]

Y]
]

'm._s'| -*_ R

“EE B0 BE-BE-N

R —

EEEE BN BE DEEEE
R T o o e A P L
G i |

- =

I--_"

http://www.ebook777.com

Library of Congress Cataloging-in-Publication Data on file.

Vice President and Editorial Director, ECS: Marcia J. Horton
Acquisitions Editor: Michael McDonald

Senior Managing Editor: David A. George

Production Editor: Irwin Zucker

Art Editor: Greg Dulles

Manufacturing Manager: Alexis Heydt-Long

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Tim Galligan

About the Cover: The cover background is a photo of the Intel® Core™2 Duo processor / Intel® Core™?2
Extreme processor die provided courtesy of Intel Corporation.

m © 2008 Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
MGl Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Pearson Prentice Hall®is a trademark of Pearson Education, Inc.

Altera and Flex 10K are trademarks of Altera Corporation. Advanced Micro Devices, AMD, Athlon,
and 3DNow! are trademarks of Advanced Micro Devices, Inc. Verilog is a registered trademark of
Cadence Design Systems, Inc. Freescale and Altivec are trademarks of Freescale Semiconductor. IBM
and PowerPC are trademarks of IBM Corporation. Intel, Intel Core, and MMX are trademarks of Intel
Corporation. GAL and PAL are trademarks of Lattice Semiconductor Corporation. Mentor Graphics,
Model Technology, and ModelSim are trademarks of Mentor Graphics Corporation. PowerPoint is
registered trademark of the Microsoft Corporation. RAMBUS and RDRAM are registered trademarks
of RAMBUS, Inc. Cell, Sony and Playstation are trademarks of Sony Corporation. Toshiba is a
trademark of Toshiba Corporation. Xilinx and Spartan are registered trademarks of Xilinx, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising out of,
the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-19892k-X

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Www.Ebook777.com

http://www.ebook777.com

The objective of this text is to serve as a cornerstone for the learning of logic
design, digital system design, and computer design by a broad audience of readers.
This fourth edition marks the decade point in the evolution of the text contents.
Beginning as an adaptation of a previous book by the first author in 1997, it contin-
ues to offer a unique combination of logic design and computer design principles
with a strong hardware emphasis. Over the years, the text has followed industry
trends by adding new material such as hardware description languages, removing
or de-emphasizing material of declining importance, and revising material to track
changes in computer technology and computer-aided design.

In the fourth edition, revisions address pedagogical considerations as well as
industrial trends. Sixty “real world” examples and problems, most drawn from
design problems for products encountered in contemporary day-to-day life, moti-
vate interest and provide practice in solution formulation. Changes in chapter
organization permit instructors to more easily tailor the degree of technology cov-
erage, accommodating both electrical and computer engineering and computer sci-
ence audiences.

The organizational changes begin with the combining of the introduction to
design from Chapter 3 and the functional block material from Chapter 4 into a new
Chapter 3. The design science content from the old Chapter 3 is now distributed
over multiple chapters on an “as needed” basis and is accompanied by illustrations.
Hardware description language coverage for combinational circuits has been com-
bined in Chapter 4 with that for arithmetic circuits to balance chapter size. Mate-
rial on technology from the old Chapter 3, including timing and programmable
logic, appears in a new Chapter 6 and can be selectively covered and scheduled by
the instructor as appropriate for the course syllabus. The placement of this material
in Chapter 6 permits earlier coverage of sequential circuits for those with lesser
technology-related needs and provides the more extensive background needed for
some of the topics covered. Further, technology topics fit better within digital sys-
tem design rather than within basic logic design material presented earlier in the
text. Chapter 6 also contains new information on CMOS circuits and asynchronous
interaction between systems including synchronization of inputs and metastability.

Chapter 8 has been eliminated along with the algorithmic state machine
(ASM) to streamline the treatment of design of complex sequential circuits and
control units. Concepts from Chapter 8 are split between Chapter 5 (Sequential
Circuits) and Chapter 7 (Registers and Register Transfers). A new state machine

O xiii

diagram notation replaces the ASM. The state machine diagram is modeled after
the traditional state diagram and graphically represents much of the modeling flex-
ibility inherent in hardware description languages. Further, in Chapter 7, the
design procedure for doing combined datapath and control unit design is formal-
ized and illustrated.

Offering integrated coverage of both digital and computer design, this edition
of Logic and Computer Design Fundamentals features a strong emphasis on funda-
mentals underlying contemporary design. Understanding of the material is sup-
ported by clear explanations and a progressive development of examples ranging
from simple combinational applications to a CISC architecture built upon a RISC
core. A thorough coverage of traditional topics is combined with attention to com-
puter-aided design, problem formulation, solution verification, and the building of
problem-solving skills. Flexibility is provided for selective coverage of logic design,
digital system design, and computer design topics, and for coverage of hardware
description languages (none, VHDL, or Verilog®). Aside from the organizational
and content changes describe thus far, other updates in the Fourth Edition include:
(1) a brief introduction to embedded systems, (2) illustration of practical computer-
aided logic optimization methods as used in Espresso, (3) replacement of a CRT
display example with an LCD screen example, and (4) an updated Architectural
Innovations section including multiple CPU microprocessors.

With these revisions, chapters 1 through 5 of the book treat logic design,
chapters 6 through 8 deal with digital systems design and chapters 9 through 13
focus on computer design. This arrangement provides solid digital system design
fundamentals while accomplishing a gradual, bottom-up development of funda-
mentals for use in top-down computer design in later chapters. Summaries of the
topics covered in each chapter follow.

Chapter 1—Digital Systems and Information This chapter introduces digital
computers, embedded systems, and information representation including number
systems, arithmetic, and codes.

Chapter 2—Combinational Logic Circuits This chapter deals with gate cir-
cuits and their types and basic ideas for their design and cost optimization.
Concepts include Boolean algebra, algebraic and Karnaugh map optimization,
the Espresso algorithm as a pragmatic CAD optimization tool, and multilevel
optimization.

Chapter 3—Combinational Logic Design This chapter begins with an over-
view of a contemporary logic design process. The details of steps of the design pro-
cess including problem formulation, logic optimization, technology mapping to
NAND and NOR gates, and verification are covered for combinational logic
design examples. In addition, the chapter covers the functions and building blocks
of combinational design including enabling and input-fixing, decoding, encoding,
code conversion, selecting, and distributing, and their implementations.

Chapter 4—Arithmetic Functions and HDLs This chapter deals with arith-
metic functions and their implementations. Beyond number representation for
arithmetic, addition, subtraction, and incrementing, decrementing, filling, exten-
sion and shifting are described and implemented. Synthesis and hardware descrip-
tion languages (HDLs) are introduced and Verilog and VHDL are presented for

xiv [J Preface

describing of combinational logic from Chapter 3 and arithmetic logic from this
chapter.

Chapter 5—Sequential Circuits This chapter covers sequential circuit analysis
and design. Latches, master-slave flip-flops and edge-triggered flip-flops are cov-
ered with emphasis on the D type. Other types of flip-flops (S-R, J-K and T), which
are used less frequently in modern designs, are covered briefly. Emphasis is placed
on state machine diagram and state table formulation. A complete design process
for sequential circuits including specification, formulation, state assignment, flip-
flop input and output equation determination, optimization, technology mapping,
and verification is developed. A graphical state machine diagram model that repre-
sents sequential circuits too complex to model with a conventional state diagram is
presented and illustrated by two real world examples. The chapter concludes with
VHDL and Verilog descriptions of a flip-flop and a sequential circuit.

Chapter 6—Selected Design Topics This chapter presents topics focusing on
various aspects of underlying technology including the MOS transistor and CMOS
circuits, delay and timing for gates, combinational and sequential circuits, asyn-
chronous interactions between circuits, and programmable logic technologies. The
asynchronous interactions section includes coverage of synchronization of asyn-
chronous inputs and metastability. Programmable logic covers read-only memories,
programmable logic arrays and programmable array logic.

Chapter 7—Registers and Register Transfers This chapter covers registers
and their applications. Shift register and counter design are based on the combina-
tion of flip-flops with functions and implementations introduced in the Chapters 3
and 4. Only the ripple counter is introduced as a totally new concept. Register
transfers are considered for both parallel and serial designs and time-space trade-
offs are discussed. A section focuses on register cell design for multi-function regis-
ters that performing multiple operations. A process for the integrated design of
datapaths and control units using register transfer statements and state machine
diagrams is introduced and illustrated by two real world examples. Verilog and
VHDL descriptions of selected register types are introduced.

Chapter 8—Memory Basics This chapter introduces static random access
memory (SRAM) and dynamic random access memory (DRAM), and basic mem-
ory systems. It also describes briefly various distinct types of SRAMs.

Chapter 9—Computer Design Basics This chapter covers register files, func-
tion units, datapaths, and two simple computers: a single-cycle computer and a
multiple-cycle computer. The focus is on datapath and control unit design formula-
tion concepts applied to implementing specified instructions and instruction sets in
single-cycle and multiple-cycle designs.

Chapter 10—Instruction Set Architecture introduces many facets of instruc-
tion set architecture. It deals with address count, addressing modes, architectures,
and the types of instructions and presents floating-point number representation
and operations. Program control architecture is presented including procedure
calls and interrupts.

Chapter 11—RISC and CISC Processors This chapter covers high-performance
processor concepts including a pipelined RISC processor, and a CISC processor. The

Preface [xv

Www.Ebook777.com

http://www.ebook777.com

CISC processor, by using microcoded hardware added to a modification of the RISC
processor, permits execution of the CISC instruction set using the RISC pipeline, an
approach used in contemporary CISC processors. Also, sections describe high-
performance CPU concepts and architecture innovations including two examples of
multiple CPU microprocessors.

Chapter 12—Input-Output and Communication This chapter deals with data
transfer between the CPU and memory, input-output interfaces and peripheral
devices. Discussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a
hard drive as peripherals are included, and a keyboard interface is illustrated.
Other topics range from serial communication, including the Universal Serial Bus
(USB), to interrupt system implementation.

Chapter 13—Memory Systems has a particular focus on memory hierarchies.
The concept of locality of reference is introduced and illustrated by consideration
of the cache/main memory and main memory/hard drive relationships. An over-
view of cache design parameters is provided. The treatment of memory manage-
ment focuses on paging and a translation lookaside buffer supporting virtual
memory.

In addition to the text itself, a Companion Website and an Instructor’s Man-
ual are provided. Companion Website (http://www.prenhall.com/mano) content
includes the following: 1) reading supplements including new material and material
deleted from prior editions, 2) VHDL and Verilog source files for all examples, 3)
links to computer-aided design tools for FPGA design and HDL simulation, 4)
solutions for about one-third of all text Chapter problems, 5) errata, 6) Power-
Point® slides for Chapters 1 through 9, 7) projection originals for complex figures
and tables from the text, and 8) site news sections for students and instructors
pointing out new material, updates, and corrections. Instructors are encouraged to
periodically check the instructor’s site news so that they are aware of site changes.
Instructor’s Manual content includes suggestions for use of the book and all prob-
lem solutions. On-line access to this manual is available from Prentice Hall to
instructors at academic institutions who adopt the book for classroom use. The sug-
gestions for use provide important detailed information for navigating the text to
fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book
serves several different objectives in sophomore through junior level courses. Chap-
ters 1 through 10 with selected sections omitted, provide an overview of hardware
for computer science, computer engineering, electrical engineering or engineering
students in general in a single semester course. Chapters 1 through 5 possibly with
selected parts of 6 through 8 give a basic introduction to logic design, which can be
completed in a single quarter for electrical and computer engineering students. Cov-
erage of Chapters 1 through 8 in a semester, provides a stronger, more contempo-
rary logic design treatment. The entire book, covered in two quarters, provides the
basics of logic and computer design for computer engineering and science students.
Coverage of the entire book with appropriate supplementary material or a labora-
tory component can fill a two-semester sequence in logic design and computer
architecture. Due to its moderately paced treatment of a wide range of topics, the
book is ideal for self-study by engineers and computer scientists. Finally, all of these

xvi [J Preface

various objectives can also benefit from use of reading supplements provided on the
Companion Website.

During the preparation of the fourth edition, we have sought out the views
of many instructors using prior editions of this text. Over 50 instructors completed
an extensive survey on the third edition content and their uses of it. In addition,
Professor Bharat Bhuva, Vanderbilt University, and Professor Donald Hung, San
Jose State University, provided useful feedback through written reviews of the
third edition. We are very grateful to all of these instructors for their participation
and their thoughtful input in guiding the preparation of the fourth edition. Partic-
ular thanks goes to Professors Katherine Compton, Mikko Lipasti, Kewal Saluja,
and Leon Shohet, and Faculty Associate Michael Morrow, ECE, University of
Wisconsin—Madison. Via focused discussions with the second author, they pro-
vided extensive comments and suggestions that greatly influenced the fourth edi-
tion content. We appreciate corrections to the third edition provided by both
instructors and students, most notably, those from Professor Douglas De Boer of
Dordt College. A special thanks goes to Divya Jhalani from the University of
Wisconsin—Madison for her preparation of solutions to new problems in the
Instructor’s Manual and on the website. Our appreciation goes to all of those at
Prentice Hall and elsewhere for their efforts on this edition. Notable are Editor
Mike McDonald for his guidance, encouragement and support, Production Edi-
tors Dan Sandin and Irvwin Zucker for their efficiency and helpfulness with text
production, and Bob Lentz for his maticulous copy-editing. Finally, a very special
thanks to Val Kime for her enduring patience and understanding throughout the
development of the fourth edition.

M. MORRIS MANO
CHARLES R. KIME

Preface [xvii

This page intentionally left blank

LLOGIC AND
COMPUTER
DESIGN
FUNDAMENTALS

www.Ebook777.com

http://www.ebook777.com

DIGITAL SYSTEMS
AND INFORMATION

used for computations with discrete numeric elements called digits (the Latin

word for fingers)—hence the term digital computer. The use of “digital” spread
from the computer to logic circuits and other systems that use discrete elements of
information, giving us the terms digital circuits and digital systems. The term logic is
applied to circuits that operate on a set of just two elements with values True (1) and
False (0). Since computers are based on logic circuits, they operate on patterns of
elements from these two-valued sets, which are used to represent, among other
things, the decimal digits. Today, the term “digital circuits” is viewed as synonymous
with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored
sequence of instructions, called a program, that operates on data. The user can
specify and change the program or the data according to specific needs. As a result
of this flexibility, general-purpose digital computers can perform a variety of
information-processing tasks, ranging over a very wide spectrum of applications. This
makes the digital computer a highly general and very flexible digital system. Also, due
to its generality, complexity, and widespread use, the computer provides an ideal
vehicle for learning the concepts, methods, and tools of digital system design. To this
end, we use the exploded pictorial diagram of a computer of the class commonly
referred to as a PC (personal computer) given on the opposite page. We employ this
generic computer to highlight the significance of the material covered and its
relationship to the overall system. A bit later in this chapter, we will discuss the various
major components of the generic computer and see how they relate to a block
diagram commonly used to represent a computer. Otherwise, the remainder of the
chapter focuses on the digital systems in our daily lives and introduces approaches
for representing information in digital circuits and systems.

This book deals with logic circuits and digital computers. Early computers were

4 [0 CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a
broad range of phenomena from the physical and man-made world. The physical
world is characterized by parameters such as weight, temperature, pressure, veloc-
ity, flow, and sound intensity and frequency. Most physical parameters are continu-
ous, typically capable of taking on all possible values over a defined range. In
contrast, in the man-made world, parameters can be discrete in nature, such as
business records using words, quantities, and currencies, taking on values from an
alphabet, the integers, or units of currency, respectively. In general, information
systems must be able to represent both continuous and discrete information. Sup-
pose that temperature, which is continuous, is measured by a sensor and converted
to an electrical voltage, which is likewise continuous. We refer to such a continuous
voltage as an analog signal, which is one possible way to represent temperature.
But, it is also possible to represent temperature by an electrical voltage that takes
on discrete values that occupy only a finite number of values over a range, e.g., cor-
responding to integer degrees centigrade between —40 and +119. We refer to such
a voltage as a digital signal. Alternatively, we can represent the discrete values by
multiple voltage signals, each taking on a discrete value. At the extreme, each sig-
nal can be viewed as having only two discrete values, with multiple signals repre-
senting a large number of discrete values. For example, each of the 160 values just
mentioned for temperature can be represented by a particular combination of
eight two-valued signals. The signals in most present-day electronic digital systems
use just two discrete values and are therefore said to be binary. The two discrete
values used are often called 0 and 1, the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values called
HIGH and LOW. Output and input voltage ranges are illustrated in Figure 1-1(a).
The HIGH output voltage value ranges between 0.9 and 1.1 volts, and the LOW
output voltage value between —0.1 and 0.1 volts. The high input range allows 0.6 to
1.1 volts to be recognized as a HIGH, and the low input range allows —0.1 to 0.4
volts to be recognized as a LOW. The fact that the input ranges are wider than the

Voltage (Volts)
OUTPUT INPUT Sy
HIGH — 1.0 —
NN\ 0.9 — HIGH 057
L 0.6 0.0 = Time
0.4 (b) Time-dependent voltage
1 W—
0.1 - / LOW
wow w7,
Volts
0 —Time
(a) Example voltage ranges (c) Binary model of time-dependent voltage
O FIGURE 1-1

Examples of Voltage Ranges and Waveforms for Binary Signals

1-1 / Information Representation [1 5

output ranges allows the circuits to function correctly in spite of variations in their
behavior and undesirable “noise” voltages that may be added to or subtracted
from the outputs.

We give the output and input voltage ranges a number of different names.
Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and
0. It is natural to associate the higher voltage ranges with HIGH or H, and the
lower voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, how-
ever, there is a choice. TRUE and 1 can be associated with either the higher or
lower voltage range and FALSE and 0 with the other range. Unless otherwise indi-
cated, we assume that TRUE and 1 are associated with the higher of the voltage
ranges, H, and that FALSE and 0 are associated with the lower of the voltage
ranges, L. This particular convention is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in
Figure 1-1(a) are still continuous, ranging from —0.1 to +1.1 volts. Thus, the
voltage is actually analog! The actual voltages values for the output of a very
high-speed digital circuit are plotted versus time in Figure 1-1(b). Such a plot is
referred to as a waveform. The interpretation of the voltage as binary is based
on a model using voltage ranges to represent discrete values 0 and 1 on the
inputs and the outputs. The application of such a model, which redefines all
voltage above 0.5V as 1 and below 0.5 V as 0 in Figure 1-1(b), gives the wave-
form in Figure 1-1(c). The output has now been interpreted as binary, having
only discrete values 1 and 0, with the actual voltage values removed. We note
that digital circuits, made up of electronic devices called transistors, are
designed to cause the outputs to occupy the two distinct output voltage ranges
for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs are not changing. In
contrast, analog circuits are designed to have their outputs take on continuous
values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-
ferred names for the signal ranges. A binary digit is called a bit. Information is rep-
resented in digital computers by groups of bits. By using various coding techniques,
groups of bits can be made to represent not only binary numbers, but also other
groups of discrete symbols. Groups of bits, properly arranged, can even specify to
the computer the program instructions to be executed and the data to be processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-
tem with 10 values representing the decimal digits. In such a system, the voltages
available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length
0.1 volt. A circuit would provide an output voltage within each of these 10 ranges.
An input of a circuit would need to determine in which of the 10 ranges an applied
voltage lies. If we wish to allow for noise on the voltages, then output voltage might
be permitted to range over less than 0.05 volt for a given digit representation, and
boundaries between inputs could vary by less than 0.05 volt. This would require
complex and costly electronic circuits, and the output still could be disturbed by
small “noise” voltages or small variations in the circuits occurring during their
manufacture or use. As a consequence, the use of such multivalued circuits is very
limited. Instead, binary circuits are used in which correct circuit operation can be
achieved with significant variations in values of the two output voltages and the

6 [0 CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

Memory

Y

Control

CPU T Datapath

A

Input/Output

O FIGURE 1-2
Block Diagram of a Digital Computer

two input ranges. The resulting transistor circuit with an output that is either
HIGH or LOW is simple, easy to design, and extremely reliable. In addition, this
use of binary values makes the results calculated repeatable in the sense that the
same set of input values to a calculation always gives exactly the same set of out-
puts. This is not necessarily the case for multivalued or analog circuits, in which
noise voltages and small variations due to manufacture or circuit aging can cause
results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores
programs as well as input, output, and intermediate data. The datapath performs
arithmetic and other data-processing operations as specified by the program. The
control unit supervises the flow of information between the various units. A data-
path, when combined with the control unit, forms a component referred to as a
central processing unit, or CPU.

The program and data prepared by the user are transferred into memory by
means of an input device such as a keyboard. An output device, such as an LCD
(liquid crystal display), displays the results of the computations and presents them
to the user. A digital computer can accommodate many different input and output
devices, such as CD-ROM and DVD drives, scanners, and printers. These devices
use digital logic circuits, but often include analog electronic circuits, optical sensors,
LCDs (liquid crystal displays), and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the
program stored in the memory. For each instruction, the control unit manipulates
the datapath to execute the operation specified by the instruction. Both program
and data are stored in memory. A digital computer can perform arithmetic compu-
tations, manipulate strings of alphabetic characters, and be programmed to make
decisions based on internal and external conditions.

1-1 / Information Representation [7

Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story.
Smaller, often less powerful, single-chip computers called microcomputers or
microcontrollers, or special-purpose computers called digital signal processors
(DSPs) actually are more prevalent in our lives. These computers are parts of
everyday products and their presence is often not apparent. As a consequence of
being integral parts of other products and often enclosed within them, they are
called embedded systems. A generic block diagram of an embedded system is
shown in Figure 1-3. Central to the system is the microcomputer (or its equivalent).
It has many of the characteristics of the PC, but differs in the sense that its soft-
ware programs are often permanently stored to provide only the functions
required for the product. This software, which is critical to the operation of the
product, is an integral part of the embedded system and referred to as embedded
software. Also, the human interface of the microcomputer can be very limited or
nonexistent. The larger information-storage components such as a hard drive and
compact disk or DVD drive frequently are not present. The microcomputer con-
tains some memory; if additional memory is needed, it can be added externally.
With the exception of the external memory, the hardware connected to the
embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-
side world. The input devices transform inputs from the product or outside world
into electrical signals, and the output devices transform electrical signals into out-
puts to the product or outside world. The input and output devices are of two
types, those which use analog signals and those which use digital signals. Examples
of digital input devices include a limit switch which is closed or open depending on
whether a force is applied to it and a keypad having ten decimal integer buttons.
Examples of analog input devices include a thermistor which changes its electrical

Analog Signal
Input Devices | | A-to-D |, 5 D-to-A |, | Conditioning
and Signal Converters Converters and Digital
Conditioning Output Devices
Microcomputer,
Microcontroller,
o or Digital Signal .
. Dtlgtal. Processor c Sé_gtf_lal_
nput Devices onditioning
and Signal | | | and Digital
Conditioning Output Devices

y 4%

External
Memory

O FIGURE 1-3
Block Diagram of an Embedded System

8 [0 CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

resistance in response to the temperature and a crystal which produces a charge
(and a corresponding voltage) in response to the pressure applied. Typically, elec-
trical or electronic circuitry is required to “condition” the signal so that it can be
read by the embedded system. Examples of digital output devices include relays
(switches that are opened or closed by applied voltages), a stepper motor that
responds to applied voltage pulses, or an LED digital display. Examples of analog
output devices include a loudspeaker and a panel meter with a dial. The dial posi-
tion is controlled by the interaction of the magnetic fields of a permanent magnet
and an electromagnet driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-
ment performed by using a wireless weather station. In addition, this example also
illustrates analog and digital signals, including conversion between the signal types.

Py

(‘W) EXAMPLE 1-1 Temperature Measurement and Display

N

= A wireless weather station measures a number of weather parameters at an out-
door site and transmits them for display to an indoor base station. Its operation
can be illustrated by considering the temperature measurement illustrated in Fig-
ure 1-4 with reference to the block diagram in Figure 1-3. Two embedded micro-
processors are used, one in the outdoor site and the other in the indoor base
station.

The temperature at the outdoor site ranges continuously from —40°F to
+115°F. Temperature values over one 24-hour period are plotted as a function of
time in Figure 1-4(a). This temperature is measured by a sensor consisting of a
thermistor (a resistance that varies with temperature) with a fixed current applied
by an electronic circuit. This sensor provides an analog voltage that is proportional
to the temperature. Using signal conditioning, this voltage is changed to a continu-
ous voltage ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sam-
pling rate used just for illustration), as shown by the dots in Figure 1-4(b). Each
value sampled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3,
which replaces the value with a digital number written in binary and having deci-
mal values between 0 and 15, as shown in Figure 1-4(c). A binary number can be
interpreted in decimal by multiplying the bits from left to right times the respective
weights, 8, 4, 2, and 1, and adding the resulting values. For example, 0101 can be
interpreted as 0xX8+1X4+0X2+1x1=5. In the process of conversion, the
value of the temperature is quantized from an infinite number of values to just 16
values. Examining the correspondence between the temperature in Figure 1-4(a)
and the voltage in Figure 1-4(b), we find that the typical digital value of tempera-
ture represents an actual temperature range up to S degrees above or below the
digital value. For example, the analog temperature range between —25 and —15
degrees is represented by the digital temperature value of —20 degrees. This dis-
crepancy between the actual temperature and the digital temperature is called the
quantization error. In order to obtain greater precision, we would need to increase
the number of bits beyond four in the output of the A/D converter. The hardware

1-1 / Information Representation

Temperature (degrees F)

120
80
40
0
—40 Time (hours)
(a) Analog temperature Sensor and
Voltage (Volts) Signal Conditioning
16 :E '
12 EE o Sampling point
8
4 :m
0:IIIIIIIIIIIIIIIIIIIIIIIITime(Hours)
0 4 8 12 16 20 24

Analog-to-Digital

(b) Continuous (analog) voltage (A/D) Conversion
Digital numbers (binary)
123 A AR YA
¥ S QSTSEET S SIS
FRET S e ——
ottt Time (hours)
9 4) 1.2 18 2 % Digital-to-Analog
(c) Digital voltage (D/A) Conversion
Voltage (volts)
12
8¥

(=T
o ::|||||
NN

Time (hours)

(d) Discrete (digital) voltage SRS RO

Volta;

—_
[=)
I\J‘-l
[¢]
~
<
o
—
Z
~

)

=t t—t—t—t—t—t—t—t—t—t——t——t——t—t——+——+— Time (hours)
24 Output

0

.

(f) Continuous (analog) readout

O FIGURE 1-4
Temperature Measurement and Display

o 9

10 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

components for sensing, signal conditioning, and A/D conversion are shown in the
upper left corner of Figure 1-3.

Next, the digital value passes through the microcomputer to a wireless trans-
mitter as a digital output device in the lower right corner of Figure 1-3. The digital
value is transmitted to a wireless receiver, which is a digital input device in the
base station. The digital value enters the microcomputer at the base station, where
calculations may be performed to adjust its value based on thermistor properties.
The resulting value is to be displayed with an analog meter shown in Figure 1-4(f)
as the output device. In order to support this display, the digital value is converted
to an analog value by a digital-to-analog converter, giving the quantized, discrete
voltage levels shown in Figure 1-4(d). Signal conditioning, such as processing of
the output by a low-pass analog filter, is applied to give the continuous signal in
Figure 1-4(e). This signal is applied to the analog voltage display, which has been
labeled with the corresponding temperature values shown for five selected points
over the 24-hour period in Figure 1-4(f).

OO0 TABLE 1-1
Embedded System Examples

Application Area Product

Banking,commerce and manufacturing Copiers, FAX machines, UPC scanners, vend-
ing machines, automatic teller machines,
automated warehouses, industrial robots

Communication Cell phones, routers, satellites

Games and toys Video games, handheld games, talking stuffed
toys

Home appliances Digital alarm clocks, conventional and micro-

wave ovens, dishwashers

Media CD players, DVD players, flat panel TV,
Digital cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance
imaging

Personal Digital watches, MP3 players, personal digital
assistants

Transportation and navigation Electronic engine controls, traffic light con-

trollers, aircraft flight controls, global posi-
tioning systems

1-1 / Information Representation [11

You might ask: “How many embedded systems are there in my current living
environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-
era? A microwave oven? An automobile? All of these are embedded systems! In
fact, a late-model automobile can contain more than 50 microcontrollers, each con-
trolling a distinct embedded system, such as the engine control unit (ECU), auto-
matic braking system (ABS), and stability control unit (SCU). Further, a
significant proportion of these embedded systems communicate with each other
through a CAN (controller area network). A new automotive network called
FlexRay promises to provide high-speed, reliable communication for safety-critical
tasks such as braking-by-wire and steering-by-wire, eliminating primary depen-
dence on mechanical and hydraulic linkages and enhancing the potential for addi-
tional safety features such as collision avoidance. Table 1-1 lists examples of
embedded systems classified by application area.

Considering the widespread use of personal computers and embedded sys-
tems, the impact of digital systems on our lives is truly mind boggling! Digital
systems play central roles in our medical diagnosis and treatment, our educa-
tional institutions and workplaces, in moving from place to place, in our homes,
in interacting with others, and in just having fun! Considering the complexity of
many of these systems, it is a wonder that they work at all. Thanks to the inven-
tion of the transistor and the integrated circuit and to the ingenuity and persever-
ance of millions of engineers and programmers, they indeed work and usually
work well. In the remainder of this text, we take you on a journey that reveals
how digital systems work and provide a detailed look at how to design digital sys-
tems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various
parts to the block diagram in Figure 1-2. At the lower left of the diagram at the
beginning of this chapter is the heart of the computer, an integrated circuit called
the processor. Modern processors such as this one are quite complex and consist of
tens to hundreds of millions of transistors. The processor contains four functional
modules: the CPU, the FPU, the MMU, and the internal cache.

We have already discussed the CPU. The FPU (floating-point unit) is some-
what like the CPU, except that its datapath and control unit are specifically
designed to perform floating-point operations. In essence, these operations pro-
cess information represented in the form of scientific notation (e.g., 1.234 X 107),
permitting the generic computer to handle very large and very small numbers.
The CPU and the FPU, in relation to Figure 1-2, each contain a datapath and a
control unit.

The MMU is the memory management unit. The MMU plus the internal cache
and the separate blocks near the bottom of the computer labeled “External Cache”
and “RAM?” (random-access memory) are all part of the memory in Figure 1-2. The
two caches are special kinds of memory that allow the CPU and FPU to get at the
data to be processed much faster than with RAM alone. RAM is what is most com-
monly referred to as memory. As its main function, the MMU causes the memory

12 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

that appears to be available to the CPU to be much, much larger than the actual
size of the RAM. This is accomplished by data transfers between the RAM and the
hard drive shown at the top of the drawing of the generic computer. So the hard
drive, which we discuss later as an input/output device, conceptually appears as a
part of both the memory and input/output.

The connection paths shown between the processor, memory, and external
cache are the pathways between integrated circuits. These are typically imple-
mented as fine copper conductors on a printed circuit board. The connection paths
below the bus interface are referred to as the processor bus. The connections above
the bus interface are the input/output (I/O) bus. The processor bus and the I/O bus
attached to the bus interface carry data having different numbers of bits and have
different ways of controlling the movement of data. They may also operate at dif-
ferent speeds. The bus interface hardware handles these differences so that data
can be communicated between the two buses.

All of the remaining structures in the generic computer are considered part of
I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. In
order to enter information into the computer, a keyboard is provided. In order to
view output in the form of text or graphics, a graphics adapter card and LCD (liquid
crystal display) screen are provided. The hard drive, discussed previously, is an elec-
tromechanical magnetic storage device. It stores large quantities of information in
the form of magnetic flux on spinning disks coated with magnetic materials. In order
to control the hard drive and transfer information to and from it, a drive controller
is used. The keyboard, graphics adapter card, and drive controller card are all
attached to the I/O bus. This allows these devices to communicate through the bus
interface with the CPU and other circuitry connected to the processor buses.

The generic computer consists mainly of an interconnection of digital modules.
To understand the operation of each module, we need a basic knowledge of digital
systems and their general behavior. Chapters 1 through 6 of this book deal with logic
design of digital circuits in general. Chapters 5 and 7 discuss the primary components
of a digital system, their operation, and their design. The operational characteristics
of RAM are explained in Chapter 8. Datapath and control for simple computers are
introduced in Chapter 9. Chapters 10 through 13 present the basics of computer
design. Typical instructions employed in computer instruction-set architectures are
presented in Chapter 10. The architecture and design of CPUs are examined in
Chapter 11. Input and output devices and the various ways that a CPU can commu-
nicate with them are discussed in Chapter 12. Finally, memory hierarchy concepts
related to the caches and MMU are introduced in Chapter 13.

To guide the reader through this material and to keep in mind the “forest” as
we carefully examine many of the “trees,” accompanying discussion appears in a
blue box at the beginning of each chapter. Each discussion introduces the topics in
the chapter and ties them to the associated components in the generic computer
diagram at the start of this chapter. At the completion of our journey, we will have
covered most of the various modules of the computer and will have gained an
understanding of the fundamentals that underlie both its function and design.

Earlier, we mentioned that a digital computer manipulates discrete elements
of information and that all information in the computer is represented in binary

Www.Ebook777.com

http://www.ebook777.com

1-2 / Number Systems [13

form. Operands used for calculations may be expressed in the binary number sys-
tem or in the decimal system by means of a binary code. The letters of the alpha-
bet are also converted into a binary code. The remainder of this chapter
introduces the binary number system, binary arithmetic, and selected binary codes
as a basis for further study in the succeeding chapters. In relation to the generic
computer, this material is very important and spans all of the components, except-
ing some in I/O that involve mechanical operations and analog (as contrasted with
digital) electronics.

1-2 NUMBER SYSTEMS

The decimal number system is employed in everyday arithmetic to represent
numbers by strings of digits. Depending on its position in the string, each digit
has an associated value of an integer raised to the power of 10. For example, the
decimal number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4
units plus 5 tenths. The hundreds, tens, units, and tenths are powers of 10
implied by the position of the digits. The value of the number is computed as
follows:

7245 =7X102+2 X101 +4x100+5x%x 10!

The convention is to write only the digits and infer the corresponding powers of 10
from their positions. In general, a decimal number with » digits to the left of the
decimal point and m digits to the right of the decimal point is represented by a
string of coefficients:

A, (A, 5. AAJA A .. A, 1A,

Each coefficient A; is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript
value i gives the position of the coefficient and, hence, the weight 10° by which
the coefficient must be multiplied.

The decimal number system is said to be of base or radix 10, because the
coefficients are multiplied by powers of 10 and the system uses 10 distinct digits. In
general, a number in base r contains r digits, 0, 1, 2, ..., r — 1, and is expressed as a
power series in r with the general form

2

A, " A, TP A A

n

2

+A T A TP+ A T A T

When the number is expressed in positional notation, only the coefficients and the
radix point are written down:

A, A, 5. . AAGA_LA_, . A_, LA,

({34

In general, the “.” is called the radix point. A, _; is referred to as the most signifi-
cant digit (msd) and A _,, as the least significant digit (Isd) of the number. Note that

14 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

if m = 0, the Isd is A_y = Ay. To distinguish between numbers of different bases, it
is customary to enclose the coefficients in parentheses and place a subscript after
the right parenthesis to indicate the base of the number. However, when the con-
text makes the base obvious, it is not necessary to use parentheses. The following
illustrates a base 5 number with n = 3 and m = 1 and its conversion to decimal:

(3124)s =3 X 524+1 x5 +2x 50 +4 x 571
=75+5+2+0.8 = (82.8)

Note that for all the numbers without the base designated, the arithmetic is per-
formed with decimal numbers. Note also that the base 5 system uses only five dig-
its, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3,
and 4 when expressed in that system.

An alternative method for conversion to base 10 that reduces the number of
operations is based on a factored form of the power series:

(...((An_lr +An_2)r +An_3)r+ D0C +A1)r +A0
FAL+HA QA+ T (A g+ (A A Y e
For the example above,

(312.4)s = (B3X5+1)X5)+2+4%x 571
= 16X 5+2+0.8 = (82.8)

In addition to decimal, three number systems are used in computer work:
binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number sys-
tems, respectively.

Binary Numbers

The binary number system is a base 2 system with two digits: 0 and 1. A binary
number such as 11010.11 is expressed with a string of 1s and Os and, possibly, a
binary point. The decimal equivalent of a binary number can be found by expand-
ing the number into a power series with a base of 2. For example,

(11010), = 1 X 24 +1 X 23 +0Xx22+1 x 21 +0 X 2% = (26),,

As noted earlier, the digits in a binary number are called bits. When a bit is equal
to 0, it does not contribute to the sum during the conversion. Therefore, the con-
version to decimal can be obtained by adding the numbers with powers of two cor-
responding to the bits that are equal to 1. For example,

(110101.11), = 32 +16 +4 +1 + 0.5 + 0.25 = (53.75)4

1-2 / Number Systems O 15

0 TABLE 1-2
Powers of Two

n 2n n 2n n 2n

0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 20 1,048,576
5 32 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2.
In digital systems, we refer to 210 as K (kilo), 220 as M (mega), 230 as G (giga), and 240
as T (tera). Thus,

4K = 22x210=212=-4096 and 16M = 2¢x220=224=16,777,216

This convention does not necessarily apply in all cases, with more conventional us-
age of K, M, G, and T as 103, 10, 10° and 10'2, respectively, sometimes applied as
well. So caution is necessary in interpreting and using this notation.

The conversion of a decimal number to binary can be easily achieved by a
method that successively subtracts powers of two from the decimal number. To
convert the decimal number N to binary, first find the greatest number that is a
power of two (see Table 1-2) and that, subtracted from N, produces a positive dif-
ference. Let the difference be designated N;. Now find the greatest number that is
a power of two and that, subtracted from N;, produces a positive difference N,.
Continue this procedure until the difference is zero. In this way, the decimal num-
ber is converted to its powers-of-two components. The equivalent binary number is
obtained from the coefficients of a power series that forms the sum of the compo-
nents. 1s appear in the binary number in the positions for which terms appear in
the power series, and Os appear in all other positions. This method is demonstrated
by the conversion of decimal 625 to binary as follows:

625-512=113=N, 512=2°
113-64 =49 =N, 64=26
49 -32 = 17 = N, 32 = 25
17-16 = 1 = N, 16 = 24
1-1=0=N; 1 =20

(625)) = 2° +26 +25 + 24 +20 = (1001110001),

16 [CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

Octal and Hexadecimal Numbers

As previously mentioned, all computers and digital systems use the binary repre-
sentation. The octal (base 8) and hexadecimal (base 16) systems are useful for rep-
resenting binary quantities indirectly because their bases are powers of two. Since
23 = 8 and 2% = 16, each octal digit corresponds to three binary digits and each
hexadecimal digit corresponds to four binary digits.

The more compact representation of binary numbers in either octal or
hexadecimal is much more convenient for people than using bit strings in binary
that are three or four times as long. Thus, most computer manuals use either
octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for
example, can be represented in the octal system with only five digits. A group of
16 bits can be represented in hexadecimal with four digits. The choice between an
octal and a hexadecimal representation of binary numbers is arbitrary, although
hexadecimal tends to win out, since bits often appear in strings of size divisible
by four.

The octal number system is the base 8 system with digits 0, 1, 2, 3,4, 5, 6, and
7. An example of an octal number is 127.4. To determine its equivalent decimal
value, we expand the number in a power series with a base of 8:

(127.4)g = 1 X 8 +2x 81 +7x 80 +4 X 81 = (87.5),,

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to use the first r digits from the decimal system, starting with
0, to represent the coefficients in a base r system when r is less than 10. The letters
of the alphabet are used to supplement the digits when 7 is 10 or more. The hexa-
decimal number system is a base 16 system with the first 10 digits borrowed from
the decimal system and the letters A, B, C, D, E, and F used for the values 10, 11,
12,13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F)ys = 11 X 16% +6 X 162 +5 X 16! +15 X 167 = (46687),,

The first 16 numbers in the decimal, binary, octal, and hexadecimal number sys-
tems are listed in Table 1-3. Note that the sequence of binary numbers follows a
prescribed pattern. The least significant bit alternates between 0 and 1, the second
significant bit between two Os and two 1s, the third significant bit between four Os
and four 1s, and the most significant bit between eight Os and eight 1s.

The conversion from binary to octal is easily accomplished by partitioning
the binary number into groups of three bits each, starting from the binary point
and proceeding to the left and to the right. The corresponding octal digit is then
assigned to each group. The following example illustrates the procedure:

(010 110 001 101 011. 111 100 000 110), = (26153.7406)

The corresponding octal digit for each group of three bits is obtained from the first eight
entries in Table 1-3.To make the total count of bits a multiple of three, Os can be added
on the left of the string of bits to the left of the binary point. More importantly, Os must

1-2 / Number Systems O 17

0 TABLE 1-3
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

be added on the right of the string of bits to the right of the binary point to make the
number of bits a multiple of three and obtain the correct octal result.

Conversion from binary to hexadecimal is similar, except that the binary
number is divided into groups of four digits, starting at the binary point. The previ-
ous binary number is converted to hexadecimal as follows:

(0010 1100 0110 1011. 1111 0000 0110), = (2C6B.F06)44

The corresponding hexadecimal digit for each group of four bits is obtained by ref-
erence to Table 1-3.

Conversion from octal or hexadecimal to binary is done by reversing the pro-
cedure just performed. Each octal digit is converted to a 3-bit binary equivalent,
and extra Os are deleted. Similarly, each hexadecimal digit is converted to its 4-bit
binary equivalent. This is illustrated in the following examples:

(673.12)g 110 111 011. 001 010 = (110111011.00101),
(3A6.C);s = 0011 1010 0110. 1100 = (1110100110.11),

Number Ranges

In digital computers, the range of numbers that can be represented is based on the
number of bits available in the hardware structures that store and process informa-
tion. The number of bits in these structures is most frequently a power of two, such
as 8, 16, 32, and 64. Since the numbers of bits is fixed by the structures, the addition
of leading or trailing zeros to represent numbers is necessary, and the range of
numbers that can be represented is also fixed.

18 [CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

For example, for a computer processing 16-bit unsigned integers, the num-
ber 537 is represented as 0000001000011001. The range of integers that can be
handled by this representation is from 0 to 216 — 1, that is, from 0 to 65,535. If the
same computer is processing 16-bit unsigned fractions with the binary point to the
left of the most significant digit, then the number 0.375 is represented by
0.0110000000000000. The range of fractions that can be represented is from 0 to
(216 — 1)/216, or from 0.0 to 0.9999847412.

In later chapters, we will deal with fixed-bit representations and ranges
for binary signed numbers and floating-point numbers. In both of these cases,
some bits are used to represent information other than simple integer or frac-
tion values.

1-3 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in base 7 follow the same rules as for decimal
numbers. However, when a base other than the familiar base 10 is used, one must
be careful to use only r allowable digits and perform all computations with base
digits. Examples of the addition of two binary numbers are as follows (note the
names of the operands for addition):

Carries: 00000 101100
Augend: 01100 10110
Addend: +10001 +10111
Sum: 11101 101101

The sum of two binary numbers is calculated following the same rules as for deci-
mal numbers, except that the sum digit in any position can be only 1 or 0. Also, a
carry in binary occurs if the sum in any bit position is greater than 1. (A carry in
decimal occurs if the sum in any digit position is greater than 9.) Any carry
obtained in a given position is added to the bits in the column one significant posi-
tion higher. In the first example, since all of the carries are 0, the sum bits are sim-
ply the sum of the augend and addend bits. In the second example, the sum of the
bits in the second column from the right is 2, giving a sum bit of 0 and a carry bit of
1 (2 = 2 + 0). The carry bit is added with the 1s in the third position, giving a sum
of 3, which produces a sum bit of 1 and a carry of 1 3 =2 + 1).

The following are examples of the subtraction of two binary numbers; as with
addition, note the names of the operands:

Borrows: 00000 00110 00110
Minuend: 10110 10110 10011>< 11110
Subtrahend: —10010 —-10011 —-11110 —10011

Difference: 00100 00011 —01011

1-3 / Arithmetic Operations [19

The rules for subtraction are the same as in decimal, except that a borrow into a
given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10
to the minuend digit.) In the first example shown, no borrows occur, so the differ-
ence bits are simply the minuend bits minus the subtrahend bits. In the second
example, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it
is necessary to borrow from the second position as shown. This gives a difference
bit in the first position of 1 (2 + 0 — 1 = 1). In the second position, the borrow is
subtracted, so a borrow is again necessary. Recall that, in the event that the subtra-
hend is larger than the minuend, we subtract the minuend from the subtrahend
and give the result a minus sign. This is the case in the third example, in which this
interchange of the two operands is shown.

The final operation to be illustrated is binary multiplication, which is quite
simple. The multiplier digits are always 1 or 0. Therefore, the partial products are
equal either to the multiplicand or to 0. Multiplication is illustrated by the follow-
ing example:

Multiplicand: 1011
Multiplier: x 101
1011
0000
1011
Product: 110111

Arithmetic operations with octal, hexadecimal, or any other base r system
will normally require the formulation of tables from which one obtains sums and
products of two digits in that base. An easier alternative for adding two numbers
in base r is to convert each pair of digits in a column to decimal, add the digits in
decimal, and then convert the result to the corresponding sum and carry in the
base r system. Since addition is done in decimal, we can rely on our memories
for obtaining the entries from the familiar decimal addition table. The sequence
of steps for adding the two hexadecimal numbers S9F and E46 is shown in
Example 1-2.

EXAMPLE 1-2 Hexadecimal Addition
Perform the addition (59F)¢ + (E46)46:

Hexadecimal Equivalent Decimal Calculation
1 1 =
59F 5 Carry 9 15 Carry
E46 14 4 6

13E5 119=16+3 14=E 21=16+5

20 O CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

The equivalent decimal calculation columns on the right show the mental reason-
ing that must be carried out to produce each digit of the hexadecimal sum. Instead
of adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We
then convert back to hexadecimal by noting that 21 = 16 + 5. This gives a sum
digit of 5 and a carry of 1 to the next higher-order column of digits. The other two
columns are added in a similar fashion.

In general, the multiplication of two base » numbers can be accomplished by
doing all the arithmetic operations in decimal and converting intermediate results
one at a time. This is illustrated in the multiplication of two octal numbers shown in
Example 1-3.

EXAMPLE 1-3 Octal Multiplication
Perform the multiplication (762)g X (45)g:

Octal Octal Decimal Octal
762 S5x2 = 10=8+2 = 12
45 5x6+1 = 31=24+7 = 37
4672 Sx7+3 = 38=32+4+6 = 46
3710 4x2 = 8=8+0 = 10
43772 4x6+1 = 25=24+1 = 31

4x7+3 = 31=24+7 = 37

Shown on the right are the mental calculations for each pair of octal digits. The octal
digits O through 7 have the same value as their corresponding decimal digits. The
multiplication of two octal digits plus a carry, derived from the calculation on the
previous line, is done in decimal, and the result is then converted back to octal. The
left digit of the two-digit octal result gives the carry that must be added to the digit
product on the next line. The blue digits from the octal results of the decimal calcu-
lations are copied to the octal partial products on the left. For example,
(5 X 2)g = (12)g. The left digit, 1, is the carry to be added to the product (5 X 6)g,
and the blue least significant digit, 2, is the corresponding digit of the octal partial
product. When there is no digit product to which the carry can be added, the carry is
written directly into the octal partial product, as in the case of the 4 in 46.

Conversion from Decimal to Other Bases

We convert a number in base r to decimal by expanding it in a power series and
adding all the terms, as shown previously. We now present a general procedure for
the operation of converting a decimal number to a number in base r that is the
reverse of the alternative expansion to base 10 on page 14. If the number includes
a radix point, we need to separate the number into an integer part and a fraction
part, since the two parts must be converted differently. The conversion of a decimal
integer to a number in base r is done by dividing the number and all successive

1-3 / Arithmetic Operations [21

quotients by r and accumulating the remainders. This procedure is best explained
by example.

EXAMPLE 1-4 Conversion of Decimal Integers to Octal
Convert decimal 153 to octal:

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and
a remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2
and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a
remainder of 2. The coefficients of the desired octal number are obtained from
the remainders:

153/8 =19 + 1/8 Remainder = 1 Least significant digit
19/8=2 +3/8 =3
28=0 +2/8 =2 Most significant digit

(153)10 = (231)g

Note in Example 1-4 that the remainders are read from last to first, as indi-
cated by the arrow, to obtain the converted number. The quotients are divided by r
until the result is 0. We also can use this procedure to convert decimal integers to
binary, as shown in Example 1-5. In this case, the base of the converted number is
2, and therefore, all the divisions must be done by 2.

EXAMPLE 1-5 Conversion of Decimal Integers to Binary

Convert decimal 41 to binary:

41/2 =20 + 1/2 Remainder =1 4 Leastsignificant digit

2012 =10 =
1012 =5 =
SR =2+172 =
22 =1 =
12 =0+ 1/2 = Most significant digit

(41);9 = (101001),

Of course, the decimal number could be converted by the sum of powers of two:
(41)10 =32+8+1= (101001)2

The conversion of a decimal fraction to base r is accomplished by a method
similar to that used for integers, except that multiplication by r is used instead of

22 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

division, and integers are accumulated instead of remainders. Again, the method is
best explained by example.

EXAMPLE 1-6 Conversion of Decimal Fractions to Binary
Convert decimal 0.6875 to binary:

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is
multiplied by 2 to give a new integer and a new fraction. This process is continued until
the fractional part equals 0 or until there are enough digits to give sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

0.6875 x2 = 1.3750 Integer = 1 Most significant digit

0.3750 x2 = 0.7500 =

0.7500 x 2 = 1.5000 =

0.5000 x 2 = 1.0000 =1 | Least significant digit
(0.6875)19 = (0.1011),

Note in the foregoing example that the integers are read from first to last, as
indicated by the arrow, to obtain the converted number. In the example, a finite
number of digits appear in the converted number. The process of multiplying frac-
tions by r does not necessarily end with zero, so we must decide how many digits of
the fraction to use from the conversion. Also, remember that the multiplications
are by number r. Therefore, to convert a decimal fraction to octal, we must multi-
ply the fractions by 8, as shown in Example 1-7.

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal

Convert decimal 0.513 to a three-digit octal fraction:

0.513 x 8 = 4.104 Integer = 4 | Most significant digit
0.104 x 8 = 0.832 =0
0.832x 8 = 6.656 =6
0.656 x 8 = 5.248 =5 v Leastsignificant digit

The answer, to three significant figures, is obtained from the integer digits. Note
that the last integer digit, 5, is used for rounding in base 8 of the second-to-the-last
digit, 6, to obtain

(0513)10 = (0407)8

The conversion of decimal numbers with both integer and fractional parts is
done by converting each part separately and then combining the two answers.
Using the results of Example 1-4 and Example 1-7, we obtain

(153.513),9 = (231.407)s

1-4 / Decimal Codes [23

1-4 DEecimaL CODES

The binary number system is the most natural one for a computer, but people are
accustomed to the decimal system. One way to resolve this difference is to convert
decimal numbers to binary, perform all arithmetic calculations in binary, and then
convert the binary results back to decimal. This method requires that we store the
decimal numbers in the computer in such a way that they can be converted to
binary. Since the computer can accept only binary values, we must represent the
decimal digits by a code that contains 1s and Os. It is also possible to perform the
arithmetic operations directly with decimal numbers when they are stored in the
computer in coded form.

An n-bit binary code is a group of n bits that assume up to 2" distinct combi-
nations of 1s and Os, with each combination representing one element of the set
being coded. A set of four elements can be coded with a 2-bit binary code, with
each element assigned one of the following bit combinations: 00,01,10,11. A set of
8 elements requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The
bit combinations of an n-bit code can be determined from the count in binary from
0 to 2" — 1. Each element must be assigned a unique binary bit combination, and
no two elements can have the same value; otherwise, the code assignment is
ambiguous.

A binary code will have some unassigned bit combinations if the number of
elements in the set is not a power of 2. The ten decimal digits form such a set. A
binary code that distinguishes among ten elements must contain at least four bits,
but six out of the 16 possible combinations will remain unassigned. Numerous dif-
ferent binary codes can be obtained by arranging four bits into 10 distinct combi-
nations. The code most commonly used for the decimal digits is the straightforward
binary assignment listed in Table 1-3 on page 14. This is called binary-coded deci-
mal and is commonly referred to as BCD. Other decimal codes are possible, one of
which is presented in Chapter 3.

Table 1-4 gives a 4-bit code for each decimal digit. A number with » decimal
digits will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12
bits as

0011 1001 0110

with each group of four bits representing one decimal digit. A decimal number in
BCD is the same as its equivalent binary number only when the number is
between 0 and 9, inclusive. A BCD number greater than 10 has a representation
different from its equivalent binary number, even though both contain 1s and Os.
Moreover, the binary combinations 1010 through 1111 are not used and have no
meaning in the BCD code.

Consider decimal 185 and its corresponding value in BCD and binary:

(185);p = (0001 1000 0101)pcp = (10111001),

24 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

O TABLE 1-4

Binary-Coded Decimal (BCD)
Decimal BCD
Symbol Digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It
is obvious that a BCD number needs more bits than its equivalent binary value.
However, BCD representation of decimal numbers is still important, because com-
puter input and output data used by most people needs to be in the decimal sys-
tem. BCD numbers are decimal numbers and not binary numbers, even though
they are represented using bits. The only difference between a decimal and a BCD
number is that decimals are written with the symbols 0, 1, 2, ..., 9, and BCD num-
bers use the binary codes 0000, 0001, 0010, ..., 1001.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible
carry of 1 from a previous less significant pair of digits. Since each digit does not
exceed 9, the sum cannot be greater than 9 + 9 + 1 = 19, the 1 being a carry.
Suppose we add the BCD digits as if they were binary numbers. Then the binary
sum will produce a result in the range from 0 to 19. In binary, this will be from
0000 to 10011, but in BCD, it should be from 0000 to 1 1001, the first 1 being a
carry and the next four bits being the BCD digit sum. When the binary sum is
less than 1010 (without a carry), the corresponding BCD digit is correct. But
when the binary sum is greater than or equal to 1010, the result is an invalid
BCD digit. The addition of binary 6, (0110),, to the sum converts it to the correct
digit and also produces a decimal carry as required. The reason is that the differ-
ence between a carry from the most significant bit position of the binary sum and
a decimal carry is 16 — 10 = 6. Thus, the decimal carry and the correct BCD sum

1-5 / Alphanumeric Codes [25

digit are forced by adding 6 in binary. Consider the next three-digit BCD addi-
tion example.

EXAMPLE 1-8§ BCD Addition

110 BCD carry 12— |-
448 0100 0100 1000
+489 +0100 +1000 +1001
937 Binary sum 1001 1101 10001
Add 6 +0110 +0110
BCD sum — 10011 =~ 10111
BCD result 1001 0011 0111

In each position, the two BCD digits are added as if they were two binary numbers.
If the binary sum is greater than 1001, we add 0110 to obtain the correct BCD digit
sum and a carry. In the right column, the binary sum is equal to 17. The presence of
the carry indicates that the sum is greater than 16 (certainly greater than 9), so a
correction is needed. The addition of 0110 produces the correct BCD digit sum,
0111 (7), and a carry of 1. In the next column, the binary sum is 1101 (13), an
invalid BCD digit. Addition of 0110 produces the correct BCD digit sum, 0011 (3),
and a carry of 1. In the final column, the binary sum is equal to 1001 (9) and is the
correct BCD digit.

1-5 ALPHANUMERIC CODES

Many applications of digital computers require the handling of data consisting not
only of numbers, but also of letters. For instance, an insurance company with thou-
sands of policyholders uses a computer to process its files. To represent the names
and other pertinent information, it is necessary to formulate a binary code for the
letters of the alphabet. In addition, the same binary code must represent numerals
and special characters such as $. Any alphanumeric character set for English is a
set of elements that includes the ten decimal digits, the 26 letters of the alphabet,
and several (more than three) special characters. If only capital letters are
included, we need a binary code of at least six bits, and if both uppercase letters
and lowercase letters are included, we need a binary code of at least seven bits.
Binary codes play an important role in digital computers. The codes must be in
binary because computers can handle only 1s and 0Os. Note that binary encoding
merely changes the symbols, not the meaning of the elements of information being
encoded.

26 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

ASCII Character Code

The standard binary code for the alphanumeric characters is called ASCII
(American Standard Code for Information Interchange). It uses seven bits to
code 128 characters, as shown in Table 1-5. The seven bits of the code are desig-
nated by B; through B;, with B; being the most significant bit. Note that the
most significant three bits of the code determine the column of the table and
the least significant four bits the row of the table. The letter A, for example, is
represented in ASCII as 1000001 (column 100, row 0001). The ASCII code con-
tains 94 characters that can be printed and 34 nonprinting characters used for
various control functions. The printing characters consist of the 26 uppercase
letters, the 26 lowercase letters, the 10 numerals, and 32 special printable char-
acters such as %, @, and $.

The 34 control characters are designated in the ASCII table with abbreviated
names. They are listed again below the table with their full functional names. The
control characters are used for routing data and arranging the printed text into a
prescribed format. There are three types of control characters: format effectors,
information separators, and communication control characters. Format effectors
are characters that control the layout of printing. They include the familiar type-
writer controls such as backspace (BS), horizontal tabulation (HT), and carriage
return (CR). Information separators are used to separate the data into divisions—
for example, paragraphs and pages. They include characters such as record separa-
tor (RS) and file separator (FS). The communication control characters are used
during the transmission of text from one location to the other. Examples of com-
munication control characters are STX (start of text) and ETX (end of text),
which are used to frame a text message transmitted via communication wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a
single unit called a byte. Therefore, ASCII characters most often are stored one per
byte, with the most significant bit set to 0. The extra bit is sometimes used for spe-
cific purposes, depending on the application. For example, some printers recognize
an additional 128 8-bit characters, with the most significant bit set to 1. These char-
acters enable the printer to produce additional symbols, such as those from the
Greek alphabet or characters with accent marks as used in languages other than
English.

Unicope This supplement on Unicode, a 16-bit standard code for representing the
symbols and ideographs for the world’s languages, is available on the Companion
Website (http://www.prenhall.com/mano) for the text.

Parity Bit

To detect errors in data communication and processing, an additional bit is some-
times added to a binary code word to define its parity. A parity bit is the extra bit

1-5 / Alphanumeric Codes [27

[0 TABLE 1-5

American Standard Code for Information Interchange (ASCII)

B;BsB;

B,B;B,B; 000 001 010 011 100 101 110 111
0000 NULL DLE SP 0 @ P : p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b T
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F \Y f v
0111 BEL ETB ' 7 G w g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
1010 LF SUB . : J Z j z
1011 VT ESC + : K [k {
1100 FF FS) < L \ 1 |
1101 CR GS - = M] m }
1110 SO RS ' > N A n ~
1111 SI US / ? @) _ 0 DEL
Control Characters
NULL NULL DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete

Www.Ebook777.com

http://www.ebook777.com

28 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

included to make the total number of 1s in the resulting code word either even or
odd. Consider the following two characters and their even and odd parity:

With Even Parity With Odd Parity

1000001 01000001 11000001
1010100 11010100 01010100

In each case, we use the extra bit in the most significant position of the code to pro-
duce an even number of 1s in the code for even parity or an odd number of 1s in
the code for odd parity. In general, one parity or the other is adopted, with even
parity being more common. Parity may be used with binary numbers as well as
with codes, including ASCII for characters, and the parity bit may be placed in any
fixed position in the code.

o

<) EXAMPLE 1-9 Error Detection and Correction for ASCII Transmission

=~ The parity bit is helpful in detecting errors during the transmission of information
from one location to another. Assuming that even parity is used, the simplest case
is handled as follows: An even (or odd) parity bit is generated at the sending end
for all 7-bit ASCII characters; the 8-bit characters that include parity bits are trans-
mitted to their destination. The parity of each character is then checked at the
receiving end; if the parity of the received character is not even (odd), it means
that at least one bit has changed its value during the transmission. This method
detects one, three, or any odd number of errors in each character transmitted. An
even number of errors is undetected. Other error-detection codes, some of which
are based on additional parity bits, may be needed to take care of an even number
of errors. What is done after an error is detected depends on the particular applica-
tion. One possibility is to request retransmission of the message on the assumption
that the error was random and will not occur again. Thus, if the receiver detects a
parity error, it sends back a NAK (negative acknowledge) control character con-
sisting of the even-parity eight bits, 10010101, from Table 1-5 on page 27. If no
error is detected, the receiver sends back an ACK (acknowledge) control charac-
ter, 00000110. The sending end will respond to a NAK by transmitting the message
again, until the correct parity is received. If, after a number of attempts, the trans-
mission is still in error, an indication of a malfunction in the transmission path is
given.

1-6 GRAY CODES
As we count up or down using binary codes, the number of bits that change from

one binary value to the next varies. This is illustrated by the binary code for the
octal digits on the left in Table 1-6. As we count from 000 up to 111 and “roll

1-6 / Gray Codes [29

[J TABLE 1-6

Gray Code
Binary Bit Gray Bit
Code Changes Code Changes
000 1 000 1
001 2 001 1
010 1 011 1
011 3 010 1
100 1 110 1
101 2 111 1
110 1 101 1
111 3 100 1
000 000

over” to 000, the number of bits that change between the binary values ranges
from 1 to 3.

For many applications, multiple bit changes as the circuit counts is not a
problem. There are applications, however, in which a change of more than one
bit when counting up or down can cause serious problems. One such problem is
illustrated by an optical shaft-angle encoder shown in Figure 1-5(a). The
encoder is a disk attached to a rotating shaft for measurement of the rotational
position of the shaft. The disk contains areas that are clear for binary 1 and
opaque for binary 0. An illumination source is placed on one side of the disk,
and optical sensors, one for each of the bits to be encoded, are placed on the
other side of the disk. When a clear region lies between the source and a sensor,
the sensor responds to the light with a binary 1 output. When an opaque region
lies between the source and the sensor, the sensor responds to the dark with a
binary 0.

The rotating shaft, however, can be in any angular position. For example,
suppose that the shaft and disk are positioned so that the sensors lie right at the

(a) Binary code for positions 0 through 7 (b) Gray code for positions 0 through 7

O FIGURE 1-5
Optical Shaft-Angle Encoder

30 [0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

boundary between 011 and 100. In this case, sensors in positions B,, B; and B,
have the light partially blocked. In such a situation, it is unclear whether the three
sensors will see light or dark. As a consequence, each sensor may produce either a
1 or a 0. Thus, the resulting encoded binary number for a value between 3 and 4
may be 000, 001, 010, 011, 100, 101, 110, or 111. Either 011 or 100 will be satisfac-
tory in this case, but the other six values are clearly erroneous!

To see the solution to this problem, notice that in those cases in which only
a single bit changes when going from one value to the next or previous value,
this problem cannot occur. For example, if the sensors lie on the boundary
between 2 and 3, the resulting code is either 010 or 011, either of which is satis-
factory. If we change the encoding of the values 0 through 7 such that only one
bit value changes as we count up or down (including rollover from 7 to 0), then
the encoding will be satisfactory for all positions. A code having the property
that only one bit at a time changes between codes during counting is a Gray code
named for Frank Gray, who patented its use for shaft encoders in 1953. There are
multiple Gray codes for any set of n consecutive integers, with n even.

A specific Gray code for the octal digits, called a binary reflected Gray code,
appears on the right in Table 1-6. Note that the counting order for binary codes is
now 000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for pro-
cessing, then we can build a digital circuit or use software that converts these codes
to binary before they are used in further processing of the information.

Figure 1-5(b) shows the optical shaft-angle encoder using the Gray code from
Table 1-6. Note that any two segments on the disk adjacent to each other have only
one region that is clear for one and opaque for the other.

The optical shaft encoder illustrates one use of the Gray code concept. There
are many other similar uses in which a physical variable, such as position or volt-
age, has a continuous range of values that is converted to a digital representation.
A quite different use of Gray codes appears in low-power CMOS (Complementary
Metal Oxide Semiconductor) logic circuits that count up or down. In CMOS,
power is consumed only when a bit changes. For the example codes given in Table
1-6 with continuous counting (either up or down), there are 14 bit changes for
binary counting for every eight bit changes for Gray code counting. Thus, the
power consumed at the counter outputs for the Gray code counter is only 57 per-
cent of that consumed at the binary counter outputs.

A Gray code for a counting sequence of n binary code words (n must be
even) can be constructed by replacing each of the first #/2 numbers in the sequence
with a code word consisting of 0 followed by the even parity for each bit of the
binary code word and the bit to its left. For example, for the binary code word
0100, the Gray code word is 0, parity(0, 1), parity(1, 0), parity(0, 0) = 0110. Next,
take the sequence of numbers formed and copy it in reverse order with the left-
most 0 replaced by a 1. This new sequence provides the Gray code words for the
second n/2 of the original n code words. For example, for BCD codes, the first five
Gray code words are 0000, 0001, 0011, 0010, and 0110. Reversing the order of these
codes and replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and
1000 for the last five Gray codes. For the special cases in which the original binary
codes are 0 through 2" — 1, each Gray code word may be formed directly from the

{

s

N\

s

-

Problems O 31

corresponding binary code word by copying its leftmost bit and then replacing
each of the remaining bits with the even parity of the bit of the number and the bit
to its left.

1-7 CHAPTER SUMMARY

In this chapter, we introduced digital systems and digital computers and showed
why such systems use signals having only two values. We briefly introduced the
structure of the stored-program digital computer and showed how computers can
be applied to a broad range of specialized applications by using embedded systems.
We then related the computer structure to a representative example of a personal
computer (PC).

Number-system concepts, including base (radix) and radix point, were pre-
sented. Because of their correspondence to two-valued signals, binary numbers were
discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized,
since they are useful as shorthand notation for binary. Arithmetic operations in bases
other than base 10 and the conversion of numbers from one base to another were
covered. Because of the predominance of decimal in normal use, Binary-Coded Dec-
imal (BCD) was treated. The representation of information in the form of characters
instead of numbers by means of the ASCII code for the English alphabet was pre-
sented. The parity bit was presented as a technique for error detection, and the Gray
code, which is critical to selected applications, was defined.

In subsequent chapters, we treat the representation of signed numbers and
floating-point numbers. Although these topics fit well with the topics in this chap-
ter, they are difficult to motivate without associating them with the hardware used
to implement the operations performed on them. Thus, we delay their presentation
until we examine the associated hardware.

REFERENCES

1. GRrAY, F. Pulse Code Communication. U. S. Patent 2 632 058, March 17, 1953.

2. PATTERSON, D. A., AND J. L. HENNESSY, Computer Organization and Design:
The Hardware/Software Interface, 3rd ed. San Francisco: Morgan Kaufmann,
2004.

3. WHITE, R. How Computers Work: Millennium Edition, 5th ed. Indianapolis:
Que, 1999.

PROBLEMS

, The plus (+) indicates a more advanced problem, and the asterisk (*) indicates that
a solution is available on the Companion Website for the text.

< 1-1. This problem concerns wind measurements made by the wireless weather
station illustrated in Example 1-1. The wind-speed measurement uses a

32 [CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

1-2.

14.

1-5.

1-6.

1-7.

1-8.
1-9.

1-10.

1-11.

rotating anemometer connected by a shaft to an enclosed disk that is one-
half clear and one-half black. There is a light above and a photodiode below
the disk in the enclosure. The photodiode produces a 3 V signal when
exposed to light and a 0 V signal when not exposed to light. (a) Sketch the
relative appearance of voltage waveforms produced by this sensor (1) when
the wind is calm, (2) when the wind is 10 mph, and (3) when the wind is 100
mph. (b) Explain verbally what information the microcomputer must have
available and the tasks it must perform to convert the voltage waveforms
produced into a binary number representing wind speed in miles per hour.

Using the scheme in Example 1-1, find the discrete, quantized value of
voltage and the binary code for each of the following Fahrenheit tempera-
tures: —34,+31, +77, and +108.

*List the binary, octal, and hexadecimal numbers from 16 to 31.

What is the exact number of bits in a memory that contains (a) 96K bits;
(b) 640M bits; (¢) 4G bits?

How many bits are in 1 Tb? [Hint: Depending on the tool used to calculate
this, you may need to use a trick to get the exact result. Note that 220 =
1,000,000, + d, where d is the difference between 220 and 1,000,000,,, and
that 1T = (1,000,000, + d)2. Expand the equation for 1T into a sum-of-
products form, insert the value of d, find the three products, and then find
their sum.]

What is the decimal equivalent of the largest binary integer that can be
obtained with (a) 11 bits and (b) 25 bits?

*Convert the following binary numbers to decimal: 1001101, 1010011.101,
and 10101110.1001.

Convert the following decimal numbers to binary: 193,751, 2007, and 19450.

*Convert the following numbers from the given base to the other three
bases listed in the table:

Decimal Binary Octal Hexadecimal
369.3125 ? ? ?
? 10111101.101 ? ?
? ? 326.5 ?
? ? ? F3C7.A

*Convert the following decimal numbers to the indicated bases, using the
methods of Examples 1-4 on page 21 and 1-7 on page 22:

(a) 7562.45 to octal (b) 1938.257 to hexadecimal (c) 175.175 to binary.

*Perform the following conversion by using base 2 instead of base 10 as the
intermediate base for the conversion:
(a) (673.6)g to hexadecimal (b) (E7C.B)¢to octal (¢) (310.2), to octal

Www.Ebook777.com

http://www.ebook777.com

1-12

1-13.

1-14.

1-15.

1-16.

1-17.

1-18.

1-19.

< 1-20.

Problems O 33

Perform the following binary multiplications:
(a) 1101 x 1011 (b) 0101 x 1010 (e) 100111 x 011011

+Division is composed of multiplications and subtractions. Perform the
binary division 1010110 + 101 to obtain a quotient and remainder.

