
SCOPE IN C++

PRESENTED BY – ANJALI SONA

DEPARTMENT OF COMPUTER SCIENCE

 When you declare a program element such as a class, function, or

variable, its name can only be "seen" and used in certain parts of your

program. The context in which a name is visible is called its scope. For

example, if you declare a variable x within a function, x is only visible within

that function body. It has local scope. You may have other variables by the

same name in your program; as long as they are in different scopes, they

do not violate the One Definition Rule and no error is raised.

 For automatic non-static variables, scope also determines when they are

created and destroyed in program memory.

There are six kinds of scope:

1. Global scope

2. Namespace scope

3. Local scope

4. Class scope

5. Statement scope

6. Function scope

1.Global scope

A global name is one that is declared outside of any class,

function, or namespace. However, in C++ even these

names exist with an implicit global namespace. The scope

of global names extends from the point of declaration to

the end of the file in which they are declared. For global

names, visibility is also governed by the rules

of linkage which determine whether the name is visible in

other files in the program.

2.Namespace scope

A name that is declared within a namespace,

outside of any class or enum definition or function

block, is visible from its point of declaration to the

end of the namespace. A namespace may be

defined in multiple blocks across different files.

3.Local scope

A name declared within a function or lambda, including

the parameter names, have local scope. They are often

referred to as "locals". They are only visible from their point

of declaration to the end of the function or lambda body.

Local scope is a kind of block scope, which is discussed

later in this article.

4.Class scope

Names of class members have class scope, which

extends throughout the class definition regardless of the

point of declaration. Class member accessibility is further

controlled by the public, private, and protected keywords.

Public or protected members can be accessed only by

using the member-selection operators (. or ->) or

pointer-to-member operators (.* or ->*).

5. Statement scope

Names declared in a for, if, while,

or switch statement are visible until the end of

the statement block.

6. Function scope

A label has function scope, which means it is visible throughout a function body

even before its pointof declaration.

Function scope makes it possible to write statements like goto cleanup before

the cleanup label is declared.

Abstraction in C++

 Data abstraction is one of the most essential and important feature of

object oriented programming in C++. Abstraction means displaying only

essential information and hiding the details. Data abstraction refers to

providing only essential information about the data to the outside world,

hiding the background details or implementation.

 Consider a real life example of a man driving a car. The man only knows

that pressing the accelerators will increase the speed of car or applying

brakes will stop the car but he does not know about how on pressing

accelerator the speed is actually increasing, he does not know about the

inner mechanism of the car or the implementation of accelerator, brakes

etc in the car. This is what abstraction is.

 Abstraction using Classes: We can implement Abstraction in C++ using

classes. Class helps us to group data members and member functions using

available access specifiers. A Class can decide which data member will be

visible to outside world and which is not.

 Abstraction in Header files: One more type of abstraction in C++ can be

header files. For example, consider the pow() method present in math.h

header file. Whenever we need to calculate power of a number, we simply

call the function pow() present in the math.h header file and pass the

numbers as arguments without knowing the underlying algorithm

according to which the function is actually calculating power of numbers.

Abstraction using access specifiers

 Access specifiers are the main pillar of implementing abstraction in C++. We
can use access specifiers to enforce restrictions on class members. For example:

 Members declared as public in a class, can be accessed from anywhere in the
program.

 Members declared as private in a class, can be accessed only from within the
class. They are not allowed to be accessed from any part of code outside the
class.

 We can easily implement abstraction using the above two features provided by
access specifiers. Say, the members that defines the internal implementation
can be marked as private in a class. And the important information needed to
be given to the outside world can be marked as public. And these public
members can access the private members as they are inside the class.

#include <iostream>

using namespace std;

class implementAbstraction

{
private:

int a, b;

public:

// method to set values of
// private members

void set(int x, int y)

{
a = x;
b = y;

}

void display()
{

cout<<"a = " <<a << endl;

cout<<"b = " << b << endl;
}

};

int main()

{
implementAbstraction obj;
obj.set(10, 20);
obj.display();

return 0;

}

Output:
a = 10
b = 20

Advantages of Data Abstraction:

 Helps the user to avoid writing the low level code

 Avoids code duplication and increases reusability.

 Can change internal implementation of class independently without

affecting the user.

 Helps to increase security of an application or program as only important

details are provided to the user.

THANK YOU

