the specification of the problem 
and culminates in a logic diagram or netlist that describes a logic diagram. The pro­
cedure involves the following steps: 

D 97 
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1. Specification: W rite a specification for the circuit, if one is not already 
available. 

2. Formulation: Derive the truth table or initial Boolean equations that define 
the required relationships between inputs and outputs. 

3. Optimization: Apply two-level and multiple-level optimization. Draw a logic 
diagram or provide a netlist for the resulting circuit using ANDs, ORs, and 
inverters. 

4. Technology Mapping: Transform the logic diagram or netlist to a new dia­
gram or netlist using the available implementation technology. 

5. Verification: Verify the correctness of the final design. 

The specification can take a variety of forms, such as text or an HDL descrip­
tion, and should include the respective symbols or names for the inputs and out­
puts. Formulation converts the specification into forms that can be optimized. 
These forms are typically truth tables or Boolean expressions. It is important that 
verbal specifications be interpreted correctly when formulating truth tables or 
expressions. Often the specifications are incomplete, and any wrong interpretation 
may result in an incorrect truth table or expression. 

Optimization can be performed by any of a number available methods, such 
as algebraic manipulation, the K-map method, or computer-based optimization 
programs. In a particular application, specific criteria serve as a guide for choosing 
the optimization method. A practical design must consider constraints such as the 
cost of the gates used, maximum allowable propagation time of a signal through 
the circuit, and limitations on the fan-out of each gate. This is complicated by the 
fact that gate costs, gate delays, and fan-out limits are not known until the technol­
ogy mapping stage. As a consequence, it is difficult to make a general statement 
about what constitutes an acceptable end result for optimization. In many cases, 
the optimization begins by satisfying an elementary objective, such as producing 
the simplified Boolean expressions in a standard form for each output. The next 
step is multiple-level optimization with terms shared between multiple outputs. In 
more sophisticated synthesis tools, optimization and technology mapping may be 
interspersed to improve the likelihood of meeting constraints. It may be necessary 
to repeat optimization and technology mapping multiple times to meet the speci­
fied constraints. 

The remainder of this chapter illustrates the design procedure with three 
examples and introduces fundamental, reusable circuits called functional blocks. In 
the rest of this section, we perform the first three steps of design-specification, 
formulation, and optimization. We then consider implementation technologies and 
the final two steps in separate sections. 

The first two example specifications are for a class of circuits called code con­
verters, which translate information from one binary code to another. The inputs to 
the circuit are the bit combinations specified by the first code, and the outputs gen­
erate the corresponding bit combinations of the second code. The combinational 
circuit performs the transformation from one code to the other. The first code con­
verter example converts the BCD code to the excess-3 code for the decimal digits. 
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The other converts the BCD code to the seven signals required to drive a seven­
segment light-emitting diode (LED) display. The third example is the design of a 
4-bit equality comparator that represents a circuit having a large number of inputs. 

I 
EXAMPLE 3-1 Design of a BCD-to-Excess-3 Code Converter 

SPECIFICATION: The excess-3 code for a decimal digit is the binary combination 
corresponding to the decimal digit plus 3. For example, the excess-3 code for deci­
mal digit 5 is the binary combination for 5 + 3 = 8, which is 1000. The excess-3 
code has desirable properties with respect to implementing decimal subtraction. 
Each BCD digit is four bits, which are labeled, from most significant to least signif­
icant, A, B, C, D. Each excess-3 digit is four bits, labeled from most significant to 
least significant, W, X, Y, Z. 

FORMULATION: The excess-3 code word is easily obtained from a BCD code 
word by adding binary 0011 (3) to it. The resulting truth table relating the input 
and output variables is shown in Table 3- 1. Note that the four BCD input vari­
ables may have 16 bit combinations, but only 10 are listed in the truth table. The 
six combinations 1010 through 1111 are not listed under the inputs, since these 
combinations have no meaning in the BCD code, and we can assume that they 
will never occur. Hence, for these input combinations, it does not matter what 
binary values we assign to the excess-3 outputs, and we can treat them as don't­
care conditions. 

OPTIMIZATION: Since this is a four-variable function, we use the K-maps in Figure 3-1 
for the initial optimization of the four output functions. The maps are plotted to 
obtain simplified sum-of-products Boolean expressions for the outputs. Each of the 

D TABLE 3-1 
Truth Table for Code-Converter Example 

Decimal Input Output 
Digit BCD Excess-3 

A B c D w x y z 

0 0 0 0 0 0 0 1 1 

1 0 0 0 1 0 1 0 0 

2 0 0 1 0 0 1 0 1 

3 0 0 1 1 0 1 1 0 

4 0 1 0 0 0 1 1 1 

5 0 1 0 1 1 0 0 0 

6 0 1 1 0 1 0 0 1 

7 0 1 1 1 1 0 1 0 

8 1 0 0 0 1 0 1 1 

9 1 0 0 1 1 1 0 0 
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D FIGURE 3-1 
Maps for BCD-to-Excess-3 Code Converter 

x 

x 

four maps represents one of the outputs of the circuit as a function of the four inputs. 
The ls in the maps are obtained directly from the truth-table output columns. For 
example, the column under output W has ls for minterms 5, 6, 7, 8, and 9. Therefore, 
the map for W must have ls in the squares corresponding to these minterms. The six 
don't-care minterms, 10 through 15, are each marked with an X in all the maps. The 
optimized functions are listed in sum-of-products form under the map for each output 
variable. 

The two-level AND-OR logic diagram for the circuit can be obtained directly 
from the Boolean expressions derived from the maps. We apply multiple-level 
optimization as a second optimization step to determine if the gate input cost, 
which is currently 26 (including inverters) , can be reduced. In this optimization, we 
consider sharing subexpressions between the four output expressions. The follow­
ing manipulation illustrates optimization with multiple-output circuits imple­
mented with multiple levels of gates including an internal inverter on T1: 

T1 = C+D 

W=A+BC+BD =A+BT1 

X=BC+BD +BCD= BT1 +BT1 
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>----W 

Logic Diagram of BCD-to-Excess-3 Code Converter 

Y=CD+T1 

Z=D 

The manipulation allows the gate producing C + D to be shared by the logic for W, 
X, and Y, reducing the gate input cost from 26 to 19. This optimized result gives the 
logic diagram in Figure 3-2. • 

Design of a BCD-to-Seven-Segment Decoder 

SPECIFICATION: Digital readouts found in many consumer electronic products 
such as alarm clocks often use light-emitting diodes (LEDs). Each digit of the 
readout is formed from seven LED segments, each of which can be illuminated 
by a digital signal . A BCD-to-seven-segment decoder is a combinational circuit 
that accepts a decimal digit in BCD and generates the appropriate outputs for 
the segments of the display for that decimal digit. The seven outputs of the 
decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as 
shown in Figure 3-3(a). The numeric designations chosen to represent the deci­
mal digits are shown in Figure 3-3(b ). The BCD-to-seven-segment decoder has 
four inputs, A, B, C, and D, for the BCD digit and seven outputs, a through g, for 
controlling the segments. 

FORMULATION: The truth table of the combinational circuit is listed in Table 3-2. On 
the basis of Figure 3-3(b ), each BCD digit illuminates the proper segments for the 
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D FIGURE 3-3 
Seven-Segment Display 

decimal display. For example, BCD 0011 corresponds to decimal 3, which is displayed 
as segments a, b, c, d, and g. The truth table assumes that a logic 1 signal illuminates 
the segment and a logic 0 signal turns the segment off. Some seven-segment displays 
operate in reverse fashion and are illuminated by a logic 0 signal. For these displays, 
the seven outputs must be complemented. The six binary combinations 1010 through 
1111 have no meaning in BCD. In the previous example, we assigned these combina­
tions to don't-care conditions. If we do the same here, the design will most likely pro­
duce some arbitrary and meaningless displays for the unused combinations. As long 
as these combinations do not occur, we can use that approach to reduce the complex­
ity of the converter. A safer choice, turning off all the segments when any one of the 
unused input combinations occurs, avoids any spurious displays if any of the combi­
nations occurs, but increases the converter complexity. This choice can be accom­
plished by assigning all Os to minterms 10 through 15. 

OPTIMIZATION: The information from the truth table can be transferred into seven 
K-maps, from which the initial optimized output functions can be derived. The 

D TABLE 3-2 
Truth Table for BCD-to-Seven-Segment 
Decoder 

BCD Input Seven-Segment Decoder 

A B c D a b c d e f g 

0 0 0 0 1 1 1 1 1 1 0 
0 0 0 1 0 1 1 0 0 0 0 
0 0 1 0 1 1 0 1 1 0 1 
0 0 1 1 1 1 1 1 0 0 1 
0 1 0 0 0 1 1 0 0 1 1 
0 1 0 1 1 0 1 1 0 1 1 
0 1 1 0 1 0 1 1 1 1 1 
0 1 1 1 1 1 1 0 0 0 0 
1 0 0 0 1 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 0 1 1 

All other inputs 0 0 0 0 0 0 0 
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plotting of the seven functions in map form is left as an exercise. One possible way 
of simplifying the seven functions results in the following Boolean functions: 

a= AC+ABD+BCD+ABC 

b= AB+ACD+ACD+ABC 

c= AB+AD+BCD+ABC 

d= ACD+ABC+BCD+ABC+ABCD 

e= ACD+BCD 

f= ABC+ACD +ABD +ABC 

g= ACD+ABC+ABC+ABC 

Independent implementation of these seven functions requires 27 AND gates and 
7 OR gates. However, by sharing the six product terms common to the different 
output expressions, the number of AND gates can be reduced _!_o _!4 along with a 
substantial savings in gate input cost. For example, the term B C D occurs in a, c, 
d, and e. The output of the AND gate that implements this product term goes 
directly to the inputs of the OR gates in all four functions. For this function, we 
stop optimization with the two-level circuit and shared AND gates, realizing that it 
might be possible to reduce the gate input cost even further by applying multiple­
level optimization. • 

Most manufacturers of integrated circuits use the term "BCD-to-seven­
segment decoder" because this device decodes a binary code for a decimal digit. 
However, it is actually a code converter that converts a four-bit decimal code to a 
seven-bit code. The word "decoder" is usually reserved for another type of cir­
cuit, presented in the next chapter. 

In general, the total number of gates can be reduced in a multiple-output 
combinational circuit by using common terms of the output functions. The maps 
of the output functions may help us find the common terms by finding identical 
implicants from two or more maps. Some of the common terms may not be prime 
implicants of the individual functions. The designer must be inventive and com­
bine squares in the maps in such a way as to create common terms. This can be 
done more formally by using a procedure for simplifying multiple-output func­
tions. The prime implicants are defined not only for each individual function, but 
also for all possible combinations of the output functions. These prime implicants 
are formed by using the AND operator on every possible nonempty subset of the 
output functions and finding the prime implicants of each of the results. Using 
this entire set of prime implicants, we can employ a formal selection process to 
find the optimum two-level multiple-output circuit. Such a procedure is imple­
mented in various forms in logic optimization software and is used to obtain the 
equations in Example 3-2.
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3-2 BEGINNING HIERARCHICAL DESIGN 

The next example uses a "divide-and-conquer" approach called hierarchical 
design, and the resulting related symbols and schematics constitute a hierarchy 
representing the circuit designed. In order to deal with circuit complexity, the cir­
cuit is broken up into pieces we call blocks. The blocks are interconnected to form 
the circuit. The functions of these blocks and their interfaces are carefully defined, 
so that the circuit formed by interconnecting the blocks obeys the initial circuit 
specification. If a block is still too large and complex to be designed as a single 
entity, it can be broken into smaller blocks. This process can be repeated as neces­
sary. Note that since we are working primarily with logic circuits, we use the term 
"circuit" in this discussion, but the ideas apply equally well to the "systems" cov­
ered in later chapters. Example 3-3 illustrates a very simple use of hierarchical 
design to "divide and conquer" a circuit that has eight inputs. This number of 
inputs makes the truth table cumbersome and K-maps impossible. Thus, direct 
application of the basic combinational design approach, as used in Examples 3-1 
and 3-2, is difficult. 

, EXAMPLE 3-3 Design of a 4-bit Equality Comparator 

SPECIFICATION: An equality comparator is a circuit that compares two binary vec­
tors to determine whether they are equal or not. The inputs to this specific circuit 
consist of two vectors: A(3:0) and B(3:0) . Vector A consists of four bits, A(3) , A(2) , 

A(l) , andA(O) , withA(3) as the most significant bit. Vector B has a similar descrip­
tion with B replaced by A. The output of the circuit is a single-bit variable E. Out­
put E is equal to 1 if vectors A and B are equal and equal to 0 if vectors A and B 
are unequal. 

FORMULATION: The formulation attempts to bypass the use of a truth table due 
to its size. In order for A and B to be equal, the bit values in each of the respec­
tive positions, 3 down to 0, of A and B must be equal. If all of the bit positions for 

A and B contain equal values in every position, then E = 1; otherwise, E = 0. 
Intuitively, we can see from this formulation of the problem that the circuit can 
be developed as a simple 2-level hierarchy with the complete circuit at the top 
level and five circuits at the bottom level. Since comparison of a bit from A and 
the corresponding bit from B must be done in each of the bit positions, we can 
decompose the problem into four 1-bit comparison circuits MX and an addi­
tional circuit ME that combines the four comparison-circuit outputs to obtain E. 

A logic diagram of the hierarchy showing the interconnection of the five blocks 
is shown in Figure 3-4(a) . 

OPTIMIZATION: For bit position i, we define the circuit output Ni to be 0 if Ai and 
Bi have the same values and Ni= 1 if Ai and Bi have different values. Thus, the 
MX circuit can be described by the equation 
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(a) 

(c) 

Hierarchical Diagram for a 4-Bit Equality Comparator 

which has the circuit diagram shown in Figure 3-4(b ) . By using hierarchy, we can 
employ four copies of this circuit, one for each of the four bits of A and B. Output 
E = 1 only if all of the Ni values are 0. This can be described by the equation 

E = N0 + N1 + N2 + N3 

and has the diagram given in Figure 3-4( c ) . Both of the circuits given are optimum 
two-level circuits. These two circuit diagrams plus the block diagram in Figure 3-4(a) 
represent the hierarchical design of the circuit. The actual circuit is obtained by 
replacing the respective blocks in Figure 3-4(a) by copies of the two circuits shown in 
Figure 3-4(b) and (c) . • 

The structure of the hierarchy for the 4-bit equality comparator can be rep­
resented without the interconnections by starting with the top block for the 
overall circuit and, below each block, connecting those blocks or primitives from 
which the block is constructed. Using this representation, the hierarchy for the 
4-bit equality comparator circuit is shown in Figure 3-5(a). Note that the resulting 
structure has the form of a tree with the root at the top. The "leaves" of the tree 
are the gates, in this case 21 of them. In order to provide a more compact represen­
tation of the hierarchy, we can reuse blocks, as shown in Figure 3-5(b). This dia­
gram corresponds to blocks used in Figure 3-4, with only one copy of each distinct 
block shown. These diagrams and the circuits in Figure 3-4 are helpful in illustrating 
a number of useful concepts associated with hierarchies and hierarchical blocks. 
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4-input 
equality comparator 

(a) 

D FIGURE 3-5 

4-input 
equality comarator 

MX ME 

(b) 

Diagrams Representing the Structure of the Hierarchy for Figure 3-4 

First of all, a hierarchy reduces the complexity required to represent the 
schematic diagram of a circuit. For example, in Figure 3-S(a), 21 gates appear. This 
means that if the circuit were designed directly in terms of gates, the schematic for 
the circuit would consist of 21 interconnected gate symbols, in contrast to just 11 
symbols used to describe the circuit implementation as a hierarchy in Figure 3-4. 
Thus, a hierarchy gives a simplified representation of a complex circuit. 

Second, the hierarchy ends at a set of "leaves" in Figure 3-5. In this case, the 
leaves consist of AND gates, OR gates, inverters, and a NOR gate. Since the gates 
are electronic circuits, and we are interested here only in designing the logic, 
these gates are commonly called primitive blocks. These are predefined rudimen­
tary blocks that have a symbol, but no logic schematic. In general, more complex 
structures that likewise have symbols, but no logic schematics, are also predefined 
blocks. Instead of schematics, their function can be defined by a program or 
description that can serve as a model. For example, in the hierarchy depicted in 
Figure 3-4, the MX blocks could have been considered as predefined exclusive­
OR gates consisting of electronic circuits. In such a case, the diagram describing 
the internal logic for MX exclusive-OR blocks in Figure 3-4(b) would not be nec­
essary. The hierarchical representations in Figure 3-4(b) and 3-S(a) would then 
end with the exclusive-OR blocks. In any hierarchy, the "leaves" consist of pre­
defined blocks, some of which may be primitives. 

A third very important property that results from hierarchical design is the 
reuse of blocks, as illustrated in Figures 3-S(a) and (b ). In part (a), there are four 
copies of the 2-input MX block. In part (b ), there is only one copy of the 2-input 
MX block. This represents the fact that the designer has to design only one 2-input 
MX block and can use this design four times in the 4-bit equality comparator cir­
cuit. In general, suppose that at various levels of a hierarchy, the blocks used are 
carefully defined in such a manner that many of them are identical. A prerequisite 
for being able to achieve this goal is a fundamental property of the circuit called 
regularity. A regular circuit has a function that permits it to be constructed from 
copies of a reasonably small set of distinct blocks. An irregular circuit has a function 
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with no such property. Clearly the regularity for any given function is a matter of 
degree. For a given repeated block, only one design is necessary. This design can be 
used everywhere the block is required. The appearance of a block within a design is 
called an instance of the block and its use is called an instantiation. The block is 
reusable in the sense that it can be used in multiple places in the circuit design and, 
possibly, in the design of other circuits as well. This concept greatly reduces the 
design effort required for complex circuits. Note that, in the implementation of the 
actual circuit, separate hardware has to be provided for each instance of the block, 
as represented in Figure 3-S(a). The reuse, as represented in Figure 3-S(b), is con­
fined to the schematics that need to be designed, not to the actual hardware imple­
mentation. The ratio of the number of primitives in the final circuit to the total 
number of blocks in a hierarchical diagram including primitives is a measure of reg­
ularity. A larger ratio represents higher regularity; for example, for the 4-bit com­
parator as in Figure 3-4, this ratio is 21/11. 

A complex digital system may contain millions of interconnected gates. In 
fact, a single very-large-scale integrated (VLSI) processor circuit often contains 
hundreds of millions of gates. With such complexity, the interconnected gates 
appear to be an incomprehensible maze. Certainly, such complex systems or cir­
cuits are not designed manually simply by interconnecting gates one at a time. 

Later, in Section 3-5, we focus on predefined, reusable blocks that typically 
lie at the lower levels of logic design hierarchies. These are blocks of intermediate 
size that provide basic functions used in digital design. They allow designers to do 
much of the design process above the primitive block, i.e., gate level. We refer to 
these particular blocks as functional blocks. Thus, a functional block is a predefined 
collection of interconnected gates. Many of these functional blocks have been 
available for decades as medium-scale integrated (MSI) circuits that were intercon­
nected to form larger circuits or systems. Similar blocks are now in computer-aided 
design tool libraries used for designing larger integrated circuits. These functional 
blocks provide a catalog of digital components that are widely used in the design 
and implementation of integrated circuits for computers and digital systems. 

3-3 TECHNOLOGY MAPPING 

In this section, we introduce NAND and NOR gate cells and consider mapping AND, 
OR, NOT descriptions to one or the other of these two technologies. In section 6-8, 

technology mapping to programmable implementation technologies is covered. 

ftUllftl"> ADVANCED TECHNOLOGY MAPPING Technology mapping using collections of cell 
types including multiple gate types is covered in this supplement on the Compan­
ion Web Site for the text. 

A NAND technology consists of a collection of cell types, each of which 
includes a NAND gate with a fixed number of inputs. The cells have numerous 
properties, as described in Chapter 6. Because of these properties, there may be 
more than one cell type with a given number of inputs n. For simplicity, we will 
assume that there are four cell types, based on the number of inputs, n, for n = 1, 2, 3, 
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and 4. We will call these four cell types Inverter (n = 1 ), 2NAND, 3NAND, and 
4NAND, respectively. 

A convenient way to implement a Boolean function with NAND gates is to begin 
with the optimized logic diagram of the circuit consisting of AND and OR gates and 
inverters. Next, the function is converted to NAND logic by converting the logic dia­
gram to NAND gates and inverters. The same conversion applies for NOR gate cells. 

Given an optimized circuit that consists of AND gates, OR gates, and invert­
ers, the following procedure produces a circuit using NAND (or NOR) gates with 
unrestricted gate fan-in: 

1. Replace each AND and OR gate with the NAND (NOR) gate and inverter 
equivalent circuits shown in Figure 3-6(a) and (b). 

2. Cancel all inverter pairs. 

Jo--

(a) Mapping to NAND gates 

Jo--

JD- . � · . 
(b) Mapping to NOR gates 

(c) Pushing an inverter through a "dot" 

----[>o---{>o- � --

(d) Canceling inverter pairs 

D FIGURE 3-6 
Mapping of AND Gates, OR Gates and Inverters to 
NAND Gates, NOR Gates, and Inverters 
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3. Without changing the logic function, (a) "push" all inverters lying between (i)
either a circuit input or a driving NAND (NOR) gate output and (ii) the
driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate
inputs. Cancel pairs of inverters in series whenever possible during this step.
(b) Replace inverters in parallel with a single inverter that drives all of the
outputs of the parallel inverters. ( c) Repeat (a) and {b) until there is at most
one inverter between the circuit input or driving NAND (NOR) gate output
and the attached NAND {NOR) gate inputs.

In Figure 3-6( c ), the rule for pushing an inverter through a "dot" is illustrated. The 
inverter on the input line to the dot is replaced with inverters on each of the output 
lines from the dot. The cancelation of pairs of inverters in Figure 3-6( d) is based on 
the Boolean algebraic identity 

X=X 

The next example illustrates this procedure for NAND gates. 

EXAMPLE 3-4 Implementation with NANO Gates 

Implement the following optimized function with NAND gates: 

(a) 

y 

F = AB + (AB)C + (AB)D + E 

F 

A 

B 

D 
E��������---' 

(c) 

D FIGURE 3-7 
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Solution to Example 3-4 

(b) 

F 

F 

(d) 
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The AND, OR, inverter implementation is given in Figure 3-7(a) . In Figure 3-7(b), 
step 1 of the procedure has been applied, replacing each AND gate and OR gate 
with its equivalent circuit using NAND gates and inverters from Figure 3-6(a) . 
Labels appear on dots and inverters to assist in the explanation. In step 2, the 
inverter pairs (1, 2) and (3, 4), cancel, giving direct connections between the corre­
sponding NAND gates in Figure 3-7(d) . As shown in Figure 3-7(c), inverter 5 is 
pushed through X and cancels with inverters 6 and 7, respectively. This gives direct 
connections between the corresponding NAND gates in Figure 3-7(d) . No further 
steps can be applied, since inverters 8 and 9 cannot be paired with other inverters 
and must remain in the final mapped circuit in Figure 3-7(d) . The next example 
illustrates this procedure for NOR gates. • 

EXAMPLE 3-5 Implementation with NOR Gates 

Implement the same optimized Boolean function used in Example 3-4 with NOR 
gates: 

F = AB + (AB)C + (AB)D + E 

The AND, OR, inverter implementation is given in Figure 3-8(a) . In Figure 3-8(b), 
step 1 of the procedure has been applied, replacing each AND gate and OR gate 
with its equivalent circuit using NOR gates and inverters from Figure 3-6(b ). Labels 
appear on dots and inverters to assist in the explanation. In step 2, inverter 1 can be 
pushed through dot X to cancel with inverters 2 and 3, respectively. The pair of 

A 
B 

c 

D 
E 

A 

B 

c 

D 
E 

(a) 

(c) 

F 

c F 

(b) 

F 

D FIGURE 3-8 
Solution to Example 3-5 



3-4 I Verification D 111 

inverters on the D input line cancel as well. The single inverters on input lines A, B, 

and C and output line F must remain, giving the final mapped circuit that appears in 
Figure 3-8(c). • 

In Example 3-4 the gate-input cost of the mapped circuit is 12, and in 
Example 3-5 the gate-input cost is 14, so the NAND implementation is less 
costly. Also, the NAND implementation involves a maximum of three gates in 
series while the NOR implementation has a maximum of five gates in series. With 
equal gate delays assumed, the shorter series of gates in the NAND circuit gives 
a maximum delay from an input change to a corresponding output change about 
0.6 times as long as that for the NOR circuit. So, in this particular case, the 
NAND circuit is superior to the NOR circuit in both cost and delay. 

The result of a technology mapping is clearly influenced by the initial circuit 
or equation forms prior to mapping. For example, mapping to NANDs for a cir­
cuit with an OR gate at the output produces a NAND gate at the output. Map­
ping to NORs for the same circuit produces an inverter driven by a NOR gate at 
the output. Because of these results, the sum of products is viewed as more natu­
ral for NANDs and the product of sums, which eliminates the output inverter, as 
more natural for NORs. Nevertheless, the choice should be based on which form 
gives the best overall implementation in terms of whatever optimization criteria 
are being applied. 

3-4 VERIFICATION 

In this section, we consider manual logic analysis and computer simulation­
based logic analysis for verification of circuit function (i.e., determination of 
whether or not a given circuit implements its specified function). If the circuit 
does not meet its specification, then it is incorrect. As a consequence, verifica­
tion plays a vital role in preventing incorrect circuit designs from being manufac­
tured and used. Logic analysis also can be used for other purposes, including 
redesign of a circuit and determination of the function of a circuit. 

In order to verify a combinational circuit, it is essential that the specifica­
tion be unambiguous and correct. As a consequence, specifications such as truth 
tables, Boolean equations, and HDL code are most useful. Initially, we examine 
manual verification by continuing with the design examples we introduced in this 
chapter. 

Manual Logic Analysis 

Manual logic analysis consists of finding Boolean equations for the circuit outputs 
or, additionally, finding the truth table for the circuit. The approach taken here 
emphasizes finding the equations and then using them to find the truth table, if 
necessary. In finding the equation for a circuit, it is often convenient to break up 
the circuit into subcircuits by defining intermediate variables at selected points in 
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the circuit. Points typically selected are those at which a gate output drives two or 
more gate inputs. Such points are often referred to as fan-out points. Fan-out points 
from a single inverter on an input typically would not be selected. The determina­
tion of logic equations for a circuit is illustrated using the BCD-to-excess-3 code 
converter circuit designed in previous sections. 

EXAMPLE 3-6 Manual Verification of BCD-to-Excess-3 Code Converter 

Figure 3-9 shows (a) the original truth table specification, (b) the final NAND­
mapped circuit implementation, and (c) an incomplete truth table to be com­
pleted from the implementation and then compared to the original truth table. 
The truth table values are to be determined from Boolean equations for W, X, Y, 
and Z derived from the circuit. The point Tis selected as an intermediate variable 
to simplify the analysis: 

T =CD= C+D 

W = A(T·B) =A +BT 

X= (B1)(BCD) = B·T+BT 

Y = CD+T 

Z=D 

Substituting the expression for T in the equations for W, X, and Y, we have 

A 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

W =A +B(C+D) =A +BC+BD 
- - -

X = B(C+D) +B(CD) = BC+BD +BCD 

Input Output 
BCD Excess-3 

NAND2 

B c DWX 
NAND2 

y z 

0 0 0 0 0 1 1 

0 0 1 0 1 0 
INV 

0 1 0 0 1 0 1 

0 1 1 0 1 1 0 
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1 0 0 0 1 1 NAND2 

1 0 1 1 0 0 

1 1 0 1 0 0 1 

1 1 1 1 0 1 0 

0 0 0 1 0 1 1 NAND2 

0 0 1 1 1 0 0 

(a) (b) 
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Verification: BCD-to-Excess-3 Code Converter 

Output 
Excess-3 

DW XY 

0 

1 

0 1 

1 1 1 

0 

1 1 
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0 1 
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1 

1 

1 

1 
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Y = CD+ (C + D) = CD+ CD 

Each of the product terms in the four output equations can be mapped to ls 
in the truth table in Figure 3-9(c). The mappings of the ls for A, BC, and BD, for 
BC: for CD, and for D are shown. After the remaining product terms are mapped 
to ls, the blank entries are filled with Os. The new truth table in this case will match 
the original one, verifying that the circuit is correct. • 

Simulation 

An alternative to manual verification is the use of computer simulation for verifica­
tion. Using a computer permits truth-table verification to be done for a signifi­
cantly larger number of variables and greatly reduces the tedious analysis effort 
required. Since simulation uses applied values, if possible, it is desirable for thor­
ough verification to apply all possible input combinations. The next example illus­
trates the use of Xilinx ISE4.2i FPGA development tools and XE II Modelsim 
simulator to verify the BCD-to-excess-3 code converter using all possible input 
combinations from the truth table. 

EXAMPLE 3-7 Simulation-Based Verification of BCD-to-Excess-3 Code 

Converter 

Figure 3-9 shows (a) the original truth table specification, and (b) the final circuit 
implementation of the BCD-to-excess 3 code converter. The circuit implementation 
has been entered into Xilinx ISE 4.2i as the schematic shown in Figure 3-9(b ). In 
addition to entering the schematic, the input combinations given in Figure 3-9(a) 
have also been entered as a waveform. These input waveforms are given in the 
INPUTS section of the simulation output shown in Figure 3-10. The simulation of the 
input waveforms applied to the circuit produces the output waveforms given in the 
OUTPUT section. Examining each input combination and the corresponding output 
combination represented by the waveforms, we can manually verify whether the out­
puts match the original truth table. Beginning with (A,B,C,D) = (0,0,0,0) in the 
input waveform, we find that the corresponding output waveform represents 
(W,X, Y,Z) = (0,0,1,1). Continuing, for (A,B,C,D) = (0,0,0,1), the values for the out­
put waveforms are (W,X, Y,Z) = (0,1,0,0). In both cases, the values are correct. This 
process of checking the waveform values against the specification can be continued 
for the remaining eight input combinations to complete the verification. • 

3-5 COMBINATIONAL FUNCTIONAL BLOCKS 

Earlier, we defined and illustrated combinational circuits and their design. In this 
section, we define specific combinational functions and corresponding combina­
tional circuits, referred to as functional blocks. In some cases, we will go through 
the design process for obtaining a circuit from the function, while in other cases, 
we will simply present the function and an implementation of it. These functions 
have special importance in digital design. In the past, the functional blocks were 
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manufactured as small- and medium-scale integrated circuits. Today, in very-large­
scale integrated (VLSI) circuits, functional blocks are used to design circuits with 
many such blocks. Combinational functions and their implementations are funda­
mental to the understanding of VLSI circuits. By using a hierarchy, we typically 
construct circuits as instances of these functions or the associated functional 
blocks as well as logic design at the gate level. 

Large-scale and very-large-scale integrated circuits are almost always sequen­
tial circuits, as detailed beginning in Chapter 5. The functions and functional blocks 
discussed in this chapter are combinational. However, they are often combined 
with storage elements to form sequential circuits, as shown in Figure 3-11. Inputs to 
the combinational circuit can come from both the external environment and the stor­
age elements. Outputs from the combinational circuit go to both the external environ­
ment and the storage elements. In later chapters, we use the combinational functions 
and blocks defined here, as well as in Chapter 4, with storage elements to form 
sequential circuits that perform very useful functions. Further, the functions and 
blocks defined here and in Chapter 4 serve as a basis for describing and understand­
ing both combinational and sequential circuits using hardware description languages 
in Chapter 4. 

Inputs --
Combinational Next 

circuit state Storage -
elements 

D FIGURE 3-11 
Block Diagram of a Sequential Circuit 

- Outputs 

Present 
state 
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3-6 RUDIMENTARY LOGIC FUNCTIONS 

Value fixing, transferring, inverting, and enabling are among the most elementary 
of combinational logic functions. The first two operations, value fixing and transfer­
ring, do not involve any Boolean operators. They use only variables and constants. 
As a consequence, logic gates are not involved in the implementation of these 
operations. Inverting involves only one logic gate per variable, and enabling 
involves one or two logic gates per variable. 

Value-Fixing, Transferring, and Inverting 

If a single-bit function depends on a single variable X, four different functions are 
possible. Table 3-3 gives the truth tables for these functions. The first and last 

D TABLE3-3 
Functions of One Variable 

x 

0 
1 

F=O 

0 
0 

F=X F= X 

0 1 
1 0 

F=1 

1 
1 

columns of the table assign either constant value 0 or constant value 1 to the func­
tion, thus performing value fixing. In the second column, the function is simply the 
input variable X, thus transferring X from input to output. In the third column, the 
function is X, thus inverting input X to become output X. 

The implementations for these four functions are given in Figure 3-12. Value 
fixing is implemented by connecting a constant 0 or constant 1 to output F, as 
shown in Figure 3-12(a) . Figure 3-12(b) shows alternative representations used in 
logic schematics. For the positive logic convention, constant 0 is represented by the 
electrical ground symbol and constant 1 by a power-supply voltage symbol. The lat­
ter symbol is labeled with either V cc or V DD· Transferring is implemented by a sim­
ple wire connecting X to F as in Figure 3-12( c ) . Finally, inverting is represented by 
an inverter which forms F = X from input X, as shown in Figure 3-12( d) . 

VccorV00 

1 F=l T F=l x F=X 
(c) 

0 F=O 
_[ 

F=O 
x----{>o--F=X 

(a) (b) (d) 

D FIGURE 3-12 
Implementation of Functions of a Single Variable X 
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D FIGURE 3-13 
Implementation of Multibit Rudimentary Functions 

Multiple-Bit Functions 

The functions defined so far can be applied to multiple bits on a bitwise basis. We 
can think of these multiple-bit functions as vectors of single-bit functions. For 
example, suppose that we have four functions, F3, F2, Fi, and F0, that make up a 
four-bit function F. We can order the four functions with F3 as the most significant 
bit and F0 the least significant bit, providing the vector F = (F3, F2, F1, F0). Suppose 
that F consists of rudimentary functions F3 = 0, F2 = 1, F1 =A, and F0 = A . Then we 
can write F as the vector (0, 1,A, A ). For A= 0, F = (0, 1, 0, 1) and for A= 1, F = 
(0,1, 1, 0). This multiple-bit function can be referred to as F(3:0) or simply as F and 
is implemented in Figure 3-13(a). For convenience in schematics, we often repre­
sent a set of multiple, related wires by using a single line of greater thickness with a 
slash, across the line. An integer giving the number of wires represented accompa­
nies the slash as shown in Figure 3-13(b ). In order to connect the values 0, 1, X, and 
X to the appropriate bits of F, we break F up into four wires, each labeled with the 
bit of F. Also, in the process of transferring, we may wish to use only a subset of the 
elements in F-for example, F2 and F1• The notation for the bits of F can be used 
for this purpose, as shown in Figure 3-13(c). In Figure 3-13(d), a more complex case 
illustrates the use of F3, Fi, F0 at a destination. Note that since F3, Fi, and F0 are not 
all together, we cannot use the range notation F(3:0) to denote this subvector. 
Instead, we must use a combination of two subvectors, F(3), F(l:O), denoted by sub­
scripts 3, 1:0. The actual notation used for vectors and subvectors varies among the 
schematic drawing tools or HDL tools available. Figure 3-13 illustrates just one 
approach. For a specific tool, the documentation should be consulted. 

Value fixing, transferring, and inverting have a variety of applications in 
logic design. Value fixing involves replacing one or more variables with con­
stant values 1 and 0. Value fixing may be permanent or temporary. In perma­
nent value fixing, the value can never be changed. In temporary value fixing, 
the values can be changed, often by mechanisms somewhat different from 
those employed in ordinary logical operation. A major application of fixed and 
temporary value fixing is in programmable logic devices. Any logic function 
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that is within the capacity of the programmable device can be implemented by 
fixing a set of values, as illustrated in the next example. 

W , EXAMPLE 3-8 Lecture-Hall Lighting Control Using Value Fixing 

The Problem: The design of a part of the control for the lighting of a lecture hall 
specifies that the switches that control the normal lights be programmable. There 
are to be three different modes of operation for the two switches. Switch P is on 
the podium in the front of the hall and switch R is adjacent to a door at the rear of 
the lecture hall. H (house lights) is 1 for the house lights on and 0 for the house 
lights off. The light control for house lights can be programmed to be in one of 
three modes, M0, Mi, or M2, defined as: 

M0: Either switch P or switch R turns the house lights on and off. 
M1: Only the podium switch P turns the house lights on and off. 
M2: Only the rear switch R turns the house lights on and off. 

The Solution: The truth tables for H(P, R) as a function of programming modes 
M0, M1, and M2 is given in Table 3-4. The functions for M1 and M2 are straightfor­
ward, but the function for M0 needs more thought. This function must permit the 
changing of one out of the two switches P or R to change the output. A parity func­
tion has this property, and the parity function for two inputs is the exclusive OR, 
the function entered into Table 3-4 for M0• The goal is to find a circuit that will 
implement the three programming modes and provide the output H(P, R). 

D TABLE 3-4 

Function Implementation by Value Fixing 

Mode: Mo M1 M2 

p R H= P R+PR H=P H=R 

0 0 0 0 0 
0 1 1 0 1 
1 0 1 1 0 
1 1 0 1 1 

The circuit chosen for a value-fixing implementation is shown in Figure 3-14(a); 
later in this chapter, this standard circuit is referred to as a 4-to-1 multiplexer. A con­
densed truth table is given for this circuit in Figure 3-14(b ). P and R are input vari­
ables, as are I0 through I3. Values 0 and 1 can be assigned to I0 through I3 depending 
upon the desired function for each mode. Note that H is actually a function of six 
variables, giving a fully expanded truth table containing 64 rows and seven columns. 
But, by putting I0 through I3 in the output column, we considerably reduce the size of 
the table. The equation for the output H for this truth table is 
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Implementation of Three Functions by Using Value Fixing 

Ii 
I2 
I3 

p R H 

0 0 Io 
0 1 Ii 
1 0 I2 
1 1 I3 

(b) 

Mo Mi M2 

1 0 1 

1 1 0 
0 1 1 

(d) 

By fixing the values of I0 through 13, we can implement any function _H(P, R). As 
shown in Table 3-4, we can implement the function for M0, H = PR + PR by using I0 
= 0, I1 = 1, ]z = 1, and h = 0. We can implement the function for M1, H = P by using I0 
= 0, I1 = 0, I2 = 1, and I3 = 1, and M2, H = R by using I0 = 0, I1 = 1, I2 = 0, and I3 = 1. 
Any one of these functions can be implemented permanently, or all can be 
implemented temporarily by fixing I0 = 0, and using I1, I2, and h as variables with 
values as assigned above for each of the three modes. The final circuit with I0 = 0 and 
the programming table after I0 has been fixed at 0 are shown in Figure 3-14( c) and 
( d), respectively. • 
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E�=D-F 

(a) 

(b) 

D FIGURE 3-15 
Enabling Circuits 

The concept of enabling a signal first appeared in Section 2-9, where Hi-Z outputs 
and three-state buffers were introduced. In general, enabling permits an input signal 
to pass through to an output. In addition to replacing the input signal with the Hi-Z 
state, disabling also can replace the input signal with a fixed output value, either 0 or 
1. The additional input signal, often called ENABLE or EN, is required to deter­
mine whether the output is enabled or not. For example, if EN is 1, the input X 
reaches the output (enabled) , but if EN is 0, the output is fixed at 0 (disabled). For 
this case, with the disabled value at 0, the input signal is ANDed with the EN signal, 
as shown in Figure 3-15(a). If the disabled value is 1, then the input signal X is 
ORed with the complement of the EN signal, as shown in Figure 3-15(b). In this 
case, if EN= 1, a 0 is applied to the OR gate, and the input X on the other OR gate, 
input reaches the output, but if EN= 0, a 1 is applied to the OR gate, which blocks 
the passage of input X to the output. It is also possible for each of the circuits in 
Figure 3-15 be modified to invert the EN input, so that EN = 0 enables X to reach 
the output and EN = 1 blocks X. 

> EXAMPLE 3-9 Car Electrical Control Using Enabling 

The Problem: In most automobiles, the lights, radio, and power windows operate 
only if the ignition switch is turned on. In this case, the ignition switch acts as an 
"enabling" signal. Suppose that we model this automotive subsystem using the fol­
lowing variables and definitions: 

Ignition switch JG: Value 0 if off and value 1 if on 
Light switch LS: Value 0 if off and value 1 if on 
Radio switch RS: Value 0 if off and value 1 if on 
Power window switch WS: Value 0 if off and value 1 if on 
Lights L: Value 0 if off and value 1 if on 
Radio R: Value 0 if off and value 1 if on 
Power windows W: Value 0 if off and value 1 if on 
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D TABLE 3-5 
Truth Table for Enabling Application 

Input Accessory 
Switches Control 

IS LS RS WS L R w 

0 x x x 0 0 0 
1 0 0 0 0 0 0 
1 0 0 1 0 0 1 
1 0 1 0 0 1 0 
1 0 1 1 0 1 1 
1 1 0 0 1 0 0 
1 1 0 1 1 0 1 
1 1 1 0 1 1 0 
1 1 1 1 1 1 1 

The Solution: Table 3-5 contains the condensed truth table for the operation of this 
automobile subsystem. Note that when the ignition switch IS is off (0), all of the 
controlled accessories are off (0) regardless of their switch settings. This is indi­
cated by the first row of the table. With the use of X's, this condensed truth table 
with just nine rows represents the same information as the usual 16-row truth 
table. Whereas X's in output columns represent don't-care conditions, X's in input 
columns are used to represent product terms that are not minterms. For example, 
OXXX represents the product term IS. Just as with minterms, each variable is com­
plemented if the corresponding bit in the input combination from the table is 0 and 
is not complemented if the bit is 1. If the corresponding bit in the input combina­
tion is an X, then the variable does not appear in the product term. When the igni­
tion switch IS is on (1), then the accessories are controlled by their respective 
switches. When IS is off (0), all accessories are off. So IS replaces the normal values 
of the outputs L, R, and W with a fixed value 0 and meets the definition of an 
ENABLE signal. The resulting circuit is given in Figure 3-16. • 

LS----1 
i----L 

IG -----------i 

i----R 

ws:----1 
1-----w 

D FIGURE 3-16 
Car Electrical Control Using Enabling 
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D FIGURE 3-17 
A 1-to-2-Line Decoder 

3-7 DECODING 

In digital computers, discrete quantities of information are represented by binary 
codes. An n-bit binary code is capable of representing up to 2n distinct elements of 
coded information. Decoding is the conversion of an n-bit input code to an m-bit 
output code with n ::::;; m ::::;; 2n, such that each valid input code word produces a 
unique output code. Decoding is performed by a decoder, a combinational circuit 
with an n-bit binary code applied to its inputs and an m-bit binary code appearing 
at the outputs. The decoder may have unused bit combinations on its inputs for 
which no corresponding m-bit code appears at the outputs. Among all of the spe­
cialized functions defined here, decoding is the most important, since this function 
and the corresponding functional blocks are incorporated into many of the other 
functions and functional blocks defined here. 

In this section, the functional blocks that implement decoding are called 
n-to-m-line decoders, where m::::;; 2n. Their purpose is to generate the 2n (or fewer) 
minterms from then input variables. For n = 1 and m=2, we obtain the 1-to-2-line 
decoding function with input A and outputs D0 and D1. The truth table for this 
decoding function is given in Figure 3-17(a) . If A = 0, then D0=1 and D1=0. If 
A= 1, then D0 = 0 and D1 = 1. From this truth table, D0 = A and D1 =A, giving 
the circuit shown in Figure 3-17 {b ) . 

A second decoding function for n = 2 and m = 4 with the truth table given in 
Figure 3-18(a) better illustrates the general nature of decoders. This table has 2-
variable minterms as its outputs, with each row containing one output value 
equal to 1 and three output values equal to 0. Output Di is equal to 1 whenever 
the two input values on A1 and A0 are the binary code for the number i. As a 
consequence, the circuit implements the four possible minterms of two vari­
ables, one minterm for each output. In the logic diagram in Figure 3-18{b) , 
each minterm is implemented by a 2-input AND gate. These AND gates are 
connected to two 1-to-2-line decoders, one for each of the lines driving the 
AND gate inputs. 

Large decoders can be constructed by simply implementing each minterm 
function using a single AND gate with more inputs. Unfortunately, as decoders 
become larger, this approach gives a high gate-input cost. In this section, we give a 
procedure that uses design hierarchy and collections of AND gates to construct 
any decoder with n inputs and 2n outputs. The resulting decoder has the same or a 
lower gate-input cost than the one constructed by simply enlarging each AND gate. 
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A 2-to-4-Line Decoder 
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A 3-to-8-Line Decoder 
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To construct a 3-to-8-line decoder (n = 3), we can use a 2-to-4-line decoder 
and a 1-to-2-line decoder feeding eight 2-input AND gates to form the minterms. 
Hierarchically, the 2-to-4-line decoder can be implemented using two 1-to-2-line 
decoders feeding four 2-input AND gates, as observed in Figure 3-18. The resulting 
structure is shown in Figure 3-19. 

The general procedure is as follows: 

1. Let k = n. 

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two 
decoders of output size 2kl2. If is k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 
2k AND gates driven by a decoder of output size 2(k + 1)12 and a decoder of 
output size 2(k- l)12• 

3. For each decoder resulting from step 2, repeat step 2 with k equal to the val­
ues obtained in step 2 until k = 1. For k= 1, use a 1-to-2 decoder. 

EXAMPLE 3-10 6-to--64-Line Decoder 

For a 6-to-64-line decoder (k = n = 6), in the first execution of step 2, 64 2-input 
AND gates are driven by two decoders of output size 23 = 8 (i.e., by two 3-to-8-line 
decoders). In the second execution of step 2, k = 3. Since k is odd, the result is (k + 

1)/2 = 2 and (k-1)/2 = 1. Eight 2-input AND gates are driven by a decoder of out­
put size 22 = 4 and by a decoder of output size 21 = 2 (i.e., by a 2-to-4-line decoder 
and by a 1-to-2-line decoder, respectively ). Finally, on the next execution of step 2, 
k = 2, giving four 2-input AND gates driven by two decoders with output size 2 
(i.e., by two 1-to-2-line decoders). Since all decoders have been expanded, the 
algorithm terminates with step 3 at this point. The resulting structure is shown in 
Figure 3-20. This structure has a gate input cost of 6 + 2 (2 x 4) + 2 (2 x 8) + 2 x 64 
= 182. If a single AND gate for each minterm were used, the resulting gate-input 
cost would be 6 + (6 x 64) = 390, so a substantial gate-input cost reduction has 
been achieved. • 

As an alternative expansion situation, suppose that multiple decoders are 
needed and that the decoders have common input variables. In this case, instead of 
implementing separate decoders, parts of the decoders can be shared. For exam­
ple, suppose that three decoders da, db, and de are functions of input variables as 
follows: 

da (A,B, C,D) 

db (A, B, C, E) 
de (C, D, E, F) 

A 3-to-8-line decoder for A, B, and C can be shared between da and db. A 2-to-4-
line decoder for C and D can be shared between da and de. A 2-to-4-line decoder 
for C and E can be shared between db and de. If we implemented all of this shar­
ing, we would have C entering three different decoders and the circuit would be 
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A 6-to-64-Line Decoder 

Do 

redundant. To use C just once in shared decoders larger than 1 to 2, we can con­
sider the following distinct cases: 

1. (A, B) shared by d0 and db, and ( C, D) shared by d0 and de, 

2. (A, B) shared by d0 and db, and ( C, E) shared by db and de, or 

3. (A, B, C) shared by d0 and db. 

Since cases 1 and 2 will clearly have the same costs, we will compare the cost of 
cases 1 and 3. For case 1, the costs of functions d0, dfo and de are reduced by the 
cost of two 2-to-4-line decoders (exclusive of inverters) or 16 gate inputs. For case 
3, the costs for functions d0 and db are reduced by one 3-to-8-line decoder ( exclu­
sive of inverters) or 24 gate inputs. So case 3 should be implemented. Formaliza­
tion of this procedure into an algorithm is beyond our current scope, so only this 
illustration of the approach is given. 

Decoder and Enabling Combinations 

The function, n-to-m-Iine decoding with enabling, can be implemented by attaching 
m enabling circuits to the decoder outputs. Then, m copies of the enabling signal EN 
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D FIGURE 3-21 
A 2-to-4-Line Decoder with Enable 

are attached to the enable control inputs of the enabling circuits. For n = 2 and m = 

4, the resulting 2-to-4-line decoder with enable is shown in Figure 3-21, along with 
its truth table. For EN = 0, all of the outputs of the decoder are 0. For EN = 1, one 
of the outputs of the decode, determined by the value on (A1,A0), is 1 and all others 
are 0. If the decoder is controlling a set of lights, then with EN = 0, all lights are off, 
and with EN = 1, exactly one light is on, with the other three off. For large decoders 
(n � 4) , the gate-input cost can be reduced by placing the enable circuits on the 
inputs to the decoder and their complements rather than on each of the decoder 
outputs. 

In Section 3-9, selection using multiplexers will be covered. The inverse of 
selection is distribution, in which information received from a single line is trans­
mitted to one of 2n possible output lines. The circuit which implements such distri­
bution is called a demultiplexer. The specific output to which the input signal is 
transmitted is controlled by the bit combination on n selection lines. The 2-to-4-line 
decoder with enable in Figure 3-21 is an implementation of a 1-to-4-line demulti­
plexer. For the demultiplexer, input EN provides the data, while the other 
inputs act as the selection variables. Although the two circuits have different 
applications, their logic diagrams are exactly the same. For this reason, a 
decoder with enable input is referred to as a decoder/demultiplexer. The data 
input EN has a path to all four outputs, but the input information is directed to 
only one of the outputs, as specified by the two selection lines A 1 and A0• For 
example, if (A1,A0) = 10, output D2 has the value applied to input EN, while all 
other outputs remain inactive at logic 0. If the decoder is controlling a set of four 
lights, with (A1,A0) = 10 and EN periodically changing between 1 and 0, the light 
controlled by D2 flashes on and off and all other lights are off. 
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Decoder-Based Combinational Circuits 

A decoder provides the 2n minterms of n input variables. Since any Boolean 
function can be expressed as a sum of minterms, one can use a decoder to gener­
ate the minterms and combine them with an external OR gate to form a sum-of­
minterms implementation. In this way, any combinational circuit with n inputs 
and m outputs can be implemented with an n-to-2n-line decoder and m OR 
gates. 

The procedure for implementing a combinational circuit by means of a 
decoder and OR gates requires that the Boolean functions be expressed as a sum 
of minterms. This form can be obtained from the truth table or by plotting each 
function on a K-map. A decoder is chosen or designed that generates all the min­
terms of the input variables. The inputs to each OR gate are selected as the appro­
priate minterm outputs according to the list of minterms of each function. This 
process is shown in the next example. 

EXAMPLE 3-11 Decoder and OR-Gate Implementation of a Binary Adder Bit 

In Chapter 1, we considered binary addition. The sum bit output Sand the carry bit 
output C for a bit position in the addition are given in terms of the two bits being 
added, X and Y, and the incoming carry from the right, Z, in Table 3-6. 

D TABLE 3-6 
Truth Table for 1-Bit Binary Adder 

x y z c s 

0 0 0 0 0 
0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

From this truth table, we obtain the functions for the combinational circuit in sum­
of-minterms form: 

S(X, Y, Z) = Im(l, 2, 4, 7) 

C(X, Y, Z) = Im(3, 5, 6, 7) 

Since there are three inputs and a total of eight minterms, we need a 3-to-8-line 
decoder. The implementation is shown in Figure 3-22. The decoder generates all 
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D FIGURE 3-22 
Implementing a Binary Adder Using a Decoder 

eight minterms for inputs X, Y, and Z. The OR gate for output S forms the logical 
sum of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of 
minterms 3, 5, 6, and 7. Minterm 0 is not used. • 

A function with a long list of minterms requires an OR gate with a large 
number of inputs. A function having a list of k minterms can be expressed in its 
complement form with zn - k minterms. If the nu!!lber of minterms in a function 
F is greater than zn/2, then the complement of F, F, can be expressed with fewer 
minterms. In such a case, it is advantageous to use a NOR gate instead of an OR 

gat� The OR portion of the NOR gate produces the logical sum of the minterms 
of F. The output bubble of the NOR gate complements this sum and generates 
the normal output F. 

The decoder method can be used to implement any combinational circuit. 
However, this implementation must be compared with other possible implementa­
tions to determine the best solution. The decoder method may provide the best 
solution, particularly if the combinational circuit has many outputs based on the 
same inputs and each output function is expressed with a small number of minterms. 

3-8 ENCODING 

An encoder is a digital function that performs the inverse operation of a decoder. 
An encoder has zn (or fewer) input lines and n output lines. The output lines gen­
erate the binary code corresponding to the input value. An example of an 
encoder is the octal-to-binary encoder whose truth table is given in Table 3-7. 

This encoder has eight inputs, one for each of the octal digits, and three outputs 
that generate the corresponding binary number. It is assumed that only one input 
has a value of 1 at any given time, so that the table has only eight rows with spec­
ified output values. For the remaining 56 rows, all of the outputs are don't cares. 



128 D CHAPTER 3 I COMBINATIONAL LOGIC DESIGN 

D TABLE 3-7 

Truth Table for Octal-to-Binary Encoder 

Inputs Outputs 

D1 De Ds D4 Da D2 D1 Do A2 A1 Ao 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 0 1 1 0 

1 0 0 0 0 0 0 0 1 1 1 

From the truth table, we can observe that Ai is 1 for the columns in which Di is 1 
only if subscript j has a binary representation with a 1 in the ith position. For 
example, output A0 = 1 if the input is 1 or 3 or 5 or 7. Since all of these values 
are odd, they have a 1 in the 0 position of their binary representation. This 
approach can be used to find the truth table. From the table, the encoder can be 
implemented with n OR gates, one for each output variable Ai. Each OR gate 
combines the input variables Dj having a 1 in the rows for which Ai has value 1. 
For the 8-to-3-line encoder, the resulting output equations are 

A0 = D1 + D3 + D5 + D7 

A 1 = D2 + D3 + D6 + D7 

A2 = D4 + D5 + D6 + D7 

which can be implemented with three 4-input OR gates. 
The encoder just defined has the limitation that only one input can be active 

at any given time: if two inputs are active simultaneously, the output produces an 
incorrect combination. For example, if D3 and D6 are 1 simultaneously, the output 
of the encoder will be 111, because all the three outputs are equal to 1. This repre­
sents neither a binary 3 nor a binary 6. To resolve this ambiguity, some encoder cir­
cuits must establish an input priority to ensure that only one input is encoded. If 
we establish a higher priority for inputs with higher subscript numbers, and if both 
D3 and D6 are 1 at the same time, the output will be 110, because D6 has higher 
priority than D3. Another ambiguity in the octal-to-binary encoder is that an out­
put of all Os is generated when all the inputs are 0, but this output is the same as 
when D0 is equal to 1. This discrepancy can be resolved by providing a separate 
output to indicate that at least one input is equal to 1. 
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Truth Table of Priority Encoder 

Inputs 

03 D2 D1 Do 

0 0 0 0 
0 0 0 1 
0 0 1 x 
0 1 x x 
1 x x x 

Priority Encoder 

A1 

x 
0 
0 
1 
1 
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Outputs 

Ao v 

x 0 
0 1 
1 1 
0 1 
1 1 

A priority encoder is a combinational circuit that implements a priority function. 
As mentioned in the preceding paragraph, the operation of the priority encoder is 
such that if two or more inputs are equal to 1 at the same time, the input having 
the highest priority takes precedence. The truth table for a four-input priority 
encoder is given in Table 3-8. With the use of X's, this condensed truth table with 
just five rows represents the same information as the usual 16-row truth table. 
Whereas X's in output columns represent don't-care conditions, X's in input 
columns are used to represent produc!_!erms that are not minterms. For example, 
001X represents the product term D3 D2 D1. Just as with minterms, each variable 
is complemented if the corresponding bit in the input combination from the table 
is 0 and is not complemented if the bit is 1. If the corresponding bit in the input 
combination is an X, then the variable does not appear in the product term. Thus, 
for__QOlX, the variable D0, corresponding to the position of the X, does not appear 
in D3 D2 D1. 

The number of rows of a full truth table represented by a row in the con­
densed table is 2P, where p is the number of X's in the row. For example, in 
Table 3-8, lXXX represents 23 

= 8 truth-table rows, all having the same value 
for all outputs. In forming a condensed truth table, we must include each min­
term in at least one of the rows in the sense that the minterm can be obtained 
by filling in ls and Os for the X's. Also, a minterm must never be included in 
more than one row such that the rows in which it appears have one or more 
conflicting output values. 

We form Table 3-8 as follows: Input D3 has the highest priority; so, 
regardless of the values of the other inputs, when this input is 1, the output for 
A1A0 is 11 (binary 3). From this we obtain the last row of the table. D2 has the 
next priority level. The output is 10 if D2 = 1, provided that D3 = 0, regardless 
of the values of the lower-priority inputs. From this, we obtain the fourth row 
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D FIGURE 3-23 

Maps for Priority Encoder 

of the table. The output for Di is generated only if all inputs with higher prior­
ity are 0, and so on down the priority levels. From this, we obtain the remaining 
rows of the table. The valid output designated by Vis set to 1 only when one or 
more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the 
other two outputs of the circuit are not used and are specified as don't-care 
conditions in the output part of the table. 

The maps for simplifying outputs Ai and A0 are shown in Figure 3-23. The 
minterms for the two functions are derived from Table 3-8. The output values in 
the table can be transferred directly to the maps by placing them in the squares 
covered by the corresponding product term represented in the table. The opti­
mized equation for each function is listed under the map for the function. The 
equation for output V is an OR function of all the input variables. The priority 
encoder is implemented in Figure 3-24 according to the following Boolean 
functions: 

Encoder Expansion 

A0 =D3 +DiD2 

Ai= Dz +D3 

V= D0 +Di +D2 +D3 

Thus far, we have considered only small encoders. Encoders can be expanded to 
larger numbers of inputs by expanding OR gates. In the implementation of 
decoders, the use of multiple-level circuits with OR gates beyond the output lev­
els shared in implementing the more significant bits in the output codes reduces 
the gate input cost as n increases for n � 5. For n � 3, multiple-level circuits 
result from technology mapping anyway, due to limited gate fan-in. Designing 
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D FIGURE 3-24 
Logic Diagram of a 4-Input Priority Encoder 

multiple-level circuits with shared gates reduces the cost of the encoders after 
technology mapping. 

3-9 SELECTING 

Selection of information to be used in a computer is a very important function, not 
only in communicating between the parts of the system, but also within the parts as 
well. Circuits that perform selection typically have a set of inputs from which selec­
tions are made, a single output, and a set of control lines for making the selection. 
First, we consider selection using multiplexers; then we briefly examine selection 
circuits implemented by using three-state drivers. 

Multiplexers 

A multiplexer is a combinational circuit that selects binary information from one of 
many input lines and directs the information to a single output line. The selection of 
a particular input line is controlled by a set of input variables, called selection inputs. 

D TABLE 3-9 
Truth Table for 2-to-1-Line Multiplexer 

s lo 11 y 

0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
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Decoder 
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Normally, there are 2n input lines and n selection inputs whose bit combinations 
determine which input is selected. We begin with n = 1, a 2-to-1-line multiplexer. 
This function has two information inputs, 10 and Ii, and a single select input S. The 
truth table for the circuit is given in Table 3-9. Examining the table, if the select 
input S = 0, the output of the multiplexer takes on the values of 10, and, if input S = 

1, the output of the multiplexer takes on the values of 11. Thus, S selects either input 
10 or input 11 to appear at output Y. From this discussion, we can see that the equa­
tion for the 2-to-1-line multiplexer output Y is 

Y= S/0 +S/1 

This same equation can be obtained by using a 3-variable K-map. As shown 
in Figure 3-25, the implementation of the preceding equation can be decomposed 
into a 1-to-2-line decoder, two enabling circuits, and a 2-input OR gate. 

Suppose that we wish to design a 4-to-1-line multiplexer. In this case, the 
function Y depends on four inputs 10, 11, 12, and 13 and two select inputs S1 and S0. 
By placing the values of 10 through h in the Y column, we can form Table 3-10, a 
condensed truth table for this multiplexer. In this table, the information variables 
do not appear as input columns of the table but appear in the output column. Each 
row represents multiple rows of the full truth table. In Table 3-10, the row 00 10 
represents all rows in which (S1, S0) = 00. For 10 = 1 it gives Y = 1, and for 10 = 0 
it gives Y = 0. Since there are six variables, and only S1 and S0 are fixed, this single 
row represents 16 rows of the corresponding full truth table. From the table, we 
can write the equation for Y as 

D TABLE 3-10 
Condensed Truth Table for 4-to-1-Line 
Multiplexer 

0 0 lo 
0 1 11 
1 0 12 
1 1 13 
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A Single-Bit 4-to-1-Line Multiplexer 

Y = S1So I0 + S1S0 I1 + S1 So I2 + S1So/3 

y 

If this equation is implemented directly, two inverters, four 3-input AND gates, and 
a 4-input OR gate are required, giving a gate-input cost of 18. A different imple­
mentation can be obtained by factoring the AND terms to give 

Y = (S1 So )I0 + (S1S0)I1 + (S1So )I2+ (S1So)h 

This implementation can be constructed by combining a 2-to-4-line 
decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as 
shown in Figure 3-26. We will refer to the combination of AND gates and OR 
gates as an m x 2 AND-OR, where mis the number of AND gates and 2 is the 
number of inputs to the AND gates. This resulting circuit has a gate input cost of 
22, which is the more costly. Nevertheless, it provides a structural basis for con­
structing larger n-to-2n-line multiplexers by expansion. 

A multiplexer is also called a data selector, since it selects one of many infor­
mation inputs and steers the binary information to the output line. The term "mul­
tiplexer" is often abbreviated as "MUX." 

Multiplexers can be expanded by considering vectors of input bits for larger 
values of n. Expansion is based upon the circuit structure given in Figure 3-25, con­
sisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus­
trated in Examples 3-11 and 3-12. 

EXAMPLE 3-12 64-to-1-Line Multiplexer 

A multiplexer is to be designed for n = 6. This will require a 6-to-64-line decoder 
as given in Figure 3-20, and a 64 x 2 AND-OR gate. The resulting structure is 
shown in Figure 3-27. This structure has a gate-input cost of 182 + 128 + 64 = 374. 



134 0 CHAPTER 3 I COMBINATIONAL LOGIC DESIGN 

Ao 

----------------------------------------------------, 

6-to-64-Line decoder 

64 X 2AND-OR 

Io---+-----r-� 
Do t---� 

• 

• 

• 

I63---4---.....--� 
D63 t---� 

--------------------------------------------------- � 

D FIGURE 3-27 
A 64-to-1-Line Multiplexer 

In contrast, if the decoder and the enabling circuit were replaced by inverters 
plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For sin­
gle-bit multiplexers such as this one, combining the AND gate generating Di with 
the AND gate driven by Di into a single 3-input AND gate for every i = 0 through 
63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this reduction 
to 3-input ANDs cannot be performed without replicating the output ANDs of 
the decoders. As a result, in almost all cases, the original structure has a lower 
gate-input cost. The next example illustrates the expansion to a multiple-bit mul­
tiplexer. • 

EXAMPLE 3-13 4-to-1-Line Quad Multiplexer 

A quad 4-to-1-line multiplexer, which has two selection inputs and each informa­
tion input replaced by a vector of four inputs, is to be designed. Since the infor­
mation inputs are a vector, the output Y also becomes a four-element vector. The 
implementation for this multiplexer requires a 2-to-4-line decoder, as given in 
Figure 3-18, and four 4 x 2 AND-OR gates. The resulting structure is shown in 
Figure 3-28. This structure has a gate-input cost of 10 + 32 + 16 = 58. In contrast, 
if four 4-input multiplexers implemented with 3-input gates were placed side by 
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D FIGURE 3-28 
A Quad 4-to-1-Line Multiplexer 

side, the gate-input cost would be 76. So, by sharing the decoder, we reduced the 
gate-input cost. • 

, EXAMPLE 3-14 Security System Sensor Selection using Multiplexers 

The Problem: A home security system has 15 sensors that detect open doors and win­
dows. Each sensor produces a digital signal 0 when the window or door is closed and 1 
when the window or door is open. The control for the security system is a microcon­
troller with eight digital input/output bits available. Each bit can be programmed to 
be either an input or an output. Design a logic circuit that repeatedly checks each of 
the 15 sensor values by connecting the sensor output to a microcontroller input/out­
put that is programmed to be an input. The parts list for the design consists of the fol­
lowing multiplexer parts: 1) a single 8-to-1-line multiplexer, 2) a dual 4-to-1-line 
multiplexer, and 3) a quad 2-to-1-line multiplexer. Any number of each part is avail­
able. The design is to minimize the number of parts and also minimize the number of 
microcontroller input/outputs used. Microcontroller input/outputs programmed as 
outputs are to be used to control the select inputs on the multiplexers. 
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The Solution: Some of the sensors can be connected to multiplexer inputs and 
some directly to microcontroller inputs. One possible solution that minimizes the 
number of multiplexers is to use two 8-1 multiplexers, each connected to a micro­
controller input. The two multiplexers handle 16 sensors and require three micro­
controller outputs as selection inputs. Since there are 15 sensor outputs, the unused 
16th multiplexer input can be attached to 0. The number of microcontroller 
input/outputs used is 3 + 2 = 5. Use of any of the other multiplexer types will 
increase the number of microcontroller inputs used and decrease the number of 
microcontroller outputs used. The increase in inputs, however, is always greater 
than the decrease in outputs. So the initial solution is best in terms of microcontrol­
ler input/outputs used. • 

Multiplexer-Based Combinational Circuits 

Earlier in this section, we learned that a decoder combined with an m x 2 AND­
OR gate implements a multiplexer. The decoder in the multiplexer generates the 
minterms of the selection inputs. The AND-OR gate provides enabling circuits that 
determine whether the minterms are "attached" to the OR gate with the informa­
tion inputs (Ii) used as the enabling signals. If the Ii input is a 1, then minterm mi is 
attached to the OR gate, and, if the Ii input is a 0, then minterm mi is replaced by a 
0. Value fixing applied to the I inputs provides a method for implementing a Bool­
ean function of n variables with a multiplexer having n selection inputs and 2n data 
inputs, one for each minterm. Further, an m-output function can be implemented 
by using value fixing on a multiplexer with m-bit information vectors instead of the 
individual I bits, as illustrated by the next example. 

EXAMPLE 3-15 Multiplexer Implementation of a Binary-Adder Bit 

The values for Sand C from the 1-bit binary adder truth table given in Table 3-6 
can be generated by using value fixing on the information inputs of a multiplexer. 
Since there are three selection inputs and a total of eight minterms, we need a dual 
8-to-1-line multiplexer for implementing the two outputs, S and C. The implemen­
tation based on the truth table is shown in Figure 3-29. Each pair of values, such as 
(0, 1) on (11,1, I1,0), is taken directly from the corresponding row of the last two 
truth-table columns. • 

A more efficient method implements a Boolean function of n variables with a 
multiplexer that has only n - 1 selection inputs. The first n - 1 variables of the 
function are connected to the selection inputs of the multiplexer. The remaining 
variable of the function is used for the information inputs. If the final variable is Z, 
each data input of the multiplexer will be either Z, Z ,  1, or 0. The function can be 
implemented by attaching implementations of the four rudimentary functions from 
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Implementing a 1-Bit Binary Adder with a Dual 8-to-1-Line Multiplexer 

Table 3-3 to the information inputs to the multiplexer. The next example demon­
strates this procedure. 

EXAMPLE 3-16 Alternative Multiplexer Implementation of a Binary Adder Bit 

This function can be implemented with a dual 4-to-1-line multiplexer, as shown in 
Figure 3-30. The design procedure can be illustrated by considering the sum S. The 
two variables X and Y are applied to the selection lines in that order; Xis con­
nected to the S1 input, and Y is connected to the S0 input. The values for the data 
input lines are determined from the truth table of the function. When (X, Y) = 00, 

x S1 Dual 
y So 4-to-1 

MUX 
z lo,o 
0 lo,1 
z 11,0 

Yo s 

z 11,1 
Y1 c 

z 12,0 
z 12,1 
z 13,0 
1 13,1 

D FIGURE 3-30 
Implementing a 1-Bit Binary Adder with a Dual 4-to-1-Line Multiplexer 
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the output S is equal to Z, because S = 0 when Z = 0 and S = 1 when Z = 1. This 
requires that the variable Z be applied to information input 100• The operation of 
the multiplexer is such that, when (X, Y) = 00, information input 100 has a path to 
the output that makes S equal to Z. In a similar fashion, we can determine the 
required input to lines 110, 120, and 130 from the value of S when (X, Y) = 01, 10, and 
11, respectively. A similar approach can be used to determine the values for 101, 111, 
12i, and 131. • 

The general procedure for implementing any Boolean function of n variables 
with a multiplexer with n - 1 selection inputs and 2n-J data inputs follows from 
the preceding example. The Boolean function is first listed in a truth table. The first 
n - 1 variables in the table are applied to the selection inputs of the multiplexer. 
For each combination of the selection variables, we evaluate the output as a func­
tion of the last variable. This function can be 0, 1, the variable, or the complement 
of the variable. These values are then applied to the appropriate data inputs. This 
process is illustrated in the next example. 

EXAMPLE 3-17 Multiplexer Implementation of 4-Variable Function 

As a second example, consider the implementation of the following Boolean 
function: 

F(A,B, C,D) = Im(l,3,4, 11, 12, 13, 14, 15) 

This function is implemented with an 8x1 multiplexer as shown in Figure 3-31. To 
obtain a correct result, the variables in the truth table are connected to selection 
inputs S2, S1, and S0 in the order in which they appear in the table (i.e., such that A 
is connected to S2, B is connected to S1, and C is connected to S0, respectively) . 
The values for the data inputs are determined from the truth table. The informa­
tion line number is determined from the binary combination of A, B, and C. For 
example, when (A, B, C) = 101, the truth table shows that F = D, so the input 
variable D is applied to information input 15• The binary constants 0 and 1 corre­
spond to two fixed signal values. Recall from Section 3-6 that, in a logic schematic, 
these constant values are replaced by the ground and power symbols, as shown in 
Figure 3-12. • 

3-10 CHAPTER SUMMARY 

The first part of this chapter defined and illustrated a five-step design procedure 
described in Section 3-1. These steps apply to both manual and computer-aided 
design. The design begins with a defining specification and proceeds through a for­
mulation step in which the specification is converted to a table or equations. The 
optimization step applies two-level and multiple-level optimization to obtain a cir­
cuit composed of AND gates, OR gates, and inverters. Technology mapping con­
verts this circuit into one that efficiently uses the gates in the available 
implementation technology. Finally, verification is applied to assure that the final 
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circuit satisfies the initial specification. Three examples illustrated the first three of 
these steps. In the third of these examples, the important concept of design hierar­
chy was introduced. Technology mapping details were introduced using single gate 
types, e.g., either NAND or NOR gates, as the target technology. The design proce­
dure materials concluded with the illustration of verification using either logic 
analysis or logic simulation. 

The second part of this chapter dealt with functional blocks, combinational 
circuits that are frequently used to design larger circuits. Rudimentary circuits that 
implement functions of a single variable were introduced. The design of decoders 
that activate one of a number of output lines in response to an input code was cov­
ered. Encoders, the inverse of decoders, generated a code associated with the 
active line from a set of lines. The design of multiplexers that select from data 
applied at the inputs and present it at the output was illustrated. 

The design of combinational logic circuits using decoders and multiplexers, 
was covered. In combination with OR gates, decoders provide a simple min­
term-based approach to implementing combinational circuits. Procedures were 
given for using an n-to-1-line multiplexer or a single inverter and an (n - 1)-to-
1-line multiplexer to implement any n-input Boolean function. 
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PROBLEMS 

1 The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the text website. 

3-1. A majority function has an output value of 1 if there are more ls than Os on 
its inputs. The output is 0 otherwise. Design a three-input majority function. 

3-2. *Find a function to detect an error in the representation of a decimal digit in 
BCD. In other words, write an equation with value 1 when the inputs are any 
one of the six unused bit combinations in the BCD code, and value 0 otherwise. 

3-3. Design an excess-3-to-BCD code converter that gives output code 0000 for 
all invalid input combinations. 

> 3-4. A simple well-known game, tic-tac-toe, is played on a three-by-three grid of 
squares by two players. The players alternate turns. Each player chooses a 
square and places a mark in a square. (One player uses X and the other 0.) 
The first player with three marks in a row, in a column, or on a diagonal wins 
the game. A logic circuit is to be designed for an electronic tic-tac-toe that 
indicates the presence of a winning pattern. The circuit output W is a 1 if a 
winning pattern is present and a 0 if a winning pattern is not present. For 
each of the nine squares, there are two signals, Xi and Oi. Two copies of the 
circuit are used, one for Xs and one for Os. Hint: Form a condensed truth 
table for W(X1, X2, ... , X9). 
(a) Design the X circuit for the following pattern of signals for the squares: 

X1X2X3 
X4XsX6 
X7X8X9 

(b) Minimize the W output for the X circuit as much as possible, using Boolean 
algebra. 

> 3-5. Repeat Problem 3-4 for 4 x 4 tic-tac-toe, which is played on a four-by-four 
grid . Assume that the numbering pattern is left to right and top to bottom, as 
in Problem 3-4. 

> 3-6. A low-voltage lighting system is to use a binary logic control for a particular 
light. This light lies at the intersection point of a T-shaped hallway. There is a 
switch for this light at each of the three endpoints of the T. These switches 
have binary outputs 0 and 1 depending on their position and are named Xi. 
X2, and X3. The light is controlled by a buffer driving a thyristor, an 
electronic part that can switch power-circuit current. When Z, the input to 
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the buffer, is 1, the light is ON, and when Z is 0, the light is OFF. You are to 
find a function Z = F(X1, X2, X3) so that if any one of the switches is 
changed, the value of Z changes, turning the light ON or OFF. 

+A traffic light control at a simple intersection uses a binary counter to 
produce the following sequence of combinations on lines A, B, C, and D: 

0000, 0001, 0011, 0010, 0110, 0111,0101, 0100, 1100, 1101, 1111, 1110, 1010, 
1011, 1001, 1000. After 1000, the sequence repeats, beginning again with 
0000, forever. Each combination is present for 5 seconds before the next one 
appears. These lines drive combinational logic with outputs to lamps RNS 
(red-north/south), YNS (yellow-north/south), GNS (green-north/south), 
REW (red-east/west), YEW (yellow-east/west), and GEW (green­
east/west). The lamp controlled by each output is ON for a 1 applied and 
OFF for a 0 applied. For a given direction, assume that green is on for 30 
seconds, yellow for 5 seconds, and red for 45 seconds. (The red intervals 
overlap for 5 seconds.) Divide up the 80 seconds available for the cycle 
through the 16 combinations into 16 intervals and determine which lamps 
should be lit in each interval based on expected driver behavior. Assume 
that, for interval 0000, a change has just occurred and that GNS = 1, REW= 
1, and all other outputs are 0. Design the logic to produce the six outputs 
using AND and OR gates and inverters. 

3-8. Design a combinational circuit that accept a 3-bit number and generates a 6-
bit binary number output equal to the square of the input number. 

3-9. + Design a combinational circuit that accepts a 4-bit number and generates a 
3-bit binary number output that approximates the square root of the 
number. For example, if the square root is 3.5 or larger, give a result of 4. If 
the square root is< 3.5 and� 2.5, give a result of 3. 

3-10. Design a circuit with a 4-bit BCD input A, B, C, D that produces an output 
W, X, Y, Z that is equal to the input+ 6 in binary. For example, 9 (1001) + 6 
(0110) = 15 (1111). The outputs for invalid BCD codes are don't-cares. 

, 3-11. A traffic metering system for controlling the release of traffic from an 
entrance ramp onto a superhighway has the following specifications for a 
part of its controller. There are three parallel metering lanes, each with its 
own stop (red)-go (green) light. One of these lanes, the car pool lane, is 
given priority for a green light over the other two lanes. Otherwise, a "round 
robin" scheme in which the green lights alternate is used for the other two 
(left and right) lanes. The part of the controller that determines which light is 
to be green (rather than red) is to be designed. The specifications for the 
controller follow: 

Inputs 
PS 
LS 
RS 
RR 

Car pool lane sensor (car present-1; car absent-0) 
Left lane sensor (car present-1; car absent-0) 
Right lane sensor (car present-1; car absent-0) 
Round robin signal (select left-1; select right-0) 
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Outputs 
PL Car pool lane light (green-1; red-0) 
LL Left lane light (green-1; red-0) 
RL Right lane light (green-1; red-0) 

Operation 

1. If there is a car in the car pool lane, PL is 1. 
2. If there are no cars in the car pool lane and the right lane, and there 
is a car in the left lane, LL is 1. 
3. If there are no cars in the car pool lane and in the left lane, and there 
is a car in the right lane, RL is 1. 
4. If there is no car in the car pool lane, there are cars in both the left 
and right lanes, and RR is 1, then LL= 1. 
5. If there is no car in the car pool lane, there are cars in both the left 
and right lanes, and RR is 0, then RL = 1. 

6. If any PL, LL, or RL is not specified to be 1 above, then it has value 0. 

(a) Find the truth table for the controller part. 

(b) Find a minimum multiple-level gate implementation with minimum gate­
input cost using AND gates, OR gates, and inverters. 

> 3-12. Complete the design of the BCD-to-seven-segment decoder by performing 
the following steps: 

(a) Plot the seven maps for each of the outputs for the BCD-to-seven­
segment decoder specified in Table 3-2. 

(b Simplify the seven output functions in sum-of-products form, and 
determine the total number of gate inputs that will be needed to 
implement the decoder. 

(c) Verify that the seven output functions listed in the text give a valid 
simplification. Compare the number of gate inputs with that obtained in 
part (b) and explain the difference. 

3-13. Design a circuit to implement the following pair of Boolean equations: 

F=A(CE +DE)+AD 
G = B( CE +DE)+ BC 

To simplify drawing the schematic, the circuit is to use a hierarchy based on 
the factoring shown in the equation. Three instances (copies) of a single 
hierarchical circuit component made up of two AND gates, an OR gate, and 
an inverter are to be used. Draw the logic diagram for the hierarchical 
component and for the overall circuit diagram using a symbol for the 
hierarchical component. 

3-14. A hierarchical component with the function 

H=XY +XZ 

www.Ebook777.com
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D FIGURE 3-32 

Circuit for Problem 3-20 

is to be used along with inverters to implement the following equation: 
-- - -- -

G= ABC +ABD +ABC +ABD 

The overall circuit can be obtained by using Shannon's expansion theorem, 

F= X · Fo(X) + X · F1(X) 

where F0(X) is F evaluated with variable X = 0 and F1 (X) is F evaluated 
with variable X = 1. This expansion F can be implemented with function H 
by letting Y = F0 and Z = F1• The expansion theorem can then be applied to 
each of F0 and F1 using a variable in each, preferably one that appears in 
both true and complemented form. The process can then be repeated until 
all F/s are single literals or constants. For G, use X =A to find G0 and G1 and 
then use X = B for G0 and G1. Draw the top-level diagram for G using Has 
a hierarchical component. 

3-15. +A NAND gate with eight inputs is required. For each of the following 
cases, minimize the number of gates used in the multiple-level result: 

(a) Design the 8-input NAND gate using 2-input NAND gates and NOT 
gates. 

(b) Design the 8-input NAND gate using 2-input NAND gates, 2-input NOR 
gates, and NOT gates only if needed. 

(c) Compare the number of gates used in (a) and (b). 

3-16. Perform technology mapping to NAND gates for the circuit in Figure 2-20(c). 
Use cell types selected from: Inverter (n = 1), 2NAND, 3NAND, and 
4NAND, as defined at the beginning of Section 3-3. 

3-17. Repeat Problem 3-16, using NOR gate cell types selected from: Inverter (n = 

1), 2NOR, 3NOR, and 4NOR, each defined in the same manner as the 
corresponding four NAND cell types at the beginning of Section 3-3. 

3-18. Repeat Problem 3-16 for the circuit in Figure 2-21(c). 

3-19. Repeat Problem 3-18, mapping to NOR gate cell types as in Problem 3-17. 

3-20. By using manual methods, verify that the circuit of Figure 3-32 generates the 
exclusive-NOR function. 
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, 3--21. The logic diagram for a 74HC138 MSI CMOS circuit is given in Figure 3-33. 
Find the Boolean function for each of the outputs. Describe the circuit 
function carefully. 

, 3--22. Do Problem 3-21 by using logic simulation to find the output waveforms of 
the circuit or a partial truth-table listing, rather than finding Boolean 
functions. 

3--23. In Figure 3-10, simulation results are given for the BCD-to-excess-3 code 
converter for the BCD inputs for 0 through 9. Perform a similar logic 
simulation to determine the results for BCD inputs 10 through 15. 

3--24. *(a) Draw an implementation diagram for a constant vector function F = 

(F7, F6' F5, F4, F3, F2, Fi, F0) = (1, 0, 0, 1, 0, 1, 1, 0) using the ground and 
power sy mbols in Figure 3-12(b). 

(b) Draw an implementation diagram for a rudimentary vector function G = 

(G7, G6' G5,_G4, G3, G2, Gi, G0) =(A, A ,  0, 1, A ,A, 1, 1) using inputs 
1, O,A, and A. 
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3-25. (a) Draw an implementation diagram for rudimentary vector function F = 

(F7, F6' Fs, F4, F3, F2, Fi, F0) = (A, 1, A ,  A ,  A, A, 1, 0), using the 
ground and power symbols in Figure 3-12(b) and the wire and inverter 
in Figure 3-12(c) and (d) . 

(b) Draw an implementation diagram for rudimentary vector function G = 
(G7, G6' Gs, G4, G3, G2, G1, G0) = (F 3, F2, 0, 1, F 1, F 0, 1, 0), using the 
ground and power symbols and components of vector F. 

3-26. (a) Draw an implementation diagram for the vector G = (Gs, G4, G3, G2, 
G1, G0) = (F11, F9, F7, Fs, F3, F1). 

(b) Draw a simple implementation for the rudimentary vector H = (H7, 
H6' Hs, H4, H3, H2, H1, H0) = ( G3, G2, Gi, G0, F3, F2, Fi, F0). 

,,.,...,, .. ""', 3-27. A home security system has a master switch that is used to enable an alarm, 
lights, video cameras, and a call to local police in the event one or more of 
six sets of sensors detects an intrusion. In addition there are separate 
switches to enable and disable the alarm, lights, and the call to local police. 
The inputs, outputs, and operation of the enabling logic are specified as 
follows: 

Inputs 
Shi = 0, 1, 2, 3, 4, 5: signals from six sensor sets (0 = intrusion detected, 1 
= no intrusion detected) 
M: master switch (0 = security system enabled, 1 = security system 
disabled) 
A: alarm switch (0 =alarm disabled, 1= alarm enabled) 
L: light switch (0 = lights disabled, 1= lights enabled) 
P: police switch (0 = police call disabled, 1 = police call enabled) 

Outputs 
A: alarm (0 =alarm on, 1 =alarm off) 
L: lights (0 = lights on, 1 = lights off) 
V: video cameras (0 =video cameras off, 1 =video cameras on) 
C: call to police (0 =call off, 1 =call on) 

Operation 
If one or more of the sets of sensors detects an intrusion and the security 
system is enabled, then outputs activate based on the outputs of the 
remaining switches. Otherwise, all outputs are disabled. 

Find a minimum-gate-input cost realization of the enabling logic using AND 
and OR gates and inverters. 

3-28. Design a 4-to-16-line decoder using two 3-to-8-line decoders and 16 2-input 
AND gates. 

3-29. Design a 4-to-16-line decoder with enable using five 2-to-4-line decoders 
with enable as shown in Figure 3-21. 
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3-30. *Design a 5-to-32-line decoder using a 3-to-8-line decoder, a 2-to-4-line 
decoder, and 32 2-input AND gates. 

3-31. A special 4-to-6-line decoder is to be designed. The input codes used are 000 
through 101. For a given code applied, the output Db with i equal to the 
decimal equivalent of the code, is 1 and all other outputs are 0. Design the 
decoder with a 2-to-4-line decoder, a 1-to-2-line decoder, and six 2-input 
AND gates, such that all decoder outputs are used at least once. 

, ..,,, ....... 1 3-32. An electronic game uses an array of seven LEDs (light-emitting diodes) to 
display the results of a random roll of a die. A decoder is to be designed to 
illuminate the appropriate diodes for the display of each of the six die 
values. The desired display patterns are shown in Figure 3-34. 

(a) Use a 3-to-8-line decoder and OR gates to map the 3-bit combinations on 
inputs X2, X1, and X0 for values 1 through 6 to the outputs a through g. 
Input combinations 000 and 111 are don't-cares. 

(b) Note that for the six die sides, only certain combinations of dots occur. 
For example, dot pattern A = {d} and dot pattern B = {a, g} can be used 
for representing input values 1, 2 and 3 as {A}, {B}, and {A, B}. Define 
four dot patterns A, B, C, and D, sets of which can provide all six output 
patterns. Design a minimized custom decoder that has inputs X2, Xi, and 
X0 and outputs A, B, C, and D, and compare its gate-input cost to that of 
the 3-to-8 decoder and OR gates in part a. 

3-33. Draw the detailed logic diagram of a 3-to-8-line decoder using only NOR 
and NOT gates. Include an enable input. 

, 3-34. To provide uphill running and walking, an exercise treadmill has a grade 
feature that can be set from 0.0% to 15.0% in increments of 0.1 %. (The 
grade in percent is the slope expressed as a percentage. For example, a slope 
of 0.10 is a grade of 10%.) The treadmill has a 10 high by 20 wide LCD dot 
array showing a plot of the grade versus time. This problem concerns only 
the vertical dimension of the display. 
To define the vertical position of the LCD dot to be illuminated for the 
current grade, the 151 different grade values (0.0 to 15.0) need to be 
translated into ten different dot positions, PO to P9. The translation of 
intervals of inputs to output values is represented as follows: [(0.0,1.4) ,0] , 
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[(1.5,2.9),1], [(3.0,4.4),2], [(4.5,5.9),3], [(6.0,7.4),4], [(7.5,8.9),5], [(9.0,10.4),6], 
[(10.5,11.9),7], [(12.0,13.4),8], and [(13.5,15.0),9]. The grade values are 
represented by a pair of values consisting of a 4-bit binary value 0 through 
15 followed by a 4-bit BCD value 0 through 9. For example, 10.6 is 
represented by (10, 6) [1010, 0110]. 
Design a special decoder with eight inputs and ten outputs to perform this 
translation. Hint: Use two subcircuits, a 4-to-16-line decoder with the binary 
value as inputs and DO through D15 as outputs, and a circuit which 
determines whether the BCD input value is greater than or equal to 5 (0101) 
with output GE5. Add additional logic to form outputs PO through P9 from 
DO through D15 and GE5. For example: 

> 3-35. *Design a 4-input priority encoder with inputs and outputs as in Table 3-8, 
but with the truth table representing the case in which input D0 has the 
highest priority and input D3 the lowest priority. 

> 3-36. Derive the truth table of a decimal-to-binary priority encoder. There are 10 
inputs /1 through 19 and outputs A3 through A0 and V. Input /9 has the 
highest priority. 

3-37. (a) Design an 8-to-1-line multiplexer using a 3-to-8-line decoder and an 8 x 2 
AND-OR. 

(b) Repeat part (a), using two 4-to-1-line multiplexers and one 2-to-1-line 
multiplexer. 

3-38. Design a 16-to-1-line multiplexer using a 4-to-16-line decoder and a 16 x 2 
AND-OR. 

3-39. Design a dual 8-to-1-line decoder using a 3-to-8-line decoder and two 8 x 2 
AND-ORs. 

3-40. Construct a 12-to-1-line multiplexer with a 3-to-8-line decoder, a 1-to-2-line 
decoder, and a 12 x 3 AND-OR. The selection codes 0000 through 1011 must 
be directly applied to the decoder inputs without added logic. 

3-41. Construct a quad 10-to-1-line multiplexer with four single 8-to-1-line 
multiplexers and two quadruple 2-to-1-line multiplexers. The multiplexers 
should be interconnected and inputs labeled so that the selection codes 0000 
through 1001 can be directly applied to the multiplexer selection inputs 
without added logic. 

3-42. *Construct a 15-to-1-line multiplexer with two 8-to-1-line multiplexers. 
Interconnect the two multiplexers and label the inputs such that any added 
logic required to have selection codes 0000 through 1110 is minimized. 
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3-43. Rearrange the condensed truth table for the circuit of Figure 3-21, and verify 
that the circuit can function as a demultiplexer. 

3-44. A combinational circuit is defined by the following three Boolean functions: 

F1 = X+Z+XYZ 

F2 = X+Z+XYZ 

F3 = XYZ+X+ Z 

Design the circuit with a decoder and external OR gates. 

W > 3-45. The rear lights of a car are to be controlled by digital logic. There is a single 
lamp in each of the rear lights. The inputs are: 

LT left turn switch-causes blinking of left side lamp 
RT right turn switch-causes blinking of right side lamp 
EM emergency flasher switch-causes blinking of both lamps 
BR brake applied switch-causes both lamps to be on 
BL blinking signal with 1 Hz frequency 

The outputs are: 

LR power control for left rear lamp 
RR power control for right rear lamp 

(a) Write the equations for LR and RR. Assume that BR overrides EM and 
that LT and RT override BR. 

(b) Implement each function LR (BL, BR, EM, LT) and RR (BL, BR, EM, 
RT) with a 4-to-16-line decoder and external OR gates. 

3-46. Implement the following Boolean function with an 8-to-1-line multiplexer 
and a single inverter with variable D as its input: 

F(A, B, C, D) = Im(2, 4, 6, 9, 10, 11, 15) 

3-47. *Implement the Boolean function 

F(A,B,C,D) = Im(l,3,4,11,12,13,14,15) 

with a 4-to-1-line multiplexer and external gates. Connect inputs A and B to 
the selection lines. The input requirements for the four data lines will be a 
function of the variables C and D. The values of these variables are obtained 
by expressing F as a function of C and D for each of the four cases when 
AB = 00, 01, 10, and 11. These functions must be implemented with external 
gates. 

3-48. Solve Problem 3-47 using two 3-to-8-line decoders with enables, an inverter, 
and OR gates with a maximum fan-in of 4. 



ARITHMETIC FUNCTIONS 

AND HDLs 

T
his chapter continues to focus on functional blocks-specifically, a special 

class of functional blocks that perform arithmetic operations. It introduces the 

concept of iterative circuits made up of arrays of combinational cells and 

describes blocks designed as iterative arrays for performing addition, covering both 

addition and subtraction. The simplicity of these arithmetic circuits comes from using 

complement representations for numbers and complement-based arithmetic. We also 

introduce circuit contraction, which permits us to design new functional blocks from 

existing ones. Contraction involves application of value fixing to the inputs of existing 

blocks and simplification of the resulting circuits. These circuits perform operations 

such as incrementing a number, decrementing a number, or multiplying a number by 

a constant. Many of these new functional blocks will be used to construct sequential 

functional blocks in Chapter 7. Having completed our coverage of combinational 

functional blocks, we introduce VHDL and Verilog hardware description languages 

(HDLs) for combinational circuits. The role of HDLs in design is discussed along with 

one of the primarily applications of HDLs as the input to automated synthesis tools. 

Coverage of general concepts and modeling of combinational circuits using VHDL 

and Verilog follows. 

In the generic computer diagram at the beginning of Chapter 1, adders, adder­

subtractors, and other arithmetic circuits are used in the processor. lncrementers and 

decrementers are used widely in other components as well, so concepts from this 

chapter apply across most components of the generic computer. The use of HDLs 

plays a central role in the design of digital circuits including processors. 

D 149 



150 0 CHAPTER 4 I ARITHMETIC FUNCTIONS AND HDLS 

4-1 ITERATIVE COMBINATIONAL CIRCUITS 

In this chapter, the arithmetic blocks are typically designed to operate on binary 
input vectors and produce binary output vectors. Further, the function imple­
mented often requires that the same subfunction be applied to each bit position. 
Thus, a functional block can be designed for the subfunction and then used repeti­
tively for each bit position of the overall arithmetic block being designed. There 
will often be one or more connections to pass values between adjacent bit posi­
tions. These internal variables are inputs or outputs of the subfunctions, but are not 
accessible outside the overall arithmetic block. The subfunction blocks are referred 
to as cells and the overall implementation is an array of cells. The cells in the array 
are often, but not always, identical. Due to the repetitive nature of the circuit and 
the association of a vector index with each of the circuit cells, the overall functional 
block is referred to as an iterative array. Iterative arrays, a special case of hierarchi­
cal circuits, are useful in handling vectors of bits-for example, a circuit that adds 
two 32-bit binary integers. At a minimum, such a circuit has 64 inputs and 32 out­
puts. As a consequence, beginning with truth tables and writing equations for the 
entire circuit is out of the question. Since iterative circuits are based on repetitive 
cells, the design process is considerably simplified by a basic structure that guides 
the design. 

A block diagram for an iterative circuit that operates on two n-input vectors 
and produces an n-output vector is shown in Figure 4-1. In this case, there are two 
lateral connections between each pair of cells in the array, one from left to right 
and the other from right to left. Also, optional connections, indicated by dashed 
lines, exist at the right and left ends of the array. An arbitrary array employs as 
many lateral connections as needed for a particular design. The definition of the 
functions associated with such connections is very important in the design of the 
array and its cell. In particular, the number of connections used and their functions 
can affect both the cost and speed of an iterative circuit. 

In the next section, we will define cells for performing addition in individual 
bit positions and then define a binary adder as an iterative array of cells. 

Xn-1 
Yn-1 • • • 

D FIGURE 4-1 
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Truth Table of Half Adder 

Inputs Outputs 

x y c s 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

4-2 BINARY ADDERS 

An arithmetic circuit is a combinational circuit that performs arithmetic operations 
such as addition, subtraction, multiplication, and division with binary numbers or 
with decimal numbers in a binary code. We will develop arithmetic circuits by 
means of hierarchical, iterative design. We begin at the lowest level by finding a cir­
cuit that performs the addition of two binary digits. This simple addition consists of 
four possible elementary operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. 
The first three operations produce a sum requiring a one-bit representation, but 
when both the augend and addend are equal to 1, the binary sum requires two bits. 
Because of this case, the result is always represented by two bits, the carry and the 
sum. The carry obtained from the addition of two bits is added to the next-higher­
order pair of significant bits. A combinational circuit that performs the addition of 
two bits is called a half adder. One that performs the addition of three bits (two 
significant bits and a previous carry) is called a full adder. The names of the circuits 
stem from the fact that two half adders can be employed to implement a full adder. 
The half adder and the full adder are basic arithmetic blocks with which other 
arithmetic circuits are designed. 

Half Adder 

A half adder is an arithmetic circuit that generates the sum of two binary digits. 
The circuit has two inputs and two outputs. The input variables are the augend and 
addend bits to be added, and the output variables produce the sum and carry. We 
assign the symbols X and Y to the two inputs and S (for "sum") and C (for "carry") 
to the outputs. The truth table for the half adder is listed in Table 4-1. The C output 
is 1 only when both inputs are 1. The S output represents the least significant bit of 
the sum. The Boolean functions for the two outputs, easily obtained from the truth 
table, are 

S = XY + XY = XEB Y 

C= XY 
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D FIGURE4-2 
Logic Diagram of Half Adder 

The half adder can be implemented with one exclusive-OR gate and one AND 
gate, as shown in Figure 4-2. 

Full Adder 

A full adder is a combinational circuit that forms the arithmetic sum of three input 
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted 
by X and Y, represent the two significant bits to be added. The third input, Z, repre­
sents the carry from the previous lower significant position. Two outputs are neces­
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary 
2 and 3 need two digits for their representation. Again, the two outputs are desig­
nated by the symbols S for "sum" and C for "carry"; the binary variable S gives the 
value of the bit of the sum, and the binary variable C gives the output carry. The 
truth table of the full adder is listed in Table 4-2. The values for the outputs are 
determined from the arithmetic sum of the three input bits. When all the input bits 
are 0, the outputs are 0. The S output is equal to 1 when only one input is equal to 1 
or when all three inputs are equal to 1. The C output is a carry of 1 if two or three 
inputs are equal to 1. The maps for the two outputs of the full adder are shown in 
Figure 4-3. The simplified sum-of-product functions for the two outputs are 

S= X YZ+XYZ+XY Z+XYZ 

D TABLE 4-2 
Truth Table of Full Adder 

Inputs Outputs 

x y z c s 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 
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S = XYZ + XYZ + XYZ + XYZ C = XY + XZ + YZ 
= X E9 y E9 z = XY + Z(XY + XY) 

= XY + Z(XE9Y) 

D FIGURE4-3 
Maps for Full Adder 

C= XY+XZ+YZ 

The two-level implementation requires seven AND gates and two OR gates. How­
ever, the map for output S is recognized as an odd function, as discussed in Section 
2-8. Furthermore, the C output function can be manipulated to include the exclu­
sive-OR of X and Y. The Boolean functions for the full adder in terms of exclusive­
OR operations can then be expressed as 

S = (XEBY)EBZ 

C = XY + Z(XEBY) 

The logic diagram for this multiple-level implementation is shown in Figure 4-4. It 
consists of two half adders and an OR gate. 

Binary Ripple Carry Adder 

A parallel binary adder is a digital circuit that produces the arithmetic sum of two 
binary numbers using only combinational logic. The parallel adder uses n full 
adders in parallel, with all input bits applied simultaneously to produce the sum. 

I 
I 
I 
I 
I 
I 
I 

,---------------1 
Half adder 1 

I 
I 
I 

�---------------� --------------� 

D FIGURE4-4 
Logic Diagram of Full Adder 
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D FIGURE4-5 
4-Bit Ripple Carry Adder 
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The full adders are connected in cascade, with the carry output from one full adder 
connected to the carry input of the next full adder. Since a 1 carry may appear near 
the least significant bit of the adder and yet propagate through many full adders to 
the most significant bit, just as a wave ripples outward from a pebble dropped in a 
pond, the parallel adder is referred to as a ripple carry adder. Figure 4-5 shows the 
interconnection of four full-adder blocks to form a 4-bit ripple carry adder. The 
augend bits of A and the addend bits of B are designated by subscripts in increas­
ing order from right to left, with subscript 0 denoting the least significant bit. The 
carries are connected in a chain through the full adders. The input carry to the par­
allel adder is C0, and the output carry is C4• Ann-bit ripple carry adder requires n 
full adders, with each output carry connected to the input carry of the next-higher­
order full adder. For example, consider the two binary numbers A = 1011 and B = 

0011. Their sum, S = 1110, is formed with a 4-bit ripple carry adder as follows: 

Input carry 0110 
AugendA 1011 
AddendB 0011 
Sums 1110 
Output carry 0011 

The input carry in the least significant position is 0. Each full adder receives the 
corresponding bits of A and B and the input carry and generates the sum bit for S 
and the output carry. The output carry in each position is the input carry of the 
next-higher-order position, as indicated by the blue lines. 

The 4-bit adder is a typical example of a digital component that can be used 
as a building block. It can be used in many applications involving arithmetic opera­
tions. Observe that the design of this circuit by the usual method would require a 
truth table with 512 entries, since there are nine inputs to the circuit. By cascading 
the four instances of the known full adders, it is possible to obtain a simple and 
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straightforward implementation without directly solving this larger problem. This 
is an example of the power of iterative circuits and circuit reuse in design. 

4-3 BINARY SUBTRACTION 

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers. 
Although beginning texts cover only signed-number addition and subtraction, to 
the complete exclusion of the unsigned alternative, unsigned-number arithmetic 
plays an important role in computation and computer hardware design. It is used 
in floating-point units, in signed-magnitude addition and subtraction algorithms, 
and in extending the precision of fixed-point numbers. For these reasons, we will 
treat unsigned-number addition and subtraction here. We also, however, choose to 
treat it first so that we can clearly justify, in terms of hardware cost, that which oth­
erwise appears bizarre and often is accepted on faith, namely, the use of comple­
ment representations in arithmetic. 

In Section 1-3, subtraction is performed by comparing the subtrahend with 
the minuend and subtracting the smaller from the larger. The use of a method con­
taining this comparison operation results in inefficient and costly circuitry. As an 
alternative, we can simply subtract the subtrahend from the minuend. Using the 
same numbers as in a subtraction example from Section 1-3, we have 

Borrows into: 

Minuend: 

Subtrahend: 

Difference: 

Correct Difference: 

11100 

10011 

-11110 

10101 

-01011 

If no borrow occurs into the most significant position, then we know that the sub­
trahend is not larger than the minuend and that the result is positive and correct. If 
a borrow does occur into the most significant position, as indicated in blue, then we 
know that the subtrahend is larger than the minuend. The result must then be neg­
ative, and so we need to correct its magnitude. We can do this by examining the 
result of the calculation when a borrow occurs: 

Note that the added zn represents the value of the borrow into the most significant 
position. Instead of this result, the desired magnitude is N - M. This can be 
obtained by subtracting the preceding formula from zn: 

In the previous example, 100000 - 10101 = 01011, which is the correct magnitude. 
In general, the subtraction of two n-digit numbers, M - N, in base 2 can be 

done as follows: 
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1. Subtract the subtrahend N from the minuend M. 

2. If no end borrow occurs, then M � N, and the result is nonnegative and 
correct. 

3. If an end borrow occurs, then N > M, and the difference, M - N + 2n, is sub­
tracted from 2n, and a minus sign is appended to the result. 

Subtraction of a binary number from 2n to obtain an n-digit result is called taking 
the 2s complement of the number. So in step 3, we are taking the 2s complement of 
the difference M - N + 2n. Use of the 2s complement in subtraction is illustrated 
by the following example. 

EXAMPLE 4-1 Unsigned Binary Subtraction by 2s Complement Subtract 

Perform the binary subtraction 01100100 - 10010110. We have 

Borrows into: 

Minuend: 

Subtrahend: 

Initial Result 

The end borrow of 1 implies correction: 

zs 

- Initial Result 

Final Result 

10011110 

01100100 

- 10010110 

11001110 

100000000 

- 11001110 

- 00110010 • 

To perform subtraction using this method requires a subtractor for the ini­
tial subtraction. In addition, when necessary, either the subtractor must be used 
a second time to perform the correction, or a separate 2s complementer circuit 
must be provided. So, thus far, we require a subtractor, an adder, and possibly a 
2s complementer to perform both addition and subtraction. The block diagram 
for a 4-bit adder-subtractor using these functional blocks is shown in Figure 4-6. 
The inputs are applied to both the adder and the subtractor, so both operations 
are performed in parallel. If an end borrow value of 1 occurs in the subtraction, 
then the selective 2s complementer receives a value of 1 on its Complement 
input. This circuit then takes the 2s complement of the output of the subtractor. 
If the end borrow has value of 0, the selective 2s complementer passes the out­
put of the subtractor through unchanged. If subtraction is the operation, then a 
1 is applied to S of the multiplexer that selects the output of the complementer. 
If addition is the operation, then a 0 is applied to S, thereby selecting the output 
of the adder. 
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Block Diagram of Binary Adder-Subtractor 

As we will see, this circuit is more complex than necessary. To reduce the 
amount of hardware, we would like to share logic between the adder and the sub­
tractor. This can also be done using the notion of the complement. So before con­
sidering the combined adder-subtractor further, we will take a more careful look 
at complements. 

Complements 

There are two types of complements for each base-r system: the radix comple­
ment, which we saw earlier for base 2, and the diminished radix complement. The 
first is referred to as the r's complement and the second as the (r - l) 's comple­
ment. When the value of the base r is substituted in the names, the two types are 
referred to as the 2s and ls complements for binary numbers and the 10s and 9s 
complements for decimal numbers, respectively. Since our interest for the 
present is in binary numbers and operations, we will deal with only ls and 2s 
complements. 

Given a number N in binary having n digits, the ls complement of N is 
defined as (2n - 1) - N. 2n is represented by a binary number that consists of a 
1 followed by n Os. 2n - 1 is a binary number represented by n ls. For example, 
if n = 4, we have 24 = (lOOOOh and 24 - 1 = (llll)i. Thus, the ls complement 
of a binary number is obtained by subtracting each digit from 1. When subtract­
ing binary digits from 1, we can have either 1 - 0 = 1 or 1 - 1 = 0, which 
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causes the original bit to change from 0 to 1 or from 1 to 0, respectively. There­
fore, the ls complement of a binary number is formed by changing all ls to Os 
and all Os to ls-that is, applying the NOT or complement operation to each of 
the bits. Following are two numerical examples: 

The l's complement of 1011001 is 0100110. 

The l's complement of 0001111 is 1110000. 

In similar fashion, the 9s complement of a decimal number, the 7's comple­
ment of an octal number, and the 15s complement of a hexadecimal number are 
obtained by subtracting each digit from 9, 7, and F (decimal 15), respectively. 

Given an n-digit number N in binary, the 2s complement of N is defined as 
2n - N for N =fa 0 and 0 for N = 0. The reason for the special case of N = 0 is that 
the result must have n bits, and subtraction of 0 from 2n gives an (n + 1 )-bit result, 
100 ... 0. This special case is achieved by using only an n-bit subtractor or otherwise 
dropping the 1 in the extra position. Comparing with the ls complement, we note 
that the 2s complement can be obtained by adding 1 to the ls complement, since 2n 
- N = {[(2n - 1) - N] + 1}. For example, the 2s complement of binary 101100 is 
010011 + 1 = 010100 and is obtained by adding 1 to the ls complement value. 
Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out 
of the most significant position of the addition. These concepts hold for other bases 
as well. As we will see later, they are very useful in simplifying 2s complement and 
subtraction hardware. 

Also, the 2s complement can be formed by leaving all least significant Os and 
the first 1 unchanged and then replacing ls with Os and Os with ls in all other 
higher significant bits. Thus, the 2s complement of 1101100 is 0010100 and is 
obtained by leaving the two low-order Os and the first 1 unchanged and then 
replacing ls with Os and Os with ls in the other four most significant bits. In other 
bases, the first nonzero digit is subtracted from the base r, and the remaining digits 
to the left are replaced with r - 1 minus their values. 

It is also worth mentioning that the complement of the complement restores 
the number to its original value. To see this, note that the 2s complement of N is 
2n - N, and the complement of the complement is 2n - (2n - N) = N, giving back 
the original number. 

Subtraction Using 2s Complement 

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac­
tor logic. Armed with complements, we are prepared to define a binary subtrac­
tion procedure that uses addition and the corresponding complement logic. The 
subtraction of two n-digit unsigned numbers, M - N, in binary can be done as 
follows: 

1. Add the 2s complement of the subtrahend N to the minuend M. This per­
forms M + (2n - N) = M - N + 2n. 
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2. If M � N, the sum produces an end carry, zn. Discard the end carry, leaving 
result M - N. 

3. If M < N, the sum does not produce an end carry, since it is equal to zn -
(N -M), the 2s complement of N -M. Perform a correction, taking the 2s 
complement of the sum and placing a minus sign in front to obtain the result 

-(N-M). 

The examples that follow further illustrate the foregoing procedure. Note 
that, although we are dealing with unsigned numbers, there is no way to get an 
unsigned result for the case in step 3. When working with paper and pencil, we rec­
ognize, by the absence of the end carry, that the answer must be changed to a neg­
ative number. If the minus sign for the result is to be preserved, it must be stored 
separately from the corrected n-bit result. 

� 4-2 Unsigned Binary Subtraction by 2s Complement Addition 

I Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub­
traction X - Y and Y - X using 2s complement operations. We have 

X= 1010100 

2s complement of Y = 0111101 

Sum= 10010001 

Discard end carry 27 = -10000000 

Answer: X -Y = 0010001 

Y= 1000011 

2s complement of X = 0101100 

Sum= 1101111 

There is no end carry. 

Answer: Y - X = -(2s complement of 1101111) = - 0010001. • 

While subtraction of unsigned numbers also can be done by means of the ls 
complement, it is little used in modern designs, so will not be covered here. 

4-4 BINARY ADDER-SUBTRACTORS 

Using the 2s complement, we have eliminated the subtraction operation and need 
only the complementer and an adder. When performing a subtraction we comple­
ment the subtrahend N, and when performing an addition we do not complement 
N. These operations can be accomplished by using a selective complementer and 
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adder interconnected to form an adder-subtractor. We have used 2s complement, 
since it is most prevalent in modern systems. The 2s complement can be obtained 
by taking the ls complement and adding 1 to the least significant bit. The ls com­
plement can be implemented easily with inverter circuits, and we can add 1 to the 
sum by making the input carry of the parallel adder equal to 1. Thus, by using ls 
complement and an unused adder input, the 2s complement is obtained inexpen­
sively. In 2s complement subtraction, as the correction step after adding, we com­
plement the result and append a minus sign if an end carry does not occur. The 
correction operation is performed by using either the adder-subtractor a second 
time with M = 0 or a selective complementer as in Figure 4-6. 

The circuit for subtracting A - B consists of a parallel adder as shown in 
Figure 4-5, with inverters placed between each B terminal and the corresponding 
full-adder input. The input carry C0 must be equal to 1. The operation that is per­
formed becomes A plus the ls complement of B plus 1. This is equal to A plus the 
2s complement of B. For unsigned numbers, it gives A - B if A> B or the 2s 
complement of B - A if A < B . 

The addition and subtraction operations can be combined into one circuit 
with one common binary adder. This is done by including an exclusive-OR gate 
with each full adder. A 4-bit adder-subtractor circuit is shown in Figure 4-7. Input 
S controls the operation. When S = 0 the circuit is an adder, and when S = 1 the 
circuit becomes a subtractor. Each exclusive-OR gate receives input S and one of 
the inputs of B, Bi. When S = 0, we have Bi E9 0. If the full adders receive the value 
of B, and _!_he input carry is 0, the circuit performs A plus B. When S = 1, we have 
Bi E9 1 = Bi and C0 = 1. In this case, the circuit performs the operation A plus the 
2s complement of B. 
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In the previous section, we dealt with the addition and subtraction of unsigned 
numbers. We will now extend this approach to signed numbers, including a further 
use of complements that eliminates the correction step. 

Positive integers and the number zero can be represented as unsigned num­
bers. To represent negative integers, we need a notation for negative values. In 
ordinary arithmetic, a negative number is indicated by a minus sign and a positive 
number by a plus sign. Because of hardware limitations, computers must represent 
everything with ls and Os, including the sign of a number. As a consequence, it is 
customary to represent the sign with a bit placed in the most significant position of 
an n-bit number. The convention is to make the sign bit 0 for positive numbers and 
1 for negative numbers. 

It is important to realize that both signed and unsigned binary numbers consist 
of a string of bits when represented in a computer. The user determines whether the 
number is signed or unsigned. If the binary number is signed, then the leftmost bit 
represents the sign and the rest of the bits represent the number. If the binary num­
ber is assumed to be unsigned, then the leftmost bit is the most significant bit of the 
number. For example, the string of bits 01001 can be considered as 9 (unsigned 
binary) or +9 (signed binary), because the leftmost bit is 0. Similarly, the string of 
bits 11001 represents the binary equivalent of 25 when considered as an unsigned 
number or -9 when considered as a signed number. The latter is because the 1 in the 
leftmost position designates a minus sign and the remaining four bits represent 
binary 9. Usually, there is no confusion in identifying the bits because the type of 
number representation is known in advance. The representation of signed numbers 
just discussed is referred to as the signed-magnitude system. In this system, the num­
ber consists of a magnitude and a symbol ( + or - ) or a bit (0 or 1) indicating the 
sign. This is the representation of signed numbers used in ordinary arithmetic. 

In implementing signed-magnitude addition and subtraction for n-bit num­
bers, the single sign bit in the leftmost position and the n - 1 magnitude bits are 
processed separately. The magnitude bits are processed as unsigned binary num­
bers. Thus, subtraction involves the correction step. To avoid this step, we use a 
different system for representing negative numbers, referred to as a signed-com­
plement system. In this system, a negative number is represented by its comple­
ment. While the signed-magnitude system negates a number by changing its sign, 
the signed-complement system negates a number by taking its complement. Since 
positive numbers always start with 0 (representing a plus sign) in the leftmost 
position, their complements will always start with a 1, indicating a negative num­
ber. The signed-complement system can use either the ls or the 2s complement, 
but the latter is the most common. As an example, consider the number 9, repre­
sented in binary with eight bits. +9 is represented with a sign bit of 0 in the left­
most position, followed by the binary equivalent of 9, to give 00001001. Note that 
all eight bits must have a value, and therefore, Os are inserted between the sign bit 
and the first 1. Although there is only one way to represent +9, we have two dif­
ferent ways to represent -9 using eight bits: 
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D TABLE 4-3 

Signed Binary Numbers 

Signed 2s Signed 
Decimal Complement Magnitude 

+7 0111 0111 

+6 0110 0110 

+5 0101 0101 

+4 0100 0100 

+3 0011 0011 

+2 0010 0010 

+1 0001 0001 

+o 0000 0000 

-0 1000 

-1 1111 1001 

-2 1110 1010 

-3 1101 1011 

-4 1100 1100 

-5 1011 1101 

-6 1010 1110 

-7 1001 1111 

-8 1000 

In signed-magnitude representation: 

In signed 2s complement representation: 

10001001 

11110111 

In signed magnitude, -9 is obtained from + 9 by changing the sign bit in the leftmost 
position from 0 to 1. The signed 2s complement representation of -9 is obtained by 
taking the 2s complement of the positive number, including the 0 sign bit. 

Table 4-3 lists all possible 4-bit signed binary numbers in two representations. 
The equivalent decimal number is also shown. Note that the positive numbers in 
both representations are identical and have 0 in the leftmost position. The signed 2s 
complement system has only one representation for 0, which is always positive. The 
signed-magnitude system has a positive 0 and a negative 0, which is something not 
encountered in ordinary arithmetic. Note that both negative numbers have a 1 in 
the leftmost bit position; this is the way we distinguish them from positive numbers. 
With four bits, we can represent 16 binary numbers. In the signed-magnitude repre­
sentation, there are seven positive numbers and seven negative numbers, and two 
signed zeros. In the 2s complement representation, there are seven positive num­
bers, one zero, and eight negative numbers. 

The signed-magnitude system is used in ordinary arithmetic, but is awkward 
when employed in computer arithmetic due to the separate handling of the sign 
and the correction step required for subtraction. Therefore, the signed comple­
ment is normally used. The following discussion of signed binary arithmetic deals 
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exclusively with the signed 2s complement representation of negative numbers, 
because it prevails in actual use. 

Signed Binary Addition and Subtraction 

The addition of two numbers, M + N, in the signed-magnitude system follows the 
rules of ordinary arithmetic: If the signs are the same, we add the two magnitudes 
and give the sum the sign of M. If the signs are different, we subtract the magni­
tude of N from the magnitude of M. The absence or presence of an end borrow 
then determines the sign of the result, based on the sign of M, and determines 
whether or not a 2s complement correction is performed. For example, since the 
signs are different, (0 0011001) + (1 0100101) causes 0100101 to be subtracted 
from 0011001. The result is 1110100, and an end borrow of 1 occurs. The end bor­
row indicates that the magnitude of M is smaller than that of N. So the sign of the 
result is opposite that of M and is therefore a minus. The end borrow indicates that 
the magnitude of the result, 1110100, must be corrected by taking its 2s comple­
ment. Combining the sign and the corrected magnitude of the result, we obtain 1 
0001100. 

In contrast to this signed-magnitude case, the rule for adding numbers in 
the signed 2s complement system does not require comparison or subtraction, 
but only addition. The procedure is simple and can be stated as follows for binary 
numbers: 

The addition of two signed binary numbers with negative numbers represented 
in signed 2s complement form is obtained from the addition of the two num­
bers, including their sign bits. A carry out of the sign bit position is discarded. 

Numerical examples of signed binary addition are given in Example 4-3. Note that 
negative numbers will already be in 2s complement form and that the sum 
obtained after the addition, if negative, is left in that same form. 

I 
EXAMPLE 4-3 Signed Binary Addition Using 2s Complement 

+ 6 00000110 - 6 11111010 + 6 00000110 - 6 11111010 

+ 13 00001101 + 13 00001101 - 13 11110011 - 13 11110011 

+ 19 00010011 + 7 00000111 - 7 11111001 - 19 11101101 

In each of the four cases, the operation performed is addition, including the sign 
bits. Any carry out of the sign bit position is discarded, and negative results are 
automatically in 2s complement form. • 

The complement form for representing negative numbers is unfamiliar to 
people accustomed to the signed-magnitude system. To determine the value of a 
negative number in signed 2s complement, it is necessary to convert the number to 
a positive number in order to put it in a more familiar form. For example, the 
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signed binary number 11111001 is negative, because the leftmost bit is 1. Its 2s 
complement is 00000111, which is the binary equivalent of +7. We therefore recog­
nize the original number to be equal to -7. 

The subtraction of two signed binary numbers when negative numbers are in 
2s complement form is very simple and can be stated as follows: 

Take the 2s complement of the subtrahend (including the sign bit) and add it 
to the minuend (including the sign bit) . A carry out of the sign bit position is 
discarded. 

This procedure stems from the fact that a subtraction operation can be changed to 
an addition operation if the sign of the subtrahend is changed. That is, 

(±A)- ( +B) =(±A) +(-B) 

(±A) -(-B) = (±A)+ ( + B) 

But changing a positive number to a negative number is easily done by taking its 2s 
complement. The reverse is also true, because the complement of a negative number 
that is already in complement form produces the corresponding positive number. 
Numerical examples are shown in Example 4-4. 

I 
EXAMPLE 4-4 Signed Binary Subtraction Using 2s Complement 

- 6 11111010 11111010 + 6 00000110 
- (-13) - 11110011 + 00001101 - (-13) - 11110011 

+ 7 00000111 + 19 

The end carry is discarded. 

00000110 
+ 00001101 

00010011 

• 

It is worth noting that binary numbers in the signed-complement system are 
added and subtracted by the same basic addition and subtraction rules as are 
unsigned numbers. Therefore, computers need only one common hardware circuit 
to handle both types of arithmetic. The user or programmer must interpret the 
results of such addition or subtraction differently, depending on whether it is 
assumed that the numbers are signed or unsigned. Thus, the same adder-subtractor 
designed for unsigned numbers can be used for signed numbers. If the signed num­
bers are in 2s complement representation, then the circuit in Figure 4-7 can be 
used. 

, EXAMPLE 4-5 Electronic Scale Feature 

Often goods or materials must be placed in a container to be weighed. These three 
definitions apply to the use of a container in weighing: 

Gross Weight-Weight of the container plus its contents. 
Tare Weight-Weight of the empty container. 
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Net Weight-Weight of the contents only. 
The Problem: For a particular electronic scale, a feature that permits the net 
weight to be displayed is activated by the following sequence of actions: 

1) Place the empty container on the scale. 

2) Press the TARE button to indicate that the current weight is the weight of the 
empty container. 

3) Add the contents to be weighed to the container (measure the gross weight). 

4) Read the net weight from the scale indicator. 

Assuming that the container weight (tare weight) is stored by the scale, 
(a) What arithmetic logic is required? 
(b) How many bits are required for the operands, assuming the gross weight 

capacity of the scale is 2200 grams with one gram as the smallest unit? 
The Solution: (a) The scale is measuring the gross weight. The displayed result is 
the net weight. So a subtractor is needed to form: 

Net Weight= Gross Weight - (stored) Tare Weight 

Since the container plus its contents always weighs at least as much as the con­
tainer only, for this application the result must always be nonnegative. If, on the 
other hand, the user makes use of this feature to find the differences in the weight 
of two objects, then a negative result is possible. In the design of the actual scale, 
this negative result is properly taken into account in the display logic. 

(b) Assuming that the weights and the subtraction are in binary, 12 bits are 
required to represent 2200 grams. If the weights and the subtraction are repre­
sented in BCD, then 2 + 3 X 4 = 14 bits are required. • 

Overflow 

To obtain a correct answer when adding and subtracting, we must ensure that the 
result has a sufficient number of bits to accommodate the sum. If we start with two 
n-bit numbers, and the sum occupies n + 1 bits, we say that an ovelfl,ow occurs. This 
is true for binary or decimal numbers, whether signed or unsigned. When one per­
forms addition with paper and pencil, an overflow is not a problem, since we are not 
limited by the width of the page. We just add another 0 to a positive number and 
another 1 to a negative number, in the most significant position, to extend them to n 
+ 1 bits and then perform the addition. Overflow is a problem in computers 
because the number of bits that hold a number is fixed, and a result that exceeds the 
number of bits cannot be accommodated. For this reason, computers detect and can 
signal the occurrence of an overflow. The overflow condition may be handled auto­
matically by interrupting the execution of the program and taking special action. 
An alternative is to monitor for overflow conditions using software. 

The detection of an overflow after the addition of two binary numbers 
depends on whether the numbers are considered to be signed or unsigned. When 
two unsigned numbers are added, an overflow is detected from the end carry out of 
the most significant position. In unsigned subtraction, the magnitude of the result 
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is always equal to or smaller than the larger of the original numbers, making over­
flow impossible. In the case of signed 2s complement numbers, the most significant 
bit always represents the sign. When two signed numbers are added, the sign bit is 
treated as a part of the number, and an end carry of 1 does not necessarily indicate 
an overflow. 

With signed numbers, an overflow cannot occur for an addition if one num­
ber is positive and the other is negative: Adding a positive number to a negative 
number produces a result whose magnitude is equal to or smaller than the larger of 
the original numbers. An overflow may occur if the two numbers added are both 
positive or both negative. To see how this can happen, consider the following 2s 
complement example: Two signed numbers, +70 and +80, are stored in two 8-bit 
registers. The range of binary numbers, expressed in decimal, that each register can 
accommodate is from + 127 to -128. Since the sum of the two stored numbers is 
+ 150, it exceeds the capacity of an 8-bit register. This is also true for -70 and -80. 
These two additions, together with the two most significant carry bit values, are as 
follows: 

Carries: 0 1  
+ 70 0 1000110 
+ 80 0 1010000 
+ 150 1 0010110 

Carries: 
- 70 
- 80 
-150 

1 0  
1 0111010 
1 0110000 
0 1101010 

Note that the 8-bit result that should have been positive has a negative sign bit and 
that the 8-bit result that should have been negative has a positive sign bit. If, how­
ever, the carry out of the sign bit position is taken as the sign bit of the result, then 
the 9-bit answer so obtained will be correct. But since there is no position in the 
result for the ninth bit, we say that an overflow has occurred. 

An overflow condition can be detected by observing the carry into the sign bit 
position and the carry out of the sign bit position. If these two carries are not equal, 
an overflow has occurred. This is indicated in the 2s complement example just com­
pleted, where the two carries are explicitly shown. If the two carries are applied to 
an exclusive-OR gate, an overflow is detected when the output of the gate is equal 
to 1. For this method to work correctly for 2s complement, it is necessary either to 
apply the ls complement of the subtrahend to the adder and add 1 or to have over­
flow detection on the circuit that forms the 2s complement as well as on the adder. 
This condition is due to overflow when complementing the maximum negative 
number. 

Simple logic that provides overflow detection is shown in Figure 4-8. If the 
numbers are considered unsigned, then the C output being equal to 1 detects a 

v 

n-bit Adder/Subtractor 

D FIGURE4-8 
Overflow Detection Logic for Addition and Subtraction 
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carry (an overflow) for an addition and indicates that no correction step is required 
for a subtraction. C being equal to 0 detects no carry (no overflow) for an addition 
and indicates that a correction step is required for a subtraction. 

If the numbers are considered signed, then the output V is used to detect an 
overflow. If V = 0 after a signed addition or subtraction, it indicates that no over­
flow has occurred and the result is correct. If V = 1, then the result of the opera­
tion contains n + 1 bits, but only the rightmost n of those bits fit in the n-bit result, 
so an overflow has occurred. The (n+ l)th bit is the actual sign, but it cannot 
occupy the sign bit position in the result. 

MULTIPLIERS AND DIVIDERS A supplement that discusses the design of multipliers 
> and dividers is available on the Companion Website for the text. 

4-5 OTHER ARITHMETIC FUNCTIONS 

Other arithmetic functions beyond+,-, x and+, that are quite important. Among 
these are incrementing, decrementing, multiplication and division by a constant, 
greater-than comparison, and less-than comparison. Each can be implemented for 
multiple-bit operands by using an iterative array of 1-bit cells. Instead of using 
these basic approaches, a combination of rudimentary functions and a new tech­
nique called contraction is used. Contraction begins with a circuit such as a binary 
adder or a binary multiplier. This approach simplifies design by converting existing 
circuits into useful, less complicated ones instead of designing the latter circuits 
directly. 

Contraction 

Value fixing, transferring, and inverting on inputs can be combined with function 
blocks as done in Chapter 4 to implement new functions. We can implement new 
functions by using similar techniques on a given circuit or on its equations and then 
contracting it for a specific application to a simpler circuit. We will call the procedure 
contraction. The goal of contraction is to accomplish the design of a logic circuit or 
functional block by using results from past designs. It can be applied by the designer 
in designing a target circuit or can be applied by logic synthesis tools to simplify an 
initial circuit with value fixing, transferring, and inverting on its inputs in order to 
obtain a target circuit. In both cases, contraction can also be applied to circuit out­
puts that are unused, to simplify a source circuit to a target circuit. First, we illustrate 
contraction by using Boolean equations. 

EXAMPLE 4-6 Contraction of Full-Adder Equations 

The circuit Addl to be designed is to form the sum Si and carry Ci+l for the single 
bit addition Ai + 1 + Ci. This addition is a special case with Bi = 1 of the addition 
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performed by a full adder, Ai + Bi + Ci. Thus, equations for the new circuit can be 
obtained by taking the full-adder equations, 

S· =A· EBB· EB C. 
l l l l 

setting Bi = 1, and simplifying the results, to obtain 

s. = A-E91ffiC. = A-ffiC. 
l l l l l 

C· 1 =A· ·1 +A·C· + l·C. =A·+ C. 
l+ l l l l l l 

Suppose that this Addl circuit is used in place of each of the four full adders in a 4-
bit ripple carry adder. Instead of S =A + B + C0, the computation being performed is 
S = A+ 1111 + C0• In 2s complement, this computation is S =A-1 + C0• If C0 = 0, 
this implements the decrement operation S =A -1, using considerably less logic than 
for a 4-bit addition or subtraction. • 

Contraction can be applied to equations, as done here, or directly on circuit 
diagrams with rudimentary functions applied to function-block inputs. In order to 
successfully apply contraction, the desired function must obtainable from the ini­
tial circuit by application of rudimentary functions on its inputs. Next we consider 
contraction based on unused outputs. 

Placing an unknown value, X, on the output of a circuit means that output 
will not be used. Thus, the output gate and any other gates that drive only that out­
put gate can be removed. The rules for contracting equations with X's on one or 
more outputs are as follows: 

1. Delete all equations with X's on the circuit outputs. 

2. If an intermediate variable does not appear in any remaining equation, delete 
its equation. 

3. If an input variable does not appear in any remaining equation, delete it. 

4. Repeat 2 and 3 until no new deletions are possible. 

The rules for contracting a logic diagram with X's on one or more outputs are as 
follows: 

1. Beginning at the outputs, delete all gates with X's on their outputs and place 
X's on their input wires. 

2. If all input wires driven by a gate are labeled with X's, delete the gate and 
place X's on its inputs. 

3. If all input wires driven by an external input are labeled with X's, delete the 
input. 

4. Repeat steps 2 and 3 until no new deletions are possible. 

In the next subsection, contraction of a logic diagram is illustrated for the 
increment operation. 
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D FIGURE 4-9 
Contraction of Adder to Incrementer 

Incrementing 

Incrementing means adding a fixed value to an arithmetic variable, most often a 
fixed value of 1. An n-bit incrementer that performs the operation A + 1 can be 
obtained by using a binary adder that performs the operation A + B with B = 0 ... 01. 
The use of n = 3 is large enough to determine the incrementer logic to construct 
the circuit needed for an n-bit incrementer. 

Figure 4-9(a) shows a 3-bit adder with the inputs fixed to represent the com­
putation A+ 1 and with the output from the most significant carry bit C3 fixed at 
value X. Operand B = 001 and the incoming carry C0 = 0, so that A + 001 + 0 is 
computed. Alternatively, B = 000 and incoming carry C0 = 1 could have been used. 

Based on value fixing, there are three distinct contraction cases for the cells 
in the adder: 

1. The least significant cell on the right with B0 = 1 and C0 = 0, 

2. The typical cell in the middle with B1 = 0, and 

3. The most significant cell on the left with B2 = 0 and C3 = X. 

For the right cell, the output of gate 1 becomes Ao, so it can be replaced 
by an inverter. The output of gate 2 becomes A0, so it can be replaced by a wire 
connected to A0• Applying Ao and 0 to gate 3, it can be replaced by a wire, con­
necting A0 to the output S0• The output of gate 4 is 0, so it can be replaced with 
a 0 value. Applying this 0 and A0 from gate 2 to gate 5, gate 5 can be replaced 
by a wire connecting A0 to C1. The resulting circuit is shown as the right cell in 
Figure 4-9(b ) . 

Applying the same technique to the typical cell with B1 = 0 yields 
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S1 =A1 EB C1 

C2 =A1C1 

giving the circuit shown as the middle cell in Figure 4-9(b ) . 
For the left cell with B2 = 0 and C3 = X, the effects of X are propagated first 

to save effort. Since gate E has X on its output, it is removed and X's are placed 
on its two inputs. Since all gates driven by gates B and C have X's on their inputs, 
they can be removed and X's placed on their inputs. Gates A and D cannot be 
removed, since each is driving a gate without an X on its input. Gate A, however, 
becomes a wire, since X EB 0 = X. The resulting circuit is shown as the left cell in 
Figure 4-9(b ) . 

For an incrementer with n > 3 bits, the least significant incrementer cell is 
used in position 0, the typical cell in positions 1 through n - 2, and the most sig­
nificant cell in position n - 1. In this example, the rightmost cell in position 1 is 
contracted, but, if desired, it could be replaced with the cell in position 2 with 
B0 = 0 and C0 = 1. Likewise, the output C3 could be generated, but not used. In 
both cases, logic cost and power efficiency are sacrificed to make all of the cells 
identical. 

Decrementing 

Decrementing is the addition of a fixed negative value to an arithmetic variable­
most often, a fixed value of -1. A decrementer has already been designed in 
Example 4-6. Alternatively, a decrementer could be designed by using an 
adder-subtractor as a starting circuit and applying B = 0 ... 01, and selecting the 
subtraction operation by setting S to 1. Beginning with an adder-subtractor, we 
can also use contraction to design a circuit that increments for S = 0 and decre­
ments for S = 1 by applying B = 0 ... 01, and letting S remain a variable. In this case, 
the result is a cell of the complexity of a full adder in the typical bit positions. 

Multiplication by Constants 

In Figure 4-lO(a), a multiplier with a 3-bit multiplier and a 4-bit multiplicand is 
shown with constant values applied to the multiplier. (The design of this multiplier 
is explained in the supplement Multipliers and Dividers on the Companion Web-

> site.) Constants applied to the multiplier inputs have the following effects. If the 
multiplier value for a particular bit position is 1, than the multiplicand will be 
applied to an adder. If the value for a particular bit position is 0, then 0 will be 
applied to an adder and the adder will be reduced by contraction to wires produc­
ing its right inputs plus a carry of 0 on its outputs. In both cases, the AND gates will 
be removed. In Figure 4-lO(a), the multiplier has been set to 101. The end result of 
the contraction of this circuit is a circuit that conveys the two least significant bits of 
B to the outputs C1 and C0. The circuit adds the two most significant bits of B to B, 
with the result shifted two positions to the left applied to product outputs C6 
through C2. 
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Contractions of Multiplier: (a) for 101 x B, (b) for 100 x B, and (c) for B + 100 

An important special case occurs when the constant equals 2i (i.e., for multi­
plication 2i x B). In this case, only one 1 appears in the multiplier and all logic is 
eliminated from the circuit, resulting in only wires. In this case, for the 1 in posi­
tion i, the result is B followed by i Os. The functional block that results is simply a 
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combination of skewed transfers and value fixing to 0. The function of this block is 
called a left shift by i bit positions with zero fill. Zero fill refers to the addition of Os 
to the right of (or to the left of) an operand such as B. Shifting is a very important 
operation applied to both numerical and nonnumerical data. The contraction 
resulting from a multiplication by 22 (i.e., a left shift of two bit positions) is shown 
in Figure 4-lO(b). 

Division by Constants 

Our discussion of division by constants will be restricted to division by powers 
of 2 (i.e., by 2i in binary). Since multiplication by 2i results in addition of i Os to 
the right of the multiplicand, by analogy, division by 2i results in removal of the 
i least significant bits of the dividend. The remaining bits are the quotient, and 
the bits discarded are the remainder. The function of this block is called a right 
shift by i bit positions. Just as for left shifting, right shifting is likewise a very 
important operation. The function block for division by 22 (i.e., right shifting by 
two bit positions) is shown in Figure 4-lO(c). 

Zero Fill and Extension 

Zero fill, as defined previously for multiplication by a constant, can also be used 
to increase the number of bits in an operand. For example, suppose that a byte 
01101011 is to be used as an input to a circuit that requires an input of 16 bits. 
One possible way of producing the 16-bit input is to zero-fill with eight Os on the 
left to produce 0000000001101011. Another is to zero-fill on the right to produce 
0110101100000000. The former approach would be appropriate for operations 
such as addition or subtraction. The latter approach could be used to produce a 
low-precision 16-bit multiplication result in which the byte represents the most 
significant eight bits of the actual product with the lower byte of the product 
discarded. 

In contrast to zero fill, sign extension is used to increase the number of bits in 
an operand represented by using a complement representation for signed 
numbers. If the operand is positive, then bits can be added on the left by extending 
the sign of the number (0 for positive and 1 for negative). Byte 01101011, which 
represents 107 in decimal, extended to 16 bits becomes 0000000001101011. Byte 
10010101, which in 2s complement represents -107, extended to 16 bits becomes 
1111111110010101. The reason for using sign extension is to preserve the comple­
ment representation for signed numbers. For example, if 10010101 were extended 
with Os, the magnitude represented would be very large, and further, the leftmost 
bit, which should be a 1 for a minus sign, would be incorrect in the 2s complement 
representation. 

DECIMAL ARITHMETIC The supplement that discusses decimal arithmetic functions 
> and circuit implementations is available on the Companion Website for the text. 

www.Ebook777.com
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4-6 HARDWARE DESCRIPTION LANGUAGES 
Designing complex systems and integrated circuits would not be feasible without the 
use of computer-aided design (CAD) tools. Schematic capture tools support the drawing 
of blocks and interconnections at all levels of the hierarchy. At the level of primitives 
and functional blocks, libraries of graphics symbols are provided. Schematic capture 
tools support the construction of a hierarchy by permitting the generation of symbols 
for hierarchical blocks and the replication of symbols for reuse. 