A limited number system uses base 12. There are at most four integer digits.
The weights of the digits are 123, 122, 12, and 1. Special names are given to
the weights as follows: 12 = 1 dozen, 122 = 1 gross, and 123 = 1 great gross.

(a) How many beverage cans are in 6 great gross + 8 gross + 7 dozen + 4?
(b) Find the representation in base 12 for 7569, beverage cans.

Considerable evidence suggests that base 20 has historically been used for
number systems in a number of cultures.

(a) Write the digits for a base 20 system, using an extension of the same digit
representation scheme employed for hexadecimal.
(b) Convert (2007); to base 20. (¢) Convert (BCL.G),, to decimal.

*In each of the following cases, determine the radix r:
(a) (BEE), = (2699)10 (b) (365), = (194)1

The following calculation was performed by a particular breed of unusually
intelligent chicken. If the radix r used by the chicken corresponds to its total
number of toes, how many toes does the chicken have on each foot?

((34)r + (24)r) X (21)r = (1480)r

*Find the binary representations for each of the following BCD numbers:
(a) 0100 1000 0110 0111 (b) 0011 0111 1000.0111 0101

*Represent the decimal numbers 694 and 835 in BCD, and then show the
steps necessary to form their sum.

*Internally in the computer, with few exceptions, all numerical computation
is done using binary numbers. Input, however, often uses ASCII, which is
formed by appending 011 to the left of a BCD code. Thus, an algorithm that
directly converts a BCD integer to a binary integer is very useful. Here is
one such algorithm:

1. Draw lines between the 4-bit decades in the BCD number.
2. Move the BCD number one bit to the right.
3. Subtract 0011 from each BCD decade containing a binary value > 0111.

4. Repeat steps 2 and 3 until the leftmost 1 in the BCD number has been
moved out of the least significant decade position.

5. Read the binary result to the right of the least significant BCD decade.

(a) Execute the algorithm for the BCD number 0111 1000.
(b) Execute the algorithm for the BCD number 0011 1001 0111.

34 [0 CHAPTER 1/ DIGITAL SYSTEMS AND INFORMATION

1-21.
()

1-22.

1-23.

1-24.
1-25.

1-26.

121

() 1-28.

~

1-29.

Internally in a computer, with few exceptions, all computation is done using
binary numbers. Output, however, often uses ASCII, which is formed by
appending 011 to the left of a BCD code. Thus, an algorithm that directly
converts a binary integer to a BCD integer is very useful. Here is one such
algorithm:

1. Draw lines to bound the expected BCD decades to the left of the binary
number.

2. Move the binary number one bit to the left.
3. Add 0011 to each BCD decade containing a binary value > 0100.

4. Repeat steps 2 and 3 until the last bit in the binary number has been
moved into the least significant BCD decade position.

5.Read the BCD result.

(a) Execute the algorithm for the binary number 1111000.
(b) Execute the algorithm for the binary number 01110010111.

What bit position in an ASCII code must be complemented to change the
ASCII letter represented from uppercase to lowercase and vice versa?

Write your full name in ASCII, using an 8-bit code (a) with the leftmost bit
always 0 and (b) with the leftmost bit selected to produce even parity.
Include a space between names and a period after the middle initial.

Decode the following ASCII code: 1000111 1101111 0100000 1000010
1100001 1100100 1100111 1100101 1110010 1110011 0100001.

*Show the bit configuration that represents the decimal number 255 in
(a) binary, (b) BCD, (c) ASCII, (d) ASCII with odd parity.

(a) List the 6-bit binary number equivalents for 32 through 47 with a parity
bit added in the rightmost position, giving odd parity to the overall 7-bit
numbers. (b) Repeat for even parity.

Using the procedure given in Section 1-5, find the hexadecimal Gray code.

This problem concerns wind measurements made by the wireless weather
station in Example 1-1. The wind direction is to be measured with a disk
encoder like the one shown in Figure 1-5(b). (a) Assuming that the code 000
corresponds to N, list the Gray code values for each of the directions, S, E,
W,NW, NE, SW, and SE. (b) Explain why the Gray code you have assigned
avoids the reporting of major errors in wind direction.

+What is the percentage of power consumed for continuous counting (either
up or down but not both) at the outputs of a binary Gray code counter (with
all 2" code words used) compared to a binary counter as a function of the
number of bits, n, in the two counters?

COMBINATIONAL
LoaGIic CIRCUITS

digital systems. In addition, we will learn the mathematical techniques for

designing circuits from these gates and learn how to design cost-effective circuits.
These techniques, which are fundamental to the design of almost all digital circuits,
are based on Boolean algebra. One aspect of design is to avoid unnecessary circuitry
and excess cost, a goal accomplished by a technique called optimization. Karnaugh
maps provide a graphical method for enhancing understanding of logic design and
optimization and solving small optimization problems for “two-level” logic circuits.
More general optimization methods for circuits with two or more levels are introduced.
Types of logic gates characteristic of contemporary integrated-circuit implementation
are discussed. Exclusive-OR and exclusive-NOR gates are introduced, along with
associated algebraic techniques.

In terms of the diagram at the beginning of Chapter 1, concepts from this chapter
apply to most of the generic computer. Exceptions are circuits that are largely
memory, such as caches and RAM, and analog electronic circuits in the monitor and
hard disk controller. Nevertheless, with its use throughout the design of most of the
computer, what we study in this chapter is fundamental to an in-depth understanding
of computers and digital systems and how they are designed.

I n this chapter we will learn about gates, the most primitive logic elements used in

2-1 BINARY LoOGIC AND GATES

Digital circuits are hardware components that manipulate binary information. The
circuits are implemented using transistors and interconnections in complex semi-
conductor devices called integrated circuits. Each basic circuit is referred to as a
logic gate. For simplicity in design, we model the transistor-based electronic
circuits as logic gates. Thus, the designer need not be concerned with the internal

O 35

36 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

electronics of the individual gates, but only with their external logic properties.
Each gate performs a specific logical operation. The outputs of gates are applied to
the inputs of other gates to form a digital circuit.

In order to describe the operational properties of digital circuits, we need to
introduce a mathematical notation that specifies the operation of each gate and
that can be used to analyze and design circuits. This binary logic system is one of a
class of mathematical systems generally called Boolean algebras (after the English
mathematician George Boole, who in 1854 published a book introducing the math-
ematical theory of logic). The specific Boolean algebra we will study is used to
describe the interconnection of digital gates and to design logic circuits through the
manipulation of Boolean expressions. We first introduce the concept of binary logic
and show its relationship to digital gates and binary signals. We then present the
properties of the Boolean algebra, together with other concepts and methods use-
ful in designing logic circuits.

Binary Logic

Binary logic deals with binary variables, which take on two discrete values, and
with the operations of mathematical logic applied to these variables. The two val-
ues the variables take may be called by different names, as mentioned in Section 1-1,
but for our purpose, it is convenient to think in terms of binary values and assign 1
or 0 to each variable. In the first part of this book, variables are designated by let-
ters of the alphabet, such as A, B, C, X, Y, and Z. Later this notation will be
expanded to include strings of letters, numbers, and special characters. Associated
with the binary variables are three basic logical operations called AND, OR, and
NOT:

1. AND. This operation is represented by a dot or by the absence of an opera-
tor. For example, Z = X - Y or Z = XY is read “Z is equal to X AND Y.” The
logical operation AND is interpreted to mean that Z = 1 if and only if X = 1
and Y = 1; otherwise Z = 0. (Remember that X, Y, and Z are binary vari-
ables and can be equal to only 1 or 0.)

2. OR.This operation is represented by a plus symbol. For example,Z = X + Y
isread “Z is equal to X OR Y;” meaning that Z=1if X =1orif Y = 1, or if
both X=1landY=1Z=0ifandonlyif X=0and Y = 0.

3. NOT. This operation is represented by a bar over the variable. For example,
Z = X is read “Z is equal to NOT X,” meaning that Z is what X is not. In
other words, if X = 1, then Z = 0; but if X = 0, then Z = 1. The NOT opera-
tion is also referred to as the complement operation, since it changes a 1 to 0
and a0 to 1.

Binary logic resembles binary arithmetic, and the operations AND and OR
have similarities to multiplication and addition, respectively. This is why the sym-
bols used for AND and OR are the same as those used for multiplication and addi-
tion. However, binary logic should not be confused with binary arithmetic. One
should realize that an arithmetic variable designates a number that may consist of

2-1 / Binary Logic and Gates [37

many digits, whereas a logic variable is always either a 1 or a 0. The following equa-
tions define the logical OR operation:

0+0=0
0+1=1
1+0=1
1+1=1

These resemble binary addition, except for the last operation. In binary logic, we
have 1 + 1 = 1 (read “one OR one is equal to one”), but in binary arithmetic, we
have 1 + 1 = 10 (read “one plus one is equal to two”). To avoid ambiguity, the
symbol v is sometimes used for the OR operation instead of the + symbol. But as
long as arithmetic and logic operations are not mixed, each can use the + symbol
with its own independent meaning.

The next equations define the logical AND operation:

0-0=0
0-1=0
1-0=0
1-1=1

This operation is identical to binary multiplication, provided that we use only a sin-
gle bit. Alternative symbols to the - for AND and + for OR, are symbols A and v,
respectively, that represent conjunctive and disjunctive operations in propositional
calculus.

For each combination of the values of binary variables such as X and Y,
there is a value of Z specified by the definition of the logical operation. The defini-
tions may be listed in compact form in a truth table. A truth table for an operation
is a table of combinations of the binary variables showing the relationship
between the values that the variables take on and the values of the result of the
operation. The truth tables for the operations AND, OR, and NOT are shown in
Table 2-1. The tables list all possible combinations of values for two variables and
the results of the operation. They clearly demonstrate the definition of the three
operations.

O TABLE 2-1

Truth Tables for the Three Basic Logical Operations

AND OR NOT

X Y Z=X-Y X Y Z=X+Y X Z=X
0 o0 0 0 o0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

Www.Ebook777.com

http://www.ebook777.com

38 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-
duce an output signal. Electrical signals such as voltages or currents exist through-
out a digital system in either of two recognizable values. Voltage-operated circuits
respond to two separate voltage ranges that represent a binary variable equal to
logic 1 or logic 0, as illustrated in Figure 1-1. The input terminals of logic gates
accept binary signals within the allowable range and respond at the output termi-
nals with binary signals that fall within a specified range. The intermediate regions
between the allowed ranges in the figure are crossed only during changes from 1 to
0 or from 0 to 1. These changes are called transitions, and the intermediate regions
are called the transition regions.

The graphics symbols used to designate the three types of gates—AND, OR,
and NOT—are shown in Figure 2-1(a). The gates are electronic circuits that pro-
duce the equivalents of logic-1 and logic-0 output signals in accordance with their
respective truth tables if the equivalents of logic-1 and logic-0 input signals are
applied. The two input signals X and Y to the AND and OR gates take on one of
four possible combinations: 00, 01, 10, or 11. These input signals are shown as tim-
ing diagrams in Figure 2-1(b), together with the timing diagrams for the corre-
sponding output signal for each type of gate. The horizontal axis of a timing
diagram represents time, and the vertical axis shows a signal as it changes between

X— X —
Z=X-Y Z=X+Y X Z=X
Y— Y

AND gate OR gate NOT gate or
inverter

(a) Graphic symbols

X| 0 0 1 1

Y| O 1 0 1

(AND) X-Y] 0 o0 o0 | 1

OR) X+Y| o | 1 1 1

(NOT) X | 1 1 0 0
(b) Timing diagram
—>igle—

(AND)X-Y_|O 0 0‘ 1|

(c) AND timing diagram with gate delay tg

OO0 FIGURE 2-1
Digital Logic Gates

2-2 / Boolean Algebra [39

the two possible voltage levels. The low level represents logic 0 and the high level
represents logic 1. The AND gate responds with a logic-1 output signal when both
input signals are logic 1. The OR gate responds with a logic-1 output signal if either
input signal is logic 1. The NOT gate is more commonly referred to as an inverter.
The reason for this name is apparent from the response in the timing diagram. The
output logic signal is an inverted version of input logic signal X.

In addition to its function, each gate has another very important property
called gate delay, the length of time it takes for an input change to result in the
corresponding output change. Depending on the technology used to implement
the gate, the length of time may depend on which of the inputs are changing. For
example, for the AND gate shown in Figure 2-1(a), with both inputs equal to 1,
the gate delay when input B changes to 0 may be longer than the gate delay when
the input A changes to 0. Also, the gate delay when the output is changing from 0
to 1 may be longer than when the output is changing from 1 to 0, or vice versa. In
the simplified model introduced here, these variations are ignored and the gate
delay is assumed to have a single value, ¢ This value may be different for each
gate type, number of inputs, and the underlying technology and circuit design of
the gate. In Figure 2-1(c), the output of the AND gate is shown taking into con-
sideration the AND gate delay, 75. A change in the output waveform is shifted ¢5
time units later compared to the change in input X or Y that causes the it. When
gates are attached together to form logic circuits, the delays down each path from
an input to an output add together. In Section 6-2, we will revisit gate delay and
consider a more accurate model.

AND and OR gates may have more than two inputs. An AND gate with
three inputs and an OR gate with six inputs are shown in Figure 2-2. The three-
input AND gate responds with a logic-1 output if all three inputs are logic 1. The
output is logic 0 if any input is logic 0. The six-input OR gate responds with a
logic 1 if any input is logic 1; its output becomes a logic 0 only when all inputs are
logic 0.

2-2 BOOLEAN ALGEBRA

The Boolean algebra we present is an algebra dealing with binary variables and
logic operations. The variables are designated by letters of the alphabet, and the
three basic logic operations are AND, OR, and NOT (complementation). A Bool-
ean expression is an algebraic expression formed by using binary variables, the con-
stants 0 and 1, the logic operation symbols, and parentheses. A Boolean function
can be described by a Boolean equation consisting of a binary variable identifying

A JE—
gﬁ}F=ABC B G=A+B+C+D+E+F
. c
(a) Three-input AND gate E (b) Six-input OR gate
F
0 FIGURE 2-2

Gates with More than Two Inputs

40 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

the function followed by an equals sign and a Boolean expression. Optionally, the
function identifier is followed by parentheses enclosing a list of the function vari-
ables separated by commas. A single-output Boolean function is a mapping from
each of the possible combinations of values 0 and 1 on the function variables to
value 0 or 1. A multiple-output Boolean function is a mapping from each of the
possible combinations of values 0 and 1 on the function variables to combinations
of 0 and 1 on the function outputs.

s

(RW) EXAMPLE 2-1 Boolean Function Example - Power Windows

~ Consider an example Boolean equation representing electrical or electronic logic
for control of the lowering of the driver’s power window in a car.

L(D,X,A) = DX+ A

The window is raised or lowered by a motor driving a lever mechanism connected
to the window. The function L = 1 means that the window motor is powered up to
turn in the direction that lowers the window. L = 0 means the window motor is not
powered up to turn in this direction. D is an output produced by pushing a panel
switch on the inside of the driver’s door. With D = 1, the lowering of the driver’s
window is requested, and with D = 0, this action is not requested. X is the output of
a mechanical limit switch. X = 1 if the window is at a limit—in this case, in the fully
down position. X = 0 if the window is not at its limit—i.e., not in the fully down
position. A = 1 indicates automatic lowering of the window until it is in the fully
down position. A is a signal generated by timing logic from D and X. Whenever D
has been 1 for at least one-half second, A becomes 1 and remains at 1 until X = 1.
If D =1 for less than one-half second, A = 0. Thus, if the driver requests that the
window be lowered for one-half second or longer, the window is to be lowered
automatically to the fully down position.

The two parts of the expression, DX and A, are called terms of the expression
for L. The function L is equal to 1 if term DX is equal to 1 or if term A is equal to
1. Otherwise, L is equal to 0. The complement operation dictates that if X = 1, then
X = 0. Therefore, we can say that L =1if D =1,and X =0 or if A = 1. So what
does the equation for L say if interpreted in words? It says that the window will be
lowered if the window is not fully lowered (X = 0) and the switch D is being
pushed (D = 1) or if the window is to be lowered automatically to fully down posi-
tion (A =1).

A Boolean equation expresses the logical relationship between binary vari-
ables. It is evaluated by determining the binary value of the expression for all pos-
sible combinations of values for the variables. A Boolean function can be
represented by a truth table. A truth table for a function is a list of all combinations
of 1s and Os that can be assigned to the binary variables and a list that shows the
value of the function for each binary combination. The truth tables for the logic
operations given in Table 2-1 are special cases of truth tables for functions. The

2-2 / Boolean Algebra [41

0 TABLE 2-2

Truth Table .

for the Function L = DX + A
D X A L
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

number of rows in a truth table is 2”7, where n is the number of variables in the
function. The binary combinations for the truth table are the n-bit binary numbers
that correspond to counting in decimal from 0 through 2” — 1. Table 2-2 shows the
truth table for the function L = DX + A.There are eight possible binary combina-
tions that assign bits to the three variables D, X, and A. The column labeled L con-
tains either 0 or 1 for each of these combinations. The table shows that the
function L is equal to 1 if D =1 and X = 0 or if A = 1. Otherwise, the function L
is equal to 0.

An algebraic expression for a Boolean function can be transformed into a cir-
cuit diagram composed of logic gates that implements the function. The logic cir-
cuit diagram for function L is shown in Figure 2-3. An inverter on input X
generates the complement, X. An AND gate operates on X and D, and an OR gate
combines DX and A. In logic circuit diagrams, the variables of the function F are
taken as the inputs of the circuit, and the binary variable F is taken as the output of
the circuit. If the circuit has a single output, F is a single output function. If the cir-
cuit has multiple outputs, function F is a multiple output function with multiple
variables and equations required to represent its outputs. Circuit gates are inter-
connected by wires that carry logic signals. Logic circuits of this type are called
combinational logic circuits, since the variables are “combined” by the logical oper-
ations. This is in contrast to the sequential logic to be treated in Chapter 5, in which
variables are stored over time as well as being combined.

There is only one way that a Boolean function can be represented in a truth
table. However, when the function is in algebraic equation form, it can be

Do >

O FIGURE 2-3 .
Logic Circuit Diagram for L = DX+ A

42 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

expressed in a variety of ways. The particular expression used to represent the
function dictates the interconnection of gates in the logic circuit diagram. By
manipulating a Boolean expression according to Boolean algebraic rules, it is often
possible to obtain a simpler expression for the same function. This simpler expres-
sion reduces both the number of gates in the circuit and the numbers of inputs to
the gates. To see how this is done, we must first study the basic rules of Boolean
algebra.

Basic Identities of Boolean Algebra

Table 2-3 lists the most basic identities of Boolean algebra. The notation is simpli-
fied by omitting the symbol for AND whenever doing so does not lead to confu-
sion. The first nine identities show the relationship between a single variable X, its
complement X, and the binary constants 0 and 1. The next five identities, 10
through 14, have counterparts in ordinary algebra. The last three, 15 through 17, do
not apply in ordinary algebra, but are useful in manipulating Boolean expressions.

The basic rules listed in the table have been arranged into two columns that
demonstrate the property of duality of Boolean algebra. The dual of an algebraic
expression is obtained by interchanging OR and AND operations and replacing 1s
by Os and Os by 1s. An equation in one column of the table can be obtained from
the corresponding equation in the other column by taking the dual of the expres-
sions on both sides of the equals sign. For example, relation 2 is the dual of relation
1 because the OR has been replaced by an AND and the 0 by 1. It is important to
note that most of the time the dual of an expression is not equal to the original
expression, so that an expression usually cannot be replaced by its dual.

The nine identities involving a single variable can be easily verified by sub-
stituting each of the two possible values for X. For example, to show that X + 0 =
X,let X = 0 to obtain 0 + 0 = 0, and then let X = 1 to obtain 1 + 0 = 1. Both

O TABLE 2-3
Basic Identities of Boolean Algebra

1. X+0=X 2. X1=X

3. X+1=1 4. X-0=0

5 X+X=X 6. X X=X

7. X+X=1 8. X-X=0

9. X=X
10, X+Y=Y+X 11. XY=YX Commutative
12. X+(Y+2)=X+Y)+Z 13. X(YZ) = (XY)Z Associative
4. X(Y+2Z)=XY+XZ 15. X+YZ=(X+Y)X+Z) Distributive
16, X+Y=X'Y 17. X-Y=X+Y DeMorgan’s

Www.Ebook777.com

http://www.ebook777.com

2-2 / Boolean Algebra [43

equations are true according to the definition of the OR logic operation. Any
expression can be substituted for the variable X in all the Boolean equations
listed in the table. Thus, by identity 3 and with X = AB + C, we obtain

AB+C+1=1

Note that identity 9 states that double complementation restores the variable to its
original value. Thus, if X = 0, then X=1land X =0=X.

Identities 10 and 11, the commutative laws, state that the order in which the
variables are written will not affect the result when using the OR and AND opera-
tions. Identities 12 and 13, the associative laws, state that the result of applying an
operation over three variables is independent of the order that is taken, and there-
fore, the parentheses can be removed altogether, as follows:

X+(Y+2Z) = (X+Y)+Z=X+Y+Z
X(YZ) = (XY)Z = XYZ

These two laws and the first distributive law, identity 14, are well known from ordi-
nary algebra, so they should not pose any difficulty. The second distributive law,
given by identity 15, is the dual of the ordinary distributive law and does not hold
in ordinary algebra. As illustrated previously, each variable in an identity can be
replaced by a Boolean expression, and the identity still holds. Thus, consider the
expression (A + B) (A + CD). Letting X = A,Y = B,and Z = CD, and applying
the second distributive law, we obtain

(A+B)A+CD)=A+BCD
The last two identities in Table 2-3,

X+Y=XYand X' Y=X+Y

are referred to as DeMorgan’s theorem. This is a very important theorem and is
used to obtain the complement of an expression and of the corresponding function.
DeMorgan’s theorem can be illustrated by means of truth tables that assign all the
possible binary values to X and Y. Table 2-4 shows two truth tables that verify the
first part of DeMorgan’s theorem. In (a), we evaluate X + Y for all possible values
of X and Y. This is done by first evaluating X + Y and then taking its complement.
In (b), we evaluate X and Y and then AND them together. The result is the same

0 TABLE 2-4
Truth Tables to Verify DeMorgan’s Theorem

X
<l
>_<|
<

@ X Y X+Y X+Y (b) X Y

__ o
_ O RO
[Y)
SO O
——- O
—_0 = O
OO R =
R O M
OO O =

44 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

for the four binary combinations of X and Y, which verifies the identity of the
equation.

Note the order in which the operations are performed when evaluating an
expression. In part (b) of the table, the complement over a single variable is evalu-
ated first, followed by the AND operation, just as in ordinary algebra with multipli-
cation and addition. In part (a), the OR operation is evaluated first. Then, noting
that the complement over an expression such as X + Y is considered as specifying
NOT (X + Y), we evaluate the expression within the parentheses and take the
complement of the result. It is customary to exclude the parentheses when comple-
menting an expression, since a bar over the entire expression joins it together.
Thus, (X +Y) is expressed as X + Y when designating the complement of X + Y.

DeMorgan’s theorem can be extended to three or more variables. The gen-
eral DeMorgan’s theorem can be expressed as

X, +X, + +X, = X1 X5... X,
XX, . X,=X1+X,+ - + X,

Observe that the logic operation changes from OR to AND or from AND to OR.
In addition, the complement is removed from the entire expression and placed
instead over each variable. For example,

A+B+C+D=ABCD

Algebraic Manipulation

Boolean algebra is a useful tool for simplifying digital circuits. Consider, for exam-
ple, the Boolean function represented by

F=XYZ+XYZ+XZ

The implementation of this equation with logic gates is shown in Figure 2-4(a).
Input variables X and Z are complemented with inverters to obtain X and Z. The
three terms in the expression are implemented with three AND gates. The OR gate
forms the logical OR of the terms. Now consider a simplification of the expression
for F by applying some of the identities listed in Table 2-3:

F= XYZ+XYZ+XZ
= XY(Z+Z)+XZ byidentity 14
= XY-1+XZ by identity 7
= XY +XZ by identity 2

The expression is reduced to only two terms and can be implemented with
gates as shown in Figure 2-4(b). It is obvious that the circuit in (b) is simpler than
the one in (a), yet, both implement the same function. It is possible to use a truth
table to verify that the two implementations are equivalent. This is shown in Table 2-
5. As expressed in Figure 2-4(a), the function is equal to 1if X = 0,Y = 1, and Z
=1;if X=0,Y=1,and Z = 0; or if X and Z are both 1. This produces the four 1s

2-2 / Boolean Algebra [45

o

Z {>o
(a) F=XYZ + XYZ + XZ

Do

HJU U

(b) F=XY + XZ

O FIGURE 2-4
Implementation of Boolean Function with Gates

J TABLE 2-5
Truth Table for Boolean Function

X Y Y 4 @F (b)F
0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

for Fin part (a) of the table. As expressed in Figure 2-4(b), the function is equal to
lif X=0andY =1orif X =1 and Z = 1. This produces the same four 1s in part
(b) of the table. Since both expressions produce the same truth table, they are
equivalent. Therefore, the two circuits have the same output for all possible binary
combinations of the three input variables. Each circuit implements the same func-
tion, but the one with fewer gates and/or fewer gate inputs is preferable because it
requires fewer components.

When a Boolean equation is implemented with logic gates, each term
requires a gate, and each variable within the term designates an input to the gate.
We define a literal as a single variable within a term that may or may not be com-
plemented. The expression for the function in Figure 2-4(a) has three terms and
eight literals; the one in Figure 2-4(b) has two terms and four literals. By

46 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

reducing the number of terms, the number of literals, or both in a Boolean
expression, it is often possible to obtain a simpler circuit. Boolean algebra is
applied to reduce an expression for the purpose of obtaining a simpler circuit.
For highly complex functions, finding the best expression based on counts of
terms and literals is very difficult, even by the use of computer programs. Certain
methods, however, for reducing expressions are often included in computer tools
for synthesizing logic circuits. These methods can obtain good, if not the best,
solutions. The only manual method for the general case is a cut-and-try proce-
dure employing the basic relations and other manipulations that become familiar
with use. The following examples use identities from Table 2-3 to illustrate a few
of the possibilities:

1. X+XY=X1+XY=X1+Y)=X1=X
2. XY+XY=X(Y+Y)=X-1=X
3.X+XY=X+X)X+Y)=1-X+Y)=X+Y

Note that the intermediate steps X = X-1 and X-1 = X are often omitted
because of their rudimentary nature. The relationship 1 + Y = 1 is useful for elim-
inating redundant terms, as is done with the term XY in this same equation. The
relation Y + Y = 1 is useful for combining two terms, as is done in equation 2. The
two terms being combined must be identical except for one variable, and that vari-
able must be complemented in one term and not complemented in the other.
Equation 3 is simplified by means of the second distributive law (identity 15 in
Table 2-3). The following are three more examples of simplifying Boolean expres-
sions:

4. X(X+Y)=X-X+XY=X+XY=X1+Y)=X-1=X
5, X+V)(X+Y)=X+YY=X+0=X
6. X(X+Y)=XX+XY=0+XY = XY

The six equalities represented by the initial and final expressions are theorems of
Boolean algebra proved by the application of the identities from Table 2-3. These
theorems can be used along with the identities in Table 2-3 to prove additional
results and to assist in performing simplification.

Theorems 4 through 6 are the duals of equations 1 through 3. Remember that
the dual of an expression is obtained by changing AND to OR and OR to AND
throughout (and 1s to Os and Os to 1s if they appear in the expression). The duality
principle of Boolean algebra states that a Boolean equation remains valid if we
take the dual of the expressions on both sides of the equals sign. Therefore, equa-
tions 4, 5, and 6 can be obtained by taking the dual of equations 1,2, and 3, respec-
tively.

Along with the results just given in equations 1 through 6, the following con-
sensus theorem is useful when simplifying Boolean expressions:

XY+XZ+YZ=XY+XZ

2-2 / Boolean Algebra [47

The theorem shows that the third term, YZ, is redundant and can be eliminated.
Note that Y and Z are associated with X and X in the first two terms and appear
together in the term that is eliminated. The proof of the consensus theorem is
obtained by first ANDing YZ with (X + X) = 1 and proceeds as follows:

XY+XZ+YZ = XY+XZ+YZ(X+X)
= XY+XZ+XYZ+XYZ
= XY+XYZ+XZ+XYZ
= XYQ1+2)+XZ(1 +Y)
= XY+XZ

The dual of the consensus theorem is
X+Y)X+Z(Y+2)=(X+Y)X+2Z)

The following example shows how the consensus theorem can be applied in
manipulating a Boolean expression:

(A+B)A+C) = AA+AC+AB+BC
= AC+AB+BC

AC+AB

Note that AA = 0 and 0 + AC = AC. The redundant term eliminated in the last
step by the consensus theorem is BC.

Complement of a Function

The complement representation for a function F, F, is obtained from an inter-
change of 1s to Os and Os to 1s for the values of F in the truth table. The comple-
ment of a function can be derived algebraically by applying DeMorgan’s theorem.
The generalized form of this theorem states that the complement of an expression
is obtained by interchanging AND and OR operations and complementing each
variable and constant, as shown in Example 2-2.

EXAMPLE 2-2 Complementing Functions

Find the complement of each of the functions represented by the equations
F,=XYZ+XYZ and F, = X(YZ+YZ). Applying DeMorgan's theorem as
many times as necessary, we obtain the complements as follows:

Fi = XYZ+XYZ = (XYZ)- (XYZ)

= X+Y+Z)(X+Y+2Z)

48 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

Fb= XYZ+YZ)=X+(YZ+YZ)

X+(YZ-YZ)

X+(Y+2Z)Y+2Z)

A simpler method for deriving the complement of a function is to take the
dual of the function equation and complement each literal. This method follows
from the generalization of DeMorgan’s theorem. Remember that the dual of an
expression is obtained by interchanging AND and OR operations and 1s and 0Os. To
avoid confusion in handling complex functions, adding parentheses around terms
before taking the dual is helpful, as illustrated in the next example.

EXAMPLE 2-3 Complementing Functions by Using Duals

Find the complements of the functions in Example 2-2 by taking the duals of their
equations and complementing each literal.

We begin with

F,=XYZ+XYZ = (XYZ)+(XYZ)
The dual of F] is

X+Y+2)(X+Y+2)

Complementing each literal, we have

(X+Y+Z2)(X+Y+2Z)=F
Now,

F,=X(YZ+YZ) =X(YZ)+(YZ))
The dual of F, is

X+ +2Z)XY+2)

Complementing each literal yields

X+(Y+Z(Y+2Z)=F

2-3 STANDARD FORMS

A Boolean function expressed algebraically can be written in a variety of ways.
There are, however, specific ways of writing algebraic equations that are consid-
ered to be standard forms. The standard forms facilitate the simplification proce-
dures for Boolean expressions and, in some cases, may result in more desirable
expressions for implementing logic circuits.

2-3 / Standard Forms [49

The standard forms contain product terms and sum terms. An example of a
product term is XYZ. This is a logical product consisting of an AND operation
among three literals. An example of a sum term is X + Y + Z. This is a logical sum
consisting of an OR operation among the literals. In Boolean algebra, the words
“product” and “sum” do not imply arithmetic operations; instead, they specify the
logical operations AND and OR, respectively.

Minterms and Maxterms

A truth table defines a Boolean function. An algebraic expression for the function
can be derived from the table by finding a logical sum of product terms for which
the function assumes the binary value 1. A product term in which all the variables
appear exactly once, either complemented or uncomplemented, is called a min-
term. Its characteristic property is that it represents exactly one combination of
binary variable values in the truth table. It has the value 1 for that combination and
0 for all others. There are 2" distinct minterms for n variables. The four minterms
for the two variables X and Y are X Y, XY, XY, and XY. The eight minterms for the
three variables X, Y, and Z are listed in Table 2-6. The binary numbers from 000 to
111 are listed under the variables. For each binary combination, there is a related
minterm. Each minterm is a product term of exactly » literals, where »n is the num-
ber of variables. In this example, n = 3. A literal is a complemented variable if the
corresponding bit of the related binary combination is 0 and is an uncomple-
mented variable if it is 1. A symbol m; for each minterm is also shown in the table,
where the subscript j denotes the decimal equivalent of the binary combination
corresponding to the minterm. This list of minterms for any given »n variables can
be formed in a similar manner from a list of the binary numbers from 0 through
2" — 1. In addition, the truth table for each minterm is given in the right half of the
table. These truth tables clearly show that each minterm is 1 for the corresponding
binary combination and 0 for all other combinations. Such truth tables will be help-
ful later in using minterms to form Boolean expressions.

O TABLE 2-6
Minterms for Three Variables
Product

X 'Y 2 Term Symbol m m M Mg Mg M Mg my,
0 0 0 XYz mg 1 0 0 0 0 0 o0 O
0 0 1 XYZ my o 1 0o 0 o0 0 o0 o0
0 1 0 XYz my o 0 1 0 0 0 0 0
0 1 1 XYZ mj o 0 o 1 o0 0 o0 o0
1 0 0 XYZ my 0o 0 o0 0 1 0 0 0
1 0 1 XYZ ms o 0 o 0 o0 1 o0 o0
1 1 0 XYZ mg o0 o O o0 o0 o0 1 o0
1 1 1 XYZ m; o 0 o o0 o0 o0 o0 1

50 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

0 TABLE 2-7
Maxterms for Three Variables

X Y 2 Sum Term Symbol M M| M, My M, Mg M M,
0 0 0 X+Y+Z M, o 1 1 1 1 1 1 1
0 0 1 X+Y+Z M; 1 o 1 1 1 1 1 1
0 1 0 X+Y+Z M, 1 1 0o 1 1 1 1 1
0 1 1 X+Y+Z M; 1 1 1 o 1 1 1 1
1 0 0 X+Y+2Z M, 1 1 1 1 o0 1 1 1
1 0 1 X+Y+Z Ms 1 1 1 1 1 o0 1 1
1 1 0 X+Y+Z Mg 1 1 1 1 1 1 o0 1
1 1 1 X+Y+Z M, 1 1 1 1 1 1 1 o0

A sum term that contains all the variables in complemented or uncomple-
mented form is called a maxterm. Again, it is possible to formulate 2” maxterms
with n variables. The eight maxterms for three variables are listed in Table 2-7.
Each maxterm is a logical sum of the three variables, with each variable being com-
plemented if the corresponding bit of the binary number is 1 and uncomplemented
if it is 0. The symbol for a maxterm is M;, where j denotes the decimal equivalent of
the binary combination corresponding to the maxterm. In the right half of the
table, the truth table for each maxterm is given. Note that the value of the max-
term is 0 for the corresponding combination and 1 for all other combinations. It is
now clear where the terms “minterm” and “maxterm” come from: a minterm is a
function, not equal to 0, having the minimum number of 1s in its truth table; a
maxterm is a function, not equal to 1, having the maximum of 1s in its truth table.
Note from Table 2-6 and Table 2-7 that a minterm and maxterm with the same sub-
script are the complements of each other; that is, M; = m; and m; = M;. For exam-
ple, for j = 3, we have

M,=X+Y+Z=XYZ=ms

A Boolean function can be represented algebraically from a given truth table
by forming the logical sum of all the minterms that produce a 1 in the function.
This expression is called a sum of minterms. Consider the Boolean function F in
Table 2-8(a). The function is equal to 1 for each of the following binary combina-
tions of the variables X, Y, and Z: 000, 010, 101 and 111. These combinations corre-
spond to minterms 0, 2, 5, and 7. By examining Table 2-8 and the truth tables for
these minterms in Table 2-6, it is evident that the function F can be expressed alge-
braically as the logical sum of the stated minterms:

F=XYZ+XYZ+XYZ+XYZ = my+m, +ms+m,

This can be further abbreviated by listing only the decimal subscripts of the min-
terms:

F(X,Y,Z) = Zm(0,2,5,7)

2-3 / Standard Forms [51

J TABLE 2-8
Boolean Functions of Three Variables

@ X Y 2z F F b X Y y4 E
0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 1 0
1 0 0 0 1 1 0 0 1
1 0 1 1 0 1 0 1 1
1 1 0 0 1 1 1 0 0
1 1 1 1 0 1 1 1 0

The symbol 3 stands for the logical sum (Boolean OR) of the minterms. The num-

bers following it represent the minterms of the function. The letters in parentheses
following F form a list of the variables in the order taken when the minterms are
converted to product terms.

Now consider the complement of a Boolean function. The binary values of F
in Table 2-8(a) are obtained by changing 1s to Os and Os to 1s in the values of
F. Taking the logical sum of minterms of F, we obtain

F(X,Y,Z)y=XYZ+XYZ+XYZ+XYZ = m, + my +m, +m
or, in abbreviated form,

F(X,Y,Z) = 3m(1,3,4,6)

Note that the minterm numbers for F are the ones missing from the list of the min-
term numbers of F. We now take the complement of F to obtain F:

F= mi+m;+my,+mg=m-my my mg
= Ml'M3'M4'M6 (Since m] = M])

= (X+Y+Z2)X+Y+Z)X+Y+Z)(X+Y+2)

This shows the procedure for expressing a Boolean function as a product of max-
terms. The abbreviated form for this product is

F(X,Y,Z) = TIM(1,3,4,6)

where the symbol II denotes the logical product (Boolean AND) of the maxterms
whose numbers are listed in parentheses. Note that the decimal numbers included
in the product of maxterms will always be the same as the minterm list of the com-
plemented function, such as (1, 3, 4, 6) in the foregoing example. Maxterms are sel-
dom used directly when dealing with Boolean functions, since we can always
replace them with the minterm list of F.

52 [0 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

The following is a summary of the most important properties of minterms:

1. There are 2" minterms for » Boolean variables. These minterms can be gener-
ated from the binary numbers from 0 to 2 — 1.

2. Any Boolean function can be expressed as a logical sum of minterms.

3. The complement of a function contains those minterms not included in the
original function.

4. A function that includes all the 2" minterms is equal to logic 1.

A function that is not in the sum-of-minterms form can be converted to that form
by means of a truth table, since the truth table always specifies the minterms of the
function. Consider, for example, the Boolean function

E=Y+XZ

The expression is not in sum-of-minterms form, because each term does not con-
tain all three variables X, Y, and Z. The truth table for this function is listed in
Table 2-8(b). From the table, we obtain the minterms of the function:

E(X,Y,Z) = 3m(0,1,2,4,5)

The minterms for the complement of E are given by

EX,Y,Z) = 3m(3,6,7)

Note that the total number of minterms in E and E is equal to eight, since the func-
tion has three variables, and three variables produce a total of eight minterms. With
four variables, there will be a total of 16 minterms, and for two variables, there will
be four minterms. An example of a function that includes all the minterms is

G(X,Y) = 2m(0,1,2,3) = 1

Since G is a function of two variables and contains all four minterms, it is always
equal to logic 1.

Sum of Products

The sum-of-minterms form is a standard algebraic expression that is obtained
directly from a truth table. The expression so obtained contains the maximum
number of literals in each term and usually has more product terms than necessary.
This is because, by definition, each minterm must include all the variables of the
function, complemented or uncomplemented. Once the sum of minterms is
obtained from the truth table, the next step is to try to simplify the expression to
see whether it is possible to reduce the number of product terms and the number
of literals in the terms. The result is a simplified expression in sum-of-products
form. This is an alternative standard form of expression that contains product
terms with up to » literals. An example of a Boolean function expressed as a sum
of products is

Www.Ebook777.com

http://www.ebook777.com

2-3 / Standard Forms [53

Y

X— .
z—L/ —L

X_

Y—}

O FIGURE 2-5
Sum-of-Products Implementation

F=Y+XYZ+XY

The expression has three product terms, the first with one literal, the second with
three literals, and the third with two literals.

The logic diagram for a sum-of-products form consists of a group of AND
gates followed by a single OR gate, as shown in Figure 2-5. Each product term
requires an AND gate, except for a term with a single literal. The logical sum is
formed with an OR gate that has single literals and the outputs of the AND gates
as inputs. Often, we assumed that the input variables are directly available in their
complemented and uncomplemented forms, so inverters are not included in the
diagram. The AND gates followed by the OR gate form a circuit configuration
referred to as a two-level implementation or two-level circuit.

If an expression is not in sum-of-products-form, it can be converted to the
standard form by means of the distributive laws. Consider the expression

F= AB+C(D +E)

This is not in sum-of-products form, because the term D + E is part of a product,
not a single literal. The expression can be converted to a sum of products by apply-
ing the appropriate distributive law as follows:

F=AB+C(D+E)= AB+CD +CE

The function F is implemented in a nonstandard form in Figure 2-6(a). This
requires two AND gates and two OR gates. There are three levels of gating in the
circuit. F is implemented in sum-of-products form in Figure 2-6(b). This circuit
requires three AND gates and an OR gate and uses two levels of gating. The deci-
sion as to whether to use a two-level or multiple-level (three levels or more)
implementation is complex. Among the issues involved are the number of gates,
number of gate inputs, and the amount of delay between the time the input values
are set and the time the resulting output values appear. Two-level implementations
are the natural form for certain implementation technologies, as we will see in
Chapter 6.

54 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

D

B— C—

DD
(a) AB+ C(D + E) (b) AB + CD + CE

O FIGURE 2-6
Three-Level and Two-Level Implementation

L
5

Product of Sums

Another standard form of expressing Boolean functions algebraically is the prod-
uct of sums. This form is obtained by forming a logical product of sum terms. Each
logical sum term may have any number of distinct literals. An example of a func-
tion expressed in product-of-sums form is

F=XY+2Z2)(X+Y+2)

This expression has sum terms of one, two, and three literals. The sum terms per-
form an OR operation, and the product is an AND operation.

The gate structure of the product-of-sums expression consists of a group of
OR gates for the sum terms (except for a single literal term), followed by an AND
gate. This is shown in Figure 2-7 for the preceding function F. As with the sum of
products, this standard type of expression results in a two-level gating structure.

2-4 Two-LEVEL CIrcuiT OPTIMIZATION

The complexity of a logic circuit that implements a Boolean function is directly
related to the algebraic expression from which the function is implemented.
Although the truth-table representation of a function is unique, when expressed
algebraically, the function appears in many different forms. Boolean expressions
may be simplified by algebraic manipulation, as discussed in Section 2-2. How-
ever, this procedure of simplification is awkward, because it lacks specific rules to

X

Y T\
Z:D L/ F
2 S N

z—A

O FIGURE 2-7
Product-of-Sums Implementation

Www.Ebook777.com

http://www.ebook777.com

2-4 / Two-Level Circuit Optimization [55

predict each succeeding step in the manipulative process and it is difficult to
determine whether the simplest expression has been achieved. By contrast, the
map method provides a straightforward procedure for optimizing Boolean func-
tions of up to four variables. Maps for five and six variables can be drawn as well,
but are more cumbersome to use. The map is also known as the Karnaugh map, or
K-map. The map is a diagram made up of squares, with each square representing
one row of a truth table, or correspondingly, one minterm of a single output func-
tion. Since any Boolean function can be expressed as a sum of minterms, it follows
that a Boolean function is recognized graphically in the map by those squares for
which the function has value 1, or correspondingly, whose minterms are included
in the function. From a more complex view, the map presents a visual diagram of
all possible ways a function may be expressed in a standard form. Among these
ways are the optimum sum-of-products standard forms for the function. The opti-
mized expressions produced by the map are always in sum-of-products or prod-
uct-of-sums form. Thus, maps handle optimization for two-level implementations,
but do not apply directly to possible simpler implementations for the general case
with three or more levels. Initially, this section covers sum-of-products optimiza-
tion and, later, applies it to performing product-of-sums optimization.

Cost Criteria

In the prior section, counting literals and terms was mentioned as a way of measur-
ing the simplicity of a logic circuit. We introduce two cost criteria to formalize this
concept.

The first criterion is literal cost, the number of literal appearances in a Bool-
ean expression corresponding exactly to the logic diagram. For example, for the
circuits in Figure 2-6, the corresponding Boolean expressions are

F=AB+C(D+E) and F= AB+CD +CE

There are five literal appearances in the first equation and six in the second, so the
first equation is the simplest in terms of literal cost. Literal cost has the advantage
that it is very simple to evaluate by counting literal appearances. It does not, how-
ever, represent circuit complexity accurately in all cases, even for the comparison
of different implementations of the same logic function. The following Boolean
equations, both for function G, illustrate this situation:

G = ABCD + ABCD and G = (A +B)(B + C)(C + D)(D +A)

The implementations represented by these equations both have a literal cost of
eight. But, the first equation has two terms and the second has four. This suggests
that the first equation has a lower cost than the second.

To capture the difference illustrated, we define gate-input cost as the number
of inputs to the gates in the implementation corresponding exactly to the given
equation or equations. This cost can be determined easily from the logic diagram
by simply counting the total number of inputs to the gates in the logic diagram. For

56 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

sum-of-products or product-of-sums equations, it can be found from the equation
by finding the sum of

(1) all literal appearances,

(2) the number of terms excluding terms that consist only of a single literal, and,
optionally,

(3) the number of distinct complemented single literals.

In (1), all gate inputs from outside the circuit are represented. In (2), all gate inputs
within the circuit, except for those to inverters, are represented and in (3), invert-
ers needed to complement the input variables are counted in the event that com-
plemented input variables are not provided. For the two preceding equations,
excluding the count from (3), the respective gate-input counts are 8 + 2 = 10 and
8 + 4 = 12. Including the count from (3), that of input inverters, the respective
counts are 14 and 16. So the first equation for G has a lower gate-input cost, even
though the literal costs are equal.

Gate-input cost is currently a good measure for contemporary logic imple-
mentations, since it is proportional to the number of transistors and wires used in
implementing a logic circuit. Representation of gate inputs becomes particularly
important in measuring cost for circuits with more than two levels. Typically, as the
number of levels increases, literal cost represents a smaller proportion of the actual
circuit cost, since more and more gates have no inputs from outside the circuit
itself. Later, in Figure 2-23, we introduce complex gate types for which evaluation
of the gate-input cost from an equation is invalid, since the correspondence
between the AND, OR and NOT operations in the equation and the gates in the
circuit can no longer be established. In such cases, as well as for equation forms
more complex than sum-of-products and product-of-sums, the gate-input count
must be determined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression
is not necessarily unique. It is sometimes possible to find two or more expressions
that satisfy the cost criterion applied. In that case, either solution is satisfactory
from the cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-8.
The number of squares in each map is equal to the number of minterms in the cor-
responding function. In our discussion of minterms, we defined a minterm m; to go
with the row of the truth table with i in binary as the variable values. This use of i
to represent the minterm m; is carried over to the cells of the maps, each of which
corresponds to a minterm. For two, three, and four variables, there are 4, 8, and 16
squares, respectively. Each of the maps is labeled in two ways: 1) with variables at
the upper left for the columns and the rows and with a binary combination of those
variables for each column and each row, and 2) with single variable labels at the
edges of the map applied by a bracket to single or double rows and columns. Each
location of a variable label aligns with the region of the map for which the variable

2-4 / Two-Level Circuit Optimization [57

Y Y Y
X\ 0 1 x\ 0 1
ol 0] 1 ol XY | XY
1| » 3 X[l XY | Xy
(a) (b)
YZ
x\ 00
o| o
x[1 4
QZ
WX 00, 01
00| 0 1
oL 4 5
X
1l 12 |13]115 | 14
w
1}/8 9 | 11 |10
XZ Z
(e) ()
OO0 FIGURE 2-8

Map Structures

has value 1. The region for which the variable has value 0 is implicitly labeled with
the complement of the variable. Only one of these two schemes is required to com-
pletely label a map, but both are shown to allow selection of the one that works
best for a given user.

Beginning with the binary combination scheme, we note that the binary com-
binations across the top and down the left side of a map take the form of a Gray
code as introduced in Section 1-6. The use of the Gray code is appropriate because
it represents the adjacency of binary combinations and of the corresponding min-
terms that is the foundation of K-maps. Two binary combinations are said to be
adjacent if they differ in the value of exactly one variable. Two product terms
(including minterms) are adjacent if they differ in one and only one literal which
appears uncomplemented in one and complemented in the other. For example, the
combinations (X, Y, Z) = 011 and 010 are adjacent, since they differ only in the

58 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

value of variable Z. Further, the minterms XYZ and XYZ are adjacent, since they
have identical literal appearances except for Z, which appears uncomplemented
and complemented. The reason for the use of a Gray code on K-maps is that any
two squares which share a common edge correspond to a pair of adjacent binary
combinations and adjacent minterms. This correspondence can be used to perform
simplification of product terms for a given function on a K-map. This simplification
is based on the Boolean algebraic theorem:

AB+AB = A

Applying this to the example with A = XYand B =Z,

(XY)Z + (XY)Z = XY
Looking at the K-map in Figure 2-8(c), we see that the two corresponding squares
are located at (X, Y, Z) = 011 (3) and 010 (2), which are in row 0 and columns 11
and 10, respectively. Note that these two squares are adjacent (share an edge) and
can be combined, as indicated by the black rectangle in Figure 2-8(c). This rectan-
gle on the K-map contains both 0 and 1 for Z, and so no longer depends on Z, and
can be read off as XY. This demonstrates that whenever we have two squares shar-
ing edges that are minterms of a function, these squares can be combined to form a
product term with one less variable.

For the 3- and 4-variable K-maps, there is one more issue to be addressed
with respect to the adjacency concept. For a 3-variable K-map, suppose we con-
sider the minterms 0 and 2 in Figure 2-8(c). These two minterms do not share an
edge, and hence do not appear to be adjacent. However, these two minterms are
XY Z and XY Z, which by definition are adjacent. In order to recognize this adja-
cency on the K-map, we need to consider the left and right borders of the map to
be a shared edge. Geometrically, this can be accomplished by forming a cylinder
from the map so that the squares touching the left and right borders actually have
a shared edge! A view of this cylinder appears in Figure 2-8(d). Here minterms m,
and m, share an edge and, from the K-map, are adjacent. Likewise, m, and m
share an edge on the K-map and are adjacent. The two rectangles resulting from
these adjacencies are shown in Figure 2-8(c) and 2-8(d) in blue.

The 4-variable K-map in Figure 2-8(e) can likewise be formed into a cylinder.
This demonstrates four adjacencies, mg and m,, m, and mg, my, and my4, and mg
and my,. The minterms mgy and mg, W XY Z and W XY Z, are adjacent, suggesting
that the top border of the map should be a shared edge with the bottom border.
This can be accomplished by taking the cylinder formed from the map and bending
it, joining these two borders. This results in the torus (doughnut shape) in Figure 2-
8(f). The additional resulting adjacencies identifiable on the map are m; and mg, m;
and m;, and m, and my,,.

Unfortunately, the cylinder and the torus are not convenient to use, but they
can help us remember the locations of shared edges. These edges are at the left and
right border pair for the flat 3-variable map and at the left and right border pair
and the top and bottom border pair for 4-variable K-maps, respectively. The use of

2-4 / Two-Level Circuit Optimization [59

flat maps will require the use of pairs of split rectangles lying across the border
pairs.

One final detail is the placing of a given function F on a map. Suppose that
the function F is given as a truth table with the row designated by decimal i corre-
sponding to the binary input values equivalent to i. Based on the binary combina-
tions on the left and top edges of the K-map combined in order, we can designate
each cell of the map by the same i. This will permit easy transfer of the 0 and 1 val-
ues of F from the truth table onto the K-map. The values of i for this purpose are
shown on the three maps in Figure 2-8. It is a good idea to determine how to fill in
the values of i quickly by noting the order of the values of i in a row depends on
the Gray code value order for the columns and the ordering of the rows of i values
depends on the Gray code value order for the rows. For example, for the 4-variable
map, the rows-of-columns order of the i values is: 0, 1, 3, 2,4, 5,7, 6, 12, 13, 15, 14,
8,9, 11, 10. The rows-of-columns order of the i values for 2-variable and 3-variable
maps are the first four values and the first eight values from this sequence. These
values can also be used for sum of minterm expressions defined using the abbrevi-
ated 3 notation. Note that the positioning of the i values is dependent upon the
placement of the variables in order from lower left side to middle right side to right
top and middle bottom for a 4-variable map. For 2- and 3-variable maps, the order
is the same with the nonexistent “middle” positions skipped. Any variation from
this ordering will give a different map structure.

Two-Variable Maps

There are four basic steps for using a K-map. Initially, we present each of these
steps using a 2-variable function F(A, B) as an example.

The first step is to enter the function on the K-map. The function may be in
the form of a truth table, the 2m shorthand notation for a sum of minterms, or a
sum-of-products expression. The truth table for F(A, B) is given in Table 2-9. For

O TABLE 2-9
Two-Variable Function F(A, B)
A B F
0 0 1
0 1 1
1 0 0
1 1 1

each row in which the function F has value 1, the values of A and B can be read to
determine where to place a 1 on the map. For example, the function has value 1 for
the combination A = 0 and B = 0. Thus, a 1 is placed in the upper left square of the
K-map in Figure 2-9(a) corresponding to A = 0 and B = 0. This operation is

60 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

0I10 Tlll " 0 1
N ini N T
(a) (b)

O FIGURE 2-9
Two-Variable K-map Examples

repeated for rows (0, 1) and (1, 1) in the truth table to complete the entry of Fin
the map.

If the decimal subscripts for the minterms have been added to the truth table
and entered on the map as discussed previously, a much faster approach to enter-
ing the function on the map is available. The subscripts for the minterms of the
function are those corresponding to the rows for which the functionisa 1.So a1 is
simply entered in squares 0, 1, and 3 of the K-map. For these two entry methods, as
well as others, we assume that each remaining square contains a 0, but do not actu-
ally enter Os in the K-map.

The 3m notation for Fin the truth table is F(A,B) = 3m(0,1,3), which can
be entered on the K-map simply by placing 1 in each of the squares 0, 1, and 3.
Alternatively, a sum-of-products expression such as F = A + AB can be given as a
specification. This can be converted to minterms and entered on the K-map. More
simply, the region of the K-map corresponding to each of the product terms can be
identified and filled with 1s. Since AB is a minterm, we can simply place a 1 in
square 3. For A, we note that the region is that identified as “not” A on the K-map
and consists of squares 0 and 1. So A can be entered by placing a 1 in each of these
two squares. In general, this last process becomes easier once we have mastered
the concept of rectangles on a K-map, as discussed next.

The second step is to identify collections of squares on the map representing
product terms to be considered for the simplified expression. We call such objects
rectangles, since their shape is that of a rectangle (including, of course, a square).
Rectangles that correspond to product terms are restricted to contain numbers of
squares that are powers of 2, such as 1, 2, 4, and 8. Also, this implies that the length
of a side of any rectangle is a power of 2. Our goal is to find the fewest such rectan-
gles that include or cover all of the squares marked with 1s. This will give the few-
est product terms and the least input cost for summing the product terms. Any
rectangle we are planning to use should be as large as possible in order to include
as many 1s as possible. Also, a larger rectangle gives a lower input cost for the cor-
responding product term.

For the example, there are two largest rectangles. One consists of squares 1
and 0, the other of squares 3 and 1. Squares 1 and 0 correspond to minterms AB
and A B, which can be combined to form rectangle A. Squares 3 and 1 correspond
to minterms AB and AB, which can be combined to form rectangle B.

2-4 / Two-Level Circuit Optimization [61

The third step is to determine if any of the rectangles we have generated is
not needed to cover all of the 1s on the K-map. In example, we can see that rectan-
gle A is required to cover minterm 0 and rectangle B is required to cover minterm
3. In general, a rectangle is not required if it can be deleted and all of the 1s on the
map are covered by the remaining rectangles. If there are choices as to which rect-
angle of two having unequal size to remove, the largest one should remain.

The final step is to read off the sum-of-products expression, determining the
corresponding product terms for the required rectangles in the map. In the exam-
ple, we can read off the corresponding product terms by using the rectangles
shown and the variable labels on the map boundary as A and B, respectively. This
gives a sum-of-products expression for F as:

F=A+B

EXAMPLE 2-4 Another 2-Variable Map Example

The function G(A, B) = 3m(1,2) is shown on the 2-variable K-map in Figure 2-9(b).
Looking at the map, we find the two rectangles are simply the minterms 1 and 2.
From the map,

G(A,B) = AB+AB

From Figure 2-9(a) and 2-9(b), we find that 2-variable maps contain: (1) 1 X 1
rectangles which correspond to minterms and (2) 2 X 1 rectangles consisting of a
pair of adjacent minterms. A 1 X 1 rectangle can appear on any square of the map
and a 2 X 1 rectangle can appear either horizontally or vertically on the map, each
in one of two positions. Note that a 2 X 2 rectangle covers the entire map and cor-
responds to the function F = 1.

Three-Variable Maps

We introduce simplification on 3-variable maps by using two examples followed by
a discussion of the new concepts involved beyond those required for 2-variable
maps.

EXAMPLE 2-5 Three-Variable Map Simplification 1

Simplify the Boolean function
F(A,B,C) = 3m(0,1,2,3,4,5)

This function has been entered on the K-map shown in Figure 2-10(a), where
squares 0 through 5 are marked with 1s. In the map, the two largest rectangles each
enclose four squares containing 1s. Note that two squares, 0 and 1, lie in both of the
rectangles. Since these two rectangles include all of the 1s in the map and neither

62 [1 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

BC B BC B BC B
A\ 00 01 11 10 A\ 00 01 11 10 A\ 00 01 11 10
Tt 1 3 —C o O||'1=r—13 2
A[l 1P| 7 |1__6:A[1- 1|f Rin|
C C C
(a) (b) (c)

O FIGURE 2-10
Three-Variable K-Maps for Example 2-5 through 2-7

can be removed, the logical sum of the corresponding two product terms gives the
optimized expression for F:

F=A+B

To illustrate algebraically how a 4 X 4 rectangle such as B arises, consider the two
adjacent black rectangles AB and A B connected by two pairs of adjacent min-
terms. These can be combined based on the theorem XY + XY= XwithX=BandY =
A to obtain B.

EXAMPLE 2-6 Three-Variable Map Simplification 2
Simplify the Boolean function

G(A,B,C) = 2m(0,2,4,5,6)

This function has been enter on the K-map shown in Figure 2-10(b), where squares
listed are marked with 1s. In some cases, two squares in the map are adjacent and
form a rectangle of size two, even though they do not touch each other. For exam-
ple, in Figure 2-10(b) and 2-8(d), m, is adjacent to m, because the minterms differ
by one variable. This can be readily verified algebraically:

my+m, = ABC+ABC=AC(B+B)=AC

This rectangle is represented in black in Figure 2-10(b) and in blue in Figure 2-8(d)
on a cylinder where the adjacency relationship is apparent. Likewise, a rectangle is
shown in both figures for squares 4 and 6 which corresponds to AC. From the prior
example, it is apparent that these two rectangles can be combined to give a larger
rectangle C which covers squares 0, 2, 4, and 6. An additional rectangle is required
to cover square 5. The largest such rectangle covers squares 4 and 5. It can be read
from the K-map as A B. The resulting simplified function is

G(A,B) = AB+C

From Figure 2-10(a) and 2-10(b), we find that 3-variable maps can contain all
of the rectangles contained in a 2-variable map plus: (1) 2 x 2 rectangles, (2) 1 x

Www.Ebook777.com

http://www.ebook777.com

2-4 / Two-Level Circuit Optimization [63

4 rectangles, (3) 2 x 1 “split rectangles” at the left and right edges, and a 2 x 2 split
rectangle at the left and right edges. Note that a 2 x 4 rectangle covers the entire
map and corresponds to the function G = 1.

EXAMPLE 2-7 Three-Variable Map Simplification 3
Simplify the Boolean function

H(A,B,C) = 3m(1,3,4,5,6)

This function has been entered on the K-map shown in Figure 2-10(c), where
squares listed are marked with 1s. In this example, we intentionally set the goal of
finding all of the largest rectangles in order to emphasize step 3 of simplification,
which has not been a significant step in earlier examples. Progressing from the
upper center, we find the rectangles corresponding to the following pairs of squares:
(3,1),(1,5),(5,4), (4, 6). Can any of these rectangles be removed and still have all
squares covered? Since only (3, 1) covers 3, it cannot be removed. The same holds
for (4, 6) which covers square 6. After these are included, the only square that
remains uncovered is 5, which permits either (1, 5) or (5, 4), but not both, to be
removed. Assuming that (5, 4) remains, the result can be read from the map as

H(A,B,C) = AC+AB+AC

EXAMPLE 2-8 Four-Variable Map Simplification 1

Simplify the Boolean function
F(A,B,C,D) = 2m(0,1,2,4,5,6,8,9,10,12,13)

The minterms of the function are marked with 1s in the K-map shown in Figure 2-11.
Eight squares in the two left columns are combined to form a rectangle for the one
literal term, C. The remaining three 1s cannot be combined to give a single simplified
product term; rather, they must be combined as two split 2 X 2 rectangles. The top

CD C
AN\ 00, 01 11 10
T [[—=
ool 1||| 1 1

3 74 6
01}| 1 1 1

12] 13 151 14
11| 1 1

10 1: 1§r 11 11U

O FIGURE 2-11
Four-Variable K-map for Example 2-8

64 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

two 1s on the right are combined with the top two 1s on the left to give the term
A D. Note again that it is permissible to use the same square more than once. We
are now left with a square marked with a 1 in the fourth row and fourth column
(minterm 1010). Instead of taking this square alone, which will give a term with
four literals, we combine it with squares already used to form a rectangle of four
squares on the four corners, giving the term B D. This rectangle is represented in
Figure 2-11 and in Figure 2-8(e) on a torus, where the adjacency relationships
between the four squares is apparent. The optimized expression is the logical sum
of the three terms:

F=C+AD+BD

EXAMPLE 2-9 Four-Variable Map Simplification 2

Simplify the Boolean function

G(A,B,C,D) = ACD +AD + BC+CD + ABD

This function has four variables: A, B, C, and D. It is expressed in a fairly complex
sum-of-products form. In order to enter G on a K-map, we will actually enter the
regions corresponding to the product terms onto the map, fill the regions with 1s,
and then copy the 1s onto a new map for solution. The area in the map covered by
the function is shown in Figure 2-12(a). ACD places 1s on squares 0 and 4. AD
adds 1s to squares 1, 3, 5, and 7_BC adds new 1s to squares 2, 10, and 11. CD adds
anew 1 to square 15 and A B D adds the final 1 to square 8. The resulting function

G(A9B7 CaD) = Em(oalyza 3a 4,5a7a 8: 10,11, 15)

is placed on the map in Figure 2-12(b). It is a good idea to check to see if the four-
corner rectangle B D is present and required. It is present, is required to cover

CD C CD C
AB\ 00 01 11 10 ABN 00, 01 11 10
9 T y, 2
oofl 1 Tl 1 {[f2 ooff 1 1| + Il 1l 1
4 2 3 i |
ol 1 170 1 ool o fl @
- B . B
Bl 1| 14] |
al ¥ P al Y B}
A A .
9 1 T =1 9 11 1U
10| 1 |1 I1 0] 1 1|1
O S — 'I—l
D D

(a) K-map for original function G (b) K-map for simplified function G

O FIGURE 2-12
Four-Variable K-map for Example 2-9

2-5 / Map Manipulation [65

square 8, and also covers squares 0, 2, and 10. With these squares covered, it is easy
to see that just two rectangles, A C and CD, cover all of the remaining uncovered
squares. We can read off the resulting function as:

G=BD+AC+CD

Note that this function is much simpler than the original sum-of-products given.

2-5 MAP MANIPULATION

When combining squares in a map, it is necessary to ensure that all the minterms of
the function are included. At the same time, we need to minimize the number of
terms in the optimized function by avoiding any redundant terms whose minterms
are already included in other terms. In this section, we consider a procedure that
assists in the recognition of useful patterns in the map. Other topics to be covered
are the optimization of products of sums and the optimization of incompletely
specified functions.

Essential Prime Implicants

The procedure for combining squares in a map may be made more systematic if we
introduce the terms “implicant,” “prime implicant,” and “essential prime impli-
cant.” A product term is an implicant of a function if the function has the value 1
for all minterms of the product term. Clearly, all rectangles on a map made up of
squares containing 1s correspond to implicants. If the removal of any literal from
an implicant P results in a product term that is not an implicant of the function,
then P is a prime implicant. On a map for an n-variable function, the set of prime
implicants corresponds to the set of all rectangles made up of 2 squares contain-
ing 1s (m = 0,1, ..., n), with each rectangle containing as many squares as possible.

If a minterm of a function is included in only one prime implicant, that prime
implicant is said to be essential. Thus, if a square containing a 1 is in only one rect-
angle representing a prime implicant, then that prime implicant is essential. In
Figure 2-10(c), the terms AC and AC are essential prime implicants, and the
terms AB and BC are nonessential prime implicants.

The prime implicants of a function can be obtained from a map of the func-
tion as all possible maximum collections of 2™ squares containing 1s (m = 0,
1, ..., n) that constitute rectangles. This means that a single 1 on a map represents a
prime implicant if it is not adjacent to any other 1s. Two adjacent 1s form a rectan-
gle representing a prime implicant, provided that they are not within a rectangle of
four or more squares containing 1s. Four 1s form a rectangle representing a prime
implicant if they are not within a rectangle of eight or more squares containing 1s,
and so on. Each essential prime implicant contains at least one square that is not
contained in any other prime implicant.

Www.Ebook777.com

http://www.ebook777.com

66 [1 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

ou|[[THT 1F_15|-

111 17 1

10

O FIGURE 2-13 _ . _
Prime Implicants for Example 2-10: AD, BD, and AB

The systematic procedure for finding the optimized expression from the map
requires that we first determine all prime implicants. Then, the optimized expres-
sion is obtained from the logical sum of all the essential prime implicants, plus
other prime implicants needed to include remaining minterms not included in the
essential prime implicants. This procedure will be clarified by examples.

EXAMPLE 2-10 Simplification Using Prime Implicants

Consider the map of Figure 2-13. There are three ways that we can combine four
squares into rectangles. The product terms obtained from these combinations are
the prime implicants of the function, A D, BD and A B.The terms A D and BD
are essential prime implicants, but A B is not essential. This is because minterms 1
and 3 are included only in the term A D, and minterms 12 and 14 are included only
in the term BD . But minterms 4, 5, 6, and 7 are each included in two prime impli-
cants, one of which is A B, so the term A B is not an essential prime implicant. In
fact, once the essential prime implicants are chosen, the term AB is not needed,
because all the minterms are already included in the two essential prime impli-
cants. The optimized expression for the function of Figure 2-13 is

F=AD+BD

EXAMPLE 2-11 Simplification Via Essential and Nonessential Prime Implicants

A second example is shown in Figure 2-14. The function plotted in part (a) has
seven minterms. If we try to combine squares, we will find that there are six prime
implicants. In order to obtain a minimum number of terms for the function, we
must first determine the prime implicants that are essential. As shown in blue in
part (b) of the figure, the function has four essential prime implicants. The product
term ABCD is essential because it is the only prime implicant that includes
minterm 0. Similarly, the product terms BCD, ABC, and ABC are essential
prime implicants because they are the only ones that include minterms 5, 12, and

2-5 / Map Manipulation [67

CD C CD C
ABN 00 01 11 10 AB\ 00 01 11 10

00] 1 00f|1

01 1 01 1

B B

1] 1 1 1 111 1 1
A A

10 1 1 10 1 1

D D
(a) Plotting the minterms (b) Essential prime implicants

O FIGURE 2-14
Simplification with Prime Implicants in Example 2-11

10, respectively. Minterm 15 is included in two nonessential prime implicants. The
optimized expression for the function consists of the logical sum of the four essen-
tial prime implicants and one prime implicant that includes minterm 15:

ACD
F=ABCD+BCD +ABC+ABC+| or
ABD

The identification of essential prime implicants in the map provides an addi-
tional tool which shows the terms that must absolutely appear in every sum-of-
products expression for a function and provides a partial structure for a more
systematic method for choosing patterns of prime implicants.

Nonessential Prime Implicants

Beyond using all essential prime implicants, the following rule can be applied to
include the remaining minterms of the function in nonessential prime implicants:

Selection Rule: Minimize the overlap among prime implicants as much as pos-
sible. In particular, in the final solution, make sure that each prime implicant selected
includes at least one minterm not included in any other prime implicant selected.

In most cases, this results in a simplified, although not necessarily optimum,
sum-of-products expression. The use of the selection rule is illustrated in the next
example.

EXAMPLE 2-12 Simplifying a Function Using the Selection Rule

Find a simplified sum-of-products form for F(A4,B,C,D)=2m (0, 1, 2, 4, 5, 10, 11,
13,15).

The map for Fis given in Figure 2-15, with all prime implicants shown. A C is
the only essential prime implicant. Using the preceding selection rule, we can
choose the remaining prime implicants for the sum-of-products form in the order

68 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

CD C
AB\. 00 01 11 10 3
ol 1| 1 1 e
o[1 |[1]
B
1 1Y [T
A — |
10 / 1 1
/] 3
/ b \
1 2

O FIGURE 2-15
Map for Example 2-12

indicated by the numbers. Note how the prime implicants 1 and 2 are selected in
order to include minterms without overlapping. Prime implicant 3 (A BD) and
prime implicant BCD both include the one remaining minterm 0010, and prime
implicant 3 is arbitrarily selected to include the minterm and complete the sum-of-
products expression:

F(A,B,C,D) = AC+ABD +ABC+ABD

The prime implicants not used are shown in black in Figure 2-15.

Product-of-Sums Optimization

The optimized Boolean functions derived from the maps in all of the previous
examples were expressed in sum-of-products form. With only minor modification,
the product-of-sums form can be obtained.

The procedure for obtaining an optimized expression in product-of-sums
form follows from the properties of Boolean functions. The 1s placed in the
squares of the map represent the minterms of the function. The minterms not
included in the function belong to the complement of the function. From this, we
see that the complement of a function is represented in the map by the squares not
marked by 1s. If we mark the empty squares with Os and combine them into valid
rectangles, we obtain an optimized expression of the complement of the function,
F. We then take the complement of F to obtain F as a product of sums. This is
done by taking the dual and complementing each literal, as in Example 2-3.

