
POINTER

PRESENTED BY-

NEELAM SINGH

DEPARTMENT OF COMPUTER SCIENCE

C++ Pointers

 The pointers in C++ programming language is basically a variable that is

also called as locater or installer that generally point towards the address

of a provided value.

What are Pointers?

 In C++, a pointer refers to a variable that holds the address of another

variable. Like regular variables, pointers have a data type. For example, a

pointer of type integer can hold the address of a variable of type integer.

A pointer of character type can hold the address of a variable of

character type.

 You should see a pointer as a symbolic representation of a memory

address. With pointers, programs can simulate call-by-reference. They can

also create and manipulate dynamic data structures. In C++, a pointer

variable refers to a variable pointing to a specific address in a memory

pointed by another variable.

Addresses in C++

 To understand C++ pointers, you must understand how computers store

data.

 When you create a variable in your C++ program, it is assigned some

space the computer memory. The value of this variable is stored in the

assigned location.

 To know the location in the computer memory where the data is stored,

C++ provides the & (reference) operator. The operator returns the address
that a variable occupies.

For example, if x is a variable, &x returns the address of the variable.

Pointer Declaration Syntax

The declaration of C++ takes the following syntax:
datatype *variable_name;

 The datatype is the base type of the pointer which must be a valid C++ data type.

 The variable_name is should be the name of the pointer variable.

 Asterisk used above for pointer declaration is similar to asterisk used to perform multiplication operation.

It is the asterisk that marks the variable as a pointer.

Here is an example of valid pointer declarations in C++:
int *x; // a pointer to integer

double *x; // a pointer to double

float *x; // a pointer to float

char *ch // a pointer to a character

Reference operator (&) and Deference

operator (*)

 The reference operator (&) returns the variable’s address.

 The dereference operator (*) helps us get the value that has been stored

in a memory address.

 For example:

 If we have a variable given the name num, stored in the address 0x234

and storing the value 28.

 The reference operator (&) will return 0x234.

 The dereference operator (*) will return 5.

EXAMPLE

#include <iostream>
using namespace std;
int main() OUTPUT
{
int x = 27;

int *ip;
ip = &x;
cout << "Value of x is : ";
cout << x << endl;

cout << "Value of ip is : ";
cout << ip<< endl;
cout << "Value of *ip is : ";
cout << *ip << endl;

return 0; }

Here is a screenshot of the code:

Code Explanation:

 Import the iostream header file. This will allow us to use the functions defined in the header file without getting errors.

 Include the std namespace to use its classes without calling it.

 Call the main() function. The program logic should be added within the body of this function. The { marks the beginning of the function’s body.

 Declare an integer variable x and assigning it a value of 27.

 Declare a pointer variable *ip.

 Store the address of variable x in the pointer variable.

 Print some text on the console.

 Print the value of variable x on the screen.

 Print some text on the console.

 Print the address of variable x. The value of the address was stored in the variable ip.

 Print some text on the console.

 Print value of stored at the address of the pointer.

 The program should return value upon successful execution.

 End of the body of the main() function.

Advantages of Pointer

 Less time in program execution.

 Working on the original variable.

 With the help of pointers, we can create data structures (linked-list, stack,

queue).

 Returning more than one values from functions.

 Searching and sorting large data very easily.

 Dynamically memory allocation.

Uses of Pointers

 To pass arguments by reference.

 For accessing array elements.

 To return multiple values.

 Dynamic memory allocation.

 To implement data structures.

 To do system level programming where memory addresses are useful.

THANK YOU