The primitive blocks and the functional block symbols from libraries have 
associated models that allow the behavior and the timing of the hierarchical blocks 
and the entire circuit to be verified. This verification is performed by applying 
inputs to the blocks or circuit and using a logic simulator to determine the outputs. 

The primitive blocks from libraries can also have associated data, such as 
physical area information and delay parameters, that can be used by logic synthe­
sizers to optimize designs being generated automatically from hardware descrip­
tion language specifications. 

Hardware Description Languages 

Thus far, we have mentioned hardware description languages only casually. In 
modern design, however, such languages have become crucial to the design pro­
cess. Initially, we justify such languages by describing their uses. We will then 
briefly discuss V DHL and Verilog®, the most popular of these languages. Next, we 
introduce them both in detail, although, in any given course, we expect that only 
one of them will be covered. 

Hardware description languages resemble programming languages, but are 
specifically oriented to describing hardware structures and behavior. They differ 
markedly from typical programming languages in that they represent extensive 
parallel operation, whereas most programming languages represent serial opera­
tion. An obvious use for a hardware description language is to provide an alterna­
tive to schematics. When a language is used in this fashion, it is referred to as a 
structural description, in which the language describes an interconnection of com­
ponents. Such a structural description, referred to as a netlist, can be used as input 
to logic simulation just as a schematic is used. For this application, models for each 
of the primitive blocks are required. If an HDL is used, then these models can also 
be written in the HDL, providing a more uniform, portable representation for 
simulation input. 

The power of an HDL becomes more apparent, however, when it is used to 
represent more than just schematic information. It can represent Boolean equa­
tions, truth tables, and complex operations such as arithmetic. Thus, in top-down 
design, a very high-level description of an entire system can be precisely specified 
using an HDL. As a part of the design process, this high-level description can then 
be refined and partitioned into lower-level descriptions. Ultimately, a final 
description in terms of primitive components and functional blocks can be 
obtained as the result of the design process. Note that all of these descriptions can 
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be simulated. Since they represent the same system in terms of function, but not 
necessarily timing, they should respond by giving the same logic values for the 
same applied inputs. This vital simulation property supports design verification 
and is one of the principal reasons for the use of HDLs. 

A final major reason for increased use of HDLs is logic synthesis. An HDL 
description of a system can be written at an intermediate level referred to as a 
register transfer language (RTL) level. A logic synthesis tool with an accompany­
ing library of components can convert such a description into an interconnection 
of primitive components that implements the circuit. This replacement of the 
manual logic design process makes the design of complex logic much more 
efficient. 

Currently, two HDLs, VHDL and Verilog, are widely used, standard hard­
ware design languages. The language standards are defined, approved, and pub­
lished by the Institute of Electrical and Electronics Engineers (IEEE). All 
implementations of these languages must obey their respective standard. This stan­
dardization gives HDLs another advantage over schematics. HDLs are portable 
across computer-aided design tools, whereas schematic capture tools are typically 
unique to a particular vendor. In addition to the standard languages, a number of 
major companies have their own internal languages, often developed long before 
the standard languages and incorporating features unique to their particular 
products. 

VHDL stands for VHSIC Hardware Description Language. VHDL was 
developed under contract for the U.S. Department of Defense as a part of 
the Very-High-Speed Integrated Circuits (VHSIC) program and subsequently 
became an IEEE standard language. Verilog® was developed by a company, 
Gateway Design Automation, which was bought by Cadence® Design Systems, 
Inc. For a while, Verilog was a proprietary language, but eventually it became an 
IEEE standard language. In this text, we present brief introductions to both 
VHDL and Verilog. These portions of the text are optional and permit your 
instructor to cover one of the two languages or neither. 

Regardless of the HDL, a typical procedure is used in employing an HDL 
description as simulation input. The procedure steps are analysis, elaboration, and 
initialization, followed finally by the simulation. Analysis and elaboration are typi­
cally performed by a compiler similar to those for programming languages. Analy­
sis checks the description for violations of the syntax and semantic rules for the 
HDL and produces an intermediate representation of the design. Elaboration 
traverses the design hierarchy represented by the description; in this process, the 
design hierarchy is flattened to an interconnection of modules that are described 
only by their behaviors. The end result of the analysis and elaboration performed 
by the compiler is a simulation model of the original HDL description. This model 
is then passed to the simulator for execution. Initialization sets all of the variables 
in the simulation model to specified or default values. Simulation executes the 
simulation model in either batch or interactive mode with inputs specified by the 
user. 

Because fairly complex hardware can be described efficiently in an HDL, a 
special HDL structure called a testbench may be used. The testbench is a description 
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that includes the design to be tested, typically referred to as the device under test 
(DUT) . The testbench describes a collection of hardware and software functions 
that apply inputs to the DUT and analyze the outputs for correctness. This 
approach bypasses the need to provide separate inputs to the simulator and to ana­
lyze, often manually, the simulator outputs. Construction of a testbench provides a 
uniform verification mechanism that can be used at multiple levels in the top-down 
design process for verification of correct function of the design. 

Logic Synthesis 

As indicated earlier, the availability of logic synthesis tools is one of the driving 
forces behind the growing use of HDLs. Logic synthesis transforms an RTL 
description of a circuit in an HDL into an optimized netlist representing storage 
elements and combinational logic. Subsequently, this netlist may be transformed 
by using physical design tools into an actual integrated circuit layout. This layout 
serves as the basis for integrated circuit manufacture. The logic synthesis tool takes 
care of a large portion of the details of a design and allows exploration of the 
cost/performance trade-offs essential to advanced designs. 

Figure 4-11 shows a simple high-level flow of the steps involved in logic syn­
thesis. The user provides an HDL description of the circuit to be designed as well as 
various constraints or bounds on the design. Electrical constraints include allowable 
gate fan-outs and output loading restrictions. Area and speed constraints direct the 
optimization steps of the synthesis. Area constraints typically give the maximum 
permissible area that a circuit is allowed to occupy within the integrated circuit. 

HDL Description Electronic, Speed, Technology 
of Circuit and Area Constraints Library 

i 
Translation 

i 
Intermediate 

Representation 

i " 

Preoptimization �Optimization� Technology Mapping 

I Netlist I 

D FIGURE 4-11 
High-Level Flow for Logic Synthesis Tool 
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Alternatively, a general directive may be given which specifies that area is to be 
minimized. Speed constraints are typically maximum allowable values for the delay 
on various paths in the circuit. Alternatively, a general directive may be given to 
maximize speed. Area and speed both translate into the cost of a circuit. A fast cir­
cuit will typically have larger area and thus cost more to manufacture. A circuit that 
need not operate fast can be optimized for area, and, relatively speaking, costs less 
to manufacture. In some sophisticated synthesis tools, power consumption can also 
be used as a constraint. Additional information used by a synthesis tool is a technol­
ogy library that describes the primitive blocks available for use in the netlist as well 
as their physical parameters necessary for delay computations. The latter informa­
tion is essential in meeting constraints and performing optimization. 

The first major step in the synthesis process in Figure 4-11 is a translation of 
the HDL description into an intermediate form. The translation result may be an 
interconnection of generic gates and storage elements, not taken from the technol­
ogy library. It may also be in an alternate form that represents clusters of logic and 
the interconnections between the clusters. 

The second major step in the synthesis process is optimization. A preoptimi­
zation step may be used to simplify the intermediate form. For example, logic that 
is identical in the intermediate form may be shared. Next is the optimization, in 
which the intermediate form is processed to attempt to meet the constraints speci­
fied. Typically, two-level and multiple-level optimization are performed. Optimiza­
tion is followed by technology mapping, which replaces AND gates, OR gates, and 
inverters with gates from the technology library. In order to evaluate area and 
speed parameters associated with these gates, additional information from the 
technology library is used. In sophisticated synthesis tools, further optimization 
may be applied during technology mapping in order to improve the likelihood of 
meeting the constraints on the design. Optimization can be a very complex, time­
consuming process for large circuits. Many optimization passes may be necessary 
to achieve the desired results or to demonstrate that constraints are difficult, if not 
impossible, to meet. The designer may need to modify the constraints or the HDL 
in order to achieve a satisfactory design. Modification of the HDL may include 
manual design of some portions of the logic in order to achieve the design goals. 

The output of the optimization/technology mapping processes is typically a 
netlist corresponding to a schematic diagram made up of storage elements, gates, 
and other combinational logic functional blocks. This output serves as input to 
physical design tools that physically place the logic elements and route the inter­
connections between them to produce the layout of the circuit for manufacture. In 
the case of programmable parts, such as field-programmable gate arrays as dis­
cussed in Section 6-6, an analog to the physical design tools produces the binary 
information used to program the logic within the parts. 

4-7 HDL REPRESENTATIONS-VHDL 

Since an HDL is used for describing and designing hardware, it is very important to 
keep the underlying hardware in mind as you write in the language. This is particularly 
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critical if your language description is to be synthesized. For example, if you ignore the 
hardware that will be generated, it is very easy to specify a large complex gate structure 
by using x (multiply) when a much simpler structure using only a few gates is all that is 
needed. For this reason, we initially emphasize description of detailed hardware with 
VHDL, and proceed to more abstract, higher-level descriptions later. 

Selected examples in this chapter are useful for introducing VHDL as an 
alternative means for representing detailed digital circuits. Initially, we show 
structural VHDL descriptions that replace the schematic for the 2-to-4-line 
decoder with enable given in Figure 3-21. This example and one using the 4-to-1-
line multiplexer in Figure 3-26 illustrate many of the fundamental concepts of 
VHDL. We then present higher-level functional and behavioral VHDL descrip­
tions for these circuits that further illustrate fundamental VHDL concepts. 

� 4-7 Structural VHDL for a 2-to-4-Line Decoder 

I Figure 4-12 shows a VHDL description for the 2-to-4-line decoder circuit from 
Figure 3-21. This example will be used to demonstrate a number of general VHDL 
features as well as structural description of circuits. 

The text between two dashes -- and the end of the line is interpreted as a 
comment. So the description in Figure 4-12 begins with a two-line comment identi­
fying the description and its relationship to Figure 3-21. To assist in discussion of 
this description, comments providing line numbers have been added on the right. 
As a language, VHDL has a syntax that describes precisely the valid constructs 
that can be used in the language. This example will illustrate many aspects of the 
syntax. In particular, note the use of semicolons, commas, and colons in the 
description. 

Initially, we skip lines 3 and 4 of the description to focus on the overall struc­
ture. Line 5 begins the declaration of an entity, which is the fundamental unit of a 
VHDL design. In VHDL, just as for a symbol in a schematic, we need to give the 
design a name and to define its inputs and outputs. This is the function of the entity 
declaration. Entity and is are keywords in VHDL. Keywords, which we show in 
bold type, have a special meaning and cannot be used to name objects such as enti­
ties, inputs, outputs or signals. Statement entity decoder_2_to_4_w_enable 

is declares that a design exists with the name decoder_2_to_4_w_enable. 

VHDL is case insensitive (i.e., names and keywords are not distinguished by the 
use of uppercase or lowercase letters). DECODER_2_4_W_ENABLE is the same as 
Decoder_2_ 4_w_Enable and decoder_2_ 4_w_enable. 

Next, a port declaration in lines 6 and 7 is used to define the inputs and out­
puts just as we would do for a symbol in a schematic. For the example design, there 
are three input signals: EN, AO, and Al. The fact that these are inputs is denoted by 
the mode in. Likewise, DO, Dl, D2, and D3 are denoted as outputs by the mode 
out. VHDL is a strongly typed language, so the type of the inputs and output must 
be declared. In this case, the type is std_logic, which represents standard logic. 
This type declaration specifies the values that may appear on the inputs and the 
outputs, as well as the operations that may be applied to the signals. Standard logic, 
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among its nine values, includes the usual binary values 0 and 1 and two additional 
values X and U. X represents an unknown value, U an uninitalized value. We have 
chosen to use standard logic, which includes these values, since these values are 
used by typical simulation tools. 

In order to use the type std_logic, it is necessary to define the values 
and the operations. For convenience, a package consisting of precompiled VHDL 

code is employed. Packages are usually stored in a directory referred to as a 
library, which is shared by some or all of the tool users. For std_logic, the 
basic package is ieee. std_logic_1164. This package defines the values and 
basic logic operators for types std_ulogic and std_logic. In order to use 
std_logic, we include line 3 to call up the library of packages called ieee 

and include line 4 containing ieee. std_logic_1164. all to indicate we want 
to use all of the package std_logic_1164 from the ieee library. An additional 

-- 2-to-4-Line Decoder with Enable: Structural VHDL Description 1 

-- (See Figure 3-21 for logic diagram) 2 

library ieee, lcdf_vhdl; 3 

use ieee.std_logic_ll64.all, lcdf_vhdl.func_prims.all; 4 

entity decoder_2_to_4_w_enable is 5 

port (EN, AO, Al: in std_logic; 6 

DO, Dl, D2, D3: out std_logic); 7 

end decoder_2_to_4_w_enable; 8 

architecture structural_l of decoder_2_to_4_w_enable is 
component NOTl 

port(inl: in std_logic; 

outl: out std_logic); 

end component; 
component AND2 

port(inl, in2: in std_logic; 

outl: out std_logic); 

end component; 
signal AO_n, Al_n, NO, Nl, N2, N3: std_logic; 

begin 
gO: NOTl port map (inl => AO, outl => AO_n); 

gl: NOTl port map (inl => Al, outl => Al_n); 

g2: AND2 port map (inl => AO _n, in2 => Al_n, outl => NO); 

g3: AND2 port map (inl => AO, in2 => Al_n, outl => Nl); 

end 

g4: AND2 port 

g5: AND2 port 

g6: AND2 port 

g7: AND2 port 

g8: AND2 port 

g9: AND2 port 

structural l· 
- I 

map (inl 

map (inl 

map (inl 

map (inl 

map (inl 

map (inl 

=> AO _n, in2 => Al,outl 

=> AO, in2 => Al, outl 

=> EN, in2 => NO, outl 

=> EN, in2 => Nl, outl 

=> EN, in2 => N2, outl 

=> EN, in2 => N3, outl 

D FIGURE 4-12 
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library, lcdf_vhdl , contains a package called func_prims made up of basic 
logic gates, latches, and flip-flops described using VHDL, of which we use all. 

11Ut1llRll\> Library lcdf_vhdl is available in ASCII for copying from the Companion Web­

site for the text. Note that the statements in lines 3 and 4 are tied to the entity 
that follows. If another entity is included that uses type std_logic and the ele-
ments from func_prims, these statements must be repeated prior to that entity 
declaration. 

The entity declaration ends with keyword end followed by the entity name. Thus 
far, we have discussed the equivalent of a schematic symbol in VHDL for the circuit. 

STRUCTURAL DESCRIPTION Next, we want to specify the function of the circuit. A 
particular representation of the function of an entity is called the architecture of 
the entity. Thus, the contents of line 10 declare a VHDL architecture named 
structural_l for the entity decoder_2_to_4_w_enable to exist. The details 
of the architecture follow. In this case, we use a structural description that is equiv­
alent to the schematic for the circuit given in Figure 3-21. 

First, we declare the gate types we are going to use as components of our 
description in lines 11 through 18. Since we are building this architecture from 
gates, we declare an inverter called NOTl and a 2-input AND gate called AND2 as 
components. These gate types are VHDL descriptions in package func_prims 

that contain the entity and architecture for each of the gates. The name and the 
port declaration for a component must be identical to those for the underlying 
entity. For NOTl, port gives the input name inl and the output name outl. The 
component declaration for AND2 gives input names inl and in2, and output 
name outl. 

Next, before specifying the interconnection of the gates, which is equivalent 
to a circuit netlist, we need to name all of the nets in the circuit. The inputs and 
outputs already have names. The internal nets are the outputs of the two invert­
ers and of the leftmost four AND gates in Figure 3-21. These output nets are 
declared as signals of type std_logic. AO_n and Al_n are the signals for the two 
inverter outputs and NO , Nl , N2 , and N3 are the signals for the four AND 
gate outputs. Likewise, all of the inputs and outputs declared as ports are signals. 
In VHDL, there are both signals and variables. Variables are evaluated instanta­
neously. In contrast, signals are evaluated at some future point in time. This time 
may be physical time, such as 2 ns from the current time, or may be what is called 
delta time, in which a signal is evaluated one delta time from the current time. 
Delta time is viewed as an infinitesimal amount of time. Some time delay in eval­
uation of signals is essential to the internal operation of the typical digital simu­
lator and, of course, based on the delay of gates, is realistic in performing 
simulations of circuits. For simplicity, we will typically be simulating circuits for 
correct function, not for performance or delay problems. For such functional sim­
ulation, it is easiest to let the delays default to delta times. Thus, no delay will be 
explicit in our VHDL descriptions of circuits, although delays may appear in test­
benches. 

Following the declaration of the internal signals, the main body of the 
architecture starts with the keyword begin. The circuit described consists of 
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two inverters and eight 2-input AND gates. Line 21 gives the label gO to the 
first inverter and indicates that the inverter is component NOTl. Next is a port 

map, which maps the input and output of the inverter to the signals to which 
they are connected. This particular form of port map uses => with the port of 
the gate on the left and the signal to which it is connected on the right. For 
example, the input of inverter gO is AO and the output is AO_n. Lines 22 
through 30 give the remaining nine gates and the signals connected to their 

-- 4-to-1-Line Multiplexer: Structural VHDL Description 

-- (See Figure 3-26 for logic diagram) 

library ieee, lcdf_vhdl; 

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; 

entity multiplexer_4_to_l_st is 
port (S: in std_logic_vector(O to 1); 

I: in std_logic_vector(O to 3); 

Y: out std_logic); 

end multiplexer_4_to_l_st; 

architecture structural_2 of multiplexer_4_to_l_st is 
component NOTl 

port(inl: in std_logic; 

outl: out std_logic); 

end component; 
component AND2 

port(inl, in2: in std_logic; 

outl: out std_logic); 

end component; 
component OR4 

port(inl, in2, in3, in4: in std_logic; 

outl: out std_logic); 

end component; 
signal S_n: std_logic_vector(O to 1); 

signal D, N: std_logic_vector(O to 3); 

begin 
gO: NOTl port map (S(O), S_n(O)); 

gl: NOTl port map (S(l), S_n(l)); 

g2 : AND2 port map ( S_n ( 1) , S_n ( 0 ) , D ( 0 ) ) ; 

g3: AND2 port map (S_n(l), S(O), D(l)); 

g4: AND2 port map (S(l), S_n(O), D(2)); 

g5: AND2 port map (S(l), S(O), D(3)); 

g6: AND2 port map (D ( 0) , I ( 0) , N ( 0) ) ; 

g7: AND2 port map (D(l), I(l), N(l)); 

g8: AND2 port map (D(2), I(2), N(2)); 

g9: AND2 port map (D(3), 1(3), N(3)); 

glO: OR4 port map (N(O), N(l), N(2), N(3), Y); 
end structural_2; 

D FIGURE 4-13 
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inputs and outputs. For example, in line 24, AO and Al_n are inputs and Nl is 
the output. The architecture is completed with the keyword end followed by its 
name structural 1. • 

� 4-8 Structural VHDL for a 4-to-1 Multiplexer 

I In Figure 4-13, the structural description of the 4-to-1-line multiplexer from 
Figure 3-26 illustrates two additional VHDL concepts: std_logic_vector and an 
alternative approach to mapping ports 

In lines 6 and 7, instead of specifying s and I as individual std_logic inputs, 
they are specified as std_logic_vectors. In specifying vectors, we use an index. Since 
S consists of two input signals numbered 0 and 1, the index for S is 0 to 1. The 
components of this vector are s ( 0) and s ( 1) . I consists of four input signals 
numbered 0 through 3, so the index for I is O to 3. Likewise, in lines 24 and 25, 
we specify signals s_n, D, and N as std_logic_ vectors. D represents the decode out­
puts, and N represents the four internal signals between the AND gates and the 
OR gate. 

Beginning at line 27, note how the signals within std_logic_vectors are 
referred to by giving the signal name and the index in parentheses. It is also possi­
ble to refer to subvectors (e.g., N ( 1 to 2 ) , which refers to N ( 1) and N ( 2 ) , the 
center two signals in N). Also, if one wishes to have the larger index for a vector 
appear first, VHDL uses a somewhat different notational approach. For example, 
signal N: std_logic_vector (3 downto 0) defines the first bit in signal N as 
N ( 3 ) and the last signal in N as N ( O ) . 

In lines 27 through 37, an alternative method is used to specify the port maps 
for the logic gates. Instead of explicitly giving the component input and output 
names, we assume that these names are in the port map in the same order as given 
for the component. We can then implicitly specify the signals attached to these 
names by listing the signals in same order as the names. For example, in line 29, 
S_n ( 1) appears first, and so is connected to inl. S_n ( 0) appears second, and so 
is connected to in2. Finally, D ( 0) is connected to outl. 

Otherwise, this VHDL description is similar in structure to that for the 2-to-4-
line decoder, except that the schematic represented is that in Figure 3-26. • 

DATAFLOW DESCRIPTION A dataflow description describes a circuit in terms of 
function rather than structure and is made up of concurrent assignment statements 
or their equivalent. Concurrent assignment statements are executed concurrently 
(i.e., in parallel) whenever one of the values on the right-hand side of the state­
ment changes. For example, whenever a change occurs in a value on the right-hand 
side of a Boolean equation, the left-hand side is evaluated. The use of dataflow 
descriptions made up of Boolean equations is illustrated in Example 4-9. 

� 4-9 Dataftow VHDL for a 2-to-4-Line Decoder 

I Figure 4-14 shows a VHDL description for the 2-to-4-line decoder circuit from 
Figure 3-21. This example will be used to demonstrate a dataflow description 
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-- 2-to-4-Line Decoder: Dataflow VHDL Description 

-- {See Figure 3-21 or logic diagram) 

Use library, use, and entity entries from 2_to_4_decoder_st; 

architecture dataflow_l of decoder_2_to_4_w_enable is 

signal AO_n, Al_n: std_logic; 

begin 
AO_n <= not AO; 

Al_n <= not Al; 

DO <= AO_n and Al_n and EN; 

Dl <= AO and Al_n and EN; 

D2 <= AO_n and Al and EN; 

D3 <= AO and Al and EN; 

end dataflow_l; 

D FIGURE 4-14 

Dataflow VHDL Description of 2-to-4-Line Decoder 
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made up of Boolean equations. The library, use, and entity statements are iden­
tical to those in Figure 4-12, so they are not repeated here. The dataflow descrip­
tion begins in line 9. The signals AO_n and Al_n are defined by signal 
assignments that apply the not operation to the input signal AO and Al, respec­
tively. In line 11, AO_n, Al_n, and EN are combined with an and operator to 
form DO. Dl, D2, and D3 are similarly defined in lines 12 through 14. Note that 
this dataflow description is much simpler than the structural description m 

Figure 4-12. • 

-- 4-to-1-Line Mux: Conditional Dataflow VHDL Description 

-- Using When-Else {See Table 3-10 for function table) 

library ieee; 

use ieee.std_logic_ll64.all; 

entity multiplexer_4_to_l_we is 

port {S : in std_logic_vector{l downto 0); 

I :  in std_logic_vector{3 downto 0); 

Y :  out std_logic); 

end multiplexer_4_to_l_we; 

architecture function_table of multiplexer_4_to_l_we is 
begin 

Y <= I{O) when S = "00" else 
I{l) when S = "01" else 
I{2) when S = "10" else 
I{3) when S = "11" else 
'X'; 

end function_table; 

D FIGURE 4-15 
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In the next two examples, we describe the 4-to-1-line multiplexer to illustrate 
two alternative forms of data flow description: when-else and with-select. 

� 4-10 VHDL for a 4-to-1-Line Multiplexer Using When-Else 

I In Figure 4-15, instead of using Boolean equation-like statements in the architec­
ture to describe the multiplexer, we use a when-else statement. This statement is a 
representation of the function table given as Table 3-10. Whens takes on a par­
ticular binary value, then a particular input I ( i) is assigned to output Y. When 
the value on s is O O, then Y is assigned I ( O ) . Otherwise, the else is invoked so 
that when the value on s is 01, then Y is assigned I ( 1) , and so on. In standard 
logic, each of the bits can take on 9 different values. So the pair of bits for s can 
take on 81 possible values, only 4 of which have been specified so far. In order to 
define Y for the remaining 77 values, the final else followed by x (unknown) is 
given. This assigns the value x to Y if any of these 77 values occurs on s. This out­
put value occurs only in simulation, however, since Y will always take on a 0 or 1 
value in an actual circuit. • 

� 4-11 VHDL for a 4-to-1-Line Multiplexer Using With-Select 

I With-select is a variation on when-else as illustrated for the 4-to-1-line multiplexer 
in Figure 4-16. The expression, the value of which is to be used for the decision, fol­
lows with and precedes select. The values for the expression that causes the 

--4-to-1-Line Mux: Conditional Dataflow VHDL Description 

Using with Select (See Table 3-10 for function table) 

library ieee; 

use ieee.std_logic_1164.all; 

entity multiplexer_4_to_l_ws is 
port (S in std_logic_vector(l downto 0); 

I : in std_logic_vector(3 downto 0); 

Y :  out std_logic); 

end multiplexer_4_to_l_ws; 

architecture function_table_ws of multiplexer_4_to_l_ws is 
begin 

with S select 
Y <= I(O) when II 00 II 

I 

I(l) when II 01 11 t 

I(2) when 11 10 II t 

I(3) when 11 11 11 t 

'x' when others; 
end function_table_ws; 

D FIGURE 4-16 
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-- 4-bit Adder: Hierarchical Dataflow/Structural 

-- (See Figures 4-4 and 4-5 for logic diagrams) 

library ieee; 

use ieee.std_logic_1164.all; 

entity half_adder is 

port (x, y : in std_logic; 

s, c :  out std_logic); 

end half_adder; 

architecture dataflow_3 of half_adder is 

begin 

s <= x xor y; 

c <= x and y; 

end dataflow_3; 

library ieee; 

use ieee.std_logic_1164.all; 

entity full_adder is 

port (x, y, z : in std_logic; 

s, c :  out std_logic); 

end full_adder; 

architecture struc_dataflow 3 of full_adder is 

component half_adder 

port(x, y : in std_logic; 

s, c : out std_logic); 

end component; 

signal hs, he, tc: std_logic; 

begin 

HAl: half_adder 

port map (x, y, hs, he); 

HA2: half_adder 

port map (hs, z, s, tc); 

c <= tc or he; 

end struc_dataflow_3; 

library ieee; 

use ieee.std_logic_1164.all; 

entity adder_4 is 

port(B, A :  in std_logic_vector(3 downto 0); 

CO : in std_logic; 

S : out std_logic_vector(3 downto 0); 

C4: out std_logic); 

end adder_4; 

D FIGURE 4-17 

Hierarchical Structural/Dataflow Description of 4-Bit Full Adder 
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architecture structural_4 of adder_4 is 
component full_adder 

port(x, y, z : in std_logic; 

s, c : out std_logic); 

end component; 

signal C: std_logic_vector(4 downto 0); 
begin 

BitO: full_adder 

port map (B ( 0) , A(O), C(O), s (0), 
Bitl: full_adder 

port map (B (1), A(l), C(l), s (1), 
Bit2: full_adder 

port map (B(2), A(2), C(2), s (2), 

Bit3: full_adder 

port map (B(3), A(3), C(3), s (3), 

c ( 0) <= CO; 

C4 <= C (4); 

end structural_4; 

D FIGURE 4-18 
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Hierarchical Structural/Dataflow Description of 4-Bit Full Adder (Continued) 

alternative assignments then follow when with each of the assignment-value pairs 
separated by commas. In the example, s is the signal, the value of which deter­
mines the value selected for Y. When s = 

11 O O 11, I ( O) is assigned to Y. When s = 

11 O l 11 , I ( 1 ) is assigned to Y and so on. ' x ' is assigned to Y when others, where 
others represents the 77 standard logic combinations not already specified. Note 
that when-else permits decisions on multiple distinct signals. For example, for the 
demultiplexer in Figure 3-21, the first when can be conditioned on input EN with 
the subsequent when's conditioned on input s. In contrast, the with-select can 
depend on only a single Boolean condition (e.g., either EN or s, but not both) . 
Also, for typical synthesis tools, when-else typically results in a more complex logi­
cal structure, since each of the decisions depends not only on the condition cur­
rently being evaluated, but also on all prior decisions as well. As a consequence, 
the structure that is synthesized takes into account this priority order, replacing the 
4 x 2 AND-OR by a chain of four 2-to-1 multiplexers. In contrast, there is no direct 
dependency between the decisions made in with-select. With-select produces a 
decoder and the 4 x 2 AND-OR gate. 

Thus far, all of the VHDL descriptions used have contained only a single 
entity. Descriptions that represent circuits using hierarchies have multiple entities, 
one for each distinct element of the hierarchy, as shown in the next example. 

� 4-12 Hierarchical VHDL for a 4-Bit Ripple Carry Adder 

I The example in Figure 4-17 and 4-18 uses three entities to build a hierarchical 
description of a 4-bit ripple carry adder. The style used for the architectures will be 
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-- 4-bit Adder: Behavioral Description 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

entity adder_4_b is 
port(B, A :  in std_logic_vector(3 downto 0); 

CO : in std_logic; 

S :  out std_logic_vector(3 downto 0); 
C4: out std_logic); 

end adder_4_b; 

architecture behavioral of adder_4_b is 
signal sum : std_logic_vector(4 downto 0); 
begin 

sum<= ('0' & A) + ('0' & B) + ("0000" & CO); 

C4 <= sum(4); 

S <= sum(3 downto 0); 
end behavioral; 

D FIGURE 4-19 

Behavioral Description of 4-Bit Adder 

a mix of structural and datatlow description. The three entities are a half adder, a 
full adder that uses half adders, and the 4-bit adder itself. The architecture of 
half_adder consists of two datatlow assignments, one for s and one for c. The 
architecture of full_adder uses half_adder as a component. In addition, 
three internal signals, hs , he, and tc, are declared. These signals are applied to 
two half adders and are also used in one datatlow assignment to construct the full 
adder in Figure 4-4. In the adder_ 4 entity, four full-adder components are simply 
connected together using the signals given in Figure 4-5. 

Note that co and C4 are an input and an output, respectively, but c ( 0) 
through c ( 4 ) are internal signals (i.e., neither inputs nor outputs). c ( O ) is 
assigned co and C4 is assigned c ( 4). The use of c ( 0) and c ( 4) separately from 
co and C4 is not essential here, but is useful to illustrate a VHDL constraint. 
Suppose we wanted to add overflow detection to the adder as shown in Figure 4-8. 
If c ( 4) is not defined separately, then one might attempt to write 

V <= C(3) xor C4 

In VHDL, this is incorrect. An output cannot be used as an internal signal. Thus, it 
is necessary to define an internal signal to use in place of C4 (e.g., c ( 4) ) giving 

V <= C(3) xor C(4) • 

Behavioral Description 

The 4-bit adder provides an opportunity to illustrate description of circuits at lev­
els higher than the logic level. Such levels of description are referred to as the 
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behavioral level or the register transfer level. We will specifically study register 
transfers in Chapter 7. Without studying register transfers, however, we can still 
show a behavioral-level description. 

� 4-13 Behavioral VHDL for a 4-Bit Ripple Carry Adder 

I A behavioral description for the 4-bit adder is given in Figure 4-19. In the architec­
ture of the entity adder_4_b, the addition logic is described by a single statement 
using+ and&. The + represents addition and the & represents an operation called 
concatenation. A concatenation operator combines two signals into a single signal 
having its number of bits equal to the sum of the number of bits in the original sig­
nals. In the example, 'O ' & A represents the signal vector 

' 0 ' A(3) A(2) A(l) A(O) 

with 1 + 4 = 5 signals. Note that 'O ',which appears on the left in the concatena­
tion expression, appears on the left in the signal listing. The inputs to the addition 
are all converted to 5-bit quantities for consistency, since the output including C4 is 
five bits. This conversion is not essential, but is a safe approach. 

Since+ cannot be performed on the std_logic type, we need an additional 
package to define addition for the std_logic type. In this case, we are using 
std_logic_ari th, a package present in the ieee library. Further, we wish to 
specifically define the addition to be unsigned, so we use the unsigned extension. 
Also, concatenation in VHDL cannot be used on the left side of an assignment 
statement. To obtain C4 and S as the result of the addition, a 5-bit signal sum is 
declared. The signal sum is assigned the result of the addition including the carry 
out. Following are two additional assignment statements which split sum into out­
puts C4 and s. • 

This completes our introduction to VHDL for combinational circuits. We will 
continue with more on VHDL by presenting means for describing sequential cir­
cuits in Chapter 5. 

4-8 HDL REPRESENTATIONS-VERILOG 

Since an HDL is used for describing and designing hardware, it is very important 
to keep the underlying hardware in mind as you write in the language. This is par­
ticularly critical if your language description is to be synthesized. For example, if 
you ignore the hardware that will be generated, it is very easy to specify a large 
complex gate structure by using x (multiply), when a much simpler structure using 
only a few gates is all that is needed. For this reason, initially, we emphasize 
describing detailed hardware with Verilog, and finishing with more abstract, 
higher-level descriptions. 

Selected examples in this chapter are useful for introducing Verilog as an alterna­
tive means for representing detailed digital circuits. First, we show a structural Verilog 
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II 2-to-4-Line Decoder with Enable: Structural Verilog Desc. 

II (See Figure 3-21 for logic diagram) 

module decoder_2_to_4_st_v(EN, AO, Al, DO, Dl, D2, D3); 

input EN, AO, Al; 

output DO, Dl, D2, D3; 

wire AO_n, Al_n, NO, Nl, N2, N3; 

not 

go (AO_n, AO), 

gl (Al_n, Al); 

and 

g3 (NO, AO_n, Al_n), 

g4 (Nl, AO, Al_n) , 

g5 (N2, AO_n, Al), 

g6 (N3 I AO I Al) I 

g7(DO, NO, EN), 

g8(Dl, Nl, EN), 

g9 (D2 I N2 I EN) I 

gl0(D3, N3, EN); 

endmodule 

D FIGURE 4-20 

Structural Verilog Description of 2-to-4-Line Decoder 
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description that replaces the schematic for the 2-to-4-line decoder with enable given in 
Figure 3-21. This example, and one using the 4-to-1-line multiplexer in Figure 3-26, illus­
trate many of the fundamental concepts of Verilog. We then present higher-level func­
tional and behavioral Verilog descriptions for these circuits that further illustrate Verilog 
concepts. 

I EXAMPLE 4-14 Structural Verilog for a 2-to-4-Line Decoder 

The Verilog description for the 2-to-4-line decoder circuit from Figure 3-21 is given 
in Figure 4-20. This description will be used to introduce a number of general Ver­
ilog features, as well as to illustrate structural circuit description. 

The text between two slashes I I and the end of a line as shown in lines 1 and 
2 of Figure 4-20 is interpreted as a comment. For multiline comments, there is an 
alternative notation using a I and *: 

/* 2-to-4-Line Decoder with Enable: Structural Verilog Desc. 

(See Figure 3-21 for logic diagram)*/ 

To assist in discussion of the Verilog description, comments providing line numbers 
have been added on the right. As a language, Verilog has a syntax that describes 
precisely the valid constructs that can be used in the language. This example will 
illustrate many aspects of the syntax. In particular, note the use of commas and 
colons in the description. Commas ( , ) are typically used to separate elements of a 
list and semicolons ( ; ) are used to terminate Verilog statements. 
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Line 3 begins the declaration of a module, which is the fundamental building 
block of a Verilog design. The remainder of the description defines the module, ending 
in line 20 with endm.odule. Note that there is no ; after endm.odule. Just as for a 
symbol in a schematic, we need to give the design a name and to define its inputs and 
outputs. This is the function of the module statement in line 3 and the input and output 
declarations that follow. The words module, input, and output are keywords in 
Verilog. Keywords, which we show in bold type, have a special meaning and cannot be 
used as names of objects such as modules, inputs, outputs, or wires. The statement 
module decoder_2_to_4_st_v declares that a design or design part exists with 
the name decoder_2_to_4_st_v. Further, Verilog names are case sensitive (i.e., 
names are distinguished by the use of uppercase or lowercase letters). 
DECODER_2_4_st_v, Decoder_2_4_st_v, and decoder_2_4_st_V are all 
distinct names. 

Just as we would do for a symbol in a schematic, we give the names of the decoder 
inputs and outputs in the module statement. Next, an input declaration is used to define 
which of the names in the module statement are inputs. For the example design, there 
are three input signals, EN, AO, and Al. The fact that these are inputs is denoted by the 
keyword input. Similarly, an output declaration is used to define the outputs. DO, Dl, 

D2, and D3 are denoted as outputs by the keyword output. 

Inputs and outputs as well as other binary signal types in Verilog can take on 
one of four values. The two obvious values are 0 and 1. Added are x to represent 
unknown values and z to represent high-impedance values. on the outputs of 3-state 
logic. Verilog also has strength values that, when combined with the four values 
given, provide 120 possible signal states. Strength values are used in electronic circuit 
modeling, however, so will not be considered here. 

STRUCTURAL DESCRIPTION Next, we want to specify the function of the decoder. In 
this case, we use a structural description that is equivalent to the circuit schematic 
given in Figure 3-21. Note that the schematic is made up of gates. Verilog provides 
14 primitive gates as keywords. Of these, we are interested in eight for now: buf, 

not, and, or, nand, nor, xor and xnor. buf and not have single inputs, and all 
other gate types may have from two to any integer number of inputs. buf is a 
buffer, which has the function z = x, with x as the input and z as the output. It is as 
an amplifier of electronic signals that can be used to provide greater fan-out or 
smaller delays. xor is the exclusive-OR gate and xnor is the exclusive-NOR gate, 
the complement of the exclusive-OR. In our example, we will use just two gate 
types, not and and, as shown in lines 8 and 11 of Figure 4-20. 

Before specifying the interconnection of the gates, which is the same as a cir­
cuit netlist, we need to name all of the nets in the circuit. The inputs and outputs 
already have names. The internal nets are the outputs of the two inverters and of 
the four leftmost AND gates in Figure 3-21. In line 7, these nets are declared as 
wires by use of the keyword wire. Names AO_n and Al_n are used for the 
inverter outputs and NO, Nl, N2, and N3 for the outputs of the AND gates. In 
Verilog, wire is the default net type. Notably, input and output ports have the 
default type wire. 
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II 4-to-1-Line Multiplexer: Structural Verilog Description 

II (See Figure 3-26 for logic diagram) 

module multiplexer_4_to_l_st_v(S, I, Y); 

input [1: 0] S; 

input [3:0] I ;  

output Y; 

wire [1:0] not_S; 

wire [0:3] D, N; 

not 

and 

gnO(not_S[O], S[O]), 

gnl(not_S[l], S[l]); 

gO(D[O], not_S[l], not_S[O]), 

gl(D[l], not_S[l], S[O]), 

g2(D[2], S[l], not_S[O]), 

g3(D[3], S[l], S[O]); 

gO (N [ 0] I D [ 0] I 
I [ 0] ) I 

gl (N [ 1] I D [ 1] I 
I [ 1] ) I 

g2 (N [ 2] I D [ 2] I 
I [ 2] ) I 

g3 (N [ 3] I D [ 3] I 
I [ 3] ) ; 

or go(Y, N[O], N[l], N[2], N[3]); 

endmodule 

D FIGURE 4-21 
Structural Verilog Description of 4-to-1-Line Multiplexer 
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Following the declaration of the internal signals, the circuit described con­
tains two inverters and eight 2-input AND gates. A statement consists of a gate 
type followed by a list of instances of that gate type separated by commas. Each 
instance consists of a gate name and, enclosed in parentheses, the gate output and 
inputs separated by commas, with the output given first. The first statement begins 
on line 8 with the not gate type. Following is inverter gO with AO_n as the output 
and AO as the input. To complete the statement, gl is similarly described. Lines 11 
through 19 give the remaining eight gates and the signals connected to their out­
puts and inputs, respectively. For example, in line 14, an instance of a 2-input AND 
gate named g5 is defined. It has output N2 and inputs AO_n and Al. The module is 
completed with the keyword endmodule. • 

� 4-15 Structural Verilog for a 4-to-1-Line Multiplexer 

I In Figure 4-21, the structural description of the 4-to-1-line multiplexer from Figure 3-26 
illustrates the Verilog concept of a vector. In lines 4 and 5, instead of specifying s 

and I as single bit wires, they are specified as multiple-bit wires called vectors. The 
bits of a vector are named by a range of integers. This range is given by maximum 
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and minimum values. By specifying these two values, we specify the width of the 
vector and the names of each of its bits. Vector ranges are illustrated in lines 4, 5, 8, 
and 9 of Figure 4-21. input [ 1: 0 J s indicates that s is a vector with a width of 
two, with the most significant bit numbered 1 and least significant bit numbered 0. 

The components of s are s [ 1 J and s [ 0 J • input [ 3 : 0 J I declares I as a 4-bit 
input, with the most significant bit numbered 3 and least significant bit numbered 0. 

wire [ 0: 3 J D is also a 4-bit vector representing the four internal wires between 
the leftmost and rightmost AND gates, but in this case, the most significant bit is 
numbered 0 and the least significant bit is numbered 3. Once a vector has been 
declared, then the entire vector or its subcomponents can be referenced. For exam­
ple, s refers to the two bits of s, and s [ 1 J refers to the most significant bit of s. N 

refers to all four bits of N, and N [ 1: 2 J refers to the middle two bits of N. These 
types of references are used in specifying the output and inputs in instances of the 
gates in lines 11 through 25. Otherwise, this Verilog description is similar in struc­
ture to that for the 2-to-4-line decoder, except that the schematic represented is 
that in Figure 3-26. • 

DATAFLOW DESCRIPTION A dataflow description is a form of Verilog description 
that is not based on structure, but rather on function. A dataflow description is 
made up of dataflow statements. For the first dataflow description, Boolean equa­
tions are used rather than the equivalent of a logic schematic. The Boolean equa­
tions given are executed in parallel whenever one of the values on the right-hand 
side of the equation changes. 

EXAMPLE 4-16 Dataflow Verilog for a 2-to-4-Line Decoder 

In Figure 4-22, a dataflow description is given for the 2-to-4-line decoder. This par­
ticular dataflow description uses the assignment statement consisting of the key­
word assign followed, in this case, by a Boolean equation. In such equations, we 

II 2-to-4-Line Decoder with Enable: Dataflow Verilog Desc. 

II (See Example 3-21 for logic diagram) 

module decoder_2_to_4_df_v(EN, AO, Al, DO, Dl, D2, D3); 

input EN, AO, Al; 

output DO, Dl, D2, D3; 

assign DO = EN & -Al & -AO; 

assign Dl = EN & -Al & AO; 

assign D2 = EN & Al & -AO; 

assign D3 = EN & Al & AO; 

endmodule 

D FIGURE 4-22 
Dataflow Verilog Description of 2-to-4-Line Decoder 
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II 4-to-1-Line Multiplexer: Dataflow Verilog Description 

II (See Figure 3-26 for logic diagram) 

module multiplexer_4_to_l_df_v(S, I, Y); 
input [1:0] S; 

input [3:0] I; 

output Y; 

assign Y = (- S[l] & - S[O] & I[O]) I 
I (S[l] & - S[O] & I[2]) 

(- S[l] & S[O] & I[l]) 

(S[l] & S[O] & I[3]); 

endmodule 

D FIGURE 4-23 

Dataflow Verilog Description of 4-to-1-Line Multiplexer Using a Boolean Equation 

use the bitwise Boolean operators given in Table 4-4. In line 7 of Figure 4-22, EN, 

D TABLE4-4 

Bitwise Verilog Operators 

Operation Operator 

Bitwise NOT 
& Bitwise AND 

I Bitwise OR 
A Bitwise XOR 

A_ or _A Bitwise XNOR 

-AO, and -Al are combined with an & operator. This & combination is assigned to 
the output DO. Dl, D2, and D3 are similarly defined in lines 8 through 10. • 

In the next three examples, we describe the 4-to-1-line multiplexer to illus­
trate three alternative forms of data flow description: Boolean equations, binary 
combinations as conditions, and binary decisions as conditions. 

� 4-17 Dataftow Verilog for a 4-to-1-Line Multiplexer 

I In Figure 4-23, a single Boolean equation for Y describes the multiplexer. This 
equation is in sum-of-products form with & for AND and I for OR. Components 
of the s and I vectors are used as its variables. • 

� 4-18 Verilog for a 4-to-1-Line Multiplexer Using Combinations 

I The description in Figure 4-24 resembles the function table given as Table 3-10 by 
using a conditional operator on binary combinations. If the logical value within the 
parentheses is true, then the value before the : is assigned to the independent vari­
able, in this case, Y. If the logical value is false, then the value after the : is assigned. 

www.Ebook777.com
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II 4-to-1 Line Multiplexer: Dataflow Verilog Description 

II (See Table 3-9 for function table) 

module multiplexer_4_to_l_cf_v(S, I, Y); 

input [1:0] S; 

input [3:0] I; 

output Y; 

assign Y = (S 

(S 

(S 

(S 

endmodule 

D FIGURE 4-24 

2 'bOO) ? I[O] 

2 'b01) ? I [1] 

2 'blO) ? I[2] 

2 'bll) ? I[3] l'bx 

Conditional Dataflow Verilog Description of 4-to-1-Line Multiplexer Using Combinations 

The logical equality operator is denoted by ==.Suppose we consider condition s 
== 2 'bOO. 2 'bOO represents a constant. The 2 specifies that the constant contains 
two digits, b that the constant is given in binary, and O O gives the constant value. 
Thus, the expression has value true if vectors is equal to 00; otherwise, it is false. 
If the expression is true, then I [ O J is assigned to Y. If the expression is false, then 
the next expression containing a ? is evaluated, and so on. In this case, for a con­
dition to be evaluated, all conditions preceding it must evaluate to false. If none of 
the decisions evaluate to true, then the default value 1 'bx is assigned to Y. Recall 
that default value x represents unknown. • 

� 4-19 Verilog for a 4-to-1-Line Multiplexer Using Binary Decisions 

I The final form of dataflow description is shown in Figure 4-25. It is based on condi­
tional operators used to form a decision tree, which corresponds to a factored 
Boolean expression. In this case, ifs [ 1 J is 1, thens [OJ is evaluated to determine 
whether Y is assigned I [ 3 J or assigned I [ 2 J. Ifs [ 1 J is 0, then s [OJ is evaluated 
to determine whether Y is assigned I [ 1 J or I [ 0 J • For a regular structure such as a 

II 4-to-1-Line Multiplexer: Dataflow Verilog Description 

II (See Table 3-10 for function table) 

module multiplexer_4_to_l_tf_v(S, I, Y); 

input [1:0] S; 

input [3:0] I; 

output Y; 

assign y = S[l] ? (S[O] ? I[3] : I[2]) 

(S[O] ? I[l] : I[O]) 

endmodule 

D FIGURE 4-25 
Conditional Dataflow Verilog Description of 4-to-1-Line Multiplexer Using Binary Decisions 



194 0 CHAPTER 4 I ARITHMETIC FUNCTIONS AND HDLS 

II 4-bit Adder: Hierarchical DataflowlStructural 

II (See Figures 5-4 and 5-5 for logic diagrams) 

module half_adder_v(x, y, s, c); 

input x, y; 

output s, c; 

assign s = x A y; 

assign c = x & y; 

endmodule 

module full_adder_v(x, y, z, s, c); 

input x, y, z; 

output s, c; 

wire hs, he, tc; 

half_adder_v HAl (x, y, hs, he), 

HA2(hs, z, s, tc); 

assign c = tc I he; 

endmodule 

module adder_4_v(B, A, CO, S, C4); 

input[3:0] B, A; 

input CO; 

output[3:0] S; 

output C4; 

wire[3:1] C; 

full_adder_v BitO(B[O], A[O], CO, S[O], C[l]), 

D FIGURE 4-26 
Hierarchical Datafiow/Structural Verilog Description of 4-Bit Adder 

multiplexer, this approach, based on two-way (binary) decisions, gives a simple 
dataflow expression. • 

Thus far, all of the descriptions used have contained only a single module. 
Descriptions that represent circuits using hierarchy have multiple modules, one for 
each distinct element of the hierarchy, as shown in the next example. 
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EXAMPLE 4-20 Hierarchical Verilog for a 4-Bit Ripple Carry Adder 

The description in Figure 4-26 uses three modules to represent a hierarchical 
design for a 4-bit ripple carry adder. The style used for the modules will be a mix of 
structural and dataflow description. The three modules are a half adder, a full 
adder built around half adders, and the 4-bit adder itself. 

The half_adder module consists of two dataflow assignments, one for s 

and one for e. The f ul l_adder module uses the hal f_adder as a component as 
in Figure 4-4. In the full_adder, three internal wires, hs, he, and te, are 
declared. Inputs, outputs, and these wire names are applied to the two half adders, 

and te and he are ORed to form carry e. Note that the same names can be used 
on different modules (e.g., x, y, s, and e are used in both the hal f_adder and 

ful l_adder ). 
In the adder_ 4 module, four full adders are simply connected together using 

the signals given in Figure 4-5. Note that CO and C4 are an input and an output, 
respectively, but c ( 3) through c ( 1) are internal signals (i.e., neither inputs nor 
outputs). • 

Behavioral Description 

The 4-bit adder provides an opportunity to illustrate description of circuits at 
levels higher than the logic level. Such levels of description are referred to as the 
behavioral level or the register transfer level. We will specifically study register 
transfers in Chapter 7. Without studying register transfers, however, we can still 
show the behavioral level description for the 4-bit adder. 

EXAMPLE 4-21 Behavioral Verilog for a 4-Bit Ripple Carry Adder 

Figure 4-27 shows the Verilog description for the 4-bit adder. In module 
adder_ 4_b_ v, the addition logic is described by a single statement using + and 
{}.The + represents addition and the {} represents an operation called concate­

nation. The operation+ performed on wire data types is unsigned. Concatenation 
combines two signals into a single signal having its number of bits equal to the 
sum of the number of bits in the original signals. In the example, { C4, s} repre­
sents the signal vector 

C4 S[3] S[2] S[l] S[O] 

with 1+4 = 5 signals. Note that C4, which appears on the left in the concatenation 
expression, appears on the left in the signal listing. • 
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II 4-bit Adder: Behavioral Verilog Description 

module adder_4_b_v(A, B, CO, S, C4); 

input [3: OJ A, B; 

input CO; 

output[3:0] S; 
output C4; 

assign {C4, S} = A + B + CO; 

endmodule 

D FIGURE 4-27 
Behavioral Description of Four-Bit Full Adder Using Verilog 

This completes our introduction to Verilog for combinational circuits. We will 
continue with more on Verilog by presenting means for describing sequential cir­
cuits in Chapter 5. 

4-9 CHAPTER SUMMARY 

This chapter introduced combinational circuits for performing arithmetic. The 
implementation of binary adders was treated in detail. The subtraction of unsigned 
binary numbers using 2s complement was presented, as was the representation of 
signed binary numbers and their addition and subtraction. The adder-subtractor, 
developed for unsigned binary, was found to apply directly to the addition and sub­
traction of signed 2s complement numbers as well. 

Additional arithmetic operations introduced included incrementing, decre­
menting, multiplication and division by a constant, and shifting. The implementations 
for these operations were obtained by a design technique we called contraction. 
Zero fill and sign extension of operands were also introduced. 

The last three sections of the chapter provided a general introduction to hard­
ware description languages and introduced two languages, VHDL and Verilog. 
Combinational circuits were used to illustrate structural, functional, and behav­
ioral level descriptions for the two languages. 
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PROBLEMS 

The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
> a solution is available on the Companion Website for the text. 

4-1. Design a combinational circuit that forms the 2-bit binary sum S1S0 of two 
2-bit numbers A1A0 and B1B0 and has both a carry input C0 and carry 
output Cz. Design the entire circuit implementing each of the three outputs 
with a two-level circuit plus inverters for the input variables. Begin the 
design with the following equations for each of the two bits of the adder: 

Si = 
Ai BiCi + AiBiCi + AiBi Ci+ AiBiCi 

Ci+l = AiBi + AiCi + BiCi 

4-2. *The logic diagram of the first stage of a 4-bit adder, as implemented in 
integrated circuit type 74283, is shown in Figure 4-28. Verify that the circuit 
implements a full adder. 

4-3. *Obtain the ls and 2s complements of the following unsigned binary numbers: 
10011100, 10011101, 10101000, 00000000, and 10000000. 

4-4. Perform the indicated subtraction with the following unsigned binary numbers 
by taking the 2s complement of the subtrahend: 
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Bo ----+---1 
Ao -----+---t 

D FIGURE 4-28 

Circuit for Problems 4-2, 4-27, and 4-41 

(a) 11010 - 10001 

(b) 11110 - 1110 

(c) 1111110 - 1111110 

(d) 101001 - 101 

4-5. Repeat Problem 4-4, assuming the numbers are 2s complement signed 
numbers. Use extension to equalize the length of the operands. Indicate 
whether overflow occurs during the complement operations for any of the 
given subtrahends. Indicate whether overflow occurs overall for any of the 
given subtractions. 

4-6. *Perform the arithmetic operations ( +36) + (-24) and (-35) - (-24) in 
binary using signed 2s complement representation for negative numbers. 

4-7. The following binary numbers have a sign in the leftmost position and, if nega­
tive, are in 2s complement form. Perform the indicated arithmetic operations 
and verify the answers. 

(a) 100111 + 111001 

(b) 001011 + 100110 

(c) 110001 - 010010 

(d) 101110 - 110111 

Indicate whether overflow occurs for each computation. 

4-8. +Design two versions of the combinational circuit whose input is a 4-bit 
number and whose output is the 2s complement of the input number, for 
each of the following cases using AND, OR, and NOT gates: 

(a) The circuit is a simplified two-level circuit, plus inverters as needed for 
the input variables. 

(b) The circuit is made up of four identical two-input, two-output cells, one 
for each bit. The cells are connected in cascade, with lines similar to a 
carry between them. The value applied to the rightmost carry bit is 1. 
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(c) Calculate the gate input costs for the designs in (a) and (b) and 
determine which is the better design in terms of gate input cost. 

4-9. Use contraction beginning with a 4-bit adder with carry out to design a 4-bit 
increment-by-3 circuit with carry out that adds the binary value 0011 to its 4-
bit input. The function to be implemented is S =A + 0011. 

4-10. Use contraction beginning with an 8-bit adder-subtractor without carry out 
to design an 8-bit circuit without carry out that increments its input by 
00000010 for input S = 0 and decrements its input by 00000010 for input S = 1. 
Perform the design by designing the distinct 1-bit cells needed and indicating 
the type of cell use in each of the eight bit positions. 

4-11. Design a combinational circuit that compares two 4-bit unsigned numbers A 
and B to see whether B is greater than A. The circuit has one output X, so 
thatX= 1 ifA < B andX= 0 ifA�B. 

4-12. +Repeat Problem 4-11 by using three-input, one-output circuits, one for 
each of the four bits. The four circuits are connected together in cascade by 
carry-like signals. One of the inputs to each cell is a carry input, and the 
single output is a carry output. 

4-13. Repeat Problem 4-11 by applying contraction to a 4-bit subtractor and using 
the borrow out as X. 

4-14. Design a combinational circuit that compares 4-bit unsigned numbers A and 
B to see whether A= B or A> B. Use an iterative circuit as in Problem 4-12. 

4-15. +Design a 5-bit signed-magnitude adder-subtractor. Divide the circuit for 
design into (1) sign generation and add-subtract control logic, (2) an unsigned 
number adder-subtractor using 2s complement of the minuend for 
subtraction, and (3) selective 2s complement result correction logic. 

4-16. *The adder-subtractor circuit of Figure 4-7 has the following values for 
input select S and data inputs A and B: 

s A B 

(a) 0 0111 0111 

(b) 1 0100 0111 

(c) 1 1101 1010 

(d) 0 0111 1010 

(e) 1 0001 1000 

Determine, in each case, the values of the outputs S3, S2, S1, S0, and C4• 
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-- Combinational Circuit 1: Structural VHDL Description 

library ieee, lcdf_vhdl; 

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; 

entity comb_ckt_l is 

port(xl, x2, x3, x4 : in std_logic; 

f :  out std_logic); 

end comb_ckt_l; 

architecture structural_l of comb_ckt_l is 

component NOTl 

port(inl: in std_logic; 

outl: out std_logic); 

end component; 

component AND2 

port(inl, in2 in std_logic; 

outl: out std_logic); 

end component; 

component OR3 

port(inl, in2, in3 : in std_logic; 

outl: out std_logic); 

end component; 

signal nl, n2, n3, n4, nS, n6 : std_logic; 

begin 

gO: NOTl port map (inl => xl, outl => nl); 

gl: NOTl port map (inl => n3, outl => n4); 

g2: AND2 port map (inl => x2, in2 => nl, 

outl => n2); 

g3: AND2 port map (inl => x2, in2 => x3, 

outl => n3); 

g4: AND2 port map (inl => x3, in2 => x4, 

outl => nS); 

gS: AND2 port map (inl => xl, in2 => n4, 

outl => n6); 

g6: OR3 port map (inl => n2, in2 => nS, 

in3 => n6, outl => f); 

end structural_l; 

D FIGURE 4-29 

VHDL for Problem 4-20 

All HDL files for circuits referred to in the remaining problems are available in 
ASCII form for simulation and editing on the Companion Website for the text. A 
VHDL or Verilog compiler/simulator is necessary for the problems or portions of 
problems requesting simulation. Descriptions can still be written, however, for 
many problems without using compilation or simulation. 



Problems D 201 

F 

D FIGURE 4-30 
Circuit for Problems 4--21, 4-24, 4-36, and 4-38 

4-17. Compile and simulate the 2-to-4-line decoder with enable in Figure 4-12 for 
sequence 000, 001, 010, 011, 100, 101, 110, 111 on E_n, AO, Al. Verify that 
the circuit functions as a decoder. You will need to compile library 
lcdf_ vhdl. func_prims first, since it is used in the simulation. 

4-18. Rewrite the VHDL given in Figure 4-12 for the 2-to-4-line decoder using (1) 
std_logic_ vector notation instead of std_logic notation for A and D_n and (2) 
implicit specification of the component input and output names by their 
order in package func_prims in library lcdf_vhdl given in the 
Companion Website. See Figure 4-13 and accompanying text for these 
concepts. Compile and simulate the resulting file as in Problem 4-17. 

4-19. Compile and simulate the 4-to-1-line multiplexer in Figure 4-13 for the 
sequence of all 16 combinations of 00, 10, 01, 11 on s and 1000, 0100, 0010, 0001 
on D. You will need to compile library lcdf_vhdl. func_prims first, since it 
is used in the simulation. Verify that the circuit functions as a multiplexer. 

4-20. *Find a logic diagram that corresponds to the VHDL structural description 
in Figure 4-29. Note that complemented inputs are not available. 

4-21. Using Figure 4-13 as a framework, write a structural VHDL description of 
the circuit in Figure 4-30. Replace x, Y, and z with x ( 0: 2). Consult package 
func_prims in library lcdf_vhdl for information on the various gate 
components. Compile func_prims and your VHDL, and simulate your 
VHDL for all eight possible input combinations to verify your description's 
correctness. 

4-22. Using Figure 4-12 as a framework, write a structural VHDL description of 
the circuit in Figure 4-31. Consult package func_prims in library 
1 cdf _ vhdl for information on the various gate components. Compile 
func_prims and your VHDL, and simulate your VHDL for all 16 possible 
input combinations to verify your description's correctness. 

4-23. Find a logic diagram representing minimum two-level logic needed to 
implement the VHDL dataflow description in Figure 4-32. Note that 
complemented inputs are available. 
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D FIGURE 4-31 

Circuit for Problems 4-22 and 4-35 

x 

y 

4-24. *Write a dataflow VHDL description for the circuit in Figure 4-30 by using 
the Boolean equation for the output F. 

4-25. +Write a dataflow VHDL description for the priority encoder in Figure 3-24 
using the "when-else" dataflow concept from Figure 4-15. Compile and 
simulate your description with a set of input vectors that are a good test for 
the priority function it performs. 

4-26. Write a dataflow VHDL description for an 8-to-1-line multiplexer using the 
"with-select" dataflow concept from Figure 4-16. Compile and simulate your 
description with a set of input vectors that are a good test for the selection 
function it performs. 

4-27. Using Figure 4-13 as a guide, write a structural VHDL description for the 
full-adder circuit in Figure 4-28. Compile and simulate your description. 
Apply all eight input combinations to check the correction function of your 
description. 

-- Combinational Circuit 2: Dataflow VHDL Description 

-library ieee; 

use ieee.std_logic_1164.all; 

entity cornb_ckt_2 is 

port(a, b, c, d, a_n, b_n, c_n, d_n: in std_logic; 

f, g :  out std_logic); 

-- a_n, b_n, ... are complements of a, b, ... , respectively. 

end cornb_ckt_2; 

architecture dataflow_l of cornb_ckt_2 is 

begin 

f <= b and (a or (a_n and c)) or (b_n and c and d_n); 

g <= b and (c or (a_n and c_n) or (c_n and d_n)); 

end dataflow_l; 

D FIGURE 4-32 

VHDL for Problem 4-23 
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4-28. Compile and simulate the 4-bit adder in Figure 4-17 and 4-18. Apply 
combinations that check out the rightmost full adder for all eight input 
combinations; this also serves as a check for the other full adders. Also, 
apply combinations that check the carry chain connections between all full 
adders by demonstrating that a 0 and a 1 can be propagated from CO to C4. 

4-29. *Compile and simulate the behavioral description of the 4-bit adder in 
Figure 4-19. Assuming a ripple carry implementation, apply combinations 
that check out the rightmost full adder for all eight input combinations. Also 
apply combinations that check the carry chain connections between all full 
adders by demonstrating that a 0 and a 1 can be propagated from CO to C4. 

4-30. +Using Figure 4-19 as a guide and a "when-else" on s from Figure 4-15, 
write a high-level behavior VHDL description for the adder-subtractor in 
Figure 4-8 (see Figure 4-7 for details) . Compile and simulate your 
description. Assuming a ripple carry implementation, apply combinations 
that check out one of the full adder-subtractor stages for all 16 possible 
input combinations. Also, apply combinations to check the carry chain 
connections in between the full adders by demonstrating that a 0 and a 1 can 
be propagated from CO to C4. Check the overflow signals as well. 

4-31. *Compile and simulate the 2-to-4-line decoder Verilog description in 
Figure 4-20 for sequence 000, 001, 010, 011, 100, 101, 110, 111 on E, AO, Al. 

Verify that the circuit functions as a decoder. 

4-32. Rewrite the Verilog description given in Figure 4-20 for the 2-to-4-line 
decoder using vector notation for inputs, outputs, and wires. See Figure 4-21 
and accompanying text for these concepts. Compile and simulate the 
resulting file as in Problem 4-31. 

4-33. Compile and simulate the 4-to-1-line multiplexer in Figure 4-21 for the 
sequence of all 16 combinations of 00, 10, 01, 11 on s and 1000, 0100, 0010, 
0001 on D. Verify that the circuit functions as a multiplexer. 

4-34. *Find a logic diagram that corresponds to the Verilog structural description 
in Figure 4-33. Note that complemented inputs are not available. 

4-35. Using Figure 4-20 as a framework, write a structural Verilog description of 
the circuit in Figure 4-31. Compile and simulate your Verilog for all 16 
possible input combinations to verify your description's correctness. 

4-36. Using Figure 4-33 as a framework, write a structural Verilog description of 
the circuit in Figure 4-30. Replace x, Y, and z with input [ 2 : 0] x. Compile 
and simulate your Verilog for all eight possible input combinations to verify 
your description's correctness. 

4-37. Find a logic diagram representing minimum 2-level logic needed to 
implement the Verilog dataflow description in Figure 4-34. Note that 
complemented inputs are available. 
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II Combinational Circuit 1: Structural Verilog Description 

module comb_ckt_l(xl, x2, x3, x4,f); 

input xl, x2, x3, x4; 

output f; 

wire nl, n2, n3, n4, n5, n6; 

not 
go(nl, xl), 

gl (n4, n3) ; 

and 

or 

g2 ( n2 , x2 , nl) , 

g3 (n3, x2, x3) , 

g4(n5, x3, x4),); 

g5(n6, xl, n4),); 

g6(f, n2, n5, n6), 

endmodule 

D FIGURE 4-33 
Verilog for Problems 4-34 and 4-36 

4-38. *Write a dataflow Verilog description for the circuit in Figure 4-30 by using 
the Boolean equation for the output F and using Figure 4-23 as a model. 

4-39. By using the conditional dataflow concept from Figure 4-24, write a Verilog 
dataflow description for an 8-to-1-line multiplexer. Compile and simulate 
your description with a set of input vectors that are a good test for the 
selection function it performs. 

4-40. +Write a dataflow description for the priority encoder in Figure 3-24 using 
the binary decision dataflow concept from Figure 4-25. Compile and 
simulate your description with a set of input vectors that are a good test for 
the priority function it performs. 

II Combinational Circuit 2: Dataflow Verilog Description 

module comb_ckt_l (a, b, c, d, a_n, b_n, c_n, d_n, f, g); 

II a_n, b_n, ... are complements of a, b, ... , respectively. 

input a, b, c, d, a_n, b_n, c_n, d_n; 

output f, g; 

assign f = b &: (a I (a_n &: c)) I (b_n &: c &: d_n); 

assign g = b &: (c I (a_n &: c_n) I (c_n &: d_n)); 

endmodule 

D FIGURE 4-34 
Verilog for Problem 4-37 
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4-41. Using Figure 4-21 as a guide, write a structural Verilog description for the 
full-adder circuit in Figure 4-28. Compile and simulate your description. 
Apply all eight input combinations to check the correction function of your 
description. 

4-42. Compile and simulate the 4-bit adder in Figure 4-26. Apply combinations 
that check out the rightmost full adder for all eight input combinations; this 
also serves as a check for the other full adders. Also, apply combinations that 
check the carry chain connections between all full adders by demonstrating 
that a 0 and a 1 can be propagated from co to C4.

4-43. *Compile and simulate the behavioral description of the 4-bit adder in 
Figure 4-27. Assuming a ripple carry implementation, apply all eight input 
combinations to check out the rightmost full adder. Also, apply combinations 
to check the carry chain connections between all full adders by demonstrat­
ing that a 0 and a 1 can be propagated from co to C4.

4-44. Using Figure 4-27 as a guide and a "binary decision" on s from Figure 4-25, 
write a high-level behavior Verilog description for the adder-subtractor in 
Figure 4-7. Compile and simulate your description. Assuming a ripple carry 
implementation, apply input combinations to your design that will (1) cause 
all 16 possible input combinations to be applied to the full adder-subtractor 
stage for bit 2, and (2) simultaneously cause the carry output of bit 2 to 
appear at one of your design's outputs. Also, apply combinations that check 
the carry chain connections between all full adders by demonstrating that a 0
and a 1 can be propagated from co to C4.
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SEQUENTIAL 
CIRCUITS 

T
o this point, we have studied only combinational logic. Although such logic is 
capable of interesting operations, such as addition and subtraction, the 
performance of useful sequences of operations using combinational logic 

alone requires cascading many structures together. The hardware to do this is very 
costly and inflexible. In order to perform useful or flexible sequences of operations, 
we need to be able to construct circuits that can store information between the 
operations. Such circuits are called sequential circuits. This chapter begins with an 
introduction to sequential circuits, which is followed by a study of the basic 
elements for storing binary information, called latches and flip-flops. We distinguish 
flip-flops from latches and study various types of each. We then analyze sequential 
circuits consisting of both flip-flops and combinational logic. State tables and state 
diagrams provide a means for describing the behavior of sequential circuits. 
Subsequent sections of the chapter develop the techniques for designing sequential 
circuits and verifying their correctness. The state diagram is modified into a more 
pragmatic model for use in Chapter 7 and beyond, which, for lack of a better term, 
we call a state-machine diagram. In the last two sections, we provide VHDL and 
Verilog hardware description language representations for storage elements and for 
the type of sequential circuits in this chapter. 

Latches, flip-flops, and sequential circuits are fundamental components in the design 
of almost all digital logic. In the generic computer given at the beginning of Chapter 1, 

latches and flip-flops are widespread in the design. The exception is memory circuits, 
since large portions of memory are designed as electronic circuits rather than as logic 
circuits. Nevertheless, due to the wide use of logic-based storage, this chapter 
contains fundamental material for any in-depth understanding of computers and 
digital systems and how they are designed. 

D 207 
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5-1 SEQUENTIAL CIRCUIT DEFINITIONS 
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The digital circuits considered thus far have been combinational. Although every 
digital system is likely to include a combinational circuit, most systems encoun­
tered in practice also include storage elements, requiring that the systems be 
described as sequential circuits. 

Figure 5-1 a is block diagram of a sequential circuit, formed by interconnecting 
a combinational circuit and storage elements. The storage elements are circuits that 
are capable of storing binary information. The binary information stored in these ele­
ments at any given time defines the state of the sequential circuit at that time. The 
sequential circuit receives binary information from its environment via the inputs. 
These inputs, together with the present state of the storage elements, determine the 
binary value of the outputs. They also determine the values used to specify the next 
state of the storage elements. The block diagram demonstrates that the outputs in a 
sequential circuit are a function not only of the inputs, but also of the present state of 
the storage elements. The next state of the storage elements is also a function of the 
inputs and the present state. Thus, a sequential circuit is specified by a time sequence 
of inputs, internal states, and outputs. 

There are two main types of sequential circuits, and their classification depends 
on the times at which their inputs are observed and their internal state changes. The 
behavior of a synchronous sequential circuit can be defined from the knowledge of its 
signals at discrete instants of time. The behavior of an asynchronous sequential circuit 

depends upon the inputs at any instant of time and the order in continuous time in 
which the inputs change. 

Information is stored in digital systems in many ways, including the use of 
logic circuits. Figure 5-2(a) shows a buffer. This buffer has a gate delay ta. Since 
information present at the buffer input at time t appears at the buffer output at 
time t + ta, the information has effectively been stored for time tG But, in general, 
we wish to store information for an indefinite time that is typically much longer 
than the time delay of one or even many gates. This stored value is to be changed 
at arbitrary times based on the inputs applied to the circuit and the duration of 
storage of a value should be longer than the specific time delay of a gate. 

Suppose that the output of the buffer in Figure 5-2(a) is connected to its 
input as shown in Figures 5-2(b) and ( c ). Suppose further that the value on the 
input to the buffer in part (b) has been 0 for at least time tG, the delay of the 
buffer. Then the output produced by the buffer will be 0 at time t + tG. This 
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(d) 

1 

Logic Structures for Storing Information 

output is applied to the input so that the output will also be 0 at time t + 2tG . 
This relationship between input and output holds for all t, so the 0 will be 
stored indefinitely. The same argument can be made for storing a 1 in the circuit 
in Figure 5-2( c ). 

The example of the buffer illustrates that storage can be constructed from 
logic with delay connected in a closed loop. Any loop that produces such storage 
must also have a property possessed by the buffer, namely, that there must be no 
inversion of the signal around the loop. A buffer is usually implemented by using 
two inverters, as shown in Figure 5-2( d). The signal is inverted twice, that is, 

X=X 

giving no net inversion of the signal around the loop. In fact, this example illus­
trates one of the most popular methods of implementing storage in computer 
memories. (See Chapter 8.) However, although the circuits in Figures 5-2(b) 
through ( d) are able to store information, there is no way for the information to be 
changed. If the inverters are replaced with NOR or NAND gates, the information 
can be changed. Asynchronous storage circuits called latches are made in this man­
ner and are discussed in the next section. 

In general, more complex asynchronous circuits are difficult to design, since 
their behavior is highly dependent on the delays of the gates and on the timing of 
the input changes. Thus, circuits that fit the synchronous model are the choice of 
most designers. Nevertheless, some asynchronous design is necessary. A very 
important case is the use of asynchronous latches as blocks to build storage ele­
ments, called flip-flops, that store information in synchronous circuits. 

A synchronous sequential circuit employs signals that affect the storage ele­
ments only at discrete instants of time. Synchronization is achieved by a timing 
device called a clock generator which produces a periodic train of clock pulses. The 
pulses are distributed throughout the system in such a way that synchronous storage 
elements are affected only in some specified relationship to every pulse. In practice, 
the clock pulses are applied with other signals that specify the required change in the 
storage elements. The outputs of storage elements can change their value only in the 
presence of clock pulses. Synchronous sequential circuits that use clock pulses as 
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D FIGURE 5-3 
Synchronous Clocked Sequential Circuit 
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inputs to storage elements are called clocked sequential circuits. These are the type of 
circuit most frequently encountered in practice, since they operate correctly in spite 
of wide differences in circuit delays and are relatively easy to design. 

The storage elements used in the simplest form of clocked sequential circuits are 
called flip-flops. For simplicity, assume circuits with a single clock signal. A flip-flop is a 
binary storage device capable of storing one bit of information and having timing char­
acteristics to be defined in Section 6-3. The block diagram of a synchronous clocked 
sequential circuit is shown in Figure 5-3. The flip-flops receive their inputs from the 
combinational circuit and also from a clock signal with pulses that occur at fixed inter­
vals of time, as shown in the timing diagram. The flip-flops can change state only in 
response to a clock pulse. For synchronous operation, when a clock pulse is absent, the 
flip-flop outputs cannot change even if the outputs of the combinational circuit driving 
their inputs change in value. Thus, the feedback loops shown in the figure between the 
combinational logic and the flip-flops are broken. As a result, a transition from one 
state to the other occurs only at fixed time intervals dictated by the clock pulses, giving 
synchronous operation. The sequential circuit outputs are shown as outputs of the 
combinational circuit. This is valid even when some sequential circuit outputs are actu­
ally the flip-flop outputs. In this case, the combinational circuit part between the flip­
flop outputs and the sequential circuit outputs consists of connections only. 

A flip-flop has one or two outputs, one for the normal value of the bit stored 
and an optional one for the complemented value of the bit stored. Binary informa­
tion can enter a flip-flop in a variety of ways, a fact that gives rise to different types 
of flip-flops. Our focus will be on the most prevalent type used today, the D flip­
flop. In Section 5-6, other flip-flop types will be considered. In preparation for 
studying flip-flops and their operation, necessary groundwork is presented in the 
next section on latches, from which the flip-flops are constructed. 

5-2 LATCHES 

A storage element can maintain a binary state indefinitely (as long as power is 
delivered to the circuit), until directed by an input signal to switch states. The 
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major differences among the various types of latches and flip-flops are the number 
of inputs they possess and the manner in which the inputs affect the binary state. 
The most basic storage elements are latches, from which flip-flops are usually con­
structed. Although latches are most often used within flip-flops, they can also be 
used with more complex clocking methods to implement sequential circuits 
directly. The design of such circuits is, however, beyond the scope of the basic treat­
ment given here. In this section, the focus is on latches as basic primitives for con­
structing storage elements. 

SR and S R  Latches 

The SR latch is a circuit constructed from two cross-coupled NOR gates. It is 
derived from the single-loop storage element in Figure 5-2(d) by simply replacing 
the inverters with NOR gates, as shown in Figure 5-4(a). This replacement allows 
the stored value in the latch to be changed. The latch has two inputs, labeled S for 
set and R for reset, and two useful states. When output Q = 1 and Q = 0, the latch 
is said to be in the set state. When Q = 0 and Q = 1, it is in the reset state. Outputs 
Q and Q are normally the complements of each other. When both inputs are equal 
to 1 at the same time, an undefined state with both outputs equal to 0 occurs. 

Under normal conditions, both inputs of the latch remain at 0 unless the state is 
to be changed. The application of a 1 to the S input causes the latch to go to the set 
(1) state. The S input must go back to 0 before R is changed to 1 to avoid occurrence 
of the undefined state. As shown in the function table in Figure 5-4(b ), two input 
conditions cause the circuit to be in the set state. The initial condition is S = 1, R = 0, 
to bring the circuit to the set state. Applying a 0 to S with R = 0 leaves the circuit in 
the same state. After both inputs return to 0, it is possible to enter the reset state by 
applying a 1 to the R input. The 1 can then be removed from R, and the circuit 
remains in the reset state. Thus, when both inputs are equal to 0, the latch can be in 
either the set or the reset state, depending on which input was most recently a 1. 

If a 1 is applied to both the inputs of the latch, both outputs go to 0. This 
produces an undefined state, because it violates the requirement that the outputs 
be the complements of each other. It also results in an indeterminate or unpredict­
able next state when both inputs return to 0 simultaneously. In normal operation, 

-

s R QQ 

1 0 1 0 

0 0 1 0 
Set state 

0 1 0 1 
Reset state 

0 0 0 1 

S (Set) 
1 1 0 0 Undefined 

(a) Logic diagram (b) Function table 

D FIGURE 5-4 

SR Latch with NOR Gates 
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D FIGURE 5-5 
Logic Simulation of SR Latch Behavior 

these problems are avoided by making sure that ls are not applied to both inputs 
simultaneously. 

The behavior of the SR latch described in the preceding paragraph is illus­
trated by the ModelSim® logic simulator waveforms shown in Figure 5-5. Initially, 
the inputs and the state of the latch are unknown, as indicated by a logic level half­
way between 0 and 1. When R becomes 1 with S at 0, the latch is reset, with Q first 
becoming 0 and, in response, Q_b (which represents Q) becoming 1. Next, when R 
becomes 0, the latch remains reset, storing the 0 value present on Q. When S 
becomes 1 with R at 0, the latch is set, with Q_b going to 0 first and, in response, Q 
going to 1 next. The delays in the changes of Q and Q_b after an input changes are 
directly related to the delays of the two NOR gates used in the latch implementa­
tion. When S returns to 0, the latch remains set, storing the 1 value present on Q. 
When R becomes 1 with S equal to 0, the latch is reset, with Q changing to 0 and 
Q_b responding by changing to 1. The latch remains reset when R returns to 0. 
When Sand R both become 1, both Q and Q_b become 0. When Sand R simulta­
neously return to 0, both Q and Q_b take on unknown values. This form of indeter­
minate state behavior for the (S,R) sequence of inputs (1, 1), (0, 0) results from 
assuming simultaneous input changes and equal gate delays. The actual indetermi­
nate behavior that occurs depends on circuit delays and slight differences in the 
times at which S and R change in the actual circuit. Regardless of the simulation 
results, these indeterminate behaviors are viewed as undesirable, and the input 
combination (1, 1) is avoided. In general, the latch state changes only in response 
to input ch�nges and remains unchanged otherwise. 

The S R  latch with two cross-coupled NAND gates is shown in Figure 5-6. It 
operates with both inputs normally at 1, unless the state of the latch has to be 
changed. The application of a 0 to the S input causes output Q to go to 1, putting the 
latch in the set state. When the S input goes back to 1, the circuit remains in the set 
state. With both inputs at 1, the state of the latch is changed by placing a 0 on the R 
input. This causes the circuit to go to the reset state and stay there, even after both 
inputs return to 1. The condition that is undefined for this NAND latch is when both 
inputs are equal to 0 at the same time, an input combination that should be avoided. 

Comparing the NAND latch with the NOR latch, note that the input signals 
for the NAND require the complement of those values used for the NOR. Because 
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s R QQ 

0 1 1 0 

1 1 1 
Set state 

0 

1 0 0 1 
Reset state 

1 1 0 1 

0 0 1 1 Undefined 

(a) Logic diagram (b) Function table 

D FIGURE5-6 
S R  Latch with NAND Gates 

the NAND latch requires a 0 signal to change its state, it is referred to as an SR 
latch. The bar above the letters designates the fact that the inputs must be in their 
complement form in order to act upon the circuit state. 

The operation of the basic NOR and NAND latches can be modified by pro­
viding an additional control input that determines when the state of the latch can be 
changed. An SR latch with a control input is shown in Figure 5-7. It consists of the 
basic NAND latch and two additional NAND gates. The control input C acts as an 
enable signal for the other two inputs. The output of the NAND gates stays at the 
logic-1 l�vel as long as the control input remains at 0. This is the quiescent condition 
for the S R  latch composed of two NAND gates. When the �ontrol input goes to 1, 
information from the S and R inputs is allowed to affect the S R latch. The set state 
is reached with S = 1, R = 0, and C = 1. To change to the reset state, the inputs 
must be S = 0, R = 1, and C = 1. In either case, when C returns to 0, the circuit 
remains in its current state. Control input C = 0 disables the circuit so that the state 
of the output does not change, regardless of the values of Sand R. Moreover, when 
C = 1 and both the S and R inputs are equal to 0, the state of the circuit does not 
change. These conditions are listed in the function table accompanying the diagram. 

An undefined state occurs whe� all three inputs are equal to 1. This condition 
places Os on both inputs of the basic S, R latch, giving an undefined state. When the 

D FIGURE 5-7 
SR Latch with Control Input 
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control input goes back to 0, one cannot conclusively determine the next state, since 
the SR latch sees inputs (0, 0) followed by (1, 1). The SR latch with control input is 
an important circuit, because other latches and flip-flops are constructed from it. 
Sometimes the SR latch with control input is referred to as an SR (or RS) flip-flop: 
however, according to our terminology, it does not qualify as a flip-flop, since the 
circuit does not fulfill the flip-flop requirements presented in the next section. 

D Latch 

One way to eliminate the undesirable undefined state in the SR latch is to ensure 
that inputs S and R are never equal to 1 at the same time. This is done in the D 
latch, shown in Figure 5-8. This latch has only two inptgs: D (data) and C (control). 
The �omplement of the D input goes directly to t�e_S input, and D is applied to 
the R input. As long as the control input is 0, the S R latch has both inputs at the 
1 level, and the circuit cannot change state regardless of the value of D. The D 
input is sampled when C = 1. If D is 1, the Q output goes to 1, placing the circuit in 
the set state. If D is 0, output Q goes to 0, placing the circuit in the reset state. 

The D latch receives its designation from its ability to hold data in its internal 
storage. The binary information present at the data input of the D latch is trans­
ferred to the Q output when the control input is enabled (1). The output follows 
changes in the data input, as long as the control input is enabled. When the control 
input is disabled (0), the binary information that was present at the data input at 
the time the transition in C occurred is retained at the Q output until the control 
input C is enabled again. 
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5-3 FLIP-FLOPS 

A change in value on the control input allows the state of a latch in a flip-flop to 
switch. This change is called a trigger, and it enables, or triggers, the flip-flop. The D 
latch with clock pulses on its control input is triggered every time a pulse to the 
logic-1 level occurs. As long as the pulse remains at the active (1) level, any changes 
in the data input will change the state of the latch. In this sense, the latch is transpar­
ent, since its input value can be seen from the outputs while the control input is 1. 

As the block diagram of Figure 5-3 shows, a sequential circuit has a feedback 
path from the outputs of the flip-flops to the combination circuit. As a conse­
quence, the data inputs of the flip-flops are derived in part from the outputs of the 
same and other flip-flops. When latches are used for the storage elements, a serious 
difficulty arises. The state transitions of the latches start as soon as the clock pulse 
changes to the logic-1 level. The new state of a latch may appear at its output while 
the pulse is still active. This output is connected to the inputs of some of the latches 
through a combinational circuit. If the inputs applied to the latches change while 
the clock pulse is still in the logic-1 level, the latches will respond to new state val­
ues of other latches instead of the original state values, and a succession of changes 
of state instead of a single one may occur. The result is an unpredictable situation, 
since the state may keep changing and continue to change until the clock returns to 
0. The final state depends on how long the clock pulse stays at the logic-1 level. 
Because of this unreliable operation, the output of a latch cannot be applied 
directly or through combinational logic to the input of the same or another latch 
when all the latches are triggered by a single clock signal. 

Flip-flop circuits are constructed in such a way as to make them operate 
properly when they are part of a sequential circuit that employs a single clock. 
Note that the problem with the latch is that it is transparent: As soon as an input 
changes, shortly thereafter the corresponding output changes to match it. This 
transparency is what allows a change on a latch output to produce additional 
changes at other latch outputs while the clock pulse is at logic 1. The key to the 
proper operation of flip-flops is to prevent them from being transparent. In a flip­
flop, before an output can change, the path from its inputs to its outputs is broken. 
So a flip-flop cannot "see" the change of its output or of the outputs of other, similar 
flip-flops at its input during the same clock pulse. Thus, the new state of a flip-flop 
depends only on the immediately preceding state, and the flip-flops do not go 
through multiple changes of state. 

There are two ways that latches are combined to form a flip-flop. One way 
is to combine two latches such that (1) the inputs presented to the flip-flop when 
a clock pulse is present control its state and (2) the state of the flip-flop changes 
only when a clock pulse is not present. Such a circuit is called a master-slave flip­
flop. Another way is to produce a flip-flop that triggers only during a signal tran­
sition from 0 to 1 (or from 1 to 0) on the clock and that is disabled at all other 
times, including for the duration of the clock pulse. Such a circuit is said to be an 
edge-triggered flip-flop. Next, the implementations of these two flip-flop trigger­
ing approaches are presented. It is necessary to consider the SR flip-flop for the 
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master-slave triggering approach, since a properly constructed D flip-flop has the 
same behavior for both triggering types. 

Master-Slave Flip-Flops 

The master-slave SR flip-flop, consisting of two latches and an inverter, is shown in 
Figure 5-9. The symbol with S, C, and R on it is for the SR latch with a control 
input (Figure 5-7), referred to here as a clocked SR latch. The left clocked SR latch 
in Figure 5-9 is called the master, the right the slave. When the clock input C is 0, 
the output of the inverter is 1. The slave latch is then enabled, and its output Q is 
equal to the master output Y. The master latch is disabled, because C is 0. When a 
logic-1 clock pulse is applied, the values on S and R control the value stored in the 
master latch Y. The slave, however, is disabled as long as the pulse remains at the 1 
level, because its C input is equal to 0. Any changes in the external S and R inputs 
change the master output Y, but cannot affect the slave output Q. When the pulse 
returns to 0, the master is disabled and is isolated from the S and R inputs. At the 
same time, the slave is enabled, and the current value of Y is transferred to the out­
put of the flip-flop at Q. 

A ModelSim logic simulation illustrating master-slave flip-flop SR behavior is 
shown in Figure 5-10. Initially, all values are unknown including the clock C. When 
S and R both go to 0, and the clock goes from 1 to 0, the output of the master, Y, 
and of the slave, Q, both remain unknown, since the prior value is effectively being 
stored. S is at 1 with R at 0 to set the flip-flop in response to the next clock pulse. 
When C becomes 1, Y sets to 1. When C becomes 0, the slave copies the value of Y, 
setting Q to 1. After S returns to 0, Y and Q remain unchanged, storing the 1 value 
through the next clock period. Next, R becomes 1. After the clock-pulse transition 
from 0 to 1, the master latch is reset, with Y changing to 0. The slave latch is not 
affected, because its C input is 0. Since the master is an internal circuit, its change of 
state is not presented at output Q. Even if the inputs S and R change during this 
interval and the state of the master latch responds by changing, the output of the 
flip-flop remains in its previous state. When the pulse returns to 0, the information 
from the master is allowed to pass through to the slave. For the simulation exam­
ple, the value Y = 0 is copied to the slave latch, making the external output Q = 0. 
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Logic Simulation of an SR Master-Slave Flip-Flop 

Note that these changes are delayed from the pulse changes by gate delays. Also, 
the external inputs S and R can change anytime after the clock pulse goes through 
its negative transition. This is because, as the C input reaches 0, the master is dis­
abled, and S and R have no effect until the next clock pulse. 

The next sequence of signal changes illustrates the "ls catching" behavior of 
the SR master-slave flip-flop. A narrow pulse to 1 occurs on S at the beginning of 
a clock pulse. The master latch responds to the 1 on S by changing Y to 1. Then S 
goes to 0 and a narrow 1 pulse occurs on R. The master latch responds to the 1 on 
R by changing Y back to 0. Since there are no further 1 values on S or R, the mas­
ter continues to store 0, which is copied to the slave latch, changing Q to 0, in 
response to the clock's change to 0. Thus, the master latch "caught" both the 1 on 
S and the 1 on R. Since the 1 on R was caught last, the output Q remained at 0. In 
general, the "correct" response is assumed to be the response to the input values 
when the clock goes to 0. So, in this case, the response happens to be correct, 
although more by accident with the changing values in the master. 

For the next clock pulse, a narrow 1 pulse occurs on S, setting the master 
output Y to 1. The clock then goes to 0 and the value 1 is transferred to the slave 
latch and appears on Q. In this case, the correct value on Q should be 0, since Q 
was 0 before the clock pulse and both S and R are 0 just before the clock goes to 
0. Since Q equals 1, due to "ls catching" on S, the flip-flop is in the wrong state. 

For the final clock pulse of interest, both S and R become 1 before the clock 
goes to 0. This applies the invalid combination to the �aster latch, making both Y 

and Y equal to 1. When the clock changes to 0, the SR latch within the master 
sees its inputs change from (0, 0) to (1, 1), causing the master latch to enter an 
unknown state, which is immediately transferred to the inputs of the slave, 
which also enters an unknown state. This demonstrates that S = 1, R = 1 is an 
invalid input combination for the SR master-slave flip-flop. 

Now consider a sequential system containing many master-slave flip-flops, 
with the outputs of some flip-flops going to inputs of other flip-flops. Assume that 
the clock pulses to all of the flip-flops are synchronized and occur at the same 
time. At the beginning of each clock pulse, some of the masters change states, but 
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all the slaves remain in their previous states. This means that the flip-flop slaves 
are still in their original states, while the flip-flop masters have changed to the new 
states. After the clock pulse returns to 0, some of the flip-flop slaves change state, 
but none of the new states have an effect on any of the masters until the next 
pulse. Thus, the states of flip-flops in a synchronous system can change simulta­
neously for the same clock pulse, even though outputs of flip-flops are connected 
to inputs of the same or other flip-flops. This is possible because the inputs affect 
the state of the flip-flop only while the clock pulse is 1, and the new state appears 
at the outputs only after the clock pulse has returned to 0, ensuring that the flip­
flops are not transparent. 

For reliable sequential circuit operation, all signals must propagate from the 
outputs of flip-flops, through the combinational circuit, and back to inputs of mas­
ter-slave flip-flops, while the clock pulse remains at the logic-0 level. Any changes 
that occur at the inputs of flip-flops after the clock pulse goes to the logic-1 level, 
whether intentional or not, affect the flip-flop state and may result in the storage of 
incorrect values. Suppose that the delay in the combinational circuit is such that S is 
still changing after the clock pulse has gone to the logic-1 level. Suppose also that, as 
a consequence, the master is set to 1 by the presence of S = 1. When S finally stops 
changing, it is at 0, indicating that the state of the flip-flop was not to be changed 
from 0. Thus, the 1 value in the master, which will be transferred to the slave, is in 
error. There are two consequences of this behavior. First, the master-slave flip-flop is 
also referred to as a pulse-triggered flip-flop, since it can respond to input values that 
cause a change in state and occur anytime during its clock pulse. Second, the circuit 
must be designed so that combinational circuit delays are short enough to prevent S 
and R from changing during the clock pulse. 

A master-slave D flip-flop can be constructed from the SR master-slave flip­
flop by simply replacing the master SR latch with a master D latch. The resulting 
circuit is shown in Figure 5-11. The resulting circuit changes its value on the nega­
tive edge of the clock pulse just as the master-slave SR flip-flop does. However, 
the D type of flip-flop does not demonstrate the usual pulse-triggered behavior. 
Instead it demonstrates edge-triggered behavior-in this case, negative edge-trig­
gered behavior. Thus, a master-slave D flip-flop constructed as shown is also an 
edge-triggered flip-flop. 

Edge-Triggered Flip-Flop 

An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers 
only during a transition of the clock signal. Some edge-triggered flip-flops trigger on 
the positive edge (O-to-1 transition), whereas others trigger on the negative edge (1-to­
O transition), as illustrated in the previous subsection. The logic diagram of a D-type 
positive-edge-triggered flip-flop to be analyzed in detail here appears in Figure 5-12. 
This flip-flop takes exactly the form of a master-slave flip-flop, with the master a D 
latch and the slave an SR latch or a D latch. Also, an inverter is added to the clock 
input. Because the master latch is a D latch, the flip-flop exhibits edge-triggered 
rather than master-slave or pulse-triggered behavior. For the clock input equal to 
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0, the master latch is enabled and transparent and follows the D input value. The slave 
latch is disabled and holds the state of the flip-flop fixed. When the positive edge 
occurs, the clock input changes to 1. This disables the master latch so that its value is 
fixed and enables the slave latch so that it copies the state of the master latch. The state 
of the master latch to be copied is the state that is present at the positive edge of the 
clock. Thus, the behavior appears to be edge triggered. With the clock input equal to 1, 
the master latch is disabled and cannot change, so the state of both the master and the 
slave remain unchanged. Finally, when the clock input changes from 1 to 0, the master 
is enabled and begins following the D value. But during the 1-to-O transition, the slave 
is disabled before any change in the master can reach it. Thus, the value stored in the 
slave remains unchanged during this transition. An alternative implementation is given 
in Problem 5-3 at the end of the chapter. 

Standard Graphics Symbols 

The standard graphics symbols for the different types of latches and flip-flops are 
shown in Figure 5-13. A flip-flop or latch is designated by a rectangular block with 
inputs on the left and outputs on the right. One output designates the normal state 
of the flip-flop, and the other, with a bubble, designates the complement output. 
The graphics symbol for the SR latch or SR flip-flop has inputs Sand R indicated 
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Standard Graphics Symbols for Latches and Flip-Flops 

inside the block. In the case of the SR latch, bubbles are added to the inputs to 
indicate that setting and resetting occur for 0-level inputs. The graphics symbol for 
the D latch or D flip-flop has inputs D and C indicated inside the block. 

Below each symbol, a descriptive title, which is not part of the symbol, is 

given. In the titles, _n_ denotes a positive pulse, l_f a negative pulse, _f a posi­
tive edge, and l._ a negative edge. 

Triggering by the 0 level rather than the 1 level is denoted on the latch sym­
bols by adding a bubble at the triggering input. The master-slave is a pulse-trig­
gered flip-flop and is indicated as such with a right-angle symbol called a postponed 
output indicator in front of the outputs. This symbol shows that the output signal 
changes at the end of the pulse. To denote that the master-slave flip-flop will 
respond to a negative pulse (i.e., a pulse to 0 with the inactive clock value at 1), a 
bubble is placed on the C input. To denote that the edge-triggered flip-flop responds 
to an edge, an arrowhead-like symbol in front of the letter C designates a dynamic 
input. This dynamic indicator symbol denotes the fact that the flip-flop responds to 
edge transitions of the input clock pulses. A bubble outside the block adjacent to 
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the dynamic indicator designates a negative-edge transition for triggering the cir­
cuit. The absence of a bubble designates a positive-edge transition for triggering. 

Often, all of the flip-flops used in a circuit are of the same triggering type, 
such as positive-edge triggered. All of the flip-flops will then change in relation to 
the same clocking event. When using flip-flops having different triggering in the 
same sequential circuit, one may still wish to have all of the flip-flop outputs 
change relative to the same clocking event. Those flip-flops that behave in a man­
ner opposite from the adopted polarity transition can be changed by the addition 
of inverters to their clock inputs. The inverters unfortunately cause the clock sig­
nal to these flip-flops to be delayed with respect to the clocks to the other flip­
flops. A preferred procedure is to provide both positive and negative pulses from 
the master clock generator that are carefully aligned. We apply positive pulses to 
positive-pulse-triggered (master-slave) and negative-edge-triggered flip-flops 
and negative pulses to negative-pulse-triggered (master-slave) and positive­
edge-triggered flip-flops. In this way, all flip-flop outputs will change at the same 
time. Finally, to prevent specific timing problems, some designers use flip-flops 
having different triggering (i.e., both positive and negative edge-triggered flip­
flops) with a single clock. In these cases, flip-flop outputs are purposely made to 
change at different times. 

In this text, it is assumed that all flip-flops are of the positive-edge-triggered 
type, unless otherwise indicated. This provides a uniform graphics symbol for the 
flip-flops and consistent timing diagrams. 

Note that there is no input to the D flip-flop that produces a "no-change" 
condition. This condition can be accomplished either by disabling the clock pulses 
on the C input or by leaving the clock pulses undisturbed and connecting the out­
put back into the D input using a multiplexer when the state of the flip-flop must 
remain the same. The technique that disables clock pulses is referred to as clock 
gating. This technique typically uses fewer gates and saves power, but is often 
avoided because the gated clock pulses into the flip-flops are delayed. The delay, 
called clock skew, causes gated clock and nongated clock flip-flops to change at dif­
ferent times. This can make the circuit unreliable, since the outputs of some flip­
flops may reach others while their inputs are still affecting their state. To avoid this 
problem, delays must be inserted in the clock circuitry to align inverted and non­
inverted clocks. If possible, this situation should be avoided entirely by using flip­
flops that trigger on the same edge. 

Direct Inputs 

Flip-flops often provide special inputs for setting and resetting them asynchro­
nously (i.e., independently of the clock input C). The inputs that asynchronously 
set the flip-flop are called direct set, or preset. The inputs that asynchronously reset 
the flip-flop are called direct reset, or clear. Application of a logic 1 (or a logic 0 if a 
bubble is present) to these inputs affects the flip-flop output without the use of the 
clock. When power is turned on in a digital system, the states of its flip-flops can be 
anything. The direct inputs are useful for bringing flip-flops in a digital system to an 
initial state prior to the normal clocked operation. 
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D FIGURE 5-14 
D Flip-Flop with Direct Set and Reset 

The IEEE standard graphics symbol for a positive-edge-triggered D flip-flop 
with direct set and direct reset is shown in Figure 5-14(a). The notations Cl and lD 
illustrate control dependency. An input labeled Cn, where n is any number, con­
trols all the other inputs starting with the number n. In the figure, Cl controls input 
lD. S and R have no 1 in front of them, and therefore they are not controlled by the 
clock at Cl. The S and R inputs have circles on the input lines to indicate that they 
are active at the logic-0 level (i.e., a 0 applied will result in the set or reset action). 

The function table in Figure 5-14(b) specifies the operation of the circuit. 
The first three rows in the table specify the operation of the direct inputs S and R. 
These inputs behave like NAND SR latch inputs (see Figure 5-6), operating inde­
pendently of the clock, and are therefore asynchronous inputs. The last two rows 
in the function table specify the clocked operation for values of D. The clock at C 
is shown with an upward arrow to indicate that the flip-flop is a positive-edge-trig­
gered type. The D input effects are controlled by the clock in the usual manner. 

Figure 5-14(c) shows a less formal symbol for the positive-edge-triggered flip­
flop with direct set and reset. The positioning of S and R at the top and bottom of 
the symbol rather than on the left edge implies that resulting output changes are 
not controlled by the clock C. 

FLIP-FLOP TIMING Flip-flop timing is covered in Section 6-3. 

5-4 SEQUENTIAL CIRCUIT ANALYSIS 

The behavior of a sequential circuit is determined from the inputs, outputs, and 
present state of the circuit. The outputs and the next state are a function of the 
inputs and the present state. The analysis of a sequential circuit consists of obtain­
ing a suitable description that demonstrates the time sequence of inputs, outputs, 
and states. 

A logic diagram is recognized as a synchronous sequential circuit if it 
includes flip-flops with the clock inputs driven directly or indirectly by a clock sig­
nal and if the direct sets and resets are unused during the normal functioning of 
the circuit. The flip-flops may be of any type, and the logic diagram may or may 
not include combinational gates. In this section, an algebraic representation for 
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Example of a Sequential Circuit 

specifying the logic diagram of a sequential circuit is given. A state table and state 
diagram are presented that describe the behavior of the circuit. Specific examples 
will be used throughout the discussion to illustrate the various procedures. 

Input Equations 

The logic diagram of a sequential circuit consists of flip-flops and, usually, combina­
tional gates. The knowledge of the type of flip-flops used and a list of Boolean 
functions for the combinational circuit provide all the information needed to draw 
the logic diagram of the sequential circuit. The part of the combinational circuit 
that generates the signals for the inputs of flip-flops can be described by a set of 
Boolean functions called flip-flop input equations. We adopt the convention of 
denoting the dependent variable in the flip-flop input equation by the flip-flop 
input symbol with the name of the flip-flop output as the subscript for the variable, 
e.g., DA. A flip-flop input equation is a Boolean expression for a combinational cir­
cuit. The output of this combinational circuit is connected to the input of a flip­
flop-thus the name "flip-flop input equation." 

The flip-flop input equations constitute a convenient algebraic expression for 
specifying the logic diagram of a sequential circuit. They imply the type of flip-flop 
from the letter symbol, and they fully specify the combinational circuit that drives 
the flip-flops. Time is not included explicitly in these equations, but is implied from 
the clock at the C input of the flip-flops. An example of a sequential circuit is given 
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in Figure 5-15. The circuit has two D-type flip-flops, an input X, and an output Y. It 
can be specified by the following equations: 

DA= AX+BX 

DB =AX 

Y =(A +B)X 

The first two equations are for flip-flop inputs, and the third specifies the output Y. 
Note that the input equations use the symbol D, which is the same as the input 
symbol of the flip-flops. The subscripts A and B designate the outputs of 
the respective flip-flops. 

State Table 

The functional relationships among the inputs, outputs, and flip-flop states of a 
sequential circuit can be enumerated in a state table. The state table for the circuit 
of Figure 5-15 is shown in Table 5-1. It consists of four sections, labeled present 
state, input, next state, and output. The present-state section shows the states of flip­
flops A and B at any given time t. The input section gives each value of X for each 
possible present state. Note that for each possible input combination, each of the 
present states is repeated. The next-state section shows the states of the flip-flops 
one clock period later, at time t + 1. The output section gives the value of output Y 
at time t for each combination of present state and input. 

The derivation of a state table consists of first listing all possible binary com­
binations of present state and inputs. In Table 5-1, there are eight binary combina­
tions, from 000 to 111. The next-state values are then determined from the logic 
diagram or from the flip-flop input equations. For a D flip-flop, the relationship A(t 
+ 1) = DA(t) holds. This means that the next state of flip-flop A is equal to the 
present value of its input D. The value of the D input is specified in the flip-flop 
input equation as a function of the present state of A and B and input X. There­
fore, the next state of flip-flop A must satisfy the equation 

A(t+l) =DA= AX+BX 

The next-state section in the state table under column A has three ls, where the 
present state and input value satisfy the conditions (A, X) = 11 or (B, X) = 11. 
Similarly, the next state of flip-flop Bis derived from the input equation 

B(t+l) =DB= AX 

and is equal to 1 when the present state of A is 0 and input X is equal to 1. The out­
put column is derived from the output equation 

Y=AX+BX 
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D TABLE5-1 
State Table for Circuit of Figure 5-15 

Present State Input Next State Output 

A B x A B y 

0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 0 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 
1 0 1 1 0 0 
1 1 0 0 0 1 
1 1 1 1 0 0 

The state table of any sequential circuit with D-type flip-flops is obtained in 
this way. In general, a sequential circuit with m flip-flops and n inputs needs 2m+n 

rows in the state table. The binary numbers from 0 through 2m+n 
- 1 are listed in 

the combined present-state and input columns. The next-state section has m col­
umns, one for each flip-flop. The binary values for the next state are derived 
directly from the D flip-flop input equations. The output section has as many col­
umns as there are output variables. Its binary values are derived from the circuit or 
from the Boolean functions in the same manner as in a truth table. 

Table 5-1 is one-dimensional in the sense that the present state and input 
combinations are combined into a single column of combinations. A two-dimen­
sional state table having the present state tabulated in the left column and the 
inputs tabulated across the top row is also frequently used. The next-state entries 
are made in each cell of the table for the present-state and input combination 
corresponding to the location of the cell. A similar two-dimensional table is used 
for the outputs if they depend upon the inputs. Such a state table is shown in 
Table 5-2. Sequential circuits in which the outputs depend on the inputs, as well 

D TABLE 5-2 
Two-Dimensional State Table for the Circuit in Figure 5-15 

p t resen 
state 

A B 

0 0 
0 1 
1 0 
1 1 

A 

0 
0 
0 
0 

Next state Output 

X=O X=1 X=O X=1 

B A B y y 

0 0 1 0 0 
0 1 1 1 0 
0 1 0 1 0 
0 1 0 1 0 
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as on the states, are referred to as Mealy model circuits. Otherwise, if the outputs 
depend only on the states, then a one-dimensional column suffices. In this case, 
the circuits are referred to as Moore model circuits. Each model is named after its 
originator. 

As an example of a Moore model circuit, suppose we want to obtain the logic dia­
gram and state table of a sequential circuit that is specified by the flip-flop input equation 

and output equation 

Z=A 

The DA symbol implies a D-type flip-flop with output designated by the letter A. 
The X and Y variables are taken as inputs and Z as the output. The logic diagram 
and state table for this circuit are shown in Figure 5-16. The state table has one 
column for the present state and one column for the inputs. The next state and 
output are also in single columns. The next state is derived from the flip-flop input 
equation, which specifies an odd function. (See Section 2-8.) The output column is 
simply a copy of the column for the present-state variable A. 
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The information available in a state table may be represented graphically in the form 
of a state diagram. A state is represented by a circle, and transitions between states 
are indicated by directed lines connecting the circles. Examples of state diagrams are 
given in Figure 5-17. Figure 5-17(a) shows the state diagram for the sequential circuit 
in Figure 5-15 and its state table in Table 5-1. The state diagram provides the same 
information as the state table and is obtained directly from it. The binary number 
inside each circle identifies the state of the flip-flops. For Mealy model circuits, the 
directed lines are labeled with two binary numbers separated by a slash. The input 
value during the present state precedes the slash, and the value following the slash 
gives the output value during the present state with the given input applied. For 
example, the directed line from state 00 to state 01 is labeled 1/0, meaning that when 
the sequential circuit is in the present state 00 and the input is 1, the output is 0. After 
the next clock transition, the circuit goes to the next state, 01. If the input changes to 
0, then the output becomes 1, but if the input remains at 1, the output stays at 0. This 
information is obtained from the state diagram along the two directed lines emanat­
ing from the circle with state 01. A directed line connecting a circle with itself indi­
cates that no change of state occurs. 

The state diagram of Figure 5-17(b) is for the sequential circuit of Figure 5-16. 
Here, only one flip-flop with two states is needed. There are two binary inputs, and 
the output depends only on the state of the flip-flop. For such a Moore model circuit, 
the slash on the directed lines is not included, since the outputs depend only on the 
state and not on the input values. Instead, the output is included under a slash below 
the state in a circle. There are two input conditions for each state transition in the 
diagram, and they are separated by a comma. When there are two input variables, 
each state may have up to four directed lines coming out of the corresponding circle, 
depending upon the number of states and the next state for each binary combination 
of the input values. 

There is no difference between a state table and a state diagram, except for 
their manner of representation. The state table is easier to derive from a given 
logic diagram and input equations. The state diagram follows directly from the 

0/1 

(a) 

00, 11 
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state table. The state diagram gives a pictorial view of state transitions and is the 
form more suitable for human interpretation of the operation of the circuit. For 
example, the state diagram of Figure 5-17(a) clearly shows that, starting at state 00, 
the output is 0 as long as the input stays at 1. The first 0 input after a string of ls 
gives an output of 1 and sends the circuit back to the initial state of 00. The state 
diagram of Figure 5-17(b) shows that the circuit stays at a given state as long as the 
two inputs have the same value (00 or 11). There is a state transition between the 
two states only when the two inputs are different (01 or 10). 

The state diagram in Figure 5-17(a) is useful for illustrating two concepts: (1) 
the reduction of the number of states required by using the concept of equivalent 
states, and (2) the mixing of Mealy and Moore types of outputs in a single descrip­
tion. Two states are equivalent if the response for each possible input sequence is 
an identical output sequence. This definition can be recast in terms of states and 
outputs. Two state are equivalent if the output produced for each input symbol is 
identical and the next states for each input symbol are the same or equivalent. 

EXAMPLE 5-1 Equivalent State Illustration 

In the state diagram in Figure 5-17(a), consider states 10 and 11. Under input 0, 
both states produce output 1, and, under input 1, both states produce output 0. 
Under input 0, both states have the same state 00 as their next state. Under input 1, 
both states have state 10 as their next state. By the second definition above, states 
11 and 10 are equivalent. These equivalent states can be merged into a single state 
entered from state 01 under input 1, with a transition under input 0 to state 00 with 
an output of 1, and a transition back to itself under input 1 with an output of 0. In 
the original diagram, consider states 01 and 11. These states satisfy the output con­
ditions for being equivalent. Under 0, they both go to next state 00, and under 1, 
they go to next states 11 and 10, which have just been shown to be equivalent. So, 
states 01 and 11 are equivalent. Since state 11 is equivalent to state 10, all three of 
these states are equivalent. Merging these three states, states 11 and 10 can be 
deleted and state 01 can be modified to have the transition under 1 with output 0 
go back to state 01. If the circuit in Figure 5-15 was analyzed for redesign, the new 
design has two states and one flip-flop instead of four states and two flip-flops. • 

State reduction through state equivalence may or may not result in reduced 
cost, since cost is dependent on combinational circuit cost as well as flip-flop cost. 
Nevertheless, combining equivalent states has inherent advantages in the design, 
verification, and testing processes. 

Ordinarily, the Mealy and Moore output types are not mixed in a given 
sequential circuit representation. In doing real designs, however, such mixing may 
be convenient. 

EXAMPLE 5-2 Mixed Mealy and Moore Outputs 

The state diagram in Figure 5-17(a) can also be used to illustrate a mixed output 
model that uses both Mealy and Moore type outputs. For state 00, all input values 
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produce the same output value 0 on Z. As a consequence, the output depends only 
on the state 00 and satisfies the definition of a Moore type output. If desired, the 
output value 0 can be moved from the outgoing transitions on state 00 to within 
the circle for state 00. For the remaining states, however, the outputs for the two 
input values on X differ, so the output values are the Mealy type and must remain 
on the state transitions. • 

Unfortunately, this representation does not translate well to the two-dimen­
sional state tables. It can be translated to a modified one-dimensional state table 
with rows that contain the state and the Moore output value without the output 
conditions and rows that contain the state, an output condition, and the Mealy 
value output. 

SEQUENTIAL CIRCUIT CLOCKS AND TIMING The details of sequential circuit clocks 
and timing are discussed in Section 6-4. 

Sequential Circuit Simulation 

Simulation of sequential circuit involves issues not present in combinational cir­
cuits. First of all, rather than a set of input patterns for which the order of applica­
tion is immaterial, the patterns must be applied in a sequence. This sequence 
includes timely application of input patterns as well as clock pulses. Second, there 
must be some means to place the circuit in a known state. Realistically, initializa­
tion to a known state is accomplished by application of an initialization subse­
quence at the beginning of the simulation. In the simplest case, this subsequence is 
a reset signal. For flip-flops lacking a circuit reset (or set), a longer sequence typi­
cally consisting of an initial reset followed by a sequence of normal input patterns 
is required. A simulator may also have a means of setting the initial state, which is 
useful to avoid long sequences that may be needed to get to an initial state. Aside 
from getting to an initial state, a third issue is observing the state to verify correct­
ness. In some circuits, application of an additional sequence of inputs is required to 
determine the state of the circuit at a given point. The simplest alternative is to set 
up the simulation so that the state of the circuit can be observed directly; the 
approach to doing this varies depending on the simulator and whether or not the 
circuit contains hierarchy. A crude approach that works with all simulators is to 
add a circuit output with a path from each state variable signal. 

A final issue to be dealt with in more detail is the timing of application of 
inputs and observation of outputs relative to the active clock edge. Initially, we dis­
cuss the timing for functional simulation having as its objective determination or 
verification of the function of the circuit. In functional simulation, components of 
the circuit have no delay or a very small delay. Much more complex is timing simu­

lation, in which the circuit elements have realistic delays and verification of the 
proper operation of the circuit in terms of timing is the simulation objective. 

Some simulators, by default, use a very small component delay for functional 
simulation so that the order of changes in signals can be observed, provided that the 
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time range used for display is small enough. Suppose that the component delays for 
gates and the delays associated with flip-flops are all 0.1 ns for such a simulation and 
that the longest delay through a path from positive clock edge to positive clock edge 
is 1.2 ns in your circuit. If you happen to use a clock period of 1.0 ns for your simula­
tion, when the result depends on the longest delay, the simulation results will be in 
error! So for functional simulation with such a simulator, either a longer clock period 
should be chosen for the simulation or the default delay needs to be changed by the 
user to a smaller value. 

In addition to the clock period, the time of application of inputs relative to 
the positive clock edge is important. For functional simulation, to allow for any 
small, default component delays, the inputs for a given clock cycle should be 
changed well before the positive clock edge, preferably early in the clock cycle 
while the clock is still at a 1 value. This is also an appropriate time to change the 
reset signal values to insure that the reset signal is controlling the state rather than 
the clock edge or a meaningless combination of clock and reset. 

A final issue is the time at which to examine a simulation result in functional 
simulation. At the very latest, the state-variable values and outputs should be at 
their final values just before the positive clock edge. Although it may be possible to 
observe the values at other locations, this location provides a foolproof observa­
tion time for functional simulation. 

The ideas just presented are summarized in Figure 5-18. Input changes in 
Reset and Input, encircled in blue, occur at about the 25 percent point in the 
clock cycle. Signal values on State and Output, as well as on Input and Reset, 
all encircled in blue and listed, are observed just before the 100 percent point in 
the clock cycle. 

5-5 SEQUENTIAL CIRCUIT DESIGN 

The design of clocked sequential circuits starts from a set of specifications and culmi­
nates in a logic diagram or a list of Boolean functions from which the logic diagram 
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can be obtained. In contrast to a combinational circuit, which is fully specified by a 
truth table, a sequential circuit requires a state table for its specification. Thus, the 
first step in the design of a sequential circuit is to obtain a state table or an equivalent 
representation such as a state diagram. 

A synchronous sequential circuit is made up of flip-flops and combinational 
gates. The design of the circuit consists of choosing the flip-flops and finding a com­
binational circuit structure which, together with the flip-flops, produces a circuit 
that fulfills the stated specifications. The minimum number of flip-flops is deter­
mined by the number of states in the circuit; n flip-flops can represent up to 2n 
binary states. The combinational circuit is derived from the state table by finding 
the flip-flop input equations and output equations. In fact, once the type and num­
ber of flip-flops are determined and binary combinations are assigned to the states, 
the design process transforms a sequential circuit problem into a combinational 
circuit problem. In this way, the techniques of combinational circuit design can be 
applied. 

Design Procedure 

The following procedure for the design of sequential circuits is similar to that for 
combinational circuits but has some additional steps: 

1. Specification: Write a specification for the circuit, if not already available. 

2. Formulation: Obtain either a state diagram or a state table from the state­
ment of the problem. 

3. State Assignment: If only a state diagram is available from step 1, obtain the 
state table. Assign binary codes to the states in the table. 

4. Flip-Flop Input Equation Determination: Select the flip-flop type or types. 
Derive the flip-flop input equations from the next-state entries in the 
encoded state table. 

5. Output Equation Determination: Derive output equations from the output 
entries in the state table. 

6. Optimization: Optimize the flip-flop input equations and output equations. 

7. Technology Mapping: Draw a logic diagram of the circuit using flip-flops, 
ANDs, ORs, and inverters. Transform the logic diagram to a new diagram 
using the available flip-flop and gate technology. 

8. Verification: Verify the correctness of the final design. 

For convenience, we often omit the technology mapping in step 7, since it does not 
contribute to our understanding once it is understood. Also, for more complex cir­
cuits, we may skip the use of either the state table or state diagram. 

Finding State Diagrams and State Tables 

The specification for a circuit is often in the form of a verbal description of the 
behavior of the circuit. This description needs to be interpreted in order to find a 
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state diagram or state table in the formulation step of the design procedure. This is 
often the most creative part of the design procedure, with many of the subsequent 
steps performed automatically by computer-based tools. 

Fundamental to the formulation of state diagrams and tables is an intuitive 
understanding of the concept of a state. A state is used to "remember" something 
about the history of input combinations applied to the circuit either at triggering 
clock edges or during triggering pulses. In some cases, the states may literally store 
input values, retaining a complete history of the sequence appearing on the inputs. 
In most cases, however, a state is an abstraction of the sequence of input combina­
tions at the triggering points. For example, a given state S1 may represent the fact 
that among the sequence of values applied to a single bit input X, "the value 1 has 
appeared on X for the last three consecutive clock edges." Thus, the circuit would 
be in state S1 after sequences ... 00111 or ... 0101111, but would not be in state S1 
after sequences ... 00011 or ... 011100. A state S2 might represent the fact that the 
sequence of 2-bit input combinations applied are "in order 00, 01, 11, 10 with any 
number of consecutive repetitions of each combination permitted and 10 as the 
most recently applied combination." The circuit would be in state S2 for the follow­
ing example sequences: 00, 00, 01, 01, 01, 11, 10, 10 or 00, 01, 11, 11, 11, 10. The cir­
cuit would not be in state S2 for sequences: 00, 11, 10, 10 or 00, 00, 01, 01, 11, 11. In 
formulating a state diagram or state table it is useful to write down the abstraction 
represented by each state. In some cases, it may be easier to describe the abstrac­
tion by referring to values that have occurred on the outputs as well as on the 
inputs. For example, state S3 might represent the abstraction that "the output bit Z2 
is 1, and the input combination has bit X2 at O." In this case, Z2 equal to 1 might 
uniquely represent a complex set of past sequences of input combinations that 
would be more difficult to describe in detail. 

As one formulates a state table or state diagram, new states are added. There 
is potential for the set of states to become unnecessarily large or potentially even 
infinite in size! Instead of adding a new state for every current state and possible 
applied input combination, it is essential that states be reused as next states to pre­
vent uncontrolled state growth as outlined above. The mechanism for doing this is 
a knowledge of the abstraction that each state represents. To illustrate, consider 
state S1 defined previously as an abstraction: "the value 1 has appeared at the last 
three consecutive clock edges." If S1 has been entered due to the sequence ... 00111 
and the next input is a 1, giving sequence ... 001111, is a new state needed or can 
the next state be S1? By examining the new sequence, we see that the last three 
input values are ls, which matches the abstraction defined for state S1. So, state S1 
can be used as the next state for current state S1 and input value 1, avoiding the 
definition of a new state. This careful process of avoiding equivalent states is in lieu 
of applying a state-minimization procedure to combine equivalent states. 

When the power in a digital system is first turned on, the state of the flip-flops 
is unknown. It is possible to apply an input sequence with the circuit in an 
unknown state, but that sequence must be able to bring a portion of the circuit to a 
known state before meaningful outputs can be expected. In fact, many of the larger 
sequential circuits we design in subsequent chapters will be of this type. In this 
chapter, however, the circuits that we design must have a known initial state, and 



Y(t + 1) D y 

c 
R 

Reset -� 
(a) Asynchronous Reset 

D FIGURE 5-19 

5-5 I Sequential Circuit Design D 233 

y 

c c 

(b) Synchronous Reset 

Asynchronous and Synchronous Reset for D Flip-flops 

further, a hardware mechanism must be provided to get the circuit from any 
unknown state into this state. This mechanism is a reset or master reset signal. 
Regardless of all other inputs applied to the circuit, the reset places the circuit in 
its initial state. In fact, the initial state is often called the reset state. The reset signal 
is usually activated automatically when the circuit is powered up. In addition, it 
may be activated electronically or by pushing a reset button. 

The reset may be asynchronous, taking place without clock triggering. In this 
case, the reset is applied to the direct inputs on the circuit flip-flops. as shown in 
Figure 5-19(a) . This design assigns 00 ... 0 to the initial state of the flip-flops to be 
reset. If an initial state with a different code is desired, then the Reset signal can be 
selectively connected to direct set inputs instead of direct reset inputs. It is impor­
tant to note that these inputs should not be used in the normal synchronous circuit 
design process. Instead, they are reserved only for an asynchronous reset that 
returns the system, of which the circuit is a component, to an initial state. Using 
these direct inputs as a part of the synchronous circuit design violates the funda­
mental synchronous circuit definition, since it permits a flip-flop state to change 
asynchronously within direct clock triggering. 

Alternatively, the reset may be synchronous and require a clock-triggering 
event to occur. The reset must be incorporated into the synchronous design of the 
circuit. A simple approach to synchronous reset for D flip-flops, without formally 
including the reset bit in the input combinations, is to add the AND gate shown in 
Figure 5-19(b) after doing the normal circuit design. This design also assigns 00 ... 0 
to the initial state. If a different initial state code is desired, then OR gates with 
Reset as an input can selectively replace the AND gates with inverted Reset. 

To illustrate the formulation process, two examples follow, each resulting in a 
different style of state diagram. 

EXAMPLE 5-3 Finding a State Diagram for a Sequence Recognizer 

The first example is a circuit that recognizes the occurrence of a particular 
sequence of bits, regardless of where it occurs in a longer sequence. This "sequence 
recognizer" has one input X and one output Z. It has Reset applied to the direct 
reset inputs on its flip-flops to initialize the state of the circuit to all zeros. The cir­
cuit is to recognize the occurrence of the sequence of bits 1101 on X by making Z 
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equal to 1 when the previous three inputs to the circuit were 110 and current input 
is a 1. Otherwise, Z equals 0. 

The first step in the formulation process is to determine whether the state 
diagram or table must be a Mealy model or Moore model circuit. The portion of 
the preceding specification that says " ... making Z equal to 1 when the previous 
three inputs to the circuit are 110 and the current input is a 1" implies that the out­
put is determined from not only the current state, but also the current input. As a 
consequence, a Mealy model circuit with the output dependent on both state and 
inputs is required. 

Recall that a key factor in the formulation of any state diagram is to recog­
nize that states are used to "remember" something about the history of the inputs. 
For example, for the sequence 1101 to be able to produce the output value 1 coin­
cident with the final 1 in the sequence, the circuit must be in a state that "remem­
bers" that the previous three inputs were 110. With this concept in mind, we begin 
to formulate the state diagram by defining an arbitrary initial state A as the reset 
state and the state in which "none of the sequence to be recognized has occurred." 
If a 1 occurs on the input, since 1 is the first bit in the sequence, this event must be 
"remembered," and the state after the clock pulse cannot be A. So a second state, 
B, is established to represent the occurrence of the first 1 in the sequence. Further, 
to represent the occurrence of the first 1 in the sequence, a transition is placed 
from A to B and labeled with a 1. Since this is not the final 1 in the sequence 1101, 
its output is a 0. This initial portion of the state diagram is given in Figure 5-20(a). 

(a) (b) 

1/1 

(c) 

010 1/0 

010 

(d) 

D FIGURE 5-20 
Construction of a State Diagram for Example 5-4 
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The next bit of the sequence is a 1. When this 1 occurs in state B, a new state 
is needed to represent the occurrence of two ls in a row on the input-that is, the 
occurrence of an additional 1 while in state B. So a state C and the associated 
transition are added, as shown in Figure 5-20(b ). The next bit of the sequence is a 
0. When this 0 occurs in state C, a state is needed to represent the occurrence of 
the two ls in a row followed by a 0. So the additional state D with a transition 
having a 0 input and 0 output is added. Since state D represents the occurrence of 
110 as the previous three input bit values on X, the occurrence of a 1 in state D 
completes the sequence to be recognized, so the transition for the input value 1 
from state D has an output value of 1. The resulting partial state diagram, which 
completely represents the occurrence of the sequence to be recognized, is shown 
in Figure 5-20( c ) . 

Note in Figure 5-20(c) that, for each state, a transition is specified for only 
one of the two possible input values. Also, the state that is the destination of the 
transition from D for input 1 is not yet defined. The remaining transitions must be 
based on the idea that the recognizer is to identify the sequence 1101, regardless of 
where it occurs in a longer sequence. Suppose that an initial part of the sequence 
1101 is represented by a state in the diagram. Then, the transition from that state 
for an input value that represents the next input value in the sequence must enter a 
state such that the 1 output occurs if the remaining bits of the sequence are 
applied. For example, state C represents the first two bits, 11, of sequence 1101. If 
the next input value is 0, then the state that is entered, in this case, D, gives a 1 out­
put if the remaining bit of the sequence, 1, is applied. 

Next, evaluate where the transition for the 1 input from the D state is to go. 
Since the transition input is a 1, it could be the first or second bit in the sequence to 
be recognized. But because the circuit is in state D, it is evident that the prior input 
was a 0. So this 1 input is the first 1 in the sequence, since it cannot be preceded by 
a 1. The state that represents the occurrence of a first 1 in the sequence is B, so the 
transition with input 1 from state D is to state B. This transition is shown in the dia­
gram in Figure 5-20( d) . Examining state C, we can trace back through states B and 
A to see that the occurrence of a 1 input in C is at least the second 1 in the 
sequence. The state representing the occurrence of two ls in sequence is C, so the 
new transition is to state C. Since the combination of two ls is not the sequence to 
be recognized, the output for the transition is 0. Repeating this same analysis for 
missing transitions from states B and A, the final state diagram in Figure 5-20( d) is 
obtained. The resulting state table is given in two-dimensional form in Table 5-3. • 

One issue that arises in the formulation of any state diagram is whether, in 
spite of best designer efforts, excess states have been used. This is not the case in 
the preceding example, since each state represents input history that is essential 
for recognition of the stated sequence. If, however, excess states are present, then 
it may be desirable to combine states into the fewest needed. This can be done 
using ad hoc methods as in Example 5-1 or formal state-minimization procedures. 
Due to the complexity of the latter, particularly in the case in which don't-care 
entries appear in the state table, formal procedures are not covered here. For the 
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D TABLE 5-3 
State Table for State Diagram in Figure 5-20 

Next State Output Z 

Present 
State X=O X=1 X=O X=1 

A A B 0 0 

B A c 0 0 

c D c 0 0 

D A B 0 1 

interested student, state-minimization procedures are found in Reference 1 at the 
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states 
by recognizing potential state equivalence during the design process. 

EXAMPLE5-4 Finding a State Diagram for a BCD-to-Excess-3 Decoder 

In Chapter 3, a BCD-to-excess-3 decoder was designed. In this example, the func-
tion of the circuit is similar except that the inputs, rather than being presented to 
the circuit simultaneously, are presented serially in successive clock cycles, least 
significant bit first. In Table 5-4(a) , the input sequences and corresponding output 
sequences are listed with the least significant bit first. For example, during four 

D TABLES-4 
Sequence Tables for Code-Converter Example 

(a) Sequences in Order of (b) Sequences in Order of 
Digits Represented Common Prefixes 

BCD Input Excess-3 Output BCD Input Excess-3 Output 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 

1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 

0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 

1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 

0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 

1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 

0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 

1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 

0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 

1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 
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Construction of a State Diagram for Example 5-4 

successive clock cycles, if 1010 is applied to the input, the output will be 0001. In 
order to produce each output bit in the same clock cycle as the corresponding 
input bit, the output depends on the present input value as well as the state. The 
specifications also state that the circuit must be ready to receive a new 4-bit 
sequence as soon as the prior sequence has completed. The input to this circuit is 
labeled X and the output is labeled Z. In order to focus on the patterns for past 
inputs, the rows of Table 5-4(a) are sorted according to the first bit value, the sec­
ond bit value, and the third bit value of the input sequences. Table 5-4(b) results. 

The state diagram begins with an initial state, as shown in Figure 5-21(a). 
Examining the first column of bits in Table 5-4(b) reveals that a 0 produces a 1 out­
put and a 1 produces a 0  output. Next, we ask, "Do we need to remember the value 
of the first bit?" In Table 5-4(b ), when the first bit is a 0, a 0 in the second bit results 
in an output of 1 and a 1 in the second bit gives an output of 0. In contrast, if the 
first bit is a 1, a 0 in the second bit causes an output of 0, and a 1 in the second bit 
gives output 1. It is clear that we cannot determine the output for the second bit 
without "remembering" the value of the first bit. Thus, the first input equal to 0 and 
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the first input equal to 1 must give different states, as shown in Figure 5-21(a), which 
also shows the input/output values for the arcs to the new states. 

Next, it must be determined whether the inputs following the two new states 
need to have two states to remember the second bit value. In the first two columns of 
inputs in Table 5-4(b ), sequence 00 produces outputs for the third bit that are 0 for 
input 0 and 1 for input 1. On the other hand, for sequence 01, the outputs for the 
third bit are 1 for input 0 and 0 for input 1. Since these are different for the same 
input values in the third bit, separate states are necessary, as shown in Figure 5-21(b ). 
A similar analysis for input sequences 10 and 11, which examines the outputs for both 
the third and fourth bits, shows that the value of the second bit has no effect on the 
output values. Thus, in Figure 5-21(b ), there is only a single next state for state Bl = 1. 

At this point, six potential new states might result from the three states just 
added. Note, however, that these states are needed only to define the outputs for 
the fourth input bit, since it is known that the next state thereafter will be !nit in 
preparation for applying the next input sequence of four bits. How many states does 
one need to specify the different possibilities for the output value in the last bit? 
Looking at the final column, a 1 input always produces a 1 output and a 0 may pro­
duce either a 0 or a 1 output. Thus, at most two states are necessary, one that has a 0 
output to a 0 and one that has a 1 output to a 0. The output for a 1 input is the same 
for both states. In Figure 5-21(c), we have added these two states. For the circuit to 
be ready to receive the next sequence, the next state for these new states is !nit. 

Remaining is the determination of the blue arcs shown in Figure 5-21( d). The 
arcs from each of the bit B2 states can be defined based on the third bit in the 
input/output sequences. The next state can be chosen based on the response to input 
0 in the fourth bit of the sequence. The B2 state reaches the B3 state on the left with 
B3 = 0 or B3 = 1 as indicated by B3 = X on the upper half of the B3 state. The other 
two B2 states reach this same state with B3 = 1, as indicated on the lower half of the 
state. These same two B2 states reach the B3 state on the right with B3 = 0, as indi­
cated by the label on the state. • 

State Assignment 

In contrast to the states in the analysis examples, the states in the diagrams con­
structed have been assigned symbolic names rather than binary codes. It is neces­
sary to replace these symbolic names with binary codes in order to proceed with 
the design. In general, if there are m states, then the codes must contain at least n 
bits, where zn � m, and each state must be assigned a unique code. So, for the cir­
cuit in Table 5-3 with four states, the codes assigned to the states require two bits. 
Note that minimizing the number of bits in the state code does not always mini­
mize the cost of the overall sequential circuit. The combinational logic may have 
become more costly in spite of the gains achieved by having fewer flip-flops. 

The first state assignment method we will consider is to assign codes with n 
bits (2n � m > zn+l) such that the code words are assigned in counting order. For 
example, for states A, B, C, and D, the codes 00, 01, 10, and 11 are assigned to A, B, 
C, and D, respectively. An alternative that is attractive, particularly if K-maps are 



5-5 I Sequential Circuit Design D 239 

being used for optimization, is to assign the codes in Gray code order, with codes 
00, 01, 11, and 10 assigned to A, B, C, and D, respectively. 

More systematic assignment of codes attempts to reduce the cost of the 
sequential circuit combinational logic. A number of methods based on heuristics 
are available for targeting minimum two-level and minimum multilevel combina­
tional logic. The problem is difficult and the solutions are too complex for treat­
ment here. 

There are a number of specialized state assignment methods, some of which 
are based on efficient structures for implementing at least a portion of the transi­
tions. The most popular of these methods is the one flip-flop per state or one-hot 
assignment. This assignment uses a distinct flip-flop for each of the m states, so it 
generates codes that are m bits long. The sequential circuit is in a state when the 
flip-flop corresponding to that state contains a 1. By definition, all flip-flops corre­
sponding to the other states must contain 0. Thus, each valid state code contains m 

bits, with one bit equal to 1 and all other m - 1 bits equal to 0. This code has the 
property that going from one state to another can be thought of as passing a token, 
the single 1, from the source state to the destination state. Since each state is repre­
sented by a single 1, before combinational optimization, the logic for entering a 
particular state is totally separate from the logic for entering other states. This is in 
contrast to the mixing of the logic that occurs when multiple ls are present in the 
destination and source state codes. This separation can often result in simpler, 
faster logic, and in logic that is simpler to debug and analyze. On the other hand, 
the flip-flop cost may be overriding. Finally, while the state codes listed have values 
for m variables, when equations are written, only the variable which is 1 is listed. 
For example, for ABCD = 0100, instead of writing ABCD, we can simply write B. 
This is because all of the remaining 2m - m codes never occur and as a conse­
quence produce don't cares. 

The use of a sequentially assigned Gray code and of a one-hot code for the 
sequence recognizer design is illustrated in the following example. In the next 
subsection, the designs will be completed and the costs of these two assignments 
compared. 

EXAMPLE 5-5 State Assignments for the Sequence Recognizer 

The Gray code is selected in this case simply because it makes it easier for the 
next-state and output functions to be placed on a Karnaugh map. The state table 
derived from Table 5-3 with codes assigned is shown in Table 5-5. States A, B, C, 
and Dare replaced in the present state column by their respective codes, 00, 01, 11, 
and 10. Next, each of the next states is replaced by its respective code. This 2-bit 
code uses a minimum number of bits. 

A one-hot code assignment is illustrated in Table 5-6. States A, B, C and D are 
replaced in the Present State column by their respective codes, 1000, 0100, 0010, and 
0001. Next, each of the next states is replaced by its respective code. Since there are 
four states, a 4-bit code is required, with one state variable for each state. 

• 
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Designing with D Flip-Flops 

The remainder of the sequential circuit design procedure will be illustrated by the 
next two examples. We wish to design two clocked sequential circuits for the 
sequence recognizer, one that operates according to the Gray-coded state table 
given as Table 5-5 and the other according to the one-hot coded table given in 
Table 5-6. 

D TABLE 5-5 
Table 5-3 with Names Replaced by a 2-Bit Binary Gray Code 

Present State Next State Output Z 

AB X=O X=1 X=O X=1 

00 00 01 0 0 
01 00 11 0 0 
11 10 11 0 0 
10 00 01 0 1 

D TABLE 5-6 
Table 5-3 with Names Replaced by a 4-Bit One-Hot Code 

Present State Next State Output Z 

ABCD X=O X=1 X=O X=1 

1000 1000 0100 0 0 
0100 1000 0010 0 0 
0010 0001 0010 0 0 
0001 1000 0100 0 1 

EXAMPLE 5-6 Gray Code Design for the Sequence Recognizer 

For the Gray-coded design, two flip-flops are needed to represent the four states. 
Note that the two state variables are labeled with letters A and B. 