EXAMPLE 2-13 Simplifying a Product-of-Sums Form

Simplify the following Boolean function in product-of-sums form:

F(A,B,C,D) = 3m(0,1,2,5,8,9,10)

2-5 / Map Manipulation [69

11|l o 0 |Jolllo
A_
1

1

D

0 FIGURE 2-16
Map for Example 2-13

The 1s marked in the map of Figure 2-16 represent the minterms of the function.
The squares marked with Os represent the minterms not included in F and there-
fore denote the complement of F. Combining the squares marked with Os, we
obtain the optimized complemented function

F=AB+CD+BD

Taking the dual and complementing each literal gives the complement of F.This is
F in product-of-sums form:

F= (A +B)(C+D)B+D)

The previous example shows the procedure for obtaining the product-of-
sums optimization when the function is originally expressed as a sum of minterms.
The procedure is also valid when the function is originally expressed as a product
of maxterms or a product of sums. Remember that the maxterm numbers are the
same as the minterm numbers of the complemented function, so Os are entered in
the map for the maxterms or for the complement of the function. To enter a func-
tion expressed as a product of sums into the map, we take the complement of the
function and, from it, find the squares to be marked with Os. For example, the
function

F=(A+B+C)(B+D)
can be plotted in the map by first obtaining its complement,
F=ABC+BD
and then marking Os in the squares representing the minterms of F.The remaining
squares are marked with 1s. Then, combining the 1s gives the optimized expression

in sum-of-products form. Combining the Os and then complementing gives the
optimized expression in product-of-sums form. Thus, for any function plotted on

70 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

the map, we can derive the optimized function in either one of the two standard
forms.

Don’t-Care Conditions

The minterms of a Boolean function specify all combinations of variable values for
which the function is equal to 1. The function is assumed to be equal to 0 for the
rest of the minterms. This assumption, however, is not always valid, since there are
applications in which the function is not specified for certain variable value combi-
nations. There are two cases in which this occurs. In the first case, the input combi-
nations never occur. As an example, the four-bit binary code for the decimal digits
has six combinations that are not used and not expected to occur. In the second
case, the input combinations are expected to occur, but we do not care what the
outputs are in response to these combinations. In both cases, the outputs are said
to be unspecified for the input combinations. Functions that have unspecified out-
puts for some input combinations are called incompletely specified functions. In
most applications, we simply do not care what value is assumed by the function for
the unspecified minterms. For this reason, it is customary to call the unspecified
minterms of a function don’t-care conditions. These conditions can be used on a
map to provide further simplification of the function.

It should be realized that a don’t-care minterm cannot be marked with a 1 on
the map, because that would require that the function always be a 1 for such a min-
term. Likewise, putting a 0 in the square requires the function to be 0. To distin-
guish the don’t-care condition from 1s and Os, an X is used. Thus, an X inside a
square in the map indicates that we do not care whether the value of 0 or 1 is
assigned to the function for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care
minterms may be used. When simplifying function F using the 1s, we can choose to
include those don’t-care minterms that give the simplest prime implicants for F.
When simplifying function F using the 0s, we can choose to include those don’t-
care minterms that give the simplest prime implicants for F, irrespective of those
included in the prime implicants for F. In both cases, whether or not the don’t-care
minterms are included in the terms in the final expression is irrelevant. The han-
dling of don’t-care conditions is illustrated in the next example.

EXAMPLE 2-14 Simplification with Don’t-Care Conditions

To clarify the procedure for handling the don’t-care conditions, consider the fol-
lowing incompletely specified function F that has three don’t-care minterms d:

F(A,B,C,D) = 3m(1,3,7,11,15)
d(A,B,C,D) = Sm(0,2,5)

The minterms of F are the variable combinations that make the function equal to
1. The minterms of d are the don’t-care minterms. The map optimization is shown

2-5 / Map Manipulation O 71

CD c \CD C
ABN 00 01 11 10 ABN 00 01 11 10
ooff x | 1 ||1] x oo x [|1 |f1 || x
otf o | x|f1]l o ot o || x [|1]f o
B B
1mlo o 1] o 1mfo (o [|[1]] 0
A A
olofo1| o 10l0 o ||1]] o
D D
(@F=CD+AB (b)F=CD + AD

O FIGURE 2-17
Example with Don’t-Care Conditions

in Figure 2-17. The minterms of F are marked by 1s, those of d are marked by X’s,
and the remaining squares are filled with Os. To get the simplified function in sum-
of-products form, we must include all five 1s in the map, but we may or may not
include any of the X’s, depending on what yields the simplest expression for the
function. The term CD includes the four minterms in the third column. The
remaining minterm in square 0001 can be combined with square 0011 to give a
three-literal term. However, by including one or two adjacent X’s, we can combine
four squares into a rectangle to give a two-literal term. In part (a) of the figure,
don’t-care minterms 0 and 2 are included with the 1s, which results in the simplified
function

F=CD+AB

In part (b), don’t-care minterm 5 is included with the 1s, and the simplified func-
tion now is

F=CD+AD

The two expressions represent two functions that are algebraically unequal. Both
include the specified minterms of the original incompletely specified function, but
each includes different don’t-care minterms. As far as the incompletely specified
function is concerned, both expressions are acceptable. The only difference is in
the value of F for the unspecified minterms.

It is also possible to obtain an optimized product-of-sums expression for the
function of Figure 2-17. In this case, the way to combine the Os is to include don’t-
care minterms 0 and 2 with the Os, giving the optimized complemented function

F=D+AC

Taking the complement of F gives the optimized expression in product-of-sums
form:

72 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

F=DA+0C)

The foregoing example shows that the don’t-care minterms in the map are
initially considered as representing both 0 and 1. The 0 or 1 value that is eventually
assigned depends on the optimization process. Due to this process, the optimized
function will have a 0 or 1 value for each minterm of the original function, includ-
ing those that were initially don’t cares. Thus, although the outputs in the initial
specification may contain Xs, the outputs in a particular implementation of the
specification are only Os and 1s.

More OpTimizaTioNn This supplement gives a procedure for selecting prime impli-
cants that guarantees an optimum solution. In addition, it presents a symbolic
method for performing prime-implicant generation and a tabular method for
prime-implicant selection.

2-6 PRAGMATIC TwO-LEVEL OPTIMIZATION

The two-level optimization procedure that achieves a true optimum solution
requires: 1) use of the minterms of the function, 2) the generation of all prime
implicants, and 3) a selection process that potentially involves a huge number of
alternative prime-implicant selection solutions. A computer algorithm for this pro-
cedure when applied to many realistic problems is impractical due to the number
of minterms or prime implicants involved or the number of solutions that must be
examined. As a consequence, algorithms have been developed that do not 1)
depend upon the enumeration of minterms, 2) require generation of all prime
implicants, or 3) require enumeration of alternate prime-implicant selections. The
best known and most widely used of these algorithms is Espresso II. Using the
vehicle of K-maps, we will illustrate the Espresso II algorithm. For simplicity,
product-of-sums specifications, multiple output functions, and don’t cares are not
considered. Further, we will not illustrate the complex underlying details that con-
tribute significantly to the efficiency and effectiveness of the algorithm. Finally, we
use gate-input count as the cost measure rather than the complex multidimensional
measure used in Espresso. The resulting simplified form of the algorithm appears
in Figure 2-18. The five routines providing core operations for execution of
Espresso are: EXPAND, ESSENTIAL_PRIMES, IRREDUNDANT_COVER,
REDUCE, and LAST_GASP. The function of each of these routines is outlined
next, followed by an example that illustrates the execution of Espresso. In these
discussions, we will deal with various sets of implicants that cover all of the min-
terms of F. Such a set is called a cover of F, denoted by F.

EXPAND replaces each of the implicants of the current F with prime impli-
cants and insures that the cover is reduced in the sense that no implicants remain
that are covered by any single implicant. EXPAND depends on the order in which
the original implicants are processed. The order selects the largest (in terms of size
on the K-map) remaining unprocessed implicant first. If an implicant can be
expanded into multiple prime implicants, the prime implicant chosen is the one

Www.Ebook777.com

http://www.ebook777.com

2-6 / Pragmatic Two-Level Optimization [73

Input Function F and its initial cover F

Initialize Cost = Gate Input Cost of F

Loop 1: Execute EXPAND
On first pass only, execute ESSENTIAL_PRIMES
Execute IRREDUNDANT_COVER
If Cost not improved, goto OUT,
Else update Cost

Loop 2: Execute REDUCE
Goto Loop 1

Out: Execute LAST GASP
If Cost not improved, goto QUIT
Else goto Loop 2

Quit: Place Essential Primes back in F

Return Final F and Final Cost

O FIGURE 2-18
Simplified Espresso Algorithm

which 1) covers the maximum number of other current implicants of F, and 2) in
the case of ties, is the largest implicant.

ESSENTIAL_PRIMES evaluates each of the current implicants to deter-
mine if it is an essential prime implicant, a concept defined in the first part of Sec-
tion 2-5. An implicant is essential prime if it contains a minterm that is surrounded
either by other minterms of the prime or by 0 values in all n directions when 7 is
the number of variables in the function. This test is applied to each of the current
implicants in F. Since the essential primes are required in all solutions, they are
removed temporarily from the solution space. Also, since they are guaranteed to
be covered, their minterms are changed to don’t cares in the solution space. We
denote the changed function as F_g, and a cover of F_g without the essential
primes as F_g.

IRREDUNDANT COVER is used on the implicants in F_g. First, it removes
implicants that are totally redundant in the sense that all can be removed without
exposing any uncovered minterms (squares). Second, it takes the remaining impli-
cants and performs a selection process that resembles a formalization of the selec-
tion rule in Section 2-5.

REDUCE is used to move away from a solution called a local minimum. The
solution is irredundant but, based on the possibility that all prime implicants have
not been found, may not be a minimum-cost solution. In REDUCE, each of the
implicants is reduced to the smallest implicant possible while still maintaining
the cover of the function F_g. REDUCE is performed sequentially on each of the
implicants. This process is order dependent, since the reduction of one implicant
potentially affects squares involved in the reduction of a subsequent implicant. The
ordering is described as follows: (1) choose the largest implicant first, and (2) place
the remaining implicants in the order of smallest number of positions in which the
given implicant differs from the largest one.

74 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

LAST_GASP is a modification of REDUCE, followed by a modification of
EXPAND, followed by IRREDUNDANT_COVER. The modified REDUCE
reduces each of the implicants one at a time to the smallest implicant possible while
still preserving the cover present upon entry. The set of smallest implicants gen-
erated then replaces the starting cover. Note that this set may no longer cover
the function F_g. Next the modified EXPAND finds all prime implicants that
cover at least two of the smallest implicants generated. This set of prime impli-
cants is then combined with the cover present upon entry to LAST_GASP, and
IRREDUNDANT_COVER is applied.

EXAMPLE 2-15 Espresso Example

In executing this example, the simplified Espresso algorithm in Figure 2-18 will be
followed. Our input to Espresso consists of a sum-of-products expression:

F(A,B,C,D) = AD +ABD + BCD + ABCD

The initial K-map for the cover F using the implicants in the equation F appears in
Figure 2-19(a). The initial Cost is 16 gate inputs. These implicants are already in the
order of implicant sizes as required in the next step, EXPAND. Beginning with the
largest implicant, A D, we can look at potential for its expansion by attempting to
remove each of its literals in turn, and evaluate the result on the K-map. If there
are any zeros in the region added, then the literal cannot be deleted. Deletm&A
zeros are encountered at 8, 10, 12, and 14. So, A must be restored. d. Deleting D, a
zero is encountered at square 1. So, D must_be restored, and A D cannot be
expanded into a larger implicant. Considering ABD, deletmg A expands into zeros
in squares 13 and 15, and deleting B expands into zero in square 1. Deleting D
expands into squares 4 and 6, both of which contain 1. So ABD can be expanded
into AB. AB contains no other listed implicants but ABD, which we remove. Simi-
lar operations on F BCD reveal that it can not be expanded. We find that C can be
removed from AB CD, giving new implicant ABD. Figure 2-19(b) gives the final
result of the execution of EXPAND.

Next, ESSENTIAL_PRIMES is applied to the cover F represented in
Figure 2-19(b). Note that n = 4. Checking the minterms of A D, we find that square
0 is surrounded by squares 2 and 4 w1th1nA D and squares 1, and 8 which contain
0s. This satisfies the condition for A D to be essential prime. Square 5 is surrounded
by squares 4 and 7 within AB, and squares 1 and 13 contain 0. Thus, AB is essential
prime. Square 9 is surrounded by square 11 within ABD, and d squares 1, 8, and 13
contain 0, making ABD essential prime. On the other hand, BCD has two 1s adja-
cent to it, neither of which is within it. The resulting essential prime implicants are
shown in Figure 2-19(c), using dashed lines. Since the essential prime implicants
are included in any solution, they are removed and the squares they cover are
changed to d’s before the steps that follow. These essential prime implicants will be
reintroduced in the final step of Espresso.

After dispensing with the essential primes, IRREDUNDANT_COVER is
applied. Since the only implicant left is BCD, the only one covering square 3, it

Www.Ebook777.com

http://www.ebook777.com

2-6 / Pragmatic Two-Level Optimization [75

CD C
10 A} 00 01 11 10
o 1 L
™ 00| 1 117
. orf[2[] 1] 1 1]
| |B al 2 3 O 1 B
10 A ol 10
o |l 1]
—
(a) Original function F and cover F (b) After EXPAND
CD C CD C
A}oo 01 11, 10 A}oo 01 11, 10
|] = L
00 d;? 1 [a2 ool ¢l Y 1] a?
— -
o1frdi| "a] _:_dfﬂ orf a4 a7 a7 a©
—t——+—|B B
ul 4 131 14 al @ 13 15[14
A S— — A -
108d;9dT10 o] o «q[df
D D
(c) After ESSENTIAL (d) After IRREDUNDANT _COVER
CD C CD C
A} 00 01 11 10 A}\ 00 01 11 10
00 dO 1|| d2 00 dO 1 13 a}
B B
al 3 3 o & al o o 4
A A
ol 3 49 dli'l_lo ol 8 a & O
D D
(e) After REDUCE (f) After EXPAND
CD C
A}\ 00 01 11 10
ol 1 | PEIR
01 I1‘ 19 171
) B
| 13 3 14
11
A)
10 8|ﬁ =
D

() After IRREDUNDANT_COVER,
LAST_GASP, and QUIT

O FIGURE 2-19
Espresso Example

76 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

must be selected. Next, the new Cost must be evaluated to see if it has improved.
Based on the K-map in Figure 2-19(d), Cost has been reduced to 14. This solution
represents a local minimum Cost.

REDUCE is applied next to attempt to move away from the local minimum
Cost to a lower Cost. There is only one implicant BCD under consideration, so
there is no need for ordering the implicants. From the K-map in Figure 2-19(d), the
only square containing a 1 is square 3,so BCD can be reduced to A BCD, as shown
in Figure 2-19(e). _

Application of EXPAND replaces A BCD with the largest implicant that
covers square 3, AC. Next, IRREDUNDANT_COVER finds that all implicants are
required. The result, shown in Figure 2-19(f), gives Cost = 13.

Repetition of REDUCE, EXPAND, and IRREDUNDANT_COVER still
yields Cost = 13, so the next step is LAST_GASP. This step yields no new result,
since only one square, 3, remains to be covered. Since the Cost is still 13, the next
step is QUIT. The essential primes are returned to the solution to give the final
result in Figure 2-19(g). The equation for the result is:

F(A,B,C,D)= AD+AB+ABD +AC

2-7 MuLTIPLE-LEVEL CIrRcuUIT OPTIMIZATION

Although we have found that two-level circuit optimization can reduce the cost of
combinational logic circuits, often additional cost savings are available by using cir-
cuits with more than two levels. Such circuits are referred to as multiple-level cir-
cuits. These savings are illustrated by the implementation of the function

G = ABC+ABD +E+ACF+ ADF

Figure 2-20(a) gives the two-level implementation of G, which has a gate-input cost
of 17. Now suppose that we apply the distributive law of Boolean algebra to G to
give

G = AB(C +D) +E +A(C + D)F

This equation gives the multiple-level implementation of G in Figure 2-20(b), which
has a gate-input cost of 13, an improvement of 4 gate inputs. In Figure 2-20(b),
C + D is implemented twice. Instead, one implementation of this subfunction can
be shared to give the circuit in Figure 2-20(c) with a gate-input cost of 11, an
improvement of 2. This common use of (C + D) suggests that G can be written as

G=(AB+AF)(C+D)+E
This increases the cost to 12. But by factoring out A from AB + AF, we obtain

G =AB+F(C+D)+E

2-7 / Multiple-Level Circuit Optimization [77

A)
— A
B) B
|/ “m N
E __r\!, G E ®_ G
)) >
C) D— L
D D F
F
(a) (b)
4) A
8 —
p—1> = :DJj ‘
D:D_

s

4 -
©

O FIGURE 2-20
Multiple-Level Circuit Example

(d

Figure 2-20(d) gives the multiple-level implementation of G using this equation,
which has a gate-input cost of only 9, just slightly more than one-half of the origi-
nal cost.

This reduction was achieved by a sequence of applications of algebraic iden-
tities, at each step observing the effect on the gate-input cost. Just as with the use
of Boolean algebra to obtain simplified two-level circuits, the procedure used here
is not particularly systematic. Further, an algorithmic procedure corresponding to
that for two-level circuit optimization does not exist, due to the broader range of
possible actions and the number of solutions possible. So multiple-level optimiza-
tion is based on the use of a set of transformations that are applied in conjunction
with cost evaluation to find a good, but not necessarily optimum, solution. In the
remainder of this section, we consider such transformations and illustrate their
application in reducing circuit cost. The transformations, to be illustrated by the
next example, are defined as follows:

1. Factoring is finding a factored form from either a sum-of-products expression
or a product-of-sums expression for a function.

2. Decomposition is the expression of a function as a set of new functions.
3. Extraction is the expression of multiple functions as a set of new functions.

4. Substitution of a function G into a function F is expressing F as a function of
G and some or all of the original variables of F.

78 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

5. Elimination is the inverse of substitution in which function G in an expres-
sion for function F is replaced by the expression for G. Elimination is also
called flattening or collapsing.

EXAMPLE 2-16 Multilevel Optimization Transformations

The following functions will be used in illustrating the transformations:

G=ACE +ACF+ADE + ADF + BCDEF
H=ABCD + ABE + ABF + BCE + BCF

The first transformation to be illustrated is factoring by using function G. Ini-
tially, we will look at algebraic factoring, which avoids axioms that are unique to
Boolean algebra, such as those involving the complement and idempotence. Fac-
tors can be found not only for the entire expression for G, but also for its subex-
pressions. For example, since the first four terms of G all contain variable A, it can
be factored out of these terms, giving:

G=A(CE+CF+DE+DF)+BCDEF

In this case, note that A and CE + CF + DE + D are factors, and BCDE F is not
involved in the factoring operation. By factoring out C and D, CE + CF + DE +
DF can be written as C(E + F) + D(E + F), which be rewritten as (C + D)(E + F).
Placing this expression in G gives:

G=A(C + D)(E + F) + BCDEF

The term BCDEF could be factored into product terms, but such factoring will
not reduce the gate-input count and so is not considered. The gate-input count for
the original sum-of-products expression for G is 26 and for the factored form of G
is 18, for a saving of 8 gate inputs. Due to the factoring, there are more gates in
series from inputs to outputs, a maximum of four levels instead of three, including
input inverters. This may increase the delay through the circuit after technology
mapping has been applied.

The second transformation to be illustrated is decomposition, which allows
operations beyond algebraic factoring. The factored form of G can be written as a
decomposition as follows:

G=A(C+D)X,+BX,EF
X;=CD
X,=E+F
Once X; and X, have been defined, they can be complemented, and the comple-

ments can replace C + D and E F, respectively, in G. An illustration of the substi-
tution transformation is

Www.Ebook777.com

http://www.ebook777.com

2-7 / Multiple-Level Circuit Optimization [79

G=AX1X,+BX; X,
X,=CD
X,=E+F

The gate-input count for this decomposition is 14, for a saving of 12 gate inputs
from the original sum-of-products expression for G, and of 4 gate inputs from the
factored form of G.

In order to illustrate extraction, we need to perform decomposition on H and
extract common subexpressions in G and H. Factoring out B from H, we have

H=B(ACD+AE+AF+CE+CF)
Determining additional factors in H, we can write
H=B(A (CD)+(A+C)E+F))

Factors X7, X,, and X;can now be extracted to obtain

X,=CD
X2=E+F
X3=A+C

and factors X; and X, can be shared between G and H. Performing substitution,
we can write G and H as

G=A X1X2+BX1AYZ
H=B(AX, +X; X))

A logic diagram is given for the original sum-of-products in Figure 2-21(a) and for
the extracted form in Figure 2-21(b). The gate-input cost for the original G and H
without shared terms, including input inverters, is 48. For decomposed G and H
without shared terms between G and H, it is 31. With shared terms, it is 25, cutting
the gate-input cost to about half.

This example illustrates the value of the transformations in reducing gate-input
cost. In general, due to the wide range of alternative solutions and the complexity in
determining the divisors to use in decomposition and extraction, obtaining truly opti-
mum solutions in terms of gate-input cost is usually not feasible, so only good solu-
tions are sought. The key to successful transformations is the determination of the
factors to be used in decomposition or extraction and choice of the transformation
sequence to apply. These decisions are complex and beyond the scope of our study
here, but are regularly incorporated into logic synthesis tools.

Our discussion thus far has dealt only with multilevel optimization in terms
of reducing gate-input cost. In a large proportion of designs, the length of the long-
est path or paths through the circuit is often constrained due to the path delay, the
length of time it takes for a change in a signal to propagate down a path through

80 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

9]
C1 L7

los]
I—u

OO0 FIGURE 2-21
Multiple-Level Circuit Optimization Example

the gates. In such cases, the number of gates in series may need to be reduced.
Such a reduction using the final transformation, elimination, is illustrated in the
following example.

2-8 / Other Gate Types [81

EXAMPLE 2-17 Example of Transformation for Delay Reduction

In the circuit in Figure 2-21(b), the paths from C, D, E, F and A to H all pass
through four 2-input gates. Assuming that all multi-input gates contribute the
same delay to the path, a delay greater than that contributed by an inverter,
these are the longest-delay paths in the circuit. Due to a specification on maxi-
mum path delay for the circuit, these paths must be shortened to at most three
multi-input gates or their equivalent in multi-input gates and inverter delays.
This path shortening should be done with a minimum increase in gate-input
cost.

The elimination transform which replaces intermediate variables, X;, with the
expressions on their right-hand sides or removes other factoring such as that of
variable B is the mechanism for reducing the number of gates in series. To deter-
mine which factor or combination of factors should be eliminated, we need to look
at the effect on gate-input cost. The increase in gate-input cost for the combina-
tions of eliminations that reduce the problem path lengths by at least one gate are
of interest. There are only three such combinations: elimination of the factoring of
B, elimination of intermediate variables X7, X,, and Xj3, and elimination of the fac-
tor B and the three intermediate variables X, X,, and Xj;. The respective gate-
input cost increases for these actions are 0, 12, and 12, respectively. Clearly, the
removal of the factor B is the best choice, since the gate-input cost does not
increase. This also demonstrates that, due to the additional decomposition of H,
the gate-input cost gain of 3 that occurred by factoring out B at the beginning has
disappeared. The logic diagram resulting from elimination of the factor B is given
in Figure 2-21(c).

While the necessary delay reduction was obtained by using elimination to
reduce the number of gates along the paths in Example 2-17, in general, such a
gate reduction may not reduce delay, or may even increase it due to differences in
the delay characteristics of the gates, as discussed further in Chapter 6.

2-8 OTHER GATE TYPES

Since Boolean functions are expressed in terms of AND, OR, and NOT operations,
it is a straightforward procedure to implement a Boolean function with AND, OR,
and NOT gates. We find, however, that the possibility of considering gates with
other logic operations is of considerable practical interest. Factors to be taken into
consideration when constructing other types of gates are the feasibility and econ-
omy of implementing the gate with electronic components, the ability of the gate to
implement Boolean functions alone or in conjunction with other gates, and the
convenience of representing gate functions that are frequently used. In this section,
we introduce these other gate types, which are used throughout the rest of the text.
Specific techniques for incorporating these gate types in circuits are given in
Section 3-3.

82 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

The graphics symbols and truth tables of six logic-gate types are shown in
Figure 2-22, with six additional gate types given in Figure 2-23. The gates in Figure 2-22
are referred to as primitive gates, and those in Figure 2-23 as complex gates.

Although the gates in Figure 2-22 are shown with just two binary input
variables, X and B, and one output binary variable, F, with the exception of the
inverter and the buffer, all may have more than two inputs. The distinctively
shaped symbols shown, as well as rectangular symbols not shown, are specified
in detail in the Institute of Electrical and Electronics Engineers’ (IEEE) Stan-
dard Graphic Symbols for Logic Functions (IEEE Standard 91-1984). The
AND, OR, and NOT gates were defined previously. The NOT circuit inverts the
logic sense of a binary signal to produce the complement operation. Recall that
this circuit is typically called an inverter rather than a NOT gate. The small circle
at the output of the graphic symbol of an inverter is formally called a negation
indicator and designates the logical complement. We informally refer to the
negation indicator as a “bubble.” The triangle symbol by itself designates a
buffer circuit. A buffer produces the logical function Z = X, since the binary
value of the output is equal to the binary value of the input. This circuit is used
primarily to amplify an electrical signal to permit more gates to be attached to
the output or to decrease the time it takes for signals to propagate through the
circuit.

The 3-state buffer is unique in that outputs of such buffers can be connected
together, provided that only one of the signals on their E inputs is 1 at any given
time. This type of buffer and its basic use are discussed in detail later in this
section.

The NAND gate represents the complement of the AND operation, and the
NOR gate represents the complement of the OR operation. Their respective
names are abbreviations of NOT-AND and NOT-OR, respectively. The graphics
symbols for the NAND gate and NOR gate consist of an AND symbol and an OR
symbol, respectively, with a bubble on the output, denoting the complement opera-
tion. In contemporary integrated circuit technology, NAND and NOR gates are
the natural primitive gate functions for the simplest and fastest electronic circuits.
If we consider the inverter as a degenerate version of NAND and NOR gates with
just one input, NAND gates alone or NOR gates alone can implement any Bool-
ean function. Thus, these gate types are much more widely used than AND and
OR gates in actual logic circuits. As a consequence, actual circuit implementations
are often done in terms of these gate types.

A gate type that alone can be used to implement all Boolean functions is
called a universal gate. To show that the NAND gate is a universal gate, we need
only show that the logical operations of AND, OR, and NOT can be obtained with
NAND gates only. This is done in Figure 2-24. The complement operation obtained
from a one-input NAND gate corresponds to a NOT gate. In fact, the one-input
NAND is an invalid symbol and is replaced by the NOT symbol, as shown in the
figure. The AND operation requires a NAND gate followed by a NOT gate. The
NOT inverts the output of the NAND, giving an AND operation as the result. The
OR operation is achieved using a NAND gate with NOTs on each input. When

Www.Ebook777.com

http://www.ebook777.com

Name

2-8 / Other Gate Types [83

Distinctive-Shape
Graphics Symbol

Algebraic
Equation

Truth
Table

AND

X
F F=XY
Y —

XY

00
01
10
11

r—tOOOl"'rj

OR

F F=X+Y

XY

00
01
10
11

._.._.._.er-n

NOT
(inverter)

r—x0|><
o~ |m

Buffer

r—xo|><
P—‘O"TJ

3-State Buffer

0 0 |Hi-Z
01 |Hi-Z
10(0
1111

NAND

00
01
10

Q._.._.._.lr-n

Ju

NOR

O FIGURE 2-22
Primitive Digital Logic Gates

)|
<

coom|m

e, oo
oo

84 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

Name Distinctive-Shape Algebraic Truth
Graphics Symbol Equation Table
XY|F
Exclusive-OR X F F=XY+ XY 000
(XOR) Y =X®Y 011
10/(1
1110
XY|F
Exclusive-NOR X B F=XY + XY 001
(XNOR) Y 01f0
=X®Y 10/o0
1111

W RS
AND-OR-INVERT X — WX TYZ
(AOD) ¢ F F=WX+YZ
Z JE—

w
OR-AND -INVERT x B
(OA]) 3 }F F=W+X)(Y +2)

z
W —|

‘(?cl)))'OR ¥ F F=WX+YZ
zZ—

w
?OR;)AND %%}F F=(W+X)Y+2)
z

O FIGURE 2-23
Complex Digital Logic Gates

DeMorgan’s theorem is applied, as shown in Figure 2-24, the inversions cancel and
an OR function results.

The exclusive-OR (XOR) gate shown in Figure 2-23 is similar to the OR gate,
but excludes (has the value 0 for) the combination with both X and Y equal to 1.
The graphics symbol for the XOR gate is similar to that for the OR gate, except for
the additional curved line on the inputs. The exclusive-OR has the special symbol

Www.Ebook777.com

http://www.ebook777.com

2-9 / Exclusive-OR Operator and Gates [85

NOT x*@»ix—bo—i
X— —

AND ol {>c XY = XY
Y —

X
OR
Y

Do _
Do

0 FIGURE 2-24
Logical Operations with NAND Gates

@ to designate its operation. The exclusive-NOR is the complement of the exclu-
sive-OR, as indicated by the bubble at the output of its graphics symbol.

The AND-OR-INVERT (AOI) gate forms the complement of a sum of prod-
ucts. The are many different AND-OR-INVERT gates, depending on the number
of AND gates and the numbers of inputs to each AND and directly to the OR gate.
For example, suppose that the function implemented by an AOI is

F=XY+Z

This AOI is referred to as a 2-1 AOI, since it consists of a 2-input AND and 1 input
directly to the OR gate. If the function implemented is

F=TUV+WX+YZ

then the AOI is called a 3-2-2 AOI The OR-AND-INVERT (OAI) is the dual of
the AOI and implements the complement of a product-of-sums form. The AND-
OR (AO) and OR-AND (OA) are versions of the AOI and OAI without the
complement.

In general, complex gates are used to reduce the circuit complexity needed
for implementing specific Boolean functions in order to reduce integrated circuit
cost. In addition, they reduce the time required for signals to propagate through a
circuit.

CMOS Circuits Circuit-level implementation of CMOS primitive gates is dis-
cussed in Chapter 6. Based on the Chapter 6 material, circuit-level implementa-
tion of CMOS complex gates is available in a supplement on the Companion
Website for the text.

2-9 EXxcLUSIVE-OR OPERATOR AND GATES

In addition to the exclusive-OR gate shown in Figure 2-23, there is an exclusive-
OR operator with its own algebraic identities. The exclusive-OR (XOR), denoted
by @, is a logical operation that performs the function

86 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

X®Y = XY +XY

It is equal to 1 if exactly one input variable is equal to 1. The exclusive-NOR, also
known as the equivalence, is the complement of the exclusive-OR and is expressed
by the function

XPY=XY+XY

It is equal to 1 if both X and Y are equal to 1 or if both are equal to 0. The two
functions can be shown to be the complement of each other, either by means of a
truth table or, as follows, by algebraic manipulation:

XOY=XY+XY=X+Y)X+Y)=XY+XY

The following identities apply to the exclusive-OR operation:

XP0=X X®1=X
X®X =0 XoX =1
XPY = XOY XPY = XOY

Any of these identities can be verified by using a truth table or by replacing
the @ operation by its equivalent Boolean expression. It can also be shown that the
exclusive-OR operation is both commutative and associative; that is,

ADB = B®A

(ADB)YDC = ABBDC) = ASGBBC

This means that the two inputs to an exclusive-OR gate can be interchanged with-
out affecting the operation. It also means that we can evaluate a three-variable
exclusive-OR operation in any order, and for this reason, exclusive-ORs with three
or more variables can be expressed without parentheses.

A two-input exclusive-OR function may be constructed with conventional
gates. Two NOT gates, two AND gates, and an OR gate are used. The associativ-
ity of the exclusive-OR operator suggests the possibility of exclusive-OR gates
with more than two inputs. The exclusive-OR concept for more than two vari-
ables, however, is replaced by the odd function to be discussed next. Thus, there
is no symbol for exclusive-OR for more than two inputs. By duality, the exclu-
sive-NOR is replaced by the even function and has no symbol for more than two
inputs.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an
ordinary Boolean function by replacing the @ symbol with its equivalent Boolean

2-9 / Exclusive-OR. Operator and Gates [87

expression. In particular, the three-variable case can be converted to a Boolean
expression as follows:

X®YDZ = XY +XY)Z+(XY+XY)Z

= XYZ+XYZ+XYZ+XYZ

The Boolean expression clearly indicates that the three-variable exclusive-OR is
equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1.
Hence, whereas in the two-variable function only one variable need be equal to 1,
with three or more variables an odd number of variables must be equal to 1. As a
consequence, the multiple-variable exclusive-OR operation is defined as the odd
function. In fact, strictly speaking, this is the correct name for the © operation with
three or more variables; the name “exclusive-OR?” is applicable to the case with
only two variables.

The definition of the odd function can be clarified by plotting the function on
a map. Figure 2-25(a) shows the map for the three-variable odd function. The four
minterms of the function differ from each other in at least two literals and hence
cannot be adjacent on the map. These minterms are said to be distance two from
each other. The odd function is identified from the four minterms whose binary val-
ues have an odd number of 1s. The four-variable case is shown in Figure 2-25(b).
The eight minterms marked with 1s in the map constitute the odd function. Note
the characteristic pattern of the distance between the 1s in the map. It should be
mentioned that the minterms not marked with 1s in the map have an even number
of 1s and constitute the complement of the odd function, called the even function.
The odd function is implemented by means of two-input exclusive-OR gates, as
shown in Figure 2-26. The even function is obtained by replacing the output gate
with an exclusive-NOR gate.

C

YZ Y CD

x\ 00 01 11 10 AB\ 00 01 11 10
0 1 1 00 1 1

x[1 1 1 o1 1 1

B
zZ 11 1 1
QXOYDZ A

10 1 1

D
() A®BOCED

O FIGURE 2-25
Maps for Multiple-Variable Odd Functions

Www.Ebook777.com

http://www.ebook777.com

88 [CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

o
Z _)Dip

(QP=X®YDZ B C=XOYDZDP

m N < K

O FIGURE 2-26
Multiple-Input Odd Functions

2-10 HiGH-IMPEDANCE OUTPUTS

Thus far, we have considered gates that have only output values logic 0 and logic 1.
In this section, we introduce an important structure, the three-state buffer, that
provides a third output value referred to as the high-impedance state and denoted
by Hi-Z or just plain Z or z. The Hi-Z value behaves as an open circuit, which
means that, looking back into the circuit, we find that the output appears to be dis-
connected internally. Thus, the output appears not to be there at all and, thus, is
incapable of driving any attached inputs. Gates with Hi-Z output capability have
two very useful properties. First of all, Hi-Z outputs can be connected together,
provided that no two or more gates drive the line at the same time to opposite 0
and 1 values. In contrast, gates with only logic 0 and logic 1 outputs cannot have
their outputs connected together. Second, an output in the Hi-Z states, since it
appears as an open circuit, can have an input attached to it internally, so that the
Hi-Z output can act as both an output and an input. This is referred to as a bidirec-
tional input/output. Instead of carrying signals in just one direction, interconnet-
ions between Hi-Z outputs can carry information in both directions. This feature
reduces significantly the number of interconnections required. High-impedance
outputs may appear on any gate, but here we restrict consideration to a primitive
gate structure with a single data input, i.e., either a Hi-Z buffer or Hi-Z inverter.

The 3-state buffer was introduced earlier as one of the primitive gates. As
the name implies, a three-state logic output exhibits three distinct states. Two of
the “states” are the logic 1 and logic 0 of conventional logic. The third “state” is the
Hi-Z value, which, for three-state logic, is referred to as the Hi-Z state.

The graphic symbol and truth table for a 3-state buffer are given in Figure 2-27.
The symbol in Figure 2-27(a) is distinguished from the symbol for a normal buffer
by the enable input, EN, entering the bottom of the buffer symbol. From the truth
table in Figure 2-27(b), if EN = 1, OUT is equal to IN, behaving like a normal
buffer. But for EN = 0, the output value is high impedance (Hi-Z), regardless of
the value of IN.

Three-state buffer outputs can be connected together to form a multiplexed
output line. Figure 2-28(a) shows two 3-state buffers with their outputs connected
to form output line OL. We are interested in the output of this structure in terms

2-10 / High-Impedance Outputs [89

EN|IN | OUT
INj— ouT .
0 | X |Hi-Z
EN 110 0
111 1
(a) Logic symbol (b) Truth table

O FIGURE 2-27
Three-State Buffer

of the four inputs EN1, ENO, IN1, and INO. The output behavior is given by the
truth table in Figure 2-28(b). For EN1 and ENO equal to 0, both buffer outputs are
Hi-Z. Since both appear as open circuits, OL is also an open circuit, represented
by a Hi-Z value. For EN1 = 0 and ENO = 1, the output of the top buffer is INO
and the output of bottom buffer is Hi-Z. Since the value of JNO combined with an
open circuit is just INO, OL has value INO, giving the second and third rows of the
truth table. A corresponding, but opposite, case occurs for EN1 = 1 and ENO = 0,
so OL has value IN1, giving the fourth and fifth rows of the truth table. For EN1

'\\

(RS

E >0~ Eno ‘

;

! IN1

|

(§) —=————————- EN1
(a) Logic Diagram

EN1 ENO|IN1 INO| OL
0 0 | X X |Hi-Z
()0)1 X 0| 0
0 1 | X 1] 1
1 0/ 0 X | 0
1 0 |1 X | 1
1 110 01/ o0
1 1|1 1] 1
1 1 10 1 ’
1 111 o0)’

(b) Truth table

O FIGURE 2-28
Three-State Buffers Forming a Multiplexed Line OL

e

p
{)
\ ~

90 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

and ENO both 1, the situation is more complicated. If IN1 = INOQ, then their
mutual value appears at OL. But if IN1 # INO, then their values conflict at the out-
put. The conflict results in an electrical current flowing from the buffer output that
is at 1 into the buffer output that is at 0. This current is often large enough to cause
heating and may even destroy the circuit, as symbolized by the “smoke” icons in
the truth table. Clearly, such a situation must be avoided. The designer must
ensure that ENO and EN1 never equal 1 at the same time. In the general case, for
n 3-state buffers attached to a bus line, EN can equal 1 for only one of the buffers
and must be 0 for the rest. One way to ensure this is to use a decoder to generate
the EN signals. For the two-buffer case, the decoder is just an inverter with select
input S, as shown in dotted lines in Figure 2-28(a). It is interesting to examine the
truth table with the inverter in place. It consists of the shaded area of the table in
Figure 2-28(b). Clearly, the value on S selects between inputs /N0 and IN1. Fur-
ther, the circuit output OL is never in the Hi-Z state.

Tranmission GATES Another Hi-Z output circuit, the transmission gate, is pre-
sented, along with examples of its use on the text Companion Website in the sup-
plement, More CMOS Circuit Level Design.

2-11 CHAPTER SUMMARY

The primitive logic operations AND, OR, and NOT define three primitive logic
components called gates, from which digital systems are implemented. A Boolean
algebra defined in terms of these operations provides a tool for manipulating Bool-
ean functions in designing digital logic circuits. Minterm and maxterm standard
forms correspond directly to truth tables for functions. These standard forms can
be manipulated into sum-of-products and product-of-sums forms, which corre-
spond to two-level gate circuits. Two cost measures to be minimized in optimizing a
circuit are the number of input literals to the circuit and the total number of inputs
to the gates in the circuit. K-maps with two to four variables are an effective alter-
native to algebraic manipulation in optimizing small circuits. These maps can be
used to optimize sum-of-products forms, product-of-sums forms, and incompletely
specified functions with don’t-care conditions. The Espresso algorithm provides
practical automated circuit optimization. Transforms for optimizing multiple-level
circuits with three or more levels of gating are illustrated.

The primitive operations AND and OR are not directly implemented by
primitive logic elements in the most popular logic family. Thus, NAND and NOR
primitives as well as complex gates that implement these families were introduced
and used to implement circuits. A more complex primitive, the exclusive-OR, and
its complement, the exclusive-NOR, were presented along with their mathemati-
cal properties. Finally, the 3-state buffer was introduced as an example of a circuit
with a Hi-Z (high-impedance) output.

REFERENCES
1. BOOLE, G. An Investigation of the Laws of Thought. New York: Dover, 1854.

Problems [91

KARNAUGH, M. “A Map Method for Synthesis of Combinational Logic
Circuits,” Transactions of AIEE, Communication and Electronics, 72, part |
(November 1953), 593-99.

DIETMEYER, D. L. Logic Design of Digital Systems, 3rd ed. Boston: Allyn &
Bacon, 1988.

MANO, M. M. Digital Design, 3rd ed. Upper Saddle River, NJ: Prentice Hall,
2002.

WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle
River, NJ: Pearson Prentice Hall, 2004.

. GAIsSK1, D. D. Principles of Digital Design. Upper Saddle River, NJ: Prentice

Hall, 1997.

IEEE Standard Graphic Symbols for Logic Functions (includes IEEE Std 91a-
1991 Supplement and IEEE Std 91-1984). New York: The Institute of
Electrical and Electronics Engineers, 1991.

PROBLEMS

.

, The plus (+) indicates a more advanced problem and the asterisk (*) indicates that
a solution is available on the Companion Website for the text.

2-1.

2-2.

2-3.

2-5.

*Demonstrate by means of truth tables the validity of the following identities:
(a) DeMorgan’s theorem for three variables: XYZ=X+Y+7Z

(b) The second distributive law: X + YZ = (X + Y)(X + Z)

(¢) XY+YZ+XZ=XY+YZ+XZ

*Prove the identity of each of the following Boolean equations, using algebraic
manipulation:

@ XY+XY+XY=X+Y

(b) AB+BC+AB+BC =1

© Y+XZ+XY=X+Y+Z

d) XY+YZ+XZ+XY+YZ=XY+XZ+YZ

+Prove the identity of each of the following Boolean equations, using algebraic
manipulation:

(a) ABC+BCD+BC+CD=B+CD

(b) WY +WYZ+WXZ+WXY = WY+WXZ+XYZ+XYZ

(¢ AD+AB+CD+BC=(A+B+C+D)A+B+C+D)

+Given that A-B = 0 and A + B = 1, use algebraic manipulation to prove
that

(A+C)-(A+B)-(B+C)=B-C

+A specific Boolean algebra with just two elements 0 and 1 has been used in
this chapter. Other Boolean algebras can be defined with more than two

92 [0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

2-6.

2-17.

2-8.

2-9.

2-10.

elements by using elements that correspond to binary strings. These
algebras form the mathematical foundation for bitwise logical operations
that we will study in Chapter 7. Suppose that the strings are each a nibble
(half of a byte) of four bits. Then there are 24, or 16, elements in the algebra,
where an element 7 is the 4-bit nibble in binary corresponding to I in
decimal. Based on bitwise application of the two-element Boolean algebra,
define each of the following for the new algebra so that the Boolean
identities hold:

(a) The OR operation A + B for any two elements A and B
(b) The AND operation A-B for any two elements A and B
(c) The element that acts as the O for the algebra

(d) The element that acts as the 1 for the algebra

(e) For any element A, the element A.

Simplify the following Boolean expressions to expressions containing a
minimum number of literals:

(a) AC+ABC+BC

(b)) A+B+C)-ABC

(c) ABC+AC

(d) ABD +ACD +BD

(e) (A +B)(A + C)(ABC)

*Reduce the following Boolean expressions to the indicated number of
literals:

(@) XY + XYZ + XY to three literals

(b) X+ Y(Z + X + Z) to two literals

(c) WX(Z+YZ)+X(W+WYZ) to one literal
(d) (AB+AB)(CD + CD)+ AC to four literals

Using DeMorgan’s theorem, express the function

F=ABC+AC+AB

(a) with only OR and complement operations.

(b) with only AND and complement operations.

*Find the complement of the following expressions:

(a) AB +AB

®) (VW+X)Y+Z

(©) WX(YZ+YZ)+WX(Y +Z)Y + Z)

(d) (A+B+C)YAB+C)A+BC)

*QObtain the truth table of the following functions, and express each function
in sum-of-minterms and product-of-maxterms form:

(@) XY+Z)(Y+XZ)

Www.Ebook777.com

http://www.ebook777.com

Problems [93

(b) (A +B)(B+C)
(c) WXY +WXZ+WXZ+YZ

2-11. For the Boolean functions E and F, as given in the following truth table:

2-12.

2-13.

2-14.

2-15.

- ===
RRroOoORROCO <
mromRrorRroRo N
oROoOROR RO M
P OO RFRORFRORF T

(a) List the minterms and maxterms of each function.

(b) List the minterms of E and F.

(¢) List the minterms of £ + Fand E-F.

(d) Express E and F in sum-of-minterms algebraic form.

(e) Simplify £ and F to expressions with a minimum of literals.

*Convert the following expressions into sum-of-products and product-of-
sums forms:

(a) (AB + C)(B +CD)
b) X+X(X+Y)Y +2)
(c) (A +BC + CD)(B + EF)

Draw the logic diagram for the following Boolean expressions. The diagram
should correspond exactly to the equation. Assume that the complements of
the inputs are not available.

(@) XYZ+XY+XZ

(b) B(AC+AC) + D(A + BC)

© XYW+Z)+WY(X+Z)+WY(X + Z)

Optimize the following Boolean functions by means of a three-variable map:
(@) F(X,Y,Z) = 3m(0,2,6,7)

() F(X,Y,Z) = 2m(0,1,2,4)

(c) F(A,B,C) = 2m(0,2,3,4,6)

(d) F(A,B,C) = 3m(0,2,3,4,5,7)

*Optimize the following Boolean expressions using a map:

(@) XZ+YZ+XYZ

94 [CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.

2-23.

(b) AB+BC+ABC

(¢) AB+AC+BC+ABC

Optimize the following Boolean functions by means of a four-variable map:
(a) F(A,B,C,D) = 3m(2,3,8,9,10,12,13,14)

(b) F(W,X,Y,Z) = 3m(0,2,5,6,8,10,13,14,15)

(¢) F(A,B,C,D) = 3m(0,2,3,7,8,10,12,13)

Optimize the following Boolean functions, using a map:

(a) FW,X,Y,Z) = 3m(0,2,5,8,9,10,11,12,13)

(b) F(A,B,C,D) = 3m(1,3,6,7,9,11,12,13,15)

*Find the minterms of the following expressions by first plotting each
expression on a map:

(@) XY+XZ+XYZ
(b) XZ +WXY +WXY +WYZ+WYZ
(¢) BD + ABD + ABC

*Find all the prime implicants for the following Boolean functions, and
determine which are essential:

(a) FW,X,Y,Z) = 3m(0,2,5,7,8,10,12,13,14,15)
(b) F(A,B,C,D) = 3m(0,2,3,5,7,8,10,11,14,15)
(¢) F(A,B,C,D) = 3m(1,3,4,5,9,10,11,12,13,14,15)

Optimize the following Boolean functions by finding all prime implicants
and essential prime implicants and applying the selection rule:

(a) FW,X,Y,Z) = 3m(0,2,3,5,7,8,10,11,12,13)

(b) F(A,B,C,D) = 3m(3,4,5,7,9,13,14,15)

(¢) FW,X,Y,Z) = 3m(0,2,4,6,7,8,9,12,13,15)

Optimize the following Boolean functions in product-of-sums form:
(a) FW,X,Y,Z) = 3m(0,2,3,4,8,10,11,15)

(b) F(A,B,C,D) = 11M(0,2,4,5,8,10,11,12,13,14)

*Optimize the following expressions in (1) sum-of-products and (2) product-
of-sums forms:

(a) AC+BD +ACD +ABCD
b)(A+B+D)A+B+C)YA+B+D)B+C+D)
(¢) A+B+D)A+D)A+B+D)A+B+C+D)

Optimize the following functions into (1) sum-of-products and (2) product-
of-sums forms:

2-24.

2-25.

2-26.

2-27.

2-28.

2-29.

Problems [95

(a) F(A,B,C,D) = 3m(0,1,5,7,8,10,14,15)

(b) F((W,X,Y,Z) = 1IM(3,11,13,15)

Optimize the following Boolean functions F together with the don’t-care
conditions d:

(a) F(A,B,C,D) = 3m(0,1,7,13,15), d(A,B,C,D) = 2m(2,6,8,9,10)

() FW,X,Y,Z) = 3m(2,4,9,12,15), d(W,X,Y,Z) = 3m(3,5,6,13)

(¢) F(A,B,C) = 3m(1,2,4), d(A,B,C) = 3m(0,3,6,7)

*Optimize the following Boolean functions F together with the don’t-care

conditions d. Find all prime implicants and essential prime implicants, and
apply the selection rule.

(a) F(A,B,C) = 2m(3,5,6), d(A,B,C) = 2m(0,7)
(b) F(\W,X,Y,Z) = 2m(0,2,4,5,8,14,15), d(W,X,Y,Z) = 3m(7,10,13)
(¢) F(A,B,C,D) = 2m(4,6,7,8,12,15),
d(A,B,C,D) = 3m(2,3,5,10,11,14)
Optimize the following Boolean functions F together with the don’t-care
conditions d in (1) sum-of-products and (2) product-of-sums form:

(a) F(A,B,C,D) = 1Im(1,3,4,6,9,11),
d(A,B,C,D) = 3m(0,2,5,8,10,12,14)

(b) FW,X,Y,Z) = 2m(3,4,9,15), d(W,X,Y,Z) = 2m(0,1,2,5,10,12,14)

Illustrate the expansion or reduction performed on each implicant on a K-
map if the operation changes the implicant.
(a) Apply the Espresso EXPAND routine to the following function.

F(A,B,C,D)=ABCD+ABC +ACD +ABD + ABCD + BCD

(b) Apply the Espresso REDUCE routine to the following function,
beginning with the implicant at the upper left and proceeding downward.

F(A,B,C,D)=AC+AB+BD +AC+ AB

+Apply the simplified Espresso algorithm to the following function. Show a
K-map for each algorithm routine that changes one or more implicants.

F(A,B,C,D) = ABD+BCD +BC+AB+ACD

Use decomposition to find minimum gate-input cost, multiple-level
implementations for the functions given, using AND and OR gates and
inverters.

(a) F(A,B,C,D) = ABC+ABC+ABD +ABD
(b) FW,X,Y,Z) = WY + XY + WXZ + WXZ

96 [1 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

2-30.

2-31.

2-32.
2-33.

2-34.

2-35.

Use extraction to find a shared, minimum gate-input cost, multiple-level
implementation for the pair of functions given, using AND and OR gates
and inverters.

(a) F(A,B,C,D) = Sm(0,5,11,14,15),d(A, B, C,D) = Sm(10)
(b) G(A,B,C,D) = 3m(2,7,10,11,14),d(A, B, C,D) = Sm(15)

Use elimination to flatten each of the function sets given into a two-level
sum-of-products form.

(a) F(A,B,G,H) = ABG +BG +AH, G(C,D) = CD + CD,
H(B,C,D) = B+CD

() T(U,V,Y,Z) = YZU+YZV, UW,X) = W+ X,

VIW,X,Y) = WY +X
*Prove that the dual of the exclusive-OR is also its complement.

Implement the following Boolean function with exclusive-OR and AND
gates, using a minimum number of gate inputs:

F(A,B,C,D) = ABCD + AD + AD

(a) Implement function H = X Y+XZ using two three-state buffers and an
inverter.

(b) Construct an exclusive-OR gate by interconnecting two three-state
buffers and two inverters.

(a) Connect the outputs of three 3-state buffers together, and add additional
logic to implement the function

F=ABC +ABD + ABD

Assume that C, D, and D are data inputs to the buffers and A and B pass
through logic that generates the enable inputs.

(b) Is your design in part (a) free of three-state output conflicts? If not,
change the design to be free of such conflicts.

COMBINATIONAL LoOGIC
DESIGN

procedure with five major steps is presented. The first three steps, specification,

formulation, and optimization, are illustrated by examples. The fourth step,
technology mapping, is illustrated by considering mapping to NAND and NOR gate
technologies.The final step of the design procedure, verification, is illustrated by an
example using both a manual method and logic simulation.

Next, we learn about a number of functions and the corresponding fundamental circuits
that are very useful in designing larger digital circuits. The fundamental, reusable
circuits, which we call functional blocks, implement functions of a single variable,
decoders, encoders, code converters, and multiplexers.

The various concepts in this chapter are pervasive in the design of the generic
computer in the diagram at the beginning of Chapter 1. Combinational logic is a
mainstay in all of the digital components. Multiplexers are very important for selecting
data in the processor, in memory, and on I/O boards. Decoders are used for selecting
boards attached to the input—output bus and to decode instructions to determine the
operations performed in the processor. Encoders are used in a number of components,
such as the keyboard. Functional blocks are widely used, so concepts from this chapter
apply across all of the digital components of the generic computer, including memories.

I n this chapter, we learn about the design of combinational circuits. A design

3-1 DESIGN PROCEDURE

The design of a combinational circuit starts from the specification of the problem
and culminates in a logic diagram or netlist that describes a logic diagram. The pro-
cedure involves the following steps:

98 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

1. Specification: Write a specification for the circuit, if one is not already
available.

2. Formulation: Derive the truth table or initial Boolean equations that define
the required relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization. Draw a logic
diagram or provide a netlist for the resulting circuit using ANDs, ORs, and
inverters.

4. Technology Mapping: Transform the logic diagram or netlist to a new dia-
gram or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

The specification can take a variety of forms, such as text or an HDL descrip-
tion, and should include the respective symbols or names for the inputs and out-
puts. Formulation converts the specification into forms that can be optimized.
These forms are typically truth tables or Boolean expressions. It is important that
verbal specifications be interpreted correctly when formulating truth tables or
expressions. Often the specifications are incomplete, and any wrong interpretation
may result in an incorrect truth table or expression.

Optimization can be performed by any of a number available methods, such
as algebraic manipulation, the K-map method, or computer-based optimization
programs. In a particular application, specific criteria serve as a guide for choosing
the optimization method. A practical design must consider constraints such as the
cost of the gates used, maximum allowable propagation time of a signal through
the circuit, and limitations on the fan-out of each gate. This is complicated by the
fact that gate costs, gate delays, and fan-out limits are not known until the technol-
ogy mapping stage. As a consequence, it is difficult to make a general statement
about what constitutes an acceptable end result for optimization. In many cases,
the optimization begins by satisfying an elementary objective, such as producing
the simplified Boolean expressions in a standard form for each output. The next
step is multiple-level optimization with terms shared between multiple outputs. In
more sophisticated synthesis tools, optimization and technology mapping may be
interspersed to improve the likelihood of meeting constraints. It may be necessary
to repeat optimization and technology mapping multiple times to meet the speci-
fied constraints.

The remainder of this chapter illustrates the design procedure with three
examples and introduces fundamental, reusable circuits called functional blocks. In
the rest of this section, we perform the first three steps of design—specification,
formulation, and optimization. We then consider implementation technologies and
the final two steps in separate sections.

The first two example specifications are for a class of circuits called code con-
verters, which translate information from one binary code to another. The inputs to
the circuit are the bit combinations specified by the first code, and the outputs gen-
erate the corresponding bit combinations of the second code. The combinational
circuit performs the transformation from one code to the other. The first code con-
verter example converts the BCD code to the excess-3 code for the decimal digits.

3-1 / Design Procedure [99

The other converts the BCD code to the seven signals required to drive a seven-
segment light-emitting diode (LED) display. The third example is the design of a
4-bit equality comparator that represents a circuit having a large number of inputs.

EXAMPLE 3-1 Design of a BCD-to-Excess-3 Code Converter

SPECIFICATION: The excess-3 code for a decimal digit is the binary combination
corresponding to the decimal digit plus 3. For example, the excess-3 code for deci-
mal digit 5 is the binary combination for 5 + 3 = 8, which is 1000. The excess-3
code has desirable properties with respect to implementing decimal subtraction.
Each BCD digit is four bits, which are labeled, from most significant to least signif-
icant, A, B, C, D. Each excess-3 digit is four bits, labeled from most significant to
least significant, W, X, Y, Z.

FormuLATION: The excess-3 code word is easily obtained from a BCD code
word by adding binary 0011 (3) to it. The resulting truth table relating the input
and output variables is shown in Table 3-1. Note that the four BCD input vari-
ables may have 16 bit combinations, but only 10 are listed in the truth table. The
six combinations 1010 through 1111 are not listed under the inputs, since these
combinations have no meaning in the BCD code, and we can assume that they
will never occur. Hence, for these input combinations, it does not matter what
binary values we assign to the excess-3 outputs, and we can treat them as don’t-
care conditions.

OpTimizaTiON: Since this is a four-variable function, we use the K-maps in Figure 3-1
for the initial optimization of the four output functions. The maps are plotted to
obtain simplified sum-of-products Boolean expressions for the outputs. Each of the

OO0 TABLE 3-1
Truth Table for Code-Converter Example
Decimal Input Output
Digit BCD Excess-3
A B C D W X Y 2

CONANAEWN RO
=== =E=E=E=
CoORRRROOOO
cCoRROoOORRROO
RO ORORORO
— = = = OO O OO
—_ O OO O MR M = = O
O = OO M MR OO
oOcROoOROROROR

100 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

CD C CD C
AB\ 00 01 11 10 AB\ 00 01 11 10
00 00 | 1 | 1 | 1 |
01 1 [|1]] 1 01 1
B B
il x || x | Lx x[| x| x| x| x
A A
woffr [1| x| x 10 | 1 | X | X |
D D
W =A +BC+ BD X = BC + BD + BCD
CD ¢ CD C
AB\ 00 01 11 10 AB\ 00 01 11 10
00f| 1 1 0] 1 1
o1l 1 1 01] 1 1
B B
umfl x| x || x|| x mf xfI x| x || x
A A
10(1 X[l x 10 1 X || x
= — B e ——
D D
Y =CD + CD Z=D
OO0 FIGURE 3-1

Maps for BCD-to-Excess-3 Code Converter

four maps represents one of the outputs of the circuit as a function of the four inputs.
The 1s in the maps are obtained directly from the truth-table output columns. For
example, the column under output W has 1s for minterms 5, 6, 7, 8, and 9. Therefore,
the map for W must have 1s in the squares corresponding to these minterms. The six
don’t-care minterms, 10 through 15, are each marked with an X in all the maps. The
optimized functions are listed in sum-of-products form under the map for each output
variable.

The two-level AND-OR logic diagram for the circuit can be obtained directly
from the Boolean expressions derived from the maps. We apply multiple-level
optimization as a second optimization step to determine if the gate input cost,
which is currently 26 (including inverters), can be reduced. In this optimization, we
consider sharing subexpressions between the four output expressions. The follow-
ing manipulation illustrates optimization with multiple-output circuits imple-
mented with multiple levels of gates including an internal inverter on 75:

T,=C+D
W=A+BC+BD = A +BT,

X=BC+BD +BCD = BT, + BT,

3-1 / Design Procedure [101

—D ool

S >—L
T>o ;

0 FIGURE 3-2
Logic Diagram of BCD-to-Excess-3 Code Converter

Y=CD+ T,
Z=D

The manipulation allows the gate producing C + D to be shared by the logic for W,
X, and Y, reducing the gate input cost from 26 to 19. This optimized result gives the
logic diagram in Figure 3-2.

<, EXAMPLE 3-2 Design of a BCD-to-Seven-Segment Decoder

-

SpeciFicaTion: Digital readouts found in many consumer electronic products
such as alarm clocks often use light-emitting diodes (LEDs). Each digit of the
readout is formed from seven LED segments, each of which can be illuminated
by a digital signal. A BCD-to-seven-segment decoder is a combinational circuit
that accepts a decimal digit in BCD and generates the appropriate outputs for
the segments of the display for that decimal digit. The seven outputs of the
decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as
shown in Figure 3-3(a). The numeric designations chosen to represent the deci-
mal digits are shown in Figure 3-3(b). The BCD-to-seven-segment decoder has
four inputs, A, B, C, and D, for the BCD digit and seven outputs, a through g, for
controlling the segments.

FormuLAaTION: The truth table of the combinational circuit is listed in Table 3-2. On
the basis of Figure 3-3(b), each BCD digit illuminates the proper segments for the

102 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

([[193UCCT
0423456783

d
(a) Segment designation (b) Numeric designation for display

O FIGURE 3-3
Seven-Segment Display

decimal display. For example, BCD 0011 corresponds to decimal 3, which is displayed
as segments a, b, c, d, and g. The truth table assumes that a logic 1 signal illuminates
the segment and a logic 0 signal turns the segment off. Some seven-segment displays
operate in reverse fashion and are illuminated by a logic 0 signal. For these displays,
the seven outputs must be complemented. The six binary combinations 1010 through
1111 have no meaning in BCD. In the previous example, we assigned these combina-
tions to don’t-care conditions. If we do the same here, the design will most likely pro-
duce some arbitrary and meaningless displays for the unused combinations. As long
as these combinations do not occur, we can use that approach to reduce the complex-
ity of the converter. A safer choice, turning off all the segments when any one of the
unused input combinations occurs, avoids any spurious displays if any of the combi-
nations occurs, but increases the converter complexity. This choice can be accom-
plished by assigning all Os to minterms 10 through 15.

OpTimizaTioN: The information from the truth table can be transferred into seven
K-maps, from which the initial optimized output functions can be derived. The

0 TABLE 3-2
Truth Table for BCD-to-Seven-Segment
Decoder
BCD Input Seven-Segment Decoder
A B C D a b ¢c d e f g
0O 0 0 O 11 1 1 1 1 0
0O 0 0 1 0O 1 1 0 0 0 O
0O 0 1 o0 11 0 1 1 0 1
0O 0 1 1 11 1 1 0 0 1
0O 1 0 O 01 1 0 0 1 1
0O 1 0 1 1 0 1.1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
o 1 1 1 11 1 0 0 0 O
1 0 0 0 11 1 1 1 1 1
1 0 0 1 11 1 1 0 1 1
All other inputs O 0 0 0 0 0 O

3-1 / Design Procedure [103

plotting of the seven functions in map form is left as an exercise. One possible way
of simplifying the seven functions results in the following Boolean functions:

a= AC+ABD +BCD +ABC
b=AB+ACD+ACD+ABC

c= AB+AD +BCD +ABC

d= ACD+ABC+BCD +ABC+ABCD

e= ACD+BCD
f= ABC+ACD +ABD +ABC
g= ACD+ABC+ABC+ABC

Independent implementation of these seven functions requires 27 AND gates and
7 OR gates. However, by sharing the six product terms common to the different
output expressions, the number of AND gates can be reduced to 14 along with a
substantial savings in gate input cost. For example, the term B C D occurs in a, c,
d, and e. The output of the AND gate that implements this product term goes
directly to the inputs of the OR gates in all four functions. For this function, we
stop optimization with the two-level circuit and shared AND gates, realizing that it
might be possible to reduce the gate input cost even further by applying multiple-

level optimization.

Most manufacturers of integrated circuits use the term “BCD-to-seven-
segment decoder” because this device decodes a binary code for a decimal digit.
However, it is actually a code converter that converts a four-bit decimal code to a
seven-bit code. The word “decoder” is usually reserved for another type of cir-
cuit, presented in the next chapter.

In general, the total number of gates can be reduced in a multiple-output
combinational circuit by using common terms of the output functions. The maps
of the output functions may help us find the common terms by finding identical
implicants from two or more maps. Some of the common terms may not be prime
implicants of the individual functions. The designer must be inventive and com-
bine squares in the maps in such a way as to create common terms. This can be
done more formally by using a procedure for simplifying multiple-output func-
tions. The prime implicants are defined not only for each individual function, but
also for all possible combinations of the output functions. These prime implicants
are formed by using the AND operator on every possible nonempty subset of the
output functions and finding the prime implicants of each of the results. Using
this entire set of prime implicants, we can employ a formal selection process to
find the optimum two-level multiple-output circuit. Such a procedure is imple-
mented in various forms in logic optimization software and is used to obtain the
equations in Example 3-2.

104 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-2 BEGINNING HIERARCHICAL DESIGN

The next example uses a “divide-and-conquer” approach called hierarchical
design, and the resulting related symbols and schematics constitute a hierarchy
representing the circuit designed. In order to deal with circuit complexity, the cir-
cuit is broken up into pieces we call blocks. The blocks are interconnected to form
the circuit. The functions of these blocks and their interfaces are carefully defined,
so that the circuit formed by interconnecting the blocks obeys the initial circuit
specification. If a block is still too large and complex to be designed as a single
entity, it can be broken into smaller blocks. This process can be repeated as neces-
sary. Note that since we are working primarily with logic circuits, we use the term
“circuit” in this discussion, but the ideas apply equally well to the “systems” cov-
ered in later chapters. Example 3-3 illustrates a very simple use of hierarchical
design to “divide and conquer” a circuit that has eight inputs. This number of
inputs makes the truth table cumbersome and K-maps impossible. Thus, direct
application of the basic combinational design approach, as used in Examples 3-1
and 3-2, is difficult.

7D,
4, EXAMPLE 3-3 Design of a 4-bit Equality Comparator

-

SPECIFICATION: An equality comparator is a circuit that compares two binary vec-
tors to determine whether they are equal or not. The inputs to this specific circuit
consist of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2),
A(1),and A(0), with A(3) as the most significant bit. Vector B has a similar descrip-
tion with B replaced by A. The output of the circuit is a single-bit variable E. Out-
put E is equal to 1 if vectors A and B are equal and equal to O if vectors A and B
are unequal.

FormuLATION: The formulation attempts to bypass the use of a truth table due
to its size. In order for A and B to be equal, the bit values in each of the respec-
tive positions, 3 down to 0, of A and B must be equal. If all of the bit positions for
A and B contain equal values in every position, then E = 1; otherwise, E = 0.
Intuitively, we can see from this formulation of the problem that the circuit can
be developed as a simple 2-level hierarchy with the complete circuit at the top
level and five circuits at the bottom level. Since comparison of a bit from A and
the corresponding bit from B must be done in each of the bit positions, we can
decompose the problem into four 1-bit comparison circuits MX and an addi-
tional circuit ME that combines the four comparison-circuit outputs to obtain E.
A logic diagram of the hierarchy showing the interconnection of the five blocks
is shown in Figure 3-4(a).

OpTimizATION: For bit position i, we define the circuit output N; to be 0 if A; and
B; have the same values and N; = 1 if A; and B; have different values. Thus, the
MX circuit can be described by the equation

Ni = Zi Bi +Ai§i

3-2 / Beginning Hierarchical Design [105

Ag— No
By MX
A — N1
B MX ‘I
ME——E
Ay — N,
B, MX
A3 — N3
MX
B;—
(a)
A
No
N, N ﬁy E
N,
MX Ns ME
B;
(b) (©
O FIGURE 34

Hierarchical Diagram for a 4-Bit Equality Comparator

which has the circuit diagram shown in Figure 3-4(b). By using hierarchy, we can
employ four copies of this circuit, one for each of the four bits of A and B. Output
E =1 only if all of the N, values are 0. This can be described by the equation

E=N,+N, +N, + N;

and has the diagram given in Figure 3-4(c). Both of the circuits given are optimum
two-level circuits. These two circuit diagrams plus the block diagram in Figure 3-4(a)
represent the hierarchical design of the circuit. The actual circuit is obtained by
replacing the respective blocks in Figure 3-4(a) by copies of the two circuits shown in
Figure 3-4(b) and (c).

The structure of the hierarchy for the 4-bit equality comparator can be rep-
resented without the interconnections by starting with the top block for the
overall circuit and, below each block, connecting those blocks or primitives from
which the block is constructed. Using this representation, the hierarchy for the
4-bit equality comparator circuit is shown in Figure 3-5(a). Note that the resulting
structure has the form of a tree with the root at the top. The “leaves” of the tree
are the gates, in this case 21 of them. In order to provide a more compact represen-
tation of the hierarchy, we can reuse blocks, as shown in Figure 3-5(b). This dia-
gram corresponds to blocks used in Figure 3-4, with only one copy of each distinct
block shown. These diagrams and the circuits in Figure 3-4 are helpful in illustrating
a number of useful concepts associated with hierarchies and hierarchical blocks.

106 [0 CHAPTER 3/ COMBINATIONAL LOGIC DESIGN

4-input 4-input

equality comparator equality comarator

MX MX MX MX ME MX ME
(a) (b)

O FIGURE 3-5
Diagrams Representing the Structure of the Hierarchy for Figure 3-4

First of all, a hierarchy reduces the complexity required to represent the
schematic diagram of a circuit. For example, in Figure 3-5(a), 21 gates appear. This
means that if the circuit were designed directly in terms of gates, the schematic for
the circuit would consist of 21 interconnected gate symbols, in contrast to just 11
symbols used to describe the circuit implementation as a hierarchy in Figure 3-4.
Thus, a hierarchy gives a simplified representation of a complex circuit.

Second, the hierarchy ends at a set of “leaves” in Figure 3-5. In this case, the
leaves consist of AND gates, OR gates, inverters, and a NOR gate. Since the gates
are electronic circuits, and we are interested here only in designing the logic,
these gates are commonly called primitive blocks. These are predefined rudimen-
tary blocks that have a symbol, but no logic schematic. In general, more complex
structures that likewise have symbols, but no logic schematics, are also predefined
blocks. Instead of schematics, their function can be defined by a program or
description that can serve as a model. For example, in the hierarchy depicted in
Figure 3-4, the MX blocks could have been considered as predefined exclusive-
OR gates consisting of electronic circuits. In such a case, the diagram describing
the internal logic for MX exclusive-OR blocks in Figure 3-4(b) would not be nec-
essary. The hierarchical representations in Figure 3-4(b) and 3-5(a) would then
end with the exclusive-OR blocks. In any hierarchy, the “leaves” consist of pre-
defined blocks, some of which may be primitives.

