
POINTER

PRESENTED BY-

NEELAM SINGH

DEPARTMENT OF COMPUTER SCIENCE

C++ Pointers

 The pointers in C++ programming language is basically a variable that is

also called as locater or installer that generally point towards the address

of a provided value.

What are Pointers?

 In C++, a pointer refers to a variable that holds the address of another

variable. Like regular variables, pointers have a data type. For example, a

pointer of type integer can hold the address of a variable of type integer.

A pointer of character type can hold the address of a variable of

character type.

 You should see a pointer as a symbolic representation of a memory

address. With pointers, programs can simulate call-by-reference. They can

also create and manipulate dynamic data structures. In C++, a pointer

variable refers to a variable pointing to a specific address in a memory

pointed by another variable.

Addresses in C++

 To understand C++ pointers, you must understand how computers store

data.

 When you create a variable in your C++ program, it is assigned some

space the computer memory. The value of this variable is stored in the

assigned location.

 To know the location in the computer memory where the data is stored,

C++ provides the & (reference) operator. The operator returns the address
that a variable occupies.

For example, if x is a variable, &x returns the address of the variable.

Pointer Declaration Syntax

The declaration of C++ takes the following syntax:
datatype *variable_name;

 The datatype is the base type of the pointer which must be a valid C++ data type.

 The variable_name is should be the name of the pointer variable.

 Asterisk used above for pointer declaration is similar to asterisk used to perform multiplication operation.

It is the asterisk that marks the variable as a pointer.

Here is an example of valid pointer declarations in C++:
int *x; // a pointer to integer

double *x; // a pointer to double

float *x; // a pointer to float

char *ch // a pointer to a character

Reference operator (&) and Deference

operator (*)

 The reference operator (&) returns the variable’s address.

 The dereference operator (*) helps us get the value that has been stored

in a memory address.

 For example:

 If we have a variable given the name num, stored in the address 0x234

and storing the value 28.

 The reference operator (&) will return 0x234.

 The dereference operator (*) will return 5.

EXAMPLE

#include <iostream>
using namespace std;
int main() OUTPUT
{
int x = 27;

int *ip;
ip = &x;
cout << "Value of x is : ";
cout << x << endl;

cout << "Value of ip is : ";
cout << ip<< endl;
cout << "Value of *ip is : ";
cout << *ip << endl;

return 0; }

Here is a screenshot of the code:

Code Explanation:

 Import the iostream header file. This will allow us to use the functions defined in the header file without getting errors.

 Include the std namespace to use its classes without calling it.

 Call the main() function. The program logic should be added within the body of this function. The { marks the beginning of the function’s body.

 Declare an integer variable x and assigning it a value of 27.

 Declare a pointer variable *ip.

 Store the address of variable x in the pointer variable.

 Print some text on the console.

 Print the value of variable x on the screen.

 Print some text on the console.

 Print the address of variable x. The value of the address was stored in the variable ip.

 Print some text on the console.

 Print value of stored at the address of the pointer.

 The program should return value upon successful execution.

 End of the body of the main() function.

Advantages of Pointer

 Less time in program execution.

 Working on the original variable.

 With the help of pointers, we can create data structures (linked-list, stack,

queue).

 Returning more than one values from functions.

 Searching and sorting large data very easily.

 Dynamically memory allocation.

Uses of Pointers

 To pass arguments by reference.

 For accessing array elements.

 To return multiple values.

 Dynamic memory allocation.

 To implement data structures.

 To do system level programming where memory addresses are useful.

THANK YOU