Steps 1 through 3 of the design procedure have been completed for this cir­
cuit. Beginning step 4, D flip-flops are chosen. To complete step 4, the flip-flop 
input equations are obtained from the next-state values listed in the table. For step 
5, the output equation is obtained from the values of Zin the table. The flip-flop 
input equations and output equation can be expressed as a sum of minterms of the 
present-state variables A and B and the input variable X: 

A(t + 1) = D A(A, B, X) = Im(3, 6, 7) 

B(t + 1) =DB(A, B, X) = Im(l, 3, 5, 7) 

Z(A, B, X) =Im(5) 
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K-maps for the Gray-Coded Sequential Circuit with D Flip-Flops 

In the case of this table with the Gray code on the left margin and a trivial 
Gray code at the top of the table, the adjacencies of the cells of the state table 
match the adjacencies of a K-map. This permits the values for the two next state 
variablesA(t + 1) and B(t = 1) and output Z to be transferred directly to the three 
K-maps in Figure 5-22, bypassing the sum-of-minterms equations. The three Bool­
ean functions, simplified by using the K-maps, are: 

DA= AB+BX 

DB =X 

Z =ABX 

The logic diagram of the sequential circuit is shown in Figure 5-23. The gate-input 
cost of the combinational logic is 9. A rough estimate for the gate-input cost for a 
flip-flop is 14. Thus the overall gate-input cost for this circuit is 37. • 
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Logic Diagram for the Gray-Coded Sequence Recognizer with D Flip-Flops 
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EXAMPLE 5-7 One-Hot Code Design for the Sequence Recognizer 

For the one-hot coded design in Table 5-6, four flip-flops are needed to represent 
the four states. Note that the four state variables are labeled A, B, C, and D. As is 
often the case, the state variables have names that are the same as those of the cor­
responding states. 

Just as for the Gray-coded case, steps 1 through 3 of the design procedure 
have been completed and D flip-flops have been chosen. To complete step 4, the 
flip-flop input equations are obtained from the next-state values. Although the 
state codes listed have values for four variables, recall that when equations from a 
one-hot code are written, only the variable with value 1 is included. Also, recall 
that each term of the excitation equation for state variable Y is based on a 1 value 
for variable Yin a next-state code entry and the sum of these terms is taken over 
all such ls in the next-state code entries. For example, a 1 appears for next-state 
variable B for present state 1000 (A) and input value X = 1 and for present state 
0001 (D) and input value X = 1. This gives B(t + 1) =AX+ DX. For step 5, the out­
put equation is obtained from the locations of the 1 values of Z in the output table. 
The resulting flip-flop input equations and output equation are: 
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A(t+l) =DA= A X+BX+DX =(A +B +D)X 

B(t+l) =DB= AX+ ex= (A +e)X 

e(t + l)= Dc = BX+ ex= (B + e)X 

D(t + l)=Dn = ex 

Z= DX 

The logic diagram of the sequential circuit is shown in Figure 5-24. The gate-input 
cost of the combinational logic is 19 and the cost of four flip-flops using the esti­
mate from Example 5-5 is 56, giving a total gate input cost of 74, almost twice that 
of the Gray code design. The supports the view that the one-hot design tends to be 
more costly, but, in general, there may be reasons for its use with respect to other 
factors such as performance, reliability, and ease of design and verification. • 

Designing with Unused States 

A circuit with n flip-flops has 2n binary states. The state table from which the circuit 
was originally derived, however, may have any number of states m � 2n. States that 
are not used in specifying the sequential circuit are not listed in the state table. In 
simplifying the input equations, the unused states can be treated as don't-care con­
ditions. The state table in Table 5-7 defines three flip-flops, A, B, and e, and one 
input, X. There is no output column, which means that the flip-flops serve as out­
puts of the circuit. With three flip-flops, it is possible to specify eight states, but the 
state table lists only five. Thus, there are three unused states that are not included 

D TABLES-7 
State Table for Designing with Unused States 

Present State Input Next State 

A B c x A B c 

0 0 1 0 0 0 1 
0 0 1 1 0 1 0 
0 1 0 0 0 1 1 
0 1 0 1 1 0 0 
0 1 1 0 0 0 1 
0 1 1 1 1 0 0 
1 0 0 0 1 0 1 
1 0 0 1 1 0 0 
1 0 1 0 0 0 1 
1 0 1 1 1 0 0 

in the table: 000, 110, and 111. When an input of 0 or 1 is included with the unused 
present-state values, six unused combinations are obtained for the present-state 
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and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations 
are not listed in the state table and hence may be treated as don't-care minterms. 

The three input equations for the D flip-flops are derived from the next-state 
values and are simplified in the maps of Figure 5-25. Each map has six don't-care 
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti­
mized equations are 

DA= AX+BX+BC 

DB= ACX+ABX 

De= X 

The logic diagram can be obtained directly from the input equations and will not 
be drawn here. 

It is possible that outside interference or a malfunction will cause the circuit 
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully 
or at least partially, the next-state values or the output values for the unused 
states. Depending on the function and application of the circuit, a number of 
ideas may be applied. First, the outputs for the unused states may be specified so 
that any actions that result from entry into and transitions between the unused 
states are not harmful. Second, an additional output may be provided or an 
unused output code employed which indicates that the circuit has entered an 
incorrect state. Third, to ensure that a return to normal operation is possible with­
out resetting the entire sy stem, the next-state behavior for the unused states may 
be specified. Typically, next states are selected such that one of the normally occur­
ring states is reached within a few clock cy cles, regardless of the input values. The 
decision as to which of the three options to apply, either individually or in combi­
nation, is based on the application of the circuit or the policies of a particular 
design group. 
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Sequential circuits can be verified by showing that the circuit produces the original 
state diagram or state table. In the simplest cases, all possible input combinations 
are applied with the circuit in each of the states, and the state variables and outputs 
are observed. For small circuits, the actual verification can be performed manually. 
More generally, simulation is used. In manual simulation, it is straightforward to 
apply each of the state-input combinations and verify that the output and the next 
state are correct. 

Verification with simulation is less tedious, but typically requires a sequence 
of input combinations and applied clocks. In order to check out a state-input 
combination, it is first necessary to apply a sequence of input combinations to 
place the circuit in the desired state. It is most efficient to find a single sequence 
to test all the state-input combinations. The state diagram is ideal for generating 
and optimizing such a sequence. A sequence must be generated to apply each 
input combination in each state while observing the output and next state that 
appears after the positive clock edge. The sequence length can be optimized by 
using the state diagram. The reset signal can be used as an input during this 
sequence. In particular, it is used at the beginning to reset the circuit to its initial 
state. 

In Example 5-8, both manual and simulation-based verification are illustrated. 

EXAMPLE 5-8 Verifying the Sequence Recognizer 

The state diagram for the sequence recognizer appears in Figure 5-20( d) and the 
logic diagram in Figure 5-23. There are four states and two input combinations, giv­
ing a total of eight state-input combinations to verify. The next state can be 
observed as the state on the flip-flop outputs after the positive clock edge. For D 

flip-flops, the next state is the same as the D input just before the clock edge. For 
other types of flip-flops, the flip-flop inputs just before the clock edge are used to 
determine the next state of the flip-flop. Initially, beginning with the circuit in an 
unknown state, we apply a 1 to the Reset input. This input goes to the direct reset 
input on the two flip-flops in Figure 5-23. Since there is no bubble on these inputs, 
the 1 value resets both flip-flops to 0, giving state A (0, 0). Next, we apply input 0, 
and manually simulate the circuit in Figure 5-23 to find that the output is 0 and the 
next state is A (0, 0), which agrees with the transition for input 0 while in state A. 

Next, simulating state A with input 1, next state B (0, 1) and output 0 result. For 
state B, input 0 gives output 0 and next state A (0, 0), and input 1 gives output 0 
and next state C(l, 1). This same process can be continued for each of the two 
input combinations for states C and D. 

For verification by simulation, an input sequence that applies all state-input 
combination pairs is to be generated accompanied by the output sequence and 
state sequence for checking output and next-state values. Optimization requires 
that the number of clock periods used exceed the number of state-input combina­
tion pairs by as few periods as possible (i.e., the repetition of state-input combina­
tion pairs should be minimized). This can be interpreted as drawing the shortest 
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path through the state diagram that passes through each state-input combination 
pair at least once. 

In Figure 5-26(a), for convenience, the codes for the states are shown and 
the path through the diagram is denoted by a sequence of blue integers begin­
ning with 1. These integers correspond to the positive clock edge numbers in 
Figure 5-26(b ), where the verification sequence is to be developed. The values 
shown for the clock edge numbers are those present just before the positive 
edge of the clock (i.e., during the setup time interval). Clock edge 0 is at t = 0 in 
the simulation and gives unknown values for all signals. We begin with value 1 
applied to Reset (1) to place the circuit in state A. Input value 0 is applied first 
(2) so that the state remains A, followed by 1 (3) checking the second input 
combination for state A. Now in state B, we can either move forward to state C 
or go back to state A. It is not apparent which choice is best, so we arbitrarily 
apply 1 ( 4) and go to state C. In state C, 1 is applied (5) so the state remains C. 
Next, a 0 is applied to check the final input for state C. Now in state D, we have 
an arbitrary choice to return to state A or to state B. If we return to state B by 
applying 1 (7), then we can check the transition from B to A for input 0 (8). 
Then, the only remaining transition to check is state D for input 0. To reach 
state D from state A, we must apply the sequence 1, 1, 0 (9) (10) (11) and then 
apply 0 (12) to check the transition from D to A. We have checked eight transitions 
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Simulation for Example 5-8 

with a sequence consisting of reset plus 11 inputs. A lthough this test sequence is 
of optimum length, optimality is not guaranteed by the procedure used. How­
ever, it usually produces an efficient sequence. 

In order to simulate the circuit, we enter the schematic in Figure 5-23 using 
the Xilinx ISE 4.2 Schematic Editor and enter the sequence from Figure 5-26(b) as 
a waveform using the Xilinx ISE 4.2 HDL Bencher. While entering the waveform, 
it is important that the input X changes well before the clock edge. This insures 
that there is time available to display the current output and to permit input 
changes to propagate to the flip-flop inputs before the setup time begins. This is 
illustrated by the INPUT waveforms in Figure 5-27, in which X changes shortly 
after the positive clock edge, providing a good portion of the clock period for the 
change to propagate to the flip-flops. The circuit is simulated with the MTI Model­
Sim simulator. We can then compare the values just before the positive clock edge 
on the STAT E and OUTPUT waveforms in Figure 5-27 with the values shown on 
the state diagram for each clock period in Figure 5-26. In this case, the comparison 
verifies that the circuit operation is correct. • 

5-6 OTHER FLIP-FLOP TYPES 
This section introduces JK and T flip-flops and the representations of their behav­

� ior used in analysis and design. 
� Because of their lesser importance in contemporary design relative to D flip­

flops, the analysis and design examples illustrating their use are given on the 
Companion Website for the text. 

JK and T Flip-Flops 

Four types of flip-flops are characterized in Table 5-8, including the SR and D 
from Section 5-3 given for reference, and the JK and T introduced here. With the 
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-
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exception of the SR flip-flop, which is master-slave, the symbol for a positive­
edge-triggered version of each flip-flop type is given. A logic diagram for an 
implementation of each flip-flop type is either referenced or given. A new con­
cept, the characteristic table, defines the logical properties of flip-flop operation in 
tabular form. Specifically, the table defines the next state as a function of the 
present state and inputs. Q(t) refers to the present state prior to the application of 
a clock pulse. Q(t + 1) represents the state one clock period later (i.e., the next 
state). Note that the triggering edge (or pulse) at input C is not listed in the char­
acteristic table, but is assumed to occur between time t and t + 1. Next to the 
characteristic table, the characteristic equation for each flip-flop type is given. 
These equations define the next state after the clock pulse for each of the flip­
flops as a function of the preset inputs and the present state before the clock 
pulse. The final column of the table consists of excitation tables for each of the flip­
flop types. These tables define the input value or values required to obtain each 
possible next-state value after the clock pulse, given the present-state value before 
the clock pulse. Excitation tables can be used to determine the flip-flop input 
equations from state-table information. 

Historically, the JK flip-flop was a modified version of the master-slave SR 
flip-flop. While the SR flip-flop produces undefined outputs and indeterminate 
behavior for S = R = 1, the JK flip-flop causes the output to complement its current 
value for J = K = 1. The master-slave version of the JK flip-flop has pulse-triggered 
behavior and, exhibits a property called "ls catching." Once J = 1 or K = 1 occurs, 
such that the master changes to the opposite state, the master cannot be changed 
back to its original state before the clock pulse ends, regardless of the values on J 
and K. The same solution applies as for the SR flip-flop, which is to insist that there 
are no changes during the interval of the clock pulse, i.e., when the clock equals 1. 
To avoid this additional contribution to the length of the clock cycle, we use only 
edge-triggered JK flip-flops built upon an edge-triggered D flip-flop. 

In Table 5-8, the symbol for a positive-edge-triggered JK flip-flop is shown as 
well as its logic diagram using a positive-edge-triggered D flip-flop. The characteris­
tic table given describes the behavior of the JK flip-flop. The J input behaves like 
the S input to set the flip-flop. The K input is similar to the R input for resetting the 
flip-flop. The only difference between the SR and JK flip-flops is their response to 
the condition when both inputs are equal to 1. As can be verified from the logic 
diagram, this condition complements the state of the JK flip-flop. When J = 1 and 
Q = 0, then D = 1, complementing the JK flip-flop outputs. When K = 1 and Q = 1, 
then D = 0, complementing the JK flip-flop outputs. This demonstrates that, 
regardless of the value of Q, the condition J = 1 and K = 1 causes the outputs of 
the flip-flop to be complemented in response to a clock pulse. The next-state 
behavior is summarized in the Characteristic Table column of Table 5-8. The clock 
input is not explicitly shown, but a clock pulse is assumed to have occurred 
between the present state and the next state of Q. 

The T (toggle) flip-flop is equivalent to the JK flip-flop with J and K tied 
together so that J = K = T. With this connection, only the combinations J = 0, K = 0 
and l= 1, K = 1 are applied. If we take the characteristic equation for the JK flip­
flop and make this connection, the equation becomes 
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Q(t+l)= TQ + TQ =T�Q 

The symbol for the T flip-flop and its logic diagram based on the preceding equa­
tion are given in Table 5-8. The characteristic equation for the T flip-flop is that 
just given, and the characteristic table in Table 5-8 shows that for T = 0, the T flip­
flop outputs remain unchanged, and for T = 1, the outputs are complemented. 
Since the T flip-flop can only hold its state unchanged or complement its state, 
there is no way to establish an initial state using only the T input without adding 
external sampling of the current output in the next-state logic outside of the flip­
flop. Thus, the T flip-flop is usually initialized to a known state by using a direct set 
or direct reset. 

5-7 STATE-MACHINE DIAGRAMS AND APPLICATIONS 

Thus far, we have used a traditional notation for state diagrams and tables, a nota­
tion illustrated by a Mealy model state diagram in Figure 5-28(a). Although this 
model serves well for very small designs, it often becomes cumbersome or unwork­
able for large designs. For example, all 2n combinations of n input variables must 
be represented on the transitions from each of the states even though the next 
state or output may be affected by only one of the n input variables. Also, for a 
large number of output variables, for each state or input combination label, up to 
2m output combinations must be specified even though only one among them out­
put variables is affected by the state and input values. Also, the Mealy model is 
very inefficient in specifying outputs because of the need to combine transition and 
output control functions together. To illustrate, the use of Moore outputs, in addi­
tion to Mealy, can greatly simplify output specification when applicable. Also, the 
use of Mealy outputs that are dependent upon input values, but not dependent on 
transition labels, can be useful. 

These arguments suggest that for pragmatic design, a modified state diagram 
notation is critical. We call this modified state diagram a state-machine diagram. 
This terms is also applied to the traditional state diagram representations, although 
here we use it primarily to identify departures in notation from that used for tradi­
tional diagrams. The main targets of the notation changes are to replace enumera­
tion of input and output combinations with the use of Boolean expressions and 
equations to describe input combinations, and the expansion of the options for 
describing output functions beyond those permitted by the traditional model. 

State-Machine Diagram Model 

The development of this model is based on input conditions, transitions and output 
actions. For a given state, an input condition can be described by a Boolean expres­
sion or equation in terms of input variables. An input condition as an expression is 
either equal to 1 or 0. As an equation, it is equal to 1 if it is satisfied and equal to 0 
if it is not. An input condition on a transition arc is called a transition condition 
(TC), and causes a transition to occur if it is equal to 1. An input condition that, if 
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equal to 1, causes an output action to occur is an output condition (OC). In a 
Moore model state-machine diagram, only transition conditions appear. Output 
actions are a function of the state only and therefore are unconditional, i.e., with 
an implicit output condition equal to 1. In a traditional Mealy model, when a con­
dition appears on an arc, by definition, it is both a transition condition and an out­
put condition. Multiple transition and output conditions may appear on a given 
transition arc. In our model, we modify the Mealy model in two ways. First of all, 
we permit output conditions to appear on the state, not just on transitions. Second, 
we permit output conditions that depend on, but are not transition conditions on 
the arcs. This provides more modeling flexibility in the formulation of correspond­
ing state tables and HDL descriptions. For this more flexible model, a generic state 
and one of its transitions and the various possible condition situations are shown in 
Figure 5-28(b ). 

For a given state, if a transition condition is equal to 1, then the correspond­
ing transition represented by the arc occurs. For a given state and transition, if all 
transition conditions are 0, then the corresponding transition does not occur. An 
unconditional transition always occurs on the next clock regardless of input val­
ues and can be thought of as having an implicit transition condition equal to 1. In 
Figure 5-28(c), which has exactly the same function as the traditional state dia­
gram given in Figure 5-28(a), transition concepts are illustrated. For example, for 
state S0 the transition to state S1 is unconditional. For state S3 and input combina­
tion 11, transition condition AB equal to 1 causes a transition to state S0• The 
effectiveness of this approach in simplifying input condition representation is 
illustrated well by transition conditions A in state S1 and A + B in state S2• A is 1 
for input combinations 00 and 01, and A + B is 1 for input combinations 01, 10, 
and 11, causing the respective transitions from S1 to S0 and S2 to S0• 

Outputs are handled by listing output conditions and output actions. The vari­
ous forms of specifying the control of output actions by state and output conditions 
are shown in Figure 5-28(b). For convenience, output conditions (if any) followed by 
a slash and corresponding output actions are placed at the end of a straight or curved 
line from either the state or from a transition condition TC. Multiple output condi­
tion/output action pairs are separated by commas. We classify output actions based 
on the conditions that cause them into four types as shown in Figure 5-28(b ). Moore 
output actions depend only on the state, i.e., are unconditional. Transition-condition 

independent (TC!) Mealy outputs are preceded by their respective output condition 
and a slash. These two types of output actions are attached by a line to the state 
boundary as shown in Figure 5-28(b ). Transition-condition dependent (TCD) Mealy 
output actions depend on both the state and a transition condition, thereby making 
the transition condition an output condition as well. Transition and output condition 
dependent (TOCD) output actions depend on the state, a transition condition, and an 
output condition and are preceded by their respective output condition OC and a 
slash. These two types of output actions are attached by a line to the transition condi­
tion TC upon which they depend as shown in Figure 5-28(b ). 

In a given state, an output action occurs if it is: (a) unconditional (Moore), 
(b) TCI and its output condition OC = 1, (c) TCD and its transition condition TD= 
1, and ( d) TOCD and its transition condition TC and output condition OC are both 
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equal to 1, i.e, TC· OC = 1. Note that Moore and TCI output actions attached to a 
state, apply to all transitions from the state as well. 

An output action may simply be an output variable. The output variable has 
value 1 for a given state present and its corresponding input conditions attached to 
the state or transition all equal to 1, and value 0 otherwise. For any state or state­
input condition pair without an output action on a variable, that variable takes on a 
default value noting again the exception that Moore and TCI output actions 
attached to a state, apply to all transitions from the state. Ordinarily, we explicitly 
list default output actions for reference as shown in Figure 5-28( c ). 

It is also possible to have variables that are vectors with values assigned. For 
vectors, a specific default value may be assigned. Otherwise, for a vector, the 
implicit assignment to 0 used for scalar variables does not apply. Finally, in chapter 
8, register transfer statements are listed as output actions. All of the modifications 
described permit description of a complete system using complex input conditions 
and output actions. Note that many of these modifications relate somewhat to the 
algorithmic state machines previously used in this text. 

Figure 5-28( c) can be used to illustrate the power of this notation. State S3 
has variables Y and Z as Moore output actions, so_! = 1 and Z = 1 when in state S3. 
State S0 has a TCI output condition and action B/Y which specifies that when in 
state S0, Y = 1 whenever B = 0. State S1 has a TCI output condition and action (A + 

B)!Z. In all these cases, repetitive occurrences of the output actions are avoided on 
the transitions. For state S0 with the use of a TCI output action, the problem of 
specifying the transition as unconditional and the output condition B on the transi­
tion is avoided. Also, for state S1 with the use of a TOCD output action, the transi­
tion condition A combined with output condition B is easily provided. 

In this example, Figure 5-28(a) provided the information for deriving Fig­
ure 5-28(c) . Transition and output conditions for each state were obtained by 
examining the binary input and output combinations in Figure 5-28(a) and 
determining the simplest way to describe an output action and then finding the 
simplest Boolean expression for the corresponding output condition. Likewise, 
the simplest transition condition can be found for each transition. This approach 
constitutes a transformation from the traditional state diagram to an equivalent 
state-machine diagram. It should be noted, however, that our principal goal is 
not this transformation, but instead, direct formulation of state-machine dia­
grams from specifications. 

A final element that can appear on a state diagram is the binary code 
assigned to a state. This binary code appears in parentheses below the state name 
or at the end of a line drawn out from the state. 

Constraints on Input Conditions 

In formulating transition and output conditions, it is necessary to perform checks 
to make sure that invalid next state and output specifications do not arise. For all 
possible input conditions, each state must have exactly one next state and have 
every single-bit output variable with exactly one value, e.g., either 0 or 1, but not 
both. These conditions are described in terms of constraints. 
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For each state, there are two constraints on transition conditions: 

1. The transition conditions from a given state Si must be mutually exclusive, 
i.e., all possible pair of conditions ('lij, 'lik) on distinct transition arcs from a 
given state have no identical input values, i.e., 

'lij · 1ik = 0, 

2. The transition conditions from a given state must cover all possible combina­
tions of input values, i.e., 

l:7ij = 1 
in which L represents OR. If there are don't care next states for state Sh the transi­
tion conditions for these states must be included in the OR operation. Also, in 
applying these constraints, recall that an unconditional transition has an implicit 
transition condition of 1. 

In the formulation of a state-machine diagram, transition conditions must be 
checked for each state and its set of transitions. If constraint 1 does not hold, then 
the next state for the current state is specified as two or more states. If constraint 2 
does not hold, then there are cases with no specified next state for one or more 
transitions where one is expected to be specified. Both of these situations are 
invalid. 

For each state, there are two similar constraints on output conditions: 

1. For every output action in state Si or on its transitions having coincident out­
put variables with differing values, the corresponding pair of output condi­
tions ( Oij,Oik) must be mutually exclusive, i.e., satisfy 

oij 
· oik = o 

2. For every output variable, the output conditions for state Si or its transitions 
must cover all possible combinations of input values that can occur, i.e., 

l:7ij = 1 
If there are don't care outputs for state Si, the output conditions for the don't care 
outputs must be included in the OR operation. In applying these constraints, 
recall that an unconditional output action on a state or an arc has an implicit out­
put condition of 1. Note that default output actions must be considered in this 
analysis. 

EXAMPLE 5-9 Checking Constraints 

In this example, transition and output constraints are checked for the state­
machine diagrams in Figure 5-28( c) and selected invalid cases in parts d and e of 
Figure 5-28. Beginning with Figure 5-28( c ) , the results for constraint 1 checks on 
transition conditions are: 

S0: The constraint is satisfied by default since there are no pairs of transition con­
ditions on distinct transitions arcs. 

S1: There is one pair of TCs to check: A · A = 0. 
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S2: There is one pair ofTCs to check: (A+ B) ·AB= 0. 
S3: There are three pairs ofTCs to check: AB· A= O,AB ·AB= 0, andA ·AB= 0. 

Since all of the results are 0, constraint 1 is satisfied. Next, checking constraint 2: 

S0: The transition is unconditional and has an implicit transition condition of 1. 

S1: A +A= 1 

S2: (A + B) +A B = 1 
S3: A +AB +AB = 1 

Since the results for all states are 1, constraint 2 is satisfied. Next, checking con­
straint 1 on output conditions: 

S0: There is only one output condition, B on output action Y, so the constraint is 
satisfied by default. 

S1: The first coincident output variable is Y and its values are 1 where Y appears 
for TOCA· B, and 0 by�efault where Y does not appear for input conditions 

A and AB. Note that if B is interpreted without ANDing with transition con­
dition A ,  then check A · B '# 0 incorrectly fails! The second coincident output 
variable is Z, with value 1 for A + B and 0 by default for input condition AB. 
In general, it is impossible for an invalid case to occur due to a default output 
action. So the constraint is satisfied. 

S2: The first coincident output variable is Y and the second is Z. Y has value 1 for 
output condition A + B, and by default value 0 for A B. Z has value 1 for out­
put condition A B and 0 by default for A + B. Due to the use of a default val­
ues, the constraint is satisfied. 

S3: There is no coincident output variable with differing output values, so the 
output constraint is satisfied by default. 

Since the output constraint is satisfied for all four states, it is satisfied for the state­
machine diagram as are the other two constraints. Next, checking constraint 2 on 
output conditions: 

S0: There is a single output condition B for which Y = 1. By default, Y .=_ 0 for the 
output condition for complement of B = B. ORing the conditions, B + B = 1. 
In general, with a default output specified, this will be the case since the 
default covers all input combinations not covered by specified output condi­
tions, so the constraint is satisfied. 

S1 through S3: Because of the default output action for variables Y and Z, as for S0, 
the constraint is also satisfied. 

Parts d and e of Figure 5-28 are examples that are used to demonstrate 
selected invalid cases for state-machine diagrams. For part d, A · B = A B, so the 
transition constraint 1 is not satisfied. For part e, variable Z appears as an output 
with distinct values 1 in state S and 0 on the transition for AB. Output condition 
constraint 1 gives 1 · AB '# 0. So the constraint is not satisfied. Actually, this occurs 
only because the designer failed to realize that Z = 1 was already specified on the 
transition because of its specification on the state S. • 
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Design Applications Using State-Machine Diagrams 

Two examples will be used to illustrate design using state-machine diagrams. In 
addition to design formulation, the effects of the use of a state-machine diagram 
formulation on the structure for state tables will be illustrated. These examples also 
illustrate that good solutions are possible for problem with larger numbers of 
inputs and states, in particular problems for which traditional state diagrams, tradi­
tional state tables and K-maps are all impractical. 

D TABLE5-9 
Input and Output Variables for the Batch Mixing System 

Input Meaning for Value 1 Meaning for Value O* 

NI Three ingredients Two ingredients 
Start Start a batch cycle No action 
Stop Stop an on-going batch cycle No action 
LO Tank empty Tank not empty 
Ll Tank filled to level 1 Tank not filled to level 1 
L2 Tank filled to level 2 Tank not filled to level 2 
L3 Tank filled to level 3 Tank not filled to level 3 
TZ Timer at value 0 Timer not at value 0 

Output Meaning for Value 1 Meaning for Value O 

MX Mixer on Mixer off 
PST Load timer with value from D No action 

TM Timer on Timer off 
V l  Valve open for ingredient 1 Valve closed for ingredient 1 
V 2  Valve open for ingredient 2 Valve closed for ingredient 2 

V 3  Valve open for ingredient 3 Valve closed for ingredient 3 
VE Output valve open Output valve closed 

EXAMPLE 5-10 State-Machine Design for a Batch Mixing System Control 

A mixing system for large batches of liquids is designed to add up to three ingredients 
to a large circular mixing tank, mix the ingredients, and then empty the mixed liquid 
from the tank. There are three inlets for ingredients, each with a on-off valve. There 
are three movable fluid sensors in the tank that can be set to tum off the respective 
valves at the level required for the first ingredient alone, for the first and second ingre­
dients, and for all three ingredients. A switch is used to select either a two or three 
ingredient operation. There is a button for starting the operation and a second button 
for stopping the operation at any time. There is a timer for timing the mixing cycle. 
The length of the mixing cycle is specified by a manually-operated dial that provides a 
starting value to a timer, The timer counts downward to zero to time the mixing. After 
mixing, the output valve is opened to remove the mixed liquid from the tank. 

A sequential circuit is to be designed to control the batch mixing operation. 
The inputs and outputs for the circuit are given in Table 5-9. Before starting the 
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operation of the mixing system, the operator places the fluid sensor Ll, L2, and L3 
in the proper locations. Next, the operator selects either two or three ingredients 
with switch NI and sets dial D to the mixing time. Then, the operator pushes the 
START to begin the mixing operation which proceeds automatically unless the 
STOP button is pushed. Valve Vl is opened and remains open until Ll indicates 
ingredient level 1 has been reached. Valve 1 closes and valve 2 opens and remains 
open until L2 indicates level 1 plus 2 has been reached. Valve 2 closes, and, if 
switch NI = 1, valve 3 opens and remains open until L3 indicates level 1, 2 plus 3 
has been reached. If NI = 0, the value on dial D is then read into the timer, the 
mixing begins, and the timer starts counting down. In the case where NI= 1, these 
actions all occur when L3 indicates that the level for all three ingredients has been 
reached. When the timer reaches 0 as indicated by the signal TZ, the mixing stops. 
Next, the Output valve is opened and remains open until sensor LO indicates the 

Default: MX = 0, PST = 0, 
TM = 0, Vl = 0, V2 = 0, V3 = 0, 
VE=O 

Ll·STOP 

L2·STOP 

STOP 

V3 
STOP 

TZ·STOP 

LO+STOP 

D FIGURE 5-29 

LO·STOP 

State-Machine Diagram for Batch Mixing System 
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tank is empty. If STOP is pushed at any time, addition of ingredients stops, mixing 
stops, and the output valve closes. 

The first step in the design is to develop the state-machine diagram. During 
this development, the input and status signals from Table 5-9 are used and the dia­
gram development can be traced in Figure 5-29. We begin with an initial state !nit, 
which is the reset state. As long as START is 0 or STOP is 1, the state is to 
remain !nit. When START is 1 with STOP at 0, a new state is required in which 
the addition of ingredient 1 is performed. State Fill_l with output Vl is added to 
perform this operation. In state Fill_l, if the operator pushes STOP, then the 
state is to return to !nit with the fill operation ceasing as indicated on the dia­
gram. If STOP is not pushed and Ll is still 0, then the filling must continue with 
the state remaining Fill_l as indicated by the transition back to Fill_l labeled 
Ll ·STOP. The filling continues until Ll = 1 because the fill level for ingredient 1 
has been reached. When Ll = 1 with STOP= 0, a new state, Fill_2 is added. For 
the input condition, Ll ·STOP, applied in state Fill_l, Vl goes to 0, turning off 
valve 1, and the state becomes Fill_2 with output V2, turning on valve 2. The loop 
on Fill_2 specifies that the state remains Fill_2 until L2 becomes 1. When L2 = 1 
with STOP= 0, for NI= 1 the state Fill_3 is added for the three ingredient case, 
and for NI= 0 state Mix is added for the two-ingredient case and output PST is 
added to present the timer to the mixing time on dial D. Fill_3 has transitions the 
same as for state Fill_l except that Ll is replaced by L3. For L3 ·STOP, filling is 
complete, so state Mix is entered for mixing. Also, a Mealy output PST is added 
for L3 ·STOP to preset the timer to the mixing time. In state Mix, the output MX 
is used to activate the mixing. In addition, as long as TZ = 0 and Stop = 0, the state 
remains Mix and the timer is turned on by Mealy output TM, causing the timer to 
count downward. State Empty is added for the case where TZ =1, since the timer 
has reached 0. With the mixing complete, the fluid can be emptied from the tank by 
opening the output valve with VE. The state remains Empty as long as LO = 0 and 
Stop= 0 as indicated by the loop to Empty with input condition LO·STOP. If at any 
time, LO or STOP becomes 1, the state returns to !nit, turning off the output valve 
by changing to VE= 0. This completes the development of the state-machine dia­
gram. The necessary analysis to verify the transition and output condition con­
straints is left to the reader in Problem 5-36(a). 

Although the state-machine diagram is similar to a state diagram, it is difficult 
to form a standard state table since there are eight inputs, giving 256 columns. 
Instead, a table can be formed that enumerates rows for each the following: (1) each 
state with its unconditional next state and its TCI output actions and output condi­
tions, (2) each transition condition for each state with the corresponding next state 
and (3) corresponding TCD and TCOD output actions, the latter with output condi­
tions. The results of this process for the state-machine diagram in Figure 5-29 are 
shown in Table 5-10. In this table, note that the entries in Non-zero Outputs are 
either Moore outputs or TCD outputs. For the TCD outputs, Boolean expressions 
can be shared in the excitation and output equations. To this end, we define the fol­
lowing intermediate variables for use in excitation equations and output equations: 

X" = Fill_2 · L2 ·NI· STOP 



5-7 I State-Machine Diagrams and Applications D 259 

D TABLE 5-10 
State Table for the Batch Mixing System 

Non-zero Outputs 
State Transition Next State Including Mealy 

State Code Condition State Code Outputs Using TCs* 

Init 100000 START + STOP Init 100000 
START·STOP Fill_l 010000 

Fill_l 010000 Vl 

STOP Init 100000 
Ll·STOP Fill_l 010000 
Ll·STOP Fi11_2 001000 

Fill_2 001000 V2 

STOP Init 100000 
L2·STOP Fi11_2 001000 
L2·Nl·STOP Mix 000010 PST* 

L2·Nl·STOP Fi11_3 000100 
Fill_3 000100 V3 

STOP Init 100000 
L3·STOP Fi11_3 000100 
L3·STOP Mix 000010 PST* 

Mix 000010 MX 

STOP Init 100000 
TZ·STOP Mix 000010 TM* 

TZ·STOP Empty 000001 
Empty 000001 VE 

LO·STOP Empty 000001 
LO+STOP Init 100000 

Y = Fill_3·L3·STOP 

Z =Mix· TZ·STOP 

Using the one-hot state assignment listed in the table assuming that each state vari­
able is named with the state for which it is 1, the excitation and output equations are: 

Init(t+l) = Init·START+STOP+Empty·LO 

Fill_l(t + 1) =/nit· START· STOP+ Fill_l · Ll ·STOP 

Fill_2 = Fill_l · Ll ·STOP+ Fill_2 · L2 ·STOP 

Fill_3 = L2 ·NI· STOP+ Fill_3 · L3 ·STOP 

Mix= X+Y+Z 

Empty(t + 1) = Mix· TZ ·STOP+ Empty· LO· STOP 
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V1 = Fill_1 

V2 = Fill_2 

V3 = Fill_3 

PST=X+Y 

MX= Mix 

TM=Z 

In the equation for !nit (t + 1), since all six states return to state Init for input stop, 
there is no need to specify any states with STOP. It is interesting to note that in­
deed, X, Y, and Z are shared between next state and output equations. With the 
one-hot state assignment, the formulation of the equations is very straightforward 
using either the state table or state-machine diagram. • 

>EXAMPLE 5-11 State-Machine Design of a Sliding Door Control 

Automatic sliding entrance doors are widely used in retail stores. In this example, 
we consider the design of the sequential logic for controlling a sliding door. The 
one-way door opens in response to three sensors PA (Approach Sensor), PP 
(Presence Sensor), DR (Door Resistance Sensor), and to a pushbutton MO (Man­
ual Open). PA senses a person or object approaching the door, and PP senses the 
presence of a person or object within the doorframe. DR senses a resistance to 
the door closing that is at least 15 pounds indicating that the door is pushing on a 
person or obstacle. MO is a manual pushbutton on the door control box that 
opens the door without dependence on the automatic control. The door control 
box also has a keyed lock LK for locking the door closed using an electrically­
operated bolt BT to prevent entrance when the store is closed. In addition to 
these inputs to the door logic, there are two limit switches CL (close limit) and 
0 L (open limit) that determine when the door mechanism has closed the door 
completely or opened the door completely, respectively. The control mechanism 
has just three outputs, BT (bolt), CD (close door) and OD (open door). All of the 
inputs or outputs are described along with the meaning of value 1 and value 0 for 
each of them in Table 5-11. 

Using the description just given and additional constraints on the design, we 
will develop the state-machine diagram as the first step in the design of the sequen­
tial circuit. We begin by defining the initial state to which the circuit will be reset, 
Closed. After reset, the door will open for the first time from this state. What is the 
transition condition for opening the door? First of all, the door must be unlocked, 
denoted by LK. Second, there must be a person approaching the door, a person 
within the door, or manual opening of the door requested by the pushbutton, 
denoted by PA + PP + M 0. Ordinarily, one would not expect the opening opera­
tion to be initiated by PP since this indicates that a person is within the doorframe. 
But this is included to cause the door to open in case of a PA failure. Both the lock 
and sensor conditions must be present for the door to open, so they are ANDed 
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Input and Output Variables for the Sliding Door Control 

Input 
Symbol Name Meaning for Value 1 Meaning for Value 0 

LK Lock with Key Locked Unlocked 

DR Door Resistance Sensor Door resistance � 15 lb Door resistance < 15 lb 
PA Approach Sensor Person/object approach No person/object approach 
pp Presence Sensor Person/object in door No person/object in door 

MO Manual Open PB Manual open No manual open 

CL Close Limit Switch Door fully closed Door not fully closed 

OL Open Limit Switch Door fully open Door not fully open 

Output 
Symbol Name Meaning for Value 1 Meaning for Value O 

BT Bolt Bolt closed Bolt open 

CD Close Door Close door Null action 
OD Open Door Close door Null action 

together to give the transition condition on the arrow from state Closed to state 
Open, the state in which the opening of the door occurs. If LK is 1 or all of PA, PP, 

and MO are 0, then the door is to remain closed. This gives the transition condi­
tions LK + PA·PP·MO for remaining in state Closed. LK is also the output condi­
tion for BT. Because of this, two transition conditions are needed, LK and PA·PP 

·MO. CD is to be activated for PA·PP·MO, CL and for BT not activated, i.e., for 
LK. This can be realized by the existing transition condition PA·PP·MO plus out­
put condition LK·CL as shown in Figure 5-30. The state remains Open and OD is 1 
as long as the door is not fully open as indicated by limit switch value 0 L. When 
this input condition changes to OL, the door is fully open and the new state is 
Opened. Note that there is no monitoring of the sensor inputs other than OL in 
Open since it is assumed that the door will fully open regardless of whether the 
person or object remains within sensor view. If at least one of the inputs that 
opened the door is 1, then the door will be held open by remaining in state 
Opened. The expression representing this condition is PA +PP+ MO. To insure 
that the door is held open, the limit switch value OL which indicates the door is 
not fully open is ANDed with PA+ PP+ MO to produce an output condition that 
activates door opening output OD. If all of the input values that opened the door 
are ..!h_then the door is to be closed. This transition condition is represented by 
PA·PP·MO which causes a transition from Opened to new state Close with output 
CD. In state Close, if any of the four sensors PA, PP, MO, or DR have value 1, rep­
resented by PA + PP + MO + DR, the door must reopen and the next state 
becomes Open. In state Close, because the door is closing, DR needs to be 
included here to indicate that the door may be blocked by a person or object. The 
form of the input conditions for the Close state differs from those for the Open 
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Default: BT = 0, CD = 0, OD = 0 

OL 

PA+PP+MO 
\ 

CL·PAPP·MO·DR 

D FIGURE 5-30 

/BT 
LK, 

__ _ 

PAPP·MO"-- -
LK· CL/CD 

CL·PAPP·MO·DR 

State-Machine Diagram for the Automatic Sliding Door 

state since door closure is to halt even if only partially completed when PA, PP, 
MO and DR have value 1. In a similar manner to the use of the OL sensor for the 
Open state, we add the transition to the Closed state for transition condition 
CL·PA·PP·MO·DR. A value of 0 on CL and on all of the sensor signals causing 
opening is represented by the transition condition CL·PA·PP·MO·DR that causes 
the Close state to remain unchanged. This completes the development of the dia­
gram. The necessary analysis to verify the transition and output condition con­
straints is left to the reader in Problem 5-36(b ). Note that all of the output 
conditions for OD and CD to be 0 are implicit and not shown, a fact that must be 
taken into account when verifying the output constraints. 

The state table derived from the state-machine diagram is shown in Table 5-12. 
The next step in the design is to make the state assignment. Since there are just 
four states, we choose a two-bit code, the Gray code. The state code information 
has been added to the state machine table in Table 5-12. With the state assignment 
in place, we can now write the next state and output equations for the circuit. 
Because of the number of input variables, map optimization is not feasible, but 
some multilevel optimization can be applied to obtain efficient realizations. The 
equations to be written from Table 5-12 are based on the 1 values for the next state 
variables. For excitation equations, products are formed from the state and input 
condition combinations for each 1 present with the state combinations replaced by 
state variable products, e.g., 01 becomes Y1 · Y2. The product term for the third row 
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D TABLE 5-12 
Modified State Table for the Automatic Sliding Door 

Non-zero Outputs (Including 
State Input Next State TCD and TOCO Output Actions 

State Code Condition State Code and Output Conditions*) 

Closed 00 LK Closed 00 BT* 
--- --

00 PA·PP·MO Closed 00 LK-CL/CD* 
00 LK·(PA +PP+ MO) Open 01 

Open 01 OD 
01 OL Open 01 
01 OL Opened 11 

Opened 11 PA+ PP+ MO Opened 11 OL/OD* 
---

11 PA·PP·MO Close 10 
Close 10 CD 

-----

10 CL·PA·PP·MO·DR Close 10 
10 CL·PA·PP·MO·DR Closed 00 
10 PA+ PP+ MO+ DR Open 01 

of the table is Y1·Y2·(LK (PA+ PP+ MO). The product terms for each of the 1 val­
ues can then be ORed together to form an excitation equation. The expression PA 

+PP+ MO and its complement PA·PP·MO are transition conditions for TOCD 
output actions and appear frequently as factors in other transition conditions. As 
useful factors, these expressions will be denoted by X and X, respectively. The exci­
tation equations are: 

X=PA+PP+MO 

For the output equations, products are formed from the state combinations 
and state combination-Mealy output conditions for each output listed. As for the 
excitation equations, state combinations are replaced by state variable products. 
The products are ORed for each of the output variables. The resulting output 
equations with multilevel optimization applied are: 

CD = Y1 · Y2 + Y1 · Y2 · LK · CL· X 

OD= Y1 ·Y2 + Y1 ·Y2·0L·X 

=(Y1 +OL·X)·Y2 
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By using these six equations, the final circuit can be construction from the combi­
national logic represented along with the two flip-flops for Y1 and Y2 with their 
resets connected. • 

Our introduction to design based on state-machine diagrams and state machine 
tables is now complete. In Chapter 7, we will use these tools to describe systems 
including register transfers. This will lead to methods for designing datapaths made 
up of register transfer hardware and state-based controls. 

ASYNCHRONOUS INTERFACES, SYNCHRONIZATION, AND SYNCHRONOUS CIRCUIT PIT­
FALLS In this section, we have applied signals such as those coming from sensors, 
buttons, and switches that are not synchronized with the clock to synchronous sequen­
tial circuits. This is a practice that can cause catastrophic failure because of timing 
problems. These issues and problems are addressed in Chapter 6 in Sections 6-5, 6-6, 
and 6-7. 

5-8 HDL REPRESENTATION FOR SEQUENTIAL CIRCUITS­
VHDL 

In Chapter 4, VHDL was used to describe combinational circuits. Likewise, VHDL 
can describe storage elements and sequential circuits. In this section, descriptions 
of a positive-edge-triggered D flip-flop and a sequence recognizer circuit illustrate 
such uses of VHDL. These descriptions involve new VHDL concepts, the most 
important of which is the process. Thus far, concurrent statements have described 
combinations of conditions and actions in VHDL. A concurrent statement, how­
ever, is limited in the complexity that can be represented. Typically, the sequential 
circuits to be described are complex enough that description within a concurrent 
statement is very difficult. A process can be viewed as a replacement for a concur­
rent statement that permits considerably greater descriptive power. Multiple pro­
cesses may execute concurrently, and a process may execute concurrently with 
concurrent statements. 

The body of a process typically implements a sequential program. Signal val­
ues, however, which are assigned during the process, change only when the process 
is completed. If the portion of a process executed is 

B <= A; 

C <= B; 

then, at the completion of the process, B will contain the original contents of A and 
c will contain the original contents of B . In contrast, after execution of these two 
statements in a program, c would contain the original contents of A. To achieve 
program-like behavior, VHDL uses another construct called a variable. In contrast 
to a signal which evaluates after some delay, a variable evaluates immediately. 
Thus, if B is a variable in the execution of 

B .- A; 

C : = B; 
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-- Positive-Edge-Triggered D Flip-Flop with Reset: 

-- VHDL Process Description 

library ieee; 

use ieee.std_logic_1164.all; 

entity dff is 
port(CLK, RESET, D : in std_logic; 

Q: out std_logic); 

end dff; 

architecture pet_pr of dff is 
Implements positive-edge-triggered bit state storage 

-- with asynchronous reset. 

begin 
process (CLK, RESET) 

begin 
if (RESET = '1') then 

Q <= '0' i 

elsif (CLK'event and CLK = '1') then 
Q <= D; 

end if; 
end if; 

end process; 
end; 

D FIGURE 5-31 
VHDL Process Description of Positive-Edge-Triggered Flip-Flop with Reset 

B will instantaneously evaluate to the contents of A and c will evaluate to the 
new contents of B, so that c finally contains the original contents of A. Variables 
appear only within processes. Note the use of := instead of <= for variable 
assignment. 

EXAMPLE 5-12 VHDL for Positive-Edge-Triggered D Flip-Flop with Reset 

Basic process structure is illustrated by an example process describing the architec­
ture of a positive-edge-triggered D flip-flop in Figure 5-31. The process begins with 
the keyword process. Optionally, process can be preceded by a process name 
followed by a colon. Following in parentheses are two signals, CLK and RESET. This 
is the sensitivity list for the process. If either CLK or RESET changes, then the pro­
cess is executed. In general, a process is executed whenever a signal or variable in 
its sensitivity list changes. It is important to note that the sensitivity list is not a 
parameter list containing all inputs and outputs. For example, D does not appear, 
since a change in its value cannot initiate a possible change in the value of Q. Fol­
lowing the sensitivity list at the beginning of the process is the keyword begin, 

and at the end of the process the keyword end appears. The word process fol­
lowing end is optional. 
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Within the body of the process, additional VHDL conditional structures can 
appear. Notable in the Figure 5-31 example is if-then-else. The general structure 
of an if-then-else in VHDL is 

if condition then 
sequence of statements 

{elsif condition then 
sequence of statements} 

else 
sequence of statements 

end if; 

The statements within braces { } can appear from zero to any number of times. The 
if-then-else within a process is similar in effect to the when else concurrent assign­
ment statement. Illustrating, we have 

if A = '1' then 
Q <= X; 

elsif B = '0' then 
Q <= Y; 

else 
Q <= Z; 

end if; 

If A is 1, then flip-flop Q is loaded with the contents of x. If A is 0 and B is 0, then 
flip-flop Q is loaded with the contents of Y. Otherwise, Q is loaded with the contents 
of z. The end result for the four combination of values on A and B is 

A = 0, B = 0 Q <= y 

A = 0, B = 1 Q <= z 

A = 1, B = 0 Q <= x 

A = 1, B = 1 Q <= x 

More complex conditional execution of statements can be achieved by nesting if­
then-else structures, as in the following code: 

if A =  '1' then 
if C = '0' then 

Q <= W; 

else 
Q <= X; 

end if; 
elsif B = '0' then 

Q <= Y; 

else 
Q <= Z; 

end if; 

The end result for the eight combinations of values on A, B, and c is 

A = 0, B = 0, C = 0 Q <= Y 

A = 0, B = 0, C = 1 Q <= y 
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A = 0, B = 1, c = 0 Q <= z 

A = 0, B = 1, c = 1 Q <= z 

A = 1, B = 0, c = 0 Q <= w 

A = 1, B = 0, c = 1 Q <= x 

A = 1, B = 1, c = 0 Q <= w 

A = 1, B = 1, c = 1 Q <= x 

With the information introduced thus far, the positive-edge-triggered D flip­
flop in Figure 5-31 can now be studied. The sensitivity list for the process includes 
CLK and RESET, so the process is executed if either CLK or RESET or both change 
value. If D changes value, the value of Q is not to change for an edge-triggered flip­
flop, so D does not appear on the sensitivity list. Based on the if-then-else, if RESET 

is 1, the flip-flop output Q is reset to 0. Otherwise, if the clock value changes, which 
is represented by appending 'event to CLK, and the new clock value is 1, which is 
represented by CLK = '1 ', a positive edge has occurred on CLK. The result of the 
positive-edge occurrence is the loading of the value on D into the flip-flop so that it 
appears on output Q. Note that, due to the structure of the if-then-else, RESET 

equal to 1 dominates the clocked behavior of the D flip-flop, causing the output Q 
to go to 0. Similar simple descriptions can be used to represent other flip-flop types 
and triggering approaches. • 

EXAMPLE 5-13 VHDL for the Sequence Recognizer 

A more complex example in Figures 5-32 and 5-33 represents the sequence-recog­
nizer state diagram in Figure 5-20( d) . The architecture in this description consists 
of three distinct processes, which can execute simultaneously and interact via 
shared signal values. New concepts included are type declarations for defining new 
types and case statements for handling conditions. 

The type declaration permits us to define new types analogous to existing 
types such as std_logic. A type declaration begins with the keyword type fol­
lowed by the name of the new type, the keyword is, and, within parentheses, the 
list of values for signals of the new type. Using the example from Figure 5-31, we 
have 

type state_type is (A, B, C, D); 

The name of the new type is state_type and the values in this case are the 
names of the states in Figure 5-20( d) . Once a type has been declared, it can be 
used for declaring signals or variables. From the example in Figure 5-31, 

signal state, next_state : state_type; 

indicates that state and next_state are signals that are of the type state_type. 

Thus, state and next state can have values A, B, c, and D. 
The basic if-then-else (without using the elsif) makes a two-way decision 

based on whether a condition is TRUE or FALSE. In contrast, the case statement 
can make a multiway decision based on which of a number of statements is TRUE. 
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-- Sequence Recognizer: VHDL Process Description 

-- (See Figure 5-20(d) for state diagram) 

library ieee; 

use ieee.std_logic_1164.all; 

entity seq_rec is 

port(CLK, RESET, X: in std_logic; 

Z: out std_logic); 

end seq_rec; 

architecture process_3 of seq_rec is 

type state_type is (A, B, C, D); 

signal state, next_state : state_type; 

begin 

Process 1 - state_register: implements positive-edge-triggered 

state storage with asynchronous reset. 

state_register: process (CLK, RESET) 

begin 

if (RESET = '1') then 

state <= A; 

elsif (CLK'event and CLK = '1') then 

state <= next_state; 

end if; 

end process; 

Process 2 - next_state_function: implements next state as 

a function of input X and state. 

next_state_func: process (X, state) 

begin 

case state is 

when A => 

if x = '1' then 

next 
-

state <= B; 

else 

next 
-

state <= A; 

end if; 

when B => 

if x = '1' then 

next 
-

state <= C; 

else 

next 
-

state <= A; 

end if; 

D FIGURE 5-32 
VHDL Process Description of a Sequence Recognizer 
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-- Sequence Recognizer: VHDL Process Description (continued) 

when C => 
if X = ' 1 ' then 

next_state <= C; 
else 

next_state <= D; 

end if; 
when D => 

if X = ' 1 ' then 
next_state <= B; 

else 
next_state <= A; 

end if; 
end case; 

end process; 

Process 3 - output_function: implements output as function 

of input X and state. 

output_func: process (X, state) 

begin 
case state is 

when A => 
z <= I 0 I; 

when B => 
z <= I 0 I; 

when C => 
z <= I 0 I; 

when D => 
if X = ' 1 ' then 

z <= I 1'; 
else 

z <= I 0 I; 

end if; 
end case; 

end process; 
end; 

D FIGURE 5-33 

VHDL Process Description of a Sequence Recognizer (continued) 

A simplified form for the generic case statement is 

case expression is 

{when choices => 

sequence of statements;} 

end case; 

The choices must be values that can be taken on by a signal of the type used in the 
expression. The case statement has an effect similar to the with-select concurrent 
assignment statement. 
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In the example in Figures 5-32 and 5-33, Process 2 uses a case statement to 
define the next-state function for the sequence recognizer. The case statement 
makes a multiway decision based on the current state of the circuit, A, B, c, or D. If­
then-else statements are used for each of the state alternatives to make a binary 
decision based on whether input x is 1 or 0. Concurrent assignment statements are 
then used to assign the next state based on the eight possible combinations of state 
value and input value. For example, consider the state alternative when B. If x 

equals 1, then the next state will be c; if x equals 0, then the next state will be A. 

This corresponds to the two transitions out of state B in Figure 5-20( d). For more 
complex circuits, case statements can also be used for handing the input conditions. 

With this brief introduction to the case statement, the overall sequence recog­
nizer can now be studied. Each of the three processes has a distinct function, but the 
processes interact to provide the overall sequence recognizer. Process 1 describes 
the storage of the state. Note that the description is like that of the positive-edge­
triggered flip-flop. There are two differences, however. First, the signals involved are 
of type state_type instead of type std_logic. Second, the state that results 
from applying RESET is state A rather than state 0. Also, since we are using state 
names such as A, B, and c, the number of state variables (i.e., the number of flip­
flops) is unspecified and the state codes are unknown. Process 1 is the only one of 
the three processes that contains storage. 

Process 2 describes the next-state function, as discussed earlier. The sensi­
tivity list in this case contains signals x and state. In general, for describing com­
binational logic, all inputs must appear in the sensitivity list, since, whenever an 
input changes, the process must be executed. 

Process 3 describes the output function. The same case statement framework 
as in Process 2 with state as the expression is used. Instead of assigning state 
names to next state, values 0 and 1 are assigned to z. If the value assigned is the same 
for both values 0 and 1 on x, no if-then-else is needed, so an if-then-else appears only 
for state D. If there are multiple input variables, more complex if-then-else combina­
tions or a case statement, as illustrated earlier, can be used to represent the condi­
tioning of the outputs on the inputs. This example is a Mealy state machine in which 
the output is a function of the circuit inputs. If it were a Moore state machine, with 
the output dependent only on the state, input x would not appear on the sensitivity 
list, and there would be no if-then-else structures in the case statement. • 

A common pitfall is present whenever an if-then-else or case statement is 
employed. During synthesis, unexpected storage elements in the form of latches 
or flip-flops appear. For the simple if-then-else used in Figure 5-31, using this pit­
fall gives a specification that synthesizes to a flip-flop. In addition to the two input 
signals, RESET and CLK, the signal CLK' event is produced by applying the pre­
defined attribute ' event to the CLK signal. CLK' event is TRUE if the value of 
CLK changes. All possible combinations of values are represented in Table 5-13. 
Whenever RESET is 0 and the CLK is fixed at 0 or 1 or has a negative edge, no 
action is specified. In VHDL, it is assumed that, for any combinations of condi­
tions that have unspecified actions in if-then-else or case statements, the left-hand 
side of an assignment statement remains unchanged. This is equivalent to Q <= Q, 
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D TABLE 5-13 
Illustration of Generation of Storage in VHDL 

Inputs Action 

RESET= 1 CLK= 1 CLK' event 

FALSE FALSE FALSE Unspecified 

FALSE FALSE TRUE Unspecified 

FALSE TRUE FALSE Unspecified 

FALSE TRUE TRUE O<=D 

TRUE Q <= 'O' 

causing storage to occur. Thus, all combinations of conditions must have the 
resulting action specified when no storage is intended. If this is not a natural situ­
ation, an others can be used in the if-then else or case. If binary values are used 
in the case statement, just as in Section 4-7, an others must also be used to han­
dle combinations including the seven values other than 0 and 1 permitted for 
std_logic. 

Together, the three processes used for the sequence recognizer describe the 
state storage, the next-state function, and the output function for a sequential 
circuit. Since these are all of the components of a sequential circuit at the state­
diagram level, the description is complete. The use of three distinct processes is 
only one methodology for sequential circuit description. Pairs of processes or all 
three processes can be combined for more elegant descriptions. Nevertheless, 
the three-process description is the easiest for new users of VHDL and also 
works well with synthesis tools. 

To synthesize the circuit into actual logic, a state assignment is needed, in 
addition to a technology library. Many synthesis tools will make the state assign­
ment independently or based on a directive from the user. It is also possible for 
the user to specify explicitly the state assignment. This can be done in VHDL by 
using an enumeration type. The encoding for the state machine in Figures 5-32 
and 5-33 can be specified by adding the following after the type state_type 

declaration: 

attribute enum_encoding: string; 

attribute enum_encoding of state_type: 

type is II 0 0 I 0 l, 10 I l l" i 

This is not a standard VHDL construct, but it is recognized by many synthesis 
tools. Another option is not to use a type declaration for the states, but to declare 
the state variables as signals and use the actual codes for the states. In this case, if 
states appear in the simulation output, they will appear as the encoded state values. 
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5-9 HDL REPRESENTATION FOR SEQUENTIAL CIRCUITS­
VERILOG 

In Chapter 4, Verilog was used to describe combinational circuits. Likewise, Ver­
ilog can describe storage elements and sequential circuits. In this section, descrip­
tions of a positive-edge-triggered D flip-flop and a sequence-recognizer circuit 
illustrate such uses of Verilog. These descriptions will involve new Verilog concepts, 
the most important of which are the process and the register type for nets. 

Thus far, continuous assignment statements have been used to describe com­
binations of conditions and actions in Verilog. A continuous assignment statement 
is limited in what can be described, however. A process can be viewed as a replace­
ment for a continuous assignment statement that permits considerably greater 
descriptive power. Multiple processes may execute concurrently and a process may 
execute concurrently with continuous assignment statements. 

Within a process, procedural assignment statements, which are not continu­
ous assignments, are used. Because of this, the assigned values need to be retained 
over time. This retention of information can be achieved by using the register type 
rather than the wire type for nets. The keyword for the register type is reg. Note 
that just because a net is of type reg does not mean that an actual register is asso­
ciated with its implementation. Additional conditions need to be present to cause 
an actual register to exist. 

There are two basic types of processes, the initial process and the 
always process. The initial process executes only once, beginning at t = 0. The 
always process also executes at t = 0, but executes repeatedly thereafter. To pre­
vent rampant, uncontrolled execution, some timing control is needed in the form 
of delay or event-based waiting. The# operator followed by an integer can be used 
to specify delay. The @ operator can be viewed as "wait for event." @ is followed 
by an expression that describes the event or events, the occurrence of which will 
cause the process to execute. 

The body of a process is like a sequential program. The process begins with 
the keyword begin and ends with the keyword end. Procedural assignment state­
ments make up the body of the process. These assignment statements are classified 
as blocking or nonblocking. Blocking assignments use = as the assignment operator 
and nonblocking assignments use <= as the operator. Blocking assignments are 
executed sequentially, much like a program in a procedural language such as C. 
Nonblocking assignments evaluate the right-hand side, but do not make the assign­
ment until all right-hand sides have been evaluated. Blocking assignments can be 
illustrated by the following process body, in which A, B, and C are of type reg: 

begin 

B = A; 

C = B; 

end 

The first statement transfers the contents of A into B. The second statement then transfers 
the new contents of B into c.At process completion, c contains the original contents of A. 

Suppose that the same process body uses nonblocking assignments: 
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begin 
B <= A; 
C <= B; 

end 

The first statement transfers the original contents of A into B and the second statement 
transfers the original contents of B into c. At process completion, c contains the origi­
nal contents of B, not those of A. Effectively, the two statement have executed concur­
rently instead of in sequence. Nonblocking assignments, except in the cases in which 
we want registers (of type reg) to be evaluated sequentially, will be used. 

EXAMPLE 5-14 Verilog for Positive-Edge-Triggered D Flip-Flop with Reset 

These new concepts can now be applied to the Verilog description of a positive­
edge-triggered D flip-flop given in Figure 5-34. The module and its inputs and 
outputs are declared. Q is declared as of type reg, since it will store information. 
The process begins with the keyword always. Following is @ (posedge CLK or 
posedge RESET) This is the event control statement for the process that ini­
tiates process execution if an event (i.e., a specified change in a specified signal) 
occurs. For the D flip-flop, if either CLK or RESET changes to 1, then the process 
is executed. It is important to note that the event control statement is not a para­
meter list containing all inputs. For example, D does not appear, since a change in 
its value cannot initiate a possible change in the value of Q. Following the event 
control statement at the beginning of the process is the keyword begin, and at 
the end of the process the keyword end appears. 

Within the body of the process, additional Verilog conditional structures can 
appear. Notable in the Figure 5-34 example is if-else. The general structure of an if­
else in Verilog is 

if (condition) 
begin procedural statements end 

{else if (condition) 

begin procedural statements end} 
{else 

begin procedural statements end} 

If there is a single procedural statement, then the begin and end are unnecessary: 

if (A == 1) 

Q <= X; 

else if (B 0) 

Q <= Y; 

else 
Q <= Z; 

Note that a double equals signs is used in conditions. If A is 1, then flip-flop Q is 
loaded with the contents of x. If A is 0 and B is 0, then flip-flop Q is loaded with the 
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II Positive-Edge-Triggered D Flip-Flop with Reset: 

II Verilog Process Description 

module dff_v(CLK, RESET, D, Q); 

input CLK, RESET, D; 

output Q; 

reg Q; 

always @(posedge CLK or posedge RESET) 

begin 
if (RESET) 

Q <= O; 
else 

Q <= D; 
end 
endmodule 

D FIGURE 5-34 

Verilog Process Description of Positive-Edge-Triggered Flip-Flop with Reset 

contents of Y. Otherwise, Q is loaded with the contents of z. The end result for the 
four combination of values on A and B is 

A = 0, B = 0 Q <= y 
A = 0, B = 1 Q <= z 

A = 1, B = 0 Q <= x 

A = 1, B = 1 Q <= x 

The if-else within a process is similar in effect to the conditional operator in a con­
tinuous assignment statement introduced earlier. The conditional operator can be used 
within a process, but the if-else cannot be used in a continuous assignment statement. 

More complex conditional execution of statements can be achieved by nest­
ing if-else structures. For example, we might have 

if (A == 1) 
if (C == 0) 

Q <= W; 

else 

Q <= X; 

else if (B 0) 
Q <= Y; 

else 

Q <= Z; 

In this type of structure, an else is associated with the closest if preceding it that 
does not already have an else. The end result for the eight combinations of values 
on A, B, and c is 

A = 0, B = 0, C = 0 
A = 0, B = 0, C = 1 

Q <= y 
Q <= y 
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A = 0, B = l, c = 0 Q <= z 

A = 0, B = l, c = 1 Q <= z 

A = 1, B = 0, c = 0 Q <= w 

A = 1, B = 0, c = 1 Q <= x 

A = 1, B = 1, c = 0 Q <= w 

A = 1, B = 1, c = 1 Q <= x 

Returning to the if-else in the positive-edge-triggered D flip-flop shown in 
Figure 5-34, assuming that a positive edge has occurred on either CLK or RESET, if 
RESET is 1, the flip-flop output Q is reset to 0. Otherwise, the value on D is stored in 
the flip-flop so that Q equals D. Due to the structure of the if-else, RESET equal to 1 
dominates the clocked behavior of the D flip-flop, causing the output Q to go to 0. 
Similar simple descriptions can be used to represent other flip-flop types and trig­
gering approaches. • 

EXAMPLE 5-15 Verilog for the Sequence Recognizer 

A more complex example in Figure 5-35 represents the sequence-recognizer state 
diagram in Figure 5-20( d). The architecture in this description consists of three dis­
tinct processes that can execute simultaneously and interact via shared signal val­
ues. New concepts included are state encoding and case statements for handling 
conditions. 

In Figure 5-35, the module seq_rec_v and input and output variables CLK, 

RESET, x, and z are declared. Next, registers are declared for state and 
next_state. Note that since next_state need not be stored, it could also be 
declared as a wire, but, since it is assigned within an always, it must be declared as 
a reg. Both registers are two bits, with the most significant bit (MSB) numbered 1 
and the least significant bit (LSB) numbered 0. 

Next, a name is given to each of the states taken on by state and 
next_s ta te, and binary codes are assigned to them. This can be done using a 
parameter statement or a compiler directive define. We will use the parameter 
statement, since the compiler directive requires a somewhat inconvenient ' before 
each state throughout the description. From the diagram in Figure 5-20( d), the 
states are A, B, C, and D. In addition, the parameter statements give the state 
codes assigned to each of these states. The notation used to define the state codes is 
2 ' b followed by the binary code. The 2 denotes that there are two bits in the code 
and the 'b denotes that the base of the code given is binary. 

The if-else (without using the else if) makes a two-way decision based on 
whether a condition is TRUE or FALSE. In contrast, the case statement can make 
a multiway decision based on which one of a number of statements is TRUE. A 
simplified form for the generic case statement is 

case expression 
{case expression : statements} 

endcase 

in which the braces { } represent one or more such entries. 
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II Sequence Recognizer: Verilog Process Description 

II (See Figure 5-20(d) for state diagram) 

module seq_rec_v(CLK, RESET, X, Z); 

input CLK, RESET, X; 

output Z; 

reg [1:0] state, next_state; 

parameter A =  2'b00, B = 2'b01, C = 2'bl0, D = 2'bll; 

reg Z; 

II state register: implements positive-edge-triggered 

II state storage with asynchronous reset. 

always @ (posedge CLK or posedge RESET) 

begin 

if (RESET == 1) 

state <= A; 

else 

state <= next_state; 

end 

II next state function: implements next state as function 

II of X and state 

always @ (X or state) 

begin 

case (state) 

A: if (X == 1) 

next_state <= B; 

else 

next state <= 

B: if (X) 

C: if (X) 

D: if (X) 

endcase 

end 

-

next state 
-

next state 
-

next state 
-

A; 

<= 

<= 

<= 

C;else next 
-

state <= 

C;else next 
-

state <= 

B;else next 
-

state <= 

II output function: implements output as function 

II of X and state 

always @ (X or state) 

begin 

case (state) 

A: z <= O; 

B: z <= O; 

C: z <= O; 

D: z <= x ? 1 O; 

endcase 

end 

endmodule 

D FIGURE 5-35 

A; 

D; 

A; 

Verilog Process Description of a Sequence Recognizer 
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The case expression must have values that can be taken on by a signal of 
the type used in expression. Typically, there are sequences of multiple state­
ments. In the example in Figure 5-35, the case statement for the next-state function 
makes a multiway decision based on the current state of the circuit, A, B, c, or D. 

For each of the case expressions, conditional statements of various types are used 
to make a binary decision based on whether input x is 1 or0. Nonblocking assign­
ment statements are then used to assign the next state based on the eight possible 
combinations of state value and input value. For example, consider the expression 
B. If x equals 1, then the next state will be c; if x equals 0, then the next state will 
be A. This corresponds to the two transitions out of state B in Figure 5-20(d) . 

With this brief introduction to the case statement, the overall sequence recog­
nizer can now be understood. Each of the three processes has a distinct function, but 
the processes interact to provide the overall sequence recognizer. The first process 
describes the state register for storing the sequence-recognizer state. Note that the 
description resembles that of the positive-edge-triggered flip-flop. There are two dif­
ferences, however. First, there are two bits in the state register. Second, the state that 
results from applying RESET is state A rather than state 0. The first process is the 
only one of the three processes that has storage associated with it. 

The second process describes the next-state function as discussed earlier. The 
event control statement contains signals X and state. In general, for describing 
combinational logic, all inputs must appear in the event control statement, since, 
whenever an input changes, the process must be executed. 

The final process describes the output function and uses the same case state­
ment framework as in the next-state function process. Instead of assigning state 
names, values 0 and 1 are assigned to z. If the value assigned is the same for both 
values 0 and 1 on x, no conditional statement is needed, so a conditional statement 
appears only for state D. If there are multiple input variables, more complex if-else 

combinations, as illustrated earlier, can be used to represent the conditioning of 
the outputs on the inputs. This example is a Mealy state machine in which the out­
put is a function of the circuit inputs. If it were a Moore state machine, with the 
output dependent only on the state, input x would not appear on the event control 
statement and there would be no conditional structures within the case statement. 

• 

A common pitfall is present whenever an if-else or case statement is 
employed. During synthesis, unexpected storage elements in the form of latches or 
flip-flops appear. For the very simple if-else used in Figure 5-34, this pitfall is 
employed to give a specification that synthesizes to a flip-flop. In addition to the 
two input signals, RESET and CLK, events posedge CLK and posedge RESET 

are produced, which are TRUE if the value of the respective signal changes from 0 
to 1. Selected combinations of values for RESET and the two events are shown in 

Table 5-14. Whenever RESET has no positive edge, or RESET is 0 and CLK is fixed 
at 0 or 1 or has a negative edge, no action is specified. In Verilog, the assumption is 
that, for any combination of conditions with unspecified actions in if-else or case 

statements, the left-hand side of an assignment statement will remain unchanged. 
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D TABLE 5-14 
Illustration of Generation of Storage in Verilog 

Inputs Action 

posedge RESET 
and RESET = 1 posedge CLK 

FALSE FALSE Unspecified 

FALSE TRUE O<=D 

TRUE FALSE 0<=0 

TRUE TRUE 0<=0 

This is equivalent to Q <= Q, causing storage to occur. Thus, all combinations of 
conditions must have the resulting action specified when no storage is intended. To 
prevent undesirable latches and flip-flops from occurring, for if-else structures, 
care must be taken to include else in all cases if storage is not desired. In a case 
statement, a default statement which defines what happens for all choices not 
specified should be added. Within the default statement, a specific next state can 
be specified, which in the example could be state A. 

Together, the three processes used for the sequence recognizer describe the 
state storage, the next-state function, and the output function for the sequential cir­

cuit. Since these are all of the components of a sequential circuit at the state-dia­
gram level, the description is complete. The use of three distinct processes is only 
one methodology for sequential circuit description. For example, the next-state and 
output processes could be easily combined. Nevertheless, the three-process descrip­
tion is the easiest for new users of Verilog and also works well with synthesis tools. 

5-10 CHAPTER SUMMARY 

Sequential circuits are the foundation upon which most digital design is based. 
Flip-flops are the basic storage elements for synchronous sequential circuits. Flip­
flops are constructed of more fundamental elements called latches. By themselves, 
latches are transparent and, as a consequence, are very difficult to use in synchro­
nous sequential circuits using a single clock. When latches are combined to form 
flip-flops, nontransparent storage elements very convenient for use in such circuits 
are formed. Two triggering methods are used for flip-flops: master-slave and edge 
triggering. In addition, there are a number of flip-flop types, including D, SR, JK, 
and T. 

Sequential circuits are formed using these flip-flops and combinational logic. 
Sequential circuits can be analyzed to find state tables and state diagrams that rep­
resent the behavior of the circuits. Also, analysis can be performed by using logic 
simulation. 

These same state diagrams and state tables can be formulated from verbal 
specifications of digital circuits. By assigning binary codes to the states and finding 
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flip-flop input equations, sequential circuits can be designed. The design process 
also includes issues such as finding logic for the circuit outputs, resetting the state at 
power-up, and controlling the behavior of the circuit when it enters states unused in 
the original specification. Finally, logic simulation plays an important role in verify­
ing that the circuit designed meets the original specification. 

In order to deal with more complex, realistic designs, state machine diagrams 
and state tables are introduced. The goal of this notation is to minimize the com­
plexity of descriptions, maximize the flexibility of representation, permit the use of 
default conditions, and provide a model that facilitates modeling of pragmatic 
designs. In addition, this model builds toward the use of hardware description lan­
guages to model sequential circuits. 

As an alternative to the use of logic diagrams, state diagrams, and state tables, 
sequential circuits can be defined in VHDL or Verilog descriptions. These descrip­
tions provide a powerful, flexible approach to sequential circuit specification for 
both simulation and automatic circuit synthesis. These representations involve pro­
cesses that provide added descriptive power beyond the concurrent assignment 
statements of VHDL and the continuous assignment statement of Verilog. The pro­
cesses, which permit programlike coding and use if-then-else and case conditional 
statements, can also be used to efficiently describe combinational logic. 
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PROBLEMS 

( � • , � > The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

5-1. Perform a manual or c�mputer-based logic simulation similar to that given 
in Figure 5-5 for the SR latch shown in Figure 5-6. Construct the input 
sequence, keeping in mind that changes in state for this type of latch occur in 
response to 0 rather than 1. 

5-2. Perform a manual or computer-based logic simulation similar to that given 
in Figure 5-5 for the SR latch with control input C in Figure 5-7. In 
particular, examine the behavior of the circuit when S and R are changed 
while C has the value 1. 

5-3. A popular alternative design for a positive-edge-triggered D flip-flop is 
shown in Figure 5-36. Manually or automatically simulate the circuit to 

s 

R 

D FIGURE 5-36 
Circuit for Problem 5-3 
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determine whether its functional behavior is identical to that of the circuit in 
Figure 5-12. 

5-4. Clock and D waveforms, one latch, and two flip-flops are shown in Figure 5-37. 

For the latch and each of the flip-flops, carefully sketch the output 
waveform, Qi, obtained in response to the input waveforms. Assume that the 
propagation delay of the storage elements is negligible. Initially, all storage 
elements store 0. 

5-5. Clock, S and R waveforms, one latch and two flip-flops are shown in Figure 
5-38. For the latch and the flip-flops, carefully sketch the output waveform, 
Qi, obtained in response to the input waveforms. Assume that the 
propagation delay of the storage elements is negligible. Initially, all storage 
elements store 0. 

5-6. A sequential circuit with two D flip-flops A and B, two inputs X and Y, and 
one output Z is specified by the following input equations: 

DA=XA+XY, DB=XB+XA, Z=XB 

(a) Draw the logic diagram of the circuit. 

(b) Derive the state table. 

(c) Derive the state diagram. 

c 

D 

D 
Q 1 

c 

D with 1 Control 

D 

c --, 

Q 2 

JL Triggered D 

3 

_r Triggered D 

D FIGURE 5-37 

L lf u l I 

Waveforms and Storage Element for Problem 5-4 
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5-7. *A sequential circuit has three D flip-flops A, B, and C, and one input X. The 
circuit is described by the following input equations: 

DA (BC+BC)X +(BC +B C)X 

De = B 

(a) Derive the state table for the circuit. 

(b) Draw two state diagrams, one for X = 0 and the other for X = 1. 

5-8. A sequential circuit has one flip-flop Q, two inputs X and Y, and one output 
S. The circuit consists of a D flip-flop with S as its output and logic 
implementing the function 

D=XffiYffiS 

with D as the input to the D flip-flop. Derive the state table and state 
diagram of the sequential circuit. 
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5-9. Starting from state 00 in the state diagram of Figure 5-17(a), determine the 
state transitions and output sequence that will be generated when an input 
sequence of 10011011110 is applied. 

5-10. Draw the state diagram of the sequential circuit specified by the state table 
in Table 5-15. 

D TABLE 5-15 

State Table for Circuit of Problem 5-10 

Present State Inputs Next State Output 

A B x y A B z 

0 0 0 0 0 0 0 

0 0 0 1 0 1 0 

0 0 1 0 1 0 1 

0 0 1 1 1 1 1 

0 1 0 0 0 1 1 

0 1 0 1 1 0 1 

0 1 1 0 1 0 0 

0 1 1 1 0 0 0 

1 0 0 0 1 1 1 

1 0 0 1 1 1 0 

1 0 1 0 1 1 1 

1 0 1 1 1 0 0 

1 1 0 0 0 0 0 

1 1 0 1 0 0 1 

1 1 1 0 0 0 0 

1 1 1 1 0 1 1 

5-11. *A sequential circuit has two SR flip-flops, one input X, and one output Y. 

The logic diagram of the circuit is shown in Figure 5-39. Derive the state 
table and state diagram of the circuit. 

5-12. A sequential circuit is given in Figure 5-15. 

(a) Add the necessary logic and/or connections to the circuit to provide an 
asynchronous reset to state A = 0, B = 1 for signal Reset = 1. 

(b) Add the necessary logic and/or connections to the circuit to provide a 
synchronous reset to state A = 0, B = 0 for signal Reset = 0. 

5-13. *Design a sequential circuit with two D flip-flops A and Band one input X. 

When X = 0, the state of the circuit remains the same. When X = 1, the 
circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 
00, and then repeats. 

5-14. The state diagram for a sequential circuit appears in Figure 5-40. 

(a) Find the state table for the circuit. 
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A 

.-----.� c 

R ----+-----1 R 

Clock---<...._-----+-----+--------' 

D FIGURE 5-39 
Circuit for Problem 5-11 

t-----B 

1 1-t........+--- B 

(b) Make a state assignment for the circuit using 2-bit codes and find the 
encoded state table. 

(c) Find an optimized circuit implementation using D flip-flops, NAND 
gates, and inverters. 

5-15. The state diagram for a sequential circuit appears in Figure 5-41. 

(a) Find the state table for the circuit. 
(b) Make a state assignment for the circuit using 3-bit codes for the six 

states; make one of the code bits equal to the output to save logic, and 
find the encoded state table. The next states and outputs are don't cares 
for the two unused state codes. 

(c) Find an optimized circuit implementation using D flip-flops, NAND 
gates, and inverters. 

5-16. The circuit given in Figure 5-42 is to be redesigned to cut its cost. 

(a) Find the state table for the circuit and replace the state codes with single­
letter identifiers. States 100 and 111 were unused in the original design. 

0011,0110 0111, 1010 10/1, 11/1 

0011, 11/1 

D FIGURE 5-40 
State Diagram for Problem 5-14 
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Reset 

D FIGURE 5-41 
State Diagram for Problem 5-15 

(b) Check for and combine equivalent states. 
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1 

(c) Make a state assignment such that the output is one of the state 
variables. 

(d) Find the gate-input costs of the original circuit and your circuit, assuming 
that the gate-input cost of a D flip-flop is 14. Is the cost of the new circuit 
reduced? 

> 5-17. A sequential circuit for a luggage lock has ten pushbuttons labeled 0, 1, 2, 3, 
4, 5, 6, 7, 8, and 9. Each pushbutton 0 through 9 produces a 1 on Xi, i = 0 

through 9, respectively, with all other values on variable �' j "# i, equal to 0. 
Also, these ten pushbuttons produce a positive pulse on the clock C for 
clocking the flip-flops in the circuit. The circuitry that produces the xi signals 
and the clock C has already been designed. The lock opens in response to a 
sequence of four Xi values, i = 0, ... , 9, set by the user. The logic for 
connecting the four selected Xi values to variables Xa, Xb, Xe, and Xd has 
also been designed. The circuit is locked and reset to its initial state by 
pushing pushbutton Lock, which provides L, the asynchronous reset signal 
for the circuit. The lock is to unlock in response to the sequence Xa, Xb, Xe, 

Xd, regardless of all past inputs applied to it since it was reset. The circuit has 
a single Moore type output U which is 1 to unlock the lock, and 0 otherwise. 
Design the circuit with inputs Xa, Xfo Xe, and Xd, reset L, clock C, and 
output U. Use a 1-hot code for the state assignment. Implement the circuit 
with D flip-flops and AND gates, OR gates, and inverters. 

5-18. *A serial 2s complementer is to be designed. A binary integer of arbitrary 
length is presented to the serial 2s complementer, least significant bit first, 
on input X. When a given bit is presented on input X, the corresponding 
output bit is to appear during the same clock cycle on output Z. To indicate 
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D FIGURE 5-42 

Circuit for Problem 5-16 

that a sequence is complete and that the circuit is to be initialized to 
receive another sequence, input Y becomes 1 for one clock cycle. 
Otherwise, Y is 0. 

(a) Find the state diagram for the serial 2s complementer. 
(b) Find the state table for the serial 2s complementer. 

> 5-19. A Universal Serial Bus (USB) communication link requires a circuit that 
produces the sequence 00000001. You are to design a synchronous 
sequential circuit that starts producing this sequence for input E = 1. Once 
the sequence starts, it completes. If E = 1, during the last output in the 
sequence, the sequence repeats. Otherwise, if E = 0, the output remains 
constant at 1. 

(a) Draw the Moore state diagram for the circuit. 

(b) Find the state table and make a state assignment. 

(c) Design the circuit using D flip-flops and logic gates. A reset should be 
included to place the circuit in the appropriate initial state at which E is 
examined to determine if the sequence of constant ls is to be produced. 

5-20. Repeat Problem 5-19 for the sequence 01111110 that is used in a different 
communication network protocol. 

> 5-21. +The sequence in Problem 5-20 is a flag used in a communication network 
that represents the beginning of a message. This flag must be unique. As a 
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consequence, at most five ls in sequence may appear anywhere else in the 
message. Since this is unrealistic for normal message content, a trick called 
zero insertion is used. The normal message, which can contain strings of ls 
longer than 5, enters input X of a sequential zero-insertion circuit. The 
circuit has two outputs, Z and S. When a fifth 1 in sequence appears on X, a 
0 is inserted in the stream of outputs appearing on Zand the output S = 1, 
indicating to the circuit supplying the zero-insertion circuit with inputs that 
it must stall and not apply a new input for one clock cycle. This is necessary 
because the insertion of Os in the output sequence causes it to be longer than 
the input sequence without the stall. Zero insertion is illustrated by the 
following example sequences: 

Sequence on Xwithout any stalls: 01111100111111100001011110101 

Sequence on Xwith stalls: 0111111001111111100001011110101 

Sequence on Z: 0111110001111101100001011110101 

Sequence on S: 0000001000000010000000000000000 

(a) Find the state diagram for the circuit 

(b) Find the state table for the circuit and make a state assignment. 

(c) Find an implementation of the circuit using D flip-flops and logic gates. 

, 5-22. In many communication and networking systems, the signal transmitted on 
the communication line uses a non-return-to-zero (NRZ) format. USB 
uses a specific version referred to as non-return-to-zero inverted (NRZI). 
A circuit that converts any message sequence of Os and ls to a sequence in 
the NRZI format is to be designed. The mapping for such a circuit is as 
follows: 

(a) If the message bit is a 0, then the NRZI format message contains an 
immediate change from 1 to 0  or from 0 to 1, depending on the current 
NRZI value. 

(b) If the message bit is a 1, then the NRZI format message remains fixed at 
0 or 1, depending on the current NRZI value. 

This transformation is illustrated by the following example, which assumes 
that the initial value of the NRZI message is 1: 

Message: 10001110011010 

NRZI Message: 10100001000110 

(a) Find the Mealy model state diagram for the circuit. 

(b) Find the state table for the circuit and make a state assignment. 

(c) Find an implementation of the circuit using D flip-flops and logic gates. 

, 5-23. +Repeat Problem 5-22, designing a sequential circuit that transforms an 
NRZI message into a normal message. The mapping for such a circuit is as 
follows: 

(a) If a change from 0 to 1  or from 1 to 0  occurs between adjacent bits in the 
NRZI message, then the message bit is a 0. 
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Signals for Problem 5-24 
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(b) If no change occurs between adjacent bits in the NRZI message, then the 
message bit is a 1.  

5-24. A pair of signals Request (R) and Acknowledge (A) is used to coordinate 
transactions between a CPU and its 1/0 system. The interaction of these 
signals is often referred to as a "handshake." These signals are synchronous 
with the clock and, for a transaction, are to have their transitions always 
appear in the order shown in Figure 5-43. A handshake checker is to be 
designed that will verify the transition order. The checker has inputs, R and 
A, asynchronous reset signal, RESET, and output, Error (E). If the 
transitions in a handshake are in order, E = 0. If the transitions are out of 
order, then E becomes 1 and remains at 1 until the an asynchronous reset 
signal (RESET = 1) is applied to the CPU. 

(a) Find the state diagram for the handshake checker. 
(b) Find the state table for the handshake checker. 

5-25. A serial leading-ls detector is to be designed. A binary integer of arbitrary 
length is presented to the serial leading-ls detector, most significant bit 
first, on input X. When a given bit is presented on input X, the 
corresponding output bit is to appear during the same clock cycle on 
output Z. As long as the bits applied to X are 0, Z = 0. When the first 1 is 
applied to X, Z = 1 .  For all bit values applied to X after the first 1 is 
applied, Z = 0. To indicate that a sequence is complete and that the circuit 
is to be initialized to receive another sequence, input Y becomes 1 for one 
clock cycle. Otherwise, Y is 0. 
(a) Find the state diagram for the serial leading-ls detector. 
(b) Find the state table for the serial leading-ls detector. 

5-26. *A sequential circuit has two flip-flops A and B, one input X, and one output 
Y. The state diagram is shown in Figure 5-44. Design the circuit with D flip­
flops using a 1-hot state assignment. 
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D FIGURE 5-44 
State Diagram for Problem 5-26 

5-27. *A set-dominant master-slave :flip-flop has set and reset inputs. It differs 
from a conventional master-slave SR :flip-flop in that , when both Sand Rare 
equal to 1, the :flip-flop is set. 

(a) Obtain the state table of the set-dominant :flip-flop. 
(b) Find the state diagram for the set-dominant :flip-flop. 
(c) Design the set-dominant :flip-flop by using an SR :flip-flop and logic gates 

(including inverters). 

5-28. +The state table for a 3-bit twisted ring counter is given in Table 5-16. 
This circuit has no inputs, and its outputs are the uncomplemented 
outputs of the :flip-flops. Since it has no inputs, it simply goes from state to 
state whenever a clock pulse occurs. It has an asynchronous reset that 
initializes it to state 000. 

(a) Design the circuit using D :flip-flops and assuming that the unspecified 
next states are don't-care conditions. 

(b) Add the necessary logic to the circuit to initialize it to state 000 on 
power-up master reset. 

(c) In the subsection "Designing with Unused States" of Section 5-5, three 
techniques for dealing with situations in which a circuit accidentally 
enters an unused state are discussed. If the circuit you designed in parts 
(a) and (b) is used in a child's toy, which of the three techniques given 
would you apply? Justify your decision. 

(d) Based on your decision in part (c), redesign the circuit if necessary. 
( e) Repeat part ( c) for the case in which the circuit is used to control engines 

on a commercial airliner. Justify your decision. 
(f) Repeat part ( d) based on your decision in part ( e ). 
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D TABLE 5-16 
State Table for Problem 5-28 

Present State Next State 

ABC ABC 

000 100 
100 110 
110 111 
111 011 
011 001 
001 000 

5-29. Do a manual verification of the solution (either yours or the one posted on 
the text website) to Problem 5-27. Consider all transitions where S and R 
change with the clock equal to 0. 

5-30. Do an automatic logic simulation-based verification of your design in 
Problem 5-14. The input sequence used in the simulation should include all 
transitions in Figure 5-40. The simulation output should include the input X 

and the state variables A, B, and output Z. 

5-31. *Generate a verification sequence for the circuit described by the state table 
in Table 5-15. To reduce the length of the simulation sequence, assume that 
the simulator can handle X inputs and use X's whenever possible. Assume 
that a Reset input is available to initialize the state to A = 0, B = 0 and that 
all transitions in the state diagram must be exercised. 

5-32. Design the circuit specified by Table 5-15 and use the sequence from 
Problem 5-31 (either yours or the one posted on the text website) to 
perform an automatic logic simulation-based verification of your design. 

5-33. *Obtain a timing diagram similar to Figure 5-10 for a positive-edge-triggered 
JK flip-flop during four clock pulses. Show the timing signals for C, J, K, Y, 
and Q. Assume that initially the output Q is equal to 1, with J = 0 and K = 1 
for the first pulse. Then, for successive pulses, J goes to 1, followed by K 
going to 0 and then J going back to 0. Assume that each input changes near 
the negative edge of the pulse. 

5-34. Design a new type of positive-edge-triggered flip-flop called the LH flip­
flop. It has a clock C, a data input D, and a load input L. If, at the positive 
edge of C, L equals 1, then the data on Dis stored in the flip-flop. If, at the 
positive edge of C, L equals 0, then the curr�nt stored value in the flip-flop 
is held. Design the flip-flop using only SR latches, NAND gates, and 
inverters. 

5-35. Find a state-machine diagram that is equivalent to the state diagram in 
Figure 5-45. Reduce the complexity of the transition conditions as much as 
possible. Attempt to make outputs unconditional by changing Mealy outputs 
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to Moore outputs. Make a state assignment to your state-machine diagram 
and find an implementation for the corresponding sequential circuit using D 

flop-flops, AND gates, OR gates, and inverters. 

5-36. Verify that the transitions in the state-machine diagram in Figure 5-29 obey 
the two transition conditions for state diagrams. 

, 5-37. *You are to find the state-machine diagram for the following electronic 
vending-machine specification. The vending machine sells jawbreaker 
candy, one jawbreaker for 25¢. The machine accepts N (nickels = 5¢), D 

(dimes = 10¢), and Q (quarters = 25¢). When the sum of the coins 
inserted in sequence is 25¢ or more, the machine dispenses one 
jawbreaker by making DJ equal to 1 and returns to its initial state. No 
change is returned DJ equals 0 for all other states. If anything less than 
25¢ is inserted and the CR (Coin Return) pushbutton is pushed, then the 
coins deposited are returned through the coin return slot by making RC 

equal to 1, after which the machine returns to its initial state. RC equals 0 
in all other states. Use Moore outputs for your design. 

5-38. Design the sequential circuit for the state-machine diagram from Problem 5-37. 
You may either solve Problem 5-37 or find its solution on the textbook website. 
Use a 1-hot state assignment, D flip-flops and AND gates, OR gates, and 
inverters. 

, 5-39. You are to find the state-machine diagram for the following electronic 
vending-machine specification. The vending machine sells soda for $1.50 
per bottle. The machine accepts only D ($1 bills) and Q (quarters = 25¢). 
When the sum of money is greater than $1.50, i.e., two $1 bills, the 
machine returns change in the coin return (two quarters). When $1.50 has 
been paid, the machine lights an LED to indicate that a soda flavor may be 
selected. The choices by pushbutton are C (Cola), L (Lemon soda), 0 

(Orange soda), and R (Root Beer). When one pushbutton is pushed, the 
selected soda is dispensed and the machine returns to its initial state. One 
other feature is that an LED comes on to warn the user that two quarters 
are not available for change, so if a second $1 bill is inserted, no change 
will be given. 

(a) Find the state-machine diagram for the soda vending machine as 
specified. 
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(b) The specification as given is not very user friendly. Rewrite it to provide 
a remedy for every possible situation that the user might encounter in 
using the machine. 

IW1Wn> All files referred to in the remaining problems are available in ASCII form for sim­
ulation and editing on the Companion Website for the text. A VHDL or Verilog 
compiler/simulator is necessary for the problems or portions of problems requesting 
simulation. Descriptions can still be written, however, for many of the problems 
without using compilation or simulation. 

5-40. *Write a VHDL description for the multiplexer in Figure 3-26 by using a 
process containing a case statement rather than the continuous assignment 
statements as shown in Section 4-7. 

5-41. Repeat Problem 5-40 by using a VHDL process containing if-then-else 
statements. 

5-42. +Write a VHDL description for the sequential circuit with the state diagram 
given by Figure 5-21( d). Include an asynchronous RESET signal to initialize 
the circuit to state Ini t. Compile your description, apply an input sequence 
to pass through every transition of the state diagram at least once, and verify 
the correctness of the state and output sequence by comparing them to the 
state diagram. 

5-43. Write a VHDL description for the circuit specified in Problem 5-14. 

5-44. Write a VHDL description for the circuit specified in Problem 5-15. 

5-45. *Write a VHDL description for a JK negative-edge-triggered flip-flop with 
clock CLK. Compile and simulate your description. Apply a sequence that 
causes all eight combinations of inputs J and K and stored value Q to be 
applied in some clock cycle. 

W 1 5-46. Write a VHDL description for the state-machine diagram for the batch 
mixing system derived in Example 5-11. 

1 5-47. Write a VHDL description for the state-machine diagram for the jawbreaker 
vending machine described in Problem 5-37. You may obtain the state­
machine diagram by either solving Problem 5-37 or finding its solution on 
the textbook website. 

5-48. Write a Verilog description for the multiplexer in Figure 3-26 by using a 
process containing a case statement rather than the continuous assignment 
statements as shown in Section 4-8. 

5-49. *Repeat Problem 5-48 by using a Verilog process containing if-else 
statements. 

5-50. +Write a Verilog description for the sequential circuit given by the state 
diagram in Figure 5-21( d). Include an asynchronous RESET signal to 
initialize the circuit to state Ini t. Compile your description, apply an input 
sequence to pass through every arc of the state diagram at least once, and 
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verify the correctness of the state and output sequence by comparing them 
to the state diagram. 

5-51. Write a Verilog description for the circuit specified in Problem 5-14. 

5-52. Write a Verilog description for the circuit specified in Problem 5-15. 

5-53. *Write a Verilog description for a JK negative-edge-triggered flip-flop with 
clock CLK. Compile and simulate your description. Apply a sequence that 
causes all eight combinations of inputs J and K and stored value Q to be 
applied in some clock cycle. 

, 

5-54. Write a Verilog description for the state-machine diagram for the batch 
mixing system derived in Example 5-11. 

, 

5-55. Write a Verilog description for the state-machine diagram for the 
jawbreaker vending machine derived in Problem 5-37. You may obtain 
the state-machine diagram by either solving Problem 5-37 or finding its 
solution on the textbook website. In the parameter statement use a 1-hot 
state assignment. 
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SELECTED DESIGN TOPICS 

T
o this point, we have studied the basics of design of combinational and
sequential circuits. This chapter covers selected topics that are very important 
to our understanding of contemporary design. It begins by characterizing logic 

gates and circuits with a particular focus on propagation delay of CMOS 
(complementary metal oxide semiconductor) technology. This foundation is extended 
to the timing characteristics of flip-flops and is then related to the frequency of the 
clock for sequential circuits. Next, we deal with problems associated with interaction 
with asynchronous circuits and circuits having multiple clock domains, focusing on the 
important topic of synchronization of signals entering a clocked circuit domain. The 
discussion of delay and timing concludes with the issue of synchronization failure due 
to a physical phenomenon called metastability. Finally, basic PLD (programmable 
logic device) technologies are covered. This coverage includes ROMs (read-only 
memories), PLAs (programmable logic arrays), and PAL® (programmable array 
logic) devices. 

In the generic computer shown at the beginning of Chapter 1, CMOS technology 
forms the foundation for realization of most of the integrated circuits. Delay and timing, 
which translate into performance, dominate the design process for high-performance 
components and computers. Dealing with synchronization and metastability is 
essential to reliable computer systems. Finally, programmable technologies are 
essential to efficient design in various parts of the computer and to the ability to 
upgrade systems in the field. A good example of this latter feature is updating of the 
BIOS (basic input-output system) stored in programmable logic in personal 
computers and workstations. 

6-1 THE DESIGN SPACE 

For a given design, there is typically a target implementation technology that spec­
ifies the primitive elements available and their properties. The design space 
describes the target technologies and the parameters used to characterize them. 

D 295 
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Integrated Circuits 

Digital circuits are constructed with integrated circuits. An integrated circuit 
(abbreviated IC) is a silicon semiconductor crystal, informally called a chip, con­
taining the electronic components for the digital gates and storage elements. The 
various components are interconnected on the chip. The chip is mounted in a 
ceramic or plastic container, and connections are welded from the chip to the 
external pins to form the integrated circuit. The number of pins may range from 14 
on a small IC package to several hundred on a large package. Each IC has an 
alphanumeric designation printed on the surface of the package for identification. 
Each vendor publishes datasheets or a catalog containing the description and all 
the necessary information about the ICs that it manufactures. Typically, this infor­
mation is available on vendor websites. 

LEVELS OF INTEGRATION As IC technology has improved, the number of gates 
present in a single silicon chip has increased considerably. Customary reference to 
a package as being either a small-, medium-, large-, or very-large-scale integrated 
device is used to differentiate between chips with just a few internal gates and 
those with thousands to hundreds of millions of gates. 

Small-scale integrated (SSI) devices contain several independent primitive 
gates in a single package. The inputs and outputs of the gates are connected 
directly to the pins in the package. The number of gates is usually less than 10 and 
is limited by the number of pins available on the IC. 

Medium-scale integrated (MSI) devices have approximately 10 to 100 gates in 
a single package. They usually perform specific elementary digital functions, such 
as the addition of four bits. MSI digital functions are similar to the functional 
blocks described in Chapters 3 and 4. 

Large-scale integrated (LSI) devices contain between 100 and a few thousand 
gates in a single package. They include digital systems such as small processors, 
small memories, and programmable modules. 

Very-large-scale integrated (VLSI) devices contain several thousand to hun­
dreds of millions of gates in a single package. Examples are complex microproces­
sor and digital signal-processing chips. Because of their small transistor 
dimensions, high density, and comparatively low cost, VLSI devices have revolu­
tionized digital system and computer design. VLSI technology enables designers to 
create complex structures that previously were not economical to manufacture. 

CMOS Circuit Technology 

Digital integrated circuits are classified not only by their function, but also by 
their specific implementation technology. Each technology has its own basic elec­
tronic device and circuit structures upon which more complex digital circuits and 
functions are developed. The specific electronic devices used in the construction 
of the basic circuits provide the name for the technology. Currently, silicon-based 
complementary metal oxide semiconductor (CMOS) technology dominates due to 
its high circuit density, high performance, and low power consumption. Some 
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manufacturers are now using SOI (silicon on insulator) technology, which is a 
variant of CMOS in which an insulating material (silicon dioxide) isolates the 
transistors from the base silicon wafer. Alternative technologies based on gallium 
arsenide (GaAs) and silicon germanium (SiGe) are also used selectively for very 
high-speed circuits. 

So far we have dealt largely with implementing logic circuits in terms of 
gates. Here we diverge briefly into electronic circuits made of electronic devices 
called transistors that implement the gates. For very high-performance logic or 
logic with specialized properties, CMOS electronic-circuit-level design is impor­
tant, since to achieve the very highest performance, it is sometimes necessary to 
design directly from the Boolean equations to the circuit level, bypassing the logic­
gate level. Also, it is important to realize that there is a circuit design process that 
is critical to production of the logic gates used in design. 

CMOS TRANSISTOR The foundation for CMOS technology is the MOS (metal­
oxide semiconductor) transistor. Transistors and the interconnections between 
them are fabricated as elements of an integrated circuit die, less formally 
referred to as a chip. Each rectangular die is cut from a very thin slice of crystal­
line silicon called a wafer. In the most modern fabrication facilities for making 
integrated circuits, wafers are typically 300 mm (about one foot) in diameter. 
The background for the cover of this book is an enhanced photograph of the 
Intel Core 2 Duo die, which has an area of 1.43 cm2. This die contains 291 mil­
lion transistors. 

A sketch of a transistor is shown in Figure 6-l(a). In this sketch, the transis­
tor has been sliced on a vertical plane through the integrated circuit chip on 
which it lies. In addition, the fabrication steps that form the interconnections 
between transistors and the protective covering over the chip have not yet 
occurred, leaving the transistor exposed. The substrate is the basic wafer material. 
The fabrication process has modified the substrate to be highly conductive in the 
source and the drain regions of the transistor. The conductive polysilicon gate has 
been deposited on top of a very thin insulating layer of silicon dioxide. The result­
ing structure consists of two identical conductive regions, the source and the drain, 
with a gap in between that lies under the gate. This gap is referred to as the chan­
nel. To give a sense of the size of the transistor, the channel length in Intel's most 
recent technology is 45 nanometers (45 X 10-9 meters). This ranges from approxi­
mately 1/400 to 1/4000 of the diameter of a human hair, depending on the variabil­
ity of the hair size. 

In the normal operation of an n-channel MOS transistor, the drain is by defi­
nition at a higher voltage than the source. When the gate voltage is at least the 
threshold voltage of the transistor above the source voltage, and the drain voltage 
is sufficiently above the source voltage, a thin layer of the substrate just below the 
thin gate insulation becomes a conducting layer between the source and the drain. 
This permits a current to flow between the source and the drain. In this case, the 
transistor is said to be ON. If the gate-to-source voltage is less than the threshold 
voltage, the channel will be absent, blocking significant current flow. Under this 
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MOS Transistor, Symbols, and Switch Models 

condition, the transistor is said to be OFF. The use of ON and OFF refers to the 
present or absence of current flow between the source and the drain, respectively. 
Use of this terminology brings to mind the ON/OFF behavior of a switch. As a 
consequence, a switchlike behavior is a good first-order model for an MOS 
transistor. 

CMOS TRANSITOR MODELS The behavior of the MOS transistor model depends 
on the transistor type. CMOS technology employs two types of transistor: n­
channel and p-channel. The behavior described in the preceding paragraph is that 
of an n-channel transistor. The two transistor types differ in the characteristics of 
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the semiconductor materials used in their implementation and in the mechanism 
governing the conduction of a current through them. Most important to us, how­
ever, is their difference in behavior. We will model this behavior using switches 
controlled by voltages corresponding to logic 0 and logic 1. Such a model ignores 
the complexity of electronic devices and captures only logical behavior. 

The symbol for an n-channel transistor is shown in Figure 6-l(b) . The transis­
tor has three terminals: the gate (G), the source (S) , and the drain (D), as shown. 
Here we make the usual assumption that a 1 represents the H voltage range and a 
0 represents the L voltage range. The notion of whether a path for current to flow 
exists is easily modeled by a switch, as shown in Figure 6-l(c). The switch consists 
of two fixed terminals corresponding to the S and D terminals of the transistor. In 
addition, there is a movable contact that, depending on its position, determines 
whether the switch is open or closed. The position of the contact is controlled by 
the voltage applied to the gate terminal G. Since we are looking at logic behavior, 
this control voltage is represented on the symbol by the input variable X on the 
gate terminal. For an n-channel transistor, the contact is open (no path exists) for 
the input variable X equal to 0 and closed (a path exists) for the input variable X 
equal to 1. Such a contact is traditionally referred to as being normally open-that 
is, open without a positive voltage applied to activate or close it. Figure 6-l(d) 
shows a shorthand notation for the n-channel switch model with the variable X 
applied. This notation represents the fact that a path between S and D exists for X 
equal to 1 and does not exist for X equal to 0. 

The symbol for a p-channel transistor is shown in Figure 6-l(e). The positions 
of the source S and drain D are seen to be interchanged relative to their positions 
in the n-channel transistor. The voltage applied between the gate G and the source 
S determines whether a path exists between the drain and source. Note that the 
negation indicator or bubble appears as a part of the symbol. This is because, in 
contrast to the behavior of an n-channel transistor, a path exists between S and D 
in the p-channel transistor for input variable X equal to 0 (at value L) and does not 
exist for input variable X equal to 1 (at value H). This behavior is represented by 
the model in Figure 6-l(f), which has a normally closed contact through which a 
path exists for X equal to 0. No path exists through the contact for X equal to 1. In 
addition, the shorthand notation of the p-channel switch model with variable X 
applied is given in Figurel(g). Since a 0 on input X causes a path to exist throug!!_ 
the switch and a 1 on X produces no path, the literal shown on the switch is X 
instead of X. 

CIRCUITS OF SWITCHES A circuit made up of switches that model transistors can 
be used to design CMOS logic. The circuit implements a function F if there is a 
path through the circuit for F equal to 1 and no path through the circuit for F equal 
to 0. A simple circuit of p-channel transistor switch models is shown in Figure 6-2(a). 
The function G1 implemented by this circuit can be determined by finding the input 
combinations for which a path exists through the circuit. In order for the path to 
exist through G1, both switches must be closed; that is, the path exists for X and 
Y both 1. This implies that X = 0 and Y = 0. Thus, the function G1 of the circuit is 
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X· Y = X + Y-in other words, the NOR function. In Figure 6-2(b), for function 
G2, a path exists through the n-channel switch model circuit if either switch is 
closed-that is, for X = 1 or Y = 1. Thus, the function G2 is X + Y. 

In general, switches in series give an AND function and switches in parallel 
an OR function. (The function for the preceding circuit that models p-channel 
transistors is a NOR function because of the complementation of the variables and 
the application of DeMorgan's law.) By using these circuit functions to produce 
paths in a circuit that attach logic 1 (H) or logic 0 (L) to an output, we can imple­
ment a logic function on the output, as discussed next. 

FULLY COMPLEMENTARY CMOS CIRCUITS The subfamily of CMOS circuits that we 
will now consider has the general structure shown in Figure 6-3(a) . Except during 
transitions, there is a path to the output of the circuit F either from the power sup­
ply + V (logic 1) or from ground (logic 0) . Such a circuit is called static CMOS. In 
order to have a static circuit, the J:ransistors must implement circuits of switches 
for both function F and function F. In other words, both the Os and the ls of the 
function F must be implemented with paths through circuits. The switch circuit 
implementing F is constructed using p-channel transistors and connects the circuit 
output to logic 1 .  We use p-channel transistors because they �onduct logic-1 values 
better than logic-0 values. The switch circuit implementing F is constructed using 
n-channel transistors and connects the circuit output to logic 0. Here n-channel 
transistors are used because they conduct logic-0 values better than logic-1 values. 
Note that the same input variables enter both the p-channel and n-channel switch 
circuits. 

To illustrate a fully complementary circuit, we use transistors corresponding 
to the circuits G1 and G2 from Figure 6-2(a) and (b) as the p-channel implementa­
tion of G and the n-channel implementation of G, respectively, in Figure 6-3(b ) . A 
path exists through G1 for X + Y = 1, which means that a path exists in Figure 6-3(b) 
from logic 1 to the circuit output, making G = 1 for X + Y = 1 .  This provides the 
ls on the output for the function G. A path exists through G2 for X + Y = 1, which 
means that a path exists in Figure 6-3(b) from logic 0 to the output for X + Y = 

I G1 

n X:X 

I X:X Y:Y 

Y:Y y I 
(a) (b) 

D FIGURE 6-2 
Example of Switch Model Circuits 
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X + Y = 1. This path make� G = 0 for the complement of X + Y. Thus, the n­
channel circuit implements G. This provides the Os on the output for function G. 
Since both the ls and Os are provided for G, we can say that the circuit output G = 

X + Y, which is a NOR gate. This is the standard static CMOS implementation for 
a NOR. 

Since the NAND is just the dual of the NOR, we can implement the CMOS 
NAND by simply replacing the + by · in the equations for G1 and G2. In terms of 
the switch circuit, the dual of switches in series is switches in parallel and vice 
versa. This duality applies to the transistors that are modeled as well, giving the 
NAND implementation in Figure 6-3( c ) . The final gate in Figure 6-3( d) is the 
implementation of the NOT. 

Note that all of the circuits in Figure 6-3 implement inverting functions 
under DeMorgan's laws. This inversion property is characteristic of CMOS gates. 
In fact, as we look at a g_eneral design procedure, we assume that functions are 
implemented using F = F. This avoids working directly with p-channel switches, 
which involve complementing variables. Thus, we will design the n-channel cir­
cuit for F and take the dual to get the p-channel circuit for F. For functions more 
complex than NAND, NOR, and NOT, the resulting circuits are called complex 

gates. 

>Design of complex gates, using a general design procedure, and transmission gates 
and their applications are covered in the supplement entitled More CMOS Circuit­
Level Design appearing on the text Companion Website. 

Technology Parameters 

For each specific implementation technology, there are details that differ in their 
electronic circuit design and circuit parameters. The most important parameters 
used to characterize an implementation technology follow: 

Fan-in specifies the number of inputs available on a gate. 
Fan-out specifies the number of standard loads driven by a gate output. Maxi­
mum fan-out for an output specifies the fan-out that the output can drive with­
out impairing gate performance. Standard loads may be defined in a variety of 
ways depending upon the technology. 
Noise margin is the maximum external noise voltage superimposed on a normal 
input value that will not cause an undesirable change in the circuit output. 
Cost for a gate specifies a measure of its contribution to the cost of the inte­
grated circuit containing it. 
Propagation delay is the time required for a change in value of a signal to prop­
agate from input to output. The operating speed of a circuit is inversely related 
to the longest propagation delays through the gates of the circuit. 
Power consumption (dissipation) is the power drawn from the power supply and 
consumed by the gate. The power consumed is dissipated as heat, so the power 
dissipation must be considered in relation to the operating temperature and 
cooling requirements of the chip. 
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Implementation of a 7-Input NAND Gate 
Using NAND Gates with four or Fewer Inputs 

Although all of these parameters are important to the designer, further details on 
only selected parameters are provided here. Because of their major importance to 
the design process, propagation delay and circuit timing are discussed in separate 
sections. 

FAN-IN For high-speed technologies, fan-in, the number of inputs to a gate, is 
often restricted on gate primitives to no more than four or five. This is primarily 
due to electronic considerations related to gate speed. To build gates with large 
fan-in, interconnected gates with lower fan-in are used during technology mapping. 
A mapping for a 7-input NAND gate illustrated in Figure 6-4 is made up of two 
4-input NANDs and an inverter. 

FAN-OUT One approach to measuring fan-out is the use of a standard load. Each 
input on a driven gate provides a load on the output of the driving gate which is 
measured in standard load units. For example, the input to a specific inverter can 
have a load equal to 1.0 standard load. If a gate drives six such inverters, then the 
fan-out is equal to 6.0 standard loads. In addition, the output of a gate has a maxi­
mum load that it can drive, called its maximum fan-out. The determination of the 
maximum fan-out is a function of the particular logic family. Our discussion will be 
restricted to CMOS, currently the most popular logic family. For CMOS gates, the 
loading of a gate output by the integrated circuit wiring and the inputs of other 
gates is modeled as a capacitance. This capacitive loading has no effect on the logic 
levels, as loading often does for other families. Instead, the load on the output of a 
gate determines the time required for the output of the gate to change from L to H 

and from H to L. If the load on the output is increased, then this time, called the 
transition time, increases. Thus, the maximum fan-out for a gate is the number of 
standard loads of capacitance that can be driven with the transition time no greater 
than its maximum allowable value. For example, a gate with a maximum fan-out of 
8 standard loads could drive up to 8 inverters that present 1.0 standard load on 
each of their inputs. 

Both fan-in and fan-out must be dealt with in the technology-mapping step 
of the design process. Gates with fan-ins larger than those available for technol­
ogy mapping can be implemented with multiple gates. Gates with fan-outs that 
either exceed their maximum allowable fan-out or produce too high a delay 
need to be replaced with multiple gates in parallel or have buffers added at their 
outputs. 
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COST For integrated circuits, the cost of a primitive gate is usually based on the 
area occupied by the layout cell for the circuit. The layout-cell area is proportional 
to the size of the transistors and the wiring in the gate layout. Ignoring the wiring 
area, the area of the gate is proportional to the number of transistors in the gate, 
which in turn is usually proportional to the gate-input cost. If the actual area of the 
layout is known, then a normalized value of this area provides a more accurate 
estimation of cost than gate-input cost. 

6-2 GATE PROPAGATION DELAY 

The determination of propagation delay is illustrated in Figure 6-5. Three propaga­
tion delay parameters are defined. The high-to-low propagation time tPHL is the 
delay measured from the reference voltage on the input IN to the reference volt­
age on the output OUT, with the output voltage going from H to L. The reference 
voltage we are using is the 50 percent point, halfway between the minimum and 
the maximum values of the voltage signals; other reference voltages may be used, 
depending on the logic family. The low-to-high propagation time tPLH is the delay 
measured from the reference voltage on the input voltage IN to the reference volt­
age on the output voltage OUT, with the output voltage going from L to H. We 
define the propagation delay tpd as the maximum of these two delays. The reason 
we have chosen the maximum value is that we will be most concerned with finding 
the longest time for a signal to propagate from inputs to outputs. Otherwise, the 
definitions given for tpd may be inconsistent, depending on the use of the data. 
Manufacturers usually specify the maximum and typical values for both tPHL and 
tPLH or for tpd for their products. 

Two different models, transport delay and inertial delay, are employed in 
modeling gates during simulation. For transport delay, the change in an output in 
response to the change of an input occurs after a specified propagation delay. Iner­
tial delay is similar to transport delay, except that if the input changes cause the 
output to change twice in an interval less than the rejection time, then the first of 
the two output changes does not occur. The rejection time is a specified value no 
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larger than the propagation delay and is often equal to the propagation delay. An 
AND gate modeled with both a transport delay and an inertial delay is illustrated 
in Figure 6-6. To help visualize the delay behavior, we have also given the AND 
output with no delay. A colored bar on this waveform shows a 2 ns propagation 
delay time after each input change, and a smaller black bar shows a rejection time 
of 1 ns. The output modeled with the transport delay is identical to that for no 
delay, except that it is shifted to the right by 2 ns. For the inertial delay, the wave­
form is likewise shifted. To define the waveform for the delayed output, we will call 
each change in a waveform an edge. To determine whether a particular edge 
appears in the ID output, it must be determined whether a second edge occurs in 
the ND output before the end of the rejection time for the edge in question, and 
whether the edge will result in a change in the ID output. Since edge b occurs 
before the end of the rejection time for edge a in the ND output, edge a does not 
appear in the ID output. Since edge b does not change the state of ID, it is ignored. 
Since edge d occurs at the rejection time after edge c in the ND output, edge c does 
appear. Edge e, however, occurs within the rejection time after edge d, so edge d 
does not appear. Since edge c appeared and edge d did not appear, edge e does not 
cause a change. 

Next, we want to consider further the components that make up the gate 
delay within a circuit environment. The gate itself has some fixed inherent delay. 
Because it represents capacitance driven, however, the actual fan-out of the gate, 
in terms of standard loads, also affects the propagation delay of the gate. But 
depending upon the loading of the gate by the inputs of the logic attached to its 
output, the overall delay of the gate may be significantly larger than the inherent 
gate delay. Thus, a simple expression for propagation delay can be given by a for­
mula or table that considers a fixed delay plus a delay per standard load times the 
number of standard loads driven, as shown in the example that follows. 
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EXAMPLE 6-1 Calculation of Gate Delay Based on Fan-Out 

A 4-input NAND gate output is attached to the inputs of the following gates with 
the given number of standard loads representing their inputs: 

4-input NOR gate-0.80 standard load 
3-input NAND gate-1. 00 standard load, and 
inverter-LOO standard load. 

The formula for the delay of the 4-input NAND gate is 

tpd = 0.07 + 0. 021 x SL ns 

where SL is the sum of the standard loads driven by the gate. 
Ignoring the wiring delay, the delay projected for the NAND gate as loaded is 

tpd = 0.07 + 0.021 x (0.80 + 1. 00 + 1.00) = 0.129 ns 

In modern high-speed circuits, the portion of the gate delay due to wiring capaci­
tance is often significant. While ignoring such delay is unwise, it is difficult to 
evaluate, since it depends on the layout of the wires in the integrated circuit. Nev­
ertheless, since we do not have this information or a method to obtain a good esti­
mate of it, we ignore this delay component here. • 

6-3 FLIP-FLOP TIMING 

Timing parameters are associated with the operation of both pulse-triggered 
(master-slave) and edge-triggered flip-flops. These parameters are illustrated for a 
master-slave SR flip-flop and for a negative-edge-triggered D flip-flop in Figure 6-7. 
The parameters for the positive-edge-triggered D flip-flop are the same, except that 
they are referenced to the positive rather than the negative clock edge. 

The timing of the response of a flip-flop to its inputs and clock C must be 
taken into account when using the flip-flops. For both flip-flops, there is a minimum 
time called the setup time, t8, for which the S and R or D inputs must be maintained 
at a constant value prior to the occurrence of the clock transition that causes the 
output to change. Otherwise, the master could be changed erroneously in the case 
of the master-slave flip-flop or be at an intermediate value at the time the slave 
copies it in the case of the edge-triggered flip-flop. Similarly, there is a minimum 
time called the hold time, th, for which the S and R or D inputs must not change 
after the application of the clock transition that causes the output to change. Oth­
erwise, the master might respond to the input change and be changing at the time 
the slave latch copies it. In addition, there is a minimum clock pulse width tw, to 
insure that the master has time enough to capture the input values correctly. 
Among these parameters, the one that differs most between the pulse-triggered 
and edge-triggered flip-flops is the setup time, as shown in Figure 6-7. The 
pulse-triggered flip-flop has its setup time equal to the clock pulse width, whereas 
the setup time for the edge-triggered flip-flop can be much smaller than the clock 



6-3 I Flip-Flop Timing D 307 

pulse width. As a consequence, edge triggering tends to provide faster designs, 
since the flip-flop inputs can change later with respect to the upcoming triggering 
clock edge. 

The propagation delay times, tPHu tPLIV or tpw of the flip-flops are defined as 
the interval between the triggering clock edge and the stabilization of the output to 
a new value. These times are defined in the same fashion as those for an inverter, 
except that the values are measured from the triggering clock edge rather than the 
inverter input. In Figure 6-7, all of these parameters are denoted by tp- and are 
given minimum and maximum values. Since the changes of the flip-flop outputs are 
to be separated from the control by the flip-flop inputs, the minimum propagation 
delay time should be longer than the hold time for correct operation. These and 
other parameters are specified in manufacturers' data books for specific integrated 
circuit products. 

Similar timing parameters can be defined for latches and direct inputs, with 
additional propagation delays needed to model the transparent behavior of 
latches. 
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6-4 SEQUENTIAL CIRCUIT TIMING 

In addition to analyzing the function of a circuit, it is also important to analyze its 
performance in terms of the maximum input-to-output delay and the maximum 
clock frequency, f max' at which it can operate. First of all, the clock frequency is just 
the inverse of the clock period tP shown in Figure 6-8. So, the maximum allowable 
clock frequency corresponds to the minimum allowable clock period tp. To deter­
mine how small we can make the clock period, we need to determine the longest 
delay from the triggering edge of the clock to the next triggering edge of the clock. 
These delays are measured on all such paths in the circuit down which changing 
signals propagate. Each of these path delays has three components: (1) a flip-flop 
propagation delay, tpd, FH (2) a combinational logic delay through the chain of gates 
along the path, tpd,COMB' and (3) a flip-flop setup time, ts. As a signal change propa­
gates down the path, it is delayed successively by an amount equal to each of these 
delays. Note that we have used tpd' instead of the more detailed values, tPLH and 
tPHL' for both the flip-flops and combinational logic gates to simplify the delay cal­
culations. Figure 6-8 summarizes the delay picture for both the edge-triggered and 
pulse-triggered flip-flops. 

After a positive edge on a clock, if a flip-flop is to change, its output changes 
at time tpd,FF after the clock edge. This change enters the combinational logic path 
and must propagate down the path to a flip-flop input. This requires an additional 
time, tpd,COMB' for the signal change to reach the second flip-flop. Finally, before the 
next positive clock edge, this change must be held on the flip-flop input for setup 
time ts. This path, PFF,FF and other possible paths are illustrated in Figure 6-9. For 
paths PIN,FF driven by primary inputs, tpd,FF is replaced by tb which is the latest time 
that the input changes after the positive clock edge. For a path PFF,OUT driving pri­
mary outputs, ts is replaced by t0, which is the latest time that the output is permit­
ted to change prior to the next clock edge. Finally, in a Mealy model circuit, 
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combinational paths from input to output, PIN,OVT' that use both ti and t0 can 
appear. Each path has a slack time, tslack, the extra time allowed in the clock period 
beyond that required by the path. From Figure 6-9, the following equation for a 
path of type PFF,FF results: 

t
p 

= tslack + (t
pd,FF + tpd,COMB +ts) 

In order to guarantee that a changing value is captured by the receiving flip-flop, 
tsiack must be greater than or equal to zero for all of the paths. This requires that 

t
p 

�max (t
pd,FF + tcoMB +ts)= tp,min 

where the maximum is taken over all paths down which signals propagate from 
flip-flop to flip-flop. The next example presents representative calculations for 
paths PFF,FF· 

EXAMPLE 6-2 Clock Period and Frequency Calculations 

Suppose that all flip-flops used are the same and have t
p

a = 0.2 ns (nanosecond= 

10-9 seconds) and ts = 0.1 ns. Then the longest path beginning and ending with a 
flip-flop will be the path with the largest t

pd,COMB· Further, suppose that the largest 
t

p
d,COMB is 1.3 ns and that tP has been set to 1.5 ns. From the previous equation for 

tP, we can write 

1.5 ns = tslack + 0.2 + 1.3 + 0.1 = tslack + 1.6 ns 
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Solving, we have tslack = -0.1 ns, so this value of tp is too small. In order for 
tslack to be greater than or equal to zero for the longest path, tp � tp,min = 1.6 ns. The 
maximum frequency /max= 111.6 ns = 625 MHz (megahertz = 106 cycles per sec­
ond). We note that, if tp is too large to meet the circuit specifications, we must 
either employ faster logic cells or change the circuit design to reduce the problem­
atic path delays through the circuit while still performing the desired function. • 

It is interesting to note that the hold time for a flip-flop, th, does not appear in 
the clock-period equation. It relates to another timing-constraint equation dealing 
with one or both of two specific situations. In one case, output changes arrive at the 
inputs of one or more flip-flops too soon. In the other case, the clock signals reach­
ing one or more flip-flops are somehow delayed, a condition referred to as clock 
skew. Clock skew also can affect the maximum clock frequency. 

6-5 ASYNCHRONOUS INTERACTIONS 

The synchronous circuits studied thus far have their state-variable changes syn­
chronized by a special input signal called a clock. An asynchronous circuit has one 
or more state-variable changes that occur without being directly synchronized by 
the special clock input. Instead, an asynchronous circuit may change state in 
response to any of its inputs. Here we briefly study some aspects of the interactions 
between asynchronous and synchronous circuits. In addition, we study interactions 
between two synchronous circuits having clocks that are unrelated to each other, 
i.e. have no specified timing relationships to each other. In this sense, these syn­
chronous circuits are asynchronous with respect to each other due to the lack of a 
defined relationship between their respective clocks. 

Philosophically, every flip-flop or latch we have considered can be modeled as 
an asynchronous circuit if the clock is regarded as just another input rather than a 
special clock input for synchronization. In fact, asynchronous circuit design can be 
used to design latches and flip-flops. The presentation here, however, does not 
dwell upon the details of asynchronous circuit design. Our reason for avoiding 
asynchronous design as it is presented in most textbooks is that it is very difficult to 
insure correct operation and, therefore, is to be avoided. The correct operation of 
such circuits is heavily dependent upon a myriad of timing relationships and timing 
constraints on changing of inputs, requiring delay control of the designed circuits. 
The use of clocks in synchronous circuits, however, is troublesome in terms of both 
speed of operation and power consumption. In response to this, more contempo­
rary methods for asynchronous circuit design are being explored in a number of 
research and advanced development projects. These methods use significantly dif­
ferent design approaches that more easily insure correct operation compared to 
typical textbook approaches. 

We focus here on solving problems that arise for the synchronous circuit 
designer in dealing with asynchronous circuits or asynchronous interfaces. The 
interfaces to be considered are shown in Figure 6-10. 

The problems of driving an asynchronous circuit with the outputs of a synchro­
nous circuit as in Figure 6-lO(a) are due primarily to combinational circuit hazards. 
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This is important because we deal with asynchronous circuits as components, particu­
larly in the memory and input-output regions of systems. Because of space limita­
tion, however, this problem is treated in a Companion Website supplement. 

n1111am1"> COMBINATIONAL HAZARDS A supplement entitled Combinational Hazards is avail­
able on the text Companion Website. 

We next consider the problem of an asynchronous circuit, driving a synchro­
nous circuit as shown in Figure 6-lO{b ) . The asynchronous circuit can be as simple 
as a latch that deals with a phenomenon called contact bounce generated by manu­
ally operated pushbuttons or switches. It is obvious that signals originating from a 
pushbutton are not synchronized with an internal electronic clock and can occur at 
any time. The same problem can also come from a synchronous circuit having a 
clock signal X unrelated to the clock Y of the circuit being driven as in Figure 6-10( c ) . 
In such a case, the signals entering the driven circuit are asynchronous with respect 
to clock Y. Both of these cases can cause circuit malfunction, so we offer the syn­
chronizing of such signals as a solution. In line with the perverse nature of asyn­
chronous behavior, this solution isn't perfect, but suffers from a troublesome 
phenomenon referred to as metastability, a topic treated briefly here. 

Synchronous 
- Asynchronous 

circuit - circuit 

(a) Synchronous to asynchronous 

Asynchronous Asynchronous signals Synchronous 
circuit - circuit 

(b) Asynchronous to synchronous 

Synchronous Asynchronous signals_ Synchronous 
circuit - circuit 

t t 
ClockX ClockY 

( c) Synchronous circuits with unrelated clocks 

D FIGURE 6-10 
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Our final topic that affects the synchronous circuit designer, but not in an 
interface problem, is "I thought this was a synchronous circuit; after all, it does have 
a clock controlling state changes." Here we illustrate how a circuit designer can eas­
ily fall into the pitfall of unknowingly producing an asynchronous design, bringing 
into play timing-dependent factors controlling correct or incorrect operation. 

6-6 SYNCHRONIZATION AND METASTABILITY 

We now tum our attention to asynchronous signals driving synchronous circuits, 
the case shown in Figure 6-lO(b) and ( c ). Initially, we look at the problem that 
occurs if an asynchronous signal is applied directly to the synchronous circuit with­
out special treatment. Then we offer a solution but find that there is an additional 
problem with the solution, which we also attempt to remedy. 

The circuit in Figure 6-11 can illustrate erroneous behavior due to an input 
signal not synchronized with the clock. The circuit is initialized by using the Reset 
signal which sets the state of the circuit to SO (yO, yl, y2 = 1, 0, 0) . As long as RDY 

= 1, the circuit cycles through the states SO (1, 0, 0) and Sl (0, 1, 0) and S2(0, 0, 1). 
If RDY = 0, then the circuit waits in state SO until RDY = 1 causes it to go to state 
Sl. Also, the state can change from Sl to S2 and from S2 to SO with RDY = 0. All 
other combinations of state variables are invalid during the normal operation of 
the circuit. 
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(a) Correct circuit response to RDY 
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(b) Incorrect circuit response to RDY: invalid state (0, 0, 0) results. 
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(c) Incorrect circuit response to RDY: invalid state (1, 1, 0), (0, 1, 1) and (1, 0, 1) results. 
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Behavior of Example Circuit 

Now suppose that RDY is asynchronous with respect to Clock. This means 
that it can change any time during the clock period. In Figure 6-12(a) , the signal 
RDY changes well away from the positive clock edge, so that the setup and hold 
times for flip-flops yO and yl are easily met. The circuit operates normally. When 
RDY goes to 0 and the circuit reaches state SO, it waits in state SO until RDY goes 
to 1 .  At the next positive clock edge, the stage changes to SL The circuit then pro­
ceeds to state S2 and back to SO. 
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In Figure 6-12(b) and ( c ) , the change in signal RDY from 0 to 1 reaches two 
flip-flops. The change arrives at the flip-flop inputs very near the positive clock 
edge within the setup-time, hold-time interval. This violates the specified operating 
conditions of the flip-flops. Instead of responding as if they correctly saw opposite 
values at their D inputs, the flip-flops may respond as if they saw the same inputs 
yielding circuit states (0, 0, 0) or (1, 1, 0) . 

In Figure 6-12(b ) , yO resets to 0, but yl fails to set to 1, giving state (0, 0, 0) . 
Since there is no 1 to circulate among the flip-flops, the state remains at (0, 0, 0) . 
The circuit is locked in this state and has failed. 

In Figure 6-12(c) , yl sets and yO fails to reset, giving state (1, 1, 0). There are 
now two ls circulating among the flip-flops, giving state sequence 110, 011, 101. 
These are all invalid states and give an incorrect output sequence. Thus, the circuit 
has again failed. Whether or not these failures occur depends upon circuit delays, 
the setup and hold times, and the detailed behavior of the flip-flops. Since none of 
these can be tightly controlled, we need a solution to prevent these failures that is 
independent of these parameters. Such a solution is the use of a synchronizing flip­
flop. 

SYNCHRONIZING FLIP-FLOP In Figure 6-13(a) , a D flip-flop has been added to the 
example circuit. The asynchronous signal RDY enters the D flip-flop and RDY_S, 
its output, is synchronous with signal Clock in the sense that RDY _S changes one 
flip-flop delay after the positive edge. Since the asynchronous signal RDY enters 
the circuit through this single synchronizing flip-flop, the behavior exhibited when 
RDY reached two flip-flops is avoided. RDY_S cannot cause such behavior, since it 
does not change during the setup-time, hold-time interval for the normal circuit 
flip-flops. 
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(a) Circuit response to RDY with sensing at the Clock edge where RDY changes 
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(b) Circuit response to RDY with sensing at the next Clock edge where RDY changes 
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Behavior of Example Circuit with Synchronizing Flip-flop on RDY 

A remaining question is, how does the synchronizing flip-flop behave when 
RDY changes during the setup-time, hold-time interval. Basically, either the :flip­
flop sees the change or it doesn't. If it doesn't see it, then the change is seen at the 
next positive clock edge, one clock period later. Note that this can happen only if 
the changes in the asynchronous signal are separated by a minimum-interval. It is 
the designer's responsibility to insure that this minimum interval specification is 
met by the asynchronous input. The behavior discussed in this paragraph is illus­
trated in Figure 6-14. The case in which the change in RDY is immediately sensed 
by the flip-flop and the case in which RDY is not sensed until the next positive 
clock edge are shown. In the latter case, the response to the change in RDY is 
delayed by an extra clock period. Since RDY is asynchronous, the fact that the 
times at which state changes occur due to changes in RDY may vary by a clock 
period should be of no consequence. If it is critical, then the circuit specifications 
may not be realizable. 

METASTABILITY At this point, it seems as if we have a solution that deals with 
the asynchronous-input-signal problem. Unfortunately, our solution is imperfect. 
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Latches used to construct flip-flops actually have three potential states: stable 1, 
stable 0, and metastable. These states can best be described by the mechanical anal­
ogy in Figure 6-15. The state of the latch is represented by the position of a ball on 
a hilly surface. If the ball is in the left valley, then the state is a 0. If the ball is in the 
right valley, then the state is a 1. In order to move the ball between the valleys, say 
from state 0 to state 1, it is necessary to push the ball up the hill and over the top. 
This requires a certain amount of energy expenditure. If the energy runs out with 
the ball in position M, it just stays there, halfway between 0 and 1. In fact, however, 
it will eventually, at some nondeterministic time, go on to 1 or back to 0, due to 
some mechanical "noise" such as wind, a minor earthquake, or disturbance by 
some creature. The analogy of this situation in a latch is as follows. When an input 
to the cross-coupled pair of latch gates changes in just the right timing relationship 
with the clock edge, a narrow pulse can be generated. The pulse may have just 
enough energy to change the latch state to the metastable point where both gates 
have equal output values with voltages between 1 and 0. Like the mechanical sys­
tem, the latch and hence the flip-flop containing it will eventually go to either 0 or 
1 due to a tiny electronic "noise" disturbance. The length of time it remains in the 
metastable state is nondeterministic. The interval during which a change in the 
input will cause metastable behavior is very narrow, of the order of a few tens of 
picoseconds. Thus the behavior is unlikely, but it can happen. When it does, it is 
unknown how long the metastable state will persist. If it does persist for a clock 
period, then the two flip-flops in our example will see a value on the synchronizing 
flip-flop output RDY_S that is between 0 and 1. Response by the two flip-flops to 
such a value is unpredictable, so there is a good chance that the circuit will fail. 

This phenomenon was discovered by two electrical engineering faculty 
members at Washington University in St. Louis. In the late 1960s, the second 
author of this text attended a presentation they made at Wisconsin. They had pic­
tures of oscilloscope traces showing the metastable behavior. At about the same 
time, a commercial computer manufacturer was experiencing infrequent, unex­
plained failures in their new, faster computers. You can probably guess the cause! 
The nature of metastable behavior for a particular CMOS D flip-flop used as a 
synchronizing flip-flop is shown in Figure 6-16; this data was gathered over 30 
minutes. The normal delay from the Clock to Q is 13 ns as indicated by the dotted 

D FIGURE 6-15 
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line. But by carefully controlling the timing of the changes in D and the Clock, the 
flip-flop is forced into its metastable region. In that region, the best flip-flop delay 
seen is 30 ns and the worst is 45 ns. Thus, if the clock period is less than 45 ns, a 
metastable event that can adversely affect the behavior of two or more flip-flops 
within the circuit being driven by the synchronizing flip-flop occurs many times in 
30 minutes. Actually, although not shown in the figure, the changes in Q closer to 
30 ns are much more frequent than those close to 45 ns. So the shorter the clock 
period, the worse the problem gets. If the sampling interval were 50 hours instead 
of 30 minutes, there would be only a few events appearing as late as 55 ns. The 
value between 1 and 0 that occurs for a time inside the flip-flop in this experiment 
is converted to a longer delay by the output buffer of the flip-flop and so is not 
visible at the output. 

So what can be done about this problem? Many solutions have been pro­
posed, some of them ineffective. A simple one is to use a series of synchronizing 
flip-flops, i.e., a small shift register. The likelihood of the second flip-flop in the 
series going metastable because the first one applies a metastable or delayed input 
to it is less than that of the first flip-flop going metastable, and so on. Some com­
mercial designs have used as many as six flip-flops in series to deal with this prob­
lem. More common is the use of three or so flip-flops in series. The more flip-flops, 
the more the circuit response to a change is delayed and the less likely the circuit is 
to fail due to metastability. But the probability never goes to zero. Some degree of 
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uncertainty for incorrect operation always remains, however small. For a much 
more detailed discussion of metastability, see Wakerly's Digital Design: Principles 
and Practices, 4th edition, 2006. 

6-7 SYNCHRONOUS CIRCUIT PITFALLS 

Just because there is a clock does not mean that a circuit is synchronous. For exam­
ple, in a ripple counter, such as in Figure 7-12, the clock drives at most one flip-flop 
clock input directly. All other clock inputs driving the flip-flops are actually state 
variables. So the changes in the state variables that are the outputs of these flip­
flops are not synchronous with the clock. For a 16-bit ripple counter, in the worst 
case where all flip-flops change state, the most significant bit changes 16 flip-flop 
delays after the clock edge on the first flip-flop. 

Also, consider the synchronous counter in Figure 6-17. The 4-bit synchronous 
binary counter counts up by 1 whenever a positive edge occurs on Clock. When the 
count reaches 1111, the count up results in 0000. The binary counter also has an 
Asynchronous reset with drives the four asynchronous reset inputs to the internal 
flip-flops. When the reset shown becomes 0, it clears all four flip-flops to 0 with 
only the inherent time delays, i.e., independent of the positive clock edge. Due to 
the attached NAND gate and its connections, when the count become 0110 (6) in 
response to a positive edge, the NAND produces a 0, causing the four flip-flops to 
be cleared, giving 0000 (0). So the counter is supposed to count 0, 1, 2, 3, 4, 5, 0, .... 
But suppose that A2 goes to 0 a bit earlier than Ai. Then the output of the NAND 
can go to a 1 before all flip-flops in the counter have been reliably reset. If flip-flop 
Ai is slow enough and A2 fast enough, the state 0010 could result instead of 0000. 
We have actually seen this type of incorrect behavior in the laboratory. Because 
this counter "kills itself' back to value zero, it is called a suicide counter. Unfortu­
nately, using it is more like committing "job suicide." 

The suicide counter is just one example of a sneaky class of asynchronous cir­
cuits posing as synchronous ones. If you use the direct inputs, clear or preset, to a 
flip-flop for anything other than power-up reset and overall system reset, you have 
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designed an asynchronous circuit, because flip-flop state changes are no longer 
occurring just in response to the clock signal present at the flip-flop clock input. 
Further, with the complexity of flip-flops plus whatever logic you may have added, 
you have no idea what sort of hazard problems or other timing problems you may 
have. 