A third very important property that results from hierarchical design is the
reuse of blocks, as illustrated in Figures 3-5(a) and (b). In part (a), there are four
copies of the 2-input MX block. In part (b), there is only one copy of the 2-input
MX block. This represents the fact that the designer has to design only one 2-input
MX block and can use this design four times in the 4-bit equality comparator cir-
cuit. In general, suppose that at various levels of a hierarchy, the blocks used are
carefully defined in such a manner that many of them are identical. A prerequisite
for being able to achieve this goal is a fundamental property of the circuit called
regularity. A regular circuit has a function that permits it to be constructed from
copies of a reasonably small set of distinct blocks. An irregular circuit has a function

7
(
\ e

3-3 / Technology Mapping [107

with no such property. Clearly the regularity for any given function is a matter of
degree. For a given repeated block, only one design is necessary. This design can be
used everywhere the block is required. The appearance of a block within a design is
called an instance of the block and its use is called an instantiation. The block is
reusable in the sense that it can be used in multiple places in the circuit design and,
possibly, in the design of other circuits as well. This concept greatly reduces the
design effort required for complex circuits. Note that, in the implementation of the
actual circuit, separate hardware has to be provided for each instance of the block,
as represented in Figure 3-5(a). The reuse, as represented in Figure 3-5(b), is con-
fined to the schematics that need to be designed, not to the actual hardware imple-
mentation. The ratio of the number of primitives in the final circuit to the total
number of blocks in a hierarchical diagram including primitives is a measure of reg-
ularity. A larger ratio represents higher regularity; for example, for the 4-bit com-
parator as in Figure 3-4, this ratio is 21/11.

A complex digital system may contain millions of interconnected gates. In
fact, a single very-large-scale integrated (VLSI) processor circuit often contains
hundreds of millions of gates. With such complexity, the interconnected gates
appear to be an incomprehensible maze. Certainly, such complex systems or cir-
cuits are not designed manually simply by interconnecting gates one at a time.

Later, in Section 3-5, we focus on predefined, reusable blocks that typically
lie at the lower levels of logic design hierarchies. These are blocks of intermediate
size that provide basic functions used in digital design. They allow designers to do
much of the design process above the primitive block, i.e., gate level. We refer to
these particular blocks as functional blocks. Thus, a functional block is a predefined
collection of interconnected gates. Many of these functional blocks have been
available for decades as medium-scale integrated (MSI) circuits that were intercon-
nected to form larger circuits or systems. Similar blocks are now in computer-aided
design tool libraries used for designing larger integrated circuits. These functional
blocks provide a catalog of digital components that are widely used in the design
and implementation of integrated circuits for computers and digital systems.

3-3 TECHNOLOGY MAPPING

In this section, we introduce NAND and NOR gate cells and consider mapping AND,
OR, NOT descriptions to one or the other of these two technologies. In section 6-8,
technology mapping to programmable implementation technologies is covered.

, ADVANCED TECHNOLOGY MAPPING Technology mapping using collections of cell
types including multiple gate types is covered in this supplement on the Compan-
ion Web Site for the text.

A NAND technology consists of a collection of cell types, each of which
includes a NAND gate with a fixed number of inputs. The cells have numerous
properties, as described in Chapter 6. Because of these properties, there may be
more than one cell type with a given number of inputs #. For simplicity, we will
assume that there are four cell types, based on the number of inputs, n, for n =1, 2, 3,

108 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

and 4. We will call these four cell types Inverter (n = 1), 2NAND, 3NAND, and
4NAND, respectively.

A convenient way to implement a Boolean function with NAND gates is to begin
with the optimized logic diagram of the circuit consisting of AND and OR gates and
inverters. Next, the function is converted to NAND logic by converting the logic dia-
gram to NAND gates and inverters. The same conversion applies for NOR gate cells.

Given an optimized circuit that consists of AND gates, OR gates, and invert-
ers, the following procedure produces a circuit using NAND (or NOR) gates with
unrestricted gate fan-in:

1. Replace each AND and OR gate with the NAND (NOR) gate and inverter

equivalent circuits shown in Figure 3-6(a) and (b).

2. Cancel all inverter pairs.

1 L
D i Do
_}

. Do

(a) Mapping to NAND gates

D~ D
D — Do

(b) Mapping to NOR gates

YYY

(c) Pushing an inverter through a “dot”

oo —

(d) Canceling inverter pairs

0 FIGURE 3-6

Mapping of AND Gates, OR Gates and Inverters to
NAND Gates, NOR Gates, and Inverters

3-3 / Technology Mapping [109

3. Without changing the logic function, (a) “push” all inverters lying between (i)
either a circuit input or a driving NAND (NOR) gate output and (ii) the
driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate
inputs. Cancel pairs of inverters in series whenever possible during this step.
(b) Replace inverters in parallel with a single inverter that drives all of the
outputs of the parallel inverters. (c) Repeat (a) and (b) until there is at most
one inverter between the circuit input or driving NAND (NOR) gate output
and the attached NAND (NOR) gate inputs.

In Figure 3-6(c), the rule for pushing an inverter through a “dot” is illustrated. The
inverter on the input line to the dot is replaced with inverters on each of the output
lines from the dot. The cancelation of pairs of inverters in Figure 3-6(d) is based on
the Boolean algebraic identity

X=X
The next example illustrates this procedure for NAND gates.

EXAMPLE 3-4 Implementation with NAND Gates
Implement the following optimized function with NAND gates:

F=AB+(AB)C+(AB)D +E
s
C E F
p Do

(2)

'
'

T

vy
A
Y

(© (d)

OO0 FIGURE 3-7
Solution to Example 3-4

110 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The AND, OR, inverter implementation is given in Figure 3-7(a). In Figure 3-7(b),
step 1 of the procedure has been applied, replacing each AND gate and OR gate
with its equivalent circuit using NAND gates and inverters from Figure 3-6(a).
Labels appear on dots and inverters to assist in the explanation. In step 2, the
inverter pairs (1, 2) and (3, 4), cancel, giving direct connections between the corre-
sponding NAND gates in Figure 3-7(d). As shown in Figure 3-7(c), inverter 5 is
pushed through X and cancels with inverters 6 and 7, respectively. This gives direct
connections between the corresponding NAND gates in Figure 3-7(d). No further
steps can be applied, since inverters 8 and 9 cannot be paired with other inverters
and must remain in the final mapped circuit in Figure 3-7(d). The next example
illustrates this procedure for NOR gates.

EXAMPLE 3-5 Implementation with NOR Gates

Implement the same optimized Boolean function used in Example 3-4 with NOR
gates:

F = AB+(AB)C+(AB)D +E

The AND, OR, inverter implementation is given in Figure 3-8(a). In Figure 3-8(b),
step 1 of the procedure has been applied, replacing each AND gate and OR gate
with its equivalent circuit using NOR gates and inverters from Figure 3-6(b). Labels
appear on dots and inverters to assist in the explanation. In step 2, inverter 1 can be
pushed through dot X to cancel with inverters 2 and 3, respectively. The pair of

A—T
B—1 J

Bl
’;—>(j B_>>1De

(Tox ¥
oo F
A— D
B— E Dc
(b)
. F
D
E
(©)
0 FIGURE 3-8

Solution to Example 3-5

3-4 / Verification O 111

inverters on the D input line cancel as well. The single inverters on input lines A, B,
and C and output line F must remain, giving the final mapped circuit that appears in
Figure 3-8(c).

In Example 3-4 the gate-input cost of the mapped circuit is 12, and in
Example 3-5 the gate-input cost is 14, so the NAND implementation is less
costly. Also, the NAND implementation involves a maximum of three gates in
series while the NOR implementation has a maximum of five gates in series. With
equal gate delays assumed, the shorter series of gates in the NAND circuit gives
a maximum delay from an input change to a corresponding output change about
0.6 times as long as that for the NOR circuit. So, in this particular case, the
NAND circuit is superior to the NOR circuit in both cost and delay.

The result of a technology mapping is clearly influenced by the initial circuit
or equation forms prior to mapping. For example, mapping to NANDs for a cir-
cuit with an OR gate at the output produces a NAND gate at the output. Map-
ping to NORs for the same circuit produces an inverter driven by a NOR gate at
the output. Because of these results, the sum of products is viewed as more natu-
ral for NANDs and the product of sums, which eliminates the output inverter, as
more natural for NORs. Nevertheless, the choice should be based on which form
gives the best overall implementation in terms of whatever optimization criteria
are being applied.

3-4 VERIFICATION

In this section, we consider manual logic analysis and computer simulation-
based logic analysis for verification of circuit function (i.e., determination of
whether or not a given circuit implements its specified function). If the circuit
does not meet its specification, then it is incorrect. As a consequence, verifica-
tion plays a vital role in preventing incorrect circuit designs from being manufac-
tured and used. Logic analysis also can be used for other purposes, including
redesign of a circuit and determination of the function of a circuit.

In order to verify a combinational circuit, it is essential that the specifica-
tion be unambiguous and correct. As a consequence, specifications such as truth
tables, Boolean equations, and HDL code are most useful. Initially, we examine
manual verification by continuing with the design examples we introduced in this
chapter.

Manual Logic Analysis

Manual logic analysis consists of finding Boolean equations for the circuit outputs
or, additionally, finding the truth table for the circuit. The approach taken here
emphasizes finding the equations and then using them to find the truth table, if
necessary. In finding the equation for a circuit, it is often convenient to break up
the circuit into subcircuits by defining intermediate variables at selected points in

112 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

the circuit. Points typically selected are those at which a gate output drives two or
more gate inputs. Such points are often referred to as fan-out points. Fan-out points
from a single inverter on an input typically would not be selected. The determina-
tion of logic equations for a circuit is illustrated using the BCD-to—excess-3 code
converter circuit designed in previous sections.

EXAMPLE 3-6 Manual Verification of BCD-to-Excess-3 Code Converter

Figure 3-9 shows (a) the original truth table specification, (b) the final NAND-
mapped circuit implementation, and (c) an incomplete truth table to be com-
pleted from the implementation and then compared to the original truth table.
The truth table values are to be determined from Boolean equations for W, X, Y,
and Z derived from the circuit. The point 7' is selected as an intermediate variable
to simplify the analysis:

T=CD=C+D
W =A(T-B)= A +BT
X = (BT)(BCD)= B-T+BT

Y=CD+T
Z=D
Substituting the expression for 7 in the equations for W, X, and Y, we have
W=A+B(C+D)=A+BC+BD
X = B(C+D)+B(CD) = BC+BD +BCD

Input Output Q—% Input Output
BCD Excess-3 e BCD Excess-3
ABCDWXYZ T‘NDZT ABCDWXYZ
0000O0O0T11 0000 1
00010100 BD+—e 0001

00100101 0010 1
00110110 0011 11
01000111 BDy—Po 0100 1
01011000 B [So— 01011

01101001 v 01101 1
01111010 01111 1
10001011 NAND2 1 0001 1
10011100 10011

—_~
=+]
-~

(b)

—~
Q
~

O FIGURE 3-9
Verification: BCD-to-Excess-3 Code Converter

3-5 / Combinational Functional Blocks [113

Y=CD+(C+D)=CD+CD

Each of the product terms in the four output equations can be mapped to 1s
in the truth table in Figure 3-9(c). The mappings of the 1s for A, BC, and BD, for
BC, for CD, and for D are shown. After the remaining product terms are mapped
to 1s, the blank entries are filled with 0s. The new truth table in this case will match
the original one, verifying that the circuit is correct.

Simulation

An alternative to manual verification is the use of computer simulation for verifica-
tion. Using a computer permits truth-table verification to be done for a signifi-
cantly larger number of variables and greatly reduces the tedious analysis effort
required. Since simulation uses applied values, if possible, it is desirable for thor-
ough verification to apply all possible input combinations. The next example illus-
trates the use of Xilinx ISE4.2i FPGA development tools and XE II Modelsim
simulator to verify the BCD-to—excess-3 code converter using all possible input
combinations from the truth table.

EXAMPLE 3-7 Simulation-Based Verification of BCD-to-Excess-3 Code
Converter

Figure 3-9 shows (a) the original truth table specification, and (b) the final circuit
implementation of the BCD-to—excess 3 code converter. The circuit implementation
has been entered into Xilinx ISE 4.2i as the schematic shown in Figure 3-9(b). In
addition to entering the schematic, the input combinations given in Figure 3-9(a)
have also been entered as a waveform. These input waveforms are given in the
INPUTS section of the simulation output shown in Figure 3-10. The simulation of the
input waveforms applied to the circuit produces the output waveforms given in the
OUTPUT section. Examining each input combination and the corresponding output
combination represented by the waveforms, we can manually verify whether the out-
puts match the original truth table. Beginning with (A,B,C,D) = (0,0,0,0) in the
input waveform, we find that the corresponding output waveform represents
(W, X,Y,Z) = (0,0,1,1). Continuing, for (A,B,C,D) = (0,0,0,1), the values for the out-
put waveforms are (W,X,Y,Z) = (0,1,0,0). In both cases, the values are correct. This
process of checking the waveform values against the specification can be continued
for the remaining eight input combinations to complete the verification.

3-5 COMBINATIONAL FUNCTIONAL BLOCKS

Earlier, we defined and illustrated combinational circuits and their design. In this
section, we define specific combinational functions and corresponding combina-
tional circuits, referred to as functional blocks. In some cases, we will go through
the design process for obtaining a circuit from the function, while in other cases,
we will simply present the function and an implementation of it. These functions
have special importance in digital design. In the past, the functional blocks were

114 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

INPUTS |

'
0 50 ns

O FIGURE 3-10
Example 3-7: Simulation Results—BCD-to-Excess-3 Code Converter

! !
100 ns

manufactured as small- and medium-scale integrated circuits. Today, in very-large-
scale integrated (VLSI) circuits, functional blocks are used to design circuits with
many such blocks. Combinational functions and their implementations are funda-
mental to the understanding of VLSI circuits. By using a hierarchy, we typically
construct circuits as instances of these functions or the associated functional
blocks as well as logic design at the gate level.

Large-scale and very-large-scale integrated circuits are almost always sequen-
tial circuits, as detailed beginning in Chapter 5. The functions and functional blocks
discussed in this chapter are combinational. However, they are often combined
with storage elements to form sequential circuits, as shown in Figure 3-11. Inputs to
the combinational circuit can come from both the external environment and the stor-
age elements. Outputs from the combinational circuit go to both the external environ-
ment and the storage elements. In later chapters, we use the combinational functions
and blocks defined here, as well as in Chapter 4, with storage elements to form
sequential circuits that perform very useful functions. Further, the functions and
blocks defined here and in Chapter 4 serve as a basis for describing and understand-
ing both combinational and sequential circuits using hardware description languages
in Chapter 4.

Inputs ——> > Outputs
Combinational Next
_ SLEIE state__| Storage Present
” "] elements state

O FIGURE 3-11
Block Diagram of a Sequential Circuit

3-6 / Rudimentary Logic Functions [115

3-6 RUDIMENTARY LOGIC FUNCTIONS

Value fixing, transferring, inverting, and enabling are among the most elementary
of combinational logic functions. The first two operations, value fixing and transfer-
ring, do not involve any Boolean operators. They use only variables and constants.
As a consequence, logic gates are not involved in the implementation of these
operations. Inverting involves only one logic gate per variable, and enabling
involves one or two logic gates per variable.

Value-Fixing, Transferring, and Inverting
If a single-bit function depends on a single variable X, four different functions are
possible. Table 3-3 gives the truth tables for these functions. The first and last

0 TABLE 3-3
Functions of One Variable

X F=0 F=X F=X F

1]
-

0 0 0 1 1
1 0 1 0 1

columns of the table assign either constant value 0 or constant value 1 to the func-
tion, thus performing value fixing. In the second column, the function is simply the
input variable X, thus transferring X from input to output. In the third column, the
function is X, thus inverting input X to become output X.

The implementations for these four functions are given in Figure 3-12. Value
fixing is implemented by connecting a constant 0 or constant 1 to output F, as
shown in Figure 3-12(a). Figure 3-12(b) shows alternative representations used in
logic schematics. For the positive logic convention, constant 0 is represented by the
electrical ground symbol and constant 1 by a power-supply voltage symbol. The lat-
ter symbol is labeled with either V¢ or Vpp. Transferring is implemented by a sim-
ple wire connecting X to F as in Figure 3-12(c). Finally, inverting is represented by
an inverter which forms F = X from input X, as shown in Figure 3-12(d).

VCC or VDD

(2) (b) (d)

O FIGURE 3-12
Implementation of Functions of a Single Variable X

116 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

0 F;3 0 .
1 F, 1 4 21 F(2:1)
A F, A F
a F A ©
@ ®) 4 3,10 /%3 F(3), F(1:0)
F
(d)

OO0 FIGURE 3-13
Implementation of Multibit Rudimentary Functions

Multiple-Bit Functions

The functions defined so far can be applied to multiple bits on a bitwise basis. We
can think of these multiple-bit functions as vectors of single-bit functions. For
example, suppose that we have four functions, F3, F,, F;, and F, that make up a
four-bit function F We can order the four functions with F; as the most significant
bit and F; the least significant bit, providing the vector F = (F3, F,, Fy, Fy). Suppose
that F consists of rudimentary functions 3 =0, F, =1, F; = A,and F, = A.Then we
can write F as the vector (0,1,A, A).ForA=0,F=(0,1,0,1) and forA =1, F =
(0,1, 1, 0). This multiple-bit function can be referred to as F(3:0) or simply as F and
is implemented in Figure 3-13(a). For convenience in schematics, we often repre-
sent a set of multiple, related wires by using a single line of greater thickness with a
slash, across the line. An integer giving the number of wires represented accompa-
nies the slash as shown in Figure 3-13(b). In order to connect the values 0, 1, X, and
X to the appropriate bits of F, we break F up into four wires, each labeled with the
bit of F. Also, in the process of transferring, we may wish to use only a subset of the
elements in F—for example, F, and F;. The notation for the bits of F can be used
for this purpose, as shown in Figure 3-13(c). In Figure 3-13(d), a more complex case
illustrates the use of F3, F}, Fy at a destination. Note that since F3, F}, and F; are not
all together, we cannot use the range notation F(3:0) to denote this subvector.
Instead, we must use a combination of two subvectors, F(3), F(1:0), denoted by sub-
scripts 3, 1:0. The actual notation used for vectors and subvectors varies among the
schematic drawing tools or HDL tools available. Figure 3-13 illustrates just one
approach. For a specific tool, the documentation should be consulted.

Value fixing, transferring, and inverting have a variety of applications in
logic design. Value fixing involves replacing one or more variables with con-
stant values 1 and 0. Value fixing may be permanent or temporary. In perma-
nent value fixing, the value can never be changed. In temporary value fixing,
the values can be changed, often by mechanisms somewhat different from
those employed in ordinary logical operation. A major application of fixed and
temporary value fixing is in programmable logic devices. Any logic function

_a

()

3-6 / Rudimentary Logic Functions [117

that is within the capacity of the programmable device can be implemented by
fixing a set of values, as illustrated in the next example.

EXAMPLE 3-8 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
specifies that the switches that control the normal lights be programmable. There
are to be three different modes of operation for the two switches. Switch P is on
the podium in the front of the hall and switch R is adjacent to a door at the rear of
the lecture hall. H (house lights) is 1 for the house lights on and 0 for the house
lights off. The light control for house lights can be programmed to be in one of
three modes, My, M1, or M,, defined as:

M, Either switch P or switch R turns the house lights on and off.
M;: Only the podium switch P turns the house lights on and off.
M;: Only the rear switch R turns the house lights on and off.

The Solution: The truth tables for H(P, R) as a function of programming modes
My, My, and M, is given in Table 3-4. The functions for M; and M, are straightfor-
ward, but the function for M, needs more thought. This function must permit the
changing of one out of the two switches P or R to change the output. A parity func-
tion has this property, and the parity function for two inputs is the exclusive OR,
the function entered into Table 3-4 for M. The goal is to find a circuit that will
implement the three programming modes and provide the output H(P, R).

O TABLE 3-4
Function Implementation by Value Fixing

Mode: M, M, M,

PR H=PR+PR H=P H=R

0 0 0 0 0
01 1 0 1
1 0 1 1 0
11 0 1 1

The circuit chosen for a value-fixing implementation is shown in Figure 3-14(a);
later in this chapter, this standard circuit is referred to as a 4-to-1 multiplexer. A con-
densed truth table is given for this circuit in Figure 3-14(b). P and R are input vari-
ables, as are I through I5. Values 0 and 1 can be assigned to I through I; depending
upon the desired function for each mode. Note that H is actually a function of six
variables, giving a fully expanded truth table containing 64 rows and seven columns.
But, by putting I, through ;3 in the output column, we considerably reduce the size of
the table. The equation for the output H for this truth table is

H(P,R,Ip, I, I,,I5) = PRIy + PRI, + PRI, + PRI,

118 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

o
R So—

DD
11—3_\%7 P R | H
H T
> o 0 0|1
12_3_ 0 1 IS
101,
D— D
(a) (b)
P >0
R :
-)
o—___/
: Il_j_l%
H
> My | M; | M,
12—3_ Ll1|0]1
L |1 1 0

(©) (d)

O FIGURE 3-14
Implementation of Three Functions by Using Value Fixing

By fixing the values of I through I5, we can implement any function H(P, R). As
shown in Table 3-4, we can implement the function for My, H = PR + PR by using I,
=0,1;=1,L=1,and I3= 0. We can implement the function for M, H = P by using [
=0,11=0,I;=1,and I3=1,and M, H =R by using [,=0,1;=1,1,=0,and 5= 1.
Any one of these functions can be implemented permanently, or all can be
implemented temporarily by fixing I = 0, and using I;, I,, and I3 as variables with
values as assigned above for each of the three modes. The final circuit with I, = 0 and
the programming table after I, has been fixed at 0 are shown in Figure 3-14(c) and
(d), respectively.

o

(»

3-6 / Rudimentary Logic Functions [119

(a)
X
EN Dc 4D7F
(b)

O FIGURE 3-15
Enabling Circuits

Enabling

The concept of enabling a signal first appeared in Section 2-9, where Hi-Z outputs
and three-state buffers were introduced. In general, enabling permits an input signal
to pass through to an output. In addition to replacing the input signal with the Hi-Z
state, disabling also can replace the input signal with a fixed output value, either 0 or
1. The additional input signal, often called ENABLE or EN, is required to deter-
mine whether the output is enabled or not. For example, if EN is 1, the input X
reaches the output (enabled), but if EN is 0, the output is fixed at 0 (disabled). For
this case, with the disabled value at 0, the input signal is ANDed with the EN signal,
as shown in Figure 3-15(a). If the disabled value is 1, then the input signal X is
ORed with the complement of the EN signal, as shown in Figure 3-15(b). In this
case,if EN =1,a 0is applied to the OR gate, and the input X on the other OR gate,
input reaches the output, but if EN = 0,a 1 is applied to the OR gate, which blocks
the passage of input X to the output. It is also possible for each of the circuits in
Figure 3-15 be modified to invert the EN input, so that EN = 0 enables X to reach
the output and EN =1 blocks X.

EXAMPLE 3-9 Car Electrical Control Using Enabling

The Problem: In most automobiles, the lights, radio, and power windows operate
only if the ignition switch is turned on. In this case, the ignition switch acts as an
“enabling” signal. Suppose that we model this automotive subsystem using the fol-
lowing variables and definitions:

Ignition switch /G: Value 0 if off and value 1 if on

Light switch LS: Value 0 if off and value 1 if on

Radio switch RS: Value 0 if off and value 1 if on

Power window switch WS: Value 0 if off and value 1 if on
Lights L: Value 0 if off and value 1 if on

Radio R: Value 0 if off and value 1 if on

Power windows W: Value 0 if off and value 1 if on

120 O CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

O TABLE 3-5

Truth Table for Enabling Application

Input Accessory
Switches Control

IS LS RS WS L R W
0 X X X 0O 0 O
1 0 0 O 0 0 O
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 0o 1 1
1 1 0 O 1 0 0
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

The Solution: Table 3-5 contains the condensed truth table for the operation of this
automobile subsystem. Note that when the ignition switch IS is off (0), all of the
controlled accessories are off (0) regardless of their switch settings. This is indi-
cated by the first row of the table. With the use of X’s, this condensed truth table
with just nine rows represents the same information as the usual 16-row truth
table. Whereas X’s in output columns represent don’t-care conditions, X’s in input
columns are used to represent product terms that are not minterms. For example,
0XXX represents the product term IS . Just as with minterms, each variable is com-
plemented if the corresponding bit in the input combination from the table is 0 and
is not complemented if the bit is 1. If the corresponding bit in the input combina-
tion is an X, then the variable does not appear in the product term. When the igni-
tion switch IS is on (1), then the accessories are controlled by their respective
switches. When IS is off (0), all accessories are off. So IS replaces the normal values
of the outputs L, R, and W with a fixed value 0 and meets the definition of an
ENABLE signal. The resulting circuit is given in Figure 3-16.

LS—
IG

08

WS—

[

O FIGURE 3-16
Car Electrical Control Using Enabling

3-7 / Decoding [121

Dy D,

—

(2) (b)

O FIGURE 3-17
A 1-to-2-Line Decoder

3-7 DECODING

In digital computers, discrete quantities of information are represented by binary
codes. An n-bit binary code is capable of representing up to 2” distinct elements of
coded information. Decoding is the conversion of an n-bit input code to an m-bit
output code with n < m < 2", such that each valid input code word produces a
unique output code. Decoding is performed by a decoder, a combinational circuit
with an #n-bit binary code applied to its inputs and an m-bit binary code appearing
at the outputs. The decoder may have unused bit combinations on its inputs for
which no corresponding m-bit code appears at the outputs. Among all of the spe-
cialized functions defined here, decoding is the most important, since this function
and the corresponding functional blocks are incorporated into many of the other
functions and functional blocks defined here.

In this section, the functional blocks that implement decoding are called
n-to—m-line decoders, where m < 2". Their purpose is to generate the 2" (or fewer)
minterms from the » input variables. For n = 1 and m = 2, we obtain the 1-to-2-line
decoding function with input A and outputs D, and D;. The truth table for this
decoding function is given in Figure 3-17(a). If A = 0, then Dy =1 and D; = 0. If
A =1, then Dy = 0 and D; = 1. From this truth table, Dy = A and D; = A, giving
the circuit shown in Figure 3-17(b).

A second decoding function for n = 2 and m = 4 with the truth table given in
Figure 3-18(a) better illustrates the general nature of decoders. This table has 2-
variable minterms as its outputs, with each row containing one output value
equal to 1 and three output values equal to 0. Output D; is equal to 1 whenever
the two input values on A; and A are the binary code for the number i. As a
consequence, the circuit implements the four possible minterms of two vari-
ables, one minterm for each output. In the logic diagram in Figure 3-18(b),
each minterm is implemented by a 2-input AND gate. These AND gates are
connected to two 1-to-2-line decoders, one for each of the lines driving the
AND gate inputs.

Large decoders can be constructed by simply implementing each minterm
function using a single AND gate with more inputs. Unfortunately, as decoders
become larger, this approach gives a high gate-input cost. In this section, we give a
procedure that uses design hierarchy and collections of AND gates to construct
any decoder with »n inputs and 2" outputs. The resulting decoder has the same or a
lower gate-input cost than the one constructed by simply enlarging each AND gate.

122 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Ag Jl><‘ﬁ
1 i >o —
0 0 1 0 0 O Dy = A1Ag
0 1 0 1 0 O
1 0/ 0 0 1 0 B
1 1 0 0 0 1 D—D1=A1Ao
® D, = AjAq
(b)
O FIGURE 3-18
A 2-t0-4-Line Decoder
|F________________:____:____:____:____:____:_T_'___. ________ |I
H 42-input ANDs ||| 82-input ANDs |
I % , | ; |
1 N\ | |
}+—D
A‘“ ___ji | 0
Y N ‘ ! | |
e DD+
| - D
iR —
I & | = I
A \ ! e
1 4 g L/ ||
| |
! — — .
Il 2-to-4-Line /] ; / ; 3
lldecoder___\ _| e o | |
: {>O)—-‘——D4
|] |
A 4] i
2= Vi J——D
— l 5
|

3-to-8-Line decoder

0 FIGURE 3-19

1-to-2-Line decoders

uigp

A 3-t0-8-Line Decoder

3-7 / Decoding [123

To construct a 3-to-8-line decoder (n = 3), we can use a 2-to-4-line decoder
and a 1-to-2-line decoder feeding eight 2-input AND gates to form the minterms.
Hierarchically, the 2-to-4-line decoder can be implemented using two 1-to-2-line
decoders feeding four 2-input AND gates, as observed in Figure 3-18. The resulting
structure is shown in Figure 3-19.

The general procedure is as follows:

1. Letk=n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two
decoders of output size 2¥2, If is k is odd, obtain (k + 1)/2 and (k — 1)/2. Use
2k AND gates driven by a decoder of output size 2 + 12 and a decoder of
output size 2(k—-1)72,

3. For each decoder resulting from step 2, repeat step 2 with k equal to the val-
ues obtained in step 2 until k = 1. For k£ = 1, use a 1-to-2 decoder.

EXAMPLE 3-10 6-to—64-Line Decoder

For a 6-to-64-line decoder (k = n = 6), in the first execution of step 2, 64 2-input
AND gates are driven by two decoders of output size 23 = 8 (i.e., by two 3-to-8-line
decoders). In the second execution of step 2, k = 3. Since k is odd, the result is (k +
1)/2 =2 and (k —1)/2 = 1. Eight 2-input AND gates are driven by a decoder of out-
put size 22 = 4 and by a decoder of output size 2! = 2 (i.e., by a 2-to-4-line decoder
and by a 1-to-2-line decoder, respectively). Finally, on the next execution of step 2,
k = 2, giving four 2-input AND gates driven by two decoders with output size 2
(i.e., by two 1-to-2-line decoders). Since all decoders have been expanded, the
algorithm terminates with step 3 at this point. The resulting structure is shown in
Figure 3-20. This structure has a gate input cost of 6 + 2 (2 x4) + 2 (2 x 8) + 2 x 64
= 182. If a single AND gate for each minterm were used, the resulting gate-input
cost would be 6 + (6 x 64) = 390, so a substantial gate-input cost reduction has
been achieved.

As an alternative expansion situation, suppose that multiple decoders are
needed and that the decoders have common input variables. In this case, instead of
implementing separate decoders, parts of the decoders can be shared. For exam-
ple, suppose that three decoders d,, dy, and d. are functions of input variables as
follows:

d, (A, B,C,D)
dy (A, B, C, E)
d, (C,D, E, F)

A 3-to-8-line decoder for A, B, and C can be shared between d, and d;. A 2-to-4-
line decoder for C and D can be shared between d, and d.. A 2-to-4-line decoder
for C and E can be shared between d,, and d.. If we implemented all of this shar-
ing, we would have C entering three different decoders and the circuit would be

124 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

I 1 |
::: > 4 2-input ANDs : 8 2-input ANDs l 64 2-input ANDs I
| | | |
| _3 ! _3 _: |
Ay :ii] T n J:' N J:—DO
::I 2-to-4-Line decoder . : : |
i . I | i
it 4[>°__ | . | |
|||] | () | |
Ak —DT ° | |
| l | |
I |
:i 3-to-8-Line decoder ADO__ — : :
I — > H l
Ay | B
I e Sessss 1 ° I
l” |D 42-input ANDs ||| 82-input ANDs ! * |
I B — | —] | |
!|| 1 1 I
A —DI —D | |
lll 2-to-4-Line decoder . I | |
.;; E | : |
III u | | ° | :
I H P |
M — | |
e | l
-to-8-Li —] —] |
:: 3-to-8-Line decoder 4DQ_ i) J|']) Jl_Dss
As } | I
e e ————— =l |
——— 6to-64Linedecoder |

O FIGURE 3-20
A 6-t0-64-Line Decoder

redundant. To use C just once in shared decoders larger than 1 to 2, we can con-
sider the following distinct cases:

1. (A, B) shared by d, and d,, and (C, D) shared by d, and 4d_,
2. (A, B) shared by d, and d, and (C, E) shared by d,, and d_, or
3. (A, B, C) shared by d, and d,.

Since cases 1 and 2 will clearly have the same costs, we will compare the cost of
cases 1 and 3. For case 1, the costs of functions d,, dj, and d, are reduced by the
cost of two 2-to-4-line decoders (exclusive of inverters) or 16 gate inputs. For case
3, the costs for functions d, and d,, are reduced by one 3-to-8-line decoder (exclu-
sive of inverters) or 24 gate inputs. So case 3 should be implemented. Formaliza-
tion of this procedure into an algorithm is beyond our current scope, so only this
illustration of the approach is given.

Decoder and Enabling Combinations

The function, n-to-m-line decoding with enabling, can be implemented by attaching
m enabling circuits to the decoder outputs. Then, m copies of the enabling signal EN

3-7 / Decoding [125

EN
Ay {>c
Ao —
:) o
|/
EN A1 Ao Do D1 D2 D3 __\ ‘._}Dl
0 X X0 0 0 0 — L
1 00100 0 N }DZ
1 0 1,0 1 0 0 | J
1 1. 0]/0 0 1 0 - D
1 1 1]/0 0 0 1 3—) 3
(a) (b)

O FIGURE 3-21
A 2-to-4-Line Decoder with Enable

are attached to the enable control inputs of the enabling circuits. For n =2 and m =
4, the resulting 2-to-4-line decoder with enable is shown in Figure 3-21, along with
its truth table. For EN = 0, all of the outputs of the decoder are 0. For EN =1, one
of the outputs of the decode, determined by the value on (A;,A4y),is 1 and all others
are 0. If the decoder is controlling a set of lights, then with EN = 0, all lights are off,
and with EN = 1, exactly one light is on, with the other three off. For large decoders
(n 2 4), the gate-input cost can be reduced by placing the enable circuits on the
inputs to the decoder and their complements rather than on each of the decoder
outputs.

In Section 3-9, selection using multiplexers will be covered. The inverse of
selection is distribution, in which information received from a single line is trans-
mitted to one of 2” possible output lines. The circuit which implements such distri-
bution is called a demultiplexer. The specific output to which the input signal is
transmitted is controlled by the bit combination on 7 selection lines. The 2-to-4-line
decoder with enable in Figure 3-21 is an implementation of a 1-to-4-line demulti-
plexer. For the demultiplexer, input EN provides the data, while the other
inputs act as the selection variables. Although the two circuits have different
applications, their logic diagrams are exactly the same. For this reason, a
decoder with enable input is referred to as a decoder/demultiplexer. The data
input EN has a path to all four outputs, but the input information is directed to
only one of the outputs, as specified by the two selection lines A; and A,. For
example, if (A1,A4q) = 10, output D, has the value applied to input EN, while all
other outputs remain inactive at logic 0. If the decoder is controlling a set of four
lights, with (A, A4¢) = 10 and EN periodically changing between 1 and 0, the light
controlled by D, flashes on and off and all other lights are off.

126 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Decoder-Based Combinational Circuits

A decoder provides the 2" minterms of »n input variables. Since any Boolean
function can be expressed as a sum of minterms, one can use a decoder to gener-
ate the minterms and combine them with an external OR gate to form a sum-of-
minterms implementation. In this way, any combinational circuit with n inputs
and m outputs can be implemented with an n-to-2"-line decoder and m OR
gates.

The procedure for implementing a combinational circuit by means of a
decoder and OR gates requires that the Boolean functions be expressed as a sum
of minterms. This form can be obtained from the truth table or by plotting each
function on a K-map. A decoder is chosen or designed that generates all the min-
terms of the input variables. The inputs to each OR gate are selected as the appro-
priate minterm outputs according to the list of minterms of each function. This
process is shown in the next example.

EXAMPLE 3-11 Decoder and OR-Gate Implementation of a Binary Adder Bit

In Chapter 1, we considered binary addition. The sum bit output S and the carry bit
output C for a bit position in the addition are given in terms of the two bits being
added, X and Y, and the incoming carry from the right, Z, in Table 3-6.

O TABLE 3-6
Truth Table for 1-Bit Binary Adder

X Y y 4 C S

Y e = ===
—_ = OO R =k OO
RO R ORORO
RR R OoOROoOOO
RPoorRORRPRO

From this truth table, we obtain the functions for the combinational circuit in sum-
of-minterms form:

S(X,Y,Z) =3m(1,2,4,7)
C(X,Y,Z) =3m(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a 3-to-8-line
decoder. The implementation is shown in Figure 3-22. The decoder generates all

3-8 / Encoding O 127

3-to-8-line
Decoder
0
1
Z 73 2 | —Dﬁ S
3
1
Y—2 4
_] ——) >—c
2
X 2 6l— 1|
7

O FIGURE 3-22
Implementing a Binary Adder Using a Decoder

eight minterms for inputs X, Y, and Z. The OR gate for output S forms the logical
sum of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of
minterms 3, 5, 6, and 7. Minterm 0 is not used.

A function with a long list of minterms requires an OR gate with a large
number of inputs. A function having a list of £ minterms can be expressed in its
complement form with 2" — k minterms. If the number of minterms in a function
F is greater than 2%/2, then the complement of F, F, can be expressed with fewer
minterms. In such a case, it is advantageous to use a NOR gate instead of an OR
gate. The OR portion of the NOR gate produces the logical sum of the minterms
of F.The output bubble of the NOR gate complements this sum and generates
the normal output F.

The decoder method can be used to implement any combinational circuit.
However, this implementation must be compared with other possible implementa-
tions to determine the best solution. The decoder method may provide the best
solution, particularly if the combinational circuit has many outputs based on the
same inputs and each output function is expressed with a small number of minterms.

3-8 ENCODING

An encoder is a digital function that performs the inverse operation of a decoder.
An encoder has 2" (or fewer) input lines and » output lines. The output lines gen-
erate the binary code corresponding to the input value. An example of an
encoder is the octal-to-binary encoder whose truth table is given in Table 3-7.
This encoder has eight inputs, one for each of the octal digits, and three outputs
that generate the corresponding binary number. It is assumed that only one input
has a value of 1 at any given time, so that the table has only eight rows with spec-
ified output values. For the remaining 56 rows, all of the outputs are don’t cares.

128 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

0 TABLE 3-7
Truth Table for Octal-to-Binary Encoder
Inputs Outputs

D, De Ds D, Ds D, D, Do A; A Ao
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

From the truth table, we can observe that A; is 1 for the columns in which D; is 1
only if subscript j has a binary representation with a 1 in the ith position. For
example, output A, = 1 if the input is 1 or 3 or 5 or 7. Since all of these values
are odd, they have a 1 in the 0 position of their binary representation. This
approach can be used to find the truth table. From the table, the encoder can be
implemented with n OR gates, one for each output variable A;. Each OR gate
combines the input variables D; having a 1 in the rows for which A; has value 1.
For the 8-to-3-line encoder, the resulting output equations are

A0=D1+D3+D5+D7
A1=D2+D3+D6+D7
A2=D4+D5+D6+D7

which can be implemented with three 4-input OR gates.

The encoder just defined has the limitation that only one input can be active
at any given time: if two inputs are active simultaneously, the output produces an
incorrect combination. For example, if D5 and Dy are 1 simultaneously, the output
of the encoder will be 111, because all the three outputs are equal to 1. This repre-
sents neither a binary 3 nor a binary 6. To resolve this ambiguity, some encoder cir-
cuits must establish an input priority to ensure that only one input is encoded. If
we establish a higher priority for inputs with higher subscript numbers, and if both
D; and Dg are 1 at the same time, the output will be 110, because Dg has higher
priority than D;. Another ambiguity in the octal-to-binary encoder is that an out-
put of all Os is generated when all the inputs are 0, but this output is the same as
when D is equal to 1. This discrepancy can be resolved by providing a separate
output to indicate that at least one input is equal to 1.

3-8 / Encoding O 129

O TABLE 3-8
Truth Table of Priority Encoder

Inputs Outputs
D3 D, D, D, A, A, Vv
0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

Priority Encoder

A priority encoder is a combinational circuit that implements a priority function.
As mentioned in the preceding paragraph, the operation of the priority encoder is
such that if two or more inputs are equal to 1 at the same time, the input having
the highest priority takes precedence. The truth table for a four-input priority
encoder is given in Table 3-8. With the use of X’s, this condensed truth table with
just five rows represents the same information as the usual 16-row truth table.
Whereas X’s in output columns represent don’t-care conditions, X’s in input
columns are used to represent product terms that are not minterms. For example,
001X represents the product term D3 D, D,. Just as with minterms, each variable
is complemented if the corresponding bit in the input combination from the table
is 0 and is not complemented if the bit is 1. If the corresponding bit in the input
combination is an X, then the variable does not appear in the product term. Thus,
for 001X, the variable Dy, corresponding to the position of the X, does not appear
in D3 D, D;.

The number of rows of a full truth table represented by a row in the con-
densed table is 2P, where p is the number of X’s in the row. For example, in
Table 3-8, 1XXX represents 23 = 8 truth-table rows, all having the same value
for all outputs. In forming a condensed truth table, we must include each min-
term in at least one of the rows in the sense that the minterm can be obtained
by filling in 1s and Os for the X’s. Also, a minterm must never be included in
more than one row such that the rows in which it appears have one or more
conflicting output values.

We form Table 3-8 as follows: Input D3 has the highest priority; so,
regardless of the values of the other inputs, when this input is 1, the output for
A{Ajis 11 (binary 3). From this we obtain the last row of the table. D, has the
next priority level. The output is 10 if D, = 1, provided that D5 = 0, regardless
of the values of the lower-priority inputs. From this, we obtain the fourth row

130 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

D;Dq D, DD, D,
D;D, 00 01 11 10 D;D, 00 01 11 10
0] X 00 | X | 1 1
o1ffrt [1| 1] 1 01
D2 DZ
1141 1 1 1 1|1 1 1 1
D3 D3
104 1 1 1 1 10]| 1 1 1 1
Dy Dy
A1=D2+ D3 A0=D3+D152

O FIGURE 3-23
Maps for Priority Encoder

of the table. The output for D, is generated only if all inputs with higher prior-
ity are 0, and so on down the priority levels. From this, we obtain the remaining
rows of the table. The valid output designated by V is set to 1 only when one or
more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the
other two outputs of the circuit are not used and are specified as don’t-care
conditions in the output part of the table.

The maps for simplifying outputs A; and A, are shown in Figure 3-23. The
minterms for the two functions are derived from Table 3-8. The output values in
the table can be transferred directly to the maps by placing them in the squares
covered by the corresponding product term represented in the table. The opti-
mized equation for each function is listed under the map for the function. The
equation for output V is an OR function of all the input variables. The priority
encoder is implemented in Figure 3-24 according to the following Boolean
functions:

Ay =Dy +D,D,
A= D,+D,
V= Dy+D;+D,+ D,

Encoder Expansion

Thus far, we have considered only small encoders. Encoders can be expanded to
larger numbers of inputs by expanding OR gates. In the implementation of
decoders, the use of multiple-level circuits with OR gates beyond the output lev-
els shared in implementing the more significant bits in the output codes reduces
the gate input cost as n increases for n > 5. For n > 3, multiple-level circuits
result from technology mapping anyway, due to limited gate fan-in. Designing

3-9 / Selecting O 131

OO0 FIGURE 3-24
Logic Diagram of a 4-Input Priority Encoder

multiple-level circuits with shared gates reduces the cost of the encoders after
technology mapping.

3-9 SELECTING

Selection of information to be used in a computer is a very important function, not
only in communicating between the parts of the system, but also within the parts as
well. Circuits that perform selection typically have a set of inputs from which selec-
tions are made, a single output, and a set of control lines for making the selection.
First, we consider selection using multiplexers; then we briefly examine selection
circuits implemented by using three-state drivers.

Multiplexers

A multiplexer is a combinational circuit that selects binary information from one of
many input lines and directs the information to a single output line. The selection of
a particular input line is controlled by a set of input variables, called selection inputs.

0 TABLE 3-9
Truth Table for 2-to-1-Line Multiplexer
S Iy | Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

132 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Enabling

Decoder Circuits

So

D

00
I_I

O FIGURE 3-25
A Single-Bit 2-to-1-Line Multiplexer

Normally, there are 2” input lines and » selection inputs whose bit combinations
determine which input is selected. We begin with n = 1, a 2-to-1-line multiplexer.
This function has two information inputs, /; and /3, and a single select input S. The
truth table for the circuit is given in Table 3-9. Examining the table, if the select
input S = 0, the output of the multiplexer takes on the values of ;, and, if input S =
1, the output of the multiplexer takes on the values of ;. Thus, S selects either input
I, or input /; to appear at output Y. From this discussion, we can see that the equa-
tion for the 2-to-1-line multiplexer output Y is

Y=SI, +SI

This same equation can be obtained by using a 3-variable K-map. As shown
in Figure 3-25, the implementation of the preceding equation can be decomposed
into a 1-to-2-line decoder, two enabling circuits, and a 2-input OR gate.

Suppose that we wish to design a 4-to-1-line multiplexer. In this case, the
function Y depends on four inputs I, I, I, and I3 and two select inputs S; and S,
By placing the values of [through I3 in the Y column, we can form Table 3-10, a
condensed truth table for this multiplexer. In this table, the information variables
do not appear as input columns of the table but appear in the output column. Each
row represents multiple rows of the full truth table. In Table 3-10, the row 00 I
represents all rows in which (S, Sy) = 00. For [, = 1 it gives Y = 1, and for I, = 0
it gives Y = 0. Since there are six variables, and only S; and S, are fixed, this single
row represents 16 rows of the corresponding full truth table. From the table, we
can write the equation for Y as

0 TABLE 3-10
Condensed Truth Table for 4-to-1-Line
Multiplexer
S: So Y
0 0 I,
0 1 I
1 0 I
11 I,

3-9 / Selecting [133

S, >C Decoder
S > o 4 X 2 AND-OR
H)
— I, }
)
| .
_\ ! _Y
|/ L
)
— Iy }

O FIGURE 3-26
A Single-Bit 4-to—-1-Line Multiplexer

Y= S'lgo IO + §1S0 L+ §1§QIZ+ S1S()I3

If this equation is implemented directly, two inverters, four 3-input AND gates, and
a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-
mentation can be obtained by factoring the AND terms to give

Y = (8180) + (S1So) 1 + (5180) o+ (S1S0) I3

This implementation can be constructed by combining a 2-to-4-line
decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as
shown in Figure 3-26. We will refer to the combination of AND gates and OR
gates as an m x 2 AND-OR, where m is the number of AND gates and 2 is the
number of inputs to the AND gates. This resulting circuit has a gate input cost of
22, which is the more costly. Nevertheless, it provides a structural basis for con-
structing larger n-to-2"-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-
mation inputs and steers the binary information to the output line. The term “mul-
tiplexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger
values of n. Expansion is based upon the circuit structure given in Figure 3-25, con-
sisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-
trated in Examples 3-11 and 3-12.

EXAMPLE 3-12 64-to-1-Line Multiplexer

A multiplexer is to be designed for n = 6. This will require a 6-to-64-line decoder
as given in Figure 3-20, and a 64 x 2 AND-OR gate. The resulting structure is
shown in Figure 3-27. This structure has a gate-input cost of 182 + 128 + 64 = 374.

134 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

I |
: 64 X 2 AND-OR |
: Ip '
I
. |
: |
. |
A — |
: |
! |
I |
: |
A2 : |
. ° |
: 6-to-64-Line decoder C o ° D—{— Y
| ®
. - |
Aj : I
: |
i |
. |
A, I
| |
: |
|
' Lez |
= — :
AS T |
| |

O FIGURE 3-27
A 64-to-1-Line Multiplexer

In contrast, if the decoder and the enabling circuit were replaced by inverters
plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For sin-
gle-bit multiplexers such as this one, combining the AND gate generating D; with
the AND gate driven by D; into a single 3-input AND gate for every i = 0 through
63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this reduction
to 3-input ANDs cannot be performed without replicating the output ANDs of
the decoders. As a result, in almost all cases, the original structure has a lower
gate-input cost. The next example illustrates the expansion to a multiple-bit mul-
tiplexer.

EXAMPLE 3-13 4-to-1-Line Quad Multiplexer

A quad 4-to-1-line multiplexer, which has two selection inputs and each informa-
tion input replaced by a vector of four inputs, is to be designed. Since the infor-
mation inputs are a vector, the output Y also becomes a four-element vector. The
implementation for this multiplexer requires a 2-to-4-line decoder, as given in
Figure 3-18, and four 4 x 2 AND-OR gates. The resulting structure is shown in
Figure 3-28. This structure has a gate-input cost of 10 + 32 + 16 = 58. In contrast,
if four 4-input multiplexers implemented with 3-input gates were placed side by

3-9 / Selecting [135

4 X 2 AND-OR

QOC? I
I
&

i |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| L __[4x 2 AND-OR i

D

Ao JI— —00 IO_’1 :
I . — Y, I
: 2-to-4-Line decoder | -) . :
| D] |

A+ 3 | 4 X 2 AND-OR .
| By _l[_ |
| 02 |
: —Y, I
| . . I
I * I
| ‘ J |
! I __4 X2 AND-OR I
I 32 I
| o3 |
| 1
| - -
| . . |
| . o |
| |
| h |
| |
| |
-]

O FIGURE 3-28
A Quad 4-to-1-Line Multiplexer

side, the gate-input cost would be 76. So, by sharing the decoder, we reduced the
gate-input cost.

s

{(8W) EXAMPLE 3-14 Security System Sensor Selection using Multiplexers

" The Problem: A home security system has 15 sensors that detect open doors and win-
dows. Each sensor produces a digital signal 0 when the window or door is closed and 1
when the window or door is open. The control for the security system is a microcon-
troller with eight digital input/output bits available. Each bit can be programmed to
be either an input or an output. Design a logic circuit that repeatedly checks each of
the 15 sensor values by connecting the sensor output to a microcontroller input/out-
put that is programmed to be an input. The parts list for the design consists of the fol-
lowing multiplexer parts: 1) a single 8-to-1-line multiplexer, 2) a dual 4-to-1-line
multiplexer, and 3) a quad 2-to-1-line multiplexer. Any number of each part is avail-
able. The design is to minimize the number of parts and also minimize the number of
microcontroller input/outputs used. Microcontroller input/outputs programmed as
outputs are to be used to control the select inputs on the multiplexers.

136 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The Solution: Some of the sensors can be connected to multiplexer inputs and
some directly to microcontroller inputs. One possible solution that minimizes the
number of multiplexers is to use two 8-1 multiplexers, each connected to a micro-
controller input. The two multiplexers handle 16 sensors and require three micro-
controller outputs as selection inputs. Since there are 15 sensor outputs, the unused
16th multiplexer input can be attached to 0. The number of microcontroller
input/outputs used is 3 + 2 = 5. Use of any of the other multiplexer types will
increase the number of microcontroller inputs used and decrease the number of
microcontroller outputs used. The increase in inputs, however, is always greater
than the decrease in outputs. So the initial solution is best in terms of microcontrol-
ler input/outputs used.

Multiplexer-Based Combinational Circuits

Earlier in this section, we learned that a decoder combined with an m x 2 AND-
OR gate implements a multiplexer. The decoder in the multiplexer generates the
minterms of the selection inputs. The AND-OR gate provides enabling circuits that
determine whether the minterms are “attached” to the OR gate with the informa-
tion inputs (Z;) used as the enabling signals. If the /; input is a 1, then minterm #z; is
attached to the OR gate, and, if the J; input is a 0, then minterm m; is replaced by a
0. Value fixing applied to the I inputs provides a method for implementing a Bool-
ean function of n variables with a multiplexer having n selection inputs and 2" data
inputs, one for each minterm. Further, an m-output function can be implemented
by using value fixing on a multiplexer with m-bit information vectors instead of the
individual 7 bits, as illustrated by the next example.

EXAMPLE 3-15 Multiplexer Implementation of a Binary-Adder Bit

The values for § and C from the 1-bit binary adder truth table given in Table 3-6
can be generated by using value fixing on the information inputs of a multiplexer.
Since there are three selection inputs and a total of eight minterms, we need a dual
8-to-1-line multiplexer for implementing the two outputs, S and C. The implemen-
tation based on the truth table is shown in Figure 3-29. Each pair of values, such as
(0, 1) on (I3, I,), is taken directly from the corresponding row of the last two
truth-table columns.

A more efficient method implements a Boolean function of n variables with a
multiplexer that has only n — 1 selection inputs. The first n — 1 variables of the
function are connected to the selection inputs of the multiplexer. The remaining
variable of the function is used for the information inputs. If the final variable is Z,
each data input of the multiplexer will be either Z, Z, 1, or 0. The function can be
implemented by attaching implementations of the four rudimentary functions from

3-9 / Selecting O 137

X—S, Dual

Y—S; 8-to-l

Z—S, MUX

0—lop

0—1To1

1—Lo

0—1I11

1 Ly

0—I21

0—1lsp Y, —s
1—ls1 Y, l—c
1—1l4po

0—11L41

0—1Lsp

1—Is1

0—11ls0

1—l61

1—I7p

1—I7:

O FIGURE 3-29
Implementing a 1-Bit Binary Adder with a Dual 8-to-1-Line Multiplexer

Table 3-3 to the information inputs to the multiplexer. The next example demon-
strates this procedure.

EXAMPLE 3-16 Alternative Multiplexer Implementation of a Binary Adder Bit

This function can be implemented with a dual 4-to-1-line multiplexer, as shown in
Figure 3-30. The design procedure can be illustrated by considering the sum S. The
two variables X and Y are applied to the selection lines in that order; X is con-
nected to the S; input, and Y is connected to the S, input. The values for the data
input lines are determined from the truth table of the function. When (X,Y) = 00,

X—s, Dual
Y — SO 4-to-1
MUX
Z—1Top
0—To;
Z— I1’0 Yo —S
Z] 11:1 Y. —C
Z—1y
Z—Ip;
Z—lI3y
1— I3

0 FIGURE 3-30
Implementing a 1-Bit Binary Adder with a Dual 4-to-1-Line Multiplexer

138 [0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

the output S is equal to Z, because S = 0 when Z = 0 and S = 1 when Z = 1. This
requires that the variable Z be applied to information input Iy, The operation of
the multiplexer is such that, when (X,Y) = 00, information input [, has a path to
the output that makes S equal to Z. In a similar fashion, we can determine the
required input to lines 11, I, and Iy from the value of S when (X,Y) = 01, 10, and
11, respectively. A similar approach can be used to determine the values for Iy, 114,
121, and 131.

The general procedure for implementing any Boolean function of n variables
with a multiplexer with n — 1 selection inputs and 2"~/ data inputs follows from
the preceding example. The Boolean function is first listed in a truth table. The first
n — 1 variables in the table are applied to the selection inputs of the multiplexer.
For each combination of the selection variables, we evaluate the output as a func-
tion of the last variable. This function can be 0, 1, the variable, or the complement
of the variable. These values are then applied to the appropriate data inputs. This
process is illustrated in the next example.

EXAMPLE 3-17 Multiplexer Implementation of 4-Variable Function

As a second example, consider the implementation of the following Boolean
function:

F(A,B,C,D) = 3m(1,3,4,11,12,13,14,15)

This function is implemented with an 8 X 1 multiplexer as shown in Figure 3-31.To
obtain a correct result, the variables in the truth table are connected to selection
inputs S,, S1, and Sjin the order in which they appear in the table (i.e., such that A
is connected to S,, B is connected to S;, and C is connected to Sy, respectively).
The values for the data inputs are determined from the truth table. The informa-
tion line number is determined from the binary combination of A, B, and C. For
example, when (A, B, C) = 101, the truth table shows that F = D, so the input
variable D is applied to information input /5. The binary constants 0 and 1 corre-
spond to two fixed signal values. Recall from Section 3-6 that, in a logic schematic,
these constant values are replaced by the ground and power symbols, as shown in
Figure 3-12.

3-10 CHAPTER SUMMARY

The first part of this chapter defined and illustrated a five-step design procedure
described in Section 3-1. These steps apply to both manual and computer-aided
design. The design begins with a defining specification and proceeds through a for-
mulation step in which the specification is converted to a table or equations. The
optimization step applies two-level and multiple-level optimization to obtain a cir-
cuit composed of AND gates, OR gates, and inverters. Technology mapping con-
verts this circuit into one that efficiently uses the gates in the available
implementation technology. Finally, verification is applied to assure that the final

3-10 / Chapter Summary O 139

ABCD]|F
00000
F=D
00011
8 x 1 MUX
0 01 oD
0011 /|1 C So
01001 b 3t
-D A S
0101 |0%° 0P 2
0 010 D 0
F=0
01111]0 1 —F
>c 2
10000
F=0 O * 3
100110 4
010 oD 5
01111 1 6
L7
0
F=1
01
111 1oy
111111

O FIGURE 3-31
Implementing a Four-Input Function with a Multiplexer

circuit satisfies the initial specification. Three examples illustrated the first three of
these steps. In the third of these examples, the important concept of design hierar-
chy was introduced. Technology mapping details were introduced using single gate
types, e.g., either NAND or NOR gates, as the target technology. The design proce-
dure materials concluded with the illustration of verification using either logic
analysis or logic simulation.

The second part of this chapter dealt with functional blocks, combinational
circuits that are frequently used to design larger circuits. Rudimentary circuits that
implement functions of a single variable were introduced. The design of decoders
that activate one of a number of output lines in response to an input code was cov-
ered. Encoders, the inverse of decoders, generated a code associated with the
active line from a set of lines. The design of multiplexers that select from data
applied at the inputs and present it at the output was illustrated.

The design of combinational logic circuits using decoders and multiplexers,
was covered. In combination with OR gates, decoders provide a simple min-
term-based approach to implementing combinational circuits. Procedures were
given for using an n-to-1-line multiplexer or a single inverter and an (n — 1)-to-
1-line multiplexer to implement any n-input Boolean function.

{

140 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

REFERENCES

1. MaANoO, M. M. Digital Design, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
2. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Pearson Prentice Hall, 2006.

3. High-Speed CMOS Logic Data Book. Dallas: Texas Instruments, 1989.

_ PROBLEMS

, The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

3-2.

() 3-5.

=

a solution is available on the text website.

3-1.

A majority function has an output value of 1 if there are more 1s than Os on
its inputs. The output is 0 otherwise. Design a three-input majority function.

*Find a function to detect an error in the representation of a decimal digit in
BCD. In other words, write an equation with value 1 when the inputs are any
one of the six unused bit combinations in the BCD code, and value 0 otherwise.

Design an excess-3-to—-BCD code converter that gives output code 0000 for
all invalid input combinations.

A simple well-known game, tic-tac-toe, is played on a three-by-three grid of
squares by two players. The players alternate turns. Each player chooses a
square and places a mark in a square. (One player uses X and the other O.)
The first player with three marks in a row, in a column, or on a diagonal wins
the game. A logic circuit is to be designed for an electronic tic-tac-toe that
indicates the presence of a winning pattern. The circuit output Wis a 1 if a
winning pattern is present and a 0 if a winning pattern is not present. For
each of the nine squares, there are two signals, X; and O;. Two copies of the
circuit are used, one for Xs and one for Os. Hint: Form a condensed truth
table for W(X;, X5, . . ., Xj).
(a) Design the X circuit for the following pattern of signals for the squares:

X1 X, X3

X, X5 Xg

X; X Xy
(b) Minimize the W output for the X circuit as much as possible, using Boolean

algebra.

Repeat Problem 3-4 for 4 x 4 tic-tac-toe, which is played on a four-by-four
grid. Assume that the numbering pattern is left to right and top to bottom, as
in Problem 3-4.

A low-voltage lighting system is to use a binary logic control for a particular
light. This light lies at the intersection point of a T-shaped hallway. There is a
switch for this light at each of the three endpoints of the T. These switches
have binary outputs 0 and 1 depending on their position and are named Xj,
X,, and Xj;. The light is controlled by a buffer driving a thyristor, an
electronic part that can switch power-circuit current. When Z, the input to

<) 3-7.

3-9.

3-10.

s

<, 3-11.

Problems [141

the buffer, is 1, the light is ON, and when Z is 0, the light is OFF. You are to
find a function Z = F(X;, X,, X3) so that if any one of the switches is
changed, the value of Z changes, turning the light ON or OFF.

+A traffic light control at a simple intersection uses a binary counter to
produce the following sequence of combinations on lines A, B, C, and D:
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010,
1011, 1001, 1000. After 1000, the sequence repeats, beginning again with
0000, forever. Each combination is present for 5 seconds before the next one
appears. These lines drive combinational logic with outputs to lamps RNS
(red—north/south), YNS (yellow—north/south), GNS (green—north/south),
REW (red—east/west), YEW (yellow—east/west), and GEW (green—
east/west). The lamp controlled by each output is ON for a 1 applied and
OFF for a 0 applied. For a given direction, assume that green is on for 30
seconds, yellow for 5 seconds, and red for 45 seconds. (The red intervals
overlap for 5 seconds.) Divide up the 80 seconds available for the cycle
through the 16 combinations into 16 intervals and determine which lamps
should be lit in each interval based on expected driver behavior. Assume
that, for interval 0000, a change has just occurred and that GNS = 1, REW =
1, and all other outputs are 0. Design the logic to produce the six outputs
using AND and OR gates and inverters.

Design a combinational circuit that accept a 3-bit number and generates a 6-
bit binary number output equal to the square of the input number.

+ Design a combinational circuit that accepts a 4-bit number and generates a
3-bit binary number output that approximates the square root of the
number. For example, if the square root is 3.5 or larger, give a result of 4. If
the square root is < 3.5 and > 2.5, give a result of 3.

Design a circuit with a 4-bit BCD input A, B, C, D that produces an output
W, X, Y, Z that is equal to the input + 6 in binary. For example, 9 (1001) + 6
(0110) = 15 (1111). The outputs for invalid BCD codes are don’t-cares.

A traffic metering system for controlling the release of traffic from an
entrance ramp onto a superhighway has the following specifications for a
part of its controller. There are three parallel metering lanes, each with its
own stop (red)-go (green) light. One of these lanes, the car pool lane, is
given priority for a green light over the other two lanes. Otherwise, a “round
robin” scheme in which the green lights alternate is used for the other two
(left and right) lanes. The part of the controller that determines which light is
to be green (rather than red) is to be designed. The specifications for the
controller follow:

Inputs
PS Car pool lane sensor (car present—1; car absent—0)
LS Left lane sensor (car present—1; car absent—0)
RS Right lane sensor (car present—1; car absent—0)
RR Round robin signal (select left—1; select right—0)

142

.

<, 3-12.

-

3-13.

3-14.

[0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Outputs
PL Car pool lane light (green—1;red—0)
LL Left lane light (green—1; red—0)
RL Right lane light (green—1; red—0)

Operation

1. If there is a car in the car pool lane, PL is 1.

2. If there are no cars in the car pool lane and the right lane, and there
is a car in the left lane, LL is 1.

3. If there are no cars in the car pool lane and in the left lane, and there
is a car in the right lane, RL is 1.

4. If there is no car in the car pool lane, there are cars in both the left
and right lanes, and RR is 1, then LL = 1.

5. If there is no car in the car pool lane, there are cars in both the left
and right lanes, and RR is 0, then RL = 1.

6. If any PL, LL, or RL is not specified to be 1 above, then it has value 0.

(a) Find the truth table for the controller part.

(b) Find a minimum multiple-level gate implementation with minimum gate-
input cost using AND gates, OR gates, and inverters.

Complete the design of the BCD-to-seven-segment decoder by performing
the following steps:

(a) Plot the seven maps for each of the outputs for the BCD-to-seven-
segment decoder specified in Table 3-2.

(b Simplify the seven output functions in sum-of-products form, and
determine the total number of gate inputs that will be needed to
implement the decoder.

(¢) Verify that the seven output functions listed in the text give a valid
simplification. Compare the number of gate inputs with that obtained in
part (b) and explain the difference.

Design a circuit to implement the following pair of Boolean equations:

F=A(CE +DE)+ AD
G=B(CE + DE) + BC

To simplify drawing the schematic, the circuit is to use a hierarchy based on
the factoring shown in the equation. Three instances (copies) of a single
hierarchical circuit component made up of two AND gates, an OR gate, and
an inverter are to be used. Draw the logic diagram for the hierarchical
component and for the overall circuit diagram using a symbol for the
hierarchical component.

A hierarchical component with the function

H=XY +XZ

Www.Ebook777.com

http://www.ebook777.com

3-15.

3-16.

3-17.

3-18.
3-19.
3-20.

Problems [143

—) > —) Do

’) Do
—) >

O FIGURE 3-32
Circuit for Problem 3-20

is to be used along with inverters to implement the following equation:
G=ABC + ABD + ABC + ABD
The overall circuit can be obtained by using Shannon’s expansion theorem,
F=X -Fy(X)+X- F,(X)

where Fy(X) is F evaluated with variable X = 0 and F(X) is F evaluated
with variable X = 1. This expansion F can be implemented with function H
by letting Y = F and Z = F;. The expansion theorem can then be applied to
each of F, and F; using a variable in each, preferably one that appears in
both true and complemented form. The process can then be repeated until
all F;’s are single literals or constants. For G, use X = A to find G, and G; and
then use X = B for G and G;. Draw the top-level diagram for G using H as
a hierarchical component.

+A NAND gate with eight inputs is required. For each of the following
cases, minimize the number of gates used in the multiple-level result:

(a) Design the 8-input NAND gate using 2-input NAND gates and NOT
gates.

(b) Design the 8-input NAND gate using 2-input NAND gates, 2-input NOR
gates,and NOT gates only if needed.

(¢) Compare the number of gates used in (a) and (b).

Perform technology mapping to NAND gates for the circuit in Figure 2-20(c).
Use cell types selected from: Inverter (n = 1), 2NAND, 3NAND, and
4NAND, as defined at the beginning of Section 3-3.

Repeat Problem 3-16, using NOR gate cell types selected from: Inverter (n =
1), 2NOR, 3NOR, and 4NOR, each defined in the same manner as the
corresponding four NAND cell types at the beginning of Section 3-3.

Repeat Problem 3-16 for the circuit in Figure 2-21(c).
Repeat Problem 3-18, mapping to NOR gate cell types as in Problem 3-17.

By using manual methods, verify that the circuit of Figure 3-32 generates the
exclusive-NOR function.

144 [CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

I
o

oA — >

)
J

o>

O FIGURE 3-33

.

4, 3-21. The logic diagram for a 74HC138 MSI CMOS circuit is given in Figure 3-33.
" Find the Boolean function for each of the outputs. Describe the circuit

function carefully.

Y

<> 3-22. Do Problem 3-21 by using logic simulation to find the output waveforms of
= the circuit or a partial truth-table listing, rather than finding Boolean

functions.

3-23. In Figure 3-10, simulation results are given for the BCD-to—-excess-3 code
converter for the BCD inputs for 0 through 9. Perform a similar logic

18800004

Circuit for Problems 3-21 and 3-22

simulation to determine the results for BCD inputs 10 through 15.

3-24. *(a) Draw an implementation diagram for a constant vector function F =
(F7, F6’ F5, F4, F3, F2, Fl’ F()) = (1, 0, 0, 1, O, 1, 1, O) llSiIlg the ground and
power symbols in Figure 3-12(b).

(b) Draw an implementation diagram for a rudimentary vector function G =
(G7, G69 G5,_G4, G3, Gz, Gls Go) = (A, A y 0, 1, A ,A, 1, 1) llSiIlg inputs

1,0,A,and A.

.

Problems [145

3-25. (a) Draw an implementation diagram for rudimentary vector function F =
(F,, Fs, Fs, Fy, F3, F,, F1, Fy) = (A, 1, A, A, A, A, 1, 0), using the
ground and power symbols in Figure 3-12(b) and the wire and inverter
in Figure 3-12(c) and (d).

(b) Draw an implementation diagram for rudimentary vector function G =
(G73 GG’ GS, G4, G3, GZ, Gl, GO) = (F3a FZ, Oa 1, F1, FO; 1, 0): USing the
ground and power symbols and components of vector F.

3-26. (a) Draw an implementation diagram for the vector G = (Gs, Gy, G3, G,
Gla GO) = (F117F9’F75F5’F3’F1)'

(b) Draw a simple implementation for the rudimentary vector H = (H5,
Hg, Hs, Hy, H3, Hy, Hy, Hy) = (G3, Gy, G1, Go, F3, Fy, Fy, F).

(, 3-27. A home security system has a master switch that is used to enable an alarm,

~

lights, video cameras, and a call to local police in the event one or more of
six sets of sensors detects an intrusion. In addition there are separate
switches to enable and disable the alarm, lights, and the call to local police.
The inputs, outputs, and operation of the enabling logic are specified as
follows:

Inputs

S;,1=0,1,2,3,4,5: signals from six sensor sets (0 = intrusion detected, 1
= no intrusion detected)

M: master switch (0 = security system enabled, 1 = security system
disabled)

A:alarm switch (0 = alarm disabled, 1= alarm enabled)

L: light switch (0 = lights disabled, 1= lights enabled)

P: police switch (0 = police call disabled, 1 = police call enabled)

Outputs

A:alarm (0 = alarm on, 1 = alarm off)

L: lights (0 = lights on, 1 = lights off)

V- video cameras (0 = video cameras off, 1 = video cameras on)
C: call to police (0 = call off, 1 = call on)

Operation

If one or more of the sets of sensors detects an intrusion and the security
system is enabled, then outputs activate based on the outputs of the
remaining switches. Otherwise, all outputs are disabled.

Find a minimum-gate-input cost realization of the enabling logic using AND
and OR gates and inverters.

3-28. Design a 4-to-16-line decoder using two 3-to-8-line decoders and 16 2-input
AND gates.

3-29. Design a 4-to-16-line decoder with enable using five 2-to-4-line decoders
with enable as shown in Figure 3-21.

146

[0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-30.

3-31.

(, 3-32.

3-33.

o

4) 3-34.

a b ® e ®e o |06 o ¢ o

cde ® ® ® ([e

f g °® ol o o| |0 o (@ o
1 2 3 4 5 6

O FIGURE 3-34
Patterns for Dice for Problem 3-32

*Design a 5-to-32-line decoder using a 3-to-8-line decoder, a 2-to-4-line
decoder, and 32 2-input AND gates.

A special 4-to-6-line decoder is to be designed. The input codes used are 000
through 101. For a given code applied, the output D;, with i equal to the
decimal equivalent of the code, is 1 and all other outputs are 0. Design the
decoder with a 2-to-4-line decoder, a 1-to-2-line decoder, and six 2-input
AND gates, such that all decoder outputs are used at least once.

An electronic game uses an array of seven LEDs (light-emitting diodes) to
display the results of a random roll of a die. A decoder is to be designed to
illuminate the appropriate diodes for the display of each of the six die
values. The desired display patterns are shown in Figure 3-34.

(a) Use a 3-to-8-line decoder and OR gates to map the 3-bit combinations on
inputs X5, X7, and X for values 1 through 6 to the outputs a through g.
Input combinations 000 and 111 are don’t-cares.

(b) Note that for the six die sides, only certain combinations of dots occur.
For example, dot pattern A = {d} and dot pattern B = {a, g} can be used
for representing input values 1,2 and 3 as {A}, {B}, and {A, B}. Define
four dot patterns A, B, C, and D, sets of which can provide all six output
patterns. Design a minimized custom decoder that has inputs X,, X;, and
X, and outputs A, B, C, and D, and compare its gate-input cost to that of
the 3-to-8 decoder and OR gates in part a.

Draw the detailed logic diagram of a 3-to-8-line decoder using only NOR
and NOT gates. Include an enable input.

To provide uphill running and walking, an exercise treadmill has a grade
feature that can be set from 0.0% to 15.0% in increments of 0.1%. (The
grade in percent is the slope expressed as a percentage. For example, a slope
of 0.10 is a grade of 10%.) The treadmill has a 10 high by 20 wide LCD dot
array showing a plot of the grade versus time. This problem concerns only
the vertical dimension of the display.

To define the vertical position of the LCD dot to be illuminated for the
current grade, the 151 different grade values (0.0 to 15.0) need to be
translated into ten different dot positions, PO to P9. The translation of
intervals of inputs to output values is represented as follows: [(0.0,1.4),0],

s

() 3-35.

o

<, 3-36.

-

3-37.

3-38.

3-39.

3-40.

3-41.

3-42.

Problems [147

[(1.5,2.9),1], [(3.0,4.4),2], [(4.5,5.9),3], [(6.0,7.4),4], [(7.5,8.9),5], [(9-0,10.4),6],
[(10.5,11.9),7], [(12.0,13.4),8], and [(13.5,15.0),9]. The grade values are
represented by a pair of values consisting of a 4-bit binary value 0 through
15 followed by a 4-bit BCD value 0 through 9. For example, 10.6 is
represented by (10, 6) [1010, 0110].

Design a special decoder with eight inputs and ten outputs to perform this
translation. Hint: Use two subcircuits, a 4-to-16-line decoder with the binary
value as inputs and DO through D15 as outputs, and a circuit which
determines whether the BCD input value is greater than or equal to 5 (0101)
with output GES. Add additional logic to form outputs PO through P9 from
DO through D15 and GES. For example:

PS = D7'GE5 +D8

*Design a 4-input priority encoder with inputs and outputs as in Table 3-8,
but with the truth table representing the case in which input Dy has the
highest priority and input Dj the lowest priority.

Derive the truth table of a decimal-to-binary priority encoder. There are 10
inputs I; through Iy and outputs A; through A, and V. Input I has the
highest priority.

(a) Design an 8-to-1-line multiplexer using a 3-to-8-line decoder and an 8 x 2
AND-OR.

(b) Repeat part (a), using two 4-to-1-line multiplexers and one 2-to-1-line
multiplexer.

Design a 16-to-1-line multiplexer using a 4-to-16-line decoder and a 16 x 2
AND-OR.

Design a dual 8-to-1-line decoder using a 3-to-8-line decoder and two 8 x 2
AND-ORs.

Construct a 12-to-1-line multiplexer with a 3-to-8-line decoder, a 1-to-2-line
decoder, and a 12 x 3 AND-OR. The selection codes 0000 through 1011 must
be directly applied to the decoder inputs without added logic.

Construct a quad 10-to-1-line multiplexer with four single 8-to-1-line
multiplexers and two quadruple 2-to-1-line multiplexers. The multiplexers
should be interconnected and inputs labeled so that the selection codes 0000
through 1001 can be directly applied to the multiplexer selection inputs
without added logic.

*Construct a 15-to-1-line multiplexer with two 8-to-1-line multiplexers.
Interconnect the two multiplexers and label the inputs such that any added
logic required to have selection codes 0000 through 1110 is minimized.

148

3-43.

3-44.

s

<, 3-45.

3-46.

3-47.

3-48.

[0 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Rearrange the condensed truth table for the circuit of Figure 3-21, and verify
that the circuit can function as a demultiplexer.

A combinational circuit is defined by the following three Boolean functions:

Fi= X+Z+XYZ

F,= X+Z+XYZ
F,= XYZ+X+ Z
Design the circuit with a decoder and external OR gates.

The rear lights of a car are to be controlled by digital logic. There is a single
lamp in each of the rear lights. The inputs are:

LT left turn switch—causes blinking of left side lamp

RT right turn switch—causes blinking of right side lamp

EM emergency flasher switch—causes blinking of both lamps
BR brake applied switch—causes both lamps to be on

BL blinking signal with 1 Hz frequency

The outputs are:

LR power control for left rear lamp
RR power control for right rear lamp

(a) Write the equations for LR and RR. Assume that BR overrides EM and
that LT and RT override BR.

(b) Implement each function LR (BL, BR, EM, LT) and RR (BL, BR, EM,
RT) with a 4-to-16-line decoder and external OR gates.

Implement the following Boolean function with an 8-to-1-line multiplexer
and a single inverter with variable D as its input:

F(A,B,C,D) = 2m(2,4, 6,9,10,11,15)
*Implement the Boolean function
F(A,B,C,D) = 3m(1,3,4,11,12,13,14,15)

with a 4-to-1-line multiplexer and external gates. Connect inputs A and B to
the selection lines. The input requirements for the four data lines will be a
function of the variables C and D. The values of these variables are obtained
by expressing F as a function of C and D for each of the four cases when
AB = 00,01, 10, and 11. These functions must be implemented with external
gates.

Solve Problem 3-47 using two 3-to-8-line decoders with enables, an inverter,
and OR gates with a maximum fan-in of 4.

ARITHMETIC FUNCTIONS
AND HDLS

class of functional blocks that perform arithmetic operations. It introduces the

concept of iterative circuits made up of arrays of combinational cells and
describes blocks designed as iterative arrays for performing addition, covering both
addition and subtraction. The simplicity of these arithmetic circuits comes from using
complement representations for numbers and complement-based arithmetic. We also
introduce circuit contraction, which permits us to design new functional blocks from
existing ones. Contraction involves application of value fixing to the inputs of existing
blocks and simplification of the resulting circuits. These circuits perform operations
such as incrementing a number, decrementing a number, or multiplying a number by
a constant. Many of these new functional blocks will be used to construct sequential
functional blocks in Chapter 7. Having completed our coverage of combinational
functional blocks, we introduce VHDL and Verilog hardware description languages
(HDLs) for combinational circuits. The role of HDLs in design is discussed along with
one of the primarily applications of HDLs as the input to automated synthesis tools.
Coverage of general concepts and modeling of combinational circuits using VHDL
and Verilog follows.

In the generic computer diagram at the beginning of Chapter 1, adders, adder-
subtractors, and other arithmetic circuits are used in the processor. Incrementers and
decrementers are used widely in other components as well, so concepts from this
chapter apply across most components of the generic computer. The use of HDLs
plays a central role in the design of digital circuits including processors.

T his chapter continues to focus on functional blocks—specifically, a special

O 149

150 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

4-1 ITERATIVE COMBINATIONAL CIRCUITS

In this chapter, the arithmetic blocks are typically designed to operate on binary
input vectors and produce binary output vectors. Further, the function imple-
mented often requires that the same subfunction be applied to each bit position.
Thus, a functional block can be designed for the subfunction and then used repeti-
tively for each bit position of the overall arithmetic block being designed. There
will often be one or more connections to pass values between adjacent bit posi-
tions. These internal variables are inputs or outputs of the subfunctions, but are not
accessible outside the overall arithmetic block. The subfunction blocks are referred
to as cells and the overall implementation is an array of cells. The cells in the array
are often, but not always, identical. Due to the repetitive nature of the circuit and
the association of a vector index with each of the circuit cells, the overall functional
block is referred to as an iterative array. Iterative arrays, a special case of hierarchi-
cal circuits, are useful in handling vectors of bits—for example, a circuit that adds
two 32-bit binary integers. At a minimum, such a circuit has 64 inputs and 32 out-
puts. As a consequence, beginning with truth tables and writing equations for the
entire circuit is out of the question. Since iterative circuits are based on repetitive
cells, the design process is considerably simplified by a basic structure that guides
the design.

A block diagram for an iterative circuit that operates on two n-input vectors
and produces an n-output vector is shown in Figure 4-1. In this case, there are two
lateral connections between each pair of cells in the array, one from left to right
and the other from right to left. Also, optional connections, indicated by dashed
lines, exist at the right and left ends of the array. An arbitrary array employs as
many lateral connections as needed for a particular design. The definition of the
functions associated with such connections is very important in the design of the
array and its cell. In particular, the number of connections used and their functions
can affect both the cost and speed of an iterative circuit.

In the next section, we will define cells for performing addition in individual
bit positions and then define a binary adder as an iterative array of cells.

A, 1B, 4 A1 By Ag By
X,1 X, X
Xn <= Tcetin - 1Y, oo %, | cat [TY, | ceno [%
Y,——> ERLSN —2 5 > - Yo
Cn—l Cl CO
O FIGURE 4-1

Block Diagram of an Iterative Circuit

4-2 / Binary Adders [151

0 TABLE 4-1
Truth Table of Half Adder

Inputs Outputs
X Y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

4-2 BINARY ADDERS

An arithmetic circuit is a combinational circuit that performs arithmetic operations
such as addition, subtraction, multiplication, and division with binary numbers or
with decimal numbers in a binary code. We will develop arithmetic circuits by
means of hierarchical, iterative design. We begin at the lowest level by finding a cir-
cuit that performs the addition of two binary digits. This simple addition consists of
four possible elementary operations:0 +0=0,0+1=1,1+0=1,and1 + 1 = 10.
The first three operations produce a sum requiring a one-bit representation, but
when both the augend and addend are equal to 1, the binary sum requires two bits.
Because of this case, the result is always represented by two bits, the carry and the
sum. The carry obtained from the addition of two bits is added to the next-higher-
order pair of significant bits. A combinational circuit that performs the addition of
two bits is called a half adder. One that performs the addition of three bits (two
significant bits and a previous carry) is called a full adder. The names of the circuits
stem from the fact that two half adders can be employed to implement a full adder.
The half adder and the full adder are basic arithmetic blocks with which other
arithmetic circuits are designed.

Half Adder

A half adder is an arithmetic circuit that generates the sum of two binary digits.
The circuit has two inputs and two outputs. The input variables are the augend and
addend bits to be added, and the output variables produce the sum and carry. We
assign the symbols X and Y to the two inputs and S (for “sum”) and C (for “carry”)
to the outputs. The truth table for the half adder is listed in Table 4-1. The C output
is 1 only when both inputs are 1. The S output represents the least significant bit of
the sum. The Boolean functions for the two outputs, easily obtained from the truth
table, are

S= XY +XY = X®Y
C= XY

152 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

)—

C

O FIGURE 4-2
Logic Diagram of Half Adder
The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 4-2.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, repre-
sents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are desig-
nated by the symbols S for “sum” and C for “carry”; the binary variable S gives the
value of the bit of the sum, and the binary variable C gives the output carry. The
truth table of the full adder is listed in Table 4-2. The values for the outputs are
determined from the arithmetic sum of the three input bits. When all the input bits
are 0, the outputs are 0. The S output is equal to 1 when only one input is equal to 1
or when all three inputs are equal to 1. The C output is a carry of 1 if two or three
inputs are equal to 1. The maps for the two outputs of the full adder are shown in
Figure 4-3.The simplified sum-of-product functions for the two outputs are

S= XYZ+XYZ+XYZ+XYZ

O TABLE 4-2
Truth Table of Full Adder
Inputs Outputs
X Y Z C S

== OO OO
= =0 Ok kOO
o rRrOoORrRr oo
=== O = OO O
R OO R OO

Www.Ebook777.com

http://www.ebook777.com

4-2 / Binary Adders [153

V4 V4

S =XYZ + XYZ + XYZ + XYZ C=XY+XZ+YZ
=XPYDZ = XY + Z(XY + XY)
=XY +Z(XDY)

O FIGURE 4-3
Maps for Full Adder

C=XY+XZ+YZ

The two-level implementation requires seven AND gates and two OR gates. How-
ever, the map for output S is recognized as an odd function, as discussed in Section
2-8. Furthermore, the C output function can be manipulated to include the exclu-
sive-OR of X and Y. The Boolean functions for the full adder in terms of exclusive-
OR operations can then be expressed as

S=(XeY)eZ

C = XY+Z(XDY)

The logic diagram for this multiple-level implementation is shown in Figure 4-4. It
consists of two half adders and an OR gate.

Binary Ripple Carry Adder

A parallel binary adder is a digital circuit that produces the arithmetic sum of two
binary numbers using only combinational logic. The parallel adder uses n full
adders in parallel, with all input bits applied simultaneously to produce the sum.

[Halfadder | [Half adder |

I I | |
X— NN I I
y—) o) OD— s

| : | Il_/ :

| | l .

I | | |

| I

| | | |

S il Dﬁ—Df ‘
Z

0 FIGURE 4-4

Logic Diagram of Full Adder

154 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

B; Ag B, A B, A By A
C; C, o)
r FA |« FA |« FA |« FA |=—C
C, S; S, Sy So
0 FIGURE 4-5
4-Bit Ripple Carry Adder

The full adders are connected in cascade, with the carry output from one full adder
connected to the carry input of the next full adder. Since a 1 carry may appear near
the least significant bit of the adder and yet propagate through many full adders to
the most significant bit, just as a wave ripples outward from a pebble dropped in a
pond, the parallel adder is referred to as a ripple carry adder. Figure 4-5 shows the
interconnection of four full-adder blocks to form a 4-bit ripple carry adder. The
augend bits of A and the addend bits of B are designated by subscripts in increas-
ing order from right to left, with subscript 0 denoting the least significant bit. The
carries are connected in a chain through the full adders. The input carry to the par-
allel adder is Cy, and the output carry is C,. An n-bit ripple carry adder requires n
full adders, with each output carry connected to the input carry of the next-higher-
order full adder. For example, consider the two binary numbers A = 1011 and B =
0011. Their sum, S = 1110, is formed with a 4-bit ripple carry adder as follows:

]
Input carry 0110
Augend A 1011
Addend B 0011
Sum § 1110
Output carry 0011
L — ||

The input carry in the least significant position is 0. Each full adder receives the
corresponding bits of A and B and the input carry and generates the sum bit for S
and the output carry. The output carry in each position is the input carry of the
next-higher-order position, as indicated by the blue lines.

The 4-bit adder is a typical example of a digital component that can be used
as a building block. It can be used in many applications involving arithmetic opera-
tions. Observe that the design of this circuit by the usual method would require a
truth table with 512 entries, since there are nine inputs to the circuit. By cascading
the four instances of the known full adders, it is possible to obtain a simple and

4-3 / Binary Subtraction [155

straightforward implementation without directly solving this larger problem. This
is an example of the power of iterative circuits and circuit reuse in design.

4-3 BINARY SUBTRACTION

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers.
Although beginning texts cover only signed-number addition and subtraction, to
the complete exclusion of the unsigned alternative, unsigned-number arithmetic
plays an important role in computation and computer hardware design. It is used
in floating-point units, in signed-magnitude addition and subtraction algorithms,
and in extending the precision of fixed-point numbers. For these reasons, we will
treat unsigned-number addition and subtraction here. We also, however, choose to
treat it first so that we can clearly justify, in terms of hardware cost, that which oth-
erwise appears bizarre and often is accepted on faith, namely, the use of comple-
ment representations in arithmetic.

In Section 1-3, subtraction is performed by comparing the subtrahend with
the minuend and subtracting the smaller from the larger. The use of a method con-
taining this comparison operation results in inefficient and costly circuitry. As an
alternative, we can simply subtract the subtrahend from the minuend. Using the
same numbers as in a subtraction example from Section 1-3, we have

Borrows into: 11100
Minuend: 10011
Subtrahend: —11110
Difference: 10101
Correct Difference: —-01011

If no borrow occurs into the most significant position, then we know that the sub-
trahend is not larger than the minuend and that the result is positive and correct. If
a borrow does occur into the most significant position, as indicated in blue, then we
know that the subtrahend is larger than the minuend. The result must then be neg-
ative, and so we need to correct its magnitude. We can do this by examining the
result of the calculation when a borrow occurs:

M~—-N+2"

Note that the added 2" represents the value of the borrow into the most significant
position. Instead of this result, the desired magnitude is N — M. This can be
obtained by subtracting the preceding formula from 2":

M —(M-N+2"=N-M

In the previous example, 100000 — 10101 = 01011, which is the correct magnitude.
In general, the subtraction of two n-digit numbers, M — N, in base 2 can be
done as follows:

156 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

1. Subtract the subtrahend N from the minuend M.

2. If no end borrow occurs, then M > N, and the result is nonnegative and
correct.

3. If an end borrow occurs, then N > M, and the difference, M — N + 2", is sub-
tracted from 2", and a minus sign is appended to the result.

Subtraction of a binary number from 2" to obtain an n-digit result is called taking
the 2s complement of the number. So in step 3, we are taking the 2s complement of
the difference M — N + 2" Use of the 2s complement in subtraction is illustrated
by the following example.

EXAMPLE 4-1 Unsigned Binary Subtraction by 2s Complement Subtract

Perform the binary subtraction 01100100 — 10010110. We have

Borrows into: 10011110
Minuend: 01100100
Subtrahend: — 10010110
Initial Result 11001110

The end borrow of 1 implies correction:

28 100000000
— Initial Result — 11001110
Final Result — 00110010

To perform subtraction using this method requires a subtractor for the ini-
tial subtraction. In addition, when necessary, either the subtractor must be used
a second time to perform the correction, or a separate 2s complementer circuit
must be provided. So, thus far, we require a subtractor, an adder, and possibly a
2s complementer to perform both addition and subtraction. The block diagram
for a 4-bit adder—subtractor using these functional blocks is shown in Figure 4-6.
The inputs are applied to both the adder and the subtractor, so both operations
are performed in parallel. If an end borrow value of 1 occurs in the subtraction,
then the selective 2s complementer receives a value of 1 on its Complement
input. This circuit then takes the 2s complement of the output of the subtractor.
If the end borrow has value of 0, the selective 2s complementer passes the out-
put of the subtractor through unchanged. If subtraction is the operation, then a
1 is applied to S of the multiplexer that selects the output of the complementer.
If addition is the operation, then a 0 is applied to S, thereby selecting the output
of the adder.

4-3 / Binary Subtraction [157

A B
YYVYY YYYY Yy + YYYY
Binary adder Borrow Binary subtractor
YYVYY
_ Selective
Complement| 2's complementer
ﬁ
;VVV Y VV{
NPT 0 1
Subtract/Add: g Quadruple 2-to-1
multiplexer
Result
O FIGURE 4-6

Block Diagram of Binary Adder—Subtractor

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder—subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r — 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2" — 1) — N. 2" is represented by a binary number that consists of a
1 followed by 7 0s. 2" — 1 is a binary number represented by » 1s. For example,
if n = 4, we have 24 = (10000), and 24 — 1 = (1111),. Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 — 0 =1o0r1 — 1 = 0, which

158 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

causes the original bit to change from 0 to 1 or from 1 to 0, respectively. There-
fore, the 1s complement of a binary number is formed by changing all 1s to Os
and all Os to 1s—that is, applying the NOT or complement operation to each of
the bits. Following are two numerical examples:

The 1’s complement of 1011001 is 0100110.
The 1’s complement of 0001111 is 1110000.

In similar fashion, the 9s complement of a decimal number, the 7’s comple-
ment of an octal number, and the 15s complement of a hexadecimal number are
obtained by subtracting each digit from 9, 7, and F (decimal 15), respectively.

Given an n-digit number N in binary, the 2s complement of N is defined as
2" — Nfor N#0 and 0 for N = 0. The reason for the special case of N = 0 is that
the result must have n bits, and subtraction of 0 from 2" gives an (n + 1)-bit result,
100...0. This special case is achieved by using only an »-bit subtractor or otherwise
dropping the 1 in the extra position. Comparing with the 1s complement, we note
that the 2s complement can be obtained by adding 1 to the 1s complement, since 2"
— N ={[(2" — 1) — N] + 1}. For example, the 2s complement of binary 101100 is
010011 + 1 = 010100 and is obtained by adding 1 to the 1s complement value.
Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out
of the most significant position of the addition. These concepts hold for other bases
as well. As we will see later, they are very useful in simplifying 2s complement and
subtraction hardware.

Also, the 2s complement can be formed by leaving all least significant Os and
the first 1 unchanged and then replacing 1s with Os and Os with 1s in all other
higher significant bits. Thus, the 2s complement of 1101100 is 0010100 and is
obtained by leaving the two low-order Os and the first 1 unchanged and then
replacing 1s with Os and Os with 1s in the other four most significant bits. In other
bases, the first nonzero digit is subtracted from the base r, and the remaining digits
to the left are replaced with » — 1 minus their values.

It is also worth mentioning that the complement of the complement restores
the number to its original value. To see this, note that the 2s complement of N is
2" — N, and the complement of the complement is 2” — (2" — N) = N, giving back
the original number.

Subtraction Using 2s Complement

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac-
tor logic. Armed with complements, we are prepared to define a binary subtrac-
tion procedure that uses addition and the corresponding complement logic. The
subtraction of two n-digit unsigned numbers, M — N, in binary can be done as
follows:

1. Add the 2s complement of the subtrahend N to the minuend M. This per-
forms M + 2" — N)=M — N + 2,

4-4 / Binary Adder-Subtractors [159

2. If M > N, the sum produces an end carry, 2”. Discard the end carry, leaving
result M — N.

3. If M < N, the sum does not produce an end carry, since it is equal to 2" —
(N — M), the 2s complement of N — M. Perform a correction, taking the 2s
complement of the sum and placing a minus sign in front to obtain the result
—(N— M).

The examples that follow further illustrate the foregoing procedure. Note
that, although we are dealing with unsigned numbers, there is no way to get an
unsigned result for the case in step 3. When working with paper and pencil, we rec-
ognize, by the absence of the end carry, that the answer must be changed to a neg-
ative number. If the minus sign for the result is to be preserved, it must be stored
separately from the corrected n-bit result.

EXAMPLE 4-2 Unsigned Binary Subtraction by 2s Complement Addition

Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub-
traction X — Y and Y — X using 2s complement operations. We have

X= 1010100
2scomplementof Y= 0111101
Sum= 10010001
Discard end carry 27 = — 10000000
Answer: X — Y= 0010001
Y= 1000011
2s complementof X = 0101100
Sum= 1101111
There is no end carry.
Answer:Y — X = —(2s complement of 1101111) = — 0010001.

While subtraction of unsigned numbers also can be done by means of the 1s
complement, it is little used in modern designs, so will not be covered here.

4-4 BINARY ADDER-SUBTRACTORS

Using the 2s complement, we have eliminated the subtraction operation and need
only the complementer and an adder. When performing a subtraction we comple-
ment the subtrahend N, and when performing an addition we do not complement
N. These operations can be accomplished by using a selective complementer and

160 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

B; A B, A, B, Ay By A
A c Y (}2 Y C \ 4 CO
r FA |0 FA |« FA |0 FA |«
C, S, S, S, Sp
0 FIGURE 4-7

Adder-Subtractor Circuit

adder interconnected to form an adder-subtractor. We have used 2s complement,
since it is most prevalent in modern systems. The 2s complement can be obtained
by taking the 1s complement and adding 1 to the least significant bit. The 1s com-
plement can be implemented easily with inverter circuits, and we can add 1 to the
sum by making the input carry of the parallel adder equal to 1. Thus, by using 1s
complement and an unused adder input, the 2s complement is obtained inexpen-
sively. In 2s complement subtraction, as the correction step after adding, we com-
plement the result and append a minus sign if an end carry does not occur. The
correction operation is performed by using either the adder-subtractor a second
time with M = 0 or a selective complementer as in Figure 4-6.

The circuit for subtracting A — B consists of a parallel adder as shown in
Figure 4-5, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry Cy must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the
2s complement of B. For unsigned numbers, it gives A — B if A=B or the 2s
complement of B — A if A<B.

The addition and subtraction operations can be combined into one circuit
with one common binary adder. This is done by including an exclusive-OR gate
with each full adder. A 4-bit adder—subtractor circuit is shown in Figure 4-7. Input
S controls the operation. When S = 0 the circuit is an adder, and when § = 1 the
circuit becomes a subtractor. Each exclusive-OR gate receives input S and one of
the inputs of B, B;. When S = 0, we have B; @ 0. If the full adders receive the value
of B, and the input carry is 0, the circuit performs A plus B. When § = 1, we have
B; ® 1 = B; and Cy = 1. In this case, the circuit performs the operation A plus the
2s complement of B.

4-4 / Binary Adder-Subtractors [161

Signed Binary Numbers

In the previous section, we dealt with the addition and subtraction of unsigned
numbers. We will now extend this approach to signed numbers, including a further
use of complements that eliminates the correction step.

Positive integers and the number zero can be represented as unsigned num-
bers. To represent negative integers, we need a notation for negative values. In
ordinary arithmetic, a negative number is indicated by a minus sign and a positive
number by a plus sign. Because of hardware limitations, computers must represent
everything with 1s and Os, including the sign of a number. As a consequence, it is
customary to represent the sign with a bit placed in the most significant position of
an n-bit number. The convention is to make the sign bit 0 for positive numbers and
1 for negative numbers.

It is important to realize that both signed and unsigned binary numbers consist
of a string of bits when represented in a computer. The user determines whether the
number is signed or unsigned. If the binary number is signed, then the leftmost bit
represents the sign and the rest of the bits represent the number. If the binary num-
ber is assumed to be unsigned, then the leftmost bit is the most significant bit of the
number. For example, the string of bits 01001 can be considered as 9 (unsigned
binary) or +9 (signed binary), because the leftmost bit is 0. Similarly, the string of
bits 11001 represents the binary equivalent of 25 when considered as an unsigned
number or —9 when considered as a signed number. The latter is because the 1 in the
leftmost position designates a minus sign and the remaining four bits represent
binary 9. Usually, there is no confusion in identifying the bits because the type of
number representation is known in advance. The representation of signed numbers
just discussed is referred to as the signed-magnitude system. In this system, the num-
ber consists of a magnitude and a symbol (+ or —) or a bit (0 or 1) indicating the
sign. This is the representation of signed numbers used in ordinary arithmetic.

In implementing signed-magnitude addition and subtraction for n-bit num-
bers, the single sign bit in the leftmost position and the » — 1 magnitude bits are
processed separately. The magnitude bits are processed as unsigned binary num-
bers. Thus, subtraction involves the correction step. To avoid this step, we use a
different system for representing negative numbers, referred to as a signed-com-
plement system. In this system, a negative number is represented by its comple-
ment. While the signed-magnitude system negates a number by changing its sign,
the signed-complement system negates a number by taking its complement. Since
positive numbers always start with 0 (representing a plus sign) in the leftmost
position, their complements will always start with a 1, indicating a negative num-
ber. The signed-complement system can use either the 1s or the 2s complement,
but the latter is the most common. As an example, consider the number 9, repre-
sented in binary with eight bits. +9 is represented with a sign bit of 0 in the left-
most position, followed by the binary equivalent of 9, to give 00001001. Note that
all eight bits must have a value, and therefore, Os are inserted between the sign bit
and the first 1. Although there is only one way to represent +9, we have two dif-
ferent ways to represent —9 using eight bits:

162 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

0 TABLE 4-3
Signed Binary Numbers
Signed 2s Signed
Decimal Complement Magnitude
+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
-0 — 1000
-1 1111 1001
-2 1110 1010
-3 1101 1011
-4 1100 1100
-5 1011 1101
-6 1010 1110
=7 1001 1111
-8 1000 —
In signed-magnitude representation: 10001001
In signed 2s complement representation: 11110111

In signed magnitude, —9 is obtained from +9 by changing the sign bit in the leftmost
position from 0 to 1. The signed 2s complement representation of —9 is obtained by
taking the 2s complement of the positive number, including the 0 sign bit.

Table 4-3 lists all possible 4-bit signed binary numbers in two representations.
The equivalent decimal number is also shown. Note that the positive numbers in
both representations are identical and have 0 in the leftmost position. The signed 2s
complement system has only one representation for 0, which is always positive. The
signed-magnitude system has a positive 0 and a negative 0, which is something not
encountered in ordinary arithmetic. Note that both negative numbers have a 1 in
the leftmost bit position; this is the way we distinguish them from positive numbers.
With four bits, we can represent 16 binary numbers. In the signed-magnitude repre-
sentation, there are seven positive numbers and seven negative numbers, and two
signed zeros. In the 2s complement representation, there are seven positive num-
bers, one zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward
when employed in computer arithmetic due to the separate handling of the sign
and the correction step required for subtraction. Therefore, the signed comple-
ment is normally used. The following discussion of signed binary arithmetic deals

4-4 / Binary Adder—Subtractors [163

exclusively with the signed 2s complement representation of negative numbers,
because it prevails in actual use.

Signed Binary Addition and Subtraction

The addition of two numbers, M + N, in the signed-magnitude system follows the
rules of ordinary arithmetic: If the signs are the same, we add the two magnitudes
and give the sum the sign of M. If the signs are different, we subtract the magni-
tude of N from the magnitude of M. The absence or presence of an end borrow
then determines the sign of the result, based on the sign of M, and determines
whether or not a 2s complement correction is performed. For example, since the
signs are different, (0 0011001) + (1 0100101) causes 0100101 to be subtracted
from 0011001. The result is 1110100, and an end borrow of 1 occurs. The end bor-
row indicates that the magnitude of M is smaller than that of V. So the sign of the
result is opposite that of M and is therefore a minus. The end borrow indicates that
the magnitude of the result, 1110100, must be corrected by taking its 2s comple-
ment. Combining the sign and the corrected magnitude of the result, we obtain 1
0001100.

In contrast to this signed-magnitude case, the rule for adding numbers in
the signed 2s complement system does not require comparison or subtraction,
but only addition. The procedure is simple and can be stated as follows for binary
numbers:

The addition of two signed binary numbers with negative numbers represented
in signed 2s complement form is obtained from the addition of the two num-
bers, including their sign bits. A carry out of the sign bit position is discarded.

Numerical examples of signed binary addition are given in Example 4-3. Note that
negative numbers will already be in 2s complement form and that the sum
obtained after the addition, if negative, is left in that same form.

EXAMPLE 4-3 Signed Binary Addition Using 2s Complement

+ 6 00000110 —6 11111010 + 6 00000110 — 6 11111010
+ 13 00001101 + 13 00001101 —13 11110011 —13 11110011
+ 19 00010011 + 7 00000111 -7 11111001 -19 11101101

In each of the four cases, the operation performed is addition, including the sign
bits. Any carry out of the sign bit position is discarded, and negative results are
automatically in 2s complement form.

The complement form for representing negative numbers is unfamiliar to
people accustomed to the signed-magnitude system. To determine the value of a
negative number in signed 2s complement, it is necessary to convert the number to
a positive number in order to put it in a more familiar form. For example, the

164 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

signed binary number 11111001 is negative, because the leftmost bit is 1. Its 2s
complement is 00000111, which is the binary equivalent of +7. We therefore recog-
nize the original number to be equal to —7.

The subtraction of two signed binary numbers when negative numbers are in
2s complement form is very simple and can be stated as follows:

Take the 2s complement of the subtrahend (including the sign bit) and add it
to the minuend (including the sign bit). A carry out of the sign bit position is
discarded.

This procedure stems from the fact that a subtraction operation can be changed to
an addition operation if the sign of the subtrahend is changed. That is,

(£A4) = (+B) = (£A) +(-B)
(£A) —(—B) = (xA) +(+B)

But changing a positive number to a negative number is easily done by taking its 2s
complement. The reverse is also true, because the complement of a negative number
that is already in complement form produces the corresponding positive number.
Numerical examples are shown in Example 4-4.

EXAMPLE 4-4 Signed Binary Subtraction Using 2s Complement

—6 11111010 11111010 +6 00000110 00000110
— (-13) — 11110011 + 00001101 — (-13) — 11110011 + 00001101

+ 7 00000111 + 19 00010011

The end carry is discarded.

It is worth noting that binary numbers in the signed-complement system are
added and subtracted by the same basic addition and subtraction rules as are
unsigned numbers. Therefore, computers need only one common hardware circuit
to handle both types of arithmetic. The user or programmer must interpret the
results of such addition or subtraction differently, depending on whether it is
assumed that the numbers are signed or unsigned. Thus, the same adder—subtractor
designed for unsigned numbers can be used for signed numbers. If the signed num-
bers are in 2s complement representation, then the circuit in Figure 4-7 can be
used.

<) EXAMPLE 4-5 Electronic Scale Feature

Often goods or materials must be placed in a container to be weighed. These three
definitions apply to the use of a container in weighing:

Gross Weight—Weight of the container plus its contents.

Tare Weigh+—Weight of the empty container.

4-4 / Binary Adder—Subtractors O 165

Net Weight—Weight of the contents only.
The Problem: For a particular electronic scale, a feature that permits the net
weight to be displayed is activated by the following sequence of actions:

1) Place the empty container on the scale.

2) Press the TARE button to indicate that the current weight is the weight of the
empty container.

3) Add the contents to be weighed to the container (measure the gross weight).
4) Read the net weight from the scale indicator.

Assuming that the container weight (tare weight) is stored by the scale,
(a) What arithmetic logic is required?
(b) How many bits are required for the operands, assuming the gross weight
capacity of the scale is 2200 grams with one gram as the smallest unit?
The Solution: (a) The scale is measuring the gross weight. The displayed result is
the net weight. So a subtractor is needed to form:

Net Weight = Gross Weight — (stored) Tare Weight

Since the container plus its contents always weighs at least as much as the con-
tainer only, for this application the result must always be nonnegative. If, on the
other hand, the user makes use of this feature to find the differences in the weight
of two objects, then a negative result is possible. In the design of the actual scale,
this negative result is properly taken into account in the display logic.

(b) Assuming that the weights and the subtraction are in binary, 12 bits are
required to represent 2200 grams. If the weights and the subtraction are repre-
sented in BCD, then 2 + 3 X 4 = 14 bits are required.

Overfilow

To obtain a correct answer when adding and subtracting, we must ensure that the
result has a sufficient number of bits to accommodate the sum. If we start with two
n-bit numbers, and the sum occupies n + 1 bits, we say that an overflow occurs. This
is true for binary or decimal numbers, whether signed or unsigned. When one per-
forms addition with paper and pencil, an overflow is not a problem, since we are not
limited by the width of the page. We just add another 0 to a positive number and
another 1 to a negative number, in the most significant position, to extend them to n
+ 1 bits and then perform the addition. Overflow is a problem in computers
because the number of bits that hold a number is fixed, and a result that exceeds the
number of bits cannot be accommodated. For this reason, computers detect and can
signal the occurrence of an overflow. The overflow condition may be handled auto-
matically by interrupting the execution of the program and taking special action.
An alternative is to monitor for overflow conditions using software.

The detection of an overflow after the addition of two binary numbers
depends on whether the numbers are considered to be signed or unsigned. When
two unsigned numbers are added, an overflow is detected from the end carry out of
the most significant position. In unsigned subtraction, the magnitude of the result

166 [1 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

is always equal to or smaller than the larger of the original numbers, making over-
flow impossible. In the case of signed 2s complement numbers, the most significant
bit always represents the sign. When two signed numbers are added, the sign bit is
treated as a part of the number, and an end carry of 1 does not necessarily indicate
an overflow.

With signed numbers, an overflow cannot occur for an addition if one num-
ber is positive and the other is negative: Adding a positive number to a negative
number produces a result whose magnitude is equal to or smaller than the larger of
the original numbers. An overflow may occur if the two numbers added are both
positive or both negative. To see how this can happen, consider the following 2s
complement example: Two signed numbers, +70 and +80, are stored in two 8-bit
registers. The range of binary numbers, expressed in decimal, that each register can
accommodate is from +127 to —128. Since the sum of the two stored numbers is
+150, it exceeds the capacity of an 8-bit register. This is also true for —70 and —80.
These two additions, together with the two most significant carry bit values, are as
follows:

Carries: 01 Carries: 10

+ 70 01000110 - 70 10111010
+ 80 01010000 — 8 10110000
+ 150 10010110 —-150 01101010

Note that the 8-bit result that should have been positive has a negative sign bit and
that the 8-bit result that should have been negative has a positive sign bit. If, how-
ever, the carry out of the sign bit position is taken as the sign bit of the result, then
the 9-bit answer so obtained will be correct. But since there is no position in the
result for the ninth bit, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit
position and the carry out of the sign bit position. If these two carries are not equal,
an overflow has occurred. This is indicated in the 2s complement example just com-
pleted, where the two carries are explicitly shown. If the two carries are applied to
an exclusive-OR gate, an overflow is detected when the output of the gate is equal
to 1. For this method to work correctly for 2s complement, it is necessary either to
apply the 1s complement of the subtrahend to the adder and add 1 or to have over-
flow detection on the circuit that forms the 2s complement as well as on the adder.
This condition is due to overflow when complementing the maximum negative
number.

Simple logic that provides overflow detection is shown in Figure 4-8. If the
numbers are considered unsigned, then the C output being equal to 1 detects a

¥4
—C (=

Cu

C

n-bit Adder/Subtractor

0 FIGURE 4-8
Overflow Detection Logic for Addition and Subtraction

4-5 / Other Arithmetic Functions [167

carry (an overflow) for an addition and indicates that no correction step is required
for a subtraction. C being equal to 0 detects no carry (no overflow) for an addition
and indicates that a correction step is required for a subtraction.

If the numbers are considered signed, then the output V is used to detect an
overflow. If V = 0 after a signed addition or subtraction, it indicates that no over-
flow has occurred and the result is correct. If V' = 1, then the result of the opera-
tion contains n + 1 bits, but only the rightmost # of those bits fit in the n-bit result,
so an overflow has occurred. The (n+1)th bit is the actual sign, but it cannot
occupy the sign bit position in the result.

MuLTiPLIERS AND DIVIDERS A supplement that discusses the design of multipliers
and dividers is available on the Companion Website for the text.

4-5 OTHER ARITHMETIC FUNCTIONS

Other arithmetic functions beyond +, —, X and +, that are quite important. Among
these are incrementing, decrementing, multiplication and division by a constant,
greater-than comparison, and less-than comparison. Each can be implemented for
multiple-bit operands by using an iterative array of 1-bit cells. Instead of using
these basic approaches, a combination of rudimentary functions and a new tech-
nique called contraction is used. Contraction begins with a circuit such as a binary
adder or a binary multiplier. This approach simplifies design by converting existing
circuits into useful, less complicated ones instead of designing the latter circuits
directly.

Contraction

Value fixing, transferring, and inverting on inputs can be combined with function
blocks as done in Chapter 4 to implement new functions. We can implement new
functions by using similar techniques on a given circuit or on its equations and then
contracting it for a specific application to a simpler circuit. We will call the procedure
contraction. The goal of contraction is to accomplish the design of a logic circuit or
functional block by using results from past designs. It can be applied by the designer
in designing a target circuit or can be applied by logic synthesis tools to simplify an
initial circuit with value fixing, transferring, and inverting on its inputs in order to
obtain a target circuit. In both cases, contraction can also be applied to circuit out-
puts that are unused, to simplify a source circuit to a target circuit. First, we illustrate
contraction by using Boolean equations.

EXAMPLE 4-6 Contraction of Full-Adder Equations

The circuit Add1 to be designed is to form the sum §;and carry C;,; for the single
bit addition A; + 1 + C;. This addition is a special case with B; = 1 of the addition

168 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

performed by a full adder, A; + B; + C,;. Thus, equations for the new circuit can be
obtained by taking the full-adder equations,

Si = Ai @ Bi @ Ci
Ci+1 =AiBi +AiCi + BiCi

setting B; = 1, and simplifying the results, to obtain

S;= A,©16C, = 4,86C,
Ci+1 =Ai 1 +AiCi + 1Cl =Ai+ Ci

Suppose that this Add1 circuit is used in place of each of the four full adders in a 4-
bit ripple carry adder. Instead of S = A + B + C, the computation being performed is
S =A + 1111 + Cy. In 2s complement, this computation is S=A -1+ C. If =0,
this implements the decrement operation S = A — 1, using considerably less logic than
for a 4-bit addition or subtraction.

Contraction can be applied to equations, as done here, or directly on circuit
diagrams with rudimentary functions applied to function-block inputs. In order to
successfully apply contraction, the desired function must obtainable from the ini-
tial circuit by application of rudimentary functions on its inputs. Next we consider
contraction based on unused outputs.

Placing an unknown value, X, on the output of a circuit means that output
will not be used. Thus, the output gate and any other gates that drive only that out-
put gate can be removed. The rules for contracting equations with X’s on one or
more outputs are as follows:

1. Delete all equations with X’s on the circuit outputs.

2. If an intermediate variable does not appear in any remaining equation, delete
its equation.

3. If an input variable does not appear in any remaining equation, delete it.
4. Repeat 2 and 3 until no new deletions are possible.

The rules for contracting a logic diagram with X’s on one or more outputs are as
follows:

1. Beginning at the outputs, delete all gates with X’s on their outputs and place
X’s on their input wires.

2. If all input wires driven by a gate are labeled with X’s, delete the gate and
place X’s on its inputs.

3. If all input wires driven by an external input are labeled with X’s, delete the
input.
4. Repeat steps 2 and 3 until no new deletions are possible.

In the next subsection, contraction of a logic diagram is illustrated for the
increment operation.

4-5 / Other Arithmetic Functions [169

O FIGURE 4-9
Contraction of Adder to Incrementer

Incrementing

Incrementing means adding a fixed value to an arithmetic variable, most often a
fixed value of 1. An n-bit incrementer that performs the operation A + 1 can be
obtained by using a binary adder that performs the operation A + B with B =0...01.
The use of n = 3 is large enough to determine the incrementer logic to construct
the circuit needed for an n-bit incrementer.

Figure 4-9(a) shows a 3-bit adder with the inputs fixed to represent the com-
putation A + 1 and with the output from the most significant carry bit C; fixed at
value X. Operand B = 001 and the incoming carry Cy = 0, so that A + 001 + O is
computed. Alternatively, B = 000 and incoming carry Cy= 1 could have been used.

Based on value fixing, there are three distinct contraction cases for the cells
in the adder:

1. The least significant cell on the right with By =1 and C; =0,
2. The typical cell in the middle with B; = 0, and
3. The most significant cell on the left with B, =0 and C; = X.

For the right cell, the output of gate 1 becomes Ay, so it can be replaced
by an inverter. The output of gate 2 becomes Ay, so it can be replaced by a wire
connected to Ay. Applying Ao and 0 to gate 3, it can be replaced by a wire, con-
necting A, to the output Sy. The output of gate 4 is 0, so it can be replaced with
a 0 value. Applying this 0 and A, from gate 2 to gate 5, gate 5 can be replaced
by a wire connecting Ay to C;. The resulting circuit is shown as the right cell in
Figure 4-9(b).

Applying the same technique to the typical cell with B; = 0 yields

170 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

S; =A@ C;
C,=A,Cy

giving the circuit shown as the middle cell in Figure 4-9(b).

For the left cell with B, = 0 and C; = X, the effects of X are propagated first
to save effort. Since gate E has X on its output, it is removed and X’s are placed
on its two inputs. Since all gates driven by gates B and C have X’s on their inputs,
they can be removed and X’s placed on their inputs. Gates A and D cannot be
removed, since each is driving a gate without an X on its input. Gate A, however,
becomes a wire, since X @ 0 = X. The resulting circuit is shown as the left cell in
Figure 4-9(b).

For an incrementer with n > 3 bits, the least significant incrementer cell is
used in position 0, the typical cell in positions 1 through n — 2, and the most sig-
nificant cell in position # — 1. In this example, the rightmost cell in position 1 is
contracted, but, if desired, it could be replaced with the cell in position 2 with
By = 0 and C\ = 1. Likewise, the output C; could be generated, but not used. In
both cases, logic cost and power efficiency are sacrificed to make all of the cells
identical.

Decrementing

Decrementing is the addition of a fixed negative value to an arithmetic variable—
most often, a fixed value of —1. A decrementer has already been designed in
Example 4-6. Alternatively, a decrementer could be designed by using an
adder—subtractor as a starting circuit and applying B = 0...01, and selecting the
subtraction operation by setting S to 1. Beginning with an adder—subtractor, we
can also use contraction to design a circuit that increments for S = 0 and decre-
ments for § = 1 by applying B = 0...01, and letting S remain a variable. In this case,
the result is a cell of the complexity of a full adder in the typical bit positions.

Multiplication by Constants

In Figure 4-10(a), a multiplier with a 3-bit multiplier and a 4-bit multiplicand is
shown with constant values applied to the multiplier. (The design of this multiplier
is explained in the supplement Multipliers and Dividers on the Companion Web-
site.) Constants applied to the multiplier inputs have the following effects. If the
multiplier value for a particular bit position is 1, than the multiplicand will be
applied to an adder. If the value for a particular bit position is 0, then 0 will be
applied to an adder and the adder will be reduced by contraction to wires produc-
ing its right inputs plus a carry of 0 on its outputs. In both cases, the AND gates will
be removed. In Figure 4-10(a), the multiplier has been set to 101. The end result of
the contraction of this circuit is a circuit that conveys the two least significant bits of
B to the outputs Cy and C,. The circuit adds the two most significant bits of B to B,
with the result shifted two positions to the left applied to product outputs Cg
through C,.

4-5 / Other Arithmetic Functions [171

By
| | | |
0
0 OI 0 OI l Y
Carry 4-bit/Adde
output
Sum
0
A2= 1
B; | B, | By | By
| | | |
%%%% Y) Y Y
Carry 4-bit Adder
output Sum
Voo
Cs Cs Cq G O} G Co
(a)
B, B, B4 By
S
Cs C, G &) G Co
(b)
B; B, B By
P
Cs C, C, Cy C_, C_,
©)

O FIGURE 4-10
Contractions of Multiplier: (a) for 101 x B, (b) for 100 x B, and (c) for B + 100

An important special case occurs when the constant equals 2 (i.e., for multi-
plication 2 x B). In this case, only one 1 appears in the multiplier and all logic is
eliminated from the circuit, resulting in only wires. In this case, for the 1 in posi-
tion i, the result is B followed by i 0s. The functional block that results is simply a

{

£

N\

-

\

)

172 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

combination of skewed transfers and value fixing to 0. The function of this block is
called a left shift by i bit positions with zero fill. Zero fill refers to the addition of Os
to the right of (or to the left of) an operand such as B. Shifting is a very important
operation applied to both numerical and nonnumerical data. The contraction
resulting from a multiplication by 22 (i.e., a left shift of two bit positions) is shown
in Figure 4-10(b).

Division by Constants

Our discussion of division by constants will be restricted to division by powers
of 2 (i.e., by 2¢ in binary). Since multiplication by 2¢ results in addition of i Os to
the right of the multiplicand, by analogy, division by 2i results in removal of the
i least significant bits of the dividend. The remaining bits are the quotient, and
the bits discarded are the remainder. The function of this block is called a right
shift by i bit positions. Just as for left shifting, right shifting is likewise a very
important operation. The function block for division by 22 (i.e., right shifting by
two bit positions) is shown in Figure 4-10(c).

Zero Fill and Extension

Zero fill, as defined previously for multiplication by a constant, can also be used
to increase the number of bits in an operand. For example, suppose that a byte
01101011 is to be used as an input to a circuit that requires an input of 16 bits.
One possible way of producing the 16-bit input is to zero-fill with eight Os on the
left to produce 0000000001101011. Another is to zero-fill on the right to produce
0110101100000000. The former approach would be appropriate for operations
such as addition or subtraction. The latter approach could be used to produce a
low-precision 16-bit multiplication result in which the byte represents the most
significant eight bits of the actual product with the lower byte of the product
discarded.

In contrast to zero fill, sign extension is used to increase the number of bits in
an operand represented by using a complement representation for signed
numbers. If the operand is positive, then bits can be added on the left by extending
the sign of the number (0 for positive and 1 for negative). Byte 01101011, which
represents 107 in decimal, extended to 16 bits becomes 0000000001101011. Byte
10010101, which in 2s complement represents —107, extended to 16 bits becomes
1111111110010101. The reason for using sign extension is to preserve the comple-
ment representation for signed numbers. For example, if 10010101 were extended
with Os, the magnitude represented would be very large, and further, the leftmost
bit, which should be a 1 for a minus sign, would be incorrect in the 2s complement
representation.

DecimAL ARITHMETIC The supplement that discusses decimal arithmetic functions
and circuit implementations is available on the Companion Website for the text.

Www.Ebook777.com

http://www.ebook777.com

4-6 / Hardware Description Languages [173

4-6 HARDWARE DESCRIPTION LANGUAGES

Designing complex systems and integrated circuits would not be feasible without the
use of computer-aided design (CAD) tools. Schematic capture tools support the drawing
of blocks and interconnections at all levels of the hierarchy. At the level of primitives
and functional blocks, libraries of graphics symbols are provided. Schematic capture
tools support the construction of a hierarchy by permitting the generation of symbols
for hierarchical blocks and the replication of symbols for reuse.

The primitive blocks and the functional block symbols from libraries have
associated models that allow the behavior and the timing of the hierarchical blocks
and the entire circuit to be verified. This verification is performed by applying
inputs to the blocks or circuit and using a logic simulator to determine the outputs.

The primitive blocks from libraries can also have associated data, such as
physical area information and delay parameters, that can be used by logic synthe-
sizers to optimize designs being generated automatically from hardware descrip-
tion language specifications.

Hardware Description Languages

Thus far, we have mentioned hardware description languages only casually. In
modern design, however, such languages have become crucial to the design pro-
cess. Initially, we justify such languages by describing their uses. We will then
briefly discuss VDHL and Verilog®, the most popular of these languages. Next, we
introduce them both in detail, although, in any given course, we expect that only
one of them will be covered.

Hardware description languages resemble programming languages, but are
specifically oriented to describing hardware structures and behavior. They differ
markedly from typical programming languages in that they represent extensive
parallel operation, whereas most programming languages represent serial opera-
tion. An obvious use for a hardware description language is to provide an alterna-
tive to schematics. When a language is used in this fashion, it is referred to as a
structural description, in which the language describes an interconnection of com-
ponents. Such a structural description, referred to as a netlist, can be used as input
to logic simulation just as a schematic is used. For this application, models for each
of the primitive blocks are required. If an HDL is used, then these models can also
be written in the HDL, providing a more uniform, portable representation for
simulation input.

The power of an HDL becomes more apparent, however, when it is used to
represent more than just schematic information. It can represent Boolean equa-
tions, truth tables, and complex operations such as arithmetic. Thus, in top-down
design, a very high-level description of an entire system can be precisely specified
using an HDL. As a part of the design process, this high-level description can then
be refined and partitioned into lower-level descriptions. Ultimately, a final
description in terms of primitive components and functional blocks can be
obtained as the result of the design process. Note that all of these descriptions can

174 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

be simulated. Since they represent the same system in terms of function, but not
necessarily timing, they should respond by giving the same logic values for the
same applied inputs. This vital simulation property supports design verification
and is one of the principal reasons for the use of HDLs.

A final major reason for increased use of HDLs is logic synthesis. An HDL
description of a system can be written at an intermediate level referred to as a
register transfer language (RTL) level. A logic synthesis tool with an accompany-
ing library of components can convert such a description into an interconnection
of primitive components that implements the circuit. This replacement of the
manual logic design process makes the design of complex logic much more
efficient.

Currently, two HDLs, VHDL and Verilog, are widely used, standard hard-
ware design languages. The language standards are defined, approved, and pub-
lished by the Institute of Electrical and Electronics Engineers (IEEE). All
implementations of these languages must obey their respective standard. This stan-
dardization gives HDLs another advantage over schematics. HDLs are portable
across computer-aided design tools, whereas schematic capture tools are typically
unique to a particular vendor. In addition to the standard languages, a number of
major companies have their own internal languages, often developed long before
the standard languages and incorporating features unique to their particular
products.

VHDL stands for VHSIC Hardware Description Language. VHDL was
developed under contract for the U.S. Department of Defense as a part of
the Very-High-Speed Integrated Circuits (VHSIC) program and subsequently
became an IEEE standard language. Verilog® was developed by a company,
Gateway Design Automation, which was bought by Cadence® Design Systems,
Inc. For a while, Verilog was a proprietary language, but eventually it became an
IEEE standard language. In this text, we present brief introductions to both
VHDL and Verilog. These portions of the text are optional and permit your
instructor to cover one of the two languages or neither.

Regardless of the HDL, a typical procedure is used in employing an HDL
description as simulation input. The procedure steps are analysis, elaboration, and
initialization, followed finally by the simulation. Analysis and elaboration are typi-
cally performed by a compiler similar to those for programming languages. Analy-
sis checks the description for violations of the syntax and semantic rules for the
HDL and produces an intermediate representation of the design. Elaboration
traverses the design hierarchy represented by the description; in this process, the
design hierarchy is flattened to an interconnection of modules that are described
only by their behaviors. The end result of the analysis and elaboration performed
by the compiler is a simulation model of the original HDL description. This model
is then passed to the simulator for execution. Initialization sets all of the variables
in the simulation model to specified or default values. Simulation executes the
simulation model in either batch or interactive mode with inputs specified by the
user.

Because fairly complex hardware can be described efficiently in an HDL, a
special HDL structure called a festbench may be used. The testbench is a description

4-6 / Hardware Description Languages [175

that includes the design to be tested, typically referred to as the device under test
(DUT). The testbench describes a collection of hardware and software functions
that apply inputs to the DUT and analyze the outputs for correctness. This
approach bypasses the need to provide separate inputs to the simulator and to ana-
lyze, often manually, the simulator outputs. Construction of a testbench provides a
uniform verification mechanism that can be used at multiple levels in the top-down
design process for verification of correct function of the design.

Logic Synthesis

As indicated earlier, the availability of logic synthesis tools is one of the driving
forces behind the growing use of HDLs. Logic synthesis transforms an RTL
description of a circuit in an HDL into an optimized netlist representing storage
elements and combinational logic. Subsequently, this netlist may be transformed
by using physical design tools into an actual integrated circuit layout. This layout
serves as the basis for integrated circuit manufacture. The logic synthesis tool takes
care of a large portion of the details of a design and allows exploration of the
cost/performance trade-offs essential to advanced designs.

Figure 4-11 shows a simple high-level flow of the steps involved in logic syn-
thesis. The user provides an HDL description of the circuit to be designed as well as
various constraints or bounds on the design. Electrical constraints include allowable
gate fan-outs and output loading restrictions. Area and speed constraints direct the
optimization steps of the synthesis. Area constraints typically give the maximum
permissible area that a circuit is allowed to occupy within the integrated circuit.

HDL Description Electronic, Speed, Technology

of Circuit and Area Constraints Library
Y

Translation
Y

Intermediate
Representation

Y Y f

Preoptimization — Optimization — Technology Mapping

Y
Netlist

[0 FIGURE 4-11
High-Level Flow for Logic Synthesis Tool

176 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

Alternatively, a general directive may be given which specifies that area is to be
minimized. Speed constraints are typically maximum allowable values for the delay
on various paths in the circuit. Alternatively, a general directive may be given to
maximize speed. Area and speed both translate into the cost of a circuit. A fast cir-
cuit will typically have larger area and thus cost more to manufacture. A circuit that
need not operate fast can be optimized for area, and, relatively speaking, costs less
to manufacture. In some sophisticated synthesis tools, power consumption can also
be used as a constraint. Additional information used by a synthesis tool is a technol-
ogy library that describes the primitive blocks available for use in the netlist as well
as their physical parameters necessary for delay computations. The latter informa-
tion is essential in meeting constraints and performing optimization.

The first major step in the synthesis process in Figure 4-11 is a translation of
the HDL description into an intermediate form. The translation result may be an
interconnection of generic gates and storage elements, not taken from the technol-
ogy library. It may also be in an alternate form that represents clusters of logic and
the interconnections between the clusters.

The second major step in the synthesis process is optimization. A preoptimi-
zation step may be used to simplify the intermediate form. For example, logic that
is identical in the intermediate form may be shared. Next is the optimization, in
which the intermediate form is processed to attempt to meet the constraints speci-
fied. Typically, two-level and multiple-level optimization are performed. Optimiza-
tion is followed by technology mapping, which replaces AND gates, OR gates, and
inverters with gates from the technology library. In order to evaluate area and
speed parameters associated with these gates, additional information from the
technology library is used. In sophisticated synthesis tools, further optimization
may be applied during technology mapping in order to improve the likelihood of
meeting the constraints on the design. Optimization can be a very complex, time-
consuming process for large circuits. Many optimization passes may be necessary
to achieve the desired results or to demonstrate that constraints are difficult, if not
impossible, to meet. The designer may need to modify the constraints or the HDL
in order to achieve a satisfactory design. Modification of the HDL may include
manual design of some portions of the logic in order to achieve the design goals.

The output of the optimization/technology mapping processes is typically a
netlist corresponding to a schematic diagram made up of storage elements, gates,
and other combinational logic functional blocks. This output serves as input to
physical design tools that physically place the logic elements and route the inter-
connections between them to produce the layout of the circuit for manufacture. In
the case of programmable parts, such as field-programmable gate arrays as dis-
cussed in Section 6-6, an analog to the physical design tools produces the binary
information used to program the logic within the parts.

4-7 HDL REPRESENTATIONS—VHDL

Since an HDL is used for describing and designing hardware, it is very important to
keep the underlying hardware in mind as you write in the language. This is particularly

4-7 / HDL Representations—VHDL [177

critical if your language description is to be synthesized. For example, if you ignore the
hardware that will be generated, it is very easy to specify a large complex gate structure
by using x (multiply) when a much simpler structure using only a few gates is all that is
needed. For this reason, we initially emphasize description of detailed hardware with
VHDL, and proceed to more abstract, higher-level descriptions later.

Selected examples in this chapter are useful for introducing VHDL as an
alternative means for representing detailed digital circuits. Initially, we show
structural VHDL descriptions that replace the schematic for the 2-to-4-line
decoder with enable given in Figure 3-21. This example and one using the 4-to-1-
line multiplexer in Figure 3-26 illustrate many of the fundamental concepts of
VHDL. We then present higher-level functional and behavioral VHDL descrip-
tions for these circuits that further illustrate fundamental VHDL concepts.

EXAMPLE 4-7 Structural VHDL for a 2-to-4-Line Decoder

Figure 4-12 shows a VHDL description for the 2-to-4-line decoder circuit from
Figure 3-21. This example will be used to demonstrate a number of general VHDL
features as well as structural description of circuits.

The text between two dashes -- and the end of the line is interpreted as a
comment. So the description in Figure 4-12 begins with a two-line comment identi-
fying the description and its relationship to Figure 3-21. To assist in discussion of
this description, comments providing line numbers have been added on the right.
As a language, VHDL has a syntax that describes precisely the valid constructs
that can be used in the language. This example will illustrate many aspects of the
syntax. In particular, note the use of semicolons, commas, and colons in the
description.

Initially, we skip lines 3 and 4 of the description to focus on the overall struc-
ture. Line 5 begins the declaration of an entity, which is the fundamental unit of a
VHDL design. In VHDL, just as for a symbol in a schematic, we need to give the
design a name and to define its inputs and outputs. This is the function of the entity
declaration. Entity and is are keywords in VHDL. Keywords, which we show in
bold type, have a special meaning and cannot be used to name objects such as enti-
ties, inputs, outputs or signals. Statement entity decoder_2_to_4_w_enable
is declares that a design exists with the name decoder_2_to_4_w_enable.
VHDL is case insensitive (i.e., names and keywords are not distinguished by the
use of uppercase or lowercase letters). DECODER_2_4_W_ENABLE is the same as
Decoder_2_4_w_Enable and decoder_2_4_w_enable.

Next, a port declaration in lines 6 and 7 is used to define the inputs and out-
puts just as we would do for a symbol in a schematic. For the example design, there
are three input signals: EN, A0, and Al. The fact that these are inputs is denoted by
the mode in. Likewise, DO, D1, D2, and D3 are denoted as outputs by the mode
out. VHDL is a strongly typed language, so the type of the inputs and output must
be declared. In this case, the type is std_logic, which represents standard logic.
This type declaration specifies the values that may appear on the inputs and the
outputs, as well as the operations that may be applied to the signals. Standard logic,

178 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

among its nine values, includes the usual binary values 0 and 1 and two additional
values X and U. X represents an unknown value, U an uninitalized value. We have
chosen to use standard logic, which includes these values, since these values are
used by typical simulation tools.

In order to use the type std_logic, it is necessary to define the values
and the operations. For convenience, a package consisting of precompiled VHDL
code is employed. Packages are usually stored in a directory referred to as a
library, which is shared by some or all of the tool users. For std_logic, the
basic package is ieee.std_logic_1164. This package defines the values and
basic logic operators for types std_ulogic and std_logic. In order to use
std_logic, we include line 3 to call up the 1library of packages called ieee
and include line 4 containing ieee.std_logic_1164.all to indicate we want
to use all of the package std_logic_1164 from the ieee library. An additional

-— 2-to-4-Line Decoder with Enable: Structural VHDL Description - 1
-— (See Figure 3-21 for logic diagram) - 2
library ieee, lcdf vhdl; -- 3
use ieee.std logic_1164.all, lcdf vhdl.func prims.all; -- 4
entity decoder_2_to_4_w_enable is -- 5
port (EN, A0, Al: in std_logic; -- 6
DO, D1, D2, D3: out std_logic); -— 17

end decoder_2_to_4_w_enable; -- 8
-- 9

architecture structural_1 of decoder_2_to 4_w_enable is -- 10
component NOT1 - 11
port (inl: in std_logic; --12
outl: out std_logic); -- 13

end component; -—- 14
component AND2 -- 15
port (inl, in2: in std_logic; -- 16
outl: out std_logic); -— 17

end component; -- 18
signal AO0_n, Al_n, NO, N1, N2, N3: std_logic; -- 19
begin -- 20
g0: NOT1 port map (inl => A0, outl => AQ_n); - 21

gl: NOT1 port map (inl => Al, outl => Al_n); -- 22

g2: AND2 port map (inl => AO_n, in2 => Al_n, outl => NO); -- 23

g3: AND2 port map (inl => AQ, in2 => Al _n, outl => N1); -- 24
g4: AND2 port map (inl => AO_n, in2 => Al,outl => N2); -- 25

g5: AND2 port map (inl => A0, in2 => Al, outl => N3); -- 26

g6: AND2 port map (inl => EN, in2 => NO, outl => DO0); -- 27

g7: AND2 port map (inl => EN, in2 => N1, outl => D1); -- 28

g8: AND2 port map (inl => EN, in2 => N2, outl => D2); -- 29

g9: AND2 port map (inl => EN, in2 => N3, outl => D3); -- 30

end structural_l1; —-—- 31

OO0 FIGURE 4-12
Structural VHDL Description of 2-to-4-Line Decoder

4-7 / HDL Representations—VHDL [179

library, 1cdf_vhdl, contains a package called func_prims made up of basic
=~ logic gates, latches, and flip-flops described using VHDL, of which we use all.
(@, Library 1cdf_vhdl is available in ASCII for copying from the Companion Web-
\ site for the text. Note that the statements in lines 3 and 4 are tied to the entity
that follows. If another entity is included that uses type std_logic and the ele-
ments from func_prims, these statements must be repeated prior to that entity
declaration.

The entity declaration ends with keyword end followed by the entity name. Thus

far, we have discussed the equivalent of a schematic symbol in VHDL for the circuit.

STRUCTURAL DEscrIPTION Next, we want to specify the function of the circuit. A
particular representation of the function of an entity is called the architecture of
the entity. Thus, the contents of line 10 declare a VHDL architecture named
structural_1 for the entity decoder_2_to_4_w_enable to exist. The details
of the architecture follow. In this case, we use a structural description that is equiv-
alent to the schematic for the circuit given in Figure 3-21.

First, we declare the gate types we are going to use as components of our
description in lines 11 through 18. Since we are building this architecture from
gates, we declare an inverter called NOT1 and a 2-input AND gate called AND2 as
components. These gate types are VHDL descriptions in package func_prims
that contain the entity and architecture for each of the gates. The name and the
port declaration for a component must be identical to those for the underlying
entity. For NOT1, port gives the input name inl and the output name outl. The
component declaration for AND2 gives input names inl and in2, and output
name outl.

Next, before specifying the interconnection of the gates, which is equivalent
to a circuit netlist, we need to name all of the nets in the circuit. The inputs and
outputs already have names. The internal nets are the outputs of the two invert-
ers and of the leftmost four AND gates in Figure 3-21. These output nets are
declared as signals of type std_logic. AO_n and Al_n are the signals for the two
inverter outputs and NO, N1, N2, and N3 are the signals for the four AND
gate outputs. Likewise, all of the inputs and outputs declared as ports are signals.
In VHDL, there are both signals and variables. Variables are evaluated instanta-
neously. In contrast, signals are evaluated at some future point in time. This time
may be physical time, such as 2 ns from the current time, or may be what is called
delta time, in which a signal is evaluated one delta time from the current time.
Delta time is viewed as an infinitesimal amount of time. Some time delay in eval-
uation of signals is essential to the internal operation of the typical digital simu-
lator and, of course, based on the delay of gates, is realistic in performing
simulations of circuits. For simplicity, we will typically be simulating circuits for
correct function, not for performance or delay problems. For such functional sim-
ulation, it is easiest to let the delays default to delta times. Thus, no delay will be
explicit in our VHDL descriptions of circuits, although delays may appear in test-
benches.

Following the declaration of the internal signals, the main body of the
architecture starts with the keyword begin. The circuit described consists of

180 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

two inverters and eight 2-input AND gates. Line 21 gives the label g0 to the
first inverter and indicates that the inverter is component NOT1. Next is a port
map, which maps the input and output of the inverter to the signals to which
they are connected. This particular form of port map uses => with the port of
the gate on the left and the signal to which it is connected on the right. For
example, the input of inverter g0 is A0 and the output is A0_n. Lines 22
through 30 give the remaining nine gates and the signals connected to their

-— 4-to-1-Line Multiplexer: Structural VHDL Description -1
-— (See Figure 3-26 for logic diagram) - 2
library ieee, lcdf_vhdl; —-— 3
use ieee.std logic_1164.all, lcdf_vhdl.func_prims.all; -— 4
entity multiplexer 4_to_1_st is -- 5
port (S: in std_logic_vector(0 to 1); -— 6
I: in std_logic_vector(0 to 3); -— 7

Y: out std_logic); -- 8

end multiplexer_4_to_1_st; -— 9
--10

architecture structural_2 of multiplexer_4_to_1_st is --11
component NOT1 --12
port(inl: in std_logic; —--13
outl: out std_logic); --14

end component; —--15
component AND2 --16
port(inl, in2: in std_logic; —--17
outl: out std_logic); --18

end component; --19
component OR4 --20
port (inl, in2, in3, in4: in std_logic; --21
outl: out std_logic); --22

end component; —--23
signal S n: std_logic_vector(0 to 1); --24
signal D, N: std_logic_vector(0 to 3); --25
begin --26
g0: NOT1 port map (S(0), S_n(0)); -=27

gl: NOT1 port map (S(1), S_n(l1)); --28

g2: AND2 port map (S_n(l), S_n(0), D(0)); --29

g3: AND2 port map (S_n(l), S(0), D(1)): --30

g4: AND2 port map (S(1), S_n(0), D(2)); --31

g5: AND2 port map (S(1l), S(0), D(3)); --32

g6: AND2 port map (D(0), I(0), N(0)); ek

g7: AND2 port map (D(1), I(1l), N(1)); --34

g8: AND2 port map (D(2), I(2), N(2)); --35

g9: AND2 port map (D(3), I(3), N(3)); --36

gl0: OR4 port map (N(0), N(1), N(2), N(3), Y); --37

end structural_2; --38

OO0 FIGURE 4-13
Structural VHDL Description of 4-to-1-Line Multiplexer

4-7 / HDL Representations—VHDL [181

inputs and outputs. For example, in line 24, A0 and A1_n are inputs and N1 is
the output. The architecture is completed with the keyword end followed by its
name structural_l.

EXAMPLE 4-8 Structural VHDL for a 4-to-1 Multiplexer

In Figure 4-13, the structural description of the 4-to-1-line multiplexer from
Figure 3-26 illustrates two additional VHDL concepts: std_logic_vector and an
alternative approach to mapping ports

In lines 6 and 7, instead of specifying S and I as individual std_logic inputs,
they are specified as std_logic_vectors. In specifying vectors, we use an index. Since
S consists of two input signals numbered 0 and 1, the index for S is 0 to 1. The
components of this vector are S(0) and S(1). I consists of four input signals
numbered 0 through 3, so the index for I is 0 to 3. Likewise, in lines 24 and 25,
we specify signals S_n, D, and N as std_logic_vectors. D represents the decode out-
puts, and N represents the four internal signals between the AND gates and the
OR gate.