In summary, there are certainly situations where you must use asynchronous 
circuits to get the desired behavior. But these situations are far fewer than the 
cases where someone thinks they need an asynchronous circuit or a synchronous 
circuit that is really asynchronous. So try to avoid them whenever you can. 

As for synchronizing flip-flops, their use is essential in making the transition 
from asynchronous signals to a synchronous circuit. Care must be taken to deal 
with metastability. There is a lot more to synchronization than we have presented 
here. For example, if the timing of a set of asynchronous signals is known relative 
to another particular asynchronous signal, only the latter signal may need to be 
synchronized. 

6-8 PROGRAMMABLE IMPLEMENTATION TECHNOLOGIES 

Thus far, we have introduced implementation technologies that are fixed in the 
sense that they are fabricated as integrated circuits or by connecting together inte­
grated circuits. In contrast, programmable logic devices (PLDs) are fabricated with 
structures that implement logic functions and structures that are used to control 
connections or to store information specifying the actual logic functions imple­
mented. These latter structures require programming, a hardware procedure that 
determines which functions are implemented. The next three subsections deal with 
three types of basic programmable logic devices (PLDs ): the read-only memory 
(ROM), the programmable logic array (PLA), and the programmable array logic 
(PAL®) device. 

) VLSI PROGRAMMABLE LOGIC DEVICES In a Companion Website supplement, the 
more complex field-programmable gate arrays (FPGAs) are discussed and illus­
trated. 

Before treating PLDs, we deal with the supporting programming technolo­
gies. The oldest of the programming technologies include fuses and antifuses. Fuses 
which are initially CLOSED are selectively "blown out" by a higher than normal 
voltage to established OPEN connections. The pattern of OPEN and CLOSED 
fuses establishes the connections defining the logic. Anti-fuses, the opposite of 
fuses, contain a material that is initially nonconducting (OPEN). Antifuses are 
selectively (CLOSED) by applying a higher-than-normal voltage to provide a pat­
tern of OPEN and CLOSED antifuses to define the logic. 

A third programming technology for controlling connections is mask pro­
gramming, which is done by the semiconductor manufacturer during the last steps 
of the chip fabrication process. Connections are made or not made in the metal 
layers serving as conductors in the chip. Depending on the desired function for the 
chip, the structure of these layers is determined by the fabrication process. 
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llllD 
(a) Conventional symbol (b) Array logic symbol 

D FIGURE 6-18 
Conventional and Array Logic Symbols for OR Gate 

All three of the preceding connection technologies are permanent. The 
devices cannot be reprogrammed, because irreversible physical changes have 
occurred as a result of device programming. Thus, if the programming is incorrect 
or needs to be changed, the device must be discarded. 

The fourth programming technology which is very popular in large VLSI 
PLDs is a single-bit storage element driving the gate of an MOS n-channel transis­
tor at the programming point. If the stored bit value is a 1, then the transistor is 
turned ON, and the connection between its source and drain forms a CLOSED 
path. For the stored bit value equal to 0, the transistor is OFF, and the connection 
between its source and drain is an OPEN path. Since storage element content can 
be changed electronically, the device can be easily reprogrammed. But in order to 
store values, the power supply must be available. Thus, the storage element tech­
nology is volatile; that is, the programmed logic is lost in the absence of the power­
supply voltage. 

The fifth and final programming technology we are considering is control of 
transistor switching. This popular technology is based on storing charge on a float­
ing gate. The latter is located below the regular gate within an MOS transistor and 
is completely isolated by an insulating dielectric. Stored negative charge on the 
floating gate makes the transistor impossible to turn ON. The absence of stored 
negative charge makes it possible for the transistor to turn ON if a HIGH is 
applied to its regular gate. Since it is possible to add or remove the stored charge, 
these technologies can permit erasure and reprogramming. 

Two approaches using control of transistor switching are called erasable 
and electrically erasable. Programming applies combinations of voltage higher­
than-normal power-supply voltages to the transistor. Erasure uses exposure to a 
strong ultraviolet light source for a specified amount of time. Once this type of chip 
has been erased, it can be reprogrammed. An electrically erasable device can be 
erased by a process somewhat similar to the programming process, using voltages 
higher than the normal power-supply value. A third approach is flash technology, 
which is very widely used in flash memories. Flash technology is a form of electri­
cally erasable technology that has a variety of erase options, including the erase of 
stored charge from individual floating gates, all of the floating gates, or specific sub­
sets of floating gates. 

Some, but not all, programmable-logic technologies have high fan-in gates. 
In order to show the internal logic diagram for such technologies in a concise 
form, we use a special gate symbology applicable to array logic. Figure 6-18 shows 
the conventional and array logic symbols for a multiple-input OR gate. Instead of 
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D FIGURE 6-19 
Basic Configuration of Three PLDs 

having multiple input lines to the gate, we draw a single line to the gate. The input 
lines are drawn perpendicular to this line and are selectively connected to the 
gate. If an x is present at the intersection of two lines, there is a connection 
(Closed). If an xis not present, then there is no connection (Open). In a similar 
fashion, we can draw the array logic for an AND gate. 

We next consider three distinct programmable device structures. We will 
describe each and indicate which of the technologies is typically used in its imple­
mentation. These types of PLDs differ in the placement of programmable connec­
tions in the AND-OR array. Figure 6-19 shows the locations of the connections for 
the three types. Programmable read-only memory (PROM) as well as flash mem­
ory has a fixed AND array constructed as a decoder and programmable connec­
tions for the output OR gates. This forms what appears to be a structure for 
implementing sum-of-minterm equations for the outputs. It also can be thought of 
as implementing a truth table (connections to OR gates for ls and no connections 
to an OR gates for Os). Also the ROM can be viewed as a memory in which the 
outputs provide words of binary data that are selected by the inputs applied to the 
decoder. The programmable array logic (PAL®) device has a programmable con­
nection AND array and a fixed OR array. The AND gates are programmed to pro­
vide the product terms for the Boolean functions, which are logically summed in 
each OR gate. The most flexible of the three types of PLD is the programmable 
logic array (PLA), which has programmable connections for both AND and OR 
arrays. The product terms in the AND array may be shared by any OR gates to 
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provide the required sum-of-products implementations. The names PLA and PAL® 
emerged for devices from different vendors during the development of PLDs. 

Read-Only Memory 

A read-only memory (ROM) is essentially a device in which "permanent" binary 
information is stored. The information must be specified by the designer and is 
then embedded into the ROM to form the required interconnection or electronic 
device pattern. Once the pattern is established, it stays within the ROM even when 
power is turned off and on again; that is, ROM is nonvolatile. 

A block diagram of a ROM device is shown in Figure 6-20(a). There are k 
inputs and n outputs. The inputs provide the address for the memory, and the out­
puts give the data bits of the stored word that is selected by the address. The num­
ber of words in a ROM device is determined from the fact that k address input 
lines can specify 2k words. Note that ROM does not have data inputs, because it 
does not have a write operation. Integrated circuit ROM chips have one or more 
enable inputs and come with three-state outputs to facilitate the construction of 
large arrays of ROM. Permanent and reprogrammable ROMs are also included in 
VLSI circuits including processors. 

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits 
each. There are five input lines that form the binary numbers from 0 through 31 for 
the address. Figure 6-20(b) shows the internal logic construction of this ROM. The 
five inputs are decoded into 32 distinct outputs by means of a 5-to-32-line decoder. 
Each output of the decoder represents a memory address. The 32 outputs are con­
nected through programmable connections to each of the eight OR gates. The dia­
gram uses the array logic convention used in complex circuits. (See Figure 6-18.) 
Each OR gate must be considered as having 32 inputs. Each output of the decoder 
is connected by a programming technology to one of the inputs of each OR gate. 
The ROM in Figure 6-20(b) is programmed with the word 10010011 in memory 
address 1. Since each OR gate has 32 internal programmable connections, and 
since there are eight OR gates, the ROM contains 32 X 8 = 256 programmable 
connections. In general, a 2k X n ROM will have an internal k-to-2k-line decoder 
and n OR gates. Each OR gate has 2k inputs, which are connected through pro­
grammable connections to each of the outputs of the decoder. 

Depending on the programming technology and approaches, read-only mem­
ories have different names: 

1. ROM-mask programmed, 

2. PROM-fuse or antifuse programmed, 

3. EPROM-erasable floating gate programmed, 

4. EEPROM or E2PROM-electrically erasable floating gate programmed, and 

5. FLASH Memory-electrically erasable floating gate with multiple erasure and 
programming modes. 

The choice of programming technology depends on many factors, including the 
number of identical ROMs to be produced, the desired permanence of the 
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D FIGURE 6-20 
Block Diagram and Internal Logic of a ROM 

programming, the desire for reprogrammability, and the desired performance in 
terms of delay. 

ROM programming typically uses programming software that isolates the 
user from the details. A ROM stores computer programs, in which case the binary 
code produced by the usual programming tools such as compilers and assemblers is 
placed in the ROM. Otherwise, it can be programmed by tools that accept input, 
such as truth tables, Boolean equations, and hardware description languages. It can 
also, as in the case of FLASH memory, accept binary patterns representing, for 
example, photographs taken by a digital camera. In all of these cases, the input is 
transformed to a pattern of OPEN and CLOSED connections to the OR gates 
needed by the programming technology. 

Programmable Logic Array 

The programmable logic array (PLA) is similar in concept to the ROM, except that 
the PLA does not provide full decoding of the variables and does not generate all 
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the minterms. The decoder is replaced by an array of AND gates that can be 
programmed to generate product terms of the input variables. The product terms 
are then selectively connected to OR gates to provide the sum of products for the 
required Boolean functions. 

The internal logic of a PLA with three inputs and two outputs is shown in 
Figure 6-21. Such a circuit is too small to be cost effective but is presented here to 
demonstrate the typical logic configuration of a PLA. The diagram uses the array 
logic graphics symbols for complex circuits. Each input goes through a buffer and 
an inverter, represented in the diagram by a composite graphics symbol that has 
both the true and the complement outputs. Programmable connections run from 
each input and its complement to the inputs of each AND gate, as indicated by the 
intersections between the vertical and horizontal lines. The outputs of the AND 
gates have programmable connections to the inputs of each OR gate. The output of 
the OR gate goes to an XOR gate, where the other input can be programmed to 
receive a signal equal to either logic 1 or logic 0. The output is inverted when the 

A----1 
�-----------, 

B------1 
...-------, 

C------1�----. 

C C B B AA 

D FIGURE 6-21 
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XOR input is connected to 1 (since XEB1 = X). The output does not change when 
the XOR input is connected to 0 (since XEBO = X). The particular Boolean func­
tions implemented in the PLA of the figure are 

F1 = AB+AC+ABC 

F2 = AC+BC 

The product term is determined by the CLOSED connections from the input or 
their complements to the AND gates. The output of an OR gate gives the logic sum 
of the selected product terms as determined by the CLOSED connections from the 
AND gate outputs to the OR gate inputs. The output may be complemented or left 
in its true form, depending on the programming of the connection associated with 
the XOR gate. Due to this structure, the PLA implements sum-of-products or 
complemented sum-of-products functions. Product terms can be shared between 
the functions, since the same AND gate can be connected to multiple OR gates. 

The size of a PLA is specified by the number of inputs, the number of prod­
uct terms, and the number of outputs. For n inputs, k product terms, and m outputs, 
the internal logic of the PLA consists of n buffer-inverter gates, k AND gates, m 

OR gates, and m XOR gates. There are 2n X k programmable connections 
between the inputs and the AND array, k X m programmable connections 
between the AND and OR arrays, and m programmable connections associated 
with the XOR gates. 

The information needed to program a PLA are the CLOSED connections 
from true or complemented inputs, the CLOSED connections between AND gates 
and OR gates, and whether or not the sum of products form is inverted or not. As 
with the ROM, a variety of input forms may be acceptable to the tools that gener­
ate this information. Here we focus on implementing logic, so we consider only 
inverted or noninverted sum-of-products equations as the user input. 

COMBINATIONAL CIRCUIT IMPLEMENTATION USING A PLA A careful investigation 
must be undertaken in order to reduce the number of distinct product terms, so 
that the size of the PLA can be minimized. Fewer product terms can be achieved 
by simplifying the Boolean function to a minimum number of terms. The number 
of literals in a term is less important, since all the input variables are available to 
each term anyway. It is wise, however, to avoid extra literals, as these may cause 
problems in testing the circuit and may reduce the speed of the circuit . An 
important factor in obtaining a minimum number of product terms is the sharing 
of terms between the outputs. Both the true and complement forms of each func­
tion should be simplified to see which one can be expressed with fewer product 
terms and which one provides product terms that are common to other functions. 
So, in terms of preparing equations to be implemented in a PLA, multiple-out­
put, two-level function optimization is the approach needed and often incorpo­
rated in PLA design software. While we have not covered this process formally, 
we can informally illustrate it by using K-maps. This process in illustrated in 
Example 6-3. 
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K-maps and Expressions for PLA Example 6-3 

EXAMPLE 6-3 Implementing a Combinational Circuit Using a PLA 

Implement the following two Boolean functions with a PLA: 

F1 (A,B, C) = Im(3, 5, 6, 7) 

F2(A,B, C) = Im(l, 2, 3, 7) 

In Figure 6-22, using K-maps, two-level single-output optimization is applied 
to functions F1 and F2 with the resulting prime implicants used appearing in black. 
The resulting equations appear directly below the two maps. Product term BC can 
be shared between the two functions, so a total of five product terms are required. 
By considering the complement of F1 and the true form of F2, one discovers that 
there are two nonprime implicants, shown as blue squares, that can be used in both 
functions. The solutions that share these terms are given on the next line below the 
maps. Using the implicants in blue, the solution obtained is: 

F1 =ABC+ ABC+ BC 

F2 =ABC +ABC+ BC 

Because of the bar over all of F1, a 1 must be applied to the control input of the 
output XOR gate. This solution requires only four AND gates. It requires both 
the use of an output inversion and multiple-output, two-level optimization to 
achieve this minimum-cost solution. The two implicants that are shared would 
normally result from the process of generating prime implicants for multiple­
output optimization. • 
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Programmable Array Logic Devices 

The programmable array logic (PAL®) device is a PLD with a fixed OR array and 
a programmable AND array. Because only the AND gates are programmable and 
cannot be shared by multiple functions, design for the PAL device is easier, but is 
not as flexible as that for the PLA. Figure 6-23 presents the logic configuration of a 
typical programmable array logic device. The particular device shown has four 
inputs and four outputs. Each input has a buffer-inverter gate, and each output is 
generated by a fixed OR gate. The device has four sections, each composed of a 
three-wide AND-OR array, meaning that there are three programmable AND 
gates in each section. Each AND gate has ten programmable input connections, 
indicated in the diagram by ten vertical lines intersecting each horizontal line. The 
horizontal line symbolizes the multiple-input configuration of an AND gate. One 
of the outputs shown is connected to a buffer-inverter gate and then fed back into 
the inputs of the AND gates through programmed connections. This is often done 
with all device outputs. Since the number of AND terms is not large, these paths 
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permit the output of a PAL AND-OR circuit to be used as inputs to other PAL 
AND-OR circuits. This provides the capability to implement a limited variety of 
multiple-level circuits, which among other advantages increases the number of 
AND gates available for a given function. 

Commercial PAL devices contain more gates than the one shown in Figure 6-23. 
A small PAL integrated circuit may have up to eight inputs, eight outputs, and eight 
sections, each consisting of an eight-wide AND-OR array. Each PAL device output 
is driven by a three-state buffer and also serves as an input. These input/outputs can 
be programmed to be an input only, an output only, or bidirectional with a variable 
signal driving the three-state buffer enable signal. Flip-flops are often included in a 
PAL device between the array and the three-state buffer at the outputs. Since each 
output is fed back as an input through a buffer-inverter gate into the AND pro­
grammed array, a sequential circuit can be easily implemented. 

COMBINATIONAL CIRCUIT IMPLEMENTATION WITH A PAL DEVICE In designing with a 
PAL device, because of the inability to share AND gates within a basic circuit, sin­
gle-output, two-level optimization applies. But because of the connections from 
outputs to inputs, multilevel functions are easy to implement, so limited multilevel 
optimization and the sharing of sum-of-products forms and the complement of 
sum-of-products forms applies also. Unlike the arrangement in the PLA, a product 
term cannot be shared among two or more OR gates. Manual execution of optimi­
zation for a PAL device is illustrated in Example 6-4. 

EXAMPLE 6-4 Implementing a Combinational Circuit Using a PAL 

As an example of a PAL device incorporated into the design of a combinational 
circuit, consider the following Boolean functions, given in sum-of-minterms form: 

W(A,B,C,D) = Im(2,12,13) 

X(A,B,C,D) = Im(7, 8, 9,10,11,12,13,14,15) 

Y(A,B, C,D) = Im(O, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) 

Z (A,B, C,D) = Im(l, 2, 8, 12, 13) 

Simplifying the four functions to a minimum number of terms results in the follow­
ing Boolean functions: 

W= ABC+ABCD 

X= A+BCD 

Y= AB +CD +BD 

Z = ABC+ABCD +ACD +AB CD 

= W+ACD+AB CD 
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Note that the all four equations are the result of two-level optimization. But 
the function for Z has four product terms. The logical sum of two of these 
terms is equal to W Thus, by using W, it is possible to reduce the number of 
terms for Z from four to three, so that the equations above can fit into the PAL 
device in Figure 6-23. Even if W were not present as an output, the PAL device 
structure would permit the factor W to be designed and used to implement Z. In this 
case, however, the output at W would not be useful for implementing any other func­
tion butW • 

6-9 CHAPTER SUMMARY 

This chapter presented a number of topics, all important to the designer. First, the 
CMOS transistor was introduced. Switch models for CMOS were provided and 
employed in modeling electronic circuits for gates. Various parameters for charac­
terizing gate technology were introduced. Important technology parameters dis­
cussed included, fan-in, fan-out, noise margin, power dissipation, and propagation 
delays. Next, delays and timing were discussed. Propagation delay was introduced, 
the timing parameters associated with flip-flops were presented, and the relation­
ship between path delay in sequential circuits and clock frequency was established. 
Following this, the important topics of synchronization of asynchronous signals, 
and metastability in synchronizing circuits were covered. Finally, a discussion of 
fundamentals of basic programmable implementation technologies was provided. 
This discussion included ROMs, PL As, and PAL devices. 

:1111111111 > VLSI PROGRAMMABLE LOGIC DEVICES This supplement, which covers the basics of 
two typical Field Programmable Gate Arrays (FPGAs) used in course laboratories, 
is available on the Companion Website for the text. The supplement uses multi-
plexers, adders, flip-flops, latches, and SR AMs. An appendix to the supplement 
provides a brief introduction to these components. 
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PROBLEMS 

� The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the text website. 

6-1. *Find the Boolean function that corresponds to the closed paths through 
each of the given switch model networks in Figure 6-24. 

6-2. Find the CMOS switch model networks for the following functions: 
(a) 3-input NAND gate. 
(b) 4-input NOR gate. 

6-3. An integrated circuit logic family has NAND gates with a fan-out of eight 
standard loads and buffers with a fan-out of 16 standard loads. Sketch a 
schematic showing how the output signal of a single NAND gate can be 
applied to 38 other gate inputs, using as few buffers as possible. Assume that 
each input is one standard load. 

6-4. *The NOR gates in Figure 6-25 have propagation delay tpd = 0.073 ns and 
the inverter has a propagation delay tpd = 0.048 ns. What is the propagation 
delay of the longest path through the circuit? 

6-5. The waveform in Figure 6-26 is applied to an inverter. Find the output of the 
inverter, assuming that 

(a) It has no delay. 
(b) It has a transport delay of 0.06 ns. 
(c) It has an inertial delay of 0.06 ns with a rejection time of 0.04 ns. 
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Waveform for Problem 6-5 

6-6. Assume that tpd is the average of tPHL and tPLH· Find the delay from each 
input to the output in Figure 6-27 by 

(a) Finding tPHL and tPLH for each path, assuming tPHL = 0.20 ns and tPLH = 

0.36 ns for each gate. From these values, find tpd for each path. 

(b) Using tpd = 0.28 ns for each gate. 

(c) Compare your answers in part (a) and (b) and discuss any differences. 

6-7. The rejection time for inertial delays is required to be less than or equal to 
the propagation delay. In terms of the discussion of the example in Figure 6-6, 
why is this condition necessary to determine the delayed output? 
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D FIGURE 6-27 
Circuit for Problem 6-6 
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6-8. +For a given gate, tPHL = 0.05 ns and tPLH = 0.10 ns. Suppose that an inertial 
delay model is to be developed from this information for typical gate-delay 
behavior. 

(a) Assuming a positive output pulse (L H L), what would the propagation 
delay and rejection time be? 

(b) Discuss the applicability of the parameters in (a) assuming a negative 
output pulse (H L H). 

6-9. A set of waveforms applied to SR and D flip-flops is shown in Figure 6-28. 

These waveforms are applied to the flip-flops shown along with the values of 
their timing parameters. 
(a) Indicate the locations on the waveforms at which there are input­

combination or timing-parameter violations for signal Sl for flip-flop 1. 

(b) Indicate the locations on the waveforms at which there are input­
combination or timing-parameter violations in signal Rl for flip-flop 1. 

(c) List the time(s) at which there are timing violations in signal D2 for flip­
flop 2. 

(d) List the time(s) at which there are timing violations in signal D3 for flip­
flop 3. 

6-10. *A sequential circuit is shown in Figure 6-29. The timing parameters for the 
gates and flip-flops are as follows: 

Inverter: tpd = 0.05 ns 
XOR gate: tpd =0.20 ns 
Flip-flop: tpd = 0.40 ns, ts = 0.1 ns, and th = 0.05 ns 

(a) Find the longest path delay from an external circuit input passing 
through gates only to an external circuit output. 
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Circuit for Problems 6-10 and 6-11 

(b) Find the longest path delay in the circuit from an external input to 
positive clock edge. 

(c) Find the longest path delay from positive clock edge to output. 
(d) Find the longest path delay from positive clock edge to positive clock edge. 
(e) Determine the maximum frequency of operation of the circuit in 

megahertz (MHz). 

6-11. Repeat Problem 6-9, assuming that the circuit consists of two copies of the 
circuit in Figure 6-29 with input X of the second circuit copy driven by 
output Y of the first circuit copy. 

6-12. Given a 256 x 8 ROM chip with an enable input, show the external 
connections necessary to construct a 1K x 16 ROM with eight chips and a 
decoder. 

6-13. *A 32 x 8 ROM converts a 6-bit binary number to its corresponding two­
digit BCD number. For example, binary 100001 converts to BCD 0011 0011 
(decimal 33). Specify the truth table for the ROM. 

6-14. Specify the size of a ROM (number of words and number of bits per word) 
that will accommodate the truth table for the following combinational circuit 
components: 
(a) A 16-bit ripple carry adder with Cin and Cout· 

(a) An 8-bit adder-subtractor with Cin and Cout· 
(b) A code converter from a 4-digit BCD number to a binary number. 

6-15. Tabulate the truth table for an 8 x 3 ROM that implements the following 
four Boolean functions: 
A(X, Y,Z) = Im(O, 1, 7) 
B(X, Y,Z) = Im(2,3,4,5,6) 
C(X, Y, Z) = Im(2, 6) 
D(X, Y,Z) = Im(l,2,3,5,6, 7) 
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6-16. Obtain the PLA equations for programming the four Boolean functions 
listed in Problem 6-15. Minimize the number of product terms. Be sure to 
attempt to share product terms between functions that are not prime 
implicants of individual functions and to consider the use of complemented 
outputs. 

6-17. Derive the PLA equations for the combinational circuit that squares a 3-bit 
number. Minimize the number of product terms. If necessary to reduce 
product terms, share product terms between functions that are not prime 
implicants of individual functions and consider the use of complemented 
outputs. 

6-18. List the PLA equations for programming a BCD-to-excess-3 code 
converter. If necessary to reduce product terms, share product terms 
between functions that are not prime implicants of individual functions and 
consider the use of complemented outputs. 

6-19. *Repeat Problem 6-18, using a PAL device. 

6-20. The following is the truth table of a three-input, four-output combinational 
circuit. Obtain the equations for programming the PAL device shown in 
Figure 6-23. 

Inputs Outputs 

x y z A B c D 

0 0 0 0 1 0 0 
0 0 1 1 1 1 1 
0 1 0 1 0 1 1 
0 1 1 0 1 0 1 
1 0 0 1 0 1 0 
1 0 1 0 0 0 1 
1 1 0 1 1 1 0 
1 1 1 0 1 1 1 

6-21. The following equations are to be implemented in the PAL device shown in 
Figure 6-23. Find the equations for programming the PAL. 

F =AB +CD +ABCD +ABC+ABCD 

G =AB +BCD +BCD +ABC 



REGISTERS AND REGISTER 

TRANSFERS 

I
n Chapters 3 and 4 we studied combinational functional blocks, and in Chapter 5 
we examined sequential circuits. Now, we bring the two ideas together and 
present sequential functional blocks, generally referred to as registers and 

counters. In Chapter 5, the circuits that were analyzed or designed did not have any 
particular structure, and the number of flip-flops was small. In contrast, the circuits we 
consider here have more structure, with multiple stages or cells that are identical or 
close to identical, making expansion very simple. Registers are particularly useful for 
storing information during the processing of data, and counters assist in sequencing 
the processing. 

In a digital sy stem, a datapath and a control unit are frequently present at the upper 
levels of the design hierarchy. A datapath consists of processing logic and a collection 
of registers that performs data processing. A control unit is made up of logic that 
determines the sequence of data-processing operations performed by the datapath. 
Register transfer notation describes elementary data-processing actions referred to 
as microoperations. Register transfers move information between registers, between 
registers and memory, and through processing logic. Dedicated transfer hardware 
using multiplexers and shared transfer hardware called buses implement these 
movements of data. The design of the control unit for controlling register transfers is 
also covered in this chapter. A design procedure for digital systems as combinations 
of register transfer logic and control logic brings together much of what we have 
studied thus far. 

In the generic computer at the beginning of Chapter 1, registers are used extensively 
for temporary storage of data in areas aside from memory. Registers of this kind are 
often large, with at least 32 bits. Overall, sequential functional blocks are used widely 
in the generic computer. In particular, the CPU and FPU parts of the processor each 
contain large numbers of registers that are involved in register transfers and execution 
of microoperations. It is in the CPU and the FPU that data transfers, additions, 
subtractions, and other microoperations take place. Finally, the connections shown 
between various electronic parts of the computer are buses, which we discuss for the 
first time in this chapter. 

D 335 
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7-1 REGISTERS AND LOAD ENABLE 

A register includes a set of flip-flops. Since each flip-flop is capable of storing one 
bit of information, an n-bit register, composed of n flip-flops, is capable of storing n 
bits of binary information. By the broadest definition, a register consists of a set of 
flip-flops, together with gates that implement their state transitions. This broad def­
inition includes the various sequential circuits considered in Chapter 5. More com­
monly, the term register is applied to a set of flip-flops, possibly with added 
combinational gates, that perform data-processing tasks. The flip-flops hold data, 
and the gates determine the new or transformed data to be transferred into the 
flip-flops. 

A counter is a register that goes through a predetermined sequence of states 
upon the application of clock pulses. The gates in the counter are connected in a 
way that produces the prescribed sequence of binary states. Although counters are 
a special type of registers, it is common to differentiate them from registers. 

Registers and counters are sequential functional blocks that are used 
extensively in the design of digital systems in general and in digital computers in 
particular. Registers are useful for storing and manipulating information; 
counters are employed in circuits that sequence and control operations in a digi­
tal system. 

The simplest register is one that consists of only flip-flops without external 
gates. Figure 7-l(a) shows such a register constructed from four D-type flip-flops. 
The common Clock input triggers all flip-flops on the rising edge of each pulse, and 
the binary information available at the four D inputs is transferred into the 4-bit 
register. The four Q outputs can be sampled to obtain the binary information 
stored in the register. The Clear input goes to the R inputs of all four flip-flops 
and is used to clear the register to all Os prior to its clocked operation. This input is 
labeled Clear rather than Clear, since a 0 must _Ee applied to reset the flip-flops 
asynchronously. Activation of the asynchronous R inputs to flip-flops during nor­
mal clocked operation can lead to circuit designs that are highly delay dependent 
and that can, therefore, malfunction. Thus, we maintain Clear at logic 1 during 
normal clocked operation, allowing it to be logic 0 only when a system reset is 
desired. We note that the ability to clear a register to all Os is optional; whether a 
clear operation is provided depends upon the use of the register in the system. 

The transfer of new information into a register is referred to as loading the 
register. If all the bits of the register are loaded simultaneously with a common 
clock pulse, we say that the loading is done in parallel. A positive clock transition 
applied to the Clock input of the register of Figure 7-l(a) loads all four D inputs 
into the flip-flops in parallel. 

Figure 7-l(b) shows a symbol for the register in Figure 7-l(a). This symbol 
permits the use of the register in a design hierarchy. It has all inputs to the logic cir­
cuit on its left and all outputs from the circuit on the right. The inputs include the 
clock input with the dynamic indicator to represent positive-edge triggering of the 
flip-flops. We note that the name Clear appears inside the symbol, with a bubble in 
the signal line on the outside of the symbol. This notation indicates that application 
of a logic 0 to the signal line activates the clear operation on the flip-flops in the 
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register. If the signal line were labeled outside the symbol, the label would be 
Clear. 

Register with Parallel Load 

Most digital systems have a master clock generator that supplies a continuous 
train of clock pulses. The pulses are applied to all flip-flops and registers in the 
system. In effect, the master clock acts like a heart that supplies a constant beat 
to all parts of the system. For the design in Figure 7-l(a), the clock can be prevented 
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from reaching the clock input to the circuit if the contents of the register are to 
be left unchanged. Thus, a separate control signal is used to control the clock 
cycles during which clock pulses are to have an effect on the register. The clock 
pulses are prevented from reaching the register when its content is not to be 
changed. This approach can be implemented with a load control input Load 
combined with the clock, as shown in Figure 7-l(c). The output of the OR gate 
is applied to the C inputs of the register flip-flops. The equation for the logic 
shown is 

C inputs = Load + Clock 

When the Load signal is 1, C inputs = Clock, so the register is clocked normally, 
and new information is transferred into the register on the positive transitions of 
the clock. When the Load signal is 0, C inputs = 1. With this constant input 
applied, there are no positive transitions on C inputs, so the contents of the register 
remain unchanged. The effect of the Load signal on the signal C inputs is shown in 
Figure 7-l(d). Note that the clock pulses that appear on C inputs are pulses to 0, 
which end with the positive edge that triggers the flip-flops. These pulses and edges 
appear when Load is 1 and are replaced by a constant 1 when Load is 0. In order 
for this circuit to work correctly, Load must be constant at the correct value, either 
0 or 1, throughout the interval when Clock is 0. One situation in which this occurs 
is if Load comes from a flip-flop that is triggered on a positive edge of Clock, a nor­
mal circumstance if all flip-flops in the system are positive-edge triggered. Since the 
clock is turned on and off at the register C inputs by the use of a logic gate, the 
technique is referred to as clock gating. 

Inserting gates in the clock pulse path produces different propagation delays 
between Clock and the inputs of flip-flops with and without clock gating. If the 
clock signals arrive at different flip-flops or registers at different times, clock skew 
is said to exist. But to have a truly synchronous system, we must ensure that all 
clock pulses arrive simultaneously throughout the system so that all flip-flops trig­
ger at the same time. For this reason, in routine designs, control of the operation of 
the register without using clock gating is advisable. Otherwise, delays must be con­
trolled to drive the clock skew as close to zero as possible. This is applicable in 
aggressive low-power or high-speed designs. 

A 4-bit register with a control input Load that is directed through gates 
into the D inputs of the flip-flops, instead of through the C inputs, is shown in 
Figure 7-2(c). This register is based on a bit cell shown in Figure 7-2(a) consisting 
of a 2-to-1 multiplexer and a D flip-flop. The signal EN selects between the data 
bit D entering the cell and the value Q at the output of the cell. For EN = 1, D is 
selected and the cell is loaded. For EN = 0, Q is selected and the output is loaded 
back into the flip-flop, preserving its current state. The feedback connection from 
output to input of the flip-flop is necessary because the D flip-flop, unlike other 
flip-flop types, does not have a "no-change" input condition: With each clock 
pulse, the D input determines the next state of the output. To leave the output 
unchanged, it is necessary to make the D input equal to the present value of the 
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output. The logic in Figure 7-2(a) can be viewed as a new type of D flip-flop, a D 

flip-flop with enable, having the symbol shown in Figure 7-2(b ). 
The register is implemented by placing four D flip-flops with enables in paral­

lel and connecting the Load input to the EN inputs. When Load is 1, the data on 
the four inputs is transferred into the register with the next positive clock edge. 
When Load is 0, the current value remains in the register at the next positive clock 
edge. Note that the clock pulses are applied continuously to the C inputs. Load 
determines whether the next pulse accepts new information or leaves the informa­
tion in the register intact. The transfer of information from inputs to register is 
done simultaneously for all four bits during a single positive pulse transition. This 
method of transfer is traditionally preferred over clock gating, since it avoids clock 
skew and the potential for malfunctions of the circuit. 

7-2 REGISTER TRANSFERS 

A digital system is a sequential circuit made up of interconnected flip-flops and 
gates. In Chapter 5, we learned that sequential circuits can be specified by means of 
state tables. To specify a large digital system with state tables is very difficult, if not 
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impossible, because the number of states is prohibitively large. To overcome this 
difficulty, digital systems are designed using a modular, hierarchical approach. The 
system is partitioned into subsystems or modules, each of which performs some 
functional task. The modules are constructed hierarchically from functional blocks 
such as registers, counters, decoders, multiplexers, buses, arithmetic elements, flip­
flops, and primitive gates. The various subsystems communicate with data and con­
trol signals to form a digital system. 

In most digital system designs, we partition the system into two types of mod­
ules: a datapath, which performs data-processing operations, and a control unit, 
which determines the sequence of those operations. Figure 7-3 shows the general 
relationship between a datapath and a control unit. Control signals are binary sig­
nals that activate the various data-processing operations. To activate a sequence of 
such operations, the control unit sends the proper sequence of control signals to 
the datapath. The control unit, in turn, receives status bits from the datapath. 
These status bits describe aspects of the state of the datapath. The status bits are 
used by the control unit in defining the specific sequence of the operations to be 
performed. Note that the datapath and control unit may also interact with other 
parts of a digital system, such as memory and input-output logic, through the paths 
labeled data inputs, data outputs, control inputs, and control outputs. 

Datapaths are defined by their registers and the operations performed on binary 
data stored in the registers. Examples of register operations are load, clear, shift, and 
count. The registers are assumed to be basic components of the digital system. The 
movement of the data stored in registers and the processing performed on the data are 
referred to as register transfer operations. The register transfer operations of digital sys­
tems are specified by the following three basic components: 

1. the set of registers in the system, 

2. the operations that are performed on the data stored in the registers, and 

3. the control that supervises the sequence of operations in the system. 

A register has the capability to perform one or more elementary operations 
such as load, count, add, subtract, and shift. For example, a right-shift register is a 
register that can shift data to the right. A counter is a register that increments a 
number by one. A single flip-flop is a 1-bit register that can be set or cleared. In 
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fact, by this definition, the flip-flops and closely associated gates of any sequential 
circuit can be called registers. 

An elementary operation performed on data stored in registers is called a 
microoperation. Examples of microoperations are loading the contents of one 
register into another, adding the contents of two registers, and incrementing the 
contents of a register. A microoperation is usually, but not always, performed in 
parallel on a vector of bits during one clock cycle. The result of the microopera­
tion may replace the previous binary data in the register. Alternatively, the result 
may be transferred to another register, leaving the previous data unchanged. The 
sequential functional blocks introduced in this chapter are registers that imple­
ment one or more microoperations. 

The control unit provides signals that sequence the microoperations in a pre­
scribed manner. The results of a current microoperation may determine both the 
sequence of control signals and the sequence of future microoperations to be exe­
cuted. Note that the term "microoperation," as used here, does not refer to any par­
ticular way of producing the control signals: specifically, it does not imply that the 
control signals are generated by a control unit based on a technique called micro­
programmmg. 

This chapter introduces registers, their implementations and register transfers 
using a simple register transfer language (RTL) to represent registers and specify 
the operations on their contents. The register transfer language uses a set of 
expressions and statements that resemble statements used in HDLs and program­
ming languages. This notation can concisely specify part or all of a complex digital 
system such as a computer. The specification then serves as a basis for a more 
detailed design of the system. 

7-3 REGISTER TRANSFER OPERATIONS 

We denote the registers in a digital system by uppercase letters (sometimes fol­
lowed by numerals) that indicate the function of the register. For example, a 
register that holds an address for the memory unit is usually called an address 
register and can be designated by the name AR. Other designations for regis­
ters are PC for program counter, IR for instruction register, and R2 for register 
2. The individual flip-flops in an n-bit register are typically numbered in 
sequence from 0 to n - 1, starting with 0 in the least significant (often the right­
most) position and increasing toward the most significant position. Since the 0 
bit is on the right, this order can be referred to as little-endian. The reverse 
order, with bit 0 on the left, is referred to as big-endian. 

Figure 7-4 shows representations of registers in block-diagram form. The 
most common way to represent a register is by a rectangular box with the name of 
the register inside, as in part (a) of the figure. The individual bits can be identified 
as in part (b ). The numbering of bits represented by just the leftmost and rightmost 
values at the top of a register box is illustrated by a 16-bit register R2 in part (c). A 
16-bit program counter, PC, is partitioned into two sections in part ( d) of the fig­
ure. In this case, bits 0 through 7 are assigned the symbol L (for low-order byte), 
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and bits 8 through 15 are assigned the symbol H {for high-order byte). The label 
PC(L), which may also be written PC{7:0), refers to the low-order byte of the reg­
ister, and PC(H) or PC{15:8) refers to the high-order byte. 

Data transfer from one register to another is designated in symbolic form by 
means of the replacement operator ( f-). Thus, the statement 

R2f--R1 

denotes a transfer of the contents of register Rl into register R2. Specifically, the 
statement designates the copying of the contents of Rl into R2. The register Rl is 
referred to as the source of the transfer and the register R2 as the destination. By 
definition, the contents of the source register do not change as a result of the trans­
fer; only the contents of the destination register, R2, change. 

A statement that specifies a register transfer implies that datapath circuits are 
available from the outputs of the source register to the inputs of the destination 
register and that the destination register has a parallel load capability. Normally, 
we want a given transfer to occur not for every clock pulse, but only for specific 
values of the control signals. This can be specified by a conditional statement, sym­
bolized by the if-then form 

if (K1 = 1) then (R2f-Rl) 

where K1 is a control signal generated in the control unit. In fact, K1 can be any 
Boolean function that evaluates to 0 or 1. A more concise way of writing the if­
then form is 

This control condition, terminated with a colon, symbolizes the requirement that 
the transfer operation be executed by the hardware only if K1 = 1. 

Every statement written in register-transfer notation presupposes a hardware 
construct for implementing the transfer. Figure 7-5 shows a block diagram that depicts 
the transfer from Rl to R2. The n outputs of register Rl are connected to the n inputs 
of register R2. The letter n is used to indicate the number of bits in the register­
transfer path from Rl to R2. When the width of the path is known, n is replaced by an 
actual number. Register R2 has a load control input that is activated by the control 
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signal K1. It is assumed that the signal is synchronized with the same clock as the one 
applied to the register. The flip-flops are assumed to be positive-edge triggered by this 
clock. As shown in the timing diagram, K1 is set to 1 on the rising edge of a clock 
pulse at time t. The next positive transition of the clock at time t + 1 finds K1 = 1, and 
the inputs of R2 are loaded into the register in parallel. In this case, K1 returns to 0 on 
the positive clock transition at time t + 1, so that only a single transfer from Rl to R2 
occurs. 

Note that the clock is not included as a variable in the register-transfer state­
ments. It is assumed that all transfers occur in response to a clock transition. Even 
though the control condition K1 becomes active at time t, the actual transfer does 
not occur until the register is triggered by the next positive transition of the clock, 
at time t + 1. 

The basic symbols we use in register-transfer notation are listed in Table 7-1. 
Registers are denoted by an uppercase letter, possibly followed by one or more 
uppercase letters and numerals. Parentheses are used to denote a part of a register 
by specifying the range of bits in the register or by giving a symbolic name to a por­
tion of the register. The left-pointing arrow denotes a transfer of data and the 
direction of transfer. A comma is used to separate two or more register transfers 
that are executed at the same time. For example, the statement 

D TABLE 7-1 
Basic Symbols for Register Transfers 

Symbol 

Letters 
(and numerals) 
Parentheses 

Arrow 

Comma 

Square brackets 

Description 

Denotes a register 

Denotes a part of a register 

Denotes transfer of data 

Separates simultaneous transfers 

Specifies an address for memory 

Examples 

AR, R2, DR, IR 

R2(1), R2(7:0),AR(L) 

R1�R2 
R1�R2, R2�R1 
DR�M[AR] 
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denotes an operation that exchanges the contents of two registers simultaneously 
for a positive clock edge at which K3 = 1. Such an exchange is possible with regis­
ters made of flip-flops but presents a difficult timing problem with registers made 
of latches. Square brackets are used in conjunction with a memory transfer. The 
letter M designates a memory word, and the register enclosed inside the square 
brackets provides the address of the word in memory. This is explained in more 
detail in Chapter 9. 

7-4 A NOTE FOR VHDL AND VERILOG USERS ONLY 

Although there are some similarities, the register-transfer language used here 
differs from both VHDL and Verilog. In particular, different notation is used in 
each of the three languages. Table 7-2 compares the notation for many identical 

D TABLE7-2 
Textbook RTL, VHDL, and Verilog Symbols for Register Transfers 

Operation Text RTL VHDL Verilog 

Combinational assignment = <=(concurrent) assign = (nonblocking) 
Register transfer � <= (concurrent) <=(nonblocking) 
Addition + + + 

Subtraction 
Bitwise AND /\ and & 
Bitwise OR v or I 
Bitwise XOR E9 xor /\ 

Bitwise NOT - ( overline) not 
Shift left (logical) sl sll << 
Shift right (logical) sr srl >> 

Vectors/registers A(3:0) A(3 down to 0) A[3:0] 
Concatenation II & {,} 

or similar register-transfer operations in the three languages. As you study this 
chapter and others to follow, this table will assist you in relating descriptions in 
the text RTL to the corresponding descriptions in VHDL or Verilog. 

7-5 MICROOPERATIONS 

A microoperation is an elementary operation performed on data stored in registers 
or in memory. The microoperations most often encountered in digital systems are 
of four types: 

1. Transfer microoperations, which transfer binary data from one register to 
another. 

2. Arithmetic microoperations, which perform arithmetic on data in registers. 
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3. Logic microoperations, which perform bit manipulation on data in registers. 

4. Shift microoperations, which shift data in registers. 

A given microoperation may be of more than one type. For example, a ls comple­
ment operation is both an arithmetic microoperation and a logic microoperation. 

Transfer microoperations were introduced in the previous section. This type 
of microoperation does not change the binary data bits as they move from the 
source register to the destination register. The other three types of microoperations 
can produce new binary data and, hence, new information. In digital systems, basic 
sets of operations are used to form sequences that implement more complicated 
operations. In this section, we define a basic set of microoperations, symbolic nota­
tion for these microoperations, and descriptions of the digital hardware that imple­
ments them. 

Arithmetic Microoperations 

We define the basic arithmetic microoperations as add, subtract, increment, decre­
ment, and complement. The statement 

ROf-Rl + R2 

specifies an add operation. It states that the contents of register R2 are to be added 
to the contents of register Rl and the sum transferred to register RO. To implement 
this statement with hardware, we need three registers and a combinational compo­
nent that performs the addition, such as a parallel adder. The other basic arith­
metic operations are listed in Table 7-3. Subtraction is most often implemented 
through complementation and addition. Instead of using the minus operator, we 
can specify 2s complement subtraction by the statement 

ROf-Rl + R2+1 

D TABLE 7-3 
Arithmetic Microoperations 

Symbolic 
Designation 

RO�Rl +R2 

R2�R2 

R2�R2 +1 

RO�Rl +R2 +1 

Rl�Rl +1 

Rl�Rl -1 

Description 

Contents of Rl plus R2 transferred to RO 

Complement of the contents of R2 (ls complement) 

2s complement of the contents of R2 

Rl plus 2s complement of R2 transferred to RO (subtraction) 

Increment the contents of Rl (count up) 

Decrement the contents of Rl (count down) 
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where R2 specifies the ls complement of R2. Adding 1 to R2 gives the 2s comple­
ment of R2. Finally, adding the 2s complement of R2 to the contents of Rl is equiv­
alent to Rl - R2. 

The increment and decrement microoperations are symbolized by a plus-one 
and minus-one operation, respectively. These operations are implemented by using 
a special combinational circuit, an adder-subtractor, or a binary up-down counter 
with parallel load. 

Multiplication and division are not listed in Table 7-3. Multiplication can be 
represented by the sy mbol * and division by /. These two operations are not 
included in the basic set of arithmetic microoperations because they are assumed 
to be implemented by sequences of basic microoperations. In contrast, multiplica­
tion can be considered as a microoperation if implemented by a combinational cir­
cuit. In such a case, the result is transferred into a destination register at the clock 
edge after all signals have propagated through the entire combinational circuit. 

There is a direct relationship between the statements written in register­
transfer notation and the registers and digital functions required for their imple­
mentation. To illustrate, consider the following two statements: 

XKi: Rlf-Rl + R2 

XKi: Rlf-Rl + R2+1 

Control variable Ki activates an operation to add or subtract. If, at the same time, 
control variable Xis equal to 0, then XKi = 1, and the contents of R2 are added 
to the contents of Rl. If Xis equal to 1, then XKi = 1, and the contents of R2 are 
subtracted from the contents of Rl. Note that the two control conditions are Bool­
ean functions and reduce to 0 when Ki = 0, a condition that inhibits the execution 
of both operations simultaneously. 

A block diagram showing the implementation of the preceding two state­
ments, is given in Figure 7-6. Ann-bit adder-subtractor, similar to the one shown 
in Figure 4-7, receives its input data from registers Rl and R2. The sum or differ­
ence is applied to the inputs of Rl. The Select input S of the adder-subtractor 
selects the operation in the circuit. When S = 0, the two inputs are added, and 
when S = 1, R2 is subtracted from Rl. Applying the control variable X to the S 

input activates the required operation. The output of the adder-subtractor is 
loaded into Rl on any positive clock edge at which XKi = 1 or XKi = 1. We can 
simplify this to just Ki, since 

Thus, the control variable X selects the operation, and the control variable Ki 
loads the result into Rl. 

Based on the discussion of overflow in Section 4-4, the overflow output is 
transferred to flip-flop V, and the output carry from the most significant bit of the 
adder-subtractor is transferred to flip-flop C, as shown in Figure 7-6. These transfers 
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occur when K1 = 1 and are not represented in the register-transfer statements; if 
desired, we could show them as additional simultaneous transfers. 

Logic Microoperations 

Logic microoperations are useful in manipulating the bits stored in a register. These 
operations consider each bit in the register separately and treat it as a binary variable. 
The symbols for the four basic logic operations are shown in Table 7-4. The NOT 
microoperation, represented by a bar over the source register name, complements all 
bits and thus is the same as the 1 's complement. The symbol A is used to denote the 
AND microoperation and the symbol v to denote the OR microoperation. By using 

D TABLE 7-4 
Logic Microoperations 

Symbolic 
Designation 

RO�Rl 
RO�R1AR2 
RO�RlvR2 
RO�R1E9R2 

Description 

Logical bitwise NOT (ls complement) 
Logical bitwise AND (clears bits) 
Logical bitwise OR (sets bits) 
Logical bitwise XOR (complements bits) 
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these special symbols, we can distinguish between the add microoperation repre­
sented by a + and the OR microoperation. Although the + symbol has two meanings, 
we can distinguish between them by noting where the symbol occurs. If the + occurs 
in a microoperation, it denotes addition. If the + occurs in a control or Boolean func­
tion, it denotes OR. The OR microoperation will always use the v symbol. For 
example, in the statement 

(K1 + K2): R1<.-R2 + R3, R4<.-R5v R6 

the + between K1 and K2 is an OR operation between two variables in a control 
condition. The + between R2 and R3 specifies an add microoperation. The OR 
microoperation is designated by the symbol v between registers RS and R6. The 
logic microoperations can be easily implemented with a group of gates, one for 
each bit position. The NOT of a register of n bits is obtained with n NOT gates in 
parallel. The AND microoperation is obtained using a group of n AND gates, each 
receiving a pair of corresponding inputs from the two source registers. The outputs 
of the AND gates are applied to the corresponding inputs of the destination regis­
ter. The OR and exclusive-OR microoperations require a similar arrangement of 
gates. 

The logic microoperations can change bit values, clear a group of bits, or 
insert new bit values into a register. The following examples show how the bits 
stored in the 16-bit register Rl can be selectively changed by using a logic microop­
eration and a logic operand stored in the 16-bit register R2. 

The AND microoperation can be used for clearing one or more bits in a reg­
ister to 0. The Boolean equations X · 0 = 0 and X · 1 = X dictate that, when 
ANDed with 0, a binary variable X produces a 0, but when ANDed with 1, the 
variable remains unchanged. A given bit or group of bits in a register can be 
cleared to 0 if ANDed with 0. Consider the following example: 

10101101 10101011 

00000000 11111111 

00000000 10101011 

Rl 

R2 

R1f---R1AR2 

(data) 

(mask) 

The 16-bit logic operand in R2 has Os in the high-order byte and ls in the low­
order byte. By ANDing the contents of R2 with the contents of Rl, it is possible 
to clear the high-order byte of Rl and leave the bits in the low-order byte 
unchanged. Thus, the AND operation can be used to selectively clear bits of a 
register. This operation is sometimes called masking out the bits, because it 
masks or deletes all ls in the data in Rl, based on bit positions that are 0 in the 
mask provided in R2. 

The OR microoperation is used to set one or more bits in a register. The 
Boolean equations X + 1 = 1 and X + 0 = X dictate that, when ORed with 1, the 
binary variable X produces a 1, but when ORed with 0, the variable remains 
unchanged. A given bit or group of bits in a register can be set to 1 if ORed with 1. 
Consider the following example: 
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10101101 10101011 

11111111 00000000 

11111111 10101011 

Rl 

R2 

R1f--R1vR2 

(data) 

(mask) 

The high-order byte of R1 is set to all ls by ORing it with all ls in the R2 
operand. The low-order byte remains unchanged because it is ORed with Os. 

The XOR (exclusive-OR) microoperation can be used to complement one or 
more bits in a register. The Boolean equations XEB 1 = X and XEB 0 = X dictate 
that, when a binary variable Xis XORed with 1, it is complemented, but when 
XORed with 0, the variable remains unchanged. By XORing a bit or group of bits 
in register Rl with ls in selected positions in R2, it is possible to complement the 
bits in the selected positions in Rl. Consider the following example: 

10101101 10101011 

11111111 00000000 

01010010 10101011 

Rl 

R2 

R1f---R1E9R2 

(data) 

(mask) 

The high-order byte in Rl is complemented after the XOR operation with R2, and 
the low-order byte is unchanged. 

Shift Microoperations 

Shift microoperations are used for lateral movement of data. The contents of a 
source register can be shifted either right or left. A left shift is toward the most sig­
nificant bit, and a right shift is toward the least significant bit. Shift microoperations 
are used in the serial transfer of data. They are also used for manipulating the con­
tents of registers in arithmetic, logical, and control operations. The destination reg­
ister for a shift microoperation may be the same as or different from the source 
register. We use strings of letters to represent the shift microoperations defined in 
Table 7-5. For example, 

RO� sr RO, R1 � sl R2 

are two microoperations that respectively specify a one-bit shift to the right of the 
contents of register RO and a transfer of the contents of R2 shifted one bit to the 
left into register R1. The contents of R2 are not changed by this shift. 

For a left-shift microoperation, we call the rightmost bit of the destination 
register the incoming bit. For a right-shift microoperation, we define the leftmost 
bit of the destination register as the incoming bit. The incoming bit may have dif­
ferent values, depending upon the type of shift microoperation. Here we assume 
that, for sr and sl, the incoming bit is 0, as shown in the examples in Table 7-5. 
The outgoing bit is the leftmost bit of the source register for the left-shift opera­
tion and the rightmost bit of the source register for the right-shift operation. For 
the left and right shifts shown, the outgoing bit value is simply discarded. In 
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D TABLE 7-5 
Examples of Shifts 

Type 

Shift left 
Shift right 

Symbolic 
Designation 

Rlf-sl R2 
Rlf---sr R2 

Eight-Bit examples 

Source R2. 

10011110 
11100101 

After Shift: 
Destination R1 

00111100 
01110010 

Chapter 10, we will explore other types of shifts that treat incoming and outgoing 
bits differently. 

7-6 MICROOPERATIONS ON A SINGLE REGISTER 

This section covers the implementation of one or more microoperations with a sin­
gle register as the destination of all primary results. The single register may also 
serve as a source of an operand for binary and unary operations. Due to the close 
ties between a single set of storage elements and the microoperations, the combi­
national logic implementing the microoperations is assumed to be a part of the 
register and is called dedicated logic of the register. This is in contrast to logic 
which is shared by multiple destination registers. In this case, the combinational 
logic implementing the microoperations is called shared logic for the set of destina­
tion registers. 

The combinational logic implementing the microoperations described in the 
previous section can use one or more functional blocks from Chapters 4 and 5 or 
can be designed specifically for the register. Initially, functional blocks will be used 
in combination with D flip-flops or D flip-flops with enable. A simple technique 
using multiplexers for selection is introduced to allow multiple microoperations on 
a single register. Next, single- and multiple-function registers that perform shifting 
and counting are designed. 

Multiplexer-Based Transfers 

There are occasions when a register receives data from two or more different 
sources at different times. Consider the following conditional statement having an 
if-then-else form: 

if (Ki = 1) then (ROf--Rl) else if (K2 = 1) then (R0f--R2) 

The value in register Rl is transferred to register RO when control signal Ki equals 1. 
When Ki = 0, the value in register R2 is transferred to RO when K2 equals 1. Other­
wise, the contents of RO remains unchanged. The conditional statement may be bro­
ken into two parts using the following control conditions: 
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Use of Multiplexers to Select between Two Registers 

This specifies hardware connections from two registers, R1 and R2, to one common 
destination register RO. In addition, making a selection between two source regis­
ters must be based on values of the control variables Ki and K2• 

The block diagram for a circuit with 4-bit registers that implements the condi­
tional register-transfer statements using a multiplexer is shown in Figure 7-7(a). 
The quad 2-to-1 multiplexer selects between the two source registers. For Ki = 1,  
R1 is loaded into RO, irrespective of the value of K2• For Ki = 0 and K2 = 1, R2 is 
loaded into RO. When both Ki and K2 are equal to 0, the multiplexer selects R2 as 
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the input to RO, but, because the control function, K2 + K1, connected to the 
LOAD input of RO equals 0, the contents of RO remain unchanged. 

The detailed logic diagram for the hardware implementation is shown in 
Figure 7-7(b) . The diagram uses functional block symbols based upon detailed 
logic for the registers in Figure 7-2 and for a quad 2-to-1 multiplexer from 
Chapter 3. Note that since this diagram represents just a part of a system, there 
are inputs and outputs that are not yet connected. Also, the clock is not shown in 
the block diagram, but is shown in the detailed diagram. It is important to relate 
the information given in a block diagram such as Figure 7-7(a) with the detailed 
wiring connections in the corresponding logic diagram in Figure 7-7(b) . In order 
to save space, we often omit the detailed logic diagrams in designs. However, it is 
possible to obtain a logic diagram with detailed wiring from the corresponding 
block diagram and a library of functional blocks. In fact, such a procedure is per­
formed by computer programs used for automated logic synthesis. 

The preceding example can be generalized by allowing the multiplexer to 
have n sources and these sources to be register outputs or combinational logic 
implementing microoperations. This generalization results in the block diagram 
shown in Figure 7-8. The diagram assumes that each source is either the outputs of 
a register or of combinational logic implementing one or more microinstructions. 
In those cases in which the microoperations are dedicated to the register, the cor­
responding dedicated logic is included as a part of the register. In Figure 7-8, the 
first k sources are dedicated logic and the last n - k sources are either registers or 
shared logic. The control signals that select a given source are either a single con­
trol variable or the OR of all control signals corresponding to the microoperations 
associated with the source. To force RO to load for a microoperation, these control 
signals are ORed together to form the Load signal. Since it is assumed that only 
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one of the control signals is 1 at any time, these signals must be encoded to provide 
the selection codes for the multiplexer. Two modifications to the given structure 
are possible. The control signals could be applied directly to a 2 x n AND-OR cir­
cuit (i.e., a multiplexer with the decoder deleted). Alternatively, the control signals 
could already be encoded, omitting the use of the all-zero code, so that the OR 
gate still forms the Load signal correctly. 

Shift Registers 

A register capable of shifting its stored bits laterally in one or both directions is 
called a shift register. The logical configuration of a shift register consists of a 
chain of flip-flops, with the output of one flip-flop connected to the input of the 
next flip-flop. All flip-flops have a common clock-pulse input that activates the 
shift. 

The simplest possible shift register uses only flip-flops, as shown in Figure 7-9(a). 
The output of a given flip-flop is connected to the D input of the flip-flop at its right. 
The clock is common to all flip-flops. The serial input SI is the input to the leftmost 
flip-flop. The serial output SO is taken from the output of the rightmost flip-flop. A 
symbol for the shift register is given in Figure 7-9(b ). 

Sometimes it is necessary to control the register so that it shifts only on select 
positive clock edges. For the shift register in Figure 7-9, the shift can be controlled 
by connecting the clock through the logic shown in Figure 7-l(c), with Shift replac­
ing Load. Again, due to clock skew, this is usually not the most desirable approach. 
Thus, we learn next that the shift operation can be controlled through the D inputs 
of the flip-flops rather than through the clock inputs C. 

t-----1 D t-----1 D t-----1 D Serial 
------1 D input SI 

c c c 

Clock--------------------� 

(a) Logic diagram 

Clock 
SRG4 

Sl 

(b) Symbol 

D FIGURE 7-9 
4-Bit Shift Register 

so 

c 

Serial 
output SO 
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SHIFT REGISTER WITH PARALLEL LOAD If all flip-flop outputs of a shift register are 
accessible, then information entered serially by shifting can be taken out in parallel 
from the flip-flop outputs. If a parallel load capability is also added to a shift register, 
then data entered in parallel can be shifted out serially. Thus, a shift register with 
accessible flip-flop outputs and parallel load can be used for converting incoming 
parallel data to outgoing serial data and vice versa. 

The logic diagram for a 4-bit shift register with parallel load and the symbol 
for this register are shown in Figure 7-10. There are two control inputs, one for the 
shift and the other for the load. Each stage of the register consists of a D flip-flop, 
an OR gate, and three AND gates. The first AND gate enables the shift operation. 
The second AND gate enables the input data. The third AND gate restores the 
contents of the register when no operation is required. 

The operation of this register is specified in Table 7-6 and is also given by the 
register transfers: 
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D TABLE 7-6 
Function Table for the Register of Figure 7-10 

Shift 

0 
0 
1 

Load Operation 

0 
1 
x 

No change (Hold) 
Load parallel data 
Shift down from Qo to Q3 

Shift: Qf-slQ 

Shift· Load: Qf--D 

The "No change" operation, also called "Hold", is implicit if neither of the condi­
tions for transfers is satisfied. When both the shift and load control inputs are 0, the 
third AND gate in each stage is enabled, and the output of each flip-flop is applied 
to its own D input. A positive transition of the clock restores the contents to the 
register, and the output is unchanged. When the shift input is 0 and the load input 
is 1, the second AND gate in each stage is enabled, and the input Di is applied to 
the D input of the corresponding flip-flop. The next positive clock transition trans­
fers the parallel input data into the register. When the shift input is equal to 1, the 
first AND gate in each stage is enabled and the other two are disabled. Since the 
Load input is disabled by the Shift input on the second AND gate, we mark it with 
a don't-care condition in the Shift row of the table. When a positive edge occurs on 
the clock, the shift operation causes the data from the serial input SJ to be trans­
ferred to flip-flop Q0, the output of Q0 to be transferred to flip-flop Qi, and so on 
down the line. Note that because of the way the circuit is drawn, the shift occurs in 
the downward direction. If we rotate the page a quarter-turn counterclockwise, the 
register shifts from left to right. 

Shift registers are often used to interface digital systems that are distant from 
each other. For example, suppose it is necessary to transmit an n-bit quantity 
between two points. If the distance is large, it is expensive to use n lines to transmit 
the n bits in parallel. It may be more economical to use a single line and transmit 
the information serially, one bit at a time. The transmitter loads the n-bit data in 
parallel into a shift register and then transmits the data serially along the common 
line. The receiver accepts the data serially into a shift register. When all n bits are 
accumulated, they can be taken in parallel from the outputs of the register. Thus, 
the transmitter performs a parallel-to-serial conversion of data, and the receiver 
does a serial-to-parallel conversion. 

BIDIRECTIONAL SHIFT REGISTER A register capable of shifting in only one direction 
is called a unidirectional shift register. A register that can shift in both directions is 
a bidirectional shift register. It is possible to modify the circuit of Figure 7-10, by 
adding a fourth AND gate in each stage, for shifting the data in the upward direc­
tion. An investigation of the resultant circuit will reveal that the four AND gates, 
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together with the OR gate in each stage, constitute a multiplexer with the selection 
inputs controlling the operation of the register. 

One stage of a bidirectional shift register with parallel load is shown in 
Figure 7-ll(a). Each stage consists of a D flip-flop and a 4-to-1-line multi­
plexer. The two selection inputs S1 and S0 select one of the multiplexer inputs 
to apply to the D flip-flop. The selection lines control the mode of operation of 
the register according to Table 7-7 and the register transfers: 

S1 · S0: Q+--sl Q 

S1 ·So: Q+--srQ 

S1 • S0: Q+--D 

The "No Change" operation is implicit if none of the conditions for transfers is sat­
isfied. When the mode control S1 S0 = 00, input 0 of the multiplexer is selected. This 
forms a path from the output of each flip-flop into its own input. The next clock 
transition transfers the current stored value back into each flip-flop, and no change 
of state occurs. When S1S0 = 01, the terminal marked 1 on the multiplexer has a 
path to the D input of each flip-flop. These paths cause a shift-down operation. The 
serial input is transferred into the first stage, and the content of each stage, Qi_1, is 
transferred into stage Qi. When S1S0 = 10, a shift-up operation results in a second 
serial input that enters the last stage. In addition, the value in each stage Qi+ 1 is 



D TABLE 7-7 

7-6 I Microoperations on a Single Register D 3 5 7 

Function Table for the Register of Figure 7-11 

Mode control 
Register 

S1 So Operation 

0 0 No change (Hold) 
0 1 Shift down 
1 0 Shift up 
1 1 Parallel load 

transferred into stage Qi. Finally, when S1S0 = 11, the binary information on each 
parallel input line is transferred into the corresponding flip-flop, resulting in a par­
allel load. 

Figure 7-11 (b) shows a symbol for the bidirectional shift register from 
Figure 7-11(a) . Note that both a left serial input (LSI) and a right serial input 
(RSI) are provided. If serial outputs are desired, Q3 is used for left shift and Q0 
for right shift. 

Ripple Counter 

A register that goes through a prescribed sequence of distinct states upon the 
application of a sequence of input pulses is called a counter. The input pulses may 
be clock pulses or may originate from some other source, and they may occur at 
regular or irregular intervals of time. In our discussion of counters, we assume 
clock pulses, but other signals can be substituted for the clock. The sequence of 
states may follow the binary number sequence or any other prescribed sequence of 
states. A counter that follows the binary number sequence is called a binary 
counter. An n-bit binary counter consists of n flip-flops and can count in binary 
from 0 through zn - 1. 

Counters are available in two categories: ripple counters and synchronous 
counters. In a ripple counter, the flip-flop output transitions serve as the sources 
for triggering the changes in other flip-flops. In other words, the C inputs of some 
of the flip-flops are triggered not by the common clock pulse, but rather by the 
transitions that occur on other flip-flop outputs. In a synchronous counter, the C 
inputs of all flip-flops receive the common clock pulse, and the change of state is 
determined from the present state of the counter. Synchronous counters are dis­
cussed in the next two subsections. Here we present the binary ripple counter and 
explain its operation. 

The logic diagram of a 4-bit binary ripple counter is shown in Figure 7-12. 
The counter is constructed from D flip-flops connected such that the application of 
a positive edge to the C input of each flip-flop causes the flip-flop to complement 
its state. The complemented output of each flip-flop is connected to the C input of 
the next most significant flip-flop. The flip-flop holding the least significant bit 
receives the incoming clock pulses. Positive-edge triggering makes each flip-flop 
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complement its value when the signal on its C input goes through a positive transi­
tion. The positive transition occurs when the complemented output of the previous 
flip-flop, to which C is connected, goes from 0 to 1. A 1-level signal on Reset driving 
the R inputs clears the register to all zeros asynchronously. 

To understand the operation of a binary ripple counter, let us examine the 
upward counting sequence given in the left half of Table 7-8. The count starts at binary 
0 and increments by one with each count pulse. After the count of 15, the counter goes 
back to 0 to repeat the count. The least significan.!_ bit (Q0) is complemented by each 
count pulse. Every time that Q0 goes from 1 to 0, Q0 goes from 0 to 1, complementing 
Qi. Every time that Qi goes from 1 to 0, it complements Q2. Every time that Q2 goes 
from 1 to 0, it complements Q3, and so on for any higher-order bits in the ripple 
counter. For example, consider the transition from count 0011 to 0100. Q0 is comple­
mented with the count pulse positive edge. Since Q0 goes from 1 to 0, it triggers Qi and 
complements it. As a result, Qi, goes from l__!o 0, which complements Q2, changing it 
from 0 to 1. Q2 does not trigger Q3, because Q 2produces a negative transition, and the 
flip-flops respond only to positive transitions. Thus, the count from 0011 to 0100 is 
achieved by changing the bits one at a time. The counter goes from 0011 to 0010 (Q0 
from 1 to 0), then to 0000 (Qi from 1 to 0), and finally to 0100 (Q2 from 0 to 1). The 
flip-flops change one at a time in quick succession as the signal propagates through the 
counter in a ripple fashion from one stage to the next. 
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D TABLE 7-8 
Counting Sequence of Binary Counter 

Upward Counting Sequence Downward Counting Sequence 

Q3 Q2 Q1 Qo Q3 Q2 Q1 Qo 

0 0 0 0 1 1 1 1 
0 0 0 1 1 1 1 0 
0 0 1 0 1 1 0 1 
0 0 1 1 1 1 0 0 
0 1 0 0 1 0 1 1 
0 1 0 1 1 0 1 0 
0 1 1 0 1 0 0 1 
0 1 1 1 1 0 0 0 
1 0 0 0 0 1 1 1 
1 0 0 1 0 1 1 0 
1 0 1 0 0 1 0 1 
1 0 1 1 0 1 0 0 
1 1 0 0 0 0 1 1 
1 1 0 1 0 0 1 0 
1 1 1 0 0 0 0 1 
1 1 1 1 0 0 0 0 

A ripple counter that counts downward gives the sequence in the right half of 
Table 7-8. Downward counting can be accomplished by connecting the true output 
of each flip-flop to the C input of the next flip-flop. 

The advantage of ripple counters is their simple hardware. Unfortunately, 
they are asynchronous circuits and, with added logic, can become circuits with 
delay dependence and unreliable operation. This is particularly true for logic that 
provides feedback paths from counter outputs back to counter inputs. Also, due to 
the length of time required for the ripple to finish, large ripple counters can be 
slow circuits. As a consequence, synchronous binary counters are favored in all but 
low-power designs, where ripple counters have an advantage. (See Problem 7-9.) 

Synchronous Binary Counters 

Synchronous counters, in contrast to ripple counters, have the clock applied to 
the C inputs of all flip-flops. Thus, the common clock pulse triggers all flip-flops 
simultaneously rather than one at a time, as in a ripple counter. A synchronous 
binary counter that counts up by 1 can be constructed from the incrementer in 
Figure 4-9 and D flip-flops, as shown in Figure 7-13(a). The carry output CO is 
added by not placing an X value on the C4 output before the contraction of an 
adder to the incrementer in Figure 4-9. Output CO is used to extend the counter 
to more stages. 

Note that the flip-flops trigger on the positive-edge transition of the clock. 
The polarity of the clock is not essential here, as it was for the ripple counter. The 
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synchronous counter can be designed to trigger with either the positive or the neg­
ative clock transition. 

SERIAL AND PARALLEL COUNTERS We will use the synchronous counter in Figure 7-13 
to demonstrate two alternative designs for binary counters. In Figure 7-13(a), a 
chain of 2-input AND gates is used to provide information to each stage about 
the state of the prior stages in the counter. This is analogous to the carry logic 
in the ripple carry adder. A counter that uses such logic is said to have serial 
gating and is referred to as a serial counter. The analogy to the ripple carry 
adder suggests that there might be counter logic analogous to the carry look­
ahead adder. Such logic can be derived by contracting a carry lookahead adder, 
with the result shown in Figure 7-13(b ). This logic can simply replace that in the 
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blue box in Figure 7-13 (a) to produce a counter with parallel gating, called a 
parallel counter. The advantage of parallel gating logic is that, in going from 
state 1111 to state 0000, only one AND-gate delay occurs instead of the four 
AND-gate delays that occur for the serial counter. This reduction in delay 
allows the counter to operate much faster. 

If we connect two 4-bit parallel counters together by connecting the CO out­
put of one to the EN input of the other, the result is an 8-bit serial-parallel counter. 
This counter has two 4-bit parallel parts connected in series with each other. The 
idea can be extended to counters of any length. Again, employing the analogy to 
carry lookahead adders, additional levels of gating logic can be introduced to 
replace the serial connections between the 4-bit segments. The added reduction in 
delay that results is useful for constructing large, fast counters. 

The symbol for the 4-bit counter using positive-edge triggering is shown in 
Figure 7-13(c). 

UP-DOWN BINARY COUNTER A synchronous count-down binary counter goes 
through the binary states in reverse order from 1111 to 0000 and back to 1111 to 
repeat the count. The logic diagram of a synchronous count-down binary counter is 
similar to the circuit for the binary up-counter, except that a decrementer is used 
instead of an incrementer. The two operations can be combined to form a counter 
that can count both up and down, which is referred to as an up-down binary counter. 
Such a counter can be designed by contracting the adder-subtractor in Figure 4-7 
into an incrementer-decrementer and adding the D flip-flops. The counter counts up 
for S = 0 and down for S = 1. 

Alternatively, an up-down counter with ENABLE can be designed 
directly from counter behavior. It needs a mode input to select between the 
two operations. We designate this mode select input by S, with S = 0 for up­
counting and S = 1 for down-counting. Let variable EN be a count enable 
input, with EN= 1 for normal up- or down-counting and EN= 0 for disabling 
both counts. A 4-bit up-down binary counter can be described by the following 
flip-flop input equations: 

- - -

D A3 = Q3 E9 ((Qo ·Qi· Qz · S + Qo ·Qi· Qz · S) ·EN) 

The logic diagram of the circuit can be easily obtained from the input equations 
but is not included here. It should be noted that the equations, as written, provide 
parallel gating using distinct carry logic for up-counting and down-counting. It is 
also possible to use two distinct serial gating chains as well. In contrast, the counter 
derived using the incrementer-decrementer uses only a single carry chain. Overall, 
the logic cost is similar. 
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BINARY COUNTER WITH PARALLEL LOAD Counters employed in digital systems 
quite often require a parallel-load capability for transferring an initial binary num­
ber into the counter prior to the count operation. Two inputs control the operation, 
Load and Count. These inputs can take on four combinations, but only three oper­
ations are provided: Load (10), Count (01), and Hold (00). The effect of the 
remaining input combination (11) will be considered shortly. The implementation 
uses an incrementer plus 2n + 1 ENABLEs, a NOT gate, and n 2-input OR gates as 
shown in Figure 7-14. The first n ENABLEs with enable input Load are used to 
enable and disable the parallel load of input data, D. The second n ENABLEs with 
enable input Load on the incrementer outputs are used to disable both the count 
and hold operations when Load = 1. When Load = 0, both count and hold are 
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4-Bit Binary Counter with Parallel Load 



7-6 I Microoperations on a Single Register D 363 

enabled. Without the additional ENABLE, Count = 1, causes counting, and Count 
= 0, the hold operation occurs. What about the (11) combination? Counting is dis­
abled by the Load signal and loading is enable by Load. But what about the output 
CO? With Count= 1, the carry chain for the incrementer is active and can produce 
CO equal to 1. But CO should not be active outside of the counting operation. To 
deal with this problem, Count is enabled using Load. With Load= 1, Load= 0, dis­
abling Count into the carry chain. forcing CO to 0. Thus, for (11), a load occurs. 
This is sometimes described as Load overriding Count. When 4-bit counters are 
concatenated to form 4n-bit counters, for the first state, a count control input is 
attached to Count in the least significant stage. For all other stages, CO from the 
prior state is attached to Count. Counters with parallel load are very useful in the 
design of digital computers. In subsequent chapters, we often refer to them as reg­
isters with load and increment operations. 

The binary counter with parallel load can be converted into a synchronous 
BCD counter (without load input) by connecting an external AND gate to it, as 
shown in Figure 7-15. The counter starts with an all-zero output, and the count input 
is always active. As long as the output of the AND gate is 0, each positive clock 
edge increments the counter by 1. When the output reaches the count of 1001, both 
Q0 and Q3 become 1, making the output of the AND gate equal to 1. This condition 
makes Load active; so on the next clock transition, the counter does not count, but 
is loaded from its four inputs. Since all four inputs are connected to logic 0, 0000 is 
loaded into the counter following the count of 1001. Thus, the circuit counts from 
0000 through 1001, followed by 0000, as required for a BCD counter. 

Other Counters 

Counters can be designed to generate any desired number of states in sequence. 
A divide-by-N counter (also known as a modulo-N counter) is a counter that 
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goes through a repeated sequence of N states. The sequence may follow the 
binary count or may be any other arbitrary sequence. In either case, the design 
of the counter follows the procedure presented in Chapter 5 for the design of 
synchronous sequential circuits. To demonstrate this procedure, we present the 
design of two counters: a BCD counter and a counter with an arbitrary sequence 
of states. 

BCD COUNTER As shown in the previous section, a BCD counter can be obtained 
from a binary counter with parallel load. It is also possible to design a BCD 
counter directly using individual flip-flops and gates. Assuming D-type flip-flops for 
the counter, we list the present states and corresponding next states in Table 7-9. 
An output Y is included in the table. This output is equal to 1 when the present 
state is 1001. In this way, CO can enable the count of the next decade while its own 
decade switches from 1001 to 0000. 

The flip-flop input equations for D are obtained from the next-state values 
listed in the table and can be simplified by means of K-maps. The unused states for 
minterms 1010 through 1111 are used as don't-care conditions. The simplified input 
equations for the BCD counter are 

D TABLE 7-9 

D1= Q i  
D2= Q2 Ee Qi Q s 

D4= Q4 Ee QiQ2 

State Table and Flip-Flop Inputs for BCD Counter 

Present State Next State 

Da= 04= D2= D1= 
aa Q4 Q2 Q1 Q8(t+ 1) Q4(t+ 1) Q2(t+ 1) Q1(t+1) 

0 0 0 0 0 0 0 1 
0 0 0 1 0 0 1 0 
0 0 1 0 0 0 1 1 
0 0 1 1 0 1 0 0 
0 1 0 0 0 1 0 1 
0 1 0 1 0 1 1 0 
0 1 1 0 0 1 1 1 
0 1 1 1 1 0 0 0 
1 0 0 0 1 0 0 1 
1 0 0 1 0 0 0 0 

Output 

y 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
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Ds = Qs ffi (Q1Qs + QiQ2Q4) 
CO= QiQs. 

Synchronous BCD counters can be cascaded to form counters for decimal 
numbers of any length. The cascading is done by replacing D1 with D1 = Q1 Ef) CJ, 
where CI is an input driven by CO from the next lower BCD counter. Also, CI 
needs to be ANDed with the product terms to the right of each of the XOR sym­
bols in each of the equations for D2 through D8• 

D TABLE 7-10 
State Table and Flip-Flop Inputs for Counter 

Present 
State Next State 

DA = DB = DC= 
A B c A(t + 1) B(t + 1) C(t + 1) 

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 0 1 0 0 

1 0 0 1 0 1 

1 0 1 1 1 0 

1 1 0 0 0 0 

ARBITRARY COUNT SEQUENCE Suppose we wish to design a counter that has a 
repeated sequence of six states, as listed in Table 7-10. In this sequence, flip-flops B 
and C repeat the binary count 00, 01, 10, while flip-flop A alternates between 0 and 
1 every three counts. Thus, the count sequence for the counter is not straight 
binary, and two states, 011 and 111, are not included in the count. The D flip-flop 
input equations can be simplified using minterms 3 and 7 as don't-care conditions. 
The simplified functions are 

DA=AffiB 

Ds= C 

De= BC 

The logic diagram of the counter is shown in Figure 7-16(a) . Since there are 
two unused states, we analyze the circuit to determine their effect. The state dia­
gram obtained is drawn in Figure 7-16(b) . This diagram indicates that if the circuit 
ever goes to one of the unused states, the next count pulse transfers it to one of the 
valid states, and the circuit then continues to count correctly. 
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7-7 REGISTER-CELL DESIGN 
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In Section 4-1, we discussed iterative combinational circuits. In this chapter, we con­
nect such circuits to flip-flops to form sequential circuits. A single-bit cell of an iter­
ative combinational circuit connected to a flip-flop that provides the output forms a 
two-state sequential circuit called a register cell. We can design an n-bit register with 
one or more associated microoperations by designing a register cell and making n 
copies of it. Depending on whether the output of the flip-flop is an input to the iter­
ative circuit cell, the register cell may have its next state dependent on its present 
state and inputs or on its inputs only. If the dependency is only on inputs, then cell 
design for the iterative combinational circuit and attachment of the iterative circuit 
to flip-flops is appropriate. If, however, the state of the flip-flop is fed back to the 
inputs of the iterative circuit cell, sequential design methods can also be applied. 
The next example illustrates simple register-cell design in such a case. 

EXAMPLE 7-1 Register-Cell Design 

A register A is to implement the following register transfers: 

AND:A�AAB 
EXOR:A�AEBB 
OR:A�AvB 
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Unless specified otherwise, we assume that 

1. Only one of AND, EXOR, and OR is equal to 1, and 

2. For all of AND, EXOR, and OR equal to 0, the content of A remams 
unchanged. 

A simple design approach for a register cell with conditions 1 and 2 uses a 
register with parallel load constructed from D flip-flops with Enable (EN = 
LOAD) from Figure 7-2. For this approach, the expression for LOAD is the OR of 
all control signals that cause a transfer to occur. The expression for Di consists of 
an OR of the AND of each control signal with the operation on the right-hand side 
of the corresponding transition. 

For this example, the resulting equations for LOAD and Di are 

LOAD =AND + EXOR+ OR 
Di =A(t + l)i = AND·AiBi + EXOR·(Ai B i + A iBi) + OR·(Ai +Bi) 

The equation for Di has an implementation similar to that used for the selection 
part of a multiplexer in which a set of ENABLE blocks drive an OR gate. AND, 
EXOR, and OR are enabling signals, and the remaining part of the respective 
terms in Di consists of the function enabled. 

A more complex approach is to design directly for D flip-flops using a sequen­
tial circuit design approach rather than the ad hoc approach based on parallel load 
flip-flops. 

We find a coded state table with A as the state variable and output, and AND, 
EXOR, OR, and Bas inputs, as shown in Table 7-11. The assumption that at most 

D TABLE 7-11 
State Table and Flip-Flop Inputs for Example 7-1 

Present 
State A 

0 
1 

Next State A(t + 1) 

(AND= 0) 
·(EXOR= 0) (OR= 1) (OR= 1) (EXOR= 1) (EXOR= 1) (AND= 1) (AND= 1) 
·(OR= 0) ·(B = 0) ·(B = 1) ·(B = 0) ·(B = 1) ·(B = 0) ·(B = 1) 

0 
1 

0 
1 

1 
1 

0 
1 

1 
0 

0 
0 

0 
1 

one of the three control variables AND, EXOR, and OR is 1 is instrumental in 
defining the column headings. From the table, the equation for Di can be written as: 

D· -A(t+l)· -AND·A· ·B- + EXOR·(A·B-+A·B-) + OR·(A· + B-) 1- 1- 1 1 1 1 1 1 1 1 

+ AND·EXOR·OR·A· 
1 

In attempting to simplify this equation, it is important to note that factors involving 
only the control variables can be shared between register cells since they are the 
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same for each cell. On the other hand, factors including variables Ai or Bi are 
implemented in each cell, so the gate-input cost is multiplied by n, the number of 
cells. In order to easily separate out the factors involving condition variables only, 
we rewrite Di in terms of min terms of variables Ai and Bi: 

Di= (AND+ OR+ AND·EXOR·OR)(AiBi) +(EXOR+ OR 

+ AND·EXOR·OR)(AiBi) +{EXOR+ OR){AiBi) 

=(AND+ OR+ EXOR)(AiBi) +(EXOR+ OR 

+ AND)(AiBi) + {EXOR + OR){AiBi) 

The terms OR+ AND +EXOR, EXOR+ OR, and (EXOR+ OR) +AND do not 
depend on the values Ai and Bi associated with any of the cells. The logic for these 
terms can be shared by all of the register cells. Using Ci. C2, and C3 as intermediate 
variables, the following set of equations results: 

C1 =OR +AND+ EXOR 

C2 =OR+ EXOR 

C3=C2+AND 

Di = C1AiBi + C:0iBi + C2AiBi 

The logic shared by all of the cells and the logic for register cell i are given in 
Figure 7-17. Before comparing these results with those from the simple 
approach, we can apply similar simplification and logic sharing to the results of 
the simple approach: 

C1 =OR +AND 

C2= OR+EXOR 

Di = C1AiBi + C2AiBi + C2AiBi 

LOAD= C1 + C2 

Di FF= LOAD· Di+ LOAD · Ai 
' 

If these equations are used directly the cost of the simple approach for a 16-cell design 
is about 40% higher. So by designing a custom register cell using a D flip-flop rather 
than finding input logic for a D flip-flop with enable, the cost can be reduced. Further, 
with the decrease in the number of levels of logic, the delay may also be reduced. • 

In the preceding example, there are no lateral connections between adjacent 
cells. Among the operations requiring lateral connections are shifts, arithmetic 
operations, and comparisons. One approach to the design of these structures is to 
combine combinational designs given in Chapter 4 with selection logic and flip­
flops. A generic approach for multifunctional registers using flip-flops with parallel 
load is shown in Figure 7-8. This simple approach bypasses register-cell design but, 
if directly implemented, can result in excessive logic and too many lateral connec­
tions. The alternative is to do a custom register-cell design. In such designs, a criti­
cal factor is the definition of the lateral connection(s) needed. Also, different 
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operations can be defined by controlling input to the least significant cell of the cell 
cascade. The custom design approach is illustrated in the next example by the 
design of a multifunctional register cell. 

EXAMPLE 7-2 Register Cell Design 

A register A is to implement the following register transfers: 
SHL:A f- slA 
EXOR:A f-A E9 B 
ADD:Af-A+B 

Unless specified otherwise, we assume that 

1. Only one of SHL, EXOR, and ADD is equal to 1, and 

2. For all of SHL, EXOR, and ADD equal to 0, the content of A remains 
unchanged. 

A simple approach to designing a register cell with conditions 1 and 2 is to 
use a parallel load with enable EN equal to LOAD. For this approach, the expres­
sion for LOAD is the OR of all control signals that cause a transfer to occur. The 
implementation for Di consists of an AND-OR, with each AND having a control 

signal and the logic for the operation on the right-hand side as its inputs. 
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For this example, the resulting equations for LOAD and Di are 

LOAD = SHL + EXOR+ ADD 
Di =A(t + l)i = SHL·Ai-1 + EXOR·(Ai E9 Bi)+ ADD·((Ai E9 Bi) E9 Ci) 
Ci+l = (Ai E9 Bi) Ci + AiBi 

These equations can be used without modification or can be optimized. 
Now, suppose, that we do a custom design assuming that all of the register 

cells are identical. This means that the least and most significant cells will be the 
same as those internal to the cell chain. Because of this, the value of C0 must be 
specified and the use, if any, of Cn must be determined for each of the three oper­
ations. For the left shift, a zero fill of the vacated rightmost bit is assumed, giving 
C0 = 0. Since C0 is not involved in the EXOR operation, it can be assumed to be 
a don't care. Finally, for the addition, C0 either can be assumed to be 0 or can be 
left as a variable to permit a carry from a previous addition to be injected. We 
assume that C0 equals 0 for addition, since no additional carry-in is specified by 
the register transfer statement. 

Our first formulation goal is to minimize lateral connections between cells. 
Two of the three operations, left shift and addition, require a lateral connection to 
the left (i.e., toward the most significant end of the cell chain). Our goal is to use 
one signal for both operations, say, Ci. It already exists for the addition but must be 
redefined to handle both the addition and the left shift. Also in our custom design, 
the parallel load flip-flop will be replaced by a D flip-flop. We can now formulate 
the state table for the register cell shown in Table 7-12: 

Di = A(t + 1 )i = SHL · EXOR · ADD ·Ai+ SHL·Ci + EXOR·(AiE9Bi) + ADD·(Ai E9 
Bi E9 Ci) 

Ci+l = SHL·Ai + ADD(-(Ai E9 Bi)Ci + AiBi) 

D TABLE7-U 
State Table and Flip-Flop Inputs for Register-Cell Design in Example 7-2 

Present 
State Ai 

0 

1 

Inputs 

SHL= 0 

EXOR= 0 

ADD= 0 

O/X 

l/X 

Next State Ai(t + 1)/0utput Ci+1 

SHL = 1 1 1 1 EXOR= 1 1 ADD= 1 1 1 1 

Bi= 0 0 1 1 Bi= 0 1 Bi= 0 0 1 1 

Ci= 0 1 0 1 C i= O 1 0 1 

010 110 010 110 O/X l/X 010 110 110 011 

0/1 111 0/1 111 l/X O/X 110 011 011 1/1 

The term Ai E9 Bi appears in both the EXOR and ADD terms. In fact, if Ci = 0 dur­
ing the EXOR operation, then the functions for the sum in ADD and for EXOR 
can be identical. In the Ci+l equation, since SHL and ADD are both 0 when EXOR 
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is 1, Ci is 0 for all cells in the cascade except the least significant one. For the least 
significant cell, the specification states that C0 = 0. Thus, input values Ci are 0 for all 
cells in register A. So we can combine the ADD and EXOR operations as follows: 

Di =A(t + l)i = SHL · EXOR· ADD ·Ai+ SHL·Ci +(EXOR+ ADD}((Ai ffi B0 ffi Ci) 

The expressions SHL · EXOR ·ADD and EXOR+ ADD, which are independent 
of Ah Bh and Ch can be shared by all cells. The resulting equations are 

E1 =EXOR +ADD 

E2 =El +SHL 

Di= E2·Ai + SHL·Ci + E1·((Ai ffi Bi) ffi Ci) 

Ci+J = SHL·Ai + ADD·((Ai ffi Bi)Ci + AiBi) 

The resulting register cell appears in Figure 7-18. Comparing this result with the 
register cell for the simple design, we note the following two differences: 

1. Only one lateral connection between cells exists instead of two. 

2. Logic has been very efficiently shared by the addition and the EXOR 
operation. 
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The custom cell design has produced connection and logic savings not present in 
the block-level design with or without optimization. • 

7-8 MULTIPLEXER AND Bus-BASED TRANSFERS FOR 
MULTIPLE REGISTERS 

A typical digital system has many registers. Paths must be provided to transfer data 
from one register to another. The amount of logic and the number of interconnec­
tions may be excessive if each register has its own dedicated set of multiplexers. A 

more efficient scheme for transferring data between registers is a system that uses 
a shared transfer path called a bus. A bus is characterized by a set of common lines, 
with each line driven by selection logic. Control signals for the logic select a single 
source and one or more destinations on any clock cycle for which a transfer occurs. 

In Section 7-4, we saw that multiplexers and parallel load registers can be 
used to implement dedicated transfers from multiple sources. A block diagram for 
such transfers between three registers is shown in Figure 7-19(a) . There are three 
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D TABLE 7-13 
Examples of Register Transfers Using the Single Bus 
in Figure 7-19(b) 

Select Load 

Register Transfer S1 so L2 L1 LO 

RO�R2 1 0 0 0 1 
RO�Rl, R2�Rl 0 1 1 0 1 
RO�Rl, Rl�RO Impossible 

n-bit 2-to-1 multiplexers, each with its own select signal. Each register has its own 
load signal. The same system based on a bus can be implemented by using a single 

n-bit 3-to-1 multiplexer and parallel load registers. If a set of multiplexer outputs is 
shared as a common path, these output lines are a bus. Such a system with a single 
bus for transfers between three registers is shown in Figure 7-19(b) . The control 
input pair, Select, determines the contents of the single source register that will 
appear on the multiplexer outputs (i.e., on the bus) . The Load inputs determine 
the destination register or registers to be loaded with the bus data. 

In Table 7-13, transfers using the single-bus implementation of Figure 7-19(b) 
are illustrated. The first transfer is from R2 to RO. Select equals 10, selecting input R2 
to the multiplexer. Load signal LO for register RO is 1, with all other loads at 0, caus­
ing the contents of R2 on the bus to be loaded into RO on the next positive clock 
transition. The second transfer in the table illustrates the loading of the contents of 
Rl into both RO and R2. The source Rl is selected because Select is equal to 01. In 
this case, L2 and LO are both 1, causing the contents of Rl on the bus to be loaded 
into registers RO and R2. The third transfer, an exchange between RO and Rl, is 

impossible in a single clock cycle, since it requires two simultaneous sources, RO and 
Rl, on the single bus. Thus, this transfer requires at least two buses or a bus com­
bined with a dedicated path from one of the registers to the other. Note that such a 
transfer can be executed on the dedicated multiplexers in Figure 7-19(a) . So, for a 
single-bus system, simultaneous transfers with different sources in a single clock 
cycle are impossible, whereas for the dedicated multiplexers, any combination of 
transfers is possible. Hence, the reduction in hardware that occurs for a single bus in 
place of dedicated multiplexers results in limitations on simultaneous transfers. 

If we assume that only single-source transfers are needed, then we can use 

Figure 7-19 to compare the complexity of the hardware in dedicated versus 
bus-based systems. First of all , assume a multiplexer design, as in Figure 3-28. 
In Figure 7-19(a) , there are 2n AND gates and n OR gates per multiplexer (not 
counting inverters) , for a total of 9n gates. In contrast , in Figure 7-19(b) , the 
bus multiplexer requires only 3n AND gates and n OR gates, for a total of 4n 

gates. Also, the data input connections to the multiplexers are reduced from 6n 
to 3n. Thus, the cost of the selection hardware is reduced by about half. 
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Three-State Bus 

A bus can be constructed with the three-state buffers introduced in Section 2-10 
instead of multiplexers. This has the potential for additional reductions in the num­
ber of connections. But why use three-state buffers instead of a multiplexer, particu­
larly for implementing buses? The reason is that many three-state buffer outputs 
can be connected together to form a bit line of a bus, and this bus is implemented 
using only one level of logic gates. On the other hand, in a multiplexer, such a large 
number of sources means a high fan-in OR, which requires multiple levels of OR 
gates, introducing more logic and increasing delay. In contrast, three-state buffers 
provide a practical way to construct fast buses with many sources, so they are often 
preferred in such cases. More important, however, is the fact that signals can travel 
in two directions on a three-state bus. Thus, the three-state bus can use the same 
interconnection to carry signals into and out of a logic circuit. This feature, which is 
most important when crossing chip boundaries, is illustrated in Figure 7-20(a) . The 
figure shows a register with n lines that serve as both inputs and outputs lying across 
the boundary of the shaded area. If the three-state buffers are enabled, then the 
lines are outputs; if the three-state buffers are disabled, then the lines can be inputs. 
The symbol for this structure is also given in the figure. Note that the bidirectional 
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bus lines are represented by a two-headed arrow. Also, a small inverted triangle 
denotes the three-state outputs of the register. 

Figures 7-20(b) and (c) show a multiplexer-implemented bus and a three­
state bus, respectively, for comparison. The symbol from Figure 7-20(a) for a regis­
ter with bidirectional input-output lines is used in Figure 7-20(c) . In contrast to the 
situation in Figure 7-19, where dedicated multiplexers were replaced by a bus, 
these two implementations are identical in terms of their register-transfer capabil­
ity. Note that, in the three-state bus, there are only three data connections to the 
set of register blocks for each bit of the bus. The multiplexer-implemented bus has 
six data connections per bit to the set of register blocks. This reduction in the num­
ber of data connections by half, along with the ability to easily construct a bus with 
many sources, makes the three-state bus an attractive alternative. The use of such 
bidirectional input-output lines is particularly effective between logic circuits in 
different physical packages. 

7-9 SERIAL TRANSFER AND MICROOPERATIONS 

A digital system is said to operate in a serial mode when information in the system 
is transferred or manipulated one bit at a time. Information is transferred one bit 
at a time by shifting the bits out of one register and into a second register. This 
transfer method is in contrast to parallel transfer, in which all the bits of the regis­
ter are transferred at the same time. 

The serial transfer of information from register A to register B is done with 
shift registers, as shown in the block diagram of Figure 7-21(a) . The serial output 
of register A is connected to the serial input of register B. The serial input of regis­
ter A receives Os while its data is transferred to register B. It is also possible for 
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register A to receive other binary information, or if we want to maintain the data 
in register A, we can connect its serial output to its serial input so that the infor­
mation is circulated back into the register. The initial content of register B is 
shifted out through its serial output and is lost unless it is transferred back into 
register A, to a third shift register, or to other storage. The shift control input Shift 
determines when and how many times the registers are shifted. The registers using 
Shift are controlled by means of the logic from Figure 7-21(a), which allows the 
clock pulses to pass to the shift register clock inputs only when Shift has the value 
logic 1. 

In Figure 7-21, each shift register has four stages. The logic that supervises the 
transfer must be designed to enable the shift registers, through the Shift signal, for 
a fixed time of four clock pulses. Shift register enabling is shown in the timing dia­
gram for the clock gating logic in Figure 7-21(b ). Four pulses find Shift in the active 
state, so that the output of the logic connected to the clock inputs of the registers 
produces four pulses: T1, T2, T3, and T4• Each positive transition of these pulses 
causes a shift in both registers. After the fourth pulse, Shift changes back to 0 and 
the shift registers are disabled. We note again that, for positive-edge triggering, the 
pulses on the clock inputs are 0, and the inactive level when no pulses are present 
is a 1 rather than a 0. 

Now suppose that the binary content of register A before the shift is 1011, 
that of register B is 0010, and the SI of register A is logic 0. Then the serial transfer 
from A to B occurs in four steps, as shown in Table 7-14. With the first pulse Ti, the 
rightmost bit of A is shifted into the leftmost bit of B, the leftmost bit of A receives 
a 0 from the serial input, and at the same time, all other bits of A and B are shifted 
one position to the right. The next three pulses perform identical operations, shift­
ing the bits of A into B one at a time while transferring Os to A. After the fourth 
shift, the logic supervising the transfer changes the Shift signal to 0 and the shifts 
stop. Register B contains 1011, which is the previous value of A. Register A con­
tains all Os. 

The difference between serial and parallel modes of operation should be 
apparent from this example. In the parallel mode, information is available from all 
bits of a register, and all bits can be transferred simultaneously during one clock 
pulse. In the serial mode, the registers have a single serial input and a single serial 
output, and information is transferred one bit at a time. 

D TABLE 7-14 
Example of Serial Transfer 

Timing 
pulse Shift Register A Shift Register B 

Initial value 1 0 1 1 0 0 1 0 
After T1 0 1 0 1 1 0 0 1 
After T2 0 0 1 0 1 1 0 0 
After T3 0 0 0 1 0 1 1 0 
After T4 0 0 0 0 1 0 1 1 
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Operations in digital computers are usually done in parallel because of the faster 
speed attainable. Serial operations are slower, but have the advantage of requir­
ing less hardware. To demonstrate the serial mode of operation, we will show the 
operation of a serial adder. Also, we compare the serial adder to the parallel 
counterpart presented in Section 4-2 to illustrate the time-space trade-off in 
design. 

The two binary numbers to be added serially are stored in two shift registers. 
Bits are added, one pair at a time, through a single full-adder (FA) circuit, as 
shown in Figure 7-22. The carry out of the full adder is transferred into a D flip­
flop. The output of this carry flip-flop is then used as the carry input for the next 
pair of significant bits. The sum bit on the S output of the full adder could be 
transferred into a third shift register, but we have chosen to transfer the sum bits 
into register A as the contents of the register are shifted out. The serial input of 
register B can receive a new binary number as its contents are shifted out during 
the addition. 

The operation of the serial adder is as follows: Register A holds the augend, 
register B holds the addend, and the carry flip-flop has been reset to 0. The serial 
outputs of A and B provide a pair of significant bits for the full adder at X and Y. 
The output of the carry flip-flop provides the carry input at Z. When Shift is set to 
1, the OR gate enables the clock for both registers and the flip-flop. Each clock 
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pulse shifts both registers once to the right, transfers the sum bit from S into the 
leftmost flip-flop of A, and transfers the carry output into the carry flip-flop. Shift 
control logic enables the registers for as many clock pulses as there are bits in the 
registers (four pulses in this example). For each pulse, a new sum bit is transferred 
to A, a new carry is transferred to the flip-flop, and both registers are shifted once 
to the right. This process continues until the shift control logic changes Shift to 0. 
Thus, the addition is accomplished by passing each pair of bits and the previous 
carry through a single full-adder circuit and transferring the sum, one bit at a time, 
back into register A. 

Initially, we can reset register A, register B, and the Carry flip-flop to 0. Then 
we shift the first number into B. Next, the first number from B is added to the 0 in 
A. While B is being shifted through the full adder, we can transfer a second num­
ber to it through its serial input. The second number can be added to the contents 
of register A at the same time that a third number is transferred serially into regis­
ter B. Serial addition may be repeated to form the addition of two, three, or more 
numbers, with their sum accumulated in register A. 

A comparison of the serial adder with the parallel adder described in Section 
4-2 provides an example of space-time trade-off. The parallel adder has n full 
adders for n-bit operands, whereas the serial adder requires only one full adder. 
Excluding the registers from both, the parallel adder is a combinational circuit, 
whereas the serial adder is a sequential circuit because it includes the carry flip­
flop. The serial circuit also takes n clock cycles to complete an addition. Identical 
circuits, such as the n full adders in the parallel adder, connected together in a 
chain constitute an example of an iterative logic array. If the values on the carries 
between the full adders are regarded as state variables, then the states from the 
least significant end to the most significant end are the same as the states appearing 
in sequence on the flip-flop output in the serial adder. Note that in the iterative 
logic array the states appear in space, but in the sequential circuit the states appear 
in time. By converting from one of these implementations to the other, one can 
make a space-time trade-off. The parallel adder in space is n times larger than the 
serial adder (ignoring the area of the carry flip-flop), but it is n times faster. The 
serial adder, although it is n times slower, is n times smaller in space. This gives the 
designer a significant choice in emphasizing speed or area, where more area trans­
lates into more cost. 

7-10 CONTROL OF REGISTER TRANSFERS 

In Section 7-2, we divided a digital system into two major components, a datapath 
and a control unit. Likewise, the binary information stored in a digital computer can 
be classified as either data or control information. As we saw in the previous chapter, 
data is manipulated in a datapath by using microoperations implemented with regis­
ter transfers. These operations are implemented with adder-subtractors, shifters, reg­
isters, multiplexers, and buses. The control unit provides signals that activate the 
various microoperations within the datapath to perform the specified processing 
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tasks. The control unit also determines the sequence in which the various actions are 
performed. This separation of a system into two components and separation of the 
tasks performed carries over to the design process. The datapath and control unit are 
usually designed separately, but in close coordination with each other. 

Generally, the timing of all registers in a synchronous digital system is con­
trolled by a master clock generator. The clock pulses are applied to all flip-flops 
and registers in the system, including those in the control unit. To prevent clock 
pulses from changing the state of all registers on every clock cycle, some registers 
have a load control signal that enables and disables the loading of new data into 
the register. The binary variables that control the selection inputs of multiplexers, 
buses, and processing logic and the load control inputs of registers are generated 
by the control unit. 

The control unit that generates the signals for sequencing the microopera­
tions is a sequential circuit with states that dictate the control signals for the sys­
tem. At any given time, the state of the sequential circuit activates a prescribed set 
of microoperations. Using status conditions and control inputs, the sequential con­
trol unit determines the next state. The digital circuit that acts as the control unit 
provides a sequence of signals for activating the microoperations and also deter­
mines its own next state. 

Based on the overall system design, there are two distinct types of control 
units used in digital systems, one for a programmable system and the other for a 
nonprogrammable system. 

In a programmable system, a portion of the input to the processor consists of 
a sequence of instructions. Each instruction specifies the operation that the system 
is to perform, which operands to use, where to place the results of the operation, 
and, in some cases, which instruction to execute next. For programmable systems, 
the instructions are usually stored in memory, either in RAM or in ROM. To exe­
cute the instructions in sequence, it is necessary to provide the memory address of 
the instruction to be executed. This address comes from a register called the pro­
gram counter (PC). As the name implies, the PC has logic that permits it to count. 
In addition, in order to change the sequence of operations using decisions based 
on status information from the datapath, the PC needs parallel load capability. 
So, in the case of a programmable system, the control unit contains a PC and 
associated decision logic, as well as the necessary logic to interpret the instruc­
tion. Executing an instruction means activating the necessary sequence of micro­
operations in the datapath required to perform the operation specified by the 
instruction. 

For a nonprogrammable system, the control unit is not responsible for obtain­
ing instructions from memory, nor is it responsible for sequencing the execution of 
those instructions. There is no PC or similar register in such a system. Instead, the 
control unit determines the operations to be performed and the sequence of those 
operations, based on its inputs and the status bits from the datapath. 

This section focuses on nonprogrammable system design. It illustrates the 
use of state machine diagrams for control unit design. Programmable systems 
are covered in Chapters 9 and 11. 
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Design Procedure 

There are many possible design procedures for designing a datapath and control 
unit. Here, we will take an approach in which the actions of both the datapath and 
the control unit are described in a combined fashion using a state machine dia­
gram or a combination of a state machine diagram with a register transfer table. 
Also, this procedure assumes that there may be some register transfer hardware 
in the control unit. Examples of such hardware are an iteration counter for imple­
mentation of an iterative algorithm, a program counter for a computer, or a set of 
register transfers to reduce the number of states in a state machine diagram. Here 
we use the term system to describe the target of the design; this term can be 
replaced with circuit if desired. This procedure assumes only one state machine 
diagram in the control unit. If desired, VHDL or Verilog can be used for any steps 
of the procedure. 

REGISTER-TRANSFER SYSTEM DESIGN PROCEDURE 

1. Write a detailed system specification. 

2. Define all external data and control input signals, all external data, control, 
and status output signals, and the registers of the datapath and control unit. 

3. Find a state machine diagram for the system including the register transfers 
in the datapath and in the control unit. 

4. Define internal control and status signals. Use these signals to separate out­
put conditions and actions, including register transfers, from the state dia­
gram flow and represent them in tabular form. 

5. Draw a block diagram of the datapath including all control and status inputs 
and outputs. Draw a block diagram of the control unit if it includes register 
transfer hardware. 

6. Design any specialized register transfer logic in both the control and data­
path. 

7. Design the control unit logic. 

8. Verify the correct operation of the combined datapath and control logic. If 
verification fails, debug the system and reverify it. 

The next two examples provide the details of register-transfer system design. 
The concepts illustrated are very central to contemporary system design. These 
examples will cover the first seven of the eight steps, then step 8 will be briefly 
discussed. 

n-u11""1 EXAMPLE 7-3 Dash Watch 

The Dash Watch is a very inexpensive stopwatch, intended only for runners in very 
short races referred to as dashes, e.g., the 100-yard dash. 

1. The DashWatch times intervals less than or equal to 99.99 seconds. In addi­
tion to the stopwatch action, it also has a feature which permits the best per­
formance (least time) to be stored in a register. The front of the stopwatch is 
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shown in Figure 7-23(a). The primary stopwatch inputs are START and 
STOP. The START button causes a timer to reset to 0 and then starts the 
timer, and the STOP button stops the timer. After pressing STOP, the latest 
dash time is displayed on the 4-digit LCD (liquid crystal display). In addi­
tion, the CSS (compare and store shortest) pushbutton causes 1) the last 
dash value to be compared with the stored minimum dash value so far in 
this session, 2) the least value to be stored as the minimum dash value, and 
the minimum dash value to be displayed. The RESET button initializes the 
storage register to 10011001.10011001, the maximum possible value, and the 
BCD equivalent of 99.99. These reset actions also occur in response to turn­
ing the power on with a switch on the back of the Dash Watch. The output is 
displayed in BCD on a seven-segment LCD which displays four digits, Bi, 
B0,B_hB_2, each of which has seven bits a, b, c, d, e, f, and g, for the seven 
segments. There is also an input to the display DP which is connected to the 
power supply. It provides the decimal point between B0 and B_tt and also 
acts as a power-on indicator. 

2. The external control input signals, external data output signals, and regis­
ters are listed Table 7-15. The first four signals, provided through signal 
conditioning logic from pushbuttons on the face of the Dash Watch, are 1 if 
the button is pushed and 0 if it is not pushed. The remaining signals are the 
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0 TABLE7-15 

Inputs, Outputs, and Registers of the Dash Watch 

Symbol Function Type 

START 
STOP 
css 
RESET 
Bi 

Initialize timer to 0 and start timer 
Stop timer and display timer 
Compare, store and display shortest dash time 
Set shortest value to 10011001 
Digit 1 data vector a, b, c, d, e, f, g to display 
Digit 0 data vector a, b, c, d, e, f, g to display 
Decimal point to display ( = 1) 

Control input 
Control input 
Control input 
Control input 
Data output vector 
Data output vector 
Data output 

Bo 
DP 
B_1 Digit -1 data vector a, b, c, d, e, f, g to display 

Digit -2 data vector a, b, c, d, e, f, g to display 
Data output vector 
Data output vector 
Data output vector 

B_z 
B The 29-bit display input vector (B1, B0, DP, B_1, B_2) 

TM 
SP 

4-Digit BCD counter 
P arallel load register 

16-Bit register 
16-Bit register 

7-segment LCD display inputs for the four digits from left to right and the 
decimal point DP. DP is always 1 when the power is on. These five vectors 
are combined into the 29-bit vector B that drives the LCD. 

By looking at the specification in 1, we can conclude that two registers are 
needed. One is a timer, TM, that times the current dash, and the other SD, 

that stores the value of the shortest dash. The timer register needs to count 
up every 0.01 seconds, the period of the circuit clock. There are two choices 
for an up-counter: 1) a binary counter with a sufficient number of bits to be 
accurate to 0.01 seconds in decimal, or a 4-digit BCD counter that counts in 
0.01-second intervals. In this case, we have chosen the BCD counter to save 
on hardware required to convert from binary to BCD for the output display. 
The SD register has to be initialized to (99.99)BcD and to be loaded with the 
contents of TM. Thus a 4-digit (16-bit) parallel load register is required. The 
registers are shown in Figure 7-23(b). 

3. The state machine diagram is given in Figure 7-24. In the formulation of this 
diagram, Moore model outputs were chosen, so all outputs are functions of 
state. Just after power-up or manual RESET, the Dash Watch circuit is in state 
Sl in which the register SD is synchronously reset to 0. The circuit proceeds 
to S2 to wait for START = 1. As long as START = 0, as indicated by START 

on a self-loop in state S2, the state remains S2. In state S2, TM is reset to 0 
using a synchronous reset signal. If we use an asynchronous flip-flop input to 
change the state of one or more flip-flops buried in the midst of a synchro­
nous design, we are violating the synchronous assumption that all state 
changes in normal operation must be synchronized with the clock at the flip­
flop inputs. Under this assumption, asynchronous inputs are to be used only 
for power-up reset and master reset of the system to its required initial state. 



CSS·START 

CSS·START 

D FIGURE 7-24 

7-10 I Control of Register Transfers D 3 8 3 

TM� (OOOO)BcD 

TM� (TM+ l)BCD• DIS= TM 

SD�TM 

DIS= SD 

State Machine Diagram for Dash Watch 

By using an asynchronous input on the flip-flops to change flip-flop states, a 
designer might be caught by a timing problem that causes circuit failure, but 
is not easily detected during design and manufacturing. 

START = 1 causes a transition to state S3 in which TM is enabled to count 
upward once every 0.01 seconds (the clock frequency is 100 Hz). The count­
ing continues and is displayed (DIS= TM) while STOP= 0. When STOP 
becomes 1, the state becomes S4, and the dash time stored in TM is dis­
played. 

In state S4, the user can choose to time a new dash (CSS·START = 1), return­
ing the state to S2, or to compare the dash time to the stored smallest dash 
time (CSS = 1), advancing the state to SS. Until one of these input events 
occurs, the state remains S4 due to CSS·START. Note that instead of just 
START as a transition condition, CSS·START is used. This is to meet the 
mutually exclusive constraint, constraint 1 of the two transition constraint 
conditions for a state machine diagram. 

In state SS, TM is compared to SD. If TM is less than SD, then the value in 
SD is replaced by TM. This operation occurs in state S6, after which the next 
state becomes S7. If TM is greater than or equal to SD, then SD is 
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unchanged, and the state becomes S7. In state S7, the smallest dash time 
stored in SD is displayed until START is pushed to cause the state to change 
to S2, beginning the timing of another dash. 

4. The next step is the separation of the datapath from the control, including 
the definition of the control and status signals that connect them together. 
The datapath actions can be read from the state machine diagram. The 
actions are grouped based on the destinations represented by the left-hand 
side of transfer statements ( �) or connection statements ( = ) . Also, nota­
tion indicating status generation in the datapath needs to be interpreted 
and status signals named. The end results of these groupings are shown in 
Table 7-16 in the left column. For the two register transfers into SD, the 

D TABLE7-16 
Datapath Output Actions and Status Generation with Control and Status Signals 

Action or Status 

TM f--- (OOOO)ecn 

TM f--- (TM + 1 )ecn 

SD f--- (9999)ecn 

SD f---TM 

DIS =TM 
DIS= SD 

TM<SD 
TM�SD 

Control or 
Status 
Signals 

RSTM 

ENTM 

UPDATE 
LSR 
UPDATE 
LSR 

DS 

ALTB 

Meaning for Values 1 and 0 

1: R eset TM to 0 (synchronous reset) 
0: No reset of TM 
1: BCD count up TM by 1, 0: hold TM value 

0: Select 1001100110011001 for loading SD 
1: Enable load SD, 0: disable load SD 
1: Select TM for loading SD 
Same as above 

0: Select TM for DIS 
1: Select SD for DIS 

1: TM less than SD 
0: TM greater than or equal to SD 

variable UPDATE is assigned to select the source of the transfers, and LSR 
is assigned to control the loading of SD. For TM, RSTM is assigned as the 
synchronous reset signal for zeroing the register contents, and ENTM 
(which will drive the carry CO into the least significant digit of the BCD 
counter) is used to govern whether the count is up by 1 or 0. Signal DS has 
been assigned to select the register to be displayed. Finally, ALTB is 
assigned as the status signal to indicate whether or not TM is less than SD. 
The variable names in true and complement form from Table 7-16 replace 
the output actions and status-based input conditions in Figure 7-24 to form 
the state diagram in Figure 7-25(b) . 
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5. Next, we develop the block diagram of the datapath given in Figure 7-25(a). 
The two registers defined earlier appear in the diagram with their control ter­
minals and signals from the control unit added. RSTM is the synchronous input 
for the zeroing of TM, and ENTM is applied to the carry input C0• In order to 
supply the status signal ALTB, an A < B comparator is required with the TM 
output as its A input and the SD output as its B input. The loading of SD needs 
selection hardware to select from either TM or 1001100110011001 as its input. 
A 16-bit 2-to-1 multiplexer with input S driven by UPDATE is used. In order 
to deliver the information to the LCD for display, it is necessary to select 
between TM and SD as the source. A 16-bit 2-to-1 multiplexer with select sig­
nal DS is used to produce the 16-bit signal DIS. Finally, this signal must be con­
verted to the four vectors of variables a, b, c, d, e, f, g to control the LCD 
segments for the four digits. These vectors were previously labeled as Bi, B0, 
B_1, and B_2 data outputs. Placing the decimal point DP in between B0 and B_i, 
and combining all 29 bits, we obtain the output B that drives the LCD. 

6. A number of the components of the block diagram developed are already 
available to us. The BCD counter digit was already developed on page 364. 
The 4-digit BCD counter can be constructed by connecting four of the digit 
counters together. A modification is required to provide the synchronous 
reset function for the counter. A 2-input AND gate is placed between the 
logic for each bit and the D input to the corresponding flip-flop. The second 
input on the AND gate is connected to RSTM. When RSTM is 0, the circuit is 
normal. When RSTM is 1, all inputs to the flip-flops are 0, and the flip-flops 
are reset to all Os on the next clock. 

The parallel load register is a 16-bit version of the register in Figure 7-2. The 
A> B comparator can be designed easily as an iterative logic circuit. Assum­
ing a carry that goes from left to right, the equation for each cell is: Ci= At Bi 
+ Ci+l· This equation is implemented for i from 15 down through 0. Ci +l for i 
= 15 is 0. It remains 0 for each bit position until a bit has Ai= 0 and Bi= 1. 
After this bit position, Ci= 1 for all of the remaining bit positions to the right. 
ALTB equals output C0• 
The multiplexer for loading SD is constructed based on the concept used for 
the quad 4-to-1 multiplexer in Figure 3-28. It uses one 1-to-2 line decoder 
driven by the S input and 16 pairs of enable circuits for handling the two 16-
bit data vectors. The same multiplexer can be used for the formation of the 
16-bit DIS data vector. The final circuit is the 4-digit BCD-to-7-segment code 
converter which can be constructed of four copies of the 1-digit BCD-to-7-
segment code converter designed in Example 3-2. 

Aside from one issue, this completes the design of the datapath. Because its 
input data vector on D0 is a constant, the 16-bit 2-to-1 multiplexer for select­
ing the input to SD can be substantially reduced by applying contraction 
from Chapter 4. Doing this, for a bit with a data value of 0, 

Y. = (S·D0-+S·D1·) 1 = S·D1· 
z z z D -O z 

Oi-



For a bit with a data value of 1, 
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y. = (S·D0.+S·D1·) 1 = s+n1. 
i i i D _ 1 i 

Oi-

The design of the datapath is now complete. There is no register transfer 
hardware to be designed for the control unit. 

7. The next step is to design the control-unit hardware. For simplicity of design, 
we select a one-hot state assignment. For the state diagram in Figure 7-25, 
this assignment permits each of the states Si to be represented by a single 
state variable Si which is 1 when in the state Si and 0 otherwise. The next 
state functions (flip-flop input equations) are: 

D si = Sl ( t + 1) = 0 

D s2 = S2(t+1) = Sl +S2·START+S4·CSS·START+S7·START 

D s3 = S3(t+1) = S2·START+S3·STOP 

D s4 = S4(t+1) = S3·STOP+S4·CSS·START 

D ss = S5(t+1) = S4·CSS 

D s6 = S5·ALTB 

D s7 = S7(t+1) = S5·ALTB +S6 +S7·START 

The output functions (output equations) are: 

LSR = Sl + S6 

RSTM=S2 

ENTM=S3 

UPDATE=S6 

DS=S7 

Note that Ds1 = 0. The reason is that this state is entered only by power-up or 
master reset. It is never entered synchronously. As a consequence, there is no 
need for any value to be loaded into the flip-flop. It is, however, necessary to 
have this flip-flop reset to a state (output) having a 1 value due to the one-hot 
code used. If this is not possible with the inputs and outputs provided, this 
can be done with just an asynchronous reset R and an inverter added to the 
flip-flop output in this application. 
With the one-hot state assignment, there are 128 - 7 = 121 unused state codes 
that were treated as don't cares. In the event of a failure that causes one of 
these states to occur, the circuit behavior is unknown. Is this a critical issue? 
This is an inexpensive consumer product bordering on a toy. For such a 
device, an infrequent failure is not particularly damaging. So this situation 
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will be ignored. For more critical applications, the behavior in these states 
would need to be investigated. • 

EXAMPLE 7-4 Handheld Game: PIG 

The goal of this example is to design a handheld game implementing a one-die ver­
sion of the Game of PIG. The eight design steps are provided next for this simple 
game with a not-so-simple design. 

1. PIG is a dice game that is used as a learning tool for instruction in probability. 
In contrast to the most prevalent versions that use two dice, this version of PIG 
is played with a single die that has 1 to6 dots on its six faces (see Figure 3-34). 
During each turn, the player rolls the die one or more times until a) a 1 is 
rolled or b) the player chooses to hold. For each roll, the value rolled, except 
for a 1, is added to a subtotal for the current turn. If a 1 is rolled, the subtotal 
becomes 0, and the player's turn is ended. At the end of each tum, the subtotal 
is added to the player's overall total, and the play passes to the other player. 
The first player to reach or exceed 100 wins. Online versions of PIG can be 
found by searching the web for: Game of PIG. 

om 
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LoadRegister 
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(b) 

D FIGURE 7-26 
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PIG: (a) Exterior View of PIG, (b) PIG Registers 
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D TABLE 7-17 
Inputs, Outputs, and Registers of PIG 

Symbol Name/Function Type 

ROLL 1: Starts die rolling, 0: Stops die rolling Control input 
HOLD 
NEW_GAME 
RESET 

1: Ends player turn, 0: Continues player turn. Control input 
1: Starts new game, 0: Continues current game Control input 
1: Resets game to INIT state, 0: No action Control input 

DDIS 7-bit LED die display array Data output vector 
SUB 
TP1 
TP2 
Pl 
P2 

DIE 
SUR 
TR1 
TR2 
FP 
CP 

14-bit 7-segment pair (a, b, c, d, e, f, g) to Turn Total display Data output vector 
14-bit 7-segment pair (a, b, c, d, e, f, g) to Player 1 display Data output vector 
14-bit 7-segment pair (a, b, c, d, e, f, g) to Player 2 display Data output vector 
1: Player 1 LED on, 0: Player 1 LED off Data output 
1: Player 2 LED on, 0: Player 2 LED off Data output 

Die value-Specialized counter to count 1, ... ,6,1, ... 
Subtotal for active player-parallel load register 
Total for Player 1-parallel load register 
Total for Player 2-parallel load register 
First player-flip-flop 0: Player 1, 1: Player 2 
Current player-flip-flop 0: Player 1, 1: Player 2 

3-bit data register 
7-bit data register 
7-bit data register 
7-bit data register 
1-bit control register 
1-bit control register 

The exterior view of the game is shown in Figure 7-26(a) . There are three 
2-digit decimal LCDs. The displays from left to right are driven by signal 
vectors TP1, ST, and TP2, respectively. TP1 controls the total score dis­
play for player 1 and TP2 controls the total score display for player 2. 
During a turn, ST controls the subtotal display for the active player. There 
are four pushbuttons, ROLL, HOLD, NEW_GAME, and RESET, which 
produce conditioned signals with the same names. There is an LED array 
displaying the die value controlled by DDIS and two LEDs that indicate 
the active player. The left LED is controlled by signal Pl and the right 
one by P2. When it is a player's turn, the LED for the player turns on and 
remains on for the remainder of the turn. When a player wins, the LED 
for the player flashes. When ROLL is pushed, the die begins rolling. When 
RO LL is released, the die stops rolling, and the rolled value is added to 
the current subtotal. If a 1 is rolled, ST becomes 0, 0 is added to the 
player's total, and the LED for the other player lights. When HOLD is 
pushed, the player's subtotal is added to the player's total, and the LED 
for the other player lights. When a player's total equals or exceeds 100, 
the player's LED flashes. A new game may be started at any time by push­
ing NEW_GAME. As long as the power remains on and RESET is not 
pushed, the new game will begin with the opposite player from the one 
starting the prior game. If the power has been off, Player 1 will be first. 
The external inputs and outputs for the game are shown in Table 7-17. 

2. Next, we give consideration to the registers required in the PIG datapath. 
The die is represented by a 3-bit register DIE which counts from 1 to 6 
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repeatedly. This register must have an enable input, and is reset to 001 using 
RESET. It generates a "random number" depending on an arbitrary initial 
state and the time that ROLL is held down. The two totals and the subtotal 
each require a 7-bit register. These registers will be named TRl, TR2, and SR. 
Each of these three registers must have a synchronous reset and a load 
enable. 

In addition to the datapath registers, a 2-bit control register stores 1) 
the first player in the current game, PP, and 2) the current player in the game, 
CP. The goal of separately storing this information is significant simplification 
of the control state machine. Otherwise, states would need to be duplicated 
for each player. The datapath and control registers for PIG are shown in 
Table 7-17. 

3. The state machine diagram for PIG appears in Figure 7-27. In contrast with 
the prior example, Mealy outputs that depend on both state and input are 
permitted. It is helpful before developing the diagram to consider a number 
of situations that will exist in order to help define the states: 

a. A power-up or manual RESET has occurred. 

b. A new game is requested. 

c. One of the players is active and begins playing. 

d. The active player may roll a 1. 

e. The active player may select between ROLL and HOLD. 

f. The active player needs to have the HOLD result tested for a win. 

g. The active player has won. 

Each of these situations may require a state and certain outputs. For situation 
a, we need to establish what must be reset by the RESET and establish the 
state that results from a RESET. In Figure 7-27, for starting out, we initialize 
DIE to 000, determine who plays first by initializing FP to 0, and choose a 
name of the reset state (!NIT). Situation b, the start of a new game, whether 
the first game or a subsequent game, requires that registers TPl and TP2 be 
reset. SUR needs to be set upon the change of players, so it can wait. Since 
these resets must occur for subsequent games, they should not be asynchro­
nous, but be done synchronously in !NIT. Also, we need to inform the player 
who is to become the active player, so CP is loaded with PP. At this point, a 
play turn can begin, so the state becomes BEGIN, representing the beginning 
of situation c. Since the active player is ready to begin accumulating points, 
SUR is synchronously reset to 0. The state remains BEGIN and the reset of 
SUR repeats, but this is not harmful. When a player pushes ROLL, the state 
becomes ROL, and addition of 1 to DIE is repeated as long as ROLL is 1. 
When ROLL becomes 0, DIE stops incrementing. Per situation d, a check on 
whether or not the player rolled a 1 is needed. So RO LL = 0 changes the 
state to ONE where this test occurs. If DIE= 1, then the player's turn is over, 
the other player becomes the active player ( CP f- CP), and the state returns 
to BEGIN. If DIE t:- 1, DIE is added to SUR, and the state becomes ROH 
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TR1 +---0, TR2 +---0, CP +-PP 

if (DIE = 110) DIE+--- 001 
else DIE+--(DIE + 1) 

SUR+--SUR +DIE 

�CP/(TR1 +--TR1 + SUR), 
� CP/(TR2+--TR2 +SUR) 

ROLL· HOLD 

NEW_GAME 
CP/Pl = BLINK, CP/P2 = BLINK 

D FIGURE 7-27 

State Machine Diagram for PIG 

(Roll or Hold). Then the player may roll the die again by selecting ROLL, 
returning to ROL. Otherwise, the player may select HOLD, which causes 
SUR to be added to TRJ or TR2, depending on the value of CP. (Note that in 
order to satisfy the mutual exclusion part of the transition condition con­
straints, ROLL has been ANDed with HOLD.) The next state becomes 
TEST, in which a test is performed on TRJ or TR2, again depending on the 
value of CP, to determine whether or not the player has won. If the player 
has not won, then the other player becomes active and the state becomes 
BEGIN. If the player has won, the state becomes WIN. In state WIN the 
player's LED, as selected by CP, blinks due to the alternating BLINK signal. 
The state remains WIN until NEW_GAME is pushed, sending the play back 
to state !NIT, with PP inverted to select the player not first in this game to be 
first in the new game. 
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4. In this step, we separate the datapath from the control and define the con­
trol and status signals that connect them together. The datapath actions can 
be read from the state machine diagram. The actions are grouped based on 
the destinations represented by the left-hand side of transfer statements 

D TABLE 7-18 
Datapath Output Actions and Control and Status Signals for PIG 

Action or Status 

TRl +--- 0 
TRl +--- TRl + SUR 

TR2 +--- 0 
TR2 +--- TR2 + SUR 

SUR +--0 
SUR� SUR+ DIE 

DIE+--- 000 
if (DIE = 110) 
DIE+--- 001 
else DIE +--- DIE + 1 

Pl= BLINK 

P2 =BLINK 

CP +--FP 

-

CP +--- CP 

FP +--- 0 
-

FP +--- FP 

DIE= 1 
DIE -:t 1 

TRl � 1100100 

TR2�1100100 

Control or 
Status Signals 

RSTl 
LDTl 

RST2 
LDT2 

RSSU 
LDSU 

RESET 
ENDI 

BPl 

BP2 

CPFI 
LDCP 
CPFI 
LDCP 

RESET 
FPI 

DIEl 

CP 
WN 

CP 
WN 

Meaning for Values 1 and O 

1: Reset TRl (synchronous reset), 0: No action 
1: Add SUR to TRl, 0: No action 

1: Reset TR2 (synchronous reset), 0: No action 
1: Add SUR to TR2, 0: No action 

1: Reset SUR (synchronous reset), 0: No action 
1: Add DIE to SUR, 0: No action 

1: Reset DIE to 000 (asynchronous reset) 
1: Enable DIE to increment , 0: Hold DIE value 

1: Connect Pl to BLINK, 0: Connect Pl to 1 

1: Connect P2 to BLINK, 0: Connect P2 to 1 

1: Select FP for CP 
1: Load CP, 0: No action 
0: Select CP for CP 
1: Load CP, 0: No action 

Asynchronous reset 
1: Invert FP, 0: Hold FP 

1: DIE equal to 1 
0: DIE not equal to 1 

0: Select TRl for � 1100100 
1: The selected TRi � 1100100 
0: The selected TRi < 1100100 

1: Select TR2 for � 1100100 
1: The selected TRi � 1100100 
0: The selected TRi < 1100100 
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RST1, RST2, CPFI, LDCP 

CP/BP1, CP/BP2 

D FIGURE 7-28 
Control State Machine Diagram for PIG 

( �) or connection statements ( = ) . Also, notation indicating status genera­
tion in the datapath needs to be interpreted and status signals generated. 
The end result of the groupings is shown in Table 7-18 in the left column. 
Synchronous resets are used for all registers except for DIE and PP, which 
have asynchronous resets. For the additions, the control signal is simply a 
load of the corresponding register, since aside from asynchronous reset, 
there are no other transfers on the involved registers. For Pl and P2, note 
that the stated default values are used for the 0 inputs. Other default values 
are implicitly 0, hold stored values, or no action. Beginning with DIE = 1, 
the remainder of the table is for status conditions. Note how CP is used to 
select the total register TRi for the active player in determining a win. The 
variable names in true and complement form from Table 7-18 replace the 
output actions and status-based input conditions in Figure 7-27 to form the 
state diagram in Figure 7-28. 
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5. The information in Table 7-18 also serves as a basis for developing the block 
diagram of the datapath given in Figure 7-29. The datapath registers shown in 
Table 7-17 anchor the datapath design. In addition to being added to SUR, DIE 

drives the Die Dot Display through a specialized decoder and must be tested 
for the value 001. The registers SUR, TR1, and TR2 are all identical with a signal 
for enabling loading and a synchronous reset. These three registers load from 7-
bit ripple carry adders. The outputs from these registers each drive a 7-bit 
binary-to-BCD converter and a 2-digit BCD-to-7-segment converter in order to 
drive the corresponding 2-digit LCD display. In order to detect a win, a 7-bit 2-
to-1 multiplexer selects the output of TR1 or TR2 as input to a circuit which 
detects whether the value is greater than or equal to 1100100 (decimal 100). 

The remainder of the diagram is the logic for controlling the contents of FP 

and CP in the control unit. FP is reset asynchronously with RESET and 
enabled for load of FP by LDFP. CP is initialized by loading from FP through 
the multiplexer with CPF = 1 and LDCP = 1. When CPF = 0 and LDCP = 1, 
CP is loaded with CP. 

6. The detailed logic for the control transfers on FP and CP has already been 
designed, and most of the datapath logic consists of components for which 
designs are already available. Logic in the form of AND gates with an inverted 
R on the second input needs to be added at the inputs to the D flip-flops in the 
parallel load register design in this chapter to implement the synchronous 
reset. The designs of DIE, the D = 1 comparator, the binary-to-BCD code 
converters, and the D � 1100100 comparator designs are given as P roblems in 
this chapter. The binary-to-LED die dots decoder is given as a problem in 
Chapter 3 and the BCD-to-7-segment converter is designed in Chapter 3. 

7. The detailed design of the control unit is given as a problem at the end of the 
chapter. • 

Omitted in these examples, verification in step 8 has only been touched upon 
so far for simple circuits. The complexity of thoroughly verifying even the small 
systems given in the previous two examples is much more difficult and beyond the 
scope of what we can cover here. Rudimentary testing can be done by functional 
testing to see if the circuit performs its function correctly. This involves applying 
input sequences and using simulation to observe the outputs. The question now 
becomes, "What test sequence should be applied to make sure that the verification 
is thorough enough to place high confidence in the correctness of the circuit?" To 
illustrate the difficulty of answering this question, the average designer spends 40 
percent or more of the design time doing verification. 

7-11 HDL REPRESENTATION FOR SHIFT REGISTERS AND 

COUNTERS-VHDL 

Examples of shift register and a binary counter illustrate the use of VHDL in rep­
resenting registers and operations on register content. 
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-- 4-bit Left Shift Register with Reset 

library ieee; 

use ieee.std_logic_1164.all; 

entity srg_4_r is 

port(CLK, RESET, SI : in std_logic; 

Q : out std_logic_vector(3 downto 0); 
SO : out std_logic); 

end srg_4_r; 

architecture behavioral of srg_4_r is 

signal shift : std_logic_vector(3 downto 0); 
begin 

process (RESET, CLK) 

begin 

if (RESET = '1') then 

shift <= "0000"; 
elsif (CLK'event and (CLK = '1')) then 

shift <= shift(2 downto 0) & SI; 

end if; 

end process; 

Q <= shift; 

SO <= shift(3); 

end behavioral; 

D FIGURE 7-30 
Behavioral VHDL Description of 4-bit Left Shift Register with Direct Reset 

EXAMPLE 7-5 VHDL for a 4-Bit Shift Register 

The VHDL code in Figure 7-30 describes a 4-bit left shift register at the behav­
ioral level. A RESET input is present that directly resets the register contents to 
zero. The shift register contains flip-flops and so has a process description resem­
bling that of a D flip-flop. The four flip-flops are represented by the signal shift, 

of type std_logic_vector of size four. Q cannot be used to represent the flip­
flops, since it is an output and the flip-flop outputs must be used internally. The 
left shift is achieved by applying the concatenation operator & to the right three 
bits of shift and to shift input SL This quantity is transferred to shift, mov­
ing the contents one bit to the left and loading the value of s I into the rightmost 
bit. Following the process that performs the shift are two statements, one which 
assigns the value in shift to output Q and the other which defines the shift out 
signal so as the contents of the leftmost bit of shift. • 
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-- 4-bit Binary Counter with Reset 

library ieee ; 

use ieee.std_logic_1164.all ; 

use ieee.std_logic_unsigned.all ;  

entity count_4_r is 
port(CLK, RESET, EN in std_logic ; 

Q: out std_logic_vector(3 downto 0) ;  

CO : out std_logic) ; 

end count_4_r ; 

architecture behavioral of count_4_r is 
signal count : std_logic_vector(3 downto 0) ;  

begin 
process (RESET, CLK) 

begin 
if (RESET = '1' ) then 

count <= 11 0000 11 ; 

elsif (CLK'event and (CLK = '1') and (EN = '1')) then 
count <= count + 11 0001 11 ; 

end if; 
end process; 
Q <= count ; 

CO <= '1' when count = 11 1111 11 and EN= '1' else '0' ;  

end behavioral ; 

D FIGURE 7-31 
Behavioral VHDL Description of 4-bit Binary Counter with Direct Reset 

EXAMPLE 7-6 VHDL for a 4-Bit Counter 

The VHDL code in Figure 7-31 describes a4-bit counter at the behavioral level. A 

RESET input is present that directly resets the counter contents to zero. The 
counter contains flip-flops and, therefore, has a process description resembling that 
of a D flip-flop. The four flip-flops are represented by the signal count, of type 
std_logic_vector and of size four. Q cannot be used to represent the flip-flops, 
since it is an output and the flip-flop outputs must be used internally. Counting up 
is achieved by adding 1 in the form of "0001" to count. Since addition is not a 
normal operation on type std_logic_vector, it is necessary to use an addi­
tional package from the ieee library, std_logic_unsigned. all, which 
defines unsigned number operations on type std_logic. Following the process 
that performs reset and counting are two statements, one which assigns the value in 
count to output Q and the other which defines the count out signal co. A when­

else statement is used in which co is set to 1 only for the maximum count with EN 

equal to 1. • 
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II 4-bit Left Shift Register with Reset 

module srg_4_r_v (CLK, RESET, SI, Q,SO); 

input CLK, RESET, SI; 

output [3: OJ Q; 

output SO; 

reg [3:0] Q; 

assign SO = Q[3]; 

always@(posedge CLK or posedge RESET) 

begin 
if (RESET) 

Q <= 4'b0000; 

else 
Q <= {Q[2:0], SI}; 

end 
endmodule 

D FIGURE 7-32 
Behavioral Verilog Description of 4-bit Left Shift Register with Direct Reset 

7-12 HDL REPRESENTATION FOR SHIFT REGISTERS AND 

COUNTERS-VERILOG 

Examples of a shift register and a binary counter illustrate the use of Verilog in 
representing registers and operations on register content. 