Beginning at line 27, note how the signals within std_logic_vectors are
referred to by giving the signal name and the index in parentheses. It is also possi-
ble to refer to subvectors (e.g., N(1 to 2), which refers to N(1) and N(2), the
center two signals in N). Also, if one wishes to have the larger index for a vector
appear first, VHDL uses a somewhat different notational approach. For example,
signal N: std_logic_vector (3 downto 0) defines the first bit in signal N as
N(3) and the last signal in Nas N (0).

In lines 27 through 37, an alternative method is used to specify the port maps
for the logic gates. Instead of explicitly giving the component input and output
names, we assume that these names are in the port map in the same order as given
for the component. We can then implicitly specify the signals attached to these
names by listing the signals in same order as the names. For example, in line 29,
S_n (1) appears first,and so is connected to inl.S_n(0) appears second, and so
is connected to in2. Finally, D(0) is connected to out1l.

Otherwise, this VHDL description is similar in structure to that for the 2-to-4-
line decoder, except that the schematic represented is that in Figure 3-26.

DaTAaFLow DescriPTION A dataflow description describes a circuit in terms of
function rather than structure and is made up of concurrent assignment statements
or their equivalent. Concurrent assignment statements are executed concurrently
(i.e., in paralle]) whenever one of the values on the right-hand side of the state-
ment changes. For example, whenever a change occurs in a value on the right-hand
side of a Boolean equation, the left-hand side is evaluated. The use of dataflow
descriptions made up of Boolean equations is illustrated in Example 4-9.

EXAMPLE 4-9 Dataflow VHDL for a 2-to-4-Line Decoder

Figure 4-14 shows a VHDL description for the 2-to-4-line decoder circuit from
Figure 3-21. This example will be used to demonstrate a dataflow description

182 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

-— 2-to-4-Line Decoder: Dataflow VHDL Description -- 1
-- (See Figure 3-21 or logic diagram) -— 2
Use library, use, and entity entries from 2_to_4_decoder_st; -- 3
-- 4

architecture dataflow_ 1 of decoder 2_to 4 w_enable is -- 5
-- 6

signal A0_n, Al_n: std_logic; - 7
begin -- 8
A0_n <= not A0Q; ——J0
Al _n <= not Al; -- 10
DO <= A0O_n and Al_n and EN; -- 11
D1 <= A0 and Al_n and EN; -- 12
D2 <= AO0_n and Al and EN; -- 13
D3 <= A0 and Al and EN; -- 14
end dataflow_1; -- 15

O FIGURE 4-14
Dataflow VHDL Description of 2-to-4-Line Decoder

made up of Boolean equations. The library, use, and entity statements are iden-
tical to those in Figure 4-12, so they are not repeated here. The dataflow descrip-
tion begins in line 9. The signals A0_n and Al_n are defined by signal
assignments that apply the not operation to the input signal A0 and A1, respec-
tively. In line 11, AO_n, A1_n, and EN are combined with an and operator to
form DO. D1, D2, and D3 are similarly defined in lines 12 through 14. Note that
this dataflow description is much simpler than the structural description in
Figure 4-12.

-— 4-to-1-Line Mux: Conditional Dataflow VHDL Description -— 1
-— Using When-Else (See Table 3-10 for function table) -— 2
library ieee; -- 3
use ieee.std_logic_l164.all; -- 4
entity multiplexer 4_to 1 we is -- 5
port (S : in std logic_vector(l downto 0); -- 6

I : in std_logic_vector (3 downto 0); - 7

Y : out std_logic); -- 8

end multiplexer 4_to_1_we; = O
-- 10

architecture function_table of multiplexer 4 to_ 1 we is -- 11
begin -- 12
Y <= I(0) when S = "00" else -- 13
I(l) when S = "01" else -- 14

I(2) when S = "10" else ~— 15

I(3) when S = "11" else -- 16

'Xl ; — 17

end function_table; == 18

O FIGURE 4-15
Conditional Dataflow VHDL Description of 4-to-1-Line Multiplexer Using When-Else

4-7 / HDL Representations—VHDL [183

In the next two examples, we describe the 4-to-1-line multiplexer to illustrate
two alternative forms of data flow description: when-else and with-select.

EXAMPLE 4-10 VHDL for a 4-to-1-Line Multiplexer Using When-Else

In Figure 4-15, instead of using Boolean equation-like statements in the architec-
ture to describe the multiplexer, we use a when-else statement. This statement is a
representation of the function table given as Table 3-10. When S takes on a par-
ticular binary value, then a particular input I (i) is assigned to output Y. When
the value on S is 00, then Y is assigned I (0).Otherwise,the else is invoked so
that when the value on S is 01, then Y is assigned I (1), and so on. In standard
logic, each of the bits can take on 9 different values. So the pair of bits for S can
take on 81 possible values, only 4 of which have been specified so far. In order to
define Y for the remaining 77 values, the final else followed by X (unknown) is
given. This assigns the value X to Y if any of these 77 values occurs on S. This out-
put value occurs only in simulation, however, since Y will always take on a 0 or 1
value in an actual circuit.

EXAMPLE 4-11 VHDL for a 4-to-1-Line Multiplexer Using With-Select

With-select is a variation on when-else as illustrated for the 4-to-1-line multiplexer
in Figure 4-16. The expression, the value of which is to be used for the decision, fol-
lows with and precedes select. The values for the expression that causes the

——4-to-1-Line Mux: Conditional Dataflow VHDL Description -— 1
Using with Select (See Table 3-10 for function table) -— 2
library ieee; -— 3
use ieee.std_logic_1l1164.all; -— 4
entity multiplexer 4_to_ 1 _ws is -—- 5
port (S : in std_logic_vector(l downto 0); -—- 6

I : in std_logic_vector (3 downto 0); -— 17

Y : out std_logic); -- 8

end multiplexer_4_to_1_ws; -— 9
-- 10

architecture function_table ws of multiplexer_4_to_l1_ws is - 11
begin - 12
with S select -- 13

Y <= I(0) when "00", -- 14

I(l1) when "01", -- 15

I(2) when "10", -—- 16

I(3) when "11", -- 17

'X' when others; -- 18

end function_table_ws; -- 19

0 FIGURE 4-16
Conditional Dataflow VHDL Description of 4-to-1-Line Multiplexer Using With-Select

184 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

-- 4-bit Adder: Hierarchical Dataflow/Structural
-— (See Figures 4-4 and 4-5 for logic diagrams)
library ieee;
use ieee.std_logic_1164.all;
entity half_adder is

port (x, y : imn std_logic;

s, ¢ : out std _logic);

end half_adder;

architecture dataflow 3 of half adder is
begin
S <= X XOr y;
Cc <= x and y;
end dataflow 3;

library ieee;
use ieee.std_logic_1164.all;
entity full_adder is
port (x, y, z : in std_logic;
s, ¢ : out std_logic);
end full_adder;

architecture struc_dataflow_3 of full_adder is
component half adder
port(x, v : in std_logic;
s, ¢ : out std_logic);
end component;
signal hs, hc, tc: std_logic;
begin
HAl: half_adder
port map (x, y, hs, hc);
HA2: half_adder
port map (hs, z, s, tc);
c <= tc or hc;
end struc_dataflow_3;

library ieee;

use ieee.std _logic_1164.all;

entity adder_4 is

port (B, A : in std logic_wvector(3 downto 0);

CO0 : in std_logic;
S : out std_logic_wvector (3 downto 0);
C4: out std_logic);

end adder_4;

[0 FIGURE 4-17
Hierarchical Structural/Dataflow Description of 4-Bit Full Adder

4-7 / HDL Representations—VHDL [185

architecture structural_4 of adder_4 is
component full_adder
port(x, v, z : in std_logic;
s, c : out std _logic);
end component;
signal C: std_logic_vector(4 downto 0);
begin
Bit0: full_adder
port map (B(0), A(0), C(0), S(0), C(1));
Bitl: full_adder
port map (B(1), A(1), C(1), S(1), C(2));
Bit2: full_adder
port map (B(2), A(2), C(2), S(2), C(3));
Bit3: full_adder
port map (B(3), A(3), C(3), S(3), C(4));
C(0) <= CO0;
C4 <= C(4);
end structural_4;

O FIGURE 4-18
Hierarchical Structural/Dataflow Description of 4-Bit Full Adder (Continued)

alternative assignments then follow when with each of the assignment-value pairs
separated by commas. In the example, S is the signal, the value of which deter-
mines the value selected for Y. When S = "00", I(0) is assigned to Y. When S =
"Q01",I(1) is assigned to Y and so on. 'X" is assigned to Y when others, where
others represents the 77 standard logic combinations not already specified. Note
that when-else permits decisions on multiple distinct signals. For example, for the
demultiplexer in Figure 3-21, the first when can be conditioned on input EN with
the subsequent when’s conditioned on input S. In contrast, the with-select can
depend on only a single Boolean condition (e.g., either EN or S, but not both).
Also, for typical synthesis tools, when-else typically results in a more complex logi-
cal structure, since each of the decisions depends not only on the condition cur-
rently being evaluated, but also on all prior decisions as well. As a consequence,
the structure that is synthesized takes into account this priority order, replacing the
4 x 2 AND-OR by a chain of four 2-to-1 multiplexers. In contrast, there is no direct
dependency between the decisions made in with-select. With-select produces a
decoder and the 4 x 2 AND-OR gate.

Thus far, all of the VHDL descriptions used have contained only a single
entity. Descriptions that represent circuits using hierarchies have multiple entities,
one for each distinct element of the hierarchy, as shown in the next example.

EXAMPLE 4-12 Hierarchical VHDL for a 4-Bit Ripple Carry Adder

The example in Figure 4-17 and 4-18 uses three entities to build a hierarchical
description of a 4-bit ripple carry adder. The style used for the architectures will be

186 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

-— 4-bit Adder: Behavioral Description
library ieee;

use ieee.std_logic_1164.all;

use ieee.std _logic_unsigned.all;

entity adder_4_Db is
port (B, A : in std_logic_vector (3 downto 0);
CO0 : in std_logic;
S : out std_logic_vector(3 downto 0);
C4: out std logic);
end adder_4_b;

architecture behavioral of adder 4_Db is
signal sum : std_logic_vector (4 downto 0);
begin
sum <= ('0'" & A) + ('0' & B) + ("0000" & CO);
C4 <= sum(4);
S <= sum(3 downto 0);
end behavioral;

O FIGURE 4-19
Behavioral Description of 4-Bit Adder

a mix of structural and dataflow description. The three entities are a half adder, a
full adder that uses half adders, and the 4-bit adder itself. The architecture of
half_adder consists of two dataflow assignments, one for s and one for c. The
architecture of full_adder uses half_adder as a component. In addition,
three internal signals, hs, hc, and tc, are declared. These signals are applied to
two half adders and are also used in one dataflow assignment to construct the full
adder in Figure 4-4. In the adder_4 entity, four full-adder components are simply
connected together using the signals given in Figure 4-5.

Note that C0 and C4 are an input and an output, respectively, but C (0)
through C(4) are internal signals (i.e., neither inputs nor outputs). C(0) is
assigned CO and C4 is assigned C(4).The use of C(0) and C (4) separately from
CO0 and C4 is not essential here, but is useful to illustrate a VHDL constraint.
Suppose we wanted to add overflow detection to the adder as shown in Figure 4-8.
If C (4) is not defined separately, then one might attempt to write

V <= C(3) xor C4

In VHDL, this is incorrect. An output cannot be used as an internal signal. Thus, it
is necessary to define an internal signal to use in place of C4 (e.g.,C(4)) giving

V <= C(3) xor C(4)
Behavioral Description

The 4-bit adder provides an opportunity to illustrate description of circuits at lev-
els higher than the logic level. Such levels of description are referred to as the

4-8 / HDL Representations—Verilog [187

behavioral level or the register transfer level. We will specifically study register
transfers in Chapter 7. Without studying register transfers, however, we can still
show a behavioral-level description.

EXAMPLE 4-13 Behavioral VHDL for a 4-Bit Ripple Carry Adder

A behavioral description for the 4-bit adder is given in Figure 4-19. In the architec-
ture of the entity adder_4_b, the addition logic is described by a single statement
using + and &. The + represents addition and the & represents an operation called
concatenation. A concatenation operator combines two signals into a single signal
having its number of bits equal to the sum of the number of bits in the original sig-
nals. In the example, '0'& A represents the signal vector

0" A(3) A(2) A(1) A(0)

with 1 + 4 = 5 signals. Note that ' 0 ', which appears on the left in the concatena-
tion expression, appears on the left in the signal listing. The inputs to the addition
are all converted to 5-bit quantities for consistency, since the output including C4 is
five bits. This conversion is not essential, but is a safe approach.

Since + cannot be performed on the std_logic type, we need an additional
package to define addition for the std_logic type. In this case, we are using
std_logic_arith, a package present in the ieee library. Further, we wish to
specifically define the addition to be unsigned, so we use the unsigned extension.
Also, concatenation in VHDL cannot be used on the left side of an assignment
statement. To obtain C4 and S as the result of the addition, a 5-bit signal sum is
declared. The signal sum is assigned the result of the addition including the carry
out. Following are two additional assignment statements which split sum into out-
puts C4 and S.

This completes our introduction to VHDL for combinational circuits. We will
continue with more on VHDL by presenting means for describing sequential cir-
cuits in Chapter 5.

4-8 HDL REPRESENTATIONS—VERILOG

Since an HDL is used for describing and designing hardware, it is very important
to keep the underlying hardware in mind as you write in the language. This is par-
ticularly critical if your language description is to be synthesized. For example, if
you ignore the hardware that will be generated, it is very easy to specify a large
complex gate structure by using x (multiply), when a much simpler structure using
only a few gates is all that is needed. For this reason, initially, we emphasize
describing detailed hardware with Verilog, and finishing with more abstract,
higher-level descriptions.

Selected examples in this chapter are useful for introducing Verilog as an alterna-
tive means for representing detailed digital circuits. First, we show a structural Verilog

188 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// 2-to-4-Line Decoder with Enable: Structural Verilog Desc. // 1
// (See Figure 3-21 for logic diagram) // 2
module decoder_2_to_4_st v (EN, A0, Al, DO, D1, D2, D3); // 3
input EN, A0, Al; // 4
output DO, D1, D2, D3; // 5
// 6

wire AO_n, Al _n, NO, N1, N2, N3; // 7
not // 8
go(AO_n, A0), // 9
gl(Al_n, Al); // 10

and // 11
g3 (NO, AO0_n, Al_n), // 12

g4 (N1, A0, Al_n), // 13
g5(N2, AO_n, Al), // 14

g6 (N3, A0,Al), // 15

g7 (D0, NO, EN), // 16
g8(Dl1, N1, EN), // 17

g9 (D2, N2, EN), // 18

gl0 (D3, N3, EN); // 19
endmodule // 20

0 FIGURE 4-20
Structural Verilog Description of 2-to-4-Line Decoder

description that replaces the schematic for the 2-to-4-line decoder with enable given in
Figure 3-21. This example, and one using the 4-to-1-line multiplexer in Figure 3-26, illus-
trate many of the fundamental concepts of Verilog. We then present higherlevel func-
tional and behavioral Verilog descriptions for these circuits that further illustrate Verilog
concepts.

EXAMPLE 4-14 Structural Verilog for a 2-to-4-Line Decoder

The Verilog description for the 2-to-4-line decoder circuit from Figure 3-21 is given
in Figure 4-20. This description will be used to introduce a number of general Ver-
ilog features, as well as to illustrate structural circuit description.

The text between two slashes // and the end of a line as shown in lines 1 and
2 of Figure 4-20 is interpreted as a comment. For multiline comments, there is an
alternative notation using a / and *:
/* 2-to-4-Line Decoder with Enable: Structural Verilog Desc.
(See Figure 3-21 for logic diagram) */
To assist in discussion of the Verilog description, comments providing line numbers
have been added on the right. As a language, Verilog has a syntax that describes
precisely the valid constructs that can be used in the language. This example will
illustrate many aspects of the syntax. In particular, note the use of commas and
colons in the description. Commas (,) are typically used to separate elements of a
list and semicolons (;) are used to terminate Verilog statements.

4-8 / HDL Representations—Verilog [189

Line 3 begins the declaration of a module, which is the fundamental building
block of a Verilog design. The remainder of the description defines the module, ending
in line 20 with endmodule. Note that there is no ; after endmodule. Just as for a
symbol in a schematic, we need to give the design a name and to define its inputs and
outputs. This is the function of the module statement in line 3 and the input and output
declarations that follow. The words module, input, and output are keywords in
Verilog. Keywords, which we show in bold type, have a special meaning and cannot be
used as names of objects such as modules, inputs, outputs, or wires. The statement
module decoder_2_to_4_st_v declares that a design or design part exists with
the name decoder_2_to_4_st_v. Further, Verilog names are case sensitive (i.e.,
names are distinguished by the use of wuppercase or lowercase letters).
DECODER_2_4_st_v, Decoder_2_4_st_v, and decoder_2_4_st_V are all
distinct names.

Just as we would do for a symbol in a schematic, we give the names of the decoder
inputs and outputs in the module statement. Next, an input declaration is used to define
which of the names in the module statement are inputs. For the example design, there
are three input signals, EN, A0, and Al. The fact that these are inputs is denoted by the
keyword input. Similarly, an output declaration is used to define the outputs. DO, D1,
D2, and D3 are denoted as outputs by the keyword output.

Inputs and outputs as well as other binary signal types in Verilog can take on
one of four values. The two obvious values are 0 and 1. Added are x to represent
unknown values and z to represent high-impedance values. on the outputs of 3-state
logic. Verilog also has strength values that, when combined with the four values
given, provide 120 possible signal states. Strength values are used in electronic circuit
modeling, however, so will not be considered here.

StrucTuraL DescripTion Next, we want to specify the function of the decoder. In
this case, we use a structural description that is equivalent to the circuit schematic
given in Figure 3-21. Note that the schematic is made up of gates. Verilog provides
14 primitive gates as keywords. Of these, we are interested in eight for now: buf,
not, and, or, nand, nor, xor and xnor. buf and not have single inputs, and all
other gate types may have from two to any integer number of inputs. buf is a
buffer, which has the function z = x, with x as the input and z as the output. It is as
an amplifier of electronic signals that can be used to provide greater fan-out or
smaller delays. xor is the exclusive-OR gate and xnor is the exclusive-NOR gate,
the complement of the exclusive-OR. In our example, we will use just two gate
types, not and and, as shown in lines 8 and 11 of Figure 4-20.

Before specifying the interconnection of the gates, which is the same as a cir-
cuit netlist, we need to name all of the nets in the circuit. The inputs and outputs
already have names. The internal nets are the outputs of the two inverters and of
the four leftmost AND gates in Figure 3-21. In line 7, these nets are declared as
wires by use of the keyword wire. Names A0_n and Al_n are used for the
inverter outputs and NO, N1, N2, and N3 for the outputs of the AND gates. In
Verilog, wire is the default net type. Notably, input and output ports have the
default type wire.

190 0O CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// 4-to-1l-Line Multiplexer: Structural Verilog Description // 1
// (See Figure 3-26 for logic diagram) // 2
module multiplexer 4 to 1 st v(S, I, Y); // 3
input [1:0] S; // 4
input [3:0] I; // 5
output Y; // 6
/] 1

wire [1:0] not_S; // 8
wire [0:3] D, N; // 9
// 10

not // 11
gn0 (not_S[0], S[0]), // 12
gnl (not_SI[1], S[1]); // 13

// 14

and // 15
g0(D[0], not_S[1l], not_S[01), // 16
gl(D[1], not_S[1], S[0]), // 17
g2(D[2], S[1], not_SI[0]), // 18
g3(p[3]1, S[1], S[0]); // 19
g0(N[0], D[O], I[O0]), // 20
gl(N[1], D[1], II[11), // 21
g2(N[2], D[2]1, II[2]), // 22
g3(N[3], D[3], II[31); // 23
// 24

or go(Y, N[0], N[1], N[2], N[3]); // 25
// 26

endmodule // 27

OO0 FIGURE 4-21
Structural Verilog Description of 4-to-1-Line Multiplexer

Following the declaration of the internal signals, the circuit described con-
tains two inverters and eight 2-input AND gates. A statement consists of a gate
type followed by a list of instances of that gate type separated by commas. Each
instance consists of a gate name and, enclosed in parentheses, the gate output and
inputs separated by commas, with the output given first. The first statement begins
on line 8 with the not gate type. Following is inverter g0 with A0_n as the output
and A0 as the input. To complete the statement, g1 is similarly described. Lines 11
through 19 give the remaining eight gates and the signals connected to their out-
puts and inputs, respectively. For example, in line 14, an instance of a 2-input AND
gate named g5 is defined. It has output N2 and inputs A0_n and Al. The module is
completed with the keyword endmodule.

EXAMPLE 4-15 Structural Verilog for a 4-to-1-Line Multiplexer

In Figure 4-21, the structural description of the 4-to-1-line multiplexer from Figure 3-26
illustrates the Verilog concept of a vector. In lines 4 and 5, instead of specifying S
and I as single bit wires, they are specified as multiple-bit wires called vectors. The
bits of a vector are named by a range of integers. This range is given by maximum

4-8 / HDL Representations—Verilog [191

and minimum values. By specifying these two values, we specify the width of the
vector and the names of each of its bits. Vector ranges are illustrated in lines 4, 5, 8,
and 9 of Figure 4-21. input [1:0] S indicates that S is a vector with a width of
two, with the most significant bit numbered 1 and least significant bit numbered 0.
The components of S are S[1] and S[0]. input [3:0] I declares I as a 4-bit
input, with the most significant bit numbered 3 and least significant bit numbered 0.
wire [0:3] D is also a 4-bit vector representing the four internal wires between
the leftmost and rightmost AND gates, but in this case, the most significant bit is
numbered 0 and the least significant bit is numbered 3. Once a vector has been
declared, then the entire vector or its subcomponents can be referenced. For exam-
ple, S refers to the two bits of S, and S[1] refers to the most significant bit of S. N
refers to all four bits of N, and N[1:2]refers to the middle two bits of N. These
types of references are used in specifying the output and inputs in instances of the
gates in lines 11 through 25. Otherwise, this Verilog description is similar in struc-
ture to that for the 2-to-4-line decoder, except that the schematic represented is
that in Figure 3-26.

DatarLow DEescripTiON A dataflow description is a form of Verilog description
that is not based on structure, but rather on function. A dataflow description is
made up of dataflow statements. For the first dataflow description, Boolean equa-
tions are used rather than the equivalent of a logic schematic. The Boolean equa-
tions given are executed in parallel whenever one of the values on the right-hand
side of the equation changes.

EXAMPLE 4-16 Dataflow Verilog for a 2-to-4-Line Decoder

In Figure 4-22, a dataflow description is given for the 2-to-4-line decoder. This par-
ticular dataflow description uses the assignment statement consisting of the key-
word assign followed, in this case, by a Boolean equation. In such equations, we

// 2-to-4-Line Decoder with Enable: Dataflow Verilog Desc. // 1
// (See Example 3-21 for logic diagram) // 2
module decoder_2_to_4_df v(EN, A0, A1, DO, D1, D2, D3); // 3
input EN, A0, Al; // 4
output DO, D1, D2, D3; // 5
// 6

assign DO = EN & ~Al & ~AQ; // 7
assign D1 = EN & ~Al & AO; // 8
assign D2 = EN & Al & ~AQ0; // 9
assign D3 = EN & Al & AQ; // 10
// 11

endmodule // 12

O FIGURE 4-22

Dataflow Verilog Description of 2-to-4-Line Decoder

192 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// 4-to-1-Line Multiplexer: Dataflow Verilog Description
// (See Figure 3-26 for logic diagram)
module multiplexer 4_to_1_df _v(S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;
assign ¥ = (~ S[1] & ~ S[0] & I[O])| (~ S[1] & S[0] & I[11)
| (S[1] & ~ S[0] & I[2]) | (S[1] & S[0] & TI[3]);
endmodule

O FIGURE 4-23
Dataflow Verilog Description of 4-to-1-Line Multiplexer Using a Boolean Equation

use the bitwise Boolean operators given in Table 4-4. In line 7 of Figure 4-22, EN,

[0 TABLE 4-4
Bitwise Verilog Operators

Operation Operator

~ Bitwise NOT

& Bitwise AND

I Bitwise OR

A Bitwise XOR

A~ or ~N Bitwise XNOR

~A0, and ~Al are combined with an & operator. This & combination is assigned to
the output D0. D1, D2, and D3 are similarly defined in lines 8 through 10.

In the next three examples, we describe the 4-to-1-line multiplexer to illus-
trate three alternative forms of data flow description: Boolean equations, binary
combinations as conditions, and binary decisions as conditions.

EXAMPLE 4-17 Dataflow Verilog for a 4-to-1-Line Multiplexer

In Figure 4-23, a single Boolean equation for Y describes the multiplexer. This
equation is in sum-of-products form with & for AND and | for OR. Components
of the S and I vectors are used as its variables.

EXAMPLE 4-18 Verilog for a 4-to-1-Line Multiplexer Using Combinations

The description in Figure 4-24 resembles the function table given as Table 3-10 by
using a conditional operator on binary combinations. If the logical value within the
parentheses is true, then the value before the : is assigned to the independent vari-
able, in this case, Y. If the logical value is false, then the value after the : is assigned.

Www.Ebook777.com

http://www.ebook777.com

4-8 / HDL Representations—Verilog [193

// 4-to-1 Line Multiplexer: Dataflow Verilog Description
// (See Table 3-9 for function table)
module multiplexer 4_to_1_cf v(S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;
assign Y = (S == 2'b00) ? I[0]
(S == 2'b01) ? I[1]
(S == 2'bl0) ? I[2] :
(S == 2'bll) ? I[3] : 1'bx ;

endmodule

O FIGURE 4-24
Conditional Dataflow Verilog Description of 4-to-1-Line Multiplexer Using Combinations

The logical equality operator is denoted by ==. Suppose we consider condition S
== 2'Db00.2'b00 represents a constant. The 2 specifies that the constant contains
two digits, b that the constant is given in binary, and 00 gives the constant value.
Thus, the expression has value true if vector S is equal to 00; otherwise, it is false.
If the expression is true, then I [0] is assigned to Y. If the expression is false, then
the next expression containing a ? is evaluated, and so on. In this case, for a con-
dition to be evaluated, all conditions preceding it must evaluate to false. If none of
the decisions evaluate to true, then the default value 1’ bx is assigned to Y. Recall
that default value x represents unknown.

EXAMPLE 4-19 Verilog for a 4-to-1-Line Multiplexer Using Binary Decisions

The final form of dataflow description is shown in Figure 4-25. It is based on condi-
tional operators used to form a decision tree, which corresponds to a factored
Boolean expression. In this case,if S[1] is 1,then S[0] is evaluated to determine
whether Y is assigned I[3] or assigned T[2].If S[1] is 0,then S[0] is evaluated
to determine whether Y is assigned I[1] or I [0]. For a regular structure such as a

// 4-to-1-Line Multiplexer: Dataflow Verilog Description
// (See Table 3-10 for function table)
module multiplexer_4_to_ 1 tf v(S, I, Y);

input [1:0] S;

input [3:0] I;

output Y;

assign Y = S[1] ? (S[0] ? I[3] : I[2])
(s[0] » I[1] : II[0O]) ;
endmodule

0 FIGURE 4-25
Conditional Dataflow Verilog Description of 4-to-1-Line Multiplexer Using Binary Decisions

194 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// 4-bit Adder: Hierarchical Dataflow/Structural
// (See Figures 5-4 and 5-5 for logic diagrams)

module half_adder v(x, y, s, C);
input x, v;
output s, c;

assign s x N y;
assign c = x & v;

endmodule

module full adder v(x, ¥y, 2, s, C);
input x, y, z;
output s, c;

wire hs, hc, tc;

half_adder_v HAl(x, y, hs, hc),
HA2 (hs, z, s, tc);
assign c = tc | hc;

endmodule

module adder 4 _v(B, A, C0, S, C4);
input[3:0] B, A;
input CO;
output[3:0] S;
output C4;

wire([3:1] C;
full adder_v BitO(B[0], A[0], CO, s[0], CI11),

O FIGURE 4-26
Hierarchical Dataflow/Structural Verilog Description of 4-Bit Adder

multiplexer, this approach, based on two-way (binary) decisions, gives a simple
dataflow expression.

Thus far, all of the descriptions used have contained only a single module.
Descriptions that represent circuits using hierarchy have multiple modules, one for
each distinct element of the hierarchy, as shown in the next example.

4-8 / HDL Representations—Verilog [195

EXAMPLE 4-20 Hierarchical Verilog for a 4-Bit Ripple Carry Adder

The description in Figure 4-26 uses three modules to represent a hierarchical
design for a 4-bit ripple carry adder. The style used for the modules will be a mix of
structural and dataflow description. The three modules are a half adder, a full
adder built around half adders, and the 4-bit adder itself.

The half_ adder module consists of two dataflow assignments, one for s
and one for c. The full_adder module uses the half_adder as a component as
in Figure 4-4. In the full_adder, three internal wires, hs, hc, and tc, are
declared. Inputs, outputs, and these wire names are applied to the two half adders,
and tc and hc are ORed to form carry c. Note that the same names can be used
on different modules (e.g., X, v, s, and c are used in both the half_adder and
full_adder).

In the adder_4 module, four full adders are simply connected together using
the signals given in Figure 4-5. Note that CO and C4 are an input and an output,
respectively, but C (3) through C (1) are internal signals (i.e., neither inputs nor
outputs).

Behavioral Description

The 4-bit adder provides an opportunity to illustrate description of circuits at
levels higher than the logic level. Such levels of description are referred to as the
behavioral level or the register transfer level. We will specifically study register
transfers in Chapter 7. Without studying register transfers, however, we can still
show the behavioral level description for the 4-bit adder.

EXAMPLE 4-21 Behavioral Verilog for a 4-Bit Ripple Carry Adder

Figure 4-27 shows the Verilog description for the 4-bit adder. In module
adder_4_b_v, the addition logic is described by a single statement using + and
{}. The + represents addition and the {} represents an operation called concate-
nation. The operation + performed on wire data types is unsigned. Concatenation
combines two signals into a single signal having its number of bits equal to the
sum of the number of bits in the original signals. In the example, {C4, S} repre-

sents the signal vector

C4 S[3] s[2] S[1] S[0]

with 1 + 4 = 5 signals. Note that C4, which appears on the left in the concatenation
expression, appears on the left in the signal listing.

196 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// 4-bit Adder: Behavioral Verilog Description

module adder_4_b v(A, B, C0, S, C4);
input[3:0] A, B;
input CO;
output[3:0] S;
output C4;

assign {C4, S} = A + B + CO;
endmodule

O FIGURE 4-27
Behavioral Description of Four-Bit Full Adder Using Verilog

This completes our introduction to Verilog for combinational circuits. We will
continue with more on Verilog by presenting means for describing sequential cir-
cuits in Chapter 5.

4-9 CHAPTER SUMMARY

This chapter introduced combinational circuits for performing arithmetic. The
implementation of binary adders was treated in detail. The subtraction of unsigned
binary numbers using 2s complement was presented, as was the representation of
signed binary numbers and their addition and subtraction. The adder—subtractor,
developed for unsigned binary, was found to apply directly to the addition and sub-
traction of signed 2s complement numbers as well.

Additional arithmetic operations introduced included incrementing, decre-
menting, multiplication and division by a constant, and shifting. The implementations
for these operations were obtained by a design technique we called contraction.
Zero fill and sign extension of operands were also introduced.

The last three sections of the chapter provided a general introduction to hard-
ware description languages and introduced two languages, VHDL and Verilog.
Combinational circuits were used to illustrate structural, functional, and behav-
ioral level descriptions for the two languages.

REFERENCES

1. MANoO, M. M. Digital Design, 3rd ed. Upper Saddle River, NJ: Pearson Prentice
Hall, 2002.

2. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle
River, NJ: Pearson Prentice Hall, 2006.

3. High-Speed CMOS Logic Data Book. Dallas: Texas Instruments, 1989.

4. IEEE Standard VHDL Language Reference Manual (ANSI/IEEE Std 1076-
1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical
and Electronics Engineers, 1994.

10.

11.

12.

13.

14.

Problems 0O 197

SMmitH, D. J. HDL Chip Design. Madison, AL: Doone Publications, 1996.

PELLERIN, D. AND D. TAYLOR. VHDL Made Easy! Upper Saddle River, NJ:
Prentice Hall PTR, 1997.

STEFAN, S. AND L. LINDH. VHDL for Designers. London: Prentice Hall
Europe, 1997.

YALAMANCHILL, S. VHDL Starter’s Guide, 2nd ed. Upper Saddle River, NJ:
Pearson Prentice Hall, 2005.

IEEE Standard Description Language Based on the Verilog Hardware
Description Language (IEEE Std 1364-1995). New York: The Institute of
Electrical and Electronics Engineers, 1995.

PALNITKAR, S. Verilog HDL: A Guide to Digital Design and Synthesis, 2nd ed.
Upper Saddle River, NJ: Pearson Prentice Hall, 2003.

BHASKER, J. A Verilog HDL Primer,2nd ed. Allentown, PA: Star Galaxy
Press, 1999.

THOMAS, D. AND P. MOORBY. The Verilog Hardware Description Language,
5th ed. NewYork: Springer, 2002.

CILETTI, M. Advanced Digital Design with Verilog HD L, Upper Saddle River,
NJ: Pearson Prentice Hall, 2003.

CILETTI, M. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Pearson
Prentice Hall, 2004.

PROBLEMS

P

(. >\ The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

{)
N\

~

4-2.

4-3.

a solution is available on the Companion Website for the text.

4-1.

Design a combinational circuit that forms the 2-bit binary sum S5, of two
2-bit numbers A1 Ay and B;Bj and has both a carry input C; and carry
output C,. Design the entire circuit implementing each of the three outputs
with a two-level circuit plus inverters for the input variables. Begin the
design with the following equations for each of the two bits of the adder:

S;= A;B,C;+AB,C,+AB;C,+ABC,
*The logic diagram of the first stage of a 4-bit adder, as implemented in

integrated circuit type 74283, is shown in Figure 4-28. Verify that the circuit
implements a full adder.

*QObtain the 1s and 2s complements of the following unsigned binary numbers:
10011100, 10011101, 10101000, 00000000, and 10000000.

Perform the indicated subtraction with the following unsigned binary numbers
by taking the 2s complement of the subtrahend:

198 [CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

4-5.

4-6.

4-7.

4-8.

P

)
|/

- B, |
>OID—*)[}SO

Dot Do

0 FIGURE 4-28
Circuit for Problems 4-2, 4-27, and 4-41

(a) 11010 — 10001 (c) 1111110 — 1111110
(b) 11110 — 1110 (d) 101001 — 101

Repeat Problem 4-4, assuming the numbers are 2s complement signed
numbers. Use extension to equalize the length of the operands. Indicate
whether overflow occurs during the complement operations for any of the
given subtrahends. Indicate whether overflow occurs overall for any of the
given subtractions.

*Perform the arithmetic operations (+36) + (—24) and (—35) — (—24) in
binary using signed 2s complement representation for negative numbers.

The following binary numbers have a sign in the leftmost position and, if nega-
tive, are in 2s complement form. Perform the indicated arithmetic operations
and verify the answers.

(a) 100111 + 111001 (c) 110001 — 010010
(b) 001011 + 100110 (d) 101110 — 110111

Indicate whether overflow occurs for each computation.

+Design two versions of the combinational circuit whose input is a 4-bit
number and whose output is the 2s complement of the input number, for
each of the following cases using AND, OR, and NOT gates:

(a) The circuit is a simplified two-level circuit, plus inverters as needed for
the input variables.

(b) The circuit is made up of four identical two-input, two-output cells, one
for each bit. The cells are connected in cascade, with lines similar to a
carry between them. The value applied to the rightmost carry bit is 1.

4-9.

4-10.

4-11.

4-12.

4-13.

4-14.

4-15.

4-16.

Problems O 199

(c) Calculate the gate input costs for the designs in (a) and (b) and
determine which is the better design in terms of gate input cost.

Use contraction beginning with a 4-bit adder with carry out to design a 4-bit
increment-by-3 circuit with carry out that adds the binary value 0011 to its 4-
bit input. The function to be implemented is S = A + 0011.

Use contraction beginning with an 8-bit adder—subtractor without carry out
to design an 8-bit circuit without carry out that increments its input by
00000010 for input S = 0 and decrements its input by 00000010 for input S = 1.
Perform the design by designing the distinct 1-bit cells needed and indicating
the type of cell use in each of the eight bit positions.

Design a combinational circuit that compares two 4-bit unsigned numbers A
and B to see whether B is greater than A. The circuit has one output X, so
that X=1ifA<Band X =0if A=B.

+Repeat Problem 4-11 by using three-input, one-output circuits, one for
each of the four bits. The four circuits are connected together in cascade by
carry-like signals. One of the inputs to each cell is a carry input, and the
single output is a carry output.

Repeat Problem 4-11 by applying contraction to a 4-bit subtractor and using
the borrow out as X.

Design a combinational circuit that compares 4-bit unsigned numbers A and
B to see whether A = B or A > B. Use an iterative circuit as in Problem 4-12.

+Design a 5-bit signed-magnitude adder—subtractor. Divide the circuit for
design into (1) sign generation and add—subtract control logic, (2) an unsigned
number adder-subtractor using 2s complement of the minuend for
subtraction, and (3) selective 2s complement result correction logic.

*The adder-subtractor circuit of Figure 4-7 has the following values for
input select S and data inputs A and B:

S A B
(2) 0 o111 0111
(b) 1 0100 0111
(©) 1 1101 1010
(d) 0 0111 1010
(e) 1 0001 1000

Determine, in each case, the values of the outputs 53, S, S1, Sp, and Cy.

200 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

-- Combinational Circuit 1: Structural VHDL Description
library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf vhdl.func prims.all;
entity comb ckt_1 is
port (x1, x2, x3, x4 : in std_logic;
f : out std_logic);
end comb_ckt_1;

architecture structural 1 of comb_ckt_1 is
component NOT1
port (inl: in std_logic;
outl: out std_logic);
end component;
component AND2
port(inl, in2 : in std_logic;
outl: out std_logic);
end component;
component OR3
port (inl, in2, in3 : in std_logic;
outl: out std_logic);
end component;
signal nl, n2, n3, n4, n5, n6 : std_logic;
begin
g0: NOT1 port map (inl => x1, outl => nl);
gl: NOT1 port map (inl => n3, outl => n4);
g2: AND2 port map (inl => x2, in2 => nl,
outl => n2);
g3: AND2 port map (inl => x2, in2 => x3,
outl => n3);
gd4: AND2 port map (inl => x3, in2 => x4,
outl => nb);
g5: AND2 port map (inl => x1, in2 => n4,
outl => né6);
g6: OR3 port map (inl => n2, in2 => n5,
in3 => n6, outl => f);
end structural_1;

O FIGURE 4-29
VHDL for Problem 4-20

All HDL files for circuits referred to in the remaining problems are available in
ASCII form for simulation and editing on the Companion Website for the text. A
VHDL or Verilog compiler/simulator is necessary for the problems or portions of
problems requesting simulation. Descriptions can still be written, however, for
many problems without using compilation or simulation.

4-17.

4-18.

4-19.

4-20.

4-21.

4-22.

4-23.

Problems [201

’ | >—>
B
, D

0 FIGURE 4-30
Circuit for Problems 4-21, 4-24, 4-36, and 4-38

B

Compile and simulate the 2-to-4-line decoder with enable in Figure 4-12 for
sequence 000, 001, 010, 011, 100, 101, 110, 111 on E_n, A0, Al. Verify that
the circuit functions as a decoder. You will need to compile library
lcdf_vhdl. func_prims first, since it is used in the simulation.

Rewrite the VHDL given in Figure 4-12 for the 2-to-4-line decoder using (1)
std_logic_vector notation instead of std_logic notation for A and D_n and (2)
implicit specification of the component input and output names by their
order in package func_prims in library lcdf_vhdl given in the
Companion Website. See Figure 4-13 and accompanying text for these
concepts. Compile and simulate the resulting file as in Problem 4-17.

Compile and simulate the 4-to-1-line multiplexer in Figure 4-13 for the
sequence of all 16 combinations of 00, 10,01, 11 on S and 1000, 0100,0010, 0001
on D. You will need to compile library 1cdf_vhdl. func_prims first, since it
is used in the simulation. Verify that the circuit functions as a multiplexer.

*Find a logic diagram that corresponds to the VHDL structural description
in Figure 4-29. Note that complemented inputs are not available.

Using Figure 4-13 as a framework, write a structural VHDL description of
the circuit in Figure 4-30. Replace X, Y, and z with X (0:2). Consult package
func_prims in library 1cdf_vhdl for information on the various gate
components. Compile func_prims and your VHDL, and simulate your
VHDL for all eight possible input combinations to verify your description’s
correctness.

Using Figure 4-12 as a framework, write a structural VHDL description of
the circuit in Figure 4-31. Consult package func_prims in library
lcdf_vhdl for information on the various gate components. Compile
func_prims and your VHDL, and simulate your VHDL for all 16 possible
input combinations to verify your description’s correctness.

Find a logic diagram representing minimum two-level logic needed to
implement the VHDL dataflow description in Figure 4-32. Note that
complemented inputs are available.

202

4-24.

4-25.

4-26.

4-27.

[0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

D E)X) >: ‘:::)___
1 —T > L [)

O FIGURE 4-31
Circuit for Problems 4-22 and 4-35

*Write a dataflow VHDL description for the circuit in Figure 4-30 by using
the Boolean equation for the output F.

+Write a dataflow VHDL description for the priority encoder in Figure 3-24
using the “when-else” dataflow concept from Figure 4-15. Compile and
simulate your description with a set of input vectors that are a good test for
the priority function it performs.

Write a dataflow VHDL description for an 8-to-1-line multiplexer using the
“with-select” dataflow concept from Figure 4-16. Compile and simulate your
description with a set of input vectors that are a good test for the selection
function it performs.

Using Figure 4-13 as a guide, write a structural VHDL description for the
full-adder circuit in Figure 4-28. Compile and simulate your description.
Apply all eight input combinations to check the correction function of your
description.

-— Combinational Circuit 2: Dataflow VHDL Description
-library ieee;
use ieee.std logic_1164.all;
entity comb_ckt_2 is
port(a, b, ¢, d, a_n, bn, c_.n, d n: in std_logic;

f, g : out std _logic);

-— an, bn, ... are complements of a, b, ... , respectively.
end comb_ckt_2;

architecture dataflow_1 of comb_ckt_2 is
begin
f <=b and (a or (an and c)) or (bn and c and d_n);
g <=band (cor (a_n and c n) or (c_n and d_n));
end dataflow_1;

0 FIGURE 4-32
VHDL for Problem 4-23

Www.Ebook777.com

http://www.ebook777.com

4-28.

4-29.

4-30.

4-31.

4-32.

4-33.

4-34.

4-35.

4-36.

4-37.

Problems O 203

Compile and simulate the 4-bit adder in Figure 4-17 and 4-18. Apply
combinations that check out the rightmost full adder for all eight input
combinations; this also serves as a check for the other full adders. Also,
apply combinations that check the carry chain connections between all full
adders by demonstrating that a 0 and a 1 can be propagated from CO0 to C4.

*Compile and simulate the behavioral description of the 4-bit adder in
Figure 4-19. Assuming a ripple carry implementation, apply combinations
that check out the rightmost full adder for all eight input combinations. Also
apply combinations that check the carry chain connections between all full
adders by demonstrating that a 0 and a 1 can be propagated from CO0 to C4.

+Using Figure 4-19 as a guide and a “when-else” on S from Figure 4-15,
write a high-level behavior VHDL description for the adder—subtractor in
Figure 4-8 (see Figure 4-7 for details). Compile and simulate your
description. Assuming a ripple carry implementation, apply combinations
that check out one of the full adder—subtractor stages for all 16 possible
input combinations. Also, apply combinations to check the carry chain
connections in between the full adders by demonstrating that a 0 and a 1 can
be propagated from C0 to C4. Check the overflow signals as well.

*Compile and simulate the 2-to-4-line decoder Verilog description in
Figure 4-20 for sequence 000, 001, 010, 011, 100, 101, 110, 111 on E, A0, Al.
Verify that the circuit functions as a decoder.

Rewrite the Verilog description given in Figure 4-20 for the 2-to-4-line
decoder using vector notation for inputs, outputs, and wires. See Figure 4-21
and accompanying text for these concepts. Compile and simulate the
resulting file as in Problem 4-31.

Compile and simulate the 4-to-1-line multiplexer in Figure 4-21 for the
sequence of all 16 combinations of 00, 10, 01, 11 on S and 1000, 0100, 0010,
0001 on D. Verify that the circuit functions as a multiplexer.

*Find a logic diagram that corresponds to the Verilog structural description
in Figure 4-33. Note that complemented inputs are not available.

Using Figure 4-20 as a framework, write a structural Verilog description of
the circuit in Figure 4-31. Compile and simulate your Verilog for all 16
possible input combinations to verify your description’s correctness.

Using Figure 4-33 as a framework, write a structural Verilog description of
the circuit in Figure 4-30. Replace X, Y, and z with input [2:0] X. Compile
and simulate your Verilog for all eight possible input combinations to verify
your description’s correctness.

Find a logic diagram representing minimum 2-level logic needed to
implement the Verilog dataflow description in Figure 4-34. Note that
complemented inputs are available.

204 [0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

// Combinational Circuit 1: Structural Verilog Description
module comb_ckt_1(x1, x2, x3, x4,f);

input x1, x2, x3, x4;

output f£;

wire nl, n2, n3, n4, n5, né6;

not
go(nl, x1),
gl(n4d, n3);
and

g2(n2, x2, nl),
g3(n3, x2, x3),
gd (n5, x3, x4),);
g5(n6, x1, n4d),);
or
g6(f, n2, n5, ne6),
endmodule

OO0 FIGURE 4-33
Verilog for Problems 4-34 and 4-36

4-38. *Write a dataflow Verilog description for the circuit in Figure 4-30 by using
the Boolean equation for the output F and using Figure 4-23 as a model.

4-39. By using the conditional dataflow concept from Figure 4-24, write a Verilog
dataflow description for an 8-to-1-line multiplexer. Compile and simulate
your description with a set of input vectors that are a good test for the
selection function it performs.

4-40. +Write a dataflow description for the priority encoder in Figure 3-24 using
the binary decision dataflow concept from Figure 4-25. Compile and
simulate your description with a set of input vectors that are a good test for
the priority function it performs.

// Combinational Circuit 2: Dataflow Verilog Description
module comb ckt_1 (a, b, ¢, d, a_n, bn, c.n, dn, £, g);
// a_n, bn, ... are complements of a, b, ... , respectively.
input a, b, ¢, d, a_n, bn, cn, dn;
output £, g;

assign f =b & (a |(an&c)) | (bn& c & d_n);
assign g =b & (c | (an & cn) | (cn & dn));
endmodule

O FIGURE 4-34
Verilog for Problem 4-37

4-41.

4-42.

4-44.

Problems [205

Using Figure 4-21 as a guide, write a structural Verilog description for the
full-adder circuit in Figure 4-28. Compile and simulate your description.
Apply all eight input combinations to check the correction function of your
description.

Compile and simulate the 4-bit adder in Figure 4-26. Apply combinations
that check out the rightmost full adder for all eight input combinations; this
also serves as a check for the other full adders. Also, apply combinations that
check the carry chain connections between all full adders by demonstrating
that a 0 and a 1 can be propagated from CO to C4.

. *Compile and simulate the behavioral description of the 4-bit adder in

Figure 4-27. Assuming a ripple carry implementation, apply all eight input
combinations to check out the rightmost full adder. Also, apply combinations
to check the carry chain connections between all full adders by demonstrat-
ing that a 0 and a 1 can be propagated from CO to CA4.

Using Figure 4-27 as a guide and a “binary decision” on S from Figure 4-25,
write a high-level behavior Verilog description for the adder—subtractor in
Figure 4-7. Compile and simulate your description. Assuming a ripple carry
implementation, apply input combinations to your design that will (1) cause
all 16 possible input combinations to be applied to the full adder-subtractor
stage for bit 2, and (2) simultaneously cause the carry output of bit 2 to
appear at one of your design's outputs. Also, apply combinations that check
the carry chain connections between all full adders by demonstrating thata 0
and a 1 can be propagated from CO0 to C4.

This page intentionally left blank

SEQUENTIAL
CIRCUITS

capable of interesting operations, such as addition and subtraction, the

performance of useful sequences of operations using combinational logic
alone requires cascading many structures together. The hardware to do this is very
costly and inflexible. In order to perform useful or flexible sequences of operations,
we need to be able to construct circuits that can store information between the
operations. Such circuits are called sequential circuits. This chapter begins with an
introduction to sequential circuits, which is followed by a study of the basic
elements for storing binary information, called latches and flip-flops. We distinguish
flip-flops from latches and study various types of each. We then analyze sequential
circuits consisting of both flip-flops and combinational logic. State tables and state
diagrams provide a means for describing the behavior of sequential circuits.
Subsequent sections of the chapter develop the techniques for designing sequential
circuits and verifying their correctness. The state diagram is modified into a more
pragmatic model for use in Chapter 7 and beyond, which, for lack of a better term,
we call a state-machine diagram. In the last two sections, we provide VHDL and
Verilog hardware description language representations for storage elements and for
the type of sequential circuits in this chapter.

To this point, we have studied only combinational logic. Although such logic is

Latches, flip-flops, and sequential circuits are fundamental components in the design
of almost all digital logic. In the generic computer given at the beginning of Chapter 1,
latches and flip-flops are widespread in the design. The exception is memory circuits,
since large portions of memory are designed as electronic circuits rather than as logic
circuits. Nevertheless, due to the wide use of logic-based storage, this chapter
contains fundamental material for any in-depth understanding of computers and
digital systems and how they are designed.

o 207

208 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Inputs —> > Outputs
Coml?magional Next
- circui T N Storage Present
g elements state
O FIGURE 5-1

Block Diagram of a Sequential Circuit

5-1 SEQUENTIAL CIRCUIT DEFINITIONS

The digital circuits considered thus far have been combinational. Although every
digital system is likely to include a combinational circuit, most systems encoun-
tered in practice also include storage elements, requiring that the systems be
described as sequential circuits.

Figure 5-1 a is block diagram of a sequential circuit, formed by interconnecting
a combinational circuit and storage elements. The storage elements are circuits that
are capable of storing binary information. The binary information stored in these ele-
ments at any given time defines the state of the sequential circuit at that time. The
sequential circuit receives binary information from its environment via the inputs.
These inputs, together with the present state of the storage elements, determine the
binary value of the outputs. They also determine the values used to specify the next
state of the storage elements. The block diagram demonstrates that the outputs in a
sequential circuit are a function not only of the inputs, but also of the present state of
the storage elements. The next state of the storage elements is also a function of the
inputs and the present state. Thus, a sequential circuit is specified by a time sequence
of inputs, internal states, and outputs.

There are two main types of sequential circuits, and their classification depends
on the times at which their inputs are observed and their internal state changes. The
behavior of a synchronous sequential circuit can be defined from the knowledge of its
signals at discrete instants of time. The behavior of an asynchronous sequential circuit
depends upon the inputs at any instant of time and the order in continuous time in
which the inputs change.

Information is stored in digital systems in many ways, including the use of
logic circuits. Figure 5-2(a) shows a buffer. This buffer has a gate delay ¢5. Since
information present at the buffer input at time ¢ appears at the buffer output at
time ¢ + tg, the information has effectively been stored for time #;. But, in general,
we wish to store information for an indefinite time that is typically much longer
than the time delay of one or even many gates. This stored value is to be changed
at arbitrary times based on the inputs applied to the circuit and the duration of
storage of a value should be longer than the specific time delay of a gate.

Suppose that the output of the buffer in Figure 5-2(a) is connected to its
input as shown in Figures 5-2(b) and (c). Suppose further that the value on the
input to the buffer in part (b) has been 0 for at least time ¢g, the delay of the
buffer. Then the output produced by the buffer will be 0 at time ¢ + ¢g. This

5-1 / Sequential Circuit Definitions [209

0 0
N o Lo
A e
® @
1 NG 1
Lt
©
O FIGURE 5-2

Logic Structures for Storing Information

output is applied to the input so that the output will also be 0 at time ¢ + 2¢g.
This relationship between input and output holds for all ¢, so the 0 will be
stored indefinitely. The same argument can be made for storing a 1 in the circuit
in Figure 5-2(c).

The example of the buffer illustrates that storage can be constructed from
logic with delay connected in a closed loop. Any loop that produces such storage
must also have a property possessed by the buffer, namely, that there must be no
inversion of the signal around the loop. A buffer is usually implemented by using
two inverters, as shown in Figure 5-2(d). The signal is inverted twice, that is,

X=X

giving no net inversion of the signal around the loop. In fact, this example illus-
trates one of the most popular methods of implementing storage in computer
memories. (See Chapter 8.) However, although the circuits in Figures 5-2(b)
through (d) are able to store information, there is no way for the information to be
changed. If the inverters are replaced with NOR or NAND gates, the information
can be changed. Asynchronous storage circuits called latches are made in this man-
ner and are discussed in the next section.

In general, more complex asynchronous circuits are difficult to design, since
their behavior is highly dependent on the delays of the gates and on the timing of
the input changes. Thus, circuits that fit the synchronous model are the choice of
most designers. Nevertheless, some asynchronous design is necessary. A very
important case is the use of asynchronous latches as blocks to build storage ele-
ments, called flip-flops, that store information in synchronous circuits.

A synchronous sequential circuit employs signals that affect the storage ele-
ments only at discrete instants of time. Synchronization is achieved by a timing
device called a clock generator which produces a periodic train of clock pulses. The
pulses are distributed throughout the system in such a way that synchronous storage
elements are affected only in some specified relationship to every pulse. In practice,
the clock pulses are applied with other signals that specify the required change in the
storage elements. The outputs of storage elements can change their value only in the
presence of clock pulses. Synchronous sequential circuits that use clock pulses as

210 [CHAPTER 5/ SEQUENTIAL CIRCUITS

Inputs —> > Outputs

Combinational
circuit N

L >

Clock pulses 4,—)

(a) Block diagram

Flip-flops

-

O FIGURE 5-3
Synchronous Clocked Sequential Circuit

(b) Timing diagram of clock pulses

inputs to storage elements are called clocked sequential circuits. These are the type of
circuit most frequently encountered in practice, since they operate correctly in spite
of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits are
called flip-flops. For simplicity, assume circuits with a single clock signal. A flip-flop is a
binary storage device capable of storing one bit of information and having timing char-
acteristics to be defined in Section 6-3. The block diagram of a synchronous clocked
sequential circuit is shown in Figure 5-3. The flip-flops receive their inputs from the
combinational circuit and also from a clock signal with pulses that occur at fixed inter-
vals of time, as shown in the timing diagram. The flip-flops can change state only in
response to a clock pulse. For synchronous operation, when a clock pulse is absent, the
flip-flop outputs cannot change even if the outputs of the combinational circuit driving
their inputs change in value. Thus, the feedback loops shown in the figure between the
combinational logic and the flip-flops are broken. As a result, a transition from one
state to the other occurs only at fixed time intervals dictated by the clock pulses, giving
synchronous operation. The sequential circuit outputs are shown as outputs of the
combinational circuit. This is valid even when some sequential circuit outputs are actu-
ally the flip-flop outputs. In this case, the combinational circuit part between the flip-
flop outputs and the sequential circuit outputs consists of connections only.

A flip-flop has one or two outputs, one for the normal value of the bit stored
and an optional one for the complemented value of the bit stored. Binary informa-
tion can enter a flip-flop in a variety of ways, a fact that gives rise to different types
of flip-flops. Our focus will be on the most prevalent type used today, the D flip-
flop. In Section 5-6, other flip-flop types will be considered. In preparation for
studying flip-flops and their operation, necessary groundwork is presented in the
next section on latches, from which the flip-flops are constructed.

5-2 LATCHES

A storage element can maintain a binary state indefinitely (as long as power is
delivered to the circuit), until directed by an input signal to switch states. The

5-2 / Latches O 211

major differences among the various types of latches and flip-flops are the number
of inputs they possess and the manner in which the inputs affect the binary state.
The most basic storage elements are latches, from which flip-flops are usually con-
structed. Although latches are most often used within flip-flops, they can also be
used with more complex clocking methods to implement sequential circuits
directly. The design of such circuits is, however, beyond the scope of the basic treat-
ment given here. In this section, the focus is on latches as basic primitives for con-
structing storage elements.

SR and SR Latches

The SR latch is a circuit constructed from two cross-coupled NOR gates. It is
derived from the single-loop storage element in Figure 5-2(d) by simply replacing
the inverters with NOR gates, as shown in Figure 5-4(a). This replacement allows
the stored value in the latch to be changed. The latch has two inputs, labeled S for
set and R for reset, and two useful states. When output Q = 1 and Q = 0, the latch
is said to be in the set state. When Q = 0 and Q = 1,it is in the reset state. Outputs
QO and Q are normally the complements of each other. When both inputs are equal
to 1 at the same time, an undefined state with both outputs equal to 0 occurs.
Under normal conditions, both inputs of the latch remain at 0 unless the state is
to be changed. The application of a 1 to the S input causes the latch to go to the set
(1) state. The S input must go back to 0 before R is changed to 1 to avoid occurrence
of the undefined state. As shown in the function table in Figure 5-4(b), two input
conditions cause the circuit to be in the set state. The initial conditionis S = 1, R = 0,
to bring the circuit to the set state. Applying a 0 to S with R = 0 leaves the circuit in
the same state. After both inputs return to 0, it is possible to enter the reset state by
applying a 1 to the R input. The 1 can then be removed from R, and the circuit
remains in the reset state. Thus, when both inputs are equal to 0, the latch can be in
either the set or the reset state, depending on which input was most recently a 1.

If a 1 is applied to both the inputs of the latch, both outputs go to 0. This
produces an undefined state, because it violates the requirement that the outputs
be the complements of each other. It also results in an indeterminate or unpredict-
able next state when both inputs return to 0 simultaneously. In normal operation,

SR|[QQ
R (Reset) 0
10 1o Set stat
0 g Setstate
01 0
Reset state
00 /|0
Q 1 1|0 0 Undefined
S (Set) ndefine
(a) Logic diagram (b) Function table

O FIGURE 54
SR Latch with NOR Gates

212 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

SR Latch _ - - -
T | L || L
rR— L S | N SR

Q— | | i
Q_bj-—' T | | | T | |—“
srnnnnnnbrommnedberooommdioeoed i ieeemlaonm
20 ns 40 ns 60 ns 80 ns
O FIGURE 5-5

Logic Simulation of SR Latch Behavior

these problems are avoided by making sure that 1s are not applied to both inputs
simultaneously.

The behavior of the SR latch described in the preceding paragraph is illus-
trated by the ModelSim® logic simulator waveforms shown in Figure 5-5. Initially,
the inputs and the state of the latch are unknown, as indicated by a logic level half-
way between 0 and 1. When R becomes 1 with § at 0, the latch is reset, with Q first
becoming 0 and, in response, Q_b (which represents Q) becoming 1. Next, when R
becomes 0, the latch remains reset, storing the 0 value present on Q. When S
becomes 1 with R at 0, the latch is set, with Q_b going to O first and, in response, Q
going to 1 next. The delays in the changes of Q and Q_b after an input changes are
directly related to the delays of the two NOR gates used in the latch implementa-
tion. When S returns to 0, the latch remains set, storing the 1 value present on Q.
When R becomes 1 with S equal to 0, the latch is reset, with Q changing to 0 and
Q_b responding by changing to 1. The latch remains reset when R returns to 0.
When S and R both become 1, both Q and Q_b become 0. When S and R simulta-
neously return to 0, both Q and Q_b take on unknown values. This form of indeter-
minate state behavior for the (S,R) sequence of inputs (1, 1), (0, 0) results from
assuming simultaneous input changes and equal gate delays. The actual indetermi-
nate behavior that occurs depends on circuit delays and slight differences in the
times at which S and R change in the actual circuit. Regardless of the simulation
results, these indeterminate behaviors are viewed as undesirable, and the input
combination (1, 1) is avoided. In general, the latch state changes only in response
to input changes and remains unchanged otherwise.

The SR latch with two cross-coupled NAND gates is shown in Figure 5-6. It
operates with both inputs normally at 1, unless the state of the latch has to be
changed. The application of a 0 to the S input causes output Q to go to 1, putting the
latch in the set state. When the S input goes back to 1, the circuit remains in the set
state. With both inputs at 1, the state of the latch is changed by placing a 0 on the R
input. This causes the circuit to go to the reset state and stay there, even after both
inputs return to 1. The condition that is undefined for this NAND latch is when both
inputs are equal to 0 at the same time, an input combination that should be avoided.

Comparing the NAND latch with the NOR latch, note that the input signals
for the NAND require the complement of those values used for the NOR. Because

Www.Ebook777.com

http://www.ebook777.com

5-2 / Latches [213

3 SR|QQ
S (Set)
° ! Lo Set state
11[10 2
0 Reset state
11 0
R (Reset) Q 00| 1 1 Undefined
(a) Logic diagram (b) Function table
O FIGURE 5-6

SR Latch with NAND Gates

the NAND latch requires a 0 signal to change its state, it is referred to as an SR
latch. The bar above the letters designates the fact that the inputs must be in their
complement form in order to act upon the circuit state.

The operation of the basic NOR and NAND latches can be modified by pro-
viding an additional control input that determines when the state of the latch can be
changed. An SR latch with a control input is shown in Figure 5-7. It consists of the
basic NAND latch and two additional NAND gates. The control input C acts as an
enable signal for the other two inputs. The output of the NAND gates stays at the
logic-1 level as long as the control input remains at 0. This is the quiescent condition
for the S R latch composed of two NAND gates. When the control input goes to 1,
information from the S and R inputs is allowed to affect the S R latch. The set state
is reached with § = 1, R = 0, and C = 1. To change to the reset state, the inputs
must be S = 0, R = 1, and C = 1. In either case, when C returns to 0, the circuit
remains in its current state. Control input C = 0 disables the circuit so that the state
of the output does not change, regardless of the values of S and R. Moreover, when
C =1 and both the S and R inputs are equal to 0, the state of the circuit does not
change. These conditions are listed in the function table accompanying the diagram.

An undefined state occurs when all three inputs are equal to 1. This condition
places Os on both inputs of the basic S, R latch, giving an undefined state. When the

. C S R | Nextstate of Q
}— Q 0 X X | Nochange
‘ 1 0 0 | Nochange
c—1 1 0 1 | Q=0;Resetstate
1 1 0 | Q=1;Setstate
— 1 1 1 | Undefined
D :
R _—
(a) Logic diagram (b) Function table

O FIGURE 5-7
SR Latch with Control Input

214 [CHAPTER 5 / SEQUENTIAL CIRCUITS

‘ Q

Ql

pr—

(a) Logic diagram

C Next state of Q

Q = 0; Reset state

D
X | No change
0
1 Q = 1; Set state

)

(b) Function table

O FIGURE 5-8
D Latch

control input goes back to 0, one cannot conclusively determine the next state, since
the S R latch sees inputs (0, 0) followed by (1, 1). The SR latch with control input is
an important circuit, because other latches and flip-flops are constructed from it.
Sometimes the SR latch with control input is referred to as an SR (or RS) flip-flop:
however, according to our terminology, it does not qualify as a flip-flop, since the
circuit does not fulfill the flip-lop requirements presented in the next section.

D Latch

One way to eliminate the undesirable undefined state in the SR latch is to ensure
that inputs S and R are never equal to 1 at the same time. This is done in the D
latch, shown in Figure 5-8. This latch has only two inputs: D (data) and C (control).
The complement of the D input goes directly to the S input, and D is applied to
the R input. As long as the control input is 0, the S R latch has both inputs at the
1 level, and the circuit cannot change state regardless of the value of D. The D
input is sampled when C = 1. If D is 1, the Q output goes to 1, placing the circuit in
the set state. If D is 0, output Q goes to 0, placing the circuit in the reset state.

The D latch receives its designation from its ability to hold data in its internal
storage. The binary information present at the data input of the D latch is trans-
ferred to the Q output when the control input is enabled (1). The output follows
changes in the data input, as long as the control input is enabled. When the control
input is disabled (0), the binary information that was present at the data input at
the time the transition in C occurred is retained at the Q output until the control
input C is enabled again.

5-3 / Flip-Flops O 215

5-3 FLIP-FLOPS

A change in value on the control input allows the state of a latch in a flip-flop to
switch. This change is called a trigger, and it enables, or triggers, the flip-flop. The D
latch with clock pulses on its control input is triggered every time a pulse to the
logic-1 level occurs. As long as the pulse remains at the active (1) level, any changes
in the data input will change the state of the latch. In this sense, the latch is transpar-
ent, since its input value can be seen from the outputs while the control input is 1.

As the block diagram of Figure 5-3 shows, a sequential circuit has a feedback
path from the outputs of the flip-flops to the combination circuit. As a conse-
quence, the data inputs of the flip-flops are derived in part from the outputs of the
same and other flip-flops. When latches are used for the storage elements, a serious
difficulty arises. The state transitions of the latches start as soon as the clock pulse
changes to the logic-1 level. The new state of a latch may appear at its output while
the pulse is still active. This output is connected to the inputs of some of the latches
through a combinational circuit. If the inputs applied to the latches change while
the clock pulse is still in the logic-1 level, the latches will respond to new state val-
ues of other latches instead of the original state values, and a succession of changes
of state instead of a single one may occur. The result is an unpredictable situation,
since the state may keep changing and continue to change until the clock returns to
0. The final state depends on how long the clock pulse stays at the logic-1 level.
Because of this unreliable operation, the output of a latch cannot be applied
directly or through combinational logic to the input of the same or another latch
when all the latches are triggered by a single clock signal.

Flip-flop circuits are constructed in such a way as to make them operate
properly when they are part of a sequential circuit that employs a single clock.
Note that the problem with the latch is that it is transparent: As soon as an input
changes, shortly thereafter the corresponding output changes to match it. This
transparency is what allows a change on a latch output to produce additional
changes at other latch outputs while the clock pulse is at logic 1. The key to the
proper operation of flip-flops is to prevent them from being transparent. In a flip-
flop, before an output can change, the path from its inputs to its outputs is broken.
So aflip-flop cannot “see” the change of its output or of the outputs of other, similar
flip-flops at its input during the same clock pulse. Thus, the new state of a flip-flop
depends only on the immediately preceding state, and the flip-flops do not go
through multiple changes of state.

There are two ways that latches are combined to form a flip-flop. One way
is to combine two latches such that (1) the inputs presented to the flip-flop when
a clock pulse is present control its state and (2) the state of the flip-flop changes
only when a clock pulse is not present. Such a circuit is called a master—slave flip-
flop. Another way is to produce a flip-flop that triggers only during a signal tran-
sition from 0 to 1 (or from 1 to 0) on the clock and that is disabled at all other
times, including for the duration of the clock pulse. Such a circuit is said to be an
edge-triggered flip-flop. Next, the implementations of these two flip-flop trigger-
ing approaches are presented. It is necessary to consider the SR flip-flop for the

216 [CHAPTER 5 / SEQUENTIAL CIRCUITS

o

O FIGURE 5-9
SR Master—Slave Flip-Flop
master—slave triggering approach, since a properly constructed D flip-flop has the
same behavior for both triggering types.

Master—Slave Flip-Flops

The master-slave SR flip-flop, consisting of two latches and an inverter, is shown in
Figure 5-9. The symbol with S, C, and R on it is for the SR latch with a control
input (Figure 5-7), referred to here as a clocked SR latch. The left clocked SR latch
in Figure 5-9 is called the master, the right the slave. When the clock input C is 0,
the output of the inverter is 1. The slave latch is then enabled, and its output Q is
equal to the master output Y. The master latch is disabled, because C is 0. When a
logic-1 clock pulse is applied, the values on S and R control the value stored in the
master latch Y. The slave, however, is disabled as long as the pulse remains at the 1
level, because its C input is equal to 0. Any changes in the external S and R inputs
change the master output Y, but cannot affect the slave output Q. When the pulse
returns to 0, the master is disabled and is isolated from the S and R inputs. At the
same time, the slave is enabled, and the current value of Y is transferred to the out-
put of the flip-flop at Q.

A ModelSim logic simulation illustrating master-slave flip-flop SR behavior is
shown in Figure 5-10. Initially, all values are unknown including the clock C. When
S and R both go to 0, and the clock goes from 1 to 0, the output of the master, Y,
and of the slave, O, both remain unknown, since the prior value is effectively being
stored. S is at 1 with R at 0 to set the flip-flop in response to the next clock pulse.
When C becomes 1, Y sets to 1. When C becomes 0, the slave copies the value of Y,
setting Q to 1. After S returns to 0, Y and Q remain unchanged, storing the 1 value
through the next clock period. Next, R becomes 1. After the clock-pulse transition
from 0 to 1, the master latch is reset, with Y changing to 0. The slave latch is not
affected, because its C input is 0. Since the master is an internal circuit, its change of
state is not presented at output Q. Even if the inputs S and R change during this
interval and the state of the master latch responds by changing, the output of the
flip-flop remains in its previous state. When the pulse returns to 0, the information
from the master is allowed to pass through to the slave. For the simulation exam-
ple, the value Y = 0 is copied to the slave latch, making the external output Q = 0.