EXAMPLE 7-7 Verilog Code for a Shift Register 

The Verilog description in Figure 7-32 describes a left shift register at the behav­
ioral level. A RESET input is present that directly resets the register contents to 
zero. The shift register contains flip-flops, so has a process description beginning 
with always resembling that of a D flip-flop. The four flip-flops are represented by 
the vector Q, of type reg with bits numbered 3 down to 0. The left shift is achieved 
by applying { } to concatenate the right three bits of Q and shift input SL This 
quantity is transferred to Q, moving the contents one bit to the left and loading the 
value of SI into the rightmost bit. Just prior to the process that performs the shift 
is a continuous assignment statement that assigns the contents of the leftmost bit of 
Q to the shift output signal so. • 

EXAMPLE 7-8 Verilog Code for a Counter 

The Verilog description in Figure 7-33 describes a 4-bit binary counter at the 
behavioral level. A RESET input is present that directly resets the register contents 
to zero. The counter contains flip-flops and, therefore, the description contains a 
process resembling that for a D flip-flop. The four flip-flops are represented by the 
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module count_4_r_v (CLK, RESET, EN, Q, CO); 

input CLK, RESET, EN; 

output [3:0] Q; 

output CO; 

reg [3:0] Q; 

assign CO= (count == 4'bllll && EN== l'bl) ? 1 O; 
always@(posedge CLK or posedge RESET) 

begin 
if (RESET) 

Q <= 4'b0000; 

else if (EN) 

Q <= Q + 4'b0001; 

end 
endmodule 

D FIGURE 7-33 
Behavioral Verilog Description of 4-bit Binary Counter with Direct Reset 

signal Q of type reg and size four. Counting up is achieved by adding 1 to Q. Prior 
to the process that performs reset and counting is a conditional continuous assign­
ment statement that defines the count out signal co. co is set to 1 only for the 
maximum count and EN equal to 1. Note that logical AND is denoted by&& . • 

7-13 MICROPROGRAMMED CONTROL 

A control unit with its binary control values stored as words in memory is called a 
microprogrammed control. Each word in the control memory contains a microin­
struction that specifies one or more microoperations for the system. A sequence of 
microinstructions constitutes a microprogram. The microprogram is usually fixed at 
the system design time and so is stored in ROM. Microprogramming involves plac­
ing representations for combinations of values of control variables in words of 
ROM. These representations are accessed via successive read operations for use by 
the rest of the control logic. The contents of a word in ROM at a given address 
specify the microoperations to be performed for both the datapath and the control 
unit. A microprogram can also be stored in RAM. In this case, it is loaded at sys­
tem startup from some form of nonvolatile storage, such as a magnetic disk. With 
either ROM or RAM, the memory in the control unit is called control memory. If 
RAM is used, the memory is referred to as writable control memory. 

Figure 7-34 shows the general configuration of a microprogrammed control. 
The control memory is assumed to be a ROM within which all control micropro­
grams are permanently stored. The control address register (CAR) specifies the 
address of the microinstruction. The control data register (CD R), which is optional, 
may hold the microinstruction currently being executed by the datapath and the 
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D FIGURE 7-34 
Microprogrammed Control Unit Organization 

control unit. One function of the control word is to determine the address of the 
next microinstruction to be executed. This microinstruction may be the next one in 
sequence, or it may be located somewhere else in the control memory. Therefore, 
one or more bits that specify the method for determining the address of the next 
microinstruction are present in the current microinstruction. The next address may 
also be a function of status and external control inputs. When a microinstruction is 
executed, the next-address generator produces the next address. This address is 
transferred to the CAR on the next clock pulse and is used to read the next micro­
instruction to be executed from ROM. Thus, the microinstructions contain bits for 
activating microoperations in the datapath and bits that specify the sequence of 
microinstructions executed. 

The next-address generator, in combination with the CAR, is sometimes called 
a microprogram sequencer, since it determines the sequence of instructions read 
from control memory. The address of the next microinstruction can be specified in 
several ways, depending on the sequencer inputs. Typical functions of a microprogram 
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sequencer are incrementing the CAR by one and loading the CAR. Possible sources 
for the load operation include an address from control memory, an externally pro­
vided address, and an initial address to start control-unit operation. 

The CDR holds the present microinstruction while the next address is com­
puted and the next microinstruction is read from memory. The CDR breaks up the 
long combinational delay paths through the control memory followed by the data­
path. Its presence allows the system to use a higher clock frequency and process 
information faster. The inclusion of a CDR in a system, however, complicates the 
sequencing of microinstructions, particularly when decisions are made based on 
status bits. For simplicity in our brief discussion, we omit the CDR and take the 
microinstructions directly from the ROM outputs. The ROM operates as a combi­
national circuit, with the address as the input and the corresponding microinstruc­
tion as the output. The contents of the specified word in ROM remain on the 
output lines as long as the address value is applied to the inputs. No read/write sig­
nal is needed, as it is with RAM. Each clock pulse executes the microoperations 
specified by the microinstruction and also transfers a new address to the CAR. In 
this case, the CAR is the only component in the control that receives clock pulses 
and stores state information. The next-address generator and the control memory 
are combinational circuits. Thus, the state of the control unit is given by the con­
tents of the CAR. 

Microprogrammed control has been a very popular alternative implementa­
tion technique for control units for both programmable and nonprogrammable sys­
tems. However, as systems have become more complex and performance 
specifications have increased the need for concurrent parallel sequences of activi­
ties, the lockstep nature of microprogramming has become less attractive for con­
trol-unit implementation. Further, a large ROM or RAM tends to be much slower 
than the corresponding combinational logic. Finally, HD Ls and synthesis tools facil­
itate the design of complex control units without the need for a lockstep program­
mable design approach. Overall, microprogrammed control for the design of 
control units, particularly direct datapath control in CPUs, has declined signifi­
cantly. However, a new flavor of microprogrammed control has emerged, for imple­
menting legacy computer architectures. These architectures have instruction sets 
that do not follow contemporary architecture principles. Nevertheless, such archi­
tectures must be implemented due to massive investments in software that uses 
them. Further, contemporary architecture principles must be used in the implemen­
tations to meet performance goals. The control for these systems is hierarchical, 
with microprogrammed control selectively used at the top level for complex 
instruction implementation and hardwired control at the lower level for implement­
ing simple instructions and steps of complex instructions at a very rapid rate. This 
flavor of microprogramming is covered for a complex instruction set computer 
( CISC) in Chapter 11. 

Information on the more traditional flavor of microprogrammed control, derived 
> from past editions of this text, is available in a supplement, Microprogrammed 

Control, on the Companion Website for the text. 
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7-14 CHAPTER SUMMARY 
Registers are sets of flip-flops, or interconnected sets of flip-flops, and combina­
tional logic. The simplest registers are flip-flops that are loaded with new con­
tents from their inputs on every clock cycle. More complex are registers in 
which the flip-flops can be loaded with new contents under the control of a sig­
nal on only selected clock cycles. Register transfers are a means of representing 
and specifying elementary processing operations. Register transfers can be 
related to corresponding digital system hardware, both at the block diagram 
level and at the detailed logic level. Microoperations are elementary operations 
performed on data stored in registers. Arithmetic microoperations include addi­
tion and subtraction, which are described as register transfers and are imple­
mented with corresponding hardware. Logic microoperations-that is, the 
bitwise application of logic primitives such as AND, OR, and XOR, combined 
with a binary word-provide masking and selective complementing on other 
binary words. Left- and right-shift microoperations move data laterally one or 
more bit positions at a time. Shift registers, counters, and buses implement par­
ticular register transfers that are widely used in digital systems. 

In this chapter, the control of register transfers provided the final major com­
ponent of digital systems design. Finally, all of the background material was present 
to define a procedure for designing register-transfer systems, one of the most general 
classes of digital systems. The details for the design procedure were illustrated by two 
extensive examples that are key to understanding the foundation of digital design. 
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7-1. Assume that registers Rl and R2 in Figure 7-6 hold two unsigned numbers. 
When select input Xis equal to 1, the adder-subtractor circuit performs the 
arithmetic operation "Rl + 2s complement of R2." This sum and the output 
carry Cn are transferred into Rl and C when K1 = 1 and a positive edge 
occurs on the clock. 
(a) Show that if C = 1, then the value transferred to Rl is equal to Rl - R2, 

but if C = 0, the value transferred to Rl is the 2s complement of 
R2 - Rl. 

(b) Indicate how the value in the C bit can be used to detect a borrow after 
the subtraction of two unsigned numbers. 

7-2. *Perform the bitwise logic AND, OR, and XOR of the two 8-bit operands 
10011001and 11000011. 

7-3. Given the 16-bit operand 00110101 11001010, what operation must be 
performed and what operand must be used 
(a) to clear all odd bit positions to O? (Assume bit positions are 15 through 0 

from left to right.) 
(b) to set the rightmost 4 bits to 1? 
(c) to complement the most significant 8 bits? 

7-4. *Starting from the 8-bit operand 11001010, show the values obtained after 
sequential application of each shift microoperation given in Table 7-5. 

7-5. *Modify the register of Figure 7-11 so that it will operate according to the 
following function table, using mode selection inputs S1 and S0• 

81 So Register Operation 

0 0 No change 
0 1 Load parallel data 
1 0 Shift down 
1 1 Clear register to 0 

> 7-6. *A ring counter is a shift register, as in Figure 7-9, with the serial output 
connected to the serial input. 
(a) Starting from an initial state of 1000, list the sequence of states of the 

four flip-flops after each shift. 
(b) Beginning in state 10 ... 0 ,  how many states are there in the count 

sequence of an n-bit ring counter? 

> 7-7. A switch-tail counter (also called twisted ring counter, Johnson counter) 
uses the complement of the serial output of a right shift register as its serial 
input. 
(a) Starting from an initial state of 000, list the sequence of states after each 

shift until the register returns to 000. 
(b) Beginning in state 00 ... 0 ,  how many states are there in the count 

sequence of an n-bit switch-tail counter? 
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(c) Design a decoder to be driven by the counter that produces a one-hot 
code output for each of the states. Make use of the don't-care states in 
your design. 

7-8. How many flip-flop values are complemented in an 8-bit binary ripple 
counter to reach the next count value after 
(a) 11111111? (b) 01110011? 

'7-9. +For the CMOS logic family, the power consumption is proportional to the 
sum of the changes from 1-to-O and O-to-1 on all gate inputs and outputs in 
the circuit. When designing counters in very low-power circuits, ripple 
counters are preferred over regular synchronous binary counters. Carefully 
count the numbers of changing inputs and outputs, including those related to 
the clock for a complete cycle of values in a 4-bit ripple counter versus a 
regular synchronous counter of the same length. Based on this examination, 
explain why the ripple counter is superior in terms of power consumption. 

7-10. Construct a 16-bit serial-parallel counter, using four 4-bit parallel counters. 
Suppose that all added logic is AND gates and that serial connections are 
employed between the four counters. What is the maximum number of AND 
gates in a chain that a signal must propagate through in the 16-bit counter? 

7-11. (a) Using the synchronous binary counter of Figure 7-13 and an AND gate, 
construct a counter that counts from 0000 through 1010. 

(b) Repeat for a count from 0000 to 1110. Minimize the number of inputs to 
the AND gate. 

7-12. Using two binary counters of the type shown in Figure 7-14 and logic gates, 
construct a binary counter that counts from decimal 11 through decimal 233. 
Also, add an additional input and logic to the counter to initialize it 
synchronously to 11 when the signal INIT is 1. 

7-13. *Verify the flip-flop input equations of the synchronous BCD counter 
specified in Table 7-9. Draw the logic diagram of the BCD counter with a 
count enable input. 

7-14. *Use D flip-flops and gates to design a binary counter with each of the 
following repeated binary sequences: 
(a) 0, 1,2 (b) 0, 1,2,3,4,5 

7-15. Use D-type flip-flops and gates to design a counter with the following 
repeated binary sequence: 0, 2, 1, 3, 4, 6, 5, 7. 

7-16. Draw the logic diagram of a 4-bit register with mode selection inputs S1 and 
S0• The register is to be operated according to the function table at the top of 
page 405. 

7-17. *Show the diagram of the hardware that implements the register transfer 
statement 
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S1 So Register Operation 

0 0 No change 
0 1 Complement output 
1 0 Load parallel data 
1 1 Clear register to 0 

7-18. The outputs of registers RO, R1, R2, and R3 are connected through 4-to-1 
multiplexers to the inputs of a fifth register, R4. Each register is 8 bits long. 
The required transfers, as dictated by four control variables, are 

C0:R4�RO 

C1: R4�R1 

C2:R4�R2 

C3:R4�R3 

The control variables are mutually exclusive (i.e., only one variable can be 
equal to 1 at any time) while the other three are equal to 0. Also, no 
transfer into R4 is to occur for all control variables equal to 0. (a) Using 
registers and a multiplexer, draw a detailed logic diagram of the hardware 
that implements a single bit of these register transfers. (b) Draw a logic 
diagram of the simple logic that maps the control variables as inputs to 
three outputs: the two select variables for the multiplexer and the load 
signal for the register R4. 

7-19. *Using two 4-bit registers R1 and R2, and AND gates, OR gates, and 
inverters, draw one bit slice of the logic diagram that implements all of the 
following statements: 

Clear R2 synchronously with the clock 

Complement R2 

C2:R2�R1 Transfer Rl to R2 

The control variables are mutually exclusive (i.e., only one variable can be 
equal to 1 at any time) while the other two are equal to 0. Also, no transfer 
into R2 is to occur for all control variables equal to 0. 

7-20. A register cell is to be designed for an 8-bit register A that has the following 
register transfer functions: 

C0:B�AvB 

C1:B�AAB 

Find optimum logic using AND, OR, and NOT gates for the D input to the 
D flip-flop in the cell. 
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7-21. A register cell is to be designed for an 8-bit register RO that has the 
following register transfer functions: 

Sl ·SO: R0f---ROEBR1 

Sl ·SO: ROf---ROv R1 

Sl ·SO: R0f---ROEBR1 

Sl ·SO: R0f---R0AR1 

Find optimum logic using AND, OR, and NOT gates for the D input to the 
D flip-flop in the cell. 

7-22. A register cell is to be designed for register B, which has the following 
register transfers: 

Sl: Bf---B +A 

SO: Bf---B + 1 

Share the combinational logic between the two transfers as much as 
possible. 

7-23. Logic to implement transfers among three registers, RO, R1, and R2, is to be 
implemented. Use the control variable assumptions given in Problem 7-18. 
The register transfers are as follows: 

CA: R1f---R0 

CB: R0f---R1, R2f---R0 

CC: R1f---R2, R0f---R2 

Using registers and dedicated multiplexers, draw a detailed logic diagram of 
the hardware that implements a single bit of these register transfers. 

Draw a logic diagram of simple logic that converts the control variables CA, 
CB, and CC as inputs to outputs that are the SELECT inputs for the 
multiplexers and LOAD signals for the registers. 

7-24. *Two register transfer statements are given (otherwise, Rl is unchanged): 

Cl: R1f---R1 + R2 

C1C2: R1f---R1+1 

AddR2toR1 

Increment R1 

(a) Using a 4-bit counter with parallel load as in Figure 7-14 and a 4-bit 
adder as in Figure 4-5, draw the logic diagram that implements these 
register transfers. 

(b) Repeat part (a) using a 4-bit adder as in Figure 4-5 plus external gates as 
needed. Compare with the implementation in part (a) . 



Problems D 407 

7-25. Repeat Problem 7-23 using one multiplexer-based bus and one direct 
connection from one register to another instead of dedicated multiplexers. 

7-26. Draw a logic diagram of a circuit similar to the one shown in Figure 7-7, but 
use three-state buffers and a decoder instead of the multiplexers. 

7-27. *A system is to have the following set of register transfers, implemented 
using buses: 

Ca: R0f--R1 

Cb: R3f--R1, R1f--R4, R4f-R0 

Cc: R2f-R3, R0f--R2 

Ca: R2f--R4, R4f--R2 

(a) For each destination register, list all of the source registers. 
(b) For each source register, list all of the destination registers. 
(c) With consideration for which of the transfers must occur simultaneously, 

what is the minimum number of buses that can be used to implement the 
set of transfers? Assume that each register will have a single bus as its 
input. 

( d) Draw a block diagram of the system, showing the registers and buses and 
the connections between them. 

7-28. The following register transfers are to be executed in, at most, two clock 
cycles: 

R0f--R1 
R5f--R1 
R6f--R2 
R7f-R3 
R8f-R3 
R9f--R4 
R10f--R4 
R11f--R1 

(a) What is the minimum number of buses required? Assume that only one 
bus can be attached to a register input and that any net connected to a 
register input is counted as a bus. 

(b) Draw a block diagram connecting registers and multiplexers to 

implement the transfers. 

7-29. What is the minimum number of clock cycles required to perform the 
following set of register transfers using one bus? 

R0f--R1 R7f-R1 
R2f-R3 R8f--R4 
R5f--R6 R9f-R3 
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Assume that only one bus can be attached to a register input and that any net 
connected to a register input is counted as a bus. 

7-30. *The content of a 4-bit register is initially 0101. The register is shifted eight 
times to the right, with the sequence 10110001 as the serial input. The 
leftmost bit of the sequence is applied first. What is the content of the 
register after each shift? 

7-31. *The serial adder of Figure 7-22 uses two 4-bit registers. Register A holds the 
binary number 0111 and register B holds 0101. The carry flip-flop is initially 
reset to 0. List the binary values in register A and the carry flip-flop after 
each of four shifts. 

7-32. *A state diagram of a sequential circuit is given in Figure 7-35. Find the 
corresponding state machine diagram using a minimum amount of notation. 
The inputs to the circuit are Xl and X2, and the outputs are Zl and Z2. 

7-33. *Find the response for the state machine diagram in Figure 7-36 to the 
following sequence of inputs (assume that the initial state is STA): 

W: 0 1 1 0 1 1 0 1 

X: 1 1 0 1 0 1 0 1 

y 0 1 0 1 0 1 0 1 

State: STA 

Z: 

7-34. A state machine diagram is given in Figure 7-36. Find the state table for the 
corresponding sequential circuit. 

7-35. Find the state machine diagram corresponding to the following description: 
There are two states, A and B. If in state A and input Xis 1, then the next 
state is A. If in state A and input Xis 0, then the next state is B. If in state B 

01,10,11 
00 

00,11 

D FIGURE 7-35 
State Diagram for Problem 7-32 
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Default: Z = 0 

z 

D FIGURE 7-36 
State Machine Diagram for Problems 7-33, 7-34, 7-39, 7-53, and 7-54 

and input Y is 0, then the next state is B. If in state B and input Y is 1, then 
the next state is A. Output Z is equal to 1 while the circuit is in state B. 

W > 7-36. *Find the state machine diagram for a circuit that detects a difference in 
value in an input signal X at two successive positive clock edges. If X has 
different values at two successive positive clock edges, then output Z is 
equal to 1 for the next clock cycle. Otherwise, output Z is 0. 

+The state machine diagram for a synchronous circuit with clock CK for a 
washing machine is to be developed. The circuit has three external inputs, 
START, FULL, and EMPTY (which are 1 for at most a single clock cycle 
and are mutually exclusive) , and external outputs, HOT, COLD, DRAIN, 
and TURN. The datapath for the control consists of a down-counter, which 
has three inputs, RESET, DEC, and LOAD. This counter synchronously 
decrements once each minute for DEC = 1, but can be loaded or 
synchronously reset on any cycle of clock CK. It has a single output, ZERO, 
which is 1 whenever the counter contains value zero and is 0 otherwise. 

In its operation, the circuit goes through four distinct cycles, WASH, SPIN, 
RINSE, and SPIN, which are detailed as follows: 

WASH: Assume that the circuit is in its power-up state IDLE. If START is 1 
for a clock cycle, HOT becomes 1 and remains 1 until FULL = 1, filling the 
washer with hot water. Next, using LOAD, the down-counter is loaded with a 
value from a panel dial which indicates how many minutes the wash cycle is to 
last. DEC and TURN then become 1 and the washer washes its contents. When 
ZERO becomes 1, the wash is complete, and TURN and DEC become 0. 

SPIN: Next, DRAIN becomes 1, draining the wash water. When EMPTY 
becomes 1, the down-counter is loaded with 7. DEC and TURN then 
become 1 and the remaining wash water is wrung from the contents. When 
ZERO becomes 1, DRAIN, DEC, and TURN return to 0. 

RINSE: Next, COLD becomes 1 and remains 1 until FULL = 1, filling the 
washer with cold rinse water. Next, using LOAD, the down-counter is loaded 
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with value 10. DEC and TURN then become 1 and the washer rinses its con­
tents. When ZERO becomes 1, the rinse is complete, and TURN and DEC 

become 0. 

SPIN: Next, DR A IN becomes 1, draining the rinse water. When EMPTY 

becomes 1, the down-counter is loaded with 8. DEC and TURN then 
become 1 and the remaining rinse water is wrung from the contents. When 
ZERO becomes 1, DRAIN, DEC, and TURN return to 0 and the circuit 
returns to state IDLE. 

(a) Find the state machine diagram for the washer circuit. 

(b) Modify your design in part (a) assuming that there are two more inputs, 
PAUSE and STOP. PAUSE causes the circuit, including the counter, to 
halt and all outputs to go to 0. When STA RT is pushed, the washer 
resumes operation at the point it paused. When STOP is pushed, all 
outputs are reset to 0 except for DRAIN, which is set to 1. When 
EMPTY becomes 1, the state returns to IDLE. 

> 7-38. Find a state machine diagram for a traffic light controller that works as 
follows: A timing signal Tis the input to the controller. T defines the yellow 
light interval, as well as the changes of the red and green lights. The outputs 
to the signals are defined by the following table: 

Output Light Controlled 

GN Green Light, North/south Signal 

YN Yellow Light, North/south Signal 

RN Red Light, North/south Signal 

GE Green Light, East/west Signal 

YE Yellow Light, East/west Signal 

RE Red Light, East/west Signal 

While T = 0, the green light is on for one signal and the red light for the 
other. With T = 1, the yellow light is on for the signal that was previously 
green, and the signal that was previously red remains red. When T becomes 
0, the signal that was previously yellow becomes red, and the signal that was 
previously red becomes green. This pattern of alternating changes in color 
continues. Assume that the controller is synchronous with a clock that 
changes much more frequently than input T. 

7-39. *Implement the state machine diagram in Figure 7-36 by using one flip-flop 
per state assignment. 

7-40. Implement the state machine diagram derived in Problem 7-36 by using a 
Gray code state assignment. 
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7-41. Do two designs for the DIE circuit for the Game of PIG and compare the 
gate-input costs of your two designs using information from Figure 7-14. 
Note that the register transfer description of DIE is: 

if (Reset) DIE f- 000 else 

if (ENDl) (if (DIE= 110) DIE f- 001 else DIE f- DIE+ 1) 

(a) Perform the design by using the technique given for the BCD counter 
design in Figure 7-15. 

(b) Perform the design by using a state diagram and doing a custom circuit 
design with the next state for state 111 a don't care state. 

> 1-42. Design the following combinational circuits for the Game of PIG datapath 
given in Figure 7-29: 

(a) D = 1 comparator. 
(b) D � 1100100 comparator. 
Use AND gates, OR gates, and inverters. Assume the maximum gate fan-in 
is four. 

> 7-43. Design the 2-digit binary-to-BCD code converter in the datapath for the 
Game of PIG. Design the least significant digit as a function of (B3, B2, Bi, 
B0) without an incoming carry C0. The outputs are to be C4, D3, D2, Di, D0• 
Design the same circuit with an incoming carry C0 fixed to 1. For the most 
significant digit combine the results of these two designs to handle the actual 
case in which the incoming carry C0 can be both 0 and 1. Minimize the 
combined result for the most significant digit. 

> 7-44. (a) Show the details of a check of the constraints given on transition 
conditions as applied to Figure 7-28. 

(b) Implement the state machine diagram for the Game of PIG in Figure 7-28 
using a one-hot state assignment D flip-flops, and gates. 

W > 7-45. +Find the state machine diagram in the form of Figure 7-27 for a Game of 
PIG using two dice. Also, add the following rule: If a pair of ls is rolled, then 
the player's total score becomes 0. The two dice create an interesting 
problem: How do you make sure that the values rolled on the two dice are 
not correlated with each other? The current scheme of having the die roll for 
the interval of time between the pushing and release will cause the values on 
the two dice to advance the same amount so that the values will be 
correlated from turn to turn. This will give only six of the 36 possible pairs of 
rolls of the two dice! You will need to devise a scheme to insure that all of 
the pairs are equally likely. Include a well-justified scheme in your solution. 

7-46. *Design a digital system with three 16-bit registers AR, BR, and CR and 16-
bit data input IN to perform the following operations, assuming a 2s 
complement representation and ignoring overflow: 
(a) Transfer two 16-bit signed numbers to AR and BR on successive clock 

cycles after a go signal G becomes 1. 
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(b) If the number in AR is positive but nonzero, multiply the contents of BR

by two and transfer the result to register CR.

(c) If the number in AR is negative, multiply the contents of AR by two and 
transfer the result to register CR.

� 

( d) If the number in AR is zero, reset register CR to 0. 
>All files referred to in the remaining problems are available in ASCII form for 

simulation and editing on the Companion Website for the text. A VHDL or Veri­
log compiler/simulator is necessary for the problems or portions of problems 
requesting simulation. Descriptions can still be written, however, for many prob-
lems without using compilation or simulation. 

7-47. Write a Verilog description for the 4-bit binary counter in Figure 7-13(a) 
using a register for the D flip-flops and Boolean equations for the logic. 
Compile and simulate your description to demonstrate correctness. 

7-48. *Write a behavioral VHDL description for the 4-bit register in Figure 7-1 (a). 
Compile and simulate your description to demonstrate correctness. 

7-49. Repeat Problem 7-48 for the 4-bit register with parallel load in Figure 7-2. 

7-50. Write a VHDL description for the 4-bit binary counter in Figure 7-13, using 
a register for the D flip-flops and Boolean equations for the logic. Compile 
and simulate your description to demonstrate correctness. 

7-51. *Write a behavior Verilog description for the 4-bit register in Figure 7-1 (a). 
Compile and simulate your description to demonstrate correctness. 

7-52. Repeat Problem 7-51 for the 4-bit register with parallel load in Figure 7-2. 

7-53. *Write, compile, and simulate a VHDL description for the state machine 
diagram shown in Figure 7-36. Use a simulation input that passes through all 
paths in the state machine diagram, and include both the state and output Z
as simulation outputs. Correct and resimulate your design if necessary. 

7-54. *Write, compile, and simulate a Verilog description for the state machine 
diagram in Figure 7-36. Use code 00 for state STA, 01 for state STB, and 10 
for state STC. Use a simulation input that passes through all paths in the 
state-machine diagram and include both the state and Z as simulation 
outputs. Correct and resimulate your design if necessary. 
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M 
emory is a major component of a digital computer and is present in a large 
proportion of all digital systems. Random-access memory (RAM) stores 
data temporarily, and read-only memory (ROM) stores data permanently. 

ROM is one form of a variety of components called programmable logic devices 
(PLDs) that use stored information to define logic circuits. 

Our study of RAM begins by looking at it in terms of a model with inputs, outputs, and 
signal timing. We then use equivalent logical models to understand the internal 
workings of RAM chips. Both static RAM and dynamic RAM are considered. The 
various types of dynamic RAM used for movement of data at high speeds between 
the CPU and memory are surveyed. Finally, we put RAM chips together to build 
simple RAM systems. 

In many of the previous chapters, the concepts presented were broad, pertaining to 
much of the generic computer at the beginning of Chapter 1. In this chapter, for the 
first time, we can be more precise and point to specific uses of memory and related 
components. Beginning with the processor, the internal cache is static very fast RAM. 
Outside the CPU, the external cache is fast static RAM. The RAM subsystem, by its 
very name, is a type of memory. In the 1/0 area, we find substantial memory for 
storing information about the screen image in the video adapter. RAM appears in disk 
cache in the disk controller, to speed up disk access. Aside from the highly central 
role of the RAM subsystem in storing data and programs, we find memory in various 
forms applied in most subsystems of the generic computer. 

8-1 MEMORY DEFINITIONS 

In digital systems, memory is a collection of cells capable of storing binary informa­
tion. In addition to these cells, memory contains electronic circuits for storing and 
retrieving the information. As indicated in the discussion of the generic computer, 
memory is used in many different parts of a modern computer, providing temporary 
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or permanent storage for substantial amounts of binary information. In order for 
this information to be processed, it is sent from the memory to processing hardware 
consisting of registers and combinational logic. The processed information is then 
returned to the same or to a different memory. Input and output devices also inter­
act with memory. Information from an input device is placed in memory so that it 
can be used in processing. Output information from processing is placed in memory, 
and from there it is sent to an output device. 

Two types of memories are used in various parts of a computer: random­
access memory (RAM) and read-only memory (ROM) . RAM accepts new 
information for storage to be available later for use. The process of storing new 
information in memory is referred to as a memory write operation. The process 
of transferring the stored information out of memory is referred to as a mem­
ory read operation . RAM can perform both the write and the read operations, 
whereas ROM, as introduced in Section 6-8, performs only read operations. 
RAM sizes may range from hundreds to billions of bits. 

8-2 RANDOM-ACCESS MEMORY 

Memory is a collection of binary storage cells together with associated circuits 
needed to transfer information into and out of the cells. Memory cells can be 
accessed to transfer information to or from any desired location, with the access 
taking the same time regardless of the location, hence the name random-access 
memory. In contrast, serial memory, such as is exhibited by a hard drive, takes dif­
ferent lengths of time to access information, depending on where the desired loca­
tion is relative to the current physical position of the disk. 

Binary information is stored in memory in groups of bits, each group of 
which is called a word. A word is an entity of bits that moves in and out of 
memory as a unit-a group of ls and Os that represents a number, an instruc­
tion, one or more alphanumeric characters, or other binary-coded information. 
A group of eight bits is called a byte. Most computer memories use words that 
are multiples of eight bits in length. Thus, a 16-bit word contains two bytes, and 
a 32-bit word is made up of four bytes. The capacity of a memory unit is usually 
stated as the total number of bytes that it can store. Communication between a 
memory and its environment is achieved through data input and output lines, 
address selection lines, and control lines that specify the direction of transfer of 
information. A block diagram of a memory is shown in Figure 8-1. The n data 
input lines provide the information to be stored in memory, and then data out­
put lines supply the information coming out of memory. The k address lines 
specify the particular word chosen among the many available. The two control 
inputs specify the direction of transfer desired: the Write input causes binary 
data to be transferred into memory, and the Read input causes binary data to be 
transferred out of memory. 

The memory unit is specified by the number of words it contains and the 
number of bits in each word. The address lines select one particular word . Each 
word in memory is assigned an identification number called an address. Addresses 
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D FIGURE 8-1 
Block Diagram of Memory 

range from 0 to 2k - 1, where k is the number of address lines. The selection of a 
specific word inside memory is done by applying the k-bit binary address to the 
address lines. A decoder accepts this address and opens the paths needed to select 
the word specified. Computer memory varies greatly in size. It is customary to 
refer to the number of words (or bytes) in memory with one of the letters K (kilo), 
M (mega), or G (giga). K is equal to 210, M to 220, and G to 230• Thus, 64K = 216, 
2M = 221, and 4G = 232• 

Consider, for example, a memory with a capacity of 1K words of 16 bits 
each. Since 1K = 1024 = 210, and 16 bits constitute two bytes, we can say that the 
memory can accommodate 2048, or 2K, bytes. Figure 8-2 shows the possible con­
tents of the first three and the last three words of this size of memory. Each word 
contains 16 bits that can be divided into two bytes. The words are recognized by 
their decimal addresses from 0 to 1023. An equivalent binary address consists of 
10 bits. The first address is specified using ten Os, and the last address is specified 
with ten ls. This is because 1023 in binary is equal to 1111111111. A word in mem­
ory is selected by its binary address. When a word is read or written, the memory 
operates on all 16 bits as a single unit. 

Memory Address 

Binary Decimal Memory Contents 

0000000000 0 10110101 01011100 
0000000001 1 10101011 10001001 
0000000010 2 00001101 01000110 

1111111101 1021 10011101 00010101 
1111111110 1022 00001101 00011110 

1111111111 1023 11011110 00100100 

D FIGURE8-2 
Contents of a 1024 X 16 Memory 
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The 1K X 16 memory of the figure has 10 bits in the address and 16 bits in each 
word. The number of address bits needed in memory is dependent on the total num­
ber of words that can be stored and is independent of the number of bits in each 
word. The number of bits in the address for a word is determined from the relation­
ship zk > m, where m is the total number of words and k is the minimum number of 
address bits satisfying the relationship. 

Write and Read Operations 

The two operations that a random-access memory can perform are write and read. 
A write is a transfer into memory of a new word to be stored. A read is a transfer 
of a copy of a stored word out of memory. A Write signal specifies the transfer-in 
operation, and a Read signal specifies the transfer-out operation. On accepting one 
of these control signals, the internal circuits inside memory provide the desired 
function. 

The steps that must be taken for a write are as follows: 

1. Apply the binary address of the desired word to the address lines. 

2. Apply the data bits that must be stored in memory to the data input lines. 

3. Activate the Write input. 

The memory unit will then take the bits from the data input lines and store them in 
the word specified by the address lines. 

The steps that must be taken for a read are as follows: 

1. Apply the binary address of the desired word to the address lines. 

2. Activate the Read input. 

The memory will then take the bits from the word that has been selected by the 
address and apply them to the data output lines. The contents of the selected word 
are not changed by reading them. 

Memory is made up of RAM integrated circuits (chips), plus additional logic 
circuits. RAM chips usually provide the two control inputs for the read and write 
operations in a somewhat different configuration from that just described. Instead 
of having separate Read and Write inputs to control the two operations, most inte­
grated circuits provide at least a Chip Select that selects the chip to be read from or 
written to and a Read/Write that determines the particular operation. The memory 
operations that result from these control inputs are shown in Table 8-1. 

D TABLE8-1 
Control Inputs to a Memory Chip 

Chip Select 
cs 

0 
1 
1 

Read/Write 
R/W 

x 

0 
1 

Memory operation 

None 
Write to selected word 
Read from selected word 
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The Chip Select is used to enable the particular RAM chip or chips contain­
ing the word to be accessed. When Chip Select is inactive, the memory chip or 
chips are not selected, and no operation is performed. When Chip Select is active, 
the Read/Write input determines the operation to be performed. While Chip 
Select accesses chips, a signal is also provided that accesses the entire memory. We 
will call this signal the Memory Enable. 

Timing Waveforms 

The operation of the memory unit is controlled by an external device, such as a 
CPU. The CPU is synchronized by its own clock pulses. The memory, however, 
does not employ the CPU clock. Instead, its read and write operations are timed 
by changes in values on the control inputs. The access time of a memory read oper­
ation is the maximum time from the application of the address to the appearance 
of the data at the Data Output. Similarly, the write cycle time is the maximum time 
from the application of the address to the completion of all internal memory oper­
ations required to store a word. Memory writes may be performed one after the 
other at the intervals of the cycle time. The CPU must provide the memory control 
signals in such a way as to synchronize its own internal clocked operations with the 
read and write operations of memory. This means that the access time and the 
write cycle time of the memory must be related within the CPU to a period equal 
to a fixed number of CPU clock periods. 

Assume, as an example, that a CPU operates with a clock frequency of 
50 MHz, giving a period of 20 ns (1 ns = l0-9 s) for one clock pulse. Suppose now 
that the CPU communicates with a memory with an access time of 65 ns and a 
write cycle time of 75 ns. The number of clock pulses required for a memory 
request is the integer value greater than or equal to the larger of the access time 
and the write cycle time, divided by the clock period. Since the period of the CPU 
clock is 20 ns, and the larger of the access time and write cycle time is 75 ns, it will 
be necessary to devote at least four clock pulses to each memory request. 

The memory cycle timing shown in Figure 8-3 is for a CPU with a 50 MHz 
clock and memory with a 75 ns write cycle time and a 65 ns access time. The write 
cycle in part (a) shows four pulses Tl, T2, T3, and T4 with a cycle of 20 ns. For a 
write operation, the CPU must provide the address and input data to the memory. 
The address is applied, and Memory Enable is set to the high level at the positive 
edge of the Tl pulse. The data, needed somewhat later in the write cycle, is applied 
at the positive edge of T2. The two lines that cross each other in the address and 
data waveforms designate a possible change in value of the multiple lines. The 
shaded areas represent unspecified values. A change of the Read/Write signal to 
0 to designate the write operation is also at the positive edge of 12. To avoid 
destroying data in other memory words, it is important that this change occur after 
the signals on the address lines have become fixed at the desired values. Otherwise, 
one or more other words might be momentarily addressed and accidentally written 
over with different data. The Read/Write signal must stay at 0 long enough after 
application of the address and Memory Enable to allow the write operation to 
complete. Finally, the address and data signals must remain stable for a short time 
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after the Read/Write goes to 1, again to avoid destroying data in other memory 
words. At the completion of the fourth clock pulse, the memory write operation 
has ended with 5 ns to spare, and the CPU can apply the address and control sig­
nals for another memory request with the next T1 pulse. 

The read cycle shown in Figure 8-3(b) has an address for the memory that is 
provided by the CPU. The CPU applies the address, sets the Memory Enable to 1, 
and sets Read/Write to 1 to designate a read operation, all at the positive edge of 
TI. The memory places the data of the word selected by the address onto the data 
output lines within 65 ns from the time that the address is applied and the memory 
enable is activated. Then, the CPU transfers the data into one of its internal regis­
ters during the positive transition of the next T1 pulse, which can also change the 
address and controls for the next memory request. 
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Integrated-circuit RAM may be either static or dynamic. Static RAM (SRAM) con­
sists of internal latches that store the binary information. The stored information 
remains valid as long as power is applied to the RAM. Dynamic RAM (DRAM) 
stores the binary information in the form of electric charges on capacitors. The 
capacitors are accessed inside the chip by n-channel MOS transistors. The stored 
charge on the capacitors tends to discharge with time, and the capacitors must be 
periodically recharged by refreshing the DRAM. This is done by cycling through the 
words every few milliseconds, reading and rewriting them to restore the decaying 
charge. DRAM offers reduced power consumption and larger storage capacity in a 
single memory chip, but SRAM is easier to use and has shorter read and write 
cycles. Also, no refresh is required for SRAM. 

Memory units that lose stored information when power is turned off are said 
to be volatile. Integrated-circuit RAMs, both static and dynamic, are of this cate­
gory, since the binary cells need external power to maintain the stored information. 
In contrast, a nonvolatile memory, such as magnetic disk, retains its stored informa­
tion after the removal of power. This is because the data stored on magnetic compo­
nents is represented by the direction of magnetization, which is retained after 
power is turned off. Another nonvolatile memory is ROM, discussed in Section 6-8. 

8-3 SRAM INTEGRATED CIRCUITS 

As indicated earlier, memory consists of RAM chips plus additional logic. We will 
consider the internal structure of the RAM chip first. Then we will study combina­
tions of RAM chips and additional logic used to construct memory. The internal 
structure of a RAM chip of m words with n bits per word consists of an array of mn 
binary storage cells and associated circuitry. The circuity is made up of decoders to 
select the word to be read or written, read circuits, write circuits, and output logic. 
The RAM cell is the basic binary storage cell used in the RAM chip, which is typi­
cally designed as an electronic circuit rather than a logic circuit. Nevertheless, it is 
possible and convenient to model the RAM chip using a logic model. 

A static RAM chip serves as the basis for our discussion. We first present 
RAM cell logic for storing a single bit and then use the cell in a hierarchy to 
describe the RAM chip. Figure 8-4 shows the logic model of the RAM cell. The 
storage part of the cell is modeled by an SR latch. The inputs to the latch are 
enabled by a Select signal. For Select equal to 0, the stored content is held. For 
Select equal to 1, the stored content is determined by the values on Band B. The 
outputs from the latch are gated by Select to produce cell outputs C and C. For 
Select equal to 0, both C and C are 0, and for Select equal to 1, C is the stored 
value and C is its complement. 

To obtain simplified static RAM diagrams, we interconnect a set of RAM 
cells and read and write circuits to form a RAM bit slice that contains all of the cir­
cuitry associated with a single bit position of a set of RAM words. The logic dia­
gram for a RAM bit slice is shown in Figure 8-S(a). The portion of the model 
representing each RAM cell is highlighted in blue. The loading of a cell latch is 
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now controlled by a Word Select input. If this is 0, then both S and R are 0, and the 
cell latch contents remain unchanged. If the Word Select input i� 1, then the value 
to be loaded into the latch is controlled by two signals B and B from the Write 
Logic. In order for either of these signals to be 1 and potentially change the stored 
value, Read/W rite must be 0 and Bit Select must be 1. Then the Data In value and 
its complement are applied to B and B , respectively, to set or reset the latch in the 
RAM cell selected. If Data In is 1, the latch is set to 1, and if Data In is 0, the latch 
is reset to 0, completing the write operation. 

Only one word is written at a time. That is, only one Word Select line is 1,�nd 
all other Word Select lines are 0. Thus, only one RAM cell attached to B and B is 
written. The Word Select also controls the reading of the RAM cells, using shared 
Read Logic. If Word Select is 0, then the stored value in the SR latch is prevented 
by the AND gates from reaching the pair of OR gates in the Read Logic. But if 
Word Select is 1, the stored value passes through to the OR gates and is captured 
in the Read Logic SR latch. If Bit Select is also 1, the captured value appears on 
the Data Out line of the RAM bit slice. Note that for this particular Read Logic 
design, the read occurs regardless of the value of Read/W rite . 

The symbol for the RAM bit slice given in Figure 8-S(b) is used to represent 
the internal structure of RAM chips. Each Word Select line extends beyond the bit 
slice, so that when multiple RAM bit slices are placed side by side, corresponding 
Word Select lines connect. The other signals in the lower portion of the symbol 
may be connected in various ways, depending on the structure of the RAM chip. 

The symbol and block diagram for a 16 X 1 RAM chip are shown in Figure 8-6. 
Both have four address inputs for the 16 one-bit words stored in RAM. There are 
also Data Input, Data Output, and Read/W rite signals. The Chip Select at the chip 
level corresponds to the Memory Enable at the level of a RAM consisting of multi­
ple chips. The internal structure of the RAM chip consists of a RAM bit slice having 
16 RAM cells. Since there are 16 Word Select lines to be controlled such that one 
and only one has the value logic 1 at a given time, a 4-to-16-line decoder is used to 
decode the four address bits into 16 Word Select bits. 

The only additional logic in the figure is a triangular symbol with one normal 
input, one normal output, and a second input on the bottom of the symbol. This 
symbol is a three-state buffer that allows construction of a multiplexer with an 
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arbitrary number of inputs. Three-state outputs are connected together and 
properly controlled using the Chip Select inputs. By using three-state buffers on 
the outputs of RAM chips, these outputs can be connected together to provide the 
word from the chip being read on the bit lines attached to the RAM outputs. The 
enable signals in the preceding discussion correspond to the Chip Select inputs on 
the RAM chips. To read a word from a particular RAM chip, the Chip Select value 
for that chip must be 1, and for all other chips attached to the same output bit lines, 
the Chip Select must be 0. These combinations containing a single 1 can be 
obtained from a decoder. 
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Inside a RAM chip, the decoder with k inputs and 2k outputs requires 2k AND 
gates with k inputs per gate if a straightforward design approach is used. In addi­
tion, if the number of words is large, and all bits for one bit position in the word 
are contained in a single RAM bit slice, the number of RAM cells sharing the read 
and write circuits is also large. The electrical properties resulting from both of 
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these situations cause the access and write cycle times of the RAM to become long, 
which is undesirable. 

The total number of decoder gates, the number of inputs per gate, and the 
number of RAM cells per bit slice can all be reduced by employing two decoders 
with a coincident selection scheme. In one possible configuration, two k/2-input 
decoders are used instead of one k-input decoder. One decoder controls the word 
select lines and the other controls the bit select lines. The result is a two-dimensional 
matrix selection scheme. If the RAM chip has m words with 1 bit per word, then the 
scheme selects the RAM cell at the intersection of the Word Select row and the Bit 
Select column. Since the Word Select is no longer strictly selecting words, its name is 
changed to Row Select. An output from the added decoder that selects one or more 
bit slices is referred to as a Column Select. 

Coincident selection is illustrated for the 16 X 1 RAM chip with the structure 
shown in Figure 8-7. The chip consists of four RAM bit slices of four bits each and has 
a total of 16 RAM cells in a two-dimensional array. The two most significant address 
inputs go through the 2-to-4-line row decoder to select one of the four rows of the 
array. The two least significant address inputs go through the 2-to-4-line column 
decoder to select one of the four columns (RAM bit slices) of the array. The column 
decoder is enabled with the Chip Select input. When the Chip Select is 0, all outputs 
of the decoder are 0 and none of the cells is selected. This prevents writing into any 
RAM cell in the array. With Chip Select at 1, a single bit in the RAM is accessed. For 
example, for the address 1001, the first two address bits are decoded to select row 10 
of the RAM cell array. The second two address bits are decoded to select column 01 of 
the array. The RAM cell accessed, in row 2 and column 1 of the array, is cell 9 (102 
012). With a row and column selected, the Read/Write input determines the opera­
tion. During the read operation (Read/Write = 1), the selected bit of the selected 
row goes through the OR gate to the three-state buffer. Note that the gate is drawn 
according to the array logic established in Figure 6-18. Since the buffer is enabled by 
Chip Select, the value read appears at the Data Output. During the write operation 
(Read/Write = 0), the bit available on the Data Input line is transferred into the 
selected RAM cell. Those RAM cells not selected are disabled, and their previous 
binary values remain unchanged. 

The same RAM cell array is used in Figure 8-8 to produce an 8 x 2 RAM 
chip (eight words of two bits each). The row decoding is unchanged from that in 
Figure 8-7; the only changes are in the column and output logic. Since there are 
just three address bits, and two are handled by the row decoder, the column 
decoder has only one address bit and Chip Select as inputs and produces just two 
Column Select lines. Since two bits at a time are to be written or read, the Column 
Select lines go to adjacent pairs of RAM bit slices. Two input lines, Data Input 0 
and Data Input 1, each go to a different bit in all of the pairs. Finally, correspond­
ing bits of the pairs share output OR gates and three-state buffers, giving output 
lines Data Output 0 and Data Output 1. The operation of this structure can be 
illustrated by the application of the address 3 (0112). The first two bits of the 
address, 01, access row 1 of the array. The final bit, 1, accesses column 1, which 
consists of bit slices 2 (102) and 3 (112). So the word to be written or read lies in 
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RAM cells 6 and 7 (011 02 and 011 12) , which contain bits 0 and 1, respectively, of 
word 3. 

We can demonstrate the savings of the coincident selection scheme by con­
sidering a more realistic static RAM size, 32K X 8. This RAM chip contains a total 
of 256K bits. To make the number of rows and columns in the array equal, we take 
the square root of 256K, giving 512 = 29• So the first nine bits of the address are 
fed to the row decoder and the remaining six bits to the column decoder. Without 
coincident selection, the single decoder would have 15 inputs and 32,768 outputs. 
With coincident selection, there is one 9-to-512-line decoder and one 6-to-64-line 
decoder. The number of gates for a straightforward design of the single decoder 
would be 32,800. For the two coincident decoders, the number of gates is 608, 
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Block Diagram of an 8 x 2 RAM Using a 4 x 4 RAM Cell Array 

reducing the gate count by a factor of more than 50. In addition, although it 
appears that there are 64 times as many Read/Write circuits, the column selection 
can be done between the RAM cells and the Read/Write circuits, so that only the 
original eight circuits are required. Because of the reduced number of RAM cells 
attached to each Read/Write circuit at any time, the access time of the chip is also 
improved. 

8-4 ARRAY OF SRAM ICs 
Integrated-circuit RAM chips are available in a variety of sizes. If the memory unit 
needed for an application is larger than the capacity of one chip, it is necessary to 
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combine a number of chips in an array to form the required size of memory. The 
capacity of the memory depends on two parameters: the number of words and the 
number of bits per word. An increase in the number of words requires that we 
increase the address length. Every bit added to the length of the address doubles 
the number of words in memory. An increase in the number of bits per word 
requires that we increase the number of data input and output lines, but the 
address length remains the same. 

To illustrate an array of RAM ICs, let us first introduce a RAM chip using 
the condensed representation for inputs and outputs shown in Figure 8-9. The 
capacity of this chip is 64K words of 8 bits each. The chip requires a 16-bit address 
and 8 input and output lines. Instead of 16 lines for the address and 8 lines each for 
data input and data output, each is shown in the block diagram by a single line. 
Each line has a slash across it with a number indicating the number of lines repre­
sented. The CS (Chip Select) input selects the particular RAM chip, and the RIW 

(Read/Write) input specifies the read or write operation when the chip is 
selected. The small triangle shown at the outputs is the standard graphics symbol 
for three-state outputs. The CS input of the RAM controls the behavior of the data 
output lines. When CS = 0, the chip is not selected, and all its data outputs are in 
the high-impedance state. With CS= 1, the data output lines carry the eight bits of 
the selected word. 

Suppose that we want to increase the number of words in the memory by 
using two or more RAM chips. Since every bit added to the address doubles the 
binary number that can be formed, it is natural to increase the number of words in 
factors of two. For example, two RAM chips will double the number of words and 
add one bit to the composite address. Four RAM chips multiply the number of 
words by four and add two bits to the composite address. 

Consider the possibility of constructing a 256K x 8 RAM with four 64K x 8 
RAM chips, as shown in Figure 8-10. The eight data input lines go to all the chips. 
The three-state outputs can be connected together to form the eight common 
data output lines. This type of output connection is possible only with three-state 
outputs. Just one Chip Select input will be active at any time, while the other 
three chips will be disabled. The eight outputs of the selected chip will contain ls 
and Os, and the other three will be in a high-impedance state, presenting only 
open circuits to the binary output signals of the selected chip. 
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The 256K-word memory requires an 18-bit address. The 16 least significant 
bits of the address are applied to the address inputs of all four chips. The two most 
significant bits are applied to a 2 x 4 decoder. The four outputs of the decoder are 
applied to the CS inputs of the four chips. The memory is disabled when the EN 

input of the decoder, Memory Enable, is equal to 0. All four outputs of the 
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decoder are then 0, and none of the chips is selected. When the decoder is enabled, 
address bits 17 and 16 determine the particular chip that is selected. If these bits 
are equal to 00, the first RAM chip is selected. The remaining 16 address bits then 
select a word within the chip in the range from 0 to 65,535. The next 65,536 words 
are selected from the second RAM chip with an 18-bit address that starts with 01 
followed by the 16 bits from the common address lines. The address range for each 
chip is listed in decimal under its symbol in the figure. 

It is also possible to combine two chips to form a composite memory contain­
ing the same number of words, but with twice as many bits in each word. Figure 8-11 
shows the interconnection of two 64K x 8 chips to form a 64K x 16 memory. The 16 
data input and data output lines are split between the two chips. Both receive the 
same 16-bit address and the common CS and RIW control inputs. 

The two techniques just described may be combined to assemble an array of 
identical chips into a large-capacity memory. The composite memory will have a 
number of bits per word that is a multiple of that for one chip. The total number of 
words will increase in factors of two times the word capacity of one chip. An exter­
nal decoder is needed to select the individual chips based on the additional address 
bits of the composite memory. 

To reduce the number of pins on the chip package, many RAM ICs provide 
common terminals for the data input and data output. The common terminals are 
said to be bidirectional, which means that for the read operation they act as out­
puts, and for the write operation they act as inputs. Bidirectional lines are 
constructed with three-state buffers and are discussed further in Sections 2-10 and 
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7-8. The use of bidirectional signals requires control of the three-state buffers by 
both Chip Select and Read/Write. 

8-5 DRAM ICs 

Because of its ability to provide high storage capacity at low cost, dynamic RAM 
(DRAM) dominates the high-capacity memory applications, including the primary 
RAM in computers. Logically, DRAM in many ways is similar to SRAM. How­
ever, because of the electronic circuit used to implement the storage cell, its elec­
tronic design is considerably more challenging. Further, as the name "dynamic" 
implies, the storage of information is inherently only temporary. As a consequence, 
the information must be periodically "refreshed" to mimic the behavior of static 
storage. This need for refresh is the primary logical difference in the behavior of 
DRAM compared to SRAM. We explore this logical difference by examining the 
dynamic RAM cell, the logic required to perform the refresh operation, and the 
impact of the need for refresh on memory system operation. 

DRAM Cell 

The dynamic RAM cell circuit is shown in Figure 8-12(a). It consists of a capaci­
tor C and a transistor T. The capacitor is used to store electrical charge. If suffi­
cient charge is stored on the capacitor, it can be viewed as storing a logical 1. If 
insufficient charge is stored on the capacitor, it can be viewed as storing a logical 
0. The transistor acts much like a switch, as described in Section 6-1. When the 
switch is "open," the charge on the capacitor roughly remains fixed-in other 
words, is stored. But when the switch is "closed," charge can flow into and out of 
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the capacitor from the external Bit (B) line. This charge flow allows the cell to be 
written with a 1 or 0 and to be read. 

In order to understand the read and write operations for the cell, we will use 
a hy draulic analogy with charge replaced by water, the capacitor by a small storage 
tank, and the transistor by a valve. Since the bit line has a large capacitance, it is 
represented by a large tank and pumps which can fill and empty this tank rapidly. 
This analogy is given in Figure 8-12(b) and ( c) with the valve closed. Note that in 
one case the small storage tank is full, representing a stored 1, and in the other 
case it is empty, representing a stored 0. Suppose that a 1 is to be written into the 
cell. The valve is opened and the pumps fill up the large tank. Water flows through 
the valve, filling the small storage tank, as shown in Figure 8-12( d). Then the valve 
is closed, leaving the small tank full, which represents a 1. A 0 can be written using 
the same sort of operations, except that the pumps empty the large tank as shown 
in Figure 8-12( e ). 

Now, suppose we want to read a stored value and that the value is a 1 corre­
sponding to a full storage tank. With the large tank at a known intermediate level, 
the valve is opened. Since the small storage tank is full, water flows from the small 
tank to the large tank, increasing the level of the water surface in the large tank 
slightly as shown in Figure 8-12(f). This increase in level is observed as the reading 
of 1 from the storage tank. Correspondingly, if the storage tank is initially empty, 
there will be a slight decrease in the level in the large tank in Figure 8-12(g), which 
is observed as the reading of a 0 from the storage tank. 

In the read operation just described, Figure 8-12(f) and (g) show that, regard­
less of the initial stored value in the storage tank, it now contains an intermediate 
value which will not cause enough change in the level of the external tank to per­
mit a 0 or 1 to be observed. So the read operation has destroyed the stored value; 
this is referred to as a destructive read. To be able to read the original stored value 
in the future, we must restore it (i.e., return the storage tank to its original level). 
To perform the restore for a stored 1 observed, the large tank is filled by the pumps 
and the small tank fills through the open valve. To perform the restore for a stored 
0 observed, the large tank is emptied by the pumps and the small tank drains 
through the open valve. 

In the actual storage cell, there are other paths present for charge flow. These 
paths are analogous to small leaks in the storage tank. Due to these leaks, a full 
small storage tank will eventually drain to a point at which the increase in the level 
of the large tank on a read cannot be observed as an increase. In fact, if the small 
tank is less than half full when read, it is possible that a decrease in the level of the 
large tank may be observed. To compensate for these leaks, the small storage tank 
storing a 1 must be periodically refilled. This is referred to as a refresh of the cell 
contents. Every storage cell must be refreshed before its level has declined to a 
point at which the stored value can no longer be properly observed. 

Through the hy draulic analogy, the DRAM operation has been explained. 
Just as for the SRAM, we employ a logic model for the cell. The model shown in 
Figure 8-12(h) is a D latch. The C input to the D latch is Select and the D input to 
the D latch is B. In order to model the output of the DRAM cell, we use a three­
state buffer with Select as its control input and C as its output. In the original 
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electronic circuit for the DRAM cell in Figure 8-12(a) , Band Care the same sig­
nal, but in the logical model they are separate. This is necessary in the modeling 
process to avoid connecting gate outputs together. 

DRAM Bit Slice 

Using the logic model for the DRAM cell, we can construct the DRAM bit-slice 
model shown in Figure 8-13. This model is similar to that for the SRAM bit slice in 
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Figure 8-5. It is apparent that, aside from the cell structure, the two RAM bit slices 
are logically similar. However, from the standpoint of cost per bit, they are quite 
different. The DRAM cell consists of a capacitor plus one transistor. The SRAM 
cell typically contains six transistors, giving a cell complexity roughly three times 
that of the DRAM. Therefore, the number of SRAM cells in a chip of a given size 
is less than one-third of those in the DRAM. The DRAM cost per bit is less than 
one-third the SRAM cost per bit, which justifies the use of DRAM in large memories. 

Refresh of the DRAM contents remains to be discussed. But first, we need to 
develop the typical structure used to handle addressing in DRAMs. Since many 
DRAM chips are used in a DRAM, we want to reduce the physical size of the 
DRAM chips. Large DRAMs require 20 or more address bits, which would require 
20 address pins on each DRAM chip. To reduce the number of pins, the DRAM 
address is applied serially in two parts with the row address first and the column 
address second. This can be done since the row address, which performs the row 
selection, is actually needed before the column address, which reads out the data 
from the row selected. In order to hold the row address throughout the read or 
write cycle, it is stored in a register, as shown in Figure 8-14. The column address is 
also stored in a register. The load signal for the row address register is RAS 
( Row Address Strobe ) and for the column addresses is CAS ( Column Address 

Strobe ) . Note that in addition to RAS and CAS, control signals for the DRAM 
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chip include R/W (Read/Write) and OE (Output enable). Note that this design 
uses signals active at the LOW (0) level. 

The timing for DRAM write and read operation appears in Figure 8-lS(a) . 
The row address is applied to the address inputs, and then RAS changes from 1 to 
0, loading the row address into the row address register. This address is applied to 
the row address decoder and selects a row of DRAM cells. Meanwhile, the column 
address is applied, and then CAS changes from 1 to 0, loading the column address 
into the column address register. This address is applied to the column address 
decoder, which selects a set of columns of the RAM array of size equal to the num­
ber of RAM data bits. The input data with Read/Write = 0 is applied over a time 
interval similar to that for the column address. The data bits are applied to the set 
of bit lines selected by the column address decoder, which in turn apply the values 
to the DRAM cells in the selected row, writing the new data into the cells. When 
CAS and RAS return to 1, the write cycle is complete and the DRAM cells store 
the newly written data. Note that the stored data in all of the other cells in the 
addressed row has been restored. 

The read operation timing shown in Figure 8-lS(b) is similar. Timing of the 
address operations is the same. However, no data is applied and Read/Write is 1 
instead of 0. Data values in the DRAM cells in the selected row are applied to the 
bit lines and sensed by the sense amplifiers. The column address decoder selects 
the values to be sent to the Data output, which is enabled by Output enable . Dur­
ing the read operation, all values in the addressed row are restored. 

To support refresh, additional logic shown in color is present in the block dia­
gram in Figure 8-14. There is a Refresh counter and a Refresh controller. The 
Refresh counter is used to provide the address of the row of DRAM cells to be 
refreshed. It is essential for the refresh modes that require the address to be pro­
vided from within the DRAM chip. The refresh counter advances on each refresh 
cycle. Due to the number of bits in the counter, when it reaches zn - 1, where n is 
the number of rows in the DRAM array, it advances to 0 on the next refresh. The 
standard ways in which a refresh cycle can be triggered and the corresponding 
refresh types are as follows: 

1. RAS-only refresh. A row address is placed on the address lines and RAS is 
changed to 0. In this case, the refresh addresses must be applied from outside 
the DRAM chip, typically by an IC called a DRAM controller. 

2. CAS-before-RAS refresh. The CAS is changed from 1 to 0 followed by a 
change from 1 to 0 on RAS. Additional refresh cycles can be performed by 
changing RAS without changing CAS. The refresh addresses for this case 
come from the refresh counter, which is incremented after the refresh for 
each cycle. 

3. Hidden refresh. Following a normal read or write, CAS is left at 0 and RAS is 
cycled, effectively performing a CAS-before-RAS refresh. During a hidden 
refresh, the output data from the prior read remains valid. Thus, the refresh is 
hidden. Unfortunately, the time taken by the hidden refresh is significant, so 
a subsequent read or write operation is delayed. 
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In all cases, note that the initiation of a refresh is controlled externally by 
using the RAS and CAS signals. Each row of a DRAM chip requires refreshing 
within a specified maximum refresh time, typically ranging from 16 to 64 millisec­
onds (ms) . Refreshes may be performed at evenly spaced points in the refresh 
time, an approach called distributed refresh. Alternatively, all refreshes may be 
performed one after the other, an approach called burst refresh. For example, a 
4M x 4 DRAM has a refresh time of 64 ms and has 4096 rows to be refreshed. The 
length of time to perform a single refresh is 60 ns, and the refresh interval for dis­
tributed refresh is 64 ms/4096 = 15.6 microseconds (µs ). A total time out for refresh 
of 0.25 ms is used out of the 64 ms refresh interval. For the same DRAM, a burst 
refresh also takes 0.25 ms. The DRAM controller must initiate a refresh every 15.6 
µs for distributed refresh and must initiate 4096 refreshes sequentially every 64 ms 
for burst refresh. During any refresh cycle, no DRAM reads or writes can occur. 
Since use of burst refresh would halt computer operation for a fairly long period, 
distributed refresh is more commonly used. 

8-6 DRAM TYPES 

Over the last two decades, both the capacity and speed of DRAM have 
increased significantly. The quest for speed has resulted in the evolution of many 
types of DRAM. Several are listed with brief descriptions in Table 8-2. Of the 
memory types listed, the first two have largely been replaced in the marketplace 
by the more advanced SDRAM and RDRAM approaches. Since we have chosen 
to provide a discussion of error-correcting codes (ECC) for memories on the 
text website, our discussion of memory types here will omit the ECC feature and 
focus on synchronous DRAM, double-data-rate synchronous DRAM, and 
Rambus® DRAM. Before considering these, we briefly cover some underlying 
concepts. 

First, all three of these DRAM types work well because of the particular 
environment in which they operate. In modern high-speed computer systems, the 
processor interacts with the DRAM within a memory hierarchy. Most of the 
instructions and data for the processor are fetched from two lower levels of the 
hierarchy, the Ll and L2 caches. These are comparatively smaller SRAM-based 
memory structures that are covered in detail in Chapter 13. For our purposes, the 
key issue is that most of the reads from the DRAM are not directly from the CPU, 
but instead are initiated to bring data and instructions into these caches. The reads 
are in the form of a line (i.e., some number of bytes in contiguous addresses in 
memory) that is brought into the cache. For example, in a given read, the 16 bytes 
in hexadecimal addresses 000000 through OOOOOF would be read. This is referred to 
as a burst read. For burst reads, the effective rate of reading bytes, which is depen­
dent upon reading bursts from contiguous addresses, rather than the access time is 
the important measure. With this measure, the three DRAM types we are discuss­
ing provide very fast performance. 

Second, the effectiveness of these three DRAM types depends upon a very 
fundamental principle involved in DRAM operation, the reading out of all of the 
bits in a row for each read operation. The implication of this principle is that all of 
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D TABLE8-2 
DRAM Types 

Type 

Fast page mode 
DRAM 

Extended data out­
put DRAM 

Synchronous DRAM 

Double-data-rate syn­
chronous DRAM 

Rambus® DRAM 

Error-correcting code 

Abbreviation Description 

FPM DRAM Takes advantage of the fact that, when a row is 
accessed, all of the row values are available to be 

read out. By changing the column address, data 
from different addresses can be read out without 
reapplying the row address and waiting for the 

delay associated with reading out the row cells to 

pass if the row portions of the addresses match. 

EDO DRAM Extends the length of time that the DRAM holds 
the data values on its output, permitting the CPU 
to perform other tasks during the access, since it 
knows the data will still be available. 

SDRAM Operates with a clock rather than being asyn­

chronous. This permits a tighter interaction 
between memory and CPU, since the CPU 
knows exactly when the data will be available. 

SD RAM also takes advantage of the row value 
availability and divides memory into distinct 

banks, permitting overlapped accesses. 

DDR SDRAM The same as SDRAM except that data output is 
provided on both the negative and the positive 

clock edges. 

RDRAM A proprietary technology that provides very high 

memory access rates using a relatively narrow 
bus. 

ECC May be applied to most of the DRAM types 

above to correct single-bit data errors and often 
detect double errors. 

the bits in a row are available after a read using that row if only they can be accessed. 
With these two concepts in mind, the synchronous DRAM can be introduced. 

Synchronous DRAM {SDRAM) 

The use of clocked transfers differentiates SDRAM from conventional DRAM. A 
block diagram of a 16-megabyte SDRAM IC appears in Figure 8-16. The inputs 
and outputs differ little from those for the DRAM block diagram in Figure 8-14 
with the exception of the presence of the clock for synchronous operation. Inter­
nally, there are a number of differences. Since the SDRAM appears synchronous 
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from the outside, there are synchronous registers on the address inputs and the 
data inputs and outputs. In addition, a column address counter has been added, 
which is key to the operation of the SDRAM. While the control logic may appear 
to be similar, the control in this case is much more complex, since the SDRAM has 
a mode control word that can be loaded from the address bus. Considering a 16 
MB memory, the memory array contains 134,217,728 bits and is almost square, 
with 8192 rows and 16,384 columns. There are 13 row address bits. Since there are 8 
bits per byte, the number of column addresses is 16,384 divided by 8, which equals 
2048. This requires 11 column address bits. Note that 13 plus 11 equals 24, giving 
the correct number of bits to address 16 MB. 

As with the regular DRAM, the SDRAM applies the row address first, fol­
lowed by the column address. The timing, however, is somewhat different, and 
some new terminology is used. Before performing an actual read operation from a 
specified column address, the entire row of 2048 bytes specified by the applied row 
address is read out internally and stored in the 1/0 logic. Internally, this step takes 
a few clock cycles. Next, the actual read step is performed with the column address 
applied. After an additional delay of a few clock cycles, the data bytes begin 
appearing on the output, one per clock period. The number of bytes that appear, 
the burst length, has been set by loading a mode control word into the control logic 
from the address input. 

The timing of a burst read cycle with burst length equal to four is shown in 
Figure 8-17. The read begins with the application of the row address and the row 
address strobe (RAS), which causes the row address to be captured in the address 
register and the reading of the row to be initiated. During the next two clock 
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periods, the reading of the row is taking place. During the third clock period, the 
column address and the column address strobe are applied, with the column 
address captured in the address register and the reading of the first data byte initi­
ated. The data byte is then available to be read from the SDRAM at the positive 
clock edge occurring two cycles later. The second, third, and fourth bytes are avail­
able for reading on subsequent clock edges. In Figure 8-17, note that the bytes are 
presented in the order 1, 2, 3, 0. This is because, in the column address identifying 
the byte immediately needed by the CPU, the last two bits are 01. The subsequent 
bytes appear in the order of these two bits counted up modulo (burst length) by 
the column address counter, giving addresses ending in 01, 10, 11, and 00, with all 
other address bits fixed. 

It is interesting to compare the byte rate for reading bytes from SDRAM to 
that of the basic DRAM. We assume that the read cycle time tRc for the basic 
DRAM is 60 ns and that the clock period tcLK for the SDRAM is 7.5 ns. The byte 
rate for the basic DRAM is one byte per 60 ns, or 16.67 MB/sec. For the SDRAM, 
from Figure 8-17, it requires 8.0 clock cycles, or 60 ns, to read four bytes, giving a 
byte rate of 66.67 MB/sec. If the burst is eight instead of four bytes, a read cycle 
time of 90 ns is required, giving a byte rate of 88.89 MB/sec. Finally, if the burst is 
the entire 2048-byte row of the SD RAM, the read cycle time becomes 60 + (2048 -
4) x 7.5 = 15,390 ns, giving a byte rate of 133.07 MB, which approaches the limit of 
one byte per 7 .5 ns clock period. 
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The second DRAM type, double-data-rate SDRAM (DDR SDRAM) overcomes 
the preceding limit without decreasing the clock period. Instead, it provides two 
bytes of data per clock period by using both the positive and negative clock edges. 
In Figure 8-17, four bytes are read, one per positive clock edge. By using both 
clock edges, eight bytes can be transferred in the same read cycle time tRc· For a 
7.5 ns clock period, the byte rate limit doubles in the example to 266.14 MB/sec. 

Additional basic techniques can be applied to further increase the byte rate. 
For example, instead of having single byte data, an SDRAM IC can have the data 
1/0 length of four bytes (32 bits). This gives a byte rate limit of 1.065 GB/sec with a 
7.5 ns clock period. Eight bytes gives a byte rate limit of 2.130 GB/sec. 

The byte rates achieved in the examples are upper limits. If the actual 
accesses needed are to different rows of the RAM, the delay from the application 
of the RAS pulse to read out the first byte of data is significant and leads to perfor­
mance well below the limit. This can be partially offset by breaking up the memory 
into multiple banks, where each bank performs the row read independently. Pro­
vided that the row and bank addresses are available early enough, row reads can 
be performed on one or more banks while data is still being transferred from the 
currently active row. When the column reads from the currently active row are 
complete, data can potentially be available immediately from other banks, permit­
ting an uninterrupted flow of data from the memory. This permits the actual read 
rate to more closely approach the limit. Nevertheless, due to the fact that multiple 
row accesses to the same bank may occur in sequence, the maximum rate is not 
reached. 

RAMBUS®DRAM(RDRAM) 

The final DRAM type to be discussed is RAMBUS DRAM (RDRAM). RDRAM 
ICs are designed to be integrated into a memory system that uses a packet-based 
bus for the interaction between the RDRAM ICs and the memory bus to the pro­
cessor. The primary components of the bus are a 3-bit path for the row address, a 5-
bit path for the column address, and a 16-bit or 18-bit path for data. The bus is syn­
chronous and performs transfers on both clock edges, the same property possessed 
by the DDR SDRAM. Information on the three paths mentioned above is trans­
ferred in packets that are four clock cycles long, which means that there are eight 
transfers/packet . The number of bits per packet for each of the paths is 24 bits for 
the row address packet, 40 bits for the column address packet, and 128 bits or 144 
bits for the data packet. The larger data packet includes 16 parity bits for imple­
menting an error-correcting code. The RDRAM IC employs the concept of multi­
ple memory banks mentioned earlier to provide capability for concurrent memory 
accesses with different row addresses. RDRAM uses the usual row-activate tech­
nique in which the addressed row data of the memory is read. From this row data, 
the column address is used to select byte pairs in the order in which they are to be 
transmitted in the packet. A typical timing picture for an RDRAM read access is 
shown in Figure 8-18. Due to the sophisticated electronic design of the RAMBUS 
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system, we can consider a clock period of 1.875 ns. Thus, the time for transmission 
of a packet is tpAcK= 4 x 1.875 = 7.5 ns. The cycle time for accessing a single data 
packet of 8 byte pairs or 16 bytes is 32 clock cycles or 60 ns, as shown in Figure 8-18. 
The corresponding byte rate is 266.67 MB/sec. If four of the byte packets are 
accessed from the same row, the rate increases to 1.067 GB/sec. By reading an 
entire RDRAM row of 2048 bytes, the cycle time increases to 60 + (2048 - 64) x 
1.875/4 = 990 ns or a byte rate limit of 2048/(990x10-9) = 2.069 MB/sec, approach­
ing the ideal limit of 4/1.875 ns or 2.133 GB/sec. 

8-7 ARRA.vs OF DYNAMIC RAM ICs 

Many of the same design principles used for SRAM arrays in Section 8-4 apply to 
DRAM arrays. There are, however, a number of different requirements for the 
control and addressing of DRAM arrays. These requirements are typically handled 
by a DRAM controller, which performs the following functions: 

1. controlling separation of the address into a row address and a column 
address and providing these addresses at the required times, 

2. providing the RAS and CAS signals at the required times for read, write, 
and refresh operations, 

3. performing refresh operations at the necessary intervals, and 

4. providing status signals to the rest of the system (e.g., indicating whether the 
memory is busy performing refresh). 
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The DRAM controller is a complex synchronous sequential circuit with the exter­
nal CPU clock providing synchronization of its operation. 

8-8 CHAPTER SUMMARY 

Memory is of two types: random-access memory (RAM) and read-only memory 
(ROM). For both types, we apply an address to read from or write into a data 
word. Read and write operations have specific steps and associated timing parame­
ters, including access time and write cycle time. Memory can be static or dynamic 
and volatile or nonvolatile. Internally, a RAM chip consists of an array of RAM 
cells, decoders, write circuits, read circuits, and output circuits. A combination of a 
write circuit, read circuit, and the associated RAM cells can be logically modeled 
as a RAM bit slice. RAM bit slices, in turn, can be combined to form two-dimen­
sional RAM cell arrays, which, with decoders and output circuits added, form the 
basis for a RAM chip. Output circuits use three-state buffers in order to facilitate 
connecting together an array of RAM chips without significant additional logic. 
Due to the need for refresh, additional circuitry is required within DRAMs, as well 
as in arrays of DRAM chips. In a quest for faster memory access, a number of new 
DRAM types have been developed. The most recent forms of these high-speed 
DRAMs employ a synchronous interface that uses a clock to control memory 
accesses. 

� Error-detection and correction codes, often based on Hamming codes, are used to 
detect or correct errors in stored RAM data. Material from Edition 1 covering 
these codes is available on the Companion Website for the text. 
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PROBLEMS 

>The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

8-1. *The following memories are specified by the number of words times the 
number of bits per word. How many address lines and input-output data 
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lines are needed in each case? (a) 48K x 8, (b) 512K x 32, (c) 64M x 64, and 
(d) 2G x 1. 

8-2. Word number (835)10 in the memory shown in Figure 8-2 contains the binary 
equivalent of (15,103)10. List the 10-bit address and the 16-bit memory 
contents of the word. 

8-3. *A 64K x 16 RAM chip uses coincident decoding by splitting the internal 
decoder into row select and column select. (a) Assuming that the RAM cell 
array is square, what is the size of each decoder, and how many AND gates 
are required for decoding an address? (b) Determine the row and column 
selection lines that are enabled when the input address is the binary 
equivalent of (32000)10. 

8-4. Assume that the largest decoder that can be used in an m x 1 RAM chip has 
14 address inputs and that coincident decoding is employed. In order to 
construct RAM chips that contain more one-bit words than m, multiple 
RAM cell arrays, each with decoders and read/write circuits, are included in 
the chip. 
(a) With the decoder restrictions given, how many RAM cell arrays are 

required to construct a 2G x 1 RAM chip? 
(b) Show the decoder required to select from among the different RAM 

arrays in the chip and its connections to address bits and cell array select 
(CS) bits. 

8-5. A DRAM has 15 address pins and its row address is 1 bit longer than its 
column address. How many addresses, total, does the DRAM have? 

8-6. A 1 Gb DRAM uses 4-bit data and has equal-length row and column 
addresses. How many address pins does the DRAM have? 

8-7. A DRAM has a refresh interval of 128 ms and has 4096 rows. What is the 
interval between refreshes for distributed refresh? What is the total time 
required out of the 128 ms for a refresh of the entire DRAM? What is the 
minimum number of address pins on the DRAM? 

8-8. *(a) How many 128K x 16 RAM chips are needed to provide a memory 
capacity of 2 MB? 

(b) How many address lines are required to access 2 MB? How many of 
these lines are connected to the address inputs of all chips? 

(c) How many lines must be decoded to produce the chip select inputs? 
Specify the size of the decoder. 

8-9. Using the 64K x 8 RAM chip in Figure 8-9 plus a decoder, construct the 
block diagram for a 512K x 16 RAM. 

8-10. Explain how SDRAM takes advantage of the two-dimensional storage array 
to provide a high data access rate. 

8-11. Explain how a DDRAM achieves a data rate that is a factor of two higher 
than a comparable SDRAM. 
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I 
n Chapter 7, the separation of a design into a datapath that implements 

microoperations and a control unit that determines the sequence of 

microoperations was introduced. In this chapter, we continue by defining a generic 

computer datapath that implements register transfer microoperations and serves as a 

framework for the design of detailed processing logic. The concept of a control word 

provides a tie between the datapath and the control unit associated with it. 

The generic datapath combined with a control unit and memory forms a programmable 
system-in this case, a simple computer. The concept of an instruction set architecture 

(ISA) is introduced as a means of specifying the computer. In order to implement the 

ISA, a control unit and the generic datapath are combined to form a CPU (central 

processing unit). In addition, since this is a programmable system, memories are also 

present for storage of programs and data. Two different computers with two different 

control units are considered. The first computer has two memories, one for instructions 

and one for data, and performs all of its operations in a single clock cycle. The second 

computer has a single memory for both instructions and data and a more complex 

architecture requiring multiple clock cycles to perform its operations. 

In the generic computer at the beginning of Chapter 1, register transfers, micro­

operations, buses, datapaths, datapath components, and control words are used quite 
broadly. Likewise, control units appear in most of the digital parts of the generic 

computer. The design of processing units consisting of control units interacting with 
datapaths has its greatest impact within the generic computer in the CPU and FPU in 

the processor chip. These two components contain major datapaths that perform 

processing. The CPU and the FPU perform additions, subtractions, and most of the 
other operations specified by the instruction set. 

D 443 
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9-1 INTRODUCTION 

Computers and their design are introduced in this chapter. The specification for a 
computer consists of a description of its appearance to a programmer at the lowest 
level, its instruction set architecture (ISA). From the ISA, a high-level description of 
the hardware to implement the computer, called the computer architecture, is for­
mulated. This architecture, for a simple computer, is typically divided into a data­
path and a control. The datapath is defined by three basic components: 

1. a set of registers, 

2. the microoperations performed on data stored in the registers, and 

3. the control interface. 

The control unit provides signals that control the microoperations performed 
in the datapath and in other components of the system, such as memories. In addi­
tion, the control unit controls its own operation, determining the sequence of 
events that occur. This sequence may depend upon the results of current and past 
microoperations executed. In a more complex computer, typically multiple control 
units and datapaths are present. 

To build a foundation for considering computer designs, initially, we extend 
the ideas in Chapter 7 to the implementation of computer datapaths. Specifically, 
we consider a generic datapath, one that can be used, in some cases in modified 
form, in all of the computer designs considered in the remainder of the text. These 
future designs show how a given datapath can be used to implement different 
instruction set architectures by simply combining the datapath with different 
control units. 

9-2 DATAPATHS 

Instead of having each individual register perform its microoperations directly, 
computer systems often employ a number of storage registers in conjunction with a 
shared operation unit called an arithmetidlogic unit, abbreviated ALU. To perform 
a microoperation, the contents of specified source registers are applied to the 
inputs of the shared ALU. The ALU performs an operation, and the result of this 
operation is transferred to a destination register. With the ALU as a combinational 
circuit, the entire register transfer operation from the source registers, through the 
ALU, and into the destination register is performed during one clock cycle. The 
shift operations are often performed in a separate unit, but sometimes these opera­
tions are also implemented within the ALU. 

Recall that the combination of a set of registers with a shared ALU and 

interconnecting paths is the datapath for the system. The rest of this chapter is 
concerned with the organization and design of computer datapaths and associated 

control units used to implement simple computers. The design of a particular 
ALU is undertaken to show the process involved in implementing a complex 
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combinational circuit. We also design a shifter, combine control signals into control 
words, and then add control units to implement two different computers. 

The datapath and the control unit are the two parts of the processor, or CPU, 
of a computer. In addition to the registers, the datapath contains the digital logic 
that implements the various microoperations. This digital logic consists of buses, 
multiplexers, decoders, and processing circuits. When a large number of registers is 
included in a datapath, the registers are most conveniently connected through one 
or more buses. Registers in a datapath interact by the direct transfer of data, as 
well as in the performance of the various types of microoperations. A simple bus­
based datapath with four registers, an ALU, and a shifter is shown in Figure 9-1. 
The shading and blue signal names relate to Figure 9-10 and will be discussed in 
Section 9-5. The black signal names are used here to describe the details in Figure 
9-1. Each register is connected to two multiplexers to form ALU and shifter input 
buses A and B. The select inputs on each multiplexer select one register for the 
corresponding bus. For Bus B, there is an additional multiplexer, MUX B, so that 
constants can be brought into the datapath from outside using Constant in. Bus B 
also connects to Data out, to send data outside the datapath to other components 
of the system, such as memory or input-output. Likewise, Bus A connects to 
Address out, to send address information outside of the datapath for memory or 
input-output. 

Arithmetic and logic microoperations are performed on the operands on the 
A and B buses by the ALU. The G select inputs select the microoperation to be 
performed by the ALU. The shift microoperations are performed on data on Bus B 
by the shifter. The H select input either passes the operand on Bus B directly 
through to the shifter output or selects a shift microoperation. MUX F selects the 
output of the ALU or the output of the shifter. MUX D selects the output of MUX 
F or external data on input Data in to be applied to Bus D. The latter is connected 
to the inputs of all the registers. The destination select inputs determine which reg­
ister is loaded with the data on Bus D. Since the select inputs are decoded, only 
one register Load signal is active for any transfer of data into a register from Bus D. 
A Load enable signal that can force all register Load signals to 0 using AND 
gates is present for transfers that are not to change the contents of any of the four 
registers. 

It is useful to have certain information, based on the results of an ALU oper­
ation, available for use by the control unit of the CPU to make decisions. Four sta­
tus bits are shown with the ALU in Figure 9-1. The status bits, carry C and overflow 
V, were explained in conjunction with Figure 4-8. The zero status bit Z is 1 if the 
output of the ALU contains all zeros and is 0 otherwise. Thus, Z = 1 if the result of 
an operation is zero, and Z = 0 if the result is nonzero. The sign status bit N (for 
negative) is the leftmost bit of the ALU output, which is the sign bit for the result 
in signed-number representations. Status values from the shifter can also be incor­
porated into the status bits if desired. 

The control unit for the datapath directs the information flow through the 
buses, the ALU, the shifter, and the registers by applying signals to the select 
inputs. For example, to perform the microoperation 
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the control unit must provide binary selection values to the following sets of control 
inputs: 

1. A select, to place the contents of R2 onto A data and, hence, Bus A. 

2. B select, to place the contents of R3 onto the 0 input of MUX B; and MB 
select, to put the 0 input of MUX B onto Bus B. 

3. G select, to provide the arithmetic operation A + B. 

4. MF select, to place the ALU output on the MUX F output. 

5. MD select, to place the MUX F output onto Bus D. 

6. Destination select, to select R1 as the destination of the data on Bus D. 

7. Load enable, to enable a register-in this case, Rl-to be loaded. 

The sets of values must be generated and must become available on the cor­
responding control lines early in the clock cycle. The binary data from the two 
source registers must propagate through the multiplexers and the ALU and on into 
the inputs of the destination register, all during the remainder of the same clock 
cycle. Then, when the next positive clock edge arrives, the binary data on Bus D is 
loaded into the destination register. To achieve fast operation, the ALU and shifter 
are constructed with combinational logic having a limited number of levels. 

9-3 THE ARITHMETIC/LOGIC UNIT 

The ALU is a combinational circuit that performs a set of basic arithmetic and 
logic microoperations. It has a number of selection lines used to determine the 
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operation to be performed. The selection lines are decoded within the ALU, so 
that k selection lines can specify up to 2k distinct operations. 

Figure 9-2 shows the symbol for a typical n-bit ALU. The n data inputs from A 
are combined with the n data inputs from B to generate the result of an operation at 
the G outputs. The mode-select input S2 distinguishes between arithmetic and logic 
operations. The two Operation select inputs S1 and S0 and the Carry input Cin spec­
ify the eight arithmetic operations with S2 at 0. Operand select input S0 and Cin 
specify the four logic operations with S2 at 1. 

We perform the design of this ALU in three stages. First, we design the arith­
metic section. Then we design the logic section, and finally, we combine the two 
sections to form the ALU. 

Arithmetic Circuit 

The basic component of an arithmetic circuit is a parallel adder, which is con­
structed with a number of full-adder circuits connected in cascade, as shown in 
Figure 4-5. By controlling the data inputs to the parallel adder, it is possible to 
obtain different types of arithmetic operations. The block diagram in Figure 9-3 
demonstrates a configuration in which one set of inputs to the parallel adder is 
controlled by the select lines S1 and S0• There are n bits in the arithmetic circuit, 
with two inputs A and B and output G. The n inputs from B go through the B input 
logic to the Y inputs of the parallel adder. The input carry Cin goes in the carry 
input of the full adder in the least-significant-bit position. The output carry Cout is 
from the full adder in the most-significant-bit position. The output of the parallel 
adder is calculated from the arithmetic sum as 



D TABLE 9-1 

9-3 I The Arithmetic/Logic Unit D 449 

Function Table for Arithmetic Circuit 

Select Input 

S1 So y 

0 0 all Os 
0 1 B 
1 0 B 
1 1 all ls 

G = (A 1 Y 1 Cin) 

Cin = O 

G = A (transfer) 
G =A +�(add) 
G =A+B 
G =A -1 (decrement) 

G =X+Y+C. m 

cin = 1 

G =A+ 1 (increment) 
G=A+B+1 

G = A + B + 1 (subtract) 
G = A (transfer) 

where Xis the n-bit binary number from the inputs and Y is the n-bit binary num­
ber from the B input logic. Cin is the input carry, which equals 0 or 1. Note that the 
symbol + in the equation denotes arithmetic addition. 

Table 9-1 shows the arithmetic operations that are obtainable by controlling 
the value of Y with the two selection inputs S1 and S0• If the inputs from B are 
ignored and we insert all Os at the Y inputs, the output sum becomes G = A + 0 + 
Cin. This gives G = A when Cin = 0 and G = A + 1 when Cin = 1. In the first case, we 
have a direct transfer from input A to output G. In the second case, the value of A is 
incremented by 1. For a straight arithmetic addition, it is necessary to apply the B 
inputs to the Y inputs of the parallel adder. This gives G = A + B when Cin = 0. 
Arithmetic subtraction is achieved by applying th� complement of inputs B to the Y 
inputs of the parallel adder, to obtain G = A + B + 1 when Cin = 1. This gives A 
plus the 2s complement of B, which is equivalent to 2s complement subtraction. All 
ls is the 2s complement representation for -1. Thus, applying all ls to the Y inputs 
with Cin = 0 produces the decrement operation G = A - 1. 

The B input logic in Figure 9-3 can be implemented with n multiplexers. The 
data inputs to each multiplexer in stage i for i = 0, 1, ... , n -1 are 0, Bi> Bi, and 
1, corresponding to selection values S1S0: 00, 01, 10, and 11, respectively. Thus, the 
arithmetic circuit can be constructed with n full adders and n 4-to-1 multiplexers. 

The number of gates in the B input logic can be reduced if, instead of using 
4-to-1 multiplexers, we go through the logic design of one stage (one bit) of the B 
input logic. This can be done as shown in Figure 9-4. The truth table for one typical 
stage i of the logic is given in Figure 9-4(a). The inputs are S1, S0, and Bi, and the 
output is Yj_. Following the requirements specified in Table 9-1, we let Yi= 0 when 
S1S0 = 00, and similarly assign the other three values of Yi for each of the combina­
tions of the selection variables. Output Yi is simplified in the map in Figure 9-4(b) 
to give 

Y. = B·So + B.S1 1 1 1 

where S1 and S0 are common to all n stages. Each stage i is associated with input Bi 
and output Yi for i = 0, 1,  2 ,  ... , n -1. This logic corresponds to a 2-to-1 multi­
plexer with Bi on the select input and S1 and S0 on the data inputs. 
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Inputs Output 

S1 So Bi Yi 

0 0 0 0 Yi=O 
0 0 1 0 

0 1 0 0 Yi =Bi 
0 1 1 1 

1 0 0 1 Yi =Bi 
1 0 1 0 

1 1 0 1 Yi= 1 
1 1 1 1 

(a) Truth table 

D FIGURE 9-4 
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{b) Map simplification: 
Yi = BiSo + BiS1 

B Input Logic for One Stage of Arithmetic Circuit 

Figure 9-5 shows the logic diagram of an arithmetic circuit for n = 4. The four 
full-adder (FA) circuits constitute the parallel adder. The carry into the first stage is 
the input carry Cin. All other carries are connected internally from one stage to the 
next. The selection variables are S1, S0, and Cin. Variables S1 and S0 control all Y 

inputs of the full adders according to the Boolean function derived in Figure 9-4(b ). 
Whenever Cin is 1, A + Y has 1 added. The eight arithmetic operations for the cir­
cuit as a function of S1, S0, and Cin are listed in Table 9-2. It is interesting to note 
that the operation G = A appears twice in the table. This is a harmless by-product 
of using Cin as one of the control variables while implementing both increment and 
decrement instructions. 

Logic Circuit 

The logic microoperations manipulate the bits of the operands by treating each bit 
in a register as a binary variable, giving bitwise operations. There are four com­
monly used logic operations-AND, OR, XOR (exclusive-OR) , and NOT -from 
which others can be conveniently derived. 

Figure 9-6(a) shows one stage of the logic circuit. It consists of four gates and 
a 4-to-1 multiplexer, although simplification could yield less complex logic. Each of 
the four logic operations is generated through a gate that performs the required 
logic. The outputs of the gates are applied to the inputs of the multiplexer with two 
selection variables S1 and S0. These choose one of the data inputs of the multi­
plexer and direct its value to the output. The diagram shows a typical stage with 
subscript i. For the logic circuit with n bits, the diagram must be repeated n times, 
for i = 0, 1, 2, ... , n -1. The selection variables are applied to all stages. The func­
tion table in Figure 9-6(b) lists the logic operations obtained for each combination 
of the selection values. 
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Logic Diagram of a 4-Bit Arithmetic Circuit 

Arithmetic/Logic Unit 

The logic circuit can be combined with the arithmetic circuit to produce an ALU. 
The configuration for one stage of the ALU is illustrated in Figure 9-7. The outputs 
of the arithmetic and logic circuits in each stage are applied to a 2-to-1 multiplexer 
with selection variable S2. When S2 = 0, the arithmetic output is selected, and when 
S2 = 1, the logic output is selected. Note that the diagram shows just one typical 
stage of the ALU; the circuit must be repeated n times for an n-bit ALU. The out­
put carry Ci+l of a given arithmetic stage must be connected to the input carry Ci 
of the next stage in sequence. C0, the input carry to the first stage, is the input carry 
Cin for the ALU, as well as a selection variable for logic operations instead of using 
S1.This somewhat strange use of Cin provides a more systematic encoding of the 
control variables when the shifter is added later. 
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One Stage of Logic Circuit 

Output Operation 

G=AAB AND 
G=AvB OR 

G=AEBB XOR 

G=A NOT 

(b) Function table 

The ALU specified in Figure 9-7 provides eight arithmetic and four logic 
operations. Each operation is selected through the variables S2, S1, S0, and Cin· 
Table 9-2 lists the 12 ALU operations. The first eight are arithmetic operations and 
are selected with S2 = 0. The next four are logic operations and are selected with 
S2 = 1. Selection input S1 has no effect during the logic operations and is marked 
with X to indicate that its value may be either 0 or 1. Later in the design, it is 
assigned value 0 for logic operations. 

The ALU logic we have designed is not as simple as it could be and has a 
fairly high number of logic levels, contributing to propagation delay in the circuit. 
With the use of logic simplification software, we can simplify this logic and reduce 
the delay. For example, it is quite easy to simplify the logic for a single stage of the 
ALU. For realistic n, a means of further reducing the carry propagation delay in 
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the ALU, such as the carry lookahead adder described in a Website Supplement, 
> is usually necessary. 

D TABLE 9-2 
Function Table for ALU 

Operation Select 

S2 S1 Sa C1n Operation Function 

0 0 0 0 G=A Transfer A 

0 0 0 1 G = A+1 Increment A 

0 0 1 0 G=A+B Addition 
0 0 1 1 G=A+B+1 Add with carry input of 1 

0 1 0 0 G=A+B A plus ls complement of B 

0 1 0 1 G=A+B+1 Subtraction 
0 1 1 0 G = A-1 Decrement A 

0 1 1 1 G=A Transfer A 

1 x 0 0 G=AAB AND 
1 x 0 1 G =AvB OR 
1 x 1 0 G = AEBB XOR 
1 x 1 1 

G=A 
NOT (ls complement) 

9-4 THE SHIFTER 

The shifter shifts the value on Bus B, placing the result on an input of MUX F. The 
basic shifter performs one of two main types of transformations on the data: right 
shift and left shift. 

A seemingly obvious choice for a shifter would be a bidirectional shift register 
with parallel load. Data from Bus B can be transferred to the register in parallel 
and then shifted to the right, the left, or not at all. A clock pulse loads the output of 
Bus B into the shift register, and a second clock pulse performs the shift. Finally, a 
third clock pulse transfers the data from the shift register to the selected destination 
register. 

Alternatively, the transfer from a source register to a destination register 
can be done using only one clock pulse if the shifter is implemented as a combina­
tional circuit as done in Chapter 4. Because of the faster operation that results 
from the use of one clock pulse instead of three, this is the preferred method. In a 
combinational shifter, the signals propagate through the gates without the need 
for a clock pulse. Hence, the only clock needed for a shift in the datapath is for 
loading the data from Bus H into the selected destination register. 

A combinational shifter can be constructed with multiplexers as shown in 
Figure 9-8. The selection variable S is applied to all four multiplexers to select the 
type of operation within the shifter. S = 00 causes B to be passed through the 
shifter unchanged. S = 01 causes a right-shift operation and S = 10 causes a left­
shift operation. The right shift fills the position on the left with the value on serial 



454 0 CHAPTER 9 I COMPUTER DESIGN BASICS 

rial Se 
OU tputL 

2/ 
/ s 

I 
0 1 2M 

s u 
x 

- s 
0 1 2M 

u - s 
x 

D FIGURE9-8 
4-Bit Basic Shifter 

0 1 

Bo 

Serial 
outpu 

I 
2M 0 1 2M 

u - s u 
x x 

Ho 

input IR. The left shift fills the position on the right with the value on serial input 
IL· Serial outputs are available from serial output R and serial output L for right 
and left shifts, respectively. 

The diagram of Figure 9-8 shows only four stages of the shifter, which has n 
stages in a system with n-bit operands. Additional selection variables may be 
employed to specify what goes into IR and IL during a single bit-position shift. Note 
that to shift an operand by m > 1 bit positions, this shifter must perform a series of 
m 1-bit position shifts, taking m clock cycles. 

Barrel Shifter 

In datapath applications, often the data must be shifted more than one bit position 
in a single clock cycle. A barrel shifter is one form of combinational circuit that 
shifts or rotates the input data bits by the number of bit positions specified by a 
binary value on a set of selection lines. The shift we consider here is a rotation to 
the left, which means that the binary data is shifted to the left, with the bits coming 
from the most significant part of the register rotated back into the least significant 
part of the register. 

A 4-bit version of this kind of barrel shifter is shown in Figure 9-9. It consists 
of four multiplexers with common select lines S1 and S0• The selection variables 
determine the number of positions that the input data will be shifted to the left by 
rotation. When S1 S0 = 00, no shift occurs, and the input data has a direct path to 
the outputs. When S1S0 = 01, the input data is rotated one position, with D0 going 
to Y1, D1 going to Y2, D2 going to Y3, and D3 going to Y0• When S1S0 = 10, the 
input is rotated two positions, and when S1S0 = 11, the rotation is by three bit posi­
tions. Table 9-3 gives the function table for the 4-bit barrel shifter. For each binary 
value of the selection variables, the table lists the inputs that go to the correspond­
ing output. Thus, to rotate three positions, S1S0 must be equal to 11, causing D0 to 
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Function Table for 4-Bit Barrel Shifter 

Select Output 

S1 So V3 Y2 Y1 Yo Operation 

0 0 D3 Dz Di Do No rotation 
0 1 Dz Di Do D3 Rotate one position 
1 0 Di Do D3 Dz Rotate two positions 
1 1 Do D3 Dz Di Rotate three positions 

go to Y3, D1 to go to Y0, D2 to go to Yi, and D3 to go to Y2• Note that, by using 
this left-rotation barrel shifter, one can generate all desired right rotations as well. 
For example, a left rotation by three positions is the same as a right rotation by one 
position in this 4-bit barrel shifter. In general, in a zn-bit barrel shifter, i positions 
of left rotation is the same as zn - i bits of right rotation. 

A barrel shifter with zn input and output lines requires 2n multiplexers, each 
having zn data inputs and n selection inputs. The number of positions for the data 
to be rotated is specified by the selection variables and can be from 0 to zn - 1 

positions. For a large n, the fan-in to gates is too large, so larger barrel shifters con­
sist of layers of multiplexers, as shown in Section 11-3, or of special structures 
designed at the transistor level. 

9-5 DATAPATH REPRESENTATION 

The datapath in Figure 9-1 includes the registers, selection logic for the registers, the 
ALU, the shifter, and three additional multiplexers. With a hierarchical structure, 
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we can reduce the apparent complexity of the datapath. This reduction is impor­
tant, since we frequently use this datapath. Also, as illustrated by the register 
file to be discussed next, the use of a hierarchy allows one implementation of a 
module to be replaced with another, so that we are not tied to specific logic 
implementations. 

A typical datapath has more than four registers. Indeed, computers with 32 or 
more registers are common. The construction of a bus system with a large number 
of registers requires different techniques. A set of registers having common micro­
operations performed on them may be organized into a register file. The typical reg­
ister file is a special type of fast memory that permits one or more words to be read 
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and one or more words to be written, all simultaneously. Functionally, a simple reg­
ister file contains the equivalent of the logic shaded in blue in Figure 9-1. Due to the 
memory-like nature of register files, the A select, B select, and Destination select 

inputs in the figure become three addresses. As shown in Figure 9-1 in blue and on 
the register file symbol in Figure 9-10, the A address accesses a word to be read 
onto A data, the B address accesses a second word to be read onto B data, and the 
D address accesses a word to be written into from D data. All of these accesses 

D TABLE9-4 
G Select, H Select, and MF Select Codes Defined 
in Terms of FS Codes 

MF G H 
FS(3:0) Select Select(3:0) Select(3:0) Microoperation 

0000 0 0000 xx F=A 
0001 0 0001 xx F= A+1 
0010 0 0010 xx F=A+B 
0011 0 0011 xx F=A+B+1 
0100 0 0100 xx F=A+B 
0101 0 0101 xx F=A+B+1 
0110 0 0110 xx F= A-1 
0111 0 0111 xx F=A 
1000 0 lXOO xx F = AAB 
1001 0 1X01 xx F=AvB 
1010 0 1X10 xx F = AffiB 
1011 0 1X11 xx F=A 
1100 1 xxxx 0 0  F=B 

1101 1 xxxx 0 1  F = sr B 

1110 1 xxxx 1 0  F = sIB 

occur in the same clock cycle. A Write input corresponding to the Load Enable sig­
nal is also provided. When at 1, the Write signal permits registers to be loaded dur­
ing the current clock cycle, and when at 0, prevents register loading. The size of the 
register file is zm x n, where m is the number of register address bits and n is the 
number of bits per register. For the datapath in Figure 9-1, m = 2, giving four regis­
ters, and n is unspecified. 

Since the ALU and the shifter are shared processing units with outputs that are 
selected by MUX F, it is convenient to group the two units and the MUX together to 
form a shared function unit. Gray shading in Figure 9-1 highlights the function unit, 
which can be represented by the symbol given in Figure 9-10. The inputs to the func­
tion unit are from Bus A and Bus B, and the output of the function unit goes to MUX 
D. The function unit also has the four status bits V, C, N, and Z as added outputs. 

In Figure 9-1, there are three sets of select inputs: the G select, H select, and 
MF select. In Figure 9-10, there is a single set of select inputs labeled FS, for "func­
tion select." To fully specify the function unit symbol in the figure, all of the codes 
for MF select, G select, and H select must be defined in terms of the codes for FS. 

Table 9-4 defines these code transformations. The codes for FS are given in the 
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left column. From Table 9-4, it is apparent that MF is 1 for the leftmost two bits 
of FS both equal to 1. If MF select = 0, then the G select codes determine the 
function on the output of the function unit. If MF select = 1, then the H select 
codes determine the function on the output of the function unit. To show this 
dependency, the codes that determine the function-unit outputs are highlighted in 
blue in the table. From Table 9-4, the code transformations can be implemented 
using the Boolean equations: MF= F3·Fz, G3 = F3, G2 = Fz, G1 = Fi, Go = Fo, H1 = 
F1, and H0 = F0• 

The status bits are assumed to be meaningless when the shifter is selected, 
although in a more complex system, shifter status bits can be designed to replace 
those for the ALU whenever a shifter microoperation is specified. Note that the 
status bit implementation depends on the specific implementation that has been 
used for the arithmetic circuit. Alternative implementations may not produce the 
same results. 

9-6 THE CONTROL WORD 

The selection variables for the datapath control the microoperations executed 
within the datapath for any given clock pulse. For the datapath in Section 9-5, the 
selection variables control the addresses for the data read from the register file, the 
function performed by the function unit, and the data loaded into the register file, 
as well as the selection of external data. We will now demonstrate how these con­
trol variables select the microoperations for the datapath. The choice of control 
variable values for typical microoperations will be discussed, and a simulation of 
the datapath will be illustrated. 

A block diagram of a datapath that is a specific version of the datapath in 
Figure 9-10 is shown in Figure 9-ll(a). It has a register file with eight registers, RO 

through R7. The register file provides the inputs to the function unit through Bus 
A and Bus B. MUX B selects between constant values on Constant in and register 
values on B data. The ALU and zero-detection logic within the function unit gen­
erate the binary data for the four status bits: V (overflow), C (carry), N (sign), and 
Z (zero) . MUX D selects the function unit output or the data on Data in as input 
for the register file. 

There are 16 binary control inputs. Their combined values specify a control 
word. The 16-bit control word is defined in Figure 9-ll(b). It consists of seven 
parts called fields, each designated by a pair of letters. The three register fields are 
three bits each. The remaining fields have one or four bits. The three bits of DA 
select one of eight destination registers for the result of the microoperation. The 
three bits of AA select one of eight source registers for the Bus A input to the 
ALU. The three bits of BA select a source register for the 0 input of the MUX B. 
The single MB bit determines whether Bus B carries the contents of the selected 
source register or a constant value. The 4-bit FS field controls the operation of 
the function unit. The FS field contains one of the 15 codes from Table 9-4. The 
single bit of MD selects the function unit output or the data on Data in as the 
input to Bus D. The final field, RW, determines whether a register is written or 
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not. When applied to the control inputs, the 16-bit control word specifies a partic­
ular microoperation. 



460 0 CHAPTER 9 I COMPUTER DESIGN BASICS 

The functions of all meaningful control codes are specified in Table 9-5. For 
each field a binary code for each function is given. The register selected by each of 
the address fields DA, AA, and BA is the one with the decimal equivalent equal to 
the binary number for the code. MB selects either the register selected by the BA 
field or a constant from outside the datapath on Constant in. The ALU operations, 
the shifter operations, and the selection of the ALU or shifter outputs are all spec­
ified by the FS field. The field MD controls the information to be loaded into the 

D TABLE 9-5 
Encoding of Control Word for the Datapath 

DA, AA, BA MB FS MD RW 

Function Code Function Code Function Code Function Code Function Code 

RO 000 Register 0 F= A 0000 Function 0 No Write 0 
Rl 001 Constant 1 F= A+l 0001 Data in 1 Write 1 
R2 010 F= A+B 0010 
R3 011 F=A+B+l 0011 
R4 100 F= A+B 0100 
RS 101 F=A+B+l 0101 
R6 110 F= A-1 0110 
R? 111 F= A 0111 

F= AAB 1000 
F= AvB 1001 

F = AffiB 1010 

F= A 1011 

F=B 1100 
F = sr B 1101 

F = slB 1110 

register file. The final field, RW, has the functions No Write, to prevent writing to 
any registers, and Write, to signify writing to a register. 

The control word for a given microoperation can be derived by specifying the 
value of each of the control fields. For example, a subtraction given by the statement 

Rlf--R2+R3+1 

specifies R2 for the A input of the ALU and R3 for the B input of the ALU. It also 
specifies function unit operation F = A + B + 1 and selection of the function unit 
output for input into the register file. Finally, the microoperation selects Rl as the 
destination register and sets RW to 1 to cause Rl to be written. The control word 
for this microinstruction is specified by its seven fields, with the binary value for 
each field obtained from the encoding listed in Table 9-5. The binary control word 
for this subtraction microoperation, 001_010_011_0_0101_0_1 (with underline "_" 

used for convenience to separate the fields), is obtained as follows: 
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D TABLE 9-6 
Examples of Microoperations for the Datapath, Using Symbolic Notation 

Micro-
operation DA AA BA MB FS MD RW 

R1�R2-R3 Rl R2 R3 Register F=A+B+l Function Write 

R4�s1R 6 R4 R6 Register F = sIB Function Write 

R7�R7 +1 R7 R7 F= A+l Function Write 

Rl�RO +2 Rl RO Constant F=A+B Function Write 

Data out�R3 R3 Register No Write 

R4�Datain R4 Data in Write 

RS�O RS RO RO Register F = AffiB Function Write 

Field: DA AA BA MB FS MD RW 

Symbolic: Rl R2 

010 

R3 

01 1 

Register F = A + B + 1 Function Write 

Binary: 001 0 0101 0 1 

The control word for the microoperation and those for several other microopera­
tions are given in Table 9-6 using symbolic notation and in Table 9-7 using binary 
codes. 

The second example in Table 9-6 is a shift microoperation given by the 
statement 

R4f-sl R6 

This statement specifies a shift left for the shifter. The content of register R6, 
shifted to the left, is transferred to R4. Note that because the shifter is driven by 
Bus B, the source for the shift is specified in the BA rather than the AA field. From 
the knowledge of the symbols in each field, the control word in binary is derived as 
shown in Table 9-7. For many microoperations, neither the A data nor the B data 
from the register file is used. In these cases, the respective symbolic field is marked 
with a dash. Since these values are unspecified, the corresponding binary values in 
Table 9-7 are X's. Continuing with the last three examples in Table 9-6, to make the 
contents of a register available to an external destination only, we place the con­
tents of the register on the B data output of the register file, with RW = No Write 
(0) to prevent the register file from being written. To place a small constant in a 
register or use a small constant as one of the operands, we place the constant on 
Constant in, set MB to Constant, and pass the value from Bus B through the ALU 

and Bus D to the destination register. To clear a register to 0, Bus D is set to all Os 
by using the same register for both A data and B data with an XOR operation 
specified (FS = 1010) and MD = 0. The DA field is set to the code for the destina­
tion register, and RW is Write (1). 
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D TABLE 9-7 
Examples of Microoperations from Table 9-6, Using Binary Control Words 

Micro-
operation DA AA BA MB FS MD RW 

R1�R2-R3 001 010 011 0 0101 0 1 

R4�s1R6 100 xxx 110 0 1110 0 1 

R7�R7+1 111 111 xxx x 0001 0 1 

R1�RO +2 001 000 xxx 1 0010 0 1 

Dataout�R3 xxx xxx 011 0 xxxx x 0 

R4�Datain 100 xxx xxx x xxxx 1 1 

RS�O 101 000 000 0 1010 0 1 

It is apparent from these examples that many microoperations can be per­
formed by the same datapath. Sequences of such microoperations can be realized 
by providing a control unit that produces the appropriate sequences of control 
words. 

To complete this section, we perform a simulation of the datapath in Figure 
9-11. The number of bits in each register, n, is equal to 8. An unsigned decimal 
representation, which is most convenient for reading the simulation output, is used 
for all multiple-bit signals. We assume that the microoperations in Table 9-7, exe­
cuted in sequence, provide the inputs to the datapath and that the initial content 
of each register is its number in decimal (e.g., RS contains (0000 0101)2 = (5)10). 
Figure 9-12 gives the result of this simulation. The first value displayed is the 
Clock with the clock cycles numbered for reference. The inputs, outputs, and state 
for the datapath are given roughly in the order of the flow of information through 
the path. The first four inputs are the primary control-word fields, which specify 
the register addresses that determine the register file outputs and the function 
selection. Next are inputs Constant in and MB, which control the input to Bus B. 
Following are the outputs Address out and Data out, which are the outputs from 
Bus A and Bus B, respectively. The next three variables-Data in, MD, and RW­
are the final three inputs to the datapath. They are followed by the content of the 
eight registers and the Status bits, which are given as a vector (V, C, N, Z). The ini­
tial content of each register is its number in decimal. The value 2 is applied to 
Constant only in cycle 4, where MB equals 1. Otherwise, the value on Constant in 
is unknown, as indicated by X. Finally, Data in has value 18. In the simulation, this 
value comes from a memory that is addressed by Address out and that has value 
18 in location 0 with unknown values in all other locations. The resulting value, 
except when Address out is 0, is represented by a line midway between 0 and 1, 
indicating the value is unknown. 

Of note in the simulation results is that changes in registers as a result of a 
particular microoperation appear in the clock cycle after that in which the microop­
eration is specified. For example, the result of the subtraction in clock cycle 1 
appears in register Rl in clock cycle 2. This is because the result is loaded into 
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flip-flops on the positive edge of the clock at the end of the clock cycle 1. On the 
other hand, the values on the Status bits, Address out, and Data out appear in the 
same clock cycle as the microoperation controlling them, since they do not depend 
on a positive clock edge occurring. Since no combinational delay is specified in the 
simulation, these values change at the same time as the register values. Finally, 
note that eight clock cycles of simulation are used for seven microoperations so 
that the values in the registers that result from the last microoperation executed 
can be observed. Although Status bits appear for all microoperations, they are not 
always meaningful. For example, for the microoperations, R3 = Data out and R4 � 

Data in, in clock cycles 5 and 6, respectively, the value of the status bits does not 
relate to the result, since the Function unit is not used in these operations. Finally, 
for RS � RO E9 RO in clock cycle 7, the arithmetic unit is not used, so the values of 
V and C from that unit are irrelevant, but the values for N and Z do represent the 
status of the result as a signed 2s complement integer. 

Clock 1 
D A  it 

AA-{2 lo 17 10 }----

BA-{3 l6 10 13 10 }----

FS -{5 l14 11 12 10 110 )----

Constant_in x 12 Ix 

MB 
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9-7 A SIMPLE COMPUTER ARCHITECTURE 

We introduce a simple computer architecture to obtain a beginning understanding 
of computer design and to illustrate control designs for programmable systems. In 
a programmable system, a portion of the input to the processor consists of a 
sequence of instructions. Each instruction specifies an operation the system is to 
perform, which operands to use for the operation, where to place the results of 
the operation, and/or, in some cases, which instruction to execute next. For the 
programmable system, the instructions are usually stored in memory, which is 
either RAM or ROM. To execute the instructions in sequence, it is necessary to 
provide the address in memory of the instruction to be executed. In a computer, 
this address comes from a register called the program counter (PC). As the name 
implies, the PC has logic that permits it to count. In addition, to change the 
sequence of operations using decisions based on status information, the PC needs 
parallel load capability. So, in the case of a programmable system, the control unit 
contains a PC and associated decision logic, as well as the necessary logic to inter­
pret the instruction in order to execute it. Executing an instruction means activat­
ing the necessary sequence of microoperations in the data path (and elsewhere) 
required to perform the operation specified by the instruction. In contrast to the 
preceding, note that for a nonprogrammable system, the control unit is not 
responsible for obtaining instructions from memory, nor is it responsible for 
sequencing the execution of those instructions. There is no PC or similar register 
in such a system. Instead, the control unit determines the operations to be per­
formed and the sequence of those operations, based on only its inputs and the sta­
tus bits. 

We show how the operations specified by instructions for the simple com­
puter can be implemented by microoperations in the datapath, plus movement of 
information between the datapath and memory. We also show two different con­
trol structures for implementing the sequences of operations necessary for control­
ling program execution. The purpose here is to illustrate two different approaches 
to control design and the effects that such approaches have on datapath design and 
system performance. A more extensive study of the concepts associated with 
instruction sets for digital computers is presented in detail in the next chapter, and 
more complete CPU designs are undertaken in Chapter 11. 

Instruction Set Architecture 

The user specifies the operations to be performed and their sequence by the use of 
a program, which is a list of instructions that specifies the operations, the operands, 
and the sequence in which processing is to occur. The data processing performed 
by a computer can be altered by specifying a new program with different instruc­
tions or by specifying the same instructions with different data. Instructions and 
data are usually stored together in the same memory. By means of the techniques 
discussed in Chapter 11, however, they may appear to be coming from different 
memories. The control unit reads an instruction from memory and decodes and 
executes the instruction by issuing a sequence of one or more microoperations. The 
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ability to execute a program from memory is the most important single property of 
a general-purpose computer. Execution of a program from memory is in sharp 
contrast to the nonprogrammable control units considered earlier in Examples 7-3 
and 7-4, which execute fixed operations sequenced by inputs and status signals 
only. 

An instruction is a collection of bits that instructs the computer to perform 
a specific operation. We call the collection of instructions for a computer its 
instruction set and a thorough description of the instruction set its instruction set 
architecture (ISA). Simple instruction set architectures have three major compo­
nents: the storage resources, the instruction formats, and the instruction specifi­
cations. 

Storage Resources 

The storage resources for the simple computer are represented by the diagram 
in Figure 9-13. The diagram depicts the computer structure as viewed by a user 
programming it in a language that directly specifies the instructions to be exe­
cuted. It gives the resources the user sees available for storing information. 
Note that the architecture includes two memories, one for storage of instruc­
tions and the other for storage of data. These may actually be different memo­
ries, or they may be the same memory, but viewed as different from the 
standpoint of the CPU as discussed in Chapter 11. Also visible to the program­
mer in the diagram is a register file with eight 16-bit registers and the 16-bit pro­
gram counter. 



466 D CHAPTER 9 I COMPUTER DESIGN BASICS 

Instruction Formats 

The format of an instruction is usually depicted by a rectangular box symbolizing 
the bits of the instruction, as they appear in memory words or in a control register. 
The bits are divided into groups or parts called fields. Each field is assigned a spe­
cific item, such as the operation code, a constant value, or a register file address. 
The various fields specify different functions for the instruction and, when shown 
together, constitute an instruction format. 

The operation code of an instruction, often shortened to "opcode," is a group 
of bits in the instruction that specifies an operation, such as add, subtract, shift, or 
complement. The number of bits required for the opcode of an instruction is a 
function of the total number of operations in the instruction set. It must consist of 
at least m bits for up to 2m distinct operations. The designer assigns a bit combina­
tion (a code) to each operation. The computer is designed to accept this bit config­
uration at the proper time in the sequence of activities and to supply the proper 
control-word sequence to execute the specified operation. As a specific example, 
consider a computer with a maximum of 128 distinct operations, one of them an 
addition operation. The opcode assigned to this operation consists of seven bits 
0000010. When the opcode 0000010 is detected by the control unit, a sequence of 
control words is applied to the datapath to perform the intended addition. 

The opcode of an instruction specifies the operation to be performed. The 
operation must be performed using data stored in computer registers or in memory 
(i.e., on the contents of the storage resources). An instruction, therefore, must 
specify not only the operation, but also the registers or memory words in which the 
operands are to be found and the result is to be placed. The operands may be 
specified by an instruction in two ways. An operand is said to be specified explicitly 

if the instruction contains special bits for its identification. For example, the instruc­
tion performing an addition may contain three binary numbers specifying the regis­
ters containing the two operands and the register that receives the result. An 
operand is said to be defined implicitly if it is included as a part of the definition of 
the operation itself, as represented by the opcode, rather than being given in the 
instruction. For example, in an Increment Register operation, one of the operands is 
implicitly + 1. 

The three instruction formats for the simple computer are illustrated in 
Figure 9-14. Suppose that the computer has a register file consisting of eight regis­
ters, RO through R7. The instruction format in Figure 9-14( a) consists of an opcode 
that specifies the use of three or fewer registers, as needed. One of the registers is 
designated a destination for the result and two of the registers sources for operands. 
For convenience, the field names are abbreviated DR for "Destination Register," 
SA for "Source Register A," and SB for "Source Register B." The numbers of regis­
ter fields and registers actually used are determined by the specific opcode. The 
opcode also specifies the use of the registers. For example, for a subtraction opera­
tion, suppose that the three bits in SA are 010, specifying R2, the three bits in SB 
are 011, specifying R3, and the three bits in DR are 001, specifying R1. Then the 
contents of R3 will be subtracted from the contents of R2, and the result will be 
placed in Rl. As an additional example, suppose that the operation is a store (to 
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memory). Suppose further, that the three bits in SA specify R4 and the three bits in 
SB specify RS. For this particular operation, it is assumed that the register specified 
in SA contains the address and the register specified in SB contains the operand to 
be stored. So the value in RS is stored in the memory location given by the value in 
R4. The DR field has no effect, since the store operation prevents the register file 
from being written. 

The instruction format in Figure 9-14(b) has an opcode, two register fields, 
and an operand. The operand is a constant called an immediate operand, since it is 
immediately available in the instruction. For example, for an add immediate opera­
tion with SA specified as R7, DR specified as R2, and operand OP equal to 011, the 
value 3 is added to the contents of R7, and the result of the addition is placed in 
R2. Since the operand is only three bits rather than a full 16 bits, the remaining 13 
bits must be filled by using either zero fill or sign extension, as discussed in Chapter 
4. In this ISA, zero fill is specified for the operand. 

The instruction format in Figure 9-14(c), in contrast to the other two formats, 
does not change any register file or memory contents. Instead, it affects the order 
in which the instructions are fetched from memory. The location of an instruction 
to be fetched is determined by the program counter, denoted by PC. Ordinarily, 
the program counter fetches the instructions from sequential addresses in memory 
as the program is executed. But much of the power of a processor comes from its 
ability to change the order of execution of the instructions based on results of the 
processing performed. These changes in the order of instruction execution are 
based on the use of instructions referred to as jumps and branches. 

The example format given in Figure 9-14(c) for jump and branch instructions 
has an operation code, one register field SA, and a split address field AD. If a 
branch (possibly based on the contents of the register specified) is to occur, the 
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(b) Immediate 
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new address is formed by adding the current PC contents and the contents of the 6-
bit address field. This addressing method is called PC relative and the 6-bit address 
field, referred to as an address offset, is treated as a signed 2s complement number. 
To preserve the 2s complement representation, sign extension is applied to the 6-bit 
address to form a 16-bit offset before the addition. If the leftmost bit of the address 
field AD is a 1, then the 10 bits to its left are filled with ls to give a negative 2s 
complement offset. If the leftmost bit of the address field is 0, then the 10 bits to its 
left are filled with Os to give a positive 2s complement offset. The offset is added to 
the contents of the PC to form the location from which the next instruction is to be 
fetched. For example, with the PC value equal to 55, suppose that a branch is to 
occur to location 35 if the contents of R6 is equal to zero. The opcode would specify 
a branch-on-zero instruction, SA would be specified as R6, and AD would be the 
6-bit, 2s complement representation of -20. If R6 is zero, then PC contents 
becomes 55 + (- 20) = 35, and the next instruction will be fetched from address 35. 
Otherwise, if R6 is nonzero, the PC will count up to 56, and the next instruction 
will be fetched from address 56. This addressing method alone provides only 
branch addresses within a small range below and above the PC value. The jump 
provides a broader range of addresses by using the unsigned contents of a 16-bit 
register as the jump target. 

The three formats in Figure 9-14 are used for the simple computer to be dis­
cussed in this chapter. In Chapter 10, we present and discuss more generally other 
instruction types and formats. 

Instruction Specifications 

Instruction specifications describe each of the distinct instructions that can be 
executed by the system. For each instruction, the opcode is given along with a 
shorthand name called a mnemonic, which can be used as a symbolic representa­
tion for the opcode. This mnemonic, along with a representation for each of the 
additional instruction fields in the format for the instruction, represents the nota­
tion to be used in specifying all of the fields of the instruction symbolically. This 
symbolic representation is then converted to the binary representation of the 
instruction by a program called an assembler. A description of the operation per­
formed by the instruction execution is given, including the status bits that are 
affected by the instruction. This description may be text or may use a register 
transfer-like notation. 

The instruction specifications for the simple computer are given in Table 9-8. 
The register transfer notation introduced in previous chapters is used to describe 
the operation performed, and the status bits that are valid for each instruction are 
indicated. In order to illustrate the instructions, suppose that we have a memory 
with 16 bits per word with instructions having one of the formats in Figure 9-14. 
Instructions and data, in binary, are placed in memory, as shown in Table 9-9. This 
stored information represents the four instructions illustrating the distinct formats. 
At address 25, we have a register format instruction that specifies an operation to 
subtract R3 from R2 and load the difference into R1. This operation is represented 
symbolically in the rightmost column of Table 9-9. Note that the 7-bit opcode for 
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D TABLE 9-8 
Instruction Specifications for the Simple Computer 

Mne- Status 
Instruction Opcode monic Format Description Bits 

Move A 0000000 MOVA RD,RA R[DR] � R[SA]* N,Z 

Increment 0000001 INC RD,RA R[DR] � R[SA] + 1 * N,Z 

Add 0000010 ADD RD, RA, RB R[DR] � R[SA] + R[SB]* N,Z 

Subtract 0000101 SUB RD, RA, RB R[DR] � R[SA] -R[SB]* N,Z 

Decrement 0000110 DEC RD,RA R[DR] � R[SA] -1 * N,Z 
AND 0001000 AND RD, RA, RB R[DR] � R[SA] A R[SB]* N,Z 

OR 0001001 OR RD, RA, RB R[DR] � R[SA] v R[SB]* N,Z 

Exclusive OR 0001010 XOR RD, RA, RB R[DR] � R[SA] EB R[SB]* N,Z 

NOT 0001011 NOT RD,RA R[DR] � R[SA] * N,Z 
Move B 0001100 MOVB RD,RB R[DR] � R[SB]* 

Shift Right  0001101 SHR RD,RB R[DR] � sr R[SB]* 

Shift Left 0001110 SHL RD,RB R[DR] � sl R[SB]* 

Load Immediate 1001100 LDI RD,OP R[DR] � zf OP* 

Add Immediate 1000010 ADI RD, RA, OP R[DR] � R[SA] + zf OP* N,Z 

Load 0010000 LD RD,RA R[DR] � M[SA]* 

Store 0100000 ST RA,RB M[SA] � R[SB]* 

Branch on Zero 1100000 BRZ RA,AD if (R[SA] = 0) PC� PC+ se AD, N, Z 
if (R[SA] -::t- 0) PC � PC + I 

Branch on 1100001 BRN RA,AD if (R[SA] < 0) PC� PC+ se AD, N, Z 
Negative if (R[SA] � 0) PC � PC + I 

Jump 1110000 JMP RA PC�R[SA] 

* For all of these instructions, PC +-- PC + 1 is also executed to prepare for the next cycle. 

subtraction is 0000101, or decimal S. The remaining bits of the instruction specify 
the three registers: 001 specifies the destination register as Rl, 010 specifies the 
source register A as R2, and 011 specifies the source register B as R3. 

In memory location 3S is a register format instruction to store the contents of 
RS in the memory location specified by R4. The opcode is 0100000, or decimal 32, 
and the operation is given symbolically, again , in the rightmost column of the fig­
ure. Suppose R4 contains 70 and RS contains 80. Then the execution of this instruc­
tion will store the value 80 in memory location 70, replacing the original value of 
192 stored there. 

At address 4S, an immediate format instruction appears that adds 3 to the 
contents of R7 and loads the result into R2. The opcode for this instruction is 66, 
and the operand to be added is the value 3 (011) in the OP field, the last three bits 
of the instruction. 

In location SS, the branch instruction previously described appears. The 
opcode for this instruction is 96, and source register A is specified as R6. Note that 
AD (Left) contains 101 and AD (Right) contains 100. Putting these two together 
and applying sign extension, we obtain 1111111111101100, which represents -20 in 
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D TABLE 9-9 
Memory Representation of Instructions and Data 

Decimal Decimal 
Address Memory Contents Opcode Other Fields 

25 0000101 001 010 011 5 (Subtract) DR:l, SA:2, SB:3 

35 0100000 000 100 101 32 (Store) SA:4,SB:5 

45 1000010 010 111 011 66 (Add DR:2, SA:7, OP:3 
Immediate) 

55 1100000 101 110 100 96 (Branch AD: 44,SA:6 
on Zero) 

Operation 

Rl�R2-R3 

M[R4]�R5 

R2�R7+3 

If R6 = 0, 
PC�PC-20 

70 00000000011000000 Data = 192. After execution of instruction in 35, 
Data= 80. 

2s complement. If register R6 is zero, then - 20 is added to the PC to give 35. If 
register R6 is nonzero, the new PC value will be 56. Notice our assumption that the 
addition to the PC content occurs before the PC has been incremented, which 
would be the case in the simple computer. In real systems, however, the PC has 
sometimes been incremented to point to the next instruction in memory. In such a 
case, the value stored in AD needs to be adjusted accordingly to obtain the right 
branch address, in this case, -19. 

The placement of instructions in memory as shown in Table 9-9 is quite arbi­
trary. In many computers, the word length is from 32 to 64 bits, so the instruction 
formats can hold much larger immediate operands and addresses than those we 
have given. Depending on the computer architecture, some of the instruction for­
mats may occupy two or more consecutive memory words. Also, the number of reg­
isters is often larger, so the register fields in the instructions must contain more bits. 

At this point, it is vital to recognize the difference between a computer oper­
ation and a hardware microoperation. An operation is specified by an instruction 
stored in binary, in the computer's memory. The control unit in the computer uses 
the address or addresses provided by the program counter to retrieve the instruc­
tion from memory. It then decodes the opcode bits and other information in the 
instruction to perform the required microoperations for the execution of the 
instruction. In contrast, a microoperation is specified by the bits in a control word 
in the hardware which is decoded by the computer hardware to execute the micro­
operation. The execution of a computer operation often requires a sequence or 
program of microoperations, rather than a single microoperation. 
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9-8 SINGLE-CYCLE HARDWIRED CONTROL 

The block diagram for a computer that has a hardwired control unit and that 
fetches and executes an instruction in a single clock cycle is shown in Figure 9-15. 

We refer to this computer as the single-cycle computer. The storage resources, 
instruction formats, and instruction specifications for this computer are given in the 
previous section. The datapath shown is the same as that in Figure 9-11 with m = 3 

and n = 16. The data memory Mis attached to the Address out, Data out, and Data 
in by connections to the datapath. It has a single control signal MW, which is 1 to 
write the memory, and 0 otherwise. 
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The Control unit appears on the left in Figure 9-15. Although not usually 
thought of as part of the control unit, the instruction memory, together with its 
address inputs and instruction outputs, is shown for convenience within the control 
unit. We do not write to the instruction memory during the execution of a program, 
making it appear in this model to be a combinational rather than a sequential com­
ponent. As previously discussed, the PC provides the instruction address to the 
instruction memory, and the instruction output from the instruction memory goes 
to the control logic, which in this case is the instruction decoder. The output from 
the instruction memory also goes to Extend and Zero fill, which provide the 
address offset to the PC and the constant input, Constant in, to the datapath, 
respectively. Extension appends the leftmost bit of the 6-bit address offset field AD 
to the left of AD, preserving its 2s complement representation. Zero fill appends 13 
zeros to the left of the operand (OP) field of the instruction to form a 16-bit 
unsigned operand for use in the datapath. For example, operand value 110 
becomes 0000000000000110 or +6. 

The PC is updated in each clock cycle. The behavior of the PC, which is a 
complex register, is determined by the opcode, N, and Z, since C and V are not used 
in this control-unit design. If a jump occurs, the new PC value becomes the value on 
Bus A. If a branch is taken, then the new PC value is the sum of the previous PC 
value and the sign-extended address offset, which in 2s complement can be either 
positive or negative. Otherwise, the PC is incremented by 1. A jump occurs for bit 
13 in the instruction equal to 1. For bit 13 equal to 0, a conditional branch occurs. 
The status bit that is the condition for the branch is selected by bit 9 of the instruc­
tion. For bit 9 equal to 1, N is selected and, for bit 9 equal to 0, Z is selected. 

All parts of the computer that are sequential are shown in blue. Note that 
there is no sequential logic in the control part other than the PC. Thus, aside from 
providing the address to the instruction memory, the control logic is combinational 
in this case. That fact, combined with the structure of the datapath and the use of 
separate instruction and data memories, allows the single-cy cle computer to obtain 
and execute an instruction from the instruction memory, all in a single clock cycle. 

Instruction Decoder 

The instruction decoder is a combinational circuit that provides all of the control 
words for the datapath, based on the contents of the fields of the instruction. A num­
ber of the fields of the control word can be obtained directly from the contents of the 
fields in the instruction. Looking at Figure 9-16, we see that the control-word fields 
DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively. 
Also, control field BC for selection of the branch condition status bits is taken 
directly from the last bit of Opcode. The remaining control-word fields include data­
path and data memory control bits MB, MD, RW, and MW. There are two added bits 
for the control of the PC: PL and JB. If there is to be a jump or branch, PL= 1, load­
ing the PC. For PL = 0, the PC is incremented. With PL = 1, JB = 1 calls for a jump, 
and JB = 0 calls for a conditional branch. Some of the single-bit control-word fields 
require logic for their implementation. In order to design this logic, we divide the 
various instructions possible for the simple computer into different function types 
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and then assign the first three bits of the opcode to the various types. The instruction 
function types shown in Table 9-10 are based on the use of specific hardware 
resources in the computer, such as MUX B, the Function unit, the Register file, Data 
memory, and the PC. For example, the first function type uses the ALU, sets MUX B 
to use the Register file source, sets MUX D to use the Function unit output, and 
writes to the Register file. Other instruction function types are defined as various 
combinations of use of a constant input instead of a register, Data memory reads and 
writes, and manipulation of the PC for jumps and branches. 

By looking at the relationship between the instruction function types and 
the necessary control-word values needed for their implementation, bits 15 

through 13 and bit 9 were assigned as shown in Table 9-10. This assignment 
attempted to minimize the logic required to implement the decoder. To perform 
the design of the decoder, the values for all of the single-bit fields in the control 
word were determined from the function types and entered into Table 9-10. Note 
that there are a number of don't-care (X) entries. Treating Table 9-10 as a truth 
table and optimizing the logic functions, the logic for the single-bit outputs of the 
instruction decoder in Figure 9-16 results. In the optimization, the four unused 
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D TABLE 9-10 
Truth Table for Instruction Decoder Logic 

Instruction Bits Control Word Bits 

Instruction Function Type 15 14 13 9 MB MD RW MWPL JB BC 

Function-unit operations using 0 0 0 x 0 0 1 0 0 x x 
registers 

Memory read 0 0 1 x 0 1 1 0 0 x x 

Memory write 0 1 0 x 0 x 0 1 0 x x 

Function-unit operations using 1 0 0 x 1 0 1 0 0 x x 
register and constant 

Conditional branch on zero (Z) 1 1 0 0 x x 0 0 1 0 0 

Conditional branch on negative (N) 1 1 0 1 x x 0 0 1 0 1 

Unconditional jump 1 1 1 x x x 0 0 1 1 x 

codes for bits 15, 14, 13, and 9 were assumed to have X values for all of the single­
bit fields. This implies that if one of these codes occurs in a program, the effect is 
unknown. A more conservative design specifies RW, MW, and PL all zero for 
these four codes to insure that the storage resource state is unchanged for these 
unused codes. The optimization results in the logic in Figure 9-16 for implement­
ing MB, MD, RW, MW, PL, and JB. 

The remaining logic in the decoder deals with the FS field. For all but the 
conditional branch and unconditional jump instructions, bits 9 through 12 are fed 
directly through to form the FS field. During conditional branch operations, such 
as Branch on Zero, the value in source register A must be passed through the ALU 
so that the status bits N and Z can be evaluated. This requires FS = 0000. The use 
of bit 9, however, for status-bit selection for conditional branches requires at times 
that bit 9, which controls the rightmost bit of FS, be a 1. The contradiction in values 
between bit 9 and FS is resolved by adding an enable on bit 9 that forces FS0 to 
zero whenever PL= 1, as shown in Figure 9-16. 

Sample Instructions and Program 

Six instructions for the single-cycle computer are listed in Table 9-11. The symbolic 
names associated with the instructions are useful for listing programs in symbolic 
form rather than in binary code. Because of the importance of instruction decoding, 
the rightmost six columns of the table show critical control-signal values for each 
instruction, based on the values obtained using the logic in Figure 9-16. 

Now suppose that the first instruction, "Add Immediate" (ADI), is present on 
the output of the instruction memory shown in Figure 9-15. Then, on the basis of 
the first three bits of the opcode, 100, the outputs of the instruction decoder have 



D TABLE 9-11 
Six Instructions for the Single-Cycle Computer 

Operation Symbolic 
Code Name Format Description Function MB MD RW MW PL JB BC 

1000010 ADI Immediate Add immediate R[DR] +-R[SA] + zf /(2:0) 1 0 1 0 0 0 0 
operand 

0010000 LD Register Load memory R[DR] +-M[R[SA]] 0 1 1 0 0 1 0 '° 

content into 
I 

00 

register ...... 

Vl 

0100000 ST Register Store register M[R[SA]] +-R[SB] 0 1 0 1 0 0 0 s· 
a,9.. content in ('I> 

I 

memory .Q 
0001110 SL Register Shift left R[DR]+-sl R[SB] 0 0 1 0 0 1 0 a. 

('I> 

::i: 
0001011 NOT Register Complement R[DR]+-R[SA] 0 0 1 0 0 0 1 a 

register �· 1100000 BRZ Jump/Branch If R[SA] = 0, branch If R[SA] = 0, 1 0 0 0 1 0 0 ('I> 
p.. 

to PC+ seAD PC+..-PC + se AD Cl 
If R[SA] *- 0, PC+..-PC + 1 0 

1:1 

[ 

D 

� 
� 
U1 
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the values MB = 1, MD = 0, RW = 1, and MW = 0. The last three bits of the 
instruction, OP2_0, are extended to 16 bits by zero fill. We denote this in a register 
transfer statement by zf. Since MB is 1, this zero-filled value is placed on Bus B. 

With MD equal to 0, the function unit output is selected, and since the last four 
bits of the opcode, 0010, specify field FS, the operation is A + B. So the zero-filled 
value on Bus B is added to the contents of register SA, with the result presented 
on Bus D. Since RW = 1, the value on Bus D is written into register DR. Finally, 
with MW = 0, no write into memory occurs. This entire operation takes place in a 
single clock cycle. At the beginning of the next cycle, the destination register is 
written and, since PL = 0, the PC is incremented to point to the next instruction. 

The second instruction, LD, is a load from memory with opcode 0010000. The 
first three bits of this opcode, 001, give control values MD = 1, RW = 1, and MW 
= 0. These values, plus the register source field SA and register destination field 
DR, fully specify this instruction, which loads the contents of the memory address 
specified by register SA into register DR. Again, since PL = 0, the PC is incre­
mented. Note that the values of JB and BC are ignored, since this is neither a jump 
nor a branch instruction. 

The third instruction, ST, stores the contents of a register in memory. The first 
three bits of the opcode, 010, give control signal values MB = 0, RW = 0, and MW 
= 1. MW = 1 causes a memory write operation, with the address and data from the 
register file. RW = 0 prevents the register file from being written. The address for 
the memory write comes from the register selected by field SA, and the data for 
the memory write comes from the register selected by S B, since MB= 0. The DR 
field, although present, is not used, since no write occurs to a register. 

Because this computer has load and store instructions and does not combine 
loading and storing of data operands with other operations, it is referred to as hav­
ing a load/store architecture. The use of such an architecture simplifies the execu­
tion of instructions. 

The next two instructions use the Function unit and write to the Register file 
without immediate operands. The last four bits of the opcode, the value for the FS 
field of the control word, specify Function unit operation. For these two instruc­
tions, only one source register, R[SA] for the NOT and R[S B] for the shift left, and 
a destination register are involved. 