5-3 / Flip-Flops 0O 217

c— |
s— [T L
R—| |_|
Y | |_| L1 1

0 i]

T T T T T T T O T O T T T T T A O A R A N A I

0 50 ns 100 ns 150 ns 200 ns

O FIGURE 5-10
Logic Simulation of an SR Master—Slave Flip-Flop

Note that these changes are delayed from the pulse changes by gate delays. Also,
the external inputs S and R can change anytime after the clock pulse goes through
its negative transition. This is because, as the C input reaches 0, the master is dis-
abled, and S and R have no effect until the next clock pulse.

The next sequence of signal changes illustrates the “1s catching” behavior of
the SR master—slave flip-flop. A narrow pulse to 1 occurs on S at the beginning of
a clock pulse. The master latch responds to the 1 on S by changing Y to 1. Then §
goes to 0 and a narrow 1 pulse occurs on R. The master latch responds to the 1 on
R by changing Y back to 0. Since there are no further 1 values on S or R, the mas-
ter continues to store 0, which is copied to the slave latch, changing QO to 0, in
response to the clock’s change to 0. Thus, the master latch “caught” both the 1 on
S and the 1 on R. Since the 1 on R was caught last, the output Q remained at 0. In
general, the “correct” response is assumed to be the response to the input values
when the clock goes to 0. So, in this case, the response happens to be correct,
although more by accident with the changing values in the master.

For the next clock pulse, a narrow 1 pulse occurs on S, setting the master
output Y to 1. The clock then goes to 0 and the value 1 is transferred to the slave
latch and appears on Q. In this case, the correct value on Q should be 0, since Q
was 0 before the clock pulse and both S and R are 0 just before the clock goes to
0. Since Q equals 1, due to “1s catching” on S, the flip-flop is in the wrong state.

For the final clock pulse of interest, both S and R become 1 before the clock
goes to 0. This applies the invalid combination to the master latch, making both Y
and Y equal to 1. When the clock changes to 0, the SR latch within the master
sees its inputs change from (0, 0) to (1, 1), causing the master latch to enter an
unknown state, which is immediately transferred to the inputs of the slave,
which also enters an unknown state. This demonstrates that S =1, R =1 is an
invalid input combination for the SR master—slave flip-flop.

Now consider a sequential system containing many master-slave flip-flops,
with the outputs of some flip-flops going to inputs of other flip-flops. Assume that
the clock pulses to all of the flip-flops are synchronized and occur at the same
time. At the beginning of each clock pulse, some of the masters change states, but

218 [CHAPTER 5 / SEQUENTIAL CIRCUITS

all the slaves remain in their previous states. This means that the flip-flop slaves
are still in their original states, while the flip-flop masters have changed to the new
states. After the clock pulse returns to 0, some of the flip-flop slaves change state,
but none of the new states have an effect on any of the masters until the next
pulse. Thus, the states of flip-flops in a synchronous system can change simulta-
neously for the same clock pulse, even though outputs of flip-flops are connected
to inputs of the same or other flip-flops. This is possible because the inputs affect
the state of the flip-flop only while the clock pulse is 1, and the new state appears
at the outputs only after the clock pulse has returned to 0, ensuring that the flip-
flops are not transparent.

For reliable sequential circuit operation, all signals must propagate from the
outputs of flip-flops, through the combinational circuit, and back to inputs of mas-
ter—slave flip-flops, while the clock pulse remains at the logic-0 level. Any changes
that occur at the inputs of flip-flops after the clock pulse goes to the logic-1 level,
whether intentional or not, affect the flip-flop state and may result in the storage of
incorrect values. Suppose that the delay in the combinational circuit is such that S is
still changing after the clock pulse has gone to the logic-1 level. Suppose also that, as
a consequence, the master is set to 1 by the presence of S = 1. When S finally stops
changing, it is at 0, indicating that the state of the flip-flop was not to be changed
from 0. Thus, the 1 value in the master, which will be transferred to the slave, is in
error. There are two consequences of this behavior. First, the master—slave flip-flop is
also referred to as a pulse-triggered flip-flop, since it can respond to input values that
cause a change in state and occur anytime during its clock pulse. Second, the circuit
must be designed so that combinational circuit delays are short enough to prevent S
and R from changing during the clock pulse.

A master-slave D flip-flop can be constructed from the SR master—slave flip-
flop by simply replacing the master SR latch with a master D latch. The resulting
circuit is shown in Figure 5-11. The resulting circuit changes its value on the nega-
tive edge of the clock pulse just as the master-slave SR flip-flop does. However,
the D type of flip-flop does not demonstrate the usual pulse-triggered behavior.
Instead it demonstrates edge-triggered behavior—in this case, negative edge-trig-
gered behavior. Thus, a master—slave D flip-flop constructed as shown is also an
edge-triggered flip-flop.

Edge-Triggered Flip-Flop

An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers
only during a transition of the clock signal. Some edge-triggered flip-flops trigger on
the positive edge (0-to-1 transition), whereas others trigger on the negative edge (1-to-
0 transition), as illustrated in the previous subsection. The logic diagram of a D-type
positive-edge-triggered flip-flop to be analyzed in detail here appears in Figure 5-12.
This flip-flop takes exactly the form of a master-slave flip-flop, with the master a D
latch and the slave an SR latch or a D latch. Also, an inverter is added to the clock
input. Because the master latch is a D latch, the flip-flop exhibits edge-triggered
rather than master—slave or pulse-triggered behavior. For the clock input equal to

5-3 / Flip-Flops [219

o

O FIGURE 5-11
Negative-Edge-Triggered D Flip-Flop

0, the master latch is enabled and transparent and follows the D input value. The slave
latch is disabled and holds the state of the flip-flop fixed. When the positive edge
occurs, the clock input changes to 1. This disables the master latch so that its value is
fixed and enables the slave latch so that it copies the state of the master latch. The state
of the master latch to be copied is the state that is present at the positive edge of the
clock.Thus, the behavior appears to be edge triggered. With the clock input equal to 1,
the master latch is disabled and cannot change, so the state of both the master and the
slave remain unchanged. Finally, when the clock input changes from 1 to 0, the master
is enabled and begins following the D value. But during the 1-to-0 transition, the slave
is disabled before any change in the master can reach it. Thus, the value stored in the
slave remains unchanged during this transition. An alternative implementation is given
in Problem 5-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip-flops are
shown in Figure 5-13. A flip-flop or latch is designated by a rectangular block with
inputs on the left and outputs on the right. One output designates the normal state
of the flip-flop, and the other, with a bubble, designates the complement output.
The graphics symbol for the SR latch or SR flip-flop has inputs S and R indicated

D D S Q
C
C {>c C O R O——Q

o

O FIGURE 5-12
Positive-Edge-Triggered D Flip-Flop

220 [CHAPTER 5/ SEQUENTIAL CIRCUITS

—S — —g8S — —D — —D —
—R 0 —(JR o —C o0 —gcC 0
SR SR D with 1 Control D with 0 Control

(a) Latches

- I —s -p =—p -

—R 1o —R 1P —c 1P —dc “1p

I 1 Triggered SR [Triggered SR | L Triggered D L[Triggered D
(b) Master-slave flip-flops

—>cC D —d>C 0

I Triggered D "L Triggered D
(c) Edge-triggered flip-flops

O FIGURE 5-13
Standard Graphics Symbols for Latches and Flip-Flops

inside the block. In the case of the SR latch, bubbles are added to the inputs to
indicate that setting and resetting occur for 0-level inputs. The graphics symbol for
the D latch or D flip-flop has inputs D and C indicated inside the block.

Below each symbol, a descriptive title, which is not part of the symbol, is
given. In the titles, I L denotes a positive pulse, LI a negative pulse, I a posi-
tive edge, and L a negative edge.

Triggering by the 0 level rather than the 1 level is denoted on the latch sym-
bols by adding a bubble at the triggering input. The master-slave is a pulse-trig-
gered flip-flop and is indicated as such with a right-angle symbol called a postponed
output indicator in front of the outputs. This symbol shows that the output signal
changes at the end of the pulse. To denote that the master-slave flip-flop will
respond to a negative pulse (i.e., a pulse to 0 with the inactive clock value at 1), a
bubble is placed on the C input. To denote that the edge-triggered flip-flop responds
to an edge, an arrowhead-like symbol in front of the letter C designates a dynamic
input. This dynamic indicator symbol denotes the fact that the flip-flop responds to
edge transitions of the input clock pulses. A bubble outside the block adjacent to

5-3 / Flip-Flops [221

the dynamic indicator designates a negative-edge transition for triggering the cir-
cuit. The absence of a bubble designates a positive-edge transition for triggering.

Often, all of the flip-flops used in a circuit are of the same triggering type,
such as positive-edge triggered. All of the flip-flops will then change in relation to
the same clocking event. When using flip-flops having different triggering in the
same sequential circuit, one may still wish to have all of the flip-flop outputs
change relative to the same clocking event. Those flip-flops that behave in a man-
ner opposite from the adopted polarity transition can be changed by the addition
of inverters to their clock inputs. The inverters unfortunately cause the clock sig-
nal to these flip-flops to be delayed with respect to the clocks to the other flip-
flops. A preferred procedure is to provide both positive and negative pulses from
the master clock generator that are carefully aligned. We apply positive pulses to
positive-pulse-triggered (master-slave) and negative-edge-triggered flip-flops
and negative pulses to negative-pulse-triggered (master-slave) and positive-
edge-triggered flip-flops. In this way, all flip-flop outputs will change at the same
time. Finally, to prevent specific timing problems, some designers use flip-flops
having different triggering (i.e., both positive and negative edge-triggered flip-
flops) with a single clock. In these cases, flip-flop outputs are purposely made to
change at different times.

In this text, it is assumed that all flip-flops are of the positive-edge-triggered
type, unless otherwise indicated. This provides a uniform graphics symbol for the
flip-flops and consistent timing diagrams.

Note that there is no input to the D flip-flop that produces a “no-change”
condition. This condition can be accomplished either by disabling the clock pulses
on the C input or by leaving the clock pulses undisturbed and connecting the out-
put back into the D input using a multiplexer when the state of the flip-flop must
remain the same. The technique that disables clock pulses is referred to as clock
gating. This technique typically uses fewer gates and saves power, but is often
avoided because the gated clock pulses into the flip-flops are delayed. The delay,
called clock skew, causes gated clock and nongated clock flip-flops to change at dif-
ferent times. This can make the circuit unreliable, since the outputs of some flip-
flops may reach others while their inputs are still affecting their state. To avoid this
problem, delays must be inserted in the clock circuitry to align inverted and non-
inverted clocks. If possible, this situation should be avoided entirely by using flip-
flops that trigger on the same edge.

Direct Inputs

Flip-flops often provide special inputs for setting and resetting them asynchro-
nously (i.e., independently of the clock input C). The inputs that asynchronously
set the flip-flop are called direct set, or preset. The inputs that asynchronously reset
the flip-flop are called direct reset, or clear. Application of a logic 1 (or a logic 0 if a
bubble is present) to these inputs affects the flip-flop output without the use of the
clock. When power is turned on in a digital system, the states of its flip-flops can be
anything. The direct inputs are useful for bringing flip-flops in a digital system to an
initial state prior to the normal clocked operation.

222 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

SRCD QQ (J)
1 XX |10 1, 8 L
s 10XX |01
— (1P |7/Q 0 0 X X | Undefined
—P>Cl
— —|>C o)
o o) 11 7T 0 01 .
—aRr 11 7T 1 10 ?
(a) Graphic symbol (b) Function table (c) Simplified symbol

O FIGURE 5-14
D Flip-Flop with Direct Set and Reset

The IEEE standard graphics symbol for a positive-edge-triggered D flip-flop
with direct set and direct reset is shown in Figure 5-14(a). The notations C1 and 1D
illustrate control dependency. An input labeled Cn, where n is any number, con-
trols all the other inputs starting with the number #. In the figure, C1 controls input
1D. S and R have no 1 in front of them, and therefore they are not controlled by the
clock at C1.The § and R inputs have circles on the input lines to indicate that they
are active at the logic-0 level (i.e., a 0 applied will result in the set or reset action).

The function table in Figure 5-14(b) specifies the operation of the circuit.
The first three rows in the table specify the operation of the direct inputs S and R.
These inputs behave like NAND SR latch inputs (see Figure 5-6), operating inde-
pendently of the clock, and are therefore asynchronous inputs. The last two rows
in the function table specify the clocked operation for values of D. The clock at C
is shown with an upward arrow to indicate that the flip-flop is a positive-edge-trig-
gered type. The D input effects are controlled by the clock in the usual manner.

Figure 5-14(c) shows a less formal symbol for the positive-edge-triggered flip-
flop with direct set and reset. The positioning of S and R at the top and bottom of
the symbol rather than on the left edge implies that resulting output changes are
not controlled by the clock C.

Frip-FLop TiminGg Flip-flop timing is covered in Section 6-3.

5-4 SEQUENTIAL CIRCUIT ANALYSIS

The behavior of a sequential circuit is determined from the inputs, outputs, and
present state of the circuit. The outputs and the next state are a function of the
inputs and the present state. The analysis of a sequential circuit consists of obtain-
ing a suitable description that demonstrates the time sequence of inputs, outputs,
and states.

A logic diagram is recognized as a synchronous sequential circuit if it
includes flip-flops with the clock inputs driven directly or indirectly by a clock sig-
nal and if the direct sets and resets are unused during the normal functioning of
the circuit. The flip-flops may be of any type, and the logic diagram may or may
not include combinational gates. In this section, an algebraic representation for

Www.Ebook777.com

http://www.ebook777.com

5-4 / Sequential Circuit Analysis [223

X

D A
>C =

~N

) D B
>C -

Clock

D

o]
O FIGURE 5-15
Example of a Sequential Circuit

specifying the logic diagram of a sequential circuit is given. A state table and state
diagram are presented that describe the behavior of the circuit. Specific examples
will be used throughout the discussion to illustrate the various procedures.

Input Equations

The logic diagram of a sequential circuit consists of flip-flops and, usually, combina-
tional gates. The knowledge of the type of flip-flops used and a list of Boolean
functions for the combinational circuit provide all the information needed to draw
the logic diagram of the sequential circuit. The part of the combinational circuit
that generates the signals for the inputs of flip-flops can be described by a set of
Boolean functions called flip-flop input equations. We adopt the convention of
denoting the dependent variable in the flip-flop input equation by the flip-flop
input symbol with the name of the flip-flop output as the subscript for the variable,
e.g., Da. A flip-flop input equation is a Boolean expression for a combinational cir-
cuit. The output of this combinational circuit is connected to the input of a flip-
flop—thus the name “flip-flop input equation.”

The flip-flop input equations constitute a convenient algebraic expression for
specifying the logic diagram of a sequential circuit. They imply the type of flip-flop
from the letter symbol, and they fully specify the combinational circuit that drives
the flip-flops. Time is not included explicitly in these equations, but is implied from
the clock at the C input of the flip-flops. An example of a sequential circuit is given

224 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

in Figure 5-15. The circuit has two D-type flip-flops, an input X, and an output Y. It
can be specified by the following equations:

D, =AX+BX
Dy = AX
Y =A+BX

The first two equations are for flip-flop inputs, and the third specifies the output Y.
Note that the input equations use the symbol D, which is the same as the input
symbol of the flip-flops. The subscripts A and B designate the outputs of
the respective flip-flops.

State Table

The functional relationships among the inputs, outputs, and flip-flop states of a
sequential circuit can be enumerated in a state table. The state table for the circuit
of Figure 5-15 is shown in Table 5-1. It consists of four sections, labeled present
state, input, next state, and output. The present-state section shows the states of flip-
flops A and B at any given time ¢. The input section gives each value of X for each
possible present state. Note that for each possible input combination, each of the
present states is repeated. The next-state section shows the states of the flip-flops
one clock period later, at time ¢ + 1. The output section gives the value of output Y
at time ¢ for each combination of present state and input.

The derivation of a state table consists of first listing all possible binary com-
binations of present state and inputs. In Table 5-1, there are eight binary combina-
tions, from 000 to 111. The next-state values are then determined from the logic
diagram or from the flip-flop input equations. For a D flip-flop, the relationship A(¢
+ 1) = D4(¢) holds. This means that the next state of flip-flop A is equal to the
present value of its input D. The value of the D input is specified in the flip-flop
input equation as a function of the present state of A and B and input X. There-
fore, the next state of flip-flop A must satisfy the equation

A(t+1) =D, = AX+BX

The next-state section in the state table under column A has three 1s, where the
present state and input value satisfy the conditions (4, X) = 11 or (B, X) = 11.
Similarly, the next state of flip-flop B is derived from the input equation

B(t+1) = Dy = AX

and is equal to 1 when the present state of A is 0 and input X is equal to 1. The out-
put column is derived from the output equation

Y = AX+BX

5-4 / Sequential Circuit Analysis [225

0 TABLE 5-1
State Table for Circuit of Figure 5-15

Present State Input Next State Output
A B X A B Y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

The state table of any sequential circuit with D-type flip-flops is obtained in
this way. In general, a sequential circuit with m flip-flops and » inputs needs 2"+*”
rows in the state table. The binary numbers from 0 through 2™*” — 1 are listed in
the combined present-state and input columns. The next-state section has m col-
umns, one for each flip-flop. The binary values for the next state are derived
directly from the D flip-flop input equations. The output section has as many col-
umns as there are output variables. Its binary values are derived from the circuit or
from the Boolean functions in the same manner as in a truth table.

Table 5-1 is one-dimensional in the sense that the present state and input
combinations are combined into a single column of combinations. A two-dimen-
sional state table having the present state tabulated in the left column and the
inputs tabulated across the top row is also frequently used. The next-state entries
are made in each cell of the table for the present-state and input combination
corresponding to the location of the cell. A similar two-dimensional table is used
for the outputs if they depend upon the inputs. Such a state table is shown in
Table 5-2. Sequential circuits in which the outputs depend on the inputs, as well

O TABLE 5-2
Two-Dimensional State Table for the Circuit in Figure 5-15

Next state Output
Present
state X=0| X=1 X=0(X=1

A B A B A B Y Y
0 0 0 O 0 1 0 0
0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 0

226 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Y

>C
O
Clock
(a) Logic diagram
Present Next

State Inputs State Output

A XY A Z

0 00 0 0
0 01 1 0
0 10 1 0
0 11 0 0
1 00 1 1
1 01 0 1
1 10 0 1
1 11 1 1
(b) State table

O FIGURE 5-16
Logic Diagram and State Table for Dy, = AGX®Y

as on the states, are referred to as Mealy model circuits. Otherwise, if the outputs
depend only on the states, then a one-dimensional column suffices. In this case,
the circuits are referred to as Moore model circuits. Each model is named after its
originator.

As an example of a Moore model circuit, suppose we want to obtain the logic dia-
gram and state table of a sequential circuit that is specified by the flip-flop input equation

and output equation
Z=A

The D, symbol implies a D-type flip-flop with output designated by the letter A.
The X and Y variables are taken as inputs and Z as the output. The logic diagram
and state table for this circuit are shown in Figure 5-16. The state table has one
column for the present state and one column for the inputs. The next state and
output are also in single columns. The next state is derived from the flip-flop input
equation, which specifies an odd function. (See Section 2-8.) The output column is
simply a copy of the column for the present-state variable A.

5-4 / Sequential Circuit Analysis [227

State Diagram

The information available in a state table may be represented graphically in the form
of a state diagram. A state is represented by a circle, and transitions between states
are indicated by directed lines connecting the circles. Examples of state diagrams are
given in Figure 5-17. Figure 5-17(a) shows the state diagram for the sequential circuit
in Figure 5-15 and its state table in Table 5-1. The state diagram provides the same
information as the state table and is obtained directly from it. The binary number
inside each circle identifies the state of the flip-flops. For Mealy model circuits, the
directed lines are labeled with two binary numbers separated by a slash. The input
value during the present state precedes the slash, and the value following the slash
gives the output value during the present state with the given input applied. For
example, the directed line from state 00 to state 01 is labeled 1/0, meaning that when
the sequential circuit is in the present state 00 and the input is 1, the output is 0. After
the next clock transition, the circuit goes to the next state, 01. If the input changes to
0, then the output becomes 1, but if the input remains at 1, the output stays at 0. This
information is obtained from the state diagram along the two directed lines emanat-
ing from the circle with state 01. A directed line connecting a circle with itself indi-
cates that no change of state occurs.

The state diagram of Figure 5-17(b) is for the sequential circuit of Figure 5-16.
Here, only one flip-flop with two states is needed. There are two binary inputs, and
the output depends only on the state of the flip-flop. For such a Moore model circuit,
the slash on the directed lines is not included, since the outputs depend only on the
state and not on the input values. Instead, the output is included under a slash below
the state in a circle. There are two input conditions for each state transition in the
diagram, and they are separated by a comma. When there are two input variables,
each state may have up to four directed lines coming out of the corresponding circle,
depending upon the number of states and the next state for each binary combination
of the input values.

There is no difference between a state table and a state diagram, except for
their manner of representation. The state table is easier to derive from a given
logic diagram and input equations. The state diagram follows directly from the

0/0 1/0

O FIGURE 5-17
State Diagrams

228 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

state table. The state diagram gives a pictorial view of state transitions and is the
form more suitable for human interpretation of the operation of the circuit. For
example, the state diagram of Figure 5-17(a) clearly shows that, starting at state 00,
the output is 0 as long as the input stays at 1. The first 0 input after a string of 1s
gives an output of 1 and sends the circuit back to the initial state of 00. The state
diagram of Figure 5-17(b) shows that the circuit stays at a given state as long as the
two inputs have the same value (00 or 11). There is a state transition between the
two states only when the two inputs are different (01 or 10).

The state diagram in Figure 5-17(a) is useful for illustrating two concepts: (1)
the reduction of the number of states required by using the concept of equivalent
states, and (2) the mixing of Mealy and Moore types of outputs in a single descrip-
tion. Two states are equivalent if the response for each possible input sequence is
an identical output sequence. This definition can be recast in terms of states and
outputs. Two state are equivalent if the output produced for each input symbol is
identical and the next states for each input symbol are the same or equivalent.

EXAMPLE 5-1 Equivalent State Illustration

In the state diagram in Figure 5-17(a), consider states 10 and 11. Under input 0,
both states produce output 1, and, under input 1, both states produce output 0.
Under input 0, both states have the same state 00 as their next state. Under input 1,
both states have state 10 as their next state. By the second definition above, states
11 and 10 are equivalent. These equivalent states can be merged into a single state
entered from state 01 under input 1, with a transition under input 0 to state 00 with
an output of 1, and a transition back to itself under input 1 with an output of 0. In
the original diagram, consider states 01 and 11. These states satisfy the output con-
ditions for being equivalent. Under 0, they both go to next state 00, and under 1,
they go to next states 11 and 10, which have just been shown to be equivalent. So,
states 01 and 11 are equivalent. Since state 11 is equivalent to state 10, all three of
these states are equivalent. Merging these three states, states 11 and 10 can be
deleted and state 01 can be modified to have the transition under 1 with output 0
go back to state 01. If the circuit in Figure 5-15 was analyzed for redesign, the new
design has two states and one flip-flop instead of four states and two flip-flops.

State reduction through state equivalence may or may not result in reduced
cost, since cost is dependent on combinational circuit cost as well as flip-flop cost.
Nevertheless, combining equivalent states has inherent advantages in the design,
verification, and testing processes.

Ordinarily, the Mealy and Moore output types are not mixed in a given
sequential circuit representation. In doing real designs, however, such mixing may
be convenient.

EXAMPLE 5-2 Mixed Mealy and Moore Outputs

The state diagram in Figure 5-17(a) can also be used to illustrate a mixed output
model that uses both Mealy and Moore type outputs. For state 00, all input values

5-4 / Sequential Circuit Analysis [229

produce the same output value 0 on Z. As a consequence, the output depends only
on the state 00 and satisfies the definition of a Moore type output. If desired, the
output value 0 can be moved from the outgoing transitions on state 00 to within
the circle for state 00. For the remaining states, however, the outputs for the two
input values on X differ, so the output values are the Mealy type and must remain
on the state transitions.

Unfortunately, this representation does not translate well to the two-dimen-
sional state tables. It can be translated to a modified one-dimensional state table
with rows that contain the state and the Moore output value without the output
conditions and rows that contain the state, an output condition, and the Mealy
value output.

SeQUENTIAL CiRrculT CLocks AND TIMING The details of sequential circuit clocks
and timing are discussed in Section 6-4.

Sequential Circuit Simulation

Simulation of sequential circuit involves issues not present in combinational cir-
cuits. First of all, rather than a set of input patterns for which the order of applica-
tion is immaterial, the patterns must be applied in a sequence. This sequence
includes timely application of input patterns as well as clock pulses. Second, there
must be some means to place the circuit in a known state. Realistically, initializa-
tion to a known state is accomplished by application of an initialization subse-
quence at the beginning of the simulation. In the simplest case, this subsequence is
a reset signal. For flip-flops lacking a circuit reset (or set), a longer sequence typi-
cally consisting of an initial reset followed by a sequence of normal input patterns
is required. A simulator may also have a means of setting the initial state, which is
useful to avoid long sequences that may be needed to get to an initial state. Aside
from getting to an initial state, a third issue is observing the state to verify correct-
ness. In some circuits, application of an additional sequence of inputs is required to
determine the state of the circuit at a given point. The simplest alternative is to set
up the simulation so that the state of the circuit can be observed directly; the
approach to doing this varies depending on the simulator and whether or not the
circuit contains hierarchy. A crude approach that works with all simulators is to
add a circuit output with a path from each state variable signal.

A final issue to be dealt with in more detail is the timing of application of
inputs and observation of outputs relative to the active clock edge. Initially, we dis-
cuss the timing for functional simulation having as its objective determination or
verification of the function of the circuit. In functional simulation, components of
the circuit have no delay or a very small delay. Much more complex is timing simu-
lation, in which the circuit elements have realistic delays and verification of the
proper operation of the circuit in terms of timing is the simulation objective.

Some simulators, by default, use a very small component delay for functional
simulation so that the order of changes in signals can be observed, provided that the

230 O CHAPTER 5/ SEQUENTIAL CIRCUITS

Clock
Reset *D
Input U F
p 9 ™\ T
State L
1
Output 3 9
[J FIGURE 5-18
Simulation Timing

time range used for display is small enough. Suppose that the component delays for
gates and the delays associated with flip-flops are all 0.1 ns for such a simulation and
that the longest delay through a path from positive clock edge to positive clock edge
is 1.2 ns in your circuit. If you happen to use a clock period of 1.0 ns for your simula-
tion, when the result depends on the longest delay, the simulation results will be in
error! So for functional simulation with such a simulator, either a longer clock period
should be chosen for the simulation or the default delay needs to be changed by the
user to a smaller value.

In addition to the clock period, the time of application of inputs relative to
the positive clock edge is important. For functional simulation, to allow for any
small, default component delays, the inputs for a given clock cycle should be
changed well before the positive clock edge, preferably early in the clock cycle
while the clock is still at a 1 value. This is also an appropriate time to change the
reset signal values to insure that the reset signal is controlling the state rather than
the clock edge or a meaningless combination of clock and reset.

A final issue is the time at which to examine a simulation result in functional
simulation. At the very latest, the state-variable values and outputs should be at
their final values just before the positive clock edge. Although it may be possible to
observe the values at other locations, this location provides a foolproof observa-
tion time for functional simulation.

The ideas just presented are summarized in Figure 5-18. Input changes in
Reset and Input, encircled in blue, occur at about the 25 percent point in the
clock cycle. Signal values on State and Output, as well as on Input and Reset,
all encircled in blue and listed, are observed just before the 100 percent point in
the clock cycle.

5-5 SEQUENTIAL CIRCUIT DESIGN

The design of clocked sequential circuits starts from a set of specifications and culmi-
nates in a logic diagram or a list of Boolean functions from which the logic diagram

5-5 / Sequential Circuit Design [231

can be obtained. In contrast to a combinational circuit, which is fully specified by a
truth table, a sequential circuit requires a state table for its specification. Thus, the
first step in the design of a sequential circuit is to obtain a state table or an equivalent
representation such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational
gates. The design of the circuit consists of choosing the flip-flops and finding a com-
binational circuit structure which, together with the flip-flops, produces a circuit
that fulfills the stated specifications. The minimum number of flip-flops is deter-
mined by the number of states in the circuit; #» flip-flops can represent up to 2"
binary states. The combinational circuit is derived from the state table by finding
the flip-flop input equations and output equations. In fact, once the type and num-
ber of flip-flops are determined and binary combinations are assigned to the states,
the design process transforms a sequential circuit problem into a combinational
circuit problem. In this way, the techniques of combinational circuit design can be
applied.

Design Procedure

The following procedure for the design of sequential circuits is similar to that for
combinational circuits but has some additional steps:

1. Specification: Write a specification for the circuit, if not already available.

2. Formulation: Obtain either a state diagram or a state table from the state-
ment of the problem.

3. State Assignment: If only a state diagram is available from step 1, obtain the
state table. Assign binary codes to the states in the table.

4. Flip-Flop Input Equation Determination: Select the flip-flop type or types.
Derive the flip-flop input equations from the next-state entries in the
encoded state table.

5. Output Equation Determination: Derive output equations from the output
entries in the state table.

6. Optimization: Optimize the flip-flop input equations and output equations.

7. Technology Mapping: Draw a logic diagram of the circuit using flip-flops,
ANDs, ORs, and inverters. Transform the logic diagram to a new diagram
using the available flip-flop and gate technology.

8. Verification: Verify the correctness of the final design.

For convenience, we often omit the technology mapping in step 7, since it does not
contribute to our understanding once it is understood. Also, for more complex cir-
cuits, we may skip the use of either the state table or state diagram.

Finding State Diagrams and State Tables

The specification for a circuit is often in the form of a verbal description of the
behavior of the circuit. This description needs to be interpreted in order to find a

232 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

state diagram or state table in the formulation step of the design procedure. This is
often the most creative part of the design procedure, with many of the subsequent
steps performed automatically by computer-based tools.

Fundamental to the formulation of state diagrams and tables is an intuitive
understanding of the concept of a state. A state is used to “remember” something
about the history of input combinations applied to the circuit either at triggering
clock edges or during triggering pulses. In some cases, the states may literally store
input values, retaining a complete history of the sequence appearing on the inputs.
In most cases, however, a state is an abstraction of the sequence of input combina-
tions at the triggering points. For example, a given state S; may represent the fact
that among the sequence of values applied to a single bit input X, “the value 1 has
appeared on X for the last three consecutive clock edges.” Thus, the circuit would
be in state S; after sequences ... 00111 or ... 0101111, but would not be in state S;
after sequences ... 00011 or ... 011100. A state S, might represent the fact that the
sequence of 2-bit input combinations applied are “in order 00, 01, 11, 10 with any
number of consecutive repetitions of each combination permitted and 10 as the
most recently applied combination.” The circuit would be in state S, for the follow-
ing example sequences: 00, 00, 01, 01, 01, 11, 10, 10 or 00, 01, 11, 11, 11, 10. The cir-
cuit would not be in state S, for sequences: 00, 11, 10, 10 or 00, 00, 01, 01,11, 11. In
formulating a state diagram or state table it is useful to write down the abstraction
represented by each state. In some cases, it may be easier to describe the abstrac-
tion by referring to values that have occurred on the outputs as well as on the
inputs. For example, state S; might represent the abstraction that “the output bit Z,
is 1, and the input combination has bit X, at 0.” In this case, Z, equal to 1 might
uniquely represent a complex set of past sequences of input combinations that
would be more difficult to describe in detail.

As one formulates a state table or state diagram, new states are added. There
is potential for the set of states to become unnecessarily large or potentially even
infinite in size! Instead of adding a new state for every current state and possible
applied input combination, it is essential that states be reused as next states to pre-
vent uncontrolled state growth as outlined above. The mechanism for doing this is
a knowledge of the abstraction that each state represents. To illustrate, consider
state S; defined previously as an abstraction: “the value 1 has appeared at the last
three consecutive clock edges.” If S; has been entered due to the sequence ... 00111
and the next input is a 1, giving sequence ... 001111, is a new state needed or can
the next state be S;? By examining the new sequence, we see that the last three
input values are 1s, which matches the abstraction defined for state S;. So, state S;
can be used as the next state for current state S; and input value 1, avoiding the
definition of a new state. This careful process of avoiding equivalent states is in lieu
of applying a state-minimization procedure to combine equivalent states.

When the power in a digital system is first turned on, the state of the flip-flops
is unknown. It is possible to apply an input sequence with the circuit in an
unknown state, but that sequence must be able to bring a portion of the circuit to a
known state before meaningful outputs can be expected. In fact, many of the larger
sequential circuits we design in subsequent chapters will be of this type. In this
chapter, however, the circuits that we design must have a known initial state, and

5-5 / Sequential Circuit Design [233

Yt+1))
Y(t+1)—D —Y D —Y
() Reset *DG
cCPCc Pp cPCc p
R
Reset
(a) Asynchronous Reset (b) Synchronous Reset

O FIGURE 5-19
Asynchronous and Synchronous Reset for D Flip-flops

further, a hardware mechanism must be provided to get the circuit from any
unknown state into this state. This mechanism is a reset or master reset signal.
Regardless of all other inputs applied to the circuit, the reset places the circuit in
its initial state. In fact, the initial state is often called the reset state. The reset signal
is usually activated automatically when the circuit is powered up. In addition, it
may be activated electronically or by pushing a reset button.

The reset may be asynchronous, taking place without clock triggering. In this
case, the reset is applied to the direct inputs on the circuit flip-flops. as shown in
Figure 5-19(a). This design assigns 00...0 to the initial state of the flip-flops to be
reset. If an initial state with a different code is desired, then the Reset signal can be
selectively connected to direct set inputs instead of direct reset inputs. It is impor-
tant to note that these inputs should not be used in the normal synchronous circuit
design process. Instead, they are reserved only for an asynchronous reset that
returns the system, of which the circuit is a component, to an initial state. Using
these direct inputs as a part of the synchronous circuit design violates the funda-
mental synchronous circuit definition, since it permits a flip-flop state to change
asynchronously within direct clock triggering.

Alternatively, the reset may be synchronous and require a clock-triggering
event to occur. The reset must be incorporated into the synchronous design of the
circuit. A simple approach to synchronous reset for D flip-flops, without formally
including the reset bit in the input combinations, is to add the AND gate shown in
Figure 5-19(b) after doing the normal circuit design. This design also assigns 00 ... 0
to the initial state. If a different initial state code is desired, then OR gates with
Reset as an input can selectively replace the AND gates with inverted Reset.

To illustrate the formulation process, two examples follow, each resulting in a
different style of state diagram.

EXAMPLE 5-3 Finding a State Diagram for a Sequence Recognizer

The first example is a circuit that recognizes the occurrence of a particular
sequence of bits, regardless of where it occurs in a longer sequence. This “sequence
recognizer” has one input X and one output Z. It has Reset applied to the direct
reset inputs on its flip-flops to initialize the state of the circuit to all zeros. The cir-
cuit is to recognize the occurrence of the sequence of bits 1101 on X by making Z

234 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

equal to 1 when the previous three inputs to the circuit were 110 and current input
is a 1. Otherwise, Z equals 0.

The first step in the formulation process is to determine whether the state
diagram or table must be a Mealy model or Moore model circuit. The portion of
the preceding specification that says “... making Z equal to 1 when the previous
three inputs to the circuit are 110 and the current input is a 1” implies that the out-
put is determined from not only the current state, but also the current input. As a
consequence, a Mealy model circuit with the output dependent on both state and
inputs is required.

Recall that a key factor in the formulation of any state diagram is to recog-
nize that states are used to “remember” something about the history of the inputs.
For example, for the sequence 1101 to be able to produce the output value 1 coin-
cident with the final 1 in the sequence, the circuit must be in a state that “remem-
bers” that the previous three inputs were 110. With this concept in mind, we begin
to formulate the state diagram by defining an arbitrary initial state A as the reset
state and the state in which “none of the sequence to be recognized has occurred.”
If a 1 occurs on the input, since 1 is the first bit in the sequence, this event must be
“remembered,” and the state after the clock pulse cannot be A. So a second state,
B, is established to represent the occurrence of the first 1 in the sequence. Further,
to represent the occurrence of the first 1 in the sequence, a transition is placed
from A to B and labeled with a 1. Since this is not the final 1 in the sequence 1101,
its output is a 0. This initial portion of the state diagram is given in Figure 5-20(a).

° N ° ° N c - °
(a) (b)
° 1/0 e 1/0 e 0/0 ° 11

()

O FIGURE 5-20
Construction of a State Diagram for Example 5-4

5-5 / Sequential Circuit Design [235

The next bit of the sequence is a 1. When this 1 occurs in state B, a new state
is needed to represent the occurrence of two 1s in a row on the input—that is, the
occurrence of an additional 1 while in state B. So a state C and the associated
transition are added, as shown in Figure 5-20(b). The next bit of the sequence is a
0. When this 0 occurs in state C, a state is needed to represent the occurrence of
the two 1s in a row followed by a 0. So the additional state D with a transition
having a 0 input and 0 output is added. Since state D represents the occurrence of
110 as the previous three input bit values on X, the occurrence of a 1 in state D
completes the sequence to be recognized, so the transition for the input value 1
from state D has an output value of 1. The resulting partial state diagram, which
completely represents the occurrence of the sequence to be recognized, is shown
in Figure 5-20(c).

Note in Figure 5-20(c) that, for each state, a transition is specified for only
one of the two possible input values. Also, the state that is the destination of the
transition from D for input 1 is not yet defined. The remaining transitions must be
based on the idea that the recognizer is to identify the sequence 1101, regardless of
where it occurs in a longer sequence. Suppose that an initial part of the sequence
1101 is represented by a state in the diagram. Then, the transition from that state
for an input value that represents the next input value in the sequence must enter a
state such that the 1 output occurs if the remaining bits of the sequence are
applied. For example, state C represents the first two bits, 11, of sequence 1101. If
the next input value is 0, then the state that is entered, in this case, D, gives a 1 out-
put if the remaining bit of the sequence, 1, is applied.

Next, evaluate where the transition for the 1 input from the D state is to go.
Since the transition input is a 1, it could be the first or second bit in the sequence to
be recognized. But because the circuit is in state D, it is evident that the prior input
was a 0. So this 1 input is the first 1 in the sequence, since it cannot be preceded by
a 1. The state that represents the occurrence of a first 1 in the sequence is B, so the
transition with input 1 from state D is to state B. This transition is shown in the dia-
gram in Figure 5-20(d). Examining state C, we can trace back through states B and
A to see that the occurrence of a 1 input in C is at least the second 1 in the
sequence. The state representing the occurrence of two 1s in sequence is C, so the
new transition is to state C. Since the combination of two 1s is not the sequence to
be recognized, the output for the transition is 0. Repeating this same analysis for
missing transitions from states B and A, the final state diagram in Figure 5-20(d) is
obtained. The resulting state table is given in two-dimensional form in Table 5-3.

One issue that arises in the formulation of any state diagram is whether, in
spite of best designer efforts, excess states have been used. This is not the case in
the preceding example, since each state represents input history that is essential
for recognition of the stated sequence. If, however, excess states are present, then
it may be desirable to combine states into the fewest needed. This can be done
using ad hoc methods as in Example 5-1 or formal state-minimization procedures.
Due to the complexity of the latter, particularly in the case in which don’t-care
entries appear in the state table, formal procedures are not covered here. For the

236 [CHAPTER 5/ SEQUENTIAL CIRCUITS

0 TABLE 5-3
State Table for State Diagram in Figure 5-20
Next State Output 2
Present
State X=0 |X=1 X=0(X=1
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 5-4 Finding a State Diagram for a BCD-to-Excess-3 Decoder

In Chapter 3, a BCD-to—excess-3 decoder was designed. In this example, the func-
tion of the circuit is similar except that the inputs, rather than being presented to
the circuit simultaneously, are presented serially in successive clock cycles, least
significant bit first. In Table 5-4(a), the input sequences and corresponding output
sequences are listed with the least significant bit first. For example, during four

O TABLE 5-4
Sequence Tables for Code-Converter Example
(a) Sequences in Order of (b) Sequences in Order of
Digits Represented Common Prefixes
BCD Input Excess-3 Output BCD Input Excess-3 Output
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0O 0 0 o 1 1 0 0 0O 0 0 o 1 1 0 O
1 0 0 O 0 0 1 O 0 0 0 1 1 1 0 1
0 1 0 O 1 0 1 0 0 0 1 0 1 1 1 0
1 1 0 0 0 1 1 O 0 1 0 O 1 0 1 0
0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 0 0 1 1 0 0 O 0 0 1 O
0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1
1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1
0O 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0
1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1

5-5 / Sequential Circuit Design [237

0/1orinl

0/0 or 1/1

© (d)

O FIGURE 5-21
Construction of a State Diagram for Example 5-4

successive clock cycles, if 1010 is applied to the input, the output will be 0001. In
order to produce each output bit in the same clock cycle as the corresponding
input bit, the output depends on the present input value as well as the state. The
specifications also state that the circuit must be ready to receive a new 4-bit
sequence as soon as the prior sequence has completed. The input to this circuit is
labeled X and the output is labeled Z. In order to focus on the patterns for past
inputs, the rows of Table 5-4(a) are sorted according to the first bit value, the sec-
ond bit value, and the third bit value of the input sequences. Table 5-4(b) results.
The state diagram begins with an initial state, as shown in Figure 5-21(a).
Examining the first column of bits in Table 5-4(b) reveals that a 0 produces a 1 out-
put and a 1 produces a 0 output. Next, we ask, “Do we need to remember the value
of the first bit?” In Table 5-4(b), when the first bit is a 0, a 0 in the second bit results
in an output of 1 and a 1 in the second bit gives an output of 0. In contrast, if the
first bit is a 1, a 0 in the second bit causes an output of 0, and a 1 in the second bit
gives output 1. It is clear that we cannot determine the output for the second bit
without “remembering” the value of the first bit. Thus, the first input equal to 0 and

238 [CHAPTER 5/ SEQUENTIAL CIRCUITS

the first input equal to 1 must give different states, as shown in Figure 5-21(a), which
also shows the input/output values for the arcs to the new states.

Next, it must be determined whether the inputs following the two new states
need to have two states to remember the second bit value. In the first two columns of
inputs in Table 5-4(b), sequence 00 produces outputs for the third bit that are 0 for
input 0 and 1 for input 1. On the other hand, for sequence 01, the outputs for the
third bit are 1 for input 0 and 0 for input 1. Since these are different for the same
input values in the third bit, separate states are necessary, as shown in Figure 5-21(b).
A similar analysis for input sequences 10 and 11, which examines the outputs for both
the third and fourth bits, shows that the value of the second bit has no effect on the
output values. Thus, in Figure 5-21(b), there is only a single next state for state B1 = 1.

At this point, six potential new states might result from the three states just
added. Note, however, that these states are needed only to define the outputs for
the fourth input bit, since it is known that the next state thereafter will be Init in
preparation for applying the next input sequence of four bits. How many states does
one need to specify the different possibilities for the output value in the last bit?
Looking at the final column, a 1 input always produces a 1 output and a 0 may pro-
duce either a 0 or a 1 output. Thus, at most two states are necessary, one that has a 0
output to a 0 and one that has a 1 output to a 0. The output for a 1 input is the same
for both states. In Figure 5-21(c), we have added these two states. For the circuit to
be ready to receive the next sequence, the next state for these new states is Init.

Remaining is the determination of the blue arcs shown in Figure 5-21(d). The
arcs from each of the bit B2 states can be defined based on the third bit in the
input/output sequences. The next state can be chosen based on the response to input
0 in the fourth bit of the sequence. The B2 state reaches the B3 state on the left with
B3 =0 or B3 =1 as indicated by B3 = X on the upper half of the B3 state. The other
two B2 states reach this same state with B3 = 1, as indicated on the lower half of the
state. These same two B2 states reach the B3 state on the right with B3 = 0, as indi-
cated by the label on the state.

State Assignment

In contrast to the states in the analysis examples, the states in the diagrams con-
structed have been assigned symbolic names rather than binary codes. It is neces-
sary to replace these symbolic names with binary codes in order to proceed with
the design. In general, if there are m states, then the codes must contain at least »
bits, where 2” > m, and each state must be assigned a unique code. So, for the cir-
cuit in Table 5-3 with four states, the codes assigned to the states require two bits.
Note that minimizing the number of bits in the state code does not always mini-
mize the cost of the overall sequential circuit. The combinational logic may have
become more costly in spite of the gains achieved by having fewer flip-flops.

The first state assignment method we will consider is to assign codes with n
bits (27 > m > 271) such that the code words are assigned in counting order. For
example, for states A, B, C, and D, the codes 00, 01, 10, and 11 are assigned to A, B,
C, and D, respectively. An alternative that is attractive, particularly if K-maps are

5-5 / Sequential Circuit Design [239

being used for optimization, is to assign the codes in Gray code order, with codes
00,01, 11, and 10 assigned to A, B, C, and D, respectively.

More systematic assignment of codes attempts to reduce the cost of the
sequential circuit combinational logic. A number of methods based on heuristics
are available for targeting minimum two-level and minimum multilevel combina-
tional logic. The problem is difficult and the solutions are too complex for treat-
ment here.

There are a number of specialized state assignment methods, some of which
are based on efficient structures for implementing at least a portion of the transi-
tions. The most popular of these methods is the one flip-flop per state or one-hot
assignment. This assignment uses a distinct flip-flop for each of the m states, so it
generates codes that are m bits long. The sequential circuit is in a state when the
flip-flop corresponding to that state contains a 1. By definition, all flip-flops corre-
sponding to the other states must contain 0. Thus, each valid state code contains m
bits, with one bit equal to 1 and all other m — 1 bits equal to 0. This code has the
property that going from one state to another can be thought of as passing a token,
the single 1, from the source state to the destination state. Since each state is repre-
sented by a single 1, before combinational optimization, the logic for entering a
particular state is totally separate from the logic for entering other states. This is in
contrast to the mixing of the logic that occurs when multiple 1s are present in the
destination and source state codes. This separation can often result in simpler,
faster logic, and in logic that is simpler to debug and analyze. On the other hand,
the flip-flop cost may be overriding. Finally, while the state codes listed have values
for m variables, when equations are written, only the variable which is 1 is listed.
For example, for ABCD = 0100, instead of writing ABCD, we can simply write B.
This is because all of the remaining 2" — m codes never occur and as a conse-
quence produce don’t cares.

The use of a sequentially assigned Gray code and of a one-hot code for the
sequence recognizer design is illustrated in the following example. In the next
subsection, the designs will be completed and the costs of these two assignments
compared.

EXAMPLE 5-5 State Assignments for the Sequence Recognizer

The Gray code is selected in this case simply because it makes it easier for the
next-state and output functions to be placed on a Karnaugh map. The state table
derived from Table 5-3 with codes assigned is shown in Table 5-5. States A, B, C,
and D are replaced in the present state column by their respective codes, 00, 01, 11,
and 10. Next, each of the next states is replaced by its respective code. This 2-bit
code uses a minimum number of bits.

A one-hot code assignment is illustrated in Table 5-6. States A, B, C and D are
replaced in the Present State column by their respective codes, 1000, 0100, 0010, and
0001. Next, each of the next states is replaced by its respective code. Since there are
four states, a 4-bit code is required, with one state variable for each state.

240 [CHAPTER 5 / SEQUENTIAL CIRCUITS

Designing with D Flip-Flops

The remainder of the sequential circuit design procedure will be illustrated by the
next two examples. We wish to design two clocked sequential circuits for the
sequence recognizer, one that operates according to the Gray-coded state table

given as Table 5-5 and the other according to the one-hot coded table given in
Table 5-6.

OO0 TABLE 5-5

Table 5-3 with Names Replaced by a 2-Bit Binary Gray Code
Present State Next State Output Z
AB X=0 | X=1 X=0 |X=1
00 00 01 0 0
01 00 11 0 0
11 10 11 0 0
10 00 01 0 1
OO0 TABLE 5-6

Table 5-3 with Names Replaced by a 4-Bit One-Hot Code
Present State Next State Output Z
ABCD X=0 |X=1 X=0 |X=1
1000 1000 0100 0 0
0100 1000 0010 0 0
0010 0001 0010 0 0
0001 1000 0100 0 1

EXAMPLE 5-6 Gray Code Design for the Sequence Recognizer

For the Gray-coded design, two flip-flops are needed to represent the four states.
Note that the two state variables are labeled with letters A and B.

Steps 1 through 3 of the design procedure have been completed for this cir-
cuit. Beginning step 4, D flip-flops are chosen. To complete step 4, the flip-flop
input equations are obtained from the next-state values listed in the table. For step
5, the output equation is obtained from the values of Z in the table. The flip-flop
input equations and output equation can be expressed as a sum of minterms of the
present-state variables A and B and the input variable X:

A(t+1)=D4(A, B, X) = Sm(3,6,7)
B(t+1)=Dy(A, B, X) = Sm(1,3,5,7)
Z(A, B, X) =3m(5)

5-5 / Sequential Circuit Design [241

X X X X X X
AN 0 1 AR 0 1 o 1
00 00 1 00
01 1 01 1 01
B B B
nuf| 1 1] 1 1 1
A — A A
10 10 1 10
D, = AB + BX Dy =X Z = ABX

0 FIGURE 5-22
K-maps for the Gray-Coded Sequential Circuit with D Flip-Flops

In the case of this table with the Gray code on the left margin and a trivial
Gray code at the top of the table, the adjacencies of the cells of the state table
match the adjacencies of a K-map. This permits the values for the two next state
variables A(z + 1) and B(¢t = 1) and output Z to be transferred directly to the three
K-maps in Figure 5-22, bypassing the sum-of-minterms equations. The three Bool-
ean functions, simplified by using the K-maps, are:

D, = AB+BX

Dy =X

Z = ABX

The logic diagram of the sequential circuit is shown in Figure 5-23. The gate-input
cost of the combinational logic is 9. A rough estimate for the gate-input cost for a
flip-flop is 14. Thus the overall gate-input cost for this circuit is 37.

L
D Aﬂ
C o)
- R
B—
[)
X D B
Clock > C
R
Reset I

O FIGURE 5-23
Logic Diagram for the Gray-Coded Sequence Recognizer with D Flip-Flops

242 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

EXAMPLE 5-7 One-Hot Code Design for the Sequence Recognizer

For the one-hot coded design in Table 5-6, four flip-flops are needed to represent
the four states. Note that the four state variables are labeled A, B, C, and D. As is
often the case, the state variables have names that are the same as those of the cor-
responding states.

Just as for the Gray-coded case, steps 1 through 3 of the design procedure
have been completed and D flip-flops have been chosen. To complete step 4, the
flip-flop input equations are obtained from the next-state values. Although the
state codes listed have values for four variables, recall that when equations from a
one-hot code are written, only the variable with value 1 is included. Also, recall
that each term of the excitation equation for state variable Y is based on a 1 value
for variable Y in a next-state code entry and the sum of these terms is taken over
all such 1s in the next-state code entries. For example, a 1 appears for next-state
variable B for present state 1000 (A) and input value X = 1 and for present state
0001 (D) and input value X = 1. This gives B(t + 1) = AX + DX. For step 5, the out-
put equation is obtained from the locations of the 1 values of Z in the output table.
The resulting flip-flop input equations and output equation are:

T =D M
>% O
]
~T b =
>% o
|
DL
>% O
o 1
B D
Clock >(I:(o]
Reset !

[0 FIGURE 5-24
Logic Diagram for the One-Hot Coded Sequence Recognizer with D Flip-Flops

Www.Ebook777.com

http://www.ebook777.com

5-5 / Sequential Circuit Design [243

A(t+1)=D, = AX+BX+DX = (A+B+D)X
B(t+1)=Dz=AX+CX = (A+O)X
C(t+1)=D,=BX+CX = (B+O)X
D(t+1)=Dp = CX

Z = DX

The logic diagram of the sequential circuit is shown in Figure 5-24. The gate-input
cost of the combinational logic is 19 and the cost of four flip-flops using the esti-
mate from Example 5-5 is 56, giving a total gate input cost of 74, almost twice that
of the Gray code design. The supports the view that the one-hot design tends to be
more costly, but, in general, there may be reasons for its use with respect to other
factors such as performance, reliability, and ease of design and verification.

Designing with Unused States

A circuit with #n flip-flops has 2” binary states. The state table from which the circuit
was originally derived, however, may have any number of states m < 2. States that
are not used in specifying the sequential circuit are not listed in the state table. In
simplifying the input equations, the unused states can be treated as don’t-care con-
ditions. The state table in Table 5-7 defines three flip-flops, A, B, and C, and one
input, X. There is no output column, which means that the flip-flops serve as out-
puts of the circuit. With three flip-flops, it is possible to specify eight states, but the
state table lists only five. Thus, there are three unused states that are not included

0 TABLE 5-7
State Table for Designing with Unused States

Present State Input Next State
A B C X A B C
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 O
0 1 1 0 0 0 1
0 1 1 1 1 0 O
1 0 0 0 1 0 1
1 0 O 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 O

in the table: 000, 110, and 111. When an input of 0 or 1 is included with the unused
present-state values, six unused combinations are obtained for the present-state

244 [CHAPTER 5 / SEQUENTIAL CIRCUITS

CX C
AB\ 00 01 11 10 £ £

00 | X x| x|l x| 1 X|| x 1

01 1|1 1 1 1

B B B

|l x x| x| x X| x| x| X x| x| x| x
A I A A

w1 |{1]]1 1 1

X X X
D, =AX +BX +BC Dy =ACX + ABX Dc=X

O FIGURE 5-25
Maps for Optimizing Input Equations

and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations
are not listed in the state table and hence may be treated as don’t-care minterms.

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 5-25. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

D, = AX+BX+BC
Dy = ACX+ABX
D.=X

The logic diagram can be obtained directly from the input equations and will not
be drawn here.

It is possible that outside interference or a malfunction will cause the circuit
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully
or at least partially, the next-state values or the output values for the unused
states. Depending on the function and application of the circuit, a number of
ideas may be applied. First, the outputs for the unused states may be specified so
that any actions that result from entry into and transitions between the unused
states are not harmful. Second, an additional output may be provided or an
unused output code employed which indicates that the circuit has entered an
incorrect state. Third, to ensure that a return to normal operation is possible with-
out resetting the entire system, the next-state behavior for the unused states may
be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
design group.

5-5 / Sequential Circuit Design [245

Verification

Sequential circuits can be verified by showing that the circuit produces the original
state diagram or state table. In the simplest cases, all possible input combinations
are applied with the circuit in each of the states, and the state variables and outputs
are observed. For small circuits, the actual verification can be performed manually.
More generally, simulation is used. In manual simulation, it is straightforward to
apply each of the state-input combinations and verify that the output and the next
state are correct.

Verification with simulation is less tedious, but typically requires a sequence
of input combinations and applied clocks. In order to check out a state-input
combination, it is first necessary to apply a sequence of input combinations to
place the circuit in the desired state. It is most efficient to find a single sequence
to test all the state-input combinations. The state diagram is ideal for generating
and optimizing such a sequence. A sequence must be generated to apply each
input combination in each state while observing the output and next state that
appears after the positive clock edge. The sequence length can be optimized by
using the state diagram. The reset signal can be used as an input during this
sequence. In particular, it is used at the beginning to reset the circuit to its initial
state.

In Example 5-8, both manual and simulation-based verification are illustrated.

EXAMPLE 5-8 Verifying the Sequence Recognizer

The state diagram for the sequence recognizer appears in Figure 5-20(d) and the
logic diagram in Figure 5-23. There are four states and two input combinations, giv-
ing a total of eight state-input combinations to verify. The next state can be
observed as the state on the flip-flop outputs after the positive clock edge. For D
flip-flops, the next state is the same as the D input just before the clock edge. For
other types of flip-flops, the flip-flop inputs just before the clock edge are used to
determine the next state of the flip-flop. Initially, beginning with the circuit in an
unknown state, we apply a 1 to the Reset input. This input goes to the direct reset
input on the two flip-flops in Figure 5-23. Since there is no bubble on these inputs,
the 1 value resets both flip-flops to 0, giving state A (0, 0). Next, we apply input 0,
and manually simulate the circuit in Figure 5-23 to find that the output is 0 and the
next state is A (0, 0), which agrees with the transition for input 0 while in state A.
Next, simulating state A with input 1, next state B (0, 1) and output 0 result. For
state B, input 0 gives output 0 and next state A (0, 0), and input 1 gives output 0
and next state C(1, 1). This same process can be continued for each of the two
input combinations for states C and D.

For verification by simulation, an input sequence that applies all state-input
combination pairs is to be generated accompanied by the output sequence and
state sequence for checking output and next-state values. Optimization requires
that the number of clock periods used exceed the number of state-input combina-
tion pairs by as few periods as possible (i.e., the repetition of state-input combina-
tion pairs should be minimized). This can be interpreted as drawing the shortest

246 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Clock Edge: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

InputR: X i 0 0 0 o o O O O o o0 o
InputX: X 0 0 1 1 i 0 1 0 1 1 0 O
State (A, B): X, X 0,0*0,0 0,00,1 1,1 1,11,00,10,00,11,11,00,0

Outputzz: X 0 0 0 0 0 O 1 0 0 O 0 O
(b)

O FIGURE 5-26
Test Sequence Generation for Simulation in Example 5-4

path through the state diagram that passes through each state-input combination
pair at least once.

In Figure 5-26(a), for convenience, the codes for the states are shown and
the path through the diagram is denoted by a sequence of blue integers begin-
ning with 1. These integers correspond to the positive clock edge numbers in
Figure 5-26(b), where the verification sequence is to be developed. The values
shown for the clock edge numbers are those present just before the positive
edge of the clock (i.e., during the setup time interval). Clock edge 0 is at z = 0 in
the simulation and gives unknown values for all signals. We begin with value 1
applied to Reset (1) to place the circuit in state A. Input value 0 is applied first
(2) so that the state remains A, followed by 1 (3) checking the second input
combination for state A. Now in state B, we can either move forward to state C
or go back to state A. It is not apparent which choice is best, so we arbitrarily
apply 1 (4) and go to state C. In state C, 1 is applied (5) so the state remains C.
Next, a 0 is applied to check the final input for state C. Now in state D, we have
an arbitrary choice to return to state A or to state B. If we return to state B by
applying 1 (7), then we can check the transition from B to A for input 0 (8).
Then, the only remaining transition to check is state D for input 0. To reach
state D from state A, we must apply the sequence 1, 1, 0 (9) (10) (11) and then
apply 0 (12) to check the transition from D to A. We have checked eight transitions

5-6 / Other Flip-Flop Types [247

Cock LML UL LIl ryririqLrriruri
Reset [|
INPUT |
x| 1 I e B
STATE | 1 1 '
Al | | T | m 1
B| L [T—1 |
OUTPUT | 1 1 ' 1

7l i i [1

ceeecnebeoeecen beeeceoen beeccoeecbeeenco b eecooebeecccen beeeocoee booeeeenn e b
0 100 ns 200 ns 300 ns

O FIGURE 5-27
Simulation for Example 5-8

with a sequence consisting of reset plus 11 inputs. Although this test sequence is
of optimum length, optimality is not guaranteed by the procedure used. How-
ever, it usually produces an efficient sequence.

In order to simulate the circuit, we enter the schematic in Figure 5-23 using
the Xilinx ISE 4.2 Schematic Editor and enter the sequence from Figure 5-26(b) as
a waveform using the Xilinx ISE 4.2 HDL Bencher. While entering the waveform,
it is important that the input X changes well before the clock edge. This insures
that there is time available to display the current output and to permit input
changes to propagate to the flip-flop inputs before the setup time begins. This is
illustrated by the INPUT waveforms in Figure 5-27, in which X changes shortly
after the positive clock edge, providing a good portion of the clock period for the
change to propagate to the flip-flops. The circuit is simulated with the MTI Model-
Sim simulator. We can then compare the values just before the positive clock edge
on the STATE and OUTPUT waveforms in Figure 5-27 with the values shown on
the state diagram for each clock period in Figure 5-26. In this case, the comparison
verifies that the circuit operation is correct.

5-6 OTHER FLIP-FLOP TYPES

This section introduces JK and 7 flip-flops and the representations of their behav-
ior used in analysis and design.

Because of their lesser importance in contemporary design relative to D flip-
flops, the analysis and design examples illustrating their use are given on the
Companion Website for the text.

JK and T Flip-Flops

Four types of flip-flops are characterized in Table 5-8, including the SR and D
from Section 5-3 given for reference, and the JK and 7T introduced here. With the

0 TABLE 5-8

Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

Type Symbol Logic Diagrams Characteristic Table Characteristic Equation Excitation Table
41D D | Q(t+1) Operation Q(t+1) D | Operation
D e See Figure 6-13 0 | Reset 0@t +1) = D(1) 0 0 | Reset
1 Set 1 1 Set
S |R| Q(t+1) | Operation Q) | Q(t+1) | S|R | Operation
ds 0| Q@ No change 0 0|X | No change
SR |C See Figure 6-10 1 0 Reset ot +1) = () + R(2)-Q() 1 10| Set
S 1o 1 | Set 1 0 |0|1] Reset
1)1 ? Undefined 1 1 X| 0| No change
J | K| Q(t+1) | Operation Q@) | Q(t+1) | J | K| Operation
-3 7 D 0|0 Q@® No change _ _ 0 0 0|X | No change
ixiipee 1o 01| 0 | Reset O +1) =IO+ KM-QH | ¢ 1 [1]X] Set
+C tjo| 1 Set 1 0 |X|1]| Reset
1|1| @@ | Complement 1 1 X| 0 | No change
:E T | Q(t+1) | Operation Qt+1) T | Operation
T D
T
T 0| Q@) | Nochange 0@t +1) =T © Q) @) 0 | No change
_ —c _ —_
i 1| Q@ | Complement [0]()] 1 | Complement

SLINDYID TVIINANOES / § YAIAVHD [1 8T

5-6 / Other Flip-Flop Types [249

exception of the SR flip-flop, which is master-slave, the symbol for a positive-
edge-triggered version of each flip-flop type is given. A logic diagram for an
implementation of each flip-flop type is either referenced or given. A new con-
cept, the characteristic table, defines the logical properties of flip-flop operation in
tabular form. Specifically, the table defines the next state as a function of the
present state and inputs. Q(¢) refers to the present state prior to the application of
a clock pulse. Q(t + 1) represents the state one clock period later (i.e., the next
state). Note that the triggering edge (or pulse) at input C is not listed in the char-
acteristic table, but is assumed to occur between time ¢ and ¢ + 1. Next to the
characteristic table, the characteristic equation for each flip-flop type is given.
These equations define the next state after the clock pulse for each of the flip-
flops as a function of the preset inputs and the present state before the clock
pulse. The final column of the table consists of excitation tables for each of the flip-
flop types. These tables define the input value or values required to obtain each
possible next-state value after the clock pulse, given the present-state value before
the clock pulse. Excitation tables can be used to determine the flip-flop input
equations from state-table information.

Historically, the JK flip-flop was a modified version of the master-slave SR
flip-flop. While the SR flip-flop produces undefined outputs and indeterminate
behavior for S = R = 1, the JK flip-flop causes the output to complement its current
value for J = K = 1. The master-slave version of the JK flip-flop has pulse-triggered
behavior and, exhibits a property called “1s catching.” Once J = 1 or K =1 occurs,
such that the master changes to the opposite state, the master cannot be changed
back to its original state before the clock pulse ends, regardless of the values on J
and K. The same solution applies as for the SR flip-flop, which is to insist that there
are no changes during the interval of the clock pulse, i.e., when the clock equals 1.
To avoid this additional contribution to the length of the clock cycle, we use only
edge-triggered JK flip-flops built upon an edge-triggered D flip-flop.

In Table 5-8, the symbol for a positive-edge-triggered JK flip-flop is shown as
well as its logic diagram using a positive-edge-triggered D flip-flop. The characteris-
tic table given describes the behavior of the JK flip-flop. The J input behaves like
the S input to set the flip-flop. The K input is similar to the R input for resetting the
flip-flop. The only difference between the SR and JK flip-flops is their response to
the condition when both inputs are equal to 1. As can be verified from the logic
diagram, this condition complements the state of the JK flip-flop. When J = 1 and
QO =0, then D = 1, complementing the JK flip-flop outputs. When K =1 and Q =1,
then D = 0, complementing the JK flip-flop outputs. This demonstrates that,
regardless of the value of Q, the condition J = 1 and K = 1 causes the outputs of
the flip-flop to be complemented in response to a clock pulse. The next-state
behavior is summarized in the Characteristic Table column of Table 5-8. The clock
input is not explicitly shown, but a clock pulse is assumed to have occurred
between the present state and the next state of Q.

The T (toggle) flip-flop is equivalent to the JK flip-flop with J and K tied
together so that J = K = T. With this connection, only the combinations J =0, K =0
and J= 1, K =1 are applied. If we take the characteristic equation for the JK flip-
flop and make this connection, the equation becomes

250 [CHAPTER 5 / SEQUENTIAL CIRCUITS

Qt+1)=TQ + TQ =T®Q

The symbol for the T flip-flop and its logic diagram based on the preceding equa-
tion are given in Table 5-8. The characteristic equation for the T flip-flop is that
just given, and the characteristic table in Table 5-8 shows that for T = 0, the T flip-
flop outputs remain unchanged, and for T = 1, the outputs are complemented.
Since the T flip-flop can only hold its state unchanged or complement its state,
there is no way to establish an initial state using only the 7 input without adding
external sampling of the current output in the next-state logic outside of the flip-
flop. Thus, the T flip-flop is usually initialized to a known state by using a direct set
or direct reset.

5-7 STATE-MACHINE DIAGRAMS AND APPLICATIONS

Thus far, we have used a traditional notation for state diagrams and tables, a nota-
tion illustrated by a Mealy model state diagram in Figure 5-28(a). Although this
model serves well for very small designs, it often becomes cumbersome or unwork-
able for large designs. For example, all 2” combinations of # input variables must
be represented on the transitions from each of the states even though the next
state or output may be affected by only one of the » input variables. Also, for a
large number of output variables, for each state or input combination label, up to
2™ output combinations must be specified even though only one among the m out-
put variables is affected by the state and input values. Also, the Mealy model is
very inefficient in specifying outputs because of the need to combine transition and
output control functions together. To illustrate, the use of Moore outputs, in addi-
tion to Mealy, can greatly simplify output specification when applicable. Also, the
use of Mealy outputs that are dependent upon input values, but not dependent on
transition labels, can be useful.

These arguments suggest that for pragmatic design, a modified state diagram
notation is critical. We call this modified state diagram a state-machine diagram.
This terms is also applied to the traditional state diagram representations, although
here we use it primarily to identify departures in notation from that used for tradi-
tional diagrams. The main targets of the notation changes are to replace enumera-
tion of input and output combinations with the use of Boolean expressions and
equations to describe input combinations, and the expansion of the options for
describing output functions beyond those permitted by the traditional model.

State-Machine Diagram Model

The development of this model is based on input conditions, transitions and output
actions. For a given state, an input condition can be described by a Boolean expres-
sion or equation in terms of input variables. An input condition as an expression is
either equal to 1 or 0. As an equation, it is equal to 1 if it is satisfied and equal to 0
if it is not. An input condition on a transition arc is called a transition condition
(TC), and causes a transition to occur if it is equal to 1. An input condition that, if

5-7 / State-Machine Diagrams and Applications [251

Inputs: A,B
Outputs: Y, Z 00, 01/01
00,10/10,
00, 01/01 11/00
(a) Traditional state diagram
TCD Mealy Output Actions,
/ OC/TOCD Mealy Output Actions
Moore Output Actions,
OC/TCI Mealy Output Actions
(b) Generic State Diagram Template
B/Y
Inputs: A,B
Outputs: Y, Z Reset

Defaults: Y =0,Z=0

(A+B)yzZ

(c) State machine diagram

Inputs: A,B /Z
Outputs: Y,Z AB AB
Defaults: Y =0,Z=0
A A
B AB
(d) Invalid Transition Conditions (e) Invalid Ouput Action

O FIGURE 5-28
Traditional State and State-Machine Diagram Representations

252 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

equal to 1, causes an output action to occur is an output condition (OC). In a
Moore model state-machine diagram, only transition conditions appear. Output
actions are a function of the state only and therefore are unconditional, i.e., with
an implicit output condition equal to 1. In a traditional Mealy model, when a con-
dition appears on an arc, by definition, it is both a transition condition and an out-
put condition. Multiple transition and output conditions may appear on a given
transition arc. In our model, we modify the Mealy model in two ways. First of all,
we permit output conditions to appear on the state, not just on transitions. Second,
we permit output conditions that depend on, but are not transition conditions on
the arcs. This provides more modeling flexibility in the formulation of correspond-
ing state tables and HDL descriptions. For this more flexible model, a generic state
and one of its transitions and the various possible condition situations are shown in
Figure 5-28(b).

For a given state, if a transition condition is equal to 1, then the correspond-
ing transition represented by the arc occurs. For a given state and transition, if all
transition conditions are 0, then the corresponding transition does not occur. An
unconditional transition always occurs on the next clock regardless of input val-
ues and can be thought of as having an implicit transition condition equal to 1. In
Figure 5-28(c), which has exactly the same function as the traditional state dia-
gram given in Figure 5-28(a), transition concepts are illustrated. For example, for
state S the transition to state S; is unconditional. For state S5 and input combina-
tion 11, transition condition AB equal to 1 causes a transition to state Sj. The
effectiveness of this approach in simplifying input condition representation is
illustrated well by transition conditions A in state S; and A + B in state S,. A is 1
for input combinations 00 and 01, and A + B is 1 for input combinations 01, 10,
and 11, causing the respective transitions from S; to Sy and S, to S,.