The final instruction is a conditional branch and manipulates the PC value. It 
has PL= 1, causing the program counter to be loaded instead of incremented, and 
JB = 0, causing a conditional branch rather than a jump. Since BC = 0, register 
R[SA] is tested for a value of zero. If R[SA] equals zero, the PC value becomes PC 

+ se A D, where se stands for sign extend. Otherwise, PC is incremented. For this 
instruction, the DR and S B  fields become the 6-bit address field A D, which is sign 
extended and added to the PC. 

To demonstrate how instructions such as these can be used in a simple pro­
gram, consider the arithmetic expression 83 - (2 + 3). The following program per­
forms this computation, assuming that register R3 contains 248, location 248 in 
data memory contains 2, location 249 contains 83, and the result is to be placed in 
location 250: 



LD R1,R3 

ADI Rl,Rl,3 

NOT Rl,Rl 

INC Rl,Rl 

INC R3,R3 

LD R2,R3 

ADD R2,R2,R1 

INC R3,R3 

ST R3,R2 
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Load Rl with contents of location 248 in memory (Rl = 2) 

Add 3 to Rl (Rl = 5) 

Complement Rl 

Increment Rl (Rl = -5) 

Increment the contents of R3 (R3 = 249) 

Load R2 with contents of location 249 in memory (R2 = 83) 

Add contents of Rl to contents of R2 (R2 = 78) 

Increment the contents of R3 (R3 = 250) 

Store R2 in memory location 250 (M[250] = 78) 

The subtraction in this case is done by taking the 2s complement of (2 + 3) and 
adding it to 83; the subtraction operation SUB could have been used as well. If a 
register field is not used in executing an instruction, its symbolic value is omitted. 
The symbolic values for the register-type instructions, when the latter are present, 
are in the order DR, SA, and SB. For immediate types, the fields are in the order 
DR, SA, and OP. To store this program in the instruction memory, it is necessary to 
convert all of the symbolic names and decimal numbers used to their correspond­
ing binary codes. 

Single-Cycle Computer Issues 

Although there may be instances in which single-cycle computer timing and con­
trol strategy is useful, it has a number of shortcomings. One is in the area of per­
forming complex operations. For example, suppose that an instruction is desired 
that executes unsigned binary multiplication using a multiplication algorithm that 
processes one bit of the multiplier at a time. With the given datapath, this cannot 
be accomplished by a microoperation that can be executed in a single clock cycle. 
Thus, a control organization that provides multiple clock cycles for the execution 
of instructions is needed. 

Also, the single-cycle computer has two distinct 16-bit memories, one for 
instructions and one for data. For a simple computer with instructions and data in 
the same 16-bit memory, two read accesses of memory are required to execute an 
instruction that loads a data word from memory into a register. The first access 
obtains the instruction, and the second access, if required, reads or writes the data 
word. Since two different addresses must be applied to the memory address inputs, 
at least two clock cycles, one for each address, are required for obtaining and execut­
ing the instruction. This can also be accomplished easily with multiple-cycle control. 

Finally, the single-cycle computer has a lower limit on the clock period based 
on a long worst-case delay path. This path is shown in blue in the simplified dia­
gram of Figure 9-17. The total delay along the path is 9.8 ns. This limits the clock 
frequency to 102 MHz, which, although it may be adequate for some applications, 
is too slow for a modern computer CPU. In order to have a higher clock frequency, 
either the delays of the components on the path or the number of components in 
the path must be reduced. If the delays of the components cannot be reduced, 
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Worst-Case Delay Path in Single-Cycle Computer 

reducing the number of components in the path is the only alternative. In Chapter 
11, pipelining of the datapath reduces the number of components in the longest 
combinational delay path and permits the clock frequency to be increased. A pipe­
lined datapath and control given in Chapter 11 demonstrates the improved CPU 
performance that can be obtained. 

9-9 MULTIPLE-CYCLE HARDWIRED CONTROL 

To demonstrate multiple-cycle control, we use the architecture of the simple com­
puter, but modify its datapath, memory, and control. The goal of the modifications 
is to demonstrate the use of a single memory for both data and instructions and to 
demonstrate how more complex instructions can be implemented by using multiple 
clock cycles per instruction. The block diagram in Figure 9-18 shows the modifica­
tions to the datapath, memory, and control. 

The changes to the single-cycle computer can be observed by comparing Fig­
ures 9-15 and 9-18. The first modification, which is possible with, but not essential 
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to, multiple-cycle operation, replaces the separate instruction memory and data 
memory in Figure 9-15 with the single Memory M in Figure 9-18. To fetch instruc­
tions, the PC is the address source for the memory, and to fetch data, Bus A is 
the address source. At the address input to memory, multiplexer MUX M selects 
between these two address sources. MUX M requires an additional control signal, 
MM, which is added to the control word format. Since instructions from Memory 
M are needed in the control unit, a path is added from its output to the instruc­
tion register IR in the control unit. 

In executing an instruction across multiple clock cycles, data generated dur­
ing the current cycle is often needed in a later cycle. This data can be temporarily 
stored in a register from the time it is generated until the time it is used. Registers 

PS 2 

16 

D 

DA 16 � 16 
Register 

file 
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IL 
AX BX DX 

4 4 Control State 
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Control Logic 

N P I 1 D A B  MF M R  MM 
S S LIXXXB S D WMW 
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Block Diagram for a Multiple-Cycle Computer 
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27 

NS 

24 23 22 21 20 17 16 13 12 

D FIGURE 9-19 

9 8 7 4 3 2 1 0 

FS 

Control Word Format for Multiple-Cycle Computer 

used for such temporary storage during the execution of the instruction are usually 
not visible to the user (i.e., are not part of the storage resources). The second mod­
ification provides these temporary storage registers by doubling the number of reg­
isters in the register file. Registers 0 through 7 are storage resources and registers 8 
through 15 are used only for temporary storage during instruction execution, so 
are not part of the storage resources visible to the user. The addressing of 16 regis­
ters requires 4 bits, and becomes more complex, since addressing of the first eight 
registers must be controlled from the instruction, and the second eight registers, 
from the control unit. This is handled by the Register address logic in Figure 9-18 
and by modified DX, AX, and BX fields in the control word. The details of this 
change will be discussed later when the control word information is defined. 

The PC is the only control unit component retained and it must also be modi­
fied. During the execution of a multiple-cycle instruction, the PC must be held at 
its current value for all but one of the cycles. To provide this hold capability, as well 
as an increment and two load operations, the PC is modified to be controlled by a 
2-bit control word field, PS. Since the PC is controlled completely by the control 
word, the Branch control logic previously represented by BC is absorbed into the 
Control Logic block in Figure 9-18. 

Because of the multiple cycles of the modified computer, the instruction 
needs to be held in a register for use during its execution since its values are likely 

to be needed for more than just the first cycle. The register used for this purpose 
is the instruction register IR in Figure 9-18. Since the IR loads only when an 
instruction is being read from memory, it has a load-enable signal IL that is added 
to the control word. Because of the multiple-cycle operation, a sequential control 
circuit, which can provide a sequence of control words for microoperations used 
to interpret the instruction is required and replaces the Instruction decoder. The 
sequential control unit consists of the Control state register and the combinational 
Control logic. The Control logic has the state, the opcode, and the status bits as its 
inputs and produces the control word as its output. Conceptually, the control word 
is divided into two parts, one for Sequence control, which determines the next state 
of the overall control unit, and one for Datapath control, which controls the micro­
operations executed by the Datapath and Memory M as shown in Figure 9-18. 

The 28-bit modified control word is given in Figure 9-19 and the definitions of 
the fields of the control word are given in Tables 9-12 and 9-13. In Table 9-12, the 
fields DX, AX, and BX control the register selection. If the MSB of one of these 
fields is 0, then the corresponding register address DA, AA, or BA is that given by 
0 II DR, 0 II SA, and 0 II SB, respectively. If the MSB of one of these fields is 1, then 
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D TABLE 9-12 

Control-Word Information for Datapath 

DX AX BX Code MB Code FS Code MD RW MM MW 

R[DR] R[SA] R[SB] OXXX Register 0 F=A 0000 FnUt No Address No 

RS 

R9 

RlO 

Rll 

R12 

R13 

R14 

R15 

Write out Write 

RS RS 1000 Constant 1 F= A+l 0001 Data in Write PC Write 

R9 R9 1001 F=A+B 0010 

RlO RlO 1010 Unused 0011 

Rll Rll 1011 Unused 0100 

R12 R12 1100 F=A+B+l 0101 

R13 R13 1101 F= A-1 0110 

R14 R14 1110 Unused 0111 

R15 R15 1111 F=AAB 1000 

F=AvB 1001 

F = AffiB 1010 

F=A 1011 

F=B 1100 

F = sr B 1101 

F = slB 1110 

Unused 1111 

the corresponding register address is the contents of the field DX, AX, or BX. This 
selection process is performed by the Register address logic, which contains three 
multiplexers, one for each of DA, AA, and BA, controlled by the MSB of DX, AX, 
and BX, respectively. Table 9-12 also gives the code values for the MM field, which 
determines whether Address out or PC serves as the Memory M address. The 
remaining fields in Table 9-12, MB, MD, RW, and MW, have the same functions as 
for the single-cycle computer. 

In the sequential control circuit, the State control register has a set of states, 
just as a set of flip-flops in any other sequential circuit has. At the level of our dis­
cussion, we assume that each state has an abstract name which can be used as both 
the state and the next-state value. In the design process, a state assignment needs 
to be made to these abstract states. Referring to Table 9-13, the field NS in the con­
trol word provides the next state for the Control State register. We have assigned 
four bits for the state code, but this can be modified as necessary, depending on the 
number of states needed and the state assignment used in the design. This particu­
lar field could be considered as integral to the control and sequential circuit and 
not part of the control word, but it will appear in the state table of the control in 
any case. The 2-bit PS field controls the program counter, PC. On a given clock 
cycle the PC holds its state (00), increments its state by 1 (01), conditionally loads 
PC plus sign-extended AD (10), or unconditionally loads the contents of R[SA] 
(11). Finally, the instruction register is loaded only once during the execution of an 

Code 

0 

1 
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instruction. Thus, on any given cycle, either a new instruction is loaded (IL = 1) or 
the instruction remains unchanged (IL= 0). 

Sequential Control Design 

The design of the sequential control circuit can be done using techniques from 
Chapters 5 and 7. However, compared to the examples there, even for this compar­
atively simple computer, the control is quite complex. Assuming there are four state 
variables, the combinational Control logic has 15 input variables and 28 output vari­
ables. It turns out that a condensed state table for the circuit is not too difficult to 
develop, but manual design of the detailed logic is very complex, making the use of 
logic synthesis or a PLA (programmed logic array) , as discussed in Chapter 6, more 
viable options. As a consequence, we focus on state table development rather than 
detailed logic implementation 

We begin by developing a state machine diagram that represents the instruc­

tions that can be implemented with the minimum number of clock cycles. Exten­

sions of this chart can then be developed for implementation of instructions 

D TABLE 9-13 
Control Information for Sequence Control 

NS PS IL 

Next State Action Code Action Code 

Gives next state Hold PC 00 No load 0 
of control state Inc PC 01 Load IR 1 
register Branch 10 

Jump 11 

requiring more than the minimum number of clock cycles. The state machine dia­

grams provide the information needed to develop the state table entries for 

implementing the instruction set. For instructions requiring a memory access for 

data as well as for the instruction itself, at least two cycles are required. It is con­

venient to separate the cycles into two processing steps: instruction fetch and 

instruction execution. On the basis of this division, the partial state machine dia­

gram for the two-cycle instructions is given in Figure 9-20. This is called a partial 
state diagram, since there will be other pieces added to it, e.g., in Figures 9-21 and 

9-22. The instruction fetch occurs in state INF at the top of the chart. The PC con­

tains the address of the instruction in Memory M. This address is applied to the 

memory, and the word read from memory is loaded into the IR on the positive 

clock edge that ends state INF. The same clock edge causes the new state to 

become EXO. In state EXO, the instruction is decoded and the microoperations 

executing all or part of the instruction appear in Mealy-type outputs. If the 

instruction can be completed in state EXO, the next state is INF in preparation for 

fetching of the next instruction. Further, for instructions that do not change PC 
contents during their execution, the PC is incremented. If additional states are 
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L transition conditions on merged arcs 

Opcode= 
R[DR] +-R[SA] -0000000 

R[DR] +--- R[SA] + 1-0000001 

R[DR] +-R[SA] + R[SB]-0000010 

[DR]+---R[SA] + R[SB] +1-0000101 

R[DR] +-R[SA] -1- 0000110 

R[DR] � R[SA] A R[SB] -0001000 
R[DR] +--- R[SA] v R[SB]-0001001 

R[DR] +--- R[SA] EB R[SB]-0001010 

R[DR] +-R[SA] -0001011 
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EXO 

IR +-M[PC] 

Opcode= 
0001100-R[DR] +---R[SB] 

0010000-R[DR] +--- M[R[SA]] 

0100000-M[R[SA]] +---R[SB] 

1001100-R[DR] +--- zfOP 

1000010 -R[DR] +---R[SA] + zf OP 
1100000 · Z-PC +---PC + se AD 

1100000. z 
1100001 · N- PC +---PC + se AD 

1100001- N 
1110000-PC +---R[SA] 

Partial State Machine Diagram for Multiple-Cycle Computer 

required for instruction execution, the next state is EXL In each of the execution 
states, 128 different input combinations are possible, based on the opcode. Many 
of these opcodes will be unused. An unused opcode is one which does not appear 
in any of the partial state diagrams for a particular control unit. We assume that 
these opcodes will never appear and so will be don't-care inputs. An alternative 
assumption is that if they do appear, they cause an exception that signals their 
presence. These and other assumptions for unused opcodes must be taken into 
account when evaluating constraint 2 of the transition condition constraints in 
Section 5-7. 

Status bits are used with some operation codes, typically one at a time. In 
Figure 9-20, N and Z appear for the branch instructions on the lower right as out­
put conditions and affect output actions only. In other cases, they may also affect 
sequencing, appearing as transition conditions. 

Next, we describe a sampling of the instruction executions specified by the state 
machine diagram in Figure 9-20. The first opcode is 0000000 for the move A (MOVA) 
instruction. This instruction involves a simple transfer from the source A register to 
the destination register, as specified by the register transfer shown in state EXO for 
the instruction opcode. Although the status bits N and Z are valid, they are not 
used in the execution of this instruction. The move action occurs and the PC is 
incremented on the clock edge, ending state EXO. The incrementing of the PC is an 
action that occurs for all but branch and jump instructions in the state machine dia­
gram. Note that due to the sharing of arcs by the transitions to state INF, the incre­
menting of the PC can be placed on the arc shared by all transitions rather than being 
added to the output branch for each transition. 
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The third opcode is 0000010 for the ADD instruction with the register trans­
fer for addition shown. In this case, status bits V, C, N, and Z are valid, although 
not used. The eleventh opcode, 0010000, is the load (LD) instruction, which uses 
the value in the register specified by SA for the address and loads the data word 
from Memory Minto the register specified by DR. The twelfth opcode, 0100000, is 
for the store (ST) instruction, which stores the value in register SB into the loca­
tion in Memory M specified by the address from register SA. The fourteenth 
opcode, 1001100, is add immediate (ADI), which adds the zero-filled value of the 
OP field, the rightmost three bits of the instruction, to the contents of register SA 
and places the result in the register DR. 

The sixteenth opcode, 1100001, is the branch on negative (BRN) instruction. 
The decoding of this instruction causes the value in the register specified by SA to 
be passed through the Function unit in order to evaluate status bits N and Z. The 
values N and Z then propagate back to the Control logic, but no register load of 
the Function unit output occurs. Based on the value of N, the branch is taken or 
not taken by adding the extended address AD from the instruction to the value in 
the PC or incrementing the PC, respectively. This is represented by the output 
action for N shown in Figure 9-20. 

From this state machine diagram, the state table for the sequential control 
circuit can be developed as shown in Table 9-14. The present states are given as 
abstract state names, and the opcodes and status bits serve as inputs. In the case of 
the status bits, only those bits that are used in the instruction are specified. By 
using combinations of bits and multiple status bit patterns, it is possible to specify 
functions of status bits. Note that many of the entries in Table 9-14 contain X's, 
symbolizing "don't cares." For these entries, the input or resource is not used in the 
given microoperation, or the specific bits of the code that are X are not used for 
controlling it. It is a useful exercise to determine how each of the entries in Table 
9-14 is obtained, based on Table 9-12, Table 9-13, and Figure 9-20. 

It is interesting to briefly compare the timing of the execution of instructions 
in this organization with that for the single-cycle computer. Each instruction 
requires two clock cycles to fetch and execute, compared with one clock cycle for 
the single-cycle computer. Because the very long delay path from the PC through 
the Instruction memory, Instruction decoder, datapath, and branch control is bro­
ken up by the instruction register, the clock periods are somewhat shorter. Never­
theless, due to setup time requirements for the added flip-flops in the IR and a 
potential imbalance in delays for the various paths through the circuit, the overall 
time taken to execute an instruction could be just as long as or longer than in the 
single-cycle computer. So what is the benefit of this organization, other than ability 
to use a single memory? The next two instructions give the answer. 

The first instruction to be added is a "load register indirect" (LRI), with 
opcode 0010001. In this instruction, the contents of register SA address a word in 
memory. The word, which is known as an indirect address, is then used to address 
the word in memory that is loaded into register DR. This can be represented sym­
bolically as 

R[DR] f- M[M[R[SA]]] 



D TABLE 9-14 
State Table for Two-Cycle lnstmctions 

Inputs 

State 

Opcode VCNZ 

INF xxxxxxx xxxx 

EXO 0000000 xx xx 

EXO 0000001 xx xx 

EXO 0000010 xx xx 

EXO 0000101 xx xx 

EXO 0000110 xx xx 

EXO 0001000 xx xx 

EXO 0001001 xx xx 

EXO 0001010 xx xx 

EXO 0001011 xx xx 

EXO 0001100 xx xx 

EXO 0010000 xx xx 

EXO 0100000 xx xx 

EXO 1001100 xx xx 

EXO 1000010 xx xx 

EXO 1100000 XXXl 

EXO 1100000 xxxo 

EXO 1100001 XXlX 

EXO 1100001 xx ox 
EXO 1110000 xx xx 

Next 
State 

EXO 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 

INF 
INF 

I p 
L S 

1 00 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 10 

0 01 

0 10 

0 01 
0 11 

DX 

xx xx 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

oxxx 

xx xx 

oxxx 

ox xx 

xx xx 

xx xx 

xx xx 

xx xx 
xx xx 

• For this state and input combination, PC f- PC + 1 also occurs. 

AX 

xx xx 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

OXXX 

xx xx 

ox xx 

oxxx 

xx xx 

oxxx 

oxxx 

oxxx 

oxxx 

oxxx 
oxxx 

Outputs 

M 
BX B FS 

xx xx x xx xx 

xx xx x 0000 

xx xx x 0001 

OXXX 0 0010 

OXXX 0 0101 

xx xx x 0110 

OXXX 0 1000 

OXXX 0 1001 

OXXX 0 1010 

xx xx x 1011 

OXXX 0 1100 

xx xx x xx xx 

oxxx 0 xx xx 

xx xx 1 1100 

xx xx 1 0010 

xx xx x 0000 

xx xx x 0000 

xx xx x 0000 

xx xx x 0000 
xx xx x 0000 

M R M M 
D WM W 

x 0 1 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

1 1 0 0 

x 0 0 1 

0 1 0 0 

0 1 0 0 

x 0 0 0 

x 0 0 0 

x 0 0 0 

x 0 0 0 
x 0 0 0 

MOVA 

INC 

ADD 

SUB 

DEC 

AND 

OR 

XOR 

NOT 

MOVB 

LD 

ST 

LDI 

ADI 

BRZ 

BRZ 

BRN 

BRN 
JMP 

Comments 

IR�M[PC] 

R[DR] � R[SA]* 

R[DR] � R[SA] + 1 * 

R[DR] � R[SA] + R[SB]* 

R[DR} � R[SA] + R[SB] + 1 * 

R[DR] � R[SA] + (-1)* 

R[DR] �R[SA] AR[SB]* 

R[DR] � R[SA] v R[SB]* 

R[DR] � R[SA] Ea R[SB]* 

R[DR] � R[SA] * 

R[DR] � R[SB]* 

R[DR] � M[R[SA]]* 

M[R[SA]] � R[SB]* 

R[DR] � zf OP* 

R[DR] � R[SA] + zf OP* 

PC�PC+seAD 

PC�PC+l 

PC�PC+seAD 

PC�PC+l D 
PC�R[SA] 
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From INF 

Opcode = 0010001 - R[DR] +---M[ RS], PC +--- PC + 1 

To INF 

D FIGURE 9-21 
Partial State Machine Diagram for Register Indirect Instruction 

The partial state machine diagram for the execution of this instruction is 
given in Figure 9-21. Following the instruction fetch, the state becomes EXO, the 
same EXO used in Figure 9-20. In this state, R[SA] addresses the memory to 
obtain the indirect address, which is then placed in temporary register R8. In the 
next state, EXl, a new state that is added here, the next memory access occurs 
with the address from R8. The operand obtained is placed in R[DR] to complete 
the operation, and the PC is incremented. The state machine diagram then 
returns to state INF to fetch the next instruction. The state machine diagram por­
tion for the execution of a given instruction must have the opcode for the instruc­
tion appear on all transitions from states that have opcodes for other instructions 
appearing, since the same states are used by the other instructions for their exe­
cution. This applies across all of the partial state machine diagrams for the control 
unit. Clearly, with two accesses to Memory M, this instruction could not be exe­
cuted by the single-clock-cycle computer or by using two clock cycles in the multi­
ple-cycle computer. Also, to avoid disturbing the contents of registers RO through 
R7 (except for R[SA ]), the use of register R8 for temporary storage is essential. 
The LRI instruction requires three clock cycles for its execution. To accomplish 
the same operation in the single-cycle computer requires two LD instructions, 
taking two clock cycles. In the multiple-cycle computer, due to two instruction 
fetches and two data accesses, it would require two LD instructions, but would 
take four clock cycles. So the LRI instruction gives an improvement in execution 
time in the latter case. 

The final two instructions to be added are "shift right multiple" (SRM) and 
"shift left multiple" (SLM) , with opcodes 0001101 and 0001110, respectively. These 
two instructions can share most of the microinstruction sequence to be used. SRM 
specifies that the contents of register SA are to be shifted to the right by the num­
ber of positions given by the three bits of the OP field, with the result placed in 
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From INF 

(Opcode= 0001101) +(Opcode= 0001110)/RS f- R[SA] 

Z ·((Opcode= 0001101) +(Opcode= 0001110)) 

o\\\O)) 

((Opcode= 0001101) 
+(Opcode= 0001110))/ 
R9f- zfOP 

Z ·((Opcode= 0001101) 
+(Opcode= 0001110)) 

Z · ((Opcode= 0001101) 
+(Opcode= 0001110)) 

_.. \)O 
cooe - ((Opcode = 0001101) 

\O\) � (0\) +(Opcode= 0001110))/ 

�. 
(
(O\)co ae 

-::::. ooo\ R9 f-R9 -1 

Opcode = 0001101- RS f- sr RS 

Opcode = 0001110-RS f- sl RS 

Z ·((Opcode= 0001101) 
+(Opcode= 0001110)) 

Z ·((Opcode= 0001101) +(Opcode= 0001110)) 

R[DR] f-RS 
(Opcode= 0001101) +(Opcode= 0001110)_.............. 

D FIGURE 9-22 

� state-transition conditions 
on merged arcs 

\PCf-PC + 1 

To INF 

Partial State Machine Diagram for Right-Shift and Left-Shift Multiple Instructions 

register DR. The partial state machine diagram for this operation (and for SLM) is 
given in Figure 9-22. Register R9 stores the number of bit positions remaining to 
be shifted, and the shifting is performed in register R8. 

Initially, the contents of R[SA] to be shifted is placed in R8. As the contents 
is loaded into R8, it passes through the ALU and is checked to see if it is 0 to 
determine if shifting is needed or not. Note that this check could occur even if R8 
was not loaded. Likewise, the shift amount being loaded into R9 is checked to see 
whether it is 0, again to determine if shifting is needed or not. If either case is satis­
fied, the instruction execution is complete, and the state machine flow returns to 
state INF. Otherwise, a right-shift operation is performed on the contents of regis­
ter R8. R9 is decremented and tested to see whether it will be 0. If R9 -::;:. 0, then the 
shift and decrement are repeated. If R9 = 0, then the contents of R8 have been 
shifted by the number of bit positions specified by OP, so the result is transferred 
to R[DR] to complete the instruction execution, and the state machine flow returns 
to state INF. 

If both the operand and the shift amount are nonzero, SRM, including fetch, 
requires 2s + 4 clock cycles, where s is the number of positions shifted. The range 
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State Table for Illustration of Instructions Having Three or More Cycles 

Inputs 

State 
------ Next 

state I 
Opcode VCNZ L PS DX 

EXO 0010001 xxxx EX1 0 00 1000 

EX1 0010001 xxxx INF 0 01 oxxx 

EXO 0001101 xxxo EX1 0 00 1000 

EXO 0001101 XXX1 INF 0 01 1000 

EX1 0001101 XXXO EX2 0 00 1001 

EX1 0001101 XXX1 INF 0 01 1001 

EX2 0001101 xxxx EX3 0 00 1000 

EX3 0001101 xxxo EX2 0 00 1001 

EX3 0001101 XXX1 EX4 0 00 1001 

EX4 0001101 xxxx INF 0 01 OXXX 

EXO 0001110 xxxo EX1 0 00 1000 

EXO 0001110 XXX1 INF 0 01 1000 

EX1 0001110 xxxo EX2 0 00 1001 

EX1 0001110 XXX1 INF 0 01 1001 

EX2 0001110 xxxx EX3 0 00 1000 

EX3 0001110 xxxo EX2 0 00 1001 

EX3 0001110 XXX1 EX4 0 00 1001 

EX4 0001110 xxxx INF 0 01 oxxx 

*For this state and input combination, PC f- PC+ 1 also occurs. 

Outputs 

AX BX MB FS 

OXXX xxxx x 0000 

1000 xxxx x 0000 

ox xx xxxx x 0000 

ox xx xxxx x 0000 

xxxx xxxx 1 1100 

xxxx xxxx 1 1100 

xxxx 1000 0 1101 

1001 xxxx x 0110 

1001 xxxx x 0110 

1000 xxxx x 0000 

ox xx xxxx x 0000 

OXXX xxxx x 0000 

xxxx xxxx 1 1100 

xxxx xxxx 1 1100 

xxxx 1000 0 1110 

1001 xxxx x 0110 

1001 xxxx x 0110 

1000 xxxx x 0000 

M 
MD RW MM W 

1 1 x 0 

1 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

0 1 x 0 

D 

Comments 

LRI RS � M[R[SA]], � EX1 

LRI R[DR] � M[RS], �INF* 

-

SRM RS � R[SA], Z: � EX1 

SRM RS � R[SA],Z: �INF* 

SRM R9 � zf OP, Z: � EX2 

SRM R9 � zf OP, Z: � INF* 

SRM RS � sr RS,� EX3 

SRM R9 � R9 -1, Z: � EX2 

SRM R9 �R9-1,Z: �EX4 

SRM R[DR] �RS,� INF* 

SLM RS � R[SA], Z: � EX1 

SLM RS � R[SA], Z: �INF* 

SLM R9 � zf OP, Z: � EX2 

SLM R9 � zf OP, Z: � INF* 

SLM RS � sl RS, � EX3 

SLM R9 � R9 -1, Z: � EX2 

SLM R9 �R9-1,Z: �EX4 

SLM R[DR] �RS,� IF* 
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of clock cycles required, including the instruction fetch, is from 6 to 1B. If the same 
operation were implemented by a program using the right-shift instruction plus 
increment and branching, then 3s + 3 instructions would be required, giving 6s + 6 

cycles. The improvement in the required number of clock cycles is 4s + 2, so 6 to 30 

clock cycles are saved in the multiple-cycle computer for a nonzero operand and 
shift amount. Also, five fewer memory locations are required for storage of the 
SRM instruction, in contrast to that for the program. 

In the state machine diagram in Figure 9-22, the states INF and EXO are the 
same as those used for the two-cycle instructions in the state machine diagram in 
Figure 9-20, and EX1 is the same as used for the LRI instruction in Figure 9-21. 

Also, implementation of the left-shift multiple operation is shown in Figure 9-22, in 
which, based on the opcode, the left shift of RB replaces the right shift of RB. As a 
consequence, the logic implementing the states used for implementation of these 
two instructions can be shared. Further, the logic used for the sequencing of the 
states can be shared between the SRM and SLM instruction implementations. 

The state table specification in Table 9-15 is derived by using the information 
from the state machine diagram in Figure 9-22, and Tables 9-12 and 9-13. The codes 
are derived from the register transfer and sequencing action described in the com­
ments on the right in the same way that Table 9-14 was derived. 

Implementation of the LRI and SRM instructions illustrates the flexibility 
achieved using multiple-cycle control. Implementation of additional instructions is 
explored in the problems at the end of the chapter. 

9-10 CHAPTER SUMMARY 

In the first part of the chapter, the concept of a computer datapath for implement­
ing computer microoperations was introduced. Among the major components of 
datapaths are register files, buses, arithmetic/logic units (ALUs) , and shifters. The 
control word provides a means of organizing the control of the microoperations 
performed by the datapath. These concepts were combined to serve as a basis for 
exploring computers in the remainder of the text. 

In the second part of the chapter, control design for programmed systems 
was introduced by examining two different implementations of basic control units 
for a simple computer architecture. We introduced the concept of instruction set 
architectures and defined instruction formats and operations for the simple com­
puter. The first implementation of this computer is capable of executing any 
instruction in a single clock cycle. Aside from having a program counter and its 
logic, the control unit of this computer consists of a combinational decoder circuit. 

Among the shortcomings of the single-cycle computer are limitations on the 
complexity of the instructions that can be executed on it, problems with the inter­
face to a single memory, and the relatively low clock frequencies attained. To deal 
with the first two of these shortcomings, we examined a multiple-cycle version of 
the simple computer in which a single memory is used and instructions are imple­
mented using two distinct phases: instruction fetch and instruction execution. The 
remaining issue of long clock cycles is dealt with in Chapter 11 by introducing pipe­
lined datapaths and control. 
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nu•1m" PROBLEMS 
> 

The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

9-1. A datapath similar to the one in Figure 9-1 has 64 registers. How many 
selection lines are needed for each set of multiplexers and for the decoder? 

9-2. *Given an 8-bit ALU with outputs F7 through F0 and available carries C8 

and C7, show the logic circuit for generating the signals for the four status 
bits N (sign), Z (zero), V (overflow), and C (carry). 

9-3. *Design an arithmetic circuit with two selection variables S1 and S0 and two 
n-bit data inputs A and B. The circuit generates the following eight 
arithmetic operations in conjunction with carry Cin: 

S1 So C;n = 0 C;n = 1 

0 0 F =A +B(add) F = A + B + 1 (subtract A - B) 
0 1 F=A+B F =A+ B + 1 (subtract B -A) 
1 0 F =A -1 (decrement) F =A+ 1 (increment) 
1 1 F =A (ls complement) F =A+ 1 (2s complement) 

Draw the logic diagram for the two least significant bits of the arithmetic 
circuit. 

9-4. 1 *Design a 4-bit arithmetic circuit, with two selection variables S1 and S0, 
that generates the arithmetic operations in the following table. Draw the 
logic diagram for a typical single-bit stage and the LSB stage. 

S,So 

00 
01 
10 
11 

F =A +B (add) 
F = A (transfer) 
F = B ( c�mplement) 
F=A+B 

F=A+B+1 
F = A + 1 (increment) 
F = B + 1 (negate) 
F = A + B + 1 (subtract) 
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9-5. Inputs Xi and Yi of each full adder in an arithmetic circuit have digital logic 
specified by the Boolean functions 

where S is a selection variable, Cin is the input carry, and Ai and Bi are input 
data for stage i. 

(a) Draw the logic diagram for the 4-bit circuit, using full adders and 
multiplexers. 

(b) Determine the arithmetic operation performed for each of the four 
combinations of Sand Cin: 00, 01, 10, and 11. 

9-6. *Design one bit of a digital circuit that performs the four logic operations 
of exclusive-OR, exclusive-NOR, NOR, and NAND on register operands 
A and B with the result to be loaded into register A. Use two selection 
variables. 

(a) Using a Karnaugh map, design minimum logic for one typical stage, and 
show the logic diagram. 

(b) Repeat (a) , trying different assignments of the selection codes to the 
four operations to see whether the logic for the stage can be simplified 
further. 

9-7. +Design an ALU that performs the following operations: 

A+B 

A+B+l 

B 

B+l 

sr A 

AvB 

sl A 

AAB 

Give the result of your design as the logic diagram for a single stage of the 
ALU. Your design should have one carry line to the left and one carry line 
to the right between stages and three selection bits. If you have access to 
logic optimization software, apply it to the design to obtain reduced logic. 

9-8. *Find the output Y of the 4-bit barrel shifter in Figure 9-9 for each of the 
following bit patterns applied to Si, S0, D3, D2, Di, and D0: 

(a) 110101 

(c) 011010 

(b) 101011 

(d) 001101 

9-9. Specify the 16-bit control word that must be applied to the datapath of 
Figure 9-11 to implement each of the following microoperations: 

(a) R5+--0 

( c) R7 +---Data in 

(b) R4+--sl R5 

(d) R3+--sr R3 
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( e) Rl � R3 - Constant in 

(g) R2�R1 E9R3 

(f) R1�R1+1 

(h) R4�R3 +RS 

9-10. *Given the following 16-bit control words for the datapath of Figure 9-11, 
determine (a) the microoperation that is executed and (b) the change in the 
contents of the register for each control word (assume that the registers 
are 8-bit registers and that, before the execution of a control word, they 
contain the value of their number (e.g., register RS contains OS in 
hexadecimal)). Assume that Constant has value 6 and Data in has value 1B, 
both in hexadecimal. 

(a) 101 100 101 0 1000 0 1 

(c) 101 110 000 0 1100 0 1 

(e) 100 100 000 1 1101 0 1  

(b) 110 010 100 0 0101 0 1  

(d) 101 000 000 0 0000 0 1  

(f) 011 000 000 0 0000 1 1 

9-11. Given the sequence of 16-bit control words below for the datapath in 
Figure 9-11 and the initial ASCII character codes in 8-bit registers, simulate 
the datapath to determine the alphanumeric characters in the registers 
after the execution of the sequence. The result is a scrambled word: what is 
it? 

011 011 001 0 0010 0 1 RO 00000000 

100 100 001 0 1001 0 1 Rl 00100000 

101 101 001 0 1010 0 1 R2 01000100 

001 001 000 0 1011 0 1  R3 01000111 

001 001 000 0 0001 0 1 R4 01010100 

110 110 001 0 0101 0 1  RS 01001100 

111 111 001 0 0101 0 1  R6 01000001 

001 111 000 0 0000 0 1 R7 01001001 

9-12. A computer has a 32-bit instruction word broken into fields as follows: 
opcode, six bits; two register fields, five bits each; and one immediate 
operand/register field, 16 bits. 

(a) What is the maximum number of operations that can be specified? 

(b) How many registers can be addressed? 

(c) What is the range of unsigned immediate operands that can be 
provided? 

(d) What is the range of signed immediate operands that can be provided, 
assuming that bit 1S is the sign bit? 

9-13. *A digital computer has a memory unit with a 32-bit instruction and a 
register file with 64 registers. The instruction set consists of 130 different 
operations. There is only one type of instruction format, with an opcode 
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part, a register file address, and an immediate operand part. Each 
instruction is stored in one word of memory. 

(a) How many bits are needed for the opcode part of the instruction? 

(b) How many bits are left for the immediate part of the instruction? 

(c) If the immediate operand is used as an unsigned address to memory, 
what is the maximum number of words that can be addressed in 
memory? 

(d) What are the largest and the smallest algebraic values of signed 2s 
complement binary numbers that can be accommodated as an 
immediate operand? 

9-14. A digital computer has 32-bit instructions. There are a number of different 
instruction formats, and the number of bits in each format used for opcodes 
varies depending on the bits needed for other fields. If the first bit of the 
opcode is 0, then there are three opcode bits. If the first bit of the opcode is 
1 and the second bit of the opcode is 0, then there are six opcode bits. If the 
first bit of the opcode is 1 and the second bit of the opcode is 1, then there 
are nine opcode bits. How many distinct opcodes are available for this 
computer? 

9-15. The single-cycle computer in Figure 9-15 executes the five instructions 
described by the register transfers in the table that follows. 

(a) Complete the following table, giving the binary instruction decoder 
outputs from Figure 9-16 during execution of each of the instructions: 

Instruction-Register 
Transfer DA AA BA MB FS MD RW MW PL JB 

R[O] = R[7]E9R[3] 

R[l] f---M[R[ 4 ]] 

R[2] f---R[5] + 2 

R[3] f---sl R[6] 

if (R([4] = 0) 

PC f---PC + se PC 

else PC f---PC + 1 

(b) Complete the following table, giving the instruction in binary for the 
single-cycle computer that executes the register transfer (if any field is 
not used, give it the value 0): 
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Instruction-Register Transfer Opcode 

R[O] = sr R[7] 

R[l] �M[R[6]] 

R[2]�R[5] +4 

R[3]�R[4]E9R[3] 

R[4]�R[2] -R[l] 

DR SA SB or Operand 

9-16. Using the information in the truth table in Table 9-10, verify that the design 
for the single-bit outputs in the decoder in Figure 9-16 is correct. 

9-17. Manually simulate the single-cycle computer in Figure 9-15 for the following 
sequence of instructions, assuming that each register initially contains 
contents equal to its index (i.e., RO contains 0, Rl contains 1, and so on): 

ADD RO, Rl, R2 

SUB R3, R4, R5 
SUB R6,R7,RO 
ADD RO, RO, R3 
SUB RO, RO, R6 
ST R7,RO 
LD R7,R6 
ADI RO,R6,2 
ADI R3,R6,3 

Give (a) the binary value of the instruction on the current line of the results 
and (b) the contents of any register changed by the instruction, or the 
location and contents of any memory location changed by the instruction 
on the next line of the results. The results are positioned in this fashion 
because the new values do not appear in a register or memory, due to the 
execution of an instruction, until after a positive clock edge has occurred. 

9-18. Give an instruction for the single-cycle computer that resets register R4 to 0 

and updates the Z and N status bits based on the value 0 transferred to R4. 
[Hint: Try the exclusive-OR.] By examining the detailed ALU logic, 
determine the values of the V and C status bits. 

9-19. List the control logic state table entries for the multiple-cycle computer 
(see Tables 9-12, 9-13 and 9-15) that implement the following register 
transfer statements. Assume that in all cases the present state is EXO. If an 
opcode is needed, use a symbolic name based on the problem part-e.g., 
for part (a), opcode_a. 

(a) R3+-R7 -R2, �EXl. Assume DR= 3, SA= 7, SB= 2. 

(b) R8+-sr R8, �INF. Assume DR= 5, SB= 5. 



(c) if (Z = 0) then (PC�PC + se AD, �INF) else 
(PC�PC + 1, �INF). 

(d) R6+..-R6, C+..-0, �INF. Assume DR= SA= 6. 
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9-20. (a) Manually simulate the SRM (shift right multiple) instruction in the 
multiple-cycle computer for operand 0101100111000111 for OP= 5. 

(b) Repeat part (a) for the SLM (shift left multiple) instruction. 

9-21. +In the SRM and SLM instructions, both the operand R[SA] and the shift 
amount field OP are checked to see if either is 0 before the shifts begin. 

(a) Redraw the state machine diagram for these operations with these 
checks removed. 

(b) Use the original diagram and the new diagram to compare the number 
of clock cycles required for values of OP equal to 0 through 7. Assume 
that the probability of each OP value for 1 through 6 is 1/B, for 0 is 1/4, 
and for 7 is 0. Assume that the likelihood of a 0 operand is 1/B. Perform 
calculations to determine the best implementation (with checks or 
without checks) based on the given probability information and 
comparative number of clock cycles for the two implementations. 
Provide a convincing argument for your selected answer. 

9-22. A new instruction is to be defined for the multiple-cycle computer with 
opcode 0010001. The instruction implements the register transfer 

R[DR]+--R[SB] + M[R[SA]] 

Find the state machine diagram for implementing the instruction, assuming 
that 0010001 is the opcode. Form the part of the control state table that 
implements this instruction. 

9-23. Repeat Problem 9-22 for the two instructions: Add and check OV (AOV), 
described by the register transfer 

R[DR]+--R[SA] + R[SB], V: RB+..-1, V: RB+..-0 

and branch on overflow (BRV), described by the register transfer 

RB+..-RB, V: PC+..-PC + se AD, V: PC+..-PC + 1 

The opcode for AOV is 1000101 and for BRV is 1000110. Note that register 
RB is used as a "status" register that stores the overflow result V for the 
previous operation. All of the values N, Z, C and V could be stored in RB to 
give a complete status on the prior arithmetic or logic operation. 

9-24. A new instruction is to be defined for the multiple-cycle computer. The 
instruction compares two unsigned integers stored in register R[SA] and 
R[SB]. If the integers are equal, then bit 0 of R[DR] is set to 1. If R[SA] is 
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greater than R[SB] , then bit 1 of R[DR] is set to 1. Otherwise, bits 0 and 1 
are both 0. All other bits of R[DR] have value 0. Find the state machine 
diagram for implementing the instruction, assuming that 0010001 is the 
opcode. Form the part of the control state table that implements this 
instruction. 

9-25. A new instruction, SMR (Store Multiple Registers), with symbolic opcode 
name SMR, is to be implemented for the multiple-cycle computer. The 
instruction stores the contents of eight registers in eight consecutive 
memory locations. Register R[SA] specifies the address in memory M to 
which the first register R[SB] is to be stored. The registers to be stored are 
R[SB] , R[(SB + l)modulo 8], ... , R[(SB + ?)modulo 8] in Memory M 
addresses R[SA] , R[SA] + 1, ... , R[SA] + 7. Design this instruction 
presenting your final results in the form shown in Table 9-15. 

9-26. A new instruction LMR (Load Multiple Registers), with symbolic opcode 
name LMR, is to be implemented for the multiple-cycle computer. The 
instruction is to retrieve the register contents stored by use of SMR in 
Problem 9-25 from memory M and place it in the eight registers. Assume 
that R[SA] and SB have same values as for SMR for such a retrieval. 
Design this instruction presenting your final results in the form shown in 
Table 9-15. 



INSTRUCTION SET 

ARCHITECTURE 

U 
p to this point, much of what we have studied has focused on digital system 
design, with computer components serving as examples. In this chapter, we 
will study more specialized material, dealing with instruction set architecture 

for general-purpose computers. We will examine the operations that the instructions 
perform and focus particularly on how the operands are obtained and where the 
results are stored. We will contrast two distinct classes of architectures: reduced 
instruction set computers (RISCs) and complex instruction set computers (CISCs). 
We will classify elementary instructions into three categories: data transfer, data 
manipulation, and program control. In each of these categories, we elaborate on 
typical elementary instructions. 

Central to the material presented here are the general-purpose parts of the generic 
computer at the beginning of Chapter 1, including the central processing unit (CPU) 
and the accompanying floating-point unit (FPU). Since a small general-purpose 
microprocessor may be present for controlling keyboard and monitor functions, these 
components are also involved. Aside from addressing used to access memory and 
1/0 components, the concepts studied apply less to other areas of the computer. 
Increasingly, however, small CPUs have appeared more frequently in the 1/0 

components. 

10-1 COMPUTER ARCHITECTURE CONCEPTS 

The binary language in which instructions are defined and stored in memory is 
referred to as machine language. A symbolic language that replaces binary opcodes 
and addresses with symbolic names and that provides other features helpful to the 
programmer is referred to as assembly language. The logical structure of computers is 
normally described in assembly-language reference manuals. Such manuals explain 

D 497 
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various internal elements of the computer that are of interest to the programmer, 

such as processor registers. The manuals list all hardware-implemented instructions, 

specify the symbolic names and binary code format of the instructions, and provide a 

precise definition of each instruction. In the past, this information represented the 

architecture of the computer. A computer was composed of its architecture, plus a 

specific implementation of that architecture. The implementation was separated into 
two parts: the organization and the hardware. The organization consists of structures 

such as datapaths, control units, memories, and the buses that interconnect them. 

Hardware refers to the logic, the electronic technologies employed, and the various 
physical design aspects of the computer. 

As computer designers pushed for higher and higher performance, and as 
increasingly more of the computer resided within a single IC, the relationships 
among architecture, organization, and hardware became so intertwined that a 
more integrated viewpoint became necessary. According to this new viewpoint, 
architecture as previously defined is more restrictively called instruction set archi­
tecture (ISA), and the term architecture is used to encompass the whole of the com­
puter, including instruction set architecture, organization, and hardware. This 
unified view enables intelligent design trade-offs to be made that are apparent only 
in a tightly coupled design process. These trade-offs have the potential for produc­
ing better computer designs. 

In this chapter, we focus on instruction set architecture. In the next, we will 
look at two distinct instruction set architectures, with a focus on implementation 
using two somewhat different architectures. 

A computer usually has a variety of instructions and multiple instruction formats. 
It is the function of the control unit to decode each instruction and provide the control 

signals needed to process it. Simple examples of instructions and instruction formats 

were presented in Section 9-7. We now expand this presentation by introducing typical 
instructions found in commercial general-purpose computers. We also investigate the 

various instruction formats that may be encountered in a typical computer, with an 

emphasis on the addressing of operands. The format of an instruction is depicted in a 

rectangular box symbolizing the bits of the binary instruction. The bits are divided into 
groups called fields. The following are typical fields found in instruction formats: 

1. An opcode field, which specifies the operation to be performed. 

2. An address field, which provides either a memory address or an address that 

selects a processor register. 

3. A mode field, which specifies the way the address field is to be interpreted. 

Other special fields are sometimes employed under certain circumstances-for 

example, a field that gives the number of positions to shift in a shift-type instruc­

tion or an operand field in an immediate operand instruction. 

Basic Computer Operation Cycle 

In order to comprehend the various addressing concepts to be presented in the 
next two sections, we need to understand the basic operation cycle of the 
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computer. The computer's control unit is designed to execute each instruction of a 
program in the following sequence of steps: 

1. Fetch the instruction from memory into a control register. 

2. Decode the instruction. 

3. Locate the operands used by the instruction. 

4. Fetch operands from memory (if necessary). 

5. Execute the operation in processor registers. 

6. Store the results in the proper place. 

7. Go back to step 1 to fetch the next instruction. 

As explained in Section 9-7, a register in the computer called the program 
counter (PC) keeps track of the instructions in the program stored in memory. The 
PC holds the address of the instruction to be executed next and is incremented each 
time a word is read from the program in memory. The decoding done in Step 2 deter­
mines the operation to be performed and the addressing mode or modes of the 
instruction. The operands in Step 3 are located from the addressing modes and the 
address fields of the instruction. The computer executes the instruction, storing the 
result, and returns to Step 1 to fetch the next instruction in sequence. 

Register Set 

The register set consists of all registers in the CPU that are accessible to the pro­
grammer. These registers are ty pically those mentioned in assembly-language pro­
gramming reference manuals. In the simple CPUs we have dealt with so far, the 
register set has consisted of the programmer-accessible portion of the register file 
and the PC. The CPUs can also contain other registers, such as the instruction reg­
ister, registers in the register file that are accessible only to hardware controls and/ 
or microprograms, and pipeline registers. These registers, however, are not directly 
accessible to the programmer and, as a consequence, are not a part of the register 
set, which represents the stored information in the CPU that instructions are 
defined to access. Thus, the register set has a considerable influence on instruction 
set architecture. 

The register set for a realistic CPU is quite complex. In this chapter, we add two 
registers to the set we have used thus far: the processor status register (PSR) and the 
stack pointer (SP). The processor status register contains flip-flops that are selectively 
set by status values C, N, V, and Z from the ALU and shifter. These stored status bits 
are used to make decisions that determine the program flow, based on ALU results, 
shifter results, or the contents of registers. The stored status bits in the processor status 
register are also referred to as the condition codes or the flags. Additional bits in the 
PSR will be discussed when we cover associated concepts in this chapter. 

10-2 OPERAND ADDRESSING 

Consider an instruction such as ADD, which specifies the addition of two operands 
to produce a result. Suppose that the result of the addition is treated as just another 
operand. Then the ADD instruction has three operands: the addend, the augend, 
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and the result. An operand residing in memory is specified by its address. An oper­
and residing in a processor register is specified by a register address, a binary code of 
n bits that specifies one of at most 2n registers in the register file. Thus, a computer 
with 16 processor registers, say, RO through R15, has in its instructions one or more 
register address fields of four bits. The binary code 0101, for example, designates reg­
ister RS. 

Some operands, however, are not explicitly addressed, because their location is 
specified either by the opcode of the instruction or by an address assigned to one of the 
other operands. In such a case, we say that the operand has an implied address. If the 
address is implied, then there is no need for a memory or register address field for the 
operand in the instruction. On the other hand, if an operand has an address in the instruc­
tion, then we say that the operand is explicitly addressed or has an explicit address. 

The number of operands explicitly addressed for a data-manipulation operation 
such as ADD is an important factor in defining the instruction set architecture for a 
computer. An additional factor is the number of such operands that can be explicitly 
addressed in memory by the instruction. These two factors are so important in defin­
ing the nature of instructions that they act a means of distinguishing different instruc­
tion set architectures. They also govern the length of computer instructions. 

We begin by illustrating simple programs with different numbers of explicitly 
addressed operands per instruction. Since the explicitly addressed operands have 
up to three memory or register addresses per instruction, we label the instructions 
as having three, two, one, or zero addresses. Note that, of the three operands 
needed for an instruction such as ADD, the addresses of all operands not having 
an address in the instruction are implied. 

To illustrate the influence of the number of operands on computer programs, 
we will evaluate the arithmetic statement 

X = (A + B)( C + D) 

using three, two, one, and zero address instructions. We assume that the operands 
are in memory addresses symbolized by the letters A, B, C, and D and must not be 
changed by the program. The result is to be stored in memory at a location with 
address X. The initial arithmetic operations to be used in the instructions are addi­
tion, subtraction, and multiplication, with mnemonics ADD, SUB, and MUL, 
respectively. Further, three operations needed to transfer data during the evalua­
tion are move, load, and store, denoted by MOVE, LD, and ST, respectively. LD 
moves an operand from memory to a register and ST from a register to memory. 
Depending on the addresses permitted, MOVE can transfer data between regis­
ters, between memory locations, or from memory to register or register to memory. 

Three-Address Instructions 

A program that evaluates X = (A + B)( C + D) using three-address instructions is 
as follows (a register transfer statement is shown for each instruction): 

ADD Tl,A,B M[Tl]�M[A] + M[B] 



ADDT2,C, D 

MULX,T1,T2 
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M[11]f--M[C] + M[D] 

M[X] f--M[Tl] X M[11] 

The symbol M[A] denotes the operand stored in memory at the address symbol­
ized by A. The symbol x designates multiplication. Tl and T2 are temporary stor­
age locations in memory. 

This same program can use registers as the temporary storage locations: 

ADD Rl,A,B 

ADDR2,C, D 

MULX,R1,R2 

Rl f- M[A] + M[B] 

R2f--M[C] + M[D] 

M[X]f--Rl x R2 

Use of registers reduces the data memory accesses required from nine to five. An 
advantage of the three-address format is that it results in short programs for evaluat­
ing expressions. A disadvantage is that the binary-coded instructions require more 
bits to specify three addresses, particularly if they are memory addresses. 

Two-Address Instructions 

For two-address instructions, each address field can again specify either a possible 
register or a memory address. The first operand address listed in the symbolic 
instruction also serves as the implied address to which the result of the operation is 
transferred. The program is as follows: 

MOVETl,A 

ADDTl,B 

MOVEX,C 

ADDX, D 

MULX,Tl 

M[Tl]f--M[A] 

M[Tl]f--M[Tl] + M[B] 

M[X]f--M[C] 

M[X] f- M[X] + M[D] 

M[X]f--M[X] X M[Tl] 

If a temporary storage register Rl is available, it can replace Tl. Note that this program 
takes five instructions instead of the three used by the three-address instruction program. 

One-Address Instructions 

To perform instructions such as ADD, a computer with one-address instructions 
uses an implied address-such as a register called an accumulator, ACC-for 
obtaining one of the operands and as the location of the result. The program to 
evaluate the arithmetic statement is as follows: 

LD A 

ADD B 

ST X 

LD C 

ACCf--M[A] 

ACCf--ACC + M[B] 

M[X]f--ACC 

ACCf--M[C] 
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ADD D 

MUL X 

ST X 

ACCf---ACC + M[D] 

ACCf---ACC x M[X] 

M[X]f---ACC 

All operations are done between the ACC register and a memory operand. In this 
case, the number of instructions in the program has increased to seven and the 
number of memory data accesses is also seven. 

Zero-Address Instructions 

To perform an ADD instruction with zero addresses, all three addresses in the 
instruction must be implied. A conventional way of achieving this goal is to use a 
stack, which is a mechanism or structure that stores information such that the item 
stored last is the first retrieved. Because of its "last-in, first-out" nature, a stack is also 
called a last-in, first-out (LIFO) queue. The operation of a computer stack is analo­
gous to that of a stack of trays or plates, in which the last tray placed on top of the 
stack is the first to be taken off. Data-manipulation operations such as ADD are per­
formed on the stack. The word at the top of the stack is referred to as TOS. The word 
below it is TOS_1 . When one or more words are used as operands for an operation, 
they are removed from the stack. The word below them then becomes the new TOS. 
When a resulting word is produced, it is placed on the stack and becomes the new 
TOS. Thus, TOS and a few locations below it are the implied addresses for operands, 
and TOS is the implied address for the result. For example, the instruction that spec­
ifies an addition is simply 

ADD 

The resulting register transfer action is TOSf---TOS + TOS_1. Thus, there are no 
registers or register addresses used for data-manipulation instructions in a stack 
architecture. Memory addressing, however, is used in such architectures for data 
transfers. For instance, the instruction 

PUSHX 

results in TOS f- M[X] , a transfer of the word in address X in memory to the top 
of the stack. A corresponding operation, 

POPX 

results in M[X] f---TOS, a transfer of the entry at the top of the stack to address X 
mmemory. 

The program for evaluating the sample arithmetic statement for the zero­
address situation is as follows: 

PUSH A TOS f- M[A] 

PUSH B TOSf---M[B] 

ADD TOSf---TOS + TOS_1 

PUSH C TOSf---M[C] 
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PUSH D TOS+..-M[D] 

ADD TOS+..-TOS + TOS_1 

MUL TOS+..-TOS X TOS_1 

POP x M[X]+..-TOS 

This program requires eight instructions-one more than the number required by 
the previous one-address program. However, it uses addressed memory locations 
or registers only for PUSH and POP and not to execute data-manipulation instruc­
tions involving ADD and MUL. Note that memory data accesses may be neces­

sary, however, depending upon the stack implementation. Often, stacks utilize a 
fixed number of registers near the top of the stack. If a given program can be exe­
cuted only within these stack locations, memory data accesses are necessary for 

fetching the initial operands and storing the final result only. But, if the program 

requires more temporary, intermediate storage, additional data accesses to mem­
ory are required. 

Addressing Architectures 

The programs just presented change if the number of addresses to the memory in 

the instructions is restricted or if the memory addresses are restricted to specific 
instructions. These restrictions, combined with the number of operands addressed, 

define addressing architectures. We can illustrate such architectures with the evalu­

ation of an arithmetic statement in a three-address architecture that has all of the 
accesses to memory. Such an addressing scheme is called a memory-to-memory 
architecture. This architecture has only control registers, such as the program 
counter in the CPU. All operands come directly from memory, and all results are 

sent directly to memory. The formats of data transfer and manipulation instruc­
tions contain from one to three address fields, all of which are used for memory 

addresses. For the previous example, three instructions are required, but if an extra 

word must appear in the instruction for each memory address, then up to four 

memory reads are required to fetch each instruction. Including the fetching of 

operands and storing of results, the program to perform the arithmetic operation 
would require 21 accesses to memory. If memory accesses take more than one 

clock cycle, the execution time would be in excess of 21 clock periods. Thus, even 
though the instruction count is low, the execution time is potentially high. Also, 

providing the capability for all operations to access memory increases the complex­

ity of the control structures and may lengthen the clock cycle. Thus, this memory­

to-memory architecture is typically not used in new designs. 

In contrast, the three-address register-to-register or load/store architecture, 
which allows only one memory address and restricts its use to load and store types 
of instructions, is typical in modern processors. Such an architecture requires a 
sizeable register file, since all data manipulation instructions use register operands. 



504 D CHAPTER 10 I INSTRUCTION SET ARCHITECTURE 

With this architecture, the program to evaluate the sample arithmetic statement is 
as follows: 

LD Rl,A Rlf--M[A] 

LD R2,B R2f--M[B] 

ADD R3,R1,R2 R3f--R1 +R2 

LD Rl,C Rlf--M[C] 

LD R2,D R2f--M[D] 

ADD R1,R1,R2 R1f--R1 +R2 

MUL R1,R1,R3 R1f--R1 X R3 

ST X,Rl M[X]f--Rl 

Note that the instruction count increases to eight compared to three for the 
three-address, memory-to-memory case. Note also that the operations are the 
same as those for the stack case, except for the need for register addresses. By 
using registers, the number of accesses to memory for instructions, addresses, and 
operands is reduced from 21 to 18. If addresses can be obtained from registers 
instead of memory, as discussed in the next section, this number can be further 
reduced. 

Variations on the previous two addressing architectures include three-address 
instructions and two-address instructions with one or two of the addresses to mem­
ory. The program lengths and number of memory accesses tend to be intermediate 
between the previous two architectures. An example of a two-address instruction 
with a single memory address allowed is 

ADD Rl,A R1f--R1 + M[A] 

This register-memory type of architecture remains prevalent among the current 
instruction set architectures, primarily to provide compatibility with older software 
using a specific architecture. 

The program with one-address instructions illustrated previously gives the 
single-accumulator architecture. Since this architecture has no register file, its single 
address is for accessing memory. It requires 21 accesses to memory to evaluate the 
sample arithmetic statement. In more complex programs, significant additional 
memory accesses would be needed for temporary storage locations in memory. 
Because of its large number of memory accesses, this architecture is inefficient and 
consequently, is restricted to use in CPUs for simple, low-cost applications that do 
not require high performance. 

The zero-address instruction case using a stack supports the concept of a 
stack architecture. Data-manipulation instructions such as ADD use no address, 
since they are performed on the top few elements of the stack. Single memory­
address load and store operations, as shown in the program to evaluate the sam­
ple arithmetic statement, are used for data transfer. Since most of the stack is 
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Graph for Example of Conversion from Infix to 
RPN 

located in memory, as discussed earlier, one or more hidden memory accesses may 
be required for each stack operation. As register-register and load/store architec­
tures have made strong performance advances, the high frequency of memory 
accesses in stack architectures has made them unattractive. However, stack archi­
tectures have begun to borrow technological advances from these other architec­
tures. These architectures store substantial numbers of stack locations in the 
processor chip and handle transfers between these locations and the memory 
transparently. Stack architectures are particularly useful for rapid interpretation 
of high-level language programs in which the intermediate code representation 
uses stack operations. 

Stack architectures are compatible with a very efficient approach to expres­
sion processing which uses postfix notation rather than the traditional infix nota­
tion to which we are accustomed. The infix expression 

(A+ B) x C + (D x E) 

with the operators between the operands can be written as the postfix expression 

AB+CxDEx+ 

Postfix notation is called reverse Polish notation (RPN), honoring the Polish math­
ematician Jan Lukasiewicz, who proposed prefix (the reverse of postfix) notation; 
prefix was also known as Polish notation. 

Conversion of (A+ B) x C + (D x E) to RPN can be achieved graphically, as 
shown in Figure 10-1. When the path shown traversing the graph passes a variable, 
that variable is entered into the RPN expression. When the path passes an opera­
tion for the final time, the operation is entered into the RPN expression. 

It is very easy to develop a program for an RPN expression. Whenever a 
variable is encountered, it is pushed onto the stack. Whenever an operation is 
encountered, it is executed on the implicit address TOS, or addresses TOS and 
TOS_i, with the result placed in the new TOS. The program for the example 
RPN expression is 
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E DXE l<A + B) x c + D x E I 
D (A+ B) X C 

(A+ B) X C 

D FIGURE 10-2 
Stack Activity for Execution of Example Stack Program 

PUSH A 
PUSHB 
ADD 
PUSHC 
MUL 

PUSHD 
PUSHE 
MUL 
ADD 

The execution of the program is illustrated by the successive stack states shown 
in Figure 10-2. A s  an operand is pushed on the stack, the stack grows by one 
stack location. When an operation is performed, the operand in the TOS is 
popped off and temporarily stored in a register. The operation is applied to the 
stored operand and the new TOS operand, and the result replaces the TOS 
operand. 

10-3 ADDRESSING MODES 

The operation field of an instruction specifies the operation to be performed. 
This operation must be executed on data stored in computer registers or memory 
words. How the operands are selected during program execution is dependent on 
the addressing mode of the instruction. The addressing mode specifies a rule for 
interpreting or modifying the address field of the instruction before the operand 
is actually referenced. The address of the operand produced by the application of 
such a rule is called the effective address. Computers use addressing-mode tech­
niques to accommodate one or both of the following provisions: 

1. To give programming flexibility to the user via pointers to memory, counters 
for loop control, indexing of data, and relocation of programs. 

2. To reduce the number of bits in the address fields of the instruction. 

The availability of various addressing modes gives the experienced programmer 
the ability to write programs that require fewer instructions. The effect, however, 
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on throughput and execution time must be carefully weighed. For example, the 
presence of more complex addressing modes may actually result in lower through­
put and longer execution time. Also, most machine-executable programs are pro­
duced by compilers that often do not use complex addressing modes effectively. 

In some computers, the addressing mode of the instruction is specified by a 
distinct binary code. Other computers use a common binary code that designates 
both the operation and the addressing mode of the instruction. Instructions may be 
defined with a variety of addressing modes, and sometimes two or more addressing 
modes are combined in one instruction. 

An example of an instruction format with a distinct addressing-mode field is 
shown in Figure 10-3. The opcode specifies the operation to be performed. The 
mode field is used to locate the operands needed for the operation. There may or 
may not be an address field in the instruction. If there is, it may designate a 
memory address or a processor register. Moreover, as discussed in the previous 
section, the instruction may have more than one address field. In that case, each 
address field is associated with its own particular addressing mode. 

Implied Mode 

Although most addressing modes modify the address field of the instruction, one 
mode needs no address field at all: the implied mode. In this mode, the operand is 
specified implicitly in the definition of the opcode. It is the implied mode that pro­
vides the location for the two-operand-plus-result operations when fewer than 
three addresses are contained in the instruction. For example, the instruction 
"complement accumulator" is an implied-mode instruction because the operand in 
the accumulator register is implied in the definition of the instruction. In fact, any 
instruction that uses an accumulator without a second operand is an implied-mode 
instruction. For example, data-manipulation instructions in a stack computer, such 
as ADD, are implied-mode instructions, since the operands are implied to be on 
top of stack. 

Immediate Mode 

In the immediate mode, the operand is specified in the instruction itself. In other 
words, an immediate-mode instruction has an operand field rather than an address 
field. The operand field contains the actual operand to be used in conjunction with 
the operation specified in the instruction. Immediate-mode instructions are useful, 
for example, for initializing registers to a constant value. 

Opcode Mode Address or operand 

D FIGURE 10-3 
Instruction Format with Mode Field 
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Register and Register-Indirect Modes 

Earlier, we mentioned that the address field of the instruction may specify either 
a memory location or a processor register. When the address field specifies a 
processor register, the instruction is said to be in the register mode. In this mode, 
the operands are in registers that reside within the processor of the computer. 
The particular register is selected by a register address field in the instruction 
format. 

In the register-indirect mode, the instruction specifies a register in the proces­
sor whose content gives the address of the operand in memory. In other words, the 
selected register contains the memory address of the operand, rather than the 
operand itself. Before using a register-indirect mode instruction, the programmer 
must ensure that the memory address is available in the processor register. A refer­
ence to the register is then equivalent to specifying a memory address. The advan­
tage of register-indirect mode is that the address field of the instruction uses fewer 
bits to select a register than would have been required to specify a memory address 
directly. 

An autoincrement or autodecrement mode is similar to the register-indirect 
mode, except that the register is incremented or decremented after (or before) 
its address value is used to access memory. When the address stored in the regis­
ter refers to an array of data in memory, it is convenient to increment the register 
after each access to the array. This can be achieved by using a separate register­
increment instruction. However, because it is such a common requirement, some 
computers incorporate an autoincrement mode that increments the content of 
the register containing the address after the memory data are accessed. 

In the following instruction, an autoincrement mode is used to add the con­
stant value 3 to the elements of an array addressed by register Rl: 

ADD (Rl) +, 3 M[Rl]f--M[Rl] + 3,Rlf--Rl + 1 

Rl is initialized to the address of the first element in the array. Then the ADD 
instruction is repeatedly executed until the addition of 3 to all elements of the 
array has occurred. The register transfer statement accompanying the instruction 
shows the addition of 3 to the memory location addressed by Rl and the incre­
menting of Rl in preparation for the next execution of the ADD on the next ele­
ment in the array. 

Direct Addressing Mode 

In the direct addressing mode, the address field of the instruction gives the address 
of the operand in memory in a data-transfer or data-manipulation instruction. An 
example of a data-transfer instruction is shown in Figure 10-4. The instruction in 
memory consists of two words. The first, at address 250, has the opcode for "load 
to ACC" and a mode field specifying a direct address. The second word of the 
instruction, at address 251, contains the address field, symbolized by ADRS, and is 
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ACC 

Opcode: 

Mode: 

ADRS: 

Operation: 

LoadACC 

Direct address 
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ACCf-800 
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Memory 

Opcode Mode 

ADRS 

Next instruction 

! 
Program 

800 

� 
Data 

Example Demonstrating Direct Addressing for a Data-Transfer Instruction 

equal to 500. The PC holds the address of the instruction, which is brought from 
memory using two memory accesses. Simultaneously with or after the completion 
of the first access, the PC is incremented to 251. Then the second access for ADRS 
occurs and the PC is again incremented. The execution of the instruction results in 
the operation 

ACC f-M[ADRS] 

Since ADRS = 500 and M[500] = 800, the ACC receives the number 800. After 
the instruction is executed, the PC holds the number 252, which is the address of 
the next instruction in the program. 

Now consider a branch-type instruction, as shown in Figure 10-5. If the 
contents of ACC equal 0, control branches to ADRS; otherwise, the program 
continues with the next instruction in sequence. When ACC = 0, the branch to 
address 500 is accomplished by loading the value of the address field ADRS into 
the PC. Control then continues with the instruction at address 500. When 
ACC -::t:- 0, no branch occurs, and the PC, which was incremented twice during the 
fetch of the instruction, holds the address 302, the address of the next instruction 
m sequence. 

Sometimes the value given in the address field is the address of the operand, 
but sometimes it is just an address from which the address of the operand is calcu­
lated. To differentiate among the various addressing modes, it is useful to distin­
guish between the address part of the instruction, as given in the address field, and 
the address used by the control when executing the instruction. Recall that we 
refer to the latter as the effective address. 
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Indirect Addressing Mode 

In the indirect addressing mode, the address field of the instruction gives the 
address at which the effective address is stored in memory. The control unit fetches 
the instruction from memory and uses the address part to access memory again in 
order to read the effective address. Consider the instruction "load to ACC" given 
in Figure 10-4. If the mode specifies an indirect address, the effective address is 
stored in M[ADRS] . Since ADRS = 500 and M[ADRS] = 800, the effective 
address is 800. This means that the operand loaded into the ACC is the one found 
in memory at address 800 (not shown in the figure) . 

Relative Addressing Mode 

Some addressing modes require that the address field of the instruction be added 
to the content of a specified register in the CPU in order to evaluate the effective 
address. Often, the register used is the PC. In the relative addressing mode, the 
effective address is calculated as follows: 

Effective address = Address part of the instruction + Contents of PC 

The address part of the instruction is considered to be a signed number that can be 
either positive or negative. When this number is added to the contents of the PC, 
the result produces an effective address whose position in memory is relative to the 
address of the next instruction in the program. 

To clarify this with an example, let us assume that the PC contains the num­
ber 250 and the address part of the instruction contains the number 500, as in 
Figure 10-5, with the mode field specifying a relative address. The instruction at 

PC= 300 

Opcode: 

Mode: 

ADRS: 
Operation: 

ACC 

Branch if ACC = 0 

Direct address 
500 

PC+-500ifACC = 0 
PC+---302 if ACC =fa 0 

D FIGURE 10-5 
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Example Demonstrating Direct Addressing in a Branch Instruction 



10-3 I Addressing Modes D 511 

location 250 is read from memory during the fetch phase of the operation cycle, 
and the PC is incremented by 1 to 251. Since the instruction has a second word, the 
control unit reads the address field into a control register, and the PC is incre­
mented to 252. The computation of the effective address for the relative addressing 
mode is 252 + 500 = 752. The result is that the operand associated with the 
instruction is 500 locations away, relative to the location of the next instruction. 

Relative addressing is often used in branch-type instructions when the branch 
address is in a location close to the instruction word. Relative addressing produces 
more compact instructions, since the relative address can be specified with fewer 
bits than are required to designate the entire memory address. This permits the rel­
ative address field to be included in the same instruction word as the opcode. 

Indexed Addressing Mode 

In the indexed addressing mode, the content of an index register is added to the 
address part of the instruction to obtain the effective address. The index register 
may be a special CPU register or simply a register in a register file. We illustrate 
the use of indexed addressing by considering an array of data in memory. The 
address field of the instruction defines the beginning address of the array. Each 
operand in the array is stored in memory relative to the beginning address. The dis­
tance between the beginning address and the address of the operand is the index 
value stored in the register. Any operand in the array can be accessed with the 
same instruction, provided that the index register contains the correct index value. 
The index register can be incremented to facilitate access to consecutive operands. 

Some computers dedicate one CPU register to function solely as an index 
register. This register is addressed implicitly when an index-mode instruction is 
used. In computers with many processor registers, any CPU register can be used as 
an index register. In such a case, the index register to be used must be specified 
with a register field within the instruction format. 

A specialized variation of the index mode is the base-register mode. In this 
mode, the contents of a base register are added to the address part of the instruc­
tion to obtain the effective address. This is similar to indexed addressing, except 
that the register is called a base register instead of an index register. The difference 
between the two modes is in the way they are used rather than in the way 
addresses are computed: an index register is assumed to hold an index number that 
is relative to the address field of the instruction; a base register is assumed to hold 
a base address, and the address field of the instruction gives a displacement relative 
to the base address. 

Summary of Addressing Modes 

In order to show the differences among the various modes, we investigate the effect 
of the addressing mode on the instruction shown in Figure 10-6. The instruction in 
addresses 250 and 251 is "load to ACC," with the address field ADRS (or an operand 
NBR) equal to 500. The PC has the number 250 for fetching this instruction. The 
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Memory 

250 Opcode I Mode 

PC=250 
251 ADRS or NBR = 500 

252 Next instruction 

Rl = 400 

400 700 

ACC 

500 800 

Opcode: Load to ACC 

752 600 

800 300 

900 200 

D FIGURE 10-6 
Numerical Example for Addressing Modes 

content of a processor register R1 is 400, and the ACC receives the result after the 
instruction is executed. In the direct mode, the effective address is 500, and the oper­
and to be loaded into the ACC is 800. In the immediate mode, the operand 500 is 
loaded into the ACC. In the indirect mode, the effective address is 800, and the oper­
and is 300. In the relative mode, the effective address is 500 + 252 = 752, and the 
operand is 600. In the index mode, the effective address is 500 + 400 = 900, assum­
ing that Rl is the index register. In the register mode, the operand is in Rl, and 400 

is loaded into the ACC. In the register-indirect mode, the effective address is the 
contents of R1, and the operand loaded into the ACC is 700. 

Table 10-1 lists the value of the effective address and the operand loaded into 
the ACC for the seven addressing modes. The table also shows the operation with a 
register transfer statement and a symbolic convention for each addressing mode. 
LDA is the symbol for the load-to-accumulator opcode. In the direct mode, we use 
the symbol ADRS for the address part of the instruction. The# symbol precedes 
the operand NBR in the immediate mode. The symbol ADRS enclosed in square 
brackets symbolizes an indirect address, which some compilers or assemblers des­
ignate with the symbol @.The symbol $ before the address makes the effective 
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address relative to the PC. An index-mode instruction is recognized by the symbol 
of a register placed in parentheses after the address symbol. The register mode is 
indicated by giving the name of the processor register following LDA. In the regis­
ter-indirect mode, the name of the register that holds the effective address is 
enclosed in parentheses. 

D TABLE 10-1 
Symbolic Convention for Addressing Modes 

Refers to Figure 10-6 

Addressing Symbolic Register Effective Contents 
Mode Convention Transfer Address of ACC 

Direct LDAADRS ACC�M[ADRS] 500 800 

Immediate LDA#NBR ACC�NBR 251 500 

Indirect LDA [ADRS] ACC�M[M[ADRS]] 800 300 

Relative LDA$ADRS ACC�M[ADRS +PC] 752 600 

Index LDA ADRS (Rl) ACC�M[ADRS + R1 ] 900 200 

Register LDAR1 ACC�R1 400 

Register-indirect LDA (Rl) ACC�M[R1] 400 700 

10-4 INSTRUCTION SET ARCHITECTURES 

Computers provide a set of instructions to permit computational tasks to be car­
ried out. The instruction sets of different computers differ in several ways from 
each other. For example, the binary code assigned to the opcode field varies widely 
for different computers. Likewise, although a standard exists (see Reference 7), 
the symbolic name given to instructions varies for different computers. In compar­
ison to these minor differences, however, there are two major types of instruction 
set architectures that differ markedly in the relationship of hardware to software: 
Complex instruction set computers (CISCs) provide hardware support for high­
level language operations and have compact programs; reduced instruction set 
computers (RISCs) emphasize simple instructions and flexibility that, when com­
bined, provide higher throughput and faster execution. These two architectures 
can be distinguished by considering the properties that characterize their instruc­
tion sets. 

A RISC architecture has the following properties: 

1. Memory accesses are restricted to load and store instructions, and data-
manipulation instructions are register-to-register. 

2. Addressing modes are limited in number. 

3. Instruction formats are all of the same length. 

4. Instructions perform elementary operations. 
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The goal of a RISC architecture is high throughput and fast execution. To 
achieve these goals, accesses to memory, which typically take longer than other 
elementary operations, are to be avoided, except for fetching instructions. A 
result of this view is the need for a relatively large register file. Because of the 
fixed instruction length, limited addressing modes, and elementary operations, 
the control unit of a RISC is comparatively simple and is typically hardwired. In 
addition, the underlying organization is universally a pipelined design, as cov­
ered in Chapter 11. 

A purely CISC architecture has the following properties: 

1. Memory access is directly available to most types of instructions. 

2. Addressing modes are substantial in number. 

3. Instruction formats are of different lengths. 

4. Instructions perform both elementary and complex operations. 

The goal of the CISC architecture is to match more closely the operations used in pro­
gramming languages and to provide instructions that facilitate compact programs and 
conserve memory. In addition, efficiencies in performance may result through a reduc­
tion in the number of instruction fetches from memory, compared with the number of 
elementary operations performed. Because of the high memory accessibility, the regis­
ter files in a CISC may be smaller than in a RISC. Also, because of the complexity of 
the instructions and the variability of the instruction formats, microprogrammed con­
trol is more likely to be used. In the quest for speed, the microprogrammed control in 
newer designs is likely to be controlling a pipelined datapath. CISC instructions are 
converted to a sequence of RISC-like operations that are processed by the RISC-like 
pipeline, as discussed in detail in Chapter 11. 

Actual instruction set architectures range between those which are purely 
RISC and those which are purely CISC. Nevertheless, there is a basic set of ele­
mentary operations that most computers include among their instructions. In this 
chapter, we will focus primarily on elementary instructions that are included in 
both CISC and RISC instruction sets. Most elementary computer instructions can 
be classified into three major categories: (1) data-transfer instructions, (2) data­
manipulation instructions, and (3) program-control instructions. 

Data-transfer instructions cause transfer of data from one location to 
another without changing the binary information content. Data-manipulation 
instructions perform arithmetic, logic, and shift operations. Program-control 
instructions provide decision-making capabilities and change the path taken by 
the program when executed in the computer. In addition to the basic instruction 
set, a computer may have other instructions that provide special operations for 
particular applications. 

10-5 DATA-TRANSFER INSTRUCTIONS 

Data-transfer instructions move data from one place in the computer to another 
without changing the data. Typical transfers are between memory and processor 
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registers, between processor registers and input and output registers, and among 

the processor registers themselves. 
Table 10-2 gives a list of eight typical data-transfer instructions used in many 

computers. Accompanying each instruction is a mnemonic symbol, the assembly­
language abbreviation recommended by an IEEE standard (Reference 5). Differ­
ent computers, however, may use different mnemonics for the same instruction 
name. The load instruction is used to designate a transfer from memory to a pro­
cessor register. The store instruction designates a transfer from a processor register 
into a memory word. The move instruction is used in computers with multiple pro­
cessor registers to designate a transfer from one register to another. It is also used 
for data transfer between registers and memory and between two memory words. 

D TABLE 10-2 
Typical Data Transfer Instructions 

Name Mnemonic 

Load LD 
Store ST 
Move MOVE 
Exchange XCH 
Push PUSH 
Pop POP 
Input IN 
Output OUT 

The exchange instruction exchanges information between two registers, between a 
register and a memory word, or between two memory words. The push and pop 
instructions are for stack operations described next. 

Stack Instructions 

The stack architecture introduced earlier possesses features that facilitate a num­

ber of data-processing and control tasks. A stack is used in some electronic calcu­
lators and computers for the evaluation of arithmetic expressions. Unfortunately, 
because of the negative effects on performance of having the stack reside prima­
rily in memory, a stack in a computer typically handles only state information 
related to procedure calls and returns and interrupts, as explained in Sections 10-8 
and 10-9. 

The stack instructions push and pop transfer data between a memory stack 
and a processor register or memory. The push operation places a new item onto the 
top of the stack. The pop operation removes one item from the stack so that the 
stack pops up. However, nothing is really physically pushed or popped in the stack. 
Rather, the memory stack is essentially a portion of a memory address space 
accessed by an address that is always incremented or decremented before or after 
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the memory access. The register that holds the address for the stack is called a 
stack pointer (SP) because its value always points to TOS, the item at the Top Of 
Stack. Push and pop operations are implemented by decrementing or incrementing 
the stack pointer. 

Figure 10-7 shows a portion of a memory organized as a stack that grows from 
higher to lower addresses. The stack pointer, SP, holds the binary address of the item 
that is currently on top of the stack. Three items are presently stored in the stack: A, 
B, and C, in consecutive addresses 103, 102, and 101, respectively. Item C is on top of 
the stack, so SP contains 101. To remove the top item, the stack is popped by reading 
the item at address 101 and incrementing SP. Item B is now on top of the stack, since 
SP contains address 102. To insert a new item, the stack is pushed by first decrement­
ing SP and then writing the new item on top of the stack using SP as the memory 
address. Note that item C has been read out of the stack, but is not physically 
removed from it. This does not matter as far as the stack operation is concerned, 
because when the stack is pushed, a new item is written over it regardless of what 
was there before. 

We assume that the items in the stack communicate with a data register Rl or a 
memory location X. A new item is placed on the stack with the push operation 
sequence: 

SP+--SP-1 

M[SP]+--Rl 

The stack pointer is decremented so that it points at the address of the next word. 
A memory write microoperation inserts the word from Rl onto the top of the 
stack. Note that SP holds the address of the top of the stack and that M[SP] 
denotes the memory word specified by the address presently in SP. An item is 
deleted from the stack with the pop operation pair: 
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Rlf--M[SP] 

SPf--SP + 1 

The top item is read from the stack into Rl, and the stack pointer is incremented to 
point at the next item in the stack, which is the new top of the stack. The two 
microoperations described in this case can be in parallel. 

The two microoperations needed for either the push or the pop operation are 
an access to memory through SP and an update of SP. In Figure 10-7, the stack 
grows by decreasing the memory address. By contrast, a stack may be constructed 
to grow by increasing the memory address. In such a case, SP is incremented for 
the push operation and decremented for the pop operation. A stack may also be 
constructed so that SP points to the next empty location above the top of the stack. 
In that case, the order of execution of the microoperations must be modified. 

A stack pointer is loaded with an initial value, which must be the bottom 
address of an assigned stack in memory. From then on, SP is automatically decre­
mented or incremented with every push or pop operation. The advantage of a 
memory stack is that the processor can refer to it without having to specify an 
address, since the address is always available and automatically updated in the 
stack pointer. 

The final pair of data transfer instructions, input and output, depend on the 
type of input-output used, as described next. 

Independent versus Memory-Mapped 1/0 

Input and output (1/0) instructions transfer data between processor registers and 
input and output devices. These instructions are similar to load and store instruc­
tions, except that the transfers are to and from external registers instead of 
memory words. The computer has a number of input and output ports, with one or 
more ports dedicated to communication with a specific input or output device. A 

port is typically a register with input and/or output lines attached to the device. The 
particular port is chosen by an address, in a manner similar to the way an address 
selects a word in memory. Input and output instructions include an address field in 
their format, for specifying the particular port selected for the transfer of data. 

Port addresses are assigned in two ways. In the independent UO system, 
the address ranges assigned to memory and 1/0 ports are independent from 
each other. The computer has distinct input and output instructions, as listed in 
Table 10-2, containing a separate address field that is interpreted by the control 
and used to select a particular 1/0 port. Independent 1/0 addressing isolates 
memory and 1/0 selection, so that the memory address range is not affected by 
the port address assignment. For this reason, the method is also referred to as an 
isolated UO configuration. 

In contrast to independent 1/0, memory-mapped 110 assigns a subrange of 
the memory addresses for addressing 1/0 ports. There are no separate addresses 
for handling input and output transfers, since 1/0 ports are treated as memory 
locations in one common address range. Each 1/0 port is regarded as a memory 
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location, similar to a memory word. Computers that adopt the memory-mapped 
scheme have no distinct input or output instructions, because the same instruc­
tions are used for manipulating both memory and 1/0 data. For example, the 
load and store instructions used for memory transfer are also used for 1/0 trans­
fer, provided that the address associated with the instruction is assigned to an 1/0 

port and not to a memory word. The advantage of this scheme is the simplicity 
that results with the same set of instructions serving for both memory and 1/0 

access. 

10-6 DATA-MANIPULATION INSTRUCTIONS 

Data-manipulation instructions perform operations on data and provide the com­
putational capabilities of the computer. In a typical computer, they are usually 
divided into three basic types: 

1. Arithmetic instructions. 

2. Logical and bit-manipulation instructions. 

3. Shift instructions. 

A list of elementary data-manipulation instructions looks very much like the 
list of microoperations given in Chapter 9. However, an instruction is typically 
processed by executing a sequence of one or more microinstructions. A micro­
operation is an elementary operation executed by the hardware of the com­
puter under the control of the control unit. In contrast, an instruction may 
involve several elementary operations that fetch the instruction, bring the 
operands from appropriate processor registers, and store the result in the spec­
ified location. 

Arithmetic Instructions 

The four basic arithmetic instructions are addition, subtraction, multiplication, and 
division. Most computers provide instructions for all four operations. A list of typi­
cal arithmetic instructions is given in Table 10-3. The increment instruction adds 
one to the value stored in a register or memory word. A common characteristic of 
the increment operation, when executed on a computer word, is that a binary num­
ber of all ls produces a result of all Os when incremented. The decrement instruc­
tion subtracts one from a value stored in a register or memory word. When 
decremented, a number of all Os produces a number of all ls. 

The add, subtract, multiply, and divide instructions may be available for dif­
ferent types of data. The data type assumed to be in processor registers during the 
execution of these arithmetic operations is included in the definition of the opcode. 
An arithmetic instruction may specify unsigned or signed integers, binary or deci­
mal numbers, or floating-point data. The arithmetic operations with binary integers 
were presented in Chapter 1 and Chapter 4. The floating-point representation is 
used for scientific calculations and is presented in the next section. 
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The number of bits in any register is finite; therefore, the results of arithmetic 
operations are of finite precision. Most computers provide special instructions to 
facilitate double-precision arithmetic. A carry flip-flop is used to store the carry 
from an operation. The instruction "add with carry" performs the addition with 
two operands plus the value of the carry from the previous computation. Similarly, 
the "subtract with borrow" instruction subtracts two operands and a borrow that 
may have resulted from a previous operation. 

The subtract reverse instruction reverses the order of the operands, perform­
ing B - A instead of A - B. The negate instruction performs the 2's complement 
of a signed number, which is equivalent to multiplying the number by -1. 

D TABLE 10-3 
Typical Arithmetic Instructions 

Name 

Increment 

Decrement 

Add 

Subtract 

Multiply 

Divide 

Add with carry 

Subtract with borrow 
Subtract reverse 

Negate 

Logical and Bit-Manipulation Instructions 

Mnemonic 

INC 

DEC 
ADD 

SUB 
MUL 
DIV 

ADDC 

SUBB 
SUBR 
NEG 

Logical instructions perform binary operations on words stored in registers or 
memory words. They are useful for manipulating individual bits or a group of bits 
that represent binary-coded information. Logical instructions consider each bit of 
the operand separately and treat it as a binary variable. By proper application of 
the logical instructions, it is possible to change bit values, to clear a group of bits, or 
to insert new bit values into operands stored in registers or memory. 

Some typical logical and bit-manipulation instructions are listed in Table 10-4. 
The clear instruction causes the specific operand to be replaced by Os. The set 
instruction causes the operand to be replaced by ls. The complement instruction 
inverts all the bits of the operand. The AND, OR, and XOR instructions produce 
the corresponding logical operations on individual bits of two operands. Although 
logical instructions perform Boolean operations, when used on words they often 
are viewed as performing bit-manipulation operations. Three bit-manipulation 
operations are possible: A selected bit can be cleared to 0, set to 1, or comple­
mented. The three logical instructions are usually applied to do just that. 

The AND instruction is used to clear a bit or a selected group of bits of an 
operand to 0. For any Boolean variable X, the relationship X · 0 = 0 dictates that 
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D TABLE 10-4 
Typical Logical and Bit-Manipulation Instructions 

Name 

Clear 
Set 
Complement 
AND 
OR 
Exclusive-OR 
Clear carry 
Set carry 
Complement carry 

Mnemonic 

CLR 
SET 
NOT 
AND 
OR 
XOR 
CLRC 
SETC 
COMC 

a binary variable ANDed with a 0 produces a O; and similarly, the relationship 
X · 1 = X dictates that the variable does not change when ANDed with a 1. There­
fore, the AND instruction is used to selectively clear bits of an operand by AND­
ing the operand with a word that has Os in the bit positions that must be cleared 
and ls in the bit positions that must remain the same. The AND instruction is also 
called a mask because, by inserting Os, it masks a selected portion of an operand. 
AND is also sometimes referred to as a bit clear instruction. 

The OR instruction is used to set a bit or a selected group of bits of an operand to 1. 
For any Boolean variable X, the relationship X + 1 = 1 dictates that a binary variable 
ORed with a 1 produces a l; similarly, the relationship X + 0 = X dictates that the variable 
does not change when ORed with a 0. Therefore, the OR instruction can be used to selec­
tively set bits of an operand by ORing the operand with a word with ls in the bit positions 
that must be set to 1. The OR instruction is sometimes called a bit set instruction. 

The XOR instruction is used to selectively complement bits of an operand. 
This is because of the Boolean relationships XE91 = X and XE9 0 = X. A binary 
variable is complemented when XORed with a 1,  but does not change value when 
XORed with a 0. The XOR instruction is sometimes called a bit complement 
instruction. 

Other bit-manipulation instructions included in Table 10-4 clear, set, or com­
plement the carry bit. Additional instructions can clear, set, or complement other 
status bits or flag bits in a similar manner. 

Shift Instructions 

Instructions to shift the content of a single operand are provided in several variet­
ies. Shifts are operations in which the bits of the operand are moved to the left or 
to the right. The incoming bit shifted in at the end of the word determines the type 
of shift. Instead of using just a 0, as for sl and sr in Chapter 9, here we add further 
possibilities. The shift instructions may specify either logical shifts, arithmetic shifts, 
or rotate-ty pe operations. 
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Name Mnemonic Diagram 

Logical shift right SHR 

Logical shift left SHL 

Arithmetic shift right SHRA 

Arithmetic shift left SHLA 

Rotate right ROR 

Rotate left ROL 

Rotate right with carry RORC 

Rotate left with carry ROLC 

0 ----------------

---------------- 0 

----------------
---------------- 0 

q ----------------� 
@H----------------p 
� ----------------� 

� ---------------- µ 

Table 10-5 lists four types of shift instructions, both right and left versions. 
The small diagrams shown in the right column show the bit movement for each of 
the shifts in the Intel IA-32 ISA. In all cases, the outgoing bit is copied into the 
carry status bit C. The logical shifts insert 0 into the incoming bit position during 
the shift. Arithmetic shifts conform to the rules for shifting two's complement 
signed numbers. The arithmetic shift right instruction uses sign extension, filling the 
leftmost position with its own value during the shift. The arithmetic shift left 
instruction inserts 0 into the incoming bit in the rightmost position and is identical 
to the logical shift left instruction. 

The rotate instructions produce a circular shift: the values shifted out of 
the outgoing bit are rotated back into the incoming bit. The rotate-with-carry 
instructions treat the carry bit as an extension of the register whose word is 
being rotated. Thus, a rotate left with carry transfers the carry bit into the 
incoming bit in the rightmost bit position of the register, transfers the outgoing 
bit from the leftmost bit of the register into the carry, and shifts the entire regis­
ter to the left. 

Most computers have a multiple-field format for the shift instruction that 
provides for shifting multiple, rather than just one, bit positions. One field contains 
the opcode, and another contains the number of positions that an operand is to be 
shifted. A shift instruction may include the following five fields: 

OP REG TYPE RL COUNT 
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OP is the opcode field for specifying a shift, and REG is a register address that 
specifies the location of the operand. TYPE is a 2-bit field that specifies one of the 
four types of shifts (logical, arithmetic, rotate, and rotate with carry), while RL is a 
1-bit field that specifies whether a shift is to the right or the left. COUNT is a k-bit 
field that specifies shifts of up to 2k - 1 positions. With such a format, it is possible 
to specify the type of shift, the direction of the shift, and the number of positions to 
be shifted, all in one instruction. 

Note that for shifts of greater than one position, the filling of the positions 
vacated by the shift is consistent with the diagrams shown in Table 10-5. In the 
Intel IA-32 ISA, in addition to the use of the carry bit C, the N and Z condition 
code bits are also set based on the shift results. The overflow bit, V, is defined only 
for 1-bit shifts. 

10-7 FLOATING-POINT COMPUTATIONS 

In many scientific calculations, the range of numbers is very large. In a computer, 
the way to express such numbers is in floating-point notation. The floating-point 
number has two parts, one containing the sign of the number and a fraction (some­
times called a mantissa) and the other designating the position of the radix point in 
the number and called the exponent. For example, the decimal number +6132.789 
is represented in floating-point notation as 

Fraction Exponent 

+.6132789 +04 

The value of the exponent indicates that the actual position of the decimal 
point is four positions to the right of the indicated decimal point in the fraction. 
This representation is equivalent to the scientific notation + .6132789 x 10+4• 
Decimal floating-point numbers are interpreted as representing a number in 
the form 

where Fis the fraction and E the exponent. Only the fraction and the exponent are 
physically represented in computer registers; radix 10 and the decimal point of the 
fraction are assumed and are not shown explicitly. A floating-point binary number 
is represented in a similar manner, except that it uses radix 2 for the exponent. For 
example, the binary number + 1001.11 is represented with an 8-bit fraction and 6-
bit exponent as 

Fraction Exponent 

01001110 000100 
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The fraction has a 0 in the leftmost position to denote a plus. The binary point of 
the fraction follows the sign bit, but is not shown in the register. The exponent has 
the equivalent binary number +4. The floating-point number is equivalent to 

F x 2E 
= +(0.1001110)2 x 2+

4 

A floating-point number is said to be normalized if the most significant digit of the 
fraction is nonzero. For example, the decimal fraction 0.350 is normalized, but 0.0035 is 
not. Normalized numbers provide the maximum possible precision for the floating­
point number. A zero cannot be normalized because it does not have a nonzero digit; it 
is usually represented in floating-point by all Os in both the fraction and the exponent. 

Floating-point representation increases the range of numbers that can be accom­
modated in a given register. Consider a computer with 48-bit registers. Since one bit 
must be reserved for the sign, the range of signed integers will be ± (247 - 1 ), which is 
approximately ±1014. The 48 bits can be used to represent a floating-point number, 
with one bit for the sign, 35 bits for the fraction, and 12 bits for the exponent. The 
largest positive or negative number that can be accommodated is thus 

This number is derived from a fraction that contains 35 ls, and an exponent with a sign 
bit and 11 ls. The maximum exponent is 211 - 1, or 2047. The largest number that can 
be accommodated is approximately equivalent to decimal 10615. Although a much 
larger range is represented, there are still only 48 bits in the representation. As a conse­
quence, exactly the same number of numbers are represented. Hence, the range is 
traded for the precision of the numbers, which is reduced from 48 bits to 35 bits. 

Arithmetic Operations 

Arithmetic operations with floating-point numbers are more complicated than with 
integer numbers, and their execution takes longer and requires more complex hard­
ware. Adding and subtracting two numbers requires that the radix points be aligned, 
since the exponent parts must be equal before adding or subtracting the fractions. 
The alignment is done by shifting one fraction and correspondingly adjusting its 
exponent until it is equal to the other exponent. Consider the sum of the following 
floating-point numbers: 

.5372400 x 10 2 

+ .1580000 x 10-1 

It is necessary that the two exponents be equal before the fractions can be added. 
We can either shift the first number three positions to the left or shift the second 
number three positions to the right. When the fractions are stored in registers, 
shifting to the left causes a loss of the most significant digits. Shifting to the right 
causes a loss of the least significant digits. The second method is preferable 
because it only reduces the precision, whereas the first method may cause an error. 
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The usual alignment procedure is to shift the fraction with the smaller exponent to 
the right by a number of places equal to the difference between the exponents. 
After this is done, the fractions can be added: 

.5372400 x 102 
+ .0001580 x 102 

.5373980 x 102 

When two normalized fractions are added, the sum may contain an overflow 
digit. An overflow can be corrected by shifting the sum once to the right and incre­
menting the exponent. When two numbers are subtracted, the result may contain 
most significant zeros in the fraction, as shown in the following example: 

.56780 x 10s 
- .56430 x 10s 

.00350 x 10s 

A floating-point number that has a 0 in the most significant position of the fraction 
is not normalized. To normalize the number, it is necessary to shift the fraction to 
the left and decrement the exponent until a nonzero digit appears in the first posi­
tion. In the preceding example, it is necessary to shift left twice to obtain 
.35000 x 103. In most computers, a normalization procedure is performed after each 
operation to ensure that all results are in normalized form. 

Floating-point multiplication and division do not require an alignment of the 
fractions. Multiplication can be performed by multiplying the two fractions and add­
ing the exponents. Division is accomplished by dividing the fractions and subtracting 
the exponents. In the examples shown, we used decimal numbers to demonstrate 
arithmetic operations on floating-point numbers. The same procedure applies to 
binary numbers, except that the base of the exponent is 2 instead of 10. 

Biased Exponent 

The sign and fraction part of a floating-point number is usually a signed-magnitude 
representation. The exponent representation employed in most computers is 
known as a biased exponent. The bias is an excess number added to the exponent 
so that, internally, all exponents become positive. As a consequence, the sign of the 
exponent is removed from being a separate entity. 

Consider, for example, the range of decimal exponents from -99 to +99. 
This is represented by two digits and a sign. If we use an excess 99 bias, then the 
biased exponent e will be equal toe= E + 99, where Eis the actual exponent. For 
E = -99, we have e = -99 + 99 = O; and for E = +99, we have e = 99 + 99 = 198. 
In this way, the biased exponent is represented in a register as a positive number in 
the range from 000 to 198. Positive-biased exponents have a range of numbers from 
099 to 198. Subtraction of the bias, 99, gives the positive values from 0 to +99. 
Negative-biased exponents have a range from 098 to 000. Subtraction of 99 gives 
the negative values from - 1 to -99. 
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The advantage of biased exponents is that the resulting floating-point num­
bers contain only positive exponents. It is then simpler to compare the relative 
magnitude between two numbers without being concerned with the signs of their 
exponents. Another advantage is that the most negative exponent converts to a 
biased exponent with all Os. The floating-point representation of zero is then a zero 
fraction and a zero biased exponent, which is the smallest possible exponent. 

Standard Operand Format 

Arithmetic instructions that perform operations with floating-point data often use 
the suffix F. Thus, ADDF is an add instruction with floating-point numbers. There 
are two standard formats for representing a floating-point operand: the single-preci­
sion data type, consisting of 32 bits, and the double-precision data type, consisting of 
64 bits. When both types of data are available, the single-precision instruction mne­
monic uses an FS suffix, and the double precision uses FL (for "floating-point long"). 

The format of the IEEE standard (see Reference 6) single-precision floating­
point operand is shown in Figure 10-8. It consists of 32 bits. The sign bits designates 
the sign for the fraction. The biased exponent e contains 8 bits and uses an excess 127 
number. The fraction f consists of 23 bits. The binary point is assumed to be immedi­
ately to the left of the most significant bit of the /field. In addition, an implied 1 bit is 
inserted to the left of the binary point, which in effect expands the number to 24 bits 
representing a value from 1.02 to 1.11. .. 12• The component of the binary floating­
point number that consists of a leading bit to the left of the implied binary point, 
together with the fraction in the field, is called the significand. Following are some 
examples of field values and the corresponding significands: 

fField Significand Decimal Equivalent 

100 ... 0 1.100 .. . 0 1.50 
010 ... 0 1.010 .. . 0 1.25 
000 ... 0 1.000 .. . O* 1.00* 

*Assuming the exponent is not equal to 00 ... 0. 

Even though the f field by itself may not be normalized, the significand is 
always normalized, because it has a nonzero bit in the most significant position. 
Since normalized numbers must have a nonzero most significant bit, this 1 bit is 
not included explicitly in the format, but must be inserted by the hardware during 
arithmetic computations. The exponent field uses an excess 127 bias value for nor­
malized numbers. The range of valid exponents is from -126 (represented as 

1 8 23 

e f 

D FIGURE 10-8 
IEEE Floating-Point Operand Format 



526 0 CHAPTER 10 I INSTRUCTION SET ARCHITECTURE 

D TABLE 10-6 
Evaluating Biased Exponents 

Biased exponent e = E + 127 
Exponent E 
in decimal Decimal Binary 

-126 -126 + 127 = 1 00000001 
-001 -001 + 127 = 126 01111110 

000 000 + 127 = 127 01111111 
+001 001 + 127 = 128 10000000 
+126 126 + 127 = 253 11111101 
+127 127 + 127 = 254 11111110 

00000001) through + 127 (represented as 11111110). The maximum (11111111) and 
minimum (00000000) values for the e field are reserved to indicate exceptional 
conditions. Table 10-6 shows the biased and actual values of some exponents. 

Normalized numbers are numbers that can be expressed as floating-point 
operands in which the e field is neither all Os nor all ls. The value of the number is 
derived from the three fields in the format of Figure 10-8 using the formula 

(-l)s2e -127 X (1.f) 

The most positive normalized number that can be obtained has a 0 for the sign bit 
for a positive sign, a biased exponent equal to 254, and an f field with 23 ls. This 
gives an exponent E = 254 -127 = 127. The significand is equal to 1 + 1 - 2-23 = 

2 - 2-23. The maximum positive number that can be accommodated is 

+2127 x (2 - 2-23) 

The smallest positive normalized number has a biased exponent equal to 00000001 
and a fraction of all Os. The exponent is E = 1 - 127 = -126, and the significand is 
equal to 1.0. The smallest positive number that can be accommodated is +2-126

• 
The corresponding negative numbers are the same, except that the sign bit is nega­
tive. As mentioned before, exponents with all Os or all ls (decimal 255) are 
reserved for the following special conditions: 

1. When e = 255 and f = 0, the number represents plus or minus infinity. The 
sign is determined from the sign bit s. 

2. When e = 255 and f =f=. 0 , the representation is considered to be not a number, 

or NaN, regardless of the sign value. NaNs are used to signify invalid opera­
tions, such as the multiplication of zero by infinity. 

3. When e = 0 and f = 0, the number denotes plus or minus zero. 

4. When e = 0, and f =f=. 0, the number is said to be denormalized. This is the 
name given to numbers with a magnitude less than the minimum value that is 
represented in the normalized format. 
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D TABLE 10-7 

JYpical Program Control Instructions 

Name 

Branch 

Jump 

Call procedure 

R eturn from procedure 

Compare (by subtraction) 

Test (by ANDing) 

Mnemonic 

BR 

JMP 

CALL 

RET 

CMP 

TEST 

10-8 PROGRAM CONTROL INSTRUCTIONS 

The instructions of a program are stored in successive memory locations. When 
processed by the control, the instructions are read from consecutive memory loca­
tions and executed one by one. Each time an instruction is fetched from memory, 
the PC is incremented so that it contains the address of the next instruction in 
sequence. In contrast, a program control instruction, when executed, may change 
the address value in the PC and cause the flow of control to be altered. The change 
in the PC as a result of the execution of a program control instruction causes a 
break in the sequence of execution of instructions. This is an important feature of 
digital computers, since it provides control over the flow of program execution and 
a capability of branching to different program segments, depending on previous 
computations. 

Some typical program control instructions are listed in Table 10-7. The 
branch and jump instructions are often used interchangeably to mean the same 
thing, although sometimes they are used to denote different addressing modes. For 
example, the jump may use direct or indirect addressing, whereas the branch uses 
relative addressing. The branch (or jump) is usually a one-address instruction. 
When executed, the branch instruction causes a transfer of the effective address 
into the PC. Since the PC contains the address of the instruction to be executed 
next, the next instruction will be fetched from the location specified by the effec­
tive address. 

Branch and jump instructions may be conditional or unconditional. An 
unconditional branch instruction causes a branch to the specified effective address 
without any conditions. The conditional branch instruction specifies a condition 
that must be met in order for the branch to occur, such as the value in a specified 
register being negative. If the condition is met, the PC is loaded with the effective 
address, and the next instruction is taken from this address. If the condition is not 
met, the PC is not changed, and the next instruction is taken from the next location 
m sequence. 

The call and return instructions are used in conjunction with procedures. 
Their performance and implementation are discussed later in this section. 
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The compare instruction performs a comparison via a subtraction, with the 
difference not retained. Instead, the comparison causes a conditional branch, 
changes the contents of a register, or sets or resets stored status bits. Similarly, the 
test instruction performs the logical AND of two operands without retaining the 
result and executes one of the actions listed for the compare instruction. 

Based on their three possible actions, compare and test instructions are viewed 
to be of three distinct types, depending upon the way in which conditional decisions 
are handled. The first type executes the entire decision as a single instruction. For 
example, the contents of two registers can be compared and a branch or jump taken 
if the contents are equal. Since two register addresses and a memory address are 
involved, such an instruction requires three addresses. The second type of compare 
and test instruction also uses three addresses, all of which are register addresses. 
Considering the same example, if the contents of the first two registers are equal, a 1 
is placed in the third register. If the contents are not equal, a 0 is placed in the third 
register. These two types of instruction avoid the use of stored status bits. In the first 
case, no such bit is required, and in the second case, a register is used to simulate its 
presence. The third type of compare and test has compare and test operations that 
set or reset stored status bits. Branch or jump instructions are then used to condition­
ally change the program sequence. This third type of compare and test instruction is 
discussed in the next subsection. 

Conditional Branch Instructions 

A conditional branch instruction is a branch instruction that may or may not cause 
a transfer of control, depending on the value of stored bits in the PSR. Each condi­
tional branch instruction tests a different combination of status bits for a condition. 
If the condition is true, control is transferred to the effective address. If the condi­
tion is false, the program continues with the next instruction. 

Table 10-8 gives a list of conditional branch instructions that depend directly 
on the bits in the PSR. In most cases, the instruction mnemonic is constructed with 
the letter B (for "branch") and a letter for the name of the status bit. The letter N 
(for "not") is included if the status bit is tested for a 0 condition. Thus, BC is a 
branch if carry = 1, and BNC is a branch if carry = 0. 

The zero status bit Z is used to check whether the result of an ALU opera­
tion or shift is equal to zero. The carry bit C is used to check the carry after the 
addition or the borrow after the subtraction of two operands in the ALU. It is 
also used in conjunction with shift instructions to check the value of the outgoing 
bit. The sign bit N reflects the state of the leftmost bit of the output from the 
ALU or shift. N = 0 denotes a positive sign and N = 1 a negative sign. These 
instructions can be used to check the value of the leftmost bit, whether it repre­
sents a sign or not. The overflow bit Vis used in conjunction with arithmetic and 
shift operations with both signed and unsigned numbers. 

As stated previously, the compare instruction performs a subtraction of two 
operands, say, A - B. The result of the operation is not transferred into a desti­
nation register, but the status bits are affected. The status bits provide informa­
tion about the relative magnitude between A and B. Some computers provide 
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Conditional Branch Instructions Relating to Status Bits 
in the PSR 

Branch Condition Mnemonic Test Condition 

Branch if zero BZ z = 1 
Branch if not zero BNZ Z=O 
Branch if carry BC C=l 
Branch if no carry BNC C=O 
Branch if minus BN N=l 
Branch if plus BNN N=O 
Branch if overflow BV V=l 
Branch if no overflow BNV V=O 

special branch instructions that can be applied after the execution of a compare 
instruction. The specific conditions to be tested depend on whether the two num­
bers are considered to be unsigned or signed. 

The relative magnitude between two unsigned binary numbers A and B can 
be determined by subtracting A - B and checking the C and Z status bits. Most 
commercial computers consider the C status bit as a carry after addition and a bor­
row after subtraction. A borrow occurs when A < B, because the most significant 
position must borrow a bit to complete the subtraction. A borrow does not occur if 
A > B ,  because the difference A - B is positive. The condition for borrowing is 
the inverse of the condition for carrying when the subtraction is done by taking the 
2s complement of B. Computers that use the C status bit as a borrow after a sub­
traction complement the output carry after adding the 2s complement of the sub­
trahend and call this bit a borrow. The technique is typically applied to all 
instructions that use subtraction within the functional unit, not just the subtract 
instruction. For example, it applies to compare instructions. 

The conditional branch instructions for unsigned numbers are listed in 
Table 10-9. It is assumed that a previous instruction has updated status bits C and 
Z after a subtraction A - B or some other similar instruction. The words "above," 

D TABLE 10-9 
Conditional Branch Instructions for Unsigned Numbers 

Branch Condition Mnemonic Condition Status Bits* 

Branch if above BA A>B C+Z=O 
Branch if above or equal BAE A�B C=O 
Branch if below BB A<B C=l 
Branch if below or equal BBB A=s;,B C+Z=l 
Branch if equal BE A=B Z=l 
Branch if not equal BNE A*-B Z=O 

*Note that Chere is a borrow bit. 
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D TABLE 10-10 
Conditional Branch Instructions for Signed Numbers 

Branch condition Mnemonic Condition Status Bits 

Branch if greater BG A>B (NE9V) + Z = 0 
Branch if greater or equal BGE A�B NE9V=O 
Branch if less BL A<B NE9V=1 
Branch if less or equal BLE A$,B (NE9V) + Z = 1 
Branch if equal BE A=B Z=l 
Branch if not equal BNE A-:f:.B Z=O 

"below," and "equal" are used to denote the relative magnitude between two 
unsigned numbers. The two numbers are equal if A = B. This is determined from 
the zero status bit Z, which is equal to 1 because A - B = 0. A is below B and the 
borrow C = 1 when A < B. For A to be below or equal to B (A < B), we must 
have C = 1 or Z = 1. The relationship A > B, is the inverse of A < B and is 
detected from the complemented condition of the status bits. Similarly, A > B is 
the inverse of A < B, and A =f=. B is the inverse of A = B. 

The conditional branch instructions for signed numbers are listed in Table 10-10. 
Again, it is assumed that a previous instruction has updated the status bits N, V, and 
Z after a subtraction A - B. The words "greater," "less," and "equal" are used to 
denote the relative magnitude between two signed numbers. If N = 0, the sign of the 
difference is positive, and A must be greater than or equal to B, provided that V = 0, 
indicating that no overflow occurred. An overflow causes a sign reversal, as discussed 
in Section 4-4. This means that if N = 1 and V = 1, there was a sign reversal, and the 
result should have been positive, which makes A greater than or equal to B. There­
fore, the condition A > B is true if both N and V are equal to 0 or both are equal to 
1. This is the complement of the exclusive-OR operation. 

For A to be greater than but not equal to B (A > B), the result must be posi­
tive and nonzero. Since a zero result gives a positive sign, we must ensure that the 
Z bit is 0 to exclude the possibility that A = B. Note that the condition (Nffi V) + 

Z = 0 means that both the exclusive-OR operation and the Z bit must be equal 
to 0. The other two conditions in the table can be derived in a similar manner. The 
conditions BE (branch on equal) and BNE (branch on not equal) given for 
unsigned numbers apply to signed numbers as well and can be determined from 
Z = 1 and Z = 0, respectively. 

Procedure Call and Return Instructions 

A procedure is a self-contained sequence of instructions that performs a given com­
putational task. During the execution of a program, a procedure may be called to 
perform its function many times at various points in the program. Each time the 
procedure is called, a branch is made to the beginning of the procedure to start 
executing its set of instructions. After the procedure has been executed, a branch is 
made again to return to the main program. A procedure is also called a subroutine. 
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The instruction that transfers control to a procedure is known by different 
names, including call procedure, call subroutine, jump to subroutine, branch to sub­
routine, and branch and link. We will refer to the routine containing the procedure 
call as the calling procedure. The call procedure instruction has a one-address field 
and performs two operations. First, it stores the value of the PC, which is the 
address following that of the call procedure instruction, in a temporary location. 
This address is called the return address, and the corresponding instruction is the 
continuation point in the calling procedure. Second, the address in the call proce­
dure instruction-the address of the first instruction in the procedure-is loaded 
into the PC. When the next instruction is fetched, it comes from the called proce­
dure. 

The final instruction in every procedure must be a return to the calling proce­
dure. The return instruction takes the address that was stored by the call procedure 
instruction and places it back in the PC. This results in a transfer of program exe­
cution back to the continuation point in the calling procedure. 

Different computers use different temporary locations for storing the return 
address. Some computers store it in a fixed location in memory, some store it in a 
processor register, and some store it in a memory stack. The advantage of using a 
stack for the return address is that, when a succession of procedures are called, the 
sequential return address can be pushed onto the stack. The return instruction 
causes the stack to pop, and the contents of the top of the stack are then trans­
ferred to the PC. In this way, a return is always to the program that last called the 
procedure. A procedure call instruction using a stack is implemented with the fol­
lowing microoperation sequence: 

SP�SP-1 

M[SP]�PC 

PC� Effective address 

Decrement stack pointer 

Store return address on stack 

Transfer control to procedure 

The return instruction is implemented by popping the stack and transferring 
the return address to the PC: 

PC�M[SP] 

SP�SP+l 

Transfer return address to PC 

Increment stack pointer 

By using a procedure stack, all return addresses are automatically stored by the 
hardware in the memory stack. Thus, the programmer does not have to be concerned 
about managing the return addresses for procedures called from within procedures. 

10-9 PROGRAM INTERRUPT 

A program interrupt is used to handle a variety of situations that require a depar­
ture from the normal program sequence. A program interrupt transfers control 
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from a program that is currently running to another service program as a result of 
an externally or internally generated request. Control returns to the original pro­
gram after the service program is executed. In principle, the interrupt procedure is 
similar to a call procedure, except in three respects: 

1. The interrupt is usually initiated at an unpredictable point in the program by 
an external or internal signal, rather than the execution of an instruction. 

2. The address of the service program that processes the interrupt request is 
determined by a hardware procedure, rather than the address field of an 
instruction. 

3. In response to an interrupt, it is necessary to store information that defines 
all or part of the contents of the register set, rather than storing only the pro­
gram counter. 

After the computer has been interrupted and the appropriate service pro­
gram executed, the computer must return to exactly the same state that it was in 
before the interrupt occurred. Only if this happens will the interrupted program be 
able to resume exactly as if nothing had happened. The state of the computer at 
the end of an execution of an instruction is determined from the contents of the 
register set. In addition to containing the condition codes, the PSR can specify 
what interrupts are allowed to occur and whether the computer is operating in user 
or system mode. Most computers have a resident operating system that controls 
and supervises all other programs. When the computer is executing a program that 
is part of the operating system, the computer is placed in system mode, in which 
certain instructions are privileged and can be executed in the system mode only. 
The computer is in user mode when it executes user programs, in which case it can­
not execute the privileged instructions. The mode of the computer at any given 
time is determined from a special status bit or bits in the PSR. 

Some computers store only the program counter when responding to an 
interrupt. In such computers, the program that performs the data processing for 
servicing the interrupt must include instructions to store the essential contents of 
the register set. Other computers store the entire register set automatically in 
response to an interrupt. Some computers have two sets of processor registers, so 
that when the program switches from user to system mode in response to an inter­
rupt, it is not necessary to store the contents of processor registers, because each 
computer mode employs its own set of registers. 

The hardware procedure for processing interrupts is very similar to the execu­
tion of a procedure call instruction. The contents of the register set of the processor 
are temporarily stored in memory, typically by being pushed onto a memory stack, 
and the address of the first instruction of the interrupt service program is loaded into 
the PC. The address of the service program is chosen by the hardware. Some com­
puters assign one memory location for the beginning address of the service program: 
the service program must then determine the source of the interrupt and proceed to 
service it. Other computers assign a separate memory location for each possible 
interrupt source. Sometimes, the interrupt source hardware itself supplies the 
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address of the service routine. In any case, the computer must possess some form of 
hardware procedure for selecting a branch address for servicing the interrupt. 

Most computers will not respond to an interrupt until the instruction that is 
in the process of being executed is completed. Then, just before going to fetch the 
next instruction, the control checks for any interrupt signals. If an interrupt has 
occurred, control goes to a hardware interrupt cycle. During this cycle, the contents 
of some part or all of the register set are pushed onto the stack. The branch 
address for the particular interrupt is then transferred to the PC, and the control 
goes to fetch the next instruction, which is the beginning of the interrupt service 
routine. The last instruction in the service routine is a return from the interrupt 
instruction. When this return is executed, the stack is popped to retrieve the return 
address, which is transferred to the PC as well as any stored contents of the rest of 
the register set, which are transferred back to the appropriate registers. 

Types of Interrupts 

The three major types of interrupts that cause a break in the normal execution of a 
program are as follows: 

1. External interrupts. 

2. Internal interrupts. 

3. Software interrupts. 

External interrupts come from input or output devices, from timing devices, 
from a circuit monitoring the power supply, or from any other external source. 
Conditions that cause external interrupts are an input or output device requesting 
a transfer of data, an external device completing a transfer of data, the time-out of 
an event, or an impending power failure. A time-out interrupt may result from a 
program that is in an endless loop and thus exceeds its time allocation. A power­
failure interrupt may have as its service program a few instructions that transfer 
the complete contents of the register set of the processor into a nondestructive 
memory such as a disk in the few milliseconds before power ceases. 

Internal interrupts arise from the invalid or erroneous use of an instruction or 
data. Internal interrupts are also called traps. Examples of interrupts caused by 
internal conditions are an arithmetic overflow, an attempt to divide by zero, an 
invalid opcode, a memory stack overflow, and a protection violation. A protection 
violation is an attempt to address an area of memory that is not supposed to be 
accessed by the currently executing program. The service programs that process 
internal interrupts determine the corrective measure to be taken in each case. 

External and internal interrupts are initiated by the hardware of the com­
puter. By contrast, a software interrupt is initiated by executing an instruction. The 
software interrupt is a special call instruction that behaves like an interrupt rather 
than a procedure call. It can be used by the programmer to initiate an interrupt 
procedure at any desired point in the program. Typical use of the software inter­
rupt is associated with a system call instruction. This instruction provides a means 
for switching from user mode to system mode. Certain operations in the computer 
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may be performed by the operating system only in system mode. For example, a 
complex input or output procedure is done in system mode. In contrast, a program 
written by a user must run in user mode. When an input or output transfer is 
required, the user program causes a software interrupt, which stores the contents 
of the PSR (with the mode bit set to "user") , loads new PSR contents (with the 
mode bit set to "system") , and initiates the execution of a system program. The 
calling program must pass information to the operating system in order to specify 
the particular task that is being requested. 

An alternative term for an interrupt is an exception, which may apply only to 
internal interrupts or to all interrupts, depending on the particular computer manu­
facturer. As an illustration of the use of the two terms, what one programmer calls 
interrupt-handling routines may be referred to as exception-handling routines by 
another programmer. 

Processing External Interrupts 

External interrupts may have single or multiple interrupt input lines. If there are 
more interrupt sources than there are interrupt inputs in the computer, two or 
more sources are ORed to form a common line. An interrupt signal may originate 
at any time during program execution. To ensure that no information is lost, the 
computer usually acknowledges the interrupt only after the execution of the cur­
rent instruction is completed and only if the state of the processor warrants it. 

Figure 10-9 shows a simplified external interrupt configuration. Four external 
interrupt sources are ORed to form a single interrupt input signal. Within the CPU 

is an enable-interrupt flip-flop (EI) that can be set or reset with two program 
instructions: enable interrupt (ENI) and disable interrupt (DSI) . When EI is 0, the 
interrupt signal is neglected. When EI is 1 and the CPU is at the end of executing 
an instruction, the computer acknowledges the interrupt by enabling the interrupt 
acknowledge output INTACK. The interrupt source responds to INTACK by pro­
viding an interrupt vector address IVAD to the CPU. The program-controlled EI 
flip-flop allows the programmer to decide whether to use the interrupt facility. If a 
DSI instruction to reset EI has been inserted in the program, it means that the pro­
grammer does not want the program to be interrupted. The execution of an ENI 
instruction to set EI indicates that the interrupt facility will be active while the pro-

. . 
gram 1s runnmg. 

The computer responds to an interrupt request signal if EI = 1 and execution 
of the present instruction is completed. Typical microinstructions that implement 
the interrupt are as follows: 

SP�SP-1 

M[SP]�PC 

SP�SP-1 

M[SP]�PSR 

EI�O 

Decrement stack pointer 

Store return address on stack 

Decrement stack pointer 

Store processor status word on stack 

Reset enable-interrupt flip-flop 
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INT ACK�l 

PC�IVAD 

Enable interrupt acknowledge 

Transfer interrupt vector address to PC 

Go to fetch phase. 

The return address available in the PC is pushed onto the stack, and the PSR 

contents are pushed onto the stack. EI is reset to disable further interrupts. The 
program that services the interrupt can set EI with an instruction whenever it is 
appropriate to enable other interrupts. The CPU assumes that the external source 
will provide an IV AD in response to an INTACK. The IV AD is taken as the 
address of the first instruction of the program that services the interrupt. Obvi­
ously, a program must be written for that purpose and stored in memory. 

The return from an interrupt is done with an instruction at the end of the 
service program that is similar to a return from a procedure. The stack is 
popped, and the return address is transferred to the PC. Since the EI flip-flop is 
usually included in the PSR, the value of EI for the original program is returned 
to EI when the old value of the PSR is returned. Thus, the interrupt system is 
enabled or disabled for the original program, as it was before the interrupt 
occurred. 

10-10 CHAPTER SUMMARY 

In this chapter, we defined the concepts of instruction set architecture and the com­
ponents of an instruction and explored the effects on programs of the maximum 

External interrupts 

INT ACK 

Interrupt vector IVAD 
address 

D FIGURE 10-9 

Central processing unit (CPU) 

EI 

End of execution 
of instruction 

Enable-interrupt 
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PC 
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address count per instruction, using both memory addresses and register addresses. 
This led to the definitions of four types of addressing architecture: memory-to­
memory, register-to-register, single-accumulator, and stack. Addressing modes 
specify how the information in an instruction is interpreted in determining the 
effective address of an operand. 

Reduced instruction set computers (RISCs) and complex instruction set com­

puters ( CISCs) are two broad categories of instruction set architecture. A RISC 
has as its goals high throughput and fast execution of instructions. In contrast, a 
CISC attempts to closely match the operations used in programming languages 

and facilitates more compact programs. 
Three categories of elementary instructions are data transfer, data manipula­

tion, and program control. In elaborating data transfer instructions, the concept of 
the memory stack appears. Transfers between the CPU and 1/0 are addressed by 
two different methods: independent 1/0, with a separate address space, and mem­
ory-mapped 1/0, which uses part of the memory address space. Data manipulation 
instructions fall into three classes: arithmetic, logical, and shift. Floating-point for­
mats and operations handle broader ranges of operand values for arithmetic oper­
ations. 

Program control instructions include basic unconditional and conditional 

transfers of control, the latter may or may not use condition codes. Procedure calls 
and returns permit programs to be broken up into procedures that perform useful 
tasks. Interruption of the normal sequence of program execution is based on three 
types of interrupts: external, internal, and software. Also referred to as exceptions, 
interrupts require special processing actions upon the initiation of routines to ser­
vice them and upon returns to execution of the interrupted programs. 
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PROBLEMS 

(J!l • , �>The plus (+)indicates a more advanced problem and the asterisk(*) indicates that 
� a solution is available on the Companion Website for the text. 

10-1. Based on operations illustrated in Section 10-2, write a program to evaluate 
the arithmetic expression 

X = (A + B - C) X (D - E) 

Make effective use of the registers to minimize the number of MOVE or 
LD instructions where possible. 
(a) Assume a register-to-register architecture with three-address 

instructions. The operand order for subtraction, SUB, is difference, 
minuend, subtrahend. 

(b) Assume a memory-to-memory architecture with two-address 
instructions. 

(c) Assume a single-accumulator computer with one-address instructions. 

10-2. *Repeat Problem 10-1 for 
Y = (A + B) x C + (D - E x F) 

All operands are initially in memory. The operand order for divide, DIV, is 
quotient, dividend, divisor. 

10-3. *A program is to be written for a stack architecture for the arithmetic 
express10n 

X = (A - B) X (A + C) X (B - D) 

(a) Find the corresponding RPN expression. 
(b) Write the program using PUSH, POP, ADD, MUL, SUB, and DIV 

instructions as appropriate for the operators in the expression. 
(c) Show the contents of the stack after the execution of each 

instruction. 

10-4. Repeat Problem 10-3 for the arithmetic expression 
Y = (((A x B) + C) x D) + (E - (A x F)) 

10-5. A two-word instruction is stored in memory at an address designated by the 
symbol W. The address field of the instruction (stored at W + 1) is 
designated by the symbol Y. The operand used during the execution of the 
instruction is stored at the effective address symbolized by Z. An index 
register contains the value X. State how Z is calculated from the other 
addresses if the addressing mode of the instruction is (a) direct; (b) indirect; 
(c) relative; (d) indexed. 
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10-6. *A two-word relative mode branch-type instruction is stored in memory at 
locations 207 and 208 (decimal). The branch is made to an address 
equivalent to decimal 195. Let the address field of the instruction (stored at 
address 208) be designated by X. 

(a) Determine the value of X in decimal. 

(b) Determine the value of X in binary, using 16 bits. (Note that the 
number is negative and must be in 2s complement notation. Why?) 

10-7. Repeat Problem 10-6 for a branch instruction in locations 143 and 144 and 
a branch address equivalent to 1000. All values are in decimal. 

10-8. How many times does the control unit refer to memory when it fetches and 
executes a three-word instruction using two indirect addressing-mode 
addresses if the instruction is (a) a computational type requiring two 
operands from two distinct memory locations with the return of the result 
to the first memory location? (b) a shift type requiring one operand from 
one memory location and placing the result in a different memory 
location? 

10-9. An instruction is stored at location 550 with its address field at location 551. 
The address field has the value 2410. A processor register Rl contains the 
number 2310. Evaluate the effective address if the addressing mode is (a) 

direct; (b) immediate; (c) relative; (d) indexed with Rl as the index register. 

10-10. *A computer has a 32-bit word length, and all instructions are one word in 
length. The register file of the computer has 16 registers. 

(a) For a format with no mode fields and three register addresses, what is 
the maximum number of opcodes possible? 

(b) For a format with two register address fields, one memory field, and a 
maximum of 100 opcodes, what is the maximum number of memory 
address bits available? 

10-11. A computer with a register file, but without PUSH and POP instructions, is 
to be used to implement a stack. The computer does have the following 
register indirect addressing modes: 

Register indirect + increment: 

LD Ri Rj 

ST Rj Ri 

Decrement + register indirect: 

LD Rj Ri 

Rjf--M[Ri] 

Rif--Ri + 1 

M[Ri]f--Rj 

Rif--Ri + 1 

Rif--Ri -1 

Rjf--M[Ri] 



ST Rj Ri Ri<.-Ri -1 

M[Ri]<.-Rj 
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Show how these instructions can be used to provide the equivalent of PUSH 
and POP by using the instructions and register R6 as the stack pointer. 

10-12. A complex instruction, push registers (PSHR), pushes the contents of all of 
the registers onto the stack. There are eight registers, RO through R1, in the 
CPU. A corresponding instruction, POPR, pops the saved contents of the 
registers back from the stack into the registers. 

(a) Write a register transfer description for the execution of PSHR. 

(b) Write a register transfer description for the execution of POPR. 

10-13. A computer with an independent 1/0 system has the input and output 
instructions 

IN R[DR] ADRS 

OUT ADRS R[SB] 

where ADRS is the address of an 1/0 register port. Give the equivalent 
instructions for a computer with memory-mapped 1/0. 

10-14. *Assume a computer with 8-bit words for the multiple-precision addition of 
two 32-bit unsigned numbers, 

1F C6 24 7B + 00 57 ED 4B 

(a) Write a program to execute the addition, using add and add with carry 
instructions. 

(b) Execute the program for the given operands. Each byte is expressed as 
a 2-digit hexadecimal number. 

10-15. Perform the logic AND, OR, and XOR with the two bytes 01101001 and 
11001110. 

10-16. Given the 16-bit value 1010 0101 1001 1000, what operation must be 
performed, and what operand is needed, in order to 

(a) set the most significant 8 bits to ls? 

(b) clear the bits in even positions (the leftmost bit is 15 and the rightmost 
bit is 0) to O? 

(c) complement the bits in odd positions? 

10-17. *An 8-bit register contains the value 01101001, and the carry bit is equal 
to 1. Perform the eight shift operations given by the instructions listed in 
Table 10-5 as a sequence of operations on this register. 

10-18. Show how the following two floating-point numbers are to be added to get 
a normalized result: 

( - .12345 x 10+5) + ( + .71234 x 10-3) 
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10-19. *A 36-bit floating-point number consists of 26 bits plus sign for the fraction 
and 8 bits plus sign for the exponent. What are the largest and smallest 
positive nonzero quantities for normalized numbers? 

10-20. *A 4-bit exponent uses an excess 7 number for the bias. List all biased 
binary exponents from + 8 through -7. 

10-21. The IEEE standard double-precision floating-point operand format 
consists of 64 bits. The sign occupies 1 bit, the exponent has 11 bits, and the 
fraction occupies 52 bits. The exponent bias is 1023 and the base is 2. There 
is an implied bit to the left of the binary point in the fraction. Infinity is 
represented with a biased exponent equal to 2047 and a fraction of 0.  

(a) Give the formula for finding the decimal value of a normalized number. 

(b) List a few biased exponents in binary, as is done in Table 10-6. 

(c) Calculate the largest and smallest positive normalized numbers that can 
be accommodated. 

10-22. Prove that if the equality 2x = lOY holds, then y = 0.3x. Using this 
relationship, calculate the largest and smallest normalized floating-point 
numbers in decimal that can be accommodated in the single-precision 
IEEE format. 

10-23. *I t is necessary to branch to ADRS if the bit in the least significant position 
of the operand in a 16-bit register is equal to 1. Show how this can be done 
with the TEST (Table 10-7) and BNZ (Table 10-8) instructions. 

10-24. Consider the two 8-bit numbers A = 10110110 and B = 00110111. 

(a) Give the decimal equivalent of each number, assuming that (1) they are 
unsigned and (2) they are signed 2s complement. 

(b) Add the two binary numbers and interpret the sum, assuming that the 
numbers are (1) unsigned and (2) signed 2s complement. 

(c) Determine the values of the C (carry), Z (zero), N (sign), and V 

(overflow) status bits after the additions. 

(d) List the conditional branch instructions from Table 10-8 that will have a 
true condition for each addition. 

10-25. *The program in a computer compares two unsigned numbers A and B by 
performing a subtraction A - B and updating the status bits. 
For operands letA = 01011101 and B = 01011100, 

(a) E valuate the difference and interpret the binary result. 

(b) Determine the values of status bits C (borrow) and Z (zero). 

(c) List the conditional branch instructions from Table 10-9 that will have a 
true condition. 

10-26. The program in a computer compares two signed 2s complement numbers 
A and B by performing subtraction A - B and updating the status bits. 
For operands let A = 11011010 and B = 01110110, 
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(a) Evaluate the difference and interpret the binary result. 

(b) Determine the value of status bits N (sign), Z (zero), and V (overflow). 

(c) List the conditional branch instructions from Table 10-10 that will have 
a true condition. 

10-27. *The top of a memory stack contains 5000. The stack pointer SP contains 
4000. A two-word procedure call instruction is located in memory at 
address 1000, followed by the address field of 502 at location 2001. What 
are the contents of PC, SP, and the top of the stack (a) before the call 
instruction is fetched from memory (b) after the call instruction is executed 
and (c) after the return from the procedure? 

10-28. A computer has no stack, but instead uses register R7 as a link register (i.e., 
the computer stores the return address in R7). 

(a) Show the register transfers for a branch and link instruction. 

(b) Assuming that another branch and link is present in the procedure 
being called, what action must be taken by software before that branch 
and link occurs? 

10-29. What are the basic differences between a branch, a procedure call, and a 
program interrupt? 

10-30. *Give five examples of external interrupts and five examples of internal 
interrupts. What is the difference between a software interrupt and a 
procedure call? 

10-31. A computer responds to an interrupt request signal by pushing onto the 
stack the contents of the PC and the current PSR. The computer then reads 
new PSR contents from memory from the location given by the interrupt 
vector address (WAD). The first address of the service program is taken 
from memory at location IVAD + 1. 
(a) List the sequence of microoperations implementing the interrupt. 

(b) List the sequence of microoperations implementing the return from 
interrupt. 
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RISC AND CISC 

CENTRAL PROCESSING 

UNITS 

T
he central processing unit (CPU) is the key component of a digital computer. 
Its purpose is to decode instructions received from memory and perform 
transfer, arithmetic, logic, and control operations with data stored in internal 

registers, memory, or 1/0 interface units. Externally, the CPU provides one or more 
buses for transferring instructions, data, and control information to and from 
components connected to it. 

In the generic computer at the beginning of Chapter 1, the CPU is a part of the 
processor. CPUs, however, may also appear elsewhere in computers. Small, relatively 
simple computers called microcontrollers are used in computers and in other digital 
systems to perform limited or specialized tasks. For example, a microcontroller is 
present in the keyboard and in the monitor in the generic computer. In such 
microcontrollers, the CPU may be quite different from those discussed in this chapter. 
The word lengths may be short (e.g., eight bits), the number of registers small, and 
the instruction sets limited. Performance, relatively speaking, is low, but adequate. 
Most important, the cost of these microcontrollers is very low, making their use cost 
effective. 

The approach in this chapter builds upon and parallels that in Chapter 9. It begins by 
converting the datapath in Chapter 9 to a pipelined datapath and then adding a 
pipelined control unit to form a reduced instruction set computer (RISC) analogous to 
the single-cycle computer. Problems due to the use of pipelining are introduced and 
solutions are offered for the RISC design. Next, the control unit is expanded to form a 
complex instruction set computer (CISC) that is analogous to the multiple-cycle 
computer. A brief overview of techniques to enhance pipelined processor 
performance is presented. Finally, we consider PC microprocessors that use multiple 
processors on a single chip. 

D 543 
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11-1 PIPELINED DATAPATH 

Figure 9-17 was used to illustrate the long delay path present in the single­
cycle computer and the resultant clock frequency limit. With a narrower focus, 
Figure 11-l(a) illustrates maximum delay values for each of the components of a 
typical datapath. A maximum of 0.8 ns (0.6 ns + 0.2 ns) is required to read two 
operands from the register file or to read one operand from the register file and 
obtain a constant from MUX B. A maximum of 0.8 ns is required to execute an 
operation in the functional unit. Also, a maximum of 0.8 ns is required to write the 
result back into the register file, including the delay of MUX D. Adding these 
delays, we find that 2.4 ns are required to perform a single microoperation. The 
maximum rate at which the microoperations can be performed is the inverse of 2.4 
ns (i.e., 416.7 MHz). This is the maximum frequency at which the clock can be 
operated, since 2.8 ns is the smallest clock period that will allow each microoperation 
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to be completed with certainty. As illustrated in Figure 9-17, delay paths that pass 
through both the datapath and the control unit limit the clock frequency to an even 
smaller value. For the datapath alone and for the combination of the datapath and 
control unit in the single-cycle computer, the execution of a microoperation consti­
tutes the execution of an instruction. Thus, the rate of execution of instructions 
equals the clock frequency. 

Now suppose that the datapath execution rate is not adequate for a particular 
application, and that no faster components are available with which to reduce the 
2.8 ns required to complete a microoperation. Still, it may be possible to reduce the 
clock period and increase the clock frequency. This can be done by breaking up the 
2.8 ns delay path with registers. The resulting datapath, sketched in Figure 11-l{b), 
is referred to as a pipelined datapath, or just a pipeline. 

Three sets of registers break the delay of the original datapath into three 
parts. These registers are shown crosshatched in blue. The register file contains the 
first set of registers. Cross-hatching covers only the top half of the register file, 
since the lower half is viewed as the combinational logic that selects the two regis­
ters to be read. The two registers that store the A data from the register file and the 
output of MUX B constitute the second set of registers. The third set of registers 
stores the inputs to MUX D. 

The term "pipeline," unfortunately, does not provide the best analogy for the 
corresponding datapath structure. A better analogy is a production line. A common 
example is an automated car wash in which cars are pulled through a series of sta­
tions at which a particular step is performed: 

1. Wash-Flush with hot, soapy water, 

2. Rinse-Flush with plain warm water, and 

3. Dry-Blow air over the surface. 

The processing of a vehicle through the car wash consists of three steps and 
requires a certain amount of time to complete. Analogously, the processing of an 
instruction by a pipeline consists of n > 1 steps and requires a certain amount of 
time to complete. The length of time required to process an instruction is called the 
latency time. In the car wash the latency time is the length of time it takes for a car 
to pass through the three stations performing the three steps of the process. This 
time remains the same regardless of whether a single car or three cars are in the 
car wash at a given time. 

Continuing this analogy, with the pipelined datapath corresponding to the car 
wash, what corresponds to the nonpipelined datapath? It would be a car wash with 
all of the steps available at a single station, with the steps performed serially. We 
now can compare the analogies, thereby comparing the pipelined and nonpipelined 
datapaths. For the multiple-station car wash and the single-station car wash, the 
latencies are approximately the same. So, going to the multiple-station car wash 
does not, decrease the time required to wash a car. However, suppose that we con­
sider the frequency at which a washed car emerges from the two types of car 
washes. For the single-station car wash, this frequency is the inverse of the latency 
time. In contrast, for the multiple-station car wash with three stages, a washed car 
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emerges at a frequency of three times the inverse of the latency time. Thus, there is 
a factor-of-three improvement in the frequency or rate of delivery of washed cars. 
Based on the analogy to pipelined datapaths with n stages and nonpipelined datap­
aths, the former has a processing rate or throughput for instructions that is n times 
that of the latter. 

The desired structure, based on the nonpipelined, conventional datapath 
described in Chapter 9, is sketched in Figure 11-l(b) . The operand fetch (OF) is 
stage 1, the execution (EX) is stage 2, and the write-back (WB) is stage 3. These 
stages are labeled at their boundaries with appropriate abbreviations. At this point 
the analogy breaks down somewhat, because the cars move smoothly through the 
car wash while the data within the pipeline moves synchronously with a clock, 
which controls the movement from stage to stage. This has some interesting impli­
cations. First of all, the movement of the data through the pipeline is in discrete 
steps rather than continuous. Second, the length of time in each of the stages must 
be the clock period and is the same for all stages. To provide the mechanism sepa­
rating the stages in the pipeline, registers are placed between the stages. These reg­
isters provide temporary storage for data passing through the pipeline and are 
called pipeline platforms. 

Returning to the pipelined datapath example in Figure 11-l(b ) , Stage 1 of the 
pipeline has the delay required for reading the register file followed by selection by 
MUX B. This delay is 0.6 plus 0.2 ns, or 0.8 ns. Stage 2 of the pipeline has the 0.2 ns 
delay of the platform plus the 0.8 ns delay of the functional unit, giving 1.0 ns. 
Stage 3 has the 0.2 ns delay of the platform, the delay for the selection by MUX D, 

and the delay for writing back into the register file. This delay is 0.2 + 0.2 + 0.6, for 
a total of 1.0 ns. Thus, all flip-flop-to-flip-flop delays are at most 1.0 ns, allowing a 
minimum clock period of 1.0 ns (assuming that the setup times for the flip-flops are 
zero) and a maximum clock frequency of 1.0 GHz, compared with the 416.7 MHz 
for the single-stage datapath. This clock frequency corresponds to the maximum 
throughput of the pipeline, which is 1 billion instructions per second, about 2.4 
times that of the nonpipelined datapath. Even though there are three stages, the 
improvement factor is not three-for two reasons: (1) the additional delay contrib­
uted by the pipeline platforms and (2) the differences between the delay of the 
logic assigned to each stage. The clock period is governed by the longest delay, 
rather than the average delay assigned to any stage. 

A more detailed diagram of the pipelined datapath appears in Figure 11-2. In 
this diagram, rather than showing the path from the output of MUX D to the regis­
ter file input, the register file is shown twice-once in the OF stage, where it is read, 
and once in the WB stage, where it is written. 

The first stage, OF, is the operand fetch stage. The operand fetch consists of 
reading register values to be used from the register file and, for Bus B, selecting 
between a register value or a constant by using MUX B. Following the OF stage is 
the first pipeline platform. The pipeline registers store the operand or operands for 
use in the next stage during the next clock cycle. 

The second stage of the pipeline is the execute stage, denoted EX. In this 
stage, a function unit operation occurs for most microoperations. The results pro­
duced from this stage are captured by the second pipeline platform. 
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The third and final stage of the pipeline is the write-back stage, denoted WB. 
In this stage, the result saved from the EX stage, or the value on Data in, is 
selected by MUX D and written back into the register file at the end of the stage. 
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In this case, the write part of the register file is the pipeline platform. The WB 
stage completes the execution of each microoperation that requires writing to a 
register. 

Before leaving the car-wash analogy, we examine the cost of the single­
stage versus that of the three-stage car wash. First, even though the three-stage 
facility washes vehicles three times as fast as the single-stage one, it costs three 
times as much in terms of space. Plus, it has the overhead of the mechanism to 
move the cars through the stages. So it, would appear to be less cost effective 
than three single-stage wash stations operating in parallel. Nevertheless, from a 
business standpoint, it has proven to be cost effective. In terms of the car wash, 
can you figure out why? In contrast, for the pipelined datapath, pipeline plat­
forms cut a single datapath into three pieces. Thus, a first-order estimate of the 
cost increase is mainly that of the pipeline platforms. 

Execution of Pipeline Microoperations 

There are up to three operations at some stage of completion in the car wash at 
any given time. By analogy, we should be able to have three microoperations at 
some stage of completion in the pipelined datapath at any given time. 

We now examine the execution of this sequence of microoperations with 
respect to the stages of the pipeline in Figure 11-2. In clock period 1, microopera­
tion 1 is in the OF stage. In clock period 2, microoperation 1 is in the EX stage, and 
microoperation 2 is in the OF stage. In clock period 3, microoperation 1 is in the 
WB stage, microoperation 2 is in the EX stage, and microoperation 3 is in the OF 
stage. So at the end of the third clock period, microoperation 1 has completed exe­
cution, microoperation 2 is two-thirds finished, and microoperation 3 is one-third 
finished. So we have completed 1 + 2/3+ 1/3 = 2.0 microoperations in three clock 
periods, or 3 ns. In the conventional datapath, we would have completed microop­
eration 1 only. So, indeed, the pipelined datapath performance is superior in this 
example. 

The procedure we have been using so far is somewhat tedious. So to finish 
analyzing the timing of the sequence, we will use a pipeline execution pattern dia­
gram, as shown in Figure 11-3. Each vertical position in this diagram represents a 
microoperation to be performed, and each horizontal position represents a clock 
cycle. An entry in the diagram represents the stage of processing of the microoper­
ation. So, for example, the execution (EX) stage of microoperation 4, which adds 
the constant 2 to RO, occurs in clock cycle 5. 

We can see from the overall diagram that the sequence of seven microopera­
tions requires nine clock cycles to execute completely. The time required for execu­
tion is 9 x 1 = 9 ns, compared to 7 x 2.4 = 16.8 ns for the conventional datapath. 
Thus, the sequence of microoperations is executed about 1.9 times faster using the 
pipeline. 

Now let us examine the pipeline execution pattern carefully. In the first two 
clock cycles, not all of the pipeline stages are active, since the pipeline is filling. In 
the next five clock cycles, all stages of the pipeline are active, as indicated in blue, 
and the pipeline is fully utilized. In the last two clock cycles, not all stages of the 
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pipeline are active, since the pipeline is emptying. If we want to find the maximum 
possible improvement of the pipelined datapath over the conventional one, we 
compare the two when the pipeline is fully utilized. Over these five clock cycles, 3 
through 7, the pipeline executes (5 x 3) + 3 = 5 microoperations in 5 ns. In the same 
time, the conventional datapath executes 5/2.4 = 2.083 microoperations. So the 
pipelined datapath executes at best 5 + 2.083 = 2.4 times as many microoperations 
in a given time as the conventional datapath. In this ideal situation, we say that the 
throughput of the pipelined datapath is 2.4 times that of the conventional one. 
Note that filling and emptying reduce the pipeline speed below the maximum of 
2.4. Additional topics associated with pipelines-in particular, providing a control 
unit for a pipelined datapath and dealing with pipeline hazards-are covered in the 
next two sections. 

11-2 PIPELINED CONTROL 

In this section, a control unit is specified to produce a CPU by using the datapath 
from the last section. Since the instruction must be fetched from a memory as well 
as executed, we add a stage to the analogous car wash used for illustration in that 
section. Analogous to the instruction fetch from the instruction memory, the oper­
ations in the car wash are specified by order sheets, produced by an attendant, that 
permit the functions performed in the stages of the car wash to vary. The order 
sheet, which is analogous to an instruction, accompanies the car as it moves down 
the line. 

Figure 11-4 shows the block diagram of a pipelined computer based on the 
single-cycle computer. The datapath is that of Figure 11-2. The control has an 
added stage for instruction fetch that includes the PC and instruction memory. This 
becomes stage 1 of the combined pipeline. The instruction decoder and register file 
read are now in stage 2, the function unit and data memory read and write are in 



550 D CHAPTER 11 I RISC AND CISC CENTRAL PROCESSING UNITS 

IF 

Stage 
1 

IF 

DOF 

Stage 
2 

PC 

Address 

Instruction 
memory 

Instruction 

IR 

Instruction decoder 

AA 

Zero fill 

Register 
file 

A data B data BA 

MB 

Data A ,..............., ........ ......., Data B DOF 

EX Address out 

FS MW 

FS 

c 
Stage v 

3 
N 

z 

A B 

Function 
unit 

F 
Data in 

Data out 

Data F --------... Data I 

Address 

Data 
memory 

Data out 

EX 

WB 
Data in Address 

Stage DA 

4 
MD RW 

WB RW 

MD 

----------------------15x·--

coNTRoL DATAPATH 

D FIGURE 11-4 

D data 
Register 

file (same 
as above) 

Block Diagram of Pipelined Computer 

Data 
memory 
(same as 
above) 



11-2 I Pipelined Control D 551 

stage 3, and the register file write is in stage 4. These stages are labeled at their 
boundaries with appropriate abbreviations. In the figure, we have added registers 
to the pipeline platforms between stages, as necessary, to pass the decoded instruc­
tion information through the pipeline along with the data being processed. These 
additional registers serve to pass along the instruction information, just as order 
information was passed along in the car wash. 

The added first stage is the instruction fetch stage, denoted by IF, which 
lies wholly in the control. In this stage, the instruction is fetched from the 
instruction memory, and the value in the PC is updated. Due to additional com­
plexities of handling jumps and branches in a pipelined design, PC update is 
restricted here to an increment, with a more complete treatment provided in 
the next section. Between the first stage and the second stage is an interstage 
pipeline platform that plays the role of instruction register, so it has been 
labeled IR. 

In the second stage, DOF (decode and operand fetch), decoding of the IR 
into control signals takes place. Among the decoded signals, the register file 
addresses AA and BA and the multiplexer control signal MB are used in this stage 
for operand fetch. All other decoded control signals are passed on to the next pipe­
line platform, to be used later. Following the DOF stage is the second pipeline 
platform, whose registers store control signals to be used later. The third stage of 
the pipeline is the execution stage, denoted EX. In this stage, an ALU operation, a 
shift operation, or a memory operation is executed for most instructions. Thus, the 
control signals used in this stage are FS and MW. The read part of the data memory 
M is considered a part of the stage. For a memory read, the value of the word 
addressed is read to Data out from the data memory. All of the results produced 
from this stage, plus the control signals for the last stage, are captured by the third 
pipeline platform. The write part of data memory M is considered a part of this 
platform, so a memory write may occur here. The control information held in the 
final pipeline platform consists of DA, MD, and RW, which are used in the final 
write-back stage, WB. 

The location of the pipeline platforms has balanced the partitioning of the 
delays, so that the delays per stage are no more that 1.0 ns. This gives a potential 
maximum clock frequency of 1 GHz, 3.4 times that of the single-cycle computer. 
Note, however, that an instruction takes 4 x 1 = 4 ns to execute. This latency of 4 
ns compares to that of 3.4 ns for the single-cycle computer. So if only one instruc­
tion at a time is being executed, even fewer instructions are executed per second 
than for the single-cycle computer. 

Pipeline Programming and Performance 

If our hypothetical car wash is extended to four stages, there are up to four opera­
tions at some stage of completion at any given time. By analogy, then, we should be 
able to have four instructions at some stage of completion in the pipeline of our 
computer at any given time. Suppose we consider a simple calculation: Load the 
constants 1 through 7 into the seven registers Rl through R7, respectively. The 
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program to do this is as follows (the number on the left is a number to identify the 
instruction) : 

1 LDI Rl,1 

2 LDI R2,2 

3 LDI R3,3 

4 LDI R4,4 

5 LDI RS,5 

6 LDI R6,6 

7 LDI R7, 7 

Let us examine the execution of this program with respect to the stages of the 
pipeline in Figure 11-4. We employ the pipeline execution pattern diagram shown 
in Figure 11-5. In clock period 1, instruction 1 is in the IF stage of the pipeline. In 
clock period 2, instruction 1 is in the DOF stage and instruction 2 is the IF stage. In 
clock period 3, instruction 1 is in the EX stage, instruction 2 is in the DOF stage, 
and instruction 3 is in the IF stage. In clock period 4, instruction 1 is in the WB 
stage, instruction 2 is in the EX stage, instruction 3 is in the DOF stage, and 
instruction 4 is in the IF stage. So at the end of the fourth clock period, instruction 
1 has completed execution, instruction 2 is three-fourths finished, instruction 3 is 
half finished, and instruction 4 is one-fourth finished. So we have completed 1 + 

3/4 + 112 + 114 = 2.5 instructions in four clock periods, or 4 ns. We can see from 
the overall diagram that the complete program of seven instructions requires 10 

clock cycles to execute. Thus, the time required is 10 ns, compared to 23.8 ns for the 
single-cycle computer, and the program is executed about 2.4 times faster. 

Now suppose that we examine the pipeline execution pattern carefully. In the 
first three clock cycles, not all of the pipeline stages are active, since the pipeline is fill­
ing. In the next four clock cycles, all stages of the pipeline are active, as indicated in 
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blue, and the pipeline is fully utilized. In the last three clock cycles, not all stages of 
the pipeline are active, since the pipeline is emptying. If we want to find the maximum 
possible improvement of the pipelined computer over the single-cycle computer, we 
compare the two in the situation in which the pipeline is fully utilized. Over these 
four clock cycles, or 4 ns, the pipeline executes 4 x 4 + 4 = 4.0 instructions. In the same 
time, the single-cycle computer executes 4 + 3.4 = 1.18 instructions. So in the best 
case, the pipelined computer executes 4 + 1.18 = 3.4 times as many instructions in a 
given time as the single-cycle computer does. In this ideal situation, we say that the 
throughput of the pipelined computer is 3.4 times that of the single-cycle computer. 

Note that even though the pipeline has four stages, the pipelined computer is 
not four times as fast as the single-cycle computer, because the delays of the latter 
cannot be divided exactly into four equal pieces and the delays of the added pipe­
line platforms. Also, filling and emptying the pipeline reduces its speed enough that 
the speed of the pipelined computer is less than the ideal maximum speed of 3.4 
times as fast as the single-cycle computer. 

The study of the pipelined computer here, along with the single-cycle com­
puter and multiple-cycle computer in Chapter 9, completes our examination of 
three computer control organizations. Both the pipelined datapaths and the con­
trols we have studied here are simplified and have elements missing. Next we 
present two CPU designs that illustrate combinations of architectural characteris­
tics of the instruction set, the datapath, and the control unit. The designs are top 
down, but reuse prior component designs, illustrating the influence of the instruc­
tion set architecture on the datapath and control units, and the influence of the 
datapath on the control unit. The material makes extensive use of tables and dia­
grams. Although we reuse and modify component designs from Chapter 9, back­
ground information from these chapters is not repeated here. Pointers, however, 
are given to earlier sections of the book, where detailed information can be found. 

The two CPUs presented are for a RISC using a pipelined datapath with a 
hardwired pipelined control unit and a CISC based on the RISC using an auxiliary 
microprogrammed control unit. These two designs represent two distinct instruc­
tion set architectures with architectures using a common pipelined core that con­
tributes enhanced performance. 

11-3 THE REDUCED INSTRUCTION SET COMPUTER 

The first design we examine is for a reduced instruction set computer with a pipe­
lined datapath and control unit. We begin by describing the RISC instruction set 
architecture, which is characterized by load/store memory access, four addressing 
modes, a single instruction format length, and instructions that require only ele­
mentary operations. The operations, resembling those that can be performed by the 
single-cycle computer, can be performed by a single pass through the pipeline. The 
datapath for implementing the ISA is based on the single-cycle datapath initially 
described in Figure 9-11 and converted to a pipeline in Figure 11-2. In order to 
implement the RISC instruction set architecture, modifications are made to the 
register file and the function unit. These modifications represent the effects of a 
longer instruction-word length and the desire to include multiple position shifts 
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among the elementary operations. The control unit is based on the pipelined 
control unit in Figure 11-4. Modifications include support for the 32-bit instruction 
word and a more extensive program counter structure for dealing with branches in 
the pipeline environment. In response to data and control hazards associated with 
pipelined designs, additional changes will be made to both the control and datapath 
to sustain the performance gain achieved by using a pipeline. 

Instruction Set Architecture 

Figure 11-6 shows the CPU registers accessible to the programmer in this RISC. 
All registers are 32 bits. The register file has 32 registers, RO through R31. RO is a 
special register that supplies the value zero when used as a source and discards the 
result when used as a destination. The size of the programmer-accessible register 
file is comparatively large in the RISC because of the load/store instruction set 
architecture. Since the data-manipulation operations can use only register oper­
ands, many active operands need to be present in the register file. Otherwise, 
numerous stores and loads would be needed to temporarily save operands in the 
data memory between data-manipulation operations. In addition, in many real 
pipelines, these stores and loads require more than one clock cycle for their execu­
tion. To prevent these factors from degrading RISC performance, a larger register 
file is required. 

In addition to the register file, only a program counter, PC, is provided. If 
stack pointer-based or processor status register-based operations are required, they 
are simply implemented by sequences of instructions using registers. 

Figure 11-7 gives the three instruction formats for the RISC CPU. The for­
mats use a single word of 32 bits. This longer word length is needed to hold realistic 
address values, since additional instruction words for holding addresses are difficult 
to accommodate in the RISC CPU. The first format specifies three registers. The 
two registers addressed by the 5-bit source register fields SA and SB contain the 
two operands. The third register, addressed by a 5-bit destination register field DR, 
specifies the register location for the result. A 7-bit OPCODE provides for a maxi­
mum of 128 operations. 
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The remaining two formats replace the second register with a 15-bit constant. 
In the two-register format, the constant acts as an immediate operand, and in the 
branch format, the constant is a target offset. The target address is another name 
for the effective address, particularly if the address is used in a branch instruction. 
The target address is formed by adding the target offset to the contents of the PC. 

Thus, branching uses relative addressing based on the updated value of the PC. In 
order to branch backward from the current PC location, the offset, regarded as a 
2s complement number with sign extension, is added to the PC. The branch 
instructions specify source register SA. Whether the branch or jump is taken is 
based on whether the source register contains zero. The DR field is used to specify 
the register in which to store the return address for the procedure call. Finally, the 
rightmost 5 bits of the 15-bit constant are also used as the shift amount SH for 
multiple bit shifts. 

Table 11-1 contains the 27 operations to be performed by the instructions. A 
mnemonic, an opcode, and a register transfer description are given for each opera­
tion. All of the operations are elementary and can be described by a single register 
transfer statement. The only operations that can access memory are Load and 
Store. A significant number of immediate instructions help to reduce data memory 
accesses and speed up execution when constants are employed. Since the immedi­
ate field of the instruction is only 15 bits, the leftmost 17 bits must be filled to form 
a 32-bit operand. In addition to using zero fill for logical operations, a second 
method used is called sign extension. The most significant bit of the immediate 
operand, bit 14 of the instruction, is viewed as a sign bit. To form a 32-bit 2s com­
plement operand, this bit is copied into the 17 bits. In Table 11-1, the sign exten­
sion of the immediate field is denoted by se IM. The same notation, se IM, also 
represents the sign extension of the target offset field discussed previously. 

The absence of stored versions of status bits is handled by the use of three 
instructions: Branch if Zero (BZ), Branch if Nonzero (BNZ), and Set if Less Than 
(SLT). BZ and BNZ are single instructions that determine whether a register oper­
and is zero or nonzero and branch accordingly. SLT stores a value in register 
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D TABLE 11-1 
RISC Instruction Operations 

Symbolic 
Operation Notation 

No Operation NOP 

Move A MOVA 
Add ADD 

Subtract SUB 
AND AND 
OR OR 
Exclusive-OR XOR 
Complement NOT 
Add Immediate ADI 
Subtract Immediate SBI 
AND Immediate ANI 
OR Immediate ORI 
Exclusive-OR 

XRI 
Immediate 
Add Immediate 

AIU 
Unsigned 

Subtract Immediate 
Unsigned 

SIU 

Move B MOVB 
Logical Right Shift 

LSR 
by SH Bits 
Logical Left Shift 

LSL 
by SH Bits 
Load LD 
Store ST 
Jump Register JMR 
Set if Less Than2 SLT 
Branch if Zero BZ 
Branch if Nonzero BNZ 
Jump JMP 
Jump and Link JML 

Opcode 

0000000 

10000001 
0000010 

0000101 
0001000 
0001001 
0001010 
0001011 
0100010 
0100101 
0101000 
0101001 

0101010 

1000010 

1000101 

0001100 

0001101 

0001110 

0010000 
0100000 
1110000 
1100101 
1100000 
1001000 
1101000 
0110000 

Action 

None 

R[DR] � R[SA] 
R[DR] � R[SA] + R[SB] 

R[DR] � R[SA] + R[SB] 
R[DR] � R[SA] A R[SB] 
R[DR] � R[SA] v R[SB] 
R[DR] � R[S A] EB R[SB] 
R[DR] � R[SA] 
R[DR] � R[SA] + se IM 

+ 1 

R[DR] � R[SA] + (se IM) + 1 
R[DR] � R[SA] A (0 II IM) 
R[DR] � R[SA] v (0 II JM) 

R[DR] � R[SA] EB (0 II IM) 

R[DR] � R[SA] + (0 II JM) 

R[DR] � R[SA] + (0 II JM) + 1 

R[DR] � R[SB] 

R[DR] � lsr R[SA] by SH 

R[DR] �Isl R[SA] by SH 

R[DR] � M[R[SA]] 
M[R[SA]] � R[SB] 
PC� R[SA] 
If R[SA] < R[SB] then R[DR] = 1 
If R[SA] = 0, then PC� PC + 1 + se IM 
If R[SA] =!= 0, then PC� PC+ 1 + se IM 
PC� PC+ 1 + se/M 
PC� PC+ 1 + se IM,R[DR] �PC+ 1 

1In the CISC, beginning with MOVA and ending with LSL, each instruction has an additional opcode having a 1 in 
position 4 (with opcode bits numbered 0 through 6 from right to left) . In addition to causing the usual operation to 
occur, these codes update the condition code bits. 

2In the CISC, the SLT instruction is removed. Its function is replaced by branching on the status bits. 

R[DR] that acts like a negative status bit. If R[SA] is less than R[SB], a 1 is placed 
in register R[DR]; if R[SA] is greater than or equal to R[SB], a 0 is placed in 
R[DR]. The register R[DR] can then be examined by a subsequent instruction to 
see whether it is zero (0) or nonzero (1 ). Thus, using two instructions, the relative 
values of two operands or the sign of one operand (by letting R[ SB] equal RO) can 
be determined. 
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The Jump and Link (JML) instruction provides a mechanism for implement­
ing procedures. The value in the PC after updating is stored in register R[DR], and 
then the sum of the PC and the sign-extended target offset from the instruction is 
placed in the PC. The return from a called procedure can use the Jump Register 
instruction with SA equal to DR for the calling procedure. If a procedure is to be 
called from within a called procedure, then each successive procedure that is called 
will need its own register for storing the return value. A software stack that moves 
return addresses from R[DR] to memory at the beginning of a called procedure 
and restores them to R[ SA] before the return can also be used. 

Addressing Modes 

The four addressing modes in the RISC are register, register indirect, immediate, 
and relative. The mode is specified by the operation code, rather than by a separate 
mode field. As a consequence, the mode for a given operation is fixed and cannot 
be varied. The three-operand data-manipulation instructions use register-mode 
addressing. Register indirect, however, applies only to the load and store instruc­
tions, the only instructions that access data memory. Instructions using the two­
register format have an immediate value that replaces register address SB. Relative 
addressing applies exclusively to branch and jump instructions and so produces 
addresses only for the instruction memory. 

When programmers want to use an addressing mode not provided by the 
instruction set architecture, such as indexed addressing, they must use a sequence 
of RISC instructions. For example, for an indexed address for a load operation, the 
desired transfer is 

R15f--M[R5 + 0 11 J] 

This transfer can be accomplished by executing two instructions: 

AIU R9,R5,I 

LD R15,R9 

The first instruction, Add Immediate Unsigned, forms the address by appending 17 
Os to the left of I and adding the result to RS. The resulting effective address is then 
temporarily stored in R9. Next, the Load instruction uses the contents of R9 as the 
address at which to fetch the operand and places the operand in the destination 
register R15. Since, for indexed addressing, I is regarded as a positive offset in 
memory, the use of unsigned addition is appropriate. Sequences of operations for 
implementing addressing modes are the primary justification for having unsigned 
immediate addition available. 

Datapath Organization 

The pipelined datapath in Figure 11-2 serves as the basis for the datapath here, and 
we deal only with modifications. These modifications affect the register file, the 
function unit, and the bus structure. The reader should also refer to the datapath in 
Figure 11-2 and the new datapath shown in Figure 11-8 in order to understand fully 
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the discussion that follows. We treat each modification in turn, beginning with the 
register file. 

In Figure 11-2, there are 16 16-bit registers, and all registers are identical in 
function. In the new datapath, there are 32 32-bit registers. Also, reading register 
RO gives a constant value of zero. If a write is attempted into RO, the data will be 
lost. These changes are implemented in the new register file in Figure 11-8. All data 
inputs and the data output are 32 bits. To correspond to the 32 registers, the 
address inputs are five bits. The fixed value of 0 in RO is implemented by replacing 
the storage elements for RO with open circuits on the lines that were their inputs, 
and with constant zero values on the lines that were their outputs. 

A second major modification to the datapath is the replacement of the single­
bit position shifter with a barrel shifter to permit multiple-position shifting. This 
barrel shifter can perform a logical right or logical left shift of from 0 to 31 posi­
tions. A block diagram for the barrel shifter appears in Figure 11-9. The data input 
is 32-bit operand A, and the output is 32-bit result G. Left/right, a control signal 
decoded from OPCODE, selects a left or right shift. The shift amount field SH = 

IR( 4:0) specifies the number of bit positions to shift the data input and takes on 
values from 0 through 31. A logical shift of p bit positions involves inserting p zeros 
into the result. In order to provide these zeros and simplify the design of the 
shifter, we will perform both the left and right shift by using a right rotate. The 
input to this rotate will be the input data A with 32 zeros concatenated to its left. A 
right shift is performed by rotating the input p positions to the right; a left shift is 
performed by rotating 64 - p positions to the right. This number of positions can 
be obtained by taking the 2s complement of the 6-bit value of 0 II SH. 

The 63 different rotates can be obtained by using three levels of 4-to-1 multi­
plexers, as shown in Figure 11-8. The first level shifts by 0, 16, 32, or 48 positions, 
the second level by 0, 4, 8, or 12 positions, and the third level by 0, 1, 2, or 3 

Left/right 0 SH 

LS Sele:tive 
Zs complement 

47 4-tq_l multiplexers (rotate right 0, 16, 32, or 48 bit positions) 

'----+------1�1 3� 4-to-1 multiplexers (rotate right 0, 4, 8, or 12 bit positions) 

'--------;�132 4-to-1 multiplexers (rotate right 0, 1, 2, or 3 bit positions) 

D FIGURE 11-9 
32-Bit Barrel Shifter 

G 
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positions. The number of positions for A to be shifted, 0 through 63, can be imple­
mented by representing 0 11 SH as a three-digit base-4 integer. From left to right, 
the digits have weights 42 = 16, 41 

= 4, and 4° = 1. The digit values in each of the 
positions are 0, 1, 2, and 3. Each digit controls a level of the 4-to-1 multiplexers, the 
most significant digit controlling the first level, the least significant the third level. 
Due to the presence of 32 zeros in the 64-bit input, fewer than 64 multiplexers can 
be used in each level. A level requires the number of multiplexers to be 32 plus the 
total number of positions its output can be shifted by subsequent levels. The output 
of the first level can be shifted at most 12 + 3 = 15 positions to the right. Thus, this 
level requires 32 + 15 = 47 multiplexers. The output of the second level can be 
shifted at most three positions, giving 32 + 3 = 35 multiplexers. The final level can­
not be shifted further and so needs just 32 multiplexers. 

In the function unit, the ALU is expanded to 32 bits, and the barrel shifter 
replaces the single-position shifter. The resulting modified function unit uses the 
same function codes as in Chapter 9, except that the two codes for shifts are now 
labeled as logical shifts, and some codes are not used. The shift amount SH is a new 
5-bit input to the modified function unit in Figure 11-8. 

The remaining datapath changes are shown in Figure 11-8. Beginning at the 
top of the datapath, zero fill has been replaced by the constant unit. The constant 
unit performs zero fill for CS = 0 and sign extension for CS = 1. MUX A is added 
to provide a path for the updated PC, PC_1, to the register file for implementation 
of the Jump and Link (JML) instruction. 

One other change in the figure helps implement the Set if Less Than (SLT) 
instruction. This logic provides a 1 to be loaded into R[DA] if R[AA] - R[BA] < 0 

and a 0 to be loaded into R[DA] if R[AA] - R[BA] > 0. It is implemented by add­
ing an additional input to MUX D. The leftmost 31 bits of the input are O; the right­
most bit is 1 if N is 1 and Vis 0 (i.e., if the result of the subtraction is negative and 
there is no overflow). It is also 1 if N is 0 and Vis 1 (i.e., if the result of the subtrac­
tion is positive and there is an overflow). These represent all cases in which R[AA] 
is greater than R[BA] and can be implemented using an exclusive-OR of N and V. 

A final difference in the datapath is that the register file is no longer edge 
triggered and is no longer a part of a pipeline platform at the end of the write-back 
(WB) stage. Instead, the register file uses latches and is written much earlier than 
the positive clock edge. Special timing signals are provided that permit the register 
file to be written in the first half and to be read in the last half of the cycle. In par­
ticular, in the second half of the cycle, it is possible to read data written into the 
register file during the first half of the same clock cycle. This is called a read-after­
write register file, and it both avoids added complexity in the logic used for han­
dling hazards and reduces the cost of the register file. 

Control Organization 

The control organization in the RISC is modified from that in Figure 11-4. The 
modified instruction decoder is essential to deal with the new instruction set. In 
Figure 11-8, SH is added as an IR field, a 1-bit CS field is added to the instruction 
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decoder, and MD is expanded to two bits. There is a new pipeline platform for SH, 
and expanded 2-bit platforms for MD. 

The remaining control signals are included to handle the new control logic 
for the PC. This logic permits the loading of addresses into the PC for implement­
ing branches and jumps. MUX C selects from three different sources for the next 
value of PC. The updated PC is used to move sequentially through a program. 
The branch target address BrA is formed from the sum of the updated PC value 
for the branch instruction and the sign-extended target offset. The value in R[AA] 
is used for the register jump. The selection of these values is controlled by the 
field BS. The effects of BS are summarized in Table 11-2. If BS0 = 0, then the 
updated PC is selected by BS1 = 0, and R[AA] is selected by BS1 = 1. If BS0 = 1 
and BS1 = 1, then BrA is selected unconditionally. If BS0 = 1 and BS1 = 0, then, 
for PS = 0, a branch to BrA occurs for Z = 1, and for PS = 1, a branch to BrA 
occurs for Z = 0. This implements the two conditional branch instructions BZ 
and BNZ. 

In order to have the value of the updated PC for the branch and jump 
instructions when they reach the execution stage, two pipeline registers, PC_1 and 
PC_2, are added. PC_2 and the value from the constant unit are inputs to the ded­
icated adder that forms BrA in the execution stage. Note that MUX C and the 
attached control logic are in the EX stage, although shown above the PC. The 
related clock-cycle difference causes problems with instructions following branches, 
which we will deal with in later subsections. 

The heart of the control unit is the instruction decoder. This is combinational 
circuitry that converts the operation code in the IR into the control signals neces­
sary for the datapath and control unit. In Table 11-3, each instruction is identified 
by its mnemonic. A register transfer statement and the opcode are given for the 
instruction. The opcodes are selected such that the least significant four of the 
seven bits match the bits in the control field FS whenever it is used. This leads to 
simpler decoding. The register file addresses AA, BA, and DA come directly from 
SA, SB, and DR, respectively, in the IR. 

D TABLE 11-2 

Definition of Control Fields BS and PS 

BS PS 
Register Transfer Code Code Comments 

PCt--PC + 1 00 x Increment PC 

Z: PCt--BrA, Z: PCt--PC + 1 01 0 Branch on Zero 

Z: PCt--BrA, Z: PCt--PC + 1 01 1 Branch on Nonzero 

PCt--R[AA] 10 x Jump to Contents of R[AA] 

PCt--BrA 11 x Unconditional Branch 
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D TABLE 11-3 
Control Words for Instructions 

Control Word Values 
Symbolic Op 
Notation Action Code RWMDBSPS MW FS MB MACS 

NOP None 0000000 0 xx 00 x 0 :xxxx x x x 

MOVA 
ADD 

SUB 
AND 
OR 
XOR 
NOT 
ADI 
SBI 
ANI 

ORI 
XRI 

AIU 
SIU 

R[DR] � R[SA] 
R[DR] � R[SA] + R[SB] 
R[DR] � R[SA] + R[SB] + 1 

R[DR] � R[SA] A R[SB] 
R[DR] � R[SA] v R[SB] 
R[DR] � R[SA] E9 R[SB] 
R[DR] � R[SA] 
R[DR] � R[SA] + se IM 
R[DR] � R[SA] + (se IM)+ 1 

R[DR] � R[SA] A zfIM 
R[DR] � R[SA] v zfIM 
R[DR] � R[SA] E9 zfIM 
R[DR] � R[SA] + zfIM 

R[DR] � R[SA] + (zfIM) + 1 

1000000 

0000010 

0000101 

0001000 

0001001 

0001010 

0001011 

0100010 

0100101 

0101000 

0101001 

0101010 

1000010 

1000101 

1 00 00 x 0 0000 x 0 x 

1 00 00 x 0 0010 0 0 x 

1 00 00 x 0 0101 0 0 x 

1 00 00 x 0 1000 0 0 x 

1 00 00 x 0 1001 0 0 x 

1 00 00 x 0 1010 0 0 x 

1 00 00 x 0 1011 x 0 x 

1 00 00 x 0 0010 1 0 1 

1 00 00 x 0 0101 1 0 1 

1 00 00 x 0 1000 1 0 0 

1 00 00 x 0 1001 1 0 0 

1 00 00 x 0 1010 1 0 0 

1 00 00 x 0 0010 1 0 0 

1 00 00 x 0 0101 1 0 0 

MOVB R[DR] � R[SB] 0001100 1 00 00 x 0 1100 0 x x 

LSR R[DR] �lsrR[SA]bySH 0001101 1 00 00 x 0 1101 x 0 

LSL R[DR] �lslR[SA]bySH 0001110 1 00 00 x 0 1110 x 0 

LD R[DR] � M[R[SA]] 0010000 1 01 00 x 0 :xxxx x 0 

ST M[R[SA]] � R[SB] 0100000 0 xx 00 x 1 :xxxx 0 0 

JMR PC� R[SA] 1110000 0 xx 10 x 0 :xxxx x 0 

SLT If R[SA] < R[SB], thenR[DR] = 1 1100101 1 10 00 x 0 0101 0 0 

BZ If R[SA] = 0, then PC� PC+ 1 + se IM 1100000 0 xx 01 0 0 0000 1 0 

BNZ IfR[SA] -=F O,thenPC �PC+ 1 + seIM 1001000 0 xx 01 1 0 0000 1 0 

JMP PC � PC+ 1 + se IM 1101000 0 xx 11 x 0 :xxxx 1 x 

JML PC �PC+ 1 + se IM,R[DR] �PC+ 1 0110000 1 00 11 x 0 0000 1 1 

Otherwise, to determine the control codes, the CPU is viewed much as is the 
single-cycle CPU in Figure 9-15. The pipeline platforms can be ignored in this deter­
mination; however, it is important to examine the timing carefully to be sure that 
various parts of the register transfer statement for the operation take place in the 
right stage of the pipeline. For example, note that the adder for the PC is in stage 
EX. This adder is connected to MUX C and its attached control logic, and to the 
incrementer + 1 for the PC. Thus, all of this logic is in the EX stage, and the loading 
of the PC that begins the IF stage is controlled from the EX stage. Likewise, the 
input R[AA] is in the same combinational block of logic and comes not from the A 

Data output of the register file, but from Bus A in the EX stage, as shown. 
Table 11-3 can serve as the basis for the design of the instruction decoder. It 

contains the values for all control signals, except the register addresses from IR. In 
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contrast to the instruction decoder in Section 9-8, the logic is complex and is most 
easily designed by using a computer-based logic synthesis program. 

Data Hazards 

In Section 11-1, we examined a pipeline execution diagram and found that filling 
and flushing of the pipeline reduced the throughput below the maximum level 
achievable. Unfortunately, there are other problems with pipeline operation that 
reduce throughput. In this and the next subsection, we will examine two such prob­
lems: data hazards and control hazards. Hazards are timing problems that arise 
because the execution of an operation in a pipeline is delayed by one or more 
clock cycles from the time at which the instruction containing the operation was 
fetched. If a subsequent instruction tries to use the result of the operation as an 
operand before the result is available, it uses the old or stale value, which is very 
likely to give a wrong result. To deal with data hazards, we present two solutions, 
one that uses software and another that uses hardware. 

Two data hazards are illustrated by examining the execution of the following 
program: 

1 MOVA R1,R5 

2 ADD R2, Rl, R6 

3 ADD R3, Rl, R2 

The execution diagram of this program appears in Figure 11-lO(a). The MOVA 
instruction places the contents of R5 into Rl in the first half of WB in cycle 4. But, 
as shown by the blue arrow, the first ADD instruction reads Rl in the last half of 
DOF in cycle 3, one cycle before it is written. Thus, the ADD instruction uses the 
stale value in Rl. The result of this operation is placed in R2 in the first half of WB 
in cycle 5. The second ADD instruction, however, reads both Rl and R2 in the sec­
ond half of DOF in cycle 4. In the case of Rl, the value read was written in the first 
half of WB in cycle 4. So the value read in the second half of cycle 4 is the new 
value. The write-back of R2, however, occurs in the first half of cycle 5, after it is 
read by the next instruction during cycle 4. So R2 has not been updated to the new 
value at the time it is read. This gives two data hazards, as indicated by the blue 
arrows in the figure. The registers that are not properly updated to new values are 
highlighted in blue in the program and in the register transfer statements, both in 
the figure. In each of these cases, the read of the involved register occurs one clock 
cycle too soon with respect to the write of that register. 

One possible remedy for data hazards is to have the compiler or programmer 
generate the machine code to delay instructions so that new values are available. 
The program is written so that any pending write to a register occurs in the same or 
an earlier clock cycle than a subsequent read from the register. To accomplish this, 
the programmer or compiler needs to have detailed information on how the pipe­
line operates. Figure 11-lO(b) illustrates a modification of the simple three-line 
program that solves the problem. No-operation (NOP) instructions are inserted 
between the first and second instructions and between the second and third 
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instructions to delay the respective reads relative to the writes by one clock cycle. 
The execution diagram shows that, at worst, this approach has writes and subse­
quent reads in the same clock cycle. This is indicated by the pairs consisting of a 
register write and a subsequent register read connected by a black arrow in the 
diagram. Because of the read-after-write assumption for the register file, the timing 
shown permits the program to be executed on correct operands. 

This approach solves the problem, but what is the cost? First of all, the pro­
gram is obviously longer, although it may be possible to place other, unrelated 
instructions in the NOP positions instead of just wasting them. Also, the program 
takes two clock cycles longer and reduces the throughput from 0.5 instruction per 
cycle to 0.375 instruction per cycle with the NOPs in place. 

Figure 11-11 illustrates an alternative solution involving added hardware. 
Instead of the programmer or compiler putting NOPs in the program, the hard­
ware inserts the NOPs automatically. When an operand is found at the DOF stage 
that has not been written back yet, the associated execution and write-back are 
delayed by stalling the pipeline flow in IF and DOF for one clock cycle. Then the 
flow resumes with completion of the instruction when the operand becomes available, 

MOVAR1,RS 

ADD R2, Rl, R6 

ADD R3, Rl, R2 

1 2 

Rl f-RS IF DOF 

R2f-R1 + R6 IF D 

R3 f-R1 + R2 

First read Rl 

Second read Rl 

ReadR2 

(a) The data-hazard problem 

MOY A Rl, RS Rl f-RS IF DOF EX 

IF DOF 

R2f-R1 + R6 IF 

First read Rl 

Second read Rl 

ReadR2 

(b) A program-based solution 

D FIGURE 11-10 
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Rl data hazard detected 
pipeline stalled, and bubble launched 

Rl write and reads 

1 2 

Rl�RS IF DOF 

R2�R1 + R6 

3 4 

R2 data hazard detected, 
pipeline stalled, and 
bubble launched. --� 

D FIGURE 11-11 
Example of Data Hazard Stall 

5 6 7 8 

R2 Write and read 

EX WB 

and a new instruction is fetched as usual. The delay of one cycle is enough to per­
mit the result to be written before it is read as an operand. 

When the actions associated with an instruction flowing through the pipe 
are prevented from happening at a given point, the pipeline is said to contain a 
bubble in subsequent clock cycles and stages for that instruction. In Figure 11-

11, when the flow for the first ADD instruction is prevented beyond the DOF 
stage, in the next two clock cycles a bubble passes through the EX and the WB 
stages, respectively. The holding of the pipeline flow in the IF and DOF stages 
delays the microoperations taking place in these stages for one clock cycle. In the 
figure, this delay is represented by two diagonal blue arrows from the initial loca­
tion in which the completion of the microoperation is prevented to the location 
one clock cycle later in which the microoperation is performed. When the pipeline 
flow is held in IF and DOF for an extra clock cycle, the pipeline is said to be 
stalled, and if the cause of the stall is a data hazard, then the stall is referred to as a 
data hazard stall. 

An implementation of data-hazard handling for the pipelined RISC that uses 
data-hazard stalls is presented in Figure 11-12. The added or modified hardware is 
shown in the areas shaded in light blue. For this particular pipeline stage arrange­
ment, a data hazard will occur for a register file read if there is a destination regis­
ter at the execution stage that is to be written back in the next clock cycle and that 
is to be read at the current DOF stage as either of the two operands. So we have to 
determine whether such a register exists. This is done by evaluating the Boolean 
equations 

4 

HA = MAnoF ·(DA Ex = AA00p) · RWEx ·I (DAEx)i 
i=O 
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HB = MBDoF ·(DA Ex= BADoF) · RWEx · L (DAEx)i 
i=O 



and 

DHS= HA+HB 
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The following events must all occur for HA, which represents a hazard for the A 
data, to equal 1: 

1. MA in the DOF stage must be 0, meaning that the A operand is coming from 
the register file. 

2. AA in the DOF stage equals DA in the EX stage, meaning that there is 
potentially a register being read in the DOF stage that is to be written in the 
next clock cycle. 

3. RW in the EX stage is 1, meaning that register DA in the EX stage will defi­
nitely be written in WB during the next clock cycle. 

4. The OR (I) of all bits of DA is 1, meaning that the register to be written is 
not RO and so is a register that must be written before being read. (RO has the 
same value 0 regardless of any writes to it.) 

If all these conditions hold, there is a write pending for the next clock cycle to a 
register that is the same as one being read and used on Bus A. Thus, a data hazard 
exists for the A operand from the register file. HB represents the same combina­
tion of events for the B data. If either of the HA or HB terms equals 1, there is a 
data hazard and DHS is 1, meaning that a data-hazard stall is required. 

The logic implementing the preceding equations is shown in the shaded area 
in the center of Figure 11-12. The blocks marked "Comp" are equality comparators 
that have output 1 if and only if the two 5-bit inputs are equal. The OR gate with 
DA entering it ORs together the five bits of DA and has output 1 as long as DA is 
not 00000 (RO). 

DHS is inverted and the inverted signal is used to initiate a bubble in the pipe­
line for the instruction currently in the IR, as well as to stop the PC and IR from 
changing. The bubble, which prevents actions from occurring as the instruction 
passes through the EX and WB stages, is produced by using AND gates to force RW 
and MW to 0. These Os prevent the instruction from writing the register file and the 
memory. AND gates also force BS to 0, causing the PC to be incremented instead of 
loaded during the EX stage for a jump register or branch instruction affected by a 
data hazard. Finally, to prevent the data stall from continuing for the next and subse­
quent clock cycles, AND gates force DA to 0 so that it appears that RO is being writ­
ten, giving a condition which does not cause a stall. The registers to remain 
unchanged in the stall are the PC, the PC_i, PC_2, and the IR. These registers are 
replaced with registers with load control signals driven by DHS. When DHS goes 
to 0, requesting a stall, the load signals become 0 and these pipeline platform regis­
ters hold their contents unchanged for the next clock cycle. 

Returning to Figure 11-12, we see that in cycle 3 the data hazard for Rl is 
detected, so that DHS goes to 0 before the next clock edge. RW, MW, BS, and DA 
are set to 0, and at the clock edge, a bubble is launched into the EX stage for the 
ADD. At the same clock edge, the IF and DOF stages are stalled, so the information 
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in them now is associated with clock cycle 4 instead of 3. In clock cycle 4, since 
DAEx is 0, there is no stall, so the execution of the stalled ADD instruction pro­
ceeds. The same sequence of events occurs for the next ADD. Note that the execu­
tion diagram is identical to that in Figure 11-lO(b ) , except that the NOPs are 
replaced by stalled instructions, shown in parentheses. Thus, although it removes 
the need for programming NOPs into the software, the data-hazard stall solution 
has the same throughput penalty as the program with the NOPs. 
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A second hardware solution, data forwarding, does not have this penalty. 
Data forwarding is based on the answer to the following question: When a data 
hazard is detected, is the result available somewhere else in the pipeline, so that it 
can be used immediately in the operation having the data hazard? The answer is 
"almost." The result will be on Bus D, but it is not available until the next clock 
cycle. The result is to be written into the destination register during that clock 
cycle. The information needed to form the result, however, is available on the 
inputs to the pipeline platform that provides the inputs to MUX D. All that is 
needed to form the result during the current clock cycle is a multiplexer to select 
from the three values, just as MUX D does. MUX D' is accordingly added to pro­
duce the result on Bus D' . In Figure 11-13, instead of reading the operand from 
the register file, we use data forwarding to replace the operand with the value on 
Bus D' . This replacement is implemented with an additional input to MUX A and 
to MUX B from Bus D' as shown. Essentially the same logic as before is used to 
detect the data hazard, except that the separate detection signals HA and HB are 
used directly for A data and B data, respectively, so that the replacement occurs for 
the operand that has the data hazard. 

The data-forwarding execution diagram for the three-instruction example 
appears in Figure 11-14. The data hazard for R1 is detected in cycle 3. This causes 
the value to go into R1 in the next cycle, to be forwarded from the EX stage of the 
first instruction in cycle 3. The correct value of R1 enters the DOF/EX platform at 
the next clock edge so that execution of the first ADD can proceed normally. The 
data hazard for R2 is detected in cycle 4, and the correct value is forwarded from 
the EX stage of the second instruction in that cycle. This gives the correct value in 
the DOF/EX platform needed for the second ADD to proceed normally. In con­
trast to the data-hazard stall method, data forwarding does not increase the num­
ber of clock cycles required to execute the program and hence does not affect the 
throughput in terms of the number of clock cycles required. It may, however, add 
combinational delay, causing the clock period to be somewhat longer. 

Rl data hazard detected 
and Rl value forwarded 

1 2 3 
Rl write and read 

4 5 6 
....-�--�---.....---+---+----. 

MOVAR1,R5 Rl�RS IF DOF 

ADD R2, Rl, R6 R2 � Rl + R6 IF DO 

ADD R3, Rl, R2 R3�R1 + R2 
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Data hazards can also occur with memory access, as well as with register 
access. For the ST and LD instructions, it is not likely that a data memory read can 
be performed after a write in a single clock cycle. Further, some memory reads 
may take more than one clock cycle, in contrast to what we have assumed here. 
Thus, the reduction in throughput for a data hazard may be increased due to a 
longer delay before the data is available. 

Control Hazards 

Control hazards are associated with branches in the control flow of the program. 
The following program containing a conditional branch illustrates a control hazard: 

1 BZ Rl, 18 

2 MOVA R2,R3 

3 MOVA R1,R2 

4 MOVA R4,R2 

20 MOVA R5,R6 

The execution diagram for this program is given in Figure 11-15(a). If Rl is zero, 
then a branch to the instruction in location 20 (recall that addressing is PC rela­
tive) is to occur, skipping the instructions in locations 2 and 3. If Rl is nonzero, 
then the instructions in locations 2 and 3 are to be executed in sequence. Assume 
that the branch is taken to location 20 because Rl is equal to zero. The fact that Rl 
equals 0 is not detected until EX in cycle 3 of the first instruction in Figure 11-15(a). 
So the PC is set to 20 on the clock edge at the end of cycle 3. But the MOVA 
instructions in locations 2 and 3 are into the EX and DOF stages, respectively, after 
the clock edge. Thus, unless corrective action is taken, these instructions will com­
plete execution, even though the programmer's intention was for them to be 
skipped. This situation is one form of a control hazard. 

NOP instructions can be used to deal with control hazards just as they were 
with data hazards. The insertion of NOPs is performed by the programmer or com­
piler generating the machine-language program. The program must be written so 
that only operations intended to be performed, regardless of whether the branch is 
taken, are introduced into the pipeline before the branch execution actually occurs. 
Figure 11-15(b) illustrates a modification of the simple three-line program that sat­
isfies this condition. Two NOPs are inserted after the branch instruction BZ. These 
two NOPs can be performed regardless of whether the branch is taken in the EX 

stage of BZ in cycle 3, with no adverse effects on the correctness of the program. 
When control hazards in the CPU are handled in this manner by programming, the 
branch hazard dealt with by the NOPs is referred to as a delayed branch. Branch 
execution is delayed by two clock cycles in this CPU. 

The NOP solution in Figure 11-15(b) increases the time required to process 
the simple program by two clock cycles, regardless of whether the branch is taken. 
Note, however, that these wasted cycles can sometimes be avoided by rearranging 
the order of instructions. Suppose that those instructions to be executed regardless 
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of whether the branch is taken can be placed in the two locations following the 
branch instruction. In this situation, the lost throughput is completely recovered. 

Just as in the case of the data hazard, a stall can be used to deal with the con­
trol hazard. But, also as in the case of the data hazard, the reduction in throughput 
will be the same as with the insertion of NOPs. This solution is referred to as a 
branch-hazard stall and will not be presented here. 

A second hardware solution is to use branch prediction. In its simplest form, 
this method predicts that branches will never be taken. Thus, instructions will be 
fetched and decoded and operands fetched on the basis of the addition of 1 to the 
value of the PC. These actions occur until it is known during the execution cycle 
whether the branch in question will be taken. If the branch is not taken, the 
instructions already in the pipeline due to the prediction will be allowed to pro­
ceed. If the branch is taken, the instructions following the branch instruction need 
to be canceled. Usually, the cancellation is done by inserting bubbles into the exe­
cution and write-back stages for these instructions. This is illustrated for the four­
instruction program in Figure 11-16. On the basis of the prediction that the branch 
will not be taken, the two MOVA instructions after BZ are fetched, the first one is 
decoded, and its operands are fetched. These actions take place in cycles 2 and 3. 
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In cycle 3, the condition upon which the branch is based has been evaluated, and it 
is found that Rl = 0. Thus, the branch is to be taken. At the end of cycle 3, the PC 
is set to 20, and the instruction fetch in cycle 4 is performed using the new value of 
the PC. In cycle 3, the fact that the branch is taken has been detected, and bubbles 
are inserted into the pipeline for instructions 2 and 3. Proceeding through the pipe­
line, these bubbles have the same effect as two NOP instructions. However, 
because the NOPs are not present in the program, there is no delay or perfor­
mance penalty when the branch is not taken. 

The branch-prediction hardware is shown in Figure 11-17. Whether a branch 

is taken is determined by looking at the selection values on the inputs to MUX C. 
If the pair of inputs is 01, then a conditional branch is being taken. If the pair is 10, 
then an unconditional JMR is occurring. If the pair is 11, then an unconditional 
JMP or JML is taking place. On the other hand, if the pair of inputs is 00, then no 

branch is occurring. Thus, a branch occurs for all combinations other than 00 (i.e., 
for at least one 1) on the pair of lines. Logically, this corresponds to the OR of the 

lines, as shown in the figure. The output of the OR is inverted and then ANDed 
with the RW and MW fields, so that the register file and the data memory cannot 
be written for the instruction following the branch instruction if the branch is 
taken. The inverted output is also ANDed with the BS field, so that a branch in the 
next instruction is not executed. In order to cancel the second instruction following 
the branch, the inverted OR output is ANDed with the IR output. This gives an 
instruction of all Os, for which the OPCODE field is defined as NOP. If the branch 
is not taken, however, the inverted OR output is 1, and the IR and the three con­
trol fields remain unchanged, giving normal execution of the two instructions fol­
lowing the branch. 

Branch prediction can also be done on the assumption that the branch is 
taken. In this case, the instructions and operands must be fetched down the path of 
the branch target. Thus, the branch target address must be computed and used for 
fetching the instruction in the branch target location. In case the branch does 
not take place, however, the updated value of the PC must also be saved. As a 
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consequence, this solution will require additional hardware to compute and store 
the branch target address. Nevertheless, if branches are more likely to be taken 
than not, the "branch taken" prediction may yield a more favorable cost-perfor­
mance trade-off than the "branch not taken" prediction. 

For simplicity of presentation, we have treated the hardware solutions for 
dealing with hazards one at a time. In an actual CPU, these solutions need to be 
combined. In addition, other hazards, such as those associated with writing and 
reading memory locations, need to be handled. 

11-4 THE COMPLEX INSTRUCTION SET COMPUTER 

CISC instruction set architectures are characterized by complex instructions that 
are, at worst, impossible, and, at best, difficult to implement using a single-cycle 
computer or a single pass through a pipeline. A CISC ISA often employs a siz­
able number of addressing modes. Further, the ISA often employs variable­
length instructions. The support for decision making via conditional branching is 
also more sophisticated than the simple concepts of branch on zero register con­
tents and setting a register bit to 1 based on a comparison of two registers. In this 
section, a basic architecture for a CISC is developed with the high-performance 
of a RISC for simple instructions and most of the characteristics of a CISC ISA 
as just described. 

Suppose that we are to implement a CISC architecture, but we are inter­
ested in approaching a throughput of one instruction per short RISC clock cycle 
for simple, frequently used instructions. To accomplish this goal, we use a pipe­
lined datapath and a combination of pipelined and microprogrammed control as 
shown in Figure 11-18. An instruction is fetched into the IR and enters the Decode 
and Operand Fetch stage. If it is a simple instruction that executes completely in a 
single pass through the normal RISC pipeline, it is decoded and operand fetch occurs 
as usual. On the other hand, if the instruction requires multiple microoperations or 

.. 

Microprogram Instruction fetch 

counter 

Decode and 
- operand fetch 

Control ROM 
Execute 

Write-back 

D FIGURE 11-18 
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multiple memory accesses in sequence, the decode stage produces a microcode 
address for the microcode ROM and replaces the usual decoder outputs with control 
values from the microcode ROM. Execution of microinstructions from the ROM, 
selected by the microprogram counter, continues until the execution of the instruc­
tion is completed. 

Recall that to execute a sequence of microinstructions, it is often necessary 
to have temporary registers in which to store information. An organization of 
this type will frequently supply temporary registers with a convenient mechanism 
for switching between temporary registers and the usual programmer-accessible 
register resources. 

The preceding organization supports an architecture that has combined 
CISC-RISC properties. It illustrates that pipelines and microprograms can be 
compatible and need not be viewed as mutually exclusive. The most frequent use 
of such a combined architecture allows existing software designed for a CISC to 
take advantage of a RISC architecture while preserving the existing ISA. The 
CISC-RISC architecture is a combination of concepts from the multiple-cycle 
computer in Chapter 9, the RISC CPU in the previous section, and the micropro­
gramming concept introduced briefly in Chapter 9. This combination of concepts 
makes sense, since the CISC CPU executes instructions using multiple passes 
through the RISC datapath pipeline. To sequence these multiple-pass instruction 
implementations, a sequential control of considerable complexity is needed, so 
microprogrammed control is chosen. 

The development of the architecture begins with some minor modifications 
to the RISC ISA to obtain some capabilities desirable in the CISC ISA. Next, the 
datapath is modified to support the ISA changes. These include modification of the 
Constant Unit, addition of a Condition Code register CC, and deletion of the hard­
ware for supporting the SLT instruction. Further, the Register file addressing logic 
is modified to provide addressing for 16 temporary registers for multiple-pass use 
of the datapath, with 16 registers remaining in the storage resources. This is in con­
trast to the 32 registers in the storage resources for the RISC. The next step is to 
adapt the RISC control to work with the microprogrammed control in implement­
ing the multiple pass instructions. Finally, the microprogrammed control itself is 
developed and its operation is illustrated by the implementation of three CISC 
instructions that characterize a CISC ISA. 

ISA Modifications 

The first modification to the RISC ISA is the addition of a new format for branch 
instructions. In terms of the instructions provided in the CISC, it is desirable to 
have the capability to compare the contents of two source registers and branch, 
indicating the relationship between the contents of the two registers. To perform 
such a comparison, a format with two source register fields SA and SB and a target 
offset are required. Referring to Figure 11-7, addition of the SB field to the branch 
format reduces the length of the target offset from 15 bits to 10 bits. The resulting 
Branch 2 format added for the CISC instructions is shown in Figure 11-19. This 
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format is used by an illustration in Example 11-2 of a BLE instruction that com­
pares the contents of registers R[SA] and R[SB]. 

The second modification is to partition the Register file to provide addressing 
for 16 temporary registers for multiple-pass use of the datapath. With the partition, 
only 16 registers remain in the storage resources. Rather than modify all of the reg­
ister address fields in the instruction formats, we will simply ignore the most signif­
icant bit of these fields. For example, only the rightmost four bits of the field DR 
will be used. DR4 will be ignored. 

The third modification to the RISC ISA is the addition of condition codes 
(also called flags) as discussed in Chapter 10. The condition codes provided are 
designed specifically to be used in combination with branch on zero and branch on 
nonzero in implementing instructions that will provide a wide spectrum of deci­
sions, such as greater than, less than, less than or equal to, and so on for both 
signed and unsigned integers. The codes are zero (Z), negative (N), carry (C), over­
flow (V), and L (less than). The first four are stored versions of the status outputs 
of the Function Unit. The less than (L) bit is the exclusive OR of Zand V, which is 
useful in easily implementing particular decisions. The inclusion of the L bit in the 
condition codes eliminates the need for the SLT instruction. 

To make the most effective use of these condition codes, it is useful to control 
whether or not they are modified for a particular microoperation execution from 
the instructions. Examination of the RISC instruction codes in Table 11-1 shows 
that bit 4 (third from the left) of the opcode is 0 for the operations MOVA down 
through instruction LSL. This bit can be used for these instructions to control 
whether the condition codes are affected by the instruction. If the bit is 1, then the 
condition-code values are affected by the execution of the instruction. If it is 0, 
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then the condition codes will not be affected. This adds an additional 17 new oper­
ation codes with a 1 in opcode position 4 and 17 new mnemonic codes to the archi­
tecture. These opcodes must not overlap the existing operation codes, and the 
mnemonics are formed by appending C to the current mnemonics in Table 11-1. 
These modifications permit flexible use of the condition codes in making decisions 
at both the ISA level and in the microcode. In both cases, the actual control of 
condition-code loading is passed through a bit LD in the control words for the 
RISC pipeline. 

Datapath Modifications 

Several changes to the datapath are required to support the ISA modifications. 
These changes will be covered beginning with the datapath components in the 
DOF stage in Figure 11-20. 

First, modifications are made to the Constant unit to handle the change in the 
length of the target offset. Logic added to the Constant unit extracts a constant, 
IMs = IR9:0, from constant JM. Sign extension is applied to IMs to obtain a 32-bit 
word. Also, for use in comparisons with condition-code values, an 8-bit constant 
CA is provided from the microinstruction register, MIR, in the microprogrammed 
control. This constant is zero filled to form a 32-bit word. The CS control field for 
the Constant unit is expanded to two bits to perform selection from among the 
four possible constant sources. 

Second, the Register address logic from the multiple-cycle computer in Chap­
ter 9 is added to the address inputs of the Register file. The purpose of this change is 
to support the ISA modification that provides 16 temporary registers and 16 registers 
that are a part of the storage resources. An additional mode supports the use of DX 
as a register-file source address with BX as the corresponding register-file destination 
address. This is necessary to capture the contents for R[DR] for use in destination 
address mode calculations. 

Third, a number of changes are made to support the modification adding con­
dition codes. In the DOF stage, an additional port is added on MUX A in order to 
provide access to CC, the stored condition codes, for storage in temporary registers 
or comparison to constant values. In the EX stage, the condition-code bit L (less 
than) is implemented and the condition-code register CC is added to the pipeline 
platform. The new control signal LC determines whether CC is loaded for the exe­
cution of a specific microoperation using a function unit operation. In the WB 
stage, the logic for support of the SLT instruction is replaced by a zero-filled CC 
value, which is passed to the new port on MUX A. Since the new condition-code 
structure provides support for the same decision making as SLT did and more, sup­
port for SLT is no longer needed. 

Control Unit Modifications 

The addition of a microprogrammed control to the control unit to support instruc­
tion implementation using multiple passes through the pipeline causes significant 
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changes to the existing control, as shown in Figure 11-20. The microprogrammed 

control is a part of the instruction decoding hardware in the DOF stage, but it inter­
acts with other parts of the control as well. For convenience, it will be described 

separately. 
A quick overview of the execution of a multiple-pass instruction provides a 

perspective for the control unit changes. The PC points to the instruction in the 
Instruction memory. The instruction is fetched in the IF stage, and on the next 
clock edge it is loaded into the IR and the PC is updated. The instruction is identi­
fied as a multiple-pass instruction from its opcode. Decoding of the opcode changes 
signal MI to 1 to indicate that this instruction is to use the microprogrammed 
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control. The decoder also produces an 8-bit starting address, SA, that identifies the 
beginning of the microprogram in the Microcode ROM. Since multiple passes 
through the pipeline are needed to implement the instruction, the loading of subse­
quent instructions into the IR and further updating of the PC must be prevented. 
A signal MS produced by the microprogrammed control logic becomes 1 and stalls 
the PC and the IR. This prevents the PC from incrementing, but permits PC + 1 to 
continue down the pipeline into PC_1 and PC_2 for use in a branch. This stall 
remains until the multiple-pass instruction has been executed or until there is 
branch or jump action on the PC. Also, when MI = 1, most of the fields of the 
decoded instruction are replaced with fields of the current microinstruction, which 
is a decoded NOP (no operation). This 31-bit field replacement, performed by 
MUX I, prevents the instruction itself from causing any direct actions. Some 
changes have been made to the control word to control modified datapath 
resources. Fields CS and MA have been expanded to two bits each, and field LC 
has been added. At this point, the microprogrammed control is now controlling the 
pipeline and supplies a series of microinstructions (control words) to implement 
the instruction execution. The control word format follows that for the multiple­
cycle computer and includes fields such as SH, AX, BX, and DX. DX is modified 
to match the register address changes described for the datapath. In addition, the 
microprogrammed control has to interact with the datapath in order to perform 
decisions. This interaction includes application of the constant CA, use of the con­
dition codes CC, and use of the zero detect signal Z. 

To support the operations just discussed, the following changes are made to 
the control unit: 

1. the addition of the stall signal MS to the PC, PC_1, and IR, 

2. changes in the instruction decoder to produce MI and ST, 

3. expansion of the fields CS and MA to two bits, 

4. addition of MUX I, and 

5. addition of control fields AX, BX, and DX, and LC. 

The definitions of new and modified control fields are given in Table 11-4. 
Except for the addition of the microprogrammed control discussed in the 

next section, this completes the changes to the control unit. 

Microprogrammed Control 

A block diagram for the microprogrammed control and the format for microin­
structions appear in Figure 11-21. The control is centered about the Microcode 
ROM, which has an 8-bit address and stores up to 256 41-bit microinstructions. 
The microprogram counter MC stores the address corresponding to the current 
microinstruction stored in the microninstruction register, MIR. The address for 
the ROM is provided by MUX E, which selects from the incremented MC, the 
jump address obtained from the microinstruction, CA, the prior value of the 
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jump address, CA_1, and the starting address from the instruction decoder in the 

control unit, SA. Table 11-5 defines the 2-bit select input ME for MUX E and 

stall bit, MS, in terms of the new control field MZ plus other variables. This func­

tion is implemented by the Microaddress Control logic. To set the context for the 

discussion, in location 0 of the ROM, the IDLE state 0 for the microprogrammed 

control contains a microinstruction that is a NOP consisting of all zeros. This 

microinstruction has MZ = 0 and CA = 0. From Table 11-5, with MI = 0, the 

microprogram address is CA = 0, causing the control to remain in this state until 

MI= 1. With MI= 1, starting address SA is applied to fetch the first microinstruc­

tion of the microprogram for the complex instruction being held in IR. In the 

control unit, MI= 1 also switches MUX I from the normal control word coming 

from the decoder to the 31-bit MIR portion that is a NOP instruction. In addi­

tion, the output MS from the Microaddress control becomes 1, stalling the PC, 

PC_1, and the IR in the main control. At the next clock edge, the microinstruc­
tion fetched from the starting address SA enters the MIR, and the pipeline is 

now controlled by the microprogram. 

In Figure 11-21, two pipeline registers are required as a part of the micropro­
grammed control. The stored pipeline values, MZ_1 and CA_1, are required for the 
execution of a conditional microbranch, since the value of Z to be tested occurs 
during the execution cycle for the microbranch instruction, one clock cycle after it 
enters the MIR. 
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SA CA CA_1 
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MIR 

�----------MS 
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(a) 

DOF 

EX 

31 30 29 2524 23 22 21 20 1 9  161 514 1 3 1211 7 6 
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D FIGURE 11-21 
Pipelined CISC CPU: Microprogrammed Control 

21 0 

During the execution of the microprogram, the microaddress is controlled 
by MZ, MZ_1, MI, PS, and Z. For MZ_1 = 11, MZ = 01 since the microinstruction 
following a conditional microbranch must be a NOP. Under these conditions, the 
ME values are controlled by PS and Z with MS = 1. For PS and Z having opposite 
values, a conditional branch to the microaddress value from CA_1 occurs. Other­
wise, for MZ_1 = 11 and MZ = 01, the next microaddress becomes the incre­
mented value of MC. 

For MZ_1'#11, MZ, MI, and PS control the microaddress. For MZ = 00, the 
values of ME and MS are controlled by MI. For MI = 0, the next microaddress is 
CA and MS = 0, corresponding to the idle state for the microprogrammed control. 
For MI = 1, the next microaddress is SA and MS = 1, selecting the next microin­
struction from the Microcode ROM and stalling the first two pipeline platforms. 
For MZ = 01, the next microaddress is the incremented value of MC, advancing 
execution to the next microinstruction in sequence. For MZ = 10, an unconditional 
jump is performed in the microcode control and the value of MS is controlled by 
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D TABLE 11-5 
Address Control 

Inputs Outputs 

MZ_1 MZ Ml PS z ME1 ME0 MS Register Transfer Due to ME 

11 01 x 0 0 0 0 1 PS·Z: MC<.-MC + 1 

11 01 x 0 1 0 1 1 PS· Z: MC<.-CA_1 

11 01 x 1 0 0 1 1 PS· Z: MC<.-CA_1 

11 01 x 1 1 0 0 0 PS·Z: MC<.-MC + 1 

ox 01 x x x 0 0 1 MC<.-MC+l 

XO 01 x x x 0 0 1 MC<.-MC+l 

xx 00 0 x x 1 0 0 MC<.-CA 

xx 00 1 x x 0 1 1 MC<.-ST 

xx 10 x 0 x 1 0 0 PS: MC<.-CA 

xx 10 x 1 x 1 0 1 PS: MC<.-CA 

xx 11 x x x 0 0 1 MC<.-MC+l 

PS. PS = 1 causes MS = 1, continuing microprogram execution. PS = 0 forces MS = 
0, removing the stall, and returning control to the pipeline. This causes MI to 
become 0 (if the new instruction is not also a complex one). If CA = 0, the micro­
programmed control is locked the IDLE state until MI = 1. In order for this to 
happen, the final instruction in the microprogram must have MZ = 10, PS= 0, and 
CA=O. 

Microprograms for Complex Instructions 

Three examples illustrate complex instructions implemented by using the CISC 
capabilities provided by the design just completed. The resulting microprograms 
are given in Table 11-6. 

EXAMPLE 11-1 LD Instruction with Indirect Indexed Addressing (Lil) 

The Lii instruction adds the target offset to the contents of a register that is being 
used as an index register. In the indirection step, the indexed address formed is 
then used to fetch the effective address from memory. Finally, the effective address 
is used to fetch the operand from memory. The opcode for this instruction is 
0110001, and the instruction uses the Immediate format with the SA register field 
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Example Microprograms for CISC Architecture 

Action 

MI: MC� ST, MI: MC� 00 
MC�MC+l (NOP) 

R16 � R[SA] + zf IML 
MC�MC+l (NOP) 

R11�M[R16] 
MC�MC+l (NOP) 

R[DR] �M[R17] 

R[SA] - R[SB], 

CC�LllZllNll Cll V 
MC�MC+l (NOP) 

R31 � CC A 11000 
MC�MC+l (NOP) 

if (R31 =F 0) MC� BLE7 

else MC �MC+l 
MC�MC+l (NOP) 

MC�IDLE 

PC� (PC_1) + se IML, 

MC�IDLE 

R16�R[SB] 
MC�MC+l (NOP) 

Ri6�R16 -1 
R17�R[DR] 
R18 � R[SA] + R16 
Rig� Ri1 + Ri6 
R20�M[R18] 
MC�MC+l (NOP) 

M[R19] �R20 
if (R16 =F O)MC � MMB2 
MC �MC+l (NOP) 

MC�IDLE 

Microinstructions 

R M P M L M 
Address MZ CA W DX D BS S W FS C MA B AX BXCS 

Shared Microinstructions 

IDLE 00 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
Arbitrary 01 xx 0 00 0 00 0 0 0 0 00 0 00 00 00 

Load Indirect Indexed (Lil) 

LIIO 01 00 1 10 0 00 0 0 2 0 00 1 00 00 00 
Liil 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
LII2 01 00 1 11 1 00 0 0 0 0 00 0 10 00 00 
LII3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
LII4 10 IDLE 1 01 1 00 0 0 0 0 00 0 11 00 00 

Compare Less Than or Equal To (BLE) 

BLEO 01 00 0 01 0 00 0 0 5 1 00 0 00 00 00 

BLEl 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
BLE2 01 18 1 lF 0 00 0 0 8 0 10 1 00 00 11 
BLE3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 

BLE4 11 BLE7 0 00 0 00 1 0 0 0 00 0 lF 00 00 

BLES 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
BLE6 00 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00 

BLE7 10 IDLE 0 00 0 11 0 0 0 0 01 1 00 00 10 

Move Memory Block (MMB) 

MMBO 01 00 1 10 0 00 0 0 c 0 00 0 00 00 00 
MMBl 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
MMB2 01 01 1 10 0 00 0 0 5 0 00 1 00 00 11 
MMB3 01 00 1 00 0 00 0 0 c 0 00 0 00 11 00 
MMB4 01 00 1 12 0 00 0 0 2 0 00 0 00 10 00 
MMBS 01 00 1 13 0 00 0 0 2 0 00 0 11 10 00 
MMB6 01 00 1 14 1 00 0 0 0 0 00 0 12 00 00 
MMB7 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
MMB8 01 00 0 00 0 00 0 1 0 0 00 0 13 14 00 
MMB9 11 MMB2 0 00 0 00 1 0 0 1 00 0 10 00 00 

MMBlO 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00 
MMBll 10 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00 
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and a 15-bit target offset. When the Lii instruction is fetched and appears in the 
JR, the instruction decoder sets MI equal to 1 and provides the microcode address 
symbolically represented by LIIO in Table 11-6. The first microinstruction to be 
executed is the one appearing in the IDLE address. This microoperation executes a 
NOP in the datapath and memory, but in the presence of MI = 1, the address 
control selects SA as the next microinstruction address, thereby leaving the 
IDLE state. The LIIO microinstruction forms the indexed address and incre­
ments the address in MC to fetch the next microinstruction Liil. This causes the 
NOP microinstruction in address Liil to be fetched for execution in the pipe­
line. This NOP has been inserted, since the result of the microinstruction in LIIO 
is not placed in R16 until the WB stage. The next microinstruction in Lil2 fetches 
the effective address from memory. A NOP is required next, due to the clock­
cycle delay in writing the effective address to R17• The microinstruction in Lil4 
applies the effective address to the memory to obtain the operand and place it 
in the destination register R[DR] . Since this completes the Lii implementation, 
the microprogrammed control state in MC returns to IDLE and the next 
instruction following Lii is fetched from the instruction memory by using the 
address in the PC. • 

In Table 11-6, this sequence of microinstructions is described in the 
Action column by register transfer statements, and symbolic names are pro­
vided for the addresses of the microinstructions in the Microcode ROM. The 
remainder of the columns in the table provide the coding of the microinstruc­
tion fields. These codes are selected from Tables 10-12, 12-2, 12-3, and 12-5, to 
implement the register transfers. Of particular note is the appearance of MC = 

10, PS = 0, and CA = IDLE (00) in microinstruction Lil4, causing the micro­
program control to return to IDLE and program control to return to the pipe­
line control. 

EXAMPLE 11-2 Branch on Less Than or Equal to (BLE) 

The BLE instruction compares the contents of registers R[SA] and R[SB] . If 
R[SA] is less than or equal to R[SB] , then the PC branches to PC+ 1 plus the sign­
extended Short Target Offset (IM8). Otherwise, the incremented PC is used. The 
opcode for the instruction is 1100101. 

The register transfers for the instruction are given in the Action column of 
Table 11-6. In microinstruction BLEO, R[SB] is subtracted from R[SA] and the 
condition codes L through V are captured in register CC. Due to the one-cycle 
delay in writing to CC, a NOP is required in microinstruction BLEL R[SA] is less 
than or equal to R[SB] if (L + Z) = 1 (+is OR in this expression). Thus, of the five 
condition-code bits, only Land Z are of interest. So in microinstruction BLE2, the 
least significant three bits of CC are masked out using the mask 11000 ANDed 
with CC. The result is placed in register R31, and, in BLE3, another NOP is 
required waiting for R31 to be written. In BLE4, a microbranch on R31 nonzero 
occurs. If R31 is nonzero, then L + Z = 1, giving R[SA] less than or equal to R[SB] . 
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Otherwise, both Land Z are 0, indicating R[SA] is not less than or equal to R[SB] . 
Due to the microbranch, a NOP is required in BLE5. The connections to MUX E 
require only one NOP after a microbranch instead of the two NOPs needed for 
the conditional branch in the main control. If the branch is not taken, the next 
microinstruction BLE6 executes, returning MC to IDLE and reactivating the pipe­
line control to execute the next instruction. If the branch is taken, microinstruction 
BLE7 is executed, placing PC + 1 + BrA into the PC for fetching the next instruc­
tion when the microinstruction reaches the EX stage. Note that such a branch on 
the PC can take place only after MS becomes 0 and the pipeline is reactivated. In 
this regard, a control hazard exists for this instruction in the main control, so it 
must be followed by a NOP. The codes for the microinstruction fields appear in 
Table 11-6 • 

EXAMPLE 11-3 Move Memory Block (MMB) 

The MMB instruction copies a block of information from one set of contiguous loca­
tions in memory to another. It has opcode 0100011 and uses the three-register type 
format. Register R[SA] specifies address A, the beginning location of the source 
block in memory, and register R[DR] specifies address B, the beginning location of 
the destination block. R[SB] gives the number n of words in the block. 

The register transfers for the instruction are given in the Action column of 
Table 11-6. In microinstruction MMBO, R [SB] is loaded into R16• MMBl con­
tains a NOP waiting for R16 to be written. In MMB2, R16 is decremented, pro­
viding an index with n values, n - 1 down to 0, for use in addressing the copying 
of n words. Since R [DR] is a destination register, it is ordinarily not available as 
a source. But to do address manipulation for the destination locations, it is nec­
essary for its value be placed in a register that can act as a source. Thus, in 
MMB3, the value of R[DR] is copied to register R17 by using the register code 
DX = 00000, which treats R [DR] as the source and the register specified in the 
BX field, R17, as the destination. In microinstructions MMB4 and MMB5, R16 is 
added to R [SA] and to R[SB] to serve as pointers to the addresses in the blocks. 
Due to these operations, the words in the blocks are transferred from the high­
est location first. In MMB6, the first word is transferred from the first source 
address in memory to temporary register R20• In MMB7, a NOP appears to per­
mit the writing of the value in R20 by MMB6 before the use of the value by 
MMB8. In MMB8, the first word is transferred from R20 to the first destination 
address in memory. In MMB9, a branch on zero is done on the contents of R16 
to determine if all of the words in the block have been transferred. If not, then 
MM2 is the next microaddress in which the next word transfer begins. If R16 
equals zero, the next microinstruction is the NOP placed in MMB10 due to the 
branch. The final microinstruction in MMB11 returns MC to IDLE and returns 
execution back to the pipeline control. 

The codes for the microinstructions appear in Table 11-6. The code consists of 
simple register and memory transfers with a single branch to provide the looping 
capability and NOPs to deal with data and control hazards. • 
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11-5 MORE ON DESIGN 

The two designs considered in this chapter represent two different ISAs and two 
different supporting CPU architectures. The RISC architecture matches well with 
the pipelined control organization because of the simplicity of the instructions. Due 
to the need for high performance, the modern CISC architecture presented is built 
upon the RISC foundation. In this section, we will deal with additional features for 
speeding up the fundamental RISC pipeline. 

Advanced CPU Concepts 

Among the various methods used to design advanced CPUs are multiple units 
organized as a pipeline-parallel structure, superpipelines, and superscalar archi­
tectures. 

-

I-UNIT 
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E-UNIT E-UNIT E-UNIT 

---- I 

• � 
t ' • ' 

D-UNIT 
Register 
file 

I 

D FIGURE 11-22 
Multiple Execution Unit Organization 
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Consider the case in which an operation takes multiple clock cycles to exe­
cute, but the instruction fetch and write-back operations can be handled in a single 
cycle. Then it is possible to initiate an instruction every clock cycle, but not possi­
ble to complete the execution of an instruction every cycle. In such a situation, the 
performance of the CPU can be substantially improved by having multiple execu­
tion units in parallel. A high-level block diagram for this kind of system is shown 
in Figure 11-22. The instruction fetch, decoding, and operand fetch, and branches 
are carried out in the I-unit pipeline. When decoding of a nonbranch instruction 
has been completed, the instruction and operands are issued to the appropriate E­
unit. When execution of the instruction is completed by the E-unit, the write-back 
to the register file occurs. If a memory access is required, then the D-unit is used to 
execute the memory operation. If the operation is a store, it goes immediately to 
the D-unit. 

In all of the methods considered thus far, the peak throughput possible is one 
instruction per clock cycle. With this limitation, it is desirable to maximize the clock rate 

by minimizing the maximum pipeline stage delay. If, as a consequence, a large number 
of pipeline stages is used, the CPU is said to be superpipelined. A superpipelined CPU 

Instruction fetch 

� 

Instruction issue 

� � 
Decode and Decode and 

operand fetch operand fetch 

� � 

Execute Execute 1 

� � 

Write-back Execute 2 

Integer E-unit � 

Execute 3 

� 

Write-back 

Floating-point E-unit 

D FIGURE 11-23 
Superscalar Organization 
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will generally have a very high clock frequency, in the range of a few to several GHz. 

In such an organization, however, handling hazards effectively is critical, since any 

stalling or reinitialization of the pipeline will degrade the performance of the CPU 
significantly. Also, as more pipeline stages are added, further dividing up the combi­

national logic, the setup and propagation delay times of the flip-flops begin to domi­

nate the platform-to-platform delay and the speed of the clock. The improvement 

achieved is less, and when hazards are taken into account, the performance may 

actually become worse rather than better. 

For fast execution, an alternative to superpipelining is the use of a supersca­
lar architecture. Its goal is to have a peak rate of issuing instructions for execution 
in excess of one instruction per clock cycle. A superscalar CPU that fetches a pair 

of instructions simultaneously by using a double-word wide path from instruction 

memory is illustrated in Figure 11-23. The processor checks for hazards among the 

instructions, as well as available execution units in the instruction issue stage of 

the pipeline. If there are hazards or busy execution units corresponding to the first 

instruction, then both instructions are held for later issuing. If the first instruction 

has no hazard and its E-unit is available, but there is a hazard or no available E­

unit for the second instruction, then only the first instruction is issued. Otherwise, 

both instructions are issued in parallel. If a given superscalar architecture is triple 

issue, then it has the ability to issue up to three instructions simultaneously, and a 

peak execution rate of three instructions per clock cycle. Note that the hazard 

checking for instructions in both the issue and execution stages becomes very 

complex as the maximum number of instructions issued simultaneously is 

increased. 

Following are three methods for preventing hazards from stalling the pipeline 

in superpipelined and superscalar processors. 

Instead of waiting for a branch to be taken, a processor predicts which way a 

branch is expected to go and proceeds to speculatively execute down that path. In 

addition, execution continues in order to determine the path the branch actually 

takes. When the result of the branch becomes available, if it does not match the 

speculated direction, the speculated results are quashed and the actual branch 

taken is followed. If the speculated direction is correct, then the pipeline delay 

waiting for the branch to occur is eliminated, significantly improving performance. 

Branch predictors must achieve a high rate of correct speculation in order to 

achieve performance improvement. Branch prediction is based on various 

approaches to recording the recent history of branches taken/not taken. In sophis­

ticated prediction schemes, results from multiple predictors are often combined to 

achieve high rates of correct speculation, even with complex, and sometimes irreg­

ular, branching patterns. 

Instead of waiting to load data from memory until it is known that the data is 

needed, speculative loading of data from memory is performed. The purpose is to 

avoid the relatively long delay required to fetch an operand from memory. If the 

data that is speculatively fetched turns out to be the data needed, then it will be 

available and the computation can proceed immediately with no waiting for a 

memory access to get the data. 
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Extending this further, data speculation uses methods to predict data values 
and use the predicted values to proceed with computation. When the actual value 
becomes known and matches the predicted value, then the result produced from 
the predicted value can be used to carry forward the computation. If the actual 
value and the predicted value differ, then the result based on the predicted value is 
discarded and the actual value is used to continue computation. An example of 
data speculation is permitting a value to be loaded from memory before a store 
into the same memory location occurring earlier in the program has been exe­
cuted. In this case, it is predicted that the store will not change the value of the 
data loaded from memory. If, at the time the store executes, the loaded value is not 
valid, the result of computation using it is discarded. Data speculation is often used 
in pre/etching-executing loads before stores upon which the loaded values may 
depend have been completed. 

All of these techniques perform operations or sequences of operations for 
which results are discarded with some frequency. Thus, there is "wasted" computa­
tion. To be able to do large amounts of useful computation, as well as the wasted 
computation, more parallel resources, as well as specialized hardware for imple­
menting the techniques, are required. The payoff in return for the cost of these 
resources is higher performance. 

Recent Architectural Innovations 

The techniques in the previous section all have the goal of exploiting instruction 
level parallelism (ILP), which in conjunction with advancements in integrated cir­
cuit technology resulted in the sustained rise in microprocessor performance over 
the last three decades of the 20th century. All of the ILP advances, however, have 
come with an increase in complexity, and, most notably, a seemingly never-ending 
increase in power needs. Around the millennium, it became very apparent that fur­
ther increases in performance due to ILP were diminishing. This recognition, along 
with the continuing advancements in IC technology, have combined to set a new 
direction for performance improvement to begin the 21st century, namely, the use 
of multiple-CPU-processors on a single chip in servers and desktop and laptop 
PCs. This section covers two of the directions in this changing approach to perfor­
mance, targeting two somewhat differing goals: general-purpose applications and 
digital media applications. 

MIMD AND SYMMETRIC ON-CHIP CORE MULTIPROCESSORS Multiple cores have 
appeared in microprocessors for servers and, more recently, for the PC market. 
These products resemble shared-memory sy mmetric (identical) multiproces­
sors, and are categorized as multiple-instruction-stream, multiple-data-stream 
(MIMD) microprocessors. In such systems, advantages can be achieved by exe­
cuting in parallel (1) multiple programs and/or (2) multiple threads. (A thread is 
a process that has its own data, instructions, and processor state.) Multiple cores 
can execute a program by dedicating one of the CPUs to its execution or by exe­
cuting the program's threads on multiple CPUs to improve performance over 
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single-CPU microprocessors. For example, a complex image-processing program 
can run on a single CPU while word processing or web browsing takes place on a 
second CPU. Alteratively, the image-processing program can be spread over two 
cores by running the threads of the program distributed across two CPUs. We use 
the Intel Core 2 Duo, the chip pictured on the text cover, as an illustration of a 
multicore microprocessor. This design not only achieves performance improve­
ments via multiple CPUs, but also advancements in instruction-level parallelism 
as well. 

> EXAMPLE 11-4 The Intel Core 2 Duo Microprocessor 

The Core 2 Duo is a microprocessor product introduced by Intel in July 2006. The 
die for the Core 2 Duo/Core 2 Extreme is the background for the cover of this text. 
The dual symmetric processors each have their own level 1 (Ll) instruction and 
data caches1 and share a common unified level 2 (L2) cache of either 2 or 4 MB 

capacity, depending on the particular Core 2 Duo product. The L2 cache is the pair 
of large dark blocks at the bottom of the cover background. Each core is a super­
scalar processor with a quad-issue 14-stage pipeline, a pipeline length decreased by 
35 percent from recent Intel microprocessor designs, showing a move away from 
focus on an increase in clock rate based on a superpipeline. In addition, the num­
ber of execution units in each processor has been increased significantly to support 
the four-issue strategy and multimedia performance. Intel has also introduced mac­

rofusion, in which multiple machine-level instructions are issued within a single 
microinstruction (called a µop by Intel), providing an increase in maximum 
instruction issue rate of one beyond that achieved by the broader issue path alone. 
In order to achieve a high memory bandwidth, the path from the L2 cache to each 
core is 256 bits wide. Further, there is an elaborate data prefetch mechanism to 
improve the performance of all three data caches. Prefetch is used to load data 
before it is needed for computation by predicting what data will be needed and 
whether or not the data will change after it has been prefetched. If the latter is the 
case, then the data will need to be loaded again after the store affecting its value 
has occurred. Memory disambiguation is the term applied to doing prefetch and 
cleaning up the situation in the event that stale data has been loaded into any of 
the caches. 

Technologically, the Core 2 Duo has been fabricated using a 65 nm technol­
ogy (gate lengths of 35 nm) and has embedded temperature sensors in the chip 
that are used to control the fan speed, power voltage values, and clock frequencies. 
Power reduction is also achieved by clock and power gating of entire blocks and 
unused portions of buses. These techniques have little impact on performance, 
while providing significantly reduced power consumption. • 

1 For the basics on caches and multilevel caches, see Section 13-3. 
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SIMD AND VECTOR PROCESSING The history of single-instruction-stream, multiple­
data-stream (SIMD) processors and vector processing goes back to the 1960s and 
70s, with the beginnings of the Illiac IV project at the University of Illinois, and 
with two commercial vector-processing products announced in 1972. These were 
followed over the next two decades by a number of supercomputers targeted pri­
marily at scientific applications. In response to the need for vector processing in PC 
microprocessors for multimedia applications, Intel introduced the MMX exten­
sions to the Pentium instruction set in 1997 and Advanced Micro Devices (AMD) 
added 3DNow! to the Athalon instruction set in 1998. Multiple sets of SSE 
(streaming SIMD extensions) have been added over time by Intel and AMD. 
IBM/Motorola (Freescale) also introduced Altivec extensions in its Power PC line. 
The basic approach in current microprocessors uses a set of 128-bit registers dedi­
cated to these SIMD/vector operations, with each instruction performing the same 
operations on bytes, half-words, words, or double words within the 128-bit regis­
ters. Most recently, SIMD has been central to the collaborative development by 
IBM, Sony, and Toshiba of the Broadband Processor Architecture and its first­
generation product, the Cell processor for Sony's Playstation 3 launched in 
November 2006. The following example summarizes briefly the architecture of the 
Cell processor. 

>EXAMPLE 11-5 The STI Cell Processor 

The Cell processor is based on the PowerPC architecture. It consist of nine cores 
plus a very fast RAMBUS on-chip memory controller and a controller for a config­
urable 1/0 interface. One of the cores is a 64-bit Power Processor Element (PPE) 
with first-level instruction and data caches and 512 KB second-level caches. It sup­
ports execution of two instruction threads by use of a dual multiprocessor with 
shared dataflow. The integer pipeline has 23 stages. There are 128 128-bit registers 
per thread for SIMD instructions handling 2 X 64, 4X32,8X16, 16 X 8, and 128X1 
element widths. The remaining eight processors are Synergistic Processor Elements 
(SPEs ), each with (1) 128 X 128 bit register files with same element sizes as the 
PPE and (2) a local store implemented in SRAM of 256 KB. The number of paral­
lel actions of the set of SPEs permits from 16 simultaneous parallel operations on 
64-bit operands to 1024 simultaneous parallel operations on 1-bit operands. The 
PPE and SPEs are connected by a coherent on-chip Element Interconnection Bus 
(EIB) using Direction Memory Access (DMA) communication on a very high­
speed set of four 128-bit wide bus rings. The chip is constructed with an advanced 
high-speed, low-voltage, low-power, 90 nm silicon-on-insulator (SOI) CMOS tech­
nology. Due to the need to carefully control the thermal environment of the Cell 
chip, 11 temperature sensors are built into the chip that are used to provide ther­
mal protection and control the cooling system in the Playstation 3. To form a sym­
metric multiprocessor system, two Cell processors can be connect together directly. 
Four Cell processors require a broadband switch to handle the four bidirectional 
broadband device interfaces. • 
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11-6 CHAPTER SUMMARY 

The focus of this chapter was the design of two processors-one for a reduced 
instruction set computer (RISC) and one for a complex instruction set computer 
(CISC). As a prelude to the design of these processors, the chapter began with an 
illustration of a pipelined datapath. The pipeline concept enables operations to 
be performed with clock frequencies and throughput not achievable with the 
same processing components in a conventional datapath. The pipeline execution 
pattern diagram was introduced for visualizing the behavior of a pipeline and 
estimating its peak performance. The problem of the low clock frequency of the 
single-cycle computer was addressed by adding a pipelined control unit to the 
data path. 

Next, we examined a RISC design with a pipelined datapath and control unit. 
Based on the single-cycle computer in Chapter 9, the RISC ISA is characterized by 
a single instruction length, a limited number of instructions with only a few 
addressing modes, and memory access restricted to load and store operations. Most 
RISC operations are simple in the sense that, in a conventional architecture, they 
can be executed using a single microoperation. 

The RISC ISA is implemented by using a modified version of the pipelined 
datapath in Figure 11-2. Likewise, a modified version of the control unit in Figure 11-4 

is used. Control changes were performed to accommodate the datapath changes 
and to handle branches and jumps in a pipeline environment. After completion of 
the basic design, consideration was given to data hazard and control hazard prob­
lems. We examined each type of hazard, as well as software and hardware solutions 
for each. 

The ISA of the CISC has the potential for performing many distinct opera­
tions, with memory access supported by several addressing modes. The CISC 
also has operations that are complex in the sense that they require many clock 
cycles for their execution. The CISC also has complex conditional branching sup­
ported by condition codes (status bits). Although, in general, a CISC ISA per­
mits multiple instruction lengths, this feature is not provided by the example 
architecture. 

To provide high throughput, the RISC architecture serves as the core of the 
CISC architecture. Simple instructions can be executed at the RISC throughput, 
with complex instructions, executed by multiple passes through the RISC pipeline. 
RISC datapath modification provided registers for temporary operand storage and 
condition code storage. Changes to the control unit were required to support these 
datapath changes. The primary control unit modification, however, was the addi­
tion of the microprogram control for execution of complex instructions. Added 
changes to the RISC control unit were required to integrate the microprogram 
control into the control pipeline. Examples of microprograms for three complex 
instructions were provided. 

After completing the CISC and RISC designs, we touched on some 
advanced concepts, including parallel execution units, superpipelined CPUs, 
superscalar CPUs, and predictive and speculative techniques for high performance. 
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Finally, we considered, and illustrated with real-world examples, a recent major 
turn in PC microprocessor design toward the use of multiple CPUs and elements 
rather than increased clock frequencies and more aggressive instruction-level 
parallelism. 
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PROBLEMS 

The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
a solution is available on the Companion Website for the text. 

11-1. A pipelined datapath is similar to that in Figure 11-l(b), but with the delays 
from the top to the bottom replaced by the following values: 0.5 ns, 0.5 ns, 
0.1 ns, 0.1 ns, 0.7 ns, 0.1 ns, and 0.1 ns. Determine (a) the maximum clock 
frequency, (b) the latency time, and ( c) the maximum throughput for this 
data path. 
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11-2. *A program consisting of a sequence of ten instructions without branch or 
jump instructions is to be executed in an 8-stage pipelined RISC computer 
with a clock period of O.S ns. Determine (a) the latency time for the 
pipeline, (b) the maximum throughput for the pipeline, and ( c) the time 
required for executing the program. 

11-3. The sequence of seven LD I instructions in the register-number program 
with the pipeline execution pattern given on page SS2 is fetched and 
executed. Manually simulate the execution by giving, for each clock 
cycle, the values in pipeline registers PC, IR, D ata A, D ata B, Data F, 
Data I, and in the register file (the latter only when a change in value 
occurs) for each clock cycle. Assume that all file registers initially contain 
-1 (all ls). 

11-4. For each of the RISC operations in Table 11-1, list the addressing mode or 
modes used. 

11-5. Simulate the operation of the barrel shifter in Figure 11-9 for each of the 
following shifts andA = 3D F3CB4A16. List the hexadecimal values on the 
47 lines, 3S lines, and 32 lines out of the three levels of the shifter. 

(a) Right, SH = OF 

(b) Left, SH = lD 

11-6. *For the RISC CPU in Figure 11-8, manually simulate, in hexadecimal, the 
processing of the instruction ADI Rl R16 2F01 located in PC = lOF. 
Assume that R16 contains 0000001F. Show the contents of each of the 
pipeline platforms and of the register file (the latter only when a change in 
value occurs) for each of the clock cycles. 

11-7. Repeat Problem 11-6 for the instruction LSR R6 R2 001D with R6 
containing 00000000 and R2 containing lABCDEF. 

11-8. Repeat Problem 11-6 for the instruction SLT R7 R3 RS with R3 containing 
OOOOFOOl and RS containing OOOOOOOF. 

11-9. +Use a computer-based logic minimization program to design the 
instruction decoder for a RISC from Table 11-3. 

11-10. *For the RISC design, draw the execution diagram for the following RISC 
program, and indicate any data hazards that are present: 

lMOVA 
2 SUB 
3 AND 

R7, R6 
R8, R8, R6 
R8, R8, R7 

11-11. For the RISC design, draw the execution diagram for the following RISC 
program (with the contents of R7 nonzero after the subtraction), and 
indicate any data or control hazards that are present: 



lSUB 
2BNZ 
3AND 
40R 

R7, R7, R2 
R7,000F 
R8,R7,R4 
R4,R8,R2 
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11-12. *Rewrite the RISC programs in Problems 11-10 and 11-11, using NOPs 
to avoid all data and control hazards, and draw the new execution 
diagrams. 

11-13. Draw the execution diagrams for the program in Problem 11-10, assuming 

(a) the RISC CPU with data stall given in Figure 11-12. 

(b) the RISC CPU with data forwarding in Figure 11-13. 

11-14. Simulate the processing of the program in Problem 11-11 using the RISC 
CPU with data-hazard stall in Figure 11-12. Give the contents of each 
pipeline platform and the register file (the latter only whenever a change 
occurs) for each clock cycle. Initially, R2 contains 0000001016, R4 contains 
0000002016, R7 contains 0000003016, and the PC contains 0000000116• Is the 
data hazard avoided? 

11-15. *Repeat Problem 11-14 using the RISC CPU with data forwarding in 
Figure 11-13. 

11-16. Draw the execution diagram for the program in Problem 11-11, assuming 
the combination of the RISC CPU with branch prediction in Figure 11-17 
and the RISC CPU with data forwarding in Figure 11-13. 

11-17. Design the constant unit in the pipelined CISC CPU by using the 
information given in Table 11-4 and multiple-bit multiplexers, AND gates, 
OR gates, and inverters. 

11-18. *Design the register address logic in the pipelined CISC CPU by using 
information given in the register fields of Table 11-4 plus multiple-bit 
multiplexers, AND gates, OR gates, and inverters. 

11-19. Design the address control logic described by Table 11-5 by using AND 
gates, OR gates, and inverters. 

11-20. Write microcode for the execution part of each of the following CISC 
instructions. Give both a register transfer description and binary or 
hexadecimal representations similar to those shown in Table 11-6 for the 
binary code for each microinstruction. 

(c) Branch if overflow 

(d) Branch if greater than zero 

(a) Compare less than 

11-21. Repeat Problem 11-20 for the following CISC instructions that are 
specified by register transfer statements. 
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(a) Push: R[SA] f--R[SA] + 1 followed by M[R[SA]] f--R[SB] 

(b) Pop: R[DR]f--M[R[SA]] followed by R[SA]f---R[SA] -1 

11-22. *Repeat Problem 11-21 for the following CISC instructions. 

(a) Add with carry: R[DR]f---R[SA] +R[SB] + C

(b) Subtract with borrow: R[DR]f---R[SA] - R[SB] -B 

Borrow B is defined as the complement of the carry out, C. 

11-23. Repeat Problem 11-21 for the following CISC instructions. 

(a) Add Memory Indirect: R[DR]f---R[SA] + M[M[R[SB]]] 

(b) Add to Memory: M[R[DR]]f--M[R[SA]] + R[SB] 

11-24. *Repeat Problem 11-20 for the CISC instruction, Memory Scalar Add. This 
instruction uses the contents of R[SB] as the vector length. It adds the 
elements of the vector with its least significant element in memory pointed 
to by R[SA] and places the result in the memory location pointed to by 
R[DR]. 

11-25. Repeat Problem 11-20 for the CISC instruction, Memory Vector Add. This 
instruction uses the contents of R[SB] as the vector length. It adds the 
vector with its least significant element in memory pointed to by R[SA] to 
the vector with its least significant element in memory pointed to by 
R[DR]. The result of the addition replaces the vector with its least 
significant element pointed to by R[DR]. 

'11-26. PADDB (Add Packed Byte Integers) is the mnemonic for an SSE SIMD 
instruction in the IA-32 architecture. In the RISC computer in this chapter, 
the equivalent instruction would add two 32-bit operands by adding the 
corresponding pairs of four bytes independently, one byte taken from each 
operand, with the result returned to the third operand, and without setting 
any condition codes. 

(a) For operands R[SA] and R[SB] and destination R[DR], write a register 
transfer description of this instruction. 

(b) What modifications would need to be made to the ALU in the 
RISC/CISC computer to support this instruction? 

' 11-27. (a) In the Core 2 Duo, each core can perform a PMINSW (Minimum of 
Packed Signed Word Integers) instruction with two 128-bit operands, 
placing the result back in the first operand. For 16-bit words, how many 
minimum words can be determined in parallel in the Core 2 Duo? 

(b) In the Cell processor, each SPE can perform an "average bytes" 
instruction on a pair of 128-bit registers RA and RB, with the resulting 
average byte placed in register RT. How many byte averages can be 
produced in parallel for all SPEs executing the same instruction? 



INPUT-OUTPUT 

AND COMMUNICATION 

I
n this chapter, we give an overview of selected aspects of computer input-output 
(1/0) and communication between the CPU and external 1/0 devices. Because of
the wide variety of different 1/0 devices and the quest for faster handling of

programs and data, 1/0 is one of the most complex areas of computer design. As a
consequence, we are able to present only selected pieces of the 1/0 puzzle. We
illustrate in detail just three devices: a keyboard, a hard drive, and an LCD screen. We 
then introduce the 1/0 bus and the 1/0 interfaces that connect to 1/0 devices. We look
at the Universal Serial Bus (USB), one of many solutions to the problem of accessing 
1/0 devices. Finally, we discuss three modes for performing data transfers: program­
controlled transfer, interrupt-initiated transfer, and direct memory access. 

In terms of the generic computer at the beginning of Chapter 1, it is apparent that 1/0 
involves a very large part of the computer. Only the processor, external cache, and 
RAM are not as highly involved, although they, too, are used extensively in directing 
and performing 1/0 transfers. Even the generic computer, which has fewer 1/0 devices
than most PC systems, has a diverse set of such devices requiring significant digital 
electronic hardware for support. 

12-1 COMPUTER 1/0 

The input and output subsystem of a computer provides an efficient mode of com­
munication between the CPU and the outside environment. Programs and data 
must be entered into the memory for processing, and results obtained from compu­
tations must be recorded or displayed. Among the input and output devices com­
monly found in computer systems are keyboards, displays, printers, magnetic 
drives, and compact disk read-only memory (CD-ROM) drives. Other input and 
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output devices frequently encountered are modems or other communication inter­
faces, scanners, and sound cards with speakers and microphones. Significant num­
bers of computers, such as those used in automobiles, have analog-to-digital 
converters, digital-to-analog converters, and other data-acquisition and control 
components. 

The 1/0 facility of a computer is a function of its intended application. This 

results in a wide diversity of attached devices and corresponding differences in the 
needs for interacting with them. Since each device behaves differently, it would be 
time consuming to dwell on the detailed interconnections needed between the 
computer and each peripheral. We will, therefore, examine just three peripherals 
that appear in most computers. In addition, we present some of the common char­
acteristics found in the 1/0 subsystem of computers, as well as the various tech­
niques available for transferring data either in parallel, using many conducting 
paths, or serially, through communication lines. 

12-2 SAMPLE PERIPHERALS 

Devices that the CPU controls directly are said to be connected online. These 
devices communicate directly with the CPU or transfer binary information into or 
out of the memory upon command from the CPU. Input or output devices 
attached to the computer online are called peripherals. In this section, we examine 
three peripheral devices: a keyboard, a hard drive, and a graphics display. We also 
use the keyboard as an example to illustrate 1/0 concepts in a later section. We 
introduce the hard drive both to motivate the need for direct memory access and 
to provide background for the role of the device in Chapter 13 as a component in a 
memory hierarchy. We include the graphics display to illustrate the very high 
potential transfer-rate requirements of contemporary applications. 

Keyboard 

The keyboard is among the simplest of the electromechanical devices attached to 
the typical computer. Since it is manually controlled, it has one of the slowest data 
rates of any peripheral. 

The keyboard consists of a collection of keys that can be depressed by the 
user. It is necessary to detect which of the keys have been depressed. To do this, a 
scan matrix that lies beneath the keys is used, as shown in Figure 12-1. This two­
dimensional matrix is conceptually similar to the matrix used in RAM. The matrix 
shown in the figure is 8 x 16, giving 128 intersections, so it can handle up to 128 keys. 
A decoder drives the X lines of the matrix, which are analogous to the word lines of 

a RAM. A multiplexer is attached to the Y lines of the matrix, which are analogous 
to the bit lines of a RAM. The decoder and the multiplexer are controlled by a 
microcontroller, a tiny computer that contains RAM, ROM, a timer, and simple 1/0 
interfaces. 

The microcontroller is programmed to periodically scan all intersections in 
the matrix by manipulating the control inputs of the decoder and multiplexer. If 
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D FIGUREU-1 
Keyboard Scan Matrix 
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the key is depressed at an intersection, a signal path is closed from an output of the 
X decoder to an input of the Y multiplexer. The existence of this path is sensed at 
an input to the microcontroller. The 7-bit control code applied to the decoder and 
multiplexer at the time identifies the key. To allow for "rollover" in typing, in which 
multiple keys are depressed before any of them is released, the microcontroller 
actually identifies the depressing and release of the keys. Whether a key is 
depressed or released, the control code at the time of the event is sensed and is 
translated by the microcontroller into a K-scan code. When a key is depressed, a 
make code is produced; when a key is released, a break code is produced. Thus, 
there are two codes for each key, one for when the key is depressed and one for 
when it is released. Note that the scanning of the entire keyboard occurs hundreds 
of times per second, so there is no danger of missing any depression or release of a 
key. 

After presenting a number of 1/0 interface concepts, we will revisit the key­
board to see what happens to the K-scan codes before they are finally translated to 
ASCII characters. 

Hard Drive 

The hard drive is the primary intermediate-speed, nonvolatile, writable storage 
medium for most computers. The typical hard drive stores information serially on a 
nonremovable disk, as shown in the upper right of the generic computer at the 
beginning of Chapter 1. Each platter is magnetizable on one or both surfaces. There 
are one or more read/write heads per recording surface. Each disk is divided into 
concentric tracks, as illustrated in Figure 12-2. The set of tracks that are at the same 
distance from the center of all disk surfaces is referred to as a cylinder. Each track 
is divided into sectors containing a fixed number of bytes. The number of bytes per 
sector typically ranges from 256 to 4K. The typical byte address includes the cylin­
der number, head number, sector number, and word offset within the sector. The 
addressing assumes that the number of sectors per track is fixed. In modern, high­
capacity drives, more sectors are included in the longer outer tracks than in the 
shorter inner tracks. In addition, a number of spare sectors are reserved to take the 



600 0 CHAPTER 12 I INPUT-OUTPUT AND COMMUNICATION 

D FIGURE 12-2 

Hard Disk Format 

Head positioning 

place of defective sectors. As a consequence of these design choices, the actual 
physical address of a sector on the drive is likely to be different from the address of 
the sector sent to the drive controller. The mapping from this address to the physi­
cal address is typically accomplished in the drive controller or drive electronics. 

To enable information to be accessed, the set of heads is mounted on an actu­
ator that can move the heads radially over the disks, as shown in the generic com­
puter drawing. The time required to move the heads from the current cylinder to 
the desired cylinder is called the seek time. The time required to rotate the disk 
from its current position to that having the desired sector under the heads is called 
the rotational delay. In addition, a certain amount of time is required by the drive 
controller to access and output information. This is the controller time. The time 
required to locate a word on the disk is the disk access time, which is the sum of the 
controller time, the seek time, and the rotational delay. Average values over all pos­
sibilities are used for these four parameters. Words may be transferred singly, but as 
we will see in Chapter 13, they are often accessed in blocks. The transfer rate for a 
block of words, once the block has been located, is the disk transfer rate, typically 
specified in megabytes/second (MB/s) . The transfer rate required by the CPU­
memory bus to transfer a sector from the drive is the number of bytes in the sector 
divided by the length of time taken to read a sector from the drive. The length of 
time required to read a sector is equal to the proportion of the cylinder occupied by 
the sector divided by the rotational speed of the disks. For example, with 63 sectors, 
512 B per sector, a rotational speed of 5400 rpm, and allowance for the gap between 
sectors, this time is about 0.15 ms, giving a transfer rate of 512/0.15 ms = 3.4 MB/s. 
The controller will store the information read from the sector in its memory. The 
sum of the disk access time and the disk transfer rate times the number of bytes per 
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sector gives an estimate of the time required to transfer the information in a sector 
to or from the hard drive. 

> EXAMPLE 12-1 Hard Drive Parameters 

This example presents parameters for an advanced desktop hard drive in 2006. The 
drive is 750 GB (with 750 G = 750 billion, not 750 X 230) . The drive has four disks 
and eight heads. There are 512 bytes per sector and nominally 63 sectors per track, 
16 read/write heads, and 16,383 cylinders. The rotational speed of the drive is 7200 
RPM and there is a 16 MB buffer in the drive. The rotational latency is 4.16 ms, 
average read seek time is < 8.5 ms, and the average write seek time is < 10 ms. The 
1/0 transfer rate is a maximum of 300 MB per second. • 

Liquid Crystal Display Screen 

The Liquid Crystal Display (LCD) screen is the primary interactive output device 
for both laptop and desktop computers. The display screen is defined in terms of 
picture elements called pixels. As this page is being written, it is displayed on a lap­
top with an LCD screen array of 1280 X 800 pixels. The color display has three sub­
pixels associated with each pixel on the screen. These subpixels correspond to the 
primary colors red, green, and blue (RGB). A drawing of one pixel for this LCD 
screen is shown in Figure 12-3(a) . The three subpixels are side-by side rectangles 
with a black mask filling the space between them. 

Initially, we examine the liquid crystal display technology by exploring a 
small square portion of a pixel shown in Figures 12-3(b) and 12-3(c) . In a tempera­
ture range around room temperature, liquid crystals used in LCDs are in a state 
between the usual solid and liquid states. In this state, they have crystal properties 
but are also are movable and can be bent, twisted, and so on. The specific liquid 
crystals used in LCDs, called nematic liquid crystals, have limitations on the move­
ments of the molecules. They can be moved in any direction, but can only rotate or 
wiggle in a single plane. In Figure 12-3(b) a one-molecule thick layer of liquid crys­
tals is illustrated. The molecules are elongated and rod shaped.The axis through 
the center of the molecules about which they can rotate is shown. The particular 
display illustrated uses twisted nematic (TN) liquid crystals. The liquid crystal mate­
rial is contained in a gap between two substrates (glass plates) that are sealed at 
the panel edges. Crystal properties are used to align the rod-shaped liquid crystal 
molecules. The inner surfaces of the substrates are coated and the coating is 
rubbed with a cloth to produce fine grooves. The direction of the rubbing and the 
resulting grooves fixes the orientation of the molecules in contact with the coating. 
In Figure 12-3(b ), the rear substrate coating has vertical grooves (as illustrated by 
the small area at its lower left, and the front substrate coating has horizontal 
grooves, as likewise illustrated. The liquid crystal molecules align with the grooves 
they contact on the two substrates. Due to the surrounding molecule structure, the 
molecules in between the contact layers form a helix with a twist of 90 degrees, as 
shown in Figure 12-3(b) . 
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To understand how the 1N crystal can be used in a display, we need to con­
sider liquid crystal optics, particularly in the presence of polarized light. In general, 
light waves vibrate in many planes perpendicular to their direction of propagation. 
Light passing through a filter called a linear polarizer emerges as waves that propa­
gate in a single plane that aligns with the axis of the polarizer. In Figure 12-3(b ), 
beginning at the back of the display, light waves that vibrate in various directions 
are produced by the backlight panel. The light passes through a linear polarizer 
with a vertical axis of polarization on the back of the rear substrate. All light emit­
ted from the polarizer has its waves vibrating in the direction of the polarization 
axis, i.e., vertically. The molecules at the rear of the liquid crystal are likewise ori­
ented vertically. Optically, a liquid crystal layer causes the plane of polarization of 
light to align with the orientation of its molecules around the axis of rotation. The 
liquid crystal helix rotates the plane of polarization by 90 degrees, so that the light 
emerging from the liquid crystal is now horizontal instead of vertical. These hori­
zontal waves align with axis of polarization of the front polarizer located on the 
front face of the front substrate and are able to pass through it. Thus, the light 
appears, although much dimmer than the original source, on the face of the display. 
In each subpixel area, the light has also been colored by passing through a color fil­
ter positioned beneath the grooved coating on the front substrate. 
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D FIGURE 12-4 
Liquid Crystal Subpixel Array 

The liquid crystal molecules can be rotated by an electric field produced by 
an applied voltage between electrodes deposited beneath the coatings on the 
two substrates. In turn, the rotated molecules rotate the plane of polarization of 
the light passing through the crystal. The total amount of rotation from the rear 
substrate to the front substrate depends on the value of the voltage applied. In 
Figure 12-3(c), the maximum voltage necessary has been applied to produce a 
full 90-degree rotation. At the upper substrate, the plane of polarization is verti­
cal, i.e., perpendicular to the axis of polarization of the polarizer, which is hori­
zontal. In this situation, none of the light waves will pass through the polarizer, 
giving a black pixel value. Assuming that the voltage applied to each subpixel is 
obtained from a 6-bit digital signal using a D-to-A converter, 64 voltage values 
are available to determine the brightness of the subpixel color. Since there are 
three subpixels per pixel, 26 x 3 = 218 = 262,144 different colors available for each 
pixel. 

In Figure 12-4, three pixels consisting of nine subpixels are shown with the 
necessary electronic circuitry within the LCD panel. Ignoring the liquid crystal 
sandwich for a moment, the remaining circuitry including the capacitance C, the 
transistor, the gate lines, and the data lines looks exactly like a DRAM using 
coincident selection via rows and columns. The differences are: (a) there is the 
liquid crystal subpixel connected across the storage capacitor C, (b) the input to 
the transistors is a discrete analog signal rather than a digital signal, and ( c) the 
entire circuit is constructed between the two glass substrates using thin film tech­
nology rather than a silicon substrate. The circuitry, is placed in a corner of each 
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pixel on the surface of the rear substrate facing the liquid crystal. The transistor, 
conductors and so on, are separated from the liquid crystal by coating layers 
including the final one with the fine grooves in it. 

In terms of operation, the circuitry behaves much like a DRAM. To write the 
lower row of elements, the voltage values to be applied are placed on Data Lines 
m, m + 1, m + 2, and so on, a high voltage is placed on Gate Line n + 3, and 0 volts 
is placed on all other Gate Lines. The voltage values are placed on the storage 
capacitor C and on the upper surface of the subpixel. For technical reasons, the 
applied voltages are inverted each time a row is written. When Gate Line 3 is 
returned to 0 volts, the transistor turns off and the voltage is stored on capacitance 
C. The rows of the LCD are successively written one at a time, with a full panel 
write taking less than a sixtieth of a second. 

The inputs to the Data Lines and Gate Lines are provided by the driver 
circuitry for the LCD panel. In addition, there is a display controller that may 
be combined with the driver circuitry. The display driver may be driven by digi­
tal inputs or analog RGB inputs as used for the older cathode ray tube display 
technology. 

1/0 Transfer Rates 

An indicated earlier, the three peripheral devices discussed in this section give a 
sense of the range of peak 1/0 transfer rates. The keyboard data transfer rate is less 
than 10 bytes/s. For the hard drive, while the drive controller is capturing the data 
arriving rapidly from the disc in the sector buffer, the transfer of data from the 
buffer to main memory is impossible. Thus, in the case in which the next sector is to 
be read immediately, all of the data from the sector buffer needs to be stored in 
main memory during the time the gap on the disc between the sectors passes under 
the disc head. For 63 sectors and a rotational speed of 5400 rpm, this time is about 
25 µs. Thus, the peak transfer rate required is 512 B/25 µs = 20 MB/s. For a 1280 X 

800 display with 256 colors, if a screen is to be changed entirely every sixtieth of a 
second, 3 MB of data must be delivered to the video RAM from the CPU in that 
amount of time. This requires a data rate of 3 MB x 60 = 180 MB/s. Based on the 
preceding, we can conclude that the peak data rates required by the particular 
peripherals we have considered have a wide range. The bus system must be 
designed to handle the highest transfer rates between peripherals and memory. 

12-3 1/0 INTERFACES 

Peripherals connected to a computer need special communication links to interface 
them with the CPU. The purpose of these links is to resolve the differences in the 
properties of the CPU and memory and the properties of each peripheral. The 
major differences are as follows: 

1. Peripherals are often electromechanical devices whose manner of operation 
is different from that of the CPU and memory, which are electronic devices. 
Therefore, a conversion of signal values may be required. 
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2. The data-transfer rate of peripherals is usually different from the clock rate 
of the CPU. Consequently, a synchronization mechanism may be needed. 

3. Data codes and formats in peripherals differ from the word format in the 
CPU and memory. 

4. The operating modes of peripherals differ from each other, and each must be 
controlled in a way that does not disturb the operation of other peripherals 
connected to the CPU. 

To resolve these differences, computer systems include special hardware compo­
nents between the CPU and the peripherals to supervise and synchronize all input 
and output transfers. These components are called interj ace units, because they 
interface between the bus from the CPU and the peripheral device. In addition, 
each device has its own controller to supervise the operations of the particular 
mechanism of that peripheral. For example, the controller in a printer attached to a 
computer controls the motion of the paper, the timing of the printing, and the 
selection of the characters to be printed. 

1/0 Bus and Interface Unit 

A typical communication structure between the CPU and several peripherals is 
shown in Figure 12-5. Each peripheral has an interface unit associated with it . The 
common bus from the CPU is attached to all peripheral interfaces. To communicate 
with a particular device, the CPU places a device address on the address bus. Each 
interface attached to the common bus contains an address decoder that monitors the 
address lines. When the interface detects its own address, it activates the path between 
the bus lines and the device that it controls. All peripherals with addresses that do not 
correspond to the address on the bus ignore the bus activity. At the same time that the 
address is made available on the address bus, the CPU provides a function code on 
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the control lines. The selected interface responds to the function code and proceeds to 
execute it. If data must be transferred, the interface communicates with both the 
device and the CPU data bus to synchronize the transfer. 

In addition to communicating with the 1/0 devices, the CPU of a computer 
must communicate with the memory unit through an address and data bus. There 
are two ways that external computer buses communicate with memory and 1/0. 
One method uses common data, address, and control buses for both memory and 
1/0. We have referred to this configuration as memory-mapped UO. The common 
address space is shared between the interface units and memory words, each hav­
ing distinct addresses. Computers that adopt the memory-mapped scheme read 
and write from interface units as if they were assigned memory addresses by using 
the same instructions that read from and write to memory. 

The second alternative is to share a common address bus and data bus, but 
use different control lines for memory and 1/0. Such computers have separate read 
and write lines for memory and 1/0. To read or write from memory, the CPU acti­
vates the memory read or memory write control. To perform input to or output 
from an interface, the CPU activates the read I/O or write 1/0 control, using spe­
cial instructions. In this way, the addresses assigned to memory and 1/0 interface 
units are independent from each other and are distinguished by separate control 
lines. This method is referred to as the isolated UO configuration. 

Example of 1/0 Interface 

A typical 1/0 interface unit is shown in block diagram form in Figure 12-6. It con­
sists of two data registers called ports, a control register, a status register, a bidirec­
tional data bus, and timing and control circuits. The function of the interface is to 
translate the signals between the CPU buses and the 1/0 device and to provide the 
needed hardware to satisfy the two sets of timing constraints. 

The 1/0 data from the device can be transferred into either port A or port B. 
The interface may operate with an output device, with an input device, or with a 
device that requires both input and output. If the interface is connected to a 
printer, it will only output data; if it services a scanner, it will only input data. A 
hard drive transfers data in both directions, but not at the same time; so the inter­
face needs only one set of 1/0 bidirectional data lines. 

The control register receives control information from the CPU. By loading 
appropriate bits into this register, the interface and the device can be placed in a vari­
ety of operating modes. For example, a printer may be set in a mode that permits car­
tridges to be changed. The bits in the status register are used for status conditions and 
for recording errors that may occur during data transfer. For example, a status bit may 
indicate that port A has received a new data item from the device, while another bit in 
the status register may indicate that a parity error has occurred during the transfer. 

The interface registers communicate with the CPU through the bidirectional 
data bus. The address bus selects the interface unit through the chip select input 
and the two register select inputs. A circuit (usually a decoder or a gate) detects 
the address assigned to the interface registers. This circuit sets the chip select (CS) 
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input when the interface is selected by the address bus. The two register select 
inputs RSl and RSO are usually connected to the two least significant lines of the 
address bus. These two inputs select one of the four registers in the interface, as 
specified in the table accompanying the diagram in Figure 12-6. The contents of the 
selected register are transferred into the CPU via the data bus when the 1/0 read 
signal is set. The CPU transfers binary information into the selected register via the 
data bus when the 1/0 write input is set. 

The CPU, interface, and 1/0 device are likely to have different clocks that are 
not synchronized with each other. Thus, these units are said to be asynchronous 
with respect to each other. Asynchronous data transfer between two independent 
units requires that control signals be transmitted between the units to indicate the 
time at which data is being transmitted. In the case of CPU-to-interface communi­
cation, control signals must also indicate the time at which the address is valid. We 
will look at two methods for performing this timing: strobing, as it is called, and 
handshaking. Initially, we will consider generic cases in which no addresses are 
involved; subsequently, we will add addressing. The communicating units for the 
generic case will be referred to as the source unit and destination unit. 
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Strobing 

Data transfers using strobing are shown in Figure 12-7. The data bus between the 
two units is assumed to be made bidirectional by the use of three-state buffers. 

The transfer in Figure 12-7(a) is initiated by the destination unit. In the 
shaded area of the data signal, the data is invalid. Also, a change in Strobe at the 
tail of each arrow causes a change on the data bus at the head of the arrow. The 
destination unit changes Strobe from 0 to 1. When the value 1 on Strobe reaches 
the source unit, the unit responds by placing the data on the data bus. The destina­
tion unit expects the data to be available, at worst, a fixed amount of time after 
Strobe goes to 1. At that time, the destination unit captures the data in a register 
and changes Strobe from 1 to 0. In response to the 0 value on Strobe, the source 
unit removes the data from the bus. 

The transfer in Figure 12-7(b) is initiated by the source unit. In this case, the 
source unit places the data on the data bus. After a short time required for the data 
to settle on the bus, the source unit changes Strobe from 0 to 1. In response to Strobe 
equal to 1, the destination unit sets up the transfer to one of its registers. The source 
then changes Strobe from 1 to 0, which triggers the transfer into the register at the 
destination. Finally, after a short time required to ensure that the register transfer is 
done, the source removes the data from the data bus, completing the transfer. 
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Although simple, the strobe method of transferring data has several disad­
vantages. First, when the source unit initiates the transfer, there is no indication to 
it that the data was ever captured by the destination unit. It is possible, due to a 
hardware failure, that the destination unit did not receive the change in Strobe. 
Second, when the destination unit performs the transfer, there is no indication to 
it that the source has actually placed the data on the bus. Thus, the destination 
unit could be reading arbitrary values from the bus rather than actual data. 
Finally, the speeds at which the various units respond may vary. If there are multi­
ple units, the unit initiating a transfer must wait for the delay of the slowest of the 
attached communicating units before changing Strobe to 0. Thus, the time taken 
for every transfer is determined by the slowest unit with which a given unit ini­
tiates transfers. 

Handshaking 

The handshaking method uses two control signals to deal with the timing of trans­
fers. In addition to the signal from the unit initiating the transfer, there is a second 
control signal from the other unit involved in the transfer. 

The basic principle of a two-signal handshaking procedure for data transfer is 
as follows. One control line from the initiating unit is used to request a response 
from the other unit. The second control line from the other unit is used to reply to 
the initiating unit that the response is occurring. In this way, each unit informs the 
other of its status, and the result is an orderly transfer through the bus. 

Figure 12-8 shows data transfer procedures using handshaking. In Figure 12-8(a), 
the transfer is initiated by the destination unit. The two handshaking lines are called 
Request and Reply. In the initial state both Request and Reply are reset and in the 00 
state. Subsequent states are 10, 11, and 01. The destination unit initiates the transfer by 
enabling Request. The source unit responds by placing the data on the bus. After a 
short time for settling of the data on the bus, the source unit activates Reply, to signal 
the presence of the data. In response to Reply, the destination unit captures the data in 
a register and resets Request. The source unit then resets Reply, and the system goes 
to the initial state. The destination unit may not make another request until the source 
unit has shown its readiness to provide new data by disabling Reply. Figure 12-8(b) 
represents handshaking for the source-initiated transfer. In this case, the source con­
trols the interval between when the data is applied and when Request changes to 1 

and between when Request changes to 0 and when the data is removed. 
The handshaking scheme provides a high degree of flexibility and reliability, 

because the successful completion of a data transfer relies on active participation 
by both units. If one unit is faulty, the data transfer will not be completed. Such an 
error can be detected by means of a time-out mechanism, which produces an alarm 
if the data transfer is not completed within a predetermined time interval. The 
time-out is implemented by means of an internal clock that starts counting time 
when the unit sets one of its handshaking control signals. If the return handshake 
does not occur within a given period, the unit assumes that an error occurred. The 
time-out signal can be used to interrupt the CPU and execute a service routine that 
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takes appropriate error recovery action. Also, the timing is controlled by both 
units, not just the initiating unit. Within the time-out limits, the response of each 
unit to a change in the control signal of the other unit can take an arbitrary amount 
of time, and the transfer will still be successful. 

The examples of transfers in Figure 12-7 and Figure 12-8 represent transfers 
between an interface and an 1/0 device and between a CPU and an interface. In 
the latter case, however, an address will be necessary to select the interface with 
which the CPU wishes to communicate and a register within the interface. In 
order to ensure that the CPU addresses the correct interface, the address must 
have settled on the address bus before the Strobe or Request signal changes from 
0 to 1. Further, the address must remain stable until the change in the strobe or 
request from 1 to 0 has settled to 0 at the interface logic. If either of these condi­
tions is violated, another interface may be falsely activated, causing an incorrect 
data transfer. 
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The transfer of data between two units may be parallel or serial. In parallel data 
transfer, each bit of the message has its own path, and the entire message is trans­
mitted at one time. This means that an n-bit message is transmitted in parallel 
through n separate conductor paths. In serial data transmission, each bit in the 
message is sent in sequence, one at a time. This method requires the use of one or 
two signal lines. Parallel transmission is faster, because multiple signal lines oper­
ate in parallel. It is used for short distances and when speed is important. Serial 
transmission is slower, but less expensive, since it requires only one conductor. 
Serial connections are becoming increasingly important because of the ease of con­
necting smaller cables and because as data rates increase, signal skew from line-to­
line becomes more problematic. For the serial case there are just one or two sig­
nals, so that skew is less of a problem. 

One way that computers and terminals that are remote from each other are 
connected is via telephone lines. Since telephone lines were originally designed for 
voice communication, but computers communicate in terms of digital signals, some 
form of conversion is needed. The devices that do the conversion are called data 
sets or modems (modulator-demodulators). There are various modulation 
schemes, as well as several different grades of communication media and transmis­
sion speeds. Serial data can be transmitted between two points in three different 
modes: simplex, half duplex, or full duplex. A simplex line carries information in 
one direction only. This mode is seldom used in data communication, because the 
receiver cannot communicate with the transmitter to indicate whether errors have 
occurred. Examples of simplex transmission are radio and television broadcasting. 

A half-duplex transmission system is capable of transmitting in both direc­
tions, but in only one direction at a time. A pair of wires is needed for this mode. A 
common situation is for one modem to act as the transmitter and the other as the 
receiver. When transmission in one direction is completed, the roles of the modems 
are reversed to enable transmission in the opposite direction. The time required to 
switch a half-duplex line from one direction to the other is called the turnaround 
time. 

A full-duplex transmission system can send and receive data in both direc­
tions simultaneously. This can be achieved by means of a two-wire plus ground 
link, with a different wire dedicated to each direction of transmission. Alterna­
tively, a single-wire circuit can support full-duplex communication if the frequency 
spectrum is subdivided into two nonoverlapping frequency bands to create sepa­
rate receiving and transmitting channels in the same physical pair of wires. 

The serial transmission of data can be synchronous or asynchronous. In syn­
chronous transmission, the two units share a common clock frequency, and bits are 
transmitted continuously at that frequency. In long-distance serial transmission, the 
transmitter and receiver units are each driven by separate clocks of the same fre­
quency. Synchronization signals are transmitted periodically between the two units 
to keep their clock frequencies in step with each other. In asynchronous transmis­
sion, binary information is sent only when it is available, and the line remains idle 
when there is no information to be transmitted. This is in contrast to synchronous 
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transmission, in which bits must be transmitted continuously to keep the clock fre­
quencies in both units synchronized. 

Asynchronous Transmission A supplement containing the deleted subsec­
> tion on asynchronous transmission, a serial port protocol used less frequently in 

new designs, is available on the text Companion Website. 

Synchronous Transmission 

The modems employed in synchronous transmission have internal clocks that are 
set to the frequency at which bits are being transmitted. For proper operation, the 
clocks of the transmitter and receiver modems must remain synchronized at all 
times. The communication line, however, carries only the data bits, from which 
information on the clock frequency must be extracted. Frequency synchronization 
is achieved by the receiving modem from the signal transitions that occur in the 
data that is received. Any frequency shift that may occur between the transmitter 
and receiver clocks is continuously adjusted by maintaining the receiver clock at 
the frequency of the incoming bit stream. In this way, the same rate is maintained 
in both the transmitter and the receiver. 

Contrary to asynchronous transmission, in which each character can be sent 
separately, synchronous transmission must send a continuous message in order to 
maintain synchronism. The message consists of a group of bits that form a block of 
data. The entire block is transmitted with special control bits at the beginning and 
the end, in order to frame the block into one unit of information. 

The Keyboard Revisited 

To this point, we have covered the basic nature of the 1/0 interface and serial 
transmission. With these two concepts available, we are now ready to continue with 
the example of the keyboard and its interface, as shown in Figure 12-9. The K-scan 
code produced by the keyboard microcontroller is to be transferred serially from 
the keyboard through the keyboard cable to the keyboard controller in the com­
puter. In this case, however, a signal Keyboard clock is also sent through the cable. 
Thus, the transmission is synchronous with a transmitted clock signal, rather than 
asynchronous. These same signals are used to transmit control commands to the 
keyboard. In the keyboard controller, the microcontroller converts the K-scan 
code to a more standard scan code, which it then places in the Input register, at the 
same time sending an interrupt signal to the CPU indicating that a key has been 
pressed and a code is available. The interrupt-handling routine reads the scan code 
from the input register into a special area in memory. This area is manipulated by 
software stored in the Basic Input/Output System (BIOS) that can translate the 
scan code into an ASCII character code for use by applications. 

The Output register in the interface receives data from the CPU. The data 
can be passed on to control the keyboard-for example, setting the repetition rate 
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when a key is held down. The Control register is used for commands to the key­
board controller. Finally, the Status register reports specific information on the sta­
tus of the keyboard and the keyboard controller. 

An interesting aspect of keyboard 1/0 is its high complexity. It involves two 
microcontrollers executing different programs, plus the main processor executing 
BIOS software (i.e., three different computers executing three distinct programs). 

A Packet-Based Serial 1/0 Bus 

Serial 1/0, as described for the keyboard, uses a serial cable specifically dedicated 
to communicating between the computer and the keyboard. Whether parallel or 
serial, external 1/0 connections are typically dedicated. The use of these dedicated 
paths often requires that the computer case be opened and cards inserted with 
electronics and connectors specific to the particular 1/0 standard used for a given 
1/0 device. 

In contrast, packet-based serial 1/0 permits many different external 1/0 
devices to use a shared communication structure that is attached to the computer 
through just one or two connectors. The types of devices supported include key­
boards, mice, joysticks, printers, scanners, and speakers. The particular packet­
based serial 1/0 we will describe here is the Universal Serial Bus (USB), which is 
becoming commonplace as the connection approach of choice for slow-speed to 
medium-speed 1/0 devices. 

The interconnection of 1/0 devices by using USB is shown in Figure 12-10. 
The computer and attached devices can be classified as hubs, devices, or compound 
devices. A hub provides attachment points for USB devices and other hubs. A hub 
contains a USB interface for control and status handling and a repeater for trans­
ferring information through the hub. 

The computer contains a USB controller and the root hub. Additional hubs 
may be a part of the USB 1/0 structure. If a hub is combined with a device such as 
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the keyboard shown in Figure 12-10, then the keyboard is referred to as a com­
pound device. Aside from such compound devices, a USB device contains only one 
USB port to serve its function alone. The scanner is an example of a regular USB 
device. Without USB, the monitor, keyboard, mouse, joystick, microphone, speak­
ers, printer, and scanner shown would all have separate 1/0 connections directly on 
the computer. The monitor, printer, scanner, microphone, and speakers might all 
require special cards to be inserted, as discussed previously. With USB, only two 
connections are required. 

The USB cables contains four wires: ground, power, and two data lines (D+ 
and D-) used for differential signaling. The power wire is used to provide small 
amounts of power to devices such as keyboards so that they do not need their own 
power supplies. To provide immunity to signal variation and noise, Os and ls are 
transmitted by using the difference in voltage between D+ and D-. If the voltage 
on D+ exceeds the voltage on D- by 200 millivolts or more, then the logic value is 
a 1. If the voltage on D- exceeds the voltage on D+ by 200 millivolts or more, the 
logic value is a 0. Other voltage relationships between D+ and D- are used as spe­
cial signal states as well. 

The logic values used for signaling are not the actual logic values of the 
information being transmitted. Instead, a Non-Return-to-Zero Inverted (NRZI) 



12-4 I Serial Communication D 615 

0 0 1 1 0 0 0 1 1 0 1 1 1 0 

Data I .... __ _, LJ L 
NRZI 

D FIGURE 12-11 
Non-Return-to-Zero Inverted Data Representation 

SYNC PID 

SYNC 
Type 

8 bits 
4 bits 
1001 

Type 
SYNC 
8 bits 

4 bits 
1100 

Packet-specific data 

(a) General packet format 

I I 
I Check Device I Endpoint 
I 
I 4 bits address 1 address 
I 0110 7 bits I 4 bits 
I I 

(b) Output packet 

I 
I Check 
I Data 
I 4 bits 

(Up to 1024 bytes) I 0011 
I 

(c) Data packet (DataO type) 

Type I Check 
SYNC I 
8 bits 

4 bits I 4 bits EOP 
0100 I 1011 

I 

(d) Handshake packet (Acknowledge type) 

D FIGURE 12-12 
USB Packet Formats 

CRC I EOP I 

CRC EOP 

CRC EOP 

signaling convention is used. A zero in the data being transmitted is represented 
by a transition from 1 to 0 or 0 to 1 and a 1 is represented by a fixed value of 1 or 
0. The relationship between the data being transmitted and the NRZI representa­
tion is illustrated in Figure 12-11. As is typical for 1/0 devices, there is no common 
clock serving both the computer and the device. NRZI encoding of the data pro­
vides edges that can be used to maintain synchronization between the arriving 
data and the time at which each bit is sampled at the receiver. If there are a large 
number of ls in series in the data, there will be no transitions for some time in the 
NRZI encoding. To prevent loss of synchronization, a 0 is "stuffed" in before 
every seventh bit position in a string of ls prior to NRZI encoding so that no 
more than six ls appear in series. The receiver must be able to remove these extra 
zeros when converting NRZI data to normal data. 
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USB information is transmitted in packets. Each packet contains a specific 
set of fields, depending on the packet type. Logical strings of packets are used to 
compose USB transactions. For example, an output transaction consists of an Out 
packet followed by a Data packet and a Handshake packet. The Out packet comes 
from the USB controller in the computer and notifies the device that it is to receive 
data. The computer then sends the Data packet. If the Data packet is received 
without error, then the device responds with the Acknowledge Handshake packet. 
Next, we detail the information contained in each of these packets. 