Outputs are handled by listing output conditions and output actions. The vari-
ous forms of specifying the control of output actions by state and output conditions
are shown in Figure 5-28(b). For convenience, output conditions (if any) followed by
a slash and corresponding output actions are placed at the end of a straight or curved
line from either the state or from a transition condition 7°C. Multiple output condi-
tion/output action pairs are separated by commas. We classify output actions based
on the conditions that cause them into four types as shown in Figure 5-28(b). Moore
output actions depend only on the state, i.e., are unconditional. Transition-condition
independent (TCI) Mealy outputs are preceded by their respective output condition
and a slash. These two types of output actions are attached by a line to the state
boundary as shown in Figure 5-28(b). Transition-condition dependent (TCD) Mealy
output actions depend on both the state and a transition condition, thereby making
the transition condition an output condition as well. Transition and output condition
dependent (TOCD) output actions depend on the state, a transition condition, and an
output condition and are preceded by their respective output condition OC and a
slash. These two types of output actions are attached by a line to the transition condi-
tion 7C upon which they depend as shown in Figure 5-28(b).

In a given state, an output action occurs if it is: (a) unconditional (Moore),
(b) TCI and its output condition OC = 1, (c) TCD and its transition condition 7D =
1,and (d) TOCD and its transition condition 7C and output condition OC are both

Www.Ebook777.com

http://www.ebook777.com

5-7 / State-Machine Diagrams and Applications [253

equal to 1,i.e, TC - OC = 1. Note that Moore and TCI output actions attached to a
state, apply to all transitions from the state as well.

An output action may simply be an output variable. The output variable has
value 1 for a given state present and its corresponding input conditions attached to
the state or transition all equal to 1, and value 0 otherwise. For any state or state-
input condition pair without an output action on a variable, that variable takes on a
default value noting again the exception that Moore and TCI output actions
attached to a state, apply to all transitions from the state. Ordinarily, we explicitly
list default output actions for reference as shown in Figure 5-28(c).

It is also possible to have variables that are vectors with values assigned. For
vectors, a specific default value may be assigned. Otherwise, for a vector, the
implicit assignment to 0 used for scalar variables does not apply. Finally, in chapter
8, register transfer statements are listed as output actions. All of the modifications
described permit description of a complete system using complex input conditions
and output actions. Note that many of these modifications relate somewhat to the
algorithmic state machines previously used in this text.

Figure 5-28(c) can be used to illustrate the power of this notation. State S3
has variables Y and Z as Moore output actions,so Y =1 and Z = 1 when in state S3.
State Sy has a TCI output condition and action B/Y which specifies that when in
state Sy, Y = 1 whenever B = 0. State S; has a TCI output condition and action (A +
B)/Z.1n all these cases, repetitive occurrences of the output actions are avoided on
the transitions. For state §, with the use of a TCI output action, the problem of
specifying the transition as unconditional and the output condition B on the transi-
tion is avoided. Also, for state S; with the use of a TOCD output action, the transi-
tion condition A combined with output condition B is easily provided.

In this example, Figure 5-28(a) provided the information for deriving Fig-
ure 5-28(c). Transition and output conditions for each state were obtained by
examining the binary input and output combinations in Figure 5-28(a) and
determining the simplest way to describe an output action and then finding the
simplest Boolean expression for the corresponding output condition. Likewise,
the simplest transition condition can be found for each transition. This approach
constitutes a transformation from the traditional state diagram to an equivalent
state-machine diagram. It should be noted, however, that our principal goal is
not this transformation, but instead, direct formulation of state-machine dia-
grams from specifications.

A final element that can appear on a state diagram is the binary code
assigned to a state. This binary code appears in parentheses below the state name
or at the end of a line drawn out from the state.

Constraints on Input Conditions

In formulating transition and output conditions, it is necessary to perform checks
to make sure that invalid next state and output specifications do not arise. For all
possible input conditions, each state must have exactly one next state and have
every single-bit output variable with exactly one value, e.g., either 0 or 1, but not
both. These conditions are described in terms of constraints.

254 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

For each state, there are two constraints on transition conditions:

1. The transition conditions from a given state S; must be mutually exclusive,
i.e., all possible pair of conditions (7j;, Tj) on distinct transition arcs from a
given state have no identical input values, i.e.,

Ty - Ty = 0,

2. The transition conditions from a given state must cover all possible combina-
tions of input values, i.e.,

2T;i=1
in which X represents OR. If there are don’t care next states for state S;, the transi-
tion conditions for these states must be included in the OR operation. Also, in
applying these constraints, recall that an unconditional transition has an implicit
transition condition of 1.

In the formulation of a state-machine diagram, transition conditions must be
checked for each state and its set of transitions. If constraint 1 does not hold, then
the next state for the current state is specified as two or more states. If constraint 2
does not hold, then there are cases with no specified next state for one or more
transitions where one is expected to be specified. Both of these situations are
invalid.

For each state, there are two similar constraints on output conditions:

1. For every output action in state Sj or on its transitions having coincident out-
put variables with differing values, the corresponding pair of output condi-
tions (Oj;,0yc) must be mutually exclusive, i.e., satisfy

O; - Ox=0

2. For every output variable, the output conditions for state S; or its transitions
must cover all possible combinations of input values that can occur, i.e.,

2T;i=1
If there are don’t care outputs for state S, the output conditions for the don’t care
outputs must be included in the OR operation. In applying these constraints,
recall that an unconditional output action on a state or an arc has an implicit out-
put condition of 1. Note that default output actions must be considered in this
analysis.

EXAMPLE 5-9 Checking Constraints

In this example, transition and output constraints are checked for the state-
machine diagrams in Figure 5-28(c) and selected invalid cases in parts d and e of
Figure 5-28. Beginning with Figure 5-28(c), the results for constraint 1 checks on
transition conditions are:

So: The constraint is satisfied by default since there are no pairs of transition con-
ditions on distinct transitions arcs.

S;: There is one pair of TCs to check: 4 - A = 0.

5-7 / State-Machine Diagrams and Applications [1 255

S,: There is one pair of TCs to check: (A + B) - A B = 0.
S3: There are three pairs of TCs to check: AB ‘A= 0,AB -AB = 0, and A - AB = 0.

Since all of the results are 0, constraint 1 is satisfied. Next, checking constraint 2:
So: The transition is unconditional and has an implicit transition condition of 1.

S A+A=1
Sy (A+B)+AB=1
Sy A+AB+AB=1

Since the results for all states are 1, constraint 2 is satisfied. Next, checking con-
straint 1 on output conditions:

Se: There is only one output condition, B on output action ¥, so the constraint is
satisfied by default.

Si: The first coincident output variable is Y and its values are 1 where Y appears
for TOC A - B, and 0 by default where Y does not appear for input conditions
A and AB. Note that if B is interpreted without ANDing with transition con-
dition A, then check A - B # 0 incorrectly fails! The second coincident output
variable is Z, with value 1 for A + B and 0 by default for input condition AB.
In general, it is impossible for an invalid case to occur due to a default output
action. So the constraint is satisfied.

S,: The first coincident output variable is Y and the second is Z. Y has value 1 for
output condition A + B, and by default value 0 for A B. Z has value 1 for out-
put condition A B and 0 by default for A + B. Due to the use of a default val-
ues, the constraint is satisfied.

S;: There is no coincident output variable with differing output values, so the
output constraint is satisfied by default.

Since the output constraint is satisfied for all four states, it is satisfied for the state-
machine diagram as are the other two constraints. Next, checking constraint 2 on
output conditions:

So: There is a single output condition B for which Y = 1. By default, Y = 0 for the
output condition for complement of B = B. ORing the conditions, B + B = 1.
In general, with a default output specified, this will be the case since the
default covers all input combinations not covered by specified output condi-
tions, so the constraint is satisfied.

S7 through S3: Because of the default output action for variables Y and Z, as for S,
the constraint is also satisfied.

Parts d and e of Figure 5-28 are examples that are used to demonstrate
selected invalid cases for state-machine diagrams. For part d, A - B =A B,so the
transition constraint 1 is not satisfied. For part e, variable Z appears as an output
with distinct values 1 in state S and 0 on the transition for AB. Output condition
constraint 1 gives 1 - AB # 0. So the constraint is not satisfied. Actually, this occurs
only because the designer failed to realize that Z = 1 was already specified on the
transition because of its specification on the state S.

256 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Design Applications Using State-Machine Diagrams

Two examples will be used to illustrate design using state-machine diagrams. In
addition to design formulation, the effects of the use of a state-machine diagram
formulation on the structure for state tables will be illustrated. These examples also
illustrate that good solutions are possible for problem with larger numbers of
inputs and states, in particular problems for which traditional state diagrams, tradi-
tional state tables and K-maps are all impractical.

O TABLE 5-9

Input and Output Variables for the Batch Mixing System

Input Meaning for Value 1 Meaning for Value 0*
NI Three ingredients Two ingredients
Start Start a batch cycle No action
Stop Stop an on-going batch cycle No action
L0 Tank empty Tank not empty
L1 Tank filled to level 1 Tank not filled to level 1
L2 Tank filled to level 2 Tank not filled to level 2
L3 Tank filled to level 3 Tank not filled to level 3
TZ Timer at value 0 Timer not at value 0

Output Meaning for Value 1 Meaning for Value 0

MX Mixer on Mixer off
PST Load timer with value from D No action
™ Timer on Timer off
V1 Valve open for ingredient 1 Valve closed for ingredient 1
V2 Valve open for ingredient 2 Valve closed for ingredient 2
V3 Valve open for ingredient 3 Valve closed for ingredient 3
VE Output valve open Output valve closed

o

A
(EXAMPLE 5-10 State-Machine Design for a Batch Mixing System Control
=A mixing system for large batches of liquids is designed to add up to three ingredients

to a large circular mixing tank, mix the ingredients, and then empty the mixed liquid
from the tank. There are three inlets for ingredients, each with a on-off valve. There
are three movable fluid sensors in the tank that can be set to turn off the respective
valves at the level required for the first ingredient alone, for the first and second ingre-
dients, and for all three ingredients. A switch is used to select either a two or three
ingredient operation. There is a button for starting the operation and a second button
for stopping the operation at any time. There is a timer for timing the mixing cycle.
The length of the mixing cycle is specified by a manually-operated dial that provides a
starting value to a timer, The timer counts downward to zero to time the mixing. After
mixing, the output valve is opened to remove the mixed liquid from the tank.

A sequential circuit is to be designed to control the batch mixing operation.
The inputs and outputs for the circuit are given in Table 5-9. Before starting the

5-7 / State-Machine Diagrams and Applications [257

operation of the mixing system, the operator places the fluid sensor L1, L2, and L3
in the proper locations. Next, the operator selects either two or three ingredients
with switch NI and sets dial D to the mixing time. Then, the operator pushes the
START to begin the mixing operation which proceeds automatically unless the
STOP button is pushed. Valve V1 is opened and remains open until L1 indicates
ingredient level 1 has been reached. Valve 1 closes and valve 2 opens and remains
open until L2 indicates level 1 plus 2 has been reached. Valve 2 closes, and, if
switch NI = 1, valve 3 opens and remains open until L3 indicates level 1, 2 plus 3
has been reached. If NI = 0, the value on dial D is then read into the timer, the
mixing begins, and the timer starts counting down. In the case where NI = 1, these
actions all occur when L3 indicates that the level for all three ingredients has been
reached. When the timer reaches 0 as indicated by the signal 7Z, the mixing stops.
Next, the Output valve is opened and remains open until sensor L0 indicates the

Default: MX =0,PST =0,
™ =0,V1=0,V2=0,V3=0,
VE=0

START + STOP

. PST
12 Ni.5TOP 7

L0-STOP

O FIGURE 5-29
State-Machine Diagram for Batch Mixing System

258 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

tank is empty. If STOP is pushed at any time, addition of ingredients stops, mixing
stops, and the output valve closes.

The first step in the design is to develop the state-machine diagram. During
this development, the input and status signals from Table 5-9 are used and the dia-
gram development can be traced in Figure 5-29. We begin with an initial state Init,
which is the reset state. As long as START is 0 or STOP is 1, the state is to
remain Init. When START is 1 with STOP at 0, a new state is required in which
the addition of ingredient 1 is performed. State Fill 1 with output V1 is added to
perform this operation. In state Fill_1, if the operator pushes STOP, then the
state is to return to Init with the fill operation ceasing as indicated on the dia-
gram. If STOP is not pushed and L1 is still 0, then the filling must continue with
the state remaining Fill 1 as indicated by the transition back to Fill_1 labeled
L1 - STOP. The filling continues until L1 = 1 because the fill level for ingredient 1
has been reached. When L1 = 1 with STOP = 0, a new state, Fill_2 is added. For
the input condition, L1 - STOP, applied in state Fill_1, V1 goes to 0, turning off
valve 1, and the state becomes Fill_2 with output V2, turning on valve 2. The loop
on Fill 2 specifies that the state remains Fill_2 until L2 becomes 1. When L2 =1
with STOP = 0, for NI = 1 the state Fill_3 is added for the three ingredient case,
and for NI = 0 state Mix is added for the two-ingredient case and output PST is
added to present the timer to the mixing time on dial D. Fill_3 has transitions the
same as for state Fill_1 except that L1 is replaced by L3. For L3 - STOP, filling is
complete, so state Mix is entered for mixing. Also, a Mealy output PST is added
for L3 - STOP to preset the timer to the mixing time. In state Mix, the output MX
is used to activate the mixing. In addition, as long as 7Z = 0 and Stop = 0, the state
remains Mix and the timer is turned on by Mealy output 7'M, causing the timer to
count downward. State Empty is added for the case where 7Z =1, since the timer
has reached 0. With the mixing complete, the fluid can be emptied from the tank by
opening the output valve with VE. The state remains Empty as long as L0 = 0 and
Stop = 0 as indicated by the loop to Empty with input condition LO-STOP. If at any
time, L0 or STOP becomes 1, the state returns to Init, turning off the output valve
by changing to VE = 0. This completes the development of the state-machine dia-
gram. The necessary analysis to verify the transition and output condition con-
straints is left to the reader in Problem 5-36(a).

Although the state-machine diagram is similar to a state diagram, it is difficult
to form a standard state table since there are eight inputs, giving 256 columns.
Instead, a table can be formed that enumerates rows for each the following: (1) each
state with its unconditional next state and its TCI output actions and output condi-
tions, (2) each transition condition for each state with the corresponding next state
and (3) corresponding TCD and TCOD output actions, the latter with output condi-
tions. The results of this process for the state-machine diagram in Figure 5-29 are
shown in Table 5-10. In this table, note that the entries in Non-zero Outputs are
either Moore outputs or TCD outputs. For the TCD outputs, Boolean expressions
can be shared in the excitation and output equations. To this end, we define the fol-
lowing intermediate variables for use in excitation equations and output equations:

X = Fill 2-1L2-NI-STOPF

5-7 / State-Machine Diagrams and Applications [259

0 TABLE 5-10
State Table for the Batch Mixing System

Non-zero Outputs

State Transition Next State Including Mealy

State Code Condition State Code Outputs Using TCs*

Init 100000 START + STOP Init 100000
START-STOP Fill_1 010000

Fill_L1 010000 Vi
STOP Init 100000
L1-STOP Fill_1 010000
L1-STOP Fill_2 001000

Fill_2 001000 V2
STOP Init 100000
L2-STOP Fill_2 001000
L2NISTOP Mix 000010 PST*
L2:-NI-STOP Fill_3 000100

Fill_3 000100 V3
STOP Init 100000
L3-STOP Fill_3 000100
L3-STOP Mix 000010 PST*

Mix 000010 MX
STOP Init 100000
TZ-STOP Mix 000010 TM*
TZ-STOP Empty 000001

Empty 000001 VE
LO-STOP Empty 000001
LO + STOP Init 100000

Y = Fill 3-L3-STOP

Z = Mix-TZ-STOP

Using the one-hot state assignment listed in the table assuming that each state vari-
able is named with the state for which it is 1, the excitation and output equations are:

Init(t +1) = Init-START + STOP + Empty- L0
Fill_1(t+1) = Init-START-STOP + Fill_1-L1-STOP
Fill 2 = Fill_1-L1-STOP +Fill 2-1L2-STOP
Fill_ 3 = L2-NI-STOP +Fill_ 3-L3-STOP
Mix=X+Y+Z

Empty(t+1) = Mix-TZ-STOP + Empty-LO-STOP

260 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

V1 = Fill_1
V2 = Fill 2
V3 = Fill_3
PST=X+Y
MX = Mix
T™ = Z

In the equation for Init (¢ + 1), since all six states return to state Init for input stop,
there is no need to specify any states with STOP. It is interesting to note that in-
deed, X, Y, and Z are shared between next state and output equations. With the
one-hot state assignment, the formulation of the equations is very straightforward
using either the state table or state-machine diagram.

// \
,EXAMPLE 5-11 State-Machine Design of a Sliding Door Control
\

* Automatic sliding entrance doors are widely used in retail stores. In this example,
we consider the design of the sequential logic for controlling a sliding door. The
one-way door opens in response to three sensors PA (Approach Sensor), PP
(Presence Sensor), DR (Door Resistance Sensor), and to a pushbutton MO (Man-
ual Open). PA senses a person or object approaching the door, and PP senses the
presence of a person or object within the doorframe. DR senses a resistance to
the door closing that is at least 15 pounds indicating that the door is pushing on a
person or obstacle. MO is a manual pushbutton on the door control box that
opens the door without dependence on the automatic control. The door control
box also has a keyed lock LK for locking the door closed using an electrically-
operated bolt BT to prevent entrance when the store is closed. In addition to
these inputs to the door logic, there are two limit switches CL (close limit) and
OL (open limit) that determine when the door mechanism has closed the door
completely or opened the door completely, respectively. The control mechanism
has just three outputs, BT (bolt), CD (close door) and OD (open door). All of the
inputs or outputs are described along with the meaning of value 1 and value O for
each of them in Table 5-11.

Using the description just given and additional constraints on the design, we
will develop the state-machine diagram as the first step in the design of the sequen-
tial circuit. We begin by defining the initial state to which the circuit will be reset,
Closed. After reset, the door will open for the first time from this state. What is the
transition condition for opening the door? First of all, the door must be unlocked,
denoted by LK. Second, there must be a person approaching the door, a person
within the door, or manual opening of the door requested by the pushbutton,
denoted by PA + PP + MO. Ordinarily, one would not expect the opening opera-
tion to be initiated by PP since this indicates that a person is within the doorframe.
But this is included to cause the door to open in case of a PA failure. Both the lock
and sensor conditions must be present for the door to open, so they are ANDed

5-7 / State-Machine Diagrams and Applications [1 261

OO0 TABLE 5-11
Input and Output Variables for the Sliding Door Control
Input
Symbol Name Meaning for Value 1 Meaning for Value 0
LK Lock with Key Locked Unlocked
DR Door Resistance Sensor Door resistance = 15 1b Door resistance < 15 1b
PA Approach Sensor Person/object approach No person/object approach
PP Presence Sensor Person/object in door No person/object in door
MO Manual Open PB Manual open No manual open
CL Close Limit Switch Door fully closed Door not fully closed
OL Open Limit Switch Door fully open Door not fully open
Output
Symbol Name Meaning for Value 1 Meaning for Value 0
BT Bolt Bolt closed Bolt open
CD Close Door Close door Null action
OD Open Door Close door Null action

together to give the transition condition on the arrow from state Closed to state
Open, the state in which the opening of the door occurs. If LK is 1 or all of PA, PP,
and MO are 0, then the door is to remain closed. This gives the transition condi-
tions LK + PA-PP-MO for remaining in state Closed. LK is also the output condi-
tion for BT. Because of this, two transition conditions are needed, LK and PA-PP
MO CD is to be activated for PA-PP-MO, CL and for BT not activated, i.e., for
LK. This can be realized by the existing transition condition PA-PP-MO plus out-
put condition LK-CL as shown in Figure 5-30. The state remains Open and OD is 1
as long as the door is not fully open as indicated by limit switch value ‘OL. When
this input condition changes to OL, the door is fully open and the new state is
Opened. Note that there is no monitoring of the sensor inputs other than OL in
Open since it is assumed that the door will fully open regardless of whether the
person or object remains within sensor view. If at least one of the inputs that
opened the door is 1, then the door will be held open by remaining in state
Opened. The expression representing this condition is PA + PP + MO. To insure
that the door is held open, the limit switch value OL which indicates the door is
not fully open is ANDed with PA + PP + MO to produce an output condition that
activates door opening output OD. If all of the input values that opened the door
are 0, then the door is to be closed. This transition condition is represented by
PA-PP-MO which causes a transition from Opened to new state Close with output
CD. In state Close, if any of the four sensors PA, PP, MO, or DR have value 1, rep-
resented by PA + PP + MO + DR, the door must reopen and the next state
becomes Open. In state Close, because the door is closing, DR needs to be
included here to indicate that the door may be blocked by a person or object. The
form of the input conditions for the Close state differs from those for the Open

262 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Default: BT =0,CD=0,0D =0

CL-PA-PP-MO-DR

O FIGURE 5-30
State-Machine Diagram for the Automatic Sliding Door

state since door closure is to halt even if only partially completed when PA, PP,
MO and DR have value 1. In a similar manner to the use of the OL sensor for the
Open state, we add the transition to the Closed state for transition condition
CL-PA-PP-MO-DR. A value of 0 on CL and on all of the sensor signals causing
opening is represented by the transition condition CL-PA-PP-MO-DR that causes
the Close state to remain unchanged. This completes the development of the dia-
gram. The necessary analysis to verify the transition and output condition con-
straints is left to the reader in Problem 5-36(b). Note that all of the output
conditions for OD and CD to be 0 are implicit and not shown, a fact that must be
taken into account when verifying the output constraints.

The state table derived from the state-machine diagram is shown in Table 5-12.
The next step in the design is to make the state assignment. Since there are just
four states, we choose a two-bit code, the Gray code. The state code information
has been added to the state machine table in Table 5-12. With the state assignment
in place, we can now write the next state and output equations for the circuit.
Because of the number of input variables, map optimization is not feasible, but
some multilevel optimization can be applied to obtain efficient realizations. The
equations to be written from Table 5-12 are based on the 1 values for the next state
variables. For excitation equations, products are formed from the state and input
condition combinations for each 1 present with the state combinations replaced by
state variable products, e.g., 01 becomes Y;-Y,. The product term for the third row

5-7 / State-Machine Diagrams and Applications [263

OO0 TABLE 5-12
Modified State Table for the Automatic Sliding Door

Non-zero Outputs (Including

State Input Next State TCD and TOCD Output Actions
State Code Condition State Code and Output Conditions*)

Closed 00 LK Closed 00 BT*

00 PA-PP-MO Closed 00 LK-CL/CD*

00 LK-(PA+PP+MO) Open 01
Open 01 OD

01 OL Open 01

01 OL Opened 11
Opened 11 PA + PP + MO Opened 11 OL/OD*

11 PAPP-MO Close 10
Close 10 CD

10 CLPAPPMO-DR Close 10

10 CL-PA-PP-MO-DR Closed 00

10 PA + PP+ MO + DR Open 01

of the table is Y;-Y,-(LK (PA + PP + MO). The product terms for each of the 1 val-
ues can then be ORed together to form an excitation equation. The expression PA
+ PP + MO and its complement PA-PP-MO are transition conditions for TOCD
output actions and appear frequently as factors in other transition conditions. As
useful factors, these expressions will be denoted by X and X, respectively. The exci-
tation equations are:

X = PA+PP+MO
Y (t+1) =Y Y,-OL+Y,-Y,+Y,-Y,-CL-X-DR
Yy(t+1) = Y1 Y2 LK-X+Y1-Y,+Y,'Y,-X+Y, Y, (X+DR)

For the output equations, products are formed from the state combinations
and state combination-Mealy output conditions for each output listed. As for the
excitation equations, state combinations are replaced by state variable products.
The products are ORed for each of the output variables. The resulting output
equations with multilevel optimization applied are:

BT =Y1-Y, LK
CD =Y, Y,+Y1-Y,-LK-CL-X
=(Y;+LK-CL-X)'Y,
OD=Y,-Y,+Y,-Y,-OL-X
=(Y1+OL-X)'Y,

264 [CHAPTER 5/ SEQUENTIAL CIRCUITS

By using these six equations, the final circuit can be construction from the combi-
national logic represented along with the two flip-flops for Y; and Y, with their
resets connected.

Our introduction to design based on state-machine diagrams and state machine
tables is now complete. In Chapter 7, we will use these tools to describe systems
including register transfers. This will lead to methods for designing datapaths made
up of register transfer hardware and state-based controls.

ASYNCHRONOUS INTERFACES, SYNCHRONIZATION, AND SYNCHRONOUS Circuit PIT-
FALLS In this section, we have applied signals such as those coming from sensors,
buttons, and switches that are not synchronized with the clock to synchronous sequen-
tial circuits. This is a practice that can cause catastrophic failure because of timing

problems. These issues and problems are addressed in Chapter 6 in Sections 6-5, 6-6,
and 6-7.

5-8 HDL REPRESENTATION FOR SEQUENTIAL CIRCUITS—
VHDL

In Chapter 4, VHDL was used to describe combinational circuits. Likewise, VHDL
can describe storage elements and sequential circuits. In this section, descriptions
of a positive-edge-triggered D flip-flop and a sequence recognizer circuit illustrate
such uses of VHDL. These descriptions involve new VHDL concepts, the most
important of which is the process. Thus far, concurrent statements have described
combinations of conditions and actions in VHDL. A concurrent statement, how-
ever, is limited in the complexity that can be represented. Typically, the sequential
circuits to be described are complex enough that description within a concurrent
statement is very difficult. A process can be viewed as a replacement for a concur-
rent statement that permits considerably greater descriptive power. Multiple pro-
cesses may execute concurrently, and a process may execute concurrently with
concurrent statements.

The body of a process typically implements a sequential program. Signal val-
ues, however, which are assigned during the process, change only when the process
is completed. If the portion of a process executed is

B <= A;
C <= B;

then, at the completion of the process, B will contain the original contents of A and
C will contain the original contents of B. In contrast, after execution of these two
statements in a program, C would contain the original contents of A. To achieve
program-like behavior, VHDL uses another construct called a variable. In contrast
to a signal which evaluates after some delay, a variable evaluates immediately.
Thus, if B is a variable in the execution of

B := A;
C := B;

5-8 / HDL Representation for Sequential Circuits—VHDL [265

—— Positive-Edge-Triggered D Flip-Flop with Reset:
-— VHDL Process Description
library ieee;
use ieee.std logic_ll64.all;
entity dff is
port (CLK, RESET, D : in std_logic;
Q : out std_logic);
end dff;

architecture pet_pr of dff is
-— Implements positive-edge-triggered bit state storage
-— with asynchronous reset.

begin
process (CLK, RESET)
begin
if (RESET = '1l') then
Q<= "'0";
elsif (CLK'event and CILK = '1’') then
Q <= D;
end if;
end if;
end process;
end;

O FIGURE 5-31
VHDL Process Description of Positive-Edge-Triggered Flip-Flop with Reset

B will instantaneously evaluate to the contents of A and C will evaluate to the
new contents of B, so that C finally contains the original contents of A. Variables
appear only within processes. Note the use of := instead of <= for variable
assignment.

EXAMPLE 5-12 VHDL for Positive-Edge-Triggered D Flip-Flop with Reset

Basic process structure is illustrated by an example process describing the architec-
ture of a positive-edge-triggered D flip-flop in Figure 5-31. The process begins with
the keyword process. Optionally, process can be preceded by a process name
followed by a colon. Following in parentheses are two signals, CLK and RESET. This
is the sensitivity list for the process. If either CLK or RESET changes, then the pro-
cess is executed. In general, a process is executed whenever a signal or variable in
its sensitivity list changes. It is important to note that the sensitivity list is not a
parameter list containing all inputs and outputs. For example, D does not appear,
since a change in its value cannot initiate a possible change in the value of Q. Fol-
lowing the sensitivity list at the beginning of the process is the keyword begin,
and at the end of the process the keyword end appears. The word process fol-
lowing end is optional.

266 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

Within the body of the process, additional VHDL conditional structures can
appear. Notable in the Figure 5-31 example is if-then-else. The general structure
of an if-then-else in VHDL is

if condition then
sequence of statements
{elsif condition then
sequence of statements}
else
sequence of statements
end if;
The statements within braces { } can appear from zero to any number of times. The
if-then-else within a process is similar in effect to the when else concurrent assign-
ment statement. Illustrating, we have

if A = 'l' then
Q <= X;

elsif B = '0' then
Q <= Y;

else
Q <= 7Z;

end if;

If A is 1, then flip-flop Q is loaded with the contents of X. If A is 0 and B is 0, then
flip-flop Q is loaded with the contents of Y. Otherwise, Q is loaded with the contents
of z. The end result for the four combination of values on A and B is

A =0, B=20 Q <=Y

A =0, B=1 Q <

A=1, B=20 Q

A=1, B=1 Q <
More complex conditional execution of statements can be achieved by nesting if-
then-else structures, as in the following code:

if A = '1l' then

if C = '0' then
Q <= W;

A
1]
XX N

end if;
elsif B = '0' then
Q <=Y;
else
Q <= Z;
end if;
The end result for the eight combinations of values on A, B, and C is
A=0, B=0,¢C=20 Q <=Y
A=0, B=20,C=1 Q <=Y

5-8 / HDL Representation for Sequential Circuits—VHDL [267

A =0, B=1, CcC=20 Q <= 17
A 0, B 1, C 1 Q <= 7Z
A 1, B 0, C 0 Q <= W
A 1, B 0, C 1 Q <= X
A =1, B=1, ¢ =0 Q <= W
A=1, B=1, Cc =1 Q <= X

With the information introduced thus far, the positive-edge-triggered D flip-
flop in Figure 5-31 can now be studied. The sensitivity list for the process includes
CLK and RESET, so the process is executed if either CLK or RESET or both change
value. If D changes value, the value of Q is not to change for an edge-triggered flip-
flop, so D does not appear on the sensitivity list. Based on the if-then-else, if RESET
is 1, the flip-flop output Q is reset to 0. Otherwise, if the clock value changes, which
is represented by appending 'event to CLK, and the new clock value is 1, which is
represented by CLK = '1', a positive edge has occurred on CLK. The result of the
positive-edge occurrence is the loading of the value on D into the flip-flop so that it
appears on output Q. Note that, due to the structure of the if-then-else, RESET
equal to 1 dominates the clocked behavior of the D flip-flop, causing the output Q
to go to 0. Similar simple descriptions can be used to represent other flip-flop types
and triggering approaches.

EXAMPLE 5-13 VHDL for the Sequence Recognizer

A more complex example in Figures 5-32 and 5-33 represents the sequence-recog-
nizer state diagram in Figure 5-20(d). The architecture in this description consists
of three distinct processes, which can execute simultaneously and interact via
shared signal values. New concepts included are type declarations for defining new
types and case statements for handling conditions.

The type declaration permits us to define new types analogous to existing
types such as std_logic. A type declaration begins with the keyword type fol-
lowed by the name of the new type, the keyword is, and, within parentheses, the
list of values for signals of the new type. Using the example from Figure 5-31, we
have

type state_type is (A, B, C, D);

The name of the new type is state_type and the values in this case are the
names of the states in Figure 5-20(d). Once a type has been declared, it can be
used for declaring signals or variables. From the example in Figure 5-31,

signal state, next_state : state_type;

indicates that state and next_state aresignals that are of the type state_type.
Thus,state and next state can have values A, B, C,and D.

The basic if-then-else (without using the elsif) makes a two-way decision
based on whether a condition is TRUE or FALSE. In contrast, the case statement
can make a multiway decision based on which of a number of statements is TRUE.

268 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

-— Sequence Recognizer: VHDL Process Description
-- (See Figure 5-20(d) for state diagram)
library ieee;
use ieee.std _logic_1164.all;
entity seq rec is

port (CLK, RESET, X: in std_logic;

Z: out std_logic);

end seq rec;

architecture process_3 of seq rec is
type state_type is (A, B, C, D);
signal state, next_state : state_type;
begin

-— Process 1 - state_register: implements positive-edge-triggered
-- state storage with asynchronous reset.
state_register: process (CLK, RESET)
begin
if (RESET = 'l') then
state <= A;
elsif (CLK'event and CIK = 'l') then
state <= next_state;
end if;
end process;

-— Process 2 - next_state_function: implements next state as
-- a function of input X and state.
next_state_func: process (X, state)
begin
case state is
when A =>
if X = 'l' then
next_state <= B;
else
next_state <= A;
end if;
when B =>
if X = '1l' then
next_state <= C;
else
next_state <= A;
end if;

O FIGURE 5-32

VHDL Process Description of a Sequence Recognizer

5-8 / HDL Representation for Sequential Circuits—VHDL [269

-- Sequence Recognizer: VHDL Process Description (continued)
when C =>
if X = '1l' then
next_state <= C;
else
next_state <= D;
end if;
when D =>
if X = '1l' then
next_state <= B;
else
next_state <= A;
end if;
end case;
end process;

-— Process 3 - output_function: implements output as function
-- of input X and state.
output_func: process (X, state)
begin
case state is
when A =>

Z <= '0"';
when B =>

Z <= '0"';
when C =>

Z <= '0"';

when D =>
if X = 'l' then
zZ <= '1";
else
Z <= '0"';
end if;
end case;
end process;
end;

OO0 FIGURE 5-33
VHDL Process Description of a Sequence Recognizer (continued)

A simplified form for the generic case statement is

case expression is
{when choices =>
sequence of statements;}
end case;
The choices must be values that can be taken on by a signal of the type used in the

expression. The case statement has an effect similar to the with-select concurrent
assignment statement.

270 [CHAPTER 5 / SEQUENTIAL CIRCUITS

In the example in Figures 5-32 and 5-33, Process 2 uses a case statement to
define the next-state function for the sequence recognizer. The case statement
makes a multiway decision based on the current state of the circuit, A, B, C, or D. If-
then-else statements are used for each of the state alternatives to make a binary
decision based on whether input X is 1 or 0. Concurrent assignment statements are
then used to assign the next state based on the eight possible combinations of state
value and input value. For example, consider the state alternative when B. If X
equals 1, then the next state will be C; if X equals 0, then the next state will be A.
This corresponds to the two transitions out of state B in Figure 5-20(d). For more
complex circuits, case statements can also be used for handing the input conditions.

With this brief introduction to the case statement, the overall sequence recog-
nizer can now be studied. Each of the three processes has a distinct function, but the
processes interact to provide the overall sequence recognizer. Process 1 describes
the storage of the state. Note that the description is like that of the positive-edge-
triggered flip-flop. There are two differences, however. First, the signals involved are
of type state_type instead of type std_logic. Second, the state that results
from applying RESET is state A rather than state 0. Also, since we are using state
names such as A, B, and C, the number of state variables (i.e., the number of flip-
flops) is unspecified and the state codes are unknown. Process 1 is the only one of
the three processes that contains storage.

Process 2 describes the next-state function, as discussed earlier. The sensi-
tivity list in this case contains signals X and state. In general, for describing com-
binational logic, all inputs must appear in the sensitivity list, since, whenever an
input changes, the process must be executed.

Process 3 describes the output function. The same case statement framework
as in Process 2 with state as the expression is used. Instead of assigning state
names to next state, values 0 and 1 are assigned to Z. If the value assigned is the same
for both values 0 and 1 on X, no if-then-else is needed, so an if-then-else appears only
for state D. If there are multiple input variables, more complex if-then-else combina-
tions or a case statement, as illustrated earlier, can be used to represent the condi-
tioning of the outputs on the inputs. This example is a Mealy state machine in which
the output is a function of the circuit inputs. If it were a Moore state machine, with
the output dependent only on the state, input X would not appear on the sensitivity
list, and there would be no if-then-else structures in the case statement.

A common pitfall is present whenever an if-then-else or case statement is
employed. During synthesis, unexpected storage elements in the form of latches
or flip-flops appear. For the simple if-then-else used in Figure 5-31, using this pit-
fall gives a specification that synthesizes to a flip-flop. In addition to the two input
signals, RESET and CLK, the signal CLK'event is produced by applying the pre-
defined attribute 'event to the CLK signal. CLK'event is TRUE if the value of
CLK changes. All possible combinations of values are represented in Table 5-13.
Whenever RESET is 0 and the CLK is fixed at 0 or 1 or has a negative edge, no
action is specified. In VHDL, it is assumed that, for any combinations of condi-
tions that have unspecified actions in if-then-else or case statements, the left-hand
side of an assignment statement remains unchanged. This is equivalent to Q <= Q,

5-8 / HDL Representation for Sequential Circuitm—VHDL [271

0 TABLE 5-13
Ilustration of Generation of Storage in VHDL

Inputs Action

RESET =1 CLK=1 CLK’ event

FALSE FALSE FALSE Unspecified
FALSE FALSE TRUE Unspecified
FALSE TRUE FALSE Unspecified
FALSE TRUE TRUE Q<=D

TRUE — — Q<="'0

causing storage to occur. Thus, all combinations of conditions must have the
resulting action specified when no storage is intended. If this is not a natural situ-
ation, an others can be used in the if-then else or case. If binary values are used
in the case statement, just as in Section 4-7, an others must also be used to han-
dle combinations including the seven values other than 0 and 1 permitted for
std_logic.

Together, the three processes used for the sequence recognizer describe the
state storage, the next-state function, and the output function for a sequential
circuit. Since these are all of the components of a sequential circuit at the state-
diagram level, the description is complete. The use of three distinct processes is
only one methodology for sequential circuit description. Pairs of processes or all
three processes can be combined for more elegant descriptions. Nevertheless,
the three-process description is the easiest for new users of VHDL and also
works well with synthesis tools.

To synthesize the circuit into actual logic, a state assignment is needed, in
addition to a technology library. Many synthesis tools will make the state assign-
ment independently or based on a directive from the user. It is also possible for
the user to specify explicitly the state assignment. This can be done in VHDL by
using an enumeration type. The encoding for the state machine in Figures 5-32
and 5-33 can be specified by adding the following after the type state_type
declaration:

attribute enum_encoding: string;
attribute enum_encoding of state_type:
type is "00, 01, 10, 11";

This is not a standard VHDL construct, but it is recognized by many synthesis
tools. Another option is not to use a type declaration for the states, but to declare
the state variables as signals and use the actual codes for the states. In this case, if
states appear in the simulation output, they will appear as the encoded state values.

272 [0 CHAPTER 5 / SEQUENTIAL CIRCUITS

5-9 HDL REPRESENTATION FOR SEQUENTIAL CIRCUITS—
VERILOG

In Chapter 4, Verilog was used to describe combinational circuits. Likewise, Ver-
ilog can describe storage elements and sequential circuits. In this section, descrip-
tions of a positive-edge-triggered D flip-flop and a sequence-recognizer circuit
illustrate such uses of Verilog. These descriptions will involve new Verilog concepts,
the most important of which are the process and the register type for nets.

Thus far, continuous assignment statements have been used to describe com-
binations of conditions and actions in Verilog. A continuous assignment statement
is limited in what can be described, however. A process can be viewed as a replace-
ment for a continuous assignment statement that permits considerably greater
descriptive power. Multiple processes may execute concurrently and a process may
execute concurrently with continuous assignment statements.

Within a process, procedural assignment statements, which are not continu-
ous assignments, are used. Because of this, the assigned values need to be retained
over time. This retention of information can be achieved by using the register type
rather than the wire type for nets. The keyword for the register type is reg. Note
that just because a net is of type reg does not mean that an actual register is asso-
ciated with its implementation. Additional conditions need to be present to cause
an actual register to exist.

There are two basic types of processes, the initial process and the
always process. The initial process executes only once, beginning at ¢ = 0. The
always process also executes at ¢ = 0, but executes repeatedly thereafter. To pre-
vent rampant, uncontrolled execution, some timing control is needed in the form
of delay or event-based waiting. The # operator followed by an integer can be used
to specify delay. The @ operator can be viewed as “wait for event.” @ is followed
by an expression that describes the event or events, the occurrence of which will
cause the process to execute.

The body of a process is like a sequential program. The process begins with
the keyword begin and ends with the keyword end. Procedural assignment state-
ments make up the body of the process. These assignment statements are classified
as blocking or nonblocking. Blocking assignments use = as the assignment operator
and nonblocking assignments use <= as the operator. Blocking assignments are
executed sequentially, much like a program in a procedural language such as C.
Nonblocking assignments evaluate the right-hand side, but do not make the assign-
ment until all right-hand sides have been evaluated. Blocking assignments can be
illustrated by the following process body, in which A, B, and C are of type reg:

begin
B = A;
C = B;
end

The first statement transfers the contents of A into B.The second statement then wransfers
the new contents of B into C. At process completon, C contains the original contents of A.
Suppose that the same process body uses nonblocking assignments:

Www.Ebook777.com

http://www.ebook777.com

5-9 / HDL Representation for Sequential Circuits—Verilog [273

begin
B <= A;
C <= B;
end

The first statement transfers the original contents of A into B and the second statement
transfers the original contents of B into C. At process completion, C contains the origi-
nal contents of B, not those of A. Effectively, the two statement have executed concur-
rently instead of in sequence. Nonblocking assignments, except in the cases in which
we want registers (of type reg) to be evaluated sequentially, will be used.

EXAMPLE 5-14 Verilog for Positive-Edge-Triggered D Flip-Flop with Reset

These new concepts can now be applied to the Verilog description of a positive-
edge-triggered D flip-flop given in Figure 5-34. The module and its inputs and
outputs are declared. Q is declared as of type reg, since it will store information.
The process begins with the keyword always. Following is @ (posedge CLK or
posedge RESET) This is the event control statement for the process that ini-
tiates process execution if an event (i.e., a specified change in a specified signal)
occurs. For the D flip-flop, if either CLK or RESET changes to 1, then the process
is executed. It is important to note that the event control statement is not a para-
meter list containing all inputs. For example, D does not appear, since a change in
its value cannot initiate a possible change in the value of Q. Following the event
control statement at the beginning of the process is the keyword begin, and at
the end of the process the keyword end appears.

Within the body of the process, additional Verilog conditional structures can
appear. Notable in the Figure 5-34 example is if-else. The general structure of an if-
else in Verilog is

if (condition)

begin procedural statements end
{else if (condition)

begin procedural statements end}
{else

begin procedural statements end}

If there is a single procedural statement, then the begin and end are unnecessary:

if (A == 1)
Q0 <= X;

else if (B == 0)
Q0 <= Y;

else
Q <= Z;

Note that a double equals signs is used in conditions. If A is 1, then flip-flop Q is
loaded with the contents of X. If A is 0 and B is 0, then flip-flop Q is loaded with the

274 [CHAPTER 5/ SEQUENTIAL CIRCUITS

// Positive-Edge-Triggered D Flip-Flop with Reset:
// Verilog Process Description

module dff_v(CLK, RESET, D, Q);
input CLK, RESET, D;
output Q;
reg Q;

always @ (posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 0;
else
Q <= D;
end
endmodule

[0 FIGURE 5-34
Verilog Process Description of Positive-Edge-Triggered Flip-Flop with Reset

contents of Y. Otherwise, Q is loaded with the contents of Z. The end result for the
four combination of values on A and B is

A=0, B=0 Q <= Y
A=0, B=1 Q <= Z
A=1, B=0 Q0 <= X
A=1, B =1 Q <= X

The if-else within a process is similar in effect to the conditional operator in a con-
tinuous assignment statement introduced earlier. The conditional operator can be used
within a process, but the if-else cannot be used in a continuous assignment statement.

More complex conditional execution of statements can be achieved by nest-
ing if-else structures. For example, we might have

if (A == 1)
if (C == 0)
Q <= W;
else
Q <= X;
else if (B == 0)
Q <=Y;
else
Q <= Z;

In this type of structure, an else is associated with the closest i £ preceding it that
does not already have an else. The end result for the eight combinations of values
on A, B,and C is

A =0, B=2O0,

C = <
A =0, B=20,¢C-=1

o) Y
Q <= Y

5-9 / HDL Representation for Sequential Circuits—Verilog [275

A=0,B=1,C =0 Q <= Z
A=0, B=1,C=1 Q <= Z
A=1, B=20,C=0 Q <= W
A=1, B=20,C=1 Q <= X
A=1,B=1, C =0 Q <= W
A=1,B=1,c =1 Q <= X

Returning to the if-else in the positive-edge-triggered D flip-flop shown in
Figure 5-34, assuming that a positive edge has occurred on either CLK or RESET, if
RESET is 1, the flip-flop output Q is reset to 0. Otherwise, the value on D is stored in
the flip-flop so that Q equals D. Due to the structure of the if-else, RESET equal to 1
dominates the clocked behavior of the D flip-flop, causing the output Q to go to 0.
Similar simple descriptions can be used to represent other flip-flop types and trig-
gering approaches.

EXAMPLE 5-15 Verilog for the Sequence Recognizer

A more complex example in Figure 5-35 represents the sequence-recognizer state
diagram in Figure 5-20(d). The architecture in this description consists of three dis-
tinct processes that can execute simultaneously and interact via shared signal val-
ues. New concepts included are state encoding and case statements for handling
conditions.

In Figure 5-35, the module seq_rec_v and input and output variables CLK,
RESET, X, and z are declared. Next, registers are declared for state and
next_state. Note that since next_state need not be stored, it could also be
declared as a wire, but, since it is assigned within an always, it must be declared as
a reg. Both registers are two bits, with the most significant bit (MSB) numbered 1
and the least significant bit (LSB) numbered 0.

Next, a name is given to each of the states taken on by state and
next_state, and binary codes are assigned to them. This can be done using a
parameter statement or a compiler directive define. We will use the parameter
statement, since the compiler directive requires a somewhat inconvenient ' before
each state throughout the description. From the diagram in Figure 5-20(d), the
states are A, B, C, and D. In addition, the parameter statements give the state
codes assigned to each of these states. The notation used to define the state codes is
2 'b followed by the binary code. The 2 denotes that there are two bits in the code
and the 'b denotes that the base of the code given is binary.

The if-else (without using the else if) makes a two-way decision based on
whether a condition is TRUE or FALSE. In contrast, the case statement can make
a multiway decision based on which one of a number of statements is TRUE. A
simplified form for the generic case statement is

case expression
{case expression : statements}
endcase

in which the braces { } represent one or more such entries.

276 [CHAPTER 5/ SEQUENTIAL CIRCUITS

// Sequence Recognizer: Verilog Process Description
// (See Figure 5-20(d) for state diagram)
module seq rec_v(CLK, RESET, X, Z);
input CLK, RESET, X;
output 7;
reg [1:0] state, next_state;
parameter A = 2'b00, B = 2'b01, C = 2'bl0, D = 2'bll;
reg 7;
// state register: implements positive-edge-triggered
// state storage with asynchronous reset.
always @ (posedge CLK or posedge RESET)
begin
if (RESET == 1)
state <= A;
else
state <= next_state;
end
// next state function: implements next state as function
// of X and state
always @ (X or state)
begin
case (state)
A: if (X == 1)
next_state <= B;

else
next_state <= A;
B: if (X) next_state <= C;else next_state <= A;
C: if (X) next_state <= C;else next_state <= D;
D: if (X) next_state <= B;else next_state <= A;
endcase

end

// output function: implements output as function
// of X and state

always @ (X or state)

begin
case (state)
A: Z <= 0;
B: Z <= 0;
C: 2 <= 0;
D: Z<=X?2?1:0;
endcase
end
endmodule

O FIGURE 5-35

Verilog Process Description of a Sequence Recognizer

5-9 / HDL Representation for Sequential Circuits—Verilog [277

The case expression must have values that can be taken on by a signal of
the type used in expression. Typically, there are sequences of multiple state-
ments. In the example in Figure 5-35, the case statement for the next-state function
makes a multiway decision based on the current state of the circuit, A, B, C, or D.
For each of the case expressions, conditional statements of various types are used
to make a binary decision based on whether input X is 1 or 0. Nonblocking assign-
ment statements are then used to assign the next state based on the eight possible
combinations of state value and input value. For example, consider the expression
B. If X equals 1, then the next state will be C; if X equals 0, then the next state will
be A. This corresponds to the two transitions out of state B in Figure 5-20(d).

With this brief introduction to the case statement, the overall sequence recog-
nizer can now be understood. Each of the three processes has a distinct function, but
the processes interact to provide the overall sequence recognizer. The first process
describes the state register for storing the sequence-recognizer state. Note that the
description resembles that of the positive-edge-triggered flip-flop. There are two dif-
ferences, however. First, there are two bits in the state register. Second, the state that
results from applying RESET is state A rather than state 0. The first process is the
only one of the three processes that has storage associated with it.

The second process describes the next-state function as discussed earlier. The
event control statement contains signals X and state. In general, for describing
combinational logic, all inputs must appear in the event control statement, since,
whenever an input changes, the process must be executed.

The final process describes the output function and uses the same case state-
ment framework as in the next-state function process. Instead of assigning state
names, values 0 and 1 are assigned to Zz. If the value assigned is the same for both
values 0 and 1 on X, no conditional statement is needed, so a conditional statement
appears only for state D. If there are multiple input variables, more complex if-else
combinations, as illustrated earlier, can be used to represent the conditioning of
the outputs on the inputs. This example is a Mealy state machine in which the out-
put is a function of the circuit inputs. If it were a Moore state machine, with the
output dependent only on the state, input X would not appear on the event control
statement and there would be no conditional structures within the case statement.

A common pitfall is present whenever an if-else or case statement is
employed. During synthesis, unexpected storage elements in the form of latches or
flip-flops appear. For the very simple if-else used in Figure 5-34, this pitfall is
employed to give a specification that synthesizes to a flip-flop. In addition to the
two input signals, RESET and CLK, events posedge CLK and posedge RESET
are produced, which are TRUE if the value of the respective signal changes from 0
to 1. Selected combinations of values for RESET and the two events are shown in
Table 5-14. Whenever RESET has no positive edge, or RESET is 0 and CLX is fixed
at 0 or 1 or has a negative edge, no action is specified. In Verilog, the assumption is
that, for any combination of conditions with unspecified actions in if-else or case
statements, the left-hand side of an assignment statement will remain unchanged.

278 [CHAPTER 5 / SEQUENTIAL CIRCUITS

O TABLE 5-14
Illustration of Generation of Storage in Verilog

Inputs Action

posedge RESET
and RESET =1 posedge CLK

FALSE FALSE Unspecified
FALSE TRUE Q<=D
TRUE FALSE Q<=0
TRUE TRUE Q<=0

This is equivalent to Q <= Q, causing storage to occur. Thus, all combinations of
conditions must have the resulting action specified when no storage is intended. To
prevent undesirable latches and flip-flops from occurring, for if-else structures,
care must be taken to include else in all cases if storage is not desired. In a case
statement, a default statement which defines what happens for all choices not
specified should be added. Within the default statement, a specific next state can
be specified, which in the example could be state A.

Together, the three processes used for the sequence recognizer describe the
state storage, the next-state function, and the output function for the sequential cir-
cuit. Since these are all of the components of a sequential circuit at the state-dia-
gram level, the description is complete. The use of three distinct processes is only
one methodology for sequential circuit description. For example, the next-state and
output processes could be easily combined. Nevertheless, the three-process descrip-
tion is the easiest for new users of Verilog and also works well with synthesis tools.

5-10 CHAPTER SUMMARY

Sequential circuits are the foundation upon which most digital design is based.
Flip-flops are the basic storage elements for synchronous sequential circuits. Flip-
flops are constructed of more fundamental elements called latches. By themselves,
latches are transparent and, as a consequence, are very difficult to use in synchro-
nous sequential circuits using a single clock. When latches are combined to form
flip-flops, nontransparent storage elements very convenient for use in such circuits
are formed. Two triggering methods are used for flip-flops: master-slave and edge
triggering. In addition, there are a number of flip-flop types, including D, SR, JK,
and T.

Sequential circuits are formed using these flip-flops and combinational logic.
Sequential circuits can be analyzed to find state tables and state diagrams that rep-
resent the behavior of the circuits. Also, analysis can be performed by using logic
simulation.

These same state diagrams and state tables can be formulated from verbal
specifications of digital circuits. By assigning binary codes to the states and finding

References [1 279

flip-flop input equations, sequential circuits can be designed. The design process
also includes issues such as finding logic for the circuit outputs, resetting the state at
power-up, and controlling the behavior of the circuit when it enters states unused in
the original specification. Finally, logic simulation plays an important role in verify-
ing that the circuit designed meets the original specification.

In order to deal with more complex, realistic designs, state machine diagrams
and state tables are introduced. The goal of this notation is to minimize the com-
plexity of descriptions, maximize the flexibility of representation, permit the use of
default conditions, and provide a model that facilitates modeling of pragmatic
designs. In addition, this model builds toward the use of hardware description lan-
guages to model sequential circuits.

As an alternative to the use of logic diagrams, state diagrams, and state tables,
sequential circuits can be defined in VHDL or Verilog descriptions. These descrip-
tions provide a powerful, flexible approach to sequential circuit specification for
both simulation and automatic circuit synthesis. These representations involve pro-
cesses that provide added descriptive power beyond the concurrent assignment
statements of VHDL and the continuous assignment statement of Verilog. The pro-
cesses, which permit programlike coding and use if-then-else and case conditional
statements, can also be used to efficiently describe combinational logic.

REFERENCES

1. Kartz, R. H. AND G. BORRIELLO. Contemporary Logic Design, 2nd ed. Upper
Saddle River, NJ: Pearson Prentice Hall, 2005.

2. MANo, M. M. Digital Design, 3rd ed. Upper Saddle River, NJ: Pearson Prentice
Hall, 2002.

3. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle
River, NJ: Pearson Prentice Hall, 2006.

4. CLARE, C. R. Designing Logic Systems Using State Machines. New York:
McGraw-Hill Book Company, 1973.

5. High-Speed CMOS Logic Data Book. Dallas: Texas Instruments, 1989.

6. IEEE Standard VHDL Language Reference Manual (ANSI/IEEE Std 1076-
1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical
and Electronics Engineers, 1994.

7. SMiTH, D. J. HDL Chip Design. Madison, AL: Doone Publications, 1996.

8. PELLERIN, D. AND D. TAYLOR. VHDL Made Easy! Upper Saddle River, NJ:
Prentice Hall PTR, 1997.

9. STEFAN, S. AND L. LINDH. VHDL for Designers. London: Prentice Hall
Europe, 1997.

10. YALAMANCHILIL, S. VHDL Starter’s Guide,2nd ed. Upper Saddle River, NJ:
Pearson Prentice Hall, 2005.

11. IEEE Standard Description Language Based on the Verilog Hardware
Description Language (IEEE Std 1364-1995). New York: The Institute of
Electrical and Electronics Engineers, 1995.

280 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

12.

13.

14.

15.

16.

PALNITKAR, S. Verilog HDL: A Guide to Digital Design and Synthesis, 2nd ed.
Upper Saddle River, NJ: Pearson Prentice Hall, 2003.

BHASKER, J. A Verilog HDL Primer, 2nd ed. Allentown, PA: Star Galaxy
Press, 1999.

THOMAS, D. AND P. MOORBY. The Verilog Hardware Description Language,
5th ed. New York: Springer, 2002.

CiLETTI, M. Advanced Digital Design with Verilog HDL. Upper Saddle River,
NIJ: Pearson Prentice Hall, 2003.

CILETTL, M. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Pearson
Prentice Hall, 2004.

PROBLEMS

P

) , The plus (+) indicates a more advanced problem and the asterisk (*) indicates that
a solution is available on the Companion Website for the text.

5-1.

5-2.

5-3.

Perform a manual or computer-based logic simulation similar to that given
in Figure 5-5 for the SR latch shown in Figure 5-6. Construct the input
sequence, keeping in mind that changes in state for this type of latch occur in
response to 0 rather than 1.

Perform a manual or computer-based logic simulation similar to that given
in Figure 5-5 for the SR latch with control input C in Figure 5-7. In
particular, examine the behavior of the circuit when S and R are changed
while C has the value 1.

A popular alternative design for a positive-edge-triggered D flip-flop is
shown in Figure 5-36. Manually or automatically simulate the circuit to

%\T oG

O FIGURE 5-36
Circuit for Problem 5-3

5-4.

5-6.

Problems [281

determine whether its functional behavior is identical to that of the circuit in
Figure 5-12.

Clock and D waveforms, one latch, and two flip-flops are shown in Figure 5-37.
For the latch and each of the flip-flops, carefully sketch the output
waveform, Q;, obtained in response to the input waveforms. Assume that the
propagation delay of the storage elements is negligible. Initially, all storage
elements store 0.

Clock, S and R waveforms, one latch and two flip-flops are shown in Figure
5-38. For the latch and the flip-flops, carefully sketch the output waveform,
Q;, obtained in response to the input waveforms. Assume that the
propagation delay of the storage elements is negligible. Initially, all storage
elements store 0.

A sequential circuit with two D flip-flops A and B, two inputs X and Y, and
one output Z is specified by the following input equations:

D,=XA+XY, Dy=XB+XA, Z=XB

(a) Draw the logic diagram of the circuit.
(b) Derive the state table.
(c) Derive the state diagram.

D | L] L

D with 1 Control

Q,

1C 1p

I Triggered D

dD |

Qs

- C D

I Triggered D

O FIGURE 5-37
Waveforms and Storage Element for Problem 5-4

282 [0 CHAPTER 5/ SEQUENTIAL CIRCUITS

C
s_| L[] L
— il
Q
4R o)
SR
s -
dc Q,
R Tp
I Triggered SR
—qc O
—R Tp
1T Triggered SR

[0 FIGURE 5-38
Waveforms and Storage Element for Problem 5-5

5-7. *A sequential circuit has three D flip-flops A, B, and C, and one input X. The
circuit is described by the following input equations:

D, = (BC+BC)X+(BC+BO)X
Dy= A
D, =B

(a) Derive the state table for the circuit.

(b) Draw two state diagrams, one for X = 0 and the other for X = 1.

5-8. A sequential circuit has one flip-flop Q, two inputs X and Y, and one output
S. The circuit consists of a D flip-flop with S as its output and logic
implementing the function

D=X®Y®S

with D as the input to the D flip-flop. Derive the state table and state
diagram of the sequential circuit.

5-9.

5-10.

5-11.

5-12.

5-13.

5-14.

Problems [283

Starting from state 00 in the state diagram of Figure 5-17(a), determine the
state transitions and output sequence that will be generated when an input
sequence of 10011011110 is applied.

Draw the state diagram of the sequential circuit specified by the state table
in Table 5-15.

O TABLE 5-15
State Table for Circuit of Problem 5-10

Present State Inputs Next State Output
A B X Y A B 4
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 1
0 0 1 1 1 1 1
0 1 0 0 0 1 1
0 1 0 1 1 0 1
0 1 1 0 1 0 0
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 0 1 1 1 0
1 0 1 0 1 1 1
1 0 1 1 1 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 1 1 1 0 1 1

*A sequential circuit has two SR flip-flops, one input X, and one output Y.
The logic diagram of the circuit is shown in Figure 5-39. Derive the state
table and state diagram of the circuit.

A sequential circuit is given in Figure 5-15.

(a) Add the necessary logic and/or connections to the circuit to provide an
asynchronous reset to state A = 0, B = 1 for signal Reset = 1.

(b) Add the necessary logic and/or connections to the circuit to provide a
synchronous reset to state A = 0, B = 0 for signal Reset = 0.

*Design a sequential circuit with two D flip-flops A and B and one input X.
When X = 0, the state of the circuit remains the same. When X = 1, the
circuit goes through the state transitions from 00 to 10 to 11 to 01, back to
00, and then repeats.

The state diagram for a sequential circuit appears in Figure 5-40.
(a) Find the state table for the circuit.

284 [CHAPTER 5/ SEQUENTIAL CIRCUITS

Ls A —>o—s B

> C > C

Clock

. D — >

O FIGURE 5-39
Circuit for Problem 5-11

(b) Make a state assignment for the circuit using 2-bit codes and find the
encoded state table.

(c¢) Find an optimized circuit implementation using D flip-flops, NAND
gates, and inverters.

5-15. The state diagram for a sequential circuit appears in Figure 5-41.

(a) Find the state table for the circuit.

(b) Make a state assignment for the circuit using 3-bit codes for the six
states; make one of the code bits equal to the output to save logic, and
find the encoded state table. The next states and outputs are don’t cares
for the two unused state codes.

(¢) Find an optimized circuit implementation using D flip-flops, NAND
gates, and inverters.

5-16. The circuit given in Figure 5-42 is to be redesigned to cut its cost.
(a) Find the state table for the circuit and replace the state codes with single-
letter identifiers. States 100 and 111 were unused in the original design.

X, X5/Z 00/0,11/0

N 01/0, 10/1
° 00/0, 01/0 e

Reset

00/1,01/0 01/1, 10/0 10/1, 11/1

00/1,111
10/1,11/0

O FIGURE 5-40
State Diagram for Problem 5-14

() 5-17.

5-18.

Problems [285

Input X
Output Z

Reset

O FIGURE 5-41
State Diagram for Problem 5-15

(b) Check for and combine equivalent states.

(c) Make a state assignment such that the output is one of the state
variables.

(d) Find the gate-input costs of the original circuit and your circuit, assuming
that the gate-input cost of a D flip-flop is 14. Is the cost of the new circuit
reduced?

A sequential circuit for a luggage lock has ten pushbuttons labeled 0, 1, 2, 3,
4,5,6,7,8, and 9. Each pushbutton 0 through 9 produces a 1 on X;,i =0
through 9, respectively, with all other values on variable Xj, j # i, equal to 0.
Also, these ten pushbuttons produce a positive pulse on the clock C for
clocking the flip-flops in the circuit. The circuitry that produces the X signals
and the clock C has already been designed. The lock opens in response to a
sequence of four X, values, i = 0, ..., 9, set by the user. The logic for
connecting the four selected X; values to variables X,, X, X, and X, has
also been designed. The circuit is locked and reset to its initial state by
pushing pushbutton Lock, which provides L, the asynchronous reset signal
for the circuit. The lock is to unlock in response to the sequence X,, Xy, X,
X4, regardless of all past inputs applied to it since it was reset. The circuit has
a single Moore type output U which is 1 to unlock the lock, and 0 otherwise.
Design the circuit with inputs X,, Xy, X, and X, reset L, clock C, and
output U. Use a 1-hot code for the state assignment. Implement the circuit
with D flip-flops and AND gates, OR gates, and inverters.

*A serial 2s complementer is to be designed. A binary integer of arbitrary
length is presented to the serial 2s complementer, least significant bit first,
on input X. When a given bit is presented on input X, the corresponding
output bit is to appear during the same clock cycle on output Z. To indicate

286

[0 CHAPTER 5 / SEQUENTIAL CIRCUITS

X — ‘
Y;— D —Y;
{>° Yi— _
Y, — % O-Y;
|
Y, [
Y, \ __\ D —Yz
— | J
Y,— \ _
Ys— > % Y,
)) D y/
Clock > (r:z 0-Ys
Reset |

() 5-19.

5-20.

<> 5-21.

0 FIGURE 5-42
Circuit for Problem 5-16

that a sequence is complete and that the circuit is to be initialized to
receive another sequence, input Y becomes 1 for one clock cycle.
Otherwise, Yis 0.

(a) Find the state diagram for the serial 2s complementer.
(b) Find the state table for the serial 2s complementer.

A Universal Serial Bus (USB) communication link requires a circuit that
produces the sequence 00000001. You are to design a synchronous
sequential circuit that starts producing this sequence for input £ = 1. Once
the sequence starts, it completes. If £ = 1, during the last output in the
sequence, the sequence repeats. Otherwise, if £ = 0, the output remains
constant at 1.

(a) Draw the Moore state diagram for the circuit.
(b) Find the state table and make a state assignment.

(c) Design the circuit using D flip-flops and logic gates. A reset should be
included to place the circuit in the appropriate initial state at which E is
examined to determine if the sequence of constant 1s is to be produced.

Repeat Problem 5-19 for the sequence 01111110 that is used in a different
communication network protocol.

+The sequence in Problem 5-20 is a flag used in a communication network
that represents the beginning of a message. This flag must be unique. As a

(; 5—22-

<) 5-23.

Problems [287

consequence, at most five 1s in sequence may appear anywhere else in the
message. Since this is unrealistic for normal message content, a trick called
zero insertion is used. The normal message, which can contain strings of 1s
longer than 5, enters input X of a sequential zero-insertion circuit. The
circuit has two outputs, Z and S. When a fifth 1 in sequence appears on X, a
0 is inserted in the stream of outputs appearing on Z and the output § =1,
indicating to the circuit supplying the zero-insertion circuit with inputs that
it must stall and not apply a new input for one clock cycle. This is necessary
because the insertion of Os in the output sequence causes it to be longer than
the input sequence without the stall. Zero insertion is illustrated by the
following example sequences:

Sequence on X without any stalls: 01111100111111100001011110101

Sequence on X with stalls: 0111111001111111100001011110101
Sequence on Z: 0111110001111101100001011110101
Sequence on S: 0000001000000010000000000000000

(a) Find the state diagram for the circuit
(b) Find the state table for the circuit and make a state assignment.
(c) Find an implementation of the circuit using D flip-flops and logic gates.

In many communication and networking systems, the signal transmitted on
the communication line uses a non-return-to-zero (NRZ) format. USB
uses a specific version referred to as non-return-to-zero inverted (NRZI).
A circuit that converts any message sequence of Os and 1s to a sequence in
the NRZI format is to be designed. The mapping for such a circuit is as
follows:

(a) If the message bit is a 0, then the NRZI format message contains an
immediate change from 1 to 0 or from 0 to 1, depending on the current
NRZI value.

(b) If the message bit is a 1, then the NRZI format message remains fixed at
0 or 1, depending on the current NRZI value.

This transformation is illustrated by the following example, which assumes
that the initial value of the NRZI message is 1:

Message: 10001110011010

NRZI Message: 10100001000110

(a) Find the Mealy model state diagram for the circuit.

(b) Find the state table for the circuit and make a state assignment.

(c) Find an implementation of the circuit using D flip-flops and logic gates.
+Repeat Problem 5-22, designing a sequential circuit that transforms an

NRZI message into a normal message. The mapping for such a circuit is as
follows:

(a) If a change from 0 to 1 or from 1 to 0 occurs between adjacent bits in the
NRZI message, then the message bit is a 0.

288

5-24.

5-25.

5-26.

0 CHAPTER 5 / SEQUENTIAL CIRCUITS

O FIGURE 5-43
Signals for Problem 5-24

(b) If no change occurs between adjacent bits in the NRZI message, then the
message bitis a 1.

A pair of signals Request (R) and Acknowledge (A) is used to coordinate
transactions between a CPU and its I/O system. The interaction of these
signals is often referred to as a “handshake.” These signals are synchronous
with the clock and, for a transaction, are to have their transitions always
appear in the order shown in Figure 5-43. A handshake checker is to be
designed that will verify the transition order. The checker has inputs, R and
A, asynchronous reset signal, RESET, and output, Error (E). If the
transitions in a handshake are in order, E = 0. If the transitions are out of
order, then £ becomes 1 and remains at 1 until the an asynchronous reset
signal (RESET = 1) is applied to the CPU.

(a) Find the state diagram for the handshake checker.
(b) Find the state table for the handshake checker.

A serial leading-1s detector is to be designed. A binary integer of arbitrary
length is presented to the serial leading-1s detector, most significant bit
first, on input X. When a given bit is presented on input X, the
corresponding output bit is to appear during the same clock cycle on
output Z. As long as the bits applied to X are 0, Z = 0. When the first 1 is
applied to X, Z = 1. For all bit values applied to X after the first 1 is
applied, Z = 0. To indicate that a sequence is complete and that the circuit
is to be initialized to receive another sequence, input Y becomes 1 for one
clock cycle. Otherwise, Y is 0.

(a) Find the state diagram for the serial leading-1s detector.

(b) Find the state table for the serial leading-1s detector.

* A sequential circuit has two flip-flops A and B, one input X, and one output
Y. The state diagram is shown in Figure 5-44. Design the circuit with D flip-
flops using a 1-hot state assignment.

5-27.

5-28.

Problems [289

O FIGURE 5-44
State Diagram for Problem 5-26

*A set-dominant master-slave flip-flop has set and reset inputs. It differs
from a conventional master-slave SR flip-flop in that, when both § and R are
equal to 1, the flip-flop is set.

(a) Obtain the state table of the set-dominant flip-flop.

(b) Find the state diagram for the set-dominant flip-flop.

(¢) Design the set-dominant flip-flop by using an SR flip-flop and logic gates
(including inverters).

+The state table for a 3-bit twisted ring counter is given in Table 5-16.
This circuit has no inputs, and its outputs are the uncomplemented
outputs of the flip-flops. Since it has no inputs, it simply goes from state to
state whenever a clock pulse occurs. It has an asynchronous reset that
initializes it to state 000.

(a) Design the circuit using D flip-flops and assuming that the unspecified
next states are don’t-care conditions.

(b) Add the necessary logic to the circuit to initialize it to state 000 on
power-up master reset.

(¢) In the subsection “Designing with Unused States” of Section 5-5, three
techniques for dealing with situations in which a circuit accidentally
enters an unused state are discussed. If the circuit you designed in parts
(a) and (b) is used in a child’s toy, which of the three techniques given
would you apply? Justify your decision.

(d) Based on your decision in part (c), redesign the circuit if necessary.

(e) Repeat part (c) for the case in which the circuit is used to control engines
on a commercial airliner. Justify your decision.

(f) Repeat part (d) based on your decision in part (e).

290

5-29.

5-30.

5-31.

5-32.

5-33.

5-34.

5-35.

[0 CHAPTER 5 / SEQUENTIAL CIRCUITS

0 TABLE 5-16
State Table for Problem 5-28
Present State Next State
ABC ABC
000 100
100 110
110 111
111 011
011 001
001 000

Do a manual verification of the solution (either yours or the one posted on
the text website) to Problem 5-27. Consider all transitions where S and R
change with the clock e