Figure 12-12(a) shows a general format for USB packets and the formats for 
each of the three packets involved in an output transaction. Note that each packet 
begins with a synchronization pattern SYNC. This pattern is 00000001. Because of 
the sequence of zeros, the corresponding NRZI pattern contains seven edges, 
which provides a pattern to which the receiving clock can be synchronized. Since 
this pattern is preceded by a specific signal voltage state referred to as Idle, the pat­
tern also signals the beginning of a new packet. 

Following the SYNC, each packet format contains eight bits called the packet 
identifier (PID). In the PID, the packet type is specified by four bits, with an addi­
tional four bits that are complements of the first four to provide an error check on 
the type. A very large class of type errors will be detected by the repetition of the 
type as its complement. The type is optionally followed by information specific to the 
packet, which varies depending upon the packet type. Optionally, a CRC field 
appears next. The CRC pattern consisting of five or 16 bits is a Cyclic Redundancy 
Check pattern. This pattern is calculated at transmission of the packet from the 
packet-specific data. The same calculation is performed when the data is received. If 
the CRC pattern does not match the newly calculated pattern, then an error has 
been detected. In response to the error, the packet can be ignored and retransmitted. 
In the last field of the packet, an End of Packet (EOP) appears. This consists of D+ 
and D-, both low for two bit times, followed by the Idle state for a bit time. As its 
name indicates, this sequence of signal states identifies the end of the current packet. 
It should be noted that all fields are presented least significant bit first. 

Referring to Figure 12-12(b), for the Output packet, the Type and Check 
fields are followed by a Device Address, an Endpoint Address, and a CRC pattern. 
The Device Address consists of seven bits and defines the device that is to input 
data. The Endpoint Address consists of four bits and defines which port of the 
device is to receive the information in the Data packet to follow. For example, 
there may be a port for data and one for control on a given device. 

For the Data packet, the packet-specific data consists of 0 to 1024 data bytes. 
Due to the length of the packet, complex errors are more likely, so the CRC pat­
tern is increased in length to 16 bits to improve its error-detection capability. 

In the Handshake packet, the packet-specific data is empty. The response to 
the receipt of the data packet is carried by the PID. PID 01001011 is an Acknowl­
edge (ACK) indicating that the packet was received without any errors detected. 
Absence of any HANDSHAKE packet when one would normally appear is an 
indication of an error. PID 01011010 is a No Acknowledge, indicating that the tar­
get is temporarily unable to accept or return data. PID 01111000 is a Stall 
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(STALL) , indicating that the target is unable to complete the transfer and that 
software intervention is required to recover from the stall condition. 

The preceding concepts illustrate the general principles underlying a packet­
based serial 1/0 bus and are specific to USB. USB supports other packet types and 
many different kinds of transactions. In addition, the attachment and detachment 
of devices is sensed and can trigger various software reactions. In general, there is 
substantial software in the computer to support the details of the control and oper­
ation of the USB. 

12-5 MODES OF TRANSFER 

Binary information received from an external device is usually stored in memory 
for later processing. Information transferred from the central computer into an 
external device originates in the memory. The CPU merely executes the 1/0 
instructions and may accept the data temporarily, but the ultimate source or desti­
nation is the memory. Data transfer between the central computer and 1/0 devices 
may be handled in a variety of modes, some of which use the CPU as an interme­
diate path, while others transfer the data directly to and from the memory. Data 
transfer to and from peripherals may be handled in one of three possible modes: 

1. Data transfer under program control. 

2. Interrupt-initiated data transfer. 

3. Direct memory access transfer. 

Program-controlled operations are the result of 1/0 instructions written in 
the computer program. Each transfer of data is initiated by an instruction in the 
program. Usually, the transfer is to and from a CPU register and peripheral. Other 
instructions are needed to transfer the data to and from the CPU and memory. 
Transferring data under program control requires constant monitoring of the 
peripheral by the CPU. Once a data transfer is initiated, the CPU is required to 
monitor the interface to see when a transfer can again be made. It is up to the pro­
grammed instructions executed in the CPU to keep close tabs on everything that is 
taking place in the interface unit and the external device. 

In the program-controlled transfer, the CPU stays in a program loop called a 
busy-wait loop until the 1/0 unit indicates that it is ready for data transfer. This is a 
time-consuming process, since it keeps the processor busy needlessly. The loop can 
be avoided by using the interrupt facility and special commands to inform the 
interface to issue an interrupt request signal when the data is available from the 
device. This allows the CPU to proceed to execute another program. The interface, 
meanwhile, keeps monitoring the device. When the interface determines that the 
device is ready for data transfer, it generates an interrupt request to the computer. 
Upon detecting the external interrupt signal, the CPU momentarily stops the task 
it is performing, branches to a service program to process the data transfer, and 
then returns to the original task. This interrupt-initiated transfer is the type used 
for the keyboard controller shown in Figure 12-9. 
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Transferring of data under program control is performed through the 1/0 
bus and between the CPU and a peripheral interface unit. In direct memory 
access (DMA), the interface unit transfers data into and out of the memory unit 
through the memory bus. The CPU initiates the transfer by supplying the inter­
face with the starting address and the number of words needing to be transferred 
and then proceeds to execute other tasks. When the transfer is made, the inter­
face requests memory cycles through the memory bus. When the request is 
granted by the memory controller, the interface transfers the data directly into 
memory. The CPU merely delays memory operations to allow the direct memory 
1/0 transfer. Since the speed of a peripheral is usually slower than that of a pro­
cessor, 1/0 memory transfers are infrequent compared with processor access to 
memory. DMA transfer is discussed in more detail in Section 12-7. 

Many computers combine the interface logic with the requirements for DMA 
into one unit called an UO processor (IOP) . The IOP can handle many peripherals 
through a DMA-and-interrupt facility. In such a system, the computer is divided 
into three separate modules: the memory unit, the CPU, and the IOP. 

Example of Program-Controlled Transfer 

A simple example of data transfer from an 1/0 device through an interface into the 
CPU is shown in Figure 12-13. The device transfers bytes of data one at a time as 
they are available. When a byte is available, the device places it on the 1/0 bus and 
sets Ready. The interface accepts the byte into its data register and sets Acknowl­
edge. The interface sets a bit in the status register, which we will refer to as a flag. 
The device can now reset Ready, but it will not transfer another byte until 
Acknowledge is reset by the interface, according to the handshaking procedure 
established in Section 12-3. 

Under program control, the CPU must check the flag to determine whether 
there is a new byte in the interface data register. This is done by reading the con­
tents of the status register into a CPU register and checking the value of the flag. If 
the flag is equal to 1, the CPU reads the data from the data register. The flag is then 
cleared to 0 either by the CPU or the interface, depending on how the interface 
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circuits are designed. Once the flag is cleared, the interface resets Acknowledge, 
and the device can transfer the next data byte. 

A flowchart of a program written for the preceding transfer is shown in Fig­
ure 12-14. The flowchart assumes that the device is sending a sequence of bytes 
that must be stored in memory. The program continually examines the status of the 
interface until the flag is set to 1. Each byte is brought into the CPU and trans­
ferred to memory until all of the data have been transferred. 

The program-controlled data transfer is used only in systems that are dedi­
cated to monitor a device continuously. The difference in information transfer 
rate between the CPU and the 1/0 device makes this type of transfer inefficient. 
To see why, consider a typical computer that can execute the instructions to read 
the status register and check the flag in 100 ns. Assume that the input device trans­
fers its data at an average rate of 100 bytes/s. This is equivalent to one byte every 
10,000 µs, meaning that the CPU will check the flag 100,000 times between each 
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transfer. Thus, the CPU is wasting time checking the flag instead of doing a useful 
processing task. 

Interrupt-Initiated Transfer 

An alternative to having the CPU constantly monitor the flag is to let the interface 

inform the computer when it is ready to transfer data. This mode of transfer uses 

the interrupt facility. While the CPU is running a program, it does not check the 
flag. However, when the flag is set, the computer is momentarily interrupted from 

proceeding with the current program and is informed that the flag has been set. 

The CPU drops what it is doing to take care of the input or output transfer. After 

the transfer is completed, the computer returns to the previous program to con­

tinue what it was doing before the interrupt. The CPU responds to the interrupt 

signal by storing the return address from the program counter into a memory stack 

or register, and then control branches to a service routine that processes the 

required 1/0 transfer. The way that the processor chooses the branch address of 
the service routine varies from one unit to another. In principle, there are two 

methods for accomplishing this: vectored interrupt and nonvectored interrupt. In a 

nonvectored interrupt, the branch address is assigned to a fixed location in mem­

ory. In a vectored interrupt, the source that interrupts supplies the branch address 

to the computer. This information is called the vector address. In some computers, 

the vector address is the first address of the service routine; in other computers, the 

vector address is an address that points to a location in memory where the first 

address of the service routine is stored. The vectored interrupt procedure was pre­
sented in Section 12-9 in conjunction with Figure 12-9. 

12-6 PRIORITY INTERRUPT 

A typical computer has a number of 1/0 devices attached to it that are able to orig­
inate an interrupt request. The first task of the interrupt system is to identify the 
source of the interrupt. There is also the possibility that several sources will request 
service simultaneously. In this case, the system must decide which device to service 
first. 

A priority interrupt system establishes a priority over the various interrupt 

sources to determine which interrupt request to service first when two or more are 
pending simultaneously. The system may also determine which requests are per­

mitted to interrupt the computer while another interrupt is being serviced. Higher 

levels of priority are assigned to requests that, if delayed or interrupted, could have 

serious consequences. Devices with high-speed transfers such as hard drives are 

given high priority, and slow devices such as keyboards receive the lowest priority. 

When two devices interrupt the computer at the same time, the computer services 

the device with the higher priority first. 

Establishing the priority of simultaneous interrupts can be done by software 

or hardware. Software uses a polling procedure to identify the interrupt source of 
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highest priority. In this method, there is one common branch address for all inter­

rupts. The program at the branch address takes care of interrupts by polling the 

interrupt sources in sequence. The priority of each interrupt source determines the 

order in which it is polled. The source with the highest priority is tested first, and if 

its interrupt signal is on, control branches to a routine which services that source. 

Otherwise, the source with the next lower priority is tested, and so on. Thus, the 

initial service routine for all interrupts pending consists of a program that tests the 

interrupt sources in sequence and branches to one of many possible service rou­

tines. The particular service routine that is reached belongs to the highest-priority 

device among all devices that interrupted the computer. The disadvantage of the 

software method is that if there are many interrupts, the time required to poll all 
the sources can exceed the time available to service the 1/0 device. In this situa­

tion, a hardware priority interrupt unit can be used to speed up the operation of 

the system. 

A hardware priority interrupt unit functions as an overall manager in an 

interrupt system environment. The unit accepts interrupt requests from many 
sources, determines which request has the highest priority, and issues an interrupt 

request to the computer based on this determination. To speed up the operation, 

each interrupt source has its own interrupt vector address to access its own service 

routine directly. Thus, no polling is required, because all the decisions are made by 

the hardware priority interrupt unit. The hardware priority function can be estab­

lished either by a serial or parallel connection of interrupt lines. The serial connec­

tion is also known as the daisy chain method. 

Daisy Chain Priority 

The daisy chain method of establishing priority consists of a serial connection of all 

devices that request an interrupt. The device with the highest priority is placed in 

the first position, followed by devices of priority in descending order, down to the 

device with the lowest priority, which is placed last in the chain. This method of 

connection between three devices and the CPU is shown in Figure 12-15. Interrupt 
request lines from all devices are ORed to form the interrupt line to the CPU. If 

any device has its Interrupt request at 1, the interrupt line goes to 1 and enables 

the interrupt input of the CPU. When no interrupts are pending, the interrupt line 
stays at 0, and no interrupts are recognized by the CPU. The CPU responds to an 

interrupt request by enabling Interrupt acknowledge. The signal produced is 

received by device 0 at its PI (priority in) input. The signal then passes on to the 
next device through the PO (priority out) output only if device 0 is not requesting 

an interrupt. If device 0 has a pending interrupt, it blocks the acknowledge signal 

from the next device by placing a 0 on the PO output and proceeds to insert its 
own interrupt vector address (VAD) onto the data bus for the CPU to use during 

the interrupt cycle. 

A device with a 0 on its PI input generates a 0 on its PO output to inform the 
device with next lower priority that the acknowledge signal has been blocked. A 

device that is requesting an interrupt and has a 1 on its PI input will intercept the 



622 0 CHAPTER 12 I INPUT-OUTPUT AND COMMUNICATION 

CPU data bus 

� 

VADO VAD1 VAD2 

Device 0 Device 1 Device 2 

,----+- PI PO - PI PO PI PO 
_ To next 

device 

-

� 

Interrupt request 
CPU 

Interrupt acknowledge 

D FIGURE 12-15 
Daisy Chain Priority Interrupt 

acknowledge signal by placing a 0 on its PO output. If the device does not have 
pending interrupts, it transmits the acknowledge signal to the next device by plac­
ing a 1 on its PO output. Thus, the device with PI = 1 and PO = 0 is the one with 
the highest priority that is requesting an interrupt, and this device places its VAD 

on the data bus. The daisy chain arrangement gives the highest priority to the 
device that receives the Interrupt acknowledge signal from the CPU. The farther 
the device is from the first position, the lower is its priority. 

Figure 12-16 shows the internal logic that must be included within each 
device connected in the daisy chain scheme. The device sets its RF latch when it is 
about to interrupt the CPU. The output of the latch functionally enters the OR that 
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drives the interrupt line. If PI = 0, both PO and the enable line to VAD are equal 
to 0, irrespective of the value of RF. If PI= 1 and RF= 0, then PO= 1, the vector 
address is disabled, and the acknowledge signal passes to the next device through 
PO. The device is active when PI= 1 and RF= 1, which places a 0 on PO and 
enables the vector address onto the data bus. It is assumed that each device has its 
own distinct vector address. The RF latch is reset after a sufficient delay to ensure 
that the CPU has received the vector address. 

Parallel Priority Hardware 

The parallel priority interrupt method uses a register with bits set separately by the 
interrupt signal from each device. Priority is established according to the position 
of the bits in the register. In addition to the interrupt register, the circuit may 
include a mask register to control the status of each interrupt request. The mask 
register can be programmed to disable lower-priority interrupts while a higher-pri­
ority device is being serviced. It can also allow a high-priority device to interrupt 
the CPU while a lower-priority device is being serviced. 

The priority logic for a system with four interrupt sources is shown in 
Figure 12-17. The logic consists of an interrupt register with individual bits set 

by external conditions and cleared by program instructions. Interrupt input 3 
has the highest priority, input 0 the lowest. The mask register has the same 
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number of bits as the interrupt register. By means of program instructions, it is 

possible to set or reset any bit in the mask register. Each interrupt bit and its 

corresponding mask bit are applied to an AND gate to produce the four inputs 

to a priority encoder. In this way, an interrupt is recognized only if its corre­

sponding mask bit is set to 1 by the program. The priority encoder generates 

two bits of the vector address, which is transferred to the CPU via the data 

bus. Output V of the encoder is set to 1 if an interrupt request that is not 

masked has occurred. This provides the interrupt signal for the CPU. 

The priority encoder is a circuit that implements the priority function. The 

logic of the priority encoder is such that, if two or more inputs are 1 at the same 

time, the input having the highest priority takes precedence. The circuit of a 4-

input priority encoder can be found in Section 3-8, and its truth table is listed in 

Table 3-8. Input D3 has the highest priority, so, regardless of the values of other 

inputs, when this input is 1 the output is A1 A0 = 11. D2 has the next lower priority. 

The output is 10 if D2 = 1, provided that D3 = 0, regardless of the values of the 

other two lower-priority inputs. The output is 01 when D1 = 1, provided that the 

two higher-priority inputs are equal to 0, and so on down the priority levels. The 

interrupt output labeled Vis equal to 1 when one or more inputs are equal to 1. If 

all inputs are 0, Vis 0, and the other two outputs of the encoder are not used. This 

is because the vector address is not transferred to the CPU when V = 0. 

The output of the priority encoder is used to form part of the vector address 
of the interrupt source. The other bits of the vector address can be assigned any 
values. For example, the vector address can be found by appending six zeros to the 
outputs of the encoder. With this choice, the interrupt vectors for the four 1/0 

devices are assigned the 8-bit binary numbers equivalent to decimal 0, 1, 2, and 3. 

12-7 DIRECT MEMORY ACCESS 

The transfer of blocks of information between a fast storage device such as a hard 
drive and the CPU can preoccupy the CPU and permit little, if any, other process­
ing to be accomplished. Removing the CPU from the path and letting the periph­
eral device manage the memory buses directly relieves the CPU from many 1/0 

operations and allow it to proceed with other processing. In this transfer technique, 
called direct memory access (DMA), the DMA controller takes over the buses to 
manage the transfer directly between the 1/0 device and memory. As a conse­
quence, the CPU is temporarily deprived of access to memory and control of the 
memory buses. 

DMA may capture the buses in a number of ways. One common method 
extensively used in microprocessors is to disable the buses through special control 
signals. Figure 12-18 shows two control signals in a CPU that facilitate the DMA 
transfer. The bus request (BR) input is used by the DMA controller to request the 
CPU to relinquish control of the buses. When BR input is active, the CPU places 
the address bus, the data bus, and the read and write lines into a high-impedance 
state. After this is done, the CPU activates the bus granted (BG) output to inform 
the external DMA that it can take control of the buses. As long as the BG line is 
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active, the CPU is unable to proceed with any operations requiring access to the 
buses. When the bus request input is reset by the DMA, the CPU returns to its nor­
mal operation, resets the BG output, and takes control of the buses. 

When the BG line is set, the external DMA controller takes control of the 
bus system in order to communicate directly with memory. The transfer can be 
made for an entire block of memory words, suspending operation of the CPU until 
the entire block is transferred, a process referred to as burst transfer. Or the trans­
fer can be made one word at a time between executions of CPU instructions, a pro­
cess called single-cycle trans/ er or cycle stealing. The CPU merely delays its bus 
operations for one memory cycle to allow the direct memory-1/0 transfer to steal 
one memory cycle. 

DMA Controller 

The DMA controller needs the usual circuits of an interface to communicate with 
the CPU and the 1/0 device. In addition, it needs an address register, a word-count 
register, and a set of address lines. The address register and address lines are used 
for direct communication with memory. The word-count register specifies the num­
ber of words that must be transferred. The data transfer may be done directly 
between the device and memory under control of the DMA. 

Figure 12-19 shows the block diagram of a typical DMA controller. The unit 
communicates with the CPU via the data bus and control lines. The registers in the 
DMA are selected by the CPU through the address bus by enabling the DS (DMA 
select) and RS (register select) inputs. The RD (read) and WR (write) inputs are 
bidirectional. When the BG (bus granted) input is 0, the CPU can communicate 
with the DMA registers through the data bus to read from or write to those regis­
ters. When BG= 1, the CPU has relinquished the buses, and the DMA can com­
municate directly with memory by specifying an address on the address bus and 
activating the RD or WR control. The DMA communicates with the external 
peripheral through the DMA request and DMA acknowledge lines by a prescribed 
handshaking procedure. 

The DMA controller has three registers: an address register, a word-count 
register, and a control register. The address register contains an address to spec­
ify the desired location of a word in memory. The address bits go through bus 
buffers onto the address bus. The address register is incremented after each word 
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is transferred to memory. The word-count register holds the number of words to 
be transferred. This register is decremented by one after each word transfer and 
internally tested for zero. The control register specifies the mode of transfer. All 
registers in the DMA appear to the CPU as 1/0 interface registers. Thus, the 
CPU can read from or write to the DMA registers under program control via the 
data bus. 

After initialization by the CPU, the DMA starts and continues to transfer 
data between memory and the peripheral unit until an entire block is transferred. 
The initialization process is essentially a program consisting of 1/0 instructions that 
include the address for selecting particular DMA registers. The CPU initializes the 
DMA by sending the following information through the data bus: 

1. The starting address of the memory block in which data is available (for read-
ing) or data is to be stored (for writing) . 

2. The word count, which is the number of words in the memory block. 

3. A control bit to specify the mode of transfer, such as read or write. 

4. A control bit to start the DMA transfer. 

The starting address is stored in the address register, the word count in the word­
count register, and the control information in the control register. Once the DMA 
is initialized, the CPU stops communicating with it unless the CPU receives an 
interrupt signal or needs to check how many words have been transferred. 
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The position of the DMA controller among the other components in a computer 
system is illustrated in Figure 12-20. The CPU communicates with the DMA 

through the address and data buses, as with any interface unit. The DMA has its 
own address, which activates the DS and RS lines. The CPU initializes the DMA 

through the data bus. Once the DMA receives the start control bit, it can begin 
transferring data between the peripheral device and memory. When the peripheral 
device sends a DMA request, the DMA controller activates the BR line, informing 
the CPU that it is to relinquish the buses. The CPU responds with its BG line, 
informing the DMA that the buses are disabled. The DMA then puts the current 
value of its address register onto the address bus, initiates the RD or WR signal, 
and sends a DMA acknowledge to the peripheral device. 

When the peripheral device receives a DMA acknowledge, it puts a word on 
the data bus (for writing) or receives a word from the data bus (for reading) . Thus, 
the DMA controls the read or write operation and supplies the address for mem­
ory. The peripheral unit can then communicate with memory through the data bus 
for a direct transfer of data between the two units while the CPU access to the data 
bus is momentarily disabled. 

;: Interrupt 

BG CPU Memory 

- BR 

RD WR Address Data RD WR Address Data 
' 

Read control t � 

,, Write control 

'� 
Ir Address bus 

I � 

Address ' Data bus 

decoder ' 

w ' 

RD WR Address Data 

'-+- DS 

RS DMA request I/O 
DMA -

peripheral BR controller DMA acknowledge device 
;: BG 

-

Interrupt 

D FIGURE 12-20 
DMA Transfer in a Computer System 



628 0 CHAPTER 12 I INPUT-OUTPUT AND COMMUNICATION 

For each word that is transferred, the DMA increments its address register 
and decrements its word-count register. If the word count has not reached zero, the 
DMA checks the request line coming from the peripheral. In a high-speed device, 
the line will be activated as soon as the previous transfer is completed. A second 
transfer is then initiated, and the process continues until the entire block is trans­
ferred. If the speed of the peripheral is slower, the DMA request line may be acti­
vated somewhat later. In this case, the DMA resets the bus request line so that the 
CPU can continue to execute its program. When the peripheral requests a transfer, 
the DMA requests the buses again. 

If the word count reaches zero, the DMA stops any further transfer and 
removes its bus request. It also informs the CPU of the termination of the transfer 
by means of an interrupt. When the CPU responds to the interrupt, it reads the 
contents of the word-count register. A value of zero indicates that all the words 
were successfully transferred. The CPU can read the word-count register at any 
time, as well, to check the number of words already transferred. 

A DMA controller may have more than one channel. In this case, each chan­
nel has a request and acknowledge pair of control signals that are connected to 
separate peripheral devices. Each channel also has its own address register and 
word-count register so that channels with high priority are serviced before chan­
nels with lower priority. 

DMA transfer is very useful in many applications, including the fast transfer 
of information between hard drives and memory and between memory and 
graphic displays. 

12-8 CHAPTER SUMMARY 

In this chapter, we introduced 1/0 devices, typically called peripherals, and their 
associated digital support structures, including 1/0 buses, interfaces, and control­
lers. We studied the structure of a keyboard, a hard drive, and a graphics display. 
We looked at an example of a generic 1/0 interface and examined the interface 
and 1/0 controller for the keyboard. We introduced USB as an alternative solu­
tion to the attachment of many 1/0 devices. We considered timing problems 
between systems with different clocks and the parallel and serial transmission of 
information. 

We also looked at modes of transferring information and saw how the more 
complex modes came about, principally to relieve the CPU from extensive, per­
formance-robbing handling of 1/0 transfers. Interrupt-initiated transfers with 
multiple 1/0 interfaces lead to means of establishing priority between interrupt 
sources. Priority can be handled by software, serial daisy chain logic, or parallel 
interrupt-priority logic. Direct memory access accomplishes the transfer of data 
directly between an 1/0 interface and memory, with little CPU involvement. 
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PROBLEMS 

The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 
> a solution is available on the Companion Website for the text. 

12-1. *Find the formatted capacity of the hard drives described in the following 
table: 

Drive Heads Cylinders 

A 

B 

c 

1 

4 

16 

1023 

8191 

16383 

Sectors/ Bytes/ 
Track Sector 

63 

63 

63 

512 

512 

512 

12-2. Estimate the time required to transfer a block of 1 MB (220 B) from hard 
drive to memory given the following drive parameters: seek time, 8.5 ms; 
rotational delay, 4.17 ms; controller time, negligible; transfer rate, 150 MB/s. 

12-3. Find the number of pixels and subpixels for LCD screens with the following 
actual screen sizes: (a) 1280X1024, (b) 1600X1200, (c) 1680X1050, 
(d) 1920x1200. 

12-4. The addresses assigned to the four registers of the 1/0 interface of Figure 12-6 
are equal to hexadecimal CA, CB, CC, and CD. Show the external circuit that 
must be connected between an 8-bit 1/0 address from the CPU and the CS, 
RSO, and RS1 inputs of the interface. 

12-5. *How many 1/0 interface units of the type shown in Figure 12-6 can be 
addressed by using a 16-bit address, assuming 

(a) that each of the chip select (CS) lines is attached to a different address 
line? 

(b) that address bits are fully decoded to form the chip select inputs? 
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12-6. Interface units of the type shown in Figure 12-6 are connected to a CPU 
that uses an 1/0 address of eight bits. Each one of the six chip select (CS) 
inputs is connected to a different address line. Specifically, address line 0 is 
connected to the CS input of the first interface unit, and address line 4 is 
connected to the CS input of the sixth interface unit. Address lines 7 and 6 
are connected to the RSl and RSO inputs, respectively, of all six interface 
units. Determine the 8-bit address of each register in each interface (a total 
of 24 addresses). 

12-7. *A different type of 1/0 interface does not have the RSl and RSO inputs. Up 
to two registers can be addressed by using a separate 1/0 read signal and 
1/0 write signal for each address available. Assume that 25 percent of the 
registers at the interface with the CPU are read only, 25 percent of the 
registers are write only, and 50 percent of the registers are both read and 
write (bidirectional). How many registers can be addressed if the address 
contains eight bits? 

12-8. A commercial interface unit uses names different from those appearing in 
this text for the handshake lines associated with the transfer of data from 
the 1/0 device to the interface unit. The interface input handshake line is 
labeled STB (strobe), and the interface output handshake line is labeled 
IBP (input buffer full). A low-level signal on STB loads data from the 1/0 

bus into the interface data register. A high-level signal on IBP indicates 
that the data has been accepted by the interface. IBP goes low after an 1/0 

read signal from the CPU when it reads the contents of the data register. 
(a) Draw a block diagram showing the CPU, the interface, and the 1/0 

device, along with the pertinent interconnections between the three units. 
(b) Draw a timing diagram for the handshaking transfer. 

12-9. *Assume that the transfers with strobing shown in Figure 12-7 are between 
a CPU on the left and an 1/0 interface on the right. There is an address 
coming from the CPU for each of the transfers, both of which are initiated 
by the CPU. 

(a) Draw block diagrams showing the interconnections for the transfers. 

(b) Draw the timing diagrams for the two transfers, assuming that the 
address must be applied some time before the strobe becomes 1 and 
removed some time after the strobe becomes 0. 

12-10. Assume that the transfers with handshaking shown in Figure 12-8 are 
between a CPU on the left and an 1/0 interface on the right. There is an 
address coming from the CPU for each of the transfers, both of which are 
initiated by the CPU. 

(a) Draw block diagrams, showing that interconnections for the transfers. 

(b) Draw the timing diagrams, assuming that the address must be applied 
some time before the request becomes 1 and removed some time after 
the request becomes 0. 
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12-11. *Sketch the waveforms for the SYNC pattern used for USB and the 
corresponding NRZI waveform. Explain why the pattern selected is a good 
choice for achieving synchronization. 

12-12. The following stream of data is to be transmitted by USB: 
01111111001000000001101110000011 

(a) Assuming bit stuffing is not used, sketch the NRZI waveform. 
(b) Modify the stream by applying bit stuffing. 
(c) Sketch the NRZI waveform for the result in (b). 

12-13. *The 8-bit ASCII word "Bye" is to be transmitted to a device address 39 
and endpoint 2. List the Output and Data 0 packets and the Handshake 
packet for a Stall for this transmission prior to NRZI encoding. 

12-14. Repeat Problem 12-13 for the word "Hlo" and a Handshake packet of type 
No Acknowledge. 

12-15. What is the basic advantage of using interrupt-initiated data transfer over 
transfer under program control without an interrupt? 

12-16. *What happens in the daisy chain priority interrupt shown in Figure 12-15 
when device 0 requests an interrupt after device 2 has sent an interrupt 
request to the CPU, but before the CPU responds with the interrupt 
acknowledge? 

12-17. Consider a computer without priority interrupt hardware. Any one of 
many sources can interrupt the computer, and any interrupt request 
results in storing the return address and branching to a common interrupt 
routine. Explain how a priority can be established in the interrupt service 
program. 

12-18. *What changes are needed in Figure 12-17 to make the four VAD values 
equal to the binary equivalent of 024, 025, 026, and 027? 

12-19. Repeat Problem 12-18 for VAD values 122, 123, 124, and 125. 

12-20. *Design parallel priority interrupt hardware for a system with six interrupt 
sources. 

12-21. A priority structure is to be designed that provides vector addresses. 
(a) Obtain the condensed truth table of a 16 X 4 priority encoder. 
(b) The four outputs w, x, y, z from the priority encoder are used to provide 

an 8-bit vector address in the form 10wxyz01. List the 16 addresses, 
starting from the one with the highest priority. 

12-22. *Why are the read and write control lines in a DMA controller 
bidirectional? Under what condition and for what purpose are they used as 
inputs? Under what condition and for what purpose are they used as 
outputs? 
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12-23. It is necessary to transfer 2048 words from a hard drive to a section of 
memory starting from address 4096. The transfer is by means of DMA, as 
shown in Figure 12-20. 
(a) Give the initial values that the CPU must transfer to the DMA 

controller. 
(b) Give the step-by-step account of the actions taken during the input of 

the first two words. 



MEMORY SYSTEMS 

I
n Chapter 8, we discussed basic RAM technology for implementing memory 
systems, including SRAMs and DRAMs. In the current chapter, we probe more 
deeply into what really constitutes a computer memory system. We begin with the 

premise that a fast, large memory is desirable and demonstrate that a straightforward 
implementation of such a memory for the typical computer is too costly and too slow. As 
a consequence, we study a more elegant solution in which most accesses to memory 
are fast (but some are slow) and the memory appears to be large. This solution employs 
two concepts: cache memory and virtual memory. A cache memory is a small, fast 
memory with special control hardware that permits it to handle a significant proportion 
of all accesses required by the CPU with an access time of the order of several CPU 
clock periods. Virtual memory, implemented in software and hardware, using an 
intermediate-sized main memory (typically, DRAM), gives the appearance of a large 
main memory with access time similar to the main memory for the vast majority of 
accesses. The actual storage medium for most of the code and data in the virtual 
memory is a hard drive. Because there is a progression of components in the memory 
system having larger and larger storage capability, but slower and slower access (one 
or more cache levels, main memory, and hard drive), the term memory hierarchy is 
applied. 

In the generic computer at the beginning of Chapter 1, a number of components are 
heavily involved in the memory hierarchy. Within the processor, there is the memory 
management unit (MMU), which is hardware provided to support virtual memory. Also 
in the processor, one or more internal caches appear. A larger cache often appears 
outside the processor. Of course, the RAM is involved, and due to the presence of 
virtual memory, the hard drive, the bus interface, and the drive controller all have a 
role as parts of the memory system. 

13-1 MEMORY HIERARCHY 

Figure 13-1 shows a generic block diagram for a memory hierarchy. The lowest level 
of the hierarchy is a small, fast memory called a cache. For the hierarchy to function 
well, a very large proportion of the CPU instruction and operand fetches are 
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expected to be from the cache. At the next level upward in the hierarchy is the main 
memory. The main memory serves directly most of the CPU instruction and operand 
fetches not satisfied by the cache. In addition, the cache fetches all of its data, some 
portion of which is passed on to the CPU, from the main memory. At the top level of 
the hierarchy is the hard drive, which is accessed only in the very infrequent cases in 
which a CPU instruction or operand fetch is not found in main memory. 

With this memory hierarchy, since the CPU fetches most of the instructions 
and operands from the cache, it "sees" a fast memory, most of the time. Occasion­
ally, when a word must come from main memory, a fetch takes somewhat longer. 
Very infrequently, when a word must be fetched from the hard drive, the fetch 
takes a very long time. In this last case, the CPU is likely to experience an interrupt 
that passes execution to a program which brings in a block of words from the hard 
drive. On balance, the situation is usually satisfactory, providing an average fetch 
time close to that of the cache. Moreover, the CPU sees a memory address space 
considerably larger than that of main memory. 

Keeping in mind this general notion of a memory hierarchy, we will proceed 
to consider an example that illustrates the potential power of such a hierarchy. 
However, there is one issue to be clarified first. In most instruction set architec­
tures, the smallest of the objects that are addressed is a byte rather than a word. 
For a given load or store operation, whether a byte or word is affected is typically 
determined by the opcode. Addressing to bytes brings with it some assumptions 
and hardware details that are important, but, if used up to this point in the text, 
would have unnecessarily complicated much of the material covered. Conse­
quently, for simplicity, we have assumed up to now that an addressed location con­
tains a word. By contrast, in this chapter we will assume that addresses are defined 
for bytes, to match current practice. Nevertheless, we will still assume that data is 
moved around outside of the CPU as words or sets of words, to avoid messy expla­
nations relating to the manipulation of bytes. This assumption simply hides some 
hardware details that would distract from the main focus of our discussion, but 
nevertheless must be handled by the hardware designer. To accomplish the simpli­
fication, if there are 2b bytes per word, we will ignore the last b bits of the address. 

CPU Cache Main 
memory 

D FIGURE 13-1 
Memory Hierarchy 

-
Hard 

-

drive 
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Since these bits are not needed to address a word, we show their values as Os. For 
the examples we will present, b is always equal to 2, so two Os are shown. 

In Section 11-3, the pipelined CPU had a memory address with 32 bits and 
was able to access an instruction and data, if necessary, in each of the 1-ns clock 
cycles. Also, we assumed that the instruction and the data were, in effect, fetched 
from two different memories. To support this assumption in this chapter, we will 
suppose initially that the memory is divided in half-one-half for instructions and 
one-half for data. Each half of the memory must have an access time of 1 ns. In 
addition, if we utilize all the bits in the 32-bit address, then the memory can contain 
up to 232 bytes, or 4 gigabytes (GB) , of information. So the goal is to have two 2-GB 
memories, each with an access time of 1 ns. 

Is such a memory realistic in terms of, say, 2006 computer technology? The 
typical memory is constructed of DRAM modules ranging in size from 256 MB to 
4 GB. The typical access time is about 10 ns. Thus, our two 2-GB memories would 
have an access time of somewhat more than 10 ns per word. This kind of memory is 
both too costly and too slow, operating at only one-tenth the desired speed. So our 
goal must be achieved another way, leading us to explore a memory hierarchy. 

We begin by assuming a hierarchy with two caches, one for instructions and 
one for data, as shown in Figure 13-2. The use of these two caches permits one 
instruction and one operand to be fetched, or one instruction to be fetched and one 
result to be stored, in a single clock cycle if the caches are fast enough. In terms of 
the generic computer, we assume that the caches are internal, so that they can 
operate at speeds comparable to that of the CPU. Thus, fetches from the instruc­
tion cache and fetches from and stores to the data cache can be accomplished in 
2 ns. Hence, most of the fetches and stores for the CPU are from or to these caches 
and will take 2 CPU clock cycles. Suppose, then, that we are satisfied with most­
say, 95 percent-of the memory accesses taking 2 ns. Suppose further that most of 
the remaining 5 percent of the memory accesses take 10 ns. Then the average 
access time is 

0.95 x 2 + 0.05 x 10 = 2.4 ns 

- - Instruction 
cache 

Main Hard 
CPU -- -

memory 
- -

disk 
- - Data 

cache 
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This means that, on 19 out of every 20 memory accesses, the CPU operates at full 
speed, while the CPU will have to wait for 10 clock cycles for 1 out of every 20 

memory accesses. This wait can be accomplished by stalling the CPU pipeline. 
Thus, we have accomplished our goal of "most" memory accesses taking 2 ns. But 
there is still the problem of the cost of the large memory. 

Now suppose that, in addition to infrequently accepting a wait for a word 
from main memory that will take more than 10 ns, we are also willing to accept a 
very infrequent wait for a hard disk access taking 13 ms = 1.3 x 107 ns. Suppose 
that we have data indicating that about 95 percent of the fetches will be from a 
cache and about 4.999995 percent of the fetches will be from main memory. With 
this information, we can estimate the average access time as 

0.95 X 2 + 0.04999995 X 10 + 5 X 10-8 
X 1.3 X 107 

= 3.05 ns 

Thus, the average access time is about 3 times the 1 ns CPU clock period, but is about 
one-third of the 10 ns access time for main memory, again with 19 out of 20 of the 
accesses taking place in 2 ns. So we have achieved an average access time of about 
3.05 ns for a memory structure with a capacity of 232 bytes, not far from the original 
goal. Further, the cost of this memory hierarchy is tens of times smaller than the 
large, fast memory approach. 

It therefore appears that the original goal of the appearance of a fast, large 
memory has been approached by the memory hierarchy at a reasonable cost. But 
along the way, we made some assumptions, namely, that 95 percent of the time the 
word desired would come from what we are now calling the cache and that 
99.999995 percent of the time the words would come from either cache or main 
memory, with the remainder from hard disk. In the rest of this chapter, we will 
explore why assumptions similar to these usually hold, and we will examine the 
hardware and associated software components needed to achieve the goals of the 
memory hierarchy. 

13-2 LOCALITY OF REFERENCE 

In the previous section, we indicated that the success of the memory hierarchy is 
based on assumptions that are critical to achieving the appearance of a large, fast 
memory. We now deal with the foundation for making these assumptions, which is 
called locality of reference. Here "reference" means reference to memory for access­
ing instructions and for reading or writing operands. The term "locality" refers to the 
relative times at which instructions and operands are accessed (temporal locality) and 
the relative locations at which they reside in main memory (spatial locality). 

Let us consider first the nature of the typical program. A program frequently 
contains many loops. In a loop, a sequence of instructions is executed many times 
before the program exits the loop and moves on to another loop or straight-line 
code not in a loop. In addition, loops are often nested in a hierarchy in which loops 
are contained in loops, and so on. Suppose we have a loop of eight instructions that 
is to be executed 100 times. Then for 800 executions, all instruction fetches will 
occur from just eight addresses in memory. Thus, each of the eight addresses is visited 
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100 times during the time the loop is executed. This is an example of temporal local­

ity in the sense that an address which is accessed is likely to be accessed many times 

in the near future. Also, it is likely that the addresses of the instructions will be in 

sequential order. Thus, if an address is accessed for an instruction, nearby addresses 

are going to be addressed during the execution of the loop. This is an example of 

spatial locality. 
In terms of accessing operands, similar temporal and spatial localities also 

occur. For example, in a computation on an array of numbers, there are multiple 

visits to the locations of many of the operands, giving temporal locality. Also, as the 

computation proceeds, when a particular address is accessed for a number, sequen­

tial addresses near it are likely to be accessed for other numbers in the array, giving 

spatial locality. 

From the prior discussion, we can conjecture that there is significant local­

ity of reference in computer programs. To verify this decisively, we need to study 

the patterns of execution of real programs. Such studies have demonstrated the 
presence of significant temporal and spatial locality of reference and play an 

important role in the design of caches and virtual memory systems. 

The next question to answer is: What is the relation of locality of reference to 

the memory hierarchy? To examine this issue, we consider again the instruction 

fetch within a loop and look at the relationship between the cache and main mem­

ory. Initially, we assume that instructions are present only in main memory and that 

the cache is empty. When the CPU fetches the first instruction in a loop, it obtains 

the instruction from main memory. But the instruction and a portion of its address 
called the address tag are also placed in the cache. What then happens for the next 

99 executions of this instruction? The answer is that the instruction can be fetched 

from the cache, which provides a much faster access. This is temporal locality at 

work: The instruction that was fetched once will tend to be used again and is now 

present in the cache for fast access. 

Additionally, when the CPU fetches the instruction from main memory, the 

cache fetches nearby instructions into its SRAM. Now suppose that the nearby 

instructions include the entire loop of eight instructions presented in our example. 
Then all of the instructions are in the cache. By bringing in such a block of instruc­

tions, the cache is able to exploit spatial locality: It takes advantage of the fact that 

the execution of the first instruction implies the execution of instructions with 

nearby addresses by making the latter instructions available for fast access. 

In our example, each of the instructions is fetched from main memory 

exactly once for the 100 executions of the loop. All other instruction fetches come 

from the cache. Thus, in this particular example, at least 99 percent of the instruc­

tions being executed are fetched from the cache, so that the rate of execution of 

instructions is governed almost completely by the cache access time and CPU 

speed, and very little by the main memory access time. Without temporal locality, 

many more accesses to main memory would occur, slowing down the system. 

A relationship similar to that between cache and the main memory can 
exist between main memory and the hard drive. Again, both temporal and spatial 
locality of reference are of interest, except this time on a much larger scale. Programs 
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and data are fetched from the hard drive, and data is written to the hard drive in 
blocks that range from kilowords to megawords. Ideally, once the code and initial 
data for a program reside in main memory, the hard drive need not be accessed 
except for storing final results of the program. But this can happen only if all of 
the code and data, including intermediate data used by the program, reside fully 
in main memory. If not, then it will be necessary to bring in code from the hard 
drive and to read and write data from and to the hard drive during program exe­
cution. Words are read from and written to the drive in blocks referred to as 
pages. If the movement of pages between main memory and hard drive is trans­
parent to the programmer, then it will appear as if main memory is large enough 
to hold the entire program and all of the data. Hence, this automated arrange­
ment is referred to as virtual memory. During the execution of the program, if an 
instruction to be executed is not in main memory, the CPU program flow is 
diverted to bring the page containing the instruction into main memory. Then the 
instruction can be read from main memory and executed. The details of this 
operation and the hardware and software actions required for it will be covered 
in Section 13-4. 

In summary, locality of reference is absolutely key to the success of the con­
cepts of cache memory and virtual memory. In the case of most programs, locality 
of reference is present to a fairly high degree. But occasionally, one does encounter 
a program that, for example, requires frequent access to a large body of data that 
cannot be accommodated in main memory. In such a case, the computer spends 
almost all of its time moving information between main memory and the hard 
drive and does little other computation. Emanation of continuous sounds from the 
hard drive as the heads move from track to track is a telltale sign of this phenome­
non, referred to as thrashing. 

13-3 CACHE MEMORY 

To illustrate the concept of cache memory, we assume a very small cache of eight 
32-bit words and a small main memory with 1 KB (256 words) , as shown in 
Figure 13-3. Both of these are too small to be realistic, but their size makes illus­
tration of the concepts easier. The cache address contains 3 bits, the memory 
address 10. Out of the 256 words in main memory, only 8 at a time may lie in the 
cache. In order for the CPU to address a word in the cache, there must be infor­
mation in the cache to identify the address of the word in main memory. Clearly, 
if we consider the example of the loop in the last section, we find it desirable to 
contain the entire loop within the cache, so that all of the instructions can be 
fetched from the cache while the program is executing most of the passes 
through the loop. The instructions in the loop lie in consecutive word addresses. 
Thus, it is desirable for the cache to have words from consecutive addresses in 
main memory present simultaneously. A simple way to facilitate this feature is to 
make bits 2 through 4 of the main memory address be the cache address. We 
refer to these bits as the index, as shown in Figure 13-3. Note that the data from 
address 0000001100 in main memory must be stored in cache address 011. The 
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upper 5 bits of the main memory address, called the tag, are stored in the cache 
along with the data. Continuing the example, we find that for main memory 
address 0000001100, the tag is 00000. The tag combined with the index (or cache 
address) and 00 byte field identify an address in main memory. 

Suppose that the CPU is to fetch an instruction from location 000001100 in 
main memory. This instruction may actually come from either the cache or main 
memory. The cache separates the tag 00000 from the cache address 011, internally 
fetches the tag and the stored word from location 011 in the cache memory, and 
compares the tag fetched with the tag portion of the address from the CPU. If the 
tag fetched is 00000, then the tags match, and the stored word fetched from cache 
memory is the desired instruction. Thus, the cache control places this word on the 
bus to the CPU, completing the fetch operation. This case in which the memory 
word is fetched from cache is called a cache hit. If the tag fetched from cache mem­
ory is not 00000, then there is a tag mismatch, and the cache control notifies main 
memory that it must provide the memory word, which is not available in the cache. 
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This situation is called a cache miss. For a cache to be effective, the slower fetches 
from main memory must be avoided as much as possible, making considerably 
more cache hits than cache misses necessary. 

When a cache miss occurs on a fetch, the word from main memory is not 
placed just on the bus for the CPU. The cache also captures the word and its tag 
and stores them for future access. In our example, the tag 00000 and the word from 
memory will be written in cache location 011 in anticipation of future accesses to 
the same memory address. The handling of writes to memory will be dealt with 
later in the chapter. 

Cache Mappings 

The example we just considered uses a particular association or mapping between 
the main memory address and the cache address; namely, the last three bits of the 
main memory word address are the cache address. Additionally, there is only one 
location in the cache for the 25 locations in main memory that have their last three 
bits in common. This mapping in Figure 13-3, in which only one specific location in 
the cache can contain the word from a particular main memory location, is called 
direct mapping. 

Direct mapping for a cache, however, does not always produce the most 
desirable situation. In our loop instruction fetch example, suppose that instructions 
and data are in the same cache and that data from location 1111101100 is fre­
quently used. Then when the instruction in 0000001100 is fetched, location 011 in 
the cache is likely to contain the data from 1111101100 and tag 11111. A cache miss 
occurs and causes tag 11111 to be replaced in the cache with tag 00000 and the data 
to be replaced with the instruction. But the next time the data is needed, another 
cache miss occurs, since the location in the cache is now occupied by the instruc­
tion. Throughout the execution of the loop, both instruction fetch and data fetch 
cause many cache misses, significantly slowing CPU processing. To solve this prob­
lem, we explore alternative cache mappings. 

In direct mapping, 25 addresses in main memory map to the single address in 
the cache that matches their last three bits. These locations are highlighted in gray 
in Figure 13-3 for index 001. As is illustrated, only one of the 25 addresses can 
have its word in cache address 001 at any time. In contrast, suppose that we let 
locations in main memory map into an arbitrary location in the cache. Then any 
location in memory can be mapped to any one of the eight addresses in the cache. 
This means that the tag will now be the full main memory word address. We 
examine the operation of such a cache having a fully associative mapping in 
Figure 13-4. Note that in this case there are two main memory addresses, 
0000010000 and 1111110000, with bits 2 through 4 equal to 100 among the cache 
tags. These two addresses cannot be present simultaneously in the direct-mapped 
cache, as they would both occupy the cache address 100. Thus, a succession of 
cache misses due to alternate fetching of an instruction and data with the same 
index is avoided here, since both can be in the cache. 
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(b) Cache mapping 

Fully Associative Cache 

Now suppose that the CPU is to fetch an instruction from location 0000010000 
in main memory. This instruction may actually be returned from either the cache or 
main memory. Since the instruction might lie in the cache, the cache must compare 
00000100 to each of its eight tags. One way to do this is to successively read each tag 
and the associated word from the cache memory and compare the tag to 00000100. 
If a match occurs, as it will for the given address and cache location 000 in Figure 
13-4, a cache hit occurs. The cache control then places the word on the bus to the 
CPU, completing the fetch operation. If the tag fetched from the cache is not 
00000100, then there is a tag mismatch, and the cache control fetches the next suc­
cessive tag and word. In the worst case, a match on the tag in cache address 111, 
eight fetches from the cache are required before the cache hit occurs. At 2 ns a 
fetch, this requires at least 16 ns, about half the time it would take to obtain the 
instruction from main memory. So successive reads of tags and words from the 
cache memory to find a match is not a very desirable approach. Instead, a structure 
called associative memory implements the tag portion of the cache memory. 
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Figure 13-5 shows an associative memory for a cache with 4-bit tags. The 
mechanism for writing tags into the memory uses a conventional write. Likewise, 
the tags can be read from the memory using the conventional memory read. Thus, 
the associative memory can use the bit-slice model for RAM presented in 
Chapter 8. In addition, each tag storage row has match logic. The implementation 
of this logic and its connection to the RAM cells are shown in the figure. The 
match logic does an equality comparison or match between the tag T and the 
applied address A from the CPU. The match logic for each tag is composed of an 
exclusive-OR gate for each bit and a NOR gate that combines the outputs of the 
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exclusive-ORs. If all of the bits of the tag and the address match, then the outputs of 
all the exclusive-ORs are 0 and the NOR output is a 1, indicating a match. If there is 
a mismatch between any of the bits in the tag and the address, then at least one 
exclusive-OR has a 1 output, which causes the output of the NOR gate to be 0, indi­
cating a mismatch. 

Since all tags are unique, only two situations can arise in the associative mem­
ory: there will be a match, with a 1 on the output of the match logic for one match­
ing tag and a 0 on the remaining match logic outputs; or there will be no match, 
and all of the match logic outputs will be 0. With an associative memory holding 
the cache tags, the outputs of the match logic drive the word lines for the data 
memory words to be read. A signal must indicate whether a hit or a miss has 
occurred. If this signal is 1 for a hit and 0 for a miss, then it can be generated by 
using the OR of the match outputs. In the case of a hit, a 1 on Hit/miss places the 
word on the memory bus to the CPU; in the case of a miss, a 0 on Hit/miss tells the 
main memory that it is to provide the word addressed. 

As in the case of the direct-mapped cache discussed earlier, the fully associa­
tive cache must capture the data word and its address tag and store them for future 
accesses. But now a new problem arises: Where in the cache are the tag and data to 
be placed? In addition to selecting a cache mapping, the cache designer must select 
a replacement approach that determines the location in the cache to be used for 
the incoming tag and data. One possibility is to select a ra ndom repla cement loca­
tion. The 3-bit address can be read from a simple hardware structure that gener­
ates a number which satisfies certain properties of random numbers. A somewhat 
more thoughtful approach is to use a first-in, first-out (FIFO) location. In this case, 
the location selected for replacement is the one that has occupied the cache for the 
longest time, based on the notion that the use of this oldest entry is likely to be fin­
ished. An approach that appears to attack the replacement problem even more 
directly is the least recently used (LRU) location approach. The goal of this 
approach is to replace the entry that has been unused for the longest time-hence 
the least recently used entry. The reason is that a cache entry that has not been 
used for the longest time is least likely to be used in the future. Thus, it can be 
replaced by a new cache entry. Although the LRU approach yields better results 
for caches, the difference between it and the other approaches is not large, and full 
implementation is costly. As a consequence, if used at all, the LRU approach is 
often only approximated. 

There are also performance and cost issues surrounding the fully associative 
cache. Although such a cache provides maximum flexibility and good perfor­
mance, it is not clear that the cost is justified. In fact, an alternative mapping that 
has better performance and eliminates the cost of most of the matching logic is a 
compromise between a direct-mapped cache and a fully associative cache. For 
such a mapping, lower-order address bits act much as they do in direct mapping; 
however, for each combination of lower-order address bits, instead of having one 
location, there is a set of s locations. As with direct mapping, the tags and words 
are read from the cache memory locations addressed by the lower-order address 
bits. For example, if the set sizes equals two, then two tags and the two accompa­
nying data words are read simultaneously. The tags are then simultaneously 
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compared to the CPU-supplied address using just two matching logic structures. If 
one of the tags matches the address, then the associated word is returned to the 
CPU on the memory bus. If neither tag matches the address, then the two 0 match­
ing values are used to send a miss signal to the CPU and main memory. Since 
there are sets of locations, and associativity is used on sets, this technique is called 
set-associative mapping. Such a mapping with a set sizes is ans-way set-associative 
mappmg. 

Figure 13-6 shows a two-way set-associative cache. Eight cache locations are 

arranged in four rows of two locations each. The rows are addressed by a 2-bit 
index and contain tags made up of the remaining six bits of the main memory 
address. The cache entry for a main memory address must lie in a specific row of 

the cache, but can be in either of the two columns. In the figure, the addresses are 

the same as they are in the fully associative cache in Figure 13-4. Note that no 
mapping is shown for main memory address 1111100000, since the two cache cells 
in set 00 are already occupied by addresses 0000010000 and 1111110000. In order 

to accommodate 1111100000, the set size would need to be at least three. This 

example illustrates a case in which the reduced flexibility of a set-associative 
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cache, compared to a fully associative cache, has an impact. The impact declines as 

the set size increases. 
Figure 13-7 is a section of a hardware block diagram for the set-associative 

cache of Figure 13-6. The index is used to address each row of the cache memory. 

The two tags read from the tag memories are compared to the tag part of the 

address on the address bus from the CPU. If a match occurs, then the three-state 

buffer on the corresponding data memory output is activated, placing the data 

onto the data bus to the CPU. In addition, the match signal causes the output of 

the Hit/miss OR gate to become 1, indicating a hit. If a match does not occur, then 

Hit/miss is 0, informing the main memory that it must supply the word to the CPU 
and informing the CPU that the word will be delayed. 

Line Size 

To this point, we have assumed that each cache entry consists of a tag and a single 
memory word. In real caches, spatial locality is to be exploited, so additional words 
close to the one addressed are included in the cache entry. Then, rather than a sin­
gle word being fetched from main memory when a cache miss occurs, a block of l 
words called a line is fetched. The number of words in a line is a power of two, and 
the words are aligned on address boundaries. For example, if four words are 
included in a line, then the addresses of the words in the line differ only in bits 2 
and 3. The use of a block of words changes the makeup of the fields into which the 
cache divides the address. The new field structure is shown in Figure 13-S(a) . Bits 2 
and 3, the Word field, are used to address the word within the line. In this case, two 
bits are used, so there are four words per line. The next field, Index, identifies the 
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set. Here two bits are used, so there are four sets of tags and lines. The remainder 
of the address word is the Tag field, which contains the remaining four bits of the 
10-bit memory address. 

The resulting cache structure is shown in Figure 13-8(b ) . The tag memory has 
eight entries, two in each of the four sets. Corresponding to each of the tag entries 
is a line of four data words. To ensure fast operation, Index is applied to the tag 
memory to read two tags, one for each of the set entries, simultaneously. At the 
same time, Index and the Word address are applied to read out two words from the 
cache data memory that correspond to the two tags. Matching logic provided for 
each of the two set elements compares each tag to the CPU-supplied address. If a 
match occurs, then the associated cache data word already read is placed on the 
memory bus to the CPU. Otherwise, a cache miss is signaled, and the word 
addressed is returned from main memory to the CPU. The line containing the word 
and its tag is also loaded into the cache. To facilitate loading the entire line of 
words, the width of the memory bus between main memory and the cache, as well 
as the cache load path, is made more than one word wide. Ideally, for our example 
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the path is 4 x 32 = 128 bits wide. This allows the entire line to be placed in the 
cache in a single main memory read cycle. If the path is narrower, then a sequence 
of several reads from main memory is required. 

An additional decision that the cache designer has to make is to determine 
the line size. A wide path to memory can affect both cost and performance, and a 
narrower path can slow transfer of the line to the cache. These features encourage 
a smaller cache line size, while spatial locality of reference encourages a larger line. 
In current systems, however, use of synchronous DRAM facilitates reading or writ­
ing large cache lines without the cost and performance issues associated with wide 
path. The rapid writing to and reading from memory of consecutive words 
achieved by using synchronous DRAM matches well the needs for transferring 
cache lines. 

Cache Loading 

Before any words and tags have been loaded into the cache, all locations contain 
invalid information. If a hit occurs on the cache at this time, then the word fetched 
and sent to the CPU cannot have come from main memory and is invalid. As lines 
are fetched from main memory into the cache, cache entries become valid, but 
there is no way to distinguish valid from invalid entries. To deal with this problem, 
in addition to the tag, a bit is added to each cache entry. This valid bit indicates that 
the associated cache line is valid (1) or invalid (0). It is read out of the cache along 
with the tag. If the valid bit is 0, then a cache miss occurs, even if the tag matches 
the address from the CPU, requiring the addressed word to be taken from main 
memory. 

Write Methods 

We have focused so far on reading instructions and operands from the cache. What 
happens when a write occurs? Recall that, up to now, the words in a cache have 
been viewed simply as copies of words from main memory that are read from the 
cache to provide faster access. Now that we are considering writing results, this 
viewpoint changes somewhat. Following are three possible write actions from 
which we can select: 

1. Write the result into main memory. 

2. Write the result into the cache. 

3. Write the result into both main memory and the cache. 

Various realistic cache write methods employ one or more of these actions. Such 
methods fall into two main categories: write-through and write-back. 

In write-through, the result is always written to main memory. This uses the 
main memory write time and can slow down processing. The slowdown can be 
partially avoided by using write buffering, a technique in which the address and 
word to be written are stored in special registers called write buffers by the CPU 



648 0 CHAPTER 13 I MEMORY SYSTEMS 

so that it can continue processing during the write to main memory. In most cache 
designs, the result is also written into the cache if the word is present there-that 
is, if there is a cache hit. 

In the write-back method, also called copy-back, the CPU performs a write 
only to the cache in the case of a cache hit. If there is a miss, the CPU per­
forms a write to main memory. There are two possible design choices for when 
a cache miss occurs. One is to read the line containing the word to be written 
from main memory into the cache, with the new word written into both the 
cache and main memory. This is referred to as write-allocate. It is done with the 
hope that there will be additional writes to the same block which will result in 
write hits and thus avoid writes to main memory. The other choice on a write 
miss is simply to write to main memory. In what follows, we will assume that 
write-allocate is used. 

The goal of a write-back cache is to be able to write at the writing speed of 
the cache whenever there is a cache hit. This avoids having all writes performed at 
the slower writing speed of main memory. In addition, it reduces the number of 
accesses to main memory, making it more accessible to DMA, an 1/0 processor, or 
another CPU in the system. A disadvantage of write-back is that main memory 
entries corresponding to words in the cache that have been written are invalid. 
Unfortunately, this can cause a problem with respect to 1/0 processors or another 
CPU in the system accessing the same main memory, due to "stale" data in the 
memory. 

The implementation of the write-back concept requires a write-back opera­
tion from the cache location to be used to store a new line being brought from 
main memory on a read miss. If the location in the cache contains a word that has 
been written into, then the entire line from the cache must be written back into 
main memory in order to release the location for the new line. This write-back 
requires additional time whenever a read miss occurs. To avoid a write-back on 
every read miss, an additional bit is added to each cache entry. This bit, called the 
dirty bit, is a 1 if the line in the cache has been written and a 0 if it has not been 
written. Write-back must be performed only if the dirty bit is a 1. With write-allo­
cate used in a write-back cache, a write-back operation may also be required on a 
write miss. 

Many other issues affect the choice of cache design parameters, particularly 
in the case of caches in a system in which the main memory may be read or written 
by a device other than the CPU for which the cache is provided. 

Integration of Concepts 

We now put together the basic concepts we have examined to determine the 
block diagram for a 256 KB, two-way set-associative cache with write-through. 
The memory address shown in Figure 13-9(a) contains 32 bits using byte address­
ing with line size l = 16 bytes. The index contains 13 bits. Since four bits are used 
for addressing words and bytes, and 13 bits are used for the index, the tag con­
tains the remaining 15 bits of the 32-bit address. The cache contains 16,384 entries 



13-3 I Cache Memory D 649 

consisting of 213 = 8192 sets. Each cache entry contains 16 bytes of data, a 15-bit 
tag, and a valid bit. The replacement strategy is random replacement. 

Figure 13-9(b) gives the block diagram for the cache. There are two data 
memories and two tag memories, since the cache is two-way set associative. Each 
of these memories contains 213 = 8192 entries. Each entry in the data memory con­
sists of 16 bytes. Since 32-bit words are assumed, there are four words in each data 
memory entry. Thus, each of the data memories consists of four 8192 x 32 memo­
ries in parallel with the index as their common address. In order to read a single 
word from these four memories on a cache hit, a 4-to-1 selector using three-state 
memory outputs selects the word, based on the two bits in the Word field of the 
address. The two tag memories are 8192 x 15; in addition to them, a valid bit is 
associated with each cache entry. These bits are stored in an 8192 x 2 memory and 
read out during a cache access with the data and tags. Note that the path between 
the cache and main memory is 128 bits wide. This allows us to assume that an 
entire cache line can be read from main memory in a single main memory cycle. To 
understand the elements of the cache and how they work together, we will look at 
three possible cases of reading and writing. For each of these cases, we assume that 
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the address from the CPU is OF3F402416. This gives Tag = 0000111100111112 = 

079F16' Index= 10100000000102 = 140216' and Word= 012. 
First we assume a read hit-a read operation in which the data word lies in 

a cache entry, as in Figure 13-10. The cache uses the Index field to read out two 
tag entries from location 140216 in Tag memory 1 and Tag memory 0. The match 
logic compares the tags of the entries, and in this case we assume that Tag 0 
matches, causing Match 0 to be 1. This does not necessarily mean that we have a 
hit, since the cache entry may be invalid. Thus, the Valid 0 from location 140216 
bit is ANDed with Match 0. Also, the data can be placed on the CPU data bus 
only if the operation is a read. Thus, Read is ANDed with the Match 0 bit and 
the Valid 0 bit to form the control signal for three-state buffer 0. In this case, the 
control signal for the buffer 0 is 1. The data memories have used the Index field 
to read out eight words from location 140216 at the same times the tags were 
read. The Word field selects the two of the eight words with word= 012 to place 
on the data buses going into the three-state buffers 1 and 0. Finally, with three­
state buffer 0 turned on, the word addressed is placed on the CPU data bus. 
Also, the Hit/miss signal sends a 1 to the CPU and the main memory, notifying 
them of the hit. 

In the second case, also shown in Figure 13-10, we assume a read miss-a 
read operation in which the data word is not in a cache entry. As before, the Index 
field address reads out the tag and valid entries, two tag comparisons are made, 
and two valid bits are checked. For both entries, a miss has occurred and is signaled 
by Hit/miss at 0. This means that the word must be fetched from main memory. 
Accordingly, the cache control selects the cache entry to be replaced, and four 
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words read from main memory are applied simultaneously by the memory data bus 
to the cache inputs and are written into the cache entry. At the same time, the 4-to-
1 multiplexer selects the word addressed by the Word field and places it on the 
CPU data bus using the three-state buffer 3. 

In the third case in Figure 13-10, we assume a write operation. The word 
from the CPU is fanned out to appear in all four of the word positions of the 128-
bit memory data bus. The address to which the word is to be written is provided by 
the address bus to main memory for the write operation into the addressed word 
only. If the address causes a hit on the cache, the word addressed is also written 
into the cache. 

Instruction and Data Caches 

In most of the designs in previous chapters, we assumed that it was possible to 
fetch an instruction and to read an operand or write a result in the same clock 
cycle. To do this, however, we need a cache that can provide access to two distinct 
addresses in a single clock cycle. In response to this need, we discussed in a prior 
subsection an instruction cache and a data cache. In addition to easily providing 
multiple accesses per clock, the use of two caches permits caches that have differ­
ent design parameters. The design parameters for each cache can be selected to fit 
the different characteristics of access for fetching instructions or reading and writ­
ing data. Because the demands on each of these caches are typically less than those 
on a single cache, a simpler design can be used. For example, a single cache may 
require a four-way set-association structure, whereas an instruction cache needs 
only direct mapping, and a data cache may need only a two-way set-associative 
structure. 

In other instances, a single cache for both instructions and data may be used. 
Such a unified cache is typically as large as the instruction and data caches com­
bined. The unified cache allows cache entries to be shared by instructions and data 
freely. Thus, at one time more entries can be occupied by instructions, and at 
another time more entries can be occupied by data. This flexibility has the poten­
tial for increasing the number of cache hits. This higher hit rate may be misleading, 
however, since the unified cache supports only one access at a time, and separate 
caches support two simultaneous accesses as long as one is for instructions and one 
is for data. 

Multiple-Level Caches 

It is possible to extend the depth of the memory hierarchy by adding additional 
levels of cache. Two levels of cache, often referred to as Ll and L2, with Ll closest 
to the CPU, are often used. In order to satisfy the demand of the CPU for instruc­
tion and operands, a very fast Ll cache is needed. To achieve the necessary speed, 
the delay that occurs when crossing IC boundaries is intolerable. Thus, the Ll 
cache is placed in the processor IC together with the CPU and is referred to as the 
internal cache, as in the generic computer processor. If the area in the IC is limited, 
Ll cache is typically small and not fully adequate as the only cache. Thus, a larger 
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L2 cache is added outside the processor IC. If more space is available in the IC, 
then the L2 cache can also be an internal cache. 

The design of a two-level cache is more complex than that of a single-level 
cache. Two sets of parameters are specified. The Ll cache can be designed to spe­
cific CPU access needs including the possibility of separate instruction and data 
caches. Also, the constraint of external pins between the CPU and Ll cache is 
removed. In addition to permitting faster reads, the path between the CPU and the 
Ll cache can be quite wide, allowing, for example, multiple instructions to be 
fetched simultaneously. On the other hand, the L2 cache may occupy the typical 
external cache environment. It differs, however, from the typical external cache in 
that, rather than providing instructions and operands to a CPU, it primarily pro­
vides instructions and operands to the first-level cache Ll. Since the L2 cache is 
accessed only on Ll misses, the access pattern is considerably different than that 
for a CPU, and the design parameters are accordingly different. 

13-4 VIRTUAL MEMORY 

In our quest for a large, fast memory, we have achieved the appearance of a fast, 
medium-sized memory through the use of a cache. In order to have the appearance 
of a large memory, we now explore the relationship between main memory and 
hard drive. Because of the complexity of managing transfers between these two 
media, the control of such transfers involves the use of data structures and pro­
grams. Initially, we will discuss the most basic data structure used and the necessary 
hardware and software actions. Then we will deal with special hardware used to 
implement time-critical hardware actions. 

With respect to large memory, not only do we want the entire virtual address 
space to appear to be main memory, but in most cases we would also like this com­
plete space to appear to be available to each program that is executing. Thus, each 
program will "see" a memory the size of the virtual address space. Equally impor­
tant to the programmer is the fact that real address space in main memory and real 
drive addresses are replaced by a single address space that has no restrictions on its 
use. With this arrangement, virtual memory can be used not only to provide the 
appearance of large main memory, but also to free up the programmer from having 
to consider the actual locations of the program and data in main memory and on 
the hard drive. The job of the software and hardware that implement virtual mem­
ory is to map each virtual address for each program into a physical address in the 
main memory. In addition, with a virtual address space for each program, it is pos­
sible for a virtual address from one program and a virtual address from another 
program to map to the same physical address. This allows code and data to be 
shared by multiple programs, thereby reducing the size of the main memory space 
and drive space required. 

To permit the software to map virtual addresses to physical addresses, and to 
facilitate the transfer of information between main memory and hard drive, the vir­
tual address space is divided into blocks of addresses, typically of a fixed size. 
These blocks, called pages, are larger than, but analogous to, lines in a cache. The 
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physical address space in memory is divided into blocks called page frames that are 
the same size as the pages. When a page is present in the physical address space, it 
occupies a page frame. For purposes of illustration, we assume that a page consists 
of 4 KB (1K words of 32 bits) . Further, we assume that there are 32 address bits in 
the virtual address space. There are 220 pages, maximum, in the virtual address 
space, and assuming a main memory of 16 MB, there are 212 page frames in main 
memory. Figure 13-11 shows the fields of virtual and physical addresses. The por­
tion of the virtual address used to address words or bytes within a page is the page 
offset, which is the only part of the address that the virtual and physical addresses 
share. Note that words are assumed to be aligned in terms of their location with 
respect to their byte addresses such that each word address ends in binary 00. Like­
wise, pages are assumed to be aligned with respect to the byte addresses, such that 
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the page offset of the first byte in the page is 00016 and that of the last byte in the 
page is FFF16. The 20-bit portion of the virtual address used to select pages from 
the virtual address space is the virtual page number. The 12-bit portion of the phys­
ical address used to select pages in main memory is the page frame number. The 
figure shows a hypothetical mapping from the virtual address space into the physi­
cal address space. The virtual and physical page numbers are given in hexadecimal. 
A virtual page can be mapped to any physical page frame. Six mappings of pages 
from virtual memory to physical memory are shown. These pages constitute a total 
of 24 KB. Note that no virtual pages are mapped to physical page frames FFC and 
FFE. Thus, any data present in these pages is invalid. 

Page Tables 

In general, there may be a very large number of virtual pages, each of which must 
be mapped to either main memory or hard drive. The mappings are stored in a 
data structure called a page table. There are many ways to structure page tables 
and access them; we assume that page tables themselves are also kept in pages. 
Assuming that the representation of each mapping requires one word, 210, or 1K, 
mappings can be contained in a 4 KB page. Thus, the mappings for the entire 
address space for a program of 222 bytes (4 MB) can be contained in one 4 KB 
page. A special table for each program called a directory page provides the map­
pings used to locate the 4 KB program page tables. 

A sample format for a page table entry is given in Figure 13-12. Twelve bits 
are used for the page frame number in which the page is located in main mem­
ory. In addition, there are three single-bit fields: Valid, Dirty, and Used. If Valid 
is 1, then the page frame in memory is valid; if Valid is 0, the page frame in 
memory is invalid, meaning that it does not correspond to correct code or data. 
If Dirty is 1, then there has been a write to at least one byte in the page since it 
was placed in main memory. If Dirty is 0, there have been no writes to the page 
since it entered main memory. Note that the Valid and Dirty bits correspond 
exactly to those in a cache which uses write-back. When it is necessary for a page 
to be removed from main memory and the Dirty bit is 1, then the page is copied 
back to the hard drive. If the Dirty bit is 0, indicating that the page in main 
memory has not been written into, then the page coming into the same page 
frame is simply written over the present page. This can be done because the 
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drive version of the present page is still correct. In order to use this feature, the 
software keeps a record of the location of the page on the drive elsewhere when 
it places the page in main memory. The Used bit is a simple mechanism for 
implementing a crude approximation to an LRU replacement scheme. Some 
additional bit positions in a page entry may be reserved for flags used by the 
computer operating system. For example, a few flags might represent the read 
and write protection status of a page and whether the page can be accessed in 
user mode or supervisor mode. 

The page table structure we have just described is shown in Figure 13-13. 

The directory page pointer is a register that points to the location of the directory 
page in main memory. The directory page contains the locations of up to lK page 
tables associated with the program that is executing. These page tables may be in 
main memory or on the hard drive. The page table to be accessed is derived from 
the most significant ten bits of the virtual page number, which we call the direc­
tory offset. Assuming that the page table selected is in main memory, it can be 
accessed by the page table page number. The least significant ten bits of the virtual 
page number, which we call the page table offset, can be used to access the entry 
for the page to be accessed. If the page is in main memory, the page offset is used 
to locate the physical location of the byte or word to be accessed. If either the 
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page table or the desired page is not in main memory, it must first be fetched by 
software from the hard drive to main memory before the word within it is 
accessed. Note that combining the offsets with register or table entries is done by 
simply setting the offset to the right of the page frame number, rather than adding 
the two together. This approach requires no delay, whereas addition would cause 
significant delay. 

Translation Lookaside Buffer 

From the preceding discussion, we note that virtual memory has a considerable 

performance penalty even in the best case, when the directory, the page table, and 

the page to be accessed are in main memory. For our assumed page table 

approach, three successive accesses to main memory occur in order to fetch a sin­

gle operand or instruction: 

1. Access for the directory entry. 

2. Access for the page table entry. 

3. Access for the operand or instruction. 

Note that these accesses are performed automatically by hardware that is part of 

the MMU in the generic computer. Thus, to make virtual memory feasible, we 

need to drastically reduce accesses to main memory. If we have a cache, and if all 

of the entries are in the cache, then the time for each access is reduced. N everthe­

less, three accesses to the cache are needed. To reduce the number of accesses, we 

will employ yet another cache for the purpose of translating the virtual address 

directly into a physical address. This new cache is called a translation lookaside 
buffer (TLB) . It holds the locations of recently addressed pages to speed access to 

cache or main memory. Figure 13-14 gives an example of a TLB, which is typically 

fully associative or set associative, since it is necessary to compare the virtual page 

number from the CPU with a number of virtual page number tags. In addition to 

the latter, a cache entry includes the physical page number for those pages in main 

memory and a Valid bit. If the page is in main memory, the Dirty bit also appears. 

The Dirty bit serves the same function for a page in main memory as discussed pre­

viously for a line in a cache. 

We now briefly look at a memory access using the TLB in Figure 13-14. The 

virtual page number is applied to the page number input to the cache. Within the 

cache, this page number is compared simultaneously with all of the virtual page 

number tags. If a match occurs and the Valid bit is a 1, then a TLB hit has 

occurred, and the physical page frame number appears on the page number output 

of the cache. This operation can be performed very quickly and produces the phys­

ical address required to access memory or a cache. On the other hand, if there is a 

TLB miss, then it is necessary to access main memory for the directory table entry 

and the page table entry. If there is a physical page in main memory, then the page 

table entry is brought into the TLB cache and replaces one of the entries there. 

Overall, three memory accesses are required, including the one for the operand. If 
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D FIGURE 13-14 
Example of Translation Lookaside Buffer 

the physical page does not exist in main memory, then a page fault occurs. In this 

case, a software-implemented action fetches the page from its hard drive location 

to main memory. During the time required to complete this action, the CPU may 

execute a different program rather than waiting until the page has been placed in 

mammemory. 

Noting the prior hierarchy of actions based on the presentation of a virtual 
address, we see that the effectiveness of virtual memory depends on temporal and 

spatial locality. The fastest response is possible when the virtual page number is 
present in the TLB. If the hardware is fast enough and a hit also occurs on the 
cache, the operand can be available in as little as one or two CPU clock cycles. 

Such an event is likely to happen frequently if the same virtual pages tend to get 
accessed over time. Because of the size of the pages, if one operand is accessed 
from a page, then, due to spatial locality, it is likely that another operand will be 

accessed on the same page. With the limited capacity of the TLB, the next fastest 
action requires three accesses to main memory and slows processing considerably. 

In the worst of all situations, the page table and the page to be accessed are not in 
main memory. Then, lengthy transfers of two pages-the page table and the page 
from hard drive-are required. 
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Note that the basic hardware for implementing virtual memory, the TLB, and 
other optional features for memory access are included in the MMU in the generic 
computer. Among the other features is hardware support for an additional layer of 
virtual addressing called segmentation and for protection mechanisms to permit 
appropriate isolation and sharing of programs and data. 

Virtual Memory and Cache 

Although we have considered the cache and virtual memory separately, in an 
actual system they are both very likely to be present. In that case, the virtual 
address is converted to the physical address, and then the physical address is 
applied to the cache. Assuming that the TLB takes one clock cycle and the cache 
takes one clock cycle, in the best of cases fetching an instruction or operand 
requires two CPU clock cycles. As a consequence, in many pipelined CPU designs, 
two or more clock cycles are allowed for an operand fetch. Since instruction fetch 
addresses are more predictable, it is possible to modify the CPU pipeline and con­
sider the TLB and cache to be a two-stage pipeline segment, so that an instruction 
fetch appears to require only one clock cycle. 

13-5 CHAPTER SUMMARY 

In this chapter, we examined the components of a memory hierarchy. Two concepts 
fundamental to the hierarchy are cache memory and virtual memory. 

Based on the concept of locality of reference, a cache is a small, fast mem­
ory that holds the operands and instructions most likely to be used by the CPU. 
Typically, a cache gives the appearance of a memory the size of main memory 
with a speed close to that of the cache. A cache operates by matching the tag 
portion of the CPU address with the tag portions of the addresses of the data in 
the cache. If a match occurs and other specific conditions are satisfied, a cache 
hit occurs, and the data can be obtained from the cache. If a cache miss occurs, 
the data must be obtained from the slower main memory. The cache designer 
must determine the values of a number of parameters, including the mapping of 
main memory addresses to cache addresses, the selection of the line of the cache 
to be replaced when a new line is added, the size of the cache, the size of the 
cache line, and the method for performing memory writes. There may be more 
than one cache in a memory hierarchy, and instructions and data may have sepa­
rate caches. 

Virtual memory is used to give the appearance of a large memory-much 
larger than the main memory-at a speed that is, on average, close to that of the 
main memory. Most of the virtual address space is actually on the hard drive. To 
facilitate the movement of information between the memory and the hard drive, 
both are divided up in fixed-size address blocks called page frames and pages, 
respectively. When a page is placed in main memory, its virtual address must be 
translated to a physical address. The translation is done using one or more page 
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tables. In order to perform the translation on each memory access without a severe 
performance penalty, special hardware is employed. This hardware, called a transla­
tion lookaside buffer (TLB), is a special cache that is a part of the memory manage­
ment unit (MMU) of the computer. 

Together with main memory, the cache and the TLB give the illusion of a 
large, fast memory that is, in fact, a hierarchy of memories of different capacities, 
speeds, and technologies, with hardware and software performing automatic trans­
fers between levels. 
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PROBLEMS 

IWIWll 
The plus ( +) indicates a more advanced problem and the asterisk (*) indicates that 

� a solution is available on the Companion Website for the text. 

13-1. A CPU produces the following sequence of read addresses in hexadecimal: 
S4, S8, 104, SC, 108, 60, FO, 64, S4, S8, lOC, SC, 110, 60, FO, 64. 
Supposing that the cache is empty to begin with, and assuming an LRU 
replacement, determine whether each address produces a hit or a miss for 
each of the following caches: (a) direct mapped in Figure 13-3, (b) fully 
associative in Figure 13-4, and (c) two-way set associative in Figure 13-6. 

13-2. Repeat Problem 13-1 for the following sequence of read addresses: 
0, 4, 12, 8, 14, lC, lA, 28, 26, 2E, 36, 30, 3E 38, 46, 40, 4E, 48, S6, SO, SE, S8. 

13-3. *A computer has a 32-bit address and a direct-mapped cache. Addressing is 
to the byte level. The cache has a capacity of 1 KB and uses lines that are 
32 bytes. It uses write-through and so does not require a dirty bit. 
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(a) How many bits are in the index for the cache? 

(b) How many bits are in the tag for the cache? 

( c) What is the total number of bits of storage in the cache, including the 
valid bits, the tags, and the cache lines? 

13-4. A two-way set-associative cache in a system with 24-bit addresses has four 
4-byte words per line and a capacity of 1 MB. Addressing is to the byte 
level. 

(a) How many bits are there in the index and the tag? 

(b) Indicate the value of the index in hexadecimal for cache entries from 
the following main memory addresses in hexadecimal: F8COOF, 
14AC89, 48CFOFF and3ACF05. 

(c) Can all of the cache entries from part (b) be in the cache 
simultaneously? 

13-5. *Discuss the advantages and disadvantages of: 

(a) separate instruction and data caches versus a unified cache for both. 

(b) a write-back cache versus a write-through cache. 

13-6. Give an example of a sequence of program and data memory read 
addresses that will have a high hit rate for separate instruction and data 
caches and a low hit rate for a unified cache. Assume direct-mapped caches 
with the parameters in Figure 13-3. Both the instructions and data are 32-bit 
words, and the address resolution is to bytes. 

13-7. *Give an example of a sequence of program and data memory read 
addresses that will have a high hit rate for a unified cache and a low hit rate 
for separate instruction and data caches. Assume that each of the 
instruction and data caches is two-way set associative with parameters as in 
Figure 13-6. Assume that the unified cache is four-way set associative with 
parameters as in Figure 13-6. Both the instructions and the data are 32-bit 
words, and the address resolution is to bytes. 

13-8. Explain why write-allocate is typically not used in a write-through cache. 

13-9. A high-speed workstation has 64-bit words and 64-bit addresses with 
address resolution to the byte level. 

(a) How many words can be in the address space of the workstation? 

(b) Assuming a direct-mapped cache with 16K 32-byte lines, how many bits 
are in each of the following address fields for the cache: (1) Byte, 
(2) Index, and (3) Tag? 

13-10. *A cache memory has an access time from the CPU of 4 ns, and the main 
memory has an access time from the CPU of 40 ns. What is the effective 
access time for the cache-main memory hierarchy if the hit ratio is: (a) 0.91, 
(b) 0.82, and (c) 0.96? 

13-11. Redesign the cache in Figure 13-7 so that it is the same size, but is four-way 
set associative rather than two-way set associative. 
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13-12. +The cache in Figure 13-9 is to be redesigned to use write-back with write­
allocate rather than write-through. Respond to the following requests, 
making sure to deal with all of the address and data issues involved in the 
write-back operation. 

(a) Draw the new block diagram. 

(b) Explain the sequence of actions you propose for a write miss and for a 
read miss. 

13-13. *A virtual memory system uses 4 KB pages, 64-bit words, and a 48-bit 
virtual address. A particular program and its data require 4263 pages. 

(a) What is the minimum number of page tables required? 

(b) What is the minimum number of entries required in the directory page? 

(c) Based on your answers to (a) and (b ), how many entries are there in the 
last page table? 

13-14. A small TLB has the following entries for a virtual page number of length 
20 bits, a physical page number of 12 bits, and a page offset of 12 bits. 

Valid Dirty Tag Data 
Bit Bit (Virtual Page (Physical Page 

Number) Number) 

1 1 01AF4 FFF 

0 0 OE45F E03 

0 0 0123G 2F8 

1 0 01A37 788 

1 0 02BC4 48C 

0 1 03CAO 657 

The page numbers and offset are given in hexadecimal. For each virtual 
address listed, indicate whether a hit occurs, and if it does, give the 
physical address: (a) 02BB4A65, (b) OE45FB32, (c) OD34E9DC, and (d) 
03CA0788. 

13-15. A computer can accommodate a maximum of 384 MB of main memory. It 
has a 32-bit word and a 32-bit virtual address and uses 4 KB pages. The TLB 
contains only entries that include the Valid, Dirty, and Used bits, the virtual 
page number, and the physical page number. Assuming that the TLB is fully 
associative and has 32 entries, determine the following: 

(a) How many bits of associative memory are required for the TLB? 

(b) How many bits of SRAM are required for the TLB? 

13-16. Four programs are concurrently executing in a multitasking computer with 
virtual memory pages having 4 KB. Each page table entry is 32 bits. What is 
the minimum numbers of bytes of main memory occupied by the directory 
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pages and page tables for the four programs if the numbers of pages per 
program, in decimal, are as follows: 3124, 5670, 1205, and 2069? 

13-17. *In caches, we use both write-through and write-back as potential writing 
approaches. But for virtual memory, only an approach that resembles write­
back is used. Give a sound explanation of why this is so. 

13-18. Explain clearly why both the cache memory concept and the virtual 
memory concept would be ineffective if locality of reference of memory­
addressing patterns did not hold. 
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parallel counters, 361 

program counter (PC), 379, 
464,499 

ripple counter, 357-359 
synchronous binary counters, 

359-363 
CPU, See Central processing unit 

(CPU) 
Cycle stealing, 625 
Cylinder, hard drive, 599 

D 

D flip-flops, 336 

designing with, 240--243 
Daisy chain priority, 621--623 
Dash Watch (example), 380-388 

BCD counter, 387 
control state-machine diagram 

for, 385 
control-unit hardware design, 

387 
datapath block diagram, 

385-386 
datapath output actions and 

status generation with 
control and status signals, 
384 

inputs/outputs/registers of, 
381-382 

register requirements, 381 
state machine diagram for, 

382-383 
Data cache, 651 
Data forwarding, 568-569 

example of, 569 



Data hazard stall, 565 
Data selector, 133 
Data sets, 611 
Data speculation, 588-589 
Data transfer, 617-620 

busy-wait loop, 617 
direct memory access (DMA), 

618 
1/0 processor (IOP), 618 
nonvectored interrupt, 620 
program-controlled transfer, 

618--620 
vectored interrupt, 620 

Data-acquisition and control 
components, 598 

Data-forwarding execution 
diagram, 569 

Data-manipulation instructions, 
514,518-522,536 

arithmetic instructions, 
518-519,525 

bit clear instruction, 520 
bit-manipulation instructions, 

519-520 
ANDinstruction,519-520 
OR instruction, 520 
XOR instruction, 520 

logical instructions, 519-520 
mask, 520 
shift instructions, 520-522 

arithmetic shifts,521 
fields, 521-522 
logical shifts, 521 
multiple-field format for, 

521-522 
rotate instructions, 521 

Datapath, 335, 340, 378-379, 
444-447 

with control variables, 
458-459 

interaction between control 
unit and, 340 

microoperations for, 461-463 
pipelined, 544--549 
representation, 455-458 
register file, 456-457 
registers, 456-457 
timing,544--545 

Data-transfer instructions, 
514-518,536 

exchange instruction,515 
independent vs. memory-

mapped 1/0, 517-518 
input instruction,515,517 
load instruction,515 
move instruction,515 
output instruction, 515, 517 
pop instruction,515 
push instruction,515 

stack instructions,515-517 
stack pointer (SP), 516-517 
store instruction, 515 
typical instructions (table), 

515 
Decimal arithmetic functions, 172 
Decimal codes, 23-25 

binary-coded decimal (BCD), 
23-24 

n-bit binary code, 23 
unassigned bit combinations, 

23 
Decimal floating-point numbers, 

522 
Decimal number system, 13-14 
Decoder/demultiplexer, 125 
Decoders, 97, 121, 139 

decoder-based combinational 
circuits, 126-127 

and enabling combinations, 
124-125 

and OR-gate implementation 
of a binary adder bit 
(example), 126-127 

6-to-64-line decoder, 
123-124 

3-to-8-line decoder, 122-123 
2-to-4-line decoder, 122-123 

Decoding, 121-127 
Decomposition, 77 
Decrementers, 149 
Decrementing, 170 
Dedicated logic, of a register, 350 
Delay and timing, 295 
Delayed branch, 570 
Delta time, 179 
DeMorgan's laws, 302 
DeMorgan's theorem, 43-44, 47 
Demultiplexer, 125 
Design space, 295-304 

CMOS circuit technology, 
296-297 
CMOS transistor, 297-298 
technology parameters, 

302-304 
integrated circuits, 296 

Destructive read, 430 
Device under test (DUT), 175 
Die, integrated circuit, 297 
Digital circuits, 3 

defined,35 
Digital computers, 3, 6 

and binary code, 25 
Digital output devices, examples 

of, 8 
Digital signal, 4 
Digital signal processors, 7 
Digital systems: 

alphanumeric codes, 25-28 

arithmetic operations, 18-22 
decimal codes,23-25 
defined, 3-34 
Gray codes, 28-31 
information representation, 

4--13 
number systems, 13-18 

Digital-to-analog converters, 598 
Digits, 3 
Direct addressing mode, 508-509 
Direct mapped cache, 639 
Direct mapping, 640 
Direct memory access (DMA), 

591,618,624--628 
controller, 625-626 

and address register, 625 
block diagram of, 625-626 
position of, in a computer 

system, 627 
registers, 625--626 

defined, 624 
DMA acknowledge, 627 
transfer, 627-628 

channels, 628 
Direct reset (clear), 221 
Direct set (preset), 221 
Directory page, 654 
Dirty bit, 648 
Disable interrupt (DSI) instruction, 

534 
Discrete values, 4 
Disk transfer rate, 600--601 
Distributed refresh, 435 
Distribution, 125 
Divide-by-N counter, 363-364 
Division by constants, 172 
Division microoperations, 

345-347 
DMA acknowledge, 627 
Don't-care conditions: 

defined, 70 
simplification with, 70--72 

Double-data-rate synchronous 
DRAM (DDR SDRAM), 
435-436,439 

Drain, 297, 299 
DRAM bit-slice, 431-432 
DRAM cell, 429-430 

read and write operations for, 
430 

DRAM controller, 433 
functions of, 440 

DRAM integrated circuits, 
429-435 

arrays of, 440--441 
CAS-before-RAS refresh, 433 
destructive read, 430 
DRAM bit-slice, 431-432 
DRAM cell, 429-430 
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read and write operations 
for, 430 

hidden refresh, 433 
RAS-only refresh, 433 
refresh of DRAM contents, 

432-435 
restore, for destructive read, 

430 
write and read operation, 

timing for, 433-434 
Drive controller card, 12 
Dynamic indicator symbol, 220 
Dynamic input, 220 
Dynamic RAM (DRAM), 413, 

419, See also DRAM integrated 
circuits 

E 

burst reads, 435 
double-data-rate synchronous 

DRAM (DDR SDRAM), 
435-436,439 

DRAM controller, functions 
of, 440 

DRAM types,435-440 
error-correcting codes (ECC), 

435-436 
extended data output DRAM 

(EDO DRAM), 436 
fast page mode DRAM (FPM 

DRAM),436 
Rambus© DRAM (RDRAM), 

435-436,439-440 
synchronous DRAM 

(SDRAM), 435-438 

E2PROM,322 
Edge-triggered flip-flops, 215, 

218-219 
negative,219,221 
positive,218-219,221-222 
transition of the clock signal, 

218 
EEPROM, 322 
Effective address, 506 
Elaboration, 174 
Electrically erasable technology, 

320 
Element Interconnection Bus 

(EIB), 591 
Elimination, 78 
Embedded software: 

block diagram of, 7 
examples, 8-10 

Embedded systems, 7-8 
temperature measurement and 

display (example), 8-10 
ENABLE (EN), 119 
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Enable interrupt (ENI) instruction, 
534 

Enable-interrupt flip-flop (El), 
534-535 

Encoders, 97, 139 
defined, 127 
example, 127-128 
expansion, 13(}....131 
priority, 129-130 

Encoding, 127-130 
Engine control unit (ECU), 11 
EPROM, 322 
Equality comparator: 

defined, 104 
hierarchical diagram for, 105 

Equivalence, 86 
Equivalent states, 228 
Erasable technology, 320 
Error-correcting codes (ECC), 

435-436,441 
Espresso II algorithm, 72, 90 

ESSENTIAL_PRIMES 
routine, 73 

example, 74-76 
EXPAND routine, 72-73, 74, 

76 
IRREDUNDANT COVER 

routine, 73-74, 76 
LAST_GASP routine, 74, 76 
REDUCE routine, 73-74, 76 

Essential prime, 73 
Essential prime implicants, 65-67 

simplification via, 66-67 
Even parity, 28 
Exceptions,534,536 
Exchange instruction,515 
Exclusive-NOR gates, 35, 86, 90 
Exclusive-OR gates, 35, 84-88, 90 

combinational logic circuits, 
84-88 

odd function, 86--88 
Exclusive-OR microoperations, 

348 
Execute stage, 546 
Executing an instruction, 379, 464 
Explicit address, 500 
Exponents, 522 
Extended data output DRAM 

(EDO DRAM), 436 
External interrupts, 533 

example configuration, 535 
processing, 534-535 

Extraction, 77 

F 

Factoring, 77 
Fan-in, 302-303 
Fan-out, 302-303 

Fan-out points, 112 
Fast page mode DRAM (FPM 

DRAM),436 
Field-programmable gate arrays 

(FPGAs), 176, 319, 329 
Fields, 458, 458-459, 466, 498 

shift instructions, 521-522 
FL suffix, double-precision 

instruction mnemonic, 525 
Flags,499,576,618 
Flash memories, 320, 322 
Flattening, 78 
FlexRay, 11 
Flip-flop input equation 

determination, 231 
Flip-flop input equations, 223-224 
Flip-flops, 207, 210, 215-222, 

245-247,402 
combining latches to form, 

215-216 
construction of, 215 
direct inputs, 221-222 
edge-triggered, 215, 218-219 
JK and T flip-flops, 247-250 
master-slave, 215, 216--218 
modeling as asynchronous 

circuits, 310 
pulse-triggered, 218 
SR (or RS), 214 
tirning,306-307 

clock pulse width, 306 
hold time, 306 
propagation delay times, 

307 
setup time, 306 

trigger, 215 
Floating-point computations, 

522-527 
addition, 523-524 
arithmetic operations, 

523-524 
biased exponent, 524-525 
decimal floating-point 

numbers, 522 
division, 524 
exponents, 522 
fractions, 522-523 
mantissa, 522 
multiplication, 524 
normalized numbers, 523-525 
standard operand format, 

525-526 
subtraction,523-524 

Format, hard drive, 600 
Format effectors, ASCII, 26 
Formulation, 231 
4-to-1 multiplexer, 117 
4-bit equality comparator 

(example), 104-107 



4-variable function, multiplexer 
implementation of (example), 
138 

FPU (floating-point unit), 11, 335, 
443 

Fractions, 522-523 

FS suffix, single-precision 
instruction mnemonic, 525 

Full adder, 152-153 
maps for, 153 

truth table, 152 
Full-duplex transmission system, 

611 

Fully associative mapping, 
640-641,643 

performance and cost issues 
surrounding, 643--644 

tag and data placement, 643 
Functional blocks, 98, 149, 150 

combinational, 113-114 
defined,97 

G 

Gallium arsenide (GaAs), 297 
Game of PIG (example), 388-395 

control state machine diagram 
for, 393 

datapath and control registers 
for, 394 

datapath output actions and 
control and status signals 
for, 392 

defined,388 
inputs/outputs/registers of, 

389 
registers, 388-389 
state machine diagram for, 

391 
Gate, 297, 299 

Gate delay, 39 

Gate propagation delay, 304--306 
calculation of, based on fan­

out, 306 
components of, 305 
high-to-low propagation time, 

304 
inertial delay, 304--305 
low-to-high propagation time, 

304 
rejection time, 304--305 
transport delay, 304 

Gate-input cost, 55-56 

Gates, 90 
Gateway Design Automation, 174 

General-purpose digital computer, 
3 

Graphics adapter card, 12 

Graphics symbols, libraries of, 173 

Gray codes, 28-31, 57 
binary-reflected, 30 

Gray, Frank, 30 

H 

Half adder, 151-152 

logic diagram, 152 

truth table, 151 
Half-duplex transmission system, 

611 
Handshaking, 609--610 

asynchronous transfer using, 
610 

Hard drive, 599--601, 633--634 

access time, 600 
controller time, 600 
cylinder, 599 
defined,599 
disk transfer rate, 600--601 
format, 600 
parameters, 601 
read/write heads, 599 
rotational delay, 600 
sectors, 599-600 

tracks, 599 
Hardware description languages 

(HDLs), 173-176 

analysis, 174 

arithmetic functions and, 
149-206 

for combinational circuits, 
149 

compared to programming 
languages, 173 

device under test (DUT), 175 
elaboration, 174 

employing an HDL 
description as simulation 
input, 174 

initialization, 174 

logic synthesis, 175-176 
netlist, 173 
power of, 173-174 
register transfer language 

(RTL) level, 174 
simulation, 174 
structural description, 173 
testbench, 174--175 

Hardware priority interrupt unit, 
621 

HDLs, See Hardware description 
languages (HDLs) 

Hexadecimal number system, 
16-17,31 

Hexidecimal addition, 19-20 

Hidden refresh, 433 
Hierarchical design, 104-107 
Hierarchy, 104 

High-impedance outputs, 88-90 
Hold time, 306 

I 

IBM/Motorola (Freescale), 591 
Immediate mode, 507 
Immediate operand, 467 
Implicant of a function, 65 

Implied address, 500 
Implied mode, 507 
Incoming bit, 349 

Incompletely specified functions, 
70 

Incrementers, 149 
Incrementing, 169-170 

Independent 1/0 addressing, 
517-518 

Independent 1/0 system, 517 
Independent versus memory-

mapped 1/0, 517-518 
lndex,638--639 
Indexed addressing mode, 511 
Indirect address, 484 
Indirect addressing mode, 510 
Inertial delay, 304--305 
Information representation, 4--13 

bus interface hardware, 12 
connection path, 12 
CPU (central processing unit), 

11, 13 
digital computer, 6 
digital output devices, 

examples of, 8 
digital signal processors, 7 
drive controller card, 12 
embedded software, examples 

of, 8-10 
embedded systems, 7-8 

FPU (floating-point unit), 11 
graphics adapter card, 12 
input/output (1/0) bus, 12 
internal cache, 13 
keyboard, 12 
LCD (liquid crystal display) 

screen, 6, 12 

microcomputers, 7 
microcontrollers, 7 
MMU (memory management 

unit), 11-12 

processor, 11 
RAM (random-access 

memory), 11-12 
Information separators, ASCII, 26 
Initialization, 174 
lnput instruction,515,517 
Input-output (1/0), 597--632 

computer 1/0, 597-598 
data transfer, 617-620 
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busy-wait loop, 617 
direct memory access 

(DMA), 618 
1/0 processor (IOP), 618 
nonvectored interrupt, 620 
program-controlled 

transfer, 618--620 
vectored interrupt, 620 

direct memory access (DMA), 
624--628 

interfaces, 604-610 
asynchronous data transfer, 

607 
control register, 606 
handshaking,609--610 
interface registers, 606 
interface unit example, 

606-607 
interface units, 605, 

606-607 
1/0 bus and interface unit, 

605-606 
isolated 1/0 configuration, 

606 
register select inputs, 606 
strobing, 608--609 

memory-mapped 1/0, 606 
peripherals, 598-604 

hard drive, 599--601 
1/0 transfer rates, 604 
keyboard,598-599 
Liquid Crystal Display 

(LCD) screen, 601--604 
priority interrupt, 620--624 

daisy chain priority, 
621-623 

hardware priority interrupt 
unit, 621 

parallel priority interrupt 
hardware, 623-624 

simultaneous interrupts, 
establishing the priority 
of, 620-621 

software priority interrupt 
unit, 620--621 

serial communication, 
611--617 

Input/output (I/O) bus, 12 
Input-output (I/O) devices, 

597-598 
Instantiation, 107 
Institute of Electrical and 

Electronics Engineers (IEEE), 
174,222 

floating-point operand format, 
525 

Instruction cache, 651 
Instruction decoder, 472-474 

defined,472 
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diagram of, 473 
Instruction decoder logic, truth 

table for, 474 
Instruction execution, 482 
Instruction fetch, 482 
Instruction formats, 466-468 
Instruction level parallelism (ILP), 

589 
Instruction set, 465 
Instruction set architecture (ISA), 

443,444,464-465,497-541 
addressing modes, 506-513 
assembly language, 497 
complex instruction set 

computers (CISCs), 497, 
513 

computer architecture: 
concepts, 497-499 
implementation, 498 
organization, 498 

computer hardware, 498 
data-manipulation 

instructions, 514, 518-522, 
536 

data-transfer instructions, 
514--518,536 

defined,498 
fields, 498 
floating-point computations, 

522-527 
machine language, 497 
operand addressing, 499-513 
program control instructions, 

527-531,536 
program interrupt, 531-536 
reduced instruction set 

computers (RISCs), 497, 
513, 554--557 

Instruction specifications, 468-471 
Instructions,379,464-465 
Integrated circuits, 35, 296 

RAMs,419 
Intel Core 2 Duo microprocessor, 

590 
Interface unit example, 605, 

606-607 
Internal cache, 13, 651--652 
Internal interrupts, 533 
Internal logic, 324 
Interrupt acknowledge output 

INTACK, 534--535 
Interrupt vector address IV AD, 

534--535 
Inverter, 82 
1/0 processor (IOP), 618 
1/0 transfer rates, 604 
Irregular circuit, 106-107 
ISA, See Instruction set 

architecture (ISA) 

Isolated 1/0 configuration, 517, 
606 

Iterative arrays, 150 
Iterative combinational circuits, 

150 
Iterative logic array, 378 

J 

JK flip-flops, 247-250 
Johnson counter, 403 
Jumps and branches, 467 

K 

Karnaugh maps (K-maps), 35, 55, 
90 

4-variable maps, 58-59, 
63-65 

map manipulation, 65-72 
don't-care conditions, 

70--72 
essential prime implicants, 

65--67 
nonessential prime 

implicants, 67-68 
product-of-sums 

optimization,68-70 
map structures, 56-59 
3-variable maps, 58-59, 

61-63 
2-variable maps, 59-61 

Keyboard, 12, 612-613 
break code, 599 
K-scan code, 599 
make code, 599 
microcontroller, 598-599 
scan matrix, 598-599 

K-scan code, 599 

L 

L1 cache/L2 cache, 651 
Large-scale integrated (LSI) 

circuits, 114 
Large-scale integrated (LSI) 

devices, 296 
Last-in, first-out (LIFO) queue, 

502 
Latches, 207, 209, 210--214 

combining to form flip-flops, 
215-216 

D latch, 214 
modeling as asynchronous 

circuits, 310 
new state values, 215 
original state values, 215 
reset state, 211 
set state, 211 
SR latch, 211-214 



with control input, 213 
logic simulation of 

behavior, 212 
with NOR gates, 211 

SR latch, 211 

with NAND gates, 
212-213 

transparent, 215 
Latency time, 545 

LCD (liquid crystal display) 
screen, 6, 12, 601-604 

nematic liquid crystals, 601 

pixels, 601 
subpixel array,603-604 
twisted nematic (TN) liquid 

crystals, 601--602 
Least significant digit (lsd), 13-14 
Left shift by i bit positions with 

zero fill, 172 
Left-pointing arrow, in register­

transfer notation, 343 
Left-shift microoperations, 

349-350,402 
Letters, in register-transfer 

notation, 343 
Libraries of graphics symbols, 173 
Line, 435 
Line size, 645-64 7 
Linear polarizer, 602 

Liquid crystal display screen, See 

LCD (liquid crystal display) 
screen 

Literal cost, 55 
Literals, 45-46 
Little-endian, 341 
Load instruction, 515 
Loading the register, 336 
Load/store architecture, 476, 

503-504 
Local minimum, 73 
Locality of reference, 636-638 

address tag, 637 
and cache memory/virtual 

memory, 638 
relationship between main 

memory and the hard drive, 
637-638 

spatial locality, 636 
temporal locality, 636 

Logic, defined, 3 
Logic circuits, 3, 450-451 

Logic gates, 35-36, 38-39 
gate delay, 39 
timing diagram, 38-39 
transition regions, 38 

transitions, 38 
Logic microoperations, 345, 

347-349,402 
Logic simulator, 173 

Logic synthesis, 175-176 
tool, 174 

Logic synthesizers, 173 

Logical instructions, 519-520 
Lukasiewicz, Jan, 505 

M 

Nlachine language,497 
Nlacrofusion, 590 
Nlain memory, 634 

Nlake code, 599 
Nlantissa, 522 
Nlap manipulation, 65-72 

don't-care conditions, 70--72 
essential prime implicants, 

65-67 

nonessential prime implicants, 
67-68 

product-of-sums optimization, 
68-70 

Nlask, 520 
Nlask programming, 319 
Nlasking out, use of term, 348 
Nlaster, 216 
Nlaster-slave flip-flops, 215, 

216-218 

"ls catching" behavior of, 217 
logic simulation of, 216-217 

Nlaximum clock frequency, 308 

Nlaximum fan-out, 302, 303 
Nlaximum input-to-output delay, 

308 
Nlaxterms, 49-52, 90 

defined,50 
product of, 51 
for three variables, 50 

Nlealy model circuits, 226, 252 
mixed outputs, 228-229 

Nledium-scale integrated (NlSI) 
circuits, 107 

Nledium-scale integrated (NlSI) 
devices, 296 

Nlemory, 11,413-442 

access time, 417 
address, 414-415 
associative, 641-643 

block diagram of, 414-415 
cache,633,638-652 
coincident selection, 422-425 
control, 399 
defined,414 

DRAN£ integrated circuits, 
429-435 

dynamic RAN£ (DRAN£), 413, 
419 

nonvolatile, 419 
programmable read-only 

memory (PRON£), 321, 322 

properties of, 419 
RAN£ chips, 416, 420, 422, 

441 
random-access memory 

(RAN£), 11-12, 413-419, 
441 

read-only memory (RON£), 
295, 319, 322-323, 
413-414,441 

serial, 414 
size of, 415 

SRANl integrated circuits, 
419-425 

array of, 425-428 
static RAN£ (SRAN£), 413, 

419 

timing waveforms, 416-418 
virtual,633,638,652--658 
volatile, 419 

write cycle time, 417 
Nlemory address, 322 
Nlemory chip, control inputs to, 

417 

Nlemory circuits, 207 

Nlemory disambiguation, 590 
Nlemory Enable, 416-418 

Nlemory management unit 
(N£N£U), 11-12, 659 

Nlemory read operation, 414, 416 
Nlemory systems, 633-662 

cache,633--634 
cache memory, 633, 638-652 
hard drive, 633-634 

relationship between main 
memory and, 637-638 

locality of reference, 636-638 
main memory, 634 
memory hierarchy, 633-636 

example of, 636--637 
memory management unit 

(N£N£U), 633 
virtual memory, 633, 638, 

652-658 
and locality of reference, 

638 
Nlemory unit, capacity of, 414 
Nlemory write operation, 414, 416 
Nlemory-mapped 1/0, 517-518, 

606 
Nlemory-to-memory architecture, 

503 
Nletastability, 295, 311, 315-318 

Nlicrocomputers, 7 
Nlicrocontroller, keyboard, 

598-599 
Nlicrocontrollers, 7, 543 
Nlicroinstruction, 399 
Nlicrooperations, 335, 341, 

344-350,402 
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aritlunetic, 344, 345-347 

logic, 345, 347-349 

shift, 345, 349-350 

on a single register, 350--366 

arbitrary count sequence, 
365-366 

BCD counter, 364--365 
divide-by-N counter, 

363-364 

modulo-N counter, 
363-364 

multiplexer-based 
transfers, 350-353 

ripple counter, 357-359 
shift registers, 353-357 

synchronous binary 
counters, 359-363 

transfer, 344 

Microprogram, 399 

Microprogram sequencer, 400--401 

Microprogrammed control, 
399-401 

control unit organization, 
399-400 

for implementing legacy 
computer architectures, 
401 

microprogram sequencer, 
400--401 

next-address generator, 400 

Microprogramming, 341 

Minterms, 49-52, 90 

defined, 49 

properties of, 52 

sum of, 50 

sum-of-products form, 52-53 

for three variables, 49 

MMU, See Memory management 
unit (MMU) 

MMX extensions to Pentium 
instruction set (Intel), 591 

Mnemonic, 468 

Mode field, 498 

Modems, 598, 611 

Modulo-N counter, 363-364 

Moore model circuits, 226 

mixed outputs, 228-229 
Most significant digit (msd), 13-14 

Move instruction, 515 

Move memory block (MMB), 
585-586 

MTI ModelSim simulator, 247 

Multiple clock domains, 295 

Multiple registers, multiplexer and 
bus-based transfers for, 372 

Multiple-bit functions, 116-119 

Multiple-cycle computer: 

block diagram of, 4 79 
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control word format for, 
480--481 

Multiple-cycle hardwired control, 
478-489 

changes to the single-cycle 
computer, 471, 478-479 

control-word information for 
datapath, 480--481 

indirect address, 484 
instruction execution, 482 
instruction fetch, 482 
instruction register IR, 480 
multiple-cycle computer: 

block diagram of, 479 
control word format for, 

480--481 
partial state diagram, 

482-483, 486-487 
sequential control design, 

482-489 
state table specification, 

488-489 

unused opcode, 483 
Multiple-instruction-stream, 

multiple-data-stream (MIMD) 
microprocessors, 589-590 

Multiple-level caches, 651-652 
Multiple-level circuit optimization, 

76-81 
transformation for delay 

reduction, example of, 81 
Multiplexer-based combinational 

circuits, 136-138 
Multiplexer-based transfers, 

350--353 
Multiplexers, 97 

binary-adder bit: 
alternative multiplexer 

implementation of 
(example), 137-138 

multiplexer 
implementation of 
(example), 136 

defined, 131 
4-to-1-line quad multiplexer, 

134--135 

4-variable function, 
multiplexer 
implementation of 
(example), 138 

multiplexer-based 
combinational circuits, 
136-138 

security system sensor 
selection using (example), 
135-136 

selection for n sources, 
generalization of, 352-353 

selection using, 131-136 

64-to-1-line multiplexer 
(example), 133-134 

2-to-1-line multiplexer, truth 
table for, 131 

using to select between two 
registers, 351-352 

Multiplication by constants, 
170--172 

Multiplication microoperations, 
345-347 

N 

NAK (negative acknowledge) 
control character, 28 

NAND gate, 82-83, 85, 90 
N-channel transistor, 298-299 
Negation indicator, 82 

Negative-edge-triggered flip-flops, 
219, 221 

Netlist, 173 
Next-address generator, 400 
Noise margin, 302 
Nonessential prime implicants, 

67-68 
simplification via, 66-67 

Nonprogrammable system, 379 
Non-Return-to-Zero Inverted 

(NRZI) signaling convention, 
614-615 

Nonvectored interrupt, 620 
Nonvolatile memory, 419 
NOR gate, 82-83, 90 

Normalized numbers, 523-525 
Normally closed contact, 299 
Normally open contact, 299 
NOT gate, 81, 82-83 
NOT operation, 36 
n-to-m-line decoders, 121 

Number ranges, 17-18 
Number systems, 13-18, 31 

binary, 14--15 
conversion from binary to 

hexadecimal, 17 
conversion from octal or 

hexadecimal to binary, 17 
decimal, 13-14 
hexadecimal, 16-17 
number ranges, 17-18 
octal, 16-17 

Numerals, in register-transfer 
notation, 343 

0 

Octal multiplication, 20 
Octal number system, 16-17, 31 
Odd function, 86-88 
Odd parity, 28 



l s  caching, 249 
One-address instructions, 501-502 
Opcode field, 498 
Operand addressing, 499-513 

accumulator (ACC) register, 
501-502 

addressing architectures, 
503-506 

explicit address, 500 
implied address, 500 
load/store architecture, 

503-504 
memory-to-memory 

architecture, 503 
one-address instructions, 

501-502 
register-memory architecture, 

504 
register-to-register 

architecture, 503-504 
single-accumulator 

architecture, 504 
stack architecture, 504-505 
three-address instructions, 

500-501 

two-address instructions, 501 
zero-address instructions, 

502-503 
Operand fetch stage, 546 
Operation code (opcode), 466 
Optical shaft-angle encoder, 29 
Optimization,35, 138,231 
Optimization/technology mapping 

processes, output of, 176 
OR gates, 38-39, 81, 82-84 
OR instruction, 520 

OR microoperation (v), 347-348 
OR operation, 36-37, 90 
OR-AND-INVERT (OAI) gate, 85 
Outgoing bit, 349 
Output equation determination, 

231 
Output instruction, 515, 517 

p 

Packet identifier (PID), 616 
Packet-based serial 1/0 bus, 

613-617 
Page frame number, 654 
Page frames, 653 
Page offset, 653 
Page tables, 654-656 
Pages, 652-653 

PAL (programmable array logic) 
devices,295,319,321,327-329 

combinational circuit 
implementation with, 
328-329 

fliirflops in, 328 

gates, 328 

Parallel binary adder, 153-154 

Parallel counters, 361 
Parallel gating, 361 

Parallel priority interrupt 
hardware, 623-624 

Parentheses, in register-transfer 
notation, 343 

Parity bit, 26-28 

Partial state diagram, 482-483, 
486-487 

PC (personal computer), 3, 31 

P-channel transistor, 298-299 

Peripherals,598-604,628 

hard drive, 599-601 

1/0 transfer rates, 604 
keyboard,598-599 

Liquid Crystal Display (LCD) 
screen, 601-604 

Physical address, 652 

PIG, See Game of PIG (example) 
Pipeline, 545 

bubble in, 565 

emptying of, 549, 553 

stalled, 565 

Pipeline execution pattern 
diagram, 548-549 

Pipeline microoperations, 
execution of, 548-549 

Pipeline platforms, 546, 562 

Pipelined computer, 553 

block diagram of, 550 
Pipelined control, 549-553 

DOF (decode and operand 
fetch), 551 

instruction fetch stage, 
549-551 

pipeline programming and 
performance, 551-553 

Pipelined datapath, 544-549, 553 
block diagram of, 547 

car-wash analogy, 545-548 

execute stage, 546 

latency time, 545 

operand fetch stage, 546 
pipeline execution pattern 

diagram, 548-549 
pipeline microoperations, 

execution of, 548-549 

pipeline platforms, 546 
throughput, 546 

write-back stage (WB), 
547-548 

Pixels, 601 

PLAs (programmable logic 
arrays), 295, 319, 321, 323-327, 
482 

combinational circuit 
implementation using, 
325-327 

internal logic, 324 
programming,325 
size of, 325 

PLD (programmable logic device) 
technologies, 295, 319, 321 

Polish notation, 505 
Pop instruction, 515 
Port addresses, 517 
Ports, 517, 606 
Positive logic, 5 
Positive-edge-triggered flip-flops, 

218-219,221-222,357-358 
Postfix notation, 505 
Postponed output indicator, 220 
Power consumption (dissipation), 

302 
Power Processor Element (PPE), 

591 
Powers of two, 15 

Pragmatic two-level optimization, 
72-76 

Predefined rudimentary blocks, 
106 

Prefetching, 589 
Prime implicant: 

defined, 65 
simplifying a function using, 

66 
Primitive blocks, 106, 173 
Primitive gates, 82 
Priority encoder, 129-130 

maps for, 130 
truth table of, 129 

Priority interrupt, 620-624 
daisy chain priority, 621-623 
hardware priority interrupt 

unit, 621 
parallel priority interrupt 

hardware, 623-624 
simultaneous interrupts, 

establishing the priority of, 
620-621 

software priority interrupt 
unit, 620-621 

Procedure, 531 
Processor, 11 
Processor bus, 12 
Processor status register (PSR), 

499 
Product of maxterms, 51 
Product of sums,54,90 
Product terms, 49 
Product-of-sums optimization, 

68-70 
simplifying, 68-70 

Program, 3, 11 
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Program control instructions, 
527-531,536 

branch and jump instructions, 
527 

branch and link, 531 
branch to subroutine, 531 
call and return instructions, 

527 
call subroutine, 531 
calling procedure, 531 
compare instruction, 528 
conditional branch 

instructions, 528-530 
for signed number, 530 
for unsigned number, 529 

continuation point, 531 
jump to subroutine, 531 
procedure call, 530--531 
procedure,deftned,530 
return address, 531 
return instructions, 530--531 
subroutine,530--531 
test instruction, 528 

Program counter (PC), 379, 464, 
499 

Program interrupt, 531-536 
defined, 531-532 
exceptions, 534 
external interrupts, 533 

example configuration, 535 
processing, 534-535 

hardware procedure, 532-533 
internal interrupts, 533 
interrupt procedure compared 

to call procedure, 532 
software interrupt, 533-534 

Program-control instructions, 514 
Program-controlled transfer, 

618--620 
Programmable implementation 

technologies, 319-329 
PAL (programmable array 

logic devices, 319, 321, 
327-329 

PLAs (programmable logic 
arrays),319,321,323-327 

PLDs (programmable logic 
devices), 319, 321 

VLSI programmable logic 
devices, 319-322 

Programmable logic devices 
(PLDs), 413 

and value fixing, 116-117 
Programmable read-only memory 

(PROM), 321, 322 
Programmable systems, 379 
Programs, 464 
Propagation delay, 302 
Protection violation, 533 
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Pulse-triggered flip-flops, 218 
Push instruction, 515 

Q 

Quantization error, 8 

R 

Radix, 13, 31 
Radix point, 13, 31 
RAM, See Random-access 

memory (RAM) 
RAM bit slice, 419, 441 

model, 420--421 
RAM chips, 416, 420, 422, 441 
RAM systems, 413 
Rambus© DRAM (RD RAM), 

435-436,439-440 
Random-access memory (RAM), 

11-12,413-419,441 
dynamic RAM (DRAM), 413, 

419 
model, 420--421RAM bit 

slice,419,441 
RAM chips, 416, 420, 422 
static RAM (SRAM), 413, 

419 
RAS-only refresh, 433 
Read hit, 650 
Read miss, 650--651 
Read-after-write register file, 560 
Read-only memory (ROM), 295, 

319,322-323,413-414,441 
Read/write heads, hard drive, 599 
Rectangles, 60 
Reduced instruction set computers 

(RlSCs), 497, 513, 536, 
553-574 

addressing modes, 557 
Branch if Nonzero (BNZ) 

instruction, 555 
Branch if Zero (BZ) 

instruction, 555 
central processing units, 

543-596 
control hazards, 570--574 

branch prediction, 571-573 
branch-hazard stall, 571 
example, 571 

control organization, 560--563 
control unit, 561 
control words for 

instructions, 562 
instruction decoder, 

560--563 
CPU register set diagram for, 

554 
data hazards, 563-570 

bubble in pipeline, 565 
data forwarding, 568-569 
data hazard stall, 565-567 
example of, 564 
and memory access, 570 
no-operation (NOP) 

instructions,563-564 
remedy for, 563-564 

datapath organization, 
557-560 

defined,553 
goal of, 514 
instruction formats, 554-555 
instruction set architecture 

(ISA), 554-557 
Jump and Link (JML) 

instruction,557,560 
Jump Register instruction, 557 
properties of, 513 
read-after-write register file, 

560 
RISC instruction operations, 

556 
Set if Less Than (SL T) 

instruction,555-556 
sign extension, 555 
target address, 555 
target offset, 555 

Refresh, 430, 433 
Refreshing DRAM, 419 
Register cell, 366 
Register file, 456-457 
Register mode, 508 
Register set, 499 
Register transfer language (RTL), 

174,341 
Register transfer operations, 

341-344 
big-endian, 341 
components of, 340 
conditional statement, 342 
destination, 342 
little-endian, 341 

Register transfers, 335, 339-341, 
402 

basic symbols for, 343 
control oL378-395 
design procedure, 380 

register-transfer system, 
380 

examples: 
Dash Watch (example), 

380--388 
Game of PIG (example), 

388-395 
Register-cell design, 366-372 
Register-indirect mode, 508 
Register-memory architecture, 504 
Registers, 335-412, 341, 402 



accumulator (ACC), 501-502 

base, 511 

bidirectional shift register, 
355-356 

with parallel load, 356-357 

block diagrams of, 341-342 

control, 606 

control address (CAR), 399, 
401 

control data (CDR), 399, 401 

counters, 336 

datapath, 456-457 

dedicated logic, 350 

defined,335-336 

elementary operations, 
340--341 

4-bit, 337-338 

with parallel load, 339 

loading, 336 

microoperations, 341 

multiple, multiplexer and bus-
based transfers for, 
372-375 

with parallel load, 337-338 

processor status (PSR), 499 

shared logic, 350 

shift, 353-357, 402 

timing,379 

unidirectional shift,355 

Verilog, 398-399 

VHDL, 395-398 

Register-to-register architecture, 
503-504 

Register-transfer notation, 343 

notation, 343, 344 

Regular circuit, 106 

Regularity, 106 

Rejection time, 304-305 

Relative addressing mode, 
510--511 

Request and Reply, 609 

Reset state, latches, 211 

Return address, 531 

Return instructions,530--531 

Reuse of blocks, 106 

Reverse Polish notation (RPN), 
505 

Right shift by i bit positions, 172 

Right-shift microoperations, 
349-350,402 

Ripple carry adder, 153-155 

defined, 154 

4-bit, 154 

Ripple counters, 357-359 

advantage of, 359 

4-bit, 358 

RISCs, See Reduced instruction set 
computers (RISCs) 

ROM, See Read-only memory 
(ROM) 

Rotational delay, 600 
Row Select, 423 
RS flip-flop, 214 

Rudimentary logic functions, 
115-121 

s 

Scan matrix, keyboards, 598 

Scanners, 598 
Schematic capture tools, 173 
Sectors, hard drive, 599--600 
Seek time, 600 
Segmentation, 658 
Selection, 125, 131-138 

using multiplexer-based 
combinational circuits, 
136-138 

using multiplexers, 131-136 
Selection inputs, 131 
Selection rule, simplifying a 

function using, 67-68 

Sequencer,400--401 

Sequential circuit: 

block diagram of, 114 
timing, 308-310 

clock period and frequency 
calculations (example), 
309-310 

clock skew, 310 

maximum clock frequency, 
308 

maximum input-to-output 
delay, 308 

paths, 308-309 
Sequential circuits, 207-293 

analysis, 222-230 

asynchronous,208-209 
behavior, determining, 222 

block diagram, 208 

clock generator, 209 
clock pulses, 209 
clocked, 210 
clocks and timing, 229 
defmitions,208-210 

design, 230-247 
with D flip-flops, 240--243 
procedure, 231 

with unused states, 
243-244 

verification,245-247 
example of, 223 

flip-flops,207,210,215-222 
JK and T flip-flops, 

247-250 
input equations,223-224 
latches, 207, 209, 210--214 

simulation, 229-230 
simulation timing, 230 
standard graphics symbols, 

219-221 

state, 208 
state assignment, 238-239 

state diagrams, 207, 227-229 
fmding, 231-238 

state tables, 207, 224-226 

fmding, 231-238 
state-machine diagrams, 

250--264 
synchronous, 208-210, 

222-223 
design of, 231 

Verilog, 272-278 
blocking assignments, 272 

nonblocking assignments, 
272-273 

for positive-edge-triggered 
D flip-flop with reset, 
273-275 

process, 272 

register type, 272 

for the sequence 
recognizer, 275-278 

VHDL, 264-271 

for positive-edge-triggered 
D flip-flop with reset 
(example), 265-267 

process, 264 

for the sequence 
recognizer,267-270 

variable, 264 
Sequential control design, 482-489 

Sequential return address, 531 
Serial addition, 377-378 
Serial communication, 611-617 

asynchronous transmission, 
611-612 

data sets, 611 
full-duplex transmission 

system, 611 
half-duplex transmission 

system, 611 
keyboard,612--613 

as compound device, 614 
modems, 611 
packet-based serial 1/0 bus, 

613-617 
serial data, 611 
simplex transmission, 611 
synchronous transmission, 

611-612 
turnaround time, 611 

Serial counters, 360--361 
Serial data, 611 

Serial gating, 360 
Serial input SI, 353 
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Serial memory, 414 

Serial output SO, 353 

Serial transfer: 

example, 376 

and microoperations, 375-378 

serial addition, 377-378 

Set, 643 

Set size, 643-644 

Set state, latches, 211 

Set-associative mapping, 644 

Setup time, 306 

Seven-segment displays, 102 

Shared logic, 350 

Shift instructions, 520--522 

arithmetic shifts, 521 

fields, 521-522 

logical shifts, 521 

multiple-field format for, 
521-522 

rotate instructions, 521 

Shift microoperations, 345, 
349-350 

Shift registers, 353-357, 402 

bidirectional, 355-356 

4-bit, 353 

interfacing digital systems 
using, 355 

with parallel load, 354-355 

Shifter, 453-455 

barrel, 454-455 

combinational, construction 
of, 453-454 

Sign extension, 172, 555 

Signal conditioning, 10 

Signed binary addition, 163-165 

electronic scale feature 
(example), 164-165 

using 2s complement, 163 

Signed binary numbers, 161-162, 
161-163 

Signed binary subtraction, 
163-165 

electronic scale feature 
(example), 164-165 

using 2s complement, 164 

Signed-complement system, 
161-162 

Signed-magnitude system, 
161-163 

Significand, 525 

Silicon germanium (SiGe), 297 

Simple computer architecture, 
464-471 

assembler, 468 

executing an instruction, 464 

fields, 466 

instruction formats, 466-468 

instruction set, 465 
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instruction set architecture 
(ISA), 464-465 

instruction specifications, 
468-471 

instructions,464-465 

mnemonic, 468 

multiple-cycle hardwired 
control, 478-489 

operation code (opcode), 466 

operations vs. 
microoperations, 470 

program counter (PC), 464 

programs, 464 

single-cycle hardwired 
control, 471-478 

storage resource diagram for, 
465 

storage resources, 465 

Simplex transmission, 611 

Simulation, 174 

Simultaneous interrupts, 
establishing the priority, 
620--621 

Single bus: 

dedicated multiplexers vs., 
372-373 

examples of register transfers 
using, 373 

Single-accumulator architecture, 
504 

Single-cycle hardwired control, 
471-478 

instruction decoder, 472-474 

defined,472 

diagram of, 4 73 

instruction decoder logic, 
truth table for, 474 

memory representation of 
instructions and data, 470 

sample instructions and 
program, 474-477 

single-cycle computer: 

block diagram of, 471 

issues, 477-478 

Single-cycle transfer, 625 

Single-instruction-stream, multiple 
data-stream (SIMD) processors, 
591 

Small-scale integrated (SSI) 
devices, 296 

Software interrupt, 533-534 

Software priority interrupt unit, 
620--621 

SOI (silicon on insulator) 
technology, 297 

Sound cards, 598 

Source, 297, 299 

Specification,98, 138,231 

Speculative loading of data, 
588-589 

Square brackets, in register­
transfer notation, 343 

SR flip-flop, 214 

SR latch: 

with control input, 213 

logic simulation of behavior, 
212 

with NOR gates, 211 

SR latch, 211 

with NAND gates, 212-213 

SRAM integrated circuits, 
419-425 

array of, 425-428 

Stability control unit (SCU), 11 

Stack, defined, 502 

Stack architecture, 504-505 

Stack instructions, 515-517 

Stack pointer (SP), 499, 516-517 

Standard forms, 48-54 

Standard Graphic Symbols for 
Logic Functions (IEEE 
Standard 91-1984), 82 

Standard graphics symbols, for 
latches and flip-flops, 219-221 

Standard load,302 

Standard operand format, 525-526 

State, sequential circuits, 208 

State assignment, 231, 238-239 

State diagrams, 207, 227-229 

equivalent state illustration, 
228 

examples, 227 

finding, 231-238 

State tables, 207, 224-226 

derivation of, 224 

finding, 231-238 

State-machine diagrams, 250-264 

batch mixing system control, 
state-machine design for 
(example), 256-260 

constraints on input 
conditions,253-255 

design applications using, 
256-264 

input conditions, 250 

checking constraints 
(example), 254-255 

constraints on, 253-254 

model, 250-253 

Moore output actions, 252 

output condition (QC), 252 

sliding door control, state-
machine design for 
(example), 260--264 

transition and output 
condition dependent 



(TOCD) output actions, 
252 

transition condition (TC), 
250--252 

transition-condition 
dependent (TCD) Mealy 
output actions,252 

transition-condition 
independent (TCI) Mealy 
outputs, 252-253 

unconditional transition, 252 

Static CMOS, 300 

Static RAM (SRAM), 413, 419 

cell,419-420 

std_logic_arith, 187 

std_logic_vectors, 181 

STI cell processor, 591 

Storage resource diagram, 465 

Storage resources, 465 

Store instruction, 515 

Streaming SIMD extensions 
(SSE), 591 

Strobing, 607, 608-609 

Structural description, 173, 
179-180 

Subroutine,530--531 

Substitution, 77 

Subtract microoperations, 345-347 

implementation of, 347 

Suicide counter, 318-319 

Sum of minterms, 50 

Sum terms, 49 

Sum-of-products form, 52-53, 90 

Superpipelined CPU, 587-588 

Superscalar architecture, 588 

Switch-tail counter, 403 

Symmetric on-chip core 
multiprocessors, 589-590 

Synchronization, 264, 295, 
312-318 

example circuit, 312-314 

metastability, 315-318 

synchronizing flip-flop, 
314-315 

Synchronous binary counters, 
359-363 

binary counter with parallel 
load, 362-363 

4-bit, 360 

serial and parallel counters, 
360--361 

up-down binary counter, 361 

Synchronous circuit pitfalls, 264, 
318-319 

Synchronous DRAM (SDRAM), 
435-438 

block diagram of, 437 

timing diagram for, 438 

Synchronous interfaces, examples, 
311 

Synchronous sequential circuit: 
design of, 231 

logic diagram, 222-223 
Synchronous sequential circuits, 

208-210 

Synchronous transmission, 
611-612 

Synergistic Processor Elements 
(SPEs), 591 

T 

T flip-flops, 247-250 

Tag,639-640 
Technology library, 176 

Technology mapping, 98, 
107-111, 138, 176,231 

advanced, 107 
implementation: 

with NAND gates, 
109-110 

with NOR gates, 110--111 
Test instruction, 528 

Testbench, 174-175 
Thrashing, 638 

Thread,defmed,589 
3DNow! (Advanced Micro 

Devices), 591 

Three-address instructions, 
500--501 

Three-state bus, 374-375 
Throughput, 546 

Timing diagram, logic gates, 
38-39 

Timing waveforms, 416-418 

Tracks, hard drive, 599 

Transfer microoperations, 344 
Transistors, 5, 297 

CMOS transistor, 297-298 
n-channel transistor, 298-299 
p-channel transistor, 298-299 

Transition condition (TC), 
250--252 

Transition regions, logic gates, 38 

Transition time, 303 
Transitions, logic gates, 38 
Transmission gates, 90 
Transparent latches, 215 

Transport delay, 304 
Traps, 533 
Truth tables, 37, 40-41, 90, 

129-130 

Turnaround time, 611 

Twisted ring counter, 403 
2s complement: 

signed binary addition using, 
163 

signed binary subtraction 
using, 164 

2s complement addition, unsigned 
binary subtraction by, 159 

2s complement subtract, unsigned 
binary subtraction by, 156 

Two-address instructions, 501 

Two-level circuit optimization, 
54-65 

adjacent binary combinations, 
57-58 

cost criteria, 55-56 

gate-input cost, 55-56 

Karnaugh maps (K-maps), 55 

4-variable maps, 58-59, 
63--65 

map manipulation, 65-72 

map structures, 56-59 

3-variable maps, 58-59, 
61--63 

2-variable maps, 59--61 

literal cost, 55 

Two-level optimization: 

Espresso II algorithm, 72, 90 

ESSENTIAL_PRIMES 
routine, 73 

example, 74-76 

EXPAND routine, 72-73, 
74, 76 

IRREDUNDANT COVER 
routine, 73-74, 76 

LAST_GASP routine, 74, 
76 

REDUCE routine, 73-74, 
76 

procedure requirements, 72 

Two-way set-associative mapping, 
644 

u 

Unicode, 26 

Unidirectional shift register, 355 

Unified cache, 651 

Universal gate, 82 

Universal Serial Bus (USB), 597, 
613--614 

interconnection ofl/O devices 
by using, 613--614 

packets: 

Data packet, 616 

formats, 615--616 

Handshake packet, 
616-617 

Output packet, 616 

wires, 614 

Unsigned binary numbers, 161 

Unsigned binary subtraction: 
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by 2s complement addition, 
159 

by 2s complement subtract, 
156 

Unused opcode, 483 

Up-down binary counter, 361 

v 

Valid bit, 647 

Value fixing, 115 
applications in logic design, 

116 

lecture-hall lighting control 
using (example), 117-119 

Vector address, 620 
Vector processing, 591 

Vectored interrupt, 620 

Verification, 98, 111-113, 
138-139,231,245-247 

BCD-to-excess-3 code 
converter: 

manual verification of 
(example), 112-113 

simulation-based 
verification of, 113-114 

manual logic analysis, 
111-113 

simulation, 113-114 

Verilog, 149, 174, 187-196, 207, 
272-278 

behavioral, for a 4-bit ripple 
carry adder, 195 

behavioral description, 
195-196 

blocking assignments, 272 

code for a counter, 398-399 
code for a shift register 

(example), 398 

dataflow: 

for a 2-to-4-line decoder, 
191-192 

for a 4-to-1-line 
multiplexer, 192 

for a 4-to-1-line multiplexer: 
using binary decisions, 

193-194 

using combinations, 
192-193 

hierarchical, for a 4-bit ripple 
carry adder, 195 

nonblocking assignments, 
272-273 

for positive-edge-triggered D 

flip-flop with reset, 
273-275 

process, 272 

register type, 272 

registers, 398-399 
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for the sequence recognizer, 
275-278 

structural: 
for a 2-to-4-line decoder, 

188-190 
for a 4-to-1-line 

multiplexer, 190-191 
Very-large-scale integrated (VLSI) 

circuits, 107, 114 
Very-large-scale integrated (VLSI) 

devices, 296 
VHDL, 149, 174, 176-187, 207, 

264-271 
architecture, 179 
behavioral description, 

186-187 
comment, 177 
components, 179 
dataflow, for a 2-to-4-line 

decoder, 181-183 
dataflow description, 181-182 
delta time, 179 
entity, 177 
entity declaration, 177 
for a 4-bit counter, 397-398 
for a 4-bit shift register, 

396-397 
for a 4-to-1-line multiplexer 

using when-else, 183 
for a 4-to-1-line multiplexer 

using with-select, 183-184 
hierarchical, for a 4-bit ripple 

carry adder, 185-186 
library, 178 
packages, 178-179 

port declaration, 177 
for positive-edge-triggered D 

flip-flop with reset 
(example), 265-267 

process, 264 
registers, 395-398 
for the sequence recognizer, 

267-270 
signals, 179 
standard logic, 177-178 

structural: 
for a 2-to-4-line decoder, 

177-181 

for a 4-to-1 multiplexer, 
181 

structural description, 
179-180 

variable, 264 
Virtual address, 652 
Virtual memory, 633, 638, 

652-658 
and cache, 658 
directory offset, 655 
directory page, 654 

directory page pointer, 655 

and locality of reference, 638 

page frame number, 654 

page frames, 653 

page offset, 653 

page table entries, format for, 
654 

page table offset, 655 

page table page number, 655 

page table structure, example 
of, 655 

page tables, 654-656 

pages, 652--653 

translation lookaside buffer 
(TLB), 656--658, 659 

example of, 656--657 

virtual address, mapping into a 
physical address in main 
memory, 652-653 

virtual page number, 654 

Virtual page number, 654 

VLSI programmable logic devices, 
319-322,329 

Volatile memory, 419 

Voltage-operated circuits, 38 

w 

Wafer, 297 

Waveform, 5 

Word,414 

Writable control memory, 399 

Write buffering, 647 

Write buffers, 647-648 

Write cycle time, 417 

Write-allocate, 648 

Write-back method, 648 

Write-back stage (WB), 547-548 

Write-through, 647 

x 

XE II Modelsim simulator, 113 

Xilinx ISE 4.2 HDL Bencher, 247 

Xilinx ISE 4.2 Schematic Editor, 
247 

Xilinx ISE 4.2i FPGA 

development tools, 113 

XOR gates, See Exclusive-OR 
gates 

XOR instruction, 520 

z 

Zero fill, 172 

Zero insertion, 287 

Zero-address instructions, 
502-503 
